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Editorial on the Research Topic 


Optimizing fertilizer and irrigation for specialty crops using precision agriculture technologies





Introduction

Global demand for specialty crops continues to grow, driven by consumer preferences for high-quality, diverse produce and by the need to transition toward environmentally sustainable production systems (Vuppalapati, 2023). At the same time, specialty crop agriculture faces mounting constraints: increasing pressure on water and nutrient resources, spatial heterogeneity of soils and microclimates, stricter environmental regulations, and the imperative to improve both yield and quality under variable climatic conditions (Sandhu et al., 2025; Gonzalez et al., 2025). Precision agriculture offers a pathway to address these challenges through site-specific, data-driven management of fertilizer and irrigation. By integrating proximal and remote sensors, advanced analytics, and decision-support tools, precision approaches can enhance resource-use efficiency, reduce nutrient losses, and improve crop performance while safeguarding environmental quality (Munoz Salas et al., 2025; Souza Costa and Khoddamzadeh, 2025).

This Research Topic brings together studies that collectively address three interrelated challenges: (i) how to diagnose crop nutrient and water status at high spatial and temporal resolution; (ii) how to translate these diagnostics into variable-rate management of fertilizers and irrigation; and (iii) how to integrate technological, biological, and modeling approaches into coherent decision-support systems for specialty crops.





Sensor-based and remote sensing approaches for nutrient and water diagnostics

Several contributions demonstrate how proximal and remote sensing technologies enable non-destructive, spatially explicit assessment of crop nutritional and water status. Costa and Khoddamzadeh employ optical sensors (GreenSeeker™, SPAD, and atLEAF) to determine nitrogen requirements for Satinleaf (Chrysophyllum oliviforme), illustrating how sensor indices can guide site-specific nitrogen application in horticultural systems. Kong et al. extend this concept using UAV-based hyperspectral imaging combined with machine-learning models to estimate leaf chlorophyll content in banana, integrating spectral and textural features to map nutrient status across heterogeneous orchards.

Water status monitoring is similarly advanced by Ding et al., who apply UAV hyperspectral imagery and machine learning to estimate potato canopy leaf water content across growth stages, enabling stage-specific irrigation decisions. Huang et al. combine UAV multispectral data with ground-based SPAD measurements to generate spatially explicit nitrogen diagnostic maps for orchard systems. Collectively, these studies show that sensor-driven diagnostics can replace uniform input strategies with real-time, crop-responsive management. Their convergence on data fusion (spectral and structural features) and predictive modeling highlights a broader shift toward operational remote sensing as a core component of precision nutrient and water management.





Soil and geophysical mapping for site-specific management

Understanding within-field variability in soil properties is essential for variable-rate input management. Scudiero et al. integrate apparent soil electrical conductivity with gamma-ray spectrometry to characterize particle-size distribution in micro-irrigated citrus orchards. Their approach enables delineation of management zones based on water-holding capacity and nutrient retention, supporting targeted irrigation and fertilization. This work emphasizes that crop-based sensing must be complemented by soil and geophysical characterization to establish the physical context in which nutrient and water decisions are made. Integrating soil mapping with canopy level diagnostics is key to robust site-specific management.





Organic and bio-based fertilizers in precision nutrient management

A set of studies explores how organic amendments and biofertilizers can be integrated into precision frameworks to reduce reliance on synthetic inputs. Yang et al. report that substituting silkworm excrement in compound fertilizers increases bamboo shoot yield and enhances soil microbial communities in Phyllostachys edulis forests. Mingjing et al. demonstrate that castor bean meal based biofertilizers improve growth, yield, and quality of Tartary buckwheat. Huang et al. show that partial replacement of synthetic nitrogen with organic sources enhances aroma-related metabolites in Wuyi Rock tea, linking nutrient management to product quality. Zhao et al. further document improvements in soil physicochemical properties and cotton yield following organic fertilizer inputs in southern Xinjiang. These studies collectively indicate that organic and bio-based fertilizers can be deployed in precision systems to achieve dual goals: improving soil health while maintaining or enhancing crop performance. Their integration with sensor-based diagnostics offers a promising route toward environmentally sustainable, input efficient specialty crop production.





Optimizing irrigation–fertilization regimes and cropping systems

Several contributions address coordinated management of water and nutrients. Zhang et al. identify optimal fertilizer rates and sowing densities that maximize yield, quality, and nutrient-use efficiency in oats. Gao et al. demonstrate that synchronized irrigation and fertilization in maize mung bean intercropping enhances photosynthetic efficiency, water use, and yield. Hutchinson et al. compare sensor-controlled fertigation with timer-based systems in hydroponic strawberry production, showing that real-time moisture sensing improves resource and energy efficiency. Guo et al. provide a meta-analysis for kiwifruit, quantifying how irrigation and fertilization strategies affect yield, water-use efficiency, and fruit quality across environments. These studies underscore the importance of coupling irrigation and fertilization decisions rather than optimizing them in isolation. Precision management emerges not only as a technological upgrade but as a systems approach to coordinating multiple inputs for maximum agronomic and environmental benefit.





Modeling, meta-analysis, and decision-support tools

Beyond field-level experimentation, modeling and synthesis approaches contribute to scalable decision-making. Tan et al. implement the APSIM crop model to simulate winter wheat growth dynamics, demonstrating the value of “digital twin” frameworks for predicting biomass, phenology, and yield under variable climate and management scenarios. Yang et al. apply meta-analysis to compare ratoon-season and main crop cereals, revealing improvements in grain quality under optimized water nutrient regimes. Modeling and meta-analytic approaches provide the temporal and spatial generalization needed to translate site-specific findings into broadly applicable management guidelines. When coupled with sensor-derived data streams, these tools form the backbone of adaptive, data driven agronomic decision systems.





Toward integrated precision nutrient water management

Taken together, the contributions in this Research Topic illustrate a transition from isolated technological applications to integrated management frameworks. Sensor networks diagnose crop and soil status; organic and bio-based fertilizers enhance sustainability; coordinated irrigation fertilization regimes optimize resource use; and models synthesize data across scales. The emerging paradigm is one of adaptive precision agriculture, in which real-time diagnostics, biological inputs, and predictive analytics are combined to deliver site-specific, environmentally responsible management. Future progress will depend on: (i) tighter integration of multi-sensor platforms with crop and soil models; (ii) standardization and interoperability of agronomic data; (iii) incorporation of artificial intelligence for real-time optimization; and (iv) development of scalable solutions accessible to both high-tech operations and resource-limited producers.





Conclusions

This Research Topic demonstrates that precision agriculture technologies can substantially improve fertilizer and irrigation management in specialty crops by enhancing resource-use efficiency, crop quality, and environmental performance. By uniting sensor-based diagnostics, soil mapping, organic nutrient strategies, coordinated water-nutrient management, and modeling tools, the collected studies move beyond incremental optimization toward integrated, system-level solutions. Looking ahead, continued innovation in sensor technologies, data analytics, and decision-support systems coupled with close collaboration among researchers, growers, and technology providers will be essential to realize the full potential of precision agriculture. Such integration will ensure that specialty crop production remains productive, profitable, and sustainable under increasingly complex environmental and market conditions.
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Chlorophyll monitoring is an important topic in phenotypic research. For fruit trees, chlorophyll content can reflect the real-time photosynthetic capacity, which is a great reference for nutrient status assessment. Traditional in situ estimation methods are labor- and time-consuming. Remote sensing spectral imagery has been widely applied in agricultural research. This study aims to explore a transferable model to estimate canopy SPAD across growth stages and tree species. Unmanned aerial vehicle (UAV) system was applied for multispectral images acquisition. The results showed that the univariate model yielded with Green Normalized Difference Vegetation Index (GNDVI) gave valuable prediction results, providing a simple and effective method for chlorophyll monitoring for single species. Reflection features (RF) and texture features (TF) were extracted for multivariate modeling. Gaussian Process Regression (GPR) models yielded better performance for mixed species research than other algorithm models, and the R2 of the RF+TF+GPR model was approximately 0.7 in both single and mixed species. In addition, this method can also be used to predict canopy SPAD over various growth stages, especially in the third and fourth stages with R2 higher than 0.6. This paper highlights the importance of using RF+TF for canopy feature expression and deep connection exploration between canopy features with GPR algorithm. This research provides a universal model for canopy SPAD inversion which can promote the growth status monitoring and management of fruit trees.
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1 Introduction

Chlorophyll, as an important component of plant cells with the ability to absorb light and convert it into chemical energy, is critical to observe the photosynthetic capacity (Zarco-Tejada et al., 2016) and the nitrogen status of the fruit trees. Under the background of climate change and population growth, limited land resources and water resources make agricultural production face great pressure (Intergovermental Panel on Climate Change, 2022). Chlorophyll content monitoring in fruit trees can help predict yield and optimize plant varieties in biological research (Brewer et al., 2022), thereby increasing agricultural productivity and ensuring food security and sustainable development.

Traditionally, chlorophyll content was measured by chemical method (chromatographic separation), which is time- and labor-consuming. Spectral technology has gained widespread application in the non-destructive detection of chlorophyll content. The development of a portable spectrometer provides much convenience for field spectral collection for its mobility (Crocombe, 2018; Xiao et al., 2024). However, this approach is still labor-intensive and not suitable for large-scale area applications. With the evolvement of science and technology, remote sensing techniques have become popular gradually, promoting the development of high-throughput phenotypic research (Jafarbiglu and Pourreza, 2022). Satellite remote sensing technology helps us with large-scale data analysis. Nevertheless, for precision agriculture in small farms, satellite remote sensing is limited in spatial and temporal resolution. Unmanned aerial vehicle (UAV) remote sensing enables fast data acquisition with highly ground and temporal resolution; its advantages of simple operation and flexible application make it become an important means in agricultural monitoring research (Sankaran et al., 2019; Jafarbiglu and Pourreza, 2022).

Multispectral and hyperspectral sensors are imaging devices, which can simultaneously obtain two-dimensional spatial information and one-dimensional spectral information. The combination of spectral imaging and UAV can effectively facilitate data acquisition for a large area (Zhao et al., 2019). Lao et al. (2024) proposed a parameter/non-parameter combined model for canopy chlorophyll content retrieval of seven typical vegetation communities; high-spatial-resolution images were captured with UAV multispectral device. Wang et al. (2022) used UAV to estimate the percent green cover for high-throughput turfgrass; they found that multispectral images might offer a solution for non-green vegetation which is not captured by RGB images. Fu et al. used multi-platforms including analytical spectral device, UAV, and PlanetScope for water chlorophyll a concentration retrieval; the transfer learning methods were proposed for the ASD hyperspectral data to UAV and Planet platforms (Fu et al., 2023). Hyperspectral imagers have high spectral resolution and can detect more spectral information than multispectral cameras, but the processing method is more complicated for hyperspectral images (Hernanda et al., 2023). In addition, a multispectral camera is much cheaper than a hyperspectral camera (Zhang and Zhu, 2023), which is a significant factor considered in our research because economy is an important aspect that determines the possibility of application for a smallholder.

Vegetation index (VI) is calculated with reflectance of different spectral bands intending to select informative and sensitive spectral data and minimize non-informative information. It provides an important contribution to the assessment of plant status and successfully applied for chlorophyll estimation (Haboudane et al., 2008; Li et al., 2018), LAI monitoring (Hunt et al., 2010), and yield prediction (Zhou et al., 2017; Guan et al., 2019). However, previous research was mainly focused on plant evaluation for specific growth stage due to the great influence of phenological changes in biochemical content (Féret et al., 2017; Wang et al., 2018). Obviously, the growth model corresponding to different stages is inconvenient in the evaluation of the whole growing season. Therefore, it is necessary to build an applicable model throughout the growth cycle for chlorophyll retrieval. Moreover, Main et al. (2011) pointed out that for plant species (maize, cabbage, tomato, and several savanna tree species) with different degrees of chlorophyll content, indices using off-chlorophyll absorption center wavebands (690–730 nm) performed the most robust results. Similarly, in fruit tree studies, more research needs to be done to find common indices. More studies should continue to find a universal index for chlorophyll monitoring.

Texture feature, which refers to visual patterns or spatial arrangement of pixels, is another significant characteristic of images. It can provide spatial information on crop growth (Duan et al., 2019; Yogeshwari and Thailambal, 2021). In the rice aboveground biomass monitoring research, Xu et al. found that texture features can help to recognize the emergence of rice panicles, thus avoiding the overestimation at panicle initiation (Xu et al., 2022a). During the tillering stage to the booting stage, the texture features tended to be stable, which helps to the improvement of prediction accuracy (Xu et al., 2022b). Moreover, Li et al. got improved accuracy of nitrogen content models in winter wheat with the fusion of spectral and texture features (Li et al., 2023). Maimaitijiang et al. recognized that canopy texture features could offer canopy subtle structure characteristics which would be beneficial to soybean yield prediction (Maimaitijiang et al., 2020). However, there is a lack of literature on fruit trees about the potential of texture features (TF). Therefore, our research further explored the sensitivity of TF on the chlorophyll content evaluation of fruit trees (Abdelbaki and Udelhoven, 2022).

This study aims to assess the potential of vegetation indices (VIs), reflection features (RF), and TF in estimating the canopy SPAD values of fruit trees, combined with multiple machine learning algorithms. The emphasis focuses on inversion models that can be applied simultaneously to mixed tree species (apple tree and pear tree). The main contributions of this work are given as follows: (1) evaluate the VIs for canopy SPAD monitoring of single and mixed tree species with univariate algorithms, (2) compare the performance of the combined use of the RF and TF in estimating canopy SPAD based on deep learning algorithms, and (3) determine the optimal method for canopy SPAD inversion over various growth stages of mixed tree species.




2 Materials and methods



2.1 Study region

This study was conducted in the city of Baoding, of Hebei province, China, with a temperate and monsoonal climate. The experimental field was an apple orchard (115.37° E, 38.90° N) with an elevation of approximately 25 m and a pear orchard (115.41° E, 38.84° N) with an elevation of approximately 30 m (Figure 1). The two orchards were watered by flowing irrigation, except when rain-fed. The total area size of the apple orchard is approximately 0.2 ha. A total of 91 “Morrissey apple” trees arranged in seven rows were planted in 2009. The apple trees were irrigated four times during the annual period, respectively—earlier during flowering and fruit growth beginning stage, the fruit growth and the volume increase stage, the time after the fruit picking stage, and later during the leaf senescence stage. The average apple tree height is 3.5 m. The pear orchard covers an area of approximately 0.27 ha, and a part of the whole orchard was set as research area, including 96 “Bergamot pear” trees arranged in eight rows and planted in 2015. The pear trees were irrigated four times during the annual period, especially in the time before the flowering stage, later of the flowering stage, the fruit growth and the volume increase stage, and the time after the fruit picking stage. The average pear tree height is 4.2 m. The experimental field was divided into microplots to obtain experimental data separately.

[image: Map of China highlighting Baoding, Hebei with aerial images of two orchards. The apple orchard shows a green field with a red boundary. Below, the pear orchard is also marked with a red boundary on a patch of vibrant green. Each image includes a scale in meters.]
Figure 1 | Location and satellite pictures of the experimental area.




2.2 Field data collection

A chlorophyll meter is a portable device which allows the in situ quantification of total leaf chlorophyll by measuring optical densities at two separate wavebands, and the chlorophyll content can be estimated by SPAD values (Shu et al., 2021). In this study, the SPAD value was measured with a chlorophyll meter (TYS-4N Jinkelida Electronics, Beijing, China). The SPAD value was measured at six points and twice for each one; the average was taken as the final value. A comparative experiment between leaf chlorophyll content and SPAD value was carried out, and the results verified that the SPAD value was related to the chlorophyll content at the 0.01 level with a Pearson coefficient of more than 0.9 for both apple and pear tree leaves. For each microplot, the reference canopy SPAD is determined by averaging the SPAD values of 20 sample leaves which are healthy with an intact structure and located at the upper and different directions of the canopy.

We implemented experiments from August 2019 to September 2021 in the apple orchard and from May 2020 to August 2021 in the pear orchard. The experimental date and corresponding growth stages are specified in Table 1. Each experimental day was a sunny day, and the temperature situation is shown in Figure 2. Figure 3 describes the statistical analysis of the canopy SPAD value for fruit trees in different growth stages. It can be concluded that the canopy SPAD value increased from flowering until fruit maturation period and then began to decrease during the annual growth cycle. With the growth and development of tree leaves, the chlorophyll content in the leaves gradually increased, and when the fruits gradually matured, the chlorophyll content in the leaves began to decrease. In our study, the maturity time of pear trees was approximately 20 days earlier than that of apple trees.

Table 1 | Schedule of experiments in the orchard.


[image: Table listing experimental dates and growth stages for apple and pear trees over three years. For apple trees: 2019 shows stages from fruit ripening to leaf senescence; 2020 and 2021 detail stages from flowering to leaf senescence. Pear trees are shown for 2020 and 2021, with stages from flowering to leaf senescence. Dates range from May to September, with growth stages categorized by BBCH codes such as seventy-one, seventy-three, and eighty-seven.]
[image: Two line graphs labeled A and B show temperature variations over different dates. Both graphs display maximum, minimum, and average temperatures in degrees Celsius. Graph A, from August 27, 2019, to September 21, 2021, shows fluctuations in temperature, with peaks in the maximum line around 34°C. Graph B, from May 17, 2020, to August 25, 2021, also shows similar fluctuations, with a maximum temperature peak around 34°C. The data captures the dynamic changes in temperature over the specific periods, with max, min, and average lines represented in red, blue, and orange, respectively.]
Figure 2 | Temperature conditions of the experimental days in the apple orchard (A) and pear orchard (B). “Max” represents the maximum temperature of the day. “Min” indicates the minimum temperature of the day. “Average” represents the average temperature of the day.

[image: Box plots showing canopy SPAD values over time. Panel A shows the apple tree canopy with increasing values peaking in 2020, then fluctuating until 2021. Panel B shows the pear tree canopy with values ranging mostly between 20 and 35, with some variation from 2020 to 2021. Dates on the x-axes vary from 2019 to 2021.]
Figure 3 | Statistical analysis map of canopy SPAD value in different growth stages of the apple tree (A) and the pear tree (B).




2.3 Multispectral image collection

Parrot Sequoia is a small and lightweight multispectral imager designed for agricultural remote sensing, with four spectral sensors and one RGB sensor (Figure 4B). The four spectral bands are situated in green (550 nm), red (660 nm), and near-infrared (790 nm) with bandwidth of 40 nm, respectively, and in red-edge (735 nm) with bandwidth of 10 nm. Furthermore, the imager was equipped with a sunshine sensor to compensate for the variability in sunlight conditions during different campaigns (Figure 4A) and to calibrate the images obtained with a calibration reflectance panel (Figure 4D) under different lighting conditions.

[image: A composite image showing: A) a person operating a drone on a sunny day; B) a close-up of a drone with labels identifying a sunshine sensor, UAV, and multispectral sensors; C) another person preparing a drone with labels highlighting a calibration target on the ground; D) the calibration target featuring various patterns and symbols.]
Figure 4 | Multispectral images and radiometric calibration image collection. (A) Diagram of canopy image collection. (B) Parrot Sequoia camera and UAV equipment. (C) Diagram of radiometric calibration image collection. (D) Calibration reflectance panel.

The UAV used in this study was DJI Phantom 3 Advanced (DJI Technology Co., Shenzhen, China), a low-cost quadrotor. Flight paths were generated in DJI GS Pro (https://www.dji.com/cn/ground-station-pro; DJI Technology Co., Shenzhen, China), ensuring images with 75% forward overlap and 85% side overlap. The drone flew autonomously along the flight path at a speed of 3.5 m/s, a height of 50 m above the ground level of the field. A total of 62 images were collected in the apple orchard, and 98 images were collected in the pear orchard under clear-sky conditions from 10:00 a.m. to 2:00 p.m. on each experiment day. The images have a spatial resolution of approximately 5 cm/pixel. In addition, two to three sets of calibration images were taken for reflectance correction to be applied (Figure 4C).




2.4 Data processing

Machine learning methods were applied for canopy SPAD prediction modeling. The pre-processing of UAV imagery and the extraction of spectral information were computed with Pix4Dmapper software (https://www.pix4d.com.cn/pix4dmapper, Pix4D SA, Switzerland). The commonly used gray level co-occurrence matrix (GLCM) was selected to extract TF from multispectral UAV images. The TF were calculated using ENVI 5.3 software (https://envi.geoscene.cn, ITT Visual Information Solutions, USA), including mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation. Figure 5 shows the workflow diagram of UAV imagery processing, field data collection, and modeling.

[image: Flowchart detailing UAV imagery processing, field data collection, and modeling for vegetation analysis. It includes steps like creating ortho-mosaic maps, spectral map analysis, vegetation index calculation, SPAD measurements for apple and pear orchards, machine learning methods, univariate and multivariate analysis, and model validation based on different growth stages.]
Figure 5 | Workflow diagram of UAV imagery processing, field data collection, and modeling.




2.5 Univariate regression analysis method

Vegetation index (VI) is the combination of related reflectance and the integration of spectral data from two or more bands after a certain mathematical transformation (Gitelson et al., 2002). Narmilan et al. (2022) constructed different machine learning models with VIs for sugarcane chlorophyll content prediction. Madonsela et al. (2023) proved that the red-edge chlorophyll index and green chlorophyll index, using the red-edge variant centered at 705 nm, were the most useful for estimating maize LAI. In this study, we attempted to explore the utility of univariate methods (linear, exponential, power, and logarithmic regression) for tree canopy chlorophyll estimation with VI. The VIs used in our study for chlorophyll estimation are listed in Table 2. The original bands in the formulation of each VI was replaced by the closest available bands. The univariate regression analysis was implemented in Python environment through the “numpy” and “LinearRegression” packages.

Table 2 | VIs selected from the literature.


[image: Table listing various Vegetation Indices (VI), their formulations, and references. Includes indices like NDVI, GNDVI, REGNDVI, and others, with mathematical formulations alongside referencing authors and years.]



2.6 Multivariate regression analysis method

Previous studies demonstrated that texture information can highlight the structure characteristics of plant and inhibit the saturation of models applied for plants with high heterogeneous features (Lu et al., 2018; Maimaitijiang et al., 2020). In our study, RF and TF were extracted from multispectral images and used for multivariate model inputs. The machine learning methods were linear and non-linear algorithms, as partial least square (PLS), ridge regression (Ridge), support vector regression (SVR), and gaussian process regression (GPR). All the models were trained in Python environment with JetBrains PyCharm (https://www.jetbrains.com/pycharm, JetBrains s.r.o., Prague, CZ).

PLS and Ridge methods were used for linear regression modeling. PLS method integrates the characteristics of principal component analysis, canonical correlation analysis, and multiple linear regression analysis, which has been used in bioinformatics, computer vision, and neuroinformatics (Mehmood and Ahmed, 2016). We implement the PLS model through the “PLSRegression” package; the parameter of “n_components” was optimized with “GridSearchCV”. Compared with general linear regression, regular terms (L2 norm penalty terms) (Dorugade and Kashid, 2010) are added in the objective function of Ridge models to solve the multicollinearity of independent variables and the overfitting in the training process (Ngo et al., 2003). The Ridge model was achieved with “sklearn.linear_model” package, the “alphas” was set as 0.5, and the “fit_intercept” was set as True.

SVR and GPR methods were used for non-linear regression modeling. Support vector machine (SVM) was used to distinguish the feature points with a hyperplane found by maximizing the interval (Dibike et al., 2001). SVR is the development and extension of SVM method (Ansari and Gholami, 2015). Radial basis function was set for the parameter of “kernel”. The parameters of “C” and “gamma” were optimized for loops. GPR is a non-parametric regression algorithm based on Bayesian theory (Wang et al., 2017). In the process of parameter adjustment, the posterior distribution on the objective function is defined, and the posterior distribution is constantly updated according to the predicted data until the posterior distribution basically fits the real distribution. GPR models were trained in Python, Matern was selected as “kernel” function, and the “nu” was set as 1.5.




2.7 Statistical analysis

The statistical analysis of original data is listed in Table 3. In single tree species research, the total data sets were divided into calibration set and validation set with the ratio of 3:1. In mixed tree species research, the calibration set included samples for apple, and pear trees were randomly selected from the previous calibration data sets in the same size (n = 150). The validation set was the same as the set in the single tree species studies. To explore the universality of the prediction models, all the canopy SPAD regression models were evaluated on the single tree species validation set of both apple and pear tree species.

Table 3 | Statistical analysis of the canopy SPAD value.


[image: Table showing data sets for apple and pear trees. For the apple tree: all data has 204 entries with max 40.03, min 21.44, mean 31.34, and SD 3.57; calibration set has 153 entries with similar values; validation set has 51 entries with max 39.53, min 24.42, mean 31.40, and SD 3.35. For the pear tree: all data has 264 entries with max 33.28, min 18.85, mean 25.87, and SD 3.06; calibration set has 198 entries with similar values; validation set has 66 entries with max 31.62, min 19.28, mean 26.01, and SD 2.90.]
In addition, prediction models were evaluated in terms of the coefficient of determination (R2), the root mean square error (RMSE), and the relative root mean square error (RRMSE) (Sheng et al., 2020; Narmilan et al., 2022). A higher R2 indicated that the model was more stable, and a lower RMSE or a lower RRMSE indicated great model accuracy. The Equations 1–3 display the formulas of R2, RMSE and RRMSE, respectively.

[image: R-squared formula: R² equals 1 minus the sum of squared differences between predicted and observed values divided by the sum of squared differences between observed values and their mean.]

[image: The formula for RMSE (Root Mean Square Error) is shown as the square root of the sum of squared differences between predicted values (Pred) and observed values (Obs) divided by n, the total number of observations.]

[image: RRMSE formula is shown as the square root of the sum of squared differences between predicted and observed values, divided by the number of observations, all over the difference between the maximum and minimum observed value.]

where [image: The image shows the variable "Pred" with a subscript "i" in italic font.]  are canopy SPAD values predicted with the regression models, [image: The text "Obs" with the subscript "i" indicating a variable or index in a mathematical or statistical context.]  are canopy SPAD value measurements in the field, [image: Mathematical notation displaying "Obs sub i" with a horizontal line above the text, indicating a mean or average value of observations indexed by i.] is the mean value of the [image: The text "Obs subscript i" written in italic font.] , and [image: Italic lowercase letter "n" displayed against a plain background.] is the sample size. Rc2, RMSEC, and RRMSEC are performances of regression models trained on the calibration set, while Rv2, RMSEV, and RRMSEV are performances of regression models trained on validation set.





3 Results



3. 1 Canopy SPAD estimation with vegetation index

We evaluated the correlations between VI and canopy SPAD value with Pearson correlation coefficient (R) (Table 4). The results showed that GNDVI had the highest correlation with canopy SPAD value with a Pearson coefficient of 0.753 for apple tree and 0.718 for pear tree; GRVI had the second highest Pearson coefficient of 0.646 for apple tree and 0.714 for pear tree. It is worth noting that there are some indicators that are not correlated at the p level.

Table 4 | Significance test between VI and the canopy SPAD value.


[image: Table comparing vegetation indices NDVI, GNDVI, and REGNDVI for apple and pear trees. Each index is measured using different VI methods: RVI, GRVI, REGRVI, DVI, GDVI, REGDVI, TVI, MTVI, and TCI. Bold values represent significant model performances. Significance is indicated by ** at p < 0.01, and 'ns' denotes no significance.]
In single tree species research, we conducted prediction models with VIs correlated with canopy SPAD values. The model results with higher prediction accuracy on the validation set are shown in Table 5. Considering the model results in both apple tree and pear tree, GNDVI was taken as the most potential VI for canopy SPAD evaluation by a simple monistic model, and R2 was 0.512 and 0.490 on the validation set for apple trees (Figure 6A) and pear trees (Figure 6B), respectively.

Table 5 | Performance of the models yielded in single tree species research.


[image: Table comparing calibration and validation metrics for apple and pear trees using different model types like GNDVI, RF, and others. Metrics include \( R^2 \), RMSEC, RRMSEC, RMSEV, and RRMSEV for each model, detailing performance across different scenarios.]
[image: Scatter plots show predicted versus measured SPAD values. Panels A and B depict moderate correlations using GNDVI with R² values of 0.512 and 0.490. Panels C and D show improved correlations with RF+TF+GPR, having R² values of 0.788 and 0.723. Panel E combines apple and pear data, achieving higher R² values of 0.763 and 0.706, indicating better prediction accuracy using RF+TF+GPR.]
Figure 6 | Relationship between the predicted and measured SPAD value of canopy SPAD. (A) Calculated with GNDVI in single tree species research for apple tree. (B) Yielded with GNDVI in single tree species research for apple tree. (C) Obtained with RF+TF+GPR in single tree species research for apple tree. (D) Trained with RF+TF+GPR in single tree species research for apple tree. (E) Done with RF+TF+GPR in mixed tree species research.

In the mixed tree species research, canopy SPAD estimation models were yielded by using GNDVI and GRVI (which were the common VIs in the first three optimal models in single tree species research); the evaluation parameters of the models are listed in Table 6. However, it should be noted that the prediction accuracy of this method was not satisfactory. The model R2 was 0.2–0.35, which was not reliable enough for canopy SPAD retrieval.

Table 6 | Performance of the models as yielded in mixed tree species research.


[image: Table showing calibration and validation metrics for various model types, including GNDVI, GRVI, RF, and RF + TF. Metrics are \(R^2\), RMSEC, RRMSEC, RMSEV, and RRMSEV for apple and pear trees. SVR and GPR models generally have higher \(R^2\) values.]



3.2 Canopy SPAD estimation with image features

Multivariate models were established with image features by using PLS, Ridge, SVR, and GPR algorithms; the relevant results are shown in Table 5 and Table 6. For an intuitive comparison of model performance, the R2 value on the validation data of the models is displayed in Figure 7 (the univariate model results with GNDVI and GRVI were also listed to make a comprehensive comparison between modeling methods).

[image: Bar chart comparing different modeling methods' R-squared values for apple and pear tree research, including single and mixed species analysis. Bars are color-coded: yellow, gray, orange, and blue, representing various tree species research types. RF+TF+GPR shows the highest R-squared values, while GNDVI has the lowest.]
Figure 7 | Model performance for canopy SPAD estimation.

In single tree species research, prediction models were implemented with RF firstly. For apple trees, PLS and Ridge were performed equally; the Rv2 was approximately 0.52, and the GPR model yielded better results with Rv2 of 0.700 than the SVR model with Rv2 of 0.585. For pear trees, PLS and Ridge were also performed equally with Rv2 of 0.55. The Rv2 of the SVR model was 0.733, and RRMSEV was 12.042%, which were a little superior to the results of the GPR model (Rv2 = 0.721, RRMSEV = 12.326%). In the latter research, the fusion of RF and TF was set as model inputs; the prediction accuracy of the models obtained by the same algorithm was improved, except by the SVR method. For apple trees, Rv2 of the PLS and Ridge models were up to 0.70, and Rv2 of the GPR model was up to 0.788 (Figure 6C). For pear trees, Rv2 of the PLS and Ridge models were up to 0.73, and Rv2 of the GPR model was slightly improved to 0.723 (Figure 6D).

In mixed tree species research, when RF were selected as model inputs, the validation performance of the PLS and Ridge models was not reliable, especially for apple trees; Rv2 was less than 0.1. The GPR model got the best accuracy with Rv2 of 0.681 for apple trees and 0.707 for pear trees. When RF and TF were mixed for model variables, the validation performance of the PLS and Ridge models were obviously improved, and the Ridge model yielded Rv2 = 0.476 for apple trees and Rv2 = 0.614 for pear trees. The GPR model is also the best prediction model with Rv2 of 0.763 for apple trees and 0.706 for pear trees (Figure 6E).




3.3 Canopy SPAD estimation over the various growth stages

To evaluate the growth periods’ prediction performance of the GPR method, the canopy SPAD prediction was carried out at different stages in 2021. Figure 8 shows the accuracy of the models trained with various types of inputs by R2 metrics over the various growth stages.

[image: Line graphs comparing the coefficient of determination \(R^2\) for apple and pear trees across different growth stages. Graph A (apple tree) includes flowering, fruit growth, ripening, leaf senescence, and picking stages. Graph B (pear tree) shows similar stages. The x-axis has categories: RF, RF+TF, Mixed RF, and Mixed RF+TF. Values range from 0.0 to 1.0 on the y-axis, representing \(R^2\) values for each stage.]
Figure 8 | Prediction accuracy for the various growth stages of the apple tree (A) and the pear tree (B).

In the single tree species inversion, for apple trees, the prediction model yielded well accuracy with only RF during the first stages (flowering and fruit growth beginning) with R2 of 0.797. In the latter four growth stages, the GPR models got a higher R2 value with RF+TF than with only RF. It was 0.592 during leaf senescence stage and approximately 0.7 to 0.8 in the remaining three stages. For pear trees, the GPR models yielded better results with RF+TR than with only RF during the first four stages; the R2 value was approximately 0.475–0.765, and the highest accuracy was obtained in the fruit-growth-gradually stage with R2 = 0.765.

In the mixed tree species inversion, for apple trees, the prediction was that the R2 values obtained with RF+TF were all greater than those obtained with only RF, which especially increased from 0.492 to 0.695 in the second growth stage and increased from 0.293 to 0.741 in the fourth growth stage. For pear trees, the model results trained with RF+TF got the highest R2 value of 0.723 in the third growth stages and got an R2 value between 0.382 and 0.612 in the remaining four stages.





4 Discussion



4.1 Vegetation index for canopy SPAD inversion

Vegetation index has been widely used in agricultural production research, including disease monitoring, biomass detection, etc. The GNDVI was originally developed for chlorophyll concentration measurement in maize leaves (Daughtry et al., 2000). Hunt et al. found that GNDVI was highly relevant with leaf area index and nitrogen status for winter wheat (Hunt et al., 2010). Shanahan et al. found that GNDVI was of great value in predicting corn grain yield (Shanahan et al., 2001). In this paper, prediction models trained with GNDVI yielded an Rv2 value of 0.512 for apple trees and 0.490 for pear trees in single tree species research. However, the results in mixed tree species research showed that GDVI was not a reliable index for canopy SPAD inversion. In the past studies of chlorophyll retrieval using VIs, researchers found that the sensitivity of vegetation index was greatly affected by the density of the crop canopy (Yang et al., 2022). In our study, apple trees are much older than pear trees, and they have many differences in canopy structure, specifically in canopy volume and canopy density. Therefore, when GNDVI was used for chlorophyll assessment in single tree species, the model yielded relatively reliable results. However, the sensitivity of GNDVI to chlorophyll retrieval decreased under the interference of canopy structure heterogeneity in the research of mixed tree species.




4.2 Comparison of modeling methods

Comparing the models’ results, the prediction accuracies of the PLS and Ridge models were close, except that the Ridge model performed better than the PLS model with RF+TF in mixed tree species research. However, since that is not a universal phenomenon, the Ridge method cannot be considered superior to the PLS method. SVR models did not do well with the huge distance between the calibration and validation performances, especially in mixed tree species studies. The main factor that caused poor performance may be the several structural parameters, which should be continuously adjusted in model training. Inappropriate parameters would greatly impact prediction performance. From the results of the model based on spectral features or the combination of spectral and texture features, we can see that the SVR model yielded robust results when having relatively few variables. It is worth noting that the GPR model has excellent performance in modeling as shown in Figure 7, yielding reliable prediction accuracies on the validation set with the different combinations of variables. In contrast to the non-linear model, the linear model has a weaker ability to explore the deep connections between input features. The results indicated that the more information covered by the inputs contributes to the higher accuracy for linear model, which is in line with the study of Maimaitijiang et al. (2020).




4.3 Contribution of texture features in canopy SPAD estimation

In our study, we focus on the contribution of TF to the canopy SPAD evaluation over tree species. In single tree species research, compared with the model performances yielded by RF+TF of which were obtained by only RF, the evaluation parameters were generally improved. For apple tree, the linear PLS model had R2 increased by 36.2%, and the non-linear GPR model had R2 increased by 12.6%. For pear tree, the R2 of the linear Ridge model increased from 0.554 to 0.739, an increase of 33.4%. For the non-linear GPR model of pear tree, R2 had increased by 0.3%. In the mixed tree species research, TF have significant optimization ability for linear Ridge models; the validation R2 increased from 0.06 to 0.476 for apple tree and from 0.421 to 0.614 for pear tree. In the GPR model results, the validation R2 increased from 0.681 to 0.763 for apple tree. Although the improvement of the model results for pear tree was slightly smaller than that of apple tree, the importance of texture features in canopy SPAD monitoring research should not be ignored.

For the same tree species, the model results obtained with mixed tree species information were a little weaker than the results obtained with single tree species information, but the reduction was within the expectation considering the effect of tree heterogeneity. Chlorophyll content can be effectively monitored with tree canopy RF, and TF can facilitate the extraction of diversity among tree species, which is beneficial to yield a chlorophyll content assessment model with higher accuracy and more universality ability. In the results obtained by Li et al. (2018) for remote sensing imaging-based canopy chlorophyll estimation, the SVR model with modified NDVI yielded R2 = 0.667 on the validation set. In this paper, it can be concluded that canopy SPAD would be monitored with the RF+TF+GPR method, R2 on the validation set in single tree species was 0.788 for apple tree and 0.723 for pear tree, and R2 on the validation set over different tree species was 0.763 and 0.706 for apple tree and pear tree, respectively. The results go beyond a previous report, successfully getting a higher prediction accuracy on original reflectance and texture data. Nevertheless, it is worth noting that apple trees and pear trees both belong to the wild fruit Rosaceae plant resources, which might be one of the reasons supporting the high prediction accuracy in the mixed species study. More research should be carried out to explore the significance of RF+TF for other species with greater canopy differences. Moreover, compared with satellite remote sensing technique, UAV imagery has a wider range of application circumstance as high-throughput phenotyping method, and the UAV images have a higher special resolution which is beneficial to the extraction of TF. These advantages of UAV imagery are conducive to the popularization and application in agriculture.

From the overall trend of the lines in Figure 8, it was noted that the optimization ability of texture features to model prediction accuracy is more prominent for apple orchards than that for pear orchards. Considering the actual planting situation, the high canopy coverage of the apple orchard leads to serious airtight phenomenon and poor light transmittance, resulting in invalid leaves exiting in the canopy which get insufficient illumination. Being different from the apple orchard, the tree rows spacing is regular in the pear orchard, and trees grow in uniform and adequate light conditions. Therefore, the contribution of TF for canopy SPAD inversion for pear orchard was not as prominent as that for the apple orchard. However, the study results of two different tree species indicated that the contribution of TF was still significant.




4.4 Analysis of model performance in different growth stages

By analyzing the model performance obtained with RF+TF in mixed tree species research, it can be found that the models yielded high prediction accuracy during flowering stage to picking stage and the R2 values between 0.66 and 0.75 for apple trees as well as the R2 values between 0.58 and 0.73 for pear trees, except at the second stage. This may be attributed to the natural falling of fruits and leaves in the second stage for pear trees. As the leaves fall off, the canopy density will be reduced, and the background effect of canopy gaps will cause the inhomogeneity of the reflectivity scene (Brewer et al., 2022). Hence, the optimal conditions for predicting chlorophyll content are missing in this stage. In addition, the prediction accuracy of the chlorophyll model at the leaf senescence stage was less than 0.4 for both apple and pear trees due to the low chlorophyll content. Leaf senescence is a degenerative process; chlorophyll and its associated proteins break down during this stage, resulting in most bands being absorbed (Guo et al., 2021; Brewer et al., 2022). In total, the RF+TF+GPR model can effectively monitor the canopy SPAD for both apple and pear orchards at different growth stages. More experiment area and tree species need to be developed to improve the model universality and prediction accuracy.

In addition, Figure 9 displays the statistical analysis results of the predicted canopy SPAD at different growth stages by using the mixed tree species model yielded by the GPR+RF+TF method. Compared with Figure 3, which is the analysis results of the measured canopy SPAD value, the predicted results can effectively respond to the change in trend of the canopy chlorophyll content of fruit trees over the various growth periods.

[image: Two box plots showing canopy SPAD values over time for apple and pear tree canopies.   Plot A (Apple Tree Canopy): Dates range from August 2019 to September 2021. SPAD values gradually increase, peaking around August 2020, and slightly decline afterward.  Plot B (Pear Tree Canopy): Dates span from May 2020 to August 2021. SPAD values initially increase, dip around May 2021, and then rise again.]
Figure 9 | Statistical analysis map of the predicted canopy SPAD value (using GPR+RF+TF mixed tree species model) in different growth stages of the apple tree (A) and the pear tree (B).





5 Conclusion

In this research, we presented the canopy SPAD evaluation in apple and pear orchards using UAV multispectral imagery. For univariate models, GNDVI was an efficient index in single tree species research, but the same conclusion cannot be supported in mixed tree species research. For multivariate models, GPR algorithm performed better than other machine learning methods; the RF+TF+GPR model yielded R2 value of 0.788 for apple trees and 0.723 for pear trees in single tree species research and trained R2 value of 0.763 for apple trees and 0.706 for pear trees in mixed tree species research. Compared with the RF+GPR model results, TF can retrieve more canopy structure information, promoting the prediction accuracy of canopy SPAD. Moreover, the RF+TF+GPR method is suitable for canopy SPAD during the growth-beginning stage to the ripe-for-picking stage, which is beneficial for canopy SPAD monitoring over various stages. The future scope of this work would focus on more fruit tree areas and species using large amounts of data to improve the universality and accuracy of the models.
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In the past, the use of remote sensing for winter wheat growth monitoring mainly relied on the relative growth assessment of a single vegetation index, such as normalized Vegetation index (NDVI). This study advanced the methodology by integrating field-measured data with Sentinel-2 data. In addition to NDVI, it innovatively incorporated two parameters, aboveground biomass (AGB) and leaf area index (LAI), for a more comprehensive relative growth assessment. Furthermore, the study employed the agricultural production systems simulator (APSIM) model to use LAI and AGB for absolute growth monitoring. The results showed that the simulated LAI and AGB closely match the field-measured values throughout the entire growth period of winter wheat under various conditions (R2 > 0.9). For relative growth monitoring, NDVI showed significant linear positive correlations (r > 0.74 and P< 0.05) with both LAI and AGB simulated by the APSIM model. Overall, this research shows that LAI and AGB obtained from the APSIM model provide a more detailed and accurate approach to monitoring of winter wheat growth. This improved monitoring capability can support effective land management arable and provide technical guidance to advance precision agriculture practices.
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1 Introduction

In recent years, global climate change and dramatic shifts in land cover have posed significant challenges to the sustainable agricultural development. The increasing risk of food shortages has intensified global concerns about food security (Godfray et al., 2010; Atzberger, 2013; Battude et al., 2016). Wheat, one of the three staple grains, is cultivated worldwide. Its production, marketing, processing and consumption are closely integrated into daily life (Jiang et al., 2021). Providing over 20% of the energy needs for nearly half of the world’s population, wheat is a critical food source (Shiferaw et al., 2013). It is cultivated on approximately 30.7% of the global cereal acreage, making it the most widely grown cereals, surpassing corn, rice, and soybeans in cultivation area (Zhao et al., 2018). Timely and accurate assessment of winter wheat growth conditions and yield prediction are essential for shaping agricultural policies, informing market strategies, and ensuring national food security (Jin et al., 2018). As a result, crop growth monitoring is a significant research area, with remote sensing and crop growth simulation being particularly promising fields experiencing for practical application.

Crop growth monitoring encompasses both relative and absolute assessments, providing a scientific basis for monitoring crop growth conditions and forecasting yield by examining various growth parameters and their interrelationships (Wu et al., 2004; Xie et al., 2019). Relative growth monitoring involves comparing the current year’s growth with the same period from the previous year, offering insights into how winter wheat growth compares over time (Wu and Yan, 2002; Wu et al., 2004; Shi et al., 2015; Rao et al., 2021). For example, Yin et al. employed multi-source data to compare key growth stages across two years (Yin et al., 2021), highlighting growth trends. Sun et al. leveraged the NDVI difference model to analyze winter wheat growth patterns (Sun et al., 2020). While remote sensing technology allows for broad, macro-level monitoring of crop growth across years, it often lacks the detail needed for within-crop changes (Huang et al., 2019; Lan et al., 2019; Zhang et al., 2021). In contrast, absolute growth monitoring provides a direct assessment of winter wheat’s growth status and yield potential by measuring key growth indicators, such as LAI and AGB (A and Xu, 2021; Chang et al., 2023; Wang et al., 2023d). This method is well-suited for in-depth investigations of specific areas or crop types. Although absolute growth monitoring can be highly precise under experimental conditions, it requires substantial labor and financial resources for extensive field data collection, rendering it less feasible for large-scale monitoring efforts (Wang et al., 2022; Ma et al., 2023). Most studies focus on relative growth monitoring (Wu et al., 2017; Wang et al., 2023a; Zhu et al., 2023b), with fewer integrating both relative and absolute growth methods to monitor winter wheat growth.

Crop growth monitoring methods can be primarily categorized into two types: remote sensing data-based methods and growth model simulation-based methods. Remote sensing offers the ability to periodically acquire extensive surface crop data, providing quantitative assessments of crop growth on a regional scale through appropriate inversion methods (Wang et al., 2023b; Hong et al., 2024; Wang et al., 2024). In recent years, remote sensing has been increasingly used for crop classification, nutrient diagnosis, growth assessment, and disease monitoring, offering valuable insights for agricultural management and market decision-making. Compared to traditional information-gathering methods, remote sensing offers distinct advantages in monitoring and characterizing the physiological and biochemical parameters of crops (Chen et al., 2016). Since the 1970s, remote sensing techniques have been employed to monitor crop growth, and today, the technology and methodologies for wheat growth monitoring using satellite remote sensing data have become increasingly advanced. Most wheat growth monitoring via remote sensing primarily relies on the relationship between vegetation indices and agricultural parameters to develop regression models. However, this approach heavily depends on vegetation indices, with limited uses of other growth monitoring parameters, such as LAI and AGB (Luo et al., 2005; Yu et al., 2012; Su et al., 2019; Lu et al., 2020). In contrast, crop growth models use mathematical models to describe the growth and development of crops based on weather, soil, crop variety characteristics, and crop management practices. These models are grounded in principles of material balance and energy conservation, leveraging computer technology to systematically simulate key physiological processes such as photosynthesis, respiration, and transpiration. By establishing mathematical models to simulate crop growth at fixed time intervals, these models offer a robust framework for space-time analysis and continuity. Crop growth modeling can simulate the dynamics of crop growth at a specific point scale and provide mechanistic explanations for variations in crop growth and yield. Currently, over 200 crop models are available globally, with some of the most commonly used being the DSSAT, APSIM, and WOFOST models. The DSSAT model is capable of simulating the growth cycle, maturity process and yield formation of various crops (Yang et al., 2012; Liu et al., 2013; Wang et al., 2023d). The WOFOST (Zhuo et al., 2022a, b, 2023) model is recognized for its focus on soil and climate conditions and its ability to operate under multiple constraints. The APSIM (Briak and Kebede, 2021; He, 2022; Winn et al., 2023) model is extensively utilized and validated, taking into account factors such as soil quality, crop ecological processes, and atmospheric conditions (Wang et al., 2007). Its comprehensive approach makes it particularly suitable for assessing crop growth under various management practices.

Given the limitations of relying solely on relative growth monitoring—such as inadequate capture of detailed crop changes—as well as the current reliance on vegetation indices in most winter wheat monitoring studies, this research integrates the APSIM crop model with Sentinel-2 data. By incorporating AGB and LAI alongside NDVI, this study aims to provide a more comprehensive analysis through relative and absolute growth monitoring. The goal is to enable more detailed and accurate monitoring of winter wheat growth, ensure timely detection of abnormal conditions, optimize management and decision-making processes, ultimately enhancing both ecological and economic outcomes.




2 Materials and methods



2.1 Study areas

As shown in Figure 1, field experiments in our study were conducted from 2021 to 2023 at the Precision Agriculture Demonstration Base of the National Research Center for Agricultural Information Technology, located in Xiaotangshan Township, Changping District, Beijing, China. The region experiences an average annual temperature ranging between 10 and 13 degrees Celsius, with average daily sunshine hours spanning from 6 to 9 hours. Precipitation in the area is distributed unevenly throughout the seasons. The experimental crop was winter wheat, with a growth cycle commencing in late October and concluding with the harvest in mid-June of the following year. The soil type belongs to the widely distributed tidal soil in North China.
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Figure 1 | Overview of the study area and field trial design in Beijing.




2.2 Field experiment design

The experiment was conducted out from 2021 to 2023 at the experimental base in Xiaotangshan, Beijing, with an experimental field area of 240 m×75 m. The experiment was set up in 12 plots, and the specific plot distribution is shown in Figure 1. The test crop in the 2021-2022 test field is winter wheat (Jingdong 18), with a sowing depth of 3 cm and a sowing row spacing of 16.7 cm. The sowing time is October 11, 2021, and the harvest time is June 18, 2022. The seeding rate was set to three treatments: normal sowing D1 (375kg/ha), 50% seeding rate D2 (187.5kg/ha) and 75% seeding rate D3 (281.25kg/ha). Two treatments of normal fertilization (N2) and normal fertilization halved (N1) were used for fertilization. The normal fertilization (N2) was based on the application of the base fertilizer phosphate fertilizer diamine 450 kg/ha (containing N and P2O5 accounted for 18% and 46%, respectively) at the time of sowing, and the urea 240 kg/ha (containing N accounted for 46%) was applied when the winter wheat returned to green in the next year as a topdressing. The normal fertilization amount was halved (N1) according to the application of base fertilizer 225kg/ha phosphate diamine (including N and P2O5 accounted for 18% and 46%, respectively) at sowing, and urea 120 kg/ha (including N accounted for 46%) was applied as topdressing when winter wheat turned green in the next year. Five tillage methods were adopted: no tillage (T0), subsoiling tillage (T1), plow tillage (T2), rotation (T3) (plow tillage from 2021 to 2022, rotary tillage from 2022 to 2023) and rotary tillage (T4). Other field management conditions were the same in each plot. The measured data acquisition time for 2021-2022 is shown in Table 1.

Table 1 | The collection time of measured data and image data from 2021 to 2023.


[image: Table showing field measured data and Sentinel-2 acquisition times. Field data dates: 2022/4/08, 2022/4/29, 2022/5/20, 2023/3/21, 2023/4/08, and 2023/5/08. Corresponding Sentinel-2 dates: 2022/4/04, 2022/5/02, 2022/5/22, 2023/3/18, 2023/4/07, and 2023/5/07. Time intervals in days: 4, 3, 2, 3, 1, 1.]
The test crop was winter wheat (Jingdong 18) in the test field from 2022 to 2023, with a sowing depth of 3 cm and a sowing row spacing of 16.7 cm. The sowing time is October 10,2021, and the harvest time is June 15,2022. The sowing amount and fertilization design are the same as those in 2021-2022. In addition to rotation, the same tillage methods as in 2021-2022 are adopted: no-tillage (T0), subsoiling (T1), plow tillage (T2), rotation (T3) (plow tillage in 2021-2022, rotary tillage in 2022-2023) and rotary tillage (T4). The other field management conditions are the same in each plot. The measured data collection time in 2022-2023 is shown in Table 1.




2.3 Data acquisition



2.3.1 Field measured data

The precision of soil parameters directly influences the predictive accuracy of crop growth models, as these parameters are crucial determinants of crop growth and development. In this study, five soil profile parameters were measured across depths of 0 to 20 cm, 20 to 40 cm, 40 to 60 cm, 60 to 80 cm, and 80 to 100 cm, with initial soil water and nutrient values presented in Table 2. Soil parameters and other relevant data for the study area were obtained from the Xiaotangshan Experimental Base and related literature, included measurements of saturated water content, wilting coefficient, and field water holding capacity at various depths. The saturated water content was determined by collecting soil samples from different layers, placing them in containers, and gradually adding water until the soil reached a fully saturated state—indicated by the formation of a layer of free-flowing water on the soil surface. At this point, the soil moisture content was recorded. The wilting coefficient was obtained by place the soil samples in a greenhouse or controlled climate chamber, allowing the soil to dry fully to the permanent wilting point of the plant. The moisture content at this stage represents the wilting coefficient for that specific depth. Field capacity was determined by generating the soil moisture characteristic curve using a measuring instrument and reading the water content corresponding to the field water holding state from the curve. Specific soil parameters are shown in Table 2.

Table 2 | Soil parameters.


[image: Table displaying soil properties across different depths, from zero to one hundred centimeters. Columns show depth, volume weight of soil, saturation capacity, wilting coefficient, and field capacity. Values include volume weight ranging from 1.32 to 2.04 grams per cubic centimeter, saturation capacity around 0.46 to 0.48, wilting coefficient from 0.10 to 0.15, and field capacity from 0.31 to 0.34 cubic centimeters per cubic centimeter.]
In this study, two methods were employed to calculate and collect LAI: the specific leaf weight method and LAI-2200. The specific leaf weight method is particularly suitable for basic scenarios and standard measurement conditions, while the LAI-2200 is ideal for research and applications requiring higher accuracy and faster measurements. Both methods have their own advantages in different application scenarios. LAI data were obtained by measuring at five different locations within a 100 m2 plot using the LAI-2200 device, with the average of these measurements calculated to represent the LAI value for the plot. The leaf weight method collects the winter wheat in an area of 0.5m×0.5m and takes the sample of a certain area to randomly select a number of leaf blades and then takes the leaf blades in the width of the narrower more consistent place to cut the length of the small section of 2 or 3 cm. After that, get the width of the blade. Then the area can be calculated. The leaves are dried and weighed. The specific calculations are performed according to the following formula:

[image: Formula for Leaf Area Index: LAI equals the sum of W sub 1 and W sub 2, divided by A times W sub 1, all multiplied by S and m.] 

where A is the total sample area, m is the number of plants or tillers, S is the selected small part of the sample area, W1 is the quality of the selected small part of the sample after drying, and W2 is the quality of the remaining green leaves after drying.

The collection step of aboveground biomass is to select 20 winter wheat plants with uniform growth in the measurement range, separate different plants according to organs (stems, leaves, ears), kill them at 105°C for 30 min, and dry them at 85°C to constant weight. The organs are weighed separately, and the sum is the dry matter weight of the plant, which is recorded as the dry weight of the aboveground part of the plant, and the dry biomass per unit land area is calculated according to the density.




2.3.2 Meteorological data

As shown in Figure 2, APSIM models rely on meteorological data as the basic input for their operation, which include daily average temperature and daily radiation. The climate data of the Xiaotangshan area are derived from the meteorological products provided by the European Centre for Medium-Range Weather Forecasts (https://cds.climate.copernicus.eu/). The spatial resolution is 0.25°×0.25°, and the time resolution is hourly. The daily precipitation (mm), daily radiation (MJ/m2), daily maximum temperature (°C), daily minimum temperature (°C), and daily potential evaporation (mm) are input into the weather model.

[image: Flowchart showing growth monitoring processes. The upper section outlines absolute growth monitoring using meteorological, crop, soil, and field management data, processed through APSIM calibration to monitor LAI and AGB growth. The lower section illustrates relative growth monitoring using Google Earth Engine and Sentinel-2 Data, resulting in AGB, NDVI, and LAI percentage data for trend analysis.]
Figure 2 | Technical route.




2.3.3 Remote sensing data

This study uses Sentinel-2 data from the GEE cloud platform. The Google Earth Engine (GEE) platform offers Sentinel-2 satellite images in two product types, determined by the level of preprocessing applied. Compared with TOA data, SR data have better data consistency and stability in time series. Given the revisit cycle, images were chosen to align as closely as possible with the timing of the field-measured data collection. The acquisition times for both the field measured data and the image data are presented in Table 1.





2.4 APSIM model and calibration

APSIM is a mechanism model that uses a general growth process to simulate the development and growth of crops (Huang et al., 2018; Zhu et al., 2023a). The model integrates various sub-modules—including crop, soil, management, and meteorology—into a modular framework, with meteorological data, crop data, soil data, and field management practices input into their respective sub-modules. Meteorological data, including precipitation, radiation, maximum and minimum temperatures, and potential evaporation, are used to drive the model, and assess crop responses and adaptations to climate change. Crop growth data encompass the phenological development of crops, such as growth stage scales, accumulated temperature calculations, and photosynthesis algorithms, and help the model simulate the entire crop life cycle from sowing to harvest. Soil data, which include the physical and chemical properties of the soil, are crucial for simulating root growth as well as water and nutrient uptake. Field management data, such as sowing time, sowing density, and fertilizer application, this allows the model to analyze the potential impacts of various management strategies on crop growth and yield.

The model must go through a series of debugging and calibration before application (Liu et al., 2023). Therefore, this study selected the data from 2021-2022 to calibrate the model, and verified the model through the data from 2022-2023. In the model calibration, this study went through the following steps. First, basic data such as meteorology, soil, and field management were input to run the model. Secondly, the LAI and AGB and other simulation results of the model operation were compared with the measured data, and the trial and error method, which is currently more common in model calibration, was used to gradually adjust the sensitive parameters until the measured data of different test schemes matched the simulation results (Liang et al., 2016; Chen et al., 2019; Jin et al., 2021; Wang et al., 2023c). Finally, the parameter values were determined to complete the model calibration. Regarding the selection of sensitive parameters, because the sensitive parameters of models in different climate regions are different, this study selected literature with the same or similar distance to the experimental area, and selected parameters that have a greater impact on the model results from the literature. Based on this standard, sensitive parameters were selected, and finally 5 crop parameters that are more sensitive to leaf area index and aboveground biomass were selected (Liu et al., 2011; He and Zhao, 2015; Xing et al., 2017b; Zhang et al., 2023). As shown in Table 3.

Table 3 | Parameters after calibration.


[image: Table showing calibration parameters for wheat. Parameters include vern_sens, photop_sens, Startgf_to_mat, Potential_grain_filling_rate, grains_per_gram_stem, and max_grain_size. Each has lower and upper bounds, initial settings, and calibrated values.]



2.5 Method



2.5.1 Absolute growth monitoring of winter wheat based on APSIM model

The accuracy of LAI and AGB of winter wheat simulated by the APSIM model was assessed through comparing the simulated values against the measured values. The determination coefficient (R2), root mean square error (RMSE) and normalized root mean square error (NRMSE) were used as the evaluation criteria for the growth results, calculated using Equations 2-4. The absolute growth range of LAI and AGB was compared across four key growth periods. In this paper, the specific growth periods of winter wheat, as determined by both domestic and international literature and experience, are presented in Table 4. The key growth stages selected for the relative growth study include regreening, heading, flowering, and filling. The technical route of this study is shown in Figure 2.

Table 4 | Key growth period of winter wheat.


[image: Table displaying the phenological phases of a crop for the 2022/2023 period. Phases include Emergence on October sixteenth, Tillering on November second, Wintering on January fourth, Regreening on March eighteenth, Jointing on April thirteenth, Booting on April twenty-fifth, Heading on May fifth, Flowering on May fifteenth, Filling on May twenty-sixth, and Maturity on June tenth.]
[image: Equation for the coefficient of determination, R squared, is shown. The formula is the sum from one to n of the squared differences between X and the mean of X times the squared differences between Y and the mean of Y, divided by the product of the sum of squared differences for X and Y, each from one to n.] 

[image: Root Mean Square Error (RMSE) formula is shown. It equals the square root of the sum of squared differences between observed values Y and predicted values X, divided by the number of observations n.] 

[image: The formula shown is for Normalized Root Mean Square Error (NRMSE), represented as \( \text{NRMSE} = \frac{\text{RMSE}}{\overline{X}} \times 100\% \). It is labeled as equation (4).] 

where n denotes the number of samples, Xi, [image: It seems there was no image provided. Please upload the image or provide a URL, and I will help generate the alternate text.] , Yi, [image: Please upload the image or provide a URL so I can generate the alternate text for it.]  represent the actual observation data, the actual observation data mean, the model’s prediction data, and the model prediction data mean, respectively.




2.5.2 Relative growth monitoring of winter wheat based on APSIM model combined with remote sensing data

To study the relative growth of crops, vegetation indices provide crucial information for monitoring crop growth dynamics. Common vegetation indices include RVI (Gonenc et al., 2019), NDVI (Huang et al., 2021), DVI (Gunathilaka, 2021), and EVI (Shammi and Meng, 2021), etc. Of these, NDVI is the most widely used index for assessing vegetation conditions, as it is particularly sensitive to the growth status of vegetation and can directly reflect its health. The NDVI calculation formula is as follows:

[image: NDVI formula: NDVI equals the difference between NIR and R divided by the sum of NIR and R. Equation number five.] 

where NIR corresponds to the B8 band of the Sentinel-2 data, and R corresponds to the B4 band of the Sentinel-2 data.

In this paper, Sentinel-2 data is used to monitor the relative growth of winter wheat by using NDVI and APSIM models. We analyzed the correlation between NDVI, LAI, and AGB using Pearson’s correlation coefficient. NDVI data for six periods from 2021 to 2023 were obtained from the study area. For each of the three periods in 2022, the corresponding NDVI data from 2023 were subtracted and then divided by the 2022 NDVI data to calculate nine sets of NDVI percentage differences. In addition, the same method was used to calculate the difference percentage data between LAI and AGB output by APSIM model respectively The calculation method is shown in Formula 6. Pearson correlation analysis was then performed using the NDVI percentage difference data along with the percentage difference data for LAI and AGB. Through the Pearson correlation coefficient and P-value, the trends in relative growth in the study area were analyzed. Pearson’s correlation coefficient was calculated as shown in Equation 7.

[image: Equation labeled as six: \(X_{\text{percentage data}} = 1 - \frac{2023X_b}{2022X_n}\).] 

Where X represents NDVI, LAI, or AGB, a represents the three measured data dates in 2022, and b represents the three measured data dates in 2023.

[image: Formula for Pearson correlation coefficient \( r \). It is:   \[ r = \frac{\sum_{i=1}^{n}(X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n}(X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}} \]  Equation number 7.] 

where Xi represents the value of remote sensing NDVI of the ith sample, [image: It seems that you've provided a mathematical notation rather than an image. The notation \(\bar{x}\) typically represents the mean of a set of values in statistics. If you need an alternative text for an actual image, please upload the image file or provide a URL.]  is the average value of remote sensing NDVI sample, Yi is the model simulation value of LAI or AGB of sample i, [image: It appears there's an issue or confusion with the image upload. Please try uploading the image again, or provide a URL or additional context so I can help generate accurate alternate text.]  is the average value of LAI or AGB model simulation, n is the number of samples.

After calculating the correlation coefficient r, it needs to be tested whether it is statistically significant, i.e., whether it is significant or not, and its formula is shown in (8). Consult the t distribution to determine the corresponding P value.

[image: The image shows the formula for calculating the t-statistic: t equals r times the square root of n minus 2, divided by the square root of one minus r squared. It is labeled as equation eight.] 






3 Results



3.1 Absolute growth monitoring of winter wheat based on LAI and AGB model simulation data



3.1.1 Absolute growth monitoring of winter wheat based on LAI model simulation data

Figure 3 shows the dynamic change changes in LAI as the growth index under varying fertilization, sowing, and tillage treatments during in 2021-2022 and 2022-2023 growing seasons. In this study, experimental data from the 2021 to 2022 winter wheat season were used to calibrate the model parameters, while data from the 2022 to 2023 season were employed for model validation. The analysis focused on the LAI growth of winter wheat in Xiaotangshan from 2021 to 2023. As the winter wheat growth period progressed, the LAI remained relatively stable during the overwintering phase. After regreening (about 170 d), winter wheat entered a phase of rapid growth, with LAI peaking towards the end of the growth period (210 d). Following the filling stage, LAI began to decline, approaching zero by the end of the filling period (about 250 d). Although the LAI values in different periods are different under different fertilization rates, seeding rates, and tillage methods, they all have a common growth trend, from regreening to maturity, LAI showed a parabolic trend. From the results of absolute growth monitoring in 2021-2023: (1) Other conditions are consistent, under different fertilization conditions. N2 (normal fertilizer rate) had relatively higher LAI and better growth, and halving the fertilizer rate resulted in relatively smaller leaf area of winter wheat plants, with a reduction of 0.12 to 1.08 in the peak LAI of the model simulation. (2) Other conditions are the same, under different seeding rates. From 2021 to 2022, D1 (normal seeding rate) grew better than D2 (50% seeding rate), and LAI was higher. However, when the fertilizer was halved, from 2021 to 2022, D3 (75% seeding rate) grew better than D1 (normal seeding rate) and D2 (50% seeding rate), and from 2022 to 2023, D3 (75% seeding rate) and D1 (normal seeding rate) grew similarly. The reason may be that the appropriate reduction of seeding rate leads to the improvement of light and nutrient utilization efficiency and thus promotes growth. (3) Other conditions are the same, under different tillage methods, the LAI of winter wheat in 2021-2022 shows T1 > T4 > T2 > T3, and the LAI of winter wheat in 2022-2023 shows T1 > T3 > T4 > T2. Subsoiling tillage showed better growth results than other tillage methods. From 2021 to 2022, the determination coefficient R2 for growth results using LAI as the growth index under different tillage, fertilization, and sowing treatments ranged from 0.85 to 0.98, with RMSE values between 0.02 and 0.51, and NRMSE values ranging from 1.1% to 18.3%. From 2022 to 2023, the R2 values ranged from 0.92 to 0.98, RMSE from 0.03 to 0.22, and NRMSE from 1.4% to 15%. The meaning of the field number is shown in Table 5.

[image: Graphs showing leaf area index (LAI) over time after sowing, across two periods: 2021-2022 and 2022-2023. Each period has three graphs with different treatments labeled T0D1N1, T0D1N2, T0D2N1, etc. The x-axis represents time after sowing, and the y-axis represents LAI. Each graph shows a similar pattern of LAI growth, with a peak around 200 days. Different colored lines and markers indicate various treatments.]
Figure 3 | (A) Absolute growth monitoring of winter wheat LAI simulated by APSIM model under different tillage methods, fertilization and sowing treatments from 2021 to 2022; (B) Absolute growth monitoring of winter wheat LAI simulated by APSIM model under different tillage methods, fertilization and sowing treatments from 2022 to 2023. The curve represents the simulated value, and the point represents the measured value.

Table 5 | The specific meaning of field number.


[image: Table comparing agricultural plots and processing modes. The left column lists plot numbers and corresponding processing modes involving no-tillage and varying seeding and fertilization rates. The right column lists different plot numbers with processing modes including subsoiling, plow, rotation, and rotary tillage, each with specific sowing and fertilization conditions.]
As shown in Figure 4, the accuracy results of absolute growth monitoring with LAI as the growth index were given under different fertilization rates, seeding rates, and tillage methods in 2021-2023. The R2 of simulated LAI in 2021-2023 was 0.943, and the simulated LAI was in good agreement with the measured LAI. The RMSE was 0.291, and the NRMSE was 12.9%.

[image: Scatter plot comparing simulated LAI versus measured LAI. Points cluster along a dashed trend line, y equals 1.2x minus 0.05, with an R-squared value of 0.943. The root mean square error is 0.291, and the normalized root mean square error is 12.9 percent. A red line represents a perfect 1:1 correlation.]
Figure 4 | Evaluation of LAI growth accuracy from 2021 to 2023.




3.1.2 Absolute growth monitoring of winter wheat based on AGB model simulation data

As shown in Figure 5, the dynamic change results of AGB under different fertilization, seeding amount and tillage methods in 2021-2022 and 2022-2023. Throughout the winter wheat growth period, the APSIM model simulated a general upward trend in AGB, with the growth rate significantly accelerating after the regreening period (about 175 d). The growth rate peaked near the end of the growth period (about 210d), after which it gradually slowed, with biomass accumulation ceasing by the end of the filling stage (about 250 d). 2021-2023, from the results of absolute growth monitoring: (1) Other conditions are consistent, under different fertilization conditions. From 2021 to 2022, the AGB of N2 (normal fertilization) was relatively high and the growth was better. The reason may be that the halving of fertilization amount makes the imbalance of nutrient supply and demand of winter wheat plants and the chlorophyll content of leaves decrease, and the photosynthesis ability decreases, thereby reducing the accumulation of AGB. (2) Other conditions are the same, under different seeding rates. From 2021 to 2022, D1 (normal seeding rate) grew better than D2 (50% seeding rate), but from 2021 to 2023, D3 (75% seeding rate) grew better than D1 (normal seeding rate). (3) Other conditions are the same, under different tillage methods. The AGB of winter wheat in 2021-2022 showed T1 > T4 > T2 > T3, and the AGB of winter wheat in 2022-2023 showed T1 > T3 > T2 > T4. Subsoiling tillage showed better growth results than other tillage methods. From 2021 to 2022, the determination coefficient R2 for growth results using AGB as the growth index under different tillage, fertilization, and sowing treatments ranged from 0.85 to 0.95, with RMSE values between 0.18 t/ha to 1.75 t/ha, and NRMSE values ranging from 1% to 35.6%. From 2022 to 2023, the R2 values ranged from 0.9 to 0.97, RMSE from 0.15 t/ha to 0.75 t/ha, and NRMSE from 3% to 9%.

[image: Graphs displaying above-ground biomass (AGB) over time after sowing for two periods: 2021-2022 and 2022-2023. Each period has three line charts showing different treatments labeled T0D1N1, T0D1N2, and others. AGB measurements are shown in tons per hectare, with time plotted from zero to two hundred fifty days after sowing. Similar patterns of growth are observed across treatments in both periods, indicating an increase in biomass over time.]
Figure 5 | (A) Absolute growth monitoring of winter wheat AGB simulated by APSIM model under different tillage methods, fertilization and sowing treatments from 2021 to 2022; (B) Absolute growth monitoring of winter wheat AGB simulated by APSIM model under different tillage methods, fertilization and sowing treatments from 2022 to 2023. The curve represents the simulated value, and the point represents the measured value.

As shown in Figure 6, the absolute growth monitoring accuracy results using AGB as growth index under different fertilization, seeding and tillage methods from 2021 to 2023 were presented. The R2 of the simulated AGB in 2021-2023 is 0.907, and the simulated AGB is in good agreement with the measured AGB. The RMSE is 0.872 t/ha, and the NRMSE is 20.9%.

[image: Scatter plot comparing measured above-ground biomass (AGB) against simulated AGB, with data points scattered around a dashed trend line. The equation \(y = 0.18x + 24.7\) and \(R^2 = 0.907\) are noted. Root Mean Square Error (RMSE) is 0.872 t/ha, and Normalized RMSE (NRMSE) is 20.9%. A red diagonal line represents perfect correlation.]
Figure 6 | Evaluation of AGB growth accuracy from 2021 to 2023.




3.1.3 Comparison of the absolute growth results of LAI and AGB in the key growth period of winter wheat simulated by the model

As shown in Figure 7, this study compared the variation in LAI and AGB across four key growth stages of winter wheat—regreening, heading, flowering, and filling—over two years and 12 different treatments, using simulations from the APSIM model. The results showed that the changes of LAI and AGB parameters simulated by APSIM model were roughly the same under different treatments in the key growth period of winter wheat. Except for T2D1N2 (normal sowing, plow tillage, and normal fertilization) at the winter wheat regreening stage in 2021-2022 and T0D3N2 (no-tillage, normal sowing, and normal fertilization) at the tasseling, flowering, and irrigating stages of winter wheat in 2022-2023, which did not have the same trend as the neighboring treatments, other treatments showed the results of the same trend of change. The reason for the inconsistent trend of the former may be that winter wheat adjusts its growth to adapt to the environment. Under sufficient fertilization conditions, winter wheat may prioritize root development over leaf growth to adjust to potential nutrient changes. The reason for the inconsistent trend of the latter may be that subsoiling tillage improves soil physical and chemical properties. In contrast, no-tillage may cause soil compaction, hindering root growth and leaf expansion of winter wheat. During key growth stages like heading, flowering, and filling, winter wheat is more sensitive to environmental conditions, making the differences more pronounced. From the perspective of different key growth periods, the regreening stage is characterized by relatively slow growth and recovery due to low temperatures and other limiting factors, resulting in minimal accumulation of LAI and AGB. Consequently, the changes during the regreening period are less noticeable compared to other key growth stages, making it less suitable for distinguishing the effects of different treatments on winter wheat growth.

[image: Bar charts comparing LAI (Leaf Area Index) and AGB (Above Ground Biomass) for two growing periods: 2021-2022 and 2022-2023. Each period is divided into regreening, heading, flowering, and filling stages, with LAI and AGB represented by gray and white bars respectively. Data for treatments T0D1N1, T0D2N1, T0D3N1, T1D1N1, T2D1N1, T2D1N2, T3D1N2, and T4D1N2 are shown across both periods, illustrating trends in LAI and AGB across different phases.]
Figure 7 | APSIM model simulates the changes in LAI and AGB of winter wheat in four key growth periods of 2021-2022 (A–D) and 2022-2023 (E–H) under different treatments.





3.2 Relative growth monitoring of winter wheat based on the combination of model simulation parameters and remote sensing inversion parameters



3.2.1 Trend consistency analysis of LAI and NDVI winter wheat relative growth monitoring by remote sensing

As shown in Figure 8, Sentinel-2 data were selected to calculate the NDVI percentage data and LAI percentage data from 2021-2023 in the research area through GEE platform. These two sets of data were then fitted according to different fertilization rates, seeding rates, and tillage methods to monitor and analyze relative growth. The remote sensing NDVI data from 2021 to 2023 and the simulated LAI data were used as growth indicators for data fitting, and the Pearson correlation analysis was performed. The correlation coefficient r value ranged from 0.759 to 0.948. In the case of T4D1N2, the correlation between LAI percentage data and NDVI percentage data was the best, showing a strong correlation of 0.949 (p< 0.001), and T2D1N2 was the worst, showing a strong correlation of 0.759 (p< 0.05). Meanwhile, in terms of significance, except for T2D1N2 and T0D3N1, which showed significance (p< 0.05), all other cases showed highly significant (p< 0.01). Overall, the linear correlation between the two variables was significant, except for T2D1N2 and T0D3N1 which showed a strong correlation, all other cases showed a very strong correlation, all of them had strong linear positive correlation, indicating that it can well reflect the link between LAI and NDVI, and that the fitted correlation between the data in the different cases was better and all of them were significantly positively correlated (p< 0.05).

[image: Scatter plots in a 3x4 grid showing the relationship between NDVI and LAI relative growth percentage data. Each plot includes a red trend line, a regression equation, and a correlation coefficient (r) value, indicating positive correlations across different conditions.]
Figure 8 | Analysis of NDVI and LAI growth in the study area under different tillage methods, fertilization and sowing treatments from 2021 to 2023. Among them, * indicates significance and ** indicates extremely high significance.

As shown in Figure 9, the correlation coefficient r value of the model simulated LAI percentage data and NDVI percentage data in 2021-2023 was 0.818 (p< 0.001), and the simulated LAI percentage data showed a highly significant positive correlation with the NDVI percentage data. In addition, the percentages of NDVI and LAI data, both greater than 0, accounted for about 82%, which suggests that winter wheat growth conditions in 2022 are better than those in 2023.

[image: Scatter plot showing the relationship between NDVI relative growth percentage data on the x-axis and LAI relative growth percentage data on the y-axis. Black squares represent data points. A red line indicates a positive linear trend with the equation y equals 2.66x minus 1.19. The correlation coefficient is 0.818, marked with significance.]
Figure 9 | Relative growth analysis of NDVI and LAI from 2021 to 2023. Where “**” indicates the significance test result.




3.2.2 Trend consistency analysis of AGB and NDVI remote sensing monitoring of relative growth of winter wheat

Using the Sentinel-2 data of GEE platform, NDVI percentage data and AGB percentage data from 2021-2023 in the study area were calculated. These two sets of data were then fitted according to different fertilizer application rates, seeding rates, and tillage practices to perform relative growth monitoring. As shown in Figure 10. The NDVI data based on the remote sensing and model simulated AGB data from 2021-2023 were fitted to the data as a growth indicator, and Pearson correlation analysis was performed, and the r values ranged from 0.741 to 0.927, and the correlation between the data in different cases was good and all of them showed a positive correlation. The best correlation between the AGB percentage data and the NDVI percentage data was found in the case of T4D1N2, which showed a very strong correlation of 0.927 (p< 0.001), and the worst in the case of T2D1N1, which showed a strong correlation of 0.741 (p< 0.05). Meanwhile, in terms of significance, all cases showed highly significant differences (p< 0.01) except for T2D1N1 and T0D3N1, which showed significant differences (p< 0.05).

[image: Twelve scatter plots display the correlation between NDVI relative growth percentage data and AGB relative growth percentage data. Each plot includes a red trend line and correlation coefficients ranging from 0.741 to 0.927. Equations for the trend lines are provided in each plot, indicating a positive relationship in all cases.]
Figure 10 | Analysis of NDVI and AGB growth in the study area under different tillage methods, fertilization and sowing treatments from 2021 to 2023. Where “*” and “**” represent significant and extremely significant difference results respectively.

As shown in Figure 11, the correlation coefficient r value was 0.808 (P< 0.001) for the simulated AGB difference percentage data and NDVI difference percentage data in 2021-2023, and these data showed highly significant positive correlation. Moreover, the percentage data for which the difference between NDVI and AGB is greater than 0 accounts for about 80%, the AGB results also indicate that the growth conditions for winter wheat in 2022 are better than those in 2023.

[image: Scatter plot showing the relationship between NDVI relative growth percentage and AGB relative growth percentage. Data points are scattered primarily in the top right quadrant. A red trend line with equation y=5.7x-3.21 is included, indicating a positive correlation with a correlation coefficient of r=0.808.]
Figure 11 | Relative growth analysis of NDVI and AGB from 2021 to 2023. Where “**” indicates the significance test result.






4 Discussion



4.1 The role of APSIM model in monitoring the growth of winter wheat under different treatments and optimizing field management

Crop model can dynamically monitor the growth process of crops (Ren et al., 2011; Xing et al., 2017a). This study shows that the APSIM model shows significant application prospects for monitoring the growth dynamics of winter wheat. In this study, the growth curves of LAI and AGB of winter wheat were obtained. From the LAI growth curve, we can observe that after the wintering period, as the temperature increases, the plants start to grow rapidly, necessitating a significant amount of nutrients and water. Providing appropriate nutrients from the regreening stage to the jointing stage will greatly benefit the growth of winter wheat. Zhao et al. found that the change in NDVI during these two periods was relatively large when extracting winter wheat area by NDVI, so they also put forward this view (Zhao et al., 2011). As LAI started to decline, while AGB continued to increase, it was observed that the growth rate slowed down. This suggests that the leaves of winter wheat are approaching saturation, more energy is being directed towards grain formation, and the photosynthetic efficiency is relatively reduced.

In the analysis of different tillage practices, fertilization, and sowing treatments by using the APSIM model, when two gradients of fertilizer application were applied in this study, we found that other conditions were consistent while different fertilizer application rates were applied, the different treatments showed better growth at the normal fertilizer application rate than at the halved fertilizer application rate, which indicated that the reduction of fertilizer application rate in certain cases had a negative impact on the growth and development of the crop, and that the subsequent study could increase the fertilizer application gradient to determine the optimum fertilizer application rate. Among the treatments with the same other conditions but different sowing rates, 75% of the sowing rate in some treatments of LAI and AGB showed better growth than the other sowing rates, indicating that appropriate reduction in sowing rate can promote wheat growth. When studying the effect of sowing density on the growth and yield of wheat, Xiao et al. found that reducing the sowing rate could stimulate wheat plants to produce more tillers and secondary roots, and promote an increase in plant height, suggesting that appropriate growth density can utilize the available resources, such as sunlight, water, and nutrients, in a more efficient manner (Xiao et al., 2021). Among the treatments with the same other conditions but different tillage methods, the growth of winter wheat was relatively better under deep loosening tillage treatment, and the related research of Feng et al. showed that compared with different tillage methods, subsoiling tillage could significantly increase the organic carbon content in the topsoil and enhance the water holding capacity of the soil, which might be the reason for promoting the growth of winter wheat (Feng et al., 2018). The growth curves of LAI and AGB in different years and under different treatments showed that the growth curves of LAI and AGB in subsoiling tillage, normal sowing, and normal fertilization were better than those in other treatments, and the growth trends of LAI and AGB were significantly greater than those in other treatments, indicating that this treatment may provide more optimized growth conditions, including soil looseness and nutrient supply, etc. these treatments improved the growth environment of plants. Therefore, the most suitable field management methods for winter wheat in these 12 cases are subsoiling tillage, normal sowing, and normal fertilization.




4.2 Analysis of correlation results between model simulation parameters and remote sensing inversion parameters

Compared with previous growth monitoring, relative growth remote sensing monitoring relies largely on vegetation indices such as NDVI (Su et al., 2019; Lu et al., 2020) and rarely incorporates other variables. In this study, in addition to NDVI, LAI and AGB are closely related to the growth of winter wheat and are added for trend consistency analysis and are used to comprehensively evaluate the crop’s growth status and changes in the growth status from different perspectives (Zheng et al., 2017; Qin et al., 2022). The comparison between NDVI extracted by Sentinel-2 data with 10m spatial resolution and LAI and AGB data simulated by the model showed that the correlation coefficient r value exceeded 0.74, indicating a positive correlation between LAI and AGB data simulated by NDVI and APSIM models. This is consistent with the obvious positive correlation between NDVI and LAI in different growth periods of winter wheat proposed by Liang et al. (2013) in the inversion of LAI, and the obvious correlation between above-ground biomass and NDVI in the main growth period of winter wheat proposed by Hansen and Schjoerring (2003) in the relevant study. It means that with the increase or decrease of NDVI, LAI and AGB will also increase or decrease to a certain extent.

From the growth consistency results of LAI and AGB and NDVI respectively, the three cases of T1D1N2, T3D1N2, and T4D1N2 showed extremely strong correlation (r > 0.9) in LAI and NDVI and AGB and NDVI, and the worst correlation was also the same both for T2D1N1, which also showed strong correlation. In terms of significance, except for T2D1N2 and T0D3N1, which showed significance (p< 0.05), all other cases showed highly significant (p< 0.01), and the results showed significant correlation, which indicated that correlations due to random factors could be excluded, such as climatic conditions, human activities, and equipment. And it was found that NDVI, AGB and LAI difference percentage data were all greater than 0 accounted for more than 80%, indicating that winter wheat in 2022 under different scenarios grew better than them in 2023. In terms of LAI and AGB structural characteristics, LAI directly reflects the degree of leaf cover and leaf area, leaf density and leaf arrangement of winter wheat plants (Lu et al., 2005), while AGB reflects winter wheat biomass accumulation and plant height, stem thickness, branching status and spike size (Guo et al., 2023). From the results and the structural characteristics of LAI and AGB, the LAI and AGB simulated by the APSIM model can better reflect the growth condition of winter wheat, which is more reliable than relying on NDVI only for relative growth monitoring.




4.3 Limitations of APSIM model in winter wheat growth monitoring

From the results of absolute growth of LAI simulated by the APSIM model, the growth simulated during the regreening period was more accurate, but the results of the simulation in the later part of the growth period were on the high side, which may be due to the inaccurate estimation of the model for the process of the decay of the leaf area in the later part of the growth period, or the possible existence of errors and uncertainties in the measured data, for example, due to errors caused by the measurement method, equipment, or sampling errors (Wang and Wang, 2015). In the later research, parameter sensitivity analysis should be combined to determine which parameters have the greatest impact on the accuracy of simulation results. From the absolute growth results of AGB simulated by APSIM model, it can be seen that at the end of the growth period (about 210 d), some of the simulated values are low. Which may be due to the failure of the model to accurately simulate the changes in soil moisture and nutrients and their effects on plant growth, and the simulated biomass may be low, especially in the final stages of crop growth, the supply of water and nutrients has an important impact on plant biomass accumulation (Guo et al., 2016). In later studies, a more precise division of the growth stages in the model is needed, and the model parameters are adjusted according to the characteristics and needs of each stage in order to better capture the sensitivity to water and nutrients at the end of growth. Precision agriculture and smart agriculture are the main development direction of current and future agriculture (Zhao et al., 2021). In the next step, based on the evaluation of the simulation results and the analysis of the shortcomings, we can further improve the APSIM growth model, especially in simulating the leaf area decaying process in the late growth stage and the effects of soil moisture and nutrients on plant growth, or extend the study to other crops or different environmental conditions to verify the generalizability of the study results. This could help agricultural producers and policy makers to understand the growth requirements and optimal management strategies for different crops.





5 Conclusions

In this study, the APSIM model and Sentinel-2 data were used to monitor both the relative and absolute growth of winter wheat under various tillage methods, fertilization rates, and sowing treatments. In terms of relative growth monitoring, absolute growth was further validated using remote sensing data, and there was a significant linear positive correlation between NDVI based on the Sentinel-2 data and both LAI and AGB data derived from the APSIM model (r>0.74, p<0.05). It was found that the best correlation with NDVI data (r>0.9, p<0.001) was obtained in the case of normal sowing, normal fertilizer application and rotary tillage. In terms of absolute growth monitoring, the growth of winter wheat was relatively poor in the area where the amount of fertilizer was halved compared to the area with a standard amount of fertilizer. Properly reducing the sowing rate can help to improve the growth of winter wheat. In the case of only different tillage methods, subsoiling tillage shows better growth than other tillage methods. In this paper, compared with other treatments, the most suitable management methods for winter wheat are subsoiling tillage, normal sowing, and normal fertilization. The results showed that the LAI and AGB indicators simulated by the APSIM model could better reflect the growth condition of winter wheat, and were more reliable than relying only on vegetation indices such as NDVI for relative growth monitoring.
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To ensure national food security amidst severe water shortages, agricultural irrigation must be reduced through scientific innovation and technological progress. Efficient monitoring is essential for achieving water-saving irrigation and ensuring the sustainable development of agriculture. UAV hyperspectral remote sensing has demonstrated significant potential in monitoring large-scale crop leaf water content (LWC). In this study, hyperspectral and LWC data were collected for potatoes (Solanum tuberosum) during the tuber formation, growth, and starch accumulation stage in both 2021 and 2022. The hyperspectral data underwent mathematical transformation by multivariate scatter correction (MSC) and standard normal transformation (SNV). Next, feature spectral bands of LWC were selected using Competitive Adaptive Reweighted Sampling (CARS) and Random Frog (RF). For comparison, both the full-band and feature band were utilized to establish the estimation models of LWC. Modeling methods included partial least squares regression (PLSR), support vector regression (SVR), and BP neural network regression (BP). Results demonstrate that MSC and SNV significantly enhance the correlation between spectral data and LWC. The efficacy of estimation models varied across different growth stages, with optimal models identified as MSC-CARS-SVR (R2 = 0.81, RMSE = 0.51) for tuber formation, SNV-CARS-PLSR (R2 = 0.85, RMSE = 0.42) for tuber growth, and MSC-RF-PLSR (R2 = 0.81, RMSE = 0.55) for starch accumulation. The RPD values of the three optimal models all exceed 2, indicating their excellent predictive performance. Utilizing these optimal models, a spatial distribution map of LWC across the entire potato canopy was generated, offering valuable insights for precise potato irrigation.
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1 Introduction

As global agriculture faces increasing pressure from water scarcity, efficient water management has become more critical than ever. The Food and Agriculture Organization (FAO) of the United Nations projects that by 2050, the world will need to produce 60% more food to meet the demands of a population expected to reach 9.7 billion, all while grappling with increasingly limited water resources (Lakhiar et al., 2024). In this context, precision irrigation emerges as a key strategy to optimize water usage, minimize waste, and ensure sustainable agricultural productivity. Water plays an indispensable role in the growth and development of crops (Féret et al., 2019; Liu et al., 2022; Li et al., 2022a). Crops rely on water for photosynthesis, transpiration, and the synthesis and decomposition of organic matter (Sun et al., 2015; Meiyan et al., 2022). Obtaining crop water information quickly and accurately is vital for timely crop irrigation and yield improvement, especially in regions prone to water scarcity. Efficient water use is critical in agriculture, especially in water-scarce regions. In modern precision agriculture, technologies like UAV hyperspectral remote sensing provide a promising solution for monitoring crop water content in real-time. Among all crop tissues, leaves exhibit the most vigorous metabolism and serve as the primary site for photosynthesis (Zhou et al., 2020; Zhang et al., 2021). Analyzing leaf water content (LWC) is critical for assessing crop moisture status, as LWC level indicate the degree of crop water deficiency. Traditional methods of measuring crop moisture, such as drying and distillation, are accurate but time consuming and energy intensive (Roberto et al., 2018; Wang et al., 2021). Therefore, more efficient monitoring methods are needed for precise agricultural management. When crops suffer from severe water shortages, timely irrigation becomes a challenge.

In the past few decades, satellite-based hyperspectral remote sensing technology has been extensively studied in large-scale regional agricultural monitoring such as crop nitrogen content (Zheng et al., 2022), crop chlorophyll content (Xie and Yang, 2020), and crop biomass (Jia et al., 2019). In China, the cultivated land area of a farmer is usually no more than a few acres. On this scale, the granularity of satellite remote sensing is too rough, and it is difficult for a farmer to obtain remote sensing data in time. As a result, this method cannot provide farmers with timely information on drought conditions and irrigation guidance. In recent years, with the development of technology, the price of unmanned aerial vehicle (UAV) has been becoming cheaper. Chinese farmers have used UAV for many field operations, such as spraying and short-distance transport. Compared with satellites, the remote sensing mode of UAV + hyperspectral sensing has many advantages such as fine granularity, convenience, and flexibility. The combination of the two technologies can make precision agriculture more practical in China and can provide farmers with a scientific basis for precision irrigation based on LWC measurements (Zhang et al., 2021; He et al., 2023). UAV hyperspectral remote sensing offers farmers timely, high-resolution data that can improve precision irrigation strategies. For example, recent studies demonstrated its effectiveness in optimizing water management in crops like maize and wheat, leading to measurable water savings and increased yields (Mohite et al., 2022; Luo et al., 2024).

The widespread adoption of hyperspectral remote sensing technology has enabled its extensive use in monitoring plant water content (Suárez et al., 2009; Raj et al., 2021), and most studies have focused on the infrared region at wavelengths greater than 900 nm. Maes and Steppe (2019) discovered that the vibrational movements of water and other molecules containing O-H groups in plants result in spectral absorption peaks occurring near 970 nm, 1200 nm, 1450 nm, 1940 nm, and 2500 nm in the spectral reflectance of plants. Zhang et al. (2014) investigated the optimal spectral indicators for determining LWC. Their findings demonstrated that the regression model for leaf water content based on the normalized difference spectral index NDSI (R1222, R2264) and the ratio spectral index RSI (R2264, R1321), is closely aligned with the measured and estimated values. Sun et al. (2021) utilized the Fractional Order Savitzky-Golay Derivative (FOSGD) to preprocess the hyperspectral reflectance data of maize leaves spanning from 900 nm to 1700 nm. They employed Variable Importance in Projection (VIP), Competitive Adaptive Reweighted Sampling (CARS), and Random Frog (RF) methods to identify sensitive wavelengths. They established a maize leaf water content estimation model based on Partial Least Squares. The results indicated that the FOSGD-CARS-PLS or FOSGD-RF-PLS model can effectively predict the LWC of maize. Although near-infrared spectra above 900 nm exhibit high reliability in measuring vegetation moisture, the instruments acquiring these spectra are characterized by their high cost, making it unaffordable for the ordinary farmers.

Visible and near-infrared spectroscopy (VIS-NIR) has been extensively employed for estimating leaf water content (LWC) due to its cost-effectiveness and wide accessibility. Previous studies have demonstrated that vegetation indices derived from VIS-NIR reflectance can effectively detect changes in LWC across a variety of crops (Suárez et al., 2008; Kovar et al., 2019). For instance, Ishikawa et al. (2013) found that spectral bands in the 650–690 nm range were strongly correlated with LWC in diverse leaf samples, underscoring the reliability of this method for water content estimation. More recent research by Wang et al. (2023) utilized partial least squares (PLS) models to predict moisture content in fresh tea leaves, integrating spectral data to provide practical applications in real-time monitoring systems. Similarly, Duarte-Carvajalino et al. (2021) applied hyperspectral imaging techniques to predict potato leaf water content, achieving high accuracy under controlled experimental conditions. Nevertheless, these studies predominantly focus on controlled environments, where factors such as temperature, humidity, and lighting are strictly regulated. As a consequence, the models developed may exhibit reduced performance in field conditions, where environmental variability introduces significant challenges.

Additionally, many studies have constructed spectral models specific to particular growth stages, thereby limiting their applicability across the entire crop life cycle (Panigrahi and Das, 2018). Given that crop spectral characteristics evolve with growth stage, health status, and environmental conditions, models developed for a single growth stage may fail to capture the full extent of LWC variation throughout the entire growth period. While some research, such as that by Liu et al. (2015), has compared models across multiple growth stages, these models often require further validation to ensure their robustness under diverse conditions. Consequently, there remains a critical gap in the development of LWC estimation models that can be reliably applied across multiple growth stages, particularly for crops like potatoes, which exhibit varying water demands at different phenological phases (Sudu et al., 2022).

Potato, along with rice, wheat, and corn, is one of the major food crops globally (Zhang et al., 2017). The vitality and water content of leaf play a crucial role in ensuring a nation’s food security (Wijesinha-Bettoni and Mouillé, 2019). Especially in water-scarce regions such as Gansu Province, potatoes, as a key crop, have significant water requirements, making them an ideal subject for research on improving irrigation efficiency. Although numerous studies have applied hyperspectral remote sensing to monitor crop water content, relatively few have specifically focused on potatoes, particularly under real field conditions. Additionally, most existing models are limited to a single growth stage, neglecting the variations in moisture content across different stages of growth. As shown in Table 1, these studies face challenges such as limited spatial coverage, insufficient data acquisition speed, and a lack of validation in real field conditions. This table summarizes the key differences between our research and previous studies, highlighting how our work addresses these limitations. This study aims to address the limitations of previous research by developing and validating a potato LWC estimation model across multiple growth stages using UAV-based hyperspectral remote sensing combined with machine learning algorithms. By focusing on critical growth stages such as tuber formation, growth, and starch accumulation, this research offers valuable insights for optimizing irrigation strategies and advancing precision agriculture techniques in water-scarce regions.

Table 1 | Overview of hyperspectral remote sensing methods and their limitations in existing studies.


[image: Table summarizing research studies on remote sensing platforms for various cereals. It lists references, cereals (e.g., winter wheat, corn, maize, etc.), platforms used (e.g., ground-based, UAV-based), spectral range in nanometers, regressors used (e.g., MLR, SVR, PLSR), limitations (e.g., limited spatial coverage), and improvements noted (e.g., utilizing high-resolution UAV for extensive coverage). Specific acronyms are defined below the table.]



2 Materials and methods



2.1 Overview of the study area

Potato field trials were conducted in Huangyang Town, Liangzhou District, within Wuwei City, from May to October in both 2021 and 2022. Huangyang Town, located in the Hexi Irrigation District of Gansu Province (37°81′49′′ N, 102°92′38′′ E) (Figure 1), is a significant area for potato cultivation. The area is situated at an altitude of 1660 m and lies in the eastern part of Hexi Corridor. It has a continental temperate arid climate with a 150-day frost-free period, averaging an annual temperature of 7.2°C and receiving 160 mm of annual precipitation. The soil in this area is grey calcareous with sandy loam texture and is high saline, PH value of 7.82. The main crops cultivated are corn, wheat, and potatoes. The potato variety ‘Qingshu9’ was planted in both years, courtesy of Gansu Academy of Agricultural Sciences. ‘Qingshu 9’ is a medium-to late-maturing fresh potato variety, with an average growth period of approximately 115 days from emergence to maturity. This variety is characterized by its high yield, resistance to late blight and scab, and adaptability to local climatic conditions.

[image: Maps illustrating Gansu Province in China with highlighted areas, including Liangzhou. Two photos depict a field in 2021 with a clear sky and a drone overhead, and in 2022 with overcast skies, showing more vegetation.]
Figure 1 | Description of the geographic location of the study area.

Prior to planting, two types of fertilizers were applied: diammonium phosphate (46%P2O5, 18%N) at a rate of 400 kg/hm2, to provide the necessary phosphorus and nitrogen for the early growth stages, and a Western compound fertilizer (15%N, 15%P2O5, 15%K2O) at a rate of 750 kg/hm2, to ensure adequate nutrient supply throughout the reproductive period. Both fertilizers were incorporated into the soil in a single application before sowing. Irrigation was carried out using an under-membrane drip system, with drip pipes buried 6cm deep (Aziz et al., 2021). The irrigation system used drip pipes with a diameter of 16 mm (φ16) and emitters for water delivery, while the branch pipe was a 50 mm diameter (φ50) PE pipe with a pressure resistance of over 0.5MPa. To minimize water evaporation and maintain soil moisture, the soil surface was covered with a black polyethylene film, 90cm wide and 0.012mm thick. Throughout the growth cycle of the potato crop, the total irrigation volume ranged from 2100 to 2300m3/hm2. In 2021, irrigation was performed 10 times, while in 2022, it was conducted 11 times, with irrigation intervals of 10−12 days. The irrigation frequency was adjusted according to3the potato2 growth stage and soil moisture levels, with each irrigation delivering between 190 and 250 m/hm. Field management tasks such as sowing, fertilizing, weeding, spraying pesticides, and other farming practices were carried out according to local agricultural practices.




2.2 Hyperspectral image acquisition and processing

Potatoes were planted on May 6, 2021, and May 10, 2022, and harvested on October 3, 2021, and October 8, 2022, respectively. The tuber formation stage began 65 days after planting and lasted for approximately 30 days. The tuber growth phase commenced 95 days after planting and continued for about 25 days, while the starch accumulation phase started 120 days after planting and lasted for around 30 days (Aziz et al., 2021). The study conducted six field trials at three crucial growth stages of potato: July 28, 2021 (S1 - tuber formation stage), August 19 (S2 - tuber growth stage), August 30 (S3 - starch accumulation stage), and August 1, 2022 (S1 - tuber formation stage), August 17 (S2 - tuber growth stage), August 31 (S3 - starch accumulation stage). Hyperspectral images were obtained using the DJI M600 Pro® hexacopter drone, equipped with the Gaia Sky-mini 2® imaging spectrometer (Jiangsu Dualix Spectral Imaging Technology Co., Ltd, China) (Figure 2). The Gaia Sky-mini 2 features a built-in push-scan imaging system with a spectral range of 400 to 1000 nm and a spectral resolution of 3.5 nm. It has a full-frame pixel resolution of 1392×1040 and weighs approximately 1 kg. The device employs a surface-array detector oriented perpendicularly to the direction of movement, allowing it to perform a two-dimensional spatial scan as the motion platform advances. The DJI M600 Pro hexacopter, when unloaded, has a flight time of approximately 35 minutes per battery. Under a maximum load of 6 kg, its battery life is reduced to around 16 minutes. To ensure high-quality hyperspectral images, all six experiments were conducted between 11:00 a.m. and 1:00 p.m. local time, following a fixed flight path on days with stable sunlight intensity and clear, cloudless weather. The drone operated at a flight height of 100 m, with a 22° scanning field of view, a high-altitude resolution of 0.039m, 80% lateral overlap, and 60% longitudinal overlap between image data. Before the UAV’s departure, the hyperspectral imager underwent radiometric calibration using a whiteboard. The pre-processing of the hyperspectral data primarily involves image correction, stitching, and reflectance extraction (Guo et al., 2023).

[image: A hexacopter drone labeled "M600 Pro" with a mounted device labeled "Gaia Sky-mini 2" is positioned on a concrete surface. A remote control with a tablet is placed next to the drone. A grassy field is in the background.]
Figure 2 | UAV imaging hyperspectral system.




2.3 Measurement and statistics of LWC data

Potato leaf sampling and hyperspectral imaging were synchronized. Sampling points were uniformly distributed based on the study and potato planting areas. The center coordinates of each observation were located and recorded using a handheld high-precision GPS sampling device with a positioning accuracy of< 5 cm. Twenty fully expanded and undamaged leaves were collected from each sampling point in the canopy. The collected leaves were sealed, and their fresh weight (W1, g) was measured in the laboratory using a precision electronic balance (JA3003, Shanghai Hengping Instrument and Meter Co., Ltd., China). Next, the leaves from each sampling point were dried in a laboratory oven at 105°C for 30 min and then further dried at 80°C until a constant weight was achieved (Xu et al., 2022). The dry weight of the leaves (W2, g) was recorded. The LWC (%) of the potato was calculated by Equation 1:

[image: Formula for leaf water content (LWC) is shown: LWC equals the initial weight (W1) minus the final weight (W2), divided by the initial weight (W1), multiplied by one hundred percent.] 

This study measured the potato LWC data at three critical growth stages. At stage S1, 50 samples were collected each year, while at stages S2 and S3, 55 samples were collected each year. A total of 320 samples were collected during the experimental phase.




2.4 Hyperspectral data transformation

During hyperspectral data processing, specific spectral transformations can be used to mitigate the effects of environmental factors and interferences, improve the signal-to-noise ratio, and make spectral forms more sensitive to potato LWC (Yang et al., 2023). In this study, several mathematical transformations were applied to the raw spectra, resulting in six spectral data types: raw reflectance (R), multiple scattering correction (MSC), standard normal variate (SNV), reciprocal transformation (RT), logarithm of the reciprocal [(Lg(1/R)], and first derivative (FD).MSC is a normalization technique that reduces baseline drift, improves the signal-to-noise ratio, and better reveals differences and similarities between samples. It is commonly used to eliminate the effects of scatter on spectral data (Chen et al., 2019; Sun et al., 2020). SNV primarily eliminates the effects of solid particle size, surface scattering, and optical path variations on spectra. Elimination of baseline drift and enhancement spectral signal characteristics contribute to improved accuracy and reliability in spectral analysis (Genkawa et al., 2015; Tao et al., 2020). RT and Lg(1/R) help to enhance features in low reflectance regions, making subtle changes more detectable. Meanwhile, FD highlights minute spectral changes, such as the positions of reflectance peaks and valleys, although it may amplify noise in regions with weaker signals (Sonobe and Hirono, 2022).




2.5 Extraction of hyperspectral feature band

Considering the large number of collected hyperspectral bands, numerous redundant and interfering bands exist. Extracting the feature band related to potato LWC based on the potato hyperspectral reflectance data is crucial. This study utilized two hyperspectral feature band extraction algorithms: CARS and RF.

The CARS algorithm (Sun et al., 2021; Xing et al., 2021) is based on in the evolutionary principle of “survival of the fittest”. It integrates partial least squares (PLS) with CARS technology by using the absolute value percentage of the PLS modeling coefficients as a measure of significance for the target variables. And then it selects wavelengths with substantial coefficients, and discarding those with low weights. The process uses Monte Carlo Sampling (MCS), exponential decay functions, and Adaptive Weighted Sampling (ARS) to acquire an initial subset of wavelengths for further screening. Multiple iterations of the CARS algorithm result in a set of wavelengths closely linked to the target attributes. This produces a high-performance feature wavelength set for regression modeling. The comprehensive approach improves the accuracy and reliability of spectral analysis, effectively selecting the best modeling wavelength combinations. The RF algorithm (Li et al., 2012; Hu et al., 2015) is a heuristic feature selection algorithm that is highly suitable for spectral data. The RF algorithm mimics the random yet systematic search behavior of a frog ‘leaping’ between different subsets of features. Each ‘leap’ represents the algorithm’s movement from one potential feature subset to another, selecting subsets based on performance. By continuously performing crossbreeding, mutation, and selection operations, the algorithm gradually optimizes the feature subset to excel in the given task. This method allows the algorithm to explore various feature combinations in the search space to identify the best feature set, thereby improving the model’s performance.




