
Edited by  

Shu Tao, Zhengguang Zhang, Shida Chen, 

Yu Jing and Junjian Wang

Published in  

Frontiers in Earth Science

Efficient exploration 
and development of 
unconventional 
natural gas

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/research-topics/63780/efficient-exploration-and-development-of-unconventional-natural-gas
https://www.frontiersin.org/research-topics/63780/efficient-exploration-and-development-of-unconventional-natural-gas
https://www.frontiersin.org/research-topics/63780/efficient-exploration-and-development-of-unconventional-natural-gas
https://www.frontiersin.org/research-topics/63780/efficient-exploration-and-development-of-unconventional-natural-gas


December 2025

Frontiers in Earth Science frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public - 

and shape society; therefore, Frontiers only applies the most rigorous and 

unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-6916-0 
DOI 10.3389/978-2-8325-6916-0

Generative AI statement
Any alternative text (Alt text) provided 
alongside figures in the articles in 
this ebook has been generated by 
Frontiers with the support of artificial 
intelligence and reasonable efforts 
have been made to ensure accuracy, 
including review by the authors 
wherever possible. If you identify any 
issues, please contact us.

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


December 2025

Frontiers in Earth Science 2 frontiersin.org

Efficient exploration and 
development of unconventional 
natural gas

Topic editors

Shu Tao — China University of Geosciences, China

Zhengguang Zhang — General Prospecting Institute of China National 

Administration of Coal Geology, China

Shida Chen — China University of Geosciences, China

Yu Jing — University of New South Wales, Australia

Junjian Wang — Independent Researcher, Brisbane, Australia

Citation

Tao, S., Zhang, Z., Chen, S., Jing, Y., Wang, J., eds. (2025). Efficient exploration and 

development of unconventional natural gas. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-6916-0

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-6916-0


December 2025

Frontiers in Earth Science frontiersin.org3

04	 Editorial: Efficient exploration and development of 
unconventional natural gas
Shu Tao, Zhengguang Zhang, Shida Chen, Yu Jing and Junjian Wang

08	 Quantitative characterization of stimulated reservoir volume 
(SRV) fracturing effects in naturally fractured unconventional 
hydrocarbon reservoirs
Long Ren, Mengyuan Dou, Xiaowei Dong, Bo Chen, Ling Zhang, 
Jian Sun, Cheng Jing, Wugang Zhang, Desheng Zhou and Haiyan Li

17	 Deep carbonate gas reservoir sweet spot identification with 
seismic data based on dual-factor control of sedimentary 
facies and fault system
Guanyu Zhang, Xuri Huang, Yungui Xu, Shuhang Tang, Kang Chen 
and Da Peng

34	 In-situ CT study on the effect of cyclic gas injection and 
depletion exploitation on the phase behavior of fractured 
condensate gas reservoirs
Lin Zhao, Lijun Zhang, Yanchun Su, Xianhong Tan, CongCong Li and 
Shuoliang Wang

47	 In-situ geological conditions and their controls on 
permeability of coalbed methane reservoirs in the eastern 
Ordos Basin
Yan Zhang and Jincheng Liu

65	 Nanoscale pore structure in anthracite coals and its effect on 
methane adsorption capacity
Qiang Xu, Ruyue Wang, Zebin Wang, Yue Zhao, Quanyun Miao, 
Zhengguang Zhang, Xiujia Bai and Feng Xinxin

76	 Logging response prediction of high-lithium coal seam based 
on K-means clustering algorithm
Xiwei Mu, Yanming Zhu, Kailong Dou, Ying Shi and Manli Huang

87	 Numerical simulation of depressurization exploitation in 
class 1 hydrate reservoirs under different development 
factors in Shenhu area, South China sea
Na Wei, Cong Li, Xingxin Zhao, Haitao Li, Liehui Zhang, Jinzhou Zhao, 
Bjørn Kvamme and Richard B. Coffin

102	 Uncertainty prediction of conventional gas production in 
Sichuan Basin under multi factor control
Haitao Li, Guo Yu, Yizhu Fang, Yanru Chen, Kaijun Sun, Yang Liu, 
Yu Chen and Dongming Zhang

118	 Experimental study on the dynamic threshold pressure 
gradient of high water-bearing tight sandstone gas reservoir
Yahui Li, Jingang Fu, Wenxin Yan, Kui Chen, Jingchen Ding and 
Jianbiao Wu

130	 Optimization method for predicting coal reservoir fractures 
in the Laochang area of Eastern Yunnan using paleotectonic 
stress inversion
Changwu Wu, Bo Wang, Xiong Hu, Xue Jin, Wei Liang, Mingjian Shi, 
Xueguang Zhu and Liang Guo

Table of
contents

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/


 

TYPE Editorial
PUBLISHED 16 September 2025
DOI 10.3389/feart.2025.1660899

OPEN ACCESS

EDITED AND REVIEWED BY:

Valerio Acocella,
Roma Tre University, Italy

*CORRESPONDENCE

Shu Tao,
taoshu@cugb.edu.cn

RECEIVED 07 July 2025
ACCEPTED 01 September 2025
PUBLISHED 16 September 2025

CITATION

Tao S, Zhang Z, Chen S, Jing Y and Wang J 
(2025) Editorial: Efficient exploration and 
development of unconventional natural gas.
Front. Earth Sci. 13:1660899.
doi: 10.3389/feart.2025.1660899

COPYRIGHT

© 2025 Tao, Zhang, Chen, Jing and Wang. 
This is an open-access article distributed 
under the terms of the Creative Commons 
Attribution License (CC BY). The use, 
distribution or reproduction in other forums is 
permitted, provided the original author(s) and 
the copyright owner(s) are credited and that 
the original publication in this journal is cited, 
in accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

Editorial: Efficient exploration 
and development of 
unconventional natural gas

Shu Tao1*, Zhengguang Zhang2, Shida Chen1, Yu Jing3 and 
Junjian Wang4

1School of Energy Resources, China University of Geosciences (Beijing), Beijing, China, 2General 
Prospecting Institute of China National Administration of Coal Geology, Beijing, China, 3University of 
New South Wales, Sydney, NSW, Australia, 4EMM Consulting Pty Ltd., Brisbane, QLD, Australia

KEYWORDS

unconventional natural gas, geology–engineering integration, horizontal well 
optimization, AI-driven approach, efficient development 

Editorial on the Research Topic

Efficient exploration and development of unconventional natural gas
s

 1 Introduction

Unconventional natural gas resources—including shale gas, coalbed methane (CBM), 
and natural gas hydrates—serve as critical drivers of the global low-carbon energy transition, 
profoundly reshaping conventional exploration and development paradigms (Bocora, 2012; 
Flores and Moore, 2025; Tao et al., 2019). With sustained progress in the shale gas revolution 
and breakthroughs in gas hydrate trial production technologies, unconventional resources, 
such as CBM, tight sandstone gas, and shale gas, are becoming increasingly important 
components of energy security (Boswell and Collett, 2011; Guo et al., 2025). These resources 
demonstrate strategic significance in mitigating hydrocarbon supply-demand imbalances 
and optimizing energy structures. Guided by China’s “Dual Carbon” strategy—targeting a 
national CO2 emissions peak before 2030 and carbon neutrality by 2060—unconventional 
natural gas exploration and development are increasingly guided by two interlinked 
priorities: intelligent target identification and low-carbon process regulation. This aligns 
with global decarbonization trajectories, where CCUS emerges as a pivotal technology. 
McLaughlin et al. (2023) provide a sociotechnical synthesis of CCUS’s role in industrial 
decarbonization, outlining both technical challenges and policy implications, while Yusuf 
and Al-Ansari (2023) highlight how integrating CCUS within natural gas supply 
chains—particularly in the context of low-carbon hydrogen production—can significantly 
enhance sectoral sustainability. Together, these international perspectives enrich the 
framing of China’s geology–engineering integration framework within the wider context 
of global low-carbon transitions.