2.6 Machine learning modeling

Following the aforementioned processes on the hyperspectral data, three regression algorithms (PLSR, SVR and BP) of machine learning were used to construct a potato LWC estimation models. PLSR (Cheng and Sun, 2017) is a traditional linear regression technique that conducts principal component analysis on the explanatory and response variables to identify a new feature space that optimizes their covariance. This method effectively handles multicollinearity, is suitable for high-dimensional data, and can handle multiple response variables. PLSR ensures that each component is associated with the target, allowing for multi-level regression analysis by retaining different numbers of components to achieve more robust predictions and a deeper understanding of the relationship between independent and dependent variables (Burnett et al., 2021). The model training process involved optimizing the number of principal components, which in this study was varied between two and two-thirds of the total number of features.

SVR (Virnodkar et al., 2020) is based on kernel statistical theory and transforms the sample space into a high-dimensional or infinite-dimensional feature space through nonlinear mapping. This conversion turns the initially nonlinear separable problem in the sample space into a linear separable problem in the feature space. SVR can improve robustness against noise and outliers, exhibits nonlinear modeling capabilities, excels in high-dimensional space, and provides strong generalization performance, making it suitable for various regression problems. In this study, a radial basis function was employed, with the two parameters to be optimized being the penalty coefficient (C) and the kernel function parameter (γ). A grid search approach was utilized to determine the optimal values for these parameters, where the search range for C was from 0.5 to 500, and for γ, from 0.0001 to 0.05.

The Backpropagation (BP) neural network (Li et al., 2016) is widely used for nonlinear modeling and data prediction. It consists of input, output, and intermediate hidden layers. The learning process involves two key steps: forward propagation and backpropagation. During forward propagation, the input data is processed layer by layer, starting with the input layer, then the hidden layer, and finally the output layer. In case of an error between the predicted result of the output layer and the actual data, the backpropagation process is initiated. By using the gradient descent method, the backpropagation algorithm methodically adjusts the weights of each neuron layer by layer, continuing until the error aligns with the predetermined criteria. In the present research, it was necessary to determine the number of hidden layers and the corresponding number of neurons in each layer. Two hidden layers with the same number of neurons were employed. The empirical formula (Equation 2) was applied to define an appropriate range for the number of nodes in the hidden layers. The optimal number of nodes in each hidden layer was then selected using the grid-search method, with 1,000 iterations, a learning rate of 0.01, and a training objective of 1×10−6.

[image: The equation displayed is: "g equals the square root of k plus m plus alpha", labeled equation 2.]

where q denotes the number of nodes in the hidden layer, k represents the number of input layer units, m indicates the number of output layer units, and α is a constant in the range [1, 10].




2.7 Model evaluation methods

The regression algorithms employed in this research were implemented in the Python 3.6.13 environment using the scikit-learn 0.23.2 or TensorFlow 2.1.0 frameworks. Due to the limited number of samples available for a single growth stage, the constructed models were validated through leave-one-out-cross validation (Wong, 2015). During the cross-validation process, each sample was iteratively used as a test set. Model parameters were determined by a comprehensive comparison of multiple training iterations, providing results that are considered the closest approximation to the expected value derived from training on the entire dataset. We use the coefficient of determination (R2), root mean square error (RMSE) and relative analytical error (RPD) as evaluation metrics to assess model performance. R2 (closer to 1) measures how well the model fits the data, while RMSE (closer to 0) quantifies the spread of predicted values around the regression line. A higher R2 and a lower RMSE indicate greater precision in model estimation. The RPD is used to assess the predictive ability of a model. It is defined as the ratio of the standard deviation of the sample to the RMSE. When RPD< 1.4, the model is considered unable to predict the samples accurately. If 1.4 ≤ RPD< 2, the model is regarded as moderately effective and can be used for rough assessments. For RPD ≥ 2, the model is considered to have excellent predictive capability (Zhu et al., 2020). The calculation of R2, RMSE, and RPD are shown in Equations 3–5, respectively.

[image: R squared equals one minus the sum of squared differences between actual values \(y_m\) and predicted values \(\hat{y}\), divided by the sum of squared differences between actual values \(y_m\) and the mean \(\bar{y}\).] 

[image: Root Mean Square Error (RMSE) formula: RMSE equals the square root of the sum of squared differences between observed values \(y_m\) and predicted values \(y_p\), divided by the number of observations \(n\).] 

[image: Equation for RPD (Ratio of Performance to Deviation) is given. It is calculated by dividing the standard deviation of measured values, S_y, by RMSE (Root Mean Square Error). The formula shows S_y equals the square root of the sum of squared differences between observed and mean values, divided by n-1, all over RMSE. Equation is numbered (5).] 

Where n is the sample size; [image: Mathematical notation showing the lowercase letter "y" followed by a subscript "m".]  and [image: The image displays the mathematical symbol "y sub p," often used to represent a particular solution in differential equations or related contexts.]  are the actual and predicted values of potato LWC, respectively; [image: It seems there is a problem with the image or text provided. Could you please upload the image again or provide more context?]  is the mean value of the actual potato LWC; [image: It seems like there's an issue with the image upload. Please try uploading the image again or provide a URL if it's available. If you want to give additional context or a caption, feel free to do so.]  is the standard deviation of the measured value of potato LWC.





3 Results and analysis



3.1 Mathematical statistics of collection sample

To ensure that the modeling and test data sets better capture the entire dataset’s distribution, to mitigate bias from specific data distributions, and to improve the generalizability of the model, we used a random splitting method, allocating 75% of the samples for modeling and 25% for testing. For the potato growth stage S1, 75 samples were selected for the modeling data set and 25 for the test data set. Likewise, for the S2 and S3 growth stages, 83 samples were selected for the modeling data set, and 27 in the test data set. Figure 3 shows the sample distribution in the modeling and test data sets across the three growth stages of potato. As shown in Figure 3, the mean and standard deviation (SD) values of the sample points of the three different growth stages can be obtained. In the S1 stage, the distribution of LWC in the modeling data set ranges from 81.53% to 87.91% (SD = 1.22), while in the test data set, it ranges from 81.70% to 86.62% (SD = 1.19). In the S2 stage, the distribution of LWC in the modeling data set ranges from 79.28% to 83.99% (SD = 1.12), while in the test data set, it ranges from 79.90% to 83.84% (SD = 1.08). In addition, at the S3 stage, the distribution of LWC in the modeling data set ranges from 76.28% to 80.72% (SD = 0.99), while in the test data set, it ranges from 76.40% to 81.58% (SD = 1.27). The mean and standard deviation (SD) values between the modeling and test datasets for the three growth stages show minor variances, indicating a reasonable division of the data set.

[image: Violin plots labeled (a), (b), and (c) compare Liquid Water Content (LWC) percentages across dataset, modeling set, and test set. Each plot shows mean, standard deviation, and data distribution in green, red, and orange.]
Figure 3 | Distribution of potato LWC at different growth stages, (A) tuber formation stage S1, (B) tuber growth stage S2, (C) starch accumulation stage S3.




3.2 Potato hyperspectral features



3.2.1 Hyperspectral transformation and feature analysis

Figure 4 shows the original spectral curves and their mathematical transformations for the potato samples. As can be seen from Figure 4A, there are obvious differences in the raw reflectance (R) between the samples, and there are phenomena such as baseline shift and tilt between the spectra. These observations can be attributed to light scattering from the potato canopy and changes in the optical path length. After processing with by MSC (Figure 4B) and SNV (Figure 4C), the discrepancies in reflectance are significantly decreased. The spectra show higher concentration and consistent spectral curve characteristics. These results provide the evidence that the two spectral transformation methods can effectively address spectral shifts, eliminate background interference and noise, and enhance spectral features. As a result, feature wavelengths can be identified with greater accuracy and precision. The RT transform (Figure 4D) effectively enhances the spectral features in regions of low reflectance, highlighting subtle changes that are less apparent in the original spectrum. In contrast, the Lg(1/R) transform (Figure 4E) emphasizes spectral variations while preserving the overall trend of the spectrum, making it suitable for analyzing subtle differences. The FD transform (Figure 4F) effectively highlights small changes in the spectrum, such as the positions of reflectance peaks and valleys, thereby reducing background interference and improving the accuracy of feature extraction. However, a burr phenomenon is observed beyond 800 nm in Figure 4F, primarily due to weak signal strength in this spectral region, which results in noise amplification during the derivative transformation process.

[image: Six graphs labeled (a) to (f) display reflectance versus wavelength in nanometers, ranging from 400 to 1000. Each graph shows multiple overlaid curves, indicating variations in reflectance patterns for different samples. Reflectance values vary significantly across the graphs, with (d) showing the highest values and (f) the lowest.]
Figure 4 | Raw and mathematically transformed spectra of potato, (A) raw spectra, (B) multiple scattering correction transformation spectrum, (C) standardized normal variate transformation spectrum, (D) inverse transformation spectrum, (E) ogarithm of the reciproca transformation spectrum, (F) first derivative transformation spectrum.




3.2.2 Analysis of the correlation between potato canopy reflectance and LWC

Based on the actual measured data of LWC in three critical growth stages of potato, the correlation between the reflectance of each band before and after hyperspectral mathematical transformation with LWC is analyzed during the entire growth period of potato, and the results are shown in Figure 5. It can be observed that the correlation coefficients r for MSC and SNV show an increase compared to R. r between R and LWC ranges from -0.50 to 0.35, while for MSC and LWC, it ranges from -0.84 to 0.73, and for SNV and LWC, it ranges from -0.80 to 0.75. The trend of change in r between the reflectance of each band and LWC before and after spectral transformation remains consistent in the range of 500-725 nm. The absolute value of the negative correlation coefficient r reaches its highest point for each transformation at approximately 725 nm, in fact, in this band, all three transformations show the greatest negative correlation with LWC. This suggests that the correlation between spectral features and LWC is better revealed after applying MSC and SNV transformations in this spectral region. In contrast, the correlation curves of RT, Lg(1/R), and FD are smoother, with relatively small fluctuations in the correlation coefficients. Although these transformations provide unique feature information in specific bands (e.g., low reflectance regions), they do not show a significant enhancement in correlation within critical bands (e.g., near 725 nm). This is particularly evident for the FD transform, which shows noise amplification in bands above 800 nm, leading to large fluctuations at high frequencies. As shown in Figure 5, MSC and SNV spectral data are more effective in revealing the relationship between LWC and spectral reflectance. While the RT, Lg(1/R), and FD transforms offer some information gain, their correlation performance is limited in key bands and is more susceptible to noise interference in certain regions. Therefore, R, MSC, and SNV spectral data are selected for subsequent experiments to improve the accuracy of the analysis and the reliability of the model.

[image: Six line graphs showing different spectral preprocessing methods for analyzing reflectance data. The graphs are labeled as R, MSC, SNV, RT, Lg(1/R), and FD, plotted against wavelength in nanometers on the x-axis, ranging from 400 to 1000 nm. The y-axis indicates reflectance values between -1.0 and 0.8. Each graph displays variation in reflectance across the spectrum, with correlation coefficients of 0.5 and -0.5 marked. Each plot is uniquely colored: pink, purple, light blue, red, gray, and green.]
Figure 5 | Correlation analysis of potato LWC with different transformed spectra.





3.3 Selection of feature band for potato LWC

The results of band selection processed by CARS and RF are shown in Figure 6, which shows the influence of different selection methods and potato growth stages on the results. Utilizing RF for band selection involves choosing the top 20 bands based on their selection probability, representing 11.36% of all bands. For S1, the feature band identified by the RF band selection methods across in the three types of spectral data was mainly concentrated in the near infrared region of 760-1000 nm, with a smaller distribution in the visible light region of 400-475 nm. For S2, the feature band screened by the RF band selection methods on the three types of spectral data are distributed in both visible light and near-infrared regions, with a more scattered distribution. Fewer feature band selected by RF on the three types of spectra are distributed in the near-infrared region. For S3, the distribution of the feature band selected by RF on the three types of spectra follows the same pattern as in the S2 stage, with a few distributed in the near-infrared region.

[image: Three scatter plots compare various band screening methods labeled SNV-RF, SNV-CARS, MSC-RF, MSC-CARS, R-RF, and R-CARS across wavelengths from 400 to 1000 nm for S1, S2, and S3. Different colored dots represent different methods, plotted on light green backgrounds. Vertical lines mark color bands B, G, Y, O, R, and NIR.]
Figure 6 | Distribution of feature band screened by different feature band screening algorithms.

For S1, the feature band selected by CARS based on R, MCS, and SNV spectral data are 25, 16, and 22, accounting for 14.20%, 9.09%, and 12.50% of the total bands, respectively. For S2, the feature band screened by the CARS band selection methods on the three types of spectral data are distributed in both visible light and near-infrared regions, with a more scattered distribution. CARS selects 35, 14, and 40 the feature band based on R, MCS, and SNV spectral data, accounting for 19.89%, 7.95%, and 22.73% of the total bands, respectively. For S3, the distribution of the feature band selected by CARS on the three spectra is quite similar, mainly concentrated between 550-830 nm. The feature band selected based on R, MCS, and SNV spectral data are 31, 20, and 31, accounting for 17.61%, 11.36%, and 17.61% of the total bands, respectively. Both band selection methods reduce the spectral dimensions across the three spectral data types, simplifying the model and reducing the computational load.




3.4 Potato LWC estimation models

We used machine learning methods, such as PLSR, SVR, and BP, to develop estimation models for LWC. To achieve more accurate predictions, three different growth stages were modeled independently. In addition, we analyzed the impacts of the full-band and the feature band as variables in the models. 75% of the data is randomly selected to construct the modeling set, and the rest was used as the test set. Figure 7 shows the results of various models on the modeling set.

[image: Six line charts compare the performance of three models: PLSR, SVM, and BP across different conditions S1, S2, and S3. Charts (a), (b), and (c) display R² values, while charts (d), (e), and (f) show RMSE values. The x-axis lists methods like R, R-CARS, R+RF, and others. Data points are connected by dotted lines in distinct colors for each model. Charts depict variations and trends in predictive accuracy and error across different preprocessing techniques.]
Figure 7 | Comparison of potato LWC estimation accuracy using three machine learning models: (A-C) R2, (D-F) root mean square error (RMSE).

For S1, the PLSR models show the accuracies ranging from 0.49 to 0.76 for R2 and 0.60 to 0.87 for RMSE. The MSC-CARS-PLSR model demonstrates the highest R2 and the smallest RMSE, while the SNV-RF-PLSR model has the lowest R2 and the largest RMSE. Similarly, the SVR models have accuracies ranging from 0.45 to 0.81 for R2 and 0.53 to 0.90 for RMSE. The accuracies of the BP models ranged from 0.41 to 0.79 for R2 and from 0.56 to 0.93 for RMSE. Within this context, the SNV-CARS-BP model demonstrates the highest R2 and the smallest RMSE, whereas the R-CARS-BP model exhibits the lowest R2 and the largest RMSE. In the models constructed using raw spectral data R, the full-band models exhibit better modeling performance than the models constructed from selected the feature band. For the models established with spectral data transformed by SNV and MSC, those developed with the feature band selected by CARS outperform the full-band models. However, the performance of the models based on the feature and selected by RF is inferior to that of the full-band models. In addition, after applying SNV and MSC transformations to the original spectral data R, the modeling effect was improved to varying degrees. In particular, the MSC-CARS-SVR model achieves the best modeling effect at the S1 stage.

For S2, the modeling accuracy of the PLSR models ranges from 0.54 to 0.86 for R2 and from 0.41 to 0.75 for RMSE. Among the models, the SNV-CARS-PLSR model has the highest R2 and the smallest RMSE, while the R-RF-PLSR model has the lowest R2 and the highest RMSE. The modeling accuracy of the SVR models ranges from 0.65 to 0.85 for R2 and 0.42 to 0.65 for RMSE. In this case, the SNV-CARS-SVR model presents the highest R2 and the smallest RMSE, while the R-RF-SVR model indicates the lowest R2 and the highest RMSE. Additionally, the modeling accuracy of the BP models ranges from 0.63 to 0.85 for R2 and 0.42 to 0.67 for RMSE, with the SNV-CARS-BP model achieving the highest R2 and the smallest RMSE and the R-CARS-BP model recording the lowest R2 and the highest RMSE. In models established based on the spectral data after MSC transformation, those using the full-band for modeling showed better performance than those using models built with selected the feature band. In the models established based on the original spectral data R and spectra after SNV transformation, models constructed using bands selected by CARS had better performance than those built using the full-band. However, models built with bands selected by RF performed worse than models established with the full-band. Notably, three models established based on data processed by SNV-CARS all achieved optimal predictive performance, with the SNV-CARS-PLSR model emerging as the most accurate at the S2 stage.

For S3, the PLSR model’s R2 modeling accuracy falls between 0.80 and 0.82, with an RMSE ranging from 0.41 to 0.44. Importantly, the MSC-CARS-PLSR model demonstrates the highest R2 and the smallest RMSE, while the SNV-CARS-PLSR model exhibits the lowest R2 and the largest RMSE. Likewise, the SVR model’s R2 modeling accuracy spans from 0.81 to 0.87, with an RMSE between 0.36 and 0.43. Once more, the MSC-CARS-SVR model yields the highest R2 and the smallest RMSE, with the SNV-CARS-SVR model recording the lowest R2 and the highest RMSE. In the case of the BP models, the R2 modeling accuracy ranges from 0.80 to 0.86, with an RMSE between 0.37 and 0.44. In this context, the MSC-CARS-BP model demonstrates the highest R2 and the smallest RMSE, while the R-CARS-BP model exhibits the lowest R2 and the largest RMSE. Comprehensive analysis reveals that all the models developed during the S3 stage show an R2 above 0.80 in the prediction set, with minor variations in R2 and RMSE among the models. Remarkably, three models established based on data processed by MSC-CARS all achieved optimal predictive performance, with the MSC-CARS-SVR model boasting the highest prediction accuracy during the S3 stage.

The potato LWC estimation models should demonstrate high fit universality and repeatability. Accordingly, we further evaluated the accuracy of each growth stage models on the test set. For S1, Figure 8 presents the validation results on the test set for each model. Among them, the nine models based on the R spectrum data show poor test fitting on the test set, with R2 ranging from 0.25 to 0.63, RMSE ranging from 0.76 to 1.01, and RPD ranging from 1.18 to 1.57. It is noteworthy that, when models being built with the feature band, only the PLSR models surpasses the full-band models. Conversely, the test performances of the SVR and BP models are inferior to the full-band models. In contrast, the nine models based on the MSC spectral data demonstrate good test fitting on the test set, with R2 ranging from 0.40 to 0.81, RMSE ranging from 0.51 to 0.90, and RPD ranging from 1.32 to 2.33. Models with the feature band selected by CARS demonstrate superior test performance compared to those of the full-band, while models with the feature band selected by RF show inferior test performance. Concerning the nine models based on the SNV spectral data, the test set R2 ranges from 0.16 to 0.75, RMSE ranges from 0.58 to 1.07, and RPD ranging from 1.11 to 2.05. Models established using the feature band display a test performance similar to that of the MSC spectral data, where the CARS models demonstrate better test performance than those of the full-band, and the RF models demonstrate inferior test performance. Comparing the test effects of various models for the potato S1 phase, the MSC-CARS-SVR model demonstrates the best test set performance, with R2 = 0.81, RMSE = 0.51, and RPD=2.33, indicating its potential for potato S1 phase LWC content inversion.

[image: Scatter plots comparing predicted versus measured values using different regression methods: PLSR, SVR, and BP. Predictions use R, R-RF for (a), (d), (g); MSC, MSC-RF for (b), (e), (h); and SNV, SNV-RF for (c), (f), (i). Each plot includes R-squared, RMSE, and RPD values for performance evaluation. Data points are color-coded by regression method enhancing visual differentiation.]
Figure 8 | Comparison of test set accuracy of potato S1 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models, (G-I) BP models.

For S2, Figure 9 presents the validation results of the test set samples on each model. In the group of nine models based on the R spectrum data, the test set R2 ranges from 0.40 to 0.81, with RMSE ranging from 0.47 to 0.82, and RPD ranging from 1.32 to 2.30. Remarkably, the PLSR models with the full-band surpass the those with the feature band in terms of test performance. For the SVR and BP models, the test performance of the models using the feature band selected by the CARS algorithm is superior to the full-band models. Conversely, the RF models demonstrates inferior test performance. Concerning the nine models relying on the MSC spectral data, the test set R2 ranges from 0.48 to 0.81, RMSE ranges from 0.47 to 0.77, and RPD ranging from 1.41 to 2.30. Solely the feature band PLSR models outperforms the full-band models in terms of test performance, while the SVR and BP lag behind. Additionally, the nine models based on the SNV spectral data display satisfactory test fitting on the test set, with R2 ranging from 0.47 to 0.85, RMSE ranging from 0.42 to 0.78, and RPD ranging from 1.39 to 2.58. Specifically, only the SVR models constructed using the feature band selected by CARS exhibits lesser test performance than the full-band models. Conversely, the remaining models using the feature band demonstrate superior test performance. By comparing the test effects of various models for the potato S2 phase, the SNV-CARS-PLSR model emerges with the most optimal test set performance, boasting R2 = 0.85, RMSE = 0.42, and RPD = 2.58, signifying its effectiveness in inverting the potato S2 phase LWC content.

[image: Nine scatter plots show predicted versus measured values, comparing different regression methods: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), and BP. Each panel uses different preprocessing methods (R, MSC, SNV) with CARS and RF variations. Dashed diagonal lines indicate perfect correlation. Statistical values including R-squared, RMSE, and RPD are noted. Panels illustrate performance variations under each method.]
Figure 9 | Comparison of test set accuracy of potato S2 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models, (G-I) BP models.

For S3, Figure 10 presents the validation results of the test set samples on each model. All models exhibit a test set R2 above 0.70, RMSE below 0.68, and RPD above 1.87. Particularly, among models constructed with the feature band, the test performance of the SVR models, utilizing the feature band selected by CARS, is inferior to the full-band models for the R and MSC spectral data. However, in all other cases, the test performance of the models constructed using the feature band surpasses that of the full-band models. When comparing the test effects of various models for the potato S3 phase, the MSC-RF-PLSR model stands out with the most superior test set performance, boasting an R2 of 0.81, RMSE of 0.55, and RPD of 2.58. This model effectively monitors the LWC content of potato S3 phase.

[image: Nine scatter plots show predicted versus measured values for three predictive models: PLSR, SVR, and BP. Each plot compares different preprocessing methods: R, MSC, and SNV with CARS and RF variations. Diagonal lines indicate perfect prediction. Plots include R-squared, RMSE, and RPD values for performance metrics.]
Figure 10 | Comparison of test set accuracy of potato S3 phase LWC estimation using three machine learning models: (A-C) PLSR models, (D-F) SVR models, (G-I) BP models.

Overall, it can be seen that there is no “omnipotent” model to make the most accurate prediction of LWC in different growth stages, so modeling the different growth stages separately is a better choice. For S1, S2 and S3 stages, the most appropriate prediction models are MSC-CARS-SVR, SNV-CARS-PLSR and MSC-RF-PLSR respectively.




3.5 Spatial distribution of field potato LWC

Utilizing the best LWC estimation models outlined in Section 3.4, Figure 11 displays the spatial distribution map of LWC for S1, S2, and S3 in 2021 and 2022. Potato LWC levels exhibit notable variations across diverse plots and growth stages, with the S1 stage displaying higher LWC content than the S2 and S3 stages. Additionally, noticeable disparities in potato LWC are observed among different regions within the same plot. Potato plants demonstrate a decrease in LWC during the S3 phase when contrasted with S2. During the S3, the plants prioritize nutrient transfer to the tubers to facilitate tuber growth and starch accumulation. Therefore, foliage may undergo a reduction in water content during this phase to fulfill the nutritional requirements for tuber development. It can be observed that the distribution of LWC in the map is uneven. Some regions, shown in light yellow or orange, indicate higher LWC and may be in vegetation growth and sufficient moisture content. In contrast, dark green regions mean lower LWC and may be under-irrigated. The uneven distribution can indicate which areas should be prioritized for irrigation. By utilizing this map, farmers and managers can pinpoint regions in need of precision irrigation, potentially increasing crop yield achieving the goal of water-saving irrigation.

[image: Six maps showing Leaf Water Content (LWC) percentages across two fields. Maps (a), (b), and (c) show different ranges of LWC from 81-87%, 78-84%, and 75-81% respectively, using a color gradient from green to red. Maps (d), (e), and (f) show similar data for another field with LWC ranges from 81-87%, 78-84%, and 75-81%. Scale bars and north arrows are included.]
Figure 11 | Spatial distribution of potato LWC based on the optimal estimation models: (A-C) S1-S3 period in 2021, (D-F) S1-S3 period in 2022.





4 Discussion



4.1 Spectral transformation and feature selection for potato LWC

Mathematical transformation to the original spectrum is essential to improve data quality and modeling accuracy. In our study, we applied MSC and SNV transformations to the potato canopy hyperspectral data, which resulted in a significant improvement in the correlation between spectral data and potato LWC. This result is consistent with the research results of Sun et al. (2017) and Chen et al. (2020b), who reported improved correlation values after mathematical transformations of the spectra of purple sweet potatoes and apple leaves. Hyperspectral data contain a significant number of bands, many are irrelevant to potato LWC and make little contribution to the accuracy of the estimation model. Therefore, the full-band modeling is not the best choice. The selection of the feature band handled by CARS and RF helps to reduce data redundancy and improve modeling performance, the result consistent with that of Sudu et al. (2022) and Liu et al. (2020).




4.2 Hyperparameter selection for machine learning models

The performance of machine learning models is heavily influenced by the selection of hyperparameters, and optimizing these hyperparameters directly impacts both the generalization capability and predictive accuracy of the models. To ensure optimal model performance, this study employs grid search and cross-validation to optimize the hyperparameters of PLSR, SVR, and BP. For the PLSR model, the number of principal components is a crucial hyperparameter that influences the model’s complexity and generalization ability. Taking the optimization of the number of principal components in the SNV-CARS-PLSR model during the potato S2 stage as an example, Figure 12 demonstrates a clear relationship between the number of principal components and the model’s R2 and RMSE values. As the number of principal components increases from 2 to 20, the R2 value rises while the RMSE decreases, reaching a peak R2 of 0.85 at 20 components, with the RMSE minimizing at 0.48. However, beyond 20 components, the R2 value begins to decline, and the RMSE increases, leading to a decrease in model performance. Therefore, the optimal number of principal components for this model is 20.

[image: Line graph showing the relationship between the number of principal components and two metrics: R squared and RMSE. R squared, represented by green dots, increases initially, peaks around 10 components, then decreases. RMSE, shown with red dots, decreases initially, reaching a low around 10 components, then increases. Both metrics are plotted against the left and right y-axes, highlighting the trade-off in model performance.]
Figure 12 | Variation of R2 and RMSE during the optimization of the number of principal components in the SNV-CARS-PLSR model at the potato S2 stage, with 40 input features.

For the SVR model, the MSC-CARS-SVR model at the potato S1 stage was used as an example to optimize the hyperparameters C and γ. As shown in Figure 13, the RMSE exhibits a clear trend with varying values of C and γ. When C = 10 and γ = 0.001, the model achieves the lowest RMSE (0.53), indicating optimal generalization ability. Additionally, Figure 13 illustrates the variation in R2 values corresponding to different C and γ parameters. Consistent with the RMSE heatmap, the model reaches its highest R2 value of 0.81 at C = 10 and γ = 0.001, further confirming the best model fit under this parameter combination. Therefore, the optimal parameters for this model are C = 10 and γ = 0.001.

[image: Two heatmaps display the performance of a model with varying kernel parameter gamma and regularization parameter C. The left heatmap shows R-squared values, with the highest value of 0.81 at gamma 10 and C 0.001. The right heatmap shows RMSE values, with the lowest value of 0.53 at gamma 10 and C 0.01. Color gradients indicate performance levels.]
Figure 13 | Variation of R2 and RMSE during the optimization of hyperparameters text C and γ in the MSC-CARS-SVR model at the potato S1 stage.

For the BP model, the MSC-CARS-BP model during the potato S3 stage was used as an example, and grid search was employed to identify the optimal constant α. As shown in Table 2, variations in the number of q and the constant α resulted in significant fluctuations in the model’s R2 and RMSE values. Notably, when q = 7 and α = 3, the model achieved the highest R2 value of 0.86 and the lowest RMSE of 0.37, indicating optimal model fit. However, an excessive number of nodes may cause a decrease in R2 and an increase in RMSE, potentially due to network complexity leading to overfitting. Therefore, the optimal parameters for this model are q = 10 and α = 3.

Table 2 | Variation of R2 and RMSE during the optimization of BP model hyperparameters C and γ.


[image: Table displaying parameters and results for a BP neural network. Columns include q (number of hidden nodes), α (constant range 1 to 10), R-squared, and RMSE values. q ranges from 5 to 14, with corresponding α from 1 to 10. R-squared values range from 0.77 to 0.86, and RMSE values range from 0.37 to 0.47. Note: Using the MSC-CARS-BP model at the potato S3 stage, input features are 20.]
By optimizing the hyperparameters of the PLSR, SVR, and BP neural network models, this study successfully enhanced the prediction accuracy and generalization ability of each model. The results demonstrate that proper hyperparameter tuning is crucial for improving model complexity and predictive performance. Future research could explore more complex model structures and optimization algorithms to further enhance model performance.




4.3 Impact of different machine learning algorithms on potato LWC estimation performance

The spectral features of crops are intricately linked to their growth stages, health status, and external environment. These spectral curves undergo distinctive changes across different growth stages (Panigrahi and Das, 2018). A single model can’t make accurate predictions for the LWC of the three growth periods. In order to solve this problem, we established LWC estimation models for tuber formation, growth, and starch accumulation stage, respectively - three pivotal growth stages of potatoes. Upon analyzing the potato LWC estimation results for these stages, variations in model accuracy are evident. The model accuracy exhibits a trend of initial increase and subsequent decrease as the growth stages progress, possibly attributed to changes in canopy structure, biomass accumulation, and the distribution of leaf water content as potato growth stages advance, leading to varied predictive performance. Notably, PLSR models emerge as good choice for estimating LWC during the growth and starch accumulation stage. In contrast, SVR models proves better during the tuber formation stage. Primarily, this preference for PLSR is justified by the challenge of multicollinearity among the hyperspectral bands, wherein PLSR demonstrates superior capability in handling multicollinearity compared to SVR and BP algorithms. Additionally, the small sample size of this study suggests that SVR and BP may be susceptible to overfitting. PLSR generally requires less data for small sample sizes, making models established by PLSR more robust than those derived from SVR and BP.




4.4 Application of potato LWC distribution maps in adjusting precision irrigation strategies

During potato cultivation, LWC is a key indicator of crop water status and plays a critical role in growth (Suyala et al., 2024; Zununjan et al., 2024). Analysis of LWC data derived from UAV-based hyperspectral inversion shows that the water requirements of potatoes vary significantly at different developmental stages. This finding highlights the importance of developing precise irrigation strategies. The spatial distribution map of LWC can guide irrigation in three main aspects. First, irrigation regulation can be based on LWC variability. As shown in Figure 11, certain regions have low LWC (e.g., yellow and orange areas), indicating insufficient soil moisture, which may limit crop growth. In these regions, timely increases in irrigation are needed to maintain adequate moisture, promoting root growth and normal tuber development. In contrast, regions with higher LWC (e.g., green areas) should receive reduced irrigation to avoid wasting water and potential soil salinization. Second, precision irrigation can be implemented through zoning management. By using spatial analysis of hyperspectral images, the field can be divided into multiple zones. Each zone can then receive precision drip irrigation based on its LWC levels. The drip irrigation system allows flexible adjustment of water supply according to actual soil moisture needs. This zoning management ensures that each area receives an appropriate water supply during the reproductive period, realizing the principle of ‘water supply according to demand.’ Finally, irrigation timing should be dynamically adjusted. Time-series analysis of hyperspectral images reveals that potato water demand fluctuates at different growth stages. During S1 and S2 stages, water demand is higher, especially in areas with lower LWC (see Figure 11). In these cases, irrigation frequency and volume should be increased to prevent water shortage. However, during the S3 stage, while water remains important, irrigation should be moderated to prevent excess moisture from inhibiting starch accumulation. Future research will integrate hyperspectral data with soil moisture sensors and meteorological data to further optimize water usage. This will enhance automated irrigation management, contributing to improved potato productivity and quality.

The study aims to develop potato LWC estimation models based on the feature band. Despite achieving impressive accuracy, it faces challenges during training with the machine learning algorithm. This is primarily due to the limited number of test samples, resulting in overfitting and degradation of the model. To overcome this limitation, it is essential to expand the scope of the investigation by increasing the number of sample, period, and potato varieties to validate and enhance the model’s applicability. Future research will focus on acquiring more data in more sites, leveraging a larger sample size to enhance the model’s robustness and accuracy.





5 Conclusion

The rapid measurement of LWC in the canopy allow farmers know the water distribution of potatoes in the field, so as to formulate water-saving irrigation strategies. In this study, UAV was used as a platform to efficiently collect hyperspectral data of potato canopy at the field scale, and LWCs were actually measured on the ground. After mathematical transformation and the feature band selection, the relationships between LWC and hyperspectral data were analyzed, and the estimation models of LWC were modeled by machine learning. In order to make the model prediction results more accurate, we modeled the LWC of the three main growth stages of potato. The original spectral data underwent two mathematical transformations: MSC and SNV. The methods of the feature band selection contained CARS and RF algorithms. Our modeling approaches included PLSR, SVR, and BP. The investigation yielded the following pivotal findings:

	1. Applying MSC and SNV mathematical transformations to the potato canopy hyperspectral data significantly enhanced the correlation between the spectral data and potato LWC. Specifically, the correlation coefficient based on R increased by -0.50 to 0.35 under MSC and by -0.30 to 0.40 under SNV.

	2. The band extraction algorithms CARS and RF effectively selected the most relevant bands and reduced data redundancy. Feature band selected by RF represented approximately 11.36% of all bands, while those selected by CARS accounted for 7.95% to 22.73%.

	3. The accuracy of the models varied at different stages of potato growth. The optimal models for estimating LWC in stages S1 to S3 were MSC-CARS-SVR, SNV-CARS-PLSR, and MSC-RF-PLSR. These three models consistently provided stable and accurate estimation of potato LWC.
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In this study, the improvement effect of different organic substances on compacted cohesive soil in southern Xinjiang was discussed, with emphasis on the influence of different organic substances on soil chemical properties and microorganisms, so as to determine the best carbon source input and provide theoretical support for the rational utilization of organic materials in southern Xinjiang. Field experiments were conducted to evaluate the effects of farm fertilizer, biochar, commercial organic fertilizer, microbial fertilizer and mineral potassium humate on physical and chemical properties of viscous soil, agronomic properties and yield of cotton, with three gradients for each organic fertilizer. The results showed that: (1) all organic fertilizers improved soil structure, among which farm fertilizer significantly reduced soil bulk density and salinity, increased soil organic matter, total nitrogen and available nutrients, and thus increased cotton height, stem diameter and yield. The optimal application amount was 36000 kg/hm². (2) The application of different organic matter increased the contents of organic matter, total nitrogen, hydrolyzed nitrogen, available phosphorus and available potassium in 0-40 cm soil layer, increased the number of bacteria, fungi and actinomyces, and reduced soil salinity; (3) Structural equation model (SEM) was used to investigate the effect mechanism of organic matter input on soil microbial quantity, soil physicochemical properties and cotton yield. The model further confirmed the mechanism: the input of organic matter mainly regulates the number of microorganisms and the richness of microbial species, thereby improving the physical and chemical properties of soil and thereby increasing the cotton yield. The addition of 5 kinds of organic materials can promote the growth and yield of cotton. The comprehensive evaluation shows that the improvement effect is best when the fertilizer dosage is 150% of the recommended amount. In summary, as an effective soil amendment, farm manure can not only alleviate soil compaction, but also significantly improve the growth potential of cotton, which is in line with the goal of sustainable agricultural development.




Keywords: soil nutrients, cotton, soil physical and chemical properties, soil microorganisms, southern Xinjiang




1 Introduction

Soil is a basic resource for food production and is critical to environmental quality and the health of plants, animals and humans. Soil compaction is an obvious manifestation of soil degradation, which can be caused by a variety of factors such as heavy machinery operations, improper farming practices, soil acidification, and salinization caused by excessive use of fertilizers. These problems can lead to soil structural deterioration and compaction (Głąb, 2014; Han, 2015; Figueiredo et al., 2017), which in turn increases soil hardness and reduces its ability to store, retain and transport water. This compaction leads to decreased soil productivity, weakened water and nutrient storage capacity, and ultimately requires more fertilizer inputs, increasing production costs. In addition, soil compaction interferes with the carbon and nitrogen cycles, inhibits the mineralization of organic matter (De Neve and Hofman, 2000), increases the concentration of carbon dioxide in the soil (Conlin, 2000), and reduces microbial activity (Hamza and Anderson, 2005). Compaction may also cause soil erosion, resulting in nutrient loss and increasing environmental pollution (Du et al., 2022).The southern region of Xinjiang is located in an extremely arid climate, where evaporation is greater than precipitation, which makes the deep saline water in farmland gradually rise to the soil surface with evaporation or plant transpiration, resulting in secondary salinization of farmland soil. Saline-alkali soil contains a large number of sodium ions, chloride ions, these ions have a strong ability to disperse soil particles, resulting in a high degree of dispersion of soil particles, will destroy the soil aggregate structure, make the soil permeability and permeability become poor, the soil wet sticky or dry hard. On the whole, soil compaction leads to a serious decline in cultivated land quality and constraints on comprehensive agricultural production capacity, which directly threatens China’s food security and poses challenges to sustainable agricultural development (Figueiredo et al., 2017). Therefore, improving soil quality has become an urgent problem in the current land use and management.

The use of organic materials can reduce the amount of fertilizer used, improve soil fertility, thereby increasing crop yields and improving the ecological environment. Wen et al (Wen et al., 2015). showed that compared with the single application of chemical fertilizer, single application of organic fertilizer or combined application of organic and inorganic fertilizer could significantly improve the level of soil nutrients. The soil organic matter content increased by 95% to 136%, the total nitrogen content increased by 69% to 137%, the available phosphorus content increased by about five times, the available potassium content increased by 81% to 103%, and the pH value decreased by 0.15 to 0.47. The study of Qiu et al (Qiu et al., 2019). showed that different types of organic fertilizer application could effectively improve soil fertility, and the yield of maize in the current season was increased by 48.60% and the economic benefit was increased by 33.75% compared with conventional fertilization. In addition, the application of organic fertilizer not only improves the soil nutrients and microbial quantity, but also enhances the water retention ability (Unger, 1978; Haynes and Naidu, 1998), activates the activity of soil enzymes, and promotes the decomposition and release of organic matter (Stemmer et al., 1998).

Long-term use of organic materials can further improve the nitrogen use efficiency of crops, increase yield, reduce the loss of nitrogen and carbon, and improve the ecological environment. Understanding the characteristics of different types of organic materials and rational use are of great significance for improving soil fertility and crop yield. However, previous studies on the application of organic materials in corn fields (Cheng et al., 2021; Cui et al., 2022; Li et al., 2022) mainly focused on livestock manure, crop straw and biogas residue green manure. In this study, five kinds of organic materials, including organic fertilizer, biochar, microbial fertilizer, commercial organic fertilizer and fulvic acid, were applied in different gradients to investigate their effects on the physical and chemical properties of clay soil, crop agronomic traits and yield.




2 Materials and methods



2.1 Profile of The test area

Field experiments were conducted from April to October 2023 in Kuqa City, Aksu Prefecture, Xinjiang (41°45′N, 83°25′E). Aksu Prefecture is located in the central part of southern Xinjiang, characterized by high terrain in the north and lower elevations in the south. The northern region is marked by numerous peaks, while the southern area features the vast Taklamakan Desert. The central area consists of piedmont gravel fans, alluvial plains, and interspersed gobi and oasis landscapes.

The region exhibits typical characteristics of a warm temperate continental arid climate, with low precipitation and significant seasonal variability. The annual precipitation ranges from 53.2 to 120.6 mm, and there is an abundance of groundwater resources, with water tables ranging from 2 to 7 meters deep. The area experiences many sunny days and long daylight hours, with annual sunlight hours between 2,670 and 3,022 hours, and total solar radiation of 5,340 to 6,220 MJ/m², providing ample light and heat resources. The temperature exhibits a large annual and diurnal range, with an average annual temperature of 7.9 to 13.7°C, and a frost-free period lasting 168 to 225 days. The experimental area utilized drip irrigation, with no winter or spring irrigation.

In March 2023, the physical and chemical properties of the test soil were measured, revealing an organic matter content of 11.7 g/kg, soil moisture content of 12%, bulk density of 1.50 g/cm³, hydrolyzable nitrogen content of 31.2 mg/kg, available phosphorus content of 12.4 mg/kg, available potassium content of 223.6 mg/kg, and soluble salt content of 11.8 g/kg.The number of soil bacteria was 1.05×108CFU g-1, the number of fungi was 1.0567×108CFU g-1, and the number of actinomyces was 2.4633×108CFU g-1.




2.2 Test materials

The experimental materials included five different organic materials: farmyard manure (N, decomposed cattle manure), biochar (T), microbial fertilizer (J), commercial organic fertilizer (S), and mineral potassium humate (H). The cotton seeds used for testing were the ‘Xinluzao 41’ variety, purchased from Xinjiang Tianyu Seed Industry Co., Ltd (Kuqa City, Xinjiang). The organic matter and main nutrient contents of each organic material are detailed in Table 1.

Table 1 | Basic physical and chemical properties of the test materials.


[image: Table comparing materials for testing in terms of organic matter, nitrogen, phosphorus, and potassium percentages. Farm manure has 77.2% organic matter, 2.27% nitrogen, 1.1% phosphorus, and 2.54% potassium. Biochar has 65% organic matter, 2.9% nitrogen, 2.4% phosphorus, and 3.5% potassium. Biological bacterial fertilizer has 60% organic matter, 3.1% nitrogen, 1.9% phosphorus, and 3.7% potassium. Commodity organic fertilizer has 50% organic matter, 1.7% nitrogen, 2.4% phosphorus, and 2.8% potassium. Source of potassium fulvic acid has 70% organic matter, 3.3% nitrogen, 4.5% phosphorus, and 2.7% potassium.]



2.3 Test design

The experimental site was located in Duntuoktan Town, Kuqa City, Aksu Prefecture. The experiment included five treatments and one control, specifically farmyard manure (N), biochar (T), microbial fertilizer (J), commercial organic fertilizer (S), mineral potassium humate (H), and a control (CK). The application rates for each treatment are shown in Table 2, where the 100% recommended rate was determined based on surveys conducted with local farmers.

Table 2 | The amount of fertilizer applied in each treatment.


[image: Table showing fertilizer application rates for different treatments measured in kilograms per hectare. Farm manure: 12,000, 24,000, 36,000. Biochar: 15,000, 30,000, 45,000. Biological bacterial fertilizer: 3,750, 7,500, 11,250. Commodity organic fertilizer: 1,500, 3,000, 4,500. Source of potassium fulvic acid: 375, 750, 1,125.]
Each experimental plot measured 5 m × 6 m, with a total area of 30 m². Each treatment included three application rates: 50% recommended rate (1), 100% recommended rate (2), and 150% recommended rate (3), with three replications for each rate, See Table 2 for specific dosage. Cotton was sown on April 10, 2023, and the organic materials were applied once on April 5, 2023. Following this, the management of the experimental area was carried out by farmers based on their usual farming practices to ensure a high germination rate of the cotton.




2.4 Indicators and methods of project determination



2.4.1 Soil samples

On October 5, 2023, during the cotton harvesting period, soil samples of 0-20 and 20-40cm were randomly taken with soil drill at five points (Wei et al., 2024), and soil pH was adopted by glass electrode method (water and soil mass ratio 1:5). The ratio of soil and deionized water was 1:5, and the mixture was shaken for 0.5 h. After filtration, it was determined by conductivity meter(DDSJ-308F measuring tester). The quality method of soil soluble salt was adopted. The soil alkali-hydrolytic nitrogen content was used by alkali-diffusion method. The content of available phosphorus was extracted by 0.5mol·L-1NaHCO3 colorimetric method. The content of available potassium was determined by ammonium acetate extraction and flame photometer. The content of organic matter was determined by potassium dichromate method. Soil total nitrogen was measured by semi-automatic nitrogen analyzer(DNN-04A) (Bao, 2000).

Equation 1.

[image: The image shows the equation: pd equals M divided by V, followed by (1) on the right side.] 

Where, pd is the bulk density of a soil layer (g/cm3); M is the mass (g); V is the unit volume (cm3).

Equation 2 (Liu, 1982).

[image: Soil porosity formula shown as: Soil porosity equals one minus bulk weight divided by specific gravity, times one hundred percent. The specific gravity of soil is approximately two point sixty-five grams per cubic centimeter.] 




2.4.2 Soil microbial sample

On October 5, 2023, during the early cotton harvest, soil samples were collected from five random points at a depth of 0–40 cm using a soil auger. The quantities of bacteria, fungi, and actinomycetes were determined using the dilution plate method. Soil dilution series (dilution levels 10-¹ to 10-6) were prepared and inoculated onto solid culture media plates, which were then incubated at 28–30°C for 3–6 days. The microbial counts (CFU) in three adjacent dilution levels of the soil solution were recorded, and the number of microorganisms per gram of dry soil was calculated (expressed in CFU/g). The bacterial medium used was beef extract peptone agar; the fungal medium used was Bengal rose agar; and the actinomycete medium used was an improved Gause No. 1 medium (Li et al., 2022).




2.4.3 Plant samples

During the seedling stage of cotton, three plants were randomly sampled from each treatment using a five-point method. Each part of the samples was brought back to the lab to measure plant height and stem diameter, as well as fresh weights of aboveground and underground parts. The samples were then subjected to a killing treatment at 105°C for 30 minutes, followed by drying at 70°C until constant weight was achieved, and the dry weights of the aboveground and underground parts were recorded (Sun et al., 2021).




2.4.4 Yield and yield components

Cotton yield was measured by randomly selecting three representative sampling points within each plot, using either a diagonal method or a five-point star method. To avoid edge effects, a measurement area of 1 m × 2.3 m was selected in the center of each plot to record the number of plants and bolls, allowing for the calculation of harvest density (plants/hm²). From each plot, 15 fully opened cotton bolls were harvested to determine the weight of single-plant bolls and calculate cotton yield (Qu et al., 2021).




2.4.5 Calculation method

Seed cotton yield (kg hm-2) = harvest density (kg hm-2) × average boll number per plant (plant-1) × boll weight per plant (g)/1000 × correction coefficient (90%).





2.5 Data processing

Data analysis was conducted using Microsoft Excel 2020, while SPSS 25.0 was used for one-way ANOVA, correlation analysis, and significance testing. Graphs were created using Origin 2018.





3 Results



3.1 Impact of different treatments on soil physical and chemical properties



3.1.1 Impact of different treatments on soil bulk density and porosity

From (Figure 1), it can be observed that with the application of different organic materials, all treatments significantly reduced the bulk density of the 0–40 cm soil layer. This indicates that farmyard manure, biochar, microbial fertilizers, commercial organic fertilizers, and humic acid effectively improved soil structure. Notably, the N2 and T2 treatments in the N and T groups showed particularly pronounced improvements in bulk density. However, with increasing application rates, the N3 and T3 treatments exhibited a rise in soil bulk density, while the bulk density in the J, S, and H groups consistently decreased with higher application rates. Specifically, the T2 treatment achieved the best improvement, with bulk density reductions of 12.78% for the 0–20 cm layer and 10.71% for the 20–40 cm layer compared to the CK treatment.

[image: Bar graphs displaying soil bulk density and porosity across different treatments at depths of 0-20 cm and 20-40 cm. Each graph compares 50%, 100%, and 150% recommended volumes, labeled alphabetically. Treatment categories include N, T, J, S, H, and CK. Error bars indicate variability.]
Figure 1 | Effects of different organic materials on soil bulk density and porosity. Different lowercase letters indicate significant differences at the 0.05 probability level (P < 0.05), determined by one-way analysis of variance (ANOVA) and Duncan’s post hoc test for significance. The vertical bar chart represents the mean ± standard deviation (SD) calculated from three repetitions.N: farm fertilizer, T: biochar, J: biological bacterial fertilizer, S: commercial organic fertilizer, H: mineral source potassium fulvic acid.

The application of different organic materials also significantly affected the soil porosity of the 0–40 cm layer. In the 0–20 cm layer, the N2 and T2 treatments resulted in the most notable increases in soil porosity, with increases of 14.97% and 15.22%, respectively, compared to the CK treatment. In the J, S, and H groups, the J3, S3, and H3 treatments showed significant differences from the other gradient treatments, increasing porosity by 17.34%, 18.02%, and 18.14%, respectively, compared to the CK treatment. This indicates that the addition of organic materials can effectively enhance the total porosity of the soil, thereby improving its aeration capacity.




3.1.2 Effects of different treatments on soil nutrients and salinity

From (Figure 2), it can be observed that the application of organic materials led to increases in the content of organic matter, total nitrogen, hydrolyzable nitrogen, available phosphorus, and available potassium in the 0-20 cm soil layer. Compared to the control treatment (CK), there were significant differences in the effects of various treatments on different nutrients. Specifically, the J3 treatment had the most pronounced effect on enhancing organic matter content, while the N1 treatment showed the smallest increase. The T3 treatment exhibited the greatest increase in total nitrogen, whereas the H1 treatment had the smallest increase. For hydrolyzable nitrogen, the J3 treatment again demonstrated the largest increase, while the N1 treatment had the smallest. Regarding available phosphorus and available potassium, the N3 treatment showed the highest increases, while the S1 treatment had the smallest increase in available phosphorus, and the H1 treatment had the smallest increase in available potassium.

[image: Bar charts showing various soil properties across treatments: organic matter, total nitrogen, alkaline hydrolysis of nitrogen, available phosphorus, quick-acting potassium, pH, conductivity, and water-soluble salt. Each property is depicted with three different recommended volume levels, varying in response per treatment.]
Figure 2 | Effects of different organic materials on soil nutrients and salinity. Different lowercase letters indicate significant differences at the 0.05 probability level (P < 0.05), determined by one-way analysis of variance (ANOVA) and Duncan’s post hoc test for significance. The vertical bar chart represents the mean ± standard deviation (SD) calculated from three repetitions.N: farm fertilizer, T: biochar, J: biological bacterial fertilizer, S: commercial organic fertilizer, H: mineral source potassium fulvic acid,0-20: (A–H). 20-40: (I–P).

In the 20-40 cm soil layer, the treatments also exhibited similar trends regarding the effects on organic matter, total nitrogen, hydrolyzable nitrogen, available phosphorus, and available potassium. The J3 treatment resulted in the greatest increase in organic matter content, while the N1 treatment had the smallest increase, which did not reach significance. The T3 treatment had the largest increase in total nitrogen, while the J1 treatment showed the smallest increase. For hydrolyzable nitrogen, the T1 treatment had the smallest increase, whereas the J3 treatment had the largest. In terms of available phosphorus and available potassium, the H1 treatment had the smallest increase in available phosphorus, the S1 treatment had the smallest increase in available potassium, and the N3 treatment showed the highest increases for both indicators.

Additionally, following the application of organic materials, the pH, electrical conductivity, and water-soluble salt content of the 0-40 cm soil exhibited different trends. The N, J, S, and H groups significantly lowered soil pH, electrical conductivity, and water-soluble salt content, whereas the T group increased these indicators, with the T3 treatment showing the most significant changes.




3.1.3 Effects of different treatments on plant agronomic traits and yield

From (Table 3), it can be seen that the effect of different organic material treatments on cotton plant height follows the trend: N group > T group > S group > J group > H group > CK. Among them, the N3 treatment had the most significant effect on plant height and stem diameter, increasing by 20.63% and 35.1%, respectively. Compared to the CK treatment, the N3 treatment showed the greatest improvement in fresh and dry weights, with above-ground fresh and dry weights increasing by 33.86% and 37.59%, respectively, and below-ground fresh and dry weights increasing by 13.59% and 22.23%. Additionally, the N3 treatment also achieved the highest increases in single boll weight and cotton yield, reaching significant levels compared to other treatment groups.

Table 3 | Effects of different organic materials on agronomic characters and yield of cotton.


[image: A detailed table comparing various treatments (N, T, J, S, H, CK) for plant growth. Columns include plant height in centimeters, stem thickness in millimeters, fresh weight above ground in grams, underground fresh weight in grams, dry weight above ground in grams, dry weight of underground parts in grams, single bell weight in grams, and output in kilograms. Values are presented with means and standard deviations. Annotations indicate significant differences. Treatment types include farm fertilizer, biochar, bacterial fertilizer, and more, with recommended amounts specified. Significance determined by ANOVA and Duncan’s post hoc test.]



3.1.4 Impact of different treatments on soil microbial population

From (Figure 3), it is evident that the application of the five types of organic materials significantly increased the numbers of bacteria and actinomycetes in the soil compared to the control (CK) treatment. Except for the N1, J1, and S1 treatments, which did not show significant increases in fungal numbers, the other treatments exhibited notable effects on enhancing fungal populations. As shown in (Figure 3A), the N group had the most significant effect on bacterial counts, with increases ranging from 70.16% to 500.95%, with the N3 treatment achieving the highest bacterial numbers. (Figure 3B) indicates that the T group had the greatest increase in fungal numbers, ranging from 4.41% to 765.27%, with the T3 treatment reaching the peak fungal count. According to (Figure 3C), the N group also showed the most substantial increase in actinomycete counts, with a range of 123.14% to 302.85%, again with the N3 treatment yielding the highest actinomycete numbers.

[image: Bar charts labeled A, B, and C display the effects of different treatments (N, T, J, S, H, CK) on microbial counts at three volume levels: 50%, 100%, and 150% recommended volume. Chart A shows bacterial counts, Chart B shows Actinomycetes, and Chart C shows fungi. Each chart uses different shading to represent the volume levels, with bars labeled with letters indicating statistical significance differences.]
Figure 3 | Effects of different organic materials on soil microbial population. Different lowercase letters indicate significant differences at the 0.05 probability level (P < 0.05), determined by one-way analysis of variance (ANOVA) and Duncan’s post hoc test for significance. The vertical bar chart represents the mean ± standard deviation (SD) calculated from three repetitions. N: farm fertilizer, T: biochar, J: biological bacterial fertilizer, S: commercial organic fertilizer, H: mineral source potassium fulvic acid. (A) number of bacteria, (B) number of fungi, (C) number of actinomycetes.





3.2 Comprehensive evaluation

This study conducted a correlation analysis on 31 indicators related to soil, cotton seedlings, and yield across different treatments (Figure 4). The results indicated a certain degree of discrete correlation among the indicators, albeit with varying levels of correlation. To further explore the relationships between physiological indicators, biplots of principal components were generated (Figures 5, 6), showing a connection between indicator X1 (plant height) and X3 (fresh weight of aerial parts). This information reflects the differences in how various indicators influence the alleviation of soil compaction.

[image: A correlation matrix using a color gradient from blue to red representing values from negative one to one. Variables X1 to X32 are displayed. Larger red circles indicate stronger positive correlations, while larger blue circles indicate stronger negative correlations. A legend notes significance levels: asterisk for p less than or equal to 0.05, double asterisk for p less than or equal to 0.01, triple asterisk for p less than or equal to 0.001.]
Figure 4 | Correlation analysis between soil index and plant index.

[image: Scree plot showing eigenvalues plotted against principal component numbers from 1 to 18. Eigenvalues rapidly decrease from 16 to around 4, then gradually level off near 1, indicating the significance of the first few principal components.]
Figure 5 | Rubble maps.

[image: Principal Component Analysis (PCA) biplot showing variables along two axes: PC1 (fifty percent) and PC2 (thirteen point six percent). Data points are represented by arrows labeled X7 to X29, with circles and ellipses indicating clusters.]
Figure 6 | Principal component analysis.X1: Plant height, X2: Stem diameter, X3: Aboveground fresh weight, X4: Belowground fresh weight, X5: Aboveground dry weight, X6: Belowground dry weight, X7: Bulk density 0-20cm, X8: Bulk density 20-40cm, X9: Porosity 0-20cm, X10: Porosity 20-40cm, X11: pH 0-20cm, X12: Soluble salts 0-20cm, X13: Electrical conductivity 0-20cm, X14: Hydrolyzable nitrogen 0-20cm, X15: Available phosphorus 0-20cm, X16: Quick-acting potassium 0-20cm, X17: Organic matter 0-20cm, X18: Total nitrogen 0-20cm, X19: pH 20-40cm, X20: Soluble salts 20-40cm, X21: Electrical conductivity 20-40cm, X22: Hydrolyzable nitrogen 20-40cm, X23: Available phosphorus 20-40cm, X24: Quick-acting potassium 20-40cm, X25: Organic matter 20-40cm, X26: Total nitrogen 20-40cm, X27: Bacteria 0-40cm, X28: Fungi 0-40cm, X29: Actinomycetes 0-40cm, X30: Single ring weight, X31: Yield, X32: Organic matter content in organic materials.

Using SPSS 26.0, a principal component analysis was performed on the 31 indicators, yielding a Kaiser-Meyer-Olkin (KMO) value of 0.789, indicating the data’s suitability for this analysis. The cumulative contribution rate of the first three principal components was 76.619%, with specific contributions of 50.046% for the first component (PC1), 13.626% for the second (PC2), and 12.948% for the third (PC3). All eigenvalues were greater than 1, aligning with selection criteria, thus these three components were chosen as the main evaluation factors for soil improvement.

The analysis of eigenvectors revealed that PC1 primarily included indicators such as plant height, stem diameter, fresh weight of aerial parts, and fresh weight of underground parts, with significant contributions from the eigenvectors: 0.22179 (plant height), 0.22266 (stem diameter), 0.23039 (fresh weight of aerial parts), and 0.23498 (fresh weight of underground parts). PC2 was mainly associated with pH, soluble salts, and electrical conductivity at the 20-40 cm depth, while PC3 primarily involved soil bulk density and microbial counts.



3.2.1 Correlation analysis between soil index and plant index

The correlation analysis (Figure 4) further revealed significant relationships between organic matter content and various soil indicators. Specifically, it was significantly negatively correlated with bulk density at 20-40 cm (p < 0.05) and extremely negatively correlated with bulk density at 0-20 cm (p < 0.001). Additionally, it showed significant positive correlations with available phosphorus at 0-20 cm and hydrolyzable nitrogen at 20-40 cm (p < 0.05). There were also significant positive correlations with dry weights of both aerial and underground parts, as well as with soil porosity at 0-20 cm and microbial counts (p < 0.01). These results suggest that the application of organic materials can improve soil structure, reduce bulk density, promote microbial proliferation, and enhance nutrient utilization efficiency.




3.2.2 Cluster analysis between soil index and plant index

Cluster analysis (Figure 7) categorized the indicators from various treatments into five groups, with representative indicators including plant height, fresh weight of aerial parts, bulk density at 20-40 cm, soluble salts at 0-20 cm, and total nitrogen at 20-40 cm. This indicates that the application of organic materials not only promotes cotton growth but also effectively alleviates soil compaction.

[image: A colorful phylogenetic tree chart with a circular layout, displaying evolutionary relationships among 28 labeled entities, X1 to X28. Various colored branches indicate different clusters. A scale bar measures evolutionary distance.]
Figure 7 | Cluster analysis between soil index and plant index.X1: Plant height, X2: Stem diameter, X3: Aboveground fresh weight, X4: Belowground fresh weight, X5: Aboveground dry weight, X6: Belowground dry weight, X7: Bulk density 0-20cm, X8: Bulk density 20-40cm, X9: Porosity 0-20cm, X10: Porosity 20-40cm, X11: pH 0-20cm, X12: Soluble salts 0-20cm, X13: Electrical conductivity 0-20cm, X14: Hydrolyzable nitrogen 0-20cm, X15: Available phosphorus 0-20cm, X16: Quick-acting potassium 0-20cm, X17: Organic matter 0-20cm, X18: Total nitrogen 0-20cm, X19: pH 20-40cm, X20: Soluble salts 20-40cm, X21: Electrical conductivity 20-40cm, X22: Hydrolyzable nitrogen 20-40cm, X23: Available phosphorus 20-40cm, X24: Quick-acting potassium 20-40cm, X25: Organic matter 20-40cm, X26: Total nitrogen 20-40cm, X27: Bacteria 0-40cm, X28: Fungi 0-40cm, X29: Actinomycetes 0-40cm, X30: Single ring weight, X31: Yield, X32: Organic matter content in organic materials.



3.2.2.1 The first principal component

F1 = 0.22X1 + 0.22X2 + 0.23X3 + 0.23X4 + 0.21X5 + 0.22X6+-0.20X7-0.14X8 + 0.16X9 + 0.21X10-0.05X11 + 0.11X12 + 0.11X13 + 0.20X14 + 0.20X15 + 0.22X16 + 0.21X17 + 0.21X18 + 0.08X19 + 0.05X20 + 0.07X21 + 0.17X22 + 0.22X23 + 0.22X24 + 0.15X25 + 0.13X26 + 0.17X27 + 0.14X28 + 0.18X29 + 0.17X30 + 0.22X31.




3.2.2.2 The second principal component

F2 = 0.03X1-0.02X2-0.07X3-0.11X4-0.04X5-0.19X6 + 0.03X7 + 0.02X8-0.02X9 + 0.06X10 + 0.16X11 + 0.10X12-0.01X13 + 0.10X14-0.09X15-0.12X16 + 0.04X17-0.02X18 + 0.42X19 + 0.40X20 + 0.42X21-0.05X22 + 0.11X23 + 0.01X24 + 0.26X25 + 0.33X26-0.22X27 + 0.23X28-0.22X29-0.06X30-0.11X31.




3.2.2.3 The third principal component

F3 = 0.02X1 + 0.02X2 + 0.11X3 + 0.02X4 + 0.16X5 + 0.08X6 + 0.24X7 + 0.39X8-0.29X9-0.21X10 + 0.36X11 + 0.38X12 + 0.29X13-0.13X14 + 0.13X15 + 0.11X16-0.11X17-0.10X18 + 0.14X19 + 0.14X20 + 0.14X21-0.04X22-0.01X23 + 0.02X24-0.11X25-0.16X26 + 0.18X27-0.15X28 + 0.11X29 + 0.12X30 + 0.15X31.

Based on the variance contribution analysis, the first three principal components explain 50.05%, 13.63%, and 12.95% (Table 4) of the variance, respectively. Combining the principal component coefficients and their variance contributions, the comprehensive evaluation formula is: F=50.05F1 + 13.63F2 + 12.95F3 (Table 5). Using this formula, the comprehensive scores for the five types of organic materials and their different application rates on alleviating soil compaction, cotton seedling growth, and yield were calculated (Table 6). The results indicate that the effectiveness in alleviating soil compaction is ranked as follows:N3>T3>S3>J3>N2>T2>H3>J2>S2>T1>N1>H2>CK. Specifically, the 150% and 100% recommended rates of farmyard manure, biochar, microbial fertilizer, commercial organic fertilizer, and potassium humate from mineral sources, as well as the 50% recommended rates of farmyard manure and biochar, showed significant effects in alleviating soil compaction, while the other treatments did not demonstrate significant effects.

Table 4 | Principal component analysis eigenvalue and contribution rate.


[image: Table showing eigenvalues and variance for three ingredients. Under "Initial eigenvalue," ingredient one has a total of 15.51, percentage variance of 50.05, and cumulative 50.05. Ingredient two has 4.22 total, 13.63 percentage variance, 63.67 cumulative. Ingredient three has 4.01 total, 12.94 percentage variance, 76.61 cumulative. In "Extract the sum of squares of loads," values are identical to initial eigenvalues, except ingredient three's cumulative is 76.62.]
Table 5 | Principal component index load matrix and eigenvector.


[image: A table showing eigenvectors, eigenvalues, and a load matrix for variables X1 to X31. The table includes three principal components for both eigenvectors and the load matrix, with numerical values assigned to each variable across these components.]
Table 6 | Principal component score table.


[image: Table showing treatments with corresponding F1, F2, F3, F synthesis, and rank values. The N3 treatment ranks first with an F synthesis value of 113.67. Treatment types include various fertilizers specified in the table notes.]





3.3 Structural equation model

We used structural equation model (SEM) to investigate the effects of organic matter input on soil microbial quantity, soil physicochemical properties and cotton yield (P value=0.138,Chi-square =0.99, CFI=1.000,RMSEA=0.000)(Figure 8). The results showed that the number of microorganisms was strongly responsive to the input of organic matter, and the effect of organic matter on soil chemical properties was the largest. Soil physical properties and soil chemical properties have a strong response to the number of microorganisms, and the effect value of the number of microorganisms on the interaction path of soil chemical properties is the largest. Soil physical properties and soil chemical properties have a strong response to the yield, and soil bulk density in soil physical properties has a negative response to the yield, which also indicates that the smaller the soil bulk density, the higher the cotton yield, which is consistent with the experimental results of this study. The mechanism further confirmed by this model is as follows: the input of organic matter mainly regulates the number of microorganisms and the richness of microbial species, and then improves the physicochemical properties of soil, thereby increasing the cotton yield.

[image: Diagram showing a structured equation model linking organic matter input, microbial population, soil properties, and cotton yield. Arrows represent relationships with corresponding regression coefficients. Key metrics: P value 0.137, Chi-square 0.99, CFI 1.000, RMSEA 0.000. Soil porosity and bulk density impact soil physical properties. Organic matter input influences microbial population and soil chemical properties, affecting cotton yield.]
Figure 8 | Structural equation model diagram. ***p < 0.001.





4 Discussion



4.1 Effects of different organic materials on soil physical properties

In this study, the application of organic materials significantly increased the sand content in cotton fields while reducing the content of clay and silt particles. Soil bulk density and porosity are important indicators for assessing soil structure. High bulk density indicates increased soil density and reduced aggregate structure, while low bulk density reflects higher porosity and better soil structure (Yao et al., 2019). demonstrated that the application of organic materials can reduce soil bulk density, increase the content of organic matter, nitrogen, phosphorus, and potassium, and enhance the number of beneficial microorganisms, ultimately improving soil enzyme activity and promoting crop yield. Zhang et al. further supported this finding, stating that organic fertilizers positively impact crop growth and soil improvement (Zhao et al., 2025). In our experiment, all five organic materials significantly reduced soil bulk density to varying degrees, with biochar showing the most pronounced effect. The advantages of biochar in improving soil structure and water retention capacity have been well established. Its unique porous structure interacts with soil aggregates, increasing overall porosity and altering pore size distribution (Oguntunde et al., 2008; Abel et al., 2013; Petersen et al., 2016; Werdin et al., 2020). Studies have shown that compared to the control group, the application of biochar significantly improved soil overall porosity and saturated hydraulic conductivity while reducing soil bulk density. Additionally, as the application rate increased, both the bulk density and specific gravity of the 0-40 cm soil layer significantly decreased (Oguntunde et al., 2008). In this experiment, the T2 treatment (biochar application) significantly reduced soil bulk density, while the other four organic materials also contributed to this reduction to varying extents. Among them, T2 and T3 treatments showed the most significant improvement in soil porosity at depths of 0-20 cm and 20-40 cm. This may be attributed to the role of humic substances in organic materials as key binding agents that promote the formation of good soil structure. This process enhances the soil’s thermal absorption capacity, improves fertility, reduces soil compaction, and consequently increases porosity. These changes facilitate the rapid exchange of water, soil, and air, ultimately leading to a decrease in soil bulk density (Zheng et al., 2012; Seiji and Nobuhisa, 2013; Mi et al., 2018; Ju et al., 2022).




4.2 Effects of different organic materials on soil chemical properties and salinity

The application of organic materials significantly impacts soil properties and structure, altering nutrient transformation processes, reducing nutrient loss, and enhancing crop nutrient absorption and utilization, thereby promoting plant growth (Study on the effect of biomass modifier on sandy soil, 2023). Organic materials are rich in organic matter, nitrogen, phosphorus, potassium, and other mineral elements, which not only replenish nutrients lost due to mineralization and decomposition but also improve the availability of minerals like potassium and phosphorus (Liu et al., 2023).Jiang et al. indicated that the application of amendments could increase organic matter, total nitrogen, and available nutrients in the soil (Jiang et al., 2011). Furthermore, Song et al. found that applying cattle manure significantly increased the levels of available phosphorus, available potassium, total nitrogen, and alkaline nitrogen in the soil (Song et al., 2017). Our study results show that the application of organic fertilizers led to significant increases in total nitrogen, available phosphorus, available potassium, and organic matter content in the soil. These increases in available nutrients have a positive effect on crop biological absorption and utilization. Moreover, the overall performance of the N treatment group was superior to that of other treatment groups, possibly due to the higher microbial and enzyme content in cattle manure, which facilitated the mineralization of available nutrients and accelerated their accumulation in the soil. The potassium humic acid from mineral sources contains humic acid, fulvic acid, and other organic macromolecules, which react with alkaline substances in the soil upon application, leading to a decrease in soil pH. However, the impact of farm manure and biochar on soil pH was minimal, likely due to their strong acid-base buffering capacity. It is noteworthy that as the application of biochar increased, the soil pH exhibited an upward trend, which may be related to the inherent alkalinity of biochar. The functional groups in biochar (such as ester and ether bonds) and the cations released (such as potassium, calcium, and magnesium) collectively contributed to the increase in soil pH (Mi et al., 2018).




4.3 Effects of different organic materials on agronomic traits, yield and microorganisms of cotton

The damage to clay soil structure can lead to soil hardening and decreased oxygen availability, severely hindering the growth of crop roots. Reduced root vitality and diminished cellular respiration lead to insufficient energy levels, consequently affecting the roots’ ability to absorb nutrients from the soil. This nutrient deficiency negatively impacts the growth of the above-ground plant parts, ultimately resulting in decreased yield and quality (Wang, 2018).Research indicates that the application of organic materials can significantly enhance the yield and quality of various crops, including tobacco, ginger, cassava, and cucumber (Bending et al., 2002; Zhang et al., 2018; Yao et al., 2019; Bai et al., 2020). By improving nutrient utilization efficiency, organic materials promote the growth of cotton seedlings, reflected in increased plant height and stem diameter (Sun et al., 2019). The application of five different organic fertilizers at varying doses significantly improved the cotton’s plant height, stem diameter, dry weight, fresh weight, boll weight, and overall yield. Among them, the N3 treatment had the most pronounced impact on cotton agronomic traits, attributed to several factors: 1. Rich microbial content: Farm manure is abundant in beneficial microorganisms that can fix nitrogen and enhance the availability of phosphorus and potassium in the soil; 2. Symbiotic relationships: These beneficial microorganisms form symbiotic relationships with plant roots, optimizing the rhizosphere environment and stimulating plant growth (Zhang et al., 2010); 3. Plant growth hormones: Microorganisms can produce plant growth hormones and engage in biological control, thereby reducing the impact of pathogenic infections (Rouzi et al., 2011; Zhao et al., 2012).The application of organic materials introduces rich organic matter into the soil, establishing new biological systems and providing microorganisms with abundant nutrients and energy. This significantly enhances microbial activity and reproductive capacity (Ortega et al., 2016). The physiological activities of microorganisms not only decompose organic matter into nutrients that can be absorbed by crops but also synthesize new organic compounds that promote the continuous accumulation of soil nutrients. Additionally, microorganisms can release nutrients fixed in the soil and absorb those that are prone to loss, thereby enhancing the nutrient supply and storage capacity of the soil (Liu et al., 2022). The application of organic and biological fertilizers helps to enrich soil nutrients, increase microbial biomass, and optimize microbial community structure (Tan et al., 2007; Wang et al., 2018).In this study, the application of different types and amounts of organic materials significantly affected the microbial population in the soil. The application of organic materials provided rich carbon and nitrogen sources for the soil, leading to a significant increase in the number of bacteria, fungi, and actinomycetes (Gryta et al., 2020). Li et al (Li et al., 2019). found that both the individual application of organic fertilizers and their combined application with inorganic fertilizers significantly increased the populations of bacteria, fungi, and nitrogen-fixing bacteria in the soil compared to the control group. Among the treatments, the N group exhibited the most pronounced microbial population. This effect may be attributed to the high nutrient demand of crops during their growth stages, accelerating the decomposition of soil organic matter. Furthermore, the nutrients released during microbial decomposition support the growth and reproduction of these organisms, further enhancing their reproductive and metabolic activities. This process improves soil enzyme activity and enhances the soil’s ability to retain water and nutrients. The competitive dynamics among microbial populations may also facilitate the dominance of beneficial microorganisms in farm manure. Previous studies have shown that the application of organic materials significantly increases the number of bacteria in the rhizosphere soil of crops, while the number of fungi decreases. This change indicates an enhancement in the richness and functional diversity of microbial communities, accompanied by an increase in enzyme activities (such as sucrase and urease) (Bending et al., 2002; Zhang et al., 2013). Therefore, farm fertilizers demonstrate superior effects on improving soil physical and chemical properties compared to general organic materials. Particularly, the microbial fermentation of cattle manure (bio-organic fertilizer) provides specific benefits for soil protection and yield enhancement, aligning closely with the goals of sustainable agricultural development and thus warranting further promotion. The aim of this study is to screen organic materials with different functions for soil improvement and to provide data support for subsequent experiments. We will continue to focus on the impact of applying organic materials on crop yield and growth under saline-alkali soil conditions, and explore the optimal application strategies for different organic materials.





5 Conclusions

This study showed that among the five organic materials, farm manure was an effective way to alleviate soil compaction and promote cotton growth. By adding farm manure to clay, soil bulk density and salinity were significantly reduced, and soil organic matter, total nitrogen and available nutrients were increased, thus promoting the growth of cotton under clay stress. The optimal addition amount is 36,000 Kg HM-2, which provides a new idea for the effective use of farm fertilizer and the improvement of bonding clay. At the same time, the application of farm manure is in line with sustainable development requirements, contributes to soil health and crop productivity, and is worth promoting in broader agricultural practices. In addition, future research could explore the effects of farm manure in different regions and soil types to further validate its important role in sustainable agriculture.
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Controlled environment agriculture (CEA) for strawberry (Fragaria x ananassa) production has experienced a growth in popularity in recent years, particularly in North America. One of the most common growing systems in CEA strawberry production is the soilless hydroponic system, which uses an inert substrate and nutrient solution to grow the plants. There are several strategies for water management in substrates, and most are based on a rigid schedule rather than variable plant water requirements over time. Comprehensive comparisons among the different strategies are lacking because they are often associated with complicated evapotranspiration models. The use of soil moisture sensors coupled with automated controllers that apply water when the substrate moisture drops below a set threshold has been proven efficient for select ornamental crops and citrus nursery crops but not for strawberries yet. This study aimed to compare various fertigation management strategies and, considering both yield and resource use, determine the optimal strategy for two newly released strawberry cultivars. ‘Florida Brilliance’ and ‘Florida Beauty’ were grown in a greenhouse hydroponic system under six different fertigation management strategies: one timer-based, one leaching fraction-based, and four sensor-based strategies that automatically applied fertilizer solution to maintain a constant volumetric water content threshold (0.36, 0.30, 0.225, or 0.15 m3·m-3). Yield and resource use were quantified during the 129-day experiment, and plants were harvested at the end of the experiment to measure biomass and foliar nutrients. The yield was used to calculate the water and energy use efficiencies for each strategy. Considering yield and resource use efficiencies, the two drier constant volumetric water content thresholds (0.225 and 0.15 m3·m-3) and the leaching fraction-based strategy had optimal performance. The results of this experiment can aid growers in employing more efficient fertigation management strategies to increase crop quality and reduce resource use for CEA strawberry production.
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1 Introduction

Strawberries (Fragaria x ananassa) are a widely cultivated and popular fruit crop, with active commercial production in nearly a third of countries globally (Hytönen et al., 2018). While most domestic strawberries are grown using the annual hill plasticulture system, there is a growing interest in the United States and worldwide in using controlled environment agriculture (CEA) for strawberry production (Samtani et al., 2019). Greenhouse and vertical farming technologies (known as CEA facilities) can insulate crops from extreme weather, lengthen the growing season, and decrease the need for pesticides compared to field production, being a viable option to produce strawberries (Gómez et al., 2019).

CEA strawberries have been produced outside of the United States on a commercial scale for many years using tunnels and greenhouses in South Korea, Japan, the Netherlands, Belgium, France, the United Kingdom, and Italy (Ahn et al., 2021; Neri et al., 2012; Yoshida, 2013). The CEA strawberry industry is making its way into North America as well. A Dutch company recently completed a 29-hectare greenhouse facility for commercial strawberry production in Ontario, Canada, the largest such facility on the continent (Hemmes, 2021). Furthermore, in 2022, a large CEA company announced a partnership with a global leader in the strawberry market to build what will purportedly be the largest CEA complex in the world in Virginia that will produce millions of pounds of strawberries annually using hydroponic growing systems (Green, 2023; Oller, 2022).

The most common type of hydroponic system used to produce strawberries using CEA is a substrate culture system, also known as an aggregate or soilless culture system (Gómez et al., 2019). Substrate culture systems provide a soilless material, usually peat, coco coir, perlite, or some mix thereof, into which the crop’s roots can grow. The substrate can be irrigated using a nutrient solution containing fertilizers, which is called fertigation (a portmanteau of irrigation and fertilization), using drip emitters. There are several strategies to determine when and how much fertigation should be applied to the crops, most of them based on weather and soil parameters. The simplest and least expensive approach is to use a timer to regularly fertigate at a set amount at a set interval (Raviv et al., 2019). The most common and recommended strategy is regularly applying the fertigation solution until 20-30% of the applied volume leaches through the substrate (Kubota, 2019). An emerging approach is to use soil moisture sensors that can automatically activate irrigation based on real-time water uptake by the plants.

There are two common types of soil moisture sensors: tensiometers and dielectric capacitance sensors. Tube-shaped tensiometers contain a ceramic tip on one end and a pressure gauge on the other. They calculate matric potential by determining the tension experienced by moisture inside the tube, which is proportional to the wetness of the substrate (Raviv et al., 2019). The more popular type of soil moisture sensor for CEA is the dielectric capacitance sensor, also known as a capacitance sensor or a frequency domain reflectometry (FDR) sensor (Rhie and Kim, 2017). FDR sensors measure the dielectric permittivity of substrates by using parallel metal rods to analyze changes to the frequency domain of an electromagnetic pulse as it passes through the substrate (Raviv et al., 2019). FDR sensor-based fertigation has been successfully employed previously to increase crop quality while reducing water use and leachate waste in several ornamental and food crops in CEA production (Burnett and van Iersel, 2008; Ferrarezi et al., 2015; Nemali and van Iersel, 2006; Palumbo et al., 2021; van Iersel et al., 2009). Previous studies in CEA strawberry production have explored soil moisture sensor-based fertigation. These studies have mainly focused on comparing different soil moisture thresholds or comparing sensor-based fertigation management strategies to the simple but outdated timer-based fertigation (Bonelli et al., 2024; Choi et al., 2016, 2021; Cormier et al., 2020; Hoppula and Salo, 2007). However, few studies have compared sensor-based fertigation to timer-based fertigation and the commonly employed leachate fraction fertigation, especially in strawberries.

This experiment aimed to compare several soil moisture-based fertigation strategies to a timer-based and a leachate fraction fertigation in hydroponically grown strawberries and measure the differences in strawberry fruit yield and quality. Additionally, we quantified the resource inputs (i.e., water and energy) over the growth cycle and calculated the resource use efficiencies concerning the output, i.e., yield, to determine the optimal fertigation management strategy for CEA strawberry production.




2 Materials and methods



2.1 Location and environmental conditions

This experiment was conducted at the University of Georgia (College of Agricultural and Environmental Sciences, Department of Horticulture, Controlled Environment Agriculture Crop Physiology and Production laboratory) in Athens, Georgia, United States (latitude 33°55’55.10” N, longitude 83°21’50.51” W, altitude 198 m) from December 2022 to April 2023 in a polycarbonate greenhouse with controlled conditions.

Greenhouse air temperature and relative humidity were monitored using a digital sensor (HMP60; Vaisala, Helsinki, Finland) connected to a datalogger (CR1000X; Campbell Scientific, Logan, UT, United States) for automatic data collection. Average ± standard error day and night temperatures were 23.3 ± 0.04 and 18.2 ± 0.02°C, respectively. Day and night relative humidities were 40.5 ± 0.25 and 53.4 ± 0.24%, respectively. Vapor pressure deficit (VPD) was calculated using this temperature and relative humidity data and were 1.8 ± 0.01 and 0.96 ± 0.004 kPa for day and night, respectively. Ambient sunlight was augmented with light-emitting diode (LED) fixtures (SPYDRx; Fluence Bioengineering, Austin, TX, United States), which were controlled by a digital timer (Model 26898; Jasco Products LLC, Oklahoma City, OK, United States) to be activated from 4:00 PM to 7:30 PM daily. Canopy-level light was measured by a quantum sensor (SQ-610; Logan, UT, United States) connected to a separate datalogger (CR1000; Campbell Scientific, Logan, UT, United States) and resulted in a mean daily light integral (DLI) of 17.5 ± 0.67 mol·m-2·day-1.




2.2 Plant material

Live plugs of strawberry cultivars ‘Florida Brilliance’ and ‘Florida Beauty’ propagated in a commercial nursery (Production Lareault, Lavaltrie, QC, Canada) arrived at the greenhouse in October 2022. Plants were watered and fertilized regularly, sorted, and transplanted in November 2022. Plants were also watered and fertilized uniformly until treatments began in December 2022.




2.3 Hydroponic system

The recirculating hydroponic system consisted of 24 18-L troughs measuring 99.5 × 19.5 × 12.5 cm (L × W × H) (Article #7418; Beekenkamp Verpakkingen, Maasdijk, Netherlands), resting on 218 × 17.5 × 7 cm (L × W × H) metal drainage gutters (B200 profile; Haygrove Limited, Ledbury, United Kingdom) with two troughs per gutter. The gutters drained into 121 L plastic reservoirs (H-3687; Uline, Pleasant Prairie, WI, United States) for recirculation. Four plants of each cultivar were placed in every trough in two contiguous lines of four (eight total plants). The substrate was a 1:1 (volume:volume) mixture of super coarse perlite (Horticultural Perlite; Whittemore Co., Lawrence, MA, United States) and a bark-based media mix (Metro-Mix 830; Sun Gro Horticulture, Agawam, MA, United States). The solution was delivered per trough via drip irrigation with four emitters (Catalog no. 22000; Netafim, Tel Aviv, Israel).




2.4 Fertilization

A modified Yamazaki fertilizer solution was used for fertigation in all systems (Kroggel and Kubota, 2017). The solution contained (all values in mg·L-1): 77 total nitrogen (N) with 74 nitrate-nitrogen (NO3-N) and 3 ammoniacal-nitrogen (NH4-N), 15 phosphorous (P), 120 potassium (K), 52 calcium (Ca), 12 magnesium (Mg), 17 sulfur (S), 0.34 boron (B), 0.5 copper (Cu), 2 iron (Fe), 0.55 manganese (Mg), 0.05 molybdenum (Mo), and 0.33 zinc (Zn).




2.5 Treatments

We tested six different fertigation management strategies: one timer-based, one leaching fraction-based, and four sensor-based strategies that automatically applied nutrient solution to maintain a constant volumetric water content (θ) threshold (0.36, 0.30, 0.225, or 0.15 m3·m-3), with four replications. Each treatment was randomly assigned to one group of four troughs, for a total of 24 troughs, and each group of four troughs was fertigated by a separate reservoir (H-3687; Uline, Pleasant Prairie, WI, United States) and pump (PE-1; Little Giant, Oklahoma City, OK, United States).

The timer-based treatment (“Timer”) used the datalogger and relay to activate the pump for three minutes every three hours throughout the experiment. The leaching-fraction-based treatment (“Leach”) was manually controlled and had a target of 20-30% leachate per fertigation event. The four thresholds for the θ treatments were selected based on fractions of the substrate container capacity (θ 0.42 m3·m-3) to represent a broad range of substrate moisture contents. The four θ thresholds were (from high to low) 0.36, 0.30, 0.225, and 0.15 m3·m-3, chosen based on previous experiments performed in our lab. These four treatments were monitored by a soil moisture sensor (GS3; METER Group, Pullman, WA, United States) positioned in the center of each trough. The soil moisture sensors (n = 24) were connected to a datalogger (CR1000X; Campbell Scientific, Logan, UT, United States) for automatic data collection and irrigation control. A relay (SDM-CD16AC; Campbell Scientific, Logan, UT, United States) connected to the datalogger was used for pump activation in all treatments.




2.6 Reservoir pH and electrical conductivity (EC) measurements

Leachate volume, pH, and EC were recorded after each fertigation event. The solution pH and EC were regularly measured with a digital probe (#HI98131; Hanna Instruments, Smithfield, RI, United States) and adjusted to maintain a range between 5.5 and 6.5 pH and 0.75 and 1.25 dS·m-1, respectively. A commercial product derived from phosphoric acid was used to reduce the solution pH (pH-Down; Advanced Nutrients, West Hollywood, CA, United States), while an 8M solution of potassium hydroxide was used to raise the solution pH. EC was lowered by diluting the solution with tap water.




2.7 Substrate θ and number of irrigations

The datalogger also automatically recorded θ measurements for all troughs every 15 minutes. The average of the four soil moisture sensor measurements in each treatment group was used to determine the number of irrigations or pump activations. If the average of the four θ measurements were below the treatment threshold, the pump would activate to fertigate all four troughs in the group for three minutes. The datalogger recorded the automatic pump activation time every 3 minutes throughout the experiment.




2.8 Fruit harvest measurements

Fruit harvests were conducted every other week between December 2022 and January 2023, then changed to every week for February through April 2023, with 15 harvests in total. This change was instituted to accommodate the larger fruit production as the season progressed and to minimize fruit losses due to fungal pathogens. Fruit that were 70% or more ripe were harvested from each measurement plant. Fruit from each plant were counted and collectively weighed using a digital scale (Item #30430061; Ohaus Corporation, Parsippany, NJ, United States) to measure the fresh fruit yield. Marketable fruit were also counted and collectively weighed to obtain the marketable yield. A fruit was considered marketable if it weighed at least 8 g and was nicely shaped (a sign was evenly pollinated). The largest marketable fruit (or simply the largest fruit if none were marketable) was cut longitudinally in half. One of the halves was weighed and crushed using cheesecloth and a garlic press to measure total soluble solids (TSS) using a digital refractometer (#HI96801; Hanna Instruments, Smithfield, RI, United States). The other half and the remaining fruit from the plant were placed in an 80°C oven for several days until completely dehydrated. The dehydrated fruit were weighed again to obtain the dry fruit biomass. By weighing the half-fruit used for TSS analysis, the total fruit biomass before and after dehydration was known, and thus, fruit water content could be calculated.




2.9 Plant harvest measurements

The strawberry plants were terminated on April 27, 2023 (129 days after transplanting). Before harvesting, the plant height was measured using a meter stick. Plants were harvested by cutting the crown at the soil line. Plants were weighed using a digital scale (Model #PB3002; Mettler Toledo, Griefensee, Switzerland) to determine fresh shoot biomass. The number of flowers, fruit, runners, and leaves was counted for each plant. Plant mortality was also assessed at this stage by direct counting.

The harvest index was calculated using the total fruit yield and the fresh shoot biomass: total fruit fresh weight ÷ (total fruit fresh weight + plant fresh weight). Next, all healthy trifoliate leaves for each plant were scanned using a leaf area meter (LI-3100; LI-COR, Lincoln, NE, United States) to obtain the total leaf area (LA). Each plant was placed into a paper bag and dried at an 80°C drying oven for several days. Dry shoot biomass was measured using the same digital scale.

Dried trifoliate leaves were placed in sample bags and sent to a commercial lab (Waters Agricultural Laboratories, Camilla, GA, United States) for tissue nutrient concentration analysis. Leaf N was determined by a high-temperature combustion process (Nelson and Sommers, 1973). Leaf P, K, Mg, Ca, S, B, Fe, Cu, Mn, and Zn concentrations were determined by inductively coupled plasma atomic emission spectrophotometer after wet acid digestion using nitric acid and hydrogen peroxide (Twyman, 2005).




2.10 System measurements and resource use quantification

All reservoir volumes were tracked throughout the experiment. Reservoirs were filled to a known volume at the start of the experiment and filled again to that known volume after draining and refilling. Residual reservoir volume was measured during drain and refill events, triggered when reservoir volume was low and/or when the reservoir pH and EC were out of the ideal range. By knowing reservoir volume before and after refills, total system losses due to evapotranspiration (ET) were calculated by simple subtraction.

To calculate plant water use efficiency (WUE), ET per plant was calculated by dividing reservoir ET by the number of plants supplied by that reservoir. Yield per plant was then divided by this ET per plant (based on from which reservoir the plant was fertigated) to obtain plant WUE in grams per liter.

Total system energy use was calculated by tracking the total pump activation time in hours for each fertigation management strategy. As previously mentioned, the datalogger recorded the automatic fertigation activations for each of the four θ threshold treatments throughout the experiment. The Timer treatment was activated at a regular interval of 3 minutes every 3 hours, and the Leach treatment fertigation events were manually timed. All treatments used the same pump model, which has a power consumption of 36 W per manufacturer specifications. The total pump run times and power consumption rate were multiplied to obtain total energy use in kilowatt hours (kWh) for each fertigation management strategy.

To calculate plant energy use efficiency (EUE), energy use per plant was first calculated by dividing the total treatment energy use by the total number of plants (32). Yield per plant was then divided by this energy use per plant to obtain plant EUE in grams per kWh.




2.11 Experimental design and statistical analysis

The study was arranged on a randomized block design, with six treatments and four replications. Statistical analysis was performed by one-way analysis of variance (ANOVA) with Tukey’s post-hoc test using statistical software (SigmaPlot Version 15; Systat Software, San Jose, CA, United States) to determine significant differences among treatments. When a data set did not meet the ANOVA’s normality or equal variance conditions, a Kruskal-Wallis test with Dunn’s post-hoc was conducted using the same statistical software. A probability (P) level of 0.05 was used in all tests. Results from each cultivar were analyzed separately.





3 Results



3.1 Reservoir pH and EC

Reservoir pH was controlled successfully in all treatments during the experiment (Figure 1A). Notably, the θ 0.36 m3·m-3 treatment induced the greatest pH variation and deviated from the other five treatments. There is one extreme deviation in the θ 0.225 m3·m-3 treatment at 65 DATS. The average ± standard error measured reservoir pH was 6.2 ± 0.09, 5.6 ± 0.12, 6.2 ± 0.09, 6.2 ± 0.12, 6.1 ± 0.11, and 6.2 ± 0.10 for the Leach, θ 0.36, 0.30, 0.225, 0.15 m3·m-3, and Timer treatments, respectively. Reservoir EC was more uniform except in the θ 0.36 m3·m-3 treatment (Figure 1B). The extreme deviation at 65 DATS for the θ 0.225 m3·m-3 treatment previously mentioned can also be seen in this graph. Average ± standard error measured reservoir EC was 0.86 ± 0.017, 1.30 ± 0.063, 0.85 ± 0.014, 0.88 ± 0.046, 0.84 ± 0.011, and 0.94 ± 0.023 dS·m-1, respectively.

[image: Line graphs display pH levels and electrical conductivity (dS/m) over 140 days after treatment. Graph A shows pH values ranging from 4.0 to 7.5, while Graph B presents electrical conductivity from 0.5 to 2.5 dS/m. Different symbols represent various treatments, including leach and varying θ levels. Green lines indicate reference thresholds.]
Figure 1 | Reservoir pH (A) and electrical conductivity (EC) (B) for different fertigation management strategies from zero to 130 days after treatment. Individual data points represent pH or EC measurements. Green lines represent the bounds of the ideal range (5.5-6.5 for pH and 0.75-1.25 dS·m-1 for EC); data points between the green lines are considered within the range.




3.2 Pump activation and θ control

The treatments began at 10:00 AM on December 19, 2022, and ended at 10:00 AM on April 27, 2023. During this period, the θ 0.36 m3·m-3 treatment pump was active for 35.4% of the time, which was by far the highest activation rate of all the treatments. This was followed by the θ 0.30 and 0.225 m3·m-3 treatment pumps at 5.21% and 3.52% activation, respectively. The Timer treatment pump was active for 1.62% of the time, the Leach treatment pump was active for 1.44%, and the θ 0.15 m3·m-3 treatment pump had the lowest activation rate at 1.25%. These pump activation rates correspond to a total applied solution volume of 1,065 L for the Leach treatment, 26,212, 3,859, 2,605, and 972 L for the θ 0.36, 0.30, 0.225, and 0.15 m3·m-3 treatments, and 1,203 L for the Timer treatment. On average, each plant received a daily solution volume of 0.26 L in the Leach treatment, 6.35, 0.93, 0.63, and 0.22 L in the θ 0.36, 0.30, 0.225, and 0.15 m3·m-3 treatments, and 0.29 L in the Timer treatment. The sensor-activated pump control system consistently maintained the target θ thresholds throughout the experiment (Figure 2). Minor deviations can be seen for the θ treatments due to control component failures that were quickly repaired. These occurred from 0-25 DATS for the θ 0.36 m3·m-3 treatment, between 60 and 70 DATS for the θ 0.225 m3·m-3 treatment, and at 110 DATS for the θ 0.30 and 0.15 m3·m-3 treatments. The Leach treatment showed high variability during the first 70 days of the experiment, with this reducing during the second half. The Timer treatment resulted in a consistent and high θ level throughout the experiment.

[image: Line graph showing volumetric water content (cubic meters per cubic meter) over 140 days after treatment. Different lines represent water content levels corresponding to various treatments and measurements: gray circles for leach, black triangles for theta 0.36, red squares for theta 0.30, green diamonds for theta 0.225, blue triangles for theta 0.15, and pink circles for timer. Data fluctuations are visible across all treatments.]
Figure 2 | Daily volumetric water content (θ) data for different fertigation management strategies measured by the soil moisture sensors from zero to 130 days after treatment. Data points represent average ± standard error θ values for four troughs in 24 hours. Dashed lines represent θ target thresholds.




3.3 Total and marketable yield

The Leach, θ 0.36, 0.225, and 0.15 m3·m-3 treatments resulted in at least 291% higher total yield than the Timer treatment for the ‘Florida Brilliance’ cultivar (P = 0.002) (Figure 3A). For ‘Florida Beauty’, the θ 0.225 m3·m-3 treatment resulted in a 227% higher total yield than the Timer treatment (P = 0.021) (Figure 3B). There were no significant differences among any of the treatments in marketable yield for either ‘Florida Brilliance’ (P = 0.122) (Figure 3C) or ‘Florida Beauty’ (P = 0.206) (Figure 3D).

[image: Bar charts comparing total and marketable yield of 'Florida Brilliance' and 'Florida Beauty' strawberries under different fertigation strategies. Charts A and C (green) show results for 'Florida Brilliance', with significant variation in total yield (P = 0.002) but not in marketable yield (P = 0.122). Charts B and D (blue) represent 'Florida Beauty', showing significant total yield differences (P = 0.021) and no significant differences in marketable yield (P = 0.271). Different fertigation strategies include Leach, θ 0.36, θ 0.30, θ 0.225, θ 0.15, and Timer. Error bars indicate variability.]
Figure 3 | Total yield per plant for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), and marketable yield per plant for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).

‘Florida Brilliance’ had at least 92% more fruit harvested from the θ 0.225 m3·m-3 treatment than from the Timer and θ 0.30 m3·m-3 treatments (Figure 4A). The Leach, θ 0.36, 0.225, and 0.15 m3·m-3 treatments also resulted in at least 153% more fruit harvested than the Timer treatment for the same cultivar (P < 0.001). The θ 0.225 m3·m-3 treatment resulted in 232% more fruit harvested than the Timer treatment in ‘Florida Beauty’, and this was the only significant difference among the treatments for this cultivar (P = 0.006) (Figure 4B). Similarly, there were no significant differences in the number of marketable fruit harvested among any treatments for ‘Florida Brilliance’ (P = 0.086) (Figure 4C) or ‘Florida Beauty’ (P = 0.099) (Figure 4D).

[image: Bar charts A and B show total fruit per plant for ‘Florida Brilliance’ and ‘Florida Beauty’ under different fertigation strategies, with significant differences indicated (P < 0.001 and P = 0.006, respectively). Charts C and D depict marketable fruit per plant for the same varieties, with less significant differences (P = 0.086 and P = 0.099). Fertigation strategies include Leach, Theta 0.36, 0.30, 0.225, 0.15, and Timer. Error bars mark variability.]
Figure 4 | Total number of fruit per plant for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), and number of marketable fruit per plant for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).




3.4 Fruit TSS, dry biomass, and water content

The Timer and the θ 0.30 m3·m-3 treatments produced fruit with 44% higher TSS than the other treatments for ‘Florida Brilliance’ (P < 0.001) (Figure 5A). The Timer treatment also produced fruit with 40% higher TSS than the θ 0.36 and 0.225 m3·m-3 treatments in ‘Florida Beauty’ (P < 0.001) (Figure 5B). The θ 0.225 m3·m-3 treatment for ‘Florida Brilliance’ resulted in 152% higher fruit dry biomass than the Timer treatment (P = 0.025) (Figure 5C). There were no significant differences among the treatments for ‘Florida Beauty’ fruit dry biomass (P = 0.156) (Figure 5D). Similarly to the ‘Florida Brilliance’ results for fruit dry biomass, the Leach treatment, along with the θ 0.36 and 0.225 m3·m-3 treatments, resulted in at least a 26% increase in fruit water content compared to the Timer treatment for the same cultivar (P < 0.001) (Figure 5E). For ‘Florida Beauty’, the θ 0.225 m3·m-3 treatment showed at least a 23% increase in fruit water content compared to the Timer treatment (P < 0.001) (Figure 5F). Furthermore, the θ 0.225 m3·m-3 treatment showed at least a 3.6% increase in fruit water content compared to the θ 0.30 m3·m-3 treatment (P < 0.001).

[image: Bar charts comparing the effects of different fertigation strategies on two strawberry varieties, 'Florida Brilliance' and 'Florida Beauty'. Panels A and B show fruit total soluble solids, C and D show fruit dry biomass, and E and F show fruit water content. Charts indicate statistical significance with varying bar heights and annotations. 'Florida Brilliance' is shown in green with specific significance levels indicated, while 'Florida Beauty' is shown in blue.]
Figure 5 | Fruit total soluble solids for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), fruit dry biomass per plant for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D), and fruit water content for ‘Florida Brilliance’ (E) and ‘Florida Beauty’ (F). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).




3.5 Plant height, fresh shoot biomass, and dry shoot biomass

‘Florida Brilliance’ plants grew at least 58% taller under the θ 0.36 m3·m-3 and Leach treatments compared to plants under the Timer treatment (P < 0.001) (Figure 6A). ‘Florida Beauty’ plants grew at least 37% taller with the θ 0.36 and 0.30 m3·m-3 treatments compared to the Timer treatment (P = 0.005) (Figure 6B). Fresh shoot biomass for ‘Florida Brilliance’ was at least 115% higher in the Leach and θ 0.36 m3·m-3 treatment than in the Timer treatment (P = 0.002) (Figure 6C). ‘Florida Beauty’ fresh shoot biomass was not significantly affected by the fertigation treatments (P = 0.103) (Figure 6D). The results for dry shoot biomass were extremely similar to the fresh shoot biomass results for both cultivars. ‘Florida Brilliance’ had at least 110% higher dry shoot biomass in the Leach and θ 0.36 m3·m-3 treatments compared to the Timer treatment (P = 0.004) (Figure 6E). The treatments did not significantly affect the ‘Florida Beauty’ dry shoot biomass (P = 0.450) (Figure 6F).

[image: Bar graphs showing the effects of different fertigation strategies on 'Florida Brilliance' and 'Florida Beauty' strawberries. Panels A, C, and E depict height, fresh shoot biomass, and dry shoot biomass for 'Florida Brilliance,' showing significant variation with strategy. Panels B, D, and F show the same metrics for 'Florida Beauty,' with less variation. Statistical significance is indicated by the letters above bars and P-values. Green bars represent 'Florida Brilliance' and blue bars 'Florida Beauty.']
Figure 6 | Plant height for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), plant fresh shoot biomass for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D), and plant dry shoot biomass for ‘Florida Brilliance’ (E) and ‘Florida Beauty’ (F). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).




3.6 Harvest index and leaf area

‘Florida Brilliance’ harvest indices from the θ 0.225 and 0.15 m3·m-3 treatments showed at least a 57% increase from the Timer treatment harvest index (P = 0.002) (Figure 7A). The treatments did not significantly affect the ‘Florida Beauty’ harvest index (P = 0.068) (Figure 7B). The θ 0.36 m3·m-3 treatment for ‘Florida Brilliance’ resulted in at least 78% higher leaf area than the Timer treatment as well as the θ 0.30 and 0.225 m3·m-3 treatments (Figure 7C). The Leach treatment also resulted in a 133% higher leaf area than the Timer treatment for this cultivar (P < 0.001). The θ 0.36 m3·m-3 treatment resulted in 156% higher leaf area than the Timer treatment for ‘Florida Beauty’ (P = 0.184) (Figure 7D).

[image: Bar charts comparing harvest index and leaf area across different fertigation strategies for 'Florida Brilliance' and 'Florida Beauty' strawberries. Charts A and C relate to 'Florida Brilliance', showing significant differences, while B and D represent 'Florida Beauty', with less pronounced differences. The y-axes show harvest index (unitless) and leaf area (cm²). Different fertigation strategies on the x-axis include Leach, θ 0.36, θ 0.30, θ 0.225, θ 0.15, and Timer. Statistical significance values are given for each chart.]
Figure 7 | Harvest index for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), and leaf area per plant for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).