In conventional natural gas development, enhanced recovery technologies continue 
to evolve, establishing an engineering framework centered on enhanced hydrocarbon
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recovery (EOR), multi–stage hydraulic fracturing, and precision 
well completion. These techniques have demonstrated robust 
production stability in low-to-medium permeability reservoirs 
(Abdulhadi et al., 2025; Akbarabadi et al., 2023; Gomaa et al., 
2024; Sambo et al., 2023). Current research priorities are rapidly 
shifting from conventional to unconventional reservoirs, driving the 
multidimensional reconstruction of technological approaches. Core 
efforts focus on optimizing coupled processes in CO2 displacement 
mechanisms (Zhou et al., 2024), molecular-level tuning of 
fracturing fluid structures (Yang et al., 2024), and upgrading 
intelligent completion systems based on formation response. These 
innovations address challenges posed by microscopic heterogeneity 
and thermo–hydro–mechanical–chemical (THMC) coupling 
complexities in shale, tight sandstone, and coal reservoirs. In 
field applications, shale gas development addresses nanoscale 
pore–throat constraints by establishing confined flow control 
mechanisms centered on chemical stimulation, significantly 
enhancing capillary-driven flow efficiency. For tight sandstone 
reservoirs, rock brittleness classification models enable precise 
fracturing parameter matching and optimized fracture propagation 
pathways (Wu et al., 2024). The development of CBM utilizes organic 
matter–fluid interaction mechanisms to formulate fracturing 
fluids incorporating long-chain alkyl surfactants, which exhibit 
targeted dissolution behavior and thereby minimize structural 
disruption while enhancing pore connectivity and methane 
adsorption capacity (Zhao et al., 2024). Global research trends 
further indicate a shift toward multi-driver mechanisms in 
unconventional gas development. Specifically, CO2/N2 coinjection 
demonstrates superior pressure-synergistic effects in coal seams, 
optimizing gas desorption-production dynamics (Wang et al., 
2025); gas hydrate production employs coupled depressurization-
displacement mechanisms to enhance methane recovery efficiency 
and production stability (Kasala et al., 2025). Supported by 
high-fidelity multiphysics simulations and advanced data-driven 
algorithms, an intelligent production control paradigm for 
unconventional reservoirs is emerging. Physics-informed machine 
learning is increasingly applied to improve interpretability, accuracy, 
and adaptability of reservoir models, while hybrid frameworks 
integrating statistical analysis, machine learning, and optimization 
have enhanced production forecasting and decision-making in shale 
gas development (Meng et al., 2023). These advances highlight the 
convergence of mechanistic modeling and data-driven optimization 
toward digitally enabled, mechanism-driven reservoir management.

Breakthroughs in intelligent low-carbon development 
technologies for unconventional natural gas have addressed core 
bottlenecks throughout resource extraction processes. To overcome 
geological target identification uncertainties, the integrated 
application of deep learning–based 3D geological modeling 
and real-time intelligent drilling decision systems has enhanced 
sweet-spot targeting accuracy and well placement precision 
(Carpenter, 2023). The development of multimechanism coupled 
flow models, integrated with digital rock core high-resolution 
characterization techniques, provides theoretical insights and 
parameterization support for fracture network design and flow 
channel optimization under nano-/micro-pore–scale mass transfer 
constraints (Yu et al., 2019). Amid tightening carbon constraints, 
lifecycle carbon footprint assessment models pinpoint primary 
emission sources across process chains, accelerating deployment 

of clean energy-powered fracturing systems and subsurface carbon 
capture–production integration systems (Khan et al., 2025). Frontier 
advancements reveal that integrating multienergy coupled supply 
systems with closed-loop intelligent carbon management platforms 
is catalyzing unprecedented deep integration of intelligence, 
systematization, and carbon neutrality in unconventional gas 
development (Brown et al., 2017).

This introductory review for the Frontiers in Earth 
Science Research Topic addresses technical challenges in 
geology–engineering integration for unconventional natural gas 
development. The Research Topic presents ten representative 
studies systematically presenting recent advances in intelligent 
algorithms and low-carbon technologies aimed at high-efficiency 
unconventional gas development. 

2 Review of research presented in This 
Research Topic

This Research Topic compiles cutting-edge advances in 
efficient unconventional gas exploration and development, 
encompassing critical technological pathways including 
geological target identification, reservoir stimulation mechanisms, 
and intelligent low-carbon regulation. These contributions 
span diverse reservoirs—shale gas, CBM, gas hydrates, 
and tight sandstone—yielding systematic breakthroughs 
in structural–sedimentary interpretation, flow regulation 
optimization, and mechanistic-based modeling. Collectively, 
they highlight a dual-driven technological transition toward 
enhanced efficiency and emission abatement in unconventional 
gas development. 

2.1 Intelligent exploration and synergistic 
appraisal

Unconventional natural gas exploration confronts three primary 
challenges: unpredictability of fracture networks, lack of diagnostic 
indicators for coexisting critical minerals, and poorly constrained 
deep sweet-spot positioning. This theme centers on the integration 
of multi-source geological, logging, and seismic data, promoting 
the reconstruction of integrated natural gas–critical mineral co-
exploration frameworks (Mirzaee Mahmoodabadi and Zahiri, 
2023; Mubarak and Koeshidayatullah, 2023; Prochnow et al., 
2022). Specifically, Wu et al. integrated surface fracture outcrop 
distributions with coal seam thickness constraints to reconstruct 
paleotectonic stress field models, elucidating fracture networks 
predominantly governed by structural curvature. The Laochang 
Block, situated in eastern Yunnan Province, China, is a tectonically 
complex coalbed methane–bearing region characterized by intense 
multi-phase deformation and heterogeneous stress regimes. 
Application of this integrated approach markedly improved the 
accuracy of CBM sweet-spot identification in the block, offering 
novel geomechanical insights into fracture development and 
permeability enhancement in structurally intricate reservoirs. Mu 
et al. employed K-means clustering to extract natural gamma-
ray and resistivity responses, establishing logging identification 
criteria and resource co-evaluation systems for Li-enriched coal 
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seams. These advances integrated exploration technologies for 
unconventional gas and critical minerals. Additionally, Zhang 
et al. applied multifrequency seismic attribute fusion—combining 
high–frequency amplitude with low-frequency coherence—to 
jointly characterize sedimentary facies and fault systems. Their 
methodology elucidates reservoir–controlling mechanisms, 
establishes intelligent prediction pathways for deep carbonate 
sweet spots, and facilitates substantial exploration success in 
the Dengying Formation, located within the Sichuan Basin 
of southwestern China—one of the country’s most prolific 
hydrocarbon provinces. 

2.2 Fracture network stimulation and 
multiphase flow regulation

Unconventional reservoir development must urgently 
overcome core bottlenecks in multiphase flow control—including 
gas–condensate–hydrate multiphase systems, heterogeneity in 
fracture network stimulation responses to fracture network 
stimulation, and high flow initiation thresholds. Research 
presented herein drives the transition of reservoir engineering 
from experience-driven to mechanism-driven paradigms through 
mechanistic analysis and modeling innovations (Yuan et al., 2023). 
Specifically, Wei et al. developed a dynamic depressurization model 
for marine hydrate extraction, demonstrating that horizontal 
well development in three-phase zones can simultaneously 
enhance gas and hydrate recovery efficiency. Their proposed well 
type–layer matching criterion for multiphase flow regulation 
guides commercial development in the Shenhu Area, South 
China Sea. Zhao et al. utilized in situ computed tomography 
(CT) scanning to track cyclic gas injection processes, revealing 
induced phase transitions of condensate from wavy to slug 
flow patterns, thereby significantly improving oil–gas phase 
distribution. The first injection cycle contributed most significantly 
to saturation reduction, underscoring the dominant role of 
fracture systems in condensate reservoir recovery mechanisms. 
Additionally, Ren et al. established a material-balance-driven 
fracture network propagation model to quantify synergistic controls 
of natural fracture development and fracturing fluid imbibition 
on stimulated reservoir volume. They developed a fracturing 
optimization pathway based on physical response parameters, 
marking a paradigm shift from experience-based to mechanism-
driven fracturing design in tight reservoirs. Li et al. develop a 
coupled permeability–pressure–water–cut threshold flow initiation 
equation through physical experiments and regression analysis. 
Confirming water saturation as the primary control variable 
for threshold pressure changes, providing fundamental basis for 
dynamic control of high–water–cut gas reservoirs. Notably, Zhang 
and Liu identified a critical stress–state transition zone at ∼1,500 m 
depth in coal seams of eastern Hubei Province, central China, 
located along the margin of the Jianghan Basin. This zone governs 
abrupt permeability changes and conductivity evolution. Their 
proposed slow-depressurization, rapid-drainage strategy sustains 
deep CBM reservoir conductivity, enabling breakthroughs in 
economic recovery. 

2.3 Intelligent decision-making and 
carbon-constrained development

Unconventional gas development urgently requires overcoming 
dual bottlenecks: poorly understood microscale seepage 
mechanisms and high uncertainty in production decision-making. 
This work focuses on adsorption–seepage–emission reduction 
coupling mechanisms and intelligent decision algorithms, driving 
the transition toward intelligently coordinated, carbon-constrained 
development paradigms (Chiamaka et al., 2024; Di et al., 2021). 
Notably, Xu et al. employed low-pressure N2 adsorption combined 
with SEM imaging to reveal the carbon sequestration mechanisms 
of methane molecules in anthracite-hosted organic micropores 
within organic micropores (<2 nm). Their work demonstrates 
that adsorbed methane desorption requires overcoming critical 
energy barriers, providing theoretical foundations for efficient 
CBM development and carbon storage. Furthermore, Li et al. 
developed an integrated Bayesian network–Gaussian mixture 
model (BN–GMM) framework to quantify production fluctuation 
probabilities and carbon footprint sensitivity under multifactorial 
coupling. By identifying recovery factor and reserve-to-production 
ratio as the primary controls of production stability, their approach 
drives the transition from static resource allocation to carbon-
constrained intelligent decision-making in natural gas development 
within the Sichuan Basin. 

3 Conclusion

This Research Topic compiles cutting-edge advances in efficient 
unconventional gas exploration and development, spanning 
geological modeling, engineering optimization, and intelligent 
technology integration. Featured studies encompass representative 
technological pathways including fracture network prediction, 
gas injection-enhanced recovery, fracturing parameter design and 
production uncertainty modeling. These contributions demonstrate 
theoretical innovations and engineering applications across shale 
gas, CBM, and gas hydrate reservoirs. The methodologies and 
case studies herein offer valuable references for understanding 
technological evolution in unconventional gas development while 
providing actionable insights for future research and practical 
applications.
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Stimulated reservoir volume (SRV) fracturing has become the most efficient
technology in the treatment of unconventional hydrocarbon reservoir
formations. This process aims to optimize well productivity by establishing
an intricate network of fractures that integrate hydraulic and natural fractures,
distal to the wellbore, thereby amplifying the contact area with the subterranean
formations and fracture systems. This study introduces a quantitative
framework designed to characterize the fracturing effects within naturally
fractured unconventional hydrocarbon reservoirs. Leveraging existing fracturing
treatment designs and production performance data, the study formulates
a mathematical model of the complex fracture network, predicated on the
principle of material balance. The model comprehensively accounts for the
development degree of natural fractures, the morphological impact of stress
differentials on the fracture network, and the imbibition displacement effects
of the fracturing fluids. The model’s accuracy is verified through an integration
with microseismic monitoring data and an enhanced understanding of reservoir
development. Building upon this foundation, the study quantitatively dissects
the impact of various engineering parameters on the efficacy of SRV fracturing.
The proposed quantitative characterization method is adept for widespread
application across multiple wells in oil and gas fields, offering a distinct
advantage for the swift and precise assessment of SRV fracturing outcomes
in naturally fractured unconventional hydrocarbon reservoirs. The research
method, which is based on readily accessible fracturing construction data and
is more convenient, can to a certain extent improve the efficiency of hydraulic
fracturing evaluation work.

KEYWORDS

SRV fracturing, material balance method, imbibition depth, complex fracture network,
quantitative evaluation
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1 Introduction

The fundamental purpose of evaluating fracturing effects is
to enhance the success rate of fracturing operations, optimize
fracturing design technology, enhance post-fracturing production,
and guide production management post-fracturing (Zhang et al.,
2020; Wang et al., 2022; Guo et al., 2023; Luo et al., 2024). The
evaluation of the stimulated reservoir volume (SRV) fracturing
effect entails a comprehensive assessment of the overall quality
of fracturing construction. In a broad sense, it involves a
qualitative evaluation of single well or block fracturing construction
dynamic monitoring, the alignment of process and design
during construction, long-term production performance, and
economic viability. In a narrow sense, it focuses on quantitatively
characterizing post-fracturing productivity changes, such as
SRV, fracture conductivity, and fracture density (geometrical
parameters), etc.

Over the recent years, a substantial body of research has
been dedicated to the evaluation of hydraulic fracturing within
the context of naturally fractured unconventional hydrocarbon
reservoirs.These evaluationmethodologies are bifurcated into direct
and indirect approaches based on the immediacy and objectivity
of the resultant data. The direct approach encompasses the
acquisition of data through sophisticated monitoring instruments,
including microseismic fracture monitoring, isotopic tracers, and
inclinometers, to ascertain and interpret a multitude of fracture-
related parameters that are indicative of the fracturing process’s
efficacy (Liu et al., 2019; Eyinla et al., 2023; Wang et al., 2023). In
contrast, the indirect approach involves the inversion of fracture
geometry and conductivity parameters from production test data,
which includes the analysis of production dynamics of fractured
wells, well test evaluations, and the application of mathematical
models (Niu et al., 2019; Zhang et al., 2020; Wang et al., 2024).
Despite these methods, the direct approach often overestimates the
SRV in comparison to the effective stimulated reservoir volume
(ESRV) that includes a proppant pack (Li et al., 2019; Li et al., 2024).
Meanwhile, the indirect approach, with its potential for multiple
interpretive solutions, overlooks the imbibition phenomenon,
thereby introducing constraints in the precise and quantitative
characterization of SRV fracturing effects in horizontal wells within
naturally fractured unconventional hydrocarbon reservoirs.