3.7 Leaf tissue macronutrient concentration

The fertigation management strategy treatments did not affect the ‘Florida Brilliance’ leaf N (P = 0.145) (Table 1). ‘Florida Brilliance’ leaf P was at least 47% higher in the θ 0.30 m3·m-3 and Timer treatments than the four other treatments (P < 0.001). Leaf K for ‘Florida Brilliance’ was 22% higher for the θ 0.30 m3·m-3 treatment than the Leach treatment (P = 0.020). The treatments did not affect the ‘Florida Brilliance’ leaf Mg (P = 0.060). ‘Florida Brilliance’ leaf Ca was 42% higher for the Timer treatment than for the θ 0.36 m3·m-3 treatment (P = 0.019). Finally, the treatments did not affect leaf S for ‘Florida Brilliance’ (P = 0.134). ‘Florida Beauty’ leaf N was 15% higher in the θ 0.30 m3·m-3 treatment than in the θ 0.15 m3·m-3 treatment (P = 0.016) (Table 1). Leaf P for ‘Florida Beauty was significantly affected by the treatments (P = 0.019), however, the post-hoc test could not distinguish between treatments. The treatments did not affect ‘Florida Beauty’ leaf K (P = 0.743). Leaf Mg for ‘Florida Beauty’ was 37% higher for the Leach treatment than for the θ 0.36 m3·m-3 treatment (P = 0.014). Leaf Ca for ‘Florida Beauty’ was 52% higher in the Timer treatment than in the θ 0.36 m3·m-3 treatment (P = 0.024). Finally, the treatments did not affect ‘Florida Beauty’ leaf S.

Table 1 | ‘Leaf macronutrient concentrations of ‘Florida Brilliance’ and ‘Florida Beauty’ strawberries (Fragaria × ananassa) in response to the six fertigation management strategies.


[image: Table showing the effects of various fertigation management strategies on two cultivars, ‘Florida Brilliance’ and ‘Florida Beauty’, with nutrient percentages (N, P, K, Mg, Ca, S). Statistical analysis results are included, indicating significance levels for each nutrient. Each value shows mean ± standard error for four replications.]



3.8 Leaf tissue micronutrient concentration

‘Florida Brilliance’ leaf Zn was at least 38% higher in both the Timer and the θ 0.30 m3·m-3 treatments than in the other four treatments (P < 0.001) (Table 1). For ‘Florida Brilliance’ leaf Mn, the θ 0.225 m3·m-3 treatment was at least 135% higher than both the θ 0.36 m3·m-3 and Leach treatments. Furthermore, the θ 0.30 m3·m-3, θ 0.15 m3·m-3, and Timer treatments resulted in at least 179% higher leaf Mn than the θ 0.36 m3·m-3 treatment (P < 0.001). ‘Florida Brilliance’ leaf Fe was at least 121% higher in both the Leach and θ 0.225 m3·m-3 treatments than in the four other treatments (P < 0.001). Leaf B (P = 0.224) and leaf Cu (P = 0.354) were not affected by the treatments for this cultivar. ‘Florida Beauty’ leaf B was 44% higher in the Timer treatment than in the Leach treatment (P = 0.022) (Table 1). Leaf Mn for ‘Florida Beauty’ was 262% higher in the θ 0.225 m3·m-3 treatment than in the θ 0.36 m3·m-3 treatment (P = 0.006). ‘Florida Beauty’ leaf Fe was at least 447% higher in both the Leach and θ 0.225 m3·m-3 treatments than in the θ 0.30 m3·m-3 treatment (P = 0.002). Leaf Zn (P = 0.237) and leaf Cu (P = 0.311) were not affected by the treatments for this cultivar.




3.9 Resource use efficiency

WUE was at least 331% higher for ‘Florida Brilliance’ in the Leach, θ 0.225 and 0.15 m3·m-3 treatments than in the Timer treatment (P < 0.001) (Figure 8A). For ‘Florida Beauty’, the θ 0.225 m3·m-3 treatment resulted in 214% higher WUE than the Timer treatment (P = 0.023) (Figure 8B). ‘Florida Brilliance’ EUE was at least 389% higher in the Leach and θ 0.15 m3·m-3 treatments than in the other treatments (P < 0.001) (Figure 8C). ‘Florida Beauty’ EUE was at least 1,496% higher in the Leach and θ θ 0.15 m3·m-3 treatments than in the θ 0.36 m3·m-3 treatment (P < 0.001) (Figure 8D).

[image: Bar graphs displaying water and energy use efficiency across fertigation strategies for strawberry cultivars 'Florida Brilliance' and 'Florida Beauty'. Graphs A and B show water use efficiency, while C and D show energy use efficiency. The y-axes represent efficiency in grams per liter and grams per kilowatt-hour, respectively. Significance levels are indicated with P-values, and different letters denote statistically significant differences among treatments.]
Figure 8 | Water use efficiency for ‘Florida Brilliance’ (A) and ‘Florida Beauty’ (B), and energy use efficiency for ‘Florida Brilliance’ (C) and ‘Florida Beauty’ (D). Each bar represents the average ± standard error of four replications with two measurement plants. Bars with the same letter show no significant difference; bars with different letters are statistically different at a 5% significance level (P < 0.05).





4 Discussion



4.1 Fruit yield and plant biomass

The Timer treatment resulted in reduced yields (Figure 3), reduced number of fruit per plant (Figure 4) as well as reduced vegetative biomass, including height, fresh shoot biomass, dry shoot biomass (Figure 6), and leaf area (Figures 7C, D) for both cultivars. This trend, especially regarding vegetative biomass, was more pronounced in ‘Florida Brilliance’ than in ‘Florida Beauty’. The Timer treatment also resulted in the highest fruit TSS in both cultivars (Figures 5A, B). This higher TSS is likely a result of the lower fruit water content in the Timer treatment (Figures 5E, F); as the water content decreases, solutes in the fruit become more concentrated, leading to a higher TSS. The Timer treatment being outperformed by sensor-based fertigation is not surprising, as previous studies have found similar results. One study reported a decrease in total and marketable yield for strawberries grown using timer-based fertigation compared to an FDR sensor-based fertigation (Bonelli et al., 2024). Another study observed a decrease in yield and plant fresh and dry biomass for strawberries grown using timer-based fertigation compared to one that used both solar irradiance sensors and soil moisture sensors to control fertigation automatically (Choi et al., 2021). Both of these previous experiments were conducted in greenhouses using soilless hydroponic substrate systems, and our study saw similar reductions from the Timer treatment compared to the sensor-based treatments.

In both cultivars, the θ 0.225 m3·m-3 treatment resulted in the highest total yield (Figures 3A, B), number of fruit (Figures 4A, B), and dry fruit biomass (Figures 5C, D). This treatment also resulted in the highest Mn and Fe foliar concentrations for both cultivars (Table 2). Mn is essential in the activation of several enzymes during the citric acid cycle, and it also aids in chlorophyll synthesis, nitrate assimilation, and the evolution of oxygen during photosynthesis. Fe is vital to the electron transport process during photosynthesis due to its inclusion in photosystem II, cytochrome b6f, photosystem I, and ferredoxin (Briat et al., 2015; Malone, 2014; Taiz and Zeiger, 2010). An increased foliar concentration of both essential micronutrients could have led to an increased availability of photosynthates, enhancing fruit growth and development. The increase in the concentrations of these two cations could be attributed to an improved cation exchange capacity due to the fertigation management strategy. Another possible explanation for the rise in yield, Mn, and Fe in the θ 0.225 m3·m-3 treatment is that this moisture level in the substrate could have been optimal for efficient and effective osmoregulation on a cellular level.

Table 2 | Leaf micronutrient concentrations of ‘Florida Brilliance’ and ‘Florida Beauty’ strawberries (Fragaria × ananassa) in response to the six fertigation management strategies.


[image: Table comparing several cultivars of strawberries, "Florida Brilliance" and "Florida Beauty," under different fertigation management strategies. It presents concentrations of boron (B), zinc (Zn), manganese (Mn), iron (Fe), and copper (Cu) in milligrams per kilogram, with statistical analysis results. Different strategies include leach, four soil moisture levels, and timer. Mean values are given with standard errors and letters indicate statistical significance, where common letters show no significant differences. Statistical methods mentioned include ANOVA, Tukey's HSD, and the Kruskal-Wallis test. Significance level is marked at 5 percent.]
Marketable yield was not affected by the treatments for either cultivar (Figures 3C, D). This is likely a result of poor pollination causing low marketable yields for all treatments. Thorough pollination of strawberry flowers is essential for fruit to develop a symmetric, marketable shape. Strawberry flowers can self-pollinate, but biotic pollinators have been shown to improve pollination and produce larger, more evenly shaped fruit (Gudowska et al., 2024). We could not add biotic pollinators inside the greenhouse for this study and thus relied on active (deliberate with hands and blowers) and passive (from ambient air circulation) mechanical pollination, which might have reduced marketable yields.

The wettest θ treatment (0.36 m3·m-3) resulted in either the highest or second highest plant height, fresh shoot biomass, dry shoot biomass (Figure 6), and leaf area (Figures 7C, D) for both cultivars. This is an expected result because several other studies have reported a positive relationship between θ and plant biomass accumulation in ornamental plants. Gaura (Gaura lindheimeri) has previously exhibited positive correlations between θ and both shoot dry weight and leaf area when grown at several different θ thresholds (Burnett and van Iersel, 2008). Hibiscus (Hibiscus acetosella) has also demonstrated positive correlations between θ and both shoot height and shoot dry weight under several different θ thresholds (Ferrarezi et al., 2015). We saw similar strawberry vegetative biomass accumulation increased under elevated substrate θ thresholds.

The treatment θ 0.225 m3·m-3 resulted in the most efficient biomass allocation, with approximately 70% of fresh biomass produced going to fruit rather than vegetative tissue in both cultivars (Figures 7A, B). This is a byproduct of this treatment resulting in slightly reduced fresh shoot biomass, with ‘Florida Brilliance’ having the second lowest and ‘Florida Beauty’ having the third lowest of the six treatments (Figures 6C, D) and the highest yields as previously described (Figures 3A, B).




4.2 Resource use efficiencies

The treatment θ 0.225 m3·m-3 also resulted in the highest WUE for ‘Florida Brilliance’ (Figure 8A) and ‘Florida Beauty’ (Figure 8B). The differences in WUE among treatments were driven primarily by yield since the magnitude of the difference in average water use among treatments is not excessive. The θ 0.15 m3·m-3 treatment had an average water use of 15 L per plant, the Timer 17.08 L per plant, the Leach 17.21 L per plant, the θ 0.225 m3·m-3 17.8 L per plant, the θ 0.30 m3·m-3 18.79 L per plant, and the θ 0.36 m3·m-3 22.4 L per plant. Despite the θ 0.225 m3·m-3 treatment having the third highest average water use, the high yields from the treatment resulted in high WUE. Overall, the WUE results match very closely with the yield results for both cultivars. ‘Florida Brilliance’ yield and WUE were the highest in the Leach treatment and the two drier θ treatments: 0.225 and 0.15 m3·m-3, all of which had close outcomes for both variables. ‘Florida Beauty’ yield and WUE were the highest in the θ 0.225 m3·m-3 treatment, the only treatment significantly different from the Timer treatment for either variable. A previous study also reported higher WUE in an FDR sensor-controlled fertigation compared to a timer-based fertigation for ‘Seolhyang’ strawberries grown in coco coir (Choi et al., 2016). This indicates that, generally, a θ level of 0.225 m3·m-3 could produce high yields in hydroponic strawberry production and utilize water efficiently to produce those yields.

EUE for both cultivars (Figures 8C, D) was driven almost exclusively by the differences in average energy consumption among treatments. The θ 0.36 m3·m-3 treatment had the highest average energy consumption per plant of all treatments by an order of magnitude with 1.181 kWh. The θ 0.30 m3·m-3 treatment had the second highest with 0.174 kWh, the θ 0.225 m3·m-3 treatment had the third highest at 0.117 kWh, the Timer treatment had the third lowest at 0.054 kWh, the Leach treatment had the second lowest at 0.048 kWh, and the θ 0.15 m3·m-3 treatment had the lowest average energy consumption per plant at 0.042 kWh. The EUE results closely followed this pattern in both cultivars, except for the Timer treatment, which had reduced EUE due to lower yield.





5 Conclusion

These findings underscore the significant advantages of sensor-based irrigation strategies in optimizing yield and resource use efficiency, particularly when employing drier thresholds (θ 0.225 and 0.15 m3·m-3) that align with leaching fraction approaches. By demonstrating superior performance over traditional timer-based methods, this study highlights the potential of precision irrigation to enhance sustainable agricultural practices, paving the way for future advancements in dynamic sensor-based systems. Future research should explore dual- instead of single-threshold sensor-based strategies that emulate the wetting and drying cycle in the leaching-fraction strategy more closely.
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The use of sensor technology is essential in managing fertilization, especially in urban landscape where excessive fertilization is a common issue that can lead to environmental damage and increased costs. This study focused on optimizing nitrogen fertilizer application for Satinleaf (Chrysophyllum oliviforme), a native Florida plant commonly used in South Florida landscaping. Fertilizer with an 8N-3P-9K formulation was applied in six different treatments: 15 g (control), 15 g (15 g twice; T1), 15 g (15 g once; T2), 30 g (15 g twice; T3), 30 g (15 g once; T4), and 45 g (15 g twice; T5). Evaluations of plant growth and nutrient status were conducted at several intervals: baseline (0), and 30, 60, 90, 120, 150, and 180 days post-fertilizer application. Three types of optical sensors-GreenSeeker™, SPAD meter, and atLEAF chlorophyll sensor - were used to monitor chlorophyll levels as an indicator of nitrogen content. The study found that the 30 g (15 g twice; T3) treatment was most effective in promoting plant growth and increasing nitrogen content in leaves and soil, while the 45 g (15 g twice; T5) treatment resulted in higher nutrient runoff, indicating potential environmental risks. These findings emphasize the value of using optical sensors for precise nitrogen management in plant nurseries to enhance growth, lower costs, and minimize environmental impact.
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1 Introduction

Satinleaf (Chrysophyllum oliviforme), a medium-sized tree in the Sapotaceae family, can reach heights of up to 45 feet and has a spread of approximately 25 feet. It is renowned for its unique and attractive foliage. Native to Florida, satinleaf is a prized choice in South Florida landscaping, often featured as a standout lawn specimen or integrated into shrub borders and naturalized settings (Gilman et al., 2019). Its popularity in urban landscaping is due to its aesthetic appeal and versatility in various environments (Meerow et al., 2020). In urban landscapes, satinleaf plays a crucial role by providing shade, enhancing air quality, and adding significant visual appeal to cityscapes.

Achieving optimal nitrogen (N) fertilization involves balancing nutrient supply with plant demand, a task complicated by the difficulty of accurately predicting both factors (Colaço and Bramley, 2018; Khoddamzadeh and Dunn, 2016; Fallahi et al., 2000). Satinleaf trees have moderate to high nitrogen needs and perform best in soils enriched with organic matter (Koeser et al., 2017). Therefore, tools like optical sensors are essential for managing nitrogen levels effectively.

Typically, only a small fraction of applied nitrogen is absorbed by crops, with the excess prone to environmental loss, leading to various ecological issues. Unused nitrogen can leach below the root zone or be lost through runoff (Randall and Goss, 2008; Cameron et al., 2013; Freidenreich et al., 2019), resulting in nitrate (NO3−) accumulation in natural water bodies (Pulido-Bosch et al., 2000; Ju et al., 2006). Elevated nitrate levels in water bodies are linked to human health risks (Addiscott, 1996) and eutrophication (Cameron et al., 2013). Furthermore, excess nitrogen contributes to environmental degradation through nitrous oxide (N2O) emissions, which exacerbate global warming, and ammonia (NH3) volatilization, which enriches natural ecosystems with nitrogen (Hartz, 2006; Meisinger et al., 2015; Galloway et al., 2008; Tilman et al., 2001).

Environmental protection and water pollution, especially in South Florida with its high precipitation rates and the prevalence of harmful algal blooms, have become critical issues. The restoration of the Everglades, a unique and vital ecosystem, has taken on added importance. This region faces significant challenges due to nutrient runoff, which contributes to ecological degradation and water quality concerns. Sustainable nitrogen management practices are therefore essential to safeguard the Everglades and surrounding water bodies.

Optical sensor technology has emerged as a key tool for optimizing nitrogen fertilization and mitigating its environmental impact. These sensors enable non-destructive, efficient assessments of crop nitrogen status, supporting informed fertilizer management decisions. Among the most widely used tools are the GreenSeeker™ handheld sensor (Trimble Navigation Ltd., CA), the SPAD meter (SPAD-502, Konica Minolta, Japan), and the atLEAF chlorophyll sensor (FT Green LLC, DE) (Basyouni et al., 2015; Khoddamzadeh et al., 2023).

The GreenSeeker™ sensor calculates the normalized difference vegetation index (NDVI) using active red and near-infrared light, providing insights into plant health and nitrogen levels. The SPAD meter evaluates chlorophyll content by analyzing light transmittance through leaves, offering a reliable indicator of nitrogen concentration. Similarly, the atLEAF chlorophyll sensor provides chlorophyll readings with the added benefit of digital integration for enhanced data analysis. These tools are not only adaptable across various growth stages but also require minimal labor, making them practical for large-scale implementation (Fox and Walthall, 2015; Tremblay et al., 2012).

This study aimed to determine the optimal nitrogen fertilizer dose for satinleaf by monitoring chlorophyll content using optical sensor technology. Additionally, it sought to evaluate the correlation between sensor readings and nitrogen content in satinleaf plants, identifying the fertilizer rate that minimizes nutrient runoff and supports sustainable agriculture in South Florida.




2 Materials and methods



2.1 Plant material and growing conditions

Satinleaf (Chrysophyllum oliviforme) plants were sourced from Santa Barbara Nursery in Miami, Florida. The potted plants were repotted and kept under shade house conditions at the Organic Garden of Florida International University (FIU). A slow-release fertilizer with an NPK 8-3-9 formulation (Harrell’s®) was first applied in October, followed by various supplementary treatments.




2.2 Fertilizer treatments

Six different fertilizer treatments were employed: control (15-0-0), Treatment 1 (15-15-15), Treatment 2 (15-15-0), Treatment 3 (30-15-15), Treatment 4 (30-15-0), and Treatment 5 (45-15-15). Treatments were designed to evaluate the effects of varying nitrogen application rates on both plant growth and environmental impact (Table 1).

Table 1 | Summary of fertilizer treatments, combinations and supplementary applications (SA) with corresponding dosages.
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Assessments were conducted at seven timepoints: the baseline (day 0), and monthly intervals thereafter, up to 180 days post-fertilizer application (days 30, 60, 90, 120, 150, and 180). Parameters evaluated included plant growth, chlorophyll content (non-destructive), nitrogen and carbon concentration in leaf and substrate samples, as well as electrical conductivity and total nitrogen in leachate samples.




2.3 Growth assessment

Growth was monitored monthly by measuring the leaf count and the height of the plants. Five plants were selected from each treatment group for these measurements. Plant height was calculated by averaging the measurements from one larger and one smaller branch per plant, which were marked at the beginning of the experiment for consistency.




2.4 Chlorophyll content measurement

Chlorophyll content was determined using three types of devices: GreenSeeker™ NDVI sensor (Trimble Agriculture, Sunnyvale, CA, USA), SPAD-502 chlorophyll meter (Konica Minolta, Japan), and atLEAF chlorophyll meter (Wilmington, DE, USA), and. Measurements for SPAD and atLEAF were taken from four mature leaves located in the middle section of each plant. The GreenSeeker™ sensor was placed 45 cm above the plant canopy to ensure uniform readings. Five plants were used from each treatment for these measurements.




2.5 Analysis of nitrogen/carbon content in soil and leaves

Leaf samples were collected every month from each treatment, while soil samples were obtained at the beginning and end of the experiment. Both leaf and soil samples were dried at 70°C for 48 hours, ground to a fine consistency, and then analyzed for total nitrogen and carbon content using standard protocols at FIU’s Center for Aquatic Chemistry and Ecotoxicology (CAChE) Nutrient Analysis Core Facility (SOP-012). The analysis was conducted following the Carlo Erba NA1500 Series 1 Operating Manual, the Standard Operating Procedure for Instrumental Analysis for Total Organic Carbon and Total Nitrogen in Sediments (USGS Reston, Virginia Environmental Organic Geochemistry Laboratory, 13pp), and EPA Method 440.0 (Determination of Carbon and Nitrogen in Sediments and Particulates of Estuarine/Coastal Waters Using Elemental Analysis, U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-15/009, 1997). Five plants were used to collect these samples.




2.6 Runoff collection and nutrient analysis

Runoff was collected using individual containers placed under each 3 gallons pot (Dimensions: 11” wide x 9.5” tall) during irrigation. Five plants from each treatment were used to collected leachate samples from each treatment, the plants were watered to saturation, and a further 350 ml of water was added to each pot to generate leachate. The total leachate collected was used to measure electric conductivity and salt content in situ. A 50 ml aliquot of the leachate was immediately refrigerated at 4°C and later analyzed for total nitrogen at the CAChE Nutrient Analysis Core Facility.




2.7 Statistical analysis

The experiment was conducted as a completely randomized design (CRD) consist of six treatments, each replicated five times, for a total of 30 plants (one per pot). Data were analyzed using ANOVA, and differences between treatment means were evaluated using Tukey’s test at a 5% significance level through the SISVAR statistical program (Ferreira, 2011). Correlation analyses were conducted between sensor readings, leaf number, and nitrogen and carbon content in the leaves using GraphPad Prism software (v. 9.4.1, GraphPad, San Diego, CA, USA).





3 Results



3.1 Growth and chlorophyll content analysis

The data analysis revealed no significant (p > 0.05) association between fertilization rates and evaluation periods regarding the leaf number and Normalized Difference Vegetation Index (NDVI) values. Therefore, these factors were examined independently. The various fertilizer treatments did not significantly impact the number of leaves or NDVI values (p > 0.05). However, notable differences were observed in chlorophyll content as measured by the SPAD and atLEAF sensors (p ≤ 0.05). The T5, T3, and control showed increased SPAD values (77.08, 76.91, and 77.39, respectively), compared to the T1, which had lower values (73.80). Similarly, the atLEAF readings were higher for the T2 (75.91) compared to the T1 (72.67) and T3 (73.73). The T5 also showed elevated atLEAF readings (75.33) in comparison to the T1 (72.67) (Table 2).

Table 2 | Number of leaves, chlorophyll Levels (SPAD and atLEAF Measurements), and NDVI values of satinleaf plants under different fertilizer treatments (FT).


[image: Comparison table of different treatments labeled Control, T1, T2, T3, T4, and T5. It shows the number of leaves, SPAD, atLEAF, and NDVI values. Means with the same lowercase letters are not significantly different according to Tukey's test at p ≤ 0.05. Treatment descriptions: Control (15-0-0), T1 (15-15-15), T2 (15-15-0), T3 (30-15-15), T4 (30-15-0), and T5 (45-15-15).]



3.2 Effect of days post-fertilizer application on chlorophyll content

The number of leaves remained unaffected by days post-fertilizer application (DPFA) (p > 0.05). However, the chlorophyll content, as measured by SPAD and atLEAF, and NDVI values varied significantly over time (p ≤ 0.05). The highest SPAD values were recorded at 90 (78.89), 150 (77.04), and 180 days post-fertilizer application (DPFA) (78.94) compared to 0 DPFA (72.77). The highest atLEAF readings occurred at 60 (76.36) and 180 DPFA (76.27), surpassing readings at 30 (73.38), 90 (73.00), and 120 DPFA (72.88). The lowest NDVI value was observed at 180 DPFA (0.73), which was significantly lower than the values recorded at 0 (0.84), 30 (0.84), 60 (0.86), 90 (0.85), 120 (0.86), and 150 DPFA (0.82) (Table 3).

Table 3 | Changes in number of leaves (NL), chlorophyll content (SPAD and atLEAF), and NDVI across days post-fertilizer application (DPFA) in satinleaf plants.


[image: Table displaying measurements across various treatments measured by DPFA, NL, SPAD, atLEAF, and NDVI. DPFA values range from 0 to 180, with corresponding NL values mostly labeled 'a'. SPAD, atLEAF, and NDVI values include distinguishing letters 'a', 'ab', or 'b', indicating significance per Tukey's test. Significance level is p ≤ 0.05.]



3.3 Impact of fertilizer treatments on plant height and nutrient content

A significant (p ≤ 0.05) association was found between fertilization rate and DPFA for plant height in Satinleaf plants. The highest increases in plant height were observed in the T3 and T4, reaching 129.40 cm and 119.40 cm, respectively, at 180 DPFA (Figure 1). Furthermore, there was significant (p ≤ 0.05) association between fertilization rate and DPFA for total nitrogen (TN) and total carbon (TC) in leaf samples. The T4 achieved the highest total nitrogen concentration (2.95%) at 60 DPFA, while the highest total carbon content (49.33%) was recorded in the T1 at 150 DPFA (Table 4).

[image: Bar chart illustrating plant height in centimeters over time, with measurements taken at intervals from zero to one hundred eighty days post-fertilizer application (DPFA). Different colors represent six treatments: Control, T1, T2, T3, T4, and T5. Plant height generally increases over time, with variations among different treatments. Error bars and letter groupings indicate statistical differences among treatments.]
Figure 1 | Plant height of satinleaf plants grown at Different Fertilization Levels and Days Post-Fertilizer Application (DPFA). Control (15-0-0), Treatment 1 (15-15-15), Treatment 2 (15-15-0), Treatment 3 (30-15-15), Treatment 4 (30-15-0), and Treatment 5 (45-15-15). Means followed by the same letter lower case (Treatments) and upper case (DPFA) are not significantly different by Tukey’s test (p ≤ 0.05).

Table 4 | Total nitrogen, and total carbon in satinleaf plants across various fertilizer treatments and days post-fertilizer application (DPFA).


[image: Table showing total nitrogen and total carbon percentages in dry leaf mass under different treatments (Control, T1, T2, T3, T4, T5) over six DPFA intervals (0, 30, 60, 90, 120, 150, 180). Values are followed by lowercase and uppercase letters indicating statistical significance differences by Tukey's test at p ≤ 0.05.]



3.4 Soil nutrient content and runoff analysis

Significant (p ≤ 0.05) association were also found between fertilizer rate and DPFA for nitrogen and carbon levels in soil samples. For instance, the T3 resulted in the highest total nitrogen (1.43%) and carbon content (33.91%) in the soil at 180 DPFA (Table 5). Runoff analysis indicated a significant (p ≤ 0.05) correlation between fertilization rate and DPFA for salt content, electrical conductivity (EC), and total nitrogen (TN) in leachate samples. The T5 showed the highest levels of salt (2952 ppm), EC (5502 µs), and TN (192 ppm) at 30 DPFA, indicating substantial nutrient loss through runoff (Table 6).

Table 5 | Total nitrogen, and total carbon in satinleaf cultivation at different fertilization levels measured at baseline and 180 days post-fertilizer application (DPFA).


[image: Table showing changes in Total Nitrogen and Total Carbon in soil under different treatments over two time points, DPFA 0 and DPFA 180. Nitrogen values are constant at 1.07% initially, increasing variably by DPFA 180. Carbon values start at 28.60% and fluctuate at DPFA 180. Statistical differences between values are indicated by letter annotations. Detailed footnote explains the significance of letter annotations and treatment applications.]
Table 6 | Leachate analysis of salt content, electrical conductivity, and total nitrogen in satinleaf plants under days post-fertilizer application (DPFA).


[image: Table displaying the effects of different treatments on salt, electrical conductivity, and total nitrogen across various days post-fertilizer application (DPFA). Each parameter has values at 0, 30, 60, 90, 120, 150, and 180 days for different treatments including Control, T1, T2, T3, T4, and T5. Mean comparisons are marked using letter annotations.]



3.5 Correlation analysis

Correlation analysis demonstrated strong negative correlations between SPAD readings and total carbon at 60 DPFA (-0.858) and between total nitrogen and total carbon at both 120 DPFA (-0.905) and 180 DPFA (-0.819). Additionally, a strong negative correlation was observed between SPAD and NDVI at 120 DPFA (-0.986). These correlations highlight the complex interplay between different parameters under varying fertilizer treatments (Table 7).

Table 7 | Pearson’s correlation coefficients (r) between sensor parameters, total nitrogen (TN), and total carbon (TC) in satinleaf plants measured across days post-fertilizer application (DPFA).


[image: A table showing correlation data between variables at different DPFA values. At 60, the correlation between SPAD and TC is -0.858 (p ≤ 0.05). At 120, SPAD vs. NDVI is -0.986 (p ≤ 0.001), TN vs. TC is -0.905 (p ≤ 0.01). At 180, TN vs. TC is -0.819 (p ≤ 0.05).]




4 Discussion

Nitrogen is a vital nutrient that significantly influences plant growth and development, primarily as a core component of chlorophyll in leaves. Chlorophyll levels directly affect leaf area, biomass, plant height, and water usage. Inadequate nitrogen can cause deficiency symptoms that negatively impact plant health, productivity, and commercial value. On the other hand, excessive nitrogen application can lead to toxicity, resulting in stunted growth and poor plant quality. Over-application also raises production costs and poses environmental risks due to nutrient leaching and runoff, leading to contamination of water bodies and ecosystems (Khoddamzadeh and Dunn, 2016; Basyouni and Dunn, 2013). This study utilized optical sensors as a non-destructive method to estimate chlorophyll content and assess nitrogen status, aiming to identify the optimal fertilizer dosage for Satinleaf that balances growth and environmental sustainability.

The results indicated that the T3 effectively promoted Satinleaf growth, as evidenced by an increase in plant height and higher chlorophyll content measured by SPAD. This treatment also enhanced total nitrogen levels in both the leaves and soil substrate. These findings are consistent with those reported by Costa et al. (2023) for Cocoplum plants, where treatment 3 (30-15-15) treatment was also found to be the optimal nitrogen dose for promoting growth without excessive nutrient loss. These outcomes suggest that moderate nitrogen doses can provide sufficient nutrients for optimal plant growth while minimizing nutrient loss through runoff.

The results also show that the Control treatment provided higher values for SPAD, compared with the with higher doses. This may have happened due to high doses of nitrogen can generate severe vegetative growth, which can lead to the dilution effect where the concentration of chlorophyll per leaf unit decreases due to the increase in leaf area. This can also explain the why T4 has higher N concentrations in the leaf dry mass compared to T5.

The T4 achieved the highest total nitrogen concentration at 60 DPFA, while the highest total carbon content was recorded in the T1 at 150 DPFA. Furthermore, T1 also provided lower chlorophyll values (SPAD and atLEAF) compared to the other treatments, which shows that this plant was efficient in absorbing carbon, but was not efficient in converting it into chlorophyll through photosynthesis.

As observed in this study, chlorophyll content measured by SPAD and atLEAF sensors increased over time following fertilizer application, while NDVI values showed a decline towards the end of the experiment. The highest fertilizer dose T5, resulted in elevated salt concentration, electrical conductivity (EC), and total nitrogen levels in the runoff samples. This indicates substantial nitrogen loss due to runoff, which can harm the environment. A more sustainable approach to nitrogen management involves using moderate doses, such as the T3, which supports effective plant growth while reducing the risk of environmental contamination. Similar patterns were observed in studies on other native and non-native plants in South Florida, including Cocoplum (Costa et al., 2023) and Cacao (Khoddamzadeh and Souza Costa, 2023).

In general, all plants were watered manually, which may have resulted in different amount for each plant. However, for the nutrient runoff analysis, a methodology was followed in which the size of the pots was considered and the same amount was added to all the plants, in addition the saturation point was the same for all treatments and the water was observed the flowing through the pots. Therefore, the large amount of nutrient runoff may have been primarily due to the amount of fertilizers applied, thus showing the difference between the high fertilizer treatments and the control.

Correlation analysis revealed significant negative correlations between SPAD readings and total carbon at 60 days post-fertilizer application (DPFA) and between total nitrogen and total carbon at 120 and 180 DPFA. A strong negative correlation was also found between SPAD and NDVI. These negative correlations suggest that as one parameter increases, the other decreases, reflecting the complex correlation between these variables. Khoddamzadeh and Souza Costa (2023) also noted similar negative correlations between total nitrogen and total carbon in Cacao plants grown under different fertilization rates, further emphasizing the need to balance these nutrients for optimal plant health and growth.




5 Conclusions

This study demonstrates that Satinleaf (Chrysophyllum oliviforme) plants can thrive with lower nitrogen fertilizer doses, which also help mitigate nutrient runoff pollution. The treatment with 30 g (15 g applied twice in November and March; T3) proved to be the most effective, enhancing plant growth and nitrogen levels in both soil and plant tissues. In contrast, the 45 g (15 g applied twice; T5) treatment resulted in substantial nutrient loss through runoff, making it less ideal for sustainable urban landscape management.

The findings underscore the importance of integrating sensor technologies, such as GreenSeeker™, SPAD meter, and atLEAF chlorophyll sensors, into fertilization management strategies. These tools enable precise monitoring of nitrogen levels, optimizing fertilization to reduce environmental impacts, minimize costs, and prevent over-fertilization.

Future research should focus on improving the sensitivity and accessibility of sensor technology to better serve landscape professionals. Additionally, further investigations into how sensor-based fertilization management can be adapted to diverse urban environments and plant species will enhance its practical application. These advancements can contribute significantly to more sustainable urban landscape practices and environmental resilience.
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Introduction

Nondestructive quantification of leaf chlorophyll content (LCC) of banana and its spatial distribution across growth stages from remotely sensed data provide an effective avenue to diagnose nutritional deficiency and guide management practices. Unmanned aerial vehicle (UAV) hyperspectral imagery can document abundant texture features (TFs) and spectral information in a field experiment due to the high spatial and spectral resolutions. However, the benefits of using the fine spatial resolution accessible from UAV data for estimating LCC for banana have not been adequately quantified.





Methods

In this study, two types of image features including vegetation indices (VIs) and TFs extracted from the first-three-principal-component-analyzed images (TFs-PC1, TFs-PC2, and TFs-PC3) were employed. We proposed two methods of image feature combination for banana LCC inversion, which are a two-pair feature combination and a multivariable feature combination based on four machine learning algorithms (MLRAs).





Results

The results indicated that compared to conventionally used VIs alone, the banana LCC estimations with both proposed VI and TF combination methods were all significantly improved. Comprehensive analyses of the linear relationships between all constructed two-pair feature combinations and LCC indicated that the ratio of mean to modified red-edge sample ratio index (MEA/MSRre) stood out (R2 = 0.745, RMSE = 2.17). For multivariable feature combinations, four MLRAs using original or two selected VIs and TFs-PC1 combination groups resulted in better LCC estimation than the other input variables. We concluded that the nonlinear Gaussian process regression model with the VIs and TFs-PC1 combination selected by maximal information coefficient as input achieved the highest accuracy in LCC prediction for banana, with the highest R2 of 0.776 and lowest RMSE of 2.04. This study highlights the potential of the proposed image feature combination method for deriving high-resolution maps of banana LCC fundamental for precise nutritional diagnosing and operational agriculture management.





Keywords: leaf chlorophyll content, banana, image feature combinations, machine learning, unmanned aerial vehicle hyperspectral imagery




1 Introduction

Banana is one of the important tropical fruits in China; it has been widely cultivated in many regions of China, such as Hainan Province, where banana planting has become one of the pillar industries and a major source of incomes for local farmers. In recent years, the banana cultivation industry shows a relatively stable increasing trend, with a planting area of 3.3 × 104 ha and an annual production of fresh fruits of 1.125 × 106 t in 2023. With the increasing competition in the fruit market, the consumer demand for fruit quantity and quality is also improving, which undoubtedly puts forward higher requirements for the local fruit industry in their production management capacity. However, for decades, the inappropriate application of chemical fertilizer in pursuit of high yields has resulted in serious soil and groundwater pollution, soil quality degradation, nutrient imbalance in the banana plants, and a decline in fruit quality (Guo et al., 2010; Huang et al., 2022). Therefore, to benefit the government and land managers in making informed decisions on agricultural practices, it is critical to improve the monitoring ability and accurately diagnose the nutritional status of banana plants.

The phenotype of banana leaves is broad and big; they are the most direct organ for identifying nutrient deficiencies and guiding fertilizer application because they are the main site of photosynthesis, which determines the primary processes occurring within the plant. Leaf chlorophyll, as the key photosynthetic pigment, can absorb light energy and transfer it into the photosynthetic apparatus, providing essential energy for the growth and development of plants (Curran et al., 1992). In addition, nitrogen is an important component of chlorophyll, so monitoring leaf chlorophyll content (LCC) can indirectly indicate nitrogen and nutritional status (Haboudane et al., 2008). LCC can also be related to plant stress and senescence since it tends to decrease when a plant suffers from external stress (e.g., fertilizer shortage or pest and disease) (Chappelle et al., 1992). Quantifying LCC, overall, has aroused great attention from both land managers and ecophysiologists.

Compared to traditional chemical analysis measured in the laboratory, remote sensing technology has been proven to be an effective way to assess vegetation LCC due to its advantages of rapid data acquisition and nondestructive and accurate monitoring at a large scale (Sims and Gamon, 2002; Wu et al., 2008). Optical sensors embedded on satellites and airborne platforms can acquire spectral information over large areas, which have long been used for vegetation monitoring. Although an increasing number of optical satellite images are freely available, the use of satellite imagery for LCC quantification is still limited by the fact that the image quality is usually susceptible to atmospheric conditions (e.g., clouds and suspended particles), and the spatial resolutions and revisit frequencies are seemingly not enough for supporting crop management activities at the field level and over short critical growth stages (Inoue et al., 2016; Jay et al., 2019; Pimmasarn et al., 2020). During the recent decades, unmanned aerial vehicle (UAV) equipped with RGB, multispectral and/or hyperspectral sensor has been attracting more and more attention particularly in agriculture. RGB and multispectral data are widely used by researchers to estimate LCC for various crops (Caruso et al., 2017; Xu et al., 2022; Barata et al., 2023). However, the broadband spectral information provided by RGB and the multispectral sensors that offer average spectral information over a wide range may result in loss of critical and subtle spectral features which are available in specific hyperspectral bands (Tao et al., 2020). Unlike RGB and multispectral observations, hyperspectral data containing full- and narrow-band spectral radiation information could describe various characteristics associated with the biochemical and physiological traits of targets (Sims and Gamon, 2002; Kong et al., 2022). Consequently, a hyperspectral sensor mounted on UAV will hold a promising potential in the accurate assessment of LCC. Earlier studies have made lots of attempts to extract the spectral response characteristic of LCC at visible light and near-infrared and analyze their ability in characterizing the growth and nutritional state of crops (Haboudane et al., 2002; Inoue et al., 2016). They established LCC estimation models and achieved acceptable accuracy and performance under specific conditions for wheat, maize, peanut, and other field crops (Qi et al., 2021; Zhang et al., 2021; Qiao et al., 2022). It has been accepted that UAV mounted with hyperspectral sensor is very flexible to adjust its flight heights and efficient to collect data at a higher spatial resolution (can reach up to the centimeter level) in a short time, enabling it to capture images of various vegetations with abundant spectral and textural information during each key growth period. These properties make it more suitable for monitoring vegetation nutritional status especially in cloudy and rainy regions, such as Hainan Province. In comparison to the abovementioned field crops with relatively homogeneous canopies, fruit trees have more complex canopy structure and leaf morphology. At present, studies on the nutritional diagnosis of fruit trees from remote sensing data mainly focused on apple, pear, citrus, etc (Osco et al., 2019; Azadnia et al., 2023; Huang et al., 2024). However, for a tropical fruit tree such as banana, adoption of UAV hyperspectral remote sensing in LCC estimation remains largely unexplored.

Vegetation index (VI), calculated by the spectral reflectance of two or more bands according to linear or nonlinear mathematical formula, is widely applied for leaf biochemical parameters estimation owing to its simplicity and computational efficiency. A number of VIs were proposed based on knowledge of the reflectance properties of LCC and have been proven to have the ability of reducing the noise in hyperspectral reflectance caused by soil background, atmospheric absorption, and other leaf components, consequently maximizing the corresponding information on leaf variables of target (Rondeaux et al., 1996; Sims and Gamon, 2002; Wu et al., 2008). Lots of studies have been devoted to developing the linear relationship between VI and LCC (Gitelson et al., 2006; Wu et al., 2008; Kong et al., 2017a, Kong et al., 2017b). However, some studies showed that nonlinear models have more obvious advantages than linear models in quantitative prediction (Kira et al., 2015; Zhang et al., 2021). Lately, machine learning regression algorithms (MLRAs), e.g., Gaussian process regression (GPR), support vector regression (SVR), and adaptive regression splines (ARS), become powerful candidates for the estimation of LCC from spectral reflectance of multi-related bands or VIs because of their ability to perform adaptive, nonlinear data fitting (Verrelst et al., 2013a; Upreti et al., 2019; Guo et al., 2022). However, the VIs utilize only a limited amount of information available in spectral data and are susceptible to saturation at high canopy coverage (Kong et al., 2017a). Texture features (TFs) describe the grayscale properties and spatial arrangement of image pixels, can make up for the insensitivity of spectral information in the regional size and direction, and have a strong resistance to image noise (Khosravi and Alavipanah, 2019). To maximize the advantages of VIs and TFs, previous studies tried to combine both image features to track the variations in nutritional parameters. Some researchers extracted the VIs and TFs from remote sensing images and developed new combined image features, which were proven to provide better result for estimating LCC and nitrogen (Chen et al., 2019; Zheng et al., 2020; Guo et al., 2022). Inspired by the approved LCC modeling presented above, MLRAs seem also to be a useful tool for coupling the spectral and textural information to monitor crops (Khosravi and Alavipanah, 2019; Li et al., 2023; Biswal et al., 2024; Zhang et al., 2024). The high spatial resolution of UAV makes it possible to document abundant texture feature information in field experiments. However, the benefits of using the fine spatial resolution accessible from UAV imagery as well as the potential ability of the combined use of VIs and TFs for retrieving the LCC in banana plants, and what degree the image feature combinations can contribute to improve banana LCC compared to individual spectral features which are rarely reported and kept unknown and need to be investigated.

The aim of this study was to propose the approaches of spectral and texture feature combination based on UAV hyperspectral data then benefit the nondestructive estimation of banana LCC. The specific objectives were to (i) investigate the correlation between banana LCC and individual VI and TF and identify the optimal image features, (ii) develop two-pair feature combinations of VI and TF and establish the linear relationship with LCC, (iii) estimate the LCC using multiple MLRAs with the VIs, original VIs and TFs combination as well as selected VIs and TFs combination as input, and (iv) evaluate the potential ability of the best linear two-pair VI and TF combination and nonlinear MLRA models in banana LCC prediction and map its spatial distribution using UAV hyperspectral images.




2 Materials and methods



2.1 Study site

The experiment was conducted at the Banana Cultivation Research and Development Base in Danzhou Municipality (19°23′ N, 109°58′ E), Hainan Province, during April 2024. A cultivar of banana (Musa acuminate, AA) was selected, and two plots were investigated in this study, referred to as plot 1 and plot 2, respectively (Figure 1). Because the banana plants of the two plots were planted at different times, they have different growth stages during the field campaign, i.e., leaf development stage (BBCH 18) and fruit development stage (BBCH 72). The banana plants in plot 1 had eight completely open leaves, with a homogenous yellowish green color, and the blades were relatively small and narrow, while the plants in plot 2 had 11 or 12 leaves, and the fruits were already formed, the leaves were all healthy and dark green, with the area approximately twice bigger than those at the leaf development stage. The soil is laterite, with nutrient content of about 10.78 g/kg of organic matter, 60.1 mg/kg available nitrogen, 25.41 mg/kg of available phosphorus, and 120.79 mg/kg of available potassium and pH of 5.28. All plots were managed in the same way, including the fertilization and irrigation treatments.

[image: A map of Danzhou municipality with marked locations for Plot 1 and Plot 2. Each plot is shown in detail as aerial images, displaying rows of crops with red markers indicating specific points. Plot 1 and Plot 2 are located southeast and northeast on the map, respectively. The map includes a scale bar and orientation marker.]
Figure 1 | Location of study site. The red spots are the ground measurement locations for leaf chlorophyll content.




2.2 Data collection



2.2.1 UAV hyperspectral image acquisition and processing

The DJ M300RTK UAV platform equipped with the X20P hyperspectral imaging sensor (Cubert GmbH, Ulm, Baden-Württemberg, Germany) was used to acquire remote sensing data of the banana fields. The quality of the X20P hyperspectral imaging sensor is 630 g, and the size is 6 cm*10.7 cm*9.5 cm. Its spectral resolution is approximately 3.96 nm, with spinning wavelength of 350 to 1,000 nm with 164 bands. Radiometric calibration was taken before each flight. The flight height was approximately 80 m, and the spatial resolution of collected hyperspectral images was 2.87 cm. Its flying speed was 6 m/s, the forward overlap was about 90%, and the lateral overlap was about 90%. The flight was conducted under clear sky conditions between 11:00 a.m. and 13:00 p.m. (Beijing local time) to minimize shadowing in the images. The Cubert Utils Touch software was used for image radiometric calibration and fusion of the hyperspectral data and the corresponding panchromatic image. Agisoft PhotoScan (Agisoft, St. Petersburg, Russia) was employed to image mosaicking.




2.2.2 Leaf chlorophyll content measurement

The SPAD-502 meter (Konica-Minolta, Tokyo, Japan) measures the transmission of red (approximately 650 nm) and near-infrared (approximately 940 nm) radiation through plant leaves (Minolta, 1989). The increase of LCC could increase the absorption of red radiation, and the transmission of near-infrared radiation is used as a reference, so the calculated SPAD value was applied to represent the amount of LCC present in the sample leaf in many studies (Parry et al., 2014; Zhou et al., 2020; Zhang et al., 2022). In this study, LCC of banana was measured by the SPAD-502 meter. The central position of each measurement point was geo-located with GPS, and a total of 74 ground measurement points (30 points in plot 1 and 44 points in plot 2) were marked in Figure 1. The SPAD value of each point was generated from the mean SPAD of a total of five banana plants, i.e., the middle and four corner plants in each measurement point. Specifically, for a given measurement point, three leaves from the top of the canopies were selected from each of the five plants, and 20 SPAD measurements were conducted per leaf, with 60 measurements in total per plant. All measurements of the five plants were averaged to obtain the SPAD value for the corresponding ground measurement point. We performed the verification of the SPAD meter by quantifying the relationship between LCC determined in the laboratory and the SPAD value, but because of the limited experiment condition and operators, the LCC sampled from only 18 points were measured by chemical analysis (Figure 2). Several 1-cm circles were cut from each leaf sample. After weighing the fresh leaf weight, the samples were ground in 10 mL of 95% ethanol extract solution. After storing the solution in darkness for more than 24 h, the absorbance was measured with a UV-VIS spectrophotometer (Perkin-Elmer, Lambda 5, Waltham, MA, USA) at 649- and 665-nm wavelengths. The LCC were calculated using equations in Lichtenthaler (1987). From Figure 2, the SPAD value exhibited a strong exponential function relationship with LCC measured in the laboratory, which was in accordance with many published studies (Uddling et al., 2007; Parry et al., 2014), further indicating that it was reliable to use the SPAD meter for banana LCC measurement.

[image: Scatter plot showing the relationship between SPAD value and LCC measured in the lab in micrograms per square centimeter. Data points are plotted with an exponential trend line, equation \( y = 12.97e^{0.0253x} \) and \( R^2 = 0.83 \), indicating a strong positive correlation.]
Figure 2 | Verification of SPAD values using leaf chlorophyll content measured by chemical analysis in the laboratory.





2.3 Extraction and screening of image features



2.3.1 Extraction of vegetation index and textural feature

A series of image features including VIs and TFs were extracted from the hyperspectral images. A total of 20 VIs that were previously used for LCC estimation in the published literatures were selected in this study (Table 1). They were classified into original vegetation index (VIorg) and red-edge vegetation index (VIre). Previously developed VIre that has analogous form with corresponding VIorg was chosen to compare the performance for LCC estimation. Before the extraction, the hyperspectral images were firstly separated into banana plants and soil background by the statistic-based segment method. The process of this method was as follows: The NDVI was selected as a standardized way to assess whether a pixel observed was vegetation or not (Devadas et al., 2009). In general, NDVI ranging from 0.3 to 1.0 was considered as vegetation (Zhang et al., 2019). To find out the banana plants and soil in the two plots more accurately, the pixels only containing banana plants and the pixels only containing soil were selected and counted from the corresponding hyperspectral images, respectively. The result showed that the optimal thresholds of NDVI for separating banana plants and soil was set as 0.48 for plot 1 and 0.5 for plot 2, which were used as the mask files to extract the plants. The pixels with NDVI larger than 0.48 in plot 1 and larger than 0.5 in plot 2 were regarded as banana plants; the rest of the pixels were regarded as soil. It should be noted that the pixels only containing banana plants were used for the subsequent calculation of VIs and TFs. For the ground measurement points, the VIs and TFs were extracted as follows: 50*50 pixels region of interest (ROI) centered around the measurement point was manually selected, and then the mean value of VI or TF within the ROI was deemed to represent the corresponding measurement point.

Table 1 | Vegetation indices used in this study.


[image: Table listing vegetation index abbreviations, types, formulas, references, and bands used. Original vegetation indices like SR, NDVI, and GDVI, with formulas and sources such as Jordan (1969) and Sims and Gamon (2002), use bands like 802 nm and 682 nm. Corresponding red-edge indices like SR_re and NDVI_re use bands such as 802 nm and 706 nm. References include authors like Chen (1996) and Gitelson et al. (2006).]
For the TFs extraction, the hyperspectral images were first transformed by principal component analysis (PCA) with the aim of reducing the dimensionality, redundancy, and collinearity of data. In this study, we analyzed the TFs generated from the first three principal component (PC) images, i.e., the first PC image (PC1), the second PC image (PC2), and the third PC image (PC3), which contained more than 96% of the cumulative variance, hereinafter referred to as TFs-PC1, TFs-PC2, and TFs-PC3, respectively. Eight TFs were extracted to evaluate their correlation with LCC (Table 2). They were based on the gray-level co-occurrence matrix defined by Haralick et al. (1973). A 3 × 3 calculation window was chosen when calculating the TFs, which could capture more local details and facilitate to detect subtle changes of image texture (Yue et al., 2019).




2.3.2 Screening of image features

Pearson correlation coefficient (r) and maximum information coefficient (MIC) were used to evaluate the correlation between VIs or TFs and LCC. Pearson correlation coefficient is a widely used index which can measure the linear correlation between two variables, with the r value ranging from -1 to 1, while MIC was explored to evaluate the linear and nonlinear between variables; the range is 0 to 1. The higher the absolute value of r (|r|) or MIC, the better correlation of the VI or TF with respect to LCC. In this study, the VI or TF who has |r| or MIC higher than 0.8 was selected as one of the potential predictors for banana LCC using MLRAs method.





2.4 LCC estimation modeling and validation

In this section, we propose two types of methods for assessing banana LCC, i.e., two-pair image feature combination method and multivariable image feature combination using MLRAs. Model validation was also included.



2.4.1 LCC estimation based on two-pair image feature combination

The SR, NDVI, and DVI are three types of earlier proposed and the most classic and the most widely used formulas in leaf biochemical and physiological parameters estimation, which are composed of two spectral reflectance or features. Inspired by this, we calculated all possible VI and TF combinations in types of SR, NDVI, and DVI (referred to as two-pair image feature combination) for banana LCC assessment. Linear regression was adopted to model the relationship between LCC and each image feature combination, and their performances were tested to determine the best two-pair image feature combination for LCC estimation. They were defined as Equations 1–3). We consequently obtained a total of 160 image feature combinations for each type. All of the calculations were implemented using MATLAB R2021b (The MathWorks, Inc., Natick, MA, USA).

[image: Equation showing "SR-type" equals "TF" over "VI," labeled as equation (1).] 

[image: Equation showing NDVI-type equals the difference between VI and TF divided by the sum of VI and TF, labeled as equation 2.] 

[image: The image shows a mathematical equation: \( DVI - \text{type} = VI - TF \) followed by the number three in parentheses.] 




2.4.2 LCC estimation using multivariable image feature combination based on MLRAs

Four MLRAs, including PLSR, ARS, SVR, and GPR, were employed to combine more than two image features for LCC estimation. The VIs, original Vis, and TFs combinations, as well as the selected VIs and TFs combinations optimized by Pearson correlation and MIC, were respectively used as input variables in these MLRAs. The ARS, SVR, and GPR models were conducted to build nonlinear relationships between input variable and LCC, while the PLSR model was carried out to build their linear relationship.

PLSR is a bilinear calibration method for retrieving vegetation biochemical parameters. It integrates multiple linear regression, least square regression, and principal component analysis, which compresses the independent variables (e.g., multiply image features) into several latent variables with the strongest explanation to the model system and finally reduces the multi-collinearity problem of input variables and influence of data noise on the regression model (Hansen and Schjoerring, 2003).

ASR is a basic function-based nonparametric regression, which was firstly developed by Friedman and Roosen (1995). ASR has the ability of automatically identifying the most relevant variables available from remote sensing data and of handling variable interactions, which is crucial for integrating multi-type data (e.g., VIs and TFs). It also provides an explicit expression for prediction model, making it easier to interpret the relationships between input features and vegetation parameters.

SVR was derived from the statistical learning theory proposed by Cortes and Vapnek (1995). It can effectively capture the complex nonlinear relationships between remote sensing data and vegetation parameters by employing kernel functions to map input variables into a high-dimensional feature space. Additionally, SVR relies primarily on support vectors for training, making it useful when the number of samples was limited in biochemical parameters estimation (Guo et al., 2022).

GPR is a probabilistic approximation to nonparametric kernel-based regression. It has been proven to have significant advantages in vegetation parameter retrieval due to its powerful nonlinear modeling capability, small sample adaptability, and ability to quantify prediction uncertainty (Campos-Taberner et al., 2016; Upreti et al., 2019). It offers an explicit form of the predictive model, which establishes a nonlinear relation between the input (e.g., VIs and TFs) and the output variable (i.e., LCC). Moreover, GPR is particularly suitable for scenarios with limited ground-measured data and supports the integration of multi-source and high-dimensional input features.




2.4.3 Model validation

The validity of LCC estimation models was assessed based on a k-fold (k = 10) cross-validation procedure, which splits the dataset into 10 equal-sized subsets. In each iteration, nine subsets were used as the training set, and the remaining one was used as the validation set to evaluate the models. The coefficient of determination (R2) and the root mean square error (RMSE) of the measured and predicted LCC values were used to evaluate the prediction ability of the models based on two-pair image feature combination method and multivariable image feature combination using MLRAs.






3 Results



3.1 Correlation analysis between image feature and LCC

The correlations between LCC and all VIs in Table 1 and all TFs extracted from three PC images in Table 2 were calculated and analyzed. Figure 3 shows the |r| and MIC values for different types of VIs and TFs. The values of |r| or MIC larger than 0.8 were selected and presented in Table 3. From the correlations of different VIs with respect to LCC, as expected, a majority of VIre were superior to the corresponding VIorg with similar forms. For instance, the GDVI showed weakness in correlating LCC with |r| of 0.38 and MIC of 0.33, while the REDVI dramatically increased by 88% and 98% respectively, compared to the GDVI. The values of MIC of the MDVIre and OSAVIre were also improved greater than 14% in comparison of the MDVI and OSAVI. This result highlighted a strong potential for use in banana LCC estimation with red-edge spectral band. The best VI was MSRre, which generated the correlation of 0.836 with LCC. For the TFs, the TFs-PC1 were generally correlated better with LCC than the TFs-PC2 and TFs-PC3, owing to the larger values of both |r| and MIC. From Table 3, we found that all eight TFs obtained in PC1 image were selected using Pearson correlation, while none of the TF extracted in PC3 image reached the threshold of MIC. The MEA was selected not only in all PC images by Pearson correlation method but also in PC1 image by MIC.

Table 2 | Texture features used in this study.


[image: Table displaying texture feature abbreviations, their names, and corresponding formulas. Features include Mean (MEA), Variance (VAR), Homogeneity (HOM), Contrast (CON), Dissimilarity (DIS), Entropy (ENT), Second Moment (SEC), and Correlation (COR). Formulas involve summations over image pixel positions \(i\) and \(j\), using \(p(i,j)\) for pixel relative frequency.]
[image: Bar charts compare Pearson correlation coefficients and maximal information coefficients across different parameters. The top chart focuses on various indices (VI), with 'VI_red' and 'VI_gre' marked. The bottom three charts display TF-PC1, TF-PC2, and TF-PC3 attributes. Green bars represent correlation coefficients, and black lines with circles represent MIC values. The red dashed line indicates a threshold.]
Figure 3 | Pearson correlation coefficient (|r|) and maximal information coefficient (MIC) between different types of VIs and TFs vs. LCC. The green histogram indicates the value of |r|, the black broken line indicates the value of MIC, and the red dashed line indicates |r| = 0.8 or MIC = 0.8.

Table 3 | Selected VIs and TFs using Pearson correlation coefficient (|r|) and maximal information coefficient (MIC).


[image: Table comparing image features selected by two value types: |r| value and MIC value. For VI, features selected by |r| include SR, NDVI, and others; by MIC, SR, NDVI, and mNDVI are selected. TF-PC1 features by |r| are MEA, VAR, among others; by MIC, MEA, ENT. TF-PC2 features are MEA for |r|, CON, DIS for MIC. TF-PC3 features MEA for |r|, none selected for MIC.]



3.2 Banana LCC estimation using two-pair feature combination of VI and TF

Figure 4 shows all coefficient of determination (R2) values based on the linear regression analyses of LCC against all possible two-pair combinations of the VI and TF used in types of SR, NDVI, and DVI. The closer to yellow and the higher the size of the scatter, the larger R2 value and better accuracy of the model derived from the image feature combination. The results indicated that for all the three types, image feature combinations calculated from the TFs-PC1 paired with VIs exhibited the strongest relationship with LCC (Figures 4A–C) and then those calculated from the TFs-PC2 (Figures 4D–F) followed by the TFs-PC3 (Figures 4G–I). This means that textural information on the PC1 image contributed more in LCC determination compared to that on the PC2 and PC3 images. Furthermore, it should be noteworthy that in comparison to other TFs, the MEA combined with almost all VIs preserved higher sensitivity to LCC variability, which was coincident with the results in Figure 3 where the MEA is showing better correlation and also being selected from the PC1 and PC2 as well as PC3 images. This phenomenon was more obvious when extracting the MEA from PC2 and PC3 images, with the size and color of scatters revealing relatively high R2 values (Figures 4D–I).

[image: Nine heatmaps compare SR-type, NDVI-type, and DVI-type across three principal components (PC1, PC2, PC3). Each panel shows variables like MTCI, OSAVIre, and NDVI against metrics such as MEA, VAR, and COR. Colors range from blue to yellow, indicating low to high values. Each panel is labeled (a) to (i).]
Figure 4 | Coefficient of determination (R2) based on the linear relationship between LCC and all possible two-pair feature combinations of VI and TF extracted from PC1 (A–C), PC2 (D–F), and PC3 (G–I) images in types of SR, NDVI, and DVI.

From Figures 4A–C, almost all image feature combinations showed similar patterns among the SR, NDVI, and DVI types. A high degree of image feature combinations constructed by the TFs-PC1 and VIs behaved well against LCC. The MSRre together with MEA were thereinto selected from every 160 feature combinations in each type due to their outstanding performances in capturing variations in CCC with higher R2 than 0.75. The result is shown in Table 4. It can be seen that the most effective feature combination was provided by the ratio of MEA to MSRre (referred to as MEA/MSRre), which explained 78.9% of the variation in LCC, implying that the ratio clearly combines the abilities of the given VI and TF responding to LCC. Whereas feature combinations that showed weakness in characterizing LCC were different among the tree types, the R2 values obtained using the HOM/GDVI, SEM/GDVI, MEA−SRre, and CON−MSRre were less than 0.1.

Table 4 | Optimal two-pair feature combination selected in types of SR, NDVI, and DVI, linear relationship, and coefficient of determination (R2) between optimal feature combination and LCC.


[image: Table showing three types: SR-type, NDVI-type, and DVI-type, each with corresponding PC image (PC1), optimal two-pair feature combinations, models, and R-squared values. Models are linear equations showing relationships between features. R-squared values are 0.789, 0.77, and 0.756, respectively. Italicized note explains variables in the "Model" column.]



3.3 Banana LCC estimation using multivariable image feature combinations

PLSR, ARS, SVR, and GPR methods were employed to combine more than two image features for LCC estimation. Three variable groups were included, i.e., VIs, original Vis, and TFs combinations, and selected VIs and TFs combinations from Pearson correlation as well as from MIC as shown in Table 3. To assess the predictive capabilities of the models, R2 and RMSE were calculated for all of the modeling results (Table 5). Overall, the models using all VIs showed a relatively moderate performance, with R² values around 0.615 to 0.63 and RMSE values around 2.65 to 2.75. In comparison with all VIs, the models based on VIre provided a more accurate estimation in terms of R2 and RMSE values when using the four MLRAs, with R² increased to a range of 0.63 to 0.67 and RMSE decreased to a range of 2.492 to 2.643. More importantly, the image feature combinations, which not only included spectral information but also image textures, dramatically improved the estimation results for LCC across the three input groups compared to using the VIs alone. However, MLRAs showed varying estimation performances for different feature combinations.

Table 5 | Predicted LCC results using PLSR, ARS, SVR, and GPR with different input variables.


[image: A table compares different feature sets for four models: PLSR, ARS, SVR, and GPR. It shows the number of features, R-squared values, and RMSE for each. Original features and features selected by Pearson correlation and MIC are examined. R-squared values over 0.75 are bolded. Combinations including all VIs, TFs-PC1, PC2, and PC3 are evaluated. Features selected by Pearson and MIC show improved performance.]
From the results of original feature combination and two selected feature combination groups, it could be observed that the examination of different feature combinations input showed that the combinations of TFs-PC1 and VIs resulted in better LCC estimates than the combinations of TFs-PC2 and VIs, with almost all R2 values exceeding 0.75. Similar performances with models using TFs-PC2 can be found in the models using TFs-PC3. With respect to the MLRAs used, the GPR method acquired a slightly better accuracy when considering the VIs+TFs-PC1 as input variable in the three feature combination groups.

As expected, the VIs+TFs-PC1 combination selected using Pearson correlation method provided a robust improvement, especially for the ARS, SVR, and GPR models, with R² ranging from 0.765 to 0.768 and RMSEs close to 2.074. Meanwhile, the desirable result was also seen for models derived from the VIs+TFs-PC1 combination selected through MIC, especially the GPR model, which outperformed all other MLRAs, demonstrating that it was the best model for LCC estimation.




3.4 Evaluation of LCC prediction using UAV hyperspectral images

We compared the performance of the best two-pair image feature combination and that obtained in a multivariable calibration based on GPR algorithm for LCC prediction, i.e., models derived from the MEA/MSRre and the selected VIs+TFs-PC1 extracted through the MIC method. Figure 5 shows the scattering plot between LCC estimated from UAV hyperspectral reflectance data and LCC measured in the field campaign. We found that the predictive capability of the two models seems satisfactory, which had led to high coefficients of determination (R2 > 0.74) and good RMSE values, and they all reached the 0.001 significance level. However, judging by the scattering point distribution, a slight dispersion of the MEA/MSRre model occurred; prediction using the GPR model achieved the best result, with the highest R2 of 0.776 and the lowest RMSE of 2.04.

[image: Two scatter plots compare predicted versus measured LCC values. The left plot (MEA/MSR) shows a trendline equation of y = 0.758x + 14.7, R² = 0.745, RMSE = 2.17, p < 0.001. The right plot (GPR_MIC) has a trendline equation of y = 0.769x + 14.09, R² = 0.776, RMSE = 2.04, p < 0.001. Both plots include data points, a solid trendline, and a dashed line representing perfect correlation.]
Figure 5 | Comparison between predicted LCC from UAV hyperspectral reflectance data and ground-measured LCC using the best two-pair MEA/MSRre combination (left) and GPR model derived from selected VIs+TFs-PC1 extracted through the MIC method (right).

Based on the results presented above, the GPR model was applied to UAV hyperspectral images to map chlorophyll status over the two large plots of banana, as shown in Figure 6. Because they corresponded to the LCC distribution at different growth stages of banana, various spatial variability in each plot was exhibited. A first observation across the different sites was that the banana LCC in plot 1 was overall homogeneous at the leaf development stage (Figure 6, left). Nevertheless, at the fruit development stage, a more obvious spatial heterogeneity of LCC appeared in plot 2 (Figure 6, right) due, in large part, to the different degrees of nutritional absorption and migration at the later stage of the banana. Moreover, the dynamic changes of LCC were revealed; they gradually increased as the progress of growth. The range of LCC at leaf development stage was concentrated from 54 to 60, while the LCC at fruit development stage dominated the range of 58 to 70.

[image: Two aerial images depicting land cover classification (LCC) with color-coded scales. The left image shows a long, narrow area mostly in dark green, indicating LCC values from fifty-four to fifty-six. The right image shows segmented fields with varied colors from dark green to red, indicating LCC values ranging from below fifty-four to over seventy. Both images include a scale and a north arrow for orientation.]
Figure 6 | Spatial distributions of banana LCC in plot 1 (left) and plot 2 (right) mapped using the best GPR model.





4 Discussion

The assessment and monitoring of banana LCC status and spatial distribution are of importance for addressing crucial issues, such as growth monitoring, nutritional stress, and management practices. In this study, we estimated LCC by various feature combinations of spectral and textural information derived from UAV hyperspectral images for banana at different growth stages. The VI method is widely used in quantifying vegetation parameters. However, many literatures have indicated that soil background has a strong influence on canopy reflectance and the derived VIs relating to leaf parameters, especially at the early growth stages (Zha et al., 2020). A meaningful process we conducted to the original UAV hyperspectral images was to remove the soil background pixels by statistic threshold segment method. Then, a series of VIs and TFs were extracted based on pixels only containing vegetation, further ensuring the reliability of LCC estimation. However, relative experiments should be conducted to further verify the specific impact of soil background on banana LCC quantification in the future.

The red-edge spectral bands located between 700 and 740 nm with being not static but rather shifting during vegetation stress or in a good condition was proven to have the potential for improving LCC estimation for a variety of vegetation, such as maize, wheat, maple, sugar beet, etc (Gitelson et al., 2006; Wu et al., 2008; Jay et al., 2017; Kong et al., 2022), which inspired the inclusion of red-edge bands into not only airborne but also satellite sensors. The VIre used in our study was likewise expected to perform better for banana. It is interesting to note that a desirable result was obtained when using UAV hyperspectral data. It is pronounced in banana LCC determination where the VIre showed higher sensitivity as compared with the original VI with a similar form, which often suffers from saturation problems (Wu et al., 2008). To identify the specific band in the red-edge region from UAV hyperspectral image that can substantially make the VIre achieve the best result for banana, we applied the spectral reflectance that ranged from 702 to 742 nm to replace the original red-edge band contained in the VIre one by one and further compared their performances in LCC estimation. The R2 values of linear relationships with LCC are presented in Figure 7. An important information revealed in the figure was that the trends of all VIre curves, except for the REDVI and OSAVIre, were generally similar, showing the best correlation with LCC when 730-nm red-edge band participated in the regression model. This implied that the red-edge band centered mostly at 730 nm could help in the design of an index or a sensor band that could better estimate the LCC for banana.

[image: Nine line graphs show the coefficient of determination (R²) against red-edge spectral band (nanometers) for different vegetation indices: SRre, NDVIre, REDVI, MDVIre, MSRre, mNDVIre, CIre, OSAVIre, and MTCI. Most graphs display a high R² around 0.7, with a noticeable decline beyond 734 nanometers. REDVI decreases more sharply after 726 nanometers compared to others.]
Figure 7 | R2 values of linear relationships between LCC and the VIre derived from the red-edge spectral band from 702 to 742 nm.

In addition to individual VI, the linear two-pair feature combination and nonlinear multivariable MLRAs were independently applied to combine the VI and TF features derived from hyperspectral images for LCC assessment. Based on Figure 4 and Table 5, the more accurate estimation results were generated when the TFs (especially the MEA) were involved in LCC models compared to models only using spectral information. Guo et al. (2022); Yue et al. (2019), and Reddersen et al. (2014) also reported that combing VIs and TFs can lead to better LCC and aboveground biomass estimates for crops and grassland. Our outcomes open the possibility to couple the potential of spectral and textural features for further improving the accuracy of LCC retrieval for tropical fruit tree (i.e., banana) at the field scale. In the present study, eight TFs were selected, and a total of 24 TFs were extracted from the first three images after principal component analysis. However, different performances of VI paired with TF extracted from different PC images were obtained; the combined uses of VI and TF-PC1 achieved better results than others combined by TF-PC2 and TF-PC3 whether in linear relationships or nonlinear MLRAs. One of the main reasons for such results is that the growing of banana plants could cause the changes in TFs of UAV image data. The TFs extracted from PC1 image captured more information related to the spatial resolution of the dark and bright areas of the image (Haralick et al., 1973), facilitating the accuracy of LCC prediction.

Compared to the two-pair image feature combination method, MLRAs using a combination of multiple VIs and TFs-PC1 as input had a slightly better ability for LCC prediction, especially the VIs+TFs-PC1 selected by Pearson correlation and MIC. This was expected since they utilized more features and nonlinear transforms. Among all MLRAs, the GPR model based on not only the original but also the selected feature combinations stood out as being the most accurate than the rest of the MLRAs (Table 5), suggesting that it is the optimum algorithm for banana LCC. This is in accordance with previous studies which reported that the GPR satisfied in varied leaf parameter retrieval using airborne or spaceborne satellite data (Verrelst et al., 2013a; Upreti et al., 2019; Zhou et al., 2020). The GPR with selected VIs+TFs-PC1 by MIC as input provided the best result in terms of both high accuracy and low error (Figure 5, right) for LCC ground validation test. In essence, GPR is based on non-parametric regression in a Bayesian framework. It builds models by taking fully into account the characteristics of the data itself, making it affordable to deal with complex, nonlinear, or irregular data (Campos-Taberner et al., 2016). Furthermore, the model was earlier evaluated as a potential predictor with a relatively small dataset (Verrelst et al., 2013a), which was another reason that ensuring it still had an outstanding performance when the number of banana ground-based samples was limited in our study. More importantly, along with pixelwise estimation maps for banana LCC at two growth stages, GPR can provide the accompanying confidence intervals, which was a significant advantage over other competitive MLRAs (e.g., PLSR, ASR, and SVR) because these confidences put forward some insight in the robustness and reliability of the LCC retrieval (Verrelst et al., 2013b). Furthermore, a total of 11 image features were screened by the MIC, including five original vegetation indices, four red-edge vegetation indices, and two texture features extracted from PC1 images. The selected VIs contained the narrow bands in red, red-edge, and near-infrared spectral regions which were proven to be sensitive and closely related to the LCC (Gitelson et al., 2006; Wu et al., 2008; Zhou et al., 2024). The introduced green band could suppress the saturation phenomenon of the relationship of absorptions versus LCC and is resistant to atmospheric effects (Gitelson et al., 1996, Gitelson et al., 2003). The selected two TFs, i.e., MEA and ENT, provided a more comprehensive analysis of texture features of UAV images, helping to understand the global brightness distribution and texture complexity (Haralick et al., 1973). This suggests that the inclusion of multiple effective image features in the regression model allowed for the incorporation of more valid spectral and textural information related to the LCC variable, resulting in improved estimation for banana. Even though the GPR model based on VIs+TFs-PC1 selected using MIC achieved a relatively high accuracy with limited samples of LCC, it is still needed to collect more ground-measured samples throughout the whole growth periods of banana in future research.




5 Conclusion

The analyses of this study indicated the potential of UAV hyperspectral images in efficient LCC monitoring for tropical fruit trees, i.e. banana plants, across different growth stages. We first analyzed if using the red-edge bands in UAV hyperspectral data improved the estimation of banana LCC over conventionally used original red or green bands in VIs. The result demonstrated that the VIre presented better correlation and achieved higher sensitivity in LCC estimation based on MLRAs compared to the VIorg, expanding the positive role of red-edge bands in assessing LCC for banana. In addition to VIs, several TFs, especially the MEA, also showed satisfactory correlations with LCC. To investigate the contribution of VIs integrated with TFs, on one hand, we proposed a comprehensive two-pair VI and TF combination method to explore the best two-pair feature combination for estimating LCC; on the other hand, MLRAs with multivariable groups containing VIs and TFs as input were also developed and applied. We found that the combination of VI and TF significantly improved the accuracy of LCC retrieval in comparison to using VI alone. The most robust two-pair feature combination was MEA/MSR{sb}{/sb}re, and the GPR model using the selected VIs+TFs-PC1 extracted through MIC as input variable outperformed the other MLRAs (i.e., PLSR, ASR, and SVR). They improved the prediction accuracy with R2 of 0.745 (p < 0.001) and 0.776 (p < 0.001), respectively, also implying that the latter model was the most suitable one for quantifying banana LCC. This study provides insights into the remote estimation of LCC for tropical fruit trees. Our proposed retrieval approaches by combing the spectral and image textural features could offer great possibilities for more accurate diagnosing of nutritional status and providing practical guidance for precision fertilization.
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In specialty crops, water and nutrient management may be optimized using accurate, high-resolution soil maps, especially in resource-constrained farmland, such as California. We evaluated the use of soil apparent electrical conductivity (ECa) and gamma-ray spectrometry (GRS) to map particle size fraction across three micro-irrigated non-saline citrus orchards in California. Our research showed that ECa was a reliable predictor of soil texture, particularly sand and silt contents, with Pearson correlation coefficients (r) as high as -0.92 and 0.94, respectively, at the field level. Locally-adjusted analysis of covariance (ANOCOVA) regressions using ECa data returned accurate sand, silt, and clay content estimations with mean absolute errors (MAE) below 0.06, even when calibrated with a limited dataset (n=5 per field). On the other hand, we observed mixed results with GRS. We observed negative correlations between GRS total counts and sand content over the entire dataset (r = -0.55). However, one site (Strathmore) showed a field-scale positive correlation (r = 0.88). Clay content significantly correlated with gamma-ray total counts (TC) over the entire dataset (r = 0.37) but not at the field scale. Additional soil data analyses using GRS radionuclide ratios and soil laboratory analyses using diffuse reflectance infrared Fourier transform spectroscopy and acid ammonium oxalate extractable elements indicated unique geochemical and mineralogical characteristics in Strathmore, suggesting that factors such as soil mineralogy influenced the GRS measurements. This inconsistency prevented the development of a multi-field GRS-based soil texture ANOCOVA model. These findings confirm that ECa is highly effective for soil texture mapping in non-saline soils using linear modeling, while GRS may require field-specific calibration due to variations in local mineralogy. Integrating multi-sensor data is a viable means for reducing ground-truthing requirements and related costs, and improving the quality and accuracy of soil maps in agriculture.
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1 Introduction

Accurate soil maps are critical for efficient and sustainable nitrogen and water management in specialty crops like citrus. Variations in soil properties, such as texture and moisture content, remarkably influence the availability and uptake of nutrients and water. Soil texture, determined by the proportion of sand, silt, and clay particles, affects key soil processes such as water retention, drainage, and nutrient-holding capacity. These processes, in turn, influence the movement and availability of water-soluble nitrogen and other macro and micro elements applied as fertilizers and diffused within the soil profile. Nitrogen-deficient citrus plants are stunted, whereas excessive nitrogen promotes vegetative growth and increases susceptibility to diseases that damage fruit, kill spurs, and may reduce yields in following years (Muhammad et al., 2018). Timing of nitrogen fertilization is crucial in citrus. Peak nitrogen uptake in citrus trees happens during blooming and early fruit growth (Muhammad et al., 2018). In areas with coarse-textured soils (e.g., sandy soils), the high permeability and low water-retention capacity may lead to nitrogen leaching, particularly in the form of nitrate (NO3-), beyond the root zone and into groundwater. Nutrient leaching reduces the fertilizer use efficiency by crops and increases the risk of groundwater contamination, contributing to issues such as eutrophication of water bodies and pollution of drinking water sources. Conversely, in fine-textured soils (e.g., clay-rich soils), higher water retention and slower drainage may lead to waterlogged conditions, especially in low-lying areas. Under such anaerobic conditions, denitrification processes may dominate, converting nitrate into gaseous forms of nitrogen such as nitrous oxide (N2O), a potent greenhouse gas. Fields characterized by wide variability of soil texture and terrain attributes may have contrasting propensities for nitrogen loss through leaching or denitrification (Luo et al., 2023). Without accurate mapping and management of these variations, uniform application prescriptions of nitrogen and other nutrients can result in over-application in some areas and under-application in others. Over-application can intensify nitrogen losses and environmental impacts, especially in coarser soil (Syvertsen and Smith, 1996; Muhammad et al., 2018; Luo et al., 2023).

In the United States of America, soil survey maps developed by the government (e.g., USDA-NRCS soil survey maps) provide valuable broad-scale information on soil types and properties (Beaudette and O’geen, 2009; Chaney et al., 2016). Still, they are generally inadequate for guiding detailed field-scale water and nutrient management (Scudiero et al., 2024b). These maps, typically created at scales of 1:12,000 to 1:24,000, offer an overview of soil variability across landscapes but often fail to capture the fine-scale heterogeneity within individual fields, which is critical for precision agriculture (Reyes et al., 2018).

On-the-go soil sensing technologies provide an efficient means to generate high-resolution soil maps across agricultural fields. Among these technologies, apparent soil electrical conductivity (ECa), gamma-ray spectrometry (GRS), and other on-the-go near-ground sensing technologies have been widely studied for their potential to map soil texture (Sudduth et al., 2005; Pätzold et al., 2020).

Apparent soil electrical conductivity (ECa) is a measure of how easily electrical current passes through the soil, influenced by factors such as soil texture, moisture content, salinity, and temperature (Rhoades et al., 1976; Corwin and Lesch, 2003). ECa is commonly used in precision agriculture to map soil variability, as it provides indirect information about soil properties that affect crop growth, such as clay content and water-holding capacity (Corwin and Lesch, 2003). This non-invasive, on-the-go sensing method is valuable for identifying zones within a field that require different management practices (Córdoba et al., 2016). Geospatial ECa is arguably the most used sensor measurement for field-scale soil mapping by practitioners and scientists due to its relative ease of use, cost-effectiveness, and ability to capture spatial variability in soil properties influenced by factors such as moisture content, salinity, and clay content (Corwin and Lesch, 2003; Doolittle and Brevik, 2014). However, in environments where soil salinity is expected, such as in California and other mediterranean, arid, and semi-arid irrigated farmland worldwide, ECa may not be the ideal tool for soil texture mapping because of salinity becoming a primary factor influencing the ECa measurement (Corwin and Scudiero, 2016). Notably, ECa measurements should be carried out over moist soils (i.e., around field capacity or slightly drier) to ensure reliable correlations with target soil properties (Corwin and Lesch, 2005b). To this regard, micro-irrigated orchards in water-scarce environments present unique challenges for ECa sensing due to the very-short scale spatial heterogeneity of wetting soil conditions, which influences the sensor measurements. Soil moisture levels are generally ideal for reliable ECa surveys in the hardly accessible areas under dense canopies, where micro irrigation is applied. Conversely, easily accessible alleyways have generally much drier soils (Pedrera-Parrilla et al., 2016; Corwin et al., 2022; Scudiero et al., 2024a). Soil compaction may also be remarkably different between below-canopy areas and the alleyways due to field equipment passages and other traffic. Even after precipitation events, ECa surveys in the alleyways of micro-irrigated orchards may potentially lead to biased representation of field-scale soil spatial variability. Corwin and Lesch (2013) recommend surveying ECa both in alleyways and along the tree lines distinctively in orchards and vineyards.

Gamma-ray spectrometry (GRS) measures, non-invasively, the natural gamma radiation emitted by isotopes of potassium (K), uranium (U), and thorium (Th) present in the soil. The entire energy spectrum of the gamma radiation, typically around the 0.1 to 3 MeV range, is also measured as Total Counts (TC) of gamma emission. Gamma-ray emitting nuclides are naturally present in soils and rocks. At the field scale, these gamma emissions correlate with specific soil properties, such as texture and mineral composition. Some factors influence gamma-ray emissions, e.g., increasing water content and bulk density decrease the measured gamma-ray volume (Grasty, 1979; Cook et al., 1996; Reinhardt and Herrmann, 2019). Mahmood et al. (2013) and Reinhardt and Herrmann (2019) provided detailed descriptions of GRS and its use for soil mapping and precision agriculture. Unlike ECa, which primarily reflects soil moisture and salinity, GRS provides information on the mineralogical composition of the soil, offering a different perspective on soil heterogeneity. Moreover, it is recommended that ECa measurements are carried out in moist soils (Corwin and Lesch, 2005b), whereas GRS is attenuated by high soil moisture (Reinhardt and Herrmann, 2019). In water-scarce and dry micro-irrigated orchards, where spatial variability in soil moisture is extremely short-scaled due to localized irrigation application under the tree canopies, GRS can complement ECa taken along the driplines by providing additional data on particle size distribution and mineral content with measurements done in the drier alleyways (Scudiero et al., 2024a). This dual-sensor approach, developed and described by Scudiero et al. (2024a), can enhance the accuracy of soil maps, enabling more precise water and nutrient management in these complex environments.

Developing field-scale models from sensor data typically requires extensive ground-truthing (Reyes et al., 2018), involving the collection of numerous soil samples to calibrate and validate the sensor measurements (Corwin and Lesch, 2005b), as otherwise sensor maps only serve as a qualitative indication of soil spatial variability (Corwin and Scudiero, 2016). For regional-scale models, two primary approaches can be utilized: universal models, which apply broadly across regions (Lobell et al., 2010; Pätzold et al., 2020), and locally adjusted models, such as analysis of covariance (ANOCOVA) regression models (Corwin and Lesch, 2014), which tailor the sensor data to specific local conditions. The choice between these approaches depends on the degree of variability within the region, the desired accuracy of the soil maps, and the available resources that can be used for the ground truthing campaign. The reliability of soil property models, whether universal or locally adjusted, is highly dependent on the rigor and consistency of sensor and soil data collection protocols (Corwin and Lesch, 2005b). Standardized calibration, maintenance, and handling of sensors are essential to ensure accurate and comparable measurements across different locations and times. Proper spatial sampling design and timing are critical to capturing the full range of soil variability (Lesch, 2005), while standardized soil sampling and laboratory procedures ensure the accuracy of ground-truthing data (Corwin and Yemoto, 2017). Consistent adherence to these protocols minimizes measurement-induced variability, leading to more reliable and generalizable soil property models (Corwin and Scudiero, 2016). Protocols for field to regional scale soil mapping with ECa and for ECa-directed soil sampling have been developed and updated by Dennis Corwin and colleagues at the USDA-ARS US Salinity Lab (Corwin and Lesch, 2005b; Corwin and Scudiero, 2016). However, no equivalent protocols or recommendations for GRS are available (Reinhardt and Herrmann, 2019).

Universal models, also referred as “site-independent models” (Pätzold et al., 2020) should predict soil properties at novel agricultural fields without the need for additional ground truthing. For these models to be reliable in predicting soil properties across a broad region, several conditions must be met. There should be a quantifiable mechanistic relationship between the sensor measurements and the target soil properties across the entire region. This requires that the physical processes being measured, such as electrical conductivity or gamma-ray emissions, correlate strongly and predictably with soil attributes like texture, moisture content, or mineral composition, regardless of local variations in soil type or environmental conditions. The data used to develop the model should be representative of the full range of conditions within the region, ensuring that the model is not biased toward specific soil types or microclimates. Modeling approaches like support vector machines were shown as good candidates for predicting soil properties from on-the-go sensor measurements over datasets with diverse pedogenesis (Heggemann et al., 2017). Additionally, the secondary factors influencing the sensor measurements, e.g., soil-forming processes, land use history, tillage, and other factors (Corwin and Lesch, 2005b; Reinhardt and Herrmann, 2019), are similar enough across the region that a single model can adequately describe the soil property-sensor relationships everywhere. Finally, to confirm its accuracy and generalizability, a universal model should be validated against independent data sets from different locations within the region (Ramcharan et al., 2018) and with robust cross-validation techniques (Roberts et al., 2017).

Locally adjusted models, such as the ANOCOVA method operate under the assumptions that sensors consistently measure physical processes related to the target soil property across a given geographical regions and that any secondary influencing factors can be accounted for by adding local ground-truth data any time a new site is surveyed. If this assumption holds true, in ANOCOVA models, a constant slope can be applied to the model, allowing for the estimation of a local random effect (i.e., a field-specific intercept coefficient) with limited soil sampling (Harvey and Morgan, 2009; Corwin and Lesch, 2014, 2017; Scudiero et al., 2017). This approach potentially reduces the need for extensive ground-truthing while still providing accurate soil property estimates at the regional scale (Scudiero et al., 2017). In the context of calibrating on-the-go sensor measurements to map soil texture, ANOCOVA regression relies on several assumptions to ensure accurate results. First, ANOCOVA assumes a linear relationship between the sensor measurements (covariate) and the soil texture properties (dependent variable) across the region of interest, with the slope of this relationship being consistent across different conditions. Any interaction between sensor data and geographical or management differences should not significantly alter the slope of the relationship for the ANOCOVA model to be reliable. Second, ANOCOVA assumes that the residuals, or errors, of the regression model are normally distributed and exhibit homoscedasticity, meaning that the variability of these errors is consistent across all levels of the covariate. Moreover, the model assumes that the covariate is measured without error, which is critical for the reliability of the calibration process. For this, it is recommended that the sensor data collection procedure is methodologically consistent across the entire dataset (Corwin and Lesch, 2014).

The objective of this study was to evaluate the use of GRS for mapping particle size fraction in micro-irrigated citrus orchards in California and to compare its performance to that of ECa, which served as the benchmark. Additionally, the study aimed to test whether the ANOCOVA approach could be effectively applied to GRS data to develop accurate soil maps with reduced ground-truthing requirements.




2 Materials and methods



2.1 Research sites

Soils at three micro-irrigated citrus orchards in California, USA, were investigated in this research (Figure 1). The sites are named in this manuscript after their location. A 4.2-ha commercial ‘Navel’ orange (Citrus sinensis L.) orchard site was in Lemon Cove, Tulare County (Figure 1b). A 0.4-ha ‘Navel’ orange orchard was located at the University of California, Riverside Agricultural Experimental Station, Riverside, Riverside County (Figure 1c). A 3.7-ha commercial ‘Page’ mandarin (Citrus reticulata B.) orchard located in Strathmore, Tulare County (Figure 1d). Trees at the ‘Navel’ orange sites were planted on flat terrain, while trees at the ‘Page’ mandarin site were planted on 0.3-m raised berms made with local soils.
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Figure 1 | (a) the three research sites located in California, USA; (b) the 4.2-ha ‘Navel’ orange orchard located in Lemon Cove; (c) the 0.4-ha ‘Navel’ orange orchard located in Riverside; and (d) the 3.7-ha ‘Page’ mandarin. The location of the on-the-go soil sensing transects, the soil sampling locations, and the missing soil data locations (at the Strathmore site only) are depicted in the figure.

The primary soil types (USDA soil series) were retrieved from Soil-Web (Beaudette and O’geen, 2009): in Lemon Cove they were Havala loam and Yettem sandy loam; in Riverside they were Monserate sandy loam; and in Strathmore they were Porterville clay, San Joaquin loam, and a portion of the field was classified as “Riverwash”.




2.2 Sensor-directed spatial sampling scheme delineation and soil sampling

At each site, sensor-directed spatial sampling selected 20 sampling locations using Response Surface Sampling Design (RSSD) with the ESAP software (Lesch et al., 2000). The RSSD was used with the assumption that geospatial sensors utilized to direct the sampling would correlate with target soil and plant properties of horticultural interest for on-farm experiments. The RSSD identifies a set of candidate principal component coordinates that are representative for the entire sensor survey (i.e., average and standard deviation of the sample equivalent to the one of the population), then selects samples proximal to these principal-component coordinates that are also geographically sparse (i.e., samples are as far as possible from each other, to reduce the risk of autocorrelated residuals when using ordinary least square linear modeling) (Lesch et al., 1995; Lesch, 2005; Fitzgerald et al., 2006). Figure 2 shows the candidate RSSD sites and selected sites for the three study orchards.
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Figure 2 | Plots of standardized principal component target response surface sampling design levels (empty squares) and the optimal sites having good spatial uniformity (i.e., selected sites, empty circles) at the three sites: (a) Lemon Cove, (b) Riverside, and (c) Strathmore. The selected subsamples for the Limited Data regression models and soil mineralogy lab analyses are depicted with full circles. At Strathmore, the missing soil samples are depicted with cross symbols.

The data from the Lemon Cove and Strathmore orchards were collected as part of an on-farm experiments to map soil with GRS and ECa and to deepen the understanding of soil physical and chemical properties with citrus leaf nutrient contents and fruit yield and quality. At these study sites, spatial sampling was directed using high-resolution multispectral imagery collected with an unmanned aerial vehicle (UAV). Scudiero et al. (2019) detailed the use of ESAP to direct spatial sampling at the Strathmore site. The same methodology was used in Lemon Cove and is briefly described below.

Data at the Riverside site was collected to evaluate on-the-go soil sensing when ECa is measured under the canopy of the trees (i.e., closer to the micro irrigation emitters) with the apparatus discussed by Scudiero et al. (2024a). At this site, ECa and GRS were used to direct the soil sampling scheme delineation as detailed by Scudiero et al. (2024a) and briefly described below.



2.2.1 Lemon cove

Five-band multispectral (Blue, Green, Red, NIR, and Red Edge) imagery was collected with RedEdge Multispectral Camera from MicaSense Inc. (Seattle, WA, USA) flown at an altitude of 100 m above ground level in February 2019. Based on the methodologies described by Zhang et al. (2021), a polygon system was created to uniquely identify each citrus tree in the orchard. The multispectral imagery underwent radiometric calibration, and the allocated area for each tree was segmented using the generated polygons. Subsequently, each tree was segmented from its background (soil) by applying empirical thresholds on the excess green index (EGI) and normalized difference vegetation index (NDVI), where a binary mask was created by multiplying the binary masks of EGI and NDVI, effectively isolating the canopy pixels from non-canopy areas (Moghimi et al., 2020). Average reflectance was calculated for each tree at each band separately and a feature vector consisting of sample trees (rows) and 5 spectral features (columns) was created. This dataset was transformed into two uncorrelated principal components (collectively representing 94.3% of the dataset variance) using STATISTICA (version 12, StatSoft Inc., Tulsa, OK, USA). The two principal components were used to direct the sampling scheme. The Kolmogorov-Smirnov Two-Sample Test was used to confirm that the multispectral reflectance values from the selected trees (i.e., the sample) were not significantly different from those of the entire orchard (i.e., the population). Additionally, the Average Nearest Neighbor tool in ArcMap (v.10.5.1, ESRI, Redlands, CA) was used to confirm that the selected sampling scheme was geographically sparse. Soil was sampled in December 2019, at 40 cm increments, down to 1.2 m. Only the data for the 0-40 cm soil profile will be discussed in this manuscript, as GRS is primarily sensing topsoil properties.




2.2.2 Riverside

In August 2019, GRS and ECa were measured at the Riverside orchard. The ECa (0-1.5m) survey was carried out using the EM38-DD (Geonics Ltd., Mississauga, Ontario, Canada) paired to a cm-scale Trimble R2 GNSS receiver (Trimble, Inc.; Sunnyvale, CA, USA) at 244 locations. GRS was carried out with an RSX-1 detector and the RS-701 gamma-ray spectrometer (Radiation Solutions Inc.; Mississauga, ON, Canada) using the sensor’s internal GPS at 1563 locations. The GRS total counts (TC) data were interpolated using simple kriging with the Geostatistical Analyst toolbox in ArcMap. The kriging model's leave-one-out cross-validation had R2 = 0.75. The kriged TC values at the ECa locations were extracted. The ECa and TC data were then used in ESAP to identify 20 sampling locations. The representativeness and geographic spread of the sampling scheme were tested analogously to the Lemon Cove site. Soil cores from 0-40 cm were collected in August 2019.




2.2.3 Strathmore

The Strathmore sampling scheme was determined using ESAP and multispectral UAV imagery collected in 2019 as described by Scudiero et al. (2019) and analogously to the procedure described in Section 2.2.1. At Strathmore, the two principal components collectively represented 96.5% of the multispectral reflectance dataset variance. Soil was sampled in December 2019, at 40 cm increments, down to 1.2 m. The data for the 0-40 cm soil profile will be discussed in this manuscript. Soil sampling was interrupted because of rainfall. The soil sampling crew could not return to the site to complete the soil sampling due to the COVID-19 pandemic that started in early 2020. Because of this, soil was collected only at 15 out of 20 locations (see Figure 1d).





2.3 On-the-go soil sensing

The on-the-go soil sensing surveys at the three sites were carried out using the same sensors and according to the field protocols described by Corwin and Lesch (2005b). The GRS sensor was mounted on an all-terrain utility vehicle and the ECa sensor was on a non-metallic sled towed by the same vehicle. All surveys were carried out at speeds slower than 8 km per hour, typically around 6 km per hour.

The CMD Mini Explorer 6L or ME6L (GF Instruments, S.R.O.; Brno, Czech Republic) was used to measure ECa at all sites. The sensor was placed on a sled and connected via cable to the GF Instruments data logging unit (CMD/C), which was in the drivers cabin during operation. The ME6L, in the Hi mode, measures ECa at the nominal depth of 0.3, 0.5, 0.8, 1.1, 1.6, and 2.3 m. At the three sites the upper five ECa measurements showed high positive correlations. The fourth layer, the ECa for the 0-1.1 m soil profile, was used in this research. The Trimble R2 GNSS receiver was paired to the CMD/C. The ECa was estimated at the soil sampling locations using simple kriging. Kriging interpolations were carried out on Normal-Score transformed data, with a first-order trend removal. Kriging details for each orchard are reported in Table 1.

Table 1 | Semivariogram and Kriging cross-validation specification for the soil apparent electrical conductivity at the three research sites.
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The GRS was carried out with the RS-701 spectrometer, which detects total counts (TC) in the 0.4 to 2.81 MeV range, and emissions of potassium (K, %), uranium (U, ppm), and thorium (Th, ppm). On-the-go GRS measurements are usually characterized by a high signal-to-noise ratio (Minty, 1997; Viscarra-Rossel et al., 2007). Simple kriging in ArcMap was used to reduce the noise of the TC data, which showed autocorrelated spatial data at the three sites. Kriging interpolations were carried out on Normal Score transformed data, with a first-order trend removal. Kriging details for each orchard are reported in Table 2. The kriged TC values were then extracted at the soil sampling locations for further analyses. The K, U, and Th did not consistently show autocorrelated spatial structures and were not, therefore, interpolated with kriging.

Table 2 | Semivariogram and Kriging cross-validation specification for the gamma-ray Total Counts at the three research sites.
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2.4 Soil laboratory analyses

Gravimetric water content (GWC) at time of sampling was measured for all samples. Soil was dried and sieved discarding particles larger than 2 mm. The soil samples were analyzed in the laboratory to measure saturation percentage (SP) and the saturated paste electrical conductivity (ECe) (Corwin and Yemoto, 2017). SP is used as a proxy of particle size fraction, with reported very strong positive correlations with clay content and very strong and negative correlations with sand content. The hydrometer method (Gee and Bauder, 1986) was used to determine particle size fraction.

For each field, five soil samples were selected for diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and acid ammonium oxalate extractable element analyses. These five samples were selected to be a balanced subsample of the RSSD design at each field: one sample was at the average point for the two principal components for the sensors that directed the soil samples, and the other four samples were at symmetrical target standard deviation coordinates; e.g., RSSD level coordinates for PC1 and PC2, respectively: (1) -0.79, -0.79; (2) -0.79, 0.79; (3) 0, 0; (4) 0.79, -0.79; and (5) 0.79, 0.79) (see Figure 2).

To analyze the mineralogy of soils across sites, DRIFTS and selective chemical extraction were used to probe aluminiosilicate and active, poorly crystalline mineral components, respectively. The DRIFTS spectra were collected from selected soils that were ball milled and diluted to 10% mass concentration with spectroscopic grade KBr prior to analysis. Spectra were collected on an Invenio -R spectrometer (Bruker Optics Inc., Billerica, MA) using an EasiDiff sampling accessory (Pike Technologies, Madison, WI). Spectra were collected from 4000-400 cm-1 with 4 cm-1 resolution and represented an average of 256 scans. All spectra were collected against a ground KBr background. After collection, spectra were post-processed by atmospheric compensation, smoothing (Savitzky-Golay, 17 points), baseline correction and min-max normalization. Selective extractions of Fe, Al, Mn, Si, U and Th associated with poorly-crystalline, active oxide components from soils was conducted by previously established methods (Mckeague and Day, 1966). Briefly, these components were selectively extracted through addition of 10 mL of 0.2 M acid ammonium oxalate solution to 0.25 g of ball milled soil in a 35 mL polypropylene centrifuge tube and shaken for 4 h in the dark. Extracts were subsequently purified through centrifugation at 10000 x g for 10 min and gravity filtered through Whatman 42 filter paper prior to inductively coupled plasma optical emission spectrophotometric (ICP-OES) quantification of elements (Optima 8000, Perkin Elmer).




2.5 Data analysis

The Pierson correlation coefficients (r) were calculated to investigate the relationships between soil properties and ECa or TC for each orchard and for the entire dataset.

The use of analysis of covariance (ANOCOVA) regression (Corwin and Lesch, 2014) to build regional sensor to soil property calibrations was tested. ANOCOVA models feature a site-independent (regional) slope coefficient and orchard-specific intercept coefficients. Gamma-ray TC and ECa were used as predictors to map SP and sand, silt, and clay contents. For these regression data a square root transformation was employed to ensure unbiased residuals. The models were evaluated using the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). Models with MAE > 5% were considered not acceptable (Pätzold et al., 2020). The ANOCOVA models were calibrated on all available data (All Data model) and using five soil samples per field (Limited Data model), using the same subsample used for DRIFTS and acid oxalate extractable element analyses. The Limited Data models were evaluated at the left-out locations. Following the methodology of Corwin and Lesch (2014), the regression models were developed using STATISTICA (version 12, StatSoft Inc., Tulsa, OK, USA).

The raw GRS data was investigated to identify any differences in the ratios between TC, K, U, and Th. Differences in these ratios, such as in the Th/K ratio, are often interpreted as differences in parent material clay mineralogy and soil type (Herrmann et al., 2010; Wibowo et al., 2020; Al-Jafar and Al-Jaberi, 2022). At the orchard level, the slope and r of the TC linear relations with K, U, and Th, as well as these from K with U and Th, and of U with Th were compared.

Differences in soil concentrations of extractable Fe, Al, Mn, Si, U and Th across study sites were tested with a one-way analysis of variance and the Fisher’s Least Significant Difference post-hoc test in STATISTICA. The Th data was left-censored, as three samples had concentrations below limits of detection (0.0004 mg g-1). The missing values were estimated dividing the limit of detection by two (Hornung and Reed, 1990).





3 Results



3.1 Field specific and regional linear relationships between ECa, TC, and soil properties

Table 3 shows the average, median, minimum, maximum, and standard deviation values for the measured soil properties, ECa, and TC across the entire dataset, and within the three orchard sites. Lemon Cove was the site with the coarsest soil, 5 locations were classified as Sand, 5 were Loamy Sand, and 10 were Sandy Loam. Riverside had the most homogeneous soil texture, with 19 locations classified as Sandy Loam and 1 as Loam. Strathmore had the most heterogeneous texture: 4 locations were Sandy Loam, 6 were Sandy Clay Loam, 1 was Loam, and 4 were Silt Loam. Most of the soil locations had non-salt affected (ECe < 2 dS/m) soils, 5 locations were slightly saline (2 < ECe < 4 dS/m), of which 3 were in Lemon Cove and 2 were in Riverside.

Table 3 | Basic statistics for sand, silt, and clay contents; saturated soil extract conductivity (ECe); gravimetric water content (GWC) at the time of sampling; saturation percentage (SP), soil apparent electrical conductivity (ECa) at the soil sampling locations; and gamma-ray spectrometry (GRS) total counts at the soil sampling locations for the entire dataset and for the three research sites.
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Table 4 shows the Pearson r coefficients for ECa and TC with the measured soil properties over the entire dataset and for each field. The correlation of ECa with sand was negative and significant (p < 0.05) for all sites and within each orchard. The correlations of TC with sand were significantly negative for the whole dataset, but were non-significant at Lemon Cove, significant and negative at Riverside, and significant and positive at Strathmore. Correlations between silt and ECa and TC were similar to those of sand but with the reverse sign. Clay correlations with ECa were non-significant over the entire dataset and at the Riverside site, they were significant and positive at Lemon Cove and significant and negative at Strathmore. Clay content correlated positively over the entire dataset with TC, but no significant correlations emerged at the single sites. Notably, clay content showed a weak significant correlation with sand content (r = -0.43) over the entire dataset, but no other significant correlation with other soil properties. The clay-sand correlations were strongly negative at Lemon Cove (r = -0.91) and Riverside (r = -0.80), but non-significant at Strathmore. The clay-silt correlations were positive at Lemon Cove (r = 0.77) and Riverside (r = 0.51), but negative at Strathmore (r = -0.72). Over the entire dataset, the relationships between SP and sand were strong and negative (r =-0.86), but non-significant with clay. Over the entire dataset, TC had a non-significant correlation with ECa. The only significant relationship was observed between TC and ECa at the Strathmore site with r = -0.89.

Table 4 | Pearson correlation coefficients for soil apparent electrical conductivity and gamma-ray total counts with sand, silt, and clay contents; saturated soil extract conductivity (ECe); gravimetric water content (GWC) at the time of sampling; and saturation percentage (SP).
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Table 5 reports the ANOCOVA regressions for sand, silt, and clay content, and SP with ECa as the predictor. The ANOCOVA regression models were developed on square root transformed data. ANOCOVA regression assumptions were met. The goodness-of-fit metrics (R2, RMSE, and MAE) were calculated for the back-transformed data. For all models, except the one predicting clay content, the ANOCOVA slopes in the All Data models and Limited Data models had slope values with overlapping standard errors. The calibration of the All Data and Limited Data models were significant at the p<0.05 level. The model calibration errors were low, all calibration MAEs were acceptably low (i.e., MAE < 0.05). The independent evaluations of the Limited Data models had MAE <0.06. The calibration RMSE values were under 0.06 in the All Data and Limited Data calibrations. The RMSE for the independent evaluations of the Limited Data models were 0.07 for sand, silt, and SP and 0.073 for clay content.

Table 5 | The analysis of covariance regression statistics for soil apparent electrical conductivity (independent variable) and sand, silt, and clay content, and saturation percentage (SP) (dependent variables).


[image: A table presents regression results for different dependent variables: sand, silt, clay, and SP. It includes slope with standard error in parentheses for All Data (A.D.) and Limited Data (L.D.) models, R² values, RMSE, and MAE. Sand shows slopes of -0.112 and -0.12 with high R² values. Silt and SP have positive slopes with comparably high R². Clay has a low R² with slopes of -0.05 and -0.13. RMSE and MAE values are provided for both A.D. and L.D., alongside independent evaluations. The table notes that slopes are for square-root-transformed data.]
The ANOCOVA approach could not be employed to estimate any of the texture-related soil properties using TC. The relationships between the sensor and each soil property could not be represented with a single slope across the entire dataset.