Aiming to address these limitations, this study introduces a
novel quantitative characterization model for SRV fracturing effects
in naturally fractured unconventional hydrocarbon reservoirs,
predicated on the principles of material balance. The model is
anchored in empirical fracturing construction and production
dynamic data, and it holistically integrates the impact of natural
fracture development, stress differentials on fracture network
morphology, the imbibition displacement dynamics between the
fracture network and matrix pores, and the material balance
between the injected and produced fluid systems throughout the
fracturing and flowback phases. This model provides a quantitative
depiction and assessment of the degree of reserves production
within a given well pattern and fracture network distribution,
offering a more nuanced evaluation framework for the performance
of SRV fracturing in such complex reservoir environments.

FIGURE 1
Physical model diagram of the fracture network propagation with
single-stage SRV fracturing.

2 Mathematical characterization
model

2.1 Physical model and assumptions

The formation process of fracture networks in unconventional
hydrocarbon reservoirs through volume fracturing is highly
complex. In the initial stages of fracture network development,
the opening of weak planes on the main fracture walls or the limited
extension of natural fractures can be disregarded, leading to the
formation of primary fractures. As the geometric dimensions of the
primary fractures increase, the pressure loss of the fracturing fluid
also rises, necessitating an increase in the construction pressure
to propagate the fractures further. At this stage, natural fractures
extensively open, resulting in the formation of secondary fractures.
Extensive research by numerous scholars has revealed that under
constant geostress conditions, the geometric configuration of
fracture networks exhibits a degree of regularity and similarity.

Based on the fluid flow and continuity equations for porous
media (Li et al., 2015; Liu, 2016;Wang et al., 2018; Fend et al., 2019),
while taking into account the interactions between the fluid and
the fractures as well as among the fractures themselves, it is
posited that the fracture network formed by the single-stage SRV
fracturing is constituted by a series of orthogonal primary and
secondary fractures that combine in a regular pattern. This network
configures into an axisymmetric elliptical cylindrical shape along
the wellbore, with the major and minor axes of the ellipse being
2a and 2b, respectively. Building on this conceptual framework, a
physical model known as the two-dimensional elliptic orthogonal
line network model (Cheng et al., 2013; Shi et al., 2014; Ren et al.,
2015; Li et al., 2019; Ren et al., 2019; Zheng et al., 2023) has been
developed to encapsulate the propagation dynamics of fracture
networks with SRV fracturing in unconventional reservoirs. A visual
representation of this model is delineated in Figure 1.

The model is predicated on several key assumptions: 1) both
primary and secondary fractures extend through the entire thickness
of the reservoir, with their spatial propagation adhering to the
characteristics of the elliptic orthogonal line network model; 2)
secondary fractures are uniformly distributed in the direction of the
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horizontal principal stresses (denoted as σH for the maximum and
σh for the minimum horizontal principal stresses), with uniform
spacing of dx and dy, respectively, and consistent fracture width; 3)
the effects of viscoelasticity and wall slip on fluid flow are neglected;
4) proppant is uniformly distributed within the fractures; and 5) the
impact of fracturing fluid filtration is disregarded.

2.2 Mathematical model description

2.2.1 Wellbore volume
According to the cylinder volume formula, the wellbore volume

can be expressed as:

Vw = πLr
2
w (1)

where Vw is the wellbore volume; rw is the wellbore radius; L
represents the drilling footage.

2.2.2 Pore volume of primary artificial fracture
According to the formula for the volume of a cuboid, the pore

volume of the primary artificial fracture is expressed as:

V f = 2x fw fH (2)

where V f is the pore volume of the primary artificial fracture; xf is
the main fracture half-length (half of the effective fracture length),
that is, half of the long axis of the elliptical physical model; H is the
reservoir thickness of the study area; wf is the fracture width, which
satisfies the England-Green equation under plane strain condition.
The calculation formula can be given by:

w f =
2(1− υ2)

E
(p f − σmin)h f (3)

where υ is the Poisson’s ratio; E is the elastic modulus; hf is the
height of the primary fractures; pf indicates net pressure within the
fractures; σmin is the minimum horizontal principal stress.

2.2.3 Pore volume of secondary network fracture
The pore volume of the secondary network fracture is

determined by considering the summation of the pore area of the
secondary fractures on a given plane.This area can be approximated
as an ellipse, where the length of themajor axis is equivalent to that of
the primary fracture, and the length of theminor axis is proportional
to the secondary fractures within the network. According to the
volume formula for a cylinder, the pore volume of the secondary
network fracture is calculated with the major axis (2a) and minor
axis (2b) derived from the ratio (r) of the longitudinal to transverse
lengths of the fracture network detected inmicroseismicmonitoring
data from a single fracturing stage in the study area. Specifically,
the major axis is given by 2a = 2xf = r × 2b, where r is the aspect
ratio. The height of the secondary fracture is considered equal to
the thickness of the target reservoir (H). Consequently, the pore
volume calculation model for the secondary network fracture can
be articulated as:

Vs =
πλNr
2M

x2fw fH (4)

where V s indicates the pore volume of the secondary network
fracture; λ is the width ratio of the primary and secondary fracture,

which is obtained from typical well coring data; N represents the
number of natural fractures within the length M of the target
reservoir segment in the study area, which can be obtained from the
imaging logging data of typical blocks.

2.2.4 Imbibition displacement volume within
matrix pores

The imbibition process, in which the fluid within all matrix
blocks is replaced, is analogous to the surface imbibition occurring
over the entire elliptical cylinder. The concept of imbibition depth
is introduced to quantify and assess the efficacy of imbibition
replacement within the matrix pores in proximity to the entire
fracture network (Wu et al., 2017a; Wu et al., 2017b; Ju et al., 2019;
Dai et al., 2020; Tao et al., 2023). Subsequently, the model for
calculating the imbibition displacement volume can be formulated
as follows:

Vm =
π
r
x2fH−V f −Vs − πφ1(x f − d)(

x f
r
− d)(H− 2d) (5)

where Vm is the imbibition displacement volume within matrix
pores; d is equivalent imbibition depth; ϕ1 is the matrix porosity in
the end of imbibition replacement.

Therefore, the aforementioned Eqs 1–5 collectively constitute
the material balance equation for the fracturing injection fluid
system, which can be expressed as:

Q = Vw +m(V f +Vs +Vm) (6)

where Q is the total amount of fracturing fluid; m is the number of
fracturing stages.

Given that the quantity of oil recovered through imbibition is
equivalent to the decrease in oil saturation within the matrix pore
volume, thematerial balance throughout the imbibition replacement
process can be characterized as follows:

Vm(Soi − Sor) =
π
r
x2fHφ1SoiRo (7)

where Soi and Sor are the initial oil saturation of cores before
imbibition and the residual oil saturation of cores in the end
of imbibition replacement, respectively; Ro is the core imbibition
recovery factor.

2.2.5 Material balance equation during fracturing
fluid flowback period

In accordance with the principle of material balance
(Moussa et al., 2020; Ren et al., 2023; Hossain and Dehghanpour,
2024), a correlation is established between the volume of fracturing
fluid injected and the subsequent alterations in formation pressure
and underground pore volume at the conclusion of the imbibition
replacement phase for the injected fracturing fluid. The material
balance equation, which accounts for reservoir elasticity during the
flowback period post-fracturing, is formulated as follows:

Qi −Vw −m(V f +Vs) = Vc1(1− swc)(co + cc)(p1 − pi) (8)

where Qi is the injection amount of fracturing fluid in the stage
i of horizontal well; co is the compression coefficient of crude oil;
cc is the compression factor of reservoir volume; p1 is the average
formation pressure in the end of imbibition replacement; pi is the

Frontiers in Earth Science 03 frontiersin.org10

https://doi.org/10.3389/feart.2024.1419631
https://https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Ren et al. 10.3389/feart.2024.1419631

initial formation pressure; V c1 is the pressure sweep volume in
the end of imbibition replacement and is expressed as V c1 = 4xf
(L+S)Hϕ1, with S being the spacing of the horizontal well; ϕ1 is the
porosity of the rock in the end of imbibition replacement.

Similarly, a correlation is established between the surface liquid
production of the oil well and the variations in formation pressure
and subsurface pore volume as follows:

NpBo +WpBw +Vw +m(V f +Vs) = Vc2(co + cc)(p1 − p2 − pl) (9)

where Np and Wp are the cumulative oil and water production
during the flowback period, respectively; Bo and Bw are the volume
coefficient of crude oil and formation water, respectively; p2 is the
average formation pressure in the end of fracturing flowback; pl is
the pressure loss of fluid in the wellbore, and the expression is pl =
0.0028h, with h is the wellbore depth; V c2 is the reservoir pressure
ripple volume with completion of frac flowback expressed as V c2
= 4xf (L+S)Hϕ2, with ϕ2 being the rock porosity in the end of
fracturing fluid flowback.

At the culmination of the imbibition replacement process, the
rock porosity is described by the following equation of state:

φ1 = φ0[1+ cp(p1 − pi)] (10)

where cp is the compression factor of matrix pores; ϕ0 is the matrix
porosity in the original state of the target reservoir.

At the conclusion of the fracturing fluid flowback, the rock
porosity conforms to the following equation of state:

φ2 = φ0[1+ cp(p1 − p2 − pl)] (11)

Building upon the aforementioned equations, the quantitative
characterization model for the effects of SRV fracturing in naturally
fractured unconventional hydrocarbon reservoirs, grounded in the
principle of material balance, is ultimately established. The model
requires the determination of four critical parameters: the effective
fracture half-length (xf ), the equivalent imbibition depth (d), the
average formation pressure (p1) at the termination of the imbibition
replacement phase, and the average formation pressure (p2) at the
conclusion of the fracturing fluid flowback period.

3 Model solving and verification

Thematerial balance Eqs 6–9 and the state Eqs 10, 11 collectively
constitute a mathematical model for the quantitative evaluation
of SRV fracturing effect. The solution process for this model
is meticulously structured and includes several components: a
basic data preparation module, a parameter symbol explanation
module, an equation set and programming solution module, and
an evaluation parameter output module. The program is developed
within a Windows 11 environment, utilizing Anaconda3 (64-bit)
and the Jupyter Notebook interface for coding and design. The
program’s final output is formatted as Excel spreadsheets, enabling
simultaneous calculations formultiple wells.The computation yields
key evaluation parameters such as xf , d, p1, and p2. Furthermore, the
volume of each part can be calculated, includingVw,V f ,V s, andVm.

The precision of the program’s solution for the mathematical
characterization model is corroborated through a comprehensive

TABLE 1 The geological characteristic and fluid property parameters of
the target reservoir.

Parameters (unit) Data Parameters (unit) Data

Formation thickness (m) 38 Crude oil volume factor 1.109

Initial porosity (%) 9.16 Formation water volume
factor

1.010

Initial formation pressure
(MPa)

21.35 Crude oil compression
factor (×10−4 MPa−1)

9.56

Initial oil saturation (%) 69 Rock compression
coefficient (×10−4 MPa−1)

5.83

Residual oil saturation (%) 33 Reservoir volume
compression coefficient
(×10−4 MPa−1)

13.92

Natural fracture spacing
(m)

1.5 Average infiltration
efficiency (%)

30

TABLE 2 The rock mechanics parameters of the target reservoir.

Parameters (unit) Data

Young’s modulus (GPa) 30.71

Poisson’s ratio 0.293

Maximum horizontal principal stress (MPa) 55.87

Minimum horizontal principal stress (MPa) 48.78

Rock fracture pressure (MPa) 60.36

Normal stress (MPa) 49.25

analysis of microseismic monitoring data, pattern spacing, and
production performance data from the M56-5 SRV-fractured
horizontal well in the tight oil reservoirs within the Tuha oilfield,
located in the Santanghu Basin, China. Geological characteristics,
high-pressure fluid physical property parameters, and rock
mechanics parameters for the target reservoir are detailed in
Tables 1, 2, while Table 3 presents the fracturing reconstruction
parameters specific to the M56-5 well.

Microseismic monitoring data reveal that the average
bandlength and bandwidth of the fracture network formed in each
stage of the M56-5 well through SRV fracturing are 346.91 m and
65.64 m, respectively. Nonetheless, in light of the actual production
performance, the well spacing has been adjusted to 75 m, and the
stage spacing is set at 40 m.The development dynamics indicate that
no effective displacement is established between theM56-5 well and
the neighboring wells. Consequently, the fracture network system of
the M56-5 well remains isolated from adjacent wells, implying that
the effective bandlength of fracture network should be less than the
well spacing of 75 m.

As per the mathematical model and solution methodology
presented in this paper, the average effective bandlength and
bandwidth of the fracture network formed during each fracturing
stage of theM56-5 well were determined to be 71.36 m and 17.84 m,
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TABLE 3 The fracturing reconstruction parameters of M56-5 well.

Parameters (unit) Data

Well depth (m) 2,939

Number of fracturing stages 10

Total amount of fracturing fluid injection (m3) 10,260.4

Horizontal section length (m) 754

Cumulative oil production during the flowback period (m3) 1,174.44

Cumulative water production during the flowback period (m3) 2,242.44

FIGURE 2
The proportion of the injected fluid in the volume of each part.

respectively. Furthermore, this model was applied to calculate the
fracture network parameters for 54 other horizontally fractured
wells with SRV fracturing within the study area. The outcomes
demonstrated a 92.56% concordance rate between the calculated
values and actual observations, thereby attesting to the relative
reliability of the mathematical characterization model and the
solving process established herein.

4 Results and analysis

4.1 Volume proportion of injected fluid

Utilizing the fracture network parameters (xf , d, p1, and p2)
derived from all SRV-fractured horizontal wells, the proportion of
injected fluid in each part of the volume (Vw,V f ,V s, andVm) can be
precisely calculated, with the results graphically depicted in Figure 2.