3.2 Differences in soil characteristics across the three sites

Figure 3 reports the slope and the Pearson r for the linear relationships for all combinations between TC, K, U, and Th from the raw (i.e., non-kriged) sensor datasets. The sample sizes for the three datasets were large (see Table 1). The r values were all significant at the p<0.05 level. For all considered linear relationships, the r values were visibly higher at Strathmore than at the other two sites. Similarly, the slope coefficient values for all relationships were remarkably higher at Strathmore than at the other two sites. In Figure 3, the error bars represent the 5th to 95th confidence interval for the regression slopes. Notably, the slope intervals at Lemon Cove and Riverside overlapped (i.e., not significantly different) for the TC (dependent) and U (independent) relationship (Figure 3b), for the K (dependent) and U (independent) relationship (Figure 3d), and for the U (dependent) and Th (independent) relationship (Figure 3f).

[image: Six bar graphs labeled a to f display regression slopes (β) with correlation coefficients (r) for different variables. Graphs a, b, and c show TC (cps) against K (%), U (ppm), and Th (ppm), respectively, while graphs d, e, and f show K (%) and U (ppm) against U (ppm) and Th (ppm). Categories LC, R, and S are compared, with S generally having higher β values across graphs.]
Figure 3 | Regression slope coefficients (bars are the 5th to 95th confidence interval for the coefficients) and Pearson correlation coefficients (r) for relationships between gamma-ray spectrometry total counts (TC), potassium (K), uranium (U), and thorium (Th). Each quadrant compares regression slopes at the three research sites, Lemon Cove (LC), Riverside (R), and Strathmore (S), for the simple linear regression model (α is the regression intercept) specified at the top of each quadrant: TC as a function of (a) K, (b) U, and (c) Th; K as a function of (d) U, and (e) Th; and (f) U as a function of Th.

Across all sites, DRIFTS spectra showed prominent aluminosilicate clay mineral vibrations which informed the nature of clay minerals present (Figure 4). This includes features generally related to structural -OH (≈3697 and 3623 cm-1), Si-O (≈1100, 1035-1015, 790-430 cm-1), octahedral Al-Al-OH (≈915 cm-1), Al-O-Si (≈535 cm-1) and clay-associated water (≈3400 and 1638 cm-1) vibrations present across all sites (Madejová and Komadel, 2001; Madejová, 2003; Petit, 2006). The -OH stretching mode at 3697 cm-1 was indicative of kaolinite clay present in soils, while peaks around 3620 and 3400 cm-1 have been identified previously as being characteristic of montmorillonite, suggesting the presence of these two clay minerals across sites (Khang et al., 2016). There were subtle differences between sites that suggested some differences in mineralogy between sites. This was primarily observed for the Strathmore soils, which showed some vibrational features either distinct or more pronounced when compared to the Lemon Cove and Riverside soils. This includes a pronounced peak at 798 cm-1, a more pronounced shoulder at 878 cm-1, a reduction of the 750 cm-1 feature, and a primary Si-O peak at 1035 cm-1 in Strathmore compared with 1019 cm-1 in Lemon Cove and Riverside soils. These differences could have potentially resulted from changes in clay octahedral sheet substitution for a given clay mineral type, which could have enhanced absorbance near 878 cm-1 as well as impacted the position of the primary Si-O stretching peak near ≈1030-1015 cm-1 (Madejová and Komadel, 2001; Madejová, 2003). Differences in mineral composition between Strathmore and the Lemon Cove and Riverside sites, including aluminosilicate and oxide species, could also have resulted in different absorbances across sites as several different minerals have DRIFTS features in this range (e.g., goethite, silicon oxide minerals) (Madejová, 2003; Parikh et al., 2014). All of these potential influences indicated a Strathmore soil mineralogy distinct from Lemon Cove and Riverside.

[image: Graph showing normalized absorbance spectra with wavenumber on the x-axis in three panels. Panel (a) displays full spectra from 4000 to 400 cm⁻¹ for Lemon Cove, Riverside, and Strathmore with different 5th-95th intervals highlighted. Panels (b) and (c) show close-ups around 1200 to 900 cm⁻¹ and 900 to 660 cm⁻¹, respectively, featuring similar interval bands. Each location has distinct interval colors, and absorbance is measured in arbitrary units.]
Figure 4 | Diffuse reflectance infrared Fourier transform spectra for soil samples from the three sites. The average spectral signature for each site (solid lines) and the 5th to 95th interval (shaded areas) are depicted. The 4000-400 cm-1 spectra are shown in quadrant (a). Quadrant (b) shows the specra between 1200 and 900 cm-1. Quadrant (c) shows the specra between 900 and 660 cm-1.

Poorly crystalline forms of Fe, Al, Mn and Si (i.e., organically bound and amorphous mineral species) varied between sites (Table 6). Lemon Cove soils had the highest average concentration of acid ammonium oxalate extractable Fe and was significantly higher than Strathmore, with Riverside being statistically similar to both. Strathmore soils had significantly higher average extractable concentrations of Al and Mn than Lemon Cove, with Riverside comparable to both sites. Extractable Si was highest for Riverside, with Lemon Cove significantly lower. U associated with these forms was highest in Lemon Cove, followed by Riverside and then Strathmore, with Strathmore being significantly lower than Lemon Cove. Th was significantly higher in Lemon Cove compared to Strathmore, which had detectable Th in only 2 of the 5 soils analyzed, with Riverside not significantly different from either. Across all sites, U and Th associated with extractable elements showed a positive correlation with extractable Fe phases, while extractable Al, Mn and Si had a negative relationship with associated U and Th (Table 7).

Table 6 | Fe, Mn, Al and Si in acid oxalate extractable solid phases along with Th and U associated with these phases.


[image: Table showing the concentration of various elements in soil (mg g^-1) from three sites: Lemon Cove, Riverside, and Strathmore. Elements are Fe, Mn, Al, Si, Th, and U. Lemon Cove shows highest Fe at 2.57 mg g^-1 with a significance level "a”, while Riverside and Strathmore have Fe levels at 1.01 and 0.76 mg g^-1 with significance levels "b”. Statistical significance was determined through one-way ANOVA and Fisher’s Least Significant Difference as a post-hoc test.]
Table 7 | Pearson correlation coefficients for soil concentrations of extractable Th and U with the extractable Fe, Mn, Al, and Si.


[image: Table showing coefficients of elements for Th and U. Significant values (p<0.05) are in bold red: Th for Mn 0.60, Al -0.69, Si -0.62; U for Fe 0.98, Mn -0.81, Si -0.57.]




4 Discussion

Arguably, on-the-go soil sensors should reliably correlate with the target soil properties that they developed to justify their broad and consistent use in high-resolution soil mapping. On-the-go sensors measuring ECa capture a complex process which is influenced by many soil properties such as water content, salinity, and soil texture. These complex interactions contributing to ECa have been studied in agricultural soils for many decades (Rhoades et al., 1976, 1989; Corwin and Lesch, 2003; 2005a), and are fairly well understood: e.g., higher clay content, water content, and salinity contribute to higher ECa. Moreover, it is often the case that the spatial patterns of the soil properties influencing ECa are locally correlated at the field scale, e.g., the soil physical properties and terrain drive the spatial variability of soil moisture and salinity, making statistical ECa-to-soil-property calibrations at the field-scale fairly straightforward (Corwin and Scudiero, 2016). Because of the complex interactions between soil properties influencing ECa, unexpected soil relationships are sometimes reported. For example, Scudiero et al. (2016) reported a negative relationship between ECa and clay content from fields in shallow soils on hilly landscape in Colorado, USA. The GRS as reviewed by Mahmood et al. (2013) measures a more straightforward process: the emissions of gamma radiation from radionucleotides naturally occurring in soils and rocks (mainly from 40K, 238U, and 232Th) and from anthropogenic 137Cs. The overall TC are expected to be lower in sandy soils than in finer soils (Mahmood et al., 2013; Reinhardt and Herrmann, 2019); and others, and as supported by the global Pearson correlation coefficients observed in this study (Table 4). Unfortunately, at the field-scale, TC relationships with soil texture can be erratic as shown by Pätzold et al. (2020) in Germany, by Maxton and Lund (2020) in the US Midwest, and as observed in this California citrus study (Table 4).

Despite the potential of observing unexpected correlations between ECa and GRS with texture-related field properties, we observed significant relationships between most target soil properties and sites using either of the sensors (Table 4). Moreover, as discussed by Scudiero et al. (2024a), data fusion (e.g., principal component analysis, multiple regression) between the two sensors can be a means to obtain very accurate soil texture maps. Unfortunately, even when leveraging the spatial information from on-the-go sensing in spatial models (Reyes et al., 2018) and/or directing the soil sampling to calibrate ordinary least square models (Lesch, 2005), the amount of ground-truth data needed to develop accurate field-scale maps is too high (e.g., dozens of soil samples per field). The burden and the cost associated with the collection of ground-truth data from numerous locations within each field is a major bottleneck for the widespread application of on-the-go sensing for quantitative and accurate soil texture mapping.

Beyond the field-scale, the potential for developing regional site-independent models that would allow predicting soil properties at new sites without the need for collecting local ground-truth data has been investigated by many scientist in the past decades. Sudduth et al. (2005) investigated the use of ECa from different sensors to map texture and cation exchange capacity across six US Midwest states. Their study sites from six states included soils of differing parent material, weathering, levels of organic matter content, and agricultural management. They observed R2 values ≥ 0.55 for the two soil properties across their entire dataset. Although encouraging, their models were not sufficiently accurate to predict field-scale texture for precision agriculture. For GRS, Heggemann et al. (2017) developed a site-independent model to predict soil texture using data collected from ten agricultural fields in Germany across sites with diverse mineralogy and parent material. They developed site-independent support vector machines models that yielded R2 of 0.96 (sand), 0.93 (silt), and 0.78 (clay), and with MAE values < 0.04. However, Pätzold et al. (2020) evaluated the model by Heggemann et al. (2017) at independent fields in Germany. They observed that the “model was not generally capable of predicting soil texture at sites that were not adequately represented in the calibration set”.

ANOCOVA regression as an alternative approach to universal models has been widely discussed for ECa-to-salinity calibrations (Corwin and Lesch, 2014, 2017; Scudiero et al., 2017). Harvey and Morgan (2009) discussed the potential of ANOCOVA for texture mapping on three fields in Texas, USA, and observed prediction errors below 4% for clay. In this study, we report calibration MAE values < 0.05 for ANOCOVA ECa-texture predictions (Table 5). Previous research concluded that ANOCOVA may be a means to reducing field-scale soil samples (Corwin and Lesch, 2014; Scudiero et al., 2017). In particular, the regression slope common for all fields is calibrated over the entire available dataset, whereas only three or more samples per field may be needed to estimate the field-specific intercept. For the first time, this research shows that minimal data (n=5 per field) can be used to calibrate accurate ANOCOVA ECa-texture regression with very low calibration and independent evaluation errors (Table 5). Generating high-resolution, accurate soil maps using as few as five ground-truth sites per agricultural field may benefit practitioners seeking to decrease the costs related to soil sampling and laboratory analyses.

ANOCOVA regression was shown in this research to be a very powerful tool to map texture with limited data, but it relies on postulating the slope between the sensor and the target soil property to be stable over multiple fields. This was not the case for GRS-TC making ANOCOVA regression modeling not feasible. Over the three fields, the TC showed expected (e.g., positive r with clay) and unexpected (e.g., negative r with clay) with the target soil texture properties. These inconsistencies make GRS unsuitable for texture mapping in California citrus orchards using ANOCOVA. Field-specific modeling may be needed instead. Mahmood et al. (2013) and Pätzold et al. (2020) indicated that differences in parent material and clay mineralogy may be responsible for contrasting GRS and texture relationships over multiple fields. If fields with unexpected GRS-texture relationships could be identified from raw GRS data or using available landscape-scale soil maps, then soil scientists may decide whether to include such fields in ANOCOVA models or to calibrate field-specific models (which require larger ground-truthing). Moreover, reliable classification of the expected nature of the GRS-texture relationship may enable the calibration of reliable site-independent models (Pätzold et al., 2020). For this reason, soils from the three citrus sites were analyzed using DRIFTS, extraction of active mineral phases, and available USDA soil maps (Beaudette and O’geen, 2009) in relationship to the raw GRS TC, K, Th, and U observed at the three sites.

Mineralogical analysis through DRIFTS and extraction of active Fe, Al, and Mn oxides highlighted notable differences in soil clay fraction mineralogy between sites. The aluminosilicate and active oxide phases probed here both represent prevalent, reactive and high surface area minerals in soil clay size fractions that are known to retetain several elements in soils, including K, Th, and U (Mcbride, 1994; Duff et al., 2002; Bachmaf and Merkel, 2011; Hongxia et al., 2016; Dublet et al., 2017; Wang et al., 2021). As such, variation in this mineralogy between sites may translate to different affinities of these isotopes for the clay fraction of these soils. In the case of the soil minerals probed by DRIFTS, there were apparent differences in clay substitution, clay composition and/or oxide chemistry between the Strathmore site and Lemon Cove and Riverside soils. These factors could have impacted surface hydroxyl group availability (e.g., 1:1 vs. 2:1 clay), cation exchange capacity and exchange selectivity, which may greatly impact mineral retention of ions, including Th and U (Duff et al., 2002; Bachmaf and Merkel, 2011; Hongxia et al., 2016; Wang et al., 2017). In addition to the distinct aluminosilicate mineralogy at the Strathmore site, differences in extractable Fe, Al, Mn, and Si provide further insight into the deviation in GRS-texture relationship at the Strathmore site. An observation apparent in our data is the role of poorly-crystalline and amorphous Fe species in U and Th retention across sites, in alignment with previous studies showing the strong association of these Fe species for U and Th through adsorption and co-precipitation (Duff et al., 2002; Dublet et al., 2017; Li et al., 2019; Wang et al., 2021). Interestingly, poorly-crystalline Al, Mn, and Si forms showed a weak inverse relationship with extracted U and Th, indicating they did not associate to the same extent as with Fe. Provided the relatively lower proportion of Fe in total extracted poorly-crystalline mineral phases at the Strathmore site compared to Lemon Cove and Riverside, it is conceivable that this reduced the affinity of Th and U for fine-grained active oxides in Strathmore. This could, in turn, weaken or alter the relationship between soil clay content and GRS through lower radionuclide retention. While these results overall indicate that mineralogy may have played a role in observed inconsistencies in assessment of soil texture across sites with GRS, more detailed mineralogical analyses (e.g., X-ray diffraction “XRD”), extended X-ray absorption fine structure “EXAFS” spectroscopy) and isotope retention studies of isolated textural fractions across sites would further explore this relationship.

The mineralogical results align with the previous suggestion that differences in clay fraction mineralogy may result in contrasting trends of GRS and clay determination between field sites (Mahmood et al., 2013; Pätzold et al., 2020). This suggests that fundamental knowledge of site mineralogy may inform the applicability of GRS for soil textural determination between sites. This could relate further to variable environmental factors that may impact mineralogy of soil clay fractions, such as parent material, drainage and climate (Mcbride, 1994). For example, formation and dissolution of poorly crystalline Fe species related to Th and U retention across the Lemon Cove, Riverside and Strathmore sites are notably sensitive to soil redox fluctuations that may in turn impact radionuclide retention (Duff et al., 2002; Winkler et al., 2018). Knowing in advance the pedological properties of a soil may therefore provide some indication of what type of GRS defined textural relationships could be expected for a given site. Defining these relationships with respect to widely available soil survey data may also represent a future area for exploration with substantial implications for GRS application at regional scales.




5 Conclusions

As smart fertilizer and water management practices become increasingly important for California’s specialty crops, driven by factors such as resource scarcity, rising costs, and regulations, the need for accurate, high-resolution soil maps will grow. Geospatial sensors, such as soil apparent electrical conductivity (ECa) and gamma-ray spectrometry (GRS), were confirmed in this study as reliable tools for field-scale soil mapping of particle size fraction, based on data from three citrus orchards in California. Model-based sampling schemes, such as the response surface sampling design used here, enable the creation of accurate soil maps using a relatively small set of ground-truth soil samples. Multi-field modeling using universal, site-independent models may not be feasible due to unknown secondary influences on sensor measurements at the individual field level. For ECa, locally adjusted analysis of covariance (ANOCOVA) regressions modeled particle size fractions with high accuracy. Notably, the ANOCOVA regressions can be calibrated using limited (n=5 per field) data. This novel insight marks a step forward in making high-resolution mapping affordable for practitioners and their clientele. More research is needed to understand how ANOCOVA models that use minimal soil data can be developed, calibrated, evaluated, and improved over time (e.g., when any new field is added to a preexisting dataset).

In one of the orchards (the Strathmore orchard), GRS exhibited an unexpected negative correlation with clay content, making the use of ANOCOVA for GRS-texture regressions not possible. Although such relationships have been reported previously, the causes behind them remain poorly understood. To investigate this further, GRS ratios, diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS), and acid ammonium oxalate extractable elements were analyzed at all three sites. The Strathmore orchard displayed unique GRS ratios, DRIFTS, and acid ammonium oxalate extractable element profiles compared to the other sites. These novel insights may guide future research and help predict whether positive (expected) or unexpected GRS-clay content relationships are likely to occur at a given field, based either on raw GRS data or geochemical information. Such a-priori knowledge could inform soil scientists’ decisions about ground-truthing efforts (e.g., allocating additional resources to increase the number of soil samples for an accurate map) or be used as an additional predictor in regional models, such as support vector machines or random forest regression models. Here, the odd GRS-texture relationships were observed in one site only, which had fewer sampling locations than the other two sites. Further research is needed to identify other sites showing unexpected GSR-texture relationships to understand commonalities amongst these and contrasting features compared to sites where GSR performs as expected.
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To achieve high economic benefits, reapplying fertilizers has been a common business measure taken for harvesting Moso bamboo shoots and timber in the past decades in subtropical China. Applying compound and organic fertilizers is an effective measure to enhance soil fertility and promote plant production. To demonstrate how compound fertilizer (CF) decrement and application of silkworm excrement organic fertilizer (SEOF) effect on soil quality, bamboo shoot yield and quality of Moso bamboo plantations, six CF decrement treatments (0 %, 25 %, 50 %, 75 %, and 100 % SEOF substitution, and no fertilization) were examined in our study. Soil nutrients, enzyme activities, bacterial community structures, bamboo shoot yield and quality were determined, and their relationships were analyzed. The results showed that adding SEOF improved soil quality and bamboo shoot yield. Compared with CF, the combined CF-SEOF treatments increased soil pH, soil organic carbon, N and P availability, and the activities of enzymes related to C, N, and P cycling. SEOF substitution significantly changed the soil bacterial community structure and increased the relative abundance of Proteobacteria and Actinobacteria. Higher proportions of organic fertilizer substitution (OF75, OF) enhanced the bamboo shoot yield (by 20.23 % and 16.55 %, respectively) and their total flavonoid and vitamin C content, compared to CF (p< 0.05). Moreover, the soil quality index of OF75 and OF50 was significantly higher than that of OF and OF25 in the 0–40 cm soil layer (p< 0.05). Pearson’s correlation tests showed that bamboo shoot yield was positively related with soil nutrients (p< 0.05). In addition, SEM revealed that fertilization affected soil enzyme activities through soil microorganisms, thereby affecting soil nutrient availability and promoting SQI and bamboo shoot yield. In conclusion, our study revealed that SEOF production is advisable for improving soil quality and bamboo shoot yield, providing evidence that soil nutrients and bacteria contribute to shoot yield and promote the sustainable management of soil and Moso bamboo forests.
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Introduction

Moso bamboo (Phyllostachys edulis) is a fast-growing species that is excellent for harvesting bamboo shoots and timber. This forest resource is distributed extensively and covers approximately 73 % of the bamboo acreage in China, significantly influencing the country’s bamboo industry and economic development (Ni and Su, 2024; Song et al., 2011). Moreover, bamboo shoots are widely known for their edible value, great taste, and high nutritional content. It is rich in proteins, vitamins, amino acids, dietary fiber, and flavonoids, making it a staple traditional vegetable in Chinese dishes (Ni et al., 2024a). Intensive management practices, such as cutting and applying large amounts of compound fertilizer (CF) and cutting, have been the main ways to obtain high economic yields of bamboo (Ni et al., 2021). However, the long-term application of chemical fertilizers has resulted in the deterioration of overall soil quality and various problems, such as soil acidification and compaction, increased soil respiration, nutrient depletion, loss of biodiversity, the decline in stand productivity, and ecological environmental damage (Yang et al., 2019; Yao et al., 2022).

In contrast to chemical fertilizers, organic fertilizers are rich in organic matter, nutrients and beneficial microorganisms (Li et al., 2018; Liu et al., 2021; Shao et al., 2024), and they have shown positive effects on soil quality which is typically evaluated using the soil quality index (SQI) (Yang and Zhang, 2023; Ying et al., 2023; Wang et al., 2024). Applying organic fertilizers like manure generally increases the soil organic carbon (SOC) content, nutrient availability and enzymatic activities. It also changes the microbial diversity and composition (Li et al., 2018; Shao et al., 2024). A previous study reported that organic fertilizers can promote nutrient conversion and stimulate plant growth, benefitting crop yields (Oladele et al., 2019). Notably, applying organic fertilizers also affects the nutritional composition of vegetables and fruits (Shankar et al., 2013). A study by Ni et al. (2024b) showed that, compared with CF, humic acid fertilizer increased the SOC and AP content, sucrase (SC) and acid phosphatase (ACP) activities, and bamboo shoot yield in Phyllostachys violascens 'Prevernalis' plantations. Applying organic fertilizers is an effective means of decreasing chemical fertilizer input and improving crop yield and soil quality (Ge et al., 2021; He et al., 2022; Ying et al., 2023). Numerous studies have shown that combining CF and organic fertilizers produces the same significant effects. Compared with chemical fertilizers alone (N, P and K), the combined application of inorganic and organic fertilizers can promote the productivity of forestry plants (Liu et al., 2021) and crops like rice, wheat, and corn (Oladele et al., 2019; Shahid et al., 2017; Tang et al., 2018). Combined application can also increase the aboveground biomass of rice (Moe et al., 2019).

Silkworm excrement organic fertilizer (SEOF) is produced by the aerobic and high-temperature composting of silkworm excrement and leftover mulberry leaves, which are fermented by beneficial microorganisms. It is rich in organic matter, N, P, K, and trace elements such as Ca and Mg. It also contains small amounts of alkaloids, various vitamins, and niacin (Chen et al., 2011; Ni et al., 2024c). Its heavy metal and NaCl contents are low, and long-term application cannot easily cause secondary salinization. It has a pH of 8 to 9 and can slow down the progression of soil acidification (Li et al., 2015). It is easily absorbed and utilized by plants, and it can promote plant absorption of N, P, and K, increase their aboveground biomass, and improve crop quality (Luo et al., 2011; Yang et al., 2022). Currently, SEOFs are widely used in the agricultural production of various crops, such as leafy vegetables, peanuts, and corn, increasing soil fertility and crop yield. Its fertilizer efficiency is greater than that of other organic fertilizers like animal manure (chicken, pig, and sheep). For example, compared with chicken manure, SEOF produces higher mass fractions of soil organic matter, total nitrogen (TN), total phosphorus (TP), AN, and AP (Li et al., 2015). SEOF also enhances soil bacterial diversity, promotes the growth of functional and beneficial bacteria, and alleviates obstacles to ensure the continuous cultivation of chrysanthemum (Peng et al., 2015). Moreover, applying SEOF allows the reuse of agricultural and forestry waste, thus reducing environmental pollution and decreasing plant dependence on chemical fertilizers.

The soil is an active site for material cycling and energy exchange in forest ecosystems, providing water and nutrients for plant growth (Li et al., 2023a). Soil quality directly determines plant productivity. Fertilization can alter plant root exudates, microbial growth and reproduction, and soil nutrient retention and mineralization, thereby affecting plant growth (Li et al., 2023b; Yang et al., 2023; Zhou et al., 2015). Soil physical (e.g., bulk density and porosity), chemical (e.g., pH, nutrient content) and biological (e.g., enzyme activities) properties are important components of soil quality (Ning et al., 2020; Wang et al., 2024). Changes in these properties with different fertilization treatments can reflect the sustainability of the soil resource, affecting the yield and quality of bamboo shoots. Previous studies have reported the effects of chemical fertilizers on soil quality and bamboo shoot yield in Moso bamboo forests. Nevertheless, the effects of CF decrement and SEOF application on soil properties and bamboo shoots remain unclear. Thus, we aimed to (1) explore how different percentages of CF combined with SEOF affect soil physicochemical and biological properties; (2) assess the bamboo shoot yield and quality, soil quality index (SQI) in response to fertilization treatments; (3) elucidate the internal links among soil properties, microbial communities, and bamboo shoot yield and quality. The research aimed to provide a theoretical basis for using SEOF to improve soil quality and bamboo yield in Moso bamboo forest sustainable development.





Materials and methods




Field site

The research site is located in Maowu Village, Daixi Town (120° 0' 47.3'' E, 30° 39' 33.7'' N), Huzhou City, Zhejiang Province, China, and has an altitude of 65 m. Its climate is categorized under the northern subtropical monsoon climate zone, with an average annual temperature of 12.2–17.3 °C and an average annual precipitation of 1277.6 mm. The Moso bamboo forests were cultivated to enable experimentation, and NPK CF has been applied at a rate of 1500 kg/(ha y) since 2001 to manage the benefits of bamboo shoot production. The forests had a standing bamboo density of 2325–2625 stems/ha and an average diameter at breast height of 10.22–11.59 cm. The soils in the region are classified as red soil. The soil bulk density and pH were 1.24–1.39 g/cm3 and 4.36–4.52, respectively.





Experimental design

In May 2022, six sites were selected for investigation based on their similarities in altitude, slope, and aspect. Thirty 20 m × 20 m plots were divided into six different fertilization treatments, with five replicate plots for each treatment, separated by an interval of 3 m between each plot. In June 2022, sprinkled CF or SEOF was applied to the soil surface, followed by tillage (to a depth of 20–25 cm), and understory vegetation was removed. In August 2023, we dug a ditch 25 cm deep and 15 cm wide, sprinkled CF or SEOF into the ditch, and covered it with soil. The CF had a total nutrient content of ≥ 45 % (N:P2O5:K2O = 20:4:8). The SEOF had a pH of 8.85 and mass fractions of 40 %, 2 %, 1 %, and 2 % for organic matter, N, P, and K, respectively. Based on the proportion of SEOF in the TN input, the treatments were as follows: (1) CF: 100 % CF; (2) OF25: 25 % SEOF and 75 % CF; (3) OF50: 50 % SEOF and 50 % CF; (4) OF75: 75 % SEOF and 25 % CF; (5) OF: 100 % SEOF; and (6) CK: no fertilization. Table 1 presents the annual fertilization amounts of the experimental Moso bamboo forests.

Table 1 | Annual fertilization amount used in the experimental forests.


[image: Table detailing fertilizer treatments and their annual fertilization amounts. Treatments include CF (1500 kg/ha CF), OF25 (1125 kg/ha CF + 3750 kg/ha SEOF), OF50 (750 kg/ha CF + 7500 kg/ha SEOF), OF75 (375 kg/ha CF + 11250 kg/ha SEOF), OF (15000 kg/ha SEOF), and CK with no fertilization.]




Soil sampling and analysis

In May 2024, soil samples (0–20 cm and 20–40 cm) were collected using a soil drill to collect three soil cores from each plot. The cores were mixed to form one composite sample per plot for a total of 30 composite samples. The fresh soil samples were passed through a 2 mm sieve. A part of the soil was stored at −80°C to extract and determine microbial DNA, and another was collected in a plastic self-sealing bag and air-dried to measure chemical properties and enzyme activities.

Soil pH was determined from a 1:2.5 (V/V) soil-water extract using an electrode pH meter. SOC was measured using a TOC analyzer (Multi N/C 3100; Analytik, Jena, Germany). TN, TP, AN, and AP content were measured using Kjeldahl nitrogen determination method, concentrated H2SO4 and HClO4 digestion method, alkali hydrolyzed diffusion method, and molybdenum antimony colorimetric method, respectively (Ni et al., 2021). Soil urease (UE), SC, and ACP activities were determined with test kits using the 3,5-dinitrosalicylic acid colorimetric method, phenol sodium hypochlorite colorimetric method, and sodium phenylphosphate colorimetric method, respectively (Ni et al., 2024c).





DNA extraction and high-throughput sequencing

Soil DNA was extracted from a 0.5 g soil sample using a soil DNA Kit (Magen, Guangzhou, China) according to the manufacturer’s protocols. The V3−V4 region was amplified using the following primers: 5′-CCTACGGGNGGCWGCAG-3′ (338F) and 5′-GACTACHVGGGTATCTAATCC-3′ (806R). The 16S rDNA target region of the ribosomal RNA gene were amplified by PCR (95°C for 5 min, followed by 30 cycles at 95°C for 1 min, 60°C for 1 min, and 72°C for 1 min and a final extension at 72°C for 7 min). 50 µL mixture containing 10 µL of 5 × Q5@ Reaction Buffer, 10 µL of 5 × Q5@ High GC Enhancer, 1.5 µL of 2.5 mM dNTPs, 1.5 µL of each primer (10 µM), 0.2 µL of Q5@ High-Fidelity DNA Polymerase, and 50 ng of template DNA. Related PCR reagents were from New England Biolabs, USA. The PCR-purified products from each locus were mixed and subsequently sequenced using Illumina on a NovaSeq 6000 platform at Gene Denovo, Guangzhou, China.

The Amplicon Sequence Variants (ASVs) feature list was generated using the DADA2 (Divisive Amplicon Denoising Algorithm 2) pipeline (Callahan et al., 2016). Subsequently, taxonomic annotations were assigned to the ASVs using the SILVA taxonomy database (Pruesse et al., 2007). Further analyses were conducted using the ASV abundance table after normalization to account for variations in sequencing depth across samples.





Bamboo shoot yield determination

From March to May 2024, the fresh weight of the bamboo shoots at each sampling site was recorded daily, from the excavation of bamboo shoots to the end of the shoot period. In April 2024, during the peak period of bamboo shoot growth, approximately 5 cm of intact bamboo shoots were randomly excavated from each plot. The shoots were peeled, and 2 kg of the peeled shoots was placed in an icebox and brought back to the laboratory. The samples were crushed and mixed, then used for the determination of total flavonoids and vitamin C content. Total flavonoids content was measured using spectrophotometry and sulfosalicylic acid iron complex colorimetric method. Vitamin C content was determined using test kits.





Soil quality evaluation

To evaluate the influence of different fertilization treatments on soil quality, the total dataset method (consisting of 12 soil indicators: pH, SOC, TN, TP, AN, AP, SC, UE, ACP, Shannon, Chao1, and ACE) was employed to establish a soil quality index (SQI) for each treatment. The procedure for the calculation is as follows:

All data were standardized and transformed into dimensionless values between 0 and 1 to achieve dimensional normalization of the indicators using the following equations (He et al., 2022):

[image: Mathematical formula for normalization: F(Xi)' equals the value Xi minus the minimum value Xmin, divided by the maximum value Xmax minus the minimum value Xmin.]	

[image: The image shows a mathematical expression for normalizing data: F(X_i)'' equals the fraction (X_max minus X_i) over (X_max minus X_min).]	

where [image: It seems there was an issue displaying the image. Please upload the image file directly or provide a URL, and I will assist you with generating the alternate text.] , [image: Mathematical expression showing F of X sub i prime.] , and [image: The image shows the mathematical expression "F(Xi)" in italics, with F representing a function applied to the variable Xi.]  is the score of the [image: Equation notation showing the term "i-sub-th," indicating the index "i" with the subscript "th" in a mathematical context.]  indicator, and [image: The image shows a mathematical variable, represented as x sub i, with the subscript denoted by the lowercase letter i.] , [image: Mathematical notation showing "x subscript max" indicating the maximum value of x.] , and [image: Mathematical expression showing "x" with a subscript "min".]  are the measured, maximum, and minimum values of the [image: Mathematical notation showing "i" and "t" with a subscript "th", representing the "i-th" element or term in a sequence.]  indicator, respectively.

Principal component analysis was performed on standard deviation data using SPSS 20.0 (SPSS Inc., Chicago, IL, USA); the common factor variance of soil quality indicators was calculated, and the proportion of the common factor variance of each indicator to the total common factor variance was used as the weight of each indicator.

The SQI was calculated with the equation:

[image: Mathematical formula for SQI equals the summation of W subscript i multiplied by F of X subscript i.]	

where [image: It seems there is no image uploaded. Please make sure to upload the image directly, and I will be happy to help with the alt text.]  the weight of the [image: Italicized "i" followed by subscript "th", representing the mathematical or ordinal notation "i-th".]  indicator, and [image: The image contains the mathematical notation "F(X_i)" which represents a function F applied to the variable X with subscript i.]  the membership value of the [image: Mathematical notation showing an italic lowercase "i" followed by a subscript "t", representing the "i-th" term.]  indicator.





Statistical analysis

All statistical analyses were performed using SPSS and Excel 2016. One-way analysis of variance followed by Duncan’s multiple range test was used to detect significant differences (p< 0.05) between the treatment means. Pearson’s correlation and redundancy analyses were conducted to examine the links between soil chemical properties, bacterial communities, and bamboo shoot yield. Structural equation modeling (SEM) was conducted to examine the relationships among soil properties, enzymatic activities, bacterial diversity, SQI, and bamboo shoot yield. Data from the CF, OF25, OF50, OF75, and OF treatments were used to construct the SEM. All figures were created using Origin 2024 software and R package.






Results




Soil chemical properties and enzyme activities

Table 2 presents the chemical properties of the soil from bamboo forests treated with different fertilizers. The pH, SOC, TN, TP, AN, and AP content from the six treatments showed various trends. Compared with CK, soil pH was significantly higher in OF25, OF50, OF75, and OF by 1.86 %, 3.94 %, 4.87 %, and 4.41 % in the 0–20 cm soil layer, respectively, and by 2.63 %, 9.79 %, 10.26 %, and 14.08 % in the 20–40 cm soil layer, respectively. The SOC contents of OF25, OF50, OF75, and OF were significantly higher than those of CK and CF in the 0–40 cm soil layer. The order of SOC content in the six treatments was OF > OF75 > OF50 > OF25 > CK > CF. The TN, TP, and AN content were significantly higher in OF50, OF75, and OF than in CK and CF. The AP content was significantly higher in OF25, OF50, OF75, and OF than in CF. Compared with CF, OF50, OF75, OF significantly increased the C/N in the 0–40 cm soil layer.

Table 2 | Soil chemical properties in Moso bamboo forests treated with different fertilizers.


[image: Data table displaying soil properties for various treatments at two depths: 0-20 cm and 20-40 cm. Columns include pH, SOC, TN, TP, AN, AP, and C/N with values differing significantly, indicated by different lowercase letters.]
Different fertilizer treatments had significant effects (p< 0.05) on the soil enzyme activity in each soil layer (Figure 1). Compared with CF, the following were observed: OF25, OF75, and OF had increased SC activity in the 0–40 cm soil layer; OF25, OF50, and OF75 had increased UE activity in the 0–20 cm soil layer; and OF25, OF50, and OF had increased ACP activity in the 0–40 cm soil layer. The SC and ACP activities of OF75 were highest in the 0–20 cm soil layer, and those of OF were highest in the 20–40 cm soil layer.

[image: Three bar charts labeled A, B, and C, illustrate SC, UE, and ACP values in different soil layers (0-20 cm, 20-40 cm). Chart A shows SC in milligrams per gram per day, chart B shows UE in micrograms per gram per day, and chart C shows ACP in micrograms per gram per day. Bars are colored according to treatments: CF, OF25, OF50, OF75, OF, and CK. Each chart displays distinct data variations, with chart A having the highest SC in OF75 at 0-20 cm, chart B showing UE peaking in OF50 at 0-20 cm, and chart C indicating the highest ACP in OF75 at 0-20 cm.]
Figure 1 | Impact of different fertilization treatments on soil (A) sucrase (SC), (B) urease (UE), and (C) acid phosphatase activities (ACP) in 0−20 cm and 20−40 cm soil layers. Different lowercase letters indicate significant differences (p< 0.05) between fertilizer treatments.





Soil bacterial community structure

Statistical analysis of high-throughput sequencing results revealed a total of 81 930 ASVs (ranging from 5795−9091 per sample) assigned with a similarity level of ≥ 97 % found across the 60 soil samples (Table 3). The alpha diversity indices for community richness (ACE and Chao1) and community diversity (Shannon) in the soil varied among treatments. In the 0–20 cm soil layer, the Shannon index of CF was significantly higher than that of CK but did not differ significantly from those of the other four fertilizer treatments (OF25, OF50, OF75, and OF). In the 20–40 cm soil layer, the Shannon index of OF50 was significantly higher than those of the other treatments. The ACE and Chao1 indices of OF50 were significantly higher than those OF and CK in the 0–20 cm soil layer and significantly higher than those of all other treatments in the 20–40 cm soil layer.

Table 3 | Sequence statistics and alpha diversity indices of soil bacteria in Moso bamboo forests treated with different fertilizers.


[image: A table presents soil diversity metrics across two depth ranges: 0-20 cm and 20-40 cm. Each range provides data on treatments labeled CF, OF25, OF50, OF75, OF, and CK. Columns display ASVs, Shannon index, Chao1, ACE, and Good Coverage, with values and standard deviations. At 0-20 cm, ASVs range from 6241 to 8112. At 20-40 cm, ASVs range from 5795 to 9091. Good Coverage remains at 1.00 ± 0.00 across all treatments.]
Figure 2 shows the most abundant bacterial phylum in all samples. During the entire incubation period, Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria were the most dominant phyla across all treatments, accounting for 28.74 %, 10.43 %, 8.02 %, and 5.36 % of the population in the 0–20 cm soil layer, respectively, and 39.04 %, 16.45 %, 12.86 %, and 8.01 % in the 20–40 cm soil layer, respectively. The relative abundance of Proteobacteria in the 0–40 cm soil layer was significantly higher in OF50, OF75, and OF than in CF. The relative abundance of Acidobacteria was lower in OF50, OF75, and OF than in CF and OF25. Based on the Bray–Curtis distance, non-metric multidimensional scaling analysis revealed significant differences in the bacterial community composition at the ASV level (Figure 3).

[image: Stacked bar charts compare relative abundance percentages of various bacterial phyla at soil depths of zero to twenty centimeters and twenty to forty centimeters. Categories include Firmicutes, Bacteroidota, Verrucomicrobiota, and others, across different treatments labeled CF, OF25, OF50, OF75, OF, and CK.]
Figure 2 | Species composition of soil bacteria at the phylum level in (A) 0-20 cm and (B) 20-40 cm soil layers in Moso bamboo forests treated with different fertilizers.

[image: Two NMDS plots comparing two soil depths. Plot A shows data from 0-20 cm with a stress value of 0.077. Plot B represents 20-40 cm with a stress of 0.081. Various colors represent different soil treatments: CF (orange), OF25 (light blue), OF50 (red), OF75 (green), OF (yellow), and CK (purple). Each treatment displays distinct clustering patterns along the NMDS1 and NMDS2 axes.]
Figure 3 | Changes in soil bacterial beta diversity in (A) 0-20 cm and (B) 20-40 cm soil layers in based on the Bray-Curtis distance Moso bamboo forests treated with different fertilizers at the ASV level.





Bamboo shoot yield and quality

After two years of fertilization, the bamboo yields of OF75 and OF were 35 745 and 34 650 kg/ha, respectively (Figure 4). Compared with CF and CK, OF75 increased the yield by 20.23 % and 59.72 %, respectively, and OF increased the yield by 16.55 % and 54.83 %, respectively (p< 0.05). Compared with CF and CK, OF75 significantly increased the total flavonoid content by 122.1 % and 101.3 %, respectively, whereas OF increased it by 41.2 % and 28.0 %, respectively (Figure 5). OF50 and OF75 significantly increased the vitamin C content by 5.8 % and 15.0 %, respectively, compared with CF.

[image: Bar graph showing yield in kilograms per hectare for different treatments: CF, OF25, OF50, OF75, OF, and CK. CF and CK show lower yields, while OF75 and OF have the highest. Error bars indicate variability, with significant differences noted by letters above each bar.]
Figure 4 | Changes in bamboo shoot yield under different fertilization treatments. Different lowercase letters indicate significant differences (p < 0.05) between treatments.

[image: Bar charts labeled A and B compare total flavonoids and Vitamin C content among five treatments: CF, OF25, OF50, OF75, OF, CK. Chart A shows total flavonoids in milligrams per gram. OF75 has the highest level, labeled "a", while CF and OF25 have the lowest, labeled "d". Chart B shows Vitamin C in micrograms per gram. OF75 also shows the highest Vitamin C content, labeled "a", with CF and OF25 labeled "c". Error bars indicate variability.]
Figure 5 | The effects of different fertilization treatments on the nutritional qualities [(A) Total flavonoids, (B) Vitamin C] of bamboo shoots. Different lowercase letters indicate significant differences (p < 0.05) between treatments.





Relationships among soil properties, enzyme activities, bacterial community structure, and bamboo shoot yield and quality

The correlation heatmap (Figure 6) shows the relationships between soil bacterial community composition (phylum level) and the main soil characteristics. SOC, TN, and ACP were positively correlated with Firmicutes and Actinobacteria. In the 0–20 cm soil layer, AN, TP, AP, and UE were positively correlated with Bacteroidetes, whereas SOC, TN, AN, TP, AP, UE, and ACP were negatively correlated with Chloroflexi. In the redundancy analysis, the first two axes explained 47.04 % and 27.66 %, 47.82 % and 23.35 % of the variation observed in the microbial communities in the 0–20 cm and 20–40 cm soil layer, respectively (Figure 7). In the 0–40 cm soil layer, SOC, TP, AP, and UE had significant effects on the soil bacterial communities (Table 4).

[image: Heatmaps showing correlations between soil properties and microbial phyla. Panel A represents 0 to 20 cm depth; Panel B represents 20 to 40 cm depth. Colors range from red (positive correlation) to blue (negative correlation), with significance levels indicated by asterisks. Key microbial phyla include Acidobacteriota, Proteobacteria, and Actinobacteriota, among others. Soil properties include pH, SOC, TN, and more.]
Figure 6 | Correlation heatmap of soil bacterial community compositions (phylum level) and soil properties in (A) 0-20 cm and (B) 20-40 cm soil layers in Moso bamboo forests. (*p<0.05, **p<0.01, ***p<0.001).

[image: Two RDA biplots illustrate data from soil depths of zero to twenty centimeters and twenty to forty centimeters. The first plot (A) shows variables represented by red arrows labeled with different soil parameters, with colored dots indicating treatment categories: CF, CK, OF25, OF50, OF75, and OF. The second plot (B) similarly displays arrows and colored dots with corresponding labels. Arrows extend from the origin, indicating the direction and strength of relationships among soil parameters and treatments. The axis labels indicate RDA1 and RDA2 percentages for each plot.]
Figure 7 | Redundancy analysis (RDA) of soil bacterial community (ASV level) and soil properties for individual samples in (A) 0-20 cm and (B) 20-40 cm soil layers.

Table 4 | Environmental factors affecting soil bacterial communities in Moso bamboo forests.


[image: Table displaying R-squared and p-values for various soil properties (pH, SOC, TN, AN, TP, AP, SC, UE, ACP) across two depth ranges: 0-20 cm and 20-40 cm. Values indicate relationships and significance.]
Pearson’s correlation tests were performed to examine whether variations in the bamboo shoots were influenced by soil properties (Figure 8). Total flavonoid and vitamin C content were positively correlated with pH, SOC, TN and TP. Shoot yield was positively correlated with pH, SOC, TN, TP, AN and AP.

[image: Correlogram illustrating the correlation coefficients among various parameters such as Total Flavonoids, Vitamin C, Yield, pH, SOC, TN, TP, AN, AP, SC, UE, ACP, Shannon, Chao1, and ACE. Red indicates positive correlations, blue indicates negative correlations, and asterisks denote statistically significant correlations. The color intensity and size of the ellipses represent the strength of correlations.]
Figure 8 | Pearson’s correlation for testing the association among bamboo shoot qualities, yield and soil properties in Moso bamboo forests treated with different fertilizers. (*p<0.05).





Soil quality evaluation and its correlation with bamboo shoot yield

The SQI of the six treatments followed the order OF75 > OF50 > OF > OF25 > CF > CK in the 0–20 cm soil layer and OF50 > OF > OF75 > OF25 > CK > CF in the 20–40 cm soil layer (Figures 9A, B). Moreover, in the 0–40 cm soil layer, SQI was significantly higher in OF50 and OF75 than that in CF and CK (Figure 9C). Correlation analysis showed a significant positive correlation between SQI and bamboo yield (p< 0.05, Figure 9D).

[image: Four-part image: (A) Bar graph showing soil quality index (SQI) at 0-20 cm depth, with OF75 having the highest SQI. (B) Bar graph for 20-40 cm depth, with OF50 being the highest. (C) Bar graph for 0-40 cm depth, with OF75 highest. (D) Scatter plot depicting a positive correlation between yield and SQI, equation y=0.00002x-0.16028, R²=0.37, p<0.05.]
Figure 9 | Effects of different fertilizer treatments on soil quality index (SQI, (A) 0–20 cm, (B) 20–40 cm, (C) 0–40 cm) and its correlation with bamboo shoot yield (D). Different lowercase letters indicate significant differences (p < 0.05) between treatments.

SEM analysis showed that the fertilization treatments had direct and indirect effects on soil properties, SQI, and bamboo shoot yield (GFI = 0.855, df =28, Figure 10). The fertilization treatments had positive and indirect effects on SQI by positively affecting SOC and negatively affecting AN and AP. Additionally, the fertilization treatments had negative effects on AN, AP, and bacterial diversity. Bacterial diversity had a positive effect on enzymatic activities (SC, UE, and ACP), which had direct significant positive effects on SOC (p< 0.001), AN (p< 0.001), and AP (p< 0.001). Finally, SQI had a significant positive effect on bamboo shoot yield (p< 0.01).

[image: Diagram showing the impact of fertilization treatments on soil and crop yield. Variables include SOC, AN, AP, bacterial richness, SQI, enzymatic activities, and yield. Arrows indicate positive and negative relationships with coefficients and significance levels. Gfi equals 0.855.]
Figure 10 | Structural equation modeling (SEM) analysis performed to evaluate pathways of fertilizer treatments influence on the bamboo yield, soil properties, enzymatic activities, bacterial diversity and SQI in the 0–40 cm soil layer. Red and blue arrows indicate significantly (p<0.05) positive and negative relationships, respectively. Numbers on arrows represent standardized path coefficients. (*p<0.05, **p<0.01, ***p<0.001).






Discussion




Impacts of different fertilization treatments on soil chemical properties

Our results indicated that after adding different SEOF treatments (OF25, OF50, OF75, and OF) to the soil for two years, the soil pH increased compared with that of CK (Table 2) because SEOF is alkaline and can reduce soil acidification. Zhang et al. (2019) reported that soil acidification is more effectively alleviated by applying high proportions of organic fertilizer than by applying lower proportions. The SOC content of OF50, OF75, and OF were significantly higher than those of CK and CF in the 0–20 cm and 20–40 cm soil layers, respectively. Possible reasons for the increase in soil C stocks are as follows: first, the C content of the SEOF used in this experiment was 40 %; and second, the input of organic carbon and organic matter from the SEOF increased microbial activity and metabolites which is beneficial for the conversion of exogenous carbon into SOC, further promoting the accumulation of SOC (Wang et al., 2015). The combination of chemical and organic fertilizers can increase crop biomass and the input of fresh organic matter into the soil and crop root exudates, further improving the accumulation and fixation of SOC (Yu et al., 2012).

Decreasing the application of CF and applying organic fertilizer as an alternative increased the soil nutrient availability, which is consistent with the results of previous studies (Chen et al., 2020; He et al., 2022; Luo et al., 2018; Ying et al., 2023; Lu et al., 2024). In this study, SEOF effectively improved soil nutrient availability, as shown by the increased levels of soil nutrients (e.g., TN, TP, AN, and AP) compared with CK and CF (Table 2). Similarly, previous studies have reported that a combination of chemical and organic fertilizers improves soil fertility (Li et al., 2023b; Liu et al., 2021). The increased availability of N and P in the soil is partly due to the slow release of nutrients from organic fertilizers. Organic acids generated during organic material decomposition can promote nutrient release, thereby improving the effectiveness of soil nutrients (Cheng et al., 2024). In addition, the large amount of organic matter input from organic fertilizers increases the availability of substrates for microorganisms, which enhances microbial activity, accelerates the decomposition of animal and plant residues, converts soil organic N into inorganic N, and releases effective nutrients for plant utilization (Ning et al., 2017). Applying organic fertilizers also promotes the activation of inorganic P in the soil and increases the AP content (Ying et al., 2023).





Impacts of different fertilization treatments on soil enzyme activities

Soil enzymes are indicators of soil quality and are mainly derived from soil microorganisms, animal and plant residues, and organic fertilizers (Ni et al., 2021). Soil enzyme activities are closely related to SOC decomposition, nutrient mineralization, and plant nutrient absorption and utilization, and they are highly sensitive to external environmental changes (Ni and Su, 2024). Applying SEOF increased soil SC activity, which catalyzes the hydrolysis of sucrose into fructose and glucose for plant absorption and utilization. SC also participates in the mineralization of organic carbon, and its activity is closely related to SOC content (Ni et al., 2024b). The SC and ACP activities of OF75 were highest in the 0–20 cm soil layer, which indicates that applying a combined fertilizer with a high proportion of organic fertilizer improved soil enzyme activities. Phosphatases are important, because they provide P for plant uptake by releasing phosphate ion from immobile organic P (Liu et al., 2010). Urease catalyzes the hydrolysis of urea to CO2 and NH3. UE activity was significantly higher in OF25, OF50, and OF75 than in CF in the 0−40 cm soil layer (Figure 1), indicating that applying a certain amount of SEOF promoted the hydrolysis of urea, which in turn improves soil N availability and N supply capacity. Similar results have also been reported by other researches, who found organic fertilizer had strongly effect on the urease activity (Saha et al., 2008; Liu et al., 2010).

The increase in soil enzyme activity after organic fertilizer treatment may be because of the increased concentrations of organic matter. In addition, the increase in nutrient availability can also stimulate microbial growth (Zhang et al., 2019). On the other hand, the decrease in soil enzyme activity after CF treatment may be because of the changes in the microbial community structure caused by the acidification induced by chemical fertilizers (Zhang et al., 2019). Another study also reported that adding chemical fertilizer negatively influenced both acid and alkaline phosphatase activities (Saha et al., 2008), which is consistent with our findings.





Impacts of different fertilization treatments on soil bacterial community structures

Microbial community structures respond to different fertilization treatments. Our study showed that adding fertilizer significantly changed the α−diversity of the soil bacterial community based on the community indices. In the 0–40 cm soil layer, the ACE and Chao1 indices of OF50 were significantly higher than those OF and CK, indicating that apply 50% organic substitution improved the bacterial community richness. The enhanced richness of bacterial under organic and compound fertilization was consistent with other papers (Hartmann et al., 2015), and confirmed that variation of community mainly attributed to quality of the organic fertilizers. These results are similar to the studies, which showed that fertilization can directly enrich specific microbial communities or indirectly affect bacterial composition by altering soil characteristics (Guo et al., 2018).

The main bacterial phyla in all treatments were Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteria (Figure 2), which is similar to the results of a previous study (Ni et al., 2024c). This is mainly because a large amount of nutrient input can stimulate the growth of microorganisms in the soil (Ying et al., 2023). However, in our study, the relative abundance of Acidobacteria decreased, and that of Proteobacteria increased after treatment with a higher proportion of organic fertilizer. Some studies have demonstrated that adding organic fertilizer primarily decreases oligotrophic taxa, such as Chloroflexi and Acidobacteria, and increases copiotrophic taxa, such as Bacteroidetes and Proteobacteria (Li et al., 2021a; Zeng et al., 2016). These changes are consistent with the copiotrophic hypothesis, which states that under nutrient-rich conditions, faster-growing copiotrophic taxa increase whereas slower-growing oligotrophic taxa decline (Fierer et al., 2012; Ying et al., 2023). In addition, Actinobacteria enriched the soil after organic fertilizer treatment because they rapidly decompose organic matter and convert it into available nutrients (N, P, and K) that plants can use, thereby providing nutrients for plant growth (Ni et al., 2024c; Yang et al., 2023). Therefore, we speculate that applying organic fertilizers may affect the bacterial community structure through various soil factors, such as soil pH, enzyme activity, and nutrient bioavailability.





Bamboo shoot yield and quality and their relationship with soil quality

In our study, OF75 and OF increased the bamboo shoot yield by 20.23 % and 16.55 %, respectively, compared with CF (Figure 4). This indicates that adding a certain amount of SEOF increased the yield of bamboo shoots. This is consistent with previous studies, which demonstrated that adding organic fertilizer can increase crop yield (He et al., 2022; Liu et al., 2021; Ni et al., 2024b). Organic fertilizer improved soil structure, capacity to preserve moisture and fertility, and microbial activity, thereby providing better growth conditions for crops (Liu et al., 2010; Liu et al., 2022b). In addition, the process of slow decomposition and nutrient release of organic materials provides more continuous nutrient supply for crop growth (Gai et al., 2018; Li et al., 2021b). Fertilization enhances plant growth and development and improves plant quality by increasing nutrients like vitamin C and total flavonoids (He et al., 2022). In our study, applying organic fertilizer (OF75, OF) significantly increased the total flavonoid and vitamin C content of bamboo shoots and improved their nutritional value compared with applying CF alone.

Several workers had shown that environmental factors significantly impact the abundance, diversity, and function of soil microorganisms (Ge et al., 2021; Yang et al., 2023). In this study, redundancy analysis showed that SOC, TP, AP, and UE were strongly correlated with soil bacterial communities (Figure 7, Table 4). In the 20–40 cm soil layer, the correlation heatmap showed a significant positive correlation between Acidobacteria, Proteobacteria, and SOC (Figure 6). Acidobacteria and Proteobacteria are primarily involved in organic matter decomposition and biological N fixation. Chloroflexi is a bacterial phylum that generates energy through photosynthesis and can break down polysaccharides in soil into organic acids and hydrogen, thereby promoting the degradation of organic matter and cellulose (Ni et al., 2024c). The positive links among SOC, TN, AN, UE, and Chloroflexi demonstrate that Chloroflexi is closely related to C cycling and bamboo forest productivity.

The SQI constructed from multiple soil properties can reflect the effect of fertilization on soil
quality (Li et al., 2020; Chen et al., 2021; He et al., 2022). Our study showed that the SQI of OF75 was highest, and followed by OF50 in the 0–40 cm soil layer. All treatments involving the organic fertilizers showed an increased SQI, indicating that any combination of reduced compound fertilizer containing organic fertilizer was superior to a single compound fertilizer. This agrees with the works that in D’Hose et al. (2014). We found that bamboo shoot yield was positively correlated with soil pH, SOC, N, P and SQI (Figures 9, 10), indicating that soil pH and fertility levels affected shoot yield and that yield changes with soil quality. This may be because applying organic fertilizers alleviated soil acidification by providing the nutrients required for bamboo shoot growth and development. Similarly, some studies have reported increased yields of wheat and rice (He et al., 2022; Liu et al., 2022a). Additionally, organic fertilizers have a long-term effect on maintaining soil fertility and the sustainable management of bamboo forests (Li et al., 2023b). Fertilization can be expected to increased plant growth either directly or indirectly via influence the soil nutrients, activities and microbial communities. Our SEM analysis showed that fertilization treatments had a positive and indirect effect on SQI by positively affecting SOC and that SQI had a positive effect on bamboo yield (Figure 10). These results demonstrate that decreasing CF and applying organic fertilizer as an
alternative increased bamboo shoot yield by improving soil quality. This agrees with previous
studies reporting that improving soil quality is beneficial for increasing crop yields (wheat and
maize) (Li et al., 2020; Pan et al., 2020). Li et al. (2021b) reported that organic fertilizer addition increased yield and soil quality compared with adding chemical fertilizers alone in a double cropping system in China, which is consistent with our findings. Moreover, fertilization promoted enzyme activity by affecting bacterial diversity, thereby enhancing soil quality and bamboo shoot yield (Figure 10). These results indicate that the changes in soil nutrient status and microbial community caused by organic fertilizers are closely related and may work together to improve yield (Liu et al., 2021).

The impact of organic fertilizer application on soil improvement and bamboo shoot yield is a long-term and slow process. This experiment was only conducted for 2 years, and long-term monitoring experiments should be conducted in the future to more comprehensively evaluate the effect of applying organic fertilizer on soil quality, shoot yield, and shoot quality in Moso bamboo forests.






Conclusions

Our study highlighted that adding organic fertilizers improved the quality of the soil and the yield of the bamboo shoots. Compared with CF addition alone, the combined application of CF and organic fertilizer increased soil pH, SOC, N, and P availability, and the activities of enzymes related to C, N, and P cycling. Organic fertilizer substitution also significantly changed the soil bacterial community structure and increased the relative abundance of beneficial bacteria, such as Proteobacteria and Actinobacteria. Higher proportions of organic fertilizer substitution (OF75, OF) enhanced the bamboo shoot yield (by 20.23 % and 16.55 %, respectively) and their total flavonoid and vitamin C content, compared to CF. In addition, SEM revealed that fertilization affected soil enzyme activities through soil microorganisms, thereby affecting soil nutrient availability and promoting SQI and bamboo shoot yield. Moreover, the SQI of OF75 and OF50 was significantly higher than that of OF and OF25 in the 0–40 cm soil layer. In conclusion, our study revealed that SEOF production is advisable for improving soil quality and bamboo shoot yield.
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Introduction

Fertilizer selection and application is closely related to crop yield and quality. Tartary buckwheat is a medicinal and food crops, has a broad space for development. However, the effect of castor bean meal biofertilizer on the growth and development, yield and quality of Tartary buckwheat and Tartary buckwheat buds is not clear. The aim of this study was to elucidate the effect of castor bean meal biofertilizer on Tartary buckwheat yield and quality, and then to elucidate the effect of castor bean meal biofertilizer indirectly on Tartary buckwheat bud yield and quality.





Methods

Tong buckwheat 3 as the test material, in 2 years of field trials, no fertilizer, chemical fertilizer and cow manure as a control, a total of 10 types of fertilizer treatment, respectively, CK (0 kg·ha-1), F1, F2, F3 (fertilizer, 225, 300, 375kg·ha-1); N1, N2, N3 (cow manure, 7500, 15000, 22500kg·ha-1); B1, B2, B3(Castor bean meal biofertilizer, 7500, 15000, 22500kg·ha-1).





Results

(1) under different fertilizer treatments, Tartary buckwheat plant height, stem thickness, the number of main stem nodes, the number of main stem branches, leaf area and chlorophyll content; single plant grain weight, thousand grain weight and yield of castor bean meal biofertilizer treatment is good, and in the B2 treatment to reach the maximum value. (2) under different fertilizer treatments, Tartary buckwheat protein, starch, cellulose, fat, flavonoid fractions and bioflavonoids are B2 treatment when the highest content. (3) Different fertilization treatments of Tartary buckwheat cultivated Tartary buckwheat buds bud length, fresh weight and dry weight there are significant differences. Tartary buckwheat buds in the 0-16d free amino acids, soluble sugars, total phenols, vitamin C and bioflavonoids content of Tartary buckwheat seeds in the B2 treatment of Tartary buckwheat cultivated Tartary buckwheat buds of the best indicators.





Discussion

In short, this study provides a new fertilization option to improve Tartary buckwheat yield and quality.





Keywords: castor bean meal biofertilizer, Tartary buckwheat, Tartary buckwheat sprouts, yield, quality




1 Introduction

Buckwheat(Fagopyrum esculentumMoench.) is an annual dicotyledonous herbaceous plant in the family Polygonaceae and genus Fagopyrum (Fan et al., 2021). Buckwheat is widely planted in Asia, Europe, and the Americas and is mainly distributed in China, Russia, France, and Ukraine (Jha et al., 2024). There are three main cultivars of buckwheat in China: common buckwheat, Tartary buckwheat, and sweet buckwheat. Buckwheat planting is distributed mainly in the southwest and northern regions of China. Hure Banner in Tongliao city, Inner Mongolia Autonomous Region, known as the “Hometown of Buckwheat in China”, is mainly planted with the Tartary buckwheat(Fagopyrum tataricum (L.) Gaertn.) variety (He et al., 2024). Tartary buckwheat is rich in protein, starch, fat, dietary fiber, minerals, vitamins, and a variety of bioactive components (flavonoids, phenolic acids, and alkaloids) (Sonawane et al., 2024). Tartary buckwheat has hypoglycemic, hypolipidemic, antioxidant, anticancer, and antitumor effects and prevents coronary heart disease (Zhang et al., 2012; Gimenez-Bastida and Zielinski, 2015). Therefore, Tartary buckwheat is considered a medicinal and edible crop and has great development and economic value.

Studies have shown that fertilization is the most effective method for improving crop yield and quality (Wang et al., 2020). The application of an appropriate amount of chemical fertilizer can increase the nutrient content in the soil so that crops can quickly obtain sufficient nutrients for crop growth and development (Wang et al., 2024; Ahmed et al., 2021). However, overfertilization not only leads to soil compaction and acidification, a microbial proportion imbalance, and a decrease in fertilizer use efficiency but also causes imbalances in crop nutrition, hinders internal synthesis and transformation mechanisms, and ultimately affects the yield and quality of crops (Miao et al., 2010; Sparks, 2020). Therefore, coordinating the relationship between the fertilizer application rate and crop yield and quality is important for achieving high and stable crop yields, improving crop quality, and achieving safe production.

At present, the most common fertilizers on the market are divided into three types: chemical fertilizers, organic fertilizers, and bioorganic fertilizers (Bhunia et al., 2021). The extensive use of chemical fertilizers has led to serious incidental problems, such as environmental pollution, chemical resistance of pests, and reduced food safety (Khatri et al., 2023). Owing to the need for sustainable agricultural development, increasing research has been devoted to the study of bioorganic fertilizers that are less harmful to the environment, crops, and food. Castor bean meal (CBM) biofertilizer is a kind of bio-organic fertilizer formed by the fermentation of beneficial bacteria and soil enzymes, Compared with other fertilizers, CBM biofertilizer is not only rich in organic matter but also contains many beneficial microorganisms. These beneficial microorganisms can form symbiotic relationships with soil microorganisms to inhibit the development of harmful bacteria and promote healthy crop growth. In recent years, many scholars have conducted systematic studies on the effects of bioorganic fertilizers on crops. Lin et al. (2024) reported that the application of an appropriate amount of bioorganic fertilizer effectively improved soil fertility and significantly increased yield indicators such as fresh weight, dry weight, and the content of bioactive components in lettuce. Liu et al. (2023) reported that the addition of bioorganic fertilizers such as Bacillus megaterium, Bacillus mucilaginosus, and Bacillus subtilis resulted in the most significant improvement in tea yield and quality, and compared with conventional chemical fertilizers, the qualities of tea polyphenols, amino acids, and caffeine in tea treated with the three bioorganic fertilizers were significantly higher. Some scholars have conducted relevant research on buckwheat. Wan et al. (2023) reported that bioorganic fertilizers improved agronomic traits such as plant height and yield, promoted plant growth and dry matter accumulation, and increased the contents of protein, starch, and bioflavonoids in buckwheat. Tao et al. (2023) reported that the starch content of Tartary buckwheat first increased but then decreased with increasing bioorganic fertilizer application rate. Preliminary studies have shown that castor cake fertilizer significantly improves the root length, plant height, stem diameter, fresh weight, and dry weight of rapeseed. Li et al. (2024) used three types of fertilizers, inorganic fertilizer, organic fertilizer, and castor cake fertilizer, separately during peanut cultivation and reported that, compared with the other two types of fertilizers, castor cake fertilizer not only improved the soil physicochemical environment but also substantially improved peanut agronomic traits and yields, promoted the synthesis of peanut nutrients, and further enhanced the high quality and high yield of peanuts. Suzuki et al. (2021) reported that, unlike the differences in the quality of buckwheat grains harvested under different fertilization treatments, the differences in the growth and development and nutrients of buckwheat sprouts bred from buckwheat treated with different fertilizers were even greater. To date, there are fewer studies on CBM biofertilizer, so it is important to understand the effect of CBM biofertilizer on buckwheat yield and quality for the development and utilization of CBM biofertilizer.

Based on the above studies, the hypotheses of this study are as follows: (i) CBM biofertilizer may improve the yield and quality of buckwheat by regulating the plant height, stem diameter, number of main stem nodes, number of main stem branches, leaf blade area, and chlorophyll content of Tartary buckwheat; (ii) the length, sprout diameter, tap root length, fresh weight, dry weight, and contents of free amino acids, soluble sugars, vitamin C, bioflavonoids, and total phenols of buckwheat sprouts grown from grains harvested under different fertilization treatments may be different. However, relevant studies are lacking. Therefore, a Tartary buckwheat variety named Tongqiao No. 3 was used as the experimental material in this study, and different application rates of chemical fertilizer, cow manure, and CBM biofertilizer were employed to evaluate the effects of CBM biofertilizer on the agronomic traits, yield, and quality of Tartary buckwheat and Tartary buckwheat sprouts. The main purpose of this study was to reveal the effects of CBM biofertilizer on the growth, development, yield, and quality of Tartary buckwheat. The results of this study provide a theoretical basis and technical reference for the high-quality and high-yield cultivation of Tartary buckwheat.




2 Materials and methods



2.1 Test material and growth

The Tartary buckwheat variety used in the experiments was “Tongqiao No. 3”, which was provided by the Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission. Buckwheat sprouts were cultivated from the Tartary buckwheat seeds grown in this study. The experiment was conducted during the buckwheat growing season (July-October) in 2021–2022 at the experimental field of the Institute of Agricultural and Animal Husbandry Sciences, Tongliao City, Inner Mongolia Autonomous Region (altitude 178 m, 122°32′E, 43°44′N). The soil type was sandy loam soil. The nutrient contents of the plow layer (0–20 cm) were as follows: available nitrogen content, 70.76 mg·kg-1; available phosphorus content, 83.10 mg·kg-1; available potassium content, 255.91 mg·kg-1; organic matter content, 14.76 g·kg-1. The soil nutrient content was measured by Nanjing Cavens Testing Technology Co., Ltd.

The experiments used a randomized block design (RBD) with one factor, and each treatment was repeated three times. The seeds were sown on July 1, 2022, and July 5, 2023. Row sowing was used. The plot area was 6 m2 (5 m long, 1.2 m wide, three rows with 30 cm row spacing), and the planting density was 50 plants/m2. Observation lanes and isolation rows were established between each plot. The width of the observation lanes was 2 m, and the width of the isolation rows was 1 m to prevent the mixing of fertilizers. According to previous studies, 10 fertilization treatments were implemented: no fertilization (CK, 0 kg·ha-1), low concentration of chemical fertilizer (F1, 225 kg·ha-1), medium concentration of chemical fertilizer (F2, 300 kg·ha-1), high concentration of chemical fertilizer (F3, 375 kg·ha-1), low concentration of cow manure (N1, 7500 kg·ha-1), medium concentration of cow manure (N2, 15,000 kg·ha-1), high concentration of cow manure (N3, 22,500 kg·ha-1), low concentration of CBM biofertilizer (B1, 7500 kg·ha-1), medium concentration of CBM biofertilizer (B2, 15,000 kg·ha-1), and high concentration of CBM biofertilizer (B3, 22,500 kg·ha-1). The specific fertilization conditions are shown in Table 1. In each treatment, the fertilizer was applied to the plot as the base fertilizer once before planting, and no fertilizer was applied during the entire growth period. Thinning or filling of the seedlings was performed at the seedling stage to maintain the planting density at 50 plants/m2. The buckwheat grains in each plot were harvested when 70% of the buckwheat grains were mature (October 26, 2022, and October 28, 2023). During the flowering and grain-filling periods, artificial irrigation was performed according to the principle of no less than 80% of the field capacity, and natural precipitation was used in the other periods. The other field management and pest control methods used were the same as those used for local high-yield cultivation. The Tartary buckwheat growth status under the different fertilization treatments is shown in Figure 1. The average temperature, sunshine duration, and precipitation from July to October 2022 were 20.3°C, 269.4 h, and 34.5 mm, respectively, and those in 2023 were 22.7°C, 232.1 h, and 42.3 mm, respectively.

Table 1 | Test treatment and fertilizer dosage.
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Figure 1 | Field growth of buckwheat at seedling periods with different fertilization treatments CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




2.2 Test fertilizer

Castor bean meal (CBM) biofertilizer (provided by the Key Laboratory of Castor Breeding State People’s Committee) had a pH value of 6.20, an organic carbon content of 69.00 g/kg, a total nitrogen content of 3.00 g/kg, a total phosphorus content of 1.40 g/kg, a total potassium content of 3.31 g/kg, an alkaline dissolved nitrogen content of 0.25 mg/kg, an alkaline phosphorus content of 2.70 mg/kg, and a fast-acting potassium content of 9.40 mg/kg. Castor bean meal (CBM) biofertilizer contained strains and enzyme activities are shown in Table 2. chemical fertilizer (purchased from Stanley Agricultural Group Co., Ltd.) total nutrient content ≥45%, N-P2O5-K2O:15-15-15. cow manure (provided by Tongliao Agricultural and Animal Husbandry Scientific Research Institute, Inner Mongolia) pH 6.50-8.50, organic matter content 14.50%, total nitrogen content 0.20%-0.45%, total phosphorus content 0.15%-0.25%, alkaline phosphorus content 0.15%-0.25%. 0.15%~0.25%, total potassium content was 0.10%~0.15%.

Table 2 | Beneficial bacteria and enzyme activity of castor bean meal biofertilizer.


[image: Table titled "Castor bean meal biofertilizer" showing strains and corresponding enzyme activities. Strains include *Bacillus subtilis*, *Saccharomyces cerevisiae*, *Arthrospira platensis*, *Acetobacter aceti*, *Lactobacillus acidophilus*, *Streptomyces coelicolor*, and *Aspergillus oryzae*. Their enzyme activities are urease, phosphatase, sucrase, catalase, acid converting enzyme, olyphenol oxidase, protease, and cellulase, respectively.]



2.3 Sample preparation

During the seedling stage, flowering stage, grain-filling stage, and maturity stage, 30 Tartary buckwheat plants with stable growth and an intact root system were randomly excavated from each treatment plot. After rinsing with tap water, 20 Tartary buckwheat plants were selected for each treatment to measure the plant height, stem diameter, number of main stem nodes, and number of main stem branches. The leaves of the remaining 10 Tartary buckwheat plants (located at nodes 4–6 at the top of the main stem) were selected, One part was treated with liquid nitrogen for 30 s and then stored in a refrigerator at -80°C for the determination of chlorophyll content, and the other part was cleaned and stored in a refrigerator at 4°C for the determination of leaf blade area.

The specific mechanism of buckwheat sprout cultivation was as follows: 300 buckwheat grains were selected from each fertilization treatment, the seeds were washed three times with deionized water and then soaked for 5 min, the soaked seeds were placed into a disinfection tray and soaked in 1% NaClO solution for 15 min for disinfection, and the disinfected seeds were then washed three times and placed at room temperature (25°C). Tartary buckwheat seeds subjected to the different treatments were then soaked in sterile water for 24 h prior to germination. Incubation was performed for 16 d with 24 h as the base. At 0 d, 4 d, 8 d, 12 d, and 16 d of buckwheat sprout growth, 30 sprouts with consistent growth were selected, treated with liquid nitrogen for 30 s, and then stored in a -80°C freezer for the subsequent measurement of amino acid, soluble sugar, vitamin C, bioflavonoid, and total phenolic contents.




2.4 Measurements

In accordance with the methods of Yang et al. (2024), the plant height, stem diameter, number of main stem nodes, number of main stem branches, the grain weight per plant, and 1,000-grain weight were measured for each treatment during each growth period. An area of 1 m2 was randomly selected in the center of each plot (no sampling was performed, and the border plants were not included) for the collection of grains from all plants, and the grains were air-dried to measure the yield. The leaf blade area during each period was measured via a Handheld Laser leaf blade area Meter (CI-203, CID, USA) (Yuan et al., 2024a). The chlorophyll content was determined via a chlorophyll content kit (BC0995), which was purchased from Beijing Solarbio Science and Technology Co., Ltd.

The length, diameter, tap root length, fresh weight, and dry weight of the buckwheat sprouts obtained from each fertilization treatment were measured according to the methods of Starič et al. (2023). Three days after germination, the germination rates of Tartary buckwheat harvested under different fertilization treatments were measured with the sprout length of 2 mm as the base.

The buckwheat protein content was determined using the Protein Content Assay Kit (A045-2-2; Nanjing Jiancheng Bioengineering Institute, which utilizes the Coomassie brilliant blue G-250 method to determine protein content. The content of free amino acids in the buckwheat sprouts was determined using a free amino acid content detection kit (BC1575; Beijing Solarbio Science and Technology Co., Ltd. The anthrone method was used to determine the starch content. Briefly, 0.1 g of sample was weighed, 50 mL of 80% ethanol solution was added, and the solution was heated in a constant-temperature water bath at 45°C for 10 min. After suction filtration, 1 mL of the filtrate was added to a colorimetric tube, followed by the addition of 0.5 mL of anthrone solution and 4.5 mL of concentrated sulfuric acid. After shaking, the tube was covered and placed in a boiling water bath for 10 min. After cooling to room temperature, the optical density (OD) was measured at 620 nm use Tecan Spark multifunctional enzyme marker assay (Yang et al., 2019). The cellulose content was determined using a cellulose analyzer (SQ-XW06, Hebei Yunpu Analytical Instrument Co., Ltd.). A plant flavonoid content detection kit (BC1330; Beijing Solarbio Science and Technology Co., Ltd. was used to determine the plant flavonoid content in Tartary buckwheat and buckwheat sprouts; this kit uses the spectrophotometric method to determine the plant flavonoid content. The soluble sugar content in the sprouts was determined using a soluble sugar content detection kit (BC0030; Beijing Solarbio Science and Technology Co., Ltd. this kit uses the anthrone method. The total phenolic content in buckwheat sprouts was determined using a total plant phenolic content detection kit (BC1340; Beijing Solarbio Science and Technology Co., Ltd. and this kit uses the spectrophotometric method. The vitamin C content in the sprouts was determined using a vitamin C content detection kit (BC1234; Beijing Solarbio Science and Technology Co., Ltd. The bioflavonoid components were measured at ProNet Biotech Co., Ltd. using high-performance liquid chromatography-mass spectrometry(Tsushima LCMS-2050 High Performance Liquid Chromatography Mass Spectrometer). The fat content of Tartary buckwheat was determined by Soxhlet extraction method according to Lo Presti et al. (2023) Briefly, 2–5 g of dried and ground sample was accurately weighed, mixed with sea sand, and transferred to a filter paper tube. Then, the filter paper tube was placed into a Soxhlet extractor, anhydrous ether was added at the upper end of condenser, and the extractor was heated on a water bath to continuously reflux the ether for 6–12 h of extraction. After suction filtration, the receiving bottle was removed. When the bottle contained 1–2 cm of ether, the extractor was placed on a water bath to evaporate the ether and then dried at 100-105°C for 2 h. The extract was then removed and placed in a desiccator to cool for 30 min and weighed, and the process was repeated until a constant weight was obtained. The fat content was calculated according to the following formula:

[image: Formula for fat content: \((M2 - M1) / M \times 100\%\).]	

where M2 is the sum of the masses of the receiving bottle and the fat, M1 is the mass of the receiving bottle, and M is the mass of the sample.




2.5 Statistical analysis

Microsoft Excel 2016 and SPSS 25.0 were used for data processing. All the data were analyzed via one-way analysis of variance (ANOVA) and multiple comparison test (Tukey). The differences among the treatments were compared (P<0.05). The growth rate under each fertilizer treatment was calculated using the formula (actual value - control value)/control value * 100%, and the rate of decrease was determined using the formula (control value - actual value)/control value * 100%. The results in 2022 and 2023 were similar. Therefore, the two-year averages are presented, and the data from each of these two years are presented as supplementary data. GraphPad Prism 10 was used to plot the data results and Photoshop 2020 was used for image processing.





3 Results



3.1 Effects of CBM biofertilizer on the agronomic traits of Tartary buckwheat

During the growth period, the plant height, stem diameter, number of main stem nodes, and number of main stem branches of Tartary buckwheat in the different fertilization treatments increased. The plant height, stem diameter, number of main stem nodes, and number of main stem branches under the CBM biofertilizer treatments (B1, B2, and B3) were greater than those under the no fertilizer, chemical fertilizer, and cow manure treatments, and there were significant differences between the B2 treatment and the other fertilization treatments (Figure 2). The leaf area and chlorophyll content of Tartary buckwheat first increased but then decreased as growth progressed, reaching a maximum at the grain-filling stage, and those in the B2 treatment were significantly greater than those in the other fertilization treatments. The plant height, stem diameter, number of main stem nodes, number of main stem branches, leaf blade area, and chlorophyll content increased first but then decreased with increasing fertilizer application rate, with the highest values under the B2 treatment and the lowest under the CK treatment. Compared with those in the CK, F1, F2, F3, N1, N2, N3, B1, and B3 treatments, the plant height in the B2 treatment on average was 23.81%, 13.52%, 10.85%, 14.50%, 20.19%, 13.11%, 18.02%, 4.42%, and 5.96% greater, respectively; the average stem diameter in the B2 treatment was 52.25%, 21.98%, 15.38%, 20.21%, 37.26%, 22.55%, 32.98%, 10.81%, and 7.54% greater, respectively; the average number of main stem nodes under the B2 treatment was 25.51%, 8.63%, 7.27%, 12.93%, 18.23%, 9.46%, 15.36%, 3.63%, and 5.42% greater, respectively; the number of main stem branches under the B2 treatment was on average 30.25%, 18.05%, 10.67%, 15.72%, 18.94%, 9.74%, 16.40%, 8.80%, and 5.21% greater, respectively; and the leaf blade area in the B2 treatment was on average 12.01%, 6.34%, 3.52%, 4.90%, 7.94%, 4.04%, 4.83%, 3.22%, and 2.19% greater, respectively.

[image: Five bar charts show plant growth metrics across four growth periods: seedling, flowering, grain-filling, and maturity. Metrics include plant height, stem thickness, number of main stem nodes, number of main stem branches, leaf blade area, and chlorophyll content. Each chart compares multiple treatments, represented by colored bars with labels from CK to B3. All metrics generally increase over time, with variations among treatments.]
Figure 2 | Effects of CBM biofertilizer on the agronomic traits of Tartary buckwheat Small letter in the same column means significant difference at p< 0.05. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




3.2 Effects of the CBM biofertilizer on the yield of Tartary buckwheat

The different fertilization treatments significantly affected the grain weight per plant and the 1000-grain weight. Figure 3 shows that the buckwheat grains harvested in the B2 treatment were relatively large and had a high fullness. With increasing fertilizer application rate, the grain weight per plant, the 1,000-grain weight, and the yield of Tartary buckwheat first increased but then decreased, with those of the B2 treatment being significantly greater than those of the other fertilization treatments. Compared with those in the CK, F1, F2, F3, N1, N2, N3, B1, and B3 treatments, the grain weight per plant in the B2 treatment was 43.12%, 29.40%, 26.79%, 36.31%, 32.66%, 25.33%, 27.98%, 23.81%, and 20.78% greater, respectively; the 1000-grain weight in the B2 treatment was 8.61%, 5.94%, 2.91%, 5.52%, 6.60%, 5.15%, 8.82%, 6.11%, and 6.29% greater, respectively; and the yield in the B2 treatment was 43.0%, 29.39%, 26.78%, 36.34%, 32.70%, 25.37%, 28.89%, 23.87%, and 20.74% greater, respectively (Figure 4).

[image: A series of round clusters of dark granules arranged in two rows, each labeled with identifiers CK, F1, F2, F3, N1, N2, N3, B1, B2, and B3. Each cluster appears similar in size and texture.]
Figure 3 | Buckwheat kernels harvested from different fertilization treatments CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.

[image: Bar chart comparing yield per plant, thousand grain weight, and yield in kilograms per hectare across different treatments: CK, F1, F2, F3, N1, N2, N3, B1, B2, and B3. Each treatment is color-coded. Visual differences in yield and weight are indicated by varying bar heights and marked with letters for statistical comparison.]
Figure 4 | Effects of the CBM biofertilizer on the yield of Tartary buckwheat. Small letter in the same column means significant difference at p< 0.05. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




3.3 Effects of CBM biofertilizer on the flavonoid components of Tartary buckwheat

The bioflavonoid components of the Tartary buckwheat grains harvested from the different fertilization treatments were determined, and 33 components were found, including quercetin, rutin, hyperoside, kaempferol, kaempferol 3-0-rutinoside, psoralen, bergamot lint, hydroxychalcone, dragon’s blood, alfalfa, boreletin, isomangiferin, genistein, baicalin, Ginkgo biloba diflavonoids, ruthenium naringenin, protocatechindehyde, protocatechuic acid, umbellifera, gallic acid, caffeic acid, resveratrol, apigenin, emodin, naringenin, rhododendron, high psyllium, orange cassia, chlorogenic acid, vitexin, isocarin, ursolic acid, and naringin. Different fertilization treatments had significant effects on these 33 flavonoids. Among them, the most abundant components were quercetin, rutin, hyperoside, kaempferol, and kaempferol 3-0-rutinoside, which have decisive effects on bioflavonoid synthesis (Figure 5). In terms of the effects of the different fertilization treatments on the contents of bioflavonoids, the contents of nine bioflavonoid components, namely, quercetin, protocatechuic acid, hyperoside, kaempferol, kaempferol 3-0-rutinoside, hydroxychalcone, boreletin, protocatechindehyde, and umbellifera, were greater under the B2 treatment than under the other treatments. For Tartary buckwheat in the CK treatment, the levels of five bioflavonoids, namely, rutin, isomangiferin, Ginkgo biloba diflavonoids, ruthenium naringenin, and naringin, were relatively high. In the N1 treatment, the levels of four bioflavonoids, including alfalfa, protocatechuic acid, vitexin, and isocarin, were relatively high. In the N2 treatment, the levels of four bioflavonoids, namely, emodin, bergamot lint, apigenin, and chlorogenic acid, were relatively high. In the B3 treatment, the levels of three bioflavonoids, namely, psoralen, baicalin, and chlorogenic acid, were relatively high. In the F1 treatment, the levels of three bioflavonoids, namely, gallic acid, caffeic acid, and resveratrol, were relatively high. In the B1 treatment, the levels of two bioflavonoids, namely, dragon’s blood and genistein, were relatively high. Compared with the other fertilization treatments, the B2 treatment had the greatest effect on the bioflavonoid components of Tartary buckwheat.

[image: Heatmap displaying compound intensity across various groups labeled B1, B2, B3, CK, F1, F2, F3, N1, N2, N3. Compounds include Hydroxychalcone, Quercetin, Resveratrol, among others. Colors range from red, indicating high intensity, to blue, indicating low intensity. Dendrograms on both axes show hierarchical clustering.]
Figure 5 | Buckwheat bioflavonoid fraction content clustering heat map Small letter in the same column means significant difference at p< 0.05. The abscissa is different fertilization treatments, and the vertical axis is the content of each component of flavonoids. Red represents high content and blue represents low content. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




3.4 Effects of CBM biofertilizer on the quality of Tartary buckwheat

With increasing fertilization application rate, the Tartary buckwheat protein, starch, cellulose, fat, and bioflavonoid contents first increased but then decreased, with the protein, starch, cellulose, and bioflavonoid contents in the B2 treatment being significantly greater than those in the other treatments. Among the fertilization treatments, the fat content in the F2 treatment was greater than that in the other fertilization treatments, but the differences among the treatments were relatively small (Figure 6). Compared with the CK, F1, F2, F3, N1, N2, N3, B1, and B3 treatments, the buckwheat protein content under the B2 treatment was 53.31%, 68.52%, 25.52%, 39.23%, 24.54%, 23.93%, 34.25%, 19.74%, and 12.94% greater, respectively; the starch contents in the B2 treatment were 38.74%, 46.34%, 25.80%, 48.60%, 119.12%, 30.65%, 71.27%, 40.64%, and 30.97% greater, respectively; the cellulose content under the B2 treatment was 65.32%, 51.12%, 38.65%, 62.42%, 30.80%, 12.14%, 21.35%, 33.15%, and 10.79% greater, respectively; and the bioflavonoid content in the B2 treatment was 45.0%, 48.85%, 29.98%, 39.47%, 47.29%, 27.62%, 38.10%, 51.53%, and 26.09% greater, respectively.

[image: Bar chart comparing protein, starch, cellulose, fat, and total bioflavonoid content across different samples labeled CK, F1, F2, F3, N1, N2, N3, B1, B2, and B3. Each sample is represented by a distinct color. Protein, starch, and fat content are measured in grams per 100 grams, while cellulose and bioflavonoid content are in milligrams per gram. Variations in content levels are indicated by letters above each bar.]
Figure 6 | Effects of CBM biofertilizer on the quality of Tartary buckwheat. Small letter in the same column means significant difference at p< 0.05. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




3.5 Effects of CBM biofertilizer on the yield of Tartary buckwheat sprouts

There were significant differences in the sprout length, fresh weight, and dry weight of the Tartary buckwheat sprouts harvested from the different fertilization treatments (Figure 7). With increasing fertilizer application rate, the sprout length, sprout diameter, tap root length, fresh weight, and dry weight of the sprouts from each treatment first increased but then decreased. The sprout length, fresh weight, and dry weight of the sprouts were significantly greater under the B2 treatment than under the other fertilization treatments. Compared with the CK, F1, F2, F3, N1, N2, N3, B1, and B3 treatments, the length of the sprouts cultured from buckwheat harvested in the B2 treatment was 24.17%, 13.84%, 12.59%, 13.55%, 13.84%, 5.51%, 2.92%, 10.83%, and 5.01% greater, respectively; the fresh weight was 34.13%, 22.38%, 11.61%, 17.39%, 3.93%, 2.16%, 0.21%, and 4.91% greater, respectively; and the dry weights were 40.07%, 18.54%, 7.98%, 62.62%, 13.46%, 8.81%, 4.26%, 7.02%, and 4.78% higher, respectively. The sprout diameters and tap root lengths of the sprouts bred from buckwheat harvested under the different fertilization treatments were similar, with small differences among the treatments (Figure 8).

[image: Ten groups of young plant sprouts are arranged against a black background, each labeled as CK, F1, F2, F3, N1, N2, N3, B1, B2, and B3. The plants have dark green leaves and pinkish stems with visible roots. A scale in the bottom right corner indicates a length of one centimeter.]
Figure 7 | Growth of buckwheat buds in different fertilization treatments CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.

[image: Bar chart comparing different treatments (CK, F1, F2, F3, N1, N2, N3, B1, B2, B3) across five plant growth metrics: bud length (cm), bud thickness (mm), taproot length (cm), fresh weight (g), and dry weight (g). Each treatment is represented by a different color, with varying heights indicating different metric values. Labels a to f indicate statistical significance among treatments.]
Figure 8 | Effects of CBM biofertilizer on the yield of Tartary buckwheat sprouts. Small letter in the same column means significant difference at p< 0.05. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.




3.6 Effects of CBM biofertilizer on the quality of Tartary buckwheat sprouts

With increasing duration of cultivation, the contents of free amino acids, soluble sugars, and total phenolics in the Tartary buckwheat sprouts under the different fertilization treatments first increased but then decreased, with the highest contents occurring at 12 d of cultivation(Figure 9); for the buckwheat harvested under the B2 treatment, the contents of free amino acids, soluble sugars, and total phenolics of the cultured sprouts were significantly greater than those under the other fertilization treatments. With increasing cultivation period, the vitamin C and bioflavonoid contents of the sprouts under the different fertilization treatments continuously increased, with the vitamin C and bioflavonoid contents of the sprouts cultivated from buckwheat harvested under the B2 treatment being significantly greater than those under the other fertilization treatments. The contents of free amino acids, soluble sugars, vitamin C, bioflavonoids, and total phenolics in the sprouts bred from grains harvested under the different fertilization treatments were significantly different and initially increased and then decreased with increasing fertilizer application rate, with the highest values under the B2 treatment and the lowest under the CK treatment. Compared with the CK, F1, F2, F3, N1, N2, N3, B1, and B3 treatments, the free amino acid content of the sprouts cultured from buckwheat harvested in the B2 treatment was on average 8.27%, 8.21%, 5.59%, 7.20%, 6.56%, 5.76%, 6.84%, 2.57%, and 2.14% greater, respectively, the soluble sugar content was on average 13.13%, 7.78%, 5.13%, 15.60%, 22.77%, 10.67%, 16.42%, 9.14%, and 4.22% greater, respectively, the vitamin C content was on average 12.13%, 12.43%, 3.23%, 8.33%, 13.04%, 5.05%, 7.77%, 10.93%, and 8.62% greater, respectively, the bioflavonoid contents were on average 27.70%, 29.14%, 15.15%, 25.02%, 29.04%, 21.49%, 25.59%, 32.93%, and 24.08% greater, respectively, and the total phenolic content was on average 11.38%, 7.30%, 1.84%, 10.03%, 10.49%, 5.88%, 8.44%, 7.34%, and 3.31% greater, respectively.

[image: Bar graphs showing changes in free amino acids, soluble sugars, bioflavonoids, vitamin C, and total phenolics over time (0 to 16 days). Multiple treatments (CK, F1, F2, F3, N1, N2, N3, B1, B2, B3) are represented in different colors. Each graph shows an upward trend with variation among treatments.]
Figure 9 | Effects of CBM biofertilizer on the quality of Tartary buckwheat sprouts. Small letter in the same column means significant difference at p< 0.05. CK: Fertilizer application rate of 0 kg·ha-1; F1: chemical fertilizer application rate of 225 kg·ha-1; F2: chemical fertilizer application rate of 300 kg·ha-1; F3: chemical fertilizer application rate of 375 kg·ha-1; N1: cow manure application rate of 7,500 kg·ha-1; N2: cow manure application rate of 15,000 kg·ha-1; N3: cow manure application rate of 22,500 kg·ha-1; B1: CBM fertilizer application rate of 7,500 kg·ha-1; B2: CBM fertilizer application rate of 15,000 kg·ha-1; and B3: CBM fertilizer application rate of 22,500 kg·ha-1.





4 Discussion



4.1 Effect of different fertilization treatments on the agronomic traits of Tartary buckwheat

The agronomic traits of Tartary buckwheat during the growth process are closely associated with the grain weight and final yield. Plant height is an important agronomic trait in Tartary buckwheat. Buckwheat plants that are too tall are potentially prone to lodging, and plants that are too short may exhibit poor nutrition; therefore, plant height may affect buckwheat yield to some extent (Jha et al., 2024). Many studies have shown that the plant height of Tartary buckwheat under different fertilization treatments varies during different periods (Fang et al., 2018). Zhou et al. (2023b) reported that, compared with CK, different organic fertilizer application rates increased the plant height and improved agronomic traits. Tang Z. et al. (2024) reported that appropriate organic fertilizer treatment increased the plant height. In this study, compared with no fertilization, chemical fertilizer, or cow manure, CBM biofertilizer significantly increased the plant height of Tartary buckwheat, with the B2 treatment resulting in the maximum plant height, consistent with previous results. This result may be due to the rich nitrogen, phosphorus, and potassium contained in the CBM fertilizer, thus meeting the plant’s needs for nitrogen, phosphorus, and potassium during different growth periods. A sufficient nutrient supply can significantly promote the growth of Tartary buckwheat plants, thus increasing their height (Tang L. et al., 2024). Zhang et al. (2021) applied organic fertilizer to corn and reported significant improvement in plant traits, increased stalk diameter, and significant promotion of plant growth. The results of this study were consistent with these results, possibly because the CBM biofertilizer contains not only the basic nutrients needed for Tartary buckwheat growth but also trace elements and organic nutrients, which provide a rich material base for growth and contribute to stem growth and development, thereby increasing stem diameter (Xiang et al., 2019). Yang et al. (2024) reported that biological fertilizer can significantly affect the number of main stem nodes and the number of main stem branches and is beneficial for the environmental adaptability of buckwheat, thus improving the yield. In this study, compared with no fertilization, chemical fertilizer, or cow manure, the application of CBM biofertilizer increased the number of main stem nodes, and consistent with previous results, the B2 treatment had the greatest effect among the treatments, possibly because the beneficial microorganisms in the CBM biofertilizer can produce growth-promoting substances, such as auxin, which can increase the number of main stem nodes and the number of main stem branches in Tartary buckwheat (Zheng et al., 2023). Rotili et al. (2023) revealed that the leaf blade area decreased during the maturity stage in buckwheat because the accumulated dry matter in the plant transferred to the grains, consistent with the leaf growth pattern during each growth period in this study. Chlorophyll participates in photosynthesis in plant leaves. Zhou et al. (2023a) reported that the application of nitrogen fertilizer and increasing the planting density increased the chlorophyll content in Tartary buckwheat leaves. In this study, compared with no fertilization, chemical fertilizer, or cow manure, CBM biofertilizer significantly increased the chlorophyll content of the leaves, and consistent with previous results, the B2 treatment had the highest chlorophyll content, possibly because the CBM biofertilizer can significantly increase the photosynthetic intensity, promote chlorophyll synthesis, increase the leaf blade area, and increase the accumulation of photosynthetic products (Hornyák et al., 2022).




4.2 Effect of different fertilization treatments on the yield of Tartary buckwheat

The grain weight per plant and the 1,000-grain weight are important factors in determining the Tartary buckwheat yield. The higher the grain weight per plant is, the greater the yield, whereas the 1,000-grain weight indirectly affects yield by affecting the grain weight per plant and grain quality (Sobhani et al., 2014). Popović et al. (2013) showed that compared with that under conventional planting, the grain weight per plant and 1,000-grain weight of buckwheat plants grown with organic fertilizer were significantly greater, 7.28% and 9% respectively, indicating that organic fertilizer can increase buckwheat yield. Radchenko et al. (2018) reported that the application of organic fertilizer in the planting of buckwheat significantly increased the grain weight per plant, the 1000-grain weight, and the yield in southern Ukraine. Guo et al. (2022) combined organic straw and inorganic fertilizer and reported that, compared with CK, the combined application of organic manure and organic fertilizer significantly increased the grain weight per plant, the 1000-grain weight, and the final yield of buckwheat through increases in the soil nutrient content and improvements in the soil physicochemical environment. In this study, the application of CBM biofertilizer significantly increased the grain weight per plant, the 1,000-grain weight, and the yield of Tartary buckwheat, with the B2 treatment resulting in the highest grain weight per plant, 1,000-grain weight, and yield, 1.43, 1.08, and 1.43 times those of CK, respectively, indicating that CBM biofertilizer significantly increased the yield. This finding is consistent with the results of previous studies, possibly because CBM biofertilizer contains a variety of bacteria and soil enzymes that not only improve the soil environment and promote growth and development buckwheat but also improve plant immunity and increase disease resistance, which ultimately manifests as a significant increase in yield. The appropriate application of CBM biofertilizer may be beneficial for the absorption of soil nutrients by Tartary buckwheat plants, can promote the growth and development of Tartary buckwheat plants, increase the plant height, stem diameter, number of main stem nodes, and number of main stem branches, improve the leaf photosynthetic rate, increase the leaf blade area and chlorophyll content, and thus increase the aboveground biomass and yield (Yuan et al., 2024b).




4.3 Effect of different fertilization treatments on the quality of Tartary buckwheat

The quality of crops directly affects their nutritional value and economic benefits. Some studies have shown that fertilization is conducive to the absorption of nutrients by crops and plays an important role in improving the nutritional quality of grains (El-Saadony et al., 2021). Gao et al. (2024) reported that, compared with no fertilization, the application of an appropriate amount of organic fertilizer significantly increased the starch, cellulose, and fat contents of buckwheat. Gao et al. (2023) reported that appropriate applications of nitrogen fertilizer and organic fertilizer can promote endosperm development and starch synthesis in buckwheat, thereby increasing the contents of starch, cellulose, fat, and bioflavonoids in buckwheat grains. Wan et al. (2021) reported that fertilization can promote buckwheat starch anabolism and amino acid biosynthesis and increase the starch and protein contents of buckwheat grains. In this study, compared with no fertilization, chemical fertilizer, or cow manure, CBM biofertilizer significantly increased the protein, starch, cellulose, fat, and bioflavonoid contents of Tartary buckwheat grains, with the B2 treatment having the highest contents. This finding was consistent with the results of previous studies, possibly because, on the one hand, CBM biofertilizer contains a variety of microorganisms, and application of CBM to soil can promote soil microbe activity, increase soil biodiversity, and promote buckwheat growth and development, thereby improving yield and quality (Martinez et al., 2022); on the other hand, CBM biofertilizer contains high amounts of nitrogen, phosphorus, potassium, and trace elements, and nitrogen, phosphorus, and potassium can be used to develop a buckwheat root system and improve plant photosynthesis, organic synthesis, and transport ability, thus improving yield and quality (Çürük et al., 2020). Habtemariam (2019) reported that the application of green manure can promote the synthesis of rutin, quercetin, kaempferol, and resveratrol in buckwheat, thereby improving the bioflavonoid content and antioxidant activity. Jiang et al. (2007) found that fertilization may significantly increase the contents of rutin, procyanidin, gallic acid, and naringenin in buckwheat grains. Lee et al. (2016) observed that fertilization can regulate the synthesis and metabolism of flavonoid components (such as rutin, quercetin, and catechin), thereby increasing the total flavonoid content. The results of this study revealed that the B2 treatment significantly increased the contents of nine flavonoid components, all of which are key substances for bioflavonoid synthesis; these results are consistent with previous results, suggesting that CBM biofertilizer promotes bioflavonoid synthesis, possibly because some components of CBM biofertilizer may directly or indirectly participate in physiological metabolic processes in buckwheat, affecting flavonoid component synthetic pathways and regulatory mechanisms and thereby increasing flavonoid content (Li et al., 2019).




4.4 Effect of different fertilization treatments on buckwheat sprouts

Buckwheat sprouts are buckwheat seeds germinated under the right conditions to form young shoots, rich in a variety of bioactive ingredients (Kim et al., 2004). Rauf et al. (2019) observed significant differences in the sprout length, sprout diameter, fresh weight, and dry weight of buckwheat sprouts obtained from buckwheat harvested under different fertilization treatments. In this study, compared with buckwheat sprouts obtained from buckwheat harvested under no fertilizer, chemical fertilizer, and cow manure treatments, the sprout length, sprout diameter, tap root length, fresh weight, and dry weight of sprouts harvested in the B2 treatment were the greatest, consistent with previous results. These findings indicate that CBM biofertilizer can indirectly affect the growth status of buckwheat sprouts by affecting the nutrient contents of buckwheat grains. Studies have shown that after breeding of buckwheat sprouts, the contents of free amino acids, soluble sugars, vitamins, flavonoids, and phenolic substances increase significantly (Sytar et al., 2018). Dong et al. (2023) reported that during cultivation, the contents of free amino acids, flavonoids, and phenolic substances constantly changed, presenting a greater nutritional value than that of buckwheat grains. Zhang et al. (2015) reported that germination has significant effects on the nutritional components and various bioactive components of buckwheat, and the differences between grains subjected to different treatments could be visually observed through buckwheat sprouts. The results of this study showed that, compared with the use of buckwheat sprouts obtained from plants under no fertilizer, chemical fertilizer, or cow manure treatment, the application of CBM biofertilizer improved the quality of Tartary buckwheat, thereby indirectly increasing the contents of free amino acids, soluble sugars, vitamin C, bioflavonoids, and total phenolics, and the effect of the B2 treatment was the most significant. This finding is consistent with the results of previous studies and may be due to the greater quality of Tartary buckwheat plants grown with CBM biofertilizer, which can provide sufficient nutrients for sprout growth and development. During germination, macromolecular proteins, polysaccharides, and other substances in buckwheat undergo moderate decomposition by a variety of enzymes and are converted into free amino acids and soluble sugars and other substances that are easily absorbed by the human body, thereby affecting the quality of buckwheat sprouts (Borgonovi et al., 2023).

Notably, with a further increase in the CBM biofertilizer application rate, the yield and quality of Tartary buckwheat decreased, possibly due to an excess of nutrients in the soil, such as nitrogen, phosphorus, and potassium, caused by the excessive application of CBM biofertilizer. These surplus nutrients may not be effectively used by buckwheat but may instead inhibit the uptake of other nutrients, affecting normal crop growth and development and resulting in reduced yield and quality (Lu and Tian, 2017). In addition, excessive CBM biofertilizer may generate acidic substances or harmful gases during decomposition, which may damage the crop root system and affect normal crop growth and development, eventually affecting yield and quality (Li et al., 2018). In general, CBM biofertilizer has a positive effect on the growth and development of Tartary buckwheat and Tartary buckwheat sprouts, but farmers should reasonably control the amount of fertilizer applied. These findings indicate that high Tartary buckwheat yield and quality can be achieved through CBM biofertilizer application and that CBM fertilizer should be used in the planting of Tartary buckwheat. However, this study has some limitations, in this study, different fertilization treatments in buckwheat bioflavonoid fractions have significant differences, but did not further explore the reasons for the differences in bioflavonoid fractions, therefore, in the future, different fertilization treatments can be carried out on the buckwheat genomics and metabolomics of the joint analysis of gene expression of individual genes in the synthesis of bioflavonoids, to verify whether the gene up-regulation or down-regulation whether it led to differences in bioflavonoid fractions between different fertilization treatments.





5 Conclusion

An appropriate amount of CBM biofertilizer (15,000 kg·ha-1) increased the plant height, stem diameter, number of main stem nodes, and number of main stem branches, increased the leaf blade area and chlorophyll content, and increased the grain weight per plant and the 1,000-grain weight, thereby increasing the yield of Tartary buckwheat. This amount of CBM biofertilizer increased the contents of protein, starch, cellulose, and fat in Tartary buckwheat grains and increased the bioflavonoid content by promoting the synthesis of flavonoids. For buckwheat plants grown under this amount of CBM biofertilizer, after the harvested Tartary buckwheat grains were bred into Tartary buckwheat sprouts, the sprout length, sprout diameter, tap root length, and fresh weight of the sprouts were improved, and the contents of free amino acids, soluble sugars, vitamin C, total phenols, and bioflavonoids were greater than those in the other treatments. In order to achieve high-yield and high-quality cultivation of buckwheat, it is recommended that the CBM biofertilizer as a new type of bio-organic fertilizers used to reduce the amount of fertilizers and increase the efficiency of the promotion of green and organic agriculture to provide theoretical guidance for sustainable development.
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Introduction

Oat is a nutritious native species in Loess Plateau for forage and animal husbandry. By focusing on the sowing density and fertilizer rate, oats can achieve better productivity performance while maximizing nutrients use efficiency. However, the information on the responses of oats yield, quality and nutrients use efficiency to fertilization and sowing density is limited.