The calculated results indicate that the volume of imbibition
displacement within the matrix pores constitutes a substantial

87.57%, underscoring the critical role of imbibition displacement in
the development of naturally fractured unconventional hydrocarbon
reservoirs. This result also provides a rational explanation for
the typically low flowback rates observed in these reservoirs.
Tight reservoirs subjected to SRV fracturing have developed a
complex network of fractures withmultiple poremedia, significantly
reducing the percolation distance that reservoir fluids must travel.
During the early stages of development, there has been a qualitative
shift in both the rate and the volume of fluid exchange between
thematrix and the fractures. Consequently, imbibition displacement
has transitioned from a secondary to a primary mechanism within
the reservoir’s fluid dynamics. Furthermore, the pore volume of the
secondary network fractures represents 11.12% of the total volume,
demonstrating that the injection of sand-carrying fracturing fluid
to create complex fracture network systems plays a significant
role. In contrast, the pore volume of the primary artificial fracture
(accounting for only 1.29%) and the wellbore volume (accounting
for a mere 1.02%) constitute relatively smaller proportions of the
overall volume.

4.2 Statistical rules between SRV fracturing
parameters

Based on the fracturing construction parameters and the
fracture network parameters calculated by the model in this paper,
the relationships between imbibition volume and injection volume
of single stage, equivalent imbibition depth and injection volume of
single stage, average formation pressure and total injection volume
during fracturing processes, and pressure drop and well liquid
production during fracturing fluid flowback period were separately
explored by mathematical statistical method. The statistical curves
and its fitting functions between SRV fracturing parameters can be
obtained, as shown in Figure 3.

Analysis of the fitting equations derived from the statistical
curves reveals a definite correlation between the parameters of
fracturing operations and the resulting fracture network. There
is a strong linear correlation between the imbibition volume and
the injection volume during a single fracturing stage. Similarly,
a pronounced exponential relationship is observed between the
equivalent imbibition depth and the injection volume of a single
stage. Additionally, the average formation pressure exhibits an
exponential relationship with the total injection volume throughout
the fracturing process. During the fracturing fluid flowback period,
the pressure drop is characterized by a quadratic functional
relationship with the liquid production of oil well. These fitting
equations offer a convenient and preliminary theoretical foundation
for field engineers to design fracturing operations effectively.

4.3 Sensitivity analysis for SRV fracturing
effect

To quantitatively analyze the impact of engineering parameters
on the SRV fracturing effect, simulations were designed under
the condition of a constant horizontal section length. Various
total volumes of fracturing fluid injection (3,681 m3, 7,681 m3,
11,681 m3, 15,681 m3 and 19,681 m3) and different numbers of
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FIGURE 3
Statistical curves and its fitting functions between SRV fracturing parameters. (A) Injection and imbibition volume (B) Injection volume and imbibition
depth (C) Injection volume and formation pressure (D) Pressure drop and well production.

fracturing stages (6 stages, 7 stages, 8 stages, 9 stages and 10
stages) were considered. Consequently, the effective band length,
pore volume and imbibition displacement volume within a single-
stage SRV, and equivalent imbibition depth were calculated for each
scenario. The influence chart of engineering parameters on SRV
fracturing effect is shown in Figure 4.

The influence curve of engineering parameters on the
effectiveness of SRV fracturing clearly demonstrates that within the
specified range of design parameters, the total volume of injected
fracturing fluid exerts a substantial impact on both the pore volume
and the imbibition displacement volume of the fracture network.
This is attributable to the minimal interference between individual
fracturing stages. Nonetheless, as the total volume of injected
fracturing fluid increases, its influence on the effective bandlength
and equivalent imbibition depth diminishes progressively. This
suggests that while a certain amount of fluid is beneficial, an
excessive volume may not yield proportional gains in fracture
network development. The impact of the total injected fluid volume
on the degree of fracture network stimulation is more pronounced
when there are fewer fracturing stages. In such cases, the stimulation
effect is stronger due to the absence of significant interference.
Conversely, when there is a higher number of fracturing stages, the
inter-stage interference comes into play, leading to a reduction in

the overall stimulation effect of the fracture network. This complex
interaction underscores the importance of optimizing the number
of fracturing stages and the total volume of injected fluid to achieve
the most effective SRV fracturing outcomes.

4.4 Quantitative evaluation of SRV
fracturing effect

Based on the SRV fracturing construction parameters for each
horizontal well, the bandlength and bandwidth of the fracture
network for each fracturing stage are quantitatively computed.
Utilizing the well pattern distribution and the three-dimensional
spatial distribution of the fracture network parameters, a diagram
depicting the well pattern distribution and characterization of the
fracture network is established for various development stages of
representative blocks within the tight oil reservoirs of the Tuha
oilfield, as shown in Figure 5.

The reserves production degree is delineated as the proportion
of the stimulated area of all horizontal wells relative to the oil-
bearing area of the block. The quantitative evaluation of the
SRV fracturing effect is characterized as follows. 1) In the early
development phase with an initial well pattern (well spacing
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FIGURE 4
Influence chart of engineering parameters on SRV fracturing effect. (A) Effective bandlength (B) Pore volume within a single-stage SRV (C) Imbibition
displacement volume within a single-stage SRV (D) Equivalent imbibition depth.

of 300–400 m), the SRV for each horizontal well was largely
isolated due to the expansive well spacing. This resulted in a
inadequate overlapping relationship of fracture networks between
the horizontal wells and a low matching degree between the
well pattern and the fracture network. Consequently, the reserves
production degree under this well pattern condition was a mere
21.31%. 2) Advancing to the primary infill well pattern (well spacing
of 150–200 m), the SRV of each well remained relatively isolated,
and full match between the well pattern and the fracture network
was unattainable. As such, the reserves production degree under
this well pattern condition only reached 32.25%. 3) Under the
current secondary infill well pattern (well spacing of 75–100 m),
the well spacing is sufficiently narrow to preclude any isolated SRV
between horizontal wells. This has led to a more effective overlap
of fracture networks and a high matching degree of congruence
between the well pattern and the fracture network. As a result,
the reserves production degree can soar to 83.65%. The actual
production performance data from this block indicate that 80%
of horizontal wells in the secondary infill well pattern have been
positively affected bywater flooding fromneighboring wells, leading
to an increase in production. This has achieved the intended

objective of establishing an overlapping relationship between the
fracture networks of horizontal wells. In general, the block has
experienced a paradigm shift from well-controlled reserves to
fracture-controlled reserves following two rounds of well pattern
infilling adjustments. With continued reduction in well spacing,
alongside the implementation of enhanced oil recovery techniques
such as multi-periodic waterflooding huff-n-puff and energized
fracturing, it is feasible to transition from single-well imbibition to a
synergistic mechanism of well group imbibition and displacement.
This transition stands to significantly enhance the overall recovery
and productivity of the reservoir.