Methods

In this study, from 2022 to 2023, a two-factor randomized block design field trial was conducted in Loess Plateau. The three sowing densities (SD, L: 75 kg/ha; M: 150 kg/ha; H: 225 kg/ha) were coupled with six fertilizer rates (FR, N0P0: no fertilization; N2: 100 N kg/ha; P2: 90 P kg/ha; N1P2: 50 N kg/ha, 90 P kg/ha; N2P1: 100 N kg/ha, 45 P kg/ha; N2P2: 100 N kg/ha, 90 P kg/ha). The effects of FR and SD on oat forage yield, quality, agronomic efficiency (AE), N/P content, uptake and its uptake efficiency and recover efficiency were investigated. In order to compare N/P efficiency more intuitively, we combined N/P content, N/P uptake, N/P uptake efficiency and N/P recover efficiency to calculate N/P comprehensive efficiency.





Results

Overall, the M-N1P2 treatment promoted the oat growth and achieved the maximum oat forage yield and quality. In the M treatment, the average crude protein (CP) content, relative feed value (RFV), forage yield, CP yield, N content, P content, N uptake and P uptake increased by 20.2%, 4.9%, 73.2%, 100%, 30.4%, 26.3%, 128.5% and 118.4%, respectively, compared with those under the no fertilization treatment; while the average neutral detergent fiber (NDF) decreased by 2.6% in the N1P2 treatment compared to no fertilization treatment. The optimum agronomic efficiency (AE), N uptake efficiency and N recover efficiency were also observed under M-N1P2 during both years. The comprehensive analysis revealed M-N1P2 also had the highest N comprehensive efficiency and P comprehensive efficiency among all treatments. The results of correlation analysis revealed significant positive correlations (P< 0.05) of forage yield and CP with nutrients efficiency of oat, but negative correlations with fiber content.





Discussion

This study determined the appropriate sowing density and fertilization rate (M-N1P2) for cultivating oat in Loess Plateau and provided a foundation for promoting productivity of oats.
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1 Introduction

Oat has high yield and nutritional quality, and is suitable for cultivation over a wide range of soil types and climatic conditions (Jakubus and Graczyk, 2022). It is the most widely grown annual forage cereal in the world (Andrzejewska et al., 2019). Due to oat forage’s rich composition of nutrients, including proteins, antioxidants, and various amino acids, it possesses a high nutritional value. There is growing interest in the oat cultivation as a result of an increasing appreciation of the feeding benefits of oat forage. Among oat consumption all over the world, feeding is the main, supplemented by food, and feeding consumption accounts for almost 60% (Marshall et al., 2013).

Historically, the Loess Plateau has been one of the key primary livestock production hubs, contributing significantly to the national livestock population with 12,311,000 cattle and 56,525,000 sheep, representing 11% and 19% of China’s total livestock, respectively (Zhang et al., 2017b). Thus, demand of forages in the Loess Plateau is on the rise due to market demand fueled by the animal industry. However, recent studies on forage crops in the region mainly focus corn and alfalfa (Jia et al., 2018; Zhang et al., 2017b; Kamran et al., 2022; Liu et al., 2021), and often neglects oats, a high-quality forage that is resistant to drought and infertility. Therefore, it is necessary to conduct further research on oats to fill this gap. Oat is grown by smallholder farmers focus on forage for livestock in this region. However, the agroecosystems of Loess Plateau in semi-arid regions are highly vulnerable due to limited available soil nutrient (Li et al., 2022; Wang et al., 2018), the growth of oat forages is usually negatively impacted by poor soil fertility. Maximizing the potential of oat cultivation, and improving oat nutrient efficiency crude protein (CP) yield in this region is a crucial strategy for addressing forage issues and fostering regional economic development.

Fertilization and planting density are two critical agronomic practices in cropping system for high productivity (Fu et al., 2021). Nitrogen is a limiting nutrient for plant growth and development (Gaudinier et al., 2018), while phosphorus is significant for plant development and reproduction (Zou et al., 2022). Both are essential macronutrients for improving agricultural productivity and maintaining ecosystem stability, and their combined application can lead to significant improvements in quality and yield of crop. Understanding the complex interactions between N and P use is critical for maximizing their nutrient efficiency in crops. Research indicates that their bilateral interaction promotes each other in the uptake and utilization of nutrition (Wang et al., 2020), and their combined application can enhance crop’s capacity to absorb nutrients (Zhang et al., 2021a). But the nutrient use efficiency varies with N and P supply levels, rapid nutrients loss occurs if the fertilizer rate is beyond the uptake capacity of crops. On the other hand, achieving high-yield and improved nutrients use efficiency under increasing planting density has been the priority goal of oat production. However, the higher planting densities may lead to increased competition among plants for nutrients, which may decrease the uptake of nitrogen and P, ultimately reduce protein and dry matter in the harvested crop. Hence, optimum fertilizer rate and planting density varies depending on field fertility condition as well as uptake capacity of crop, it is necessary to understand the mechanisms of nutrition use efficiency improvement of oats, which will in turn facilitate progress in management for field fertilizer.

The optimal fertilization rate coupled improving sowing density are the effective ways to improve crop productivity and maintain sustainable crop production (Yousaf et al., 2016). By focusing on the interplay between planting density and nutrient utilization can achieve better crop performance while minimizing negative environmental impacts (Hawkesford and Griffiths, 2019). Several studies have confirmed that improving planting density compatible with fertilizers application might benefit crop production for high yield with high fertilizer use efficiency. While, the improving planting density may compensate for the yield loss from fertilizer input reduction (Zhu et al., 2016; Huang et al., 2018). Notably, improving sole fertilizer application does not maximize the yield potential of crop population, while coupled appropriate planting density can significantly enhance the productivity of crop populations, resulting in increased yield of target crops (Wu et al., 2024). Moreover, enhancing nutrient efficiency through appropriate planting density coupled fertilizers not only contributes to greater nutrient accumulation but also supports sustainable agricultural practices by reducing the need for excessive fertilization. This is particularly important regarding the environmental concerns associated with fertilizers loss and soil degradation (Xu et al., 2012; Chen and Liao, 2017). In summary, the strategic management of sowing density, when coordinated with effective nutrients uptake and utilization practices, can lead to significant improvements in crop productivity and sustainability.

Moreover, yield and resource utilize efficiency of oat are affected by soil moisture, nutrients, light, and many other factors. The soil water and fertility conditions and agriculture systems are highly diverse in time and space, and the strategy of optimal sowing density and fertilization rate for another region may not be suitable for Loess Plateau (Kamran et al., 2023). Farmers in Loess Plateau of China are experiencing a lack of scientific recommendations of fertilizer application and reasonable sowing density for oats. They generally use intensive agronomic practices to increase the yield due to limited precipitation and soil degradation (Si et al., 2020; Tang et al., 2018). However, the negative impact on resource efficiency and the ecological environment is often ignored. Excess fertilizer amount and sowing density produce severe soil-ecological disruption and addition of cultivation cost, these intensive agronomic practices are untenable, both from economic and ecological benefit perspectives. To the best of our knowledge, there are very few reports from quality characteristics of oat in Loess Plateau, and even less about the response of nutrient efficiency to fertilizer and sowing density, thereby, little is known if forage yield, nutritive quality and resource efficiency of oat can simultaneously be improved with optimized fertilization and density in the Loess Plateau.

We hypothesized that the current fertilizers amount and plant density management for oat in the Loess Plateau is unreasonable and not conducive to cultivation of oat. Instead, optimizing fertilizer rate and sowing density would be valuable in improving yield, nutritional quality and nutrients use efficiency. Therefore, the present study was aimed to investigate the effects of different fertilizer rate and sowing density on forage yield, quality, nutrients indices and nutrients use efficiency for oat, and to determine a suitable management practice for maximize oat productivity in the Loess Plateau of northwest China. The results of this study would ensure the demands of taking full advantage of nutrient, while sustaining forage production and could provide new insights into the sustainable cultivation of oat on nutrient-limited land of Loess Plateau.




2 Materials and method



2.1 Experimental site details

Field experiments were conducted during 2022–2023 in Huan County, Gansu Province (36°16’ N, 107°31’ E; elevation, 1150 m), located in the Loess Plateau, Northwest China. The average annual precipitation in this region is 430 mm and 70% occurs during oat growing season (May to September). The annual precipitation is 414.5 and 364.6 mm in 2022 and 2023, the average temperature over oat growing season is 19.6 °C. The soil at the experimental site is classified as “loessial soil”. Basic soil properties were as follows: organic matter, available nitrogen, available phosphorus, available potassium and pH in the 0-20 cm soil layer was determined as 4.7 g kg-1, 54.1 mg kg-1, 11.3 mg kg-1, 166.4 mg kg-1 and 8.5, respectively.




2.2 Experimental design details

Field experiments were conducted to evaluate six fertilizer rates: N0P0, no fertilization; N2, 100 N kg/ha; P2, 90 P kg/ha; N1P2, 50 N kg/ha + 90 P kg/ha; N2P1, 100 N kg/ha + 45 P kg/ha; N2P2, 100 N kg/ha + 90 P kg/ha. Three sowing densities: L, 75 kg/ha; M, 150 kg/ha; H, 225 kg/ha. The combination of fertilizer rates and sowing densities were a total of eighteen treatments. In detail, the fertilizer rates and sowing densities were determined by considering both the soil base nutrition status and the farmers’ practices (namely, N2P2 treatment and H treatment; Zhang et al., 2025a). Fertilizer rates were divided into two gradients, increasing N fertilizer amount at the same P fertilizer level (N0P2, N1P2, N2P2); increasing P fertilizer amount at the same N fertilizer level (N2P0, N2P1, N2P2).

The experiment was conducted in a randomized complete block design with four replicates. Each plot covered an area of 24 m2 (4 × 6 m) and with a row spacing of 1 m, ridges were established between each adjacent plot to minimize runoff and fertilizer movement. Ridge cultivation of each plot was performed before sowing, fertilizer was applied in equal parts at the sowing (50%) and jointing (50%) stages. On 28th May 2022 and 18th May 2023, oat seeds (Baiyan No.7, provided by the Baicheng Academy of Agricultural Sciences) were manually sown at a soil depth of 4–5 cm with a 20 cm row spacing. Irrigation was not applied during the oat growing seasons, and weed and pest control were conducted manually. The harvesting of plants took place on 10th October 2022 and 5th October 2023, depending on the prevailing weather conditions.




2.3 Data collection and measurement



2.3.1 Measurement of forage yield and quality

At heading and maturity stages of oat, three separate areas (each 1 m2) were randomly chosen from each plot, harvested aboveground oat plants and subjected to a drying process at 85°C until reaching a constant weight. The measured result of above dry matter accumulation was considered as forage yield.

Oven-dried oat samples were crushed into fine powder, passed through a 1-mm mesh screen, and prepared for the determination of forage quality and content of N and P. The concentration of crude protein (CP, %) was estimated by determining N content, and the N content was determined via Elementar Vario MAX CNS/CN (Elementar Trading Co., Ltd, Frankfurt, Germany).

The calculation equation (Equation 1) used for CP content were as follows (Zhang et al., 2018):

[image: Please upload the image or provide a URL so I can help generate the alternate text for it.] 

The concentrations of acid detergent fiber (ADF, %) and neutral detergent fiber (NDF, %) were determined following the methods of Vansoest et al. (1991).




2.3.2 Calculation of forage feeding values

The relative feed value (RFV) of oat was calculated in maturity stage. The CP yield (kg ha-1) was calculated in heading and maturity stages. The equations (Equations 2, 3) used for calculation were as follows (Lithourgidis et al., 2006):

[image: Equation image showing RFV equals (88.9 minus 0.779 times ADF) multiplied by (120 divided by NDF) divided by 1.29.] 

[image: Mathematical formula for CP yield is displayed: CP yield equals aboveground dry matter yield multiplied by CP content.] 




2.3.3 Measurement of forage N and P content and uptake

N content (g kg-1) of oat in heading and maturity stages were determined via Elementar Vario MAX CNS/CN (producer information provided in section 2.3.1). Oat samples were digested with H2SO4-H2O2, and the P content (g kg-1) of oat at heading and maturity stages were determined with molybdate blue colorimetry as described by (Cao et al., 2021).

Total N and P uptake (kg ha-1) of heading and maturity stages were calculated according to aboveground dry weight (t ha-1) and N/P content (Equations 4, 5):

[image: Equation illustrating nitrogen uptake calculation: \( N \text{ uptake} = N \text{ content} \times \text{aboveground dry matter yield} \).] 

[image: Mathematical formula for phosphorus uptake: \(P_{\text{uptake}} = P_{\text{content}} \times \text{aboveground dry matter yield}\).] 




2.3.4 Calculation of forage N and P efficiency

The fertilizer agronomic efficiency (AE), N uptake efficiency (NupE), P uptake efficiency (PupE), N recovery efficiency (NRE) and P recovery efficiency (PRE) of oat was calculated in maturity stage and according to forage yield and N/P uptake of maturity stage.

The calculation formula (Equations 6–10) as follows (Yang et al., 2024):

[image: AE is defined as the difference between forage yield and forage yield with no fertilizer, divided by the total fertilizer input. Equation six.] 

[image: It seems like you attempted to include an image but there's only a text snippet shown. Please try uploading the image again or provide a URL.] 

[image: It seems like you attempted to upload an image, but it is not displaying. Please try uploading the image again or provide a URL. You can also add a caption for additional context.] 

[image: Mathematical formula for Nitrogen Recovery Efficiency (NRE): NRE equals the difference between Nitrogen uptake and Nitrogen uptake with no fertilizer, divided by the input of Nitrogen.] 

[image: Equation for Phosphorus Recovery Efficiency (PRE) showing PRE equals the difference between phosphorus uptake and phosphorus uptake without fertilizer, divided by phosphorus input.] 




2.3.5 Comprehensive evaluation of N and P

Membership function analysis was implemented for comprehensive evaluation of N and P. The N evaluation indicator include N content of heading stage, N content of maturity stages, N uptake of heading stage, N uptake of maturity stages, NupE and NRE; the P evaluation indicator include P content of heading stage, P content of maturity stages, P uptake of heading stage, P uptake of maturity stages, PupE and PRE. The comprehensive analysis score of each indicator of nitrogen was defined as “NCS (nitrogen comprehensive score)”, and the comprehensive analysis score of each indicator of phosphorus was defined as “PCS (phosphorus comprehensive score)”. The optimal fertilization and density treatment was evaluated by result of analysis.

The calculation method Equations 11, 12 of the comprehensive evaluation indicator was as follows (Li et al., 2023):

[image: Formula for weighted sum: NCS equals the sum of MN sub one times W sub one plus MN sub two times W sub two and so on, up to MN sub N times W sub N, as shown in equation eleven.] 

[image: Mathematical equation expressing P_CS as the summation of MP_1 times W_1, plus MP_2 times W_2, continuing to MP_n times W_n.] 

where MN is the N indicator’s membership value, MP is the P indicator’s membership value, and W is the weighting factor. The weightings of each indicator were the same at one in six in this study.

The membership values were counted as follows (Equation 13):

[image: A mathematical formula for feature scaling, specifically min-max normalization, is shown. It calculates the normalized value of \(X_i\) as \((X_i - X_{\text{min}}) / (X_{\text{max}} - X_{\text{min}})\). Equation 13.] 

where M(Xi) is the membership value, and M(Xi) ∈[0,1]; Xi is each index’s measured value; Xmin and Xmax are each index’s minimum and maximum values.





2.4 Statistical analysis

Statistical data analysis was performed using analysis of variance (ANOVA) in SPSS statistics software 27.0 (IBM Corporation, USA). Multiple comparisons between different treatments were conducted using the Tukey’s significant test that significance level of P< 0.05. The relationship and interactions of measured variables assessed by Pearson’s correlation and principal component analysis (PCA). Figures were used via Origin 2019 (Origin Lab Corporation, USA).





3 Result



3.1 Nutritive quality of oat

The statistical results revealed that the sowing density (SD) had no significant impact on oat crude protein (CP) content except heading stage of 2022. However, the effect of fertilizer rate (FR) on CP was significant (P< 0.05) in all stages of two years. The interaction effect of the SD and FR had no significant impact on the CP content (Supplementary Table S1). The CP content was increased with fertilizer application in the two growth seasons, and the highest average CP content of three sowing densities (15.47 and 14.12%) were obtained under the N1P2 treatment, markedly increased by 23.1 and 17.2% in 2022 and 2023, respectively, compare with that in the no fertilization treatment (Figures 1a, b).

[image: Dot plots show crude protein percentages for different treatments across two years, 2022 and 2023. Two stages, heading (green) and maturity (orange), are compared. Treatments are grouped as L, M, and H. The data indicate variations in protein content due to treatment and stage, with letters denoting statistical differences.]
Figure 1 | Variations in oat crude protein under different sowing densities (SD) and fertilizer rates (FR) at heading and maturity stages in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above or under the circles denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters in top or bottom of figure indicate significant differences between sowing densities (P< 0.05).

The SD had significant (P< 0.05) effect on acid detergent fiber (ADF) of oat, the FR had significant (P< 0.05) impact on oat ADF except heading stage of 2023, and the interaction effect of the SD and FR had no significant imapct on the ADF during two years (Supplementary Table S1). A lower ADF was observed under the M treatment than that under the L and H treatments in heading stage of 2022 and maturity stage of 2023 (Figures 2a, b). The FR more markedly affected the ADF at the maturity stage compare with that at the heading stage (Figures 2a, b).

[image: Scatter plots comparing acid detergent fiber percentages at heading and maturity stages over two years, 2022 and 2023. The x-axis represents different treatments labeled CK, N2, P2, N1P2, N2P1, and N2P2. The y-axis shows acid detergent fiber percentage from 26 to 42. Two sets of plots marked (a) for 2022 and (b) for 2023 display data for three levels L, M, and H. Green dots represent the heading stage and orange dots the maturity stage, with significant differences marked by letters A, B, a, b, etc. indicating statistical groupings.]
Figure 2 | Variations in acid detergent fiber under different sowing densities (SD) and fertilizer rates (FR) at heading and maturity stages in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above or under the circles denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters in top or bottom of figure indicate significant differences between sowing densities (P< 0.05).

The effects of the SD and FR on the neutral detergent fiber (NDF) of oats were significant (P< 0.05) in both years, but the interaction effect of the SD and FR had no significant impact on the NDF (Supplementary Table S1). The M treatment significantly decreased the NDF except maturity stage of 2023. At the M treatment, compared with that in the no fertilization treatment, the NDF under the N1P2 was significantly decreased by 1.7 and 3.5% in 2022 and 2023, respectively (Figures 3a, b).

[image: Graph depicting neutral detergent fiber percentages under different treatments for 2022 and 2023. Orange and green circles indicate maturity and heading stages, respectively. Panels (a) and (b) represent data for sections marked A, B, and AB across various treatments including CK, N2, P2, N1P2, N2P1, and N2P2, categorized into low (L), medium (M), and high (H) treatments. Each section contains annotations indicating statistical significance levels.]
Figure 3 | Variations in neutral detergent fiber under different sowing densities (SD) and fertilizer rates (FR) at heading and maturity stages in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above or under the circles denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters in top or bottom of figure indicate significant differences between sowing densities (P< 0.05).

The CP, ADF and NDF significantly differed between the heading and maturity stages. Compared with those in the heading stage, the average CP in the two years were decreased 13.0% in the maturity stage, while the average ADF and NDF in the two years were increased 8.0% and 7.2% in the maturity stage (Figures 1-3).

Different SD and FR treatments significantly (P< 0.05) affected the relative feed value (RFV) but their interaction was not. At the M treatment, compare with that in the no fertilization treatment, the RFV values peaking at N1P2 and increasing by 3.2 and 6.6% in 2022 and 2023, respectively (Figures 4a, b).

[image: Bar charts compare relative feed values for different treatments across two years, 2022 and 2023. The x-axis shows treatments labeled CK, N2, P2, N1P2, N2P1, N2P2, while the y-axis represents relative feed value percentages ranging from 100 to 150. Each year features three grouped analyses with indicators for significance (A, B, ab) and variance levels (SD**, FP*, SD×FP ns). The 2022 chart is divided into three groups, and the 2023 chart has sections for treatment levels L, M, and H. Error bars represent variability.]
Figure 4 | Variations in relative feed value under different sowing density (SD) and fertilizer rates (FR) during 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above the bars denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters indicate significant differences between sowing density (P< 0.05).




3.2 Forage yield, crude protein yield and agronomic efficiency

The SD, FR and their interaction effect significantly (P< 0.05) affected the forage yield and CP yield of oats (Table 1). Compared with that in the M treatment, the forage yield under L and H treatments were decreased by 18% and 23.9% in 2022 and 34.3% and 46.1% in 2023, respectively. CP yield also reached a maximum at M treatment, and reduced or increase sowing density treatments showed detrimental effects on CP yield. Compare with no fertilizer treatment, the average forage yield of two stages was markedly increased 54.5 and 91.8% under the N1P2 treatment in 2022 and 2023, respectively. The average CP yield showed the same trend with the change of forage yield, peaked at the N1P2 treatment and increasing by 81.2 and 118.8% in 2022 and 2023, respectively, compare with that under the no fertilization treatment. The heading stage had a higher CP content than maturity stage, but maturity stage obtained more forage yield and CP yield, these trends remained steady throughout the experimental duration (Table 1).

Table 1 | Forage yield, crude protein (CP) yield and agronomic efficiency (AE) of oat at 2022 and 2023.


[image: Table showing forage and CP yield data across different sowing densities and fertilizer rates for 2022 and 2023. It includes headings for heading and maturity stages, and statistical significance indicated by letters. AE values are listed. ANOVA results are noted for significant differences.]
Agronomic efficiency (AE) of oats was significantly (P< 0.05) affected by SD and FR but not their interaction effect (Table 1). The average AE under M treatment was greater than with other density treatments of two years. At the M density, compare with that in the other fertilization treatments, the N1P2 treatment significantly increased the AE by 66.0–109.6% and 27.6–390.8% in 2022 and 2023, respectively (Table 1).




3.3 Content, uptake, efficiency and comprehensive score of nitrogen

In both oat growing seasons, there were significant (P< 0.05) differences in N content among the FR treatments, the SD had significant (P< 0.05) effect on the N content only in 2023, the interaction effect of the SD and FR had no significant impact on the N content (Supplementary Table S2). The N content of oats markedly increased with the fertilization, and the maximum values were achieved under the N1P2 treatment in all seasons of two years. Under the N1P2 treatments, the average N content of two stages was significantly increased by 23.4% in 2022 and 37.3% in 2023 than that in the no fertilization treatment, respectively. Compared with FR treatment, the effect of SD treatment on N content was less. The SD treatments had no significant effects on the N content in 2022. Compared with that in the M and H treatments, the N content increased under the L treatment in 2023. During oat growing seasons, the N content decreased in the maturity stage compare with heading stage (Figures 5a, b).

[image: Graphs depicting nitrogen content in grains under different treatments for 2022 and 2023. Each section compares heading and maturity stages, with green and orange circles representing each stage, respectively. Treatments are labeled CK, N2, P2, N1P2, N2P1, N2P2, across levels L, M, and H. Nitrogen content ranges from 10 to 35 grams per kilogram, with statistical letters indicating significance.]
Figure 5 | Variations in oat N content under different sowing density (SD) and fertilizer rates (FR) at heading and maturity stages in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above or under the circles denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters in top or bottom of figure indicate significant differences between sowing densities (P< 0.05).

Statistically, FR, SD and their interaction effect had a significant (P< 0.05) impact on N uptake of oats. The M treatment significantly increased the N uptake in maturity stage of two years, as showed in the Table 2. The N uptake markedly increased with the fertilization and peaked at N1P2 treatment in all stages of both years. At the M treatment, the average N uptake of two stages in the N1P2 treatment increased by 94.0 and 162.9% in 2022 and 2023, respectively, compared with that in the no fertilizer treatment (Table 2). Although the heading stage had greater N content of oat, the maturity stage obtained greater N uptake because of more forage yield (Figure 5; Table 2).

Table 2 | Total N uptake (kg ha-1), N uptake efficiency (NupE, kg ha-1) and N recovery efficiency (NRE, kg ha-1) of oat.


[image: Table comparing nitrogen uptake (N uptake), nitrogen uptake efficiency (NupE), and nitrogen recovery efficiency (NRE) across different sowing densities (SD) and fertilizer rates (FR) for 2022 and 2023. Data is detailed for low, medium, and high sowing densities, with headings and maturity stages outlined. Means, ANOVA analysis, and significance symbols are included to indicate statistical differences for different conditions.]
The FR and SD treatments had significant effects on nitrogen uptake efficiency (NupE) and nitrogen recovery efficiency (NRE). The highest NupE and NRE were obtained in the M-N1P2 treatment. At the M treatments, N1P2 increased NupE and NRE by 155.5–212.5% and 275–768.4% in 2022 and 158.3–283.5% and 213.3–710.3% in 2023, respectively, compared with those in the other treatments (Table 2).

In the evaluation system of N, a single indicator might produce a random error for evaluation result, so it was important to combine multiple indicators for their comprehensive evaluation to obtain more objective and accurate evaluation results. The indicators of N comprehensive evaluation include N content and N uptake of heading and maturity stages, NupE and NRE. The result of N comprehensive evaluation showed that N1P2 has the highest N comprehensive score (NCS) among all treatments (Figure 6).

[image: Horizontal bar chart showing nitrogen comprehensive scores for various treatments labeled N2P2, N2P1, N1P2, P2, N2, and CK. Bars are categorized into three groups: L (orange), M (blue), and H (green), indicating different nitrogen levels. Scores range from negative to positive values on the x-axis.]
Figure 6 | Variations in oat N comprehensive score under different sowing density (SD) and fertilizer rates (FR) in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density.




3.4 Content, uptake, efficiency and comprehensive score of phosphorus

The results revealed that the FR had significant (P< 0.05) effect on the P content in both years, the SD had significant (P< 0.05) effect on the P content only in 2023, and their interaction had no significant effect on the P content (Supplementary Table S2). The P content of oats exhibited a similar trend in both years and markedly increased with the fertilization. P2 and N1P2 treatment were significantly increased the P content compared with that in the other fertilization. Under the M treatment, the N1P2 slightly increased P content by 41.9% and 10.7% in 2022 and 2023, respectively, compared with that in the no fertilization treatment. The differences between SD treatments were not statistically significant for P content in 2022, however, the H treatment decreased the P content in 2023 (Figures 7a, b).

[image: Two line graphs illustrate phosphorus content in grams per kilogram for different treatments in 2022 and 2023. The treatments are labeled as CK, N2, P2, N1P2, N2P1, and N2P2 across three groups: L, M, and H. Data points, represented by green and orange circles, indicate the heading and maturity stages, respectively. Phosphorus content ranges between two and six grams per kilogram, with variations labeled as a, b, c, etc., to denote statistical differences. The graphs show trends and comparisons between the two years.]
Figure 7 | Variations in oat P content under different sowing density (SD) and fertilizer rates (FR) at heading and maturity stages in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density. Vertical bars represent SE values (P< 0.05). Different lower-case letters above or under the circles denote significant differences for different fertilizer rates under the same sowing density (P< 0.05). Different upper-case letters in top or bottom of figure indicate significant differences between sowing densities (P< 0.05).

The Table 3 showed that the FR, SD and their interaction had significant affect (P< 0.05) on P uptake and efficiency. The P uptake increased with the fertilization and peaked at the M-N1P2 treatment in both two years. At the M treatment, the average P uptake of two stages in the N1P2 treatment increased by 128.1% and 108.6% compared with that in the no fertilizer treatment in 2022 and 2023, respectively (Table 3). Although the heading stage had higher P content of oat, the increase of forage yield led to more P uptake in maturity stage (Figure 7; Table 3).

Table 3 | Total P uptake (kg ha-1), P uptake efficiency (PupE, kg ha-1) and P recovery efficiency (PRE, kg ha-1) of oat.


[image: A table comparing phosphorus uptake, PupE, and PRE at heading and maturity stages for 2022 and 2023, across different sowing densities (L, M, H) and fertilizer rates (CK, N2, P2, N1P2, N2P1, N2P2). Mean values and ANOVA significance levels are indicated with lower-case and upper-case letters denoting significant differences within and between the sowing densities. Data is shown for each combination, highlighting variations in uptake and efficiency across years, densities, and fertilizer treatments. The significance levels are shown with asterisks, and ns indicates no significance.]
The FR and SD treatments had significant effects on phosphorus uptake efficiency (PupE) and phosphorus recovery efficiency (PRE), the N2P1 treatment has the highest PupE and PRE, however, membership function analysis revealed that the highest P comprehensive score (PCS) under the N1P2 treatment (Figure 8).

[image: Bar chart showing phosphorus comprehensive scores for different treatments labeled N2P2, N2P1, N1P2, P2, N2, and CK, with three categories: L, M, and H, color-coded in orange, blue, and green, respectively. Scores range from -0.8 to 0.8 on the x-axis.]
Figure 8 | Variations in oat P comprehensive score under different sowing density (SD) and fertilizer rates (FR) in 2022 (a) and 2023 (b). L, low sowing density; M, moderate sowing density; H, high sowing density.

Overall, the optimum combination of SD and FR (M-N1P2) for maximizing oat N/P content, uptake and comprehensive efficiency was the same in both years. Integrated nutrient management comprising N/P fertilizers in combined was better than solely applying fertilizer (Figures 5-8; Tables 2, 3).




3.5 Comprehensive evaluation analysis

The correlation analysis revealed significant positive correlations of forage yield, CP yield, nitrogen content and RFV with nutrient uptake and use efficiency (AE, NupE, NRE, NCS, PupE, PRE and PCS) of oat, but negative relations with ADF and NDF content. The CP content and phosphorus content followed a strong positive relationship with other variables except NDF. In addition, the correlation analysis indicated a significant positive relationship between ADF and NDF (Figure 9).

[image: Correlation heatmap displaying relationships among various variables like CP, ADF, NDF, and others. Cells are colored from blue to red, indicating negative to positive correlations, respectively. Significance is marked with asterisks. A color scale ranging from negative one to positive one is included on the right.]
Figure 9 | Correlation analysis for the correlations between quality, yield, nutrient efficiency and comprehensive score of oat forage. The variables included CP, crude protein; ADF, acid detergent fiber; NDF, neutral detergent fiber; RFV, relative feed value; FY, forage yield; CPY, crude protein yield; AE, agronomic efficiency; NC, nitrogen content; Nup, nitrogen uptake; NupE, nitrogen uptake efficiency; NRE, nitrogen recovery efficiency; NCS, nitrogen comprehensive score; PC, phosphorus content; Pup, phosphorus uptake; PupE, phosphorus uptake efficiency; PRE, phosphorus recovery efficiency; PCS, phosphorus comprehensive score. The color gradient denotes correlation coefficient. * and **represent the significant differences at P< 0.05 and P< 0.01, respectively.

The principal component analysis (PCA) was prepared to present the concerted information on the forage yield and quality traits, nutrient content, uptake and use efficiency in relation to FR and SD treatments. For fertilizer rate (Figure 10a), the first two principal components explained 72.6% of the total variance (being 53.1% in PC1 and 19.5% in PC2). The result revealed the clear segregation of the variables and fertilizer treatments into different quadrants. The upper left quadrant of the negative side of PC1 included the CK, solely applying fertilizer (N2 and P2) and N2P2 treatment that delivered high ADF and NDF contents (Figure 10a). The upper right quadrant and lower right quadrant included N1P2 and N2P1 treatment representing higher forage yield, nutrient content, feed value, nutrient uptake and nutrient efficiency along with premium forage quality of oats. Finally, CK, N2, P2 and N2P2 treatments in left quadrant had the lower yield, quality, and nutrient content and efficiency, but higher ADF and NDF (Figure 10a). For sowing density (Figure 10b), the first two principal components explained 65.1% of the total variance (being 44.7% in PC1 and 20.4% in PC2). The L and H treatments clustered on the upper left and lower left quadrants that depicted the lower yield, quality, nutritional indictors and higher fiber content. The M treatment in right quadrants had the higher yield, quality, feed value and nutritional indictors (Figure 10b).

[image: Two scatter plots labeled (a) and (b) display principal component analysis results. Plot (a) shows data points in various colors representing different treatments, with PC1 and PC2 axes at 53.1% and 19.5% variance, respectively. Plot (b) presents data points grouped by different categories, labeled L, M, and H, with PC1 and PC2 axes at 44.7% and 20.4% variance, respectively. Arrows indicate the direction of variables like NDF, ADF, CP, and others.]
Figure 10 | The principal component analysis (PCA) shows the relationship between variables and represents the separation of fertilizer rate treatments (a) and sowing density treatments (b) among the first two principal components. Abbreviations for indicator names are similar to Figure 9.





4 Discussion



4.1 Oat nutrient quality, N/P content and feed value response to fertilization and density

For forage producers, achieving greater biomass is a primary objective; however, high nutritional quality is equally important as it enhances the profitability of both forage production and the livestock enterprises it supports (Zhang et al., 2018). Crude protein is a key indicator of the nutrient availability in the forage, which is vital for feed efficiency and development of livestock. Fiber content is important for maintaining proper digestive health in ruminants. It aids in the fermentation process within the rumen, promoting a healthy microbial population and nutrient absorption (Gonzalez et al., 2020). RFV combines both ADF and NDF to provide a comprehensive measure of forage digestibility. CP content, fiber content, and RFV are the essential quality metrics used for assessing forage nutritive values (Agnew et al., 2022). These metrics not only guide the selection of appropriate fertilizer but also enhance the overall efficiency of livestock production systems, contributing to sustainable agricultural practices (Sharma et al., 2018).

The above indicators showed a marked difference between heading and maturity stages in our study, the CP and fiber content in the heading stage was greater than that in maturity stage. This observed trends in crop might be related to plant canopy characteristics and the reduction in leaf area associated with the of leaf senescence (Liu et al., 2021). Photosynthesis is the physiological base of crop growth and crop nutrient formation, while more than 90% of crop biomass is derived from photosynthetic products (Zhang et al., 2025b), and the reduction of photosynthesis in the maturity stage greatly decrease the oat nutritional quality. Moreover, the increase of stem rigidity in maturity stage led to the enhanced accumulation of fiber content (Zhang et al., 2018). These changes collectively contributed to a decline of nutritive quality in the maturity stage.

In general, increasing N/P levels and sowing density are believed to increase crop quality (Li et al., 2023; Shao et al., 2024). However, the increased N/P levels or sowing density couldn’t increase oat quality indefinitely in our study, and excess fertilization and density (N2P2 treatment and H treatment) show a detrimental effect on nutrient quality of oat. These results partly support our hypothesis that the farmers’ practiced N/P application and sowing density in the Loess Plateau of northwest China are excessive, and would limit the water and nutrient demands required for optimal growth and productivity of oat. In our study, M-N1P2 markedly improved the nutritive quality both in heading and maturity stages, evidenced by greater CP and RFV and lower NDF content compared to that of other treatment. Consistently, previous studies have also reported high forage quality of crops with optimized fertilization and sowing density (Li et al., 2021). The response of forage quality to increasing fertilization amounts and planting density follows a parabolic curvilinear relationship. Excessive fertilization and planting density frequently lead to a reduction in forage quality. This is attributed to their impact on enhancing cell wall components and fiber content (Kamran et al., 2023). These findings were corroborated by the elevated levels of NDF and ADF observed in our study. In addition, overapplication of fertilizers has been shown to reduce the protein content in grains and forages, as well as the bioavailability of essential nutrients. This suggests that there is an optimal N and phosphorus application that maximizes nutritional quality without compromising yield (Zhang et al., 2017a). Optimal N and P treatment increase crops N and P uptake and use, thereby enhancing the synthesis of amino acid and protein contents (Kaplan et al., 2019).

Moreover, our study highlights the interaction between optimizing sowing density and fertilizer rate is crucial. The combination of the optimal agronomic practices directly influences the crop’s ability to use fertilizers effectively, particularly in fertility-poor soils (Gregoire et al., 2022). The moderate sowing density of forage crops can enhance the uptake efficiency of fertilizers which significantly improve nutritive efficiency of oat forage. It is also essential for meeting the growing forage demands sustainably.




4.2 Oat forage yield, CP yield and N/P uptake response to fertilization and density

The forage yield response is an important variable for evaluating nutrient efficiency in agroecosystems, because it reflects the condition of nutrients in agroecosystems (Mueller et al., 2012). CP yield and N/P uptake are also important indicators directly act to reflect the overall plant nutrition and yield. The forage yield, CP yield and N/P uptake of oats exhibited a consistent trend in both years, peaked at the M-N1P2 treatment, and showed a strong correlation between CP yield, N/P accumulation and forage yield (Figure 9).

Some study showed that high N/P amounts are regarded as the main way to increase forage yield and productivity (Ahmad et al., 2023; Chen et al., 2024). However, excessive fertilization (N2P2) failure to produce positive outcomes for crop yield and nutrient in harvested oat forage in the present study. A study showed that under the high N and P supply, only 15% of fertilizers could transform into forage and grain and the remaining nutrients were lost as gaseous emissions or leached from the soil (Shi et al., 2016). Farmers of our experimental region apply excessive fertilizer lavishly to try to maximize crop yields, this leads to the decline of fertilizer efficiency, and crops cannot take up excess fertilizer after saturation of fertilizer uptake, which ultimately leads to the increase of planting costs and environmental pollution. Previous study showed that optimal fertilizer application could increase the crop yield by increasing the nutrient uptake and nutrient efficiency (Wang et al., 2023). This study confirmed this viewpoint that the forage yield, CP yield and N/P uptake increased under same sowing density with application of fertilizers. Thus, precisely formulating an optimal fertilizer rate should refer to the maximal fertilizer uptake for a certain crop.

In our two consecutive years of field experiments, sowing density of 150 kg ha-1 simultaneously have resulted in maximum forage yield, CP yield and N/P uptake, and decreasing or increasing the sowing density had negative effects on these indicators. A study indicated that the low density of oat in the fields might produce high forage yield per plant, but achieving high forage yield per hectare is difficult (Chen et al., 2024). Increase of sowing density can improve forage yield per hectare by increasing the number of plants. The increasing sowing density can also minimize the waste of applied fertilizers by increasing total tillering number and expanding root-canopy structure, thus increasing use efficiency of nutrients and improving N/P uptake and CP yield (Shao et al., 2024). However, the increased sowing density couldn’t increase oat yield indefinitely and excess population density will reduce the field yield of oat. The reason could be that too dense plant density exacerbated the competition for resources, led to excessive population density, poor ventilation, light transmission, and the breeding of diseases and pests (Zhang et al., 2021b; Hou et al., 2019), thus resulting in yield per plant loss, made difficult to achieve a high yield per hectare. Another possible reason is that the climatic and soil conditions are highly diverse in time and space (Kamran et al., 2023), and the sowing density for other regions may not be suitable for Loess Plateau, the poor soil moisture and nutrient conditions in this region do not support a larger population density of oats. Hence, a site-specific implementation strategy is needed to identify appropriate sowing density of oat in the Loess Plateau.

Notably, the oat yield was significantly influenced by the interaction between fertilization and density (Table 1). The positive impact of N1P2 treatment on yield was more pronounced under the M treatment compared with that under the L and H. This revealed that only an optimal sowing density can maximize the effectiveness of fertilizers, thereby significantly improving productivity and sustainability. Results underscored the importance of coupled fertilizer rate and sowing density.




4.3 Oat nutrient efficiency response to fertilization and density

Nutrient efficiency is an important index to evaluate forage, particularly in the context of increasing global forage demand and environmental concerns associated with nitrogen and P fertilizer use. Improving N/P efficiency can lead to enhanced forage quality and yield, which are vital for increasing productivity of livestock and agriculture. Our study showed that the N1P2 treatment significantly increased the agronomic efficiency, N fertilizer recovery efficiency and N uptake, however, the P recovery and uptake efficiency peaked at the N2P1 treatment. Thus, we used the comprehensive evaluation to calculated the comprehensive scores of N and P, and the results of evaluation showed that the N1P2 treatment still had the highest NCS and PCS. Previous study reported that the combination of N and P application not only increased grain yield but also enhanced nutrient use efficiency and agronomic efficiency in agricultural systems (Li et al., 2023). Plant N and P content and LAI increased with optimal levels of N/P application, resulting in higher nutrients use efficiency by enhancing photosynthetic rate (Nasar et al., 2022). Moreover, optimal fertilization promotes the growth of crop roots, and a vigorous root system enable crops to absorb more nutrients of soil, contributing to the higher nutrient efficiency and productivity.

Optimizing sowing density can significantly influence the root distribution, nutrient uptake efficiency and overall yield of crops. For instance, a study on winter wheat indicated that improved sowing density led to enhanced root length density and nitrogen uptake efficiency, which ultimately resulted in higher yields (Wang et al., 2012). Similarly, another investigation of maize production demonstrated that adjusting planting density not only improved the leaf area index and radiation use efficiency but also optimized N use efficiency, thereby stabilized the yield in loess plateau (Jia et al., 2018). It was consistent with our results that optimizing sowing density (M treatment) significantly increased agronomic efficiency of fertilizers and efficiency of N and P.

Moreover, a study highlighted that the application of fertilizers in conjunction with optimized planting density resulted in increased nitrogen accumulation and translocation during the critical post-anthesis phase, leading to improved yield and nitrogen use efficiency (Yuan et al., 2024). In our study, the interaction between fertilization and sowing density played a vital role in maximizing nutrients use efficiency. This synergistic approach underscores the importance of integrating agronomic practices to enhance both resource use efficiency and crop productivity, the combination of optimal sowing density and fertilization could be an excellent strategy to optimize resource use. This integrated approach not only supports sustainable agriculture but also laying the foundation for achieving high oat yield in Loess Plateau.




4.4 Implications for fertilizer rate and sowing density

Yield and quality indicators are important for forages, but the nutrients use efficiency is equally important, especially to avoid the waste of fertilizers. Thus, when formulating an agronomic practice, these two points should be fully balanced. Previous studies have reported a trade-off between maximizing forage productivity and nutrients use efficiency (Kamran et al., 2022; Kaplan et al., 2019). This trade-off requires both consideration of maximizing the economic benefits and minimizing environmental pollution, while formulating density and fertilization management practices.

Low nutrient use efficiency is mainly caused by unreasonable fertilizer application, mass nutrient loss, and an imbalance between crop nutrient supply and demand (Yang et al., 2016). This is evident in agricultural systems where overuse of fertilizers without considering the specific needs of the crops, particularly nitrogen and phosphorus, can result in nutrient leaching, soil acidification, and a decline in soil biodiversity. In addition to these ecological concerns, the financial implications of excessive fertilizer use and improper sowing density cannot be overlooked, the costs associated with purchasing fertilizers and seeds can escalate quickly, particularly when they lead to diminished soil health and reduced crop yields over time. This indicates that finding the optimal sowing density and fertilizer rate is essential for maintaining soil health and ecological balance.

A study has shown that optimizing sowing density and fertilization can enhance soil fertility and crop productivity while reducing the reliance on fertilizers inputs. In the semi-arid areas, reducing fertilizers application while optimizing planting density has been proved to improve yield and nitrogen use efficiency, thereby minimizing the negative impacts associated with excess fertilizers use (Wu et al., 2024). Similarly, our study indicated that the yield, quality, N use efficiency and agronomic efficiency of oats under the M-N1P2 treatment were higher than other treatments. These results revealed that the optimal density and fertilization could ensure oat yield while improving nutrients use efficiency, it showed a reduced need for fertilizers, thus reducing the negative impact of excess fertilizers input on the environment. The current study has the potential for improving productivity and promoting ecological conservation, and could be a promising strategy for the efficient production of oats in Loess Plateau.





5 Conclusion

The findings of the two-year field study revealed that the optimal sowing density and fertilizer rate (M-N1P2) greatly increased the CP content, relative feed value, forage yield, CP yield, agronomic efficiency, N/P content, N/P uptake, N uptake efficiency and N recover efficiency, while decreased the NDF of oat. The results of correlation analysis showed significant positive correlations of forage CP content and yield with agronomic efficiency, N/P uptake efficiency and N/P recover efficiency, but negative correlations with ADF and NDF. The results of comprehensive evaluation exhibited that M-N1P2 had the highest N comprehensive score and P comprehensive score among all treatments. Hence, the M-N1P2 treatment was able to maintain yield and quality while maximizing agronomic efficiency and N efficiency without much reduction in the P efficiency across the two growing seasons. Therefore, a sowing density of 150 kg ha-1 coupled with 50 kg ha-1 N and 90 kg ha-1 P is recommended as the optimal tillage practice for oats in the Loess Plateau.

Present findings illustrated significant prospects for optimizing the fertilizer rate and sowing density for oat in the Loess Plateau of northwest China. Nevertheless, the precipitation levels and soil characteristics, may vary between different semi-arid regions, and the optimal fertilizer rate and sowing density identified in this study may not be applicable for achieving maximum productivity in other semi-arid areas. Therefore, future multi-locational studies are suggested to clarify how climatic variations in different semi-arid regions would influence the potential effects of fertilization and sowing density on oat production, forage nutritive quality, and resource use efficiency. More precise guidelines will aid farmers in minimizing fertilizer and seed inputs while maximizing economic profitability within agricultural production systems.
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Background

The coordinated management of water and fertilizer is essential for improving vegetable yield and quality. However, its role in connecting quality with the anatomical structure of the phloem and xylem in carrots remains unclear.





Methods

This study involved a two-year field trial with four different water and fertilizer treatments: farmer practices (FP), an optimized water and fertilizer system (OPT), 30% organic substitution with compressed peanut shells (PS), and 30% organic substitution with Pleurotus ostreatus residue (M) combined with water and fertilizer optimization.





Results

Compared with the FP treatment, the OPT, PS, and M treatments increased both yield and quality. Flavor quality increased by 17.51%, 13.04%, and 15.05%, and nutritional quality increased by 11.04%, 8.12%, and 17.35% in the upper, middle, and lower segments, respectively, in the OPT treatment. In contrast, the organic substitution treatments (average of PS and M) resulted in even greater improvements, with flavor quality increasing by 32.50%, 18.21%, and 38.07%, and nutritional quality increasing by 10.28%, 4.69%, and 25.41%, respectively. In the phloem, flavor and nutritional quality increased by 9.59% and 13.50%, respectively, in the OPT treatment and by 12.35% and 17.69%, respectively, in the organic substitution treatment. In the xylem, flavor and nutritional quality increased by 1.64% and 19.09%, respectively, in the OPT treatment, whereas in the organic substitution treatments, flavor quality increased by 16.89%, and nutritional quality increased by 1.94%. Compared with those in the FP treatment, the phloem parenchyma cell area (Pca) and the proportion of xylem vessels to secondary xylem (Pxv) in the upper segment were 9.17% and 88.40% greater in the OPT treatment, respectively, and 18.44% and 116.22% greater in the organic substitution treatment, respectively. The parameters characterizing Pca and Pxv in the upper segment, along with Pca in the lower segment, were positively correlated with flavor and nutritional quality, whereas the xylem vessel area (Xva) and diameter (Xvd) were negatively correlated.





Conclusion

In conclusion, the coordinated management of water, organic, and inorganic fertilizers improves flavor and nutritional quality across the upper, middle, and lower segments, as well as in the phloem and xylem. The superior phloem parenchyma cell area and xylem vessel proportion in the upper segment may serve as physiological traits in breeding carrots for quality improvement.
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1 Introduction

Carrots are well-known vegetable crops worldwide and are prized for their abundance of nutrients such as carotene, amino acids, and vitamins (Zhang et al., 2020). China accounts for almost 40% of the global carrot planting area (FAO, 2022). Nevertheless, in recent years, farmers have been using excessive water and fertilizers more frequently to increase yields, leading to issues related to crop quality and the environment (Rietra et al., 2017). The optimization of water and fertilizer management is crucial for decreasing input costs while improving both yield and quality (Gan et al., 2023).

Carotenoid levels in the aboveground and root sections are higher with fractional nitrogen (N) fertilizer treatments than with one-third N treatments (Colombari et al., 2018). Compared with conventional methods, organic management offers greater commerciality, reduced waste, and increased vitamin C content in carrots (Olle and Williams, 2021). The evaluation of high-quality carrots is based on their appearance, flavor, and nutritional quality (Carrillo-López and Yahia, 2019). The shape of carrot taproots is primarily determined by the balance of length, elongation, and thickness, leading to various root types ranging from circular to conical or cylindrical (Kjellenberg et al., 2016). Cylindrical roots are regarded as a standard for appearance quality (Thompson, 1969). Flavor quality is determined by the balance between sweetness and acidity (Kader, 2008).

Carrot quality and the distribution of the main primary and secondary metabolites vary significantly across genotypes and radially distributed tissues (Aubert et al., 2022). In two carrot genotypes, the malic acid content is greater in the xylem than in the phloem, whereas α-carotene, β-carotene, and carotenoids are more abundant in the phloem (Aubert et al., 2022; Perrin et al., 2017). The levels of metabolites, sucrose, and carotenoids decrease from the top to the bottom of the tissue. Among the three carrot varieties, carotenes are most concentrated in the secondary phloem (Kim et al., 2010). However, the understanding of carrot quality across vertical segments and radial distribution under optimal water-fertilizer management is limited, which is crucial for the cultivation of high-yield and high-quality carrots.

The formation and expansion of carrot roots involve structural changes, material accumulation, and gene regulation (Khadr et al., 2020). The vascular cambium divides the root into two parts: the secondary phloem (cortex) and the secondary xylem (core) (Perrin et al., 2017). The xylem transports water, whereas the phloem carries amino acids and sucrose (Zhao et al., 2005). The phloem expands significantly during growth, especially with increasing parenchyma cell number and volume (Suojala, 2000). Its metabolic function surpasses that of the xylem, resulting in the accumulation of more nutrients (Aubry et al., 2019). Sugars are mainly stored in parenchyma vacuoles (Nilsson, 1987), and carotenoids are synthesized in chloroplasts (Perrin et al., 2017). However, the relationships between the phloem and xylem structure and quality in carrots remain unclear.

Previous studies have shown that optimizing water and fertilizer management can greatly improve the overall quality of carrots in long-term experiments (Tang et al., 2024). This study delves deeper into the underlying physiological mechanisms by examining the following hypotheses: a) optimized water-fertilizer management enhances flavor and nutritional quality across different vertical segments of carrots, and b) a superior phloem and xylem structure in the horizontal radial distribution promotes the accumulation of soluble solids, sugars, and carotene, contributing to excellent flavor and nutritional quality under coordinated water–fertilizer management.




2 Materials and methods



2.1 Field experiments

Field experiments were conducted in 2022 and 2023 as part of a long-term study on water and fertilizer management that was initiated in 2020 at the Science and Technology Backyard of LaiXi in Houtun village, Qingdao city, Shandong Province (36°N; 120°E). The experimental site has a temperate continental monsoon climate, with annual average temperatures of 13°C in 2022 and 14°C in 2023. The total rainfall during the two growing seasons was 715.5 mm in 2022 and 445.8 mm in 2023. The soil used in the experiment was mortar black soil, with the following properties at a depth of -20 cm: alkali-hydrolysable N, 175.7 mg·kg-¹; Olsen P, 27.7 mg·kg-¹; available K, 117.6 mg·kg-¹; pH, 6.80; and organic matter, 12.3 g·kg-¹.

Pleurotus ostreatus is abundant in nutrients, including protein, amino acids, vitamins, and various other substances that can be converted into organic fertilizer (Huang et al., 2023). Peanut shells are high in fiber, vitamins, flavonoids, and mineral nutrients such as calcium (Camargo et al., 2017). They can also serve as seedling substrate material postfermentation (Sun et al., 2003). Since local farmers cultivate peanuts and Pleurotus ostreatus, there is an abundance of residue available for utilization. The water and fertilizer treatments included (1) farmer practices (FP), where water and fertilizers are applied following traditional methods in Laixi; (2) an optimized water and fertilizer system(OPT), which uses real-time soil water or nutrient data and field capacity, employing sensors to fulfill carrot nutrient needs; (3) 30% organic substitution with compressed peanut shells + OPT (PS); and (4) 30% organic substitution with Pleurotus ostreatus residue + OPT (M). In the PS and M treatments, 30% of the N fertilizer was substituted with compressed peanut shells or Pleurotus ostreatus residue, maintaining total water and fertilizer levels similar to those in the OPT treatment. In 2022 and 2023, FP application rates were established at 323 kg N ha-¹, 225 kg P2O5 ha-¹, and 285 kg K2O ha-¹ on the basis of local surveys (Table 1). The OPT rates were 252 and 236 kg N ha-¹, 54 and 59 kg P2O5 ha-¹, and 240 and 300 kg K2O ha-¹, as determined by carrot growth stages, respectively. The PS rates were 252 and 236 kg N ha-¹, 63 and 74 kg P2O5 ha-¹, and 240 and 300 kg K2O ha-¹, respectively. The application rates of the M treatment were 252 and 236 kg N ha-¹, 78 and 88 kg P2O5 ha-¹, and 240 and 300 kg K2O ha-¹, respectively. Urea (N 46%) was used as the N fertilizer, diammonium phosphate (N 18%, P2O5 46%) was used as the P source, and potassium sulfate (K2O 50%) was used for K. The organic fertilizer consisted of an agricultural microbial agent (N 4%). The agricultural microbial agents were applied in FP and OPT at a rate of 1200 kg ha-1. In 2022 and 2023, the PS treatment was applied at rates of 4740 kg·ha-1 and 4440 kg·ha-1 peanut shell compressed particles, whereas the M treatment was applied at rates of 4995 kg·ha-1 and 4680 kg·ha-1 mushroom residue. The fertilizer is applied in liquid form by dissolving the powder in water. This experiment utilized elemental fertilizer to achieve the necessary N, P, and K content ratios for optimal carrot growth.

Table 1 | Total input of nutrient and water in each treatment in 2022 autumn and 2023 spring.


[image: Table comparing fertilizer and water use across different treatments (FP, OPT, PS, M) for 2022 Autumn and 2023 Spring. Data includes N, P₂O₅, K₂O (in kg/ha), and water (in m³/ha). Notable reductions are shown for OPT, PS, M treatments compared to FP. In 2022, the greatest reduction is in P₂O₅ use at -71.1%. In 2023, K₂O use increased by 5.3%, while P₂O₅ use decreased by -67.4%.]
In terms of water management, the FP treatment utilized customary irrigation volumes, whereas the remaining treatments were modified according to the real-time soil moisture and field capacity data provided by sensors. The total irrigation volumes were 924 and 1835 m³·ha-¹ for the FP treatment, 862 and 1587 m³·ha-¹ for the OPT treatment, 894 and 1605 m³·ha-¹ for the PS treatment, and 875 and 1587 m³·ha-¹ for the M treatment, in 2022 and 2023. Details of the nutrient and water inputs at each stage can be found in Supplementary Table S1.

In this experiment, four large plots, each measuring 220.5 m2, were established. Each large plot was divided into four repetitions. The carrot varieties Zhenjiuhong in 2022 and Hongta313 in 2023 were selected on the basis of their climate adaptability in spring and autumn. Planting was conducted on raised ridges, with each ridge supporting two rows, resulting in a total of 7 ridges and 14 rows. The ridges had a spacing of 67–70 cm, height of 15 cm, top width of 28 cm, and spacing of 5–6 cm. Carrot seeds were sown at a depth of 1.5–2 cm on August 24, 2022, and January 9, 2023, and were harvested on December 10, 2022, and May 20, 2023, respectively.




2.2 Plant sampling and measurement



2.2.1 Yield and plant sampling

At maturity, the central four rows (5 meters in length and 1.4 meters in width) in each plot were harvested. Carrots were extracted from the soil, counted, and weighed, and the yield per hectare was calculated on the basis of harvest density. Furthermore, fifteen uniform and representative carrot roots were collected and washed from each plot. One-third of these roots were utilized to assess appearance quality and then dried, after which the total N, total phosphorus (P), and total potassium (K) contents were measured. The total N content was determined using the Kjeldahl method. The total P content was analyzed using the molybdenum antimony colorimetric method. The total K content was measured via flame photometry (Bao, 2000). The remaining roots were divided as follows: five roots were segmented equally into upper, middle, and lower parts to analyze flavor and nutritional quality postjuicing with household appliances, while the remaining five roots were separated into phloem and xylem tissues using a peeler and knife (Figure 1). These tissues were preserved in formaldehyde-acetic acid–alcohol (FAA) fixative for observation of anatomical structure and evaluation of flavor and nutritional quality. Segmenting carrots into upper, middle, and lower parts for analysis aims to provide a more precise assessment of their nutrient composition and quality attributes, as well as to identify varietal differences. This process is crucial for carrot variety selection, food processing, and nutritional assessment.

[image: Cross-sectional illustration of a carrot divided into upper, middle, and lower sections, each with highlighted slices. The slices show labeled areas: XU, PU, XM, PM, XL, PL. A separate larger slice shows annotated xylem and phloem areas.]
Figure 1 | Sampling schematic diagram of phloem and xylem in the upper, middle and lower segments at equal proportion in carrot. PU, Phloem in the upper segment, XU, Xylem in the upper segment; PM, Phloem in the middle segment, XM, Xylem in the middle segment; PL, Phloem in the lower segment; XL, Xylem in the lower segment.




2.2.2 Quality measurement

Appearance Quality: The color index (Ci) was determined using an SC-10 colorimeter (Guangdong Sanenshi Technology Limited Company, China). Red-to-green tones were denoted as +a to –a, yellow-to-blue tones were represented as +b to –b, and brightness was denoted as L. Ci was calculated with the formula Ci = 1000a*/(Lb) (Passafiume et al., 2023). The compaction degree (Cd) was calculated as the ratio of the weight of a single root to the product of the root length and middle diameter. The root–tail convergence index (Rtci) was determined by the ratio of the bottom 0.5 cm to the top 0.5 cm. The pulp heart rate (Phr) was calculated as the ratio of the xylem diameter to the entire pulp diameter using a Vernier caliper.

Flavor Quality: The assessment of flavor quality, particularly the influence of sugars on taste, included the evaluation of total soluble solids (TSS) and the total soluble solids-to-titratable acid (TA) ratio (Beckles, 2012; Stevens et al., 1979). The TSS was determined using a handheld TD-32 sugar meter (Shanghai Lichen Bangxi Instrument Technology Limited Company, China). TA was measured through titration with sodium hydroxide. The TSS-to-TA ratio was computed to evaluate the equilibrium between soluble solids and organic acids (Baldwin et al., 1998).

Nutritional quality: Vitamin C content was determined by 2% oxalic acid extraction and titration with 2,6-dichloroindophenol (Ranganna, 1977). The carotene content was quantified using the acetone extraction method (Costache et al., 2012). Soluble protein levels were assessed using the Coomassie Brilliant Blue method (Sedmak and Grossberg, 1977), whereas free amino acids were quantified through ninhydrin colorimetry (Moore, 1968).




2.2.3 Anatomical structure of the phloem and xylem

The carrot cross-sectional structure was analyzed using the paraffin sectioning method (Wang et al., 2016). Slices (5 mm thick) were taken from the longitudinal middle of the upper, middle, and lower segments of each sample and fixed. Half of the radial middle of the phloem and xylem in each slice was observed (Figure 1). The distribution, density, diameter, and area of phloem parenchyma cells (Pc) and xylem vessels (Ve) were quantified. The samples were dehydrated with a gradient of ethyl alcohol and xylene, embedded in paraffin, and sectioned to 8 µm using a Leica RM2126RT (Leica, Germany) (Yuan et al., 2023). The sections, which were stained with saffron O solid green, were visualized under an Olympus CX33 microscope (Olympus Corporation, Japan) and processed with MShot Image Analysis System software (Guangzhou Microshot Technology Limited Company, China), and cell measurements were conducted using ImageJ (National Institutes of Health). Nine visual fields per replicate were utilized to determine the Pc and vessel diameter, area, and secondary xylem proportion.





2.3 Statistical analysis

Data across water and fertilizer treatments and years were pooled and analyzed with a one-way ANOVA in the DPS data processing system. Differences were evaluated using the least significant difference test at a significance level of 0.05. Since the quality improvements were similar in the PS and M treatments, these improvements were averaged and considered organic alternatives in the analysis. Figures were generated in Origin 2024. Redundancy analysis (RDA) was performed in Canoco 5 (Ter Braak and Smilauer, 2002) to examine correlations between nutrient concentration, anatomical structure, flavor, and nutritional quality.





3 Results



3.1 Yield, nutrient concentration and quality of whole fleshy roots

Compared with that in the FP treatment, the yield significantly increased in the OPT, PS, and M treatments in 2022 but not in 2023. There was no significant difference in yield between OPT and PS or M over the two years (Figure 2A). The total nitrogen (N) and total potassium (K) concentrations significantly increased in the OPT, PS, and M treatments in both years (Figures 2B, D). The total phosphorus (P) concentration significantly increased in the PS and M treatments in 2022, and it also significantly increased in the OPT, PS, and M treatments in 2023 (Figure 2C). Compared with that in the FP treatment, the Ci significantly increased in the M treatment but remained unchanged in the OPT and PS treatments in 2023 (Figure 3A). The Cd concentration significantly increased in the OPT treatment but remained unchanged in the PS and M treatments in 2022 (Figure 3B). The Rtci increased in the PS and M treatments in 2022, increased only in the PS treatment in 2023, and remained unchanged in the OPT treatment over the two-year period (Figure 3C). The Phr significantly decreased in the OPT and PS treatments but not in the M treatment in 2022 (Figure 3D). There was no significant difference in Ci in 2022 or in Cd or Phr in 2023 among the OPT and PS or M treatments (Figures 3A-D).

[image: Four bar charts labeled A, B, C, and D show data from 2022 and 2023. Chart A displays yield (t/ha), chart B shows nitrogen concentration (g/kg), chart C displays phosphorus concentration (g/kg), and chart D presents potassium concentration (g/kg). Each chart compares four treatments: FP, OPT, PS, and M. Bars are color-coded and include statistical annotations (a, b, c, d) to indicate significant differences.]
Figure 2 | Effects of water and fertilizers management on yield and total nitrogen, total phosphorus, total potassium concentration in carrot. (A–D) represent yield, total nitrogen, total phosphorus, total potassium concentration in carrot, respectively. Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates).

[image: Eight bar graphs labeled A to H, comparing various metrics from 2022 and 2023 across four different treatments (FP, OPT, PS, M). Graph A shows color index, B shows compaction degree, C shows root-tail convergence index, D shows pulp heart rate, E shows Vitamin C content, F shows soluble protein, G shows carotene, and H shows free amino acid. Each graph displays multiple bars per year with letter annotations indicating statistical significance.]
Figure 3 | Effects of water and fertilizers management on appearance and nutritional quality in carrot. Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates). (A–D) represent color index, compaction degree, the root-tail convergence index, pulp heart rate of FP, OPT, PS and M treatments, respectively. (E–H) represent vitamin C, soluble protein, carotene, free amino acid of FP, OPT, PS and M treatments, respectively.

In terms of nutritional quality, compared with that in the FP treatment, the vitamin C concentration significantly increased in the OPT, PS, and M treatments in both years (Figure 3E). The soluble protein content significantly increased in the OPT and PS treatments but decreased in the M treatment in 2022 (Figure 3F). The carotene content significantly increased in the PS treatment but remained unchanged in the OPT and M treatments in 2023 (Figure 3G). The Free amino acid content significantly increased in the PS treatment but remained unchanged in the OPT and M treatments in 2022. In 2023, free amino acid content significantly increased in the OPT treatment but remained unchanged in the PS and M treatments (Figure 3H). No significant differences were found in the carotene content in 2022 or soluble protein content in 2023 between the OPT and PS or M treatments compared to FP treatment (Figures 3F, G).

In terms of flavor quality, compared with that in the FP treatment, the TSS content significantly increased in the PS treatment but remained unchanged in the OPT and M treatments in 2022. The TA significantly decreased in the OPT, PS, and M treatments in both years. The TSS-to-TA ratio significantly increased in the OPT, PS, and M treatments in both years. The soluble sugar content significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in both years. Glucose levels significantly decreased in the OPT treatment group in 2023 but remained unchanged in the PS and M treatment groups. Sucrose levels significantly increased in the OPT and PS treatments but remained unchanged in the M treatment in 2022. In 2023, sucrose levels significantly increased in all the OPT, PS and M treatments. No significant differences were found in glucose levels in 2022 or in TSS levels in 2023 among the OPT and PS or M treatments (Table 2).

Table 2 | Effects of water and fertilizers management on flavor quality in carrot.


[image: Table showing various treatment effects on tomato quality parameters for 2022 and 2023. Metrics include total soluble solid, titratable acid, TSS-to-titratable acid ratio, soluble sugar, glucose, and sucrose. Different letters indicate significant differences among management practices for each year.]



3.2 Flavor and nutritional quality in the upper, middle, and lower segments

Significant differences in flavor and nutritional quality were observed among the FP, OPT, PS, and M treatments (Table 3; Figure 4). In terms of flavor quality in the upper carrot segment, compared with that in the FP treatment, the TSS significantly increased in the PS treatment but remained unchanged in the OPT and M treatments in both years (Table 3). The TA significantly decreased in the OPT, PS, and M treatments in both years. The TSS-to-TA ratio significantly increased in the OPT and PS treatments but remained unchanged in the M treatment in 2022. However, in 2023, the TSS-to-TA ratio significantly increased in the OPT, PS, and M treatments. In 2023, there was a significant increase in soluble sugars in the OPT, PS and M treatments. In 2022, sucrose levels significantly increased in the OPT, PS, and M treatments. However, in 2023, sucrose levels significantly increased in the OPT and PS treatments but remained unchanged in the M treatment. There were no significant differences in soluble sugar or glucose levels in 2022 or in glucose levels in 2023 between the OPT and PS or M treatments and the FP treatment. In terms of nutritional quality, compared with those in the FP treatment, vitamin C levels significantly increased in the OPT, PS, and M treatment groups in 2022. Conversely, in 2023, vitamin C levels significantly increased in the PS treatment but remained unchanged in the OPT and M treatments (Figure 4A). In 2022, the soluble protein content significantly increased in the OPT and PS treatments but remained unchanged in the M treatment (Figure 4B). Carotene significantly decreased in the M treatment but did not change in the OPT and PS treatments in 2022. In 2023, carotene significantly increased in the PS treatment but remained unchanged in the OPT and M treatments (Figure 4C). Free amino acids significantly increased in the PS treatment but did not change in the OPT and M treatments in 2022. In 2023, free amino acids significantly increased in the OPT and PS treatments but remained unchanged in the M treatment (Figure 4D).

Table 3 | Effects of water and fertilizers management on the flavor quality in the upper, middle, lower segments in carrot.


[image: Table showing data on various treatments and their effects on total soluble solid, titratable acid, TSS-to-titratable acid ratio, soluble sugar, glucose, and sucrose for upper, middle, and lower sections in 2022 and 2023. Different letters indicate significant differences among treatments with values as means from three replicates.]
[image: Twelve bar charts are divided into two sections, 2022 and 2023, labeled A to L. Each chart compares four variables (FP, OPT, PS, M) across different components: Vitamin C, Soluble Protein, Carotene, and Free Amino Acid. Values vary across years with statistical annotations (a, b, c, etc.) indicating significant differences.]
Figure 4 | Effects of water and fertilizers management on nutritional quality in the upper, middle and lower segments in carrot. Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates). (A–D) represent nutritional quality in the upper of FP, OPT, PS, and M treatments, respectively. (E–H) represent nutritional quality in the middle of FP, OPT, PS, and M treatments of FP, OPT, PS, and M treatments, respectively. (I–L) represent nutritional quality in the lower of FP, OPT, PS, and M treatments.

In terms of flavor quality in the middle carrot segment, the TSS content significantly increased in the PS treatment group compared with the FP treatment group but remained unchanged in the OPT and M treatment groups in 2022 (Table 3). Glucose levels significantly decreased in the OPT treatment, with no changes observed in the PS and M treatments in 2023. Additionally, in 2022, the TA significantly decreased, whereas the TSS-to-TA ratio and soluble sugars significantly increased in the PS and M treatments, but those parameters did not change in the OPT treatment. Furthermore, in 2023, the TA significantly decreased, whereas the TSS-to-TA ratio and sucrose content significantly increased in the OPT, PS, and M treatments. There were no significant differences in glucose or sucrose content in 2022, TSS content, or soluble sugar content among the OPT and PS or M treatments in 2023. In terms of nutritional quality, vitamin C significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in 2022. In 2023, the vitamin C levels significantly increased in the OPT, PS, and M treatments (Figure 4E). The soluble protein levels significantly decreased in the OPT treatment, with no change observed in the PS and M treatments in 2022. Conversely, in 2023, the soluble protein content significantly decreased in the PS treatment, whereas no change was detected in the OPT and M treatments (Figure 4F). Carotene levels significantly increased in the OPT treatment but significantly decreased in the PS and M treatments in 2022. However, in 2023, carotene levels significantly increased in the PS treatment, with no change in the OPT and M treatments (Figure 4G). Free amino acid levels significantly increased in the OPT treatment, whereas no change was detected in the PS and M treatments in 2023. There were no significant differences in free amino acid levels in 2022 (Figure 4H).

In terms of flavor quality in the lower segment of carrots, compared with that in the FP treatment, the TSS significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in 2022 (Table 3). The TA significantly decreased in the PS and M treatments but remained unchanged in the OPT treatment in 2022. In 2023, the TA significantly decreased in the OPT, PS, and M treatments. Glucose significantly decreased in the OPT treatment but remained unchanged in the PS and M treatments in 2022. In 2023, glucose significantly increased in the PS and M treatments but remained unchanged in the OPT treatment. Sucrose significantly increased in the OPT and PS treatments but remained unchanged in the M treatment in 2022. In 2023, sucrose significantly increased in the OPT, PS, and M treatments. The TSS-to-TA ratio and soluble sugar content significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in 2022. In 2023, the TSS-to-TA ratio and soluble sugar content significantly increased in the OPT, PS, and M treatments. There were no significant differences in the TSS content between the OPT, PS, and M treatments and the FP treatment in 2023. In terms of nutritional quality, vitamin C significantly increased in the OPT, PS, and M treatments in both years (Figure 4I). The soluble protein content significantly decreased in the PS and M treatments but did not change in the OPT treatment in 2022 (Figure 4J). Carotene significantly increased in the OPT, PS, and M treatments in 2022 (Figure 4K). Free amino acids significantly increased in the OPT and PS treatments but remained unchanged in the M treatment in 2022 (Figure 4L). No significant differences were found in soluble protein, carotene or free amino acids in 2023 (Figures 4J–L).




3.3 Flavor and nutritional quality in the phloem and xylem

Carrots were separated into phloem and xylem to assess flavor and nutritional quality on the basis of their radial distribution (Figure 1). The flavor and nutritional quality of the phloem and xylem are similar to the growth patterns of the whole fleshy roots (Table 4; Figure 5). Compared with that in the FP treatment with respect to flavor quality of the phloem in 2022, TSS significantly increased in the PS treatment but remained unchanged in the OPT and M treatments (Table 4). The TA and glucose contents significantly decreased in the M treatment, whereas no changes were detected in the OPT and PS treatments. The TSS-to-TA ratio significantly increased in the M treatment but did not change in the OPT and PS treatments. The soluble sugar content significantly increased in the OPT treatment but remained unchanged in the PS and M treatments. The sucrose content significantly increased in the PS and M treatments, whereas no changes were detected in the OPT treatment. In terms of flavor quality in the phloem in 2023, compared with those in the FP treatment, the contents of TSS and TA significantly decreased in the M treatment, with no changes in the OPT and PS treatments. The TSS-to-TA ratio significantly increased in the M treatment, with no changes in the OPT and PS treatments. Glucose levels significantly decreased in the PS and M treatments but remained unchanged in the OPT treatment. Sucrose levels significantly increased in the PS and M treatments but remained unchanged in the OPT treatment. There were no significant differences in soluble sugar content in 2023. In terms of flavor quality in the xylem in 2022, compared with those in the FP treatment, the contents of TSS, soluble sugars, and sucrose significantly increased in the PS and M treatments but remained unchanged in the OPT treatment (Table 4). Compared with that in the FP treatment, the flavor quality of the xylem in the OPT, PS, and M treatments significantly improved in terms of the TSS-to-TA ratio in 2023. Additionally, the TA significantly decreased in the OPT, PS, and M treatments in 2023. The soluble sugar levels significantly increased in the PS and M treatments but did not change in the OPT treatment. There were no significant differences observed in TA, TSS-to-TA, or glucose concentrations in 2022 or in TSS or glucose concentrations in 2023.

Table 4 | Effects of water and fertilizers management on the flavor quality of phloem and xylem in carrot.


[image: Table showing the effects of different treatments on various parameters for the years 2022 and 2023. The parameters include total soluble solid, titratable acid, TSS-to-titratable acid ratio, soluble sugar, glucose, and sucrose. Treatments are categorized as FP, OPT, PS, and M, with separate data for phloem and xylem. Significant differences are indicated by different letters, with values presented as means of three replicates.]
[image: Eight bar charts compare various nutrient measures between 2022 and 2023, labeled A to H. Each panel represents a different metric: vitamin C (A, E), soluble protein (B, F), carotene (C, G), and free amino acid (D, H). Data for FP, OPT, PS, and M are shown, with values indicated by bars of varying heights and significance labeled a, b, or c.]
Figure 5 | Effects of water and fertilizers management on the nutritional quality of phloem and xylem in carrot. Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates). Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates). (A–D) represent nutritional quality in the phloem of FP, OPT, PS, and M treatments, respectively. (E–H) represent nutritional quality in the xylem of FP, OPT, PS, and M treatments of FP, OPT, PS, and M treatments, respectively.

In terms of nutritional quality in the phloem, compared with that in the FP treatment, vitamin C significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in both years (Figure 5A). The soluble protein content significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in 2022. However, in 2023, the soluble protein content significantly increased in the OPT and PS treatments, but remained unchanged in the M treatment (Figure 5B). Carotene significantly decreased in the OPT treatment but remained unchanged in the PS and M treatments in 2022 (Figure 5C). Free amino acids significantly increased in the OPT, PS, and M treatments in 2022 (Figure 5D). There were no significant differences in carotene or free amino acids in 2023 (Figures 5C, D). In terms of nutritional quality in the xylem, compared with that in the FP treatment, vitamin C significantly increased in the OPT treatment but remained unchanged in the PS and M treatments in 2022 (Figure 5E). In 2022, the soluble protein content significantly increased in the OPT and PS treatments but remained unchanged in the M treatment. Conversely, in 2023, the soluble protein content significantly increased in the OPT treatment but remained unchanged in the PS and M treatments (Figure 5F). Carotene levels significantly decreased in the OPT and M treatments, with no significant change in the PS treatment in 2022 (Figure 5G). Free amino acid levels significantly increased in the OPT, PS, and M treatments in 2022 (Figure 5H). However, there were no significant differences in vitamin C, carotene or free amino acid contents in 2023 (Figures 5E–H).

Overall, compared with that in the FP treatment, the flavor quality increased by 17.51%, 13.04%, and 15.05% in the upper, middle, and lower segments, respectively, whereas the nutritional quality increased by 11.04%, 8.12%, and 17.35%, respectively, in the OPT treatment (Figure 6). In the organic substitution treatments (average of PS and M), the flavor quality increased by 32.50%, 18.21%, and 38.07%, and the nutritional quality increased by 10.28%, 4.69%, and 25.41%, respectively. Compared with those in the OPT treatment, the flavor and nutritional quality of all the segments in the PS and M treatments improved, with the most significant increase observed in the lower segment. Specifically, the flavor quality increased by 20.05%, 19.19%, and 28.81% in the upper, middle, and lower segments, respectively, while the nutritional quality increased by 0.77% and 5.46% in the upper and lower segments, respectively, under the organic substitution treatments. These findings indicate that the enhancements in flavor and nutritional quality of whole carrot roots are due mainly to improvements in the upper and lower segments under coordinated water and organic–inorganic fertilizer management. In the phloem, flavor and nutritional quality increased by 9.59% and 13.50%, respectively, in the OPT treatment compared with the FP treatment and by 12.35% and 17.69%, respectively, in the organic substitution treatment. In the xylem, flavor and nutritional quality increased by 1.64% and 19.09%, respectively, in the OPT treatment, whereas flavor quality increased by 16.89% and 1.94%, respectively, in the organic substitution treatment. Compared with the OPT treatment, the flavor and nutritional quality of the phloem increased by 5.23% and 3.88%, respectively, in the organic substitution treatment. These results suggest that enhancing the flavor and nutritional quality of both the phloem and xylem can improve the overall flavor and nutritional quality of the entire fleshy root in terms of radial distribution under coordinated water and organic–inorganic fertilizer management.

[image: Diagram comparing flavor and nutritional quality of three carrot sections: upper, middle, and lower. Each section is analyzed vertically and horizontally, with percentages indicating improvement. Vertically: upper (+32.50% flavor, +10.28% nutrition), middle (+18.21% flavor, +4.69% nutrition), lower (+38.07% flavor, +25.41% nutrition). Horizontally, the analysis includes cross-sections with more percentages. The chart outlines segment comparisons with various percentages for clarity on flavor and nutritional quality enhancements.]
Figure 6 | The changes of quality from farmers’ habit (FP) to coordinated water-fertilizers management (OPT, PS, or M) in the upper, middle and lower segments and phloem and xylem in carrot. + indicates the percentage of quality improvement, and - indicates no difference. The red background indicates the changes of quality in the upper, middle and lower segments. The blue background indicates the changes of quality in phloem and xylem. The red line indicates the changes of quality the FP treatment to OPT treatment in the upper, middle and lower segments and phloem and xylem. The blue line indicates the changes of quality the OPT treatment to PS or M treatment in the upper, middle and lower segments and phloem and xylem. The green line indicates the changes of quality the FP treatment to PS or M treatment in the upper, middle and lower segments and phloem and xylem.




3.4 Anatomical structure of the phloem and xylem in the upper, middle, and lower segments

In the upper segment, Pca significantly increased in the PS and M treatments compared with the FP treatment but remained unchanged in the OPT treatment in 2022 (Figures 7, 8A). In 2023, Pca significantly increased in the OPT and PS treatments, whereas no change was detected in the M treatment. In 2023, the xylem vessel diameter (Xvd) significantly increased in the M treatment (Figures 7, 8B). The Pxv significantly increased in the M treatment in 2022 (Figures 7, 8C). In 2023, the Pxv significantly increased in the OPT and M treatments but remained unchanged in the PS treatment (Figures 7, 8D). No significant differences were detected in Xvd or the xylem vessel area (Xva) in 2022 or in Xva in 2023 (Figures 7, 8B, C). In the middle segment, no significant differences were found in Pca, Xvd, Xva, or Pxv among the four treatments (Figures 7, 8E–H). Compared with that in the FP treatment, the Pca in the lower segment significantly increased in the PS treatment but remained unchanged in the OPT and M treatments in 2022 (Figure 8I). Xvd significantly increased in the PS and M treatments but remained unchanged in the OPT treatment in 2022 (Figure 8J). In 2022, Xva significantly increased in the PS treatment but remained unchanged in the OPT and M treatments (Figure 8K). No significant differences were found in Pxv in 2022 or in Pca, Xvd, Xva, or Pxv in 2023 (Figures 8E–H). These results suggest that the primary distinctions between the FP treatment and optimized water-fertilizer management lie in Pca and Pxv in the upper segment.

[image: Microscopic images showing tissue sections of plants labeled as FP, OPT, PS, and M. Each column represents a different plant type, with rows labeled as phloem and xylem across upper, middle, and lower sections. Annotations include PC (parenchyma cell), Ve (vessel element), and SG (sieve group). The images depict cellular structures with varying sizes and arrangements, highlighting differences in tissue types among the samples.]
Figure 7 | Effects of water and fertilizers management on the anatomical structure of phloem and xylem in carrot. (A, C, E) and (G, I, K) and (M, O, Q) and (S, U, W) represent the cross sections of phloem in the FP, OPT, PS, and M treatments in the upper, middle and lower segments, respectively. (B, D, F) and (H, J, L) and (N, P, R) and (T, V, X) represent the cross sections of xylem in the FP, OPT, PS, and M treatments in the upper, middle and lower segments, respectively. Parenchymal cell (PC), starch granule (SG) and vessel (Ve) are marked. Scale bars are 20 mm length in all the figures.

[image: Twelve bar graphs labeled A to L show different plant anatomical measurements for the years 2022 and 2023. Each graph compares four conditions: FP, OPT, PS, and M, represented by different colored bars. The graphs display various metrics such as phloem parenchyma area, xylem vessel diameter and area, and the proportion of xylem vessel to secondary xylem. Statistical significance is indicated by letters above the bars: a, b, c, etc.]
Figure 8 | Effects of water and fertilizers management on the anatomical structure of phloem and xylem in carrot. (A–D) represent parenchyma cell area, xylem vessel diameter, xylem vessel area, the proportion of xylem vessel to secondary xylem of FP, OPT, PS, and M treatments, in the upper segment, respectively. (E–H) represent parenchyma cell area, xylem vessel diameter, xylem vessel area, the proportion of xylem vessel to secondary xylem of FP, OPT, PS, and M treatments, in the middle segment, respectively. (I–L) represent parenchyma cell area, xylem vessel diameter, xylem vessel area, the proportion of xylem vessel to secondary xylem of FP, OPT, PS, and M treatments, in the lower segment, respectively. Data are the means for the 2 years. Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates).




3.5 Correlations between quality and the anatomical structural characteristics of the upper, middle, and lower segments of the phloem and xylem

In the upper segment, Pca and Pxv were significantly correlated with flavor quality and nutritional quality (P<0.05), whereas Xva and Xvd were not correlated (Figure 9A). Specifically, Pca was positively correlated with soluble protein, sucrose, soluble sugars, vitamin C, the TSS-to-TA ratio, free amino acids, TSS, and carotene. Pxv was positively correlated with glucose, soluble protein, soluble sugar, sucrose, vitamin C, the TSS-to-TA ratio, free amino acids and TSS. However, no significant correlations were detected in the middle segment (Figure 9B). In the lower segment, Pca was significantly correlated with flavor quality and nutritional quality (P<0.05), whereas Pxv, Xva, and Xvd were not significantly correlated (Figure 9C). Pca was positively correlated with carotene, glucose, soluble sugars, the TSS-to-TA ratio, vitamin C, sucrose, TSS, and free amino acids. In the phloem, Pca was significantly correlated with flavor quality and nutritional quality (P<0.05), whereas Pxv, Xvd, and Xva were not significantly correlated (Figure 9D). Pca was positively correlated with TSS, sucrose, vitamin C, soluble protein, the TSS-to-TA ratio, free amino acids, and soluble sugars. Within the xylem, Pca was significantly correlated with flavor quality and nutritional quality (P<0.05), whereas Pxv, Xvd, and Xva were not significantly correlated (Figure 9E). Pca was positively correlated with soluble protein, free amino acids, vitamin C, TSS, the TSS-to-TA ratio, soluble sugars, and sucrose. These findings indicate that the increase in quality in the upper segment was driven primarily by improvements in Pca and Pxv, whereas the increase in quality in the lower segment was associated predominantly with an increase in Pca (Figure 10). The improvement in the quality of the phloem and xylem was attributed mainly to the increase in Pca.

[image: Six diagrams labeled A to F display biplots with axes labeled Axis-1 and Axis-2, showing percentages of variance explained. Each plot features vectors representing variables like xylem vessel area, sucrose, glucose, and titratable acid. Red vectors represent structural variables, while blue vectors represent biochemical variables. The arrangement and direction of vectors differ across plots, highlighting relationships between variables in each case.]
Figure 9 | Independent and interactive actions of phloem parenchyma cell area, xylem vessel diameter, xylem vessel area, the proportion of xylem vessel to secondary xylem and total nitrogen, phosphorus, total potassium on various properties shown in ordination diagrams obtained from redundancy analysis (RDA). (A-E) represent RDA analysis in the upper, middle, lower segment, phloem and xylem of carrots in the FP, OPT, PS, or M treatment, respectively. The coordinate of the first and second ordination axes explained 52.46% and 14.78% of the variance in (A) 31.37% and 22.92% of the variance in (B) 49.78% and 11.86% of the variance in (C) 39.69% and 7.04% of the variance in (D) 40.04% and 17.06% of the variance in (E). (F) represent RDA analysis of carrots in the FP, OPT, PS, or M treatment, respectively. The coordinate of the first and second ordination axes explained 54.68% and 18.85% of the variance in F.

[image: Growth and development process of carrots illustration. It shows stages from germination to hormone regulation. Includes phloem development, photosynthesis, and xylem growth. Hormones like GA, IAA, and ABA are linked to cell processes. Text and arrows explain interactions and effects, citing sources like Wang 2016 and Zhu 2017. Red boxes highlight microscopy images of tissue structures.]
Figure 10 | Physiological changes of carrot in optimizing water and fertilizer management compared to farmers practice. + indicates facilitation. ↑indicates the percentage of quality improvement compared to FP.




3.6 Correlations between the quality and nutrient concentration of whole fleshy roots

The concentrations of N and P were correlated with both flavor quality and nutritional quality (P<0.05) (Figure 9F). Specifically, the N concentration was positively correlated with soluble protein, free amino acids, sucrose, VC, the TSS-to-TA ratio, soluble sugars, TSS, carotene, and glucose. Similarly, the P concentration was positively correlated with sucrose, free amino acids, VC, the TSS-to-TA ratio, soluble sugars, TSS, carotene, and glucose. These results suggest that the nutrient levels of N and P may influence carrot quality.





4 Discussion



4.1 Role of coordinated water and fertilizer management on yield and quality

Coordinated water-fertilizer management plays a key role in vegetable yield and quality (Lin et al., 2020). Efficient irrigation is essential for promoting crop growth, especially considering that the response of crops to moisture levels directly impacts their physiological and metabolic functions (He et al., 2021). The incorporation of water-fertilizer technology led to a 20% reduction in nitrogen (N), phosphorus (P), and potassium (K) fertilizers, resulting in increased yield, quality, and fertilizer utilization in tomato (Huang and Chen, 2020). Compared with those under the FP treatment, the yield and quality of whole fleshy roots significantly increased under coordinated water-fertilizer management, particularly when 30% of the chemical fertilizers were substituted with compressed organic fertilizers (Table 2; Figures 2, 3). This finding aligns with those of previous studies. Accurate management of integrated water and fertilizer is crucial for growth regulation, improving efficient water-fertilizer utilization, and achieving high yields (Liu et al., 2021). The combination of water and fertilizer can improve the ecological environment and the soil nutrient content (Liu et al., 2023). The appropriate regulation of water and fertilizer can increase leaf area and root growth, thereby increasing crop water and nutrient uptake through osmoregulation and antioxidant capacity (Zhao et al., 2022). Various irrigation and fertilization rates result in differences in root uptake efficiency, impacting root growth, the root–soil contact area, and ultimately, yield (Chen et al., 2001). In this study, the yields of the four treatments in 2022 varied significantly (Figure 2). This could be due to the increase in local precipitation after carrot sowing, which caused excessive soil moisture that hindered the complete germination of certain carrot seeds. Additionally, the use of different carrot varieties may have contributed to yield discrepancies between the two years, ultimately impacting the overall carrot yield.

This study confirmed that carrot quality can be enhanced with PS or M treatment (Table 2; Figure 3). A previous study revealed that replacing 25–50% of inorganic N, P, and K fertilizer with organic modifiers led to the highest nutritional quality of food crops (Ishfaq et al., 2023). The substitution of 25% N fertilizer with organic fertilizer significantly affects the levels of vitamin C, soluble sugar, soluble protein, and nitrate in cucumbers (Zhang, 2023). Organic fertilizers contain sufficient nutrients and release them slowly, thereby improving crop yield and quality to different extents (Jiang et al., 2021). Organic substitution can increase soil bacterial and fungal biomass, thereby improving soil physicochemical conditions and fertility (Zhao et al., 2023). Organic fertilizers not only provide essential nutrients for crops but also harbor microorganisms that improve the soil environment (Pang, 2023). Nevertheless, compared with OPT, organic substitution has limited efficacy in enhancing the appearance, flavor, and nutritional quality of carrots (Table 2; Figure 3). This is possibly due to the slow-release nature of fertilizers in organic substitution and the relatively short duration of the substitution, hindering the complete exploitation of the long-term benefits of organic amendments.




4.2 The contribution of the quality of different segments to the overall quality of the fleshy root

N, P, and K are crucial for biomass allocation and root elongation in tubers; thus, regulating assimilate allocation is also essential (Cakmak et al., 1994). This phenomenon may, in turn, affect the quality of the upper, middle, and lower segments of root crops. These findings were consistent with the results that the concentrations of N and P were correlated with both flavor quality and nutritional quality (P<0.05) (Figure 9F). Moreover, in root crops, the number of root tips determines the efficiency of water and nutrient absorption (Yuan et al., 2023). Previous studies have focused on the assimilation processes of both aboveground and underground plant parts (Cheng et al., 2023). In this study, the flavor quality and nutritional quality of carrots were improved under coordinated water-fertilizer management (OPT, PS, or M treatments), particularly in the upper and lower plant parts (Table 3; Figures 4, 6). The superior quality in the upper segment could be attributed to the shorter distance between the aboveground parts, leading to an increased ion concentration gradient between the soil and roots, facilitating diffusion, and thereby improving quality (Barber, 1995). The quality of the lower segment may improve due to an increase in the number of carrot root tip cells, likely because of the presence of more ultrastructures (such as the endoplasmic reticulum, mitochondria, Golgi apparatus, ribosomes, vacuoles, microsomes, and plasma membrane ATPases) in the root tip cells that are vital for root function (Yang et al., 2012). Plant root tip cells may undergo structural damage and organelle deformation in cases of nutrient deficiencies, such as phosphorus, zinc, and silicon deficiencies (Miras et al., 2022), resulting in hindered nutrient transport to the roots (Dinar and Rudich, 1985). Compared with N in surface soil, N in deep soil is prone to leaching (Tei et al., 2020). In this study, optimizing water-fertilizer management, especially in the PS or M treatments, provided nutrients and water at appropriate times to improve root morphological indices (root tips) and improve quality in the lower segment (Table 3; Figures 4, 6).

This study revealed a significant improvement in the nutritional quality of soluble sugars, sucrose, and vitamin C in the upper, middle, and lower segments (Table 3; Figures 4, 6). Within the framework of integrated water-fertilizer management, this mechanism facilitates the translocation of carbohydrates from vegetative tissues to storage organs, potentially increasing the enzymatic activity of Frk and starch synthase, along with sucrose levels (Hennion et al., 2019). Munch’s hypothesis suggests that the flow of solution through the phloem is driven by a hydrostatic pressure gradient (Winfried and Michael, 2022). Many plant growth regulators, including auxins, gibberellins, humic acids, and cytokinins derived from microorganisms, are rich in organic fertilizers, thereby increasing vitamin C (Zuo et al., 2018). As a result, the nutritional quality significantly improved in the upper, middle, and lower segments under coordinated water-fertilizer management.




4.3 The effects of the anatomical structure of the phloem and xylem on quality

The taproot of the root tubers comprises two primary regions: the outer ring of the phloem parenchyma and the inner core of the xylem parenchyma. These regions originate from a cambium formed between the xylem and phloem vessels in seedling roots (Liu et al., 2022). Vascular parenchyma cell activity in the root is crucial for metabolic and energy connections, supporting water and nutrient transport in the xylem and facilitating both short- and long-distance symbiotic transport (Spicer, 2014). Expanding the area of ducts, xylem, and phloem establishes a strong transport network that optimizes the water supply, guaranteeing regular growth and development (Wang et al., 2023). Various abiotic stresses, such as N deficiency and temperature, influence the size and density of parenchyma, thereby compromising water and nutrient transportation among organs and affecting quality (Ren et al., 2021). In this study, Pca and Pxv in the upper segment of the OPT, PS, or M treatments were 9.17%, 88.40%, and 18.44%, 116.22% greater, respectively, than those in the FP treatment (Figures 7, 8, 10). Zhao and Gu (1999) reported that an increased volume of parenchymatous cells improved the nutritional quality of carrots. Furthermore, RDA revealed a positive correlation between Pca and Pxv levels in the upper segment and flavor as well as nutritional quality (Figure 9). Under coordinated water-fertilizer management, isocompounds typically move faster from the active phloem outward (centrifugally) than inward (Korolev et al., 2000). The increased growth of phloem parenchyma tissue and carbon deposition may increase the competitiveness of growing organs for available photosynthates, possibly because of their unique transport characteristics within the carrot taproot (Wareing and Patrick, 1975). This structure supports sucrose accumulation with low glucose content in the taproot (Liu et al., 2018). Vacuoles in phloem parenchyma cells store nutrients, such as soluble sugars, thereby improving carrot quality. The optimized water-fertilizer management in this study resulted in an increased Pca and vessel proportions distributed across the xylem region, potentially promoting xylem tissue expansion (Figure 10). Studies indicate that cell size influences sucrose absorption in beets (Hoffmann, 2010). The radish taproot xylem vessels, which are radially distributed but not densely packed, facilitate parenchyma development (Feng et al., 2017). The improvement in flavor and nutritional quality of both the upper and lower segments is likely linked to elevated Pca and Pxv levels. Carrots with relatively high Pca and Pxv values presented improved flavor and nutritional quality. It has been demonstrated that gibberellic acid (GA) regulates root growth by promoting cell elongation and controlling cell number (Inada and Shimmen, 2000; Shani et al., 2013; Ubeda-Tomás et al., 2009). IAA stimulates the formation of lateral root primordia, and the occurrence and elongation of lateral roots depend on the direct or indirect regulatory effects of growth hormone (Kazan, 2013). ABA can help plants adapt to diverse environments by regulating the growth and development of primary and lateral roots, thereby indirectly aiding in anchoring plants and facilitating water and nutrient absorption (Zhu et al., 2017). However, this study did not delve deeply into the effects of phytohormones. Therefore, further investigation into the influence of phytohormones on the expansion of carrot fleshy roots is warranted in future research.





5 Conclusion

Compared with traditional farming practices, coordinated water-fertilizer management can increase both quality and yield, with 30% organic substitution resulting in superior results. This improvement in quality is attributed to improved flavor and nutritional characteristics in the upper and lower segments, as well as in the phloem and xylem tissues. High-quality carrots present increased phloem parenchyma cells and a greater proportion of xylem vessels. Therefore, improving the flavor and nutritional quality of the upper and lower segments could serve as an effective approach to improve the overall quality of high-yield carrot. The phloem parenchyma cell area and xylem vessel proportion are potentially valuable physiological traits for optimizing quality. Additionally, further research is needed to investigate the impact of phytohormones on the growth of carrot fleshy roots.
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Pleasant aroma is a distinctive character of Wuyi Rock tea, but its optimization through agricultural practices remains largely unexplored. Here, we conducted a two-year field trials in the core-region of Wuyi Rock tea production area with organic or chemical fertilizer. The results indicated that organic fertilizer significantly improves soil fertility, as indicated by increased pH and organic matter. GC-MS analysis showed that organic fertilizer obviously affects the aroma metabolites in tea leaves, with the levels of 1-Hexanol (C6H14O), 2-Ethyl-1-hexanol (C8H18O), (E,E)-2,4-Heptadienal (C7H10O), E-Nerolidol (C15H26O) and 3-octen-2-one (C8H14O) increasing by 56.55%, 104.44%, 64.39%, 64.10% and 48.10%, respectively, compared to chemical fertilizer, thereby improving its aroma quality. The correlation analysis and PLS-PM model combined with the results from ionomics and metabolomics, further elucidated that soil fertility significantly impacted the mineral nutrients in tea leaves, thereby regulating the content of volatile metabolites. Altogether, the research findings provide practical fertilizer usage guidelines for tea farmers, helping to improve the aroma quality and overall market value of tea.
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Introduction

Oolong tea is renowned for its exquisite processing, time-honored history, health benefits, and unique taste (Wang et al., 2022a). Among the various types of oolong tea, Wuyi Rock tea, produced in Wuyi Mountain City of Fujian, is a paragon among Fujian oolong teas. Wuyi Rock tea is globally recognized for its unique rock rhyme, rich texture, and aroma, securing its niche in the tea industry (Ho et al., 2015). The characteristic flavor of Wuyi Rock tea primarily stems from its distinctive manufacturing process, which involves withering, tumbling and aeration, enzyme inactivation, shaping, and drying, bestowing the tea with its unique taste and floral aroma (Liu et al., 2022a). While many studies have focused on identifying aromatic compounds in the production process and the final product (Zheng et al., 2022), the influence of fresh tea leaves on Wuyi Rock tea’s aroma is still poorly understood.

Fertilization is a crucial management practice that ensures both tea yield and quality. Nutrient deficiency can notably reduce the content of amino acids and aromatic compounds, with the L-theanine content decreasing to 11.4% of the control level (Zhou et al., 2022), thereby degrading the quality of tea. While chemical fertilizers are widely used to ensure nutrient supply, their long-term excessive and improper use can reduce the biosynthesis of polyphenols and flavonoids, leading to a bitter taste in tea (Ye et al., 2022). This practice also threatens the sustainable production of tea (Arafat et al., 2019; Ni et al., 2019). High-phosphorus conditions decrease the accumulation of polyphenols in tea plants (Zhang et al., 2023), while elevated phosphorus and potassium reduce free amino acids such as theanine and glutamic acid, simultaneously increasing flavonoid-related metabolites (Wei et al., 2022). Moreover, overuse of chemical fertilizers leads to soil degradation, including decreased beneficial microorganisms, nutrient leaching, soil structure deterioration, and acidification (Li et al., 2016).

In contrast to chemical fertilizers, organic fertilizers offer several benefits for soil health and tea quality. Organic fertilizer can effectively alleviate soil acidification and increase soil organic matter (Wang et al., 2025). Studies indicate that the rational use of organic fertilizers can promote the synthesis of amino acids and flavonoids in tea (Ruan et al., 2019). However, relying solely on organic fertilizers can reduce tea yield by 10-20%, impacting economic profitability (Das et al., 2016; Piyasena and Hettiarachchi, 2023). Currently, many tea plantations adopt a fertilization strategy that integrates organic and chemical fertilizers. This approach ensures tea yield (Manzoor et al., 2024), promotes catechin and flavonoid synthesis in tea leaves (Raza et al., 2024) and increases the levels of aromatic compounds such as D-limonene, linalool, and cis-3-hexenyl hexanoate in green tea (Huang et al., 2022). Nevertheless, more research is needed to understand the effects of using organic fertilizers alone on tea plantation soils and tea quality.

It was reported that a high-nitrogen, low-phosphorus, and medium-potassium nutrient ratio is optimal for the growth of high-quality Wuyi Rock tea (Wang et al., 2022b). Based on this, we developed a tea plant-specific organic fertilizer. To explore the effects of organic fertilizer on the yield and quality of Wuyi Rock tea, we established a two-year field trial including organic fertilizer and chemical fertilizer. The impact of different fertilization treatments on the soil of tea plantations and the key metabolites of tea plants was analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). Further, our study elucidated the effects of organic fertilizer on the yield and quality of Wuyi Rock tea, providing a theoretical reference for rational fertilization and the enhancement of tea quality in Wuyi tea plantations, while offering practical fertilizer usage guidelines for tea farmers to improve the aroma quality and overall market value of tea.





Materials and methods




Plant material and fertilizer treatment

The tea variety (Camellia sinensis L. cv. “Rougui”) was used in this study. The trial field of tea plants was located in the core-region of Wuyi Rock tea production area, Wuyi Mountain city, Fujian province, China (27°32’36”-27°55’15”N; 117°24’12”-118°02’50”E). The basic soil chemical properties of the soil (0–20 cm) were as follows: pH 4.25; alkali-hydrolysable nitrogen (AN), 77.68 mg/kg; available phosphorus (AP), 145.68 mg/kg; rapid-acting potassium (AK), 143.75 mg/kg; and organic matter (OM), 19.55 mg/kg.

This experiment employed two fertilization treatments: chemical fertilizers and organic fertilizer. Each treatment was replicated three times, with plot sizes of 60 m² (6 m × 10 m), ensuring a consistent spacing of 1.5 m between rows of tea trees. The application rate for both fertilization treatments was uniformly set at 750 kg/ha. For the chemical fertilizer treatment, a compound fertilizer was selected, with a nutrient ratio of N:P2O5:K2O = 15:15:15. In contrast, the organic fertilizer treatment utilized a tea-specific organic fertilizer, primarily composed of cow manure, spent mushroom substrate, and soybean meal, which underwent ultra-high temperature fermentation (exceeding 80°C), resulting in a nutrient ratio of N:P2O5:K2O = 10:1:5, and an organic matter content of no less than 30%. The fertilization practices were conducted during the autumn seasons of 2022 and 2023, employing trench application methods, with the depth of fertilization controlled at 20 cm.





Collection of tea leaves and soil samples

Tea leaf samples (one-tip-three-leaf) were manually harvested in May 2023 and May 2024. Fresh leaf samples, amounting to 20 grams from each tea plant, were collected, with 10 plants chosen at random for biological replication. The samples were fixed at 105°C for 30 minutes, then dried at 75°C until reaching a constant weight, and subsequently ground for further analysis. Soil samples were gathered from 10 random sites within each plot in July 2023 and July 2024, after visible plant residues and stones were removed, using a stainless steel soil corer to collect samples from a depth of 0–20 cm. The soil samples were air-dried, pulverized, and sieved through 2 mm and 0.0149 mm screens for subsequent analysis.





Analysis of nutrient concentrations

The mineral elements in tea leaf were measured according to methods previously described (Peng et al., 2018). In brief, the concentration of macronutrients (N, P, K) was measured by a flow autoanalyzer (SKALAR SAN++, Skalar, Breda, Netherlands). The concentrations of calcium (Ca), Natrium (Na), magnesium (Mg), aluminum (Al), manganese (Mn), iron (Fe), zinc (Zn), copper (Cu), boron (B), nickel (Ni), molybdenum (Mo) and cobalt (Co) were measured by inductively coupled plasma-mass spectrometry (ICP-MS 7900, Agilent Technologies, Santa Clara, California, US).





Analysis of physicochemical properties of soil samples

The soil samples were measured using the method as described by Liu et al. (2022b). In brief, the soil pH was determined using a pH meter (ORION3STAR, Thermo Fisher Scientific, USA) in a 1:25 (w/v) paste with deionized water. OM and AN were quantified using high-temperature potassium dichromate oxidation and the alkali-hydrolysable diffusion method, respectively. AP was extracted using the BrayI method, and readily AK was extracted from an ammonium acetate solution.





Analysis of volatiles via GC-MS

Gas chromatography-mass spectrometry (GC-MS) was performed according to the previous study (Cui et al., 2023). The volatile compounds were examined utilizing a TRACE 1300 gas chromatograph coupled with a DSQ II mass spectrometer (Thermo Fisher Scientific, Waltham, USA). A 1 μL aliquot of the previously prepared concentrated distillate was introduced into the GC in a splitless mode at an injection port temperature of 250°C. Separation of the volatiles was achieved on a DB-5 fused silica capillary column DB-5, 30 m × 0.25 mm, 0.25 μm film thickness, J&W Scientific, CA, USA). The GC column oven temperature was programmed to initially maintain at 50°C for 5 minutes, subsequently increase at a rate of 4°C per minute to 160°C (held for 3 minutes), and further ascend at 8°C per minute to 230°C (held for 2 minutes). Helium (purity > 99.999%) served as the carrier gas, flowing at a rate of 1 mL per minute. The ion source functioned in positive ion mode at an ionization energy of 70 eV and a temperature of 230°C. The volatiles were detected using full scan mode with a mass range of m/z 35-450.

A mixture of n-alkanes (C8–C25) was injected under the same GC-MS conditions as thesamples to calculate the retention index (RI) of each volatile. The volatiles were identified bycomparing the detected mass spectra to those in the National Institute of Standards and Technology (NIST17) database. Compounds with a mass spectra similarity higher than 800 and an RI difference of <20 were identified as volatiles in samples. When available, compounds were also identified based on the retention times, retention indices and mass spectra of the standards. The volatile compounds were quantified by comparing the peak area of each compound to that of the internal standard (ethyl caprate) using their respective characteristic ions (Supplementary Table 2).





Data analysis

All experimental data were organized using Microsoft Excel 2019 (Microsoft Corporation, USA). Data processing and figure creation were conducted with Graphpad Prism 9.5 software and R language packages. The obtained data were subjected to normality tests, two-way ANOVA, and Student’s t-test using the SPSS sofaware (Version 19.0.0, International Business Machines Corporation, Chicago, America). OPLS-DA analysis (Orthogonal Partial Least Squares-Discriminant Analysis), Mantel test analysis and PLS-PM analysis were performed using the “ropls,” “linkET,” and “plspm” packages in R. *: 0.01 < P ≤ 0.05; **: 0.001 < P ≤0.01; ***: P ≤ 0.001, ns: no significant difference.






Results




The effects of organic fertilizer substitution on soil fertility

To investigate the impact of organic fertilizer substitution on tea plantation soils, five soil fertility indexes were measured, including pH value, organic matter (OM), alkali-hydrolysable nitrogen (AN), available phosphorus (AP) and available potassium (AK) concentrations. Interestingly, the average soil pH values in the tea plantation treated with organic fertilizer for two years were 4.42 and 4.48, while treated with chemical fertilizer had average soil pH values of 4.19 and 4.17 (Figure 1A), showing that organic fertilizer treatment effectively mitigated soil acidification. The soil OM content was also significantly increased, with increases of 35.66% and 33.02% compared to the chemical fertilizer treatment (Figure 1B). In contrast, after two years of organic fertilizer application, the soil’s AN, AP and AK in the tea plantation decreased by 7.07% and 18.22%, 18.28% and 44.93%, and 28.66% and 25.03% (Figures 1C-E), respectively, compared to the chemical fertilizer application. These results indicated that organic fertilizer significantly changes soil fertility in tea plantation.

[image: Bar graphs labeled A to E compare soil properties for CF (orange) and OF (green) across 2023 and 2024. A: pH, B: OM, C: AN, D: AP, and E: AK levels. Significant differences are marked with asterisks. Error bars represent variability.]
Figure 1 | Soil fertility changes in tea plantation. (A) Soil pH; (B) Soil organic matter content; (C) Soil alkali-hydrolysable nitrogen content; (D) Soil available potassium content; (E) Soil available phosphorus content; n = 10. CF, chemical fertilizer; OF, organic fertilizer. The differences between groups were assessed using t-tests. *0.01 < P ≤ 0.05; **0.001 < P ≤0.01; ***P ≤ 0.001, ns, no significant difference.





The effects of organic fertilizer substitution on tea quality

A two-year field trials in the core-region of Wuyi Rock tea production area was conducted to study the effects of organic fertilizer on tea yield and quality. Results showed that organic fertilizer application did not decrease tea yield but increased the number of standard leaves per unit area compared to chemical fertilizer treatment (Supplementary Figure 1). Analysis of mineral nutrients revealed that organic fertilizer significantly reduced phosphorus (P), magnesium (Mg), iron (Fe), and zinc (Zn) concentrations but increased boron (B) concentration in tea leaves relative to chemical fertilizer (Table 1).

Table 1 | Table of mineral element concentrations in fresh tea leaves under various fertilization treatments.


[image: Table comparing mineral nutrient concentrations in treatments OF and CF. Nutrients include N, P, K, Ca, Mg, Al, Mn, B, Na, Fe, Co, Ni, Cu, Zn, and Mo. Statistical significance is indicated by P values: notable differences in P (0.015), Mg (0.011), B (0.016), Fe (0.0002), and Zn (0.022). T-tests determine significance, where asterisks denote levels of significance.]
To investigate the impact of organic fertilizer on the volatile metabolites of tea leaves, an analysis of volatile metabolites was conducted. A total of 113 volatile metabolites in tea leaves were identified through GC-MS analysis (Supplementary Table 1). An OPLS-DA model (Figure 2A) with high reliability (R2x = 0.651, R2y = 0.966, Q2 = 0.557, Figure 2B) revealed 25 differential metabolites (6 alcohols, 5 aldehydes, 4 esters, 2 ketones) based on VIP > 1 and P < 0.05 (Figure 2C). The content of key aroma compounds—1-hexanol, 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal, E-Nerolidol, and 3-Octen-2-one—increased by 56.55%, 104.44%, 64.39%, 64.10%, and 48.10%, respectively, under organic fertilizer treatment (Figure 2D). These findings indicate that organic fertilizer enhances tea aroma quality by increasing aldehyde, alcohol, and ester metabolites without compromising yield.

[image: Four-part data visualization comparing two groups, CF and OF. Panel A shows a scatter plot with CF and OF clusters. Panel B includes a line graph with R2 and Q2 values plotted. Panel C is a bar chart showing VIP scores for various compounds with CF and OF indicated. Panel D displays box plots of compound concentrations for CF and OF, with significant differences marked by asterisks.]
Figure 2 | Differential metabolite processing analysis chart. (A) OPLS-DA model plot; (B) Cross-validation plot of the PLS-DA model; (C) VIP values and heatmap of differential metabolites (D); Box plot of differential aroma metabolites. The differences between groups were assessed using t-tests. *0.01 < P ≤ 0.05; **0.001 < P ≤0.01; ***P ≤ 0.001, ns, no significant difference.





The relationship between mineral nutrients and aroma metabolites

To explore the impact of mineral nutrients on the volatile metabolites in fresh tea leaves, mantel test correlation analysis was conducted between 1-Hexanol, 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal, E-Nerolidol, 3-Octen-2-one and various mineral nutrients (Figure 3). The result revealed that 1-Hexanol exhibited correlations with N and Fe. (E,E)-2,4-Heptadienal demonstrated correlations with Fe. Furthermore, 3-Octen-2-one exhibited correlations with P, K and Fe. Notably, 2-Ethyl-1-hexanol showed a significant correlation with K and Fe. Collectively, these results indicate that mineral nutrients were significantly associated with key tea aroma metabolites.

[image: A correlogram visualizing the relationships between various chemical compounds and elements. Colored squares indicate Pearson's r values: blue for positive correlations and red for negative. Lines connect chemical compounds like 1-Hexanol and (E,E)-2,4-Heptadienal to elements such as nitrogen and potassium. Line thickness and color denote the significance levels of Mantel's p-value and Mantel's r-value, with a legend explaining these codes.]
Figure 3 | Correlation network between mineral nutrients and 1-hexanol, 2-Ethyl-1-hexanol, (E, E)-2,4-Heptadienal, E-Nerolidol and 3-Octen-2-one. The color scale represents Pearson’s correlation coefficients: blue for positive correlations, red for negative correlations. Mantel’s P-values are indicated by light (0.01 to 0.05) and green (> 0.05) shading, with line thickness corresponding to the strength of Mantel’s correlation (r), where thicker lines denote stronger correlations.





The relationship between soil fertility and aroma metabolites

To further elucidate the influence of soil fertility on the volatile metabolites of fresh tea leaves, 1-hexanol, 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal, E-Nerolidol and 3-Octen-2-one were selected for linear regression analysis with soil nutrients. The results showed that 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal and 3-Octen-2-one were significantly positively correlated with OM, and notably, all compounds also exhibited a significant negative correlation with AK (Figures 4A-F). In addition, the concentration of 1-Hexanol was also negatively correlated with AK (Figure 4G). 3-Octen-2-one concentrations was significantly negatively correlated with pH (Figure 4H). Furthermore, the concentration of 2-Ethyl-1-hexanol was significantly negatively correlated with AP (Figure 4I). These results indicated that OM significantly positively correlated with 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal and 3-Octen-2-one in tea leaves, while AP and AK show negative correlations with the volatile metabolites.

[image: Scatter plots A to I show relationships between different variables with linear regression lines. Each plot includes data points from two groups, CF (blue) and OF (green). Panels A, B, and C relate to OM; D, E, F, and G to AK; H to pH; I to AP. Each plot displays an equation, correlation coefficient (r), and p-value, indicating the strength and significance of the relationships. Shaded areas represent confidence intervals around the regression lines.]
Figure 4 | The correlation diagram of soil nutrients and differential aroma metabolites (A) Linear regression plot of 2-Ethyl-1-hexanol versus OM; (B) Linear regression plot of 3-Octen-2-one versus OM; (C) Linear regression plot of (E,E)-2,4-Heptadienal versus OM; (D) Linear regression plot of 2-Ethyl-1-hexanol versus AK; (E) Linear regression plot of 3-Octen-2-one versus AK; (F) Linear regression plot of (E,E)-2,4-Heptadienal versus OM; (G) Linear regression plot of 1-Hexanol versus AK; (H) Linear regression plot of 3-Octen-2-one versus available pH; (I) Linear regression plot of 2-Ethyl-1-hexanol versus AP. The shaded areas represent the 95% confidence intervals.





Partial least squares path model analysis

To further clarify the effects of fertilization on tea yield and quality, PLS-PM model was used to reveal the relationships among soil fertility, soil pH, yield, tea nutrients, tea aroma and tea taste (Figure 5A). The model explained 55%, 69%, 66%, and 62% of the variation in mineral nutrients of tea, tea aroma, tea taste, and soil pH, respectively, within a goodness-of-fit index of 0.64. Soil fertility had positive direct effects on tea nutrients with a path coefficient (pc) of 0.97 and yield with a path coefficient (pc) of 1.09, whereas soil fertility exhibited a direct negative effect on tea aroma (pe = -1.13) and soil pH (pc = -0.79). Soil pH directly and significantly influenced tea yield (pc = 0.96) and tea taste (pc = 0.94), whereas contributed less to tea aroma (pc = -0.34) and tea nutrients (pc = 0.33). Additionally, the mineral nutrients of tea positively influenced tea taste (pc = 0.60) and aroma (pc = 0.10). Soil fertility exhibited the strongest total effects on tea amora, followed by soil pH and mineral nutrients of tea (Figure 5B). Taken together, fertilization may affect tea yield and the concentration of mineral nutrients by altering soil fertility and pH, thereby modulating the aroma of tea.

[image: Diagram illustrating the relationships between tea taste, nutrients, aroma, yield, and soil factors. Panel A shows interconnected nodes with path coefficients affecting tea properties. Panel B features a bar chart depicting the direct, indirect, and total effects of nutrients, soil pH, and soil fertility. The chart includes a legend for interpretation.]
Figure 5 | (A) The figures on the arrows represent standardized path coefficients, with the values of these coefficients denoted by the thickness of the arrows; red arrows signify positive impacts, while blue arrows denote negative impacts. The path coefficients and coefficients of determination (R²) are calculated following 999 bootstrap replications. The R² values indicate the variance explained by the model; the model’s evaluation is based on the Goodness of Fit statistic, a measure of overall predictive performance; pc: path coefficient, pe: path effect. (B) A diagram illustrating the degree of influence of tea nutrients, soil pH, and soil fertility on aroma.






Discussion




The impact of organic fertilizers as a substitute for chemical fertilizers on tea yield

Harvesting annually depletes the mineral elements in tea plants, requiring the soil to be maintained rich in minerals. For tea cultivation, it is crucial to replenish the soil with sufficient mineral nutrients via fertilization (Ma et al., 2021). Effective nutrient management requires the rational use and selection of the most suitable nutrient sources (Johnston and Bruulsema, 2014). Fertilization can help restore and maintain soil nutrient levels, improving soil fertility and fostering conditions for stable, high tea yields (Ma et al., 2021). Nitrogen, phosphorus, and potassium are key macronutrients in tea plantations, but studies show that overuse of chemical fertilizers and nutrient imbalances are now urgent concerns (Mishima et al., 2010). In China, the average total nutrient input (N, P2O5, K2O) in tea plantations is 796 kg·hm-2, with about 36% receiving excessive inputs (≥ 750 kg·hm-2) (Ni et al., 2019). Excess nitrogen, phosphorus, and potassium can negatively impact tea quality (Chen et al., 2021). Many tea plantations have recently switched from chemical to organic fertilizers to address these issues. However, it was reported that 10-20% decrease in tea yield after the application of organic fertilizers (Das et al., 2016; Piyasena and Hettiarachchi, 2023; Shi et al., 2024). In contrast, this study found that tea plants treated with organic fertilizer saw yield increases of 14.31% and 11.11% over two years, and a rise in standard leaf counts of 17.67% and 15.51% (Supplementary Figure 1). These results indicate that using specialized organic fertilizer in place of chemical fertilizer can ensure the maintenance of tea yield.





The influence of organic fertilizers substituting chemical fertilizers on tea quality

The complexity of tea flavor is largely determined by the balance of flavonoids, tea polyphenols, amino acids, and caffeine (Liu et al., 2022a). The concentration of these key compounds plays a critical role in the quality of tea (Li et al., 2022). Notably, metabolites synthesis is not only regulated by genetics, but also significantly affected by cultivation practices, fertilization strategies, and environmental factors such as temperature and light (Ahmed et al., 2019). Fertilization, as a common practice in tea plantation management, can enhance the synthesis of amino acids while reducing the ratio of tea polyphenols to total amino acids, thereby improving the overall flavor profile of tea (Qiu et al., 2024). However, different fertilizer types have varying effects on tea quality. For example, organic fertilizers typically promote amino acid and flavonoid synthesis (Ruan et al., 2019), whereas excessive chemical fertilizer use can impede polyphenol and flavonoid biosynthesis, resulting in a bitter and astringent taste (Ye et al., 2022; Piyasena and Hettiarachchi, 2023). In this study, treated with organic fertilizer, significantly increased flavonoid content in tea leaves (Supplementary Table 1). Additionally, the water-soluble substances in tea leaves increased significantly with organic fertilizer treatment, suggesting that specific organic fertilizers can boost the steeping durability of Wuyi Rock tea, highlighting organic fertilizers’ positive impact on tea quality.

Approximately 700 volatile compounds have been successfully identified in tea leaves, with most forming during post-harvest processing (Ho et al., 2015). Studies show that excessive nitrogen fertilizer application increases fatty acid derivatives, raising the levels of fatty acid aromatic compounds (Chen et al., 2021), negatively impacting tea quality. Conversely, moderate nitrogen fertilizer application balances lipid metabolism and aroma precursor formation, enhancing tea aroma quality (Liu et al., 2017). Aldehydes, a key component of tea aroma, are especially prevalent in green, oolong, and black teas, comprising the largest share of total volatiles (Flaig et al., 2020). Most aldehydes in tea leaves provide a citrus and green flavor profile (Zhai et al., 2022). This study found that the levels of (E,E)-2,4-Heptadienal, and E-Nerolidol significantly increased after OF treatment, enhancing tea’s fresh green aroma (Figure 2D). It was reported that 1-hexanol, linalool oxide, linalool, geraniol, (E)-β-ionone, isoamyl acetate, and 2-methylpropanal as contributors to a floral aroma, while 3-methyl-butanal, 2-Ethyl-1-hexanol, indole, and β-damascone were associated with a chestnut aroma (Liu et al., 2023). In this study, organic fertilizer treatment resulted in a significant increase in the levels of 1-Hexanol and 2-Ethyl-1-hexanol by 56.55% and 104.44%, respectively, thereby enhancing the aroma of tea. Furthermore, alcohol compounds are also significant volatile components in the formation of tea aroma (Zhu et al., 2021). In this study, we observed improvements in water-soluble substances, flavonoids (Supplementary Table 1), 1-Hexanol and 2-Ethyl-1-hexanol and other aroma components in tea leaves after organic fertilizer treatment (Figure 2D), strongly supporting the use of organic fertilizers to enhance Wuyi Rock tea quality.





The effect of replacing chemical fertilizers with organic fertilizers on soil conditions

Soil, an indispensable natural resource, serves as a habitat for countless organisms and is crucial for ecological balance and human survival (Doran, 2002). The state of soil health, particularly its compositional diversity, profoundly influences crop productivity, climate stability, environmental health and human welfare (Manter et al., 2017). As a sophisticated life support system, soil contains numerous microbial communities essential to nutrient cycling (Morris and Blackwood, 2023). Nevertheless, soil health is influenced by various natural and human-induced factors (Withers et al., 2020; Yang et al., 2020) with fertilization practices having a notable effect on soil health in agricultural systems (Bai et al., 2018; Li et al., 2023). Therefore, understanding the connection between fertilization and soil health is critical for developing sustainable agricultural practices.

Tea plants are mainly grown in subtropical and tropical regions with high temperatures and heavy rainfall, leading to significant leaching of soil minerals. Numerous studies have highlighted that adding organic matter to soil greatly affects the availability of minerals and how efficiently plants absorb and use them (Sönmez et al., 2016; Turan, 2021). Nutrient use efficiency is crucial for tea growth and quality, but excess nutrients can harm tea tree growth and metabolism, potentially reducing tea quality (Chen et al., 2021). Moreover, excessive fertilization threatens the environment, potentially causing soil acidification, increased greenhouse gas emissions, and reduced biodiversity (Ma et al., 2021). Long-term reliance on inorganic fertilizers challenges sustainable land use, potentially leading to soil acidification and compaction, disrupting the nutrient balance in tea plantation soils (Yang et al., 2018). Therefore, replacing chemical fertilizers with organic fertilizers is seen as an effective way to decrease dependence on chemicals inputs. Organic fertilizers are value for their rich nutrient content, non-toxicity, environmental friendliness, long-lasting efficacy, and positive impact on soil health (Shaji et al., 2020). The average pH value of soils in Chinese tea plantations is 4.68, ranging from 3.96 to 5.48 across provinces (Yan et al., 2020). Tea trees prefer acidic soils, optimally between pH 4.0 and 5.5 (Yan et al., 2018). This study found that applying tea-specific organic fertilizer significantly raised the pH of tea plantation soil to a range of 4.28-4.54 (Figure 1A), benefiting tea tree growth and reducing soil acidification. This result is consistent with earlier studies (Saha et al., 2019; Zhang et al., 2019). After the organic fertilizer treatment, soil fertility in the tea plantation neared the high-quality standards for the Wuyi Tea Region (Zhou et al., 2019), providing optimal conditions for premium Wuyi Rock tea production.

The organic fertilizer enriches soil with exogenous organic matter, thus increasing organic content in the tea plantation soil (Figure 1B). This allows nutrients to be retained in the soil longer, in forms more accessible for plant uptake (Akinbode, 2011). It was reported that high-phosphorus conditions decrease the accumulation of polyphenols in tea plants (Zhang et al., 2023). In this study, OF treatment significantly reduced soil available phosphorus (AP) content (Figure 1D), which in turn decreased phosphorus levels in tea leaves (Table 1). Concurrently, the concentration of 2-Ethyl-1-hexanol in tea leaves increased (Figure 2D). The correlation analysis further revealed a significant correlation between phosphorus concentration in tea leaves and 2-Ethyl-1-hexanol content (Figure 4I). This suggests that organic fertilizer treatment can enhance tea aroma by reducing phosphorus levels in tea leaves, thereby increasing the concentration of aroma compounds like 2-Ethyl-1-hexanol. Consequently, the strategic use of organic fertilizer can strengthen soil quality and enhance the efficiency of nutrient uptake and use by tea plants (Birkhofer et al., 2008). In summary, this study offers theoretical and empirical evidence for combating soil acidification in tea plantations and boosting their sustainable development.





Sustainability outlook

This study demonstrates the pivotal role of organic fertilizers in enhancing soil fertility and improving the aromatic profile of Wuyi rock tea, demonstrating that organic fertilization effectively regulates volatile metabolites and reduces soil acidification. However, it is necessary to comprehensively evaluate the long-term efficacy of organic fertilizers, extended longitudinal studies are needed to continuously monitor soil health and tea quality variations, and accumulate multi-year datasets for a more precise assessment of their enduring impact on soil and tea. Additionally, replicating experiments across diverse soil types and climatic zones is essential to validate the generalizability of the findings. These efforts will improve our understanding of organic fertilizers’ adaptability in different environmental settings and provide a strong scientific basis for broader tea cultivation practices.






Conclusion

Tea-specific organic fertilizers, as substitutes for conventional fertilizers, maintain tea yield while significantly enhancing the levels of water-soluble substances and flavonoids, thereby improving tea taste. Moreover, the application of tea-specific organic fertilizers notably elevated the levels of key aroma compounds, including 1-hexanol, 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal, E-Nerolidol and 3-Octen-2-one intensifying the tea’s aroma. Furthermore, the use of tea-specific organic fertilizers effectively reduced soil acidification and increased soil organic matter content in tea plantations. However, it must be noted that the present results are constrained by its regional scope, and different regions with diverse soil types and climatic conditions should be extended to enhance the generalizability of the results. In conclusion, this study provides a scientific rationale for optimized fertilization practices in Wuyi Mountain tea plantations, enhancing Wuyi Rock tea quality and the sustainability of tea garden production, while offering practical fertilizer usage guidelines for tea farmers to improve the aroma quality and overall market value of tea.
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Supplementary Figure 1 | Graph representing tea yield under various fertilization treatments. (A) Fresh tea leaf yield within an area of 0.1 m²; (B) Number of standard leaves within an area of 0.1 m². CF, chemical fertilizer; OF, organic fertilizer. Inter-group differences were assessed using t-tests; *0.01 < P ≤ 0.05; **0.001 < P ≤0.01; ***P ≤ 0.001; ns, no significant difference; n = 10.

Supplementary Figure 2 | Correlation network between soil nutrients and 1-Hexanol, 2-Ethyl-1-hexanol, (E,E)-2,4-Heptadienal, E-Nerolidol and 3-Octen-2-one.The color scale represents Pearson’s correlation coefficients: blue for positive correlations, red for negative correlations. Mantel’s P-values are indicated by light (0.01 to 0.05) and green (> 0.05) shading, with line thickness corresponding to the strength of Mantel’s correlation (r), where thicker lines denote stronger correlations.

Supplementary Table 1 | Concentration of non-volatile metabolites in fresh tea leaves under various fertilization treatments.

Supplementary Table 2 | Volatile compounds identified in fresh tea leaves.
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Introduction

This study aimed to establish and verify a critical nitrogen dilution model for different organs of maize varieties with different nitrogen efficiencies and clarify differences in nitrogen nutritional characteristics.





Methods

Two maize varieties (nitrogen-efficient variety ZH 311 and nitrogen-inefficient variety XY 508) were grown under four nitrogen levels to evaluate N dynamics and dry matter accumulation.





Results

The results showed that the critical nitrogen concentration dilution curves based on root dry matter, stem-sheath dry matter, leaf dry matter, and plant dry matter, with coefficient of determination (R²>0.90), all reached significant levels and could be used for nitrogen nutrition diagnosis of maize. However, a and b values of the critical nitrogen concentration models for different organs differed significantly; e.g., the root model had the lowest a value and the leaf model had the lowest b value. ZH 311 exhibited higher a values and lower b values (except in roots) than XY 508. The model established on ZH 311 based on stem-sheath had the highest stability, and the model established on XY 508 based on leaf had the highest stability. Relative yield (RY), nitrogen nutrition index (NNI), and cumulative nitrogen deficit (AND) were significantly correlated at different growth stages of different organs (R²>0.80) using each critical nitrogen concentration dilution curve to predict yield.





Discussion

In the high-nitrogen efficiency variety ZH 311, roots, stem-sheath, leaves, and plants showed weaker responses to AND than those of the low nitrogen-efficiency variety ZH 311 with at all growth stages. ZH 311 roots exhibited stronger responses to NNI at the early growth stage, and stem-sheath, leaves, and plants had stronger responses to NNI at the later growth stage, indicating that the high nitrogen-efficiency variety ZH 311 was not sensitive to nitrogen deficiency and was more efficient for nitrogen nutrition.





Keywords: maize, nitrogen efficiency, different organs, nitrogen critical dilution curve, nitrogen nutrition index, nitrogen deficiency




1 Introduction

The global annual output of maize (Zea mays L.) exceeds 12×108 t, accounting for more than 40% of total global food production, making it the largest food crop globally (Sun et al., 2024). High and stable maize yields are crucial for global food security and animal husbandry (Ray et al., 2013). By 2050, global food production must increase by 100% to meet the needs of the global population; however, due to urbanization, farmland degradation, and environmental damage, the arable land area in China is decreasing at a rate of 2.67×105 ha/year, with a decrease of about 30% from 1986 to 2020 (Tilman et al., 2011; Li, 2017; Tu et al., 2024). China is the world ‘s second largest producer of maize; the area of maize planted and its yield in China represent 22% and 24% of the global total, respectively, and it thus makes significant contributions to global maize production (Tian et al., 2020). Therefore, effectively increasing the maize yield per unit area is crucial for ensuring global food security.

Nitrogen application is the simplest and most efficient way to increase crop yield per unit area; however, excessive nitrogen application leads to resource wastage, environmental pollution, and increased production costs (Ma and Diao, 2018). Therefore, diagnosing nitrogen nutrition in crop production and scientific and reasonable nitrogen fertilizer application according to the nitrogen requirement characteristics of different crops at different growth stages have important strategic significance for improving crop yield and nitrogen-use efficiency and realizing high agricultural efficiency, environmental protection, and sustainable development. The critical nitrogen concentration refers to the minimum nitrogen concentration when a crop or certain organ of a crop obtains the maximum biomass during a certain growth period (Li et al., 2015a), and is widely used to assess the nitrogen nutrition status of crops (Zhao et al., 2017; Yue et al., 2016). Tian et al. (2019) established a relationship between the wheat nitrogen nutrition index (NNI) and relative yield (RY) based on a critical nitrogen concentration curve, which can be used for accurate field nitrogen management of wheat. Xue et al. (2006) established a critical post-flowering nitrogen concentration dilution curve model for cotton that can be used to assess post-flowering nitrogen requirements and dynamically monitor nitrogen nutrition to guide timely and accurate fertilization (Wang et al., 2015). Various characteristics (nitrogen-efficiency differences), environmental changes (ecological points and management levels), and model optimization put forward higher requirements for the parameters of the critical nitrogen concentration dilution curve. Therefore, establishing critical nitrogen concentration dilution curves based on dry matter in different organs (rather than traditional plant dry matter) can not only clarify differences in nitrogen nutrition characteristics of various organs but can also help to investigate the physiological function differences of crop nitrogen dynamics resulting from the genotype and environment (Lu et al., 2007).

Breeding and promotion of nitrogen-efficient maize varieties are the most direct and effective means by which to increase maize yield per unit area and reduce nitrogen fertilizer use (Wang et al., 2012). There have been many reports on differences in dry matter accumulation, carbon and nitrogen metabolism, and yield formation of maize varieties with different nitrogen efficiencies; However, studies on differences in critical nitrogen dilution models and nitrogen nutrient characteristics of varieties with different nitrogen efficiency are limited, and current models have limitations, mainly reflected in the failure to consider differences in nitrogen uptake, distribution and metabolism among different maize varieties and their organs. In addition, most models assume a linear relationship between nitrogen concentration and biomass accumulation (Yang et al., 2014). It ignores the complex interactions between nitrogen, carbon and other nutrients. This indicates that the effect of nitrogen efficiency on the critical nitrogen concentration of crops (Nc) model has not been fully explored, and more targeted models need to be developed to accurately predict nitrogen dynamics and optimize nitrogen management, thereby improving crop yield and nitrogen use efficiency (Wang et al., 2019; Liu et al., 2020). Therefore, in this study, maize varieties with different nitrogen efficiencies were used, and critical nitrogen dilution curves were established and verified based on the relationship between the nitrogen concentration and dry matter mass of each organ to clarify differences in the critical nitrogen dilution models of various organs of maize varieties with different nitrogen efficiencies. On this basis, NNI and the cumulative nitrogen deficit (AND) were used to estimate maize yield at key growth stages. A critical nitrogen dilution model was used to calculate the nitrogen production capacity of maize varieties with different nitrogen efficiencies, and differences in their nitrogen nutrient characteristics were identified. This study systematically compared the critical nitrogen dilution models and nitrogen nutrient characteristics of maize varieties with different nitrogen efficiencies for the first time, providing a comprehensive method for diagnosing plant nitrogen status and guidance for precise nitrogen management at each key maize growth stage.




2 Materials and methods



2.1 Study area and climate

The experiment was conducted at the experimental base of Chongqing University of Arts and Sciences, Wujian Town, Yongchuan District, Chongqing (29°21’N, 105°54’E, altitude 343.5 m), which has a subtropical monsoon climate.




2.2 Experimental details

The experimental materials were maize varieties with different nitrogen efficiencies selected from previous experiments: nitrogen-efficient variety Zhenghong 311 (ZH 311), and nitrogen-inefficient variety Xianyu 508 (XY 508). These two varieties have similar growth periods in southwestern China (i.e., approximately 120 d). The experiment was conducted during three consecutive maize seasons from April, 2019 to August, 2021 (Figure 1 shows the weather data of crop growth period). The previous crop was a vegetable, and the soil was purple (Regosols). Basic soil samples were collected from the 0–30 cm soil layer with organic matter content of 16.14 g·kg-1, total nitrogen content of 1.63 g kg-1, total phosphorus of 0.62 g kg-1, total potassium content of 11.55 g·kg-1, alkaline hydrolytic nitrogen content of 48.72 mg kg-1, available phosphorus content of 2.68 mg kg-1, available potassium content of 145.21 mg kg-1, and pH of 7.92. The experiment followed a two-factor randomized design with two maize varieties (ZH 311 and XY 508) and four nitrogen fertilizer levels (N1: 0 kg·ha-1, N2: 120 kg·ha-1, N3: 240 kg·ha-1, N4: 360 kg·ha-1). Each treatment included 3 replicates, with a total of 24 (8×5 m=40 m2) plots, the plant spacing is 25 cm. Maize was planted in wide and narrow rows (1.4 and 0.6 m, respectively) with a density of 52500 plants·ha-1. According to the experimental treatment, nitrogen fertilizer was applied in equal amounts before seeding and V12, and phosphate (containing 12.0% P2O5) and potassium fertilizers (containing 60.0% K2O) were used as base fertilizers; application amounts were 600 kg·ha-1 of superphosphate and 150 kg ha-1 of potassium chloride, respectively. Urea was used as the nitrogen fertilizer (containing 46.4% N).

[image: A dual-panel line graph shows 2019 and 2020 data with red lines indicating temperature, orange dotted lines for sunshine hours, and blue lines for precipitation. The left y-axis represents average temperature in degrees Celsius and sunshine hours, while the right y-axis shows precipitation in millimeters. The x-axis displays time progression. Temperature remains above zero with noticeable fluctuations, sunshine hours vary moderately, and precipitation has sporadic peaks.]
Figure 1 | Meteorological factors during maize growth.

Maize was sown on March 27, 2019, March 26, 2020, and March 28, 2021, and seedlings were set at the three-leaf stage; maize was harvested on July 29, 2019, July 30, 2020, and July 31, 2021, respectively. Standard field management practices (scheduled irrigation, balanced fertilization, and soil tillage) and integrated pest management strategies (combination of biological control agents and selective pesticides) were implemented in accordance with the Chongqing High-Yield Cultivation Technical Regulations.




2.3 Field measurement and index determination

In the V6, V12, R1, R3, and R6 stages (representing the maize jointing, large horn, silking, filling, and maturity stages, respectively), five representative plants with uniform growth were selected from each plot, and divided into roots (Specifically, a soil column with a length of 0.3 m, width of 0.1 m, and depth of 80 cm was excavated with an iron plate root picker centered on a single plant), stem-sheath, leaves, and ears. Samples were defoliated at 105°C for 30 min, then dried at 80°C to a constant weight and weighed, and dry matter accumulation in roots, stem-sheath, leaves, and individual plants was measured (Figure 2 shows the experiments and technical flowchart of this study). Samples were then crushed through a 60-mesh sieve and the nitrogen concentration in each organs was determined using the Kjeldahl method with reference to Li et al. (2023). The nitrogen concentration per plant was determined as total nitrogen accumulation per plant/total dry matter accumulation per plant.

[image: Infographic titled "Nitrogen Efficiency and Critical Dilution Models in Maize Varieties Across Different Organs." It compares nitrogen-efficient Zhenghong 311 (ZH 311) and nitrogen-inefficient Xianyu 508 (XY 508). Tests were conducted in Southwestern China with nitrogen levels of 0, 120, 240, and 360 over a 120-day growth period. Key findings show ZH 311 had higher nitrogen concentrations and dry matter accumulation, especially in later stages, compared to XY 508. ZH 311 is less sensitive to nitrogen deficiency and uses nitrogen more efficiently. Charts depict nitrogen concentration, dry matter, and dilution curves.]
Figure 2 | Experiments and technical flowchart of this study.

At maturity, 30 consecutive ears were harvested from each plot for drying and threshing, and the yield of each treatment was calculated based on a water content of 14%.




2.4 Critical nitrogen dilution model



2.4.1 Model construction

The critical nitrogen concentration dilution curve was modeled according to the methodology proposed by Justes et al. (1994). The specific steps applied in this study were as follows: (1) individual plant dry matter (root, stem-sheath, and leaf dry matter) treated with different nitrogen concentrations were divided into nitrogen-limited and non-nitrogen-limited nutrient groups using analysis of variance; (2) linear fitting of dry matter and the nitrogen concentration in the nitrogen-limited nutrient group was carried out, and the dry matter of the non-limited nitrogen nutrient group was averaged and the curve perpendicular to the horizontal axis. The intersection of the two lines corresponded to the critical nitrogen concentration.

Maize critical nitrogen concentration dilution curve model:

[image: The formula depicts \(N_c = aDM^{-b}\), labeled as equation (1).] 

Here, Nc represents the critical nitrogen concentration of crops; DM is the dry matter of each organ (t ha-1); parameter a represents the critical nitrogen concentration corresponding to each part of maize when the dry matter of each part is 1 t, and; parameter b is the statistical parameter of the slope of the dilution curve of the critical nitrogen concentration.




2.4.2 Model verification

The root mean square error (RMSE) and normalized root mean square error (n-RMSE) (Yang et al., 2000) were adopted for model evaluation, These metrics were calculated using Equations 2, 3:

[image: The formula for RMSE is shown: RMSE equals the square root of the sum of the squares of the differences between observed values \(O_i\) and predicted values \(P_i\), divided by \(n\), where \(n\) is the number of observations.] 

[image: The formula shows n-RMSE equals RMSE divided by S, multiplied by 100 percent. It is labeled as equation three.] 

where Oi and Pi are measured and simulated values of the critical nitrogen concentration, respectively; n is the sample size, and; S is the average value of the measured data. Model stability was measured according to the standard proposed by Jamieson et al. (1991), i.e., model stability is excellent if n-RMSE<10%; model stability is good if 10%<n-RMSE<20%; model stability is general if 20%<n-RMSE<30%, and; model stability is poor if n-RMSE>30%.





2.5 Correlation calculations

Referring to the NNI model described by Lemaire et al. (2008), Equation 4 defines the NNI:

[image: Equation showing NNI equals Na divided by Nc, labeled as equation 4.] 

where NNI is the nitrogen nutrient index; Na is the measured nitrogen concentration, and; Nc is the critical nitrogen concentration. Nitrogen nutrition was optimal when NNI=1, excessive when NNI>1, and insufficient when NNI<1. Equation 5 calculates the absolute nitrogen deficit (AND):

[image: Equation showing AND equals N sub cna minus N sub na, labeled with number 5 in parentheses.] 

Here, AND is the nitrogen deficit (kg ha-1); Ncna is the crop nitrogen accumulation under the critical nitrogen concentration (kg ha-1), and; Nna is actual crop nitrogen accumulation (kg ha-1). The nitrogen nutrition status was optimal when AND=0, and nitrogen accumulation was insufficient when AND>0 and excessive when AND<0.

According to the critical nitrogen dilution curve model, when a certain nitrogen concentration in a certain period is determined, the corresponding dry matter accumulation can be estimated and its level can determine the dry matter production capacity under the same nitrogen concentration. It is defined as the nitrogen dry matter production capacity (NDMP, t ha−1) and was calculated using Equation 6:

[image: The equation shown is: NDMP equals the square root of a over Nt, denoted as equation number six.] 

where Nt is the nitrogen concentration in each organ of the plant, and the a and b values are the same as those in Equation 1.




2.6 Data analysis

Excel 2013 was used for data sorting and analysis, and SPSS (version 26.0) was used for analysis of variance. Variance analysis was performed using the least significant difference for comparisons between treatments at p<0.05. Graphpad Prism 9.5 was used for drawing. Field data from 2019 and 2020 were used to build the model, while test data from 2021 were used to verify the model.





3 Results and analysis



3.1 Changes in nitrogen concentration in different growth periods of maize varieties with different nitrogen efficiencies

Nitrogen concentrations in maize roots, stem-sheath, leaves, and individual plants gradually decreased during growth (Figure 3). The root system area decreased from 1.81% in the V6 stage to 0.60% in the R6 stage. Stem-sheath thickness decreased from 3.39% in V6 stage to 0.23% in the R6 stage. The blade area decreased from 3.33% in the V6 stage to 0.81% in the R6 stage, and the rate per plant decreased from 2.83% in the V6 stage to 0.74% in the R6 stage. Nitrogen concentrations in the roots, stem-sheath, leaves, and individual plants of the N-treated maize significantly increased. Compared with N1, the roots of the two varieties increased by 51.92% in the V6 stage, 63.10% in the V12 stage, 43.87% in the R1 stage, 62.19% in the R3 stage, and 54.74% in the R6 stage. The results showed that nitrogen application had the greatest effect on root nitrogen concentrations in maize varieties in the V12 and R3 stages, with increases of>60%. The stem-sheath nitrogen concentration increased by 47.15%, 63.31%, 71.95%, 91.01%, and 42.62%, respectively, indicating that nitrogen application had the greatest effect on the concentration of stem-sheath nitrogen in the R1−R3 stages, with increases>70%. The leaf nitrogen concentration increased by 33.03%, 37.56%, 31.49%, 75.45%, and 32.40%, respectively, indicating that nitrogen application had the greatest effect on leaf nitrogen concentration during the R3 stage; the plant nitrogen concentration increased by 42.05%, 49.14%, 23.89%, 50.29%, and 32.10%, respectively, indicating that nitrogen application had the greatest effect on nitrogen concentration during the R3 stage.

[image: Bar graphs comparing the percentages of different plant parts (root, stem-sheath, leaf, whole plant) across different growth stages (V6, V12, R1, R3, R6) for two plant varieties, ZH 311 and XY 508. Four nitrogen treatments (N1, N2, N3, N4) are represented by separate bars with standard error indicated. Each bar segment is labeled with letters (a, b, c, d) indicating statistical differences.]
Figure 3 | Changes in the nitrogen concentration in maize varieties with contrasting nitrogen efficiencies at different stages (Average data for 2019-2020). ZH 311–Zhenghong 311; XY 508–Xianyu 508; N1–0 kg·ha-1; N2–120 kg·ha-1; N3–240 kg·ha-1; N4–360 kg·ha-1; V6–jointing stage; V12–large horn stage; R1–silking stage; R3–filling stage; R6–maturity stage.

On average, the root nitrogen concentration of ZH 311 (except in the V12 stage) was higher than that of XY 508; those in the V6, R1, R3, and R6 stages were 11.00%, 1.28%, 4.51% and 5.29% higher, respectively. The stem-sheath nitrogen concentration of ZH 311 was higher than that of XY 508 in all stages, and those in the V6, V12, R1, R3, and R6 stages were 1.58%, 3.08%, 5.22%, 15.29%, and 6.17% higher, respectively, than those of XY 508, indicating that ZH 311 maintained a higher stem- sheath nitrogen concentration than XY 508, particularly after the R3 stage. There was no significant difference in leaf nitrogen concentration between the two varieties in the V6-R3 stages, but at R6 stage, ZH 311 was significantly higher than XY 508 (13.94%), indicating that ZH 311 was more effective than XY 508 in maintaining leaf nitrogen concentration and delaying leaf senescence. The nitrogen concentration per plant in ZH 311 was lower than that in XY 508 in the V6 and V12 stages, but higher than that in XY 508 in the R1-R6 stages. The advantage of the nitrogen concentration per plant of ZH 311 was more obvious than that of XY 508 as the growth period was delayed, indicating that the nitrogen concentration per plant of ZH 311 had a certain advantage over XY 508 in the later growth period.




3.2 Changes in dry matter of maize varieties with different nitrogen efficiencies in different stages

Dry matter of maize root, stem-sheath, leaf, and individual plant increased gradually with growth, and the dry matter of maize root increased from 0.39 t ha-1 in the V6 stage to 1.98 t ha-1 in the R6 stage. Stem-sheath dry matter increased from 0.24 t ha-1 in the V6 stage to 5.30 t ha-1 in the R6 stage. Blade dry matter increased from 0.46 t ha-1 in the V6 stage to 2.38 t ha-1 in the R6 stage. Single plant dry matter increased from 1.09 t ha-1 in the V6 stage to 21.29 t ha-1 in the R6 stage (Figure 4). Roots, stem-sheath, leaves, and dry matter per plant in nitrogen-treated maize increased gradually. Compared with N1, the roots of the two varieties were 19.30% higher (p<0.05) in the V6 stage, 29.19% higher in the V12 stage, 14.77% higher in the R1 stage, 20.20% higher in the R3 stage, and 19.12% higher in the R6 stage. Stem-sheaths were 26.60% higher in the V6 stage, 29.59% higher in the V12 stage, 22.17% higher in the R1 stage, 21.59% higher in the R3 stage, and 44.25% higher in the R6 stage. The blades were 28.12% higher in the V6 stage, 24.90% higher in the V12 stage, 22.87% higher in the R1 stage, 18.88% higher in the R3 stage, and 38.95% higher in the R6 stage. Plants increased by 25.21% in the V6 stage, 27.68% in the V12 stage, 24.25% in the R1 stage, 22.78% in the R3 stage, and 34.58% in the R6 stage. Nitrogen application significantly promoted dry matter accumulation at different maize growth stages, and increases in the dry matter of the stem-sheath and whole plant were particularly significant in the R6 stage. These results indicated that appropriate nitrogen application could not only promote growth of each maize organ but also contribute to increasing dry matter with advancement of the growth cycle.

[image: Bar charts compare biomass across different plant parts and stages for ZH 311 and XY 508. Each chart shows root, stem-sheath, leaf, and total plant biomass in tons per hectare under four nitrogen levels (N1, N2, N3, N4). Bars are labeled with statistical significance.]
Figure 4 | Changes of dry matter accumulation in maize cultivars with contrasting nitrogen efficiencies at different stages (Average data for 2019-2020). ZH 311–Zhenghong 311; XY 508–Xianyu 508; N1–0 kg·ha-1; N2–120 kg·ha-1; N3–240 kg·ha-1; N4–360 kg·ha-1; V6–jointing stage; V12–large horn stage; R1–silking stage; R3–filling stage; R6–maturity stage.

The average dry matter performance of the ZH 311 root system was significantly higher than that of XY 508 during the V6, V12, R1, R3, and R6 stages, during which the root dry matter quality was 12.22%, 16.09%, 18.70%, 10.63%, and 17.835 higher, respectively. ZH 311 roots had a stronger soil nutrient absorption capacity than XY 508 roots during the critical growth period. Similarly, the performance of ZH 311 in the stem-sheath and leaf was higher than that of XY 508 at all stages, particularly in the R6 stage; stem-sheath dry matter was 53.11% higher and leaf dry matter was 44.37% higher, indicating that ZH 311 had considerable advantages in nutrient absorption and resource utilization efficiency in the later growth period. The dry matter per plant of ZH 311 was higher than that of XY 508 from stages V6-R6, particularly in the R1 stage (35.41% higher), reflecting the comprehensive performance advantages of ZH 311 in late growth, particularly in terms of dry matter accumulation and nitrogen utilization, which have potential application value in improving crop yield and quality.




3.3 Construction of nitrogen critical dilution curve in different maize organs

The critical nitrogen concentration dilution curve (Figure 5) was established based on the relationship between the dry matter and nitrogen concentration of maize roots (RDM), stem-sheath (SDM), leaves (LDM), and plants (PDM); R2 values of the critical nitrogen concentration dilution curve of each organ of the two varieties were>0.90. The critical nitrogen dilution curve parameters of the different maize organs differed significantly, among which plant dry matter had the highest a value (3.617 and 3.388), the root a value was the lowest (1.281 and 1.253), the stem-sheath a value was the highest (0.594 and 0.647), and the leaf a value was the lowest (0.315 and 0.325). There were also significant differences in critical nitrogen dilution curve parameters between the two maize varieties. The critical nitrogen concentration dilution curves for ZH 311 roots, stem-sheath, leaves, and plants (1.281, 2.287, 3.055, and 3.617, respectively) were higher than those for XY 508 (1.253, 1.853, 2.852, and 3.388, respectively). The critical nitrogen concentration dilution curve of the ZH 311 root system (0.552) was higher than that of the XY 508 root system (0.379), and those of the stem-sheath (0.594), leaf (0.315), and plant (0.361) were lower than those of XY 508 (0.647, 0.325, and 0.381, respectively).

[image: Scatter plot with multiple trend lines showing the relationship between nitrogen concentrations and dry matter (t ha^-1). The y-axis indicates nitrogen concentrations in percentage, and the x-axis represents dry matter. Different symbols and line styles represent various equations and R-squared values, indicating the fit of each trend line.]
Figure 5 | Nitrogen critical dilution curves in different maize organs.




3.4 Verification of critical nitrogen concentration dilution curve

The critical nitrogen concentration curve was verified using 2021 data. The results showed that the critical nitrogen concentration dilution curve could divide maize into growth conditions with and without nitrogen restriction. Under nitrogen restriction, all data points fell below the Nc dilution curve; whereas, without nitrogen restriction, all data points fell on or above the Nc dilution curve (Figure 6). Simultaneously, to verify the model accuracy, the measured dry matter data points were introduced into Equation 1 to calculate the simulated value of the critical nitrogen content, which was compared with the observed value (Table 1). Deviations based on the root and plant models of the two varieties were 10.85% and 9.50%, and 16.14% and 14.94%, respectively, and the stability of the<20% model was high; deviations based on the stem-sheath and leaf models were 6.77% and 8.64%, and 7.70%, and 5.15%, respectively, and the stability of the<10% model was excellent. Therefore, the critical nitrogen dilution curve model for different maize organs constructed in this study had high accuracy, indicating that the critical nitrogen concentration dilution curve for different organs of maize varieties with different nitrogen efficiencies constructed in this study can be used for nitrogen nutrition diagnosis of maize.

[image: Six scatter plots show the nonlinear relationship between biomass and nitrogen concentration in various plant parts, including roots, stem-sheath, leaves, and whole plants. Each graph features three trend lines, represented by different symbols (circles, squares, diamonds) and statistical models indicating a high coefficient of determination (R²) for each fit, depicting consistent data trending.]
Figure 6 | Critical nitrogen dilution curve validation.

Table 1 | Observed and simulated values of critical nitrogen concentrations in maize.


[image: Table comparing observed (OV) and simulated (SV) values for ZH 311 and XY 508 across different plant stages (V6, V12, R1, R3, R6) for roots, stem-sheath, leaf, and whole plant. RMSE and n-RMSE are provided for each part and stage.]



3.5 Relationship between NNI, AND, and RY

Relationships between NNI and RY and between RY are shown in Figures 6 and 7. With an increase in NNI, RY exhibited a linear growth trend until it no longer increased with an increase in NNI, and its change trend presented a linear and stable mode. With an increase in AND, RY showed a trend of initially remaining constant and then decreasing linearly. Based on the critical nitrogen concentration dilution curve of root dry matter, the R2 value between NNI, AND, and RY ranged from 0.815–0.984 and between AND and RY ranged from 0.818–0.988. Based on the critical nitrogen concentration dilution curve of the stem-sheath dry matter, the R2 value between NNI and RY ranged from 0.852–0.985 and that between AND and RY ranged from 0.757–0.987. Based on the critical nitrogen concentration dilution curve of dry matter, the R2 value between NNI and RY ranged from 0.853–0.994 and between AND and RY ranged from 0.735–0.991. Based on the critical nitrogen concentration dilution curve of plant dry matter, the R2 value between NNI and RY ranged from 0.894–0.983 and that between AND and RY ranged from 0.890–0.984. Relationships among RY, NNI, and AND were determined based on the critical nitrogen concentration curves established for maize roots, stem-sheath, leaves, and plant dry matter. R2 values of each organ of the two varieties were all > 0.70 in each stage; therefore, the effect on yield could be evaluated according to the nitrogen nutrient state (NNI and AND) of crop vegetative growth.

[image: Scatter plots depict the relationship between nitrogen nutrition index (NNI) and relative yield (RY) across different plant parts and growth stages. Each panel shows data points with corresponding regression lines and equations, illustrating variations in NNI's impact on RY. Panels are titled for specific plant parts: Root-V6, Stem-sheath-V6, Leaf-V6, Whole plant-V6, and additional stages V12, R1, R3, R6. Each includes multiple regression lines indicating different treatment groups, denoted by symbols and mathematical expressions in the legend.]
Figure 7 | Relationships between relative yield (RY) and nitrogen nutrition index (NNI) obtained from critical nitrogen concentration curves. V6–jointing stage; V12–large horn stage; R1–silking stage; R3–filling stage; R6–maturity stage.

Further analysis showed that with an increase in NNI, maize RY first increased and then stabilized (Figure 7). At most growth stages, the RY of ZH 311 was higher than that of XY 508, and the curve of ZH 311 was generally steeper and had a higher slope than that of XY 508 (Figure 7), indicating that ZH 311 was able to use nitrogen more efficiently and convert it into biomass. The root difference between ZH 311 and XY 508 was greatest during the R1 stage, with ZH 311 showing higher RYs at an NNI of 1, suggesting that ZH 311 roots may be more efficient at absorbing nutrients when the nitrogen supply is adequate. The largest difference in stem-sheaths was during the R6 stage, when ZH 311 showed higher RYs at an NNI of 0.59, suggesting that ZH 311 stem-sheaths were more efficient in nutrient transport in the absence of nitrogen. The NNI yields of ZH 311 at different stages were higher than those of XY 508, and ranged from 0–1.5, indicating that ZH 311 leaves could photosynthesize more efficiently under deficient or sufficient nitrogen conditions. The largest difference in plant parts was observed between the V6 and V12 stages, and ZH 311 showed a higher RY at an NNI of 0.79, suggesting that whole ZH 311 plants could grow more efficiently in the absence of nitrogen. Overall, the yield advantage of ZH 311 over that of XY 508 was particularly significant, with higher nitrogen-use efficiency in R1 and R3 stages, better grain filling and ripening, and ultimately higher yields.

Differences were observed between ZH 311 and XY 508 in the root, stem-sheath, leaf, and plant yields depending on the crop growth stage (Figure 8). In roots and stem-sheaths, ZH 311 showed a high yield in both the V6 and V12 stages. This showed that ZH 311 had higher nitrogen-use efficiency and was able to use limited nitrogen resources more effectively to promote growth and development of organs such as roots and stem-sheaths. In leaves, ZH 311 and XY 508 showed the largest differences in yield during the R1 stage, and ZH 311 showed a smaller yield decline and higher R² value, indicating that it was better adapted to nitrogen deficiency and could reduce the effect on reproductive organ development through more efficient nitrogen use or distribution mechanisms. ZH 311 showed high yields in both the V6 and V12 stages, with the highest yield observed in the R6 stage. In summary, ZH 311 was more adaptable to nitrogen deficiency throughout the growth cycle, particularly during the reproductive growth phase; whereas, XY 508 showed high sensitivity to nitrogen deficiency during the early vegetative growth phase, which may affect its overall productivity. These results help elucidate the differences in nitrogen use and yield between the two varieties, as well as their performance at different growth stages and in different organs.

[image: A series of scatter plots depict the relationship between relative yield (RY) and accumulated nitrogen deficit (AND) across different plant parts and growth stages (Root, Stem-sheath, Leaf, Whole plant) and developmental phases (V6, V12, R1, R3, R6). Each plot shows data points represented by filled and open circles, fitted with trend lines and labeled with equations. The x-axis is labeled "Accumulated nitrogen deficit (AND)" and the y-axis "Relative yield (RY)". The plots demonstrate decreasing relative yield as nitrogen deficit increases.]
Figure 8 | Relationships between relative yield (RY) and accumulated nitrogen deficit (AND) obtained from critical nitrogen concentration curves. V6–jointing stage; V12–large horn stage; R1–silking stage; R3–filling stage; R6–maturity stage.




3.6 Differences in nitrogen dry matter production capacity of maize varieties with different nitrogen-use efficiencies

Nitrogen concentrations in maize roots, stem-sheaths, leaves, and individual plants gradually decreased with growth (Figure 3); whereas, dry matter gradually increased with growth (Figure 4). With a decrease in the nitrogen concentration, dry matter accumulation in maize roots, stem-sheaths, leaves, and individual plants increased significantly; however, there were significant differences among the varieties (Table 2). In ZH 311, root (except in R3 and R6 stages), stem-sheath, leaf, and single plant NDMP were significantly higher than those of XY 508, and NDMP was 55.17%, 33.33%, 13.33%, -6.38%, and -28.13% higher in V6, V12, R1, R3 and R6 stages, respectively; stem-sheath NDMP were 32.43%, 34.04%, 36.51%, 40.45%, and 46.04% higher, respectively; leaf NDMP were 22.64%, 23.26%, 26.0%, 32.22%, and 32.55% higher, respectively. Plant NDMP was 21.74%, 25.23%, 29.32%, 38.87%, and 43.13% higher, respectively, indicating that the nitrogen-efficient variety ZH 311 had stronger dry matter production capacity than the nitrogen-efficient variety XY 508 at the same nitrogen concentration, and that the differences in nitrogen dry matter production capacity of stem-sheath, leaves, and individual plants increased with decreases in the nitrogen concentration.

Table 2 | Differences in nitrogen dry matter production capacity (NDMP) of maize varieties with contrast nitrogen efficiency.


[image: Table comparing nitrogen content and plant biomass at different growth stages (V6, V12, R1, R3, R6). Includes nitrogen content in grams per kilogram and biomass in tons per hectare for root, stem-sheath, leaf, and whole plant, labeled under ZH and XY. Each stage has specific values for both nitrogen content and biomass, with mean values provided at the bottom.]




4 Discussion



4.1 Establishment of critical nitrogen concentration dilution curves for different maize organs

Nitrogen nutrition diagnosis and nitrogen nutrition status of crops can be determined by establishing a crop critical nitrogen concentration dilution curve (Cao et al., 2020; Li et al., 2015b). Previous studies have established and verified a series of critical nitrogen concentration dilution curves based on leaf (Jia and Fu, 2020), stem-sheath (Lu et al., 2019), ear (Li et al., 2015a), and leaf areas (Lu et al., 2021) of plants. However, because of the differences in nitrogen absorption, distribution, and utilization of various plant indices, models of critical nitrogen dilution curves for various organs differed significantly (An et al., 2019). In this experiment, the determination coefficients (R2>0.90) of the critical nitrogen concentration dilution curves established based on RDM, SDM, LDM, and PDM all reached significant levels and had higher inter-year stability, which could be used for diagnosing maize nitrogen nutrition in Southwest China. Values of parameters a and b of the critical nitrogen concentration models based on RDM, SDM, LDM, and PDM differed significantly, among which the a value of the root model was the smallest, which is consistent with the results of Lan et al. (2022). Because the root biomass was significantly lower than that of other organs, and its nitrogen concentration in the early growth stage was also significantly lower than that of other organs, the dilution effect of nitrogen concentration was lower and sensitivity was higher. The b value based on the leaf model was the lowest, which was consistent with the results of Su et al. (2021) and Ata et al. (2017). Because leaves are the most important metabolic organs of plants, a large amount of nitrogen is transferred from plant roots and stem-sheath to leaves during growth to maintain their high nitrogen concentrations and ensure efficient operation of photosynthesis; therefore, the reduction in the leaf nitrogen concentration was much lower than that of roots and stem-sheaths (Lu et al., 2024). The results of this experiment also showed that the nitrogen concentration in maize leaves at each stage was significantly higher than that in the roots and stem-sheaths, further confirming the above conclusion.

Further analysis showed that the a value of the critical nitrogen concentration dilution model for all organs of the nitrogen-efficient variety ZH 311 was higher than that of the nitrogen-inefficient variety XY 508, which was inconsistent with the results of An et al (An et al., 2019; Zhao et al., 2022), mainly because the nitrogen-efficient variety ZH 311 selected in this experiment was a nitrogen-efficient absorption type. The nitrogen concentration per unit biomass (parameter a) of ZH 311 was higher than that of XY 508, which was beneficial for maintaining a higher nitrogen concentration and delaying aging of various organs during later growth periods. Previous studies have found that ZH 311 has advantages over XY 508 in dry matter production, nitrogen accumulation, and yield, mainly because of the later growth period (Li et al., 2016a, Li et al., 2016b), which also supports this conclusion. Furthermore, the b value of the critical nitrogen concentration dilution model for all organs of the nitrogen-efficient variety ZH 311 (except roots) was lower than that of the nitrogen-inefficient variety XY 508, which is consistent with the results of Du et al. (2020). The nitrogen-efficient variety was able to absorb and utilize nitrogen more effectively, thereby slowing the nitrogen dilution rate and increasing its stem, leaf, and plant nitrogen concentrations compared to those of the nitrogen-inefficient variety. This is particularly consistent with the results of this experiment during the later growth period (Li et al., 2022). The root b value of the high nitrogen efficiency varieties was higher than that of the low nitrogen efficiency varieties, which was conducive to maintaining a higher nitrogen concentration in the early growth stage, improving nitrogen accumulation, and promoting morphogenesis; whereas, the nitrogen concentration decreased rapidly in the later growth stage, improving nitrogen transport and utilization. Therefore, the root nitrogen concentration of ZH 311 in the early growth stage was significantly higher than that of XY 508 in later growth stages. Consistent with the results of Du et al. (2020), this study demonstrated efficient nitrogen use in nitrogen-efficient varieties.

In addition, the n-RMSE evaluation model was used to prove that the nitrogen-efficient variety ZH 311 had the highest stability based on the stem-sheath (n-RMSE=6.77%), which was consistent with the results of Su et al. (2021) This was mainly because the difference in nitrogen efficiency was mainly caused by the difference in stems rather than those in leaves. This reflected the high nitrogen dilution rate (i.e., the highest b value) of the maize stem-sheath, which, on the one hand, is related to rapid dry matter accumulation in the stem-sheath of nitrogen-efficient varieties; on the other hand, it reflected the efficient post-flowering nitrogen transport of nitrogen-efficient varieties to the ear to maintain rapid grain growth, which is consistent with the higher nitrogen transport efficiencies of nitrogen-efficient maize varieties than those of nitrogen-inefficient varieties. The model stability of the nitrogen-inefficient variety XY 508 based on leaves was the highest (n-RMSE=5.15%), which is consistent with the results of Fu et al. (2020), where the low nitrogen-efficiency variety XY 508 had the highest leaf a value, highest demand for nitrogen concentration per unit biomass, lowest leaf b value, and lowest nitrogen dilution rate. Nitrogen was preferentially transferred to the leaves during the later growth period to maintain the nitrogen concentration during this period. Therefore, leaf senescence during the late growth period is key to limiting yield in nitrogen-inefficient varieties (Kosgey et al., 2013; Mu et al., 2015).




4.2 Differences in nitrogen nutrition characteristics in different maize organs

A relationship model between crop NNI, AND, and RY can be constructed to effectively evaluate the nitrogen nutrition status of crops and its effect on yield (Zhao et al., 2017; Yao et al., 2014; Zhang et al., 2024). Previous studies have established a series of relationship models between NNI, AND, and RY based on differences in nitrogen uptake and utilization of different crops or crops at different growth stages (Zhao et al., 2022; Wang et al., 2010) however, obvious differences exist in nitrogen uptake, distribution, and utilization of different crops or crops at different growth stages. Therefore, the applicability and accuracy of this model must be further verified (Zhao et al., 2018). In this experiment, the relationship models of NNI, AND, and RY established based on maize RDM, SDM, LDM, and PDM reached a significant determination coefficient (R2>0.80), which is consistent with the results of Su et al. (2021), indicating that the relationship models of NNI, AND, and RY showed high stability at different growth stages and in different maize organs. The model can be used to evaluate the nitrogen nutritional status of maize; however, there are obvious differences between organs and varieties. The response of maize roots to NNI was strong in the early growth stage and AND gradually weakened in later growth stages; whereas, the response to AND was weak in the early growth stage and gradually enhanced in the later growth stage, which is consistent with the results of Guo et al. (2024) and Wang et al. (2011) Nitrogen absorbed by roots in the early growth stage was mainly used for root morphogenesis and maintenance of its physiological function; whereas, in the later growth stage, root nitrogen was rapidly transferred to the kernel, and the nitrogen content decreased rapidly. The response of yield to root NNI was weakened and the response to AND was enhanced (Ata et al., 2014; Peng et al., 2009; Chun et al., 2005; Gao et al., 2023). In the early growth stage, the responses of the stem-sheath to NNI and AND were weak and gradually increased in the later growth stage, which is consistent with the results of Wang et al. (2010) In the early growth stages, plants preferentially allocate nitrogen to the roots and leaves to promote establishment of absorbing and photosynthetic organs. As an organ for nutrient and substance transport, the nitrogen status of the stem-sheath directly affects the grains. The response of leaves to NNI was strong in all stages; whereas, the response to AND was weak in the early stage and gradually increased in the later stage, which is consistent with the results of Su et al. (2021). As the most important photosynthetic organ of plants, plants preferentially distribute nitrogen to leaves during the vegetative growth stage, which not only contributes to chlorophyll synthesis but also improves photosynthetic efficiency. It can also significantly improve dry matter accumulation (Bian et al., 2019).

Further analysis of the relationship model of NNI, AND, and RY showed that ZH 311 roots, stem-sheath, leaves, and plants with high nitrogen efficiency were less responsive to AND than those of ZH 311 with low nitrogen efficiency at each growth stage; whereas, ZH 311 roots had a stronger response to NNI at the early growth stage, and stem-sheath, leaves, and plants had a stronger response to NNI at the later growth stage. The results showed that nitrogen-efficient varieties were not sensitive to nitrogen deficiency and were more efficient in nitrogen nutrition, which is consistent with the results of Qu et al. (2016) Nitrogen-efficient varieties have superior root structures, higher root biomass, and increased nitrogen uptake (Liu et al., 2019, Liu et al., 2022). Furthermore, these varieties have a stronger nitrogen transport capacity in the stem-sheath and leaves, which promotes efficient nitrogen use and results in each organ having a higher nitrogen concentration, which is insensitive to nitrogen deficiency (Hao et al., 2011; Du et al., 2024), has more efficient nitrogen nutrition, and can maintain higher dry matter accumulation and yield under nitrogen deficient conditions. We also found that under the same nitrogen concentration condition, the nitrogen dry matter production capacities (NDMP) of stem-sheath, leaves, and plants in different growth stages of the nitrogen-efficient variety ZH 311 were significantly higher than those of nitrogen-inefficient variety XY 508, which was consistent with the results of Ji et al (2014) in a study on rice. From another perspective, this study proved that the nitrogen efficient varieties were insensitive to nitrogen deficiency and efficient use of nitrogen nutrition.





5 Conclusion

In this study, critical nitrogen concentration dilution curves were established based on different organs of maize varieties with different nitrogen efficiencies, and the coefficients of determination (R2>0.90) reached significance, which could be used for diagnosing maize nitrogen nutrition. The critical nitrogen dilution curves of the different organs of maize varieties with different nitrogen efficiencies differed significantly. The critical nitrogen concentration dilution model of each organ of the maize variety with high nitrogen efficiency, ZH 311, had a higher value than that of the maize variety with low nitrogen efficiency, XY 508, which was conducive to maintaining a higher nitrogen concentration in each organ during the later growth period and delayed aging of each organ. A lower b value (except for the roots) can slow the nitrogen dilution rate and maintain the nitrogen concentration in each organ. Further analysis showed that the nitrogen-efficient variety ZH 311 had the highest stability based on the stem-sheath, and XY 508 had the highest stability based on the leaves. RY, NNI, and AND were significantly correlated at different growth stages of different organs (R2>0.80) using each critical nitrogen concentration dilution curve to predict yield. ZH 311 roots, stem-sheath, leaves, and plants with high nitrogen efficiency showed weaker responses to AND than those of ZH 311 with low nitrogen efficiency at all growth stages, and ZH 311 roots had stronger responses to NNI at the early growth stage, and the stem-sheath, leaves, and plants had stronger responses to NNI at the later growth stage, indicating that ZH 311 with high nitrogen efficiency was not sensitive to nitrogen deficiency and was more efficient for nitrogen nutrition. However, the research is limited by the singleness of varieties, the lack of analysis of environmental interaction and the lack of physiological mechanism. In the future, it is necessary to expand the universality of genetic and environmental diversity verification models and develop precise nitrogen diagnosis tools based on organ CNDCs to optimize maize nitrogen management strategies.
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Intercropping has the advantages of improving the canopy environment and enhancing the productivity of farmland. However, the responses of photosynthetic physiological characteristics, canopy structure and yield to different water and fertilizer measures need to be further clarified. The study took the maize/mung bean intercropping as the cultivation mode, used organic fertilizer instead of chemical fertilizer, combined with the upper and lower limits of field water holding capacity to control the irrigation amount, and set up a two-factor field experiment. The research results show that the leaf area index and chlorophyll relative content of maize and mung beans increase first and then decrease with the emergence time of maize and mung beans. Compared with the treatment without organic fertilizer, the leaf area index of maize and mung beans increased by 5.99% - 36.70% and 27.43% - 28.72% respectively, and the chlorophyll relative content increased by 2.31% - 3.47% and 4.59% - 4.63% respectively. Compared with I0, leaf area index increased by 9.73% - 33.42% and 6.60% - 17.39% respectively, and chlorophyll relative content increased by 2.75% - 12.68% and 4.14% - 9.12% respectively. The gas exchange parameters and absorbance(Ab) of maize and mung beans showed a trend of increasing first and then decreasing with the emergence time. The net photosynthetic rates of maize and mung beans increased by 5.04% - 47.12% and 11.29% - 26.60% respectively. Maize Pn was strongly positively correlated with chlorophyll relative content and Ab (R
2>0.5). The three-dimensional growth curves of Pn along with chlorophyll relative content and Ab were S-shaped. As the growth period progressed, the leaves would age, and the gradual decrease of chlorophyll relative content and Ab led to a gradual decrease in maize Pn. Within a certain range, with the increase of irrigation volume, the water use efficiency(WUE) of crops shows a trend of increasing first and then decreasing. Organic fertilizer can significantly improve the WUE of maize/mung beans intercropping crops. In conclusion, optimizing the combination of organic fertilizers and irrigation practices is a win-win strategy that can enhance both grain output and quality.
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1 Introduction


Maize (Zea mays L.), as a key staple crop, faces a rapidly widening gap between production and demand (Wu et al., 2024; Yang et al., 2024). Mung bean (Vigna radiata L.), as an economical crop with high nutritional content, exhibits stable market demand. However, the industry faces challenges of reduced yields due to decreasing planting areas and inadequate technical support (Huang et al., 2024). Intercropping of gramineous and legumes represents a typical intercropping system. By leveraging differences in biological characteristics, a scientifically designed composite spatial layout can be established to enhance light availability for crops and create an environment conducive to the harmonious coexistence of both crops in terms of light, nutrients, and water resources (Pelzer et al., 2012; Li et al., 2023; Yang et al., 2023a). Numerous qualitative studies (Bedoussac and Justes, 2011; Chimonyo et al., 2016; Kermah et al., 2017) and systematic reviews (Bedoussac et al., 2015; Du et al., 2018; Tilman, 2020) have demonstrated through practical applications worldwide that intercropping enhances nitrogen use efficiency, resource utilization efficiency, and soil ecosystem capacity by addressing factors such as growth physiology, interspecific competition, and agronomic practices. These findings suggest that intercropping serves as a viable approach to achieving sustainable intensive agricultural production.


Irrigation and nitrogen fertilization are critical factors in agricultural production, directly influencing crop growth and development (Liu et al., 2022; Ma et al., 2022). Water plays a pivotal role in enhancing fertilizer availability, while fertilizers are critical for unlocking the productivity of soil-water systems (Himmelstein et al., 2017). Because of the lack of scientific and efficient irrigation and fertilizer management among local farmers, the amounts of water and fertilizers applied in intercropping systems often exceed the actual crop demands, leading to resource waste and reduced efficiency (Zhang et al., 2011; Chen et al., 2023b). Organic fertilizers, as natural nutrient sources, not only supply multiple essential elements for crop growth but also improve photosynthetic characteristics, thereby enhancing product quality (Jannoura et al., 2014; Adetunji et al., 2020). To mitigate water scarcity in arid and semi-arid regions, understanding water-fertilizer interactions and their underlying physiological mechanisms is fundamental for optimizing water-saving irrigation systems (Xue et al., 2016). Studies demonstrate that appropriate water and fertilizer management helps maintain higher chlorophyll content, delays leaf senescence, and consequently enhances photosynthetic efficiency through sustaining stomatal openness, increasing transpiration rates, and promoting the transport and accumulation of photosynthetic products (Tian et al., 2019; Yang et al., 2023b). For instance, Wu et al. (2023) optimized water-nitrogen management to increase leaf number, improve canopy light conditions, and enhance cotton yield. Similarly, Luo et al. (2021) improved light environments and boosted biomass and yield in intercropped wheat through refined nitrogen application strategies.


Although irrigation and organic fertilizers are widely applied in agricultural practices, current research on optimizing water-fertilizer management to improve plant growth, physiological traits, light energy utilization, biomass, and yield responses in maize/mung bean intercropping systems remains limited. Existing studies predominantly focus on monoculture systems, failing to provide theoretical foundations for agricultural production under maize/mung bean intercropping (Yang et al., 2014; Liu et al., 2017; Luo et al., 2024). Furthermore, strategies to rationally design irrigation schedules (e.g., water volume and timing) based on crop water requirements, enhance coordination between crop water demand and supply, and maximize the systemic advantages of cereal-legume intercropping require further in-depth exploration.


Therefore, this study adopts a maize/mung bean intercropping system as the experimental model, with two independent variables: organic fertilizer application rate and irrigation volume. The objectives are to: 1) investigate the effects of varying organic fertilizer application rates and irrigation volumes on the yield of maize and mung beans; 2) explore the synergistic effects of water-fertilizer interactions on crop photosynthetic and physiological traits; 3) examine the regulatory roles of organic fertilizer application rate and irrigation volume in crop water consumption and water use efficiency (WUE).






2 Materials and methods





2.1 Site decription


The experiment was conducted from March 2023 to July 2024 at the Comprehensive Experimental Station of Hebei Agricultural University, located in Xingtai City, Hebei Province, China (37°34′N, 115°13′E). The region experiences a continental monsoon climate, characterized by an average annual temperature of 14.8°C, annual precipitation of 748.5 mm, and 2235 hours of sunshine. The soil at the site is yellow loam, with a bulk density of 1.41 g cm-3, pH 7.5, and the nutrient properties (0 – 30 cm depth): organic matter (12.09 g kg-1), total nitrogen (0.73 g kg-1), alkali-hydrolyzable nitrogen (131 mg kg-1), available phosphorus (20.5 mg kg-1), and available potassium (121 mg kg-1). Meteorological data for temperature and precipitation during the experimental years (2023 and 2024) are provided in 
Figure 1
.


[image: Two graphs labeled (a) and (b) show temperature and precipitation data from early March to mid-June. They display minimum and maximum temperatures (in degrees Celsius) with black and red lines, and precipitation (in millimeters) with blue bars. Temperatures fluctuate, generally increasing towards June, while precipitation varies with several notable peaks.]
Figure 1 | 
Weather patterns during the growing season of maize/mung bean in 2023 and 2024: weather patterns in 2023 (a), weather patterns in 2024 (b).




The trial periods spanned 109 days (8 March – 25 June 2023) and 108 days (15 March – 1 July 2024). To ensure optimal growth conditions, maize and mung bean were cultivated under plastic film mulching, which was removed on 20 April 2023 and 30 April 2024, respectively. Pest management included foliar applications of cypermethrin (for maize) and bifenthrin (for mung bean) as required. Pre-emergence weed control was achieved through metolachlor application prior to seeding, supplemented by manual weeding during the growing season.






2.2 Experimental design


The farming habits of local farmers are applying compound fertilizer and urea at 1500 ~ 2000 kg·ha-1 for maize and 600 ~ 900 kg·ha-1 for mung beans The irrigation method was border irrigation, with each irrigation to field capacity (FC). Therefore, according to the local practice, the application of chemical fertilizer was reduced, organic fertilizer was used as part of the nitrogen source input, and border irrigation was changed to different irrigation levels controlled by the upper and lower limits of FC. Split plot design was adopt double factors, crack area for water level: 40%θFC<θ<60%θFC (I0), 60%θFC<θ<80%θFC (I1), 80%θFC<θ<95%θFC (I2); The main area is the application amount of organic fertilizer: Organic fertilizer (F0, 0 kg·ha-1) was not applied, the recommended application amount was reduced by 50% (F1, 3750 kg·ha-1) and the recommended application amount (F2, 7500 kg·ha-1). Organic fertilizer was consisted of locally sourced decomposed chicken manure (organic matter content 14.5 g·kg-1, total nitrogen content 20 g·kg-1). Total phosphorus content 18 g·kg-1, total potassium content 9 g·kg-1, water content 320 g·kg-1). There were 9 treatments with 3 repetitions for each treatment, and a total of 27 spots with an area of 3.5 m × 6 m.


Maize and mung bean intercropping 4M6B (4 rows of maize: 6 rows of mung bean) as planting method, maize strip width 1.5 m, mung bean strip width 2.0 m, maize and mung bean belt spacing 0.6 m. The mung bean variety was Jilu 20, which came from the Grain and Oil Crops Research Institute of Hebei Academy of Agriculture and Forestry Sciences. The row spacing of mung bean plants was 0.1 m × 0.4 m, and the seeding density was 162,000 plants·ha-1. The maize variety was Jinguan 220 (fresh maize) from Beijing Sihai Seed Industry Co., LTD., with row spacing of 0.2 m × 0.5 m and seeding density of 36,000 plants·ha-1. Detailed water and nutrient inputs are shown in 
Table 1
. Maize and mung bean were harvested on June 28 in both years.



Table 1 | 
Water and nutrient inputs of maize/mung bean under different treatments.




	Treatment

	Organic fertilizer (kg/hm2)

	Inorganic fertilizer (kg/hm2)

	Nutrient input (kg/hm2)

	Field 
moisture capacity

	Effective 
precipitation (mm)

	Irrigating quota on each 
application (mm)

	Irrigation water quantity (mm)




	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean




	
	
	N

	P2O5


	K2O

	N

	P2O5


	K2O

	N

	P2O5


	K2O

	N

	P2O5


	K2O

	Upper limit

	floor

	2023

	2024

	2023

	2024

	2023

	2024

	2023

	2024

	2023

	2024






	F0I0

	0
	198
	60
	60
	0
	0
	0
	198
	60
	60
	0
	0
	0
	θ60%

	θ40%

	166.40
	57.00
	0
	75.00
	0
	46.87
	166.40
	132.00
	166.40
	103.87



	F0I1

	0
	198
	60
	60
	0
	0
	0
	198
	60
	60
	0
	0
	0
	θ80%

	θ60%

	166.40
	57.00
	194.24
	178.12
	113.56
	78.12
	360.64
	235.12
	279.96
	135.12



	F0I2

	0
	198
	60
	60
	0
	0
	0
	198
	60
	60
	0
	0
	0
	θ95%

	θ80%

	166.40
	57.00
	272.24
	209.38
	152.52
	93.75
	438.64
	266.38
	318.92
	150.75



	F1I0

	3750
	198
	60
	60
	0
	0
	0
	249
	106
	83
	75
	68
	34
	θ60%

	θ40%

	166.40
	57.00
	0
	84.38
	0
	62.50
	166.40
	119.50
	166.40
	119.50



	F1I1

	3750
	198
	60
	60
	0
	0
	0
	249
	106
	83
	75
	68
	34
	θ80%

	θ60%

	166.40
	57.00
	211.26
	240.63
	96.64
	109.38
	377.66
	297.63
	263.04
	166.38



	F1I2

	3750
	198
	60
	60
	0
	0
	0
	249
	106
	83
	75
	68
	34
	θ95%

	θ80%

	166.40
	57.00
	321.55
	271.89
	90.76
	125.01
	487.95
	325.89
	257.16
	182.01



	F2I0

	7500
	198
	60
	60
	0
	0
	0
	300
	152
	106
	150
	135
	68
	θ60%

	θ40%

	166.40
	57.00
	0
	89.38
	0
	71.88
	166.40
	146.38
	166.40
	128.88



	F2I1

	7500
	198
	60
	60
	0
	0
	0
	300
	152
	106
	150
	135
	68
	θ80%

	θ60%

	166.40
	57.00
	238.76
	303.13
	116.35
	140.63
	405.16
	360.13
	282.75
	197.63



	F2I2

	7500
	198
	60
	60
	0
	0
	0
	300
	152
	106
	150
	135
	68
	θ95%

	θ80%

	166.40
	57.00
	340.27
	334.38
	157.08
	156.25
	506.67
	391.38
	323.48
	213.25









Since the nitrogen content of organic fertilizer could not fully meet the growth demand of maize, quantitative chemical fertilizer was applied to maize sowing, including 375 kg·ha1(N-P2O5-K2O: 16-16-16) compound fertilizer and 300 kg·ha1 urea (N≥46.0%), and only organic fertilizer was applied to mung bean sowing. After fertilizing maize and mung bean, rotary tillage was carried out, and the depth of rotary tillage was 0.3 m. Under the I0 irrigation level, there was no excess irrigation except effective precipitation in 2023 during the whole growth period of maize and mung bean, and one irrigation was carried out in 2024. At the I1 irrigation level, maize and mung bean were irrigated once in 2023 and twice in 2024. At the I2 irrigation level, maize and mung beans were irrigated twice in 2023 and three times in 2024. According to the formula of irrigation quota, the planned depth of wet layer for maize and mung bean during irrigation is 0.6 m (drawing stage) and 0.8 m (filling stage) respectively, and the planned depth of wet layer for mung bean is 0.2 m (branching stage) and 0.4 m (flowering pod stage) respectively. The irrigation method is pipeline irrigation, and the irrigation quota is controlled by solenoid valves.






2.3 Measurements





2.3.1 Leaf area index


In 2023 and 2024, three maize and mung bean plants were randomly selected from each plot at 35, 55, 70, 85, and 102 d after maize emergence and at 40, 55, and 70 d after mung bean emergence, and the leaf area index (LAI) was calculated by determining the functional leaf length (L
ij) versus the maximum width (B
ij) of each plant using a straightedge.
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where n is the total number of leaves of plant j; m is the number of plants measured; and ρ is the planting density.






2.3.2 Chlorophyll relative content


A hand-held dual-wavelength chlorophyll meter (SPAD-502, Minolta Camera Co, Ltd,Japan) was used in 2023 and 2024 at 35, 55, 70, 85, and 102 d after seedling emergence of maize and at 40, 55, and 70 d after seedling emergence of mung bean. Three maize and mung bean plants in side rows were selected in each plot, and Chlorophyll relative content (SPAD) was measured and finally averaged for all leaves of the whole plant, excluding damaged or wilted leaves and avoiding large leaf veins. Measurements were taken at the same time as the photosynthetic parameters, between 9:00 and 11:00 a.m. in the field.






2.3.3 Indicators of photosynthetic parameters


Yaxin-1102g portable photosynthetic apparatus (Beijing Yaxin Riyi Technology Co., Ltd., Beijing, China) was used for 35, 55, 70, 85 and 102 d after maize emergence and 40, 55 and 70 d after mung bean emergence, 9:00 am to 11:00 am: Three maize and mung bean plants were selected from each plot to detect Pn (μmol·m-2·s-1), transpiration rate (Tr, mmol·m-2·s-1), stomatal conductance (Gs, mmol·m-2·s-1) and intercellular CO2 concentration (Ci, μmol·mol-1). The photosynthetic performance of maize was measured by the first fully unfolded leaf from top to bottom from 35 d to 70 d, and by ear leaf from 70 d to 102 d. The first compound leaf was taken from Mung bean.






2.3.4 Absorbance


Yaxin-1201 Plant Canopy Meter (Beijing Yaxin Riyi Technology Co., Ltd., Beijing, China) is an effective tool for quantitatively describing the structural parameters of plant canopies. The image method was chosen to obtain the canopy structure image. And by borrowing the principle of Beer’s law, the universally recognized semi-empirical and semi-theoretical mathematical modeling formulas were used to non-destructively profile the parameters such as LAI, scattered radiation coefficients, and canopy porosity of the canopy leaves. absorbance (Ab) of maize was photographed using Yaxin-1201 plant canopy meter at 35, 55, 70, 85 and 102 d after emergence of maize for monitoring in synchronization with photosynthetic parameters.






2.3.5 Soil water storage and evapotranspiration


Before seeding and at the end of each growth period, 3 points were randomly selected in each plot, and the sampling position was between the peer plants. Use a soil drill to take a soil sample every 10 cm in the 0 ~ 100 cm soil layer. The soil sample taken from the field is immediately stored in a closed aluminum box. The drying method was used to bake the soil in the oven at 105 °C for 48 hours to constant weight and then weighed it. The formula for calculating soil moisture content SWS and ET was as follows:
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In the formula, bi
 is the soil moisture content of layer i (%),wi
 is the wet soil weight of layer i (g), ρi
 is the dry soil weight of layer i (g), vi
 is the aluminum box weight of layer i (g).
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where SWS is the soil water storage (mm), hi
 is the depth of the i soil layer (cm), ρi
 is the soil bulk density of the i soil layer (g·cm-3), bi
 is the mass water content of the i soil layer (%), and n is the number of soil layers.
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In the formula, ET is evapotranspiration (mm), P is precipitation during growth period (mm), Ii
 is treated irrigation amount (mm), SWSi
 is soil water storage in 0 - 100 cm soil layer at the end of the previous growth period (mm), SWSi

+1 is soil water storage in 0 - 100 cm soil layer at the end of growth period (mm).






2.3.6 Yield water use efficiency


WUE was calculated as



WUE
=

Y

E
T




(5)


where WUE is water us efficiency Y is plant yield (kg·ha-1) and ET is evapotranspiration (mm).






2.3.7 Dry matter accumulation and yield


For dry matter accumulation (DMA) measurements of maize and mung bean, three plants each were randomly selected from each plot after maize and mung bean harvest and brought back to the chamber. The maize and mung bean were placed in paper bags and dried in an oven at 80°C for 48 h to a constant weight. The dry weight of the plants was subsequently determined. Maize and mung bean yields were hand harvested for maize and mung bean seed yields on June 25, 2023 and July 1, 2024, respectively. When harvesting maize blocks, the actual effective number of plants and the actual number of ears per maize plant in each treated maize belt were investigated, and the maize plants without long ears were not counted as effective trees. Ten ears were randomly selected from each plot to investigate the fresh weight of maize ears, and the fresh food yield was calculated by multiplying the weight of fresh ears without bracts and the number of effective plants. For mung bean, 1 m × 1 m blocks were selected for each plot, and the number of plants, pods per plant, graminous per pod, and 100 - kernel weight of mung bean were examined and theoretical yields were calculated.







2.4 Statistical analysis


Microsoft Excel 2019 and SPSS 25.0 were used for statistical analysis. The effects of LAI, SPAD, photosynthetic characteristics, DMA, ET, WUE and yield on emergence time, organic fertilizer application amount, irrigation amount and planting years of maize and mung bean were investigated by multivariate analysis of variance. The least significant difference (LSD) was used for ANOVA and multiple comparison (P<0.05). The correlation between Pn, SPAD and Ab was firstly transformed into dimensionless numbers ranging from 0 to 1 by normalization, then curves were estimated by SPSS, nonlinear fitting was applied to solve equation parameters, and nonlinear curve fitting was performed by Origin 2024 regression analysis. All other graphics were mapped using Origin 2024 software.







3 Results





3.1 Effects of different water and fertilizer treatments on dry matter accumulation of corn and mung beans


Irrigation volume, organic fertilizer application rate, and their interactions significantly affected the DMAof both maize and mung bean (P<0.05), while planting year also exerted significant effects on DMA (P<0.05; 
Table 2
). Over the two-year study, irrigation had a larger effect on DMA than organic fertilizer application for both crops (
Figure 2
). For mung bean, DMA under I1 and I2 irrigation levels (strip irrigation) was significantly higher than I0 (P<0.05), but no significant differences were observed between I1 and I2 (P>0.05). Similarly, DMA in F1 and F2 organic fertilizer treatments exceeded F0 (P<0.05), with no notable differences between F1 and F2 (P>0.05). In maize strips, DMA exhibited a progressive increase with elevated irrigation and organic fertilizer inputs (P<0.05), contrasting with mung bean strips where such trends were absent.



Table 2 | 
Results of three-factor analysis of variance for photosynthetic physiological characteristics of maize/mung bean [planting age (Y), amount of organic fertilizer (F) and irrigation (I)].




	Treatment

	Pn

	Tr

	Gs

	Ci

	SPAD

	LAI

	Ab

	DMA

	Yield




	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean

	Maize

	Mung bean






	Y
	1.91ns
	49.80**
	12.08**
	64.40**
	6.27*
	910.05**
	0.24ns
	18.83**
	77.39**
	81.21**
	2.05ns
	1.59ns
	4.86*
	–
	991.30**
	61.55**
	0.11ns
	27.74**



	F
	25.86**
	35.80**
	182.01**
	114.18**
	25.85**
	45.30**
	30.21**
	15.61**
	48.43**
	43.41**
	109.16**
	5.75**
	45.79**
	–
	247.48**
	115.13**
	3.66*
	31.35**



	I
	263.67**
	363.07**
	1041.73**
	852.69**
	68.02**
	1112.79**
	81.01**
	347.17**
	190.60**
	500.20**
	789.30**
	55.78**
	24.53**
	–
	393.60**
	116.02**
	98.13**
	156.15**



	Y×F
	0.67ns
	3.19ns
	3.98*
	0.76ns
	1.22ns
	10.12**
	1.51ns
	2.84ns
	0.50ns
	1.23ns
	0.74ns
	0.17ns
	0.13ns
	–
	93.91**
	15.61**
	0.12ns
	0.14ns



	Y×I
	0.99ns
	9.29**
	4.11*
	7.77*
	3.37*
	9.54**
	0.13ns
	0.36ns
	1.02ns
	0.94ns
	33.36**
	0.87ns
	0.27ns
	–
	0.06ns
	6.71**
	0.19ns
	2.02ns



	F×I
	7.95**
	2.93*
	19.22**
	8.56**
	1.76ns
	8.46**
	5.31*
	7.41**
	0.76ns
	15.24**
	1.79ns
	0.12ns
	2.24ns
	–
	2.66*
	6.61**
	0.26ns
	4.56**



	Y×F×I
	0.64ns
	1.37ns
	0.63ns
	3.71*
	0.06ns
	4.49**
	0.06ns
	0.92ns
	0.86ns
	0.20ns
	1.16ns
	0.12ns
	0.20ns
	–
	5.55**
	1.69ns
	0.33ns
	0.46ns






ns means no significant difference (P>0.05); * and ** means significant difference at P<0.05 level or at P<0.01 level, respectively.




[image: Bar charts show dry matter accumulation in grams per plant for maize and mung bean in 2023 and 2024. Each chart has three groups (F0, F1, F2) with treatments (I0, I1, I2). Bars are color-coded, and letters indicate statistical differences. Dry matter generally increases across treatments and years.]
Figure 2 | 
DMA of maize/mung bean under different organic fertilizer application and irrigation treatments in 2023 and 2024. F0 ~ F2 represents different organic fertilizer application rates, and I0 ~ I2 represents different irrigation rates. The two-factor analysis of variance method and post-test were performed using the LSD method; the lowercase letters on the column represent significant differences (P<0.05) under different organic fertilizer and irrigation water treatments.




Quantitatively, mung bean DMA ranged from 26.47 to 31.36g·plant-1. Relative to F0, F1 and F2 treatments increased DMA by 1.98 ~ 2.73% and 2.47 ~ 2.72%, respectively. Compared to I0, I1 and I2 irrigation levels enhanced DMA by 10.78 ~ 11.53% and 14.60 ~ 16.13%, respectively. Maize DMA varied between 179.99 and 294.30 g·plant-1. F1 and F2 treatments elevated DMA by 3.91 ~ 33.34% and 7.45 ~ 31.47%, respectively, relative to F0, while I1 and I2 increased DMA by 13.91 ~ 18.00% and 21.71 ~ 28.07%, respectively, compared to I0 (
Figure 2
).






3.2 Effects of different water and fertilizer treatments on yield of corn and mung beans


Both maize and mung bean yields were significantly influenced by irrigation volume and organic fertilizer application rate (P<0.05). A significant interaction effect between these factors was observed for mung bean (P<0.05), but not for maize (P>0.05). Planting year significantly affected mung bean yield (P<0.05), whereas no such effect was detected for maize (P>0.05; 
Table 2
).


Over the two-year study, mung bean yield under the F0I0, F0I1, and F0I2 treatments exhibited significant differences (P<0.05), with yields progressively increasing alongside irrigation volume. In F1 and F2 treatments, I1 and I2 irrigation levels significantly surpassed I0 (P<0.05), yielding 16.23 ~ 21.27% and 23.55 ~ 27.49% increases, respectively. However, no significant differences were observed between I1 and I2 (P>0.05). Similarly, mung bean yields under F1 and F2 treatments significantly exceeded F0 (P<0.05), showing 8.78 ~ 9.10% and 9.51 ~ 10.47% enhancements, respectively.


For maize, yields in F1 and F2 treatments were 7.18 ~ 16.73% and 6.98 ~ 16.22% higher than F0, respectively. Irrigation treatments followed analogous trends: I1 and I2 levels increased yields by 6.89 ~ 13.25% and 10.33 ~ 16.48%, respectively, compared to I0 (
Figure 3
).


[image: Bar graphs showing the yield in kilograms per hectare for maize and mung bean in the years 2023 and 2024. Four sets of graphs illustrate the effect of different irrigation levels (I0, I1, I2) and fertilizer applications (F0, F1, F2). Yields for maize are higher, reaching up to 14000 kg/ha, while mung bean yields peak at around 150 kg/ha. Different letters indicate significant differences between yields.]
Figure 3 | 
Yield of maize/mung bean under different organic fertilizer application rates and irrigation water treatments in 2023 and 2024. F0 ~ F2 represents different organic fertilizer application rates, and I0 ~ I2 represents different irrigation water rates. The two-factor analysis of variance method and post-test were performed using the LSD method; the lowercase letters on the column represent significant differences (P<0.05) under different organic fertilizer amounts and irrigation amounts.








3.3 Effects of different water and fertilizer treatments on leaf area index of corn and mung beans





3.3.1 Maize


Maize LAI peaked between 70 and 85 days (d) after emergence (P<0.05), with no interannual differences (P>0.05; 
Table 3
). Three-way ANOVA (
Table 2
) revealed significant main effects of irrigation volume and organic fertilizer application rate on LAI (P<0.05), whereas their interaction and planting year exhibited no significant impacts (P>0.05).



Table 3 | 
Results of the two-factor analysis of the photosynthetic physiological characteristics of maize with the emergence time and planting age, Lowercase letters indicate results with P<0.05 significance at different irrigation levels.




	Planting year

	Days after sowing

	LAI

	SPAD

	Pn (μmol 
m-2 s-1)

	Tr (mmol 
m-2 s-1)

	Gs (mmol 
m-2 s-1)

	Ci (μmol mol-1)

	Ab






	2023
	35 d
	1.06d
	47.64c
	22.22d
	5.91c
	261.73d
	147.23d
	0.68d



	55 d
	1.90c
	61.58a
	42.38b
	6.97b
	313.49b
	211.07b
	0.89b



	70 d
	2.46b
	61.22a
	45.92a
	8.07a
	338.56a
	287.08a
	1.01a



	85 d
	3.07a
	50.91b
	31.56c
	5.48c
	332.76a
	277.63a
	0.78c



	102 d
	3.05a
	41.11d
	17.50e
	3.06d
	200.46c
	180.21c
	0.62e



	2024
	35 d
	1.11e
	45.68d
	21.39d
	6.08c
	263.57c
	145.02d
	0.68d



	55 d
	1.89d
	64.02a
	42.40b
	7.01b
	302.39b
	240.53b
	0.91b



	70 d
	2.57c
	59.68b
	45.36a
	8.05a
	329.76a
	274.20a
	1.04a



	85 d
	2.93b
	49.32c
	30.64c
	5.58d
	304.06b
	250.58b
	0.79c



	102 d
	3.13a
	36.18d
	18.30e
	3.22e
	218.06d
	187.76c
	0.64e



	Year
	0.22ns
	26.75**
	0.51ns
	0.83ns
	4.17*
	0.11ns
	3.96*



	Time
	372.88**
	1221.61**
	715.79**
	260.03**
	252.11**
	269.36**
	399.10**



	Year×Time
	1.33ns
	21.33**
	0.61ns
	0.13ns
	7.16**
	9.88**
	0.54ns






ns means no significant difference (P>0.05); * and ** means significant difference at P<0.05 level or at P<0.01 level, respectively.




Specifically, compared to the control (F0), F1 and F2 organic fertilizer treatments increased LAI by 5.99 ~ 7.80% and 12.68 ~ 36.70%, respectively. F2 further enhanced LAI by 6.96 ~ 24.27% relative to F1. Irrigation treatments followed similar trends: I1 and I2 elevated LAI by 9.73 ~ 11.16% and 14.49 ~ 33.42%, respectively, compared to I0, with I2 surpassing I1 by 8.12 ~ 11.22% (
Equation 1
).






3.3.2 Mung bean




Table 2
 indicates that the quantity of irrigation and organic fertilizer application significantly influenced the LAI of mung bean plants (P<0.05). However, the interaction between these two factors did not have a significant effect on the LAI of mung bean (P>0.05). Additionally, the influence of planting age on the LAI of mung bean was not significantly different (P>0.05). Over a two-year field experiment, the LAI of mung bean exhibited a gradual increase coinciding with the emergence of maize (
Table 4
), reaching its peak within 55 ~ 70 d after emergence (P<0.05). Compared to F0, F1 did not show a significant increase (P>0.05); F2 increased by 27.43% ~ 28.72%, yet no significant difference was observed between F2 and F0 (P>0.05). Similarly, I2 showed an increase of 16.61% ~ 17.39% compared to I0, and there was no significant difference between I1 and I2 (P>0.05) (
Figure 4
; 
Table 3
).



Table 4 | 
Results of the two-factor analysis of the photosynthetic physiological characteristics of mung bean with the emergence time and planting age, Lowercase letters indicate results with P<0.05 significance at different irrigation levels.




	Planting year

	Emergence time

	LAI

	SPAD

	Pn (μmol m-2 s-1)

	Tr (mmol m-2 s-1)

	Gs (mmol m-2 s-1)

	Ci (μmol mol-1)






	2023
	40 d
	1.46c
	34.25c
	21.23a
	2.66a
	174.06a
	325.07a



	55 d
	2.56b
	44.92a
	14.08b
	1.87b
	161.93b
	321.41a



	70 d
	3.00a
	41.57b
	9.84c
	1.35c
	80.65c
	240.97b



	2024
	40 d
	1.57c
	34.22c
	22.24a
	2.84a
	193.05a
	331.88a



	55 d
	2.56b
	44.09a
	14.48b
	2.21b
	187.32b
	324.48b



	70 d
	3.16a
	40.86b
	10.07c
	1.28c
	82.26c
	242.08c



	Year
	9.59*
	0.87ns
	6.41*
	1.40ns
	40.66**
	2.85ns



	Time
	1056.45**
	116.49**
	1020.35**
	55.60**
	737.54**
	672.29**



	Year×Time
	3.08*
	0.20ns
	1.20ns
	1.18ns
	8.73**
	0.60ns






ns means no significant difference (P>0.05); * and ** means significant difference at P<0.05 level or at P<0.01 level, respectively.




[image: Four bar graphs comparing the leaf area index for maize and mung bean in 2023 and 2024. Each graph shows three irrigation levels (I0, I1, I2) across three fertilizer levels (F0, F1, F2). The graphs illustrate varying leaf area indices using different letters to denote statistical significance.]
Figure 4 | 
LAI of maize/mung bean under different organic fertilizer application rates and irrigation amounts in 2023 and 2024. F0 ~ F2 represents different organic fertilizer application amounts, I0 ~ I2 represents different irrigation amounts. LSD method was used to conduct two-factor analysis of variance and post-test. Lower case letters on the column represent significant difference under different organic fertilizer amount and irrigation amount (P<0.05).









3.4 Effects of different water and fertilizer treatments on SPAD of corn and mung beans





3.4.1 Maize




Table 2
 demonstrates that the quantity of water and organic fertilizer applied had a significant influence on maize SPAD values (P<0.05), while their interaction did not exhibit a significant effect (P>0.05). Under varying treatments, maize SPAD values progressively increased over time following crop emergence (P<0.05) (
Table 5
), ranging from 33.28 ~ 67.40 and reaching a peak between 35 and 70 dafter emergence. F1 exhibited an increase of 1.27% ~ 4.59% compared to F0, whereas F2 showed an increase of 0.55% ~ 4.63% relative to F0, with no significant difference observed between F1 and F2 (P>0.05). Maize SPAD values displayed a consistent increasing trend with increasing irrigation levels (P<0.05). Specifically, I1 was 0.81% ~ 8.99% higher than I0 from 35 ~ 102 d post-emergence, and I2 was 2.75% ~ 12.68% higher than I0 (
Figure 5
; 
Table 3
).



Table 5 | 
Water use characteristics of maize/mung bean.




	Planting year

	Treatment

	ET (mm)

	Water use effiency (kg ha-1 mm-1)




	Maize

	Mung bean

	Maize

	Mung bean






	2023
	F0
	I0
	371.09e
	260.91c
	22.67f
	0.34d



	I1
	382.66cd
	266.14c
	23.65ef
	0.41bc



	I2
	389.83b
	271.66b
	24.79cde
	0.43ab



	F1
	I0
	378.26c
	268.81b
	25.14de
	0.39c



	I1
	386.19bc
	271.72a
	28.49cde
	0.44a



	I2
	393.11b
	277.54a
	28.38bc
	0.44a



	F2
	I0
	380.23cd
	275.54b
	24.91bcd
	0.39c



	I1
	392.82b
	280.46a
	27.93ab
	0.43ab



	I2
	402.80a
	284.60a
	27.52a
	0.45a



	2024
	F0
	I0
	353.77f
	267.78e
	27.06f
	0.34c



	I1
	360.85cde
	274.64de
	28.24ef
	0.43a



	I2
	363.82cd
	281.72abcd
	29.34cde
	0.45a



	F1
	I0
	356.11ef
	279.61bcd
	28.93de
	0.39b



	I1
	363.87cd
	282.51ab
	30.39cd
	0.45a



	I2
	365.44bc
	288.32a
	30.82bc
	0.45a



	F2
	I0
	359.44de
	287.54cde
	28.58bc
	0.38b



	I1
	369.24b
	292.70abcd
	29.72ab
	0.44a



	I2
	378.54a
	296.71abc
	29.90a
	0.45a






The letters represent the results of multiple comparisons of the same column of data under P<0.05, ns means no significant difference (P>0.05); * and ** means significant difference at P<0.05 level or at P<0.01 level, respectively.




[image: Bar graphs comparing SPAD values for maize and mung bean across two years, 2023 and 2024. Each chart shows difference in treatments I0, I1, and I2, across fertilizer levels F0, F1, and F2, with letter annotations indicating statistical differences.]
Figure 5 | 
SPAD of maize/mung bean under different organic fertilizer application rates and irrigation amounts in 2023 and 2024. F0 ~ F2 represents different organic fertilizer application amounts, I0 ~ I2 represents different irrigation amounts. LSD method was used to conduct two-factor analysis of variance and post-test. Lower case letters on the column represent significant difference under different organic fertilizer amount and irrigation amount (P<0.05).








3.4.2 Mung bean


The amount of irrigation, the application rate of organic fertilizer, and their interaction significantly influenced the SPAD values of mung bean (P<0.05), as did the planting age (P<0.05) (
Table 2
). 
Table 5
 indicates that under various treatments, the SPAD values of mung bean increased initially and then decreased between 40 and 70 d after emergence (P<0.05). Under the main effect of irrigation, the SPAD values for treatments F1 and F2 were significantly higher than those for treatment F0 (P<0.05), with no significant difference observed between treatments F1 and F2 (P>0.05). Under the main effect of organic fertilizer application, SPAD values gradually increased with increasing irrigation levels. The SPAD values for treatments I2 and I1 were significantly higher than those for treatment I0 (P<0.05). Specifically, from 40 to 70 d after emergence, the SPAD values for I1 were 7.09% ~ 8.14% higher than those for I0, while those for I2 were 12.62% ~ 16.85% higher than those for I0, and I2 was 4.14% ~ 9.12% higher than I1 (
Figure 5
; 
Table 3
).







3.5 Effects of different water and fertilizer treatments on photosynthetic characteristics of corn and mung beans





3.5.1 Maize




Table 3
 presents the two-factor significant analysis of maize photosynthetic characteristics with respect to emergence time. The emergence time significantly affects Pn, Tr, Gs, and Ci (P<0.05), which initially increase and then decrease with emergence time, peaking between 55 and 85 d after emergence. The amount of irrigation water, the application rate of organic fertilizer, and their interaction all significantly influence the photosynthetic characteristics of maize (P<0.05), except for Gs (
Table 2
). Under the main effect of irrigation water, the photosynthetic characteristics of treatments F1 and F2 are higher than those of treatment F0. Specifically, the photosynthetic characteristics of treatments I1 and I2 are significantly higher than those of treatment I0. The increases in Pn, Tr, Gs, and Ci for F1 and F2 are 1.09% ~ 9.72%, 0.24% ~ 28.33%, 1.16% ~ 17.33%, and 0.19% ~ 28.84%, respectively. Treatments I1 and I2 enhance photosynthetic characteristics by 5.04% ~ 47.12%, 5.80% ~ 33.33%, 1.97% ~ 25.08%, and 2.69% ~ 33.22%, respectively. Among these, the effect of irrigation on Tr shows a gradual increasing trend (P<0.05), whereas no significant differences are observed for Pn, Gs, and Ci. Additionally, there is no significant difference between treatments I1 and I2 (P>0.05) (
Figure 6
).