5 Conclusion

This paper introduces a methodology for the quantitative
characterization of the effects of Stimulated Reservoir Volume (SRV)
fracturing in naturally fractured unconventional hydrocarbon
reservoirs, employing the principle ofmaterial balance.The research
findings underscore the critical role of imbibition displacement
in the development of these reservoirs and provide a credible
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FIGURE 5
Diagram of well pattern distribution and fracture network characterization at different development stages of typical blocks. (A) Initial well pattern (B)
Primary infilling adjustm (C) Secondary infilling adjustment.

explanation for the commonly observed low flowback rates in the
field. A significant correlation exists between the parameters of the
fracturing operation and the resulting fracture network. The total
volume of injected fluid is decisive in determining the extent of
stimulation of the fracture network induced by SRV fracturing.
However, with an increasing number of fracturing stages, the
influence of this volume on the degree of stimulation is progressively
reduced.Themethodology presented herein facilitates a quantitative
evaluation of the reserves production degree within the study area,
thereby enhancing the efficiency of fracturing operations.Moreover,
the results yield a practical reference framework for engineers
and technicians to accurately assess the SRV fracturing effects in
typical blocks of naturally fractured unconventional hydrocarbon
reservoirs. This approach not only refines the understanding of SRV
fracturing effects but also informs the design and optimization of
future fracturing operations in similar reservoir settings.
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Deep carbonate reservoirs are attractive targets for gas development. These
reservoirs are deeply buried, and commonly possess strong heterogeneity and
poor seismic data quality, making the identification of favorable production
areas (“sweet spots”) challenging. Furthermore, sedimentary facies and fault
systems markedly impact reservoir quality, and identifying these features in
seismic data is also crucial for sweet spot identification. To solve these problems,
we propose a dual-factor-controlled sweet spot identification method with two
steps. First, sedimentary facies and faults are identified separately at different
seismic scales using different attributes by the steerable pyramid (SP) method.
The SP method decomposes the original seismic data into high-frequency
and low-frequency data. The amplitude attributes from high-frequency data
are used to identify sedimentary facies, and coherence attributes based on
low-frequency data are used to characterize the fault systems. Second, after
separately identifying the sedimentary facies and faults, the two attribute
volumes are merged together to identify reservoir sweet spots. The results are
verified by usingwell production data. The results of a field study in the Dengying
Formation deep carbonate reservoir in the central Sichuan Basin, China, indicate
that reservoir sweet spots are primarily developed in ideal sedimentary facies
along strike-slip fault systems. Sedimentary facies generally control the type and
distribution of reservoirs, whereas strike-slip fault systems control the migration
and accumulation of gas. In addition, the fault systems serve as karst channels
that further improve the reservoir properties. The proposed dual-factor method
might help to maximize exploration potential in deep carbonate reservoirs with
similar settings.

KEYWORDS

Sichuan Basin, Dengying formation, mound-shoal complex, strike-slip fault, reservoir
sweet spot, steerable pyramid processing
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1 Introduction

Carbonate reservoirs are extremely important for oil and gas
development, because they host more than 60% of the world’s oil
reserves and 40% of gas reserves (Hendry et al., 2021). In recent
years, deep carbonate reservoirs (burial depth >3,500 m) have
become important targets for hydrocarbon production, such as the
pre-salt carbonate reservoir in Brazil, Lower Cretaceous carbonates
in Venezuela, and the Sichuan Basin and Tarim Basin carbonates
in China (Pppelreiter et al., 2005; Carvalho et al., 2022; Shi et al.,
2023). Seismic exploration is commonly applied to identify reservoir
distribution and delineate reservoir structure; however, the deep
burial depth of reservoirs often results in weak seismic reflections
and low seismic resolution, leading to poor seismic data quality
(Pan et al., 2020; Chen et al., 2021). Marine carbonate reservoirs
generally have strong heterogeneity, making their geophysical
response characteristics complex and variable (Azerêdo et al., 2021;
Wang et al., 2022). The poor data quality and strong heterogeneity
of carbonate reservoirs are important challenges for reservoir sweet
spot identification. Additionally, the quality of deep carbonate
reservoirs is commonly controlled by various factors, including
the depositional environment, lithology, diagenesis, karstification,
and tectonic deformation (Massaro et al., 2018; Tian et al., 2020;
Wadas et al., 2023). A good understanding of these factors is
required for successful reservoir identification (Wang et al., 2024).
In general, the main tasks for identifying deep carbonate reservoirs
are to improve the seismic data quality and to consider the main
reservoir controlling factors.

There are multiple ways to improve seismic data quality,
including denoising, deconvolution and frequency decomposition
(Naghizadeh, 2012; Liu and Fomel, 2013; Li et al., 2022). Frequency
decomposition is a crucial method for post-stack seismic data
processing: the method decomposes the original seismic signals
into their constituent frequency components (Liu and Fomel,
2013; Chopra and Marfurt, 2016). This technique can enhance the
resolution and interpretation of seismic data, allowing geoscientists
to better understand subsurface structures and properties. The
method has been applied to identify deep carbonate reservoirs
(Naseer and Asim, 2018; Xu et al., 2019), but its stability still needs
to be improved. Another seismic data processing method is the
steerable pyramid method, which is commonly used to detect
channels and thin sand bodies in sandstone reservoirs (Mathewson
and Hale, 2008; Zhao et al., 2021).

Extensive research has suggested that the sedimentary
environment (ideal sedimentary facies) is one of the most
important factors controlling the reservoir quality of deep
carbonates (Shen et al., 2008; Hairabian et al., 2014; Luo et al.,
2015; Azerêdo et al., 2021; Nabawy et al., 2023). Luo et al. (2015)
proposed that the deep carbonate reservoirs in the Sichuan
Basin are primarily controlled by mound–shoal facies, with
effective identification of mound–shoal complexes and accurate
restoration of karst paleo-geomorphology being crucial for reservoir
characterization. Shen et al. (2008) suggested that carbonate reef
complexes are the ideal reservoir facies for platform-margin
depositional environments in both Western Australia and South
China. Nabawy et al. (2023) concluded that there are three favorable
microfacies of Upper Cretaceous carbonates in the Gulf of Suez, and
demonstrated that diagenetic modifications, including fracturing,

dissolution and dolomitization, have enhanced the reservoir facies
properties and quality.

In recent studies, it was found that strike-slip fault systems
also control and modify carbonate reservoirs (Jiao et al., 2021;
Jia et al., 2022; He et al., 2023; Ma et al., 2023). Jiao et al. (2021)
concluded that the large strike-slip fault zone in the central
Sichuan Basin can effectively connect hydrocarbon source centers,
enhancing hydrocarbon migration and forming favorable fault-
controlled natural gas reservoirs. Jia et al. (2022) indicated that
strike–slip faults control the development of carbonate reservoirs
and the enrichment of oil and gas in the TarimBasin. He et al. (2023)
proposed that strike-slip fault zones develop fractures and karstic
cavities, which markedly improve the petrophysical properties of
carbonate reservoirs.