[image: Eight box plots compare four parameters across different treatments labeled F0, F1, and F2 for the years 2023 and 2024. The parameters include Pn, Tr, Gs, and Ci, with values marked by letters indicating differences. Data show variations in each category across different irrigation (I0, I1, I2) levels, signifying treatment effects over two years.]
Figure 6 | 
The photosynthetic characteristics of maize under different treatments in 2023 and 2024 with the change of emergence. The box plots show the mean, SD and SE, and the photosynthetic characteristics measured at different emergence times are normally distributed. The black origin represents the data distribution and value, the square box represents the SD, the whiskers represent the mean, and the error bars represent the SE of the total curve sum of the three repeated measurements. F0 ~ F2 represent different organic fertilizer application rates, and I0 ~ I2 represent different irrigation rates. Two-factor analysis of variance was performed using the LSD method and post-tests.








3.5.2 Factors influencing and related to Pn of maize


Ab could accurately estimate the radiation interception of the dominant crop in both single-crop and mixed-crop systems. Maize seedling emergence time, irrigation amount, organic fertilizer application, and their interactions had significant effects (P<0.05) on Ab (
Table 2
). Ab exhibited an increasing and then decreasing trend with advancing maize seedling emergence time, peaking at 55 ~ 80 d after emergence. Additionally, Ab showed a gradual increasing trend with both irrigation amount and organic fertilizer application (
Table 3
). Compared to the F0 treatment, Ab increased by 5.86% ~ 10.13% under F2 and F1 treatments, with an additional increase of 2.95% ~ 3.08% under F2 compared to F1. Similarly, Ab increased by 2.45% ~ 7.66% under I2 and I1 treatments compared to I0, with an additional increase of 3.72% ~ 3.84% under I2 compared to I1 (
Figure 7
).


[image: Bar charts compare absorbance levels across different treatments labeled I0, I1, and I2 under conditions F0, F1, and F2 for the years 2023 and 2024. In 2023, absorbance ranges from 0.8 to 1.2, with varying significance levels indicated by letters. In 2024, absorbance ranges from 0.8 to 1.2 again, with different significance levels. The charts highlight differences in absorbance over two years under the same conditions.]
Figure 7 | 
Changes of maize Ab with different organic fertilizer amount and irrigation amount at different seedling times in 2023 and 2024.




Two-year observation data for Pn, SPAD, and Ab were normalized into dimensionless values between 0 and 1. Regression fitting using Origin 2024 software analyzed the relationships among these three variables, yielding the relationship model shown in 
Figure 8
. A significant positive correlation was observed between Pn and SPAD, as well as between Pn and Ab (
Figure 8
; R²>0.05), reaching a strong correlation level, with all fitted equations achieving significance (P<0.05). Among these, the strongest correlation was found between Pn and SPAD (R²=0.839), while the correlations between Pn and Ab (R²=0.565) and between SPAD and Ab (R²=0.553) were relatively weaker. Therefore, SPAD had a stronger influence on Pn compared to Ab. Furthermore, a binary cubic regression model (b) was established for the effects of SPAD and Ab on Pn: 
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, where x and y represent the respective influence roles of SPAD and Ab on Pn indices.


[image: Four graphs display relationships among SPAD, absorbance, and Pn. (a) Scatter plot of absorbance versus Pn with a positive linear trend, equation y = 0.583x + 0.096, R² = 0.565. (b) Scatter plot of Pn versus SPAD showing a strong positive linear trend, equation y = 0.996x - 0.043, R² = 0.839. (c) Scatter plot of absorbance versus SPAD with a moderate positive linear trend, equation y = 0.958x + 0.125, R² = 0.553. (d) 3D surface plot illustrating the interactions among SPAD, absorbance, and Pn, with a multicolored surface.]
Figure 8 | 
The correlation between Pn, SPAD and Ab of maize and the 3D function images among them. (a) is the linear fitting result of Ab and Pn, (b) is the linear fitting result of Pn and SPAD, (c) is the linear fitting result of Ab and SPAD, and (d) is the 3D function fitting image between Pn, SPAD and Ab. The red scatter in the 2D image represents the corresponding data, n=135, the blue line represents the regression equation, and the pink boundary represents the confidence interval, which provides a range of estimates for the population parameters.








3.5.3 Mung bean


The two-factor significant analysis of the photosynthetic characteristics of mung bean with respect to emergence time is presented in 
Table 4
. The emergence time of mung bean significantly affects Pn, Tr, Gs, and Ci (P<0.05), which initially increase and then decrease with emergence time, peaking between 40 and 70 d after emergence. The amount of irrigation water, the application rate of organic fertilizer, and their interaction had significant effects on the photosynthetic characteristics of mung bean (P<0.05), except for Pn (
Tables 2
, 
3
). Compared with the F0 treatment, F1 and F2 treatments increased Pn, Tr, Gs, and Ci of mung bean by 0.70% ~ 3.60%, 16.36% ~ 28.93%, 1.98% ~ 5.44%, and 0.79% ~ 2.49%, respectively. However, no significant differences were observed between F1 and F2 treatments (P>0.05). The I1 and I2 treatments increased the photosynthetic characteristics of mung bean by 11.29% ~ 20.60%, 0.62% ~ 67.74%, 13.74% ~ 22.37%, and 5.17% ~ 9.61%, respectively, compared with the I0 treatment. The effect of irrigation on the photosynthetic characteristics of mung bean showed a gradual increasing trend (P<0.05), which differed from that observed in maize (
Figure 9
).


[image: Box plots comparing various physiological parameters (Pn, Tr, Gs, Ci) across three treatments (I0, I1, I2) for years 2023 and 2024, and three fertilizer levels (F0, F1, F2). Each plot contains statistical annotations represented by letters indicating significant differences. Parameters include net photosynthetic rate (Pn), transpiration rate (Tr), stomatal conductance (Gs), and intercellular carbon dioxide concentration (Ci).]
Figure 9 | 
Changes of photosynthetic characteristics of mung bean with seedling emergence under different treatments in 2023 and 2024. The box plot shows the normal distribution of mean value, SD and SE and the photosynthetic characteristics data measured at different seedling emergence times, where the black origin represents the data distribution and value, the square box block represents SD, the required line represents the average value, and the error bar represents the SE of the sum of the total curves measured three times. F0 ~ F2 represents different organic fertilizer application amounts, I0 ~ I2 represents different irrigation amounts. LSD method was used to conduct two-factor analysis of variance and post-test.









3.6 Effects of different water and fertilizer treatments on ET and WUE of corn and mung beans





3.6.1 Maize


According to the results of the three-factor ANOVA in 
Table 2
, planting years, organic fertilizer application amount, and irrigation amount had significant effects on (
Equation 4
) and (
Equation 6
) of maize (P<0.05). The interaction between organic fertilizer application amount and irrigation amount significantly influenced ET (P<0.05), but did not significantly affect WUE (P>0.05). As shown in 
Table 5
, with increasing levels of organic fertilizer application and irrigation, ET exhibited a gradually increasing trend (P>0.05). However, the pattern of WUE differed; no significant differences in WUE were observed between I1, I2, F1, and F2 treatments (P>0.05). Compared with the F0 treatment, ET increased by 0.93% ~ 27.45% under F1 and F2 treatments. Relative to the low irrigation level, ET increased by 2.57% ~ 4.29% under medium and high irrigation levels. Despite the increase in ET, WUE improved significantly: compared with the F0 treatment, WUE increased by 8.61% ~ 10.91% under F1 and F2 treatments. Similarly, relative to the low irrigation level, WUE increased by 7.29% ~ 8.73% under medium and high irrigation levels.






3.6.2 Mung bean


According to the results of three-factor ANOVA in 
Table 2
, planting years, organic fertilizer application amount and irrigation amount had significant effects on ET and WUE of mung bean (P>0.05). The interaction of organic fertilizer application amount and irrigation amount had significant effects on WUE (P<0.05), but had significant effects on ET (P>0.05). This is the opposite of what happens with maize. According to 
Table 5
, with the increase of organic fertilizer application amount and irrigation level, the effects on ET and WUE of mung bean were the same as those of maize. Compared with F0 treatment, ET in F1 and F2 treatment increased by 2.81% ~ 5.83%. Compared with low irrigation level, ET at medium and high irrigation level increased by 1.70% ~ 3.68%. Compared with F0 treatment, WUE of F1 and F2 treatment increased by 4.13% ~ 5.79%, while WUE of medium and high irrigation level increased by 16.60% ~ 19.74% compared with low irrigation level.








4 Discussion





4.1 Effect of organic fertilizer application rate and irrigation amount on maize/mung bean intercropping DMA and yield


Many studies have demonstrated that gramineous/legume intercropping exhibits greater potential than monocropping due to interspecies effects (Gao et al., 2024). The aim of this study is to investigate the impact of organic manure, a natural fertilizer, in combination with varying irrigation levels on crop growth and physiology, as well as to analyze the underlying patterns and causes. Consequently, this study did not include a monoculture treatment but directly implemented fertilizer and irrigation treatments. The rules and reasons were analyzed by comparing the effects of no application of organic fertilizer and low irrigation levels as a control.


Rational water-fertilizer combinations can effectively promote crop growth and enhance yield. Both irrigation volume, organic fertilizer application rate, and their interactions significantly influenced the DMA of maize and mung beans (P<0.05). Under the same irrigation regime, organic fertilizer application increased DMA and yield in both crops, with no significant differences observed between F1 and F2 treatments (P>0.05). Similarly, under the same organic fertilizer level, no significant differences were detected between I1 and I2 treatments (P>0.05). These findings align with previous studies (Li et al., 2022; Wu et al., 2023), which reported that optimized water-fertilizer management enhances plant DMA and yield. However, excessive fertilizer application does not lead to further increases in DMA or yield. Additionally, Farooq et al. (2019) demonstrated that substituting chemical nitrogen fertilizers with organic fertilizers improves crop DMA and final yield. Comparing our results with existing literature, it is evident that appropriate organic fertilizer application combined with rational irrigation practices can optimize the growth of intercropped maize and mung beans, thereby increasing productivity.






4.2 Effect of organic fertilizer application rate and irrigation amount on LAI and SPAD of intercropped maize/mung bean


This study showed that irrigation amount and application of organic fertilizer had significant effects on LAI and SPAD of maize and mung bean (P<0.05), but their interaction had no significant effects on LAI and SPAD of maize and mung bean (P>0.05), but had significant effects on SPAD of mung bean (P<0.05) (
Table 1
). The LAI and SPAD of maize and mung bean were increased by increasing irrigation amount and applying organic fertilizer. This result is related to soil water content. When soil water is at a low level, plant leaf growth will be inhibited, chlorophyll degradation rate will be accelerated, resulting in leaf degreening and reduced photosynthetic rate; when soil water is at a high level, leaf growth and chlorophyll accumulation will be promoted (Yang et al., 2023b). LAI and SPAD of maize and mung bean showed a trend of increasing first and then decreasing gradually with the emergence time (
Tables 3
, 
4
), which was similar to previous results. After maize silk spinning and mung bean flowering, nitrogen in leaves would be transferred to seeds to meet the filling demand of seeds. In addition, with the advance of crop growth period, leaves will gradually age, resulting in a gradual decrease in leaf area index and SPAD, and a phenomenon of leaf greening (Osaki, 1995; Wang et al., 2023; Dosio et al., 2024).






4.3 Effect of organic fertilizer application rate and irrigation amount on the photosynthetic performance of intercropped maize/mung bean


The gas exchange parameters of maize gradually increased with higher irrigation levels and organic fertilizer inputs (P<0.05) (
Figures 6
, 
9
). Across growth stages, photosynthetic traits in maize exhibited a unimodal trend, peaking between 55 – 85 d after emergence (
Table 3
, 
Figure 7
). Mung bean showed slightly different patterns: organic fertilization and increased irrigation significantly improved its photosynthetic characteristics (P<0.05), but no significant differences were observed between F1F2 or I1I2 treatments (P>0.05) (
Figure 9
), indicating that fertilized plants generally outperformed unfertilized ones in photosynthetic rate, though the incremental benefits of higher fertilizer/irrigation levels were marginal. Under low soil moisture, enhanced plant water loss induced stomatal closure to conserve water, consequently reducing Tr, Gs, and Ci (Efthimiadou et al., 2010).


In this study, the high water-fertilizer treatment (F2I2) maintained maize and mung bean photosynthesis in the stomatal limitation domain, characterized by unsaturated Gs, Tr, and Ci across treatments, with continuous Pn improvement. This eliminated non-stomatal limitations (e.g., decoupling of Ci and Pn observed in previous studies; 
Figure 6
 and 
Figure 9
), likely because optimal water and nutrient supply ensured sufficient substrates and energy for photosynthesis. For example (Lo et al., 2019), showed that inadequate water supply reduces electron transport in the initial reaction, limiting CO2 uptake and decreasing Pn. In such cases, moderate nitrogen fertilization can significantly enhance leaf SPAD values and Gs, promoting photosynthate accumulation and translocation (Yu et al., 2022). Low nitrogen availability may suppress root nutrient uptake, restricting plant growth and photosynthetic efficiency.


Organic fertilizer enhances leaf function through nutrient supply, while irrigation promotes stomatal opening and nutrient mobilization via stomatal regulation and water-fertilizer coupling, forming a positive feedback loop. Their synergistic effect stabilized photosynthetic performance across years in both crops, ensuring reproducible responses under varying environmental conditions. This study highlights the critical role of balanced water-nutrient management in sustaining photosynthetic efficiency and underscores the importance of distinguishing stomatal vs. non-stomatal limitations in crop physiology research.






4.4 The net photosynthetic rate of maize was controlled by absorbance and relative chlorophyll content


LAI, SPAD and available photosynthetic radiation are key factors affecting plant Pn (Tsubo and Walker, 2002; Munz et al., 2014; Bonelli and Andrade, 2020). Ab is a physical quantity used to measure the degree of light absorption, which can directly reflect the ability of the blade to absorb light (Chen et al., 2023a). In this study, only maize Ab was measured and analyzed, because mung bean plants were short and the distance from the surface was limited, and the measurement of Ab was inaccurate. maize Ab showed a single-peak trend with the advancement of maize growth period, and gradually increased with the increase of irrigation amount and organic fertilizer amount, which was similar to the change law of physiological characteristics of maize leaves in the previous paper. In the previous paper, we concluded that appropriate soil water management and increasing the application amount of organic fertilizer could promote LAI and SPAD, thus promoting the light utilization ability of leaves. Moreover, according to the correlation analysis results of Pn, Ab and SPAD, it can be seen that Pn, SPAD and Ab are positively correlated with each other, and all of them have reached a significant level (P<0.05). According to the three-dimensional function model established by Pn, Ab and SPAD, Namely 

z
=
-
0.011
+
0.615
x
+
1.503
y
-
3.016
x
y
-
0.754

x
2

y
+
2.163

y
2

x
+
0.753

x
3

-
0.289

y
3



, It shows that Pn increases with the action of SPAD and Ab in S-shaped curve, which increases first and then decreases. This further confirms the above mentioned that LAI and SPAD of maize leaves decrease after silking with the advancement of the growth period, and the aging of maize leaves leads to the decrease of light absorption capacity of maize. With the increase of organic fertilizer amount and irrigation amount, LAI and SPAD of maize increased gradually, which resulted in the enhancement of light capture ability of maize.






4.5 Effects of organic fertilizer application rate and irrigation amount on water consumption and yield WUE of intercropping maize/mung bean


Current research on organic fertilizer-irrigation interactions for crop ET and WUE is predominantly confined to monocropping systems, leaving a critical gap in understanding their effects on intercropping—a practice inherently advantageous for resource-use efficiency. Our findings reveal that while crop water consumption in maize-mung bean intercropping increases with irrigation (I1 and I2 elevated ET by 2.57 ~ 4.29% and 1.70 ~ 3.68% vs. I0, respectively), organic fertilizer application significantly enhances WUE by 8.61 ~ 10.91% in maize and 16.60 ~ 19.74% in mung bean compared to unfertilized controls (
Table 4
). This synergy is theoretically grounded in resource-use complementarity and hydraulic-nutrient interactions, two mechanisms pivotal for optimizing productivity in water-scarce environments.


From a soil-plant hydraulics perspective, organic fertilizers improve soil structure by increasing organic matter content, thereby enhancing water retention and reducing gravitational drainage (Wang et al., 2023; Ning et al., 2024). In intercropping, this creates a “buffer zone” for water availability: maize (a tall, water-demanding crop) and mung bean (a short, drought-tolerant legume) exploit soil water at different depths, while organic matter reduces surface evaporation, directing more water to transpiration—a process directly linked to WUE. This aligns with the “hydraulic lift” hypothesis, where deeper-rooted maize may facilitate water redistribution to shallow-rooted mung bean under moderate irrigation, a phenomenon amplified by improved soil moisture storage from organic amendments (Tolimir et al., 2024).


The nutrient-water interaction effect further explains WUE gains. Organic fertilizers supply slow-release nutrients and bioactive compounds that stimulate root growth and photosynthetic apparatus development (Wang et al., 2021; Zhai et al., 2022; Xu et al., 2024). For instance, enhanced chlorophyll synthesis and stomatal regulation boost carbon assimilation per unit water loss, a mechanism corroborated by our earlier Photosynthetic characteristic data showing higher Pn under fertilized treatments. Critically, in water-limited systems, this nutrient-mediated improvement in “transpiration efficiency” offsets the ET increase from irrigation, creating a net gain in WUE (Sun et al., 2006). This tradeoff is absent in monocropping due to uniform root architecture and resource competition, highlighting intercropping’s advantage in leveraging complementary niche differentiation (Chimonyo et al., 2016).







5 Conclusions


This study investigated the effects of organic fertilizer application amount and irrigation amount on leaf growth physiology, photosynthetic characteristics, ET, WUE, dry matter accumulation and yield under maize/mung bean intercropping mode, and the changes of leaf growth physiological characteristics with emergence time. The results showed that the leaf function of maize and mung bean increased first and then decreased with emergence time. This is because when maize silks and mung beans bloom, nitrogen in the leaves is transferred to the seeds to meet the filling needs of the seeds. With the advancement of crop growth period, leaves will gradually age, resulting in a decline in leaf function. The application of organic fertilizer combined with different irrigation amounts can improve the utilization of light energy by maize/mung bean, significantly improve the leaf growth of maize and mung bean and the synthesis and accumulation of chlorophyll, affect the capture and absorption of light by plants, promote the accumulation of photosynthesis, and ensure the stability of yield. In the case of sufficient water, the application of appropriate reduction of organic fertilizer can ensure that the crop does not reduce production and enhance the yield stability of the plant. Secondly, with the increase of irrigation amount, ET of crops also increased correspondingly, and WUE showed a trend of increasing first and then decreasing. The right amount of water can meet the growth needs of crops, promote photosynthesis and dry matter accumulation, so as to improve WUE. However, when the amount of irrigation exceeds a certain limit, excessive water will lead to an increase in ineffective evaporation, which will reduce WUE.


Although this study explored the variation laws of photosynthetic characteristics, evapotranspiration and water use efficiency of crops in the corn-mung bean intercropping model under the coupling of water and fertilizer, as well as the interaction relationships among pn, spad and ab. However, it did not involve individual experiments or experimental designs in different geographical locations and climates. In subsequent studies, we will continue to set up long-term positioning experiments under different conditions for observation. Meanwhile, we are attempting to combine machine learning methods (such as random forest, neural network, etc.) to construct a relationship among water, fertilizer, photosynthetic characteristics and yield. Perhaps due to the influence of the experimental design, the current construction results are not ideal. Specifically, the constructed equation is somewhat monotonous in the setting of water and fertilizer gradients, which cannot be well visualized, and the coupling degree of the output results is insufficient. We will constantly try and explore its internal mechanism through further experiments.
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The water-saving and fertilizer-reduction strategies is important for sustainable agricultural development. However existing kiwifruit water-saving and fertilizer-reduction studies showed significant contradictions in the results of water and fertilizer management. Studies have reported conflicting findings on irrigation: some suggest over-irrigation increases yield and WUE, while others advocate low-volume irrigation. Consequently, this study offers a comprehensive meta-analysis encompassing 1038 observations, with the objective of evaluating the influence of water management and optimized fertilization on the yield, water use efficiency (WUE), and quality of kiwifruit. The results showed that the response of kiwifruit to water management was particularly significant in areas with annual average rainfall > 800 mm and field water holding capacity > 28%, and excessive irrigation had a greater negative impact on yield and WUE. With the increase of tree age, the yield-increasing effect of kiwifruit on water and fertilizer optimization gradually weakened. In terms of irrigation methods, drip irrigation has more advantages than traditional irrigation methods. Reducing super-optimal input (SOI) water input can increase kiwifruit yield by 16.24% and WUE by 20.06%. In terms of fertilization management, reducing the input of SOI nitrogen fertilizer can significantly increase the yield of kiwifruit by 32.76%, while reducing the input of SOI nitrogen, phosphorus and potassium can increase the yield by 3.45%. The contents of soluble sugar and vitamin C increased by 6.35% and 18.37%, respectively, but the contents of titratable acid and soluble solids decreased by 4.35% and 6.18%, respectively. In addition, the optimal nitrogen fertilizer level for kiwifruit varies from region to region, and it is generally recommended to be between 100 – 105 kg/ha per hectare. In summary, scientific and reasonable water and fertilizer management can significantly improve the yield and quality of kiwifruit, optimize WUE, and reduce water and fertilizer waste, providing theoretical basis and practical guidance for sustainable agricultural development.
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1 Introduction



Kiwifruit(Actinidia chinensis), renowned for its high nutritional content, is a widely cultivated fruit abundant in vitamin C, carbohydrates, proteins, and essential minerals (Zhao et al., 2023; Wu et al., 2023; Satpal et al., 2021). A marked increase in global kiwifruit production has been observed, rising from 3.622 million tons in 2014 to 4.518 million tons in 2020. Concurrently, the cultivation area expanded from 224,000 hectares to 280,000 hectares over the same period (Li, 2022). In China, kiwifruit production is predominantly concentrated in the central, southern, and southwestern regions, where both the planting area and total yield surpass those of other regions; however, the yield per unit area remains relatively modest (Lu et al., 2016).This phenomenon shows that while expanding the planting area helps to increase total yield, optimizing water and fertilizer management is urgently needed to improve yield per unit area.Water and fertilizer serve as foundational components of agricultural production, with fertilizer constituting approximately one-third of the overall management expenses in kiwifruit orchards. The prevalent practice of excessive fertilization and irrigation in China, aimed at mitigating the risk of yield loss, has led to significant resource wastage and environmental degradation, including the eutrophication of groundwater and leaching of soil nutrients (Wang et al., 2018a, 2018b; Lv et al., 2020; Cui and Shoemaker, 2018; Li et al., 2017; Davidson et al., 2015). As societal awareness of ecological issues and the economic implications of chemical fertilizers grows, the adoption of fertilizer- and water-saving strategies in agriculture has gained considerable momentum. Water and fertilizer serve as foundational components of agricultural production … the adoption of fertilizer- and water-saving strategies in agriculture has gained considerable momentum (Wang et al., 2019).


A study suggested that optimizing irrigation schedules based on soil water balance is an effective approach, particularly in arid regions, providing a solution for efficient water management in flood-irrigated maize fields (Yi et al., 2022).


Efficient use of water and fertilizer is critical for sustainable agricultural development, especially in arid and semi-arid regions where resource scarcity and environmental concerns are intensifying. The term super-optimal inputs refers to agricultural practices that exceed the optimal levels of water and nutrient application, often leading to resource wastage, reduced efficiency, and environmental degradation. In contrast, water-saving strategies aim to maximize crop productivity per unit of water applied, through techniques such as deficit irrigation or improved irrigation scheduling. Similarly, fertilizer-reduction refers to strategies that maintain yield while decreasing fertilizer input, often by optimizing nutrient timing, type, and dosage through data-driven approaches (Wu et al., 2025; Yi et al., 2022).


However, existing studies on irrigation and fertilization often show inconsistent results, particularly across different climates, cropping systems, and management scales. Many have focused on localized experiments with limited transferability to broader policy or regional planning. Gong et al. (2025) proposed a dynamic optimization of soil phosphorus status (DOP) approach that reduces phosphorus use by up to 47.4% in China without sacrificing yield, offering a model of nutrient management that integrates spatial heterogeneity, crop-specific requirements, and long-term planning (Gong et al., 2025).


These findings highlight the urgent need to integrate more regionally adaptive and resource-efficient management practices into irrigation scheduling and fertilization planning. In particular, flood-irrigated maize fields with varying cultivation histories require context-sensitive strategies to balance productivity with environmental sustainability.


.The previous section discussed the relationship between kiwifruit yield and water and fertilizer management, especially the effect of fertilization on yield. Plant nutrition plays a pivotal role in crop management, with nitrogen being an indispensable nutrient for both crop growth and agricultural yields (Kuypers et al., 2018; Wang et al., 2021; Yang et al., 2017; Tilman et al., 2011). The strategic application of nitrogen fertilizer is widely recognized as a key practice for enhancing crop productivity. However, it is crucial to note that the relationship between crop yield and nitrogen fertilizer input is not linear (Li Y. et al., 2019; Li M.F. et al., 2019; Gu et al., 2017; Hawkesford, 2014). As the amount of fertilizer gradually increases, reaching an optimal level, continuous fertilization beyond this point can lead to a decrease in yield. Studies have indicated that excessive nitrogen application rates, surpassing 50 kg/ha, can adversely affect kiwifruit yield (Pinto et al., 2021). Over-application of nitrogen can result in the substantial accumulation of nitrate nitrogen in the soil profile, thereby altering the soil’s physical and chemical properties (Edwards et al., 2018; Zhou et al., 2016). Nutrient elements are adjusted throughout the growth cycle of kiwifruit according to its growth needs and environmental conditions to ensure its healthy growth and improve yield and quality.


Furthermore, the balanced input of the primary nutrients—nitrogen, phosphorus, and potassium—is essential not only for manipulating yield but also for influencing the quality of kiwifruit. Optimal fertilizer application has been shown to yield the highest returns, with the application of nitrogen and potassium having minimal impact on fruit acidity and soluble solids, although it can compromise fruit firmness (Pacheco et al., 2008). The role of nitrogen and phosphorus in sustaining the yield and quality of ‘Hayward’ kiwifruit has been highlighted (Guarçoni and Ventura, 2011). The differential demands of kiwifruit for these nutrients suggest a propensity for efficient phosphorus utilization, with potentially lower soil phosphorus requirements and higher soil potassium demands (Liu et al., 2000). The impact of nitrogen and potassium application rates, ranging from 125 to 250 kg/ha for nitrogen and a fixed 200 kg/ha for potassium, on the mineral composition of kiwifruit has been significant (Santoni et al., 2016). Despite the existing body of research on the individual effects of nitrogen, phosphorus, and potassium on kiwifruit yield and quality, a comprehensive analysis of the combined application of these fertilizers and the implications of reducing their application rates on kiwifruit yield and quality is lacking. The optimal input (OI) levels of nitrogen (N), phosphorus (P) and potassium (K) in kiwifruit planting are determined according to the specific soil, climate and planting varieties in different regions. For example, the optimal nitrogen, phosphorus and potassium levels of Wuzhi No.3 kiwifruit planted in Heping County, Guangdong Province are: nitrogen (N) 100 – 105 kg/ha, phosphorus (P) 135 – 140 kg/ha, potassium (K) 170 – 175 kg/ha. These values can be regarded as the critical values of nitrogen, phosphorus and potassium in kiwifruit planting under certain conditions. It should be noted that these values are not fixed, but need to be adjusted according to specific soil test results, local climatic conditions and rootstock varieties. If the amount of fertilizer is insufficient, it can be adjusted by increasing the amount and frequency of fertilizer application; however, excessive fertilization should be avoided. If too much fertilizer is applied, the fertilizer concentration in the soil can be diluted by a large amount of water, and measures to remove damaged leaves and prune damaged roots can be taken. Therefore, a quantitative and systematic synthesis of how varying fertilization levels affect kiwifruit yield and quality is imperative for informed practical application.


Furthermore, research has shown that optimizing phosphorus fertilizer application can lead to a substantial reduction in phosphorus use. A dynamic optimization approach demonstrated a 47.4% reduction in phosphorus fertilizer use without any adverse effects on yield, offering a more sustainable solution for agricultural fertilizer management in China (Gong et al., 2025).


Water serves as a fundamental resource for agricultural productivity, with irrigation being a significant consumer of freshwater resources (Busschaert et al., 2022). In China, agriculture, particularly irrigation, is the primary user of water, and the scarcity of water resources poses a notable constraint on the agricultural sector’s development (Li et al., 2020; Li et al., 2021). Research indicates that judicious application of deficit irrigation can often optimize crop water productivity (Wu et al., 2021; Khapte et al., 2019; Patanè and Cosentino, 2009). Kiwifruit, recognized for its substantial water requirements among deciduous fruit trees, necessitates the optimization of irrigation practices to curtail water usage while sustaining or enhancing yield (Gao et al., 2023). Observations reveal that within a specific range, an increase in irrigation volume correlates with elevated levels of reducing sugars and vitamin C in kiwifruit. However, beyond this threshold, a continued increase in irrigation can lead to a marked reduction in titratable acidity, soluble solids, and dry matter content (Wang et al., 2018a; Wang et al., 2018b). Additionally, excessive irrigation combined with high fertilization rates can exacerbate nutrient leaching, thereby impacting crop yields (Muhammad et al., 2022; Wang et al., 2021). Consequently, integrating irrigation and fertilization management at the field scale is deemed critical for the sustainability of agricultural systems (Dai et al., 2019).


However, there are some contradictions in the existing research on the effects of irrigation and fertilizer application. The existing research on water saving and weight loss of kiwifruit shows that there is a significant contradiction between water saving and fertilization management results. In light of this, a meta-analysis is warranted to synthesize the overarching findings from a broad spectrum of existing research (Hedges et al., 1999). The utility of meta-analysis lies in its capacity to account for the diverse water and fertilizer use efficiencies reported in various studies, and to provide a comprehensive examination of the effects of water and fertilizer optimization on kiwifruit trees, an area that has been previously understudied. It allows for the systematic dissection of a multitude of potential factors that could influence dependent variables, thereby enabling the extraction of meaningful conclusions from a body of literature (Stanley, 2001). Consequently, the present study undertakes a meta-analytic review of field trials related to kiwifruit production, with the following three objectives: (1) To evaluate the effects of fertilization and irrigation on kiwifruit yield in China, considering factors such as average annual rainfall, soil water retention capacity and irrigation techniques; (2) To analyze the effects of different irrigation and fertilization practices on water use efficiency (WUE) of kiwifruit; (3) To assess the effects of nitrogen, phosphorus and potassium fertilizers on the quality indexes of kiwifruit.






2 Materials and methods





2.1 Data acquisition


We searched the Web of Science, CNKI, Wanfang and Google Scholar databases for research literature published from May 2002 to February 2023 on the effects of irrigation and fertilization management on kiwifruit yield, WUE and quality. Our search strategy includes keywords such as ‘ kiwifruit ‘, ‘ fertilization ‘, ‘ irrigation ‘, ‘ nutrient ‘, ‘ yield ‘, ‘ WUE ‘ and ‘ quality ‘, which are not limited by publication date or language. In order to reduce the risk of data bias and ensure the reliability of the study, we have developed specific criteria for the selection of papers:


	
We included studies based on field trials, excluding those conducted in greenhouses or with potted plants.


	
Studies were required to present kiwifruit yield data, with water use efficiency(kg/m3) defined as the ratio of yield to water consumption at the field level (WUE = yield/water consumption), which is also known as WUE.


	
We prioritized studies with a randomized block experimental design, favoring those with data repeated over at least two years. Studies lacking repetitive data were excluded. Observations from different years and locations within a single study were treated as independent experiments and included in our dataset.


	
The studies must have reported or allowed the calculation of specific nitrogen, phosphorus, and potassium fertilizer applications.


	
For all variables, studies had to present the mean, sample size (n), standard error (SE), or standard deviation (SD), either in tabular or graphical form. If only n and SE were provided, SD was calculated as SD = SE 


n



. In cases where SE and SD were not reported, SD was estimated as the mean value multiplied by 0.1. Data presented graphically were extracted using the WebPlotDigitizer-4.2.


	
We excluded data about the interaction between water and fertilization effects; the included data were categorized into water or fertilization subsets.





The literature screening process is depicted in 
Figure 1
. Additional data not readily available in publications, such as annual average rainfall, were sourced from the National Meteorological Science Data Center. Considering the varying climatic, edaphic, and irrigation conditions in China’s kiwifruit cultivation areas, we categorized the annual average rainfall into ≤ 800 mm and > 800 mm, the field water holding capacity into ≤ 28% and > 28%, and tree age into ≤ 8 years and > 8 years. These threshold values for annual rainfall (>800 mm) and field capacity (>28%) were determined based on the mean and interquartile range of the collected dataset. These cutoffs correspond to hydrological conditions where excessive water input can increase risks of nutrient leaching and root zone hypoxia, particularly in humid areas (Gao et al., 2023; Wang et al., 2018b). Irrigation systems were classified as drip irrigation and other systems, including small pipe outflow, micro-sprinkler irrigation, and combined drip and sprinkler systems. Ultimately, we amassed data from 44 publications comprising 1038 paired observations, which were categorized into 328 observations for kiwifruit yield, 624 for fruit quality, and 86 for WUE (kg/m3) The geographical distribution of the experimental sites is illustrated in 
Figure 2
. Details of the publications and data lists are given in 
Supplementary Materials
.


[image: Flowchart illustrating a research process. The "Searching" step includes keywords like "kiwi," "irrigation," and more, retrieving two thousand five hundred eighty-three records from CNKI and WANFANG DATA, two thousand four hundred twenty-six from Web of Science and Google Scholar, plus eighteen additional records. After duplicates, four thousand seventy-six records remain. "Screening" removes four thousand thirty-two records, resulting in forty-four studies included in a meta-analysis. The screening involves two steps: selecting unrelated papers via title/abstract and excluding one hundred thirty-three papers not meeting criteria after full-text review.]
Figure 1 | 
Database literature retrieval screening flow chart.




[image: Map of China showing climate zones and experimental locations. Zones include temperate continental (gray), subtropical monsoon (yellow), temperate monsoon (blue), tropical monsoon (orange), and plateau mountain climate (green). Red dots indicate experimental locations. Compass and scale are provided.]
Figure 2 | 
Field trial sites in China included in this meta-analysis.








2.2 Subgroup analysis


The term “ OI of water and fertilizer” denotes the minimum amount required to achieve maximum yield. The optimum levels of nitrogen, phosphorus and potassium in kiwifruit cultivation should be determined according to local specific soil, climate and planting varieties, such as Wuzhi No.3 kiwifruit planted in Heping County, Guangdong Province. The optimum levels of nitrogen, phosphorus and potassium were N: 100 - 105kg/ha, P: 135 - 140kg/ha, K: 170 - 175kg/ha. The absence of fertilization is indicated as “None.” The input of nitrogen fertilizer is categorized as “N” when it exceeds the sub-optimal input (SBI) level (N+) but is less than the SOI level (N-), with the inputs of phosphorus and potassium fertilizers held constant. Similarly, “P” and “K” represent the inputs of phosphorus and potassium fertilizers, respectively, which are above the sub-optimal (P+, K+) but below the SOI (P−, K−) levels. The combination “NK” signifies a scenario where the input of potassium fertilizer is below the optimal level, while the nitrogen fertilizer input is above (N+K-) but below (N-K-) the optimal nitrogen input. Conversely, “PK” indicates that with the potassium fertilizer input below the optimal level, the phosphorus fertilizer input is above (P+K-) but below (P-K-) the optimal phosphorus input. The acronym “NPK” refers to simultaneous changes in the ratios of nitrogen, phosphorus, and potassium fertilizers. It encompasses four combinations: N+P+K+, N+P+K-, N-P-K+, and N-P-K-. Here, N+P+K+ and N+P+K- imply nitrogen and phosphorus fertilizer inputs are above the optimal levels when the potassium input is either above or below the optimal level. N-P-K+ and N-P-K- indicate nitrogen and phosphorus fertilizer inputs are below the optimal levels when the potassium input is above or below the optimal, respectively. If the fertilizer input is insufficient, the amount and frequency of fertilization can be increased, but at the same time, too much fertilization should be avoided. If the fertilizer input is too much, the fertilizer concentration in the soil can be diluted by a large amount of water to remove the damaged leaves and trim the damaged roots. In each study included in the meta-analysis, the amount of fertilizer was adjusted according to the nutrient level in the soil. In the 
Supplementary Material
, the data on nitrogen, phosphorus and potassium levels in the soil of the test site were supplemented. High water level (W+) and low water level (W−) are defined relative to the optimal water input, with high indicating above and low indicating below this benchmark. High water level (W+) and low water level (W−) are defined as water input higher and lower than the optimal water input, respectively. The optimum water level is the basis of water adjustment, which is determined by the growth stage, climatic conditions, soil type, soil moisture and root distribution range of kiwifruit. Inputs above and below these levels reduce yield and WUE. We compared the observed yield and maximum yield of each study to assess how much yield and WUE were reduced by non-optimal inputs. When performing subgroup analysis, if the number of subgroup data is less than two, the subgroup is not considered.For clarity, the following abbreviations were used throughout the figures and analysis: W+ (super-optimal water input), W− (sub-optimal water input), N+ (nitrogen input above optimal level), N− (nitrogen input below optimal level), and similarly for P+/P− and K+/K−.






2.3 Meta-analysis


To quantify the effects of non-optimal water and fertilizer inputs on different response variables (kiwifruit yield, quality, and WUE), the natural logarithm of the response ratio (RR) was used as a measure of the effect size in this meta-analysis, and the ratio of the given variable (
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) in the treatment group to the given variable (
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) in the control group was used to calculate RR as follows:


Effect sizes were computed as log response ratios (Equation 1); the sampling variance (Equation 2) and study weights (Equation 3) were derived accordingly. The overall mean effect (Equation 4) and its 95% confidence interval (Equation 5) were estimated under a random-effects model, and heterogeneity was assessed using I2 (Equation 6).
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Among them, the average yield, quality, and WUE of kiwifruit under non-optimal water and fertilizer input are the quality and WUE values related to the optimal water and fertilizer input (the highest yield).


The variance (v) of the effect value can be calculated based on sample size, mean, and standard deviation (Luo et al., 2006):
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,are the standard deviation, sample size and mean of the OI (control group), respectively. Due to the different statistical accuracy of the data in each study, the weighted response ratio (RR + +) was used to calculate the effect value of the treatment group and the control group to improve the accuracy of the effect value (Curtis et al., 1998). The calculation formula of the weighted response ratio and its weight is as follows:
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Among them, m is the number of comparison groups, and k is the comparison number of corresponding groups, and 


w

i
j




 is the weight of the effect value of the item ij. The smaller the variance in the study, the greater the weight, indicating that the index is more important in the comprehensive evaluation process. For the convenience of explanation, all the analysis results in this study were expressed as the percentage change of the weighted response ratio RR + +=eRR++-1×100%25 (Du et al., 2018).


The standard error of the weighted reaction ratio RR + + is calculated as follows:
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The 95% confidence interval (95% CI) was calculated as follows:
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To ascertain the impact of reduced fertilizer application and water conservation on kiwifruit yield, quality, and water use efficiency (WUE), a meta-analysis was conducted utilizing R - 4.1.0 software. This analysis aimed to compute the average effect size and the corresponding 95% confidence interval. An effect is deemed significant if the 95% confidence interval does not overlap with the line of no effect. Heterogeneity among studies is suggested by a p-value greater than 0.1 in conjunction with an I² statistic exceeding 50%, necessitating the use of a random effects model; otherwise, a fixed effects model is appropriate. The meta-analytic outcomes for kiwifruit yield, quality, and WUE, as generated by R, indicated substantial heterogeneity across studies (p > 0.1 and I² > 50%), thereby justifying the application of a random effects model. The presence of reporting bias could potentially skew the results of a meta-analysis, with publication bias being particularly influential (Rosenberg, 2005). Egger’s test is a widely recognized quantitative technique for assessing funnel plot asymmetry, serving to identify the presence of publication bias (Egger et al., 1997). The results of this study for kiwifruit yield (fertilization: p = 0.36; irrigation: p = 0.07), WUE (p = 0.24), single fruit weight (p = 0.08), soluble sugar (p = 0.73), titratable acid (p = 0.42), soluble solids (p = 0.83), and vitamin C (VC) content (p = 0.31) suggested the absence of publication bias. Heterogeneity among studies was evaluated using the I² statistic and Cochran’s Q-test. When I² > 50% and p > 0.1, the heterogeneity was considered substantial, and a random-effects model was applied. Otherwise, a fixed-effects model was used. Egger’s regression test was applied to assess publication bias, with a p-value greater than 0.1 indicating low likelihood of bias (Egger et al., 1997). Additionally, effect sizes were weighted using inverse-variance weighting, which gives greater weight to studies with smaller standard errors and thus higher precision.







3 Results





3.1 Overview of the dataset


Variations in soil conditions, cultivar selection, and agricultural practices significantly influence the yield, quality, and water use efficiency (WUE) of kiwifruit. On average, non-optimal water input, as compared to the optimal level, has been observed to reduce kiwifruit yield and WUE by 18.18% (95%CI: -21.20% to -15.05%) and 6.03% (95% CI: -11.23% to -0.53%) (
Figure 3
). The aggregate detrimental effects of sub-optimal fertilization on kiwifruit yield, single fruit weight, soluble sugar content, soluble solids, and vitamin C (VC) content were reductions of 23.04% (95% CI: -25.52% to -20.48%), 8.67% (95% CI: -10.82% to -6.46%), 2.74% (95% CI: -6.80% to 1.50%), 4.24% (95% CI: -6.78% to -1.63%), and 6.25% (95% CI: -10.93% to -1.32%), respectively. In contrast, the titratable acidity increased by 2.38% (95% CI: -0.08% to -4.90%) with non-optimal fertilization compared to the optimal condition (
Figures 4
, 
5
).


[image: Bar chart showing percentage change in yield and water use efficiency (WUE). Both are below zero, with yield around minus seventeen percent and WUE around minus seven percent, indicated by blue points with error bars.]
Figure 3 | 
Comparison of the effects of non-optimal water input on kiwifruit yield and water use efficiency (WUE) relative to optimal water input levels. The point estimates and bar plots correspond to the mean effect size and the 95% confidence intervals, respectively. The figures encapsulated in parentheses indicate the number of comparative analyses incorporated within the meta-analytic framework.




[image: Scatter plot showing percentage change in yield with error bars for different nutritional treatments (None, N+, N-, etc.). The x-axis represents percentage change in yield from negative fifty to twenty percent. A dashed vertical line marks zero. Data points are labeled with treatment types on the y-axis and corresponding sample sizes in parentheses.]
Figure 4 | 
Comparison of the effects of non-optimal fertilization rates on kiwifruit yield relative to optimal fertilization rates. Points and bars represent the average effect and 95% confidence interval, respectively. The numbers in parentheses represent the number of comparisons used in the meta-analysis.




[image: Five separate horizontal error bar charts show the percentage change in various fruit properties: weight, soluble sugar, titratable acid, soluble solid, and VC. Each chart compares different treatments: None, N, P, K, NK, PK, and NPK. The overall mean is highlighted with a blue diamond. The data points and error bars are red, indicating variation around the mean percentage change for each treatment. Each panel is labeled from a to e, corresponding to the different properties measured.]
Figure 5 | 
Comparison of the effects of non-optimal fertilization rate on different fruit quality indexes relative to the optimal fertilization rate in kiwifruit. Effects of fertilizer treatments on fruit quality parameters: (a) fruit weight; (b) soluble sugar; (c) titratable acid; (d) soluble solids; (e) vitamin C. The point and bar plots represent the average effect and the 95% confidence interval, respectively. The numbers in parentheses represent the number of comparisons used in the meta-analysis.








3.2 Response of kiwifruit yield and WUE to water and fertilizer input


The impact of sub-optimal fertilizer inputs on kiwifruit yield was examined, revealing significant reductions in yield compared to optimal levels. Specifically, the effects of low phosphorus and potassium (P-K+) and low nitrogen with high potassium (N-P-K+) on yield reduction were not significant. In contrast, non-optimal nitrogen, phosphorus, and potassium fertilizer inputs collectively led to a substantial decrease in kiwifruit yield (
Figure 4
). The most pronounced impact was observed with the absence of fertilization (-53.45%), followed by low potassium (K-) input (-48.27%), and low nitrogen (N-) input (-44.82%). The least effect on yield was attributed to the combination of low nitrogen, low phosphorus, and low potassium (N-P-K+) input (-0.15%), with the next highest effects being high nitrogen, high phosphorus, and high potassium (N+P+K+) input (-3.45%), and high nitrogen, high phosphorus, and low potassium (N+P+K-) input (-7.66%). It is important to note that the effect of the N-P-K+ combination should be further verified due to the small sample size (n=3). When nitrogen, phosphorus, and potassium were applied sub-optimally (N-, P-, K-), the rate of yield reduction was significantly higher than when applied super-optimally (N+, P+, K+). Furthermore, the mixed application of nutrients showed that the effect on yield from high nitrogen and low potassium (N+K-) input (-22.82%) was similar to that of high phosphorus and low potassium (P+K-) input (-20.88%), yet both were substantially less than the effects from low nitrogen and low potassium (N-K-) input (-42.94%) and from the combination of low nitrogen, low phosphorus, and low potassium (N-P-K-) input (-37.38%).


The impact of non-optimal water input on kiwifruit yield and WUE was found to be influenced by the annual average rainfall and the field’s water holding capacity (
Figures 6a
, 
7a
). Irrespective of these factors, it was observed that super-optimal water input(W+) led to a significant reduction in both kiwifruit yield (by 14.19%) and WUE (by 18.48%). Conversely, sub-optimal water input (W-) resulted in a yield decrease of 18.52%, with its effect on WUE being negligible. When the annual average precipitation exceeded 800mm, the negative impact of super-optimal water input (W+) on kiwifruit yield and WUE was more pronounced, at 16.43% and 20.78%, respectively. In contrast, under conditions of sub-optimal water input (W-) and lower annual average precipitation (≤ 800 mm), the yield and WUE of kiwifruit decreased by 24.12% and 13.06%, respectively. Additionally, under the same field capacity, the sub-optimal water input (W-) had a more substantial effect on kiwifruit yield across different water holding capacities (≤ 28%, by 16.54%; > 28%, by 20.28%), whereas its effect on WUE remained minimal and statistically insignificant.


[image: Two forest plots labeled a and b compare percentage change in yield under different conditions. Both plots use blue and red dots with horizontal bars indicating error margins. Plot a compares overall mean, rainfall levels, and percentage conditions, while plot b compares years and irrigation types. Values are listed beside each condition. Both plots highlight a range from negative to positive percentage changes in yield.]
Figure 6 | 
Percentage change in yield across conditions: (a) rainfall and slope; (b) orchard age and irrigation method.




[image: Two-panel chart showing the percentage change in Water Use Efficiency (WUE) by different categories. Panel a displays changes based on overall mean, precipitation levels, and nitrogen application. Panel b shows changes based on duration and type of irrigation. Both panels have data points with error bars, with blue indicating positive changes and red negative, alongside numbers in parentheses representing the sample size.]
Figure 7 | 
Comparison of the effect of non-optimal water input on the water use efficiency (WUE) of kiwifruit relative to the optimal water input under different annual average rainfall (≤ 800 mm and > 800 mm) (a), field water holding capacity (≤ 28% and > 28%) (a), tree age (≤ 8years and > 8 years) (b) and irrigation methods (drip irrigation and other irrigation) (b). The effect of non-optimal water input on the WUE of kiwifruit. Blue (•) indicates SOI water input, and orange (•) indicates sub-optimal water input. The point and bar plots represent the average effect and the 95% confidence interval, respectively. The numbers in parentheses represent the number of comparisons used in the meta-analysis.




The influence of non-optimal water input on kiwifruit yield and WUE is modulated by tree age and irrigation techniques (
Figures 6b
, 
7b
). The impact of both SOI and sub-optimal water input on kiwifruit yield and WUE attenuates with an increase in tree age. Specifically, SOI water input markedly diminished the yield and WUE of kiwifruit in trees less than 8 years old by 19% and 22.32%, respectively. In contrast, this level of water input did not exert a significant negative effect on trees older than 8 years. Drip irrigation, when applied with SOI water, had a more pronounced negative impact on kiwifruit yield (-16.24%) and WUE (-20.06%) than other irrigation methods. Conversely, under sub-optimal water input, while other irrigation methods could significantly enhance kiwifruit WUE by 17.10%, they generally led to a reduction in yield and WUE. It is noteworthy that under the same irrigation method, the detrimental effect of insufficient irrigation on kiwifruit yield was more pronounced than that of over-irrigation, with the effect on WUE being inversely related.






3.3 Response of kiwifruit quality to nitrogen, phosphorus and potassium fertilizer input





3.3.1 Response of single fruit weight of kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


Except for a sole increase in phosphate fertilizer application, which marginally elevates the individual fruit weight of kiwifruit, alterations in other fertilizer combinations tend to result in a significant decrease in single fruit weight (
Figure 5a
). When juxtaposed with the optimal rate of fertilizer application, it is the variation in nitrogen fertilizer input (NK) that exerts the most substantial impact on kiwifruit’s individual fruit weight, with a reduction of 16.91%. This effect notably surpasses the influence of phosphorus fertilizer input adjustments (PK), which results in a 9.44% decrease. Furthermore, the modulation of nitrogen fertilizer input (N) alone, either increased or decreased, has a slightly more pronounced effect on the single fruit weight of kiwifruit, at a 6.44% reduction, compared to the potassium fertilizer input (K), which yields a 4.12% reduction. The combined application of nitrogen, phosphorus, and potassium fertilizers generally has a more substantial effect on the single fruit weight of kiwifruit than does the application of a single type of fertilizer.






3.3.2 Response of soluble sugar in kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


The soluble sugar content in kiwifruit was found to be significantly diminished by 6.35% due to the application of SOI levels of nitrogen, phosphorus, and potassium fertilizers. Specifically, alterations in the phosphate fertilizer input (P) exerted the most pronounced effect on kiwifruit’s soluble sugar levels, causing a reduction of 20.59% (
Figure 5b
). However, given the small sample size of n=5, these results warrant further verification. Additionally, the absence of fertilizer treatment had a notably negative impact, decreasing the soluble sugar content by 15.83%. While adjustments to potassium fertilizer input (K) slightly elevated the soluble sugar content of kiwifruit, this effect was not statistically significant. In contrast, when nitrogen or phosphorus fertilizer inputs were modified in conjunction with a reduced potassium fertilizer application, the soluble sugar content of kiwifruit experienced a significant increase of 12.44% for the nitrogen and potassium combination (NK) and 18.87% for the phosphorus and potassium combination (PK), respectively. Furthermore, changes in the combined nitrogen, phosphorus, and potassium (NPK) fertilizer input led to a significant reduction in kiwifruit’s soluble sugar content by 6.1%.






3.3.3 Response of kiwifruit titratable acid to changes of nitrogen, phosphorus and potassium fertilizers


Among the various fertilization treatments, the sole exception to an increase in titratable acidity of kiwifruit was observed when potassium fertilizer was diminished alongside alterations in nitrogen (NK) or phosphorus (PK) fertilizer inputs, resulting in a minor decrease. Conversely, the remaining treatments were associated with an increase in titratable acidity (
Figure 5c
). In contrast to the optimal fertilization rate, both the absence of fertilization and the application of an NPK fertilizer mixture notably elevated the titratable acidity levels in kiwifruit, with comparable variation ranges (No Fertilization: 5.00%; NPK: 4.68%). Adjusting solely the input levels of nitrogen, phosphorus, or potassium fertilizers marginally affects the titratable acidity of kiwifruit, yet the impact is statistically insignificant. The application of fertilizers in quantities exceeding the optimal levels for nitrogen, phosphorus, and potassium notably augmented the titratable acidity of kiwifruit by 4.35%.






3.3.4 Response of soluble solids of kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


Among the various fertilizer inputs, the alteration in potassium fertilizer input had the most pronounced impact on the soluble solids content of kiwifruit. Adjustments to potassium fertilizer input, whether increases or decreases, resulted in a 12.49% reduction in the percentage change of kiwifruit’s soluble solids (
Figure 5d
). Similarly, no fertilization treatment also significantly reduced the soluble solids content of kiwifruit by 11.25%. The effect of changing the input of nitrogen fertilizer or phosphorus fertilizer on the soluble solids of kiwifruit was similar when the potassium fertilizer was reduced, which decreased by 3.24% (NK) and 2.99% (PK), respectively. Among all fertilization treatments, solely the variation in the NPK fertilizer mixture input demonstrated a positive, albeit minor and statistically insignificant, impact on the soluble solids of kiwifruit. Conversely, the application of fertilizers at levels exceeding the optimal rates for nitrogen, phosphorus, and potassium notably elevated the soluble solids content of kiwifruit by 6.18%.






3.3.5 Response of VC content in kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


The input of SOI NPK fertilizer significantly reduced the VC content of kiwifruit by 18.37%. Compared with only changing the amount of nitrogen fertilizer input, there was almost no effect on the VC content of kiwifruit; however, various fertilization treatments resulted in a reduction of VC content in kiwifruit (
Figure 5e
). The variation range of VC content in kiwifruit was similar without fertilization and only changing the input of phosphate fertilizer (None: -7.25%; p: -7.06%), but the sample size of the treatment only changing the input of phosphate fertilizer was small (n = 3), and thus the results need to be further verified. Compared with the optimal amount of fertilizer, increasing or decreasing the amount of potassium fertilizer input (K) had little effect on the VC content of kiwifruit (-2.97%), but changing the amount of nitrogen fertilizer input (NK) when the amount of potassium fertilizer decreased would reduce the VC content of kiwifruit by 8.08%, which was higher than the effect of changing the amount of phosphorus fertilizer input (PK) on the VC content of kiwifruit when the amount of potassium fertilizer decreased (-3.23%).








4 Discussion


Based on existing literature, this study conducted a systematic and quantitative analysis of the impact of water conservation and fertilizer reduction on the yield and quality of kiwifruit. Based on the meta-analysis of this study, it was found that inappropriate water and fertilizer management significantly reduced kiwifruit yield and water use efficiency (WUE).The meta-analysis revealed that suboptimal fertilization practices led to a decrease in kiwifruit yield, individual fruit weight, soluble sugar content, soluble solids, and vitamin C content by 23.04%, 8.67%, 2.74%, 4.24%, and 6.25%, respectively, while the titratable acidity increased by 2.38% (
Figures 4
, 
5
). This outcome is primarily attributed to the fact that excessive fertilization raises the soil’s hydrogen ion concentration, causing soil acidification by decreasing pH (Cui et al., 2013). This, in turn, hinders the complete absorption and utilization of nutrients such as nitrogen, phosphorus, and potassium by plants, thereby adversely affecting the yield and quality of kiwifruit. Furthermore, nitrogen, phosphorus, and potassium are essential nutrients required for plant growth and development (Ahammed et al., 2022). An inadequate supply of nitrogen, phosphorus, and potassium fertilizers can restrict the growth and development of kiwifruit plants, consequently diminishing their yield and quality (Chu et al., 2021).


Reducing the application of SOI levels of nitrogen fertilizer and combined nitrogen, phosphorus, and potassium fertilizers to optimal levels can enhance kiwifruit yield by 32.76% and 3.45%, respectively (
Figure 4
). Studies have indicated that nitrogen application in excess of what is supported by soil, climate, and field management practices may result in yield losses (Zhang et al., 2015; Gao et al., 2012). The detrimental effect of insufficient application of individual nitrogen, phosphorus, and potassium nutrients on kiwifruit yield was found to be significantly greater than that of over-fertilization (
Figure 4
). This can be attributed to the high demand for nitrogen, phosphorus, potassium and other nutrients in kiwifruit. Although this study considered the effects of annual average rainfall and soil water holding capacity on kiwifruit yield and WUE, it may not fully consider the combined effects of other environmental factors (such as temperature, light, etc.). comparative analysis of the yield reduction rates associated with varying inputs of nitrogen, phosphorus, and potassium, particularly under conditions of low nitrogen and potassium (N-K-), revealed a significant decrease in kiwifruit yield by 42.94%. This suggests that kiwifruit has a relatively higher requirement for nitrogen and potassium, while the demand for phosphorus is comparatively lower, aligning with existing research findings. The disproportionate yield response to nitrogen alone vs. NPK combinations may be due to nutrient antagonism or dilution effects. Nitrogen promotes vegetative growth, which directly enhances yield, while excess phosphorus and potassium may interfere with nitrogen uptake or balance, reducing synergistic effects (Sardans and Peñuelas, 2021; Liu, 2021). This highlights kiwifruit’s higher demand for N and K compared to P. In correlation with yield results, both excessive and insufficient applications of nitrogen and potassium fertilizers were found to significantly reduce the single fruit weight of kiwifruit (
Figure 5a
).


Conversely, adjusting the application amount of phosphate fertilizer increased the single fruit weight of kiwifruit by 1.32% compared to the optimal fertilization level, potentially due to variations in the number of fruits per plant among the sampled kiwifruit trees. The impact of combined nitrogen, phosphorus, and potassium fertilizer inputs on the single fruit weight of kiwifruit was generally more pronounced than that of single nutrient applications. This synergistic effect is attributed to the interactive relationships between these three essential nutrient elements (Chu et al., 2021). Potassium notably enhances the absorption and utilization efficiency of nitrogen by plants, facilitating its rapid conversion into protein, which in turn, contributes to an increase in the single fruit weight of kiwifruit (Liu, 2021)Although the effect of nitrogen (−16.91%) and phosphorus (−9.44%) fertilizer inputs on single fruit weight appeared notably different, the confidence intervals of these estimates partially overlap, indicating that the statistical significance of the difference between them may be limited. Further subgroup analyses by environmental factors such as tree age, rainfall, and soil capacity were constrained by limited sample size in the included studies. Nonetheless, the more pronounced effect of nitrogen may reflect its direct role in cell division and expansion during fruit development (Liu, 2021), whereas phosphorus primarily affects energy metabolism. These physiological differences might explain the observed magnitude gap.


Kiwifruit, known for its nutritional richness, exhibits varying responses in nutrient content to different fertilizer application rates. This study analyzed the impact of fertilization on kiwifruit quality, ensuring conditions were optimal for maximal yield. Relative to the optimal fertilization strategy, modifications in nitrogen fertilizer levels had minimal influence on the levels of soluble sugars, titratable acidity, and vitamin C (VC) in kiwifruit (
Figures 5b, c, e
). This insignificance may stem from the specific nitrogen requirements of kiwifruit, where an appropriate nitrogen input can notably enhance individual fruit weight without compromising fruit quality. Conversely, a reduction in soluble sugar, soluble solids, and VC content, and a rise in titratable acidity were observed in kiwifruit (
Figures 5b–e
). Phosphorus, integral to plant nutrition, is a constituent of key compounds including nucleic acids, proteins, and enzymes. Insufficient phosphorus can restrict plant growth, development, and metabolism (Poirier and Bucher, 2002; Sardans and Peñuelas, 2021). This study revealed that adjusting the levels of nitrogen, phosphorus, and potassium fertilizers to match the application rates at the peak yield point could markedly elevate the soluble sugar and VC content in kiwifruit by 6.35% and 18.37%(
Figures 5b, e
). Conversely, the titratable acidity and soluble solids content were significantly lowered by 4.35% and 6.18%(
Figures 5c, d
). The role of potassium in plant cells includes osmotic regulation and maintaining ionic balance. An excessive application of potassium fertilizer may lead to competition between potassium ions and other ions, such as Ca2+, Mg2+, NH4+, etc., for entry into fruit cells (Srivastava et al., 2020; Sustr et al., 2019; Xu et al., 2020; Panda et al., 2012; Sangha et al., 2023), potentially inhibiting VC synthesis. Furthermore, an overabundance of potassium can escalate the soluble solids content within the fruit, disrupting its acid-base equilibrium and elevating the fruit’s pH value. This shift can accelerate fruit rancidity, thereby impairing fruit quality and flavor.


The yield and WUE of kiwifruit experienced respective increases of 14.19% and 18.48%, when SOI water input was adjusted to optimal levels. Conversely, augmenting sub-optimal water input to optimal levels resulted in yield and WUE increases of 18.52% and 1.57%, respectively (
Figures 6a
, 
7a
). These findings underscore the critical importance of precise water management. Over-irrigation may induce root hypoxia in kiwifruit and contribute to nutrient leaching from the soil, consequently diminishing yield and WUE (Li et al., 2014) Insufficient water supply, on the other hand, causes evident stress symptoms in plants, impeding normal growth and development (Yang et al., 2012; Pahalvi et al., 2021).


Subgroup analysis revealed that the impact of non-optimal water input on kiwifruit yield and WUE is contingent upon annual average rainfall and the field’s water holding capacity (
Figures 6a
, 
7a
). In regions with an annual average rainfall exceeding 800 mm and a field water holding capacity above 28%, the adverse effects of SOI water input on kiwifruit yield and WUE were markedly more pronounced than in areas with lower rainfall and water holding capacity. This disparity may arise from the enhanced water holding capacity of soils in regions with higher precipitation and water holding capacity. Excessive irrigation in such areas can lead to waterlogging and surface runoff, surpassing the water requirements of kiwifruit plants and thus reducing their WUE (Yang et al., 2012). Over-saturation of soil can impede oxygen circulation, degrade soil aeration, curtail microbial populations and activity, and adversely affect soil fertility and health (Wei et al., 2021).


Moreover, in low-lying areas with poor drainage, soil saturation can exacerbate salinization and potentially result in root death and decline of kiwifruit plants. The influence of non-optimal water input on kiwifruit yield and WUE is also moderated by tree age. The study confirmed that the negative effects of both SOI and sub-optimal water input on yield and WUE are mitigated with increasing tree age (
Figures 6b
, 
7b
). This outcome can be ascribed to the more extensive root systems of mature kiwifruit trees, which foster a more stable ecosystem, bolster environmental and soil adaptability, and confer greater resilience to drought and flood, thereby decreasing reliance on irrigation water.


Additionally, as kiwifruit trees age, their leaf area expands, escalating transpiration rates and influencing WUE. Appropriate irrigation methods are pivotal for enhancing crop yields. Meta-analysis results indicated that under drip irrigation, reducing SOI water input to optimal levels significantly increased kiwifruit yield and WUE by 16.24% and 20.06%, respectively—outperforming other irrigation techniques (
Figures 6b
, 
7b
). This superiority is largely attributed to the distinct soil water and salt transport characteristics associated with different irrigation methods (Yu et al., 2020). Drip irrigation delivers water directly to the root zone, enabling precise soil moisture management while minimizing surface evaporation and the risk of soil salinization. In contrast, other irrigation methods, such as tubular outflow, may lead to water pooling and localized hypoxia, which can significantly impede root respiration and the transport of water and nutrients. Nonetheless, other irrigation methods have been observed to enhance kiwifruit WUE under sub-optimal water input conditions (
Figure 7b
), possibly due to variations in irrigation water application across studies. Furthermore, micro-sprinkler irrigation and combined drip-sprinkler systems can more effectively manage water distribution, reducing deep percolation losses.






5 Conclusions


This paper presents a meta-analysis of field experimental data from kiwifruit production across various growth environments in China. This study demonstrates that optimizing nitrogen, phosphorus, and potassium (NPK) fertilizer levels, along with water input, can significantly improve kiwifruit yield and water use efficiency (WUE). In particular, reducing nitrogen fertilization to optimal levels enhances yield and quality, highlighting kiwifruit’s higher demand for nitrogen and potassium compared to phosphorus. These findings provide valuable insights into water and fertilizer management for kiwifruit cultivation. These findings indicate that kiwifruit exhibits a relatively higher demand for nitrogen and potassium compared to phosphorus. Furthermore, by optimizing water input, both the yield and WUE of kiwifruit were increased by 14.19% and 18.48%, respectively. In regions with an annual average rainfall exceeding 800 mm and a field water holding capacity above 28%, the detrimental effects of SOI water input on kiwifruit yield and WUE were considerably more pronounced than in regions with lower rainfall and water holding capacity. The impact of both SOI and sub-optimal water input on kiwifruit yield and WUE was found to diminish with the increase in tree age. Drip irrigation, in particular, emerged as a superior water-saving technique in kiwifruit orchards, significantly boosting yield and WUE by 16.24% and 20.06%, respectively. Based on the results of this study, future research can further explore the changes in the response of kiwifruit to water and fertilizer reduction at different growth stages, and the best water and fertilizer management strategies under different climatic and soil conditions. In addition, the inclusion of economic cost analysis will help farmers and decision-makers to better balance resource utilization and economic benefits in practical applications. Future studies should integrate temperature and light conditions to further refine irrigation and fertilization recommendations tailored to local environments. In addition, these results highlight the importance of defining region-specific thresholds for water and nutrient inputs, as environmental factors such as rainfall and soil capacity vary widely across kiwifruit-producing areas. Future research should also incorporate economic input–output analysis, soil microbial community responses, and long-term sustainability modeling to develop more integrated and practical irrigation-fertilization strategies for farmers. Future studies should integrate temperature and light conditions to further refine irrigation and fertilization recommendations tailored to local environments.
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Rice ratooning cultivation refers to secondary production from the stubble left after the harvest of the main crop (MC). Besides providing additional yield, ratooning is known to affect grain quality. Here, we conducted a meta-analysis of grain quality traits between ratoon season crop (RC) and MC. The results showed that the overall grain quality of RC was higher than that of MC. Ratooning improved milling traits by increasing the milled rice rate (MRR) and head rice rate (HRR) and enhanced grain appearance by reducing chalkiness. Furthermore, ratooning had a positive impact on alkali spreading value (ASV) and amylose content (AC) but a negative influence on gel consistency (GC), which markedly affects cooking and sensory quality. Subgroup analysis showed that stubble height influenced the AC of RC, while planting region was a major factor regulating most grain properties. Meta-regression analysis suggested that latitude, precipitation, and temperature played important roles in rice quality, particularly in relation to milling parameters. In addition, we compared the grain quality of RC and the late-season crop (LC) with synchronized heading time. Negative trends were observed in brown rice rate (BRR) and protein content (PC), while planting region and rice variety were revealed as factors influencing chalkiness and HRR. Overall, our findings indicate that ratooning has positive impacts on grain quality and uncover the relationships between environmental and agronomic factors and their effects on quality traits, which will lay the foundation for future breeding strategies and optimize cultivation management across growth regions.




Keywords: ratoon season crop (RC), main crop (MC), rice quality, meta-analysis, milling traits, chalkiness





Introduction

Ratoon rice, a second rice production system generated from the stubble left after harvesting the main crop (MC), is considered an ideal cropping system in regions where light and temperature resources are sufficient for one seasonal crop but insufficient for two (IRRI, 1988). Rice ratooning is an ancient cultivation technique, with a history of more than 1,700 years since the West Jin Dynasty (AD 265–316) in China (Guo, 1993). It is now fairly widespread in many countries, including Japan, Korea, India, Thailand, Vietnam, the Philippines, Indonesia, the United States, and Nigeria (IRRI, 1988; Calendacion et al., 1992; Munda et al., 2009; Sanni et al., 2009; Wang et al., 2020b; Deng et al., 2021).

The main advantages of rice ratooning are promising high grain yield, high economic efficiency, and environmental friendliness (Lin et al., 2015). More recently, several studies have reported another potential advantage—grain quality of the ratoon crop (RC) may be better than that of the MC (Alizadeh and Habibi, 2016; Huang et al., 2020; Wang et al., 2020b). However, other studies found that the cooking quality of rice decreased after ratooning (Shin et al., 2015; Wang et al., 2020a). Thus, the impact of ratooning on grain quality appears to vary among studies.

Rice quality is determined by multiple traits, and quality perception varies across consumers and countries (Custodio et al., 2019). Several traits are widely used to evaluate rice quality, including milling properties, appearance, nutritional value, and cooking and sensory quality (Fitzgerald et al., 2009). Milling quality refers to the final yield of edible rice and the proportion of unbroken kernels, which is mainly evaluated by brown rice rate (BRR), milled rice rate (MRR), and head rice rate (HRR). Appearance is a crucial property after milling, commonly assessed by chalky rice rate (CRR), chalkiness degree (CD), and length–width ratio (LWR). Previous studies have reported significant reductions in chalkiness degree and CRR in ratoon-season grains (Alizadeh and Habibi, 2016; Cai et al., 2019; Lin et al., 2022). Cooking and sensory quality are usually predicted by alkali spreading value (ASV), gel consistency (GC), and amylose content (AC). Some studies showed that ratoon-season grains had higher AC and significantly lower transition gelatinization temperatures (Shin et al., 2015; Kuang et al., 2021). In addition, consumers are concerned about nutritional value, which mainly refers to the amounts of protein, vitamins, minerals, and lipids in the grain.

Rice quality can be influenced by cultivar, management practices, and environmental conditions during grain filling. Ratooning ability, yield, and quality vary among different types of varieties (Negalur et al., 2017). Recent studies have revealed that environmental factors, including precipitation, temperature, fertilizer application, and biotic and abiotic stresses, play key roles in ratooning production and quality (Wang et al., 2020b). For example, the cooking and eating quality of ratoon rice was higher in lower-latitude regions (Kuang et al., 2021). Crop management practices such as stubble height, irrigation, and nitrogen fertilization also affect ratoon rice (Jones, 1993; Chen et al., 2021; Yang et al., 2021). However, how these factors influence final grain quality remains largely unclear.

Meta-analysis, a quantitative synthesis of research results, allows assessment of overall trends (Gurevitch et al., 2018). Given the variability in findings regarding ratooning and grain quality, we used meta-analysis to integrate results across studies. We summarized and interpreted 59 studies to assess overall rice quality and quantify the effects of ratooning. Our results suggest that ratoon-season grain quality is generally better than that of the MC, with improvements in milling properties, reductions in chalkiness, and modifications in cooking and nutritional traits. Subgroup and meta-regression analyses further revealed relationships between grain quality and cultivar, management, and environmental factors. These findings provide a basis for future breeding strategies and optimization of cultivation management across different growth regions.





Materials and methods




Definitions of comparison groups

Two comparisons were conducted in this meta-analysis: (a) RC grain quality vs. MC grain quality, and (b) RC grain quality vs. late-season crop (LC) grain quality.

After harvesting the MC, the second rice crop generated from the stubble was defined as the RC. The LC refers to the late-season main crop with heading time synchronized with the RC, meaning that grains from both crops were obtained under the same weather conditions.





Literature selection

A systematic search was conducted to identify peer-reviewed studies describing the grain quality of ratoon rice, the main crop, and the late season crop. Ten grain quality parameters, including brown rice rate, milled rice rate, head rice rate, chalky rice rate, chalkiness degree, length-width ratio, alkali spreading value, gel consistency, amylose content, and protein content, were selected to conduct the meta-analysis.

Articles were collected through PubMed (https://pubmed.ncbi.nlm.nih.gov), Google Scholar (https://scholar.google.com), Web of Science (https://www.webofknowledge.com), Science Direct (https://www.sciencedirect.com), SpringerLink (https://link.springer.com), Wiley Online Library (https://onlinelibrary.wiley.com/), Scientific Information Database (https://www.sid.ir/), Taylor & Francis (https://www.tandfonline.com/), CNKI database (https://www.cnki.net/), Wanfang database (https://www.wanfangdata.com.cn/index.html), CQVIP database (http://www.cqvip.com/), Huayi Database (http://www.airitilibrary.cn/), CiNii research (https://cir.nii.ac.jp/) and AGRIS (https://agris.fao.org). Data collection was restricted to field studies; studies conducted in laboratories, greenhouses, or pots. The following four selection criteria were applied:

	Criterion 1: We included studies that recorded rice quality data for either “ratoon rice vs. main crop” or “ratoon rice vs. late-season main crop.” Studies reporting only general conclusions on rice quality without specific index data were excluded.

	Criterion 2: The rice quality index data that we accepted only contained brown rice rate, milled rice rate, head rice rate, chalky grain rate, chalkiness degree, length-width ratio, alkali spreading value, gel consistency, amylose content, and protein content. Articles with grain length and width data, which allowed us to calculate the length-width ratio, were included.

	Criterion 3: Studies with only one dataset and those on overwintering cultivated rice (a specific cropping practice in the low latitude zone with adapted local varieties) were excluded.

	Criterion 4: Duplicate datasets from the same study were excluded after careful comparison.



Study selection followed the PRISMA protocol (Liberati et al., 2009; Moher et al., 2009) (Supplementary Figure S1). From August 2021 to May 2023, we used combinations of keywords to search for relevant literature. The keywords included (“ratoon rice” OR “ratooning” OR “ratoon” OR “double season rice” OR “double cropping”) AND (“quality” OR “appearance” OR “milling properties” OR “milling” OR “cooking and sensory quality” OR “cooking” OR “sensory” OR “nutrient” OR “nutrition” OR “brown rice” OR “milled rice” OR “head rice” OR “chalky” OR “chalkiness” OR “milk white grain” OR “chalk white” OR “floury endosperm” OR “length-width ratio” OR “alkali spreading value” OR “gel consistency” OR “amylose content” OR “amylose” OR “protein content” OR “protein”) without restriction on publication year. A total of 1,479 articles were initially identified. With the help of international researchers, 28 additional foreign-language articles were selected. After excluding duplicates, 1,422 articles remained for screening. During the second screening, 246 papers were retained after reviewing titles, keywords, and abstracts. The full texts of these papers were then assessed for suitability. Finally, 56 articles were included for RC vs. MC comparison, and 9 articles for RC vs. LC comparison (see Supplementary Database).

All data were integrated into a world map (Figure 1), generated using resources from the Resource and Environment Science and Data Center in China (https://www.resdc.cn/Default.aspx).
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Figure 1 | Distribution of reviewed studies related to grain quality of ratoon rice. The world map shows ratoon rice studies located around the world. Country color indicates the number of studies, and column height indicates the number of experimental cases in each study. The inset column plot in the lower left shows the number of reviewed articles per year (from 1986 to 2023). The horizontal bar with gradient red colors shows the number of studies. The vertical bar shows the number of cases in each study. For detailed figure information, see Supplementary Data and source data.





Risk of bias assessment

The Cochrane system was used to assess the risk of bias in all studies included in the meta-analysis. The assessment was conducted in six areas: “Sequence generation (selection bias),” “Blinding of participants (performance bias),” “Blinding of outcome assessment (detection bias),” “Incomplete outcome data (attrition bias),” “Selective outcome reporting (reporting bias),” and “Other potential threats to validity (other bias),” to detect deficiencies in study design, implementation, analysis, and reporting integrity (Source Data Supplementary Figure S2B). Due to the objectivity of the agricultural experiment process, in the ‘Selection bias’, we only adopted the assessment of ‘‘Sequence generation’’ while excluding ‘‘Allocation concealment’’ (Higgins et al., 2017). For performance bias, the evaluation criterion was whether the experimental field areas were managed uniformly to prevent staff from knowing which interventions the experimental subjects received. For detection bias, the criterion was whether the study provided a detailed explanation of the rice quality testing methods and strictly adhered to them to avoid testing bias caused by interventions from testers. Following the guidance of the Cochrane Handbook for Systematic Reviews of Interventions, we classified and evaluated each article as having “low risk of bias,” “unclear risk,” or “high risk of bias” (Source Data Supplementary Figure S2A) (Saric et al., 2019). Figures were generated using the “ggplot” package in R software (version 4.3.1).





Study quality assessment

Because no standardized system exists for evaluating the quality of the studies included, we applied “21 quality checklist questions” concerning the rationality of the experimental design and the strength of evidence for improvement of rice quality indicators through ratooning (Su et al., 2021) (Source Data Supplementary Figure S3).

According to the classification criteria of Su et al., study quality was categorized as very strong evidence (score >75%), strong evidence (score 50%–74%), moderate evidence (score 25%–49%), or weak evidence (score <24%). For this meta-analysis, we included only studies with very strong (score >75%) and strong (score 50%–74%) evidence.





Meta-analysis

From each study, we extracted rice quality data, including BRR, MRR, HRR, CRR, CD, LWR, ASV, GC, AC, and PC. For the “RC vs. MC” comparison, data were included only when they came from the same year, in the same experimental field, and with the same variety. For the “RC vs. LC” comparison, data were included only when matched for the same variety and heading time.

The standardized mean difference (SMD; Cohen’s d) was used as the effect size, calculated as the difference in means between two groups divided by the standard deviation. When comparing RC with MC or LC, the SMD value reflected whether grain quality increased or decreased (Lachenbruch, 1989). Meta-analysis was performed using a random-effects model with the constrained maximum likelihood (CML) method. The 95% confidence interval (CI) in the forest plots indicated significant positive or negative changes (Nakagawa and Cuthill, 2007; Borenstein et al., 2010). Heterogeneity was tested using the Q test and quantified with the I² statistic; generally, I² > 50% indicated significant heterogeneity among studies (Hedges and Olkin, 1985; Higgins et al., 2003). All analyses were performed in Stata version 16, following published guidelines for biological meta-analysis (Koricheva et al., 2013; Chaimani et al., 2014; Nakagawa et al., 2017).

Grain quality was evaluated according to the Chinese national standard for high-quality paddy (GB/T 17891-2017) (Supplementary Database). Grains were first classified as either indica-type rice or japonica-type rice. Indica rice, indica-type hybrids, and indica–japonica hybrids were evaluated under the “indica-type rice” standard, while japonica rice and japonica-type hybrids were grouped under “japonica-type rice.” The indica group was further subdivided into “long grain”, “medium grain”, and short-grain categories based on reported grain length.

Grain quality was assessed using three parameters: HRR, CD, and AC. According to the standard, grain was scored as Grade 1 (score = 4), Grade 2 (score = 3), or Grade 3 (score = 2). If quality was lower than Grade 3, it was classified as Grade 4 (score = 1).





Subgroup analysis

Subgroup analyses were conducted for (a) stubble heights after the main rice harvest (more than 20 cm and below 20 cm), (b) rice varieties (indica rice, japonica rice, and hybrid rice), and (c) the geographical regions of study (e.g., South China Plain Hilly, Jiangnan Hilly Plain, Middle-lower Yangtze Plain, Sichuan Basin, Northern Iran, southern United States, Korea). These subgroup analyses were used to determine the source of heterogeneity among different studies by calculating effect sizes within each subgroup and analyzing their differences (Thompson and Higgins, 2002).





Meta-regression analysis

Factors with continuous data were used as variables for meta-regression analysis, including (a) latitude of the experimental area (all are in the Northern Hemisphere), meteorological factors in the grain-filling period (two months), including (b) average precipitation per day (ΔPrecipitation), (c) average temperature per day (ΔTavg), (d) nitrogen (N) application, (e) planting density, (f) study year, and (g) average global surface solar radiation per year compared RC and MC. The application of nitrogen fertilizer described in the article during the main crop cutting period was converted into total nitrogen amount as “kilograms per hectare”. Planting density was measured as “thousands of hills per hectare,” which was recalculated according to the data from each study. The year of study was the trial time described in each study, not the article publication time. Global historical climate datasets are provided by the “National Centers for Environmental Information” (https://www.ncei.noaa.gov/). Global surface solar radiation datasets are provided by the “National Tibetan Plateau Data Center” (http://data.tpdc.ac.cn) and “Geographic remote sensing ecological network” platform (www.gisrs.cn). All the data were extracted from the articles to be categorized and recalculated. Bubble plots were used to present the results of regression analyses on correlations between effect sizes and variables (Cameron and Windmeijer, 1997).





Tests of publication bias

Egger’s regression was performed to evaluate publication bias and presented as funnel plots, with parameters set as default (Egger et al., 1997).






Results




General literature description

Different methods were used to search articles about grain quality of MC, RC, and LC, in which rice heading time was synchronized with ratoon rice. A total of 1,507 articles from multiple databases were found to be relevant to rice grain quality (Supplementary Figure S1). After removing papers with duplicated data (N = 85) and unqualified data (N = 1,361), 59 articles met our criteria and were selected for analysis (Supplementary Database “list of publication”). The studies comparing RC and MC numbered 56, while studies referring to RC and LC numbered only 9 (Supplementary Database “RC vs MC” and “RC vs LC”). Six studies included grain quality data for RC, MC, and LC. The PRISMA flow diagram for the studies selected and included in our meta-analysis is shown in Supplementary Figure S1. The geographical distribution of the studies spanned 5 countries: China (53 studies), Iran (3 studies), Korea (1 study), the United States (1 study), and Nigeria (1 study) (Figure 1). The first article comparing grain quality between RC and MC was published in China in 1986. A rapid increase in publications occurred after 2010 (Figure 1, lower left chart), as governments and researchers devoted greater attention to ratoon rice over the past ten years.

The risk of bias and study quality assessments were performed to evaluate study reliability. According to the Cochrane Handbook for systematic reviews of interventions, six factors were assessed to qualify risk of bias (Supplementary Figure S2). The results showed that all assessment factors represented low risk of bias. Study quality was further assessed using “21 quality checklist questions.” Based on the scores, the studies included in this analysis provided strong evidence (>60%) (Supplementary Figure S3).

All detailed figure information and values are provided in the Supplementary Material (“source data”).





Effects of ratooning on the grain quality

Ten parameters from four primary quality traits were investigated in this study, covering milling properties (BRR, MRR, HRR), appearance properties (CRR, CD, LWR), cooking and sensory quality (ASV, GC, AC), and nutritional value (PC). All 10 grain traits were compared between RC and MC and collected for meta-analysis (using standardized mean difference (SMD; Cohen’s d) as the effect size (ES)). In total, 1,138 observations met the inclusion criteria (Supplementary Database “RC vs MC” and “RC vs LC”).

Compared with MC, the milling properties MRR and HRR of RC increased, with ES values of 0.61 (95% CI = 0.07 to 1.15) and 1.41 (95% CI = 0.90 to 1.92), respectively, which was considered a significant improvement (Figure 2A). For appearance traits, CRR and CD showed negative trends in RC compared with MC, with ES values of –1.68 (95% CIs = -2.12 to -1.24) and -1.78 (95% CIs = -2.27 to -1.29), respectively (Figure 2A), indicating improved appearance quality in ratoon rice.

[image: Forest plots showing effect sizes for rice quality parameters. Panel A lists characteristics like brown rice rate, milled rice rate, and head rice rate. Each line includes effect size squares with confidence intervals and associated I-squared and P-values. Panel B provides a plot for overall grain quality across different rice types, such as Indica and Japonica, showing squares and diamonds indicating effect sizes, total studies, and related metrics.]
Figure 2 | Mean effect sizes (ES) for the grain quality compared RC to MC. (A) ES of rice quality traits by ratooning (RC vs. MC). Heterogeneity value (I²) and the P value are presented on the right. Asterisks indicate that publication bias was detected. (B) ES on overall grain quality comparing RC to MC. Grain quality was evaluated by the Chinese national standard of high-quality paddy (GB/T 17891-2017). ES is plotted as SMD (Cohen’s d). Bars around the means denote 95% CIs. The bracketed numbers in A and B represent the number of accepted studies.

Ratooning also had positive effects on ASV (ES = 0.90, 95% CI = 0.48 to 1.31) and AC (ES = 0.39, 95% CI = 0.02 to 0.76) (Figure 2A). In contrast, GC—an important parameter of eating quality—was reduced by ratooning (ES = –0.59, 95% CI = –0.97 to –0.11).

The overall grain quality was also evaluated according to the Chinese national standard for high-quality paddy (GB/T 17891-2017) (Supplementary Database), which is widely used in Chinese rice research and markets. Taking into account cooking and sensory parameters, as well as milling and appearance traits, rice grains were rated into four grades. Comparison of RC and MC grades showed that overall grain quality improved after ratooning, in both indica and japonica rice types (Figure 2B).

It is noteworthy that the funnel plots of five grain traits—HRR, CRR, CD, ASV, and AC—were asymmetric (Supplementary Figure S4), indicating potential publication bias in the relevant literature, marked with stars in Figure 2A. All potential publication biases were corrected using the trim-and-fill method, and the results did not change the conclusions (Supplementary Figure S4, Supplementary Table 4).

Taken together, comparison of grain qualities between RC and MC showed that ratooning improved overall grain quality across multiple traits.





Subgroup analysis of the categorical factors

Significant heterogeneity (I2 ≥50%) appeared among studies in all grain traits (Figure 2A), suggesting that various factors may contribute to grain quality. Thus, to identify the potential influencing factors on the heterogeneity of the pooled ES, the following subgroup and meta-regression analyses were performed. Stubble height, rice variety, and study region were analyzed as categorical moderators for their contributions to grain quality change between RC and MC (Figure 3A).

[image: A series of charts and a heatmap compare different rice traits across regions and types. The heatmap (A) visualizes P-values for factors like brown rice rate and protein content. Box plots (B-E) show amylose content, chalkiness degree, length-width ratio, and alkali spreading values for different rice types. Further box plots (F-L) display regional variations in brown and milled rice rates, head rice rate, chalky rice rate, alkali spreading value, gel consistency, and protein content. Regions include South China, Jiangnan, Yangtze, and more, indicated by color-coded boxes and sample numbers in parentheses.]
Figure 3 | Subgroup analysis of categorical factors. (A) Heatmaps of correlations between grain quality traits and categorical factors (stubble heights, rice varieties, and study region). Gradient red color indicates P-values of correlations. Numbers in boxes represent the number of research cases included in the analysis. (B) Effects of stubble height on AC. (C–E) Effects of rice varieties on CD, LWR, and ASV. (F–L). Effects of geographical regions on grain quality parameters [(F) BRR; (G) MRR; (H) HRR; (I) CRR; (J) ASV; (K) GC; (L) PC]. In (B–L), ES is plotted as SMD (Cohen’s d) comparing RC to MC. Bars around the means denote 95% CIs. For milling properties, if the means fall on the positive side and do not intersect with zero, BRR, MRR, and HRR are considered to increase relative to MC; the opposite applies if means fall on the negative side of the forest plot. For appearance properties (CD and CRR), negative means indicate decreases in RC compared with MC. All seven analyzed regions are shown in different colors. The vertical black line indicates the pooled ES of all categorical factors. Bracketed numbers represent the numbers of accepted study cases. For Q statistic tests, see Supplementary Table 1. For detailed SMD values, (Cohen’s d), see “Source data”.

Stubble height was divided into two groups: less than 20 cm and more than 20 cm. Our subgroup analysis showed that ratooning significantly promoted AC in the “less than 20 cm” group but not in the “more than 20 cm” group (Figure 3B). The influence of ratooning on CD, LWR, and ASV varied between cultivars (Figures 3C–E). Japonica, indica, and hybrid rice are three major planting cultivars today. Our subgroup analysis showed that CD decreased most in hybrid rice, although all three cultivars had lower CD in RC compared with MC (Figure 3C). Indica grain also showed slight increases in LWR (ES = 0.41, 95% CI = –0.04 to 0.87) and ASV (ES = 0.93, 95% CI = 0.49 to 1.37) (Figures 3D, E).

Planting region was found to be a major influencing factor on grain quality parameters, including BRR, MRR, HRR, CRR, ASV, GC, and PC (Figure 3A). Based on geographical and weather conditions, all tested cases were divided into six planting regions: South China Plain Hilly, Jiangnan Hilly Plain, Middle–Lower Yangtze Plain, Sichuan Basin, Northern Iran, southern United States, and Korea (Figures 3F–L). With ratooning, milling properties (BRR and MRR) especially increased in the Middle–Lower Yangtze Plain but decreased in South China (Figures 3F, G). HRR of ratoon rice was promoted in most parts of China (Figure 3H).

The effects on appearance parameters also varied across geographical regions. Significantly negative trends for CRR were observed in all study cases from China (Figure 3I). For other traits such as ASV, GC, and PC, most studies were conducted in the Jiangnan Hilly Plain; however, no obvious changes were observed after ratooning (Figures 3J–L). In other planting regions, fewer cases were available, making it difficult to draw firm conclusions about grain quality changes.





Regression analysis of the continuous factors

Besides the above categorical factors, associations between grain trait trends and six hypothesized continuous factors were estimated, including latitude, the difference in “average precipitation per day” (Δprecipitation), the difference in “average temperature per day” (ΔTavg), application of nitrogen (N) fertilizer in the studies, planting density, study year, and solar radiation between RC and MC (Figure 4A). All collected studies were conducted in the Northern Hemisphere, ranging from N 22° to N 42°.

[image: A composite image detailing various statistical analyses related to rice characteristics. Panel A displays a heatmap illustrating the correlation between different factors like brown rice rate, milled rice rate, gel consistency, and protein content with variables such as latitude and planting density, indicated by different shades of red. Panels B to N show scatter plots of rice traits against environmental and temporal factors, such as temperature or year, with R-squared values indicating the strength of the relationships. Each plot includes a linear prediction line and confidence intervals in shaded regions, with color variations representing different correlational variables.]
Figure 4 | Regression analysis of continuous factors. (A) Heatmaps of correlations between grain quality traits and continuous factors (latitude, the difference of “average precipitation per day” compared RC and MC (Δprecipitation), the difference of “average temperature per day” compared RC and MC (ΔTavg), application of nitrogen (N) fertilizer, planting density, study year, and solar radiation). Red color indicates P-values. Numbers in boxes represent the number of research cases included in the analysis. (B–N) Bubble plots showing predicted trends of continuous factors on grain quality traits. Bubble sizes reflect sample sizes in individual studies. R² values for meta-regression analysis are shown in Supplementary Table 3.

Meta-regression analysis revealed that latitude had a moderate positive relationship with BRR and ASV (Figures 4B, C) but a negative relationship with GC (Figure 4D). HRR was positively correlated with a decrease in precipitation in the ratoon season (Figure 4E), while all three milling properties (BRR, MRR, and HRR) were positively correlated with a decrease in average temperature in the ratoon season (Figures 4F–H). For N fertilizer application, PC was positively related to the amount of nitrogen applied (Figure 4I). Planting density was also found to have an absolute negative relationship with ASV (R2 = 100%) and a clearly positive relationship with GC (Figures 4J, K). With increasing study years, positive correlations were observed for all milling properties, including BRR, MRR, and HRR (Figures 4L–N).





Comparison of grain qualities between RC and LC

Previous studies suggested that the improvement of rice quality in RC was mainly due to relatively lower temperatures during the filling period compared with MC (Liu et al., 2002), which was also supported by our subgroup analysis of ΔTavg. To further investigate the potential factors affecting grain quality, we performed a meta-analysis comparing RC and LC, since LC was grown under the same environmental conditions as ratoon rice. In total, 112 observations met our criteria.

Compared with LC, the appearance properties of RC were also improved. CRR decreased with an ES of –1.20 (95% CI = –2.29 to –0.11). BRR and PC also decreased, with ES values of -1.11 (95% CIs = -1.76 to -0.47) and -1.59 (95% CIs = -2.51 to -0.67), respectively (Figure 5A). Other grain traits showed no significant differences between RC and LC (P>0.05).

[image: Panel A features a forest plot illustrating the effect sizes for variables such as overall grain quality and rice rates, with confidence intervals and P values provided. Panel B presents a comparison of head rice rate and chalkiness degree across three rice-growing regions using bar plots. Panel C contrasts the chalky rice rate among different rice types with shown effect sizes. Each panel uses different colored bars and squares to differentiate between metrics and data points.]
Figure 5 | Mean ES for the grain quality compared RC and LC. (A) ES distribution is plotted as SMD (Cohen’s d) comparing RC to LC. Bracketed numbers represent the number of accepted study cases. Heterogeneity value (I2) and the P value are presented on the right. (B) Subgroup analysis of planting regions for grain quality traits comparing RC to LC. (C) Subgroup analysis of rice cultivar varieties for CRR comparing RC to LC. The vertical black line in (B, C) indicates the pooled ES of all categorical factors. Bars around the means denote 95% CIs. For Q statistic tests, see Supplementary Table 2.

Considering the heterogeneity among studies, subgroup analysis was also performed. Ratooning increased HRR especially in South China but decreased it in Central China (Figure 5B). In addition, CRR decreased only in South China during the ratoon season, while no obvious differences were observed in Central China (Figure 5B). For CD, some decreases were observed in South China and the Jiangnan Hilly Plain. Furthermore, the effect on CRR varied between cultivars: CRR decreased in hybrid rice but not in indica cultivars (Figure 5C).






Discussion




Impacts of ratooning to grain quality

In our meta-analysis, milling properties were dramatically improved in RC compared with MC, especially in China. The observed increase in HRR is consistent with the decline in chalkiness, as chalky kernels are more susceptible to breakage during milling (Siebenmorgen et al., 2013). Chalkiness is a complex trait attributed to both genetic and environmental factors, particularly high temperature (Nevame et al., 2018). Ratooning clearly decreased the chalky rice rate, supported by studies in Iran and China. Interestingly, research from the Sichuan Basin reported minimal changes in CD, potentially attributable to localized climate conditions, cultivar selection, or management practices.

Based on the viscosity of 4.4% milled-rice paste, rice can be divided into three categories: soft (>60 mm), adhesive (40–60 mm), and hard (<40 mm) (Zhang et al., 2020). A significant decrease was found in GC, which was negatively correlated with increasing latitude and positively correlated with planting density. This aligns with Kuang et al. (2021), who observed a 15% reduction in GC for ratoon rice at higher latitudes (Xinyang, 32.1°N) compared with lower-latitude sites (Changsha, 28.2°N; Zhaoqing, 23.0°N).

ASV is generally considered to represent the gelatinization temperature, which is negatively correlated with the cooking temperature of rice (Graham, 2002). In contrast to the negative impact on GC, ASV increased in the ratoon season, consistent with previous studies showing that ASV is negatively related to GC in a recombinant inbred line population derived from a japonica/indica cross (Wang et al., 2007; Lu et al., 2022).

In rice, AC is positively associated with hardness and negatively correlated with viscosity and water absorption High temperatures during grain filling substantially reduce AC by disrupting enzymatic processes required for consistent amylose synthesis (Yamakawa et al., 2007; Zhou et al., 2024). Thus, relatively lower temperatures during the grain-filling period may contribute to the increase in AC in the ratoon season. Furthermore, stubble height modulates these effects: lower stubble height prolongs the growth and grain-filling periods, potentially lowering grain-filling temperatures and thereby increasing AC in RC.





Mechanism underlying the regulation of ratooning on grain quality

Grain-filling temperatures critically modulate ratoon rice quality. The comparatively lower cumulative temperatures in RC versus MC likely drive observed grain quality variations. This thermal hypothesis is partially supported by our RC–LC comparison, where RC–MC quality patterns were absent (Figure 5), though the limited geographical scope and study numbers preclude definitive conclusions. Our findings align with recent multi-latitude analyses and likely reflect, at least in part, temperature effects on ratoon systems. For instance, in a recombinant inbred population of indica–japonica crosses grown across four regions, cooked rice hardness and stickiness increased with decreasing latitude, while springiness showed the opposite trend (Xu et al., 2019). Kuang et al. (2021) reported that differences in crystal structure and starch thermal properties between RC and MC were closely related to temperature during ripening. High temperature during kernel development can cause spikelet infertility, increase chalkiness, and decrease AC (Peng et al., 2004; Kadam et al., 2014), while lower temperature extends the grain-filling period, resulting in better milling and appearance parameters (Funaba et al., 2006). Recent molecular-level research reported that high temperature enhanced the expression and activity of α-amylase, leading to pitted and uneven starch granule surfaces (Liu et al., 2011).

Significant variation in grain quality traits exists among cultivars grown under identical conditions (Kang et al., 2006; Cameron et al., 2008). Generally, japonica varieties are considered to have better ratooning ability than indica varieties (Krishanamurthy, 1989). Hybrid varieties show enhanced ratooning ability and higher post-MC harvest dry weight relative to inbred varieties (Chen et al., 2018). Nevertheless, the roles of genetic factors and varietal differences in regulating post-ratooning grain quality remain poorly characterized.

Optimal agronomic practices are crucial to ensuring the productivity and quality of the ratoon rice system, including fertilizer application, planting density, and stubble height. N application at the grain-filling stage of MC was reported to have the most significant effects on tiller sprouting, growth, and yield of ratoon crops (Wang et al., 2021; Yang et al., 2021). However, elevated N fertilization increases endosperm PC, potentially improving grain hardness and milling resistance at the expense of eating and cooking quality (Leesawatwong et al., 2005; Gu et al., 2015; Zhou et al., 2018). Higher planting density enhances interception of photosynthetically active radiation and dry matter accumulation, thereby promoting tiller production, survival, and effective panicle formation (Bozorgi et al., 2011; Zheng et al., 2021). This practice also shows a strong positive correlation with GC but a negative correlation with ASV. Lowering MC stubble height increases ratoon yield by prolonging growth duration, reducing panicle number per unit area, and increasing spikelets per panicle, total spikelets, and leaf area index (Harrell et al., 2009; Yang et al., 2022), which subsequently affects milling parameters and AC.





Heterogeneity and limitation of our data

While rice ratooning studies have predominantly focused on grain yield, management practices, and varietal breeding, relatively few investigations have addressed grain quality. Quality assessment revealed high methodological standards across the literature, with most studies achieving high-quality scores and demonstrating minimal risk of bias. These findings substantiate the robustness of our analytical conclusions. However, the geographical distribution of research is uneven, with most studies located in Asia. In addition, substantial heterogeneity emerged in our meta-analysis. Rice quality represents a composite trait influenced by both genetic and environmental factors. This multifaceted nature inherently causes grain quality parameters to vary considerably across studies. In West Sumatra, Indonesia, a high-yield perennial rice cropping method called SALIBU involves three cropping cycles, but no grain quality data have been reported (Paiman et al., 2022). Using overwintering (OW) cultivated rice, Liang et al. (2021) reported that four grain quality traits (CRR, ASV, GC, and AC) showed relatively small but significant differences, except for CRR. However, the authors did not trace all cropping seasons, recording only four: RC of 2016, MC of both 2017 and 2018, and RC in 2019. The effects of multiple-harvest rice systems on grain quality require further study.






Conclusion

Our meta-analysis provides important insights into the benefits of ratooning on grain quality. Compared with MC, RC improved milling properties and appearance traits and altered cooking and sensory quality in a region-dependent manner. This study elucidates the interactive effects of thermal and light factors and agronomic practices on ratoon rice quality.

Future efforts should prioritize synergistic optimization of Genetics × Environment × Management to achieve premium grain quality. Our findings provide novel insights for optimizing ratoon rice production across diverse regions, including the development of region-specific agronomic protocols (e.g., dynamic adjustment of stubble height and planting density) and the screening and breeding of ratoon rice varieties with superior grain quality.
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Supplementary Figure 1 | PRISMA diagram for the studies selected and included in the meta-analysis.

Supplementary Figure 2 | The risk of bias assessment in the literature. (A) A schematic representation of the risk of bias assessment in the literature. Risk of bias was assessed as “+” for low risk, “?” for unclear risk, and “–” for high risk. (B) The proportion of three kinds of risk of bias assessments in all the literature.

Supplementary Figure 3 | Studies quality assessment. The numbers 1–21 on the left side of the bubble chart represent the 21 questions belonging to the “Quality checklist question.” The histogram shows the score data with two Y-axes. The main Y-axis (left) shows the cumulative scores of all studies in the “Quality checklist question,” and the right Y-axis shows the quality scores of all studies [C(Satisfied)/(C(Satisfied) + C(Dissatisfied)) (count)].

Supplementary Figure 4 | Funnel plots of publication bias. All the tests with publication bias (P < 0.05) were indicated in red. Black dots represent individual studies, and the gray funnel area represents 95% CIs.
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Treatment Height(cm) Stem Thick(mm) hiesticlght Hiceigoun Dry weignt underground Sihgle sell Output(kg)
above Ground(g) fresh weight(g)  above ground(g) [EIC)] weight(g)

N1 75,54+ 4.78bc 96+ 0.12¢ 76.45% 5.15bc 13,875+ 081ab 367212 221¢ 5698+ 0.402cd 641245 1.25b 43113% 1045¢

N ow 81.22¢ 4.79b 9812 .16 83762 5.16b 140082 073 41236+ 3.24ab 7,003+ 0355 64897 1.28b 438,93+ 10.28b
N3 89.66+ 3.85 1124022 9216+ 5.27a 14,578+ 0932 44878+ 3262 7.156% 0311 65521+ 1.262 44517+ 1244

T 7355% 435¢ 9.7+ 0.14hc 75.15% 4.15b 12.972¢ 0.99b 35647+ 3.19¢ 5974% 0.44c 60987+ 1.31d 42222+ 925¢

4 ke 82112 3.44b 99+ 0.12¢ 8392+ 428b 13,0042 0.81b 40714% 215b 6213+ 0313bc 6.1152¢ 1294 42517% 9554
T3 88.49+ 352 105+ 0.29b 9089+ 4.27 14.185¢ 0742 421594 3.163b 6,634 04116 62731% 1.25¢ 43597+ 10.04b

n 72155 441c 9.22£0.17d 75.15% 5.13bc 12,824 0.88bc 32105+ 4214 5096 0405 614235 1.28d 42014+ 9.88¢
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st 698+ 3.06d 97+ 0.15¢ 7217+ 4.14¢ 12,578+ 074 34189+ 4.19cd 5933+ 0258 60932+ 1344 423,69+ 9.36d
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HI 68.6+ 406d 9.6+ 0.13de 6997+ 5.18d 12,851 0.99bc 28112¢ 222 45112 0411e 58997+ 1.29 42066% 9.69

H H2 745% 323d 9.5+ 0.17d 76.18% 5.13bc 13,0132 0.79b 33008+ 3.21d 4,687+ 0509 59714% 105 42673+ 9.83d
H3 836+ 421ab 968+ 0.16c 8555+ 4.172b 13,848+ 0850b, 36795+ 3.29¢ 5899+ 0313¢ 6.0231% 1.09d 43018+ 9.94c

K K 670+ 3.05¢ 8124 0.11e 67.982 4.07¢ 11927+ 0854 29112+ 2.18¢ 4547+ 0.404e 58979+ 107 42011 8.55¢

N, farm fertlizer; T, biochar; J biological bacterial fertilizer; S, commercial organic fertlizer; H, mineral source potassium fulvic acid. 1:50% recommended amount, 2:100% recommended amount, 3:150% recommended amount.
Different lowercase letters indicate significant differences at the 005 probability level (P < 0.05), determined by one-way analysis of variance (ANOVA) and Duncan's post hoc test for significance.
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1 1551 50.05 50.05 15.51 50.05 50.05

2 422 13.63 63.67 422 13.63 63.67

3 4.01 12.94 76.61 4.01 12.95 76.62
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Variable

Principal Principal Principal Principal Principal Principal
componentl component2 component3 componentl component2 component 3
X1 022 0.03 0.02 0.87 0.06 0.03
X2 022 -0.02 0.02 0.87 -0.03 0.04
X3 023 -0.07 0.11 0.90 -0.14 022
X4 023 -0.11 0.02 0.92 -0.23 0.04
X5 021 -0.04 0.16 0.82 -0.09 031
X6 022 -0.18 0.08 0.86 -0.37 0.15
X7 -0.20 0.03 0.24 -0.77 0.05 047
X8 -0.14 0.02 0.39 -0.56 0.03 078
X9 0.16 -0.02 -0.29 0.63 -0.04 -0.57
X10 021 0.06 -0.21 0.80 0.12 041
X11 -0.05 0.16 0.36 -0.18 032 071
X12 0.11 » 0.10 0.38 043 0.19 076
X13 0.11 -0.01 0.29 044 -0.01 057
X14 020 0.10 -0.13 ‘ 079 ‘ 0.20 -0.26
X15 0.19 -0.09 0.13 ‘ 076 -0.17 025
X16 022 012 0.11 0.86 -0.25 022
X17 021 004 0.11 084 007 022
X18 021 -0.02 -0.11 0.80 -0.04 021
X19 0.08 0.42 0.14 0.30 0.86 027
X20 0.05 0.40 0.14 0.20 0.82 027
X21 0.07 042 0.14 027 | 0.85 027
X22 0.17 -0.05 -0.04 0.66 -0.09 -0.07
X23 022 0.11 -0.01 0.88 023 -0.00
X24 021 0.01 0.02 0.83 0.02 0.04
X25 0.15 026 -0.11 0.59 0.53 022
X26 0.13 033 -0.16 0.53 0.68 -0.31
X27 0.17 -0.22 0.18 0.65 1 -0.45 035
X28 0.14 023 -0.15 053 047 029
X29 0.18 -0.22 0.11 0.69 -0.45 021
X30 0.17 -0.06 0.11 0.65 -0.13 023
X31 022 -0.11 0.15 0.87 0.22 029
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Treatment F1 F2 F3 F synthesis Rank

CK -1.87 1.26 2.65 -42.22 13
N1 -0.49 -0.83 0.25 -32.74 11
N2 0.61 -0.35 0.44 31.71 5
N3 1.88 -0.38 1.89 V 113.67 7 1
T1 -0.53 129 -0.79 -19.36 10
2 0.37 1.90 -1.19 28.68 6
3 1.28 1.90 -0.46 83.69 2
J1 -1.06 -0.34 -0.58 -65.22 14
]2 -0.28 -0.18 -0.04 -17.19 8
J3 0.95 -0.14 -0.18 43.18 4
S1 -1.00 -0.68 -0.59 -67.13 16
S2 -0.09 -0.61 -0.35 -17.45 9
S3 0.89 -0.41 0.50 45.35 7 3
H1 -0.96 -0.30 ‘ -0.51 -58.54 15
H2 -0.29 -0.91 -0.53 -33.57 12
H3 0.61 -1.23 -0.50 7.18 7

N, farm fertilizer; T, biochar; J, biological bacterial fertilizer; S, commercial organic fertilizer;
H, mineral source potassium fulvic acid. 1:50% recommended amount, 2:100% recommended
amount, 3:150% recommended amount.
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Materials for testing Organic matter (%) Nitrogen (%) Phos

Potassium (%)

Farm manure 772 227 11 2.54
Biochar 65 29 24 35

Biological bacterial fertilizer 60 3.1 19 37
Commodity organic fertilizer 50 1.7 24 28

Source of potassium fulvic acid

70 33 4.5 27
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Fertilizer application rate

S recom?’fl)?ngfeéhae recorr%?n()ez;;efdtgfnount Zeofitheliccommendediamotint
Farm manure (Kg HM'Z) 12000 24000 36000
Biochar (Kg HM?) 15000 30000 45000
Biological bacterial fertilizer (Kg HM?) 3750 7500 11250
Commodity organic fertilizer (Kg HM™?) 1500 3000 4500

Source of potassium fulvic acid (Kg

M) 375 750 1125
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q o R? RMSE

5 1 0.83 0.41
6 2 0.85 0.39
74 3 0.86 0.37
8 4 0.84 0.40
9 5 0.83 0.41
10 6 0.83 041
11 7 0.80 0.44
12 8 0.79 0.45
13 9 0.77 0.47
14 10 0.77 0.47

q represents the number of nodes in the hidden layer of the BP neural network, and o is a
constant within the range [1, 10]. Using the MSC-CARS-BP model at the potato S3 stage as an
example, the number of input features is 20.
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Reference

Remote Sensing
Platforms

Spectral
Range (nm)

Regressors

Limitations

Improvements in
This Study

Liu et al. (2022)

Li et al. (2022a)

Feng et al. (2022)

Li et al. (2022b)

Sun et al. (2015)

Sun et al. (2021)

Ndlovu

etal. (2021)

Sudu et al. (2022)

Tunca et al. (2023)

Krishna

et al. (2019)

Elsherbiny
etal. (2021)

Chen et al. (2020a)
Duarte-Carvajalino
et al. (2021)

Suyala et al. (2024)

Guo et al. (2023)
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Potato
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Ground-Based Platform
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UAV-Based Platform

UAV-Based Platform

Ground-Based Platform

Ground-Based Platform

UAV-Based Platform

UAV-Based Platform

Ground-Based Platform

Ground-Based Platform

Ground-Based Platform

UAV-Based Platform

Ground-Based Platform

Ground-Based Platform

UAV-Based Platform

350-2500
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450-950
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450-998
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350-2500

874-1734
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400-1000

337-2521

400-1000
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MLR denotes Multiple Linear Regression, GPR denotes Gaussian Process Regression, CART denotes Classification and Regression Tree, ANN denotes Artificial Neural Network Regression, RF
denotes Random Forest Regression, LRR denotes Linear Ridge Regression, and XGBoost denotes Extreme Gradient Boosting Regression.
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RFV = (88.9 - 0.779 x ADF) x (120/NDF)/1.29
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OPS/images/fpls.2025.1597198/MathJax.js
/*************************************************************
 *
 *  MathJax.js
 *  
 *  The main code for the MathJax math-typesetting library.  See 
 *  http://www.mathjax.org/ for details.
 *  
 *  ---------------------------------------------------------------------
 *  
 *  Copyright (c) 2009-2012 Design Science, Inc.
 * 
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 * 
 *      http://www.apache.org/licenses/LICENSE-2.0
 * 
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

if (!window.MathJax) {window.MathJax = {}}

MathJax.isPacked = true;
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Total

2 Titratable = TSS-to-titratable = Soluble sugar Glucose Sucrose
Treatments/index soluble S s : € St ety &)
et acid (%) acid ratio (mg g~ DW) (mg g~ DW) (mg g~ DW)
solid (%)
FP 8.13 + 0.06b 054 +0.14a 1597 + 4.44b 47510 + 28.73b 130.33 + 14.10ab 184.96 + 15.27b
OPT 8.37 £ 0.15b 0.49 + 0.00ab 17.92 + 0.58ab 545.68 + 30.39a 17249 + 49.68a 197.21 + 35.96b
Phloem t
PS 8.70 £ 0.26a 0.43 + 0.06ab 20.94 + 2.73ab 513.34 + 9.48ab 68.88 + 48.37bc 251.90 + 25.94a
M 8.20 + 0.00b 0.36 + 0.05b 24.77 + 6.08a 507.99 + 28.87ab 33.72 + 27.74¢c 275.89 + 14.88a
2022 T
FP 7.63 £ 0.12b 127 £ 0.11a 6.02 £ 0.45a 365.47 + 32.54c 96.84 + 29.55a 162.85 + 6.79¢
OPT 7.70 + 0.10b 1.20 £ 0.06a 649 + 043a 397.74 + 32.90bc 7050 + 23.49a 16241 + 2.04c
Xylem -
PS 8.13 £ 0.12a 121 £0.07a 6.72 £ 0.30a 445.23 + 27.36b 53.03 + 13.07a 224.78 + 26.51b
M 793 £ 0.12a 1.20 £ 0.06a 6.74 £ 0.40a 509.32 + 27.64a 90.85 + 38.72a 259.01 + 891a
FP 1243 £ 0.21a 1.14 £ 0.04a 10.97 + 0.29b 696.18 + 25.93a 303.72 + 27.96a 143.12 + 1.75b
OPT 12,53 + 0.21a 1.09 + 0.06a 11.53 + 0.58ab 745.63 + 27.64a 342.86 + 33.58a 152.38 + 7.69b
Phloem
PS 12,67 + 0.15a 1.08 £ 0.01a 11.81 + 0.05ab 719.19 + 31.68a 196.64 + 29.85b 27557 + 10.95
M 11.87 + 032b 0.97 +0.08b 1232 £ 081a 753.26 + 44.81a 16353 + 34.35b 33207 + 61.09%
2023
FP 10.53 £ 0.31a 250 £ 0.16a 4.24 +0.39d 490.98 + 34.63c 188.00 + 22.59a 134.10 + 19.19b
OPT 10.53 £ 0.15a 1.91 + 0.06b 551 +10.19¢ 526.93 + 18.48bc 123.99 + 54.74a 130.22 +9.22b
Xylem
PS 10.40 + 0.10a 1.71 +0.02¢ 6.09 + 0.01b 584.24 + 35.73ab 120.65 + 41.94a 215.04 + 5.31a
M 10.20 + 0.00a 1.54 £ 0.02¢ 661 +0.10a 607.22 + 34.12a 14639 + 16.42a 19241 + 13.252

Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates).
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Fertigation Zn (mg/kg) Mn (mg/kg) Fe (mg/kg) Cu (mg/kg)

Management
Strategy

Leach 151.50 + 3.663 18.00 £ 0816 b 18775 + 22.287 be 514.00 + 58242 a 4.25 + 0250

0036 139.00 + 9.583 2025+ 0854 b 10250 + 8.451 ¢ 233.00 + 12994 b 3.75 + 0.250

6030 145.00 + 9.600 3075+ 14362 | 357.00 + 65.029 ab 108.75 + 15.024 b 4.25 + 0250
‘Florida Brilliance’

00225 188.50 + 11.064 2225+ 1.109 b 441.75 +24.095 a 559.50 + 40.642 a 4.25 £ 0.629

00.15 170.25 + 22.728 18.00 £ 1472b 28550 £43.133ab | 230.50 + 74515 b 3.50 + 0.289

Timer 167.00 + 21.973 3200 +0408a | 304.75+50954ab | 204.25+ 67.288 b 4.25 £ 0250
P 0224 <0.001 <0.001 <0.001 0354
Test A A A A KW

Leach 129.00 + 11.881 b 23.00 + 1.683 203.25 +9.801 ab 517.00 + 86.374 a 4.00 + 0.408

0036 13475 + 10.641 ab 2275 + 1.250 11575 +21.800 b 28650 + 48.550 ab 6.25 + 1.931

0030 158.00 + 11.402 ab 2225 + 1.652 238.00 + 63.005 ab 94.50 £ 9.242 b 4.25 + 0250
‘Florida Beauty’

00225 180.50 + 12.301 ab 23.75 + 1.887 419.50 + 25366 a 546.50 + 59.389 a 3.75 + 0.250

00.15 148.75 + 16.540 ab 18.50 + 2.327 228.50 +14.773ab | 247.50 + 40.292 ab 3.75 + 0.250

Timer 185.50 + 11139 a 27.00 + 1.780 284.50 +33952ab | 163.25 + 18.531 ab 3.75 + 0.250
P 0.022 0.237 0.006 0.002 0311
Test A KW KW KW KW

Leaf boron (B), iron (Fe), copper (Cu), manganese (Mn), and zinc (Zn) concentrations were determined by inductively coupled plasma atomic emission spectrophotometer (ICP-AES) after wet
acid digestion using nitric acid and hydrogen peroxide. Statistical analysis for leaf B, Zn, Mn, and Fe were conducted using one-way ANOVA and Tukey’s HSD (A), while the Kruskal-Wallis test
with Dunn’s post-hoc (KW) was used for leaf Cu due to invalid ANOVA assumptions. Each value represents the average + standard error of four replications with two measurement plants.
Means with the same letter show no significant difference; means with different letters are statistically different at a significance level of 5% (P < 0.05).
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PS
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8.10 + 0.17b

8.17 + 0.15ab

8.47 +0.25a

8.00 + 0.00b

11.73 £ 0.15b

11.93 £ 0.15ab

1220 £ 0.17a

11.63 £ 0.25b

7.87 + 0.15b

7.70 + 0.10b

8.33 £ 0.25a

793 +0.12b

11.37 £ 0.78a

11.27 £ 0.352

11.53 £0.12a

11.50 + 0.46a
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7.93 £0.12a

10.57 £ 0.29ab
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0.58 +£ 0.01a

0.42 £ 0.06b

0.43 £ 0.06b

0.45 £ 0.11b

1.53 = 0.04a

1.21 £ 0.06b

1.00 + 0.06¢

1.05 £ 0.01c

0.74 £ 0.10a

0.64 + 0.05ab

0.55 + 0.05b

0.51 £ 0.07b

1.54 + 0.07a

1.20 £ 0.05b

1.07 £ 0.15b

1.08 £ 0.10b

1.18 £ 0.10a

1.11 £ 0.06a

0.95 + 0.06b

0.74 £ 0.07c

1.48 + 0.03a

1.05 £ 0.11b

14.55 + 1.27b

20.13 +£2.57a

20.37 +2.15a

18.43 + 3.90ab

7.71 £ 0.33d

9.94 + 0.58¢

12.29 + 0.47a

11.15 + 0.15b

10.88 + 1.37b

12.28 + 0.87b

16.07 £ 1.95a

15.86 + 1.99a

7.41 % 0.83b

9.46 + 00.62a

11.04 £ 1.67a

10.64 + 0.56a

6.53 £ 0.51c

6.98 + 0.50c

8.61 + 0.56b

10.78 + 0.92a

7.18 £ 0.18¢

10.06 + 1.13b

351.22 £ 11.58a

416.01 + 1442a

448.86 + 106.23a

422.37 £ 27.77a

489.11 £ 5.11c

608.60 + 12.95b

682.72 + 75.65ab

697.26 + 42.59a

40091 + 22.42b

441.06 + 20.80b

548.61 + 50.98a

511.61 + 16.96a

650.25 + 61.30a

621.95 + 36.74a

687.39 + 44.23a

676.24 + 61.10a

459.33 + 33.45¢

494.72 + 18.33bc

518.26 + 38.46b

575.84 + 14.15a

468.86 + 30.59¢

556.28 + 29.51b

116.29 + 24.75ab
85.00 + 37.88ab
139.42 + 49.87a
66.98 + 28.37b
139.50 + 100.16ab
83.62 + 20.38b
210.40 + 66.60ab
234.49 + 60.42a
132.09 + 68.13a
208.85 + 31.04a
104.68 + 73.26a
117.22 + 36.08a
279.26 + 25.02a
85.26 + 29.6b
245.27 +20.14a
232,05 +41.17a
201.58 + 52.65a
72.05 + 49.19b
127.77 + 70.29ab
199.76 + 15.85a
168.87 + 58.84b

182.82 + 4.26b

11849 + 12.28b

191.36 + 46.92a

176.95 + 12.43a

221.54 £ 25.78a

149.36 + 31.00b

229.50 + 66.64a

265.45 + 13.03a

218.56 + 14.58ab

222.47 £59.12a

208.22 + 35.92a

247.57 + 30.81a

207.79 + 55.06a

159.18 + 7.72b

309.66 + 71.02a

243.99 + 4.58a

243.12 + 6.76a

12259 + 33.04b

229.54 + 58.69a

237.62 + 27.60a

145.84 + 22.80b

102.61 + 15.33¢

145.66 + 11.36b

PS

M

10.87 £ 0.21a

10.40 + 0.00b

0.78 + 0.01c

0.81 % 0.04c

1391 £ 0.18a

12.86 + 0.54a

669.66 + 33.31a

676.07 + 31.38a

275.85 + 20.35a

281.30 + 56.38a

Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates).

205.46 + 19.08a

155.80 + 6.83b
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Cultivar Fertigation

Management Strategy

Leach 2.38 + 0,066 043£0025b | 2310060 b 035+0020ab | 1.44 % 0.057 ab 0.16 + 0.005
60.36 248 + 0,047 045+0018b | 2.38 % 0.055 ab 030 +0.003 b 132 £ 0.066 b 0.16 + 0.005
“Florida 6 0.30 263 £ 0.135 066+0043a | 282+0111a 037+0008ab 170 % 0.120 ab 0.18 £ 0.003
L 00225 225+ 0.077 042+0003b | 2.42+0077 ab 039 £0.010 a 1.72 + 0.087 ab 0.17 + 0.007
60.15 241 + 0,036 043£0012b | 241%0152ab  0.37+0008ab 160+ 0.081 ab 0.18 + 0010
Timer 244 +0.139 067+0030a  263+0.1l4ab | 0.36+ 0023 ab 1.87 £ 0.176 a 0.17 + 0,003
P 0.145 <0.001 I 0020 0.060 0.019 0134
Test A A A Kw A KW
Leach 255+0084ab  0.66 0.019a 2.59 + 0,088 0.41 £ 0.006 a 160 + 0.126 ab 0.18 £ 0.005
60.36 252+ 0.057 ab 0450019 a 243 £ 0,043 030 £ 0013 b 132 £0.050 b 0.16 + 0.003
60.30 260+0047a 0580059 a 2.55 + 0,060 035+0017ab 150  0.099 ab 0.18 + 0,008
‘Florida Beauty’
60.225 237+0048ab | 045 0005a 261 £0.073 037+0012ab  1.60 + 0.044 ab 0.18 + 0.006
60.15 227+0082b 0550090 a 260 £ 0.239 039+0019ab  1.66 + 0.084 ab 0.17 + 0,005
Timer 231+0087ab | 0730051 a 252 %0055 0.37 £ 0.017 ab 2.00 0223 a 0.16 + 0,000
P 0016 0019 0743 0014 0.024 0055
Test A KW KW KW A KW

Leaf nitrogen (N) was determined by the high-temperature phosphorous (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S) were determined by inductively coupled plasma atomic
emission spectrophotometer (ICP-AES) after wet acid digestion using nitric acid and hydrogen peroxide. Statistical analysis for leaf N, P, K, and Ca was conducted using one-way ANOVA and Tukey’s
HSD (A), while the Kruskal-Wallis test with Dunn’s post-hoc (KW) was used for leaf Mg and S due to invalid ANOVA assumptions. Each value represents the average + standard error of four
replications with two measurement plants. Means with the same letter show no significant difference; means with different letters are statistically different at a significance level of 5% (P < 0.05).
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Treatments/  Total soluble Titratable TSS-to-titratable Soluble sugar Sucrose

index solid (%) acid (%) acid ratio (mg g~* DW) (mg g™* DW)
P 7.86 + 0.10b 0840062 | 10.65 +0.31b 140382 + 19.73b 149.99 + 33.49 15452 + 24.51b
OPT 7.81 + 0.13b 0.72 + 0.02b 13.13 £ 0.73a 450.60 + 17.29ab 121.97 + 34.57a 209.71 + 43.63a
e s 831 %022 0.64 % 0.02bc 1502 + 1.21a 505.24 £ 58.82a 123.96 + 5392 22071 £ 1381a
M 7.96 + 0.08b 0.57 £ 0.07¢ 15.02 + 2.13a 503.27 + 16.44a 127.99 + 22.96a 191.72 + 20.64ab
P 1122 + 0.34ab 152 + 0,032 743 +036d 536.08 + 32.32b 195.88 + 3325 137.05 + 17.97b
OPT 11.22 + 0.12ab 1.15 + 0.04b 9.82 + 0.41c 595.61 + 17.71b | 117.24 + 16.32b 22827 + 28.88a
o s 1153 + 0.09 0.95 + 0.04c 1241 +0.48 679.92 + 38.84a 24384 £ 29.32 23830  1121a
M » 11.18 + 0.07b 0.98 + 0.04c 11.55 + 0.40b 683.19 + 34.53a 249.28 + 31.4la 205.83 + 4.83a

Different letters indicate significant differences among different water and fertilizers managements (P < 0.05). Values shown are means (n = 3 replicates).
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Year/ 2022 Autumn Water and fertilizers 2023 Spring Water and fertilizers
Treatments OPT  PS reduction (%) OPT  PS reduction (%)
N (kg ha™) 323 252 252 252 219 323 236 236 236 268
P,0s | (kgha') 225 54 63 78 711 225 59 74 88 674
KO | (kgha) 285 240 240 240 -158 285 300 300 300 53
Water | (m*ha™) 924 862 894 875 5.1 1835 1587 1605 1587 132

Water and fertilizers reduction = (the average of water and fertilizers input amount in the OPT, PS, M treatments - the water and fertilizers input amount in the FP treatment)/the water and
fertilizers input amount in the FP treatment.
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2022

P uptake P uptake
PupE PRE PupE
Heading stage Maturity stage Heading stage Maturity stage
L CK 8.97¢ 12.52¢ 7.49b 9.30b
N2 10.25bc 14.73bc 1092ab 15.84ab
P2 12.73b 15.00b 0.17b  0.03b 10.00ab 14.52ab 0.16b 0.06c
NI1P2 16.42a 1932a 021b  0.08ab 14.94a 20.32a 0.23b 0.12b
N2P1 13.08ab 17.40ab 039  0.lla 12.24ab 17.15ab 0.38a 0.17a
N2P2 10.61bc 14.38bc 0.16b  0.02b 11.17ab 16.23ab 0.18b 0.08¢
Mean 12.01B 15.56B 0.15B  0.04B 11.13B 15.56B 0.16B 0.07A
M CK 11.23¢ 11.64c 8.80c 1545¢
N2 12.82bc 18.24bc 10.85bc 16.35¢
P2 1471bc 16.08bc 0.18c  0.05¢ 11.07bc 13.45¢ 0.15¢ -0.02¢
NIP2 25.30a 26.86a 0.30b  0.17ab 17.72a 32.86a 0.37b 0.19b
N2P1 18.83ab 23.06ab 05la 0252 17.26a 28.33ab 0.63a 0.29a
N2P2 1634bc 2097b 0.23bc | 0.10bc 14.44ab 24.63bc 027¢ 0.10c
Mean 16.54A 19.47A 0.20A  0.10A 13.36A 21.85A 0.24A 0.09A
H CK 10.26b 13.34¢ 9.51c 8.96¢
N2 15.40ab 17.89abc 11.30bc 11.30b
P2 15.69ab 15.67bc 0.17b | 0.03c 1291be 9.77¢ 0.11b 0.01c
NIP2 17.64a 24.09 0276 0.12b 17.05a 20.41a 0.23b 0.13b
N2P1 17.15a 20.77ab 0462 0.17a 14.72ab 19.61a 0.44a 0.24a
N2P2 14.23ab 18.61abc 021b  0.06c 10.33¢ 12.50b 0.14b 0.04c
Mean 15.06A 18.40AB 0.19A  0.06AB 12.64AB 13.76B 0.15B 0.07A
ANOVA | SD | e * * * * o el ns
FR e ™ - o * ™ - -
SD*FR a * ns ns * * ns ns

Data represent the mean. Different lower-case letters denote significant differences within same sowing density (SD) for different fertilizer rates (FR; P< 0.05). Different upper-case letters denote
significant differences for different sowing densities (P< 0.05).

L means low sowing density; M means moderate sowing density; H means high sowing density.

ANOVA indicates analysis of variance; ** indicates P< 0.01; * indicates P< 0.05; ns indicates no significance.
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2022

N uptake N uptake
NupE
Heading stage Maturity stage Heading stage = Maturity stage
L CK 58.65b 79.33b 57.18b 65.13¢
N2 66.95b 96.58b 097b | 017b 71.05b 101.75ab 1.02b 0.37b
P2 62.81b 91.40b 61.17b 89.27bc
N1P2 103.00a 127.00a 254a | 0.95a 111.84a 128.86a 2.58a 1.27a
N2P1 77.46b 107.23ab 1.07b | 0.28b 77.50b 106.81ab 1.07b 0.42b
N2P2 73.27b 95.13b 095b | 0.16b 71.87b 95.32bc 0.95b 0.30b
Mean 73.69B 99.44B 0928 0.26B 75.10B 97.86B 0.94B 0.39B
M CK 73.72¢ 92.52¢ 40.37¢ 68.07d
N2 91.67bc 111.70bc L12b | 019 69.10bc 96.91bc 097b 0.29¢
P2 68.07c 92.49¢ 63.47bc 73.43cd
N1P2 i 153.38a 174.99a 350a | 1.65a 99.30a 185.79a 372a 235
N2P1 117.11b 136.84ab 137b | 044b 100.35a 143.52ab 1.44b 0.75b
N2P2 86.50bc 134.99ab 135b | 0.42b 76.83ab 143.49ab 1.43b 0.75b
Mean 98.41A 123.92A 1224 045A 74.90B 118.53A 1.26A 0.69A
H CK 65.84c 65.14¢ 59.01c 61.50b
N2 115.09bc 101.90bc 1.02b | 037b 78.00bc 80.71b 0.81b 0.19b
P2 89.25bc 87.07bc 74.08bc 60.96b
N1P2 133.38a 136.83a 2742 | 143 117.69% 153.49 3.07a 1.84a
N2P1 101.47b 113.12ab L13b | 048b 100.65ab 153.86a 1.54b 0.92b
N2P2 97.34bc 97.23bc 097b  0.32b 73.38bc 85.56b 0.86b 0.24b
Mean 100.39A 100.21B 098B | 0.43A 83.80A 99.35B 1.05B 0.53AB
ANOVA | SD * * * * = * * o
FR - o ™ - . - ™ -
SD*FR * * ns ns * N ns ns

Data represent the mean. Different lower-case letters denote significant differences within same sowing density (SD) for different fertilizer rates (FR; P< 0.05). Different upper-case letters denote
significant differences for different sowing densities (P< 0.05).

L means low sowing density; M means moderate sowing density; H means high sowing density.

ANOVA indicates analysis of variance; ** indicates P< 0.01; * indicates P< 0.05; ns indicates no significance.
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Sowing Fertilizer
densities rates Heading Maturity Heading Maturity
stage stage stage stage
2022 I CK 297b 458b 405.11b 522.96b
N2 3.15ab 5.18ab 485.55b 652.442b 5.96b
P2 3.15ab 4.91ab 477.12b 623.45ab 359
N1P2 4.07a 6.43a 706.82a 890.99a 13.2a
N2P1 3.38ab 5.81ab 550.95ab 765.72ab 8.45ab
N2P2 3.07ab 5.42ab 519.31ab 621.79ab 4.40b
Mean 3.30B 5.39B 524.14B 679.56B 7.12B
M CK 3.77b 5.60c 503.39b 633.44b
N2 437ab 6.69b 641.83b 774.87b 10.9b
P2 3.80b 6.49¢ 570.80b 642.11b 9.92b
N1P2 6.35a 8.13a 1021.07a 1037.56a 18.09a
N2P1 4.96ab 6.85b 764.01ab 871.04ab 8.63b
N2P2 427ab 7.34ab 604.89b 849.87ab 9.2b
Mean 4.59A 6.68A 684.33A 801.48A 10.41A
H CK 3.25b 4.53b 364.72b 539.34b
N2 4.52a 6.00ab 601.91ab 767.86ab 14.62a
P2 4.10a 5.04ab 484.13b 611.23ab 5.58b
NI1P2 4742 679 656.92a 906.97a 16.14a
N2P1 4.54a 5.93ab 623.67a 827.51ab 9.65ab
N2p2 4.2la 5.66ab 584.60ab 710.49ab 5.93b
Mean 4.23A 5.66B 552.66B 727.23AB 10.38A
ANOVA SD o % % * *
FR o o - o o
SD*FR % %, * * ns
2023 L CK 2.29% 3.35¢ 306.83b 396.07¢
N2 3.07ab 5.31ab 414.54bc 649.08bc 19.61a
P2 2.56b 4.59bc 344.16b 572.07bc 13.75b
N1P2 3.95a 6.06a 556.35a 876.18a 19.36a
N2P1 3.32ab 5.32ab 453.90ab 696.06ab 13.57b
N2pP2 3.29ab 5.36ab 453.76ab 700.72ab 10.55b
Mean 3.08B 5.00B 421.59B 648.36B 15.4AB
M CK 2.58¢ 5.34bc 319.65¢ 634.63b
N2 3.38bc 5.85bc 477.92bc 690.29b 5.11c
P2 278¢ 5.87c 380.95¢ 540.76b 5.64c
N1P2 491a 10.28a 710.90a 1376.17a 3531a
N2P1 4.67ab 9.35ab 651.81ab 1215.36a 27.68ab
N2P2 4.17abc 8.43abc 604.07ab 1108.48a 16.24b
Mean 3.75A 7.29A 524.22A 927.61A 17.2A
H CK 3.18b 4.20ab 439.47b 493.24b
N2 331b 4.95ab 476.14b 586.23b 7.53b
P2 341b 4.69 470.56b 441.79b 5.44b
N1P2 4.6la 7.75a 674.75a 1044.79a 25.40a
N2P1 437a 7.46ab 644.13a 1026.84a 2247a
N2P2 324b 4.53ab 448.76b 584.79b 1.74c
Mean 3.69A 5.43B 525.64A 696.28B 11.76B
ANOVA SD * * * * -
FR - - - - .
SD*FR ki % % % ns

Data represent the mean. Different lower-case letters denote significant differences within same sowing density (SD) for different fertilizer rates (FR; P< 0.05). Different upper-case letters denote
significant differences for different sowing densities (P< 0.05).

L means low sowing density; M means moderate sowing density; H means high sowing density.

ANOVA indicates analysis of variance; ** indicates P< 0.01; *indicates P< 0.05; ns indicates no significance.
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Texture Texture

o Formula
feature abbreviation feature L
G
MEA; Mean MEA = 3 ip(i,j)
ij=1
. GG
VAR Vaic VAR = 33— 4)’pli.))
i=1j=1
HOM Homogeneity HOM = 6.8  plj)
2121 1+ (i—j)?
CON Contrast g 2
S CON = S 3(i - j)’pli, )
i=1j=1
o g GG
DIS Dissimilarity DIS = EEP(LJ)“ -l
i=1j=1
G G
ENT Entropy ENT = ﬁEEP(’.’ ) logp(i.j)
i=lj=1
Second GG
SEC moment SEC = EZP(I»J)Z
=1
COR Correlation COR = ii (- )G - p(inj)

&7 /VAR; x VAR,

In the formulas, i and j represent the row number and column number of the image,
respectively, and p(i,j) represents the relative frequency of two neighboring pixels.
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Vegetation index Vegetation index

abbreviation

Reference

Bands used

Original vegetation index (Vlorg)

SR Simple ratio R Reaa (Jordan, 1969) 802 nm, 682 nm

NDVI Normalized difference vegetation index (Ryir = Ryea)/ Ry + Rrea) (Sims and 802 nm, 682 nm
Gamon, 2002)

GDVI Green difference vegetation index Ryreen = Reea (Sripada, 2005) 550 nm, 682 nm

RDVI Red difference vegetation index R Rt (Huete et al., 1994) 802 nm, 682 nm

MDVI Modified difference vegetation index (Ryir = Ryea)/ v/ Ruir + Rrea (Roujean and 802 nm, 682 nm
Breon, 1995)

MSR Modified SR R/ Roed ~ 1)/ v/ R [ Romg + 1 (Chen, 1996) 802 nm, 682 nm

mNDVI Modified NDVI (Ryir = Ryea) /Ry + Rreg = 2Ripiye) (Sims and 802 nm, 682 nm,
Gamon, 2002) 446 nm

Clyreen Green chlorophyll index Ruir/ Rereen = 1 (Gitelson et al., 2006) 770 nm, 510 nm

OSAVI Optimized soil-adjusted vegetation index (1 +0.6)(Ry;y = Ryeq)(Ryiy + Ryeq +0.16) (Rondeaux et al., 1996) 802 nm, 682 nm

OSAVIyreen Optimized soil-adjusted vegetation index (1 +0.6)(Ryi, = Ryreen) Ry + Rereen +0.16) (Qiao et al., 2022) 802 nm, 550 nm

with green
SIPI Structure insensitive pigment index (Ryir = Rytue)/ Ry = Ryeq) (Penuelas et al, 1995) 802 nm, 446 nm,

Corresponding red-edge vegetation index (Vl,.)

SR,

NDVI,,

REDVI

MDVI,,

MSR,

mNDVI,,

Clee

OSAVIed-edge

MTCI

Red-edge simple ratio

Red-edge normalized difference
vegetation index

Red-edge difference vegetation index

Modified difference vegetation index with
red-edge

Modified red-edge SR

Modified red-cdge NDVI

Red-edge chlorophyll index

Optimized soil-adjusted vegetation index
with red-edge

MERIS terrestrial chlorophyll index

Ruir [ Reed-edge

(Ryir = Rreqedge) | (Ruie + Reci-edge)

Rici-edge = Rred

(Ryir = Ryed-edge) / Ruir + Rred-edge

R/ Rt tge = D ] \/Rui /Reei-eae + 1

(Rpir = Rrededge)/ Ruir + Ryed-edge = 2Rbiue)

Ruir/ Reed-edge = 1

(1+0.6)(Ryir = Rred-edge) Ryir + Rred-edge + 0.16)

(Ryir = Rregedge) | (Rred-edge = Rrea)

(Sims and Gamon, 2002)

(Sims and Gamon, 2002)

(Sun et al., 2010)

(Qiao et al., 2022)

(Wu et al., 2008)

(Sims and Gamon, 2002)

(Gitelson et al., 2006)

(Wu et al., 2008)

(Dash and Curran, 2004)

682 nm

802 nm, 706 nm

802 nm, 706 nm

710 nm, 682 nm

802 nm, 710 nm

802 nm, 710 nm

802 nm, 710 nm,
446 nm

770 nm, 710 nm

802 nm, 706 nm

802 nm, 710 nm,
682 nm
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Relative yield (RY)

1.2

0.8

0.0

1.2

0.8

0.2

Root-V6

ZH:RY=-0.9393AND + 1.098 if AND>0.15
and RY=1 AND<0.15 R*=0.93

XY:RY=-1.082AND + 1.012 if AND>0.07
and RY=1 AND<0.07 R*=0.84

Stem-sheath-V6
ZH:RY=-0.5695AND + 1.135 if AND>0.25
and RY=1 AND<0.25 R*~0.94

XY:RY=-0.7578AND + 1.114if AND>0.21
and RY=1 AND<0.21 R?=0.94

0.4 0.6 0.8

V12

ZHRY= -0.5064AND + 1.017 if AND>0.11
and RY=1 AND<0.11 R°=0.86

Qg XY:RY=-0.5030AND+ 0.8983 if AND>-0.17,
and RY=1 AND<-0.17 R*=0.97

-1.0

1.2

0.8

-0.2

1.2

0.8

-1.0

1.2

0.8

-0.5

0.0

ZH:RY=-0.5089AND + 0.9824 if AND>0
and RY=1 AND<0 R*=0.97

XY:RY=-0.6356AND + 1.004 if AND>0.02
and RY=1 AND<0.02 R*=0.94

R3

ZH:RY=-0.4136AND + 0.9991 if AND>-0.0
and RY=1 AND<-0.01 R’=0.87

XY:RY=-0.5946AND + 1.022 if AND>0.02
and RY=1 AND<0.02 R?=0.93

0.5 1.0 1.5 2.0

ZH:RY= -0.3209AND + 0.9175 if AND>-0.1
and RY=1 AND<-0.1 R*=0.94

XY:RY=-0.3984AND + 0.9166 if AND>-0.18
and RY=1 AND<-0.18 R*=0.98

0.5 1.0 1.5

0.0

1.0

1.0

-1.0

VIi2
ZH:RY=-0.2011AND + 1.055 if AND>0.31

and RY=1 AND<0.31 R*=0.87
XY:RY=-0.2989AND + 1.020 if AND>0.07
and RY=1 AND<0.07 R*=0.96

0.5 1.0 1.5 2.0

ZH:RY=-0.1381AND + 0.9864 if AND>-0.07]
and RY=1 AND<-0.07 R°=0.93

XY:RY=-0.1793AND + 0.9271 if AND>-0.3
and RY=1 AND<-0.31 R’=0.96

ZH:RY=-0.2446AND + 1.308 if AND>1.28
and RY=1 AND<1.28 R*=0.91

XY:RY=-0.4120AND + 1.373 if AND>0.93
and RY=1 AND<0.93 R*~0.98

2.0 3.0 4.0 5.0

ZH:RY=-0.2492AND + 1.311 if AND>1.48
and RY=1 AND<1.48 R*=0.75

XY:RY=-0.3270AND + 1.230 if AND>0.69
and RY=1 AND<0.69 R°=0.91

2.0 3.0 4.0 5.0

-0.5

0.5

0.5

1.0

Leaf-Vé6

ZH:RY=-0.6125AND + 1.082 if AND>0.21
and RY=1 AND<0.21 R*~0.94

Y:RY=-0.4730AND + 0.9119if AND>-0.09
‘and RY=1 AND<-0.09R’=0.91

Whole plant-V6

ZH:RY=-0.2359AND + 1.110 if AND>0.05
and RY=1 AND<0.05 R*=0.96

XY:RY=-0.2615AND + 1.041 if AND>0.34
and RY=1 AND<0.34 R*=0.91

0.5 1.0 1.5 2.0

ZH:RY=-0.288AND + 1.117 if AND>0.32
and RY=1 AND<0.32 R*=0.73

XY:RY=-0.2955AND + 1.020 if AND>0.14
and RY=1 AND<0.14 R*=0.92

1.0 1.5 2.0 2.5

ZH:RY=-0.1429AND + 0.8645 if AND>-0.92
and RY=1 AND<-0.92 R*=0.99

XY:RY=-0.1847AND + 0.8672 if AND>-0.62
and RY=1 AND<-0.62 R*=0.97

ZH:RY=-0.1806AND + 1.077 if AND>0.49
and RY=1 AND<0.49 R*=0.98

XY:RY=-0.2061AND + 1.022 if AND>0.29
and RY=1 AND<0.29 R*=0.93

1.0 1.5 2.0 2.5

R6
ZH:RY=-0.5640AND + 2.231 if AND>2.24

and RY=1 AND<0.02 R*=0.79
XY:RY=-1.360AND + 3.534 if AND>1.89
RY=1 AND<1.89 R*=0.77

2.0 3.0 4.0 5.0

Accumulated nitrogen deficit (AND)

0.5

1.0

2.0

2.0

1.0 1.5 2.0

ZH:RY=-0.1250AND + 1.230 if AND>1.67
and RY=1 AND<1.67 R*=0.88

XY:RY=-0.1323AND + 1.112 if AND>0.02
d RY=1 AND<0.02 R’=0.97

2.0 3.0 4.0 5.0

ZH:RY=-0.06911AND + 0.9135 if AND>-1.1
and RY=1 AND<-1.19 R’=0.97

XY:RY=-0.07660AND + 0.8978 if AND>-1.39
and RY=1 AND<-1.38 R*=0.95

ZH:RY=-0.05695AND + 1.088 if AND>1.69
and RY=1 AND<1.69 R*=0.96

XY:RY=-0.06599AND + 1.026 if AND>0.63
and RY=1 AND<0.62 R’=0.98

4.0 6.0 8.0

R6

ZH:RY=-0.05489AND + 1.171 if AND>3.2
and RY=1 AND<3.29 R*~0.94

XY:RY=-0.06518AND + 1.122 if AND>1.83
and RY=1 AND<1.82 R?=0.97

4.0 6.0 8.0 10
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ive yield (RY)

Relat

1.2

1.0

0.8

1.2

1.0

0.8

1.2

1.0

0.8

1.2

1.0

0.8

1.2

1.0

0.8

Root-V6

ZH:RY=0.7026NNI + 0.3786 if NNI<0.87
and RY=1 NNI>0.87 R’=0.95

XY:RY=0.6483NNI+ 0.3529 if NNI<0.88
and RY=1 NNI>0.88 #=0.81 @ @O®

V12

ZH:RY=0.5778NNI+ 0.4350 if NNI<0.85
and RY=1 NNI>0.85 R?=0.87
XY:RY=0.4826NNI + 0.4238 if NNI<1.14
and RY=1 NNI>1.14 R?=0.96 @89

Rl

ZH:RY=0.6083NNI + 0.3737 if NNI<1
and RY=1 NNI>1 R?=0.98
XY:RY=0.7289NNI + 0.2702 if NNI<0.98
and RY=1 NNI>0.98 R°=0.96

R3

ZH:RY=0.5423NNI + 0.4586 if NNI<1
and RY=1 NNI>1 R*=0.89
XY:RY=0.7293NNI + 0.2863 if NNI<0.99
and RY=1 NNI>0.99 R’=0.96

R6

ZH:RY=0.4693NNI+ 0.4527 if NNI<1.06
and RY=1 NNI>1.06 R°=0.95
XY:RY=0.5426NNI+ 0.3785 if NNI<1.12
and RY=1 NNI>1.12 R?=0.98

Stem-sheath-V6

ZH:RY= 0.6751NNI+ 0.4216 if NNI<0.84
and RY=1 NNI>0.84 R°=0.94
XY:RY=0.7493NNI + 0.3304 if NNI<0.83
and RY=1 NNI>0.83 R*=0.9

V12

ZH:RY=0.4923NNI + 0.5567 if NNI<0.89
and RY=1 NNI>0.89 R*=0.91
XY:RY=0.5374NNI + 0.4771 if NNI<0.94
and RY=1 NNI>0.94 R’=0.

ZH:RY=0.4688NNI + 0.5177 if NNI<1.02
and RY=1 NNI>1.02 R*=0.95
XY:RY=0.4426NNI+ 0.4864 if NNI<1.12
and RY=1 NNI>1.12 R’=0.96

ZH:RY=0.8387NNI + 0.4585 1f NNI<0.64

and RY=1 NNI>0.64 R*=0.93
XY:RY=0.7338NNI + 0.5280 if NNI<0.63

and RY=1 NNI>0.63

ZH:RY= 0.7880NNI + 0.4681 1f NNI<0.59

and RY=1 NNI>0.64 R*=0.85
XY:RY=0.7075NNI + 0.4757 if NNI<0.64

and RY=1 NNI>0.64 R°=0.93

Leaf-V6

ZH:RY=0.9681NNI + 0.08217 if NNI<0.91
and RY=1 NNI>0.91 R*=0.92
XY:RY=0.6903NNI + 0.2256 if NNI<1.05
and RY=1 NNI>1.05 R’=0.88

V12

ZH:RY=0.9119NNI + 0.1843 if NNI<0.92
and RY=1 NNI>0.92 R*=0.85
XY:RY=0.7974NNI + 0.2152 if NNI<0.95
and RY=1 NNI>0.95 R*=0.95 :

()

R1

ZH:RY=0.6161NNI + 0.2558 if NNI<1.20
and RY=1 NNI>1.20 R*=0.99

XY:RY=0.6049NNI + 0.2725 if NNI<1.12
and RY=1 NNI>1.12 R*=0.96

ZH:RY=0.6760NNI + 0.3872 if NNI<0.89
and RY=1 NNI>0.89 R*=0.97
XY:RY=0.5936NNI+ 0.4122 if NNI<0.92
and RY=1 NNI>0.92 R*=0.92

R6

ZH:RY=1.647NNI + 0.1144 if NNI<0.53

and RY=1 NNI>0.53 R°=0.98

XY:RY=1.653NNI + 0.2157 if NNI<0.46
Y=1 NNI>0.46 R°=0.96

Nitrogen nutrition index (NNI)

Whole plant-V6

ZH:RY=0.8155NNI + 0.2625 if NNI<0.88
and RY=1 NNI>0.88 R’=0.94
XY:RY=0.7694NNI + 0.2463 if NNI<0.91
and RY=1 NNI>0.91R*=0.89

VI2

ZH:RY=0.8256NNI + 0.3463 if NNI<0.79
and RY=1 NNI>0.79R’=0.95

XY:RY=0.7348NNI + 0.3438 if NNI<0.87
and RY=1 NNI>0.87 R*=0.9

Rl

ZH:RY=0.7735NNI + 0.1457 if NNI<1.07
and RY=1 NNI>1.07 R*=0.98
XY:RY=0.7134NNI + 0.1918 if NNI<1.13
and RY=1 NNI>1.13 R*=0.96

ZH:RY=0.7694NNI + 0.3022 if NNI<0.90
and RY=1 NNI>0.90 R*=0.97
XY:RY=0.7039NNI + 0.3087 if NNI<0.95
and RY=1 NNI>0.95 R*=0.97

ZH:RY=0.8877NNI + 0.2333 if NNI<0.83
and RY=1 NNI>0.83 R?=0.97
XY:RY=0.8150NNI + 0.2655 if NNI<0.89
and RY=1 NNI>0.89 R*=0.97
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DPFA Variables Correlation Value = Significance

60 SPAD vs. TC (%) -0.858 p< 0.05
120 SPAD vs. NDVI -0.986 p <0.001
120 TN (%) vs. TC (%) -0.905 p< 001
180 TN (%) vs. TC (%) -0.819 p< 0.05
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Treatments

Control

T1

T3

T4

T5

289.00 aB

289.00 aB

289.00 aB

289.00 aC

289.00 aD

289.00 aE

1232.60 dA

1974.00 beA

1596.00 cdA

2192.00 bA

2142.00 beA

2952.00 aA

90

395.40 aB

636.00 AbcBC

529.00 aB

469.60 aC

594.00 aCD

621.00 aDE

120

463.20 bB

1766.00 Aa

441.40 bB

1296.00 aB

544.60 bD

1664.00 aB

453.20 beB

984.40 abB

408.20 cB

765.40 abcBC

434.80 bcD

1046.20 aCD

Control

T1

T3

T4

TS5

603.80 aA

603.80 aC

603.80 aB

603.80 aC

603.80 aD

603.80 aE

2403.20 dB

3762.00 bcA

3110.00 cdA

4172.00 bA

3988.00 bcA

5502.00 aA

90

816.60 aB

1294.00 aBC

1063.40 aB

963.40 aC

1210.40 aCD

Salt (ppm)
541.60 dB 669.20 bAB
110880 bedB 1165.80 abB
757.80 cdB 80240 Bb
1140.80 beB 736.20 bBC
1410.60 abB 1149.60 abBC
1743.60 aB 1396.20 aBC
60 90
Electrical Conductivity (us/cm)
1091.00 dB 1357.40 bAB
2214.20 beB 2265.00 abB
1514.80 cdB 1607.60 bB
2199.80 bBc 1467.00 bBC
2725.00 abB 2245.00 abBC
335440 aB 2734.00 aBC

1253.20 aDE

Total Nitrogen (ppm)

949.60 bB

3364.00 aA

710.40 bB

2518.00 aB

1118.40 bD

3170.00 aB

931.00 bB

2059.40 aB

842.60 bB

1544.40 abBC

899.00 bD

2053.80 aCD

Control

T1

T2

T3

T4

T5

3.03 aG
3.03 aG
3.03 aG
3.03 aG
3.03 aG

3.03 aG

45.83 fA

91.50 eA

99.50 dA

101.00 cA

134.00 bA

192.00 aA

873 fC

40.50 cC

12.75 eD

38.50 dD

77.75 bB

108.25 aB

6.17 dE

10.50 aE

10.20 bE

9.13 cF

377 fF

397 eF

5.73 fF

6.23 eF

47.67 aB

9.45 dE

13.00 <D

16.77 bD

8.20 eD
12.63 dD
6.25 fF
78.83 aB
14.62 bC

12,67 cE

13.55 eB

44.90 cB

20.66 dC

45.41 bC

8.30 fE

58.40 aC

Means followed by the same letter lower case in the columns (Treatments) and upper case in the rows (DPFA) are not significantly different by Tukey’s test (p < 0.05). Control (15-0-0),
Treatment 1 (15-15-15), Treatment 2 (15-15-0), Treatment 3 (30-15-15), Treatment 4 (30-15-0), and Treatment 5 (45-15-15).
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Treatments

Mineral
Nutrient OF CF

N (mgg") 28.01 + 1.30 28.75 + 1.46 0.255 ns
P (mgg!) 2.74 +0.17 2.94 +0.14 0.015*
K (mgg™) 12.38 + 0.62 11.95 + 0.47 0.094 ns
Ca (mgg") 3.34 +0.46 3.45 +0.33 0.556 ns
Mg (mgg™) 1.58 +0.19 1.82 +0.18 0.011*
Al (mgg™) 0.64 + 0.08 0.59 + 0.06 0.201 ns
Mn (ugg") 105.78 + 25.97 112,01 + 21.1 0.563 ns
B (uggh ' 26.44 + 6.46 19.86 + 4.40 0.016*
Na (ugg") 30.61 + 15.67 2208 + 6.84 0.132 ns
Fe (ugg") 6222 + 4.85 80.11 + 10.11 0.0002%*
Co (ugg™h) 0.07 + 0.03 ‘ 0.09 + 0.03 0.689 ns
Ni (uggh 4.42 +0.96 4.87 +0.84 0.281 ns
Cu (uggh 6.62 + 0.9 | 7.17 £ 1.02 0.221 ns
Zn (ugg") 9.39 +2.83 1231 + 2.34 0.022*
Mo (ug-gh) 0.06 + 0.03 0.09 + 0.25 0.265 ns

The differences between groups were assessed using t-tests. * 0.01<P<0.05; **P<0.001, ns, no
significant difference.





OPS/images/fpls.2025.1522662/table5.jpg
Treatments

0

Total Nitrogen (% dry soil mass)

180

Control 1.07 aB 1.19 dA

T1 1.07 aB 1.20 cA

T2 1.07 aA 1.05 fB

T3 1.07 aB 1.43 aA

T4 1.07 aB 1.18 eA

5 1.07 aB 1.33bA

(0] 180
Total Carbon (% dry soil mass)

Control 28.60 aA 2740 eB

T1 28.60 aA 26.62 fB

T2 28.60 aB 30.11 bA

T3 28.60 aB 3391 aA

T4 28.60 aA 28.07 dB

5 28.60 aB 29.47 cA
Means followed by the same letter lower case in the columns (Treatments) and upper case in the
rows (DPFA) are not significantly different by Tukey’s test (p < 0.05). 15g (control), 15g (15g applied
twice in November and March; T1), 15g (15g November; T2), 30g (15g applied twice in November
and March; T3), 30g (15g November; T4) and 45g (15g applied twice in November and March; T5).
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DPFA
Treatments 60 90 120

Total Nitrogen (% dry leaf mass)

Control 1.46 aA 1.46 fA 091 fF 1.16 fD 1.18 fC 1.14 fE 1.24 fB
T1 1.46 aG 1.82 cA 1.79 dB 1.68 eE 1.62 dF 1.73 eD 1.78 dC
T2 1.46 aF 1.80 dC 1.85 cB 1.96 cA 1.79 <D 1.79 dD 1.58 eE
T3 1.46 aG 1.62 eE 1.67 eD 1.72dC 1.61 eF 1.95 cA 1.80 cB
T4 1.46 aF 2.72aC 2.95aA 2.75aB 2.20 bE 2.72aC 224 aD
TS 1.46 aF 2.00 bE 227 bB 2.03 bD 230 aA 230 bA 2.06 bC

60 90 120

Total Carbon (% dry leaf mass)

Control 46.97 aC 46.97 cC 3937 fF 47.41 cA 47.36 aB 46.43 fD 46.27 bE
T1 46.97 aD 46.89 dF 46.94 aE 47.53 bB 47.23 bC 49.33 aA 46.02 cG
T2 46.97 aB 48.18 aA 43.77 <G 46.93 dC 46.71 dE 46.72 eD 45.36 dF
T3 46.97 aE 47.35 bC 42.54 G 48.74 aA 47.08 cD 48.52 bB 44.62 eF
T4 46.97 aC 46.05 fF 4497 bG 46.42 eE 46.63 fD 48.43 cA 47.53 aB
TS 46.97 aB 46.78 eC 43.26 dG 45.44 fE 46.67 eD 47.98 dA 4361 fF

Means followed by the same letter lower case in the columns (Treatments) and upper case in the rows (DPFA) are not significantly different by Tukey’s test (p < 0.05). Control (15-0-0),
Treatment 1 (15-15-15), Treatment 2 (15-15-0), Treatment 3 (30-15-15), Treatment 4 (30-15-0), and Treatment 5 (45-15-15).
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DPFA NL (unit) SPAD atLEAF NDVI
0 90.40 a 7277 b 74.04 ab 0.84 a
30 91.60 a 74.95 ab 7338 b 084 a
60 180.80 a 75.17 ab 7636 a 0.86 a
90 96.47 a 78.89 a 73.00 b 0.85a
120 105.73 a 74.95 ab 72.88 b 0.86 a
150 104.97 a 77.04 a 75.58 ab 0.82a
180 104.97 a 7894 a 7627 a 073 b

Means followed by the same letter within columns are not significantly different by Tukey’s

test (p < 0.05).
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Number of

Treatments beaes atLEAF
Control 96.26 a 77.39a | 74.71 abc 0.83 a
T1 112.77 a 73.80 b 72.67 ¢ 0.83 a
T2 9451 a 75.26 ab ‘ 7591 a 0.82a
T3 11831 a 7691 a 73.73 be 0.84 a
T4 109.14 a 76.17 ab ‘ 74.66 abc 0.82a
T5 90.37 a 77.08 a 75.33 ab 0.83 a

Means followed by the same letter lower case in the columns (Treatments) and upper case in
the rows (DPFA) are not significantly different by Tukey’s test (p < 0.05). Control (15-0-0),
Treatment 1 (15-15-15), Treatment 2 (15-15-0), Treatment 3 (30-15-15), Treatment 4 (30-15-
0), and Treatment 5 (45-15-15).
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Number and month of
Application (SFT)

Treatments Dosages SA

Control 15g — S
T1 15g 15g 2 - November and March
T2 15g 15g 1 - November
T3 30g 15g 2 - November and March
T4 30g 15g 1 - November
T5 45g 15g 2 - November and March
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For apple tree

RF RF+TF Mixed RF Mixed RF+TF
==@==Flowering and fruit growth beginning ==@==Fruit growth and the volume increase
=== Fruit growth and ripening gradually ==0-=Fruit ripe for picking
=@ Leaf senescence

For pear tree

RF RF+TF Mixed RF Mixed RF+TF
==@==Flowering and fruit growth beginning ==@==Fruit fall after flowering and size up
«=0==Fruit growth gradually === Fruit ripe for picking

-—=@==|eaf senescence





OPS/images/fpls.2024.1435613/fpls-15-1435613-g009.jpg
Canopy SPAD value

Canopy SPAD value

. Apple tree canopy

40

b’ == " = ‘ %
25 *

20

15

0
%\"\%n;q\"'\gnzm“\5\\;@@6\;&&“\@?@“\1mm@\%f;m@%piw\gni@\\s:m\\"\\291\\6\1@\\1\;LQ'L\H\ﬁmﬂ\\%:@\‘%\i@\\qm

0

o
.
0
1 = —
20 *
s

T

Date

opy

Pear tree can

L L 1 1 L L 1 1 L L

2020/5/17 2020/6/20 2020/7/7 2020/7/21 2020/8/20 2021/5/7 2021/5/24 2021/6/6 2021/6/23 2021/7/14 2021/8/25
Date





OPS/images/fpls.2024.1435613/im13.jpg
Pred;





OPS/images/fpls.2025.1550946/fpls-16-1550946-g004.jpg
50000

40000

30000

= 20000

Yield (kg/ha)

10000

CF OF25 OF50

OF75

OF






OPS/images/fpls.2025.1550946/fpls-16-1550946-g003.jpg
NMDS2

0.1

(A) 0-20 cm

stress = 0.077

-0.2

0

0.2
NMDS1

0.4

® CF
® OF25
® OF50
® OF75
® OF
® CK

NMDS2

0.1

(B) 20-40 cm

stress = 0.081

-0.2

NMDS1

0

0.2

® CF
® OF25
® OF50
® OF75
® OF
® CK





OPS/images/fpls.2025.1534702/fpls-16-1534702-g005.jpg
Overall mean Overall mean Overall mean

None None None

NK NK NK

PK PK PK

NPK NPK NPK

20 -15 -10 -5 0 5 10 20  -10 0 10 20 30 -5 0 5 10 15
Percentage change in fruit weight (%) Percentage change in soluble suger (%) Percentage change in titratable acid (%)

Overall mean Overall mean

None None

NK NK

PK PK

NPK NPK

15 -10 -5 0 5 -15 -10 -5 0 5
Percentage change in soluble solid (%) Percentage change in VC (%)





OPS/images/fpls.2025.1550946/fpls-16-1550946-g002.jpg
(A) 0-20 cm

100 1] B I Firmicutes
B Bacteroidota
I Verrucomicrobiota
I Planctomycetota
80 [ Patescibacteria
& Crenarchaeota
(=} u 5
~ Actinobacteriota
8  Chloroflexi
560 \ Proteobacteria
"g I Acidobacteriota
2
<
]
040
=
<
—
Q
(a4
20
0
$ S S &F
Q Q Q

1

00

0
(e

(%)

Relative abundance

[*))
<

~
(s

[\
S

(B) 20-40 cm

B Firmicutes

B Bacteroidota

I Verrucomicrobiota

I Planctomycetota

[ Patescibacteria
Crenarchaeota
Actinobacteriota
Chloroflexi

I Proteobacteria
B Acidobacteriota






OPS/images/fpls.2025.1534702/fpls-16-1534702-g004.jpg
Overall mean

None

N+K-

N-K-

P+K-

P-K+

P-K-

N+P+K+

N+P+K-

N-P-K+

N-P-K-

-50 -40 -30 -20 -10 0 10 20
Percentage change in Yield (%)





OPS/images/fpls.2025.1550946/fpls-16-1550946-g001.jpg
SC (mg/(g-d))

0-20

soil layer (cm)

20-40

500

400

100

0-20

soil layer (cm)

20-40

ACP (ug/(g'd))

50

40

(%]
(=]

393
(=]

10

soil layer (cm)





OPS/images/fpls.2025.1534702/fpls-16-1534702-g003.jpg
Yield

WUE

I
|
|
I
|
I
|
0

-20 -15 -10 -0

Percentage change(%)





OPS/images/fpls.2025.1550946/crossmark.jpg
©

2

i

|





OPS/images/fpls.2025.1534702/fpls-16-1534702-g002.jpg
S0 N

40° N

30°N

20° N

70° K 30° K N L
0 550 1,300 2,600
R I

Legend
® Experimental location

Climate zone distribution

.~ Temperate continental climate
- Subtropical monsoon climate
] Temperate monsoon climate
| Tropical monsoon climate
~ Plateau mountain climate

70°FK S0° K

90° K

100" E

1000°E

110° K

110° E

120° &

120° E

130" K

140°E

50°N

40° N

30° N

20° N





OPS/images/fpls.2025.1512598/table7.jpg
Bold and red coefficients were significant at the p<0.05 level.





OPS/images/fpls.2025.1534702/fpls-16-1534702-g001.jpg
0w n

Keywords:"Kiwi*","irrigat™, "fertilizat™","quality","nutrient"”,
"yield , water use efficiency",and so on

Records from databases: Additional records
CNKI. WANFANG DATA(n=2583) identified through

Web of Science. Google Scholar(n=2426) other sources(n=18)

Records after
duplicates removed

(n=4076) Step1:Unrelated papers
selected according to
title/abstract(n=3899)

Records excluded Step2:Read the full text

(n=4032) carefully and exclude
papers that do not meet
the requirements
according to the

Studies included in screening criteria(n=133)

meta-analysis
(n=44)

Screening






OPS/xhtml/Nav.xhtml


Contents



		Cover


		Optimizing fertilizer and irrigation for specialty crops using precision agriculture technologies

		Editorial: Optimizing fertilizer and irrigation for specialty crops using precision agriculture technologies

		Introduction


		Sensor-based and remote sensing approaches for nutrient and water diagnostics


		Soil and geophysical mapping for site-specific management


		Organic and bio-based fertilizers in precision nutrient management


		Optimizing irrigation–fertilization regimes and cropping systems


		Modeling, meta-analysis, and decision-support tools


		Toward integrated precision nutrient water management


		Conclusions


		Author contributions


		Acknowledgments


		Conflict of interest


		Generative AI statement


		References







		Monitoring canopy SPAD based on UAV and multispectral imaging over fruit tree growth stages and species

		1 Introduction


		2 Materials and methods

		2.1 Study region


		2.2 Field data collection


		2.3 Multispectral image collection


		2.4 Data processing


		2.5 Univariate regression analysis method


		2.6 Multivariate regression analysis method


		2.7 Statistical analysis







		3 Results

		3. 1 Canopy SPAD estimation with vegetation index


		3.2 Canopy SPAD estimation with image features


		3.3 Canopy SPAD estimation over the various growth stages







		4 Discussion

		4.1 Vegetation index for canopy SPAD inversion


		4.2 Comparison of modeling methods


		4.3 Contribution of texture features in canopy SPAD estimation


		4.4 Analysis of model performance in different growth stages







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		References







		Application of APSIM model in winter wheat growth monitoring

		1 Introduction


		2 Materials and methods

		2.1 Study areas


		2.2 Field experiment design


		2.3 Data acquisition

		2.3.1 Field measured data


		2.3.2 Meteorological data


		2.3.3 Remote sensing data







		2.4 APSIM model and calibration


		2.5 Method

		2.5.1 Absolute growth monitoring of winter wheat based on APSIM model


		2.5.2 Relative growth monitoring of winter wheat based on APSIM model combined with remote sensing data












		3 Results

		3.1 Absolute growth monitoring of winter wheat based on LAI and AGB model simulation data

		3.1.1 Absolute growth monitoring of winter wheat based on LAI model simulation data


		3.1.2 Absolute growth monitoring of winter wheat based on AGB model simulation data


		3.1.3 Comparison of the absolute growth results of LAI and AGB in the key growth period of winter wheat simulated by the model







		3.2 Relative growth monitoring of winter wheat based on the combination of model simulation parameters and remote sensing inversion parameters

		3.2.1 Trend consistency analysis of LAI and NDVI winter wheat relative growth monitoring by remote sensing


		3.2.2 Trend consistency analysis of AGB and NDVI remote sensing monitoring of relative growth of winter wheat












		4 Discussion

		4.1 The role of APSIM model in monitoring the growth of winter wheat under different treatments and optimizing field management


		4.2 Analysis of correlation results between model simulation parameters and remote sensing inversion parameters


		4.3 Limitations of APSIM model in winter wheat growth monitoring







		5 Conclusions


		Data availability statement


		Ethics statement


		Author contributions


		Funding


		Conflict of interest


		References







		Estimation of potato canopy leaf water content in various growth stages using UAV hyperspectral remote sensing and machine learning

		1 Introduction


		2 Materials and methods

		2.1 Overview of the study area


		2.2 Hyperspectral image acquisition and processing


		2.3 Measurement and statistics of LWC data


		2.4 Hyperspectral data transformation


		2.5 Extraction of hyperspectral feature band


		2.6 Machine learning modeling


		2.7 Model evaluation methods







		3 Results and analysis

		3.1 Mathematical statistics of collection sample


		3.2 Potato hyperspectral features

		3.2.1 Hyperspectral transformation and feature analysis


		3.2.2 Analysis of the correlation between potato canopy reflectance and LWC







		3.3 Selection of feature band for potato LWC


		3.4 Potato LWC estimation models


		3.5 Spatial distribution of field potato LWC







		4 Discussion

		4.1 Spectral transformation and feature selection for potato LWC


		4.2 Hyperparameter selection for machine learning models


		4.3 Impact of different machine learning algorithms on potato LWC estimation performance


		4.4 Application of potato LWC distribution maps in adjusting precision irrigation strategies







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		References







		The input of organic fertilizer can improve soil physicochemical properties and increase cotton yield in southern Xinjiang

		1 Introduction


		2 Materials and methods

		2.1 Profile of The test area


		2.2 Test materials


		2.3 Test design


		2.4 Indicators and methods of project determination

		2.4.1 Soil samples


		2.4.2 Soil microbial sample


		2.4.3 Plant samples


		2.4.4 Yield and yield components


		2.4.5 Calculation method







		2.5 Data processing







		3 Results

		3.1 Impact of different treatments on soil physical and chemical properties

		3.1.1 Impact of different treatments on soil bulk density and porosity


		3.1.2 Effects of different treatments on soil nutrients and salinity


		3.1.3 Effects of different treatments on plant agronomic traits and yield


		3.1.4 Impact of different treatments on soil microbial population







		3.2 Comprehensive evaluation

		3.2.1 Correlation analysis between soil index and plant index


		3.2.2 Cluster analysis between soil index and plant index

		3.2.2.1 The first principal component


		3.2.2.2 The second principal component


		3.2.2.3 The third principal component












		3.3 Structural equation model







		4 Discussion

		4.1 Effects of different organic materials on soil physical properties


		4.2 Effects of different organic materials on soil chemical properties and salinity


		4.3 Effects of different organic materials on agronomic traits, yield and microorganisms of cotton







		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		References







		Sensor-controlled fertigation management for higher yield and quality in greenhouse hydroponic strawberries

		1 Introduction


		2 Materials and methods

		2.1 Location and environmental conditions


		2.2 Plant material


		2.3 Hydroponic system


		2.4 Fertilization


		2.5 Treatments


		2.6 Reservoir pH and electrical conductivity (EC) measurements


		2.7 Substrate θ and number of irrigations


		2.8 Fruit harvest measurements


		2.9 Plant harvest measurements


		2.10 System measurements and resource use quantification


		2.11 Experimental design and statistical analysis







		3 Results

		3.1 Reservoir pH and EC


		3.2 Pump activation and θ control


		3.3 Total and marketable yield


		3.4 Fruit TSS, dry biomass, and water content


		3.5 Plant height, fresh shoot biomass, and dry shoot biomass


		3.6 Harvest index and leaf area


		3.7 Leaf tissue macronutrient concentration


		3.8 Leaf tissue micronutrient concentration


		3.9 Resource use efficiency







		4 Discussion

		4.1 Fruit yield and plant biomass


		4.2 Resource use efficiencies







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		References







		Data-driven nitrogen application for satinleaf: leveraging optical sensors in urban landscape management

		1 Introduction


		2 Materials and methods

		2.1 Plant material and growing conditions


		2.2 Fertilizer treatments


		2.3 Growth assessment


		2.4 Chlorophyll content measurement


		2.5 Analysis of nitrogen/carbon content in soil and leaves


		2.6 Runoff collection and nutrient analysis


		2.7 Statistical analysis







		3 Results

		3.1 Growth and chlorophyll content analysis


		3.2 Effect of days post-fertilizer application on chlorophyll content


		3.3 Impact of fertilizer treatments on plant height and nutrient content


		3.4 Soil nutrient content and runoff analysis


		3.5 Correlation analysis







		4 Discussion


		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		References







		Nondestructive estimation of leaf chlorophyll content in banana based on unmanned aerial vehicle hyperspectral images using image feature combination methods

		Introduction


		Methods


		Results


		1 Introduction


		2 Materials and methods

		2.1 Study site


		2.2 Data collection

		2.2.1 UAV hyperspectral image acquisition and processing


		2.2.2 Leaf chlorophyll content measurement







		2.3 Extraction and screening of image features

		2.3.1 Extraction of vegetation index and textural feature


		2.3.2 Screening of image features







		2.4 LCC estimation modeling and validation

		2.4.1 LCC estimation based on two-pair image feature combination


		2.4.2 LCC estimation using multivariable image feature combination based on MLRAs


		2.4.3 Model validation












		3 Results

		3.1 Correlation analysis between image feature and LCC


		3.2 Banana LCC estimation using two-pair feature combination of VI and TF


		3.3 Banana LCC estimation using multivariable image feature combinations


		3.4 Evaluation of LCC prediction using UAV hyperspectral images







		4 Discussion


		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		References







		Apparent soil electrical conductivity and gamma-ray spectrometry to map particle size fraction in micro-irrigated citrus orchards in California

		1 Introduction


		2 Materials and methods

		2.1 Research sites


		2.2 Sensor-directed spatial sampling scheme delineation and soil sampling

		2.2.1 Lemon cove


		2.2.2 Riverside


		2.2.3 Strathmore







		2.3 On-the-go soil sensing


		2.4 Soil laboratory analyses


		2.5 Data analysis







		3 Results

		3.1 Field specific and regional linear relationships between ECa, TC, and soil properties


		3.2 Differences in soil characteristics across the three sites







		4 Discussion


		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		References







		Silkworm excrement organic fertilizer substitution compound fertilizer improves bamboo shoot yield by altering soil properties and bacterial communities of Moso bamboo (Phyllostachys edulis) forests in subtropical China

		Introduction


		Materials and methods

		Field site


		Experimental design


		Soil sampling and analysis


		DNA extraction and high-throughput sequencing


		Bamboo shoot yield determination


		Soil quality evaluation


		Statistical analysis







		Results

		Soil chemical properties and enzyme activities


		Soil bacterial community structure


		Bamboo shoot yield and quality


		Relationships among soil properties, enzyme activities, bacterial community structure, and bamboo shoot yield and quality


		Soil quality evaluation and its correlation with bamboo shoot yield







		Discussion

		Impacts of different fertilization treatments on soil chemical properties


		Impacts of different fertilization treatments on soil enzyme activities


		Impacts of different fertilization treatments on soil bacterial community structures


		Bamboo shoot yield and quality and their relationship with soil quality







		Conclusions


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		References







		By promoting growth and development, castor bean meal biofertilizer improves the yield and quality of Tartary buckwheat and indirectly improves the growth and development of Tartary buckwheat sprouts

		Introduction


		Methods


		Results


		Discussion


		1 Introduction


		2 Materials and methods

		2.1 Test material and growth


		2.2 Test fertilizer


		2.3 Sample preparation


		2.4 Measurements


		2.5 Statistical analysis







		3 Results

		3.1 Effects of CBM biofertilizer on the agronomic traits of Tartary buckwheat


		3.2 Effects of the CBM biofertilizer on the yield of Tartary buckwheat


		3.3 Effects of CBM biofertilizer on the flavonoid components of Tartary buckwheat


		3.4 Effects of CBM biofertilizer on the quality of Tartary buckwheat


		3.5 Effects of CBM biofertilizer on the yield of Tartary buckwheat sprouts


		3.6 Effects of CBM biofertilizer on the quality of Tartary buckwheat sprouts







		4 Discussion

		4.1 Effect of different fertilization treatments on the agronomic traits of Tartary buckwheat


		4.2 Effect of different fertilization treatments on the yield of Tartary buckwheat


		4.3 Effect of different fertilization treatments on the quality of Tartary buckwheat


		4.4 Effect of different fertilization treatments on buckwheat sprouts







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		References







		Optimal fertilizer rate and sowing density can improve oat quality, yield and N and P comprehensive efficiency in the Loess Plateau of China

		Introduction


		Methods


		Results


		Discussion


		1 Introduction


		2 Materials and method

		2.1 Experimental site details


		2.2 Experimental design details


		2.3 Data collection and measurement

		2.3.1 Measurement of forage yield and quality


		2.3.2 Calculation of forage feeding values


		2.3.3 Measurement of forage N and P content and uptake


		2.3.4 Calculation of forage N and P efficiency


		2.3.5 Comprehensive evaluation of N and P







		2.4 Statistical analysis







		3 Result

		3.1 Nutritive quality of oat


		3.2 Forage yield, crude protein yield and agronomic efficiency


		3.3 Content, uptake, efficiency and comprehensive score of nitrogen


		3.4 Content, uptake, efficiency and comprehensive score of phosphorus


		3.5 Comprehensive evaluation analysis







		4 Discussion

		4.1 Oat nutrient quality, N/P content and feed value response to fertilization and density


		4.2 Oat forage yield, CP yield and N/P uptake response to fertilization and density


		4.3 Oat nutrient efficiency response to fertilization and density


		4.4 Implications for fertilizer rate and sowing density







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Supplementary material


		References







		High-quality carrots in relation to the superior phloem parenchyma cells and proportion of xylem vessel in coordinated water-fertilizer management

		Background


		Methods


		Results


		Conclusion


		1 Introduction


		2 Materials and methods

		2.1 Field experiments


		2.2 Plant sampling and measurement

		2.2.1 Yield and plant sampling


		2.2.2 Quality measurement


		2.2.3 Anatomical structure of the phloem and xylem







		2.3 Statistical analysis







		3 Results

		3.1 Yield, nutrient concentration and quality of whole fleshy roots


		3.2 Flavor and nutritional quality in the upper, middle, and lower segments


		3.3 Flavor and nutritional quality in the phloem and xylem


		3.4 Anatomical structure of the phloem and xylem in the upper, middle, and lower segments


		3.5 Correlations between quality and the anatomical structural characteristics of the upper, middle, and lower segments of the phloem and xylem


		3.6 Correlations between the quality and nutrient concentration of whole fleshy roots







		4 Discussion

		4.1 Role of coordinated water and fertilizer management on yield and quality


		4.2 The contribution of the quality of different segments to the overall quality of the fleshy root


		4.3 The effects of the anatomical structure of the phloem and xylem on quality







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Supplementary material


		Abbreviations


		References







		Organic fertilizer substitution optimizes aroma metabolites in Wuyi Rock tea

		Introduction


		Materials and methods

		Plant material and fertilizer treatment


		Collection of tea leaves and soil samples


		Analysis of nutrient concentrations


		Analysis of physicochemical properties of soil samples


		Analysis of volatiles via GC-MS


		Data analysis







		Results

		The effects of organic fertilizer substitution on soil fertility


		The effects of organic fertilizer substitution on tea quality


		The relationship between mineral nutrients and aroma metabolites


		The relationship between soil fertility and aroma metabolites


		Partial least squares path model analysis







		Discussion

		The impact of organic fertilizers as a substitute for chemical fertilizers on tea yield


		The influence of organic fertilizers substituting chemical fertilizers on tea quality


		The effect of replacing chemical fertilizers with organic fertilizers on soil conditions


		Sustainability outlook







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Supplementary material


		References







		Construction of nitrogen critical dilution curve and differences in nitrogen nutrition characteristics in different organs of maize varieties with contrasting nitrogen efficiencies

		Introduction


		Methods


		Results


		Discussion


		1 Introduction


		2 Materials and methods

		2.1 Study area and climate


		2.2 Experimental details


		2.3 Field measurement and index determination


		2.4 Critical nitrogen dilution model

		2.4.1 Model construction


		2.4.2 Model verification







		2.5 Correlation calculations


		2.6 Data analysis







		3 Results and analysis

		3.1 Changes in nitrogen concentration in different growth periods of maize varieties with different nitrogen efficiencies


		3.2 Changes in dry matter of maize varieties with different nitrogen efficiencies in different stages


		3.3 Construction of nitrogen critical dilution curve in different maize organs


		3.4 Verification of critical nitrogen concentration dilution curve


		3.5 Relationship between NNI, AND, and RY


		3.6 Differences in nitrogen dry matter production capacity of maize varieties with different nitrogen-use efficiencies







		4 Discussion

		4.1 Establishment of critical nitrogen concentration dilution curves for different maize organs


		4.2 Differences in nitrogen nutrition characteristics in different maize organs







		5 Conclusion


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		References







		Optimization of water and fertilizer management on the intercropping system between maize and mung bean to improve photosynthetic characteristics & water use and to increase plant yield

		1 Introduction


		2 Materials and methods

		2.1 Site decription


		2.2 Experimental design


		2.3 Measurements

		2.3.1 Leaf area index


		2.3.2 Chlorophyll relative content


		2.3.3 Indicators of photosynthetic parameters


		2.3.4 Absorbance


		2.3.5 Soil water storage and evapotranspiration


		2.3.6 Yield water use efficiency


		2.3.7 Dry matter accumulation and yield







		2.4 Statistical analysis







		3 Results

		3.1 Effects of different water and fertilizer treatments on dry matter accumulation of corn and mung beans


		3.2 Effects of different water and fertilizer treatments on yield of corn and mung beans


		3.3 Effects of different water and fertilizer treatments on leaf area index of corn and mung beans

		3.3.1 Maize


		3.3.2 Mung bean







		3.4 Effects of different water and fertilizer treatments on SPAD of corn and mung beans

		3.4.1 Maize


		3.4.2 Mung bean







		3.5 Effects of different water and fertilizer treatments on photosynthetic characteristics of corn and mung beans

		3.5.1 Maize


		3.5.2 Factors influencing and related to Pn of maize


		3.5.3 Mung bean







		3.6 Effects of different water and fertilizer treatments on ET and WUE of corn and mung beans

		3.6.1 Maize


		3.6.2 Mung bean












		4 Discussion

		4.1 Effect of organic fertilizer application rate and irrigation amount on maize/mung bean intercropping DMA and yield


		4.2 Effect of organic fertilizer application rate and irrigation amount on LAI and SPAD of intercropped maize/mung bean


		4.3 Effect of organic fertilizer application rate and irrigation amount on the photosynthetic performance of intercropped maize/mung bean


		4.4 The net photosynthetic rate of maize was controlled by absorbance and relative chlorophyll content


		4.5 Effects of organic fertilizer application rate and irrigation amount on water consumption and yield WUE of intercropping maize/mung bean







		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		References







		Effects of irrigation and fertilization management on kiwifruit yield, water use efficiency and quality in China: A meta-analysis

		1 Introduction


		2 Materials and methods

		2.1 Data acquisition


		2.2 Subgroup analysis


		2.3 Meta-analysis







		3 Results

		3.1 Overview of the dataset


		3.2 Response of kiwifruit yield and WUE to water and fertilizer input


		3.3 Response of kiwifruit quality to nitrogen, phosphorus and potassium fertilizer input

		3.3.1 Response of single fruit weight of kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


		3.3.2 Response of soluble sugar in kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


		3.3.3 Response of kiwifruit titratable acid to changes of nitrogen, phosphorus and potassium fertilizers


		3.3.4 Response of soluble solids of kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers


		3.3.5 Response of VC content in kiwifruit to changes in nitrogen, phosphorus and potassium fertilizers












		4 Discussion


		5 Conclusions


		Data availability statement


		Author contributions


		Funding


		Conflict of interest


		Generative AI statement


		Supplementary material


		References







		Meta-analysis reveals that grain quality is improved in ratoon season crop compared with main crop

		Introduction


		Materials and methods

		Definitions of comparison groups


		Literature selection


		Risk of bias assessment


		Study quality assessment


		Meta-analysis


		Subgroup analysis


		Meta-regression analysis


		Tests of publication bias







		Results

		General literature description


		Effects of ratooning on the grain quality


		Subgroup analysis of the categorical factors


		Regression analysis of the continuous factors


		Comparison of grain qualities between RC and LC







		Discussion

		Impacts of ratooning to grain quality


		Mechanism underlying the regulation of ratooning on grain quality


		Heterogeneity and limitation of our data







		Conclusion


		Data availability statement


		Author contributions


		Funding


		Acknowledgments


		Conflict of interest


		Generative AI statement


		Supplementary material


		Abbreviations


		References


















OPS/images/fpls.2025.1512598/table6.jpg
Site e Wake | ates (TelEe | Wik U

(mg g™ soil)
Lemon Cove ‘ 2.57 a 0.13 ¢ 0.45b 0.29b 0.011 a 0.027 a ‘

Riverside ‘ 1.01b 0.27 b 0.59 b 0.51 a 0.0061 ab = 0.015b ‘

Strathmore ‘ 0.76 b 044 a 0.84 a 0.41 a 0.0016 b 0.011 b ‘

Denoted statistical significance (p<0.05 level) was determined through one way Analysis of
Variance and the Fisher’s Least Significant Difference as a post-hoc test.





OPS/images/fpls.2025.1534702/crossmark.jpg
©

2

i

|





OPS/images/fpls.2025.1512598/table5.jpg
Slope (standard

error)*
Dependent variable A.D. L.D. .D. LD. Ind. Eval s .D. Ind. Eval.
Sand -0.112(0011)  -0.12(0.014) | 084 | 094 ‘ 0.80 0.060 ‘ 0040 0.066 0.049 ‘ 0030 | 0.055
silt 0.183(0.019)  0.21(0.022) 081 | 097 ‘ 073 0.059 ‘ 0030 0.069 0.048 ‘ 0024 | 0055
Clay -0.05(0.023) 20.13(0031) 038 065 ‘ 0.10 0.052 ‘ 0037 0073 0.039 ‘ 0027 | 0.054
sp 0.061(0.008)  0.067(0.01) 084 | 093 ‘ 0.81 0.031 ‘ 0020 0035 0.025 ‘ 0016 0.028

*Regression slopes and standard errors are for the square-root-transformed data.
The regression slope (standard error in parenthesis) for the All Data (A.D.) and Limited Data (L.D.) models are reported. The goodness of fit for the A.D. and L.D. models and the independent
evaluation of the L.D. models are reported: the coefficient of determination (R?), the root mean square error (RMSE), and the mean absolute error (MAE).
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All sites Lemon Cove @ Riverside Strathmore
Apparent Electrical Conductivity
Sand | -0.70 0.73 -0.55 -0.92
Silt 0.65 7 0.67 0.59 0.94
Clay | 024 0.72 0.32 -0.56
EG: -0.35 0.22 -0.34 -0.12
GWC | 0.81 0.10 0.41 0.80
SP 0.72 0.08 -0.03 0.94
Gamma-Ray Total Counts
Sand | -0.55 ‘ 0.11 -0.58 0.88
Silt 0.43 -0.13 0.63 -0.83
Clay | 037 -0.05 0.32 0.40
EC, 7 0.14 0.17 7 -0.27 0.02
GWC | -0.32 0.22 -0.07 -0.68
SP v 0.54 0.47 -0.23 -0.91

Bold and red coefficients were significant at the p<0.05 level.
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Mean Median Maximum

All sites (n = 55)
Sand 0.64 0.62 030 0.94 0.15
silt 025 023 0.04 0.64 0.14
Clay 0.11 0.10 0.02 0.33 0.07
EC. (dSm™) 1.08 079 030 341 0.74
GWC 0.14 0.13 0.04 0.38 0.06
Sp 032 033 0.19 0.52 0.08
EC, (m$ m™) 2697 2312 14.46 56.66 1056
GRS Total Counts (cps) 2653.31 2758.54 1584.51 3623.98 74495
Lemon Cove (n = 20)
Sand 0.79 0.77 0.64 0.94 0.09
silt 0.15 0.16 0.04 0.23 0.06
Clay 0.07 0.07 0.02 0.13 0.04
EC, (dSm™) L1l 078 039 341 0.87
GWC 0.14 0.14 0.11 0.17 0.02
sp 024 025 0.19 0.29 0.02
EC, (m$ m™) 2131 21.07 18.63 26.73 1.93
GRS Total Counts (cps) 177530 1761.19 158451 2054.51 117.57
Riverside (n = 20)

| Sand 0.58 059 045 0.71 0.06
silt 030 031 020 0.37 0.04
Clay 0.12 0.12 0.07 0.18 0.03
EC, (dSm™) 1.39 136 058 2.85 0.69
GWC 0.09 0.09 0.04 0.15 0.03
Ssp 035 035 033 0.39 0.02
EC, (mS m™) 21.87 2312 1446 25.96 354
GRS Total Counts (cps) 3477.27 3488.88 3302.50 3623.98 93.49
Strathmore (n = 15)
Sand 052 1 0.53 030 0.77 0.15
silt 031 020 0.06 0.64 0.20
Clay 0.16 0.17 0.02 0.33 0.09
EC, (dSm™) 0.62 051 030 118 0.28
GWC 021 0.19 0.13 0.38 0.07
SP 039 033 027 0.52 0.09
EC, (mS m™) 4131 35.10 3047 56.66 1026
GRS Total Counts (cps) 272537 2758.54 247173 2992.12 182.13

The number of soil sampling locations (n) is reported.
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Raw measurements

Semivariogram

Kriging Cross-Validation

Lemon Cove Dec-2019 4992
Riverside Aug-2019 1563
Strathmore Dec-2019 4483

Nugget Partial
Model (%) sill (%)
Exponential 37.6
Exponential 36.0
Exponential 0.5

62.4

64.0

99.5

34.1

392

492

0.84

0.75

0.71

‘The date of acquisition and the number (n) of sensor measurements are reported. The interpolation cross-validation coefficient of determination (R) is reported.
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Raw measurements Semivariogram
Date n Model Nugget (%) Partialsill (%) Range (m) R?
Lemon Cove = Dec-2019 481  Spherical 129 87.1 145.0
Riverside Oct-2021 534  Stable 8.8 91.2 7.8
Strathmore Dec-2019 633 Stable 59 94.1 96.1

The date of acquisition and the number (n) of sensor measurements are reported.

. The interpolation cross-validation coefficient of determination (R?) is reported.

Kriging Cross-Validation
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PLSR

. . Number
Variable group Input variable offeatiras 5
R RMSE
Original features All VIs 20 0.615 2.696 0.63 2652 0.63 2.652 0.6 2754
All VI, 9 0.63 2643 067 2492 065 2542 0.66 2538
All VIs+TFs-PC1 28 0.756 2.082 0.75 2.064 0.75 2.169 0.76 2.09
All VIs+TFs-PC2 28 0.725 2262 0.735 2326 0.698 2.369 0.71 2307
All VIs+TFs-PC3 28 0.726 2261 0.71 234 0.71 2248 0.669 2499
Features selected by Pearson Selected VIs+TFs-PC1 18 0.753 2.041 0.767 2078 0.765 2.09 0.768 2074
correlation (|r] > 0.8)
Selected VIs+TFs-PC2 11 0.718 2.176 0.704 2345 0.737 2.209 0.735 2218
Selected VIs+TFs-PC3 11 0.735 222 0.736 2214 0.732 2231 0.725 2258
Features selected by MIC Selected VIs+TFs-PC1 11 0749 | 2162 | 0748 2168 0767 2124 0776 204
(MIC > 0.8)
Selected VIs+TFs-PC2 11 0711 2318 0699 2368 | 0729 | 2245 0672 2467

R? values higher than 0.75 are in bold.

All VIs+TFs-PCl, image feature combination combined by all Vs and all TFs-PCl; Selected VIs+TFs-PCl, selected feature combination combined by selected VIs and selected TFs-PC1 from
Pearson correlation coefficient (|r| > 0.8) or maximal information coefficient (MIC > 0.8); TFs-PCl, textural features extracted from the first principal component images; TFs-PC2, textural
features extracted from the second principal component images; TFs-PC3, textural features extracted from the third principal component images.





OPS/images/fpls.2025.1577962/table2.jpg
Different
stage

V6
Vi2

R1

R6

Nitrogen
content

(g kg™

2.0

17

1.4

L1

0.8

Mean

Root
(t ha™)
ZH XY
0.45a 0.29b
0.60a 0.45b
0852 | 0.75b
132b | l4la
235b | 327a
111b 1.23a

Nitrogen
content
CLER]

35
3.0
25
2.0

L5

Stem-

sheath

(t ha®)
ZH XY
0.49a 0.37b
0.63a 0.47b
0.86a | 0.63b
1252 | 0.8%
203 | 13%
1.05a 0.75b

Nitrogen
content
CLER)

35
3.0
2.5
20

L5

Leaf
(t ha)
ZH XY
0.65a 0.53b
1.06a 0.86b
1.89%a 1.50b
384 | 298
957a | 7.22b
3.40a 2.62b

Nitrogen
content
(g kg™

3.0
2.5
20
1.5

1.0

1.68a

2.78a

5.16a

11.45a

352la

11.26a

1.38b

2.22b

3.99b

8.49b

24.60b

8.23b





OPS/images/fpls.2025.1536177/table4.jpg
PC image Optimal two-pair

feature combination

SR-type PCl MEA/MSR,, y = 4.4405x + 52.45 0.789
NDVI-type PCl (MEA - MSR,,)/(MEA + MSR,,) y = -1.7169x +76.08 0.77
DVI-type PCl MEA - MSR,, y = -197.89x + 243.61 0.756

xand y in the “Model” column refer to the optimal two-pair feature combination and LCC, respectively.
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OV, Observed value; SV, Simulated value.
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Time interval between measured data

Data type Acquisition time Data type Acquisition time and Sentinel-2 image data(day)
2022/4/08 2022/4/04 4
2022/4/29 | | 2022/5/02 [ 3
Field measured data 2022/5/20 Sentinel-2 2022/5/22 2
2023/3/21 2023/3/18 3

2023/4/08 2023/4/07 1

2023/5/08 2023/5/07 1
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Volume weight of soil Saturatlon cagauty Wilting coefficient Field capacity

Reptiicn) (g-cm™) (cm®-cm (cm®cm) (cm*-cm)
0-20 132 0.48 0.10 034
20-40 143 0.46 012 » 033
10-60 143 0.46 013 032
60-80 2.04 0.47 0.15 0.31

80-100 193 0.47 0.14 0.31
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Parameters after

Parameter Lower bound = Upper bound Initial Settings calibation
vern_sens 0 5 15 3.1
photop_sens 0 5 3.0 35
Wheat Startgf_to_mat(°C/d) 200 I 900 580 550
Potential_grain_filling_rate(mg/d) 0.001 0.005 0.0027 0.0029
grains_per_gram_stem(grain/d) 10 40 276 295
max_grain_size(g) 0.02 0.06 0.048 0.046
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Castor bean meal biofertilizer

activity converting enzyme

Strains Bacillus Saccharomyces Arthrospira Acetobacter Lactobacillus Streptomyces Aspergillus
subtilis cerevisiae platensis aceti acidophilus coelicolor oryzae
E: Acid
neyme Urease ‘ Phosphatase Sucrase ‘ Catalase < Olyphenol oxidase Protease Cellulase
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Rate of fertilizer

Treatment bhcena N (kg ha™®) P,Os (kg ha™) K,O (kg ha™)
K 0 0 0 0
F1 225 33.75 16.88 40.50
15 300 45.00 2110 5063
E3 375 5625 2650 6329
N1 7500 25 1125 27.00
N2 15000 145.00 2250 5400
N3 22500 67.50 33.75 81.00
Bl 7500 22.50 10.50 24.83
B2 15000 45.00 21.00 49.65
B3 22500 6750 3150 74.48

CK: control without fertilization; F1: 225 kg ha™'; F2: 300 kg ha™; F3: 375 kg ha™'; N1: 7-500 kg ha™'; N2: 15-000 kg ha™'; N3: 22-500 kg ha™’; B1: 7-500 kg ha™'; B2: 15-000 kg ha™'; B3: 22-500 kg
ha'l.
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Calibration Validation

Tree species Model type

RMSEC RRMSEC RMSEV RRMSEV
GNDVI 0.583 2.350 12.641% 0.512 2.315 15.321%
REGRVI 0.396 2.827 15.207% 0.359 2.653 17.558%
GRVI 0.431 2.743 14.755% 0.338 2.697 17.849%
PLS 0.598 2.305 12.399% 0519 2.300 15.222%
Ridge 0.598 2.306 12.405% 0.518 2.302 15.235%
For apple tree RF SVR 0.634 2.201 11.840% 0.585 2.135 14.130%
GPR 0.883 1242 6.681% 0.700 1815 12.012%
PLS 0.806 1.601 8.612% 0.707 1.795 11.880%
RF Ridge 0.832 1.490 8.015% 0.703 1.807 11.960%
T+F SVR 0.616 2254 12.125% 0.489 2.368 15.672%
GPR 0.928 0.975 5.245% 0.788 1.527 10.106%
GNDVI 0.515 2.169 15.031% 0.490 2.056 16.661%
GRVI 0.524 2.147 14.879% 0.483 2.070 16.775%
REGNDVI 0.494 2216 15.357% 0.495 2.045 16.572%
PLS 0.614 1.934 13.403% 0.550 1.932 15.656%
Ridge 0.612 1.938 13.430% 0.554 1.921 15.567%
For RE
pear tree SVR 0.837 1.257 8.711% 0.733 1.486 12.042%
GPR 0.834 1.268 8.787% 0.721 1.521 12.326%
PLS 0.828 1.292 8.954% 0.737 1.475 11.953%
RF Ridge 0.828 1.290 8.940% 0.739 1.469 11.904%
‘[TF SVR 0.738 1.595 11.053% 0.489 2.057 16.669%

GPR 0.878 1.089 7.547% 0.723 1516 12.285%
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Experimental date Growth stage

For apple tree

For pear tree

2019 year

2020 year

2021 year

2020 year

2021 year

27 August Fruit ripe for picking BBCH 87
22 September Leaf senescence —
11 May Hlowering and frult BBCH 71
growth beginning
14 June p
F h
runtlgmw.l and the BBCH 7273
26 June volume increase
25 July ;
l.zrultv growth and BBCH 73-87
8 August ripening gradually
22 August Fruit ripe for picking BBCH 87
28 September Leaf senescence —
5 May ; .
Fl
lowering al?ld f.ruu BECH 71
14 May growth beginning
5 June Broft prowth and the BBCH 72-73
volume increase
2 July
23 July Fruit grovth and BBCH 73-87
ripening gradually
3 August
14 August Fruit ripe for picking BBCH 87
21 September Leaf senescence —
Fl i d frui
17 May lowering and fruit BBCH 71
growth beginning
20 June Fruit fall aft.er flowering and BECH 7193
size up
7 July Fruit growth gradually BBCH 73-87
21 July Fruit ripe for picking BBCH 87
20 August Leaf senescence —
Fl i d frui
7 May owering an .rult BBCH 71
growth beginning
24 May
& e Fruit fall aft.er flowering and BBCH 7173
size up
23 June
14 July Fruit ripe for picking BBCH 87

25 August

Leaf senescence
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VI name
NDVI (Normalized Difference Vegetation Index)

GNDVI (Green Normalized Difference
Vegetation Index)

REGNDVI (Red-edge Normalized Difference
Vegetation Index)

VI formulation used in this s

(Ryi = Reep)/(Ryig + Reep)

(Ryig = Rare)/(Rin + Rere)

(RegG = Rere)/(Rpe + Rore)

References

(Gitelson et al.,, 1996)

RVI (Ratio Vegetation Index) Ruir/Reep
GRVI (Green Ratio Vegetation Index) Ryir/Rore (BiNelithmg t}i;:il‘ ll::j; R
REGRVI (Reg-edge Ratio Vegetation Index) Rpeg /Rere
DVI (Difference Vegetation Index) Ryir — Rpep
GDVI (Green Difference Vegetation Index) Riji=Rexs (Tucker, 1979; Cao et al., 2013)
REGDVI (Red-Edge Difference Vegetation Index) Regg - Rere

TVI (Triangular Vegetation Index)

MTVI (Modified Triangular Vegetation Index)

TCI (Triangular Chlorophyll Index)

0.5 x [120 X (Ryzg = Rgre) = 200 X (Rgep — Reze)]

1.5 x [1.2 x (Rr = Rgre) = 2.5 X (Reep — Rorp)]
(2 x Ry + 1) = (6 X Ryjg = 5 X /Ryig) = 0.5

Resg ) (RRED) (Raec)
1.2x ul-15x X
(Rmzs Rege: Reep

(Broge and Leblanc, 2001; Haboudane et al.,
2004, 2008)
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Apple tree

Pear tree

Data set

All data 204 ‘ 40.03 21.44 31.34 J 3.57
Calibration set 153 ‘ 40.03 2144 3132 ‘ 3.65
Validation set 51 ‘ 39.53 24.42 31.40 ‘ 335

All data 264 ‘ 33.28 18.85 25.87 ‘ 3.06
Calibration set 198 ‘ 33.28 18.85 25.83 ‘ 312
Validation set 66 ‘ 31.62 19.28 26.01 ‘ 2.90
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REGNDVI

R (apple/
(apple 0.483*%/0.601**  0.753°*/0.718™* | 0.549*/0.536™"
pear tree)
VI RVI GRVI REGRVI
R (appl
(applel 0.235%/0.613  0.646°*/0.714™ | 0.623"*/0.403"*
pear tree)
VI DVI GDVI REGDVI
R (appl
applef ns /0.324™ 0.057/0.488™ ~0.027/0.381"
pear tree)
VI TVI MTVI Tcl
R (apple/ -0.040/0.248"* 0.433*%/0.382"* 0.545"*/0.396™
pear tree)

#%, significance at p < 0.01; ns, no significance. Bold values: The vegetation index
corresponding to the bold values has higher model performances.





OPS/images/fpls.2025.1584608/fpls-16-1584608-g004.jpg
2100

1800

1500

1200

30

15

cccecbecdbgia

Yield per plant (g)

cca&bbb.baa

Thousand grain weight (g)

d

b d
cdebC
iIIII I

Yield (kg-ha™)

Fl
F2
F3
N1
N2
N3
Bl
B2
B3





OPS/images/fpls.2025.1584608/fpls-16-1584608-g003.jpg





OPS/images/fpls.2025.1584608/fpls-16-1584608-g002.jpg
200

150

Plant height (cm)
=
S

wn
(]

25

—_— [\
wn g

Number of main stem nodes
—_
s}

60

EN
(]

[\
S

Leaf blade area (sz)

Seedling period

Seedling period

Seedling period

Flowering period Grain-filling period  Maturity period

Flowering period ~ Grain-filling period = Maturity period

Flowering period  Grain-filling period ~Maturity period

10
a
: bfab
b4 i
~ a de &
g ab fhe
- a cdb cc d .
PR belab & P
5 be.g c gde
—g cd cd f
R de
S d e
4 ab
: bccdcbc ab f
= g
2
0
Seedling period  Flowering period Grain-filling period  Maturity period
10
n 8 a
0} a
% d b c d b ; b
=
8 €
Ne]
E) 6
72} b a
= ¢ dgbcdpl
£y ¢
S)
5 a3
£ b, bbd
g ) a b aad ¢ d d
Z o d bcc d
0
Seedling period ~ Flowering period Grain-filling period ~ Maturity period
60
a
a
. bb baaa chbdbb a
- b dgq crlds
g bdb ccca bcbbdcbaaa
g 40
%
=
3
e
<
o 20
®]
=
@)
0
Seedling period ~ Flowering period Grain-filling period ~Maturity period

Fl
F2
F3
NI
N2
N3
Bl
B2
B3





OPS/images/fpls.2025.1584608/fpls-16-1584608-g001.jpg





OPS/images/fpls.2025.1584608/crossmark.jpg
©

2

i

|





OPS/images/fpls.2025.1550946/table4.jpg
Nelo) 0.5302 0.001 0.2409 0.018
N 0.622 0.001 0.1287 0.165
AN 0.6293 0.001 0.1009 0.248
TP 0.2612 0.015 0.2428 0.029
AP 0.348 0.005 0.5475 0.002
sC 0.1682 0.074 0.4188 0.002
UE 0.3692 0.005 0.3401 0.003
ACP 0.4137 0.001 0.0474 0.506
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Treatments

Good Coverage

CF 7447 + 685ab 11.84 + 0.12a 7447 + 685ab 7447 + 685ab 1.00 + 0.00
OF25 7085 + 1226ab 11.49 + 0.20ab 7085 + 1226ab 7085 + 1226ab 1.00 + 0.00
OF50 8112 + 1187a 11.77 + 0.30ab 8112 + 1187a 8112 + 1187a 1.00 + 0.00
OF75 7242 + 780ab 11.54 £ 0.24ab 7242 + 780ab 7242 + 780ab 1.00 + 0.00

OF 6436 + 296b 11.47 £ 0.07ab 6436 + 296b 6436 + 296b 1.00 £ 0.00

CK 6241 + 963b 11.41 £ 0.25b 6241 £ 963b 6241 + 963b 1.00 + 0.00

20-40 cm

CF 6532 + 1404b 11.44 £ 0.33b 6532 + 1404b 6532 + 1404b 1.00 + 0.00
OF25 5851 + 684b 11.17 £ 0.12b 5851 + 684b 5851 + 684b 1.00 + 0.00
OF50 9091 + 723a 11.96 + 0.08a 9091 + 723a 8091 + 723a 1.00 £ 0.00
OF75 6377 + 1713b 11.37 £ 0.39b 6377 £ 1713b 6377 £ 1713b 1.00 + 0.00

OF 6721 + 1316b 11.55 + 0.30b 6721 + 1316b 6721 + 1316b 1.00 + 0.00

CK 5795 + 1056b 11.13 £ 0.29b 5795 + 1056b 5795 + 1056b 1.00 + 0.00
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Treatments

0-20 cm
CF
OF25
OF50
OF75
OF
CK
20-40 cm
CF
OF25
OF50
OF75
OF

CK

4.04 £ 0.03e

4.30 £ 0.03¢

4.60 + 0.04b

4.62 + 0.04b

4.78 + 0.02a

4.19 +0.03d

4.32 £0.03d

4.39 + 0.02¢

448 +0.02b

4.52 +0.02a

4.50 £ 0.04a

431 £0.01d

10.42 £ 0.30e

11.73 £ 0.33d

13.02 £ 0.14c

20.14 + 0.30b

21.90 + 0.59a

10.79 £ 0.53e

9.03 + 0.31e

10.62 + 0.18d

13.79 + 0.33¢

15.02 + 0.48b

15.27 + 0.43a

9.08 + 0.09

1.04 + 0.02¢

1.06 + 0.01c

1.13 £ 0.01b

1.59 % 0.00a

1.57 £ 0.03a

0.90 + 0.04d

0.73 £ 0.01c

0.87 + 0.01b

1.01 +£0.01a

098 +0.01a

1.02 + 0.04a

072 + 0.01c

Different lowercase letters indicate significant differences (p < 0.05) between treatments.

041 +0.02d

0.66 + 0.02¢

0.77 £ 0.05a

0.79 + 0.03b

0.75 + 0.04b

0.40 + 0.04d

0.27 £ 0.02¢

0.46 + 0.03a

0.43 +0.04a

0.44 £ 0.03a

038 + 0.01b

0.27 + 0.01c

104.42 + 0.60b

100.15 £ 1.07b

143.82 + 0.92a

148.37 + 0.88a

122.58 + 0.54¢

85.94 + 1.62c

82.10 + 0.93b

95.93 + 1.95a

92.59 + 0.71a

93.34 + 0.62a

81.09 + 0.46b

72.61 + 1.57¢

76.54 + 0.10d

147.32 + 1.88b

151.94 + 3.10b

173.54 + 0.35a

129.61 + 0.29¢

73.46 + 1.02d

10.16 + 0.29¢

57.86 + 2.21a

54.32 + 1.66a

5571 + 1.11a

43.04 £ 1.75b

17.11 £ 1.45¢

10.02 £ 0.21d

11.07 £ 0.14c

11.52 £ 0.23¢

12,67 + 0.15b

13.95 + 0.26a

11.99 + 0.32¢

12.37 + 0.18¢

12.21 £ 0.27¢

13.65 + 0.25b

15.33 + 0.34a

14.97 £ 0.28a

12.61 + 0.15¢
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Fertilizer treatments Annual fertilization amount

CF (100% CF) 1500 kg/ha CF

OF25 (75% CF+25% SEOF) 1125 kg/ha CF+3750 kg/ha SEOF
OF50 (50% CF+50% SEOF) 750 kg/ha CF+7500 kg/ha SEOF
OF75 (25% CF+75% SEOF) V 375 kg/ha CF+11250 kg/ha SEOF
OF (100% SEOF) 15000 kg/ha SEOF

CK No fertilization
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