Previous studies have achieved considerable progress in
analyzing reservoir control factors and have produced innovative
reservoir identification methods (Lien Eide et al., 2002; Lucia et al.,
2003; Ahr, 2011; Malki et al., 2023; Sarhan, 2024). However, most
of these studies applied a single control factor for seismic reservoir
identification, and only a few studies comprehensively integrated
multiple factors to constrain the identification. For practical
application, we found that reservoir identification based on single
factors often fails tomeet the production requirements for accurately
locating reservoir sweet spots; therefore, it is important to consider
multiple factors when identifying reservoir sweet spots. In this
case, our work begins by considering two aspects: the sedimentary
environment and structural background. Taking the example of the
Dengying Formation deep carbonate reservoir in the Sichuan Basin,
China, we analyze the controlling effects of sedimentary facies and
fault systems on the Dengying Formation carbonate reservoirs, and
then identify sedimentary facies and faults separately at different
seismic scales. Steerable pyramid (SP) processing is deployed to
decompose the seismic data into various scales and enhance data
quality. Field study suggests that the SP method is more stable and
effective than frequency decomposition. Under the dual constraints
of sedimentary facies and fault systems, reservoir sweet spots are
accurately identified. The aim of this study is to provide technical
support for the efficient development of deep carbonate reservoirs,
especially those primarily controlled by both sedimentary facies and
fault systems.

2 Geological background

2.1 Overview of the study area and
stratigraphy

The Anyue Gas Field is located in the eastern wing of the
Lesan–Longnvsi Uplift in the Sichuan Basin (Xie et al., 2021), where
the widely distributed Sinian Dengying Formation has experienced
a long sedimentary period, with deep burial depth (Luo et al.,
2015). The main lithology of the Dengying Formation is dolomite
(Tian et al., 2020). On the basis of sedimentary and lithological
characteristics, the entire Dengying Formation can be divided into
four members (Li et al., 2023). This study focuses on the Deng
4 Member. The study area is the Gaoshi-18 well block in the
Gaoshiti region of the Anyue Gas Field, for which 3D seismic data
for an area of approximately 200 km2 are available. The Deng 4
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Member has burial depths ranging from 5,000 to 5,500 m, and the
regional stratigraphic thickness is 260–350 m (Zhang et al., 2021).
This member can be further subdivided into upper and lower sub-
members, and the upper sub-member contains a widely distributed,
continuous siliceous interlayer (Luo et al., 2019). The main storage
types of the Deng four member reservoirs are intergranular pores,
fractures, and karst caves (Xiao et al., 2018; Zhang et al., 2021).
High-quality reservoirs are mainly concentrated within the top
100 m of the Deng 4 Member (Tian et al., 2020).

2.2 Sedimentary environment and
favorable sedimentary facies

The sedimentary environment of the Dengying Formation in
the Sichuan Basin is a carbonate platform. The main facies are
platformmargin mound–shoal facies, intra–platformmound–shoal
facies, inner–mound marine facies, and evaporite platform facies
(Zou et al., 2011; Lan et al., 2019). The platform margin and intra-
platform mound–shoal facies are favorable reservoir facies, and
were extensively developed in the shallow-water area of the
Deyang–Anyue rift margin.

Mound-shoal facies refer to the combined deposition of algal
mounds and grain shoals. As algal mounds and grain shoals
commonly develop in adjacent areas and both serve as good
reservoirs, they are collectively referred to as “mound–shoal
complexes” (Lan et al., 2019). Mound–shoal complexes have
a mound-like shape. They grow on topographic highs of
paleomorphology, with strong hydrodynamic environments
and abundant sunlight. This environment is favorable for the
development of microbialite mounds and stromatolites, and for
the deposition of granular carbonate rocks (Xu et al., 2022).

2.3 Structural background and fault system

The Sichuan Basin has undergone multiple episodes of tectonic
movement, such as the Tongwan, Caledonian, Yanshan, and
Himalayan Movements (Jiao et al., 2021), which have led to
the development of a series of strike-slip fault systems in the
Neoproterozoic Dengying Formation (Ma et al., 2023).These strike-
slip fault systems initially formed during the late Precambrian as part
of the Tongwan II movement. During this period, the Sichuan Basin
was characterized by a differential extensional background, with
extension that was stronger in the north and weaker in the south.
This condition made the region highly prone to the development of
obliquely oriented, dextral trans-tensional strike-slip fault systems
to accommodate the differential extensional displacement between
the northern and southern regions (Ma et al., 2023). In this context,
the central Sichuan region developed a series of nearly EW-trending
main strike-slip faults, with lengths ranging from 80 to 200 km
(Figure 1), which dominated the tectonic evolution of the central
Sichuan Basin (He et al., 2023). Controlled by these main faults,
secondary strike-slip faults developed in the Gaoshiti–Moxi area:
these faults are primarily NW-trending (with a few NE-trending
examples) and extend over thousands of meters.These faults exhibit
large extension lengths and wide distributions, but relatively small
vertical displacements (Wu et al., 2020; Ma et al., 2023). Seismic

profiles show that the vertical displacements of the strike-slip faults
are generally less than 50 m, and that the faults cut through multiple
layers from the Precambrian basement to Permian strata.The strike-
slip fault systems were inherited and reactivated at later times, some
during the Mesozoic and Cenozoic.The Tongwan II movement also
enhanced the reservoir physical properties by exposing the Deng 4
Member strata to extensive karstification.

3 Workflow and methodology

In this study, we create a workflow for reservoir sweet
spot identification under dual-factor control (Figure 2). First,
considering the sedimentary environment and structural
background of the study area, we analyze the reservoir patterns
and features of mound–shoal facies and strike-slip faults. By
deploying seismic forward modeling, we investigate the seismic
response characteristics of the mound–shoal facies and strike-
slip faults; Simultaneously, we apply SP processing to the original
seismic data. This method effectively decomposes seismic data into
sub-band data of different scales. By selecting and recombining
these sub-bands, two new seismic datasets are constructed: low-
frequency and high-frequency data. After analyzing these datasets,
we extract the average absolute amplitude attribute from the high-
frequency data to identify mound–shoal facies reservoirs. For the
low-frequency data, we extract coherent attribute and apply tensor
voting processing to identify the strike-slip fault system. Then,
we merge the two identification volumes and achieve 3D spatial
characterization of reservoirs under dual-factor control. Finally, we
use an attribute fusion method to perform the reservoir sweet spot
identification.

4 Results

4.1 Seismic response characteristics of
faults and reservoir

4.1.1 Seismic response of mound–shoal facies
reservoir

Thedominant frequency of seismic data is approximately 30 Hz.
Limited by seismic resolution, the morphological characteristics of
mound–shoal complexes are difficult to identify directly. Based on
the lithological characteristics, we investigate the seismic response
of mound–shoal complexes using seismic forward modeling.
First, considering the lithological conditions when mound–shoal
complexes are not developed, the Deng four upper sub-member
can be simplified to the model shown in Figure 3A. The Deng four
member consists of tight dolomite with high acoustic impedance,
underlain by a 30-m-thick layer of Qiongzhusi Formation shale.
The shale has lower P-wave velocity and density than the carbonate
rocks. A continuous siliceous interlayer occurs approximately 50 m
below the Deng four top boundary, with lower P-wave velocity
and density than the surrounding rocks. Seismic forward modeling
using a 30 Hz dominant frequency wavelet yields a strong wave
peak reflection interface at the Deng four top boundary, with a
weaker wave peak reflection occurring at the bottom of the siliceous
interlayer (Figure 3B).
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FIGURE 1
Schematic map of the sedimentary environments and strike-slip faults in the Gaoshiti–Moxi region (after Tian et al., 2020; Ma et al., 2023).

Then, we consider the condition when a mound–shoal
complex is present near the top of the Deng four member
(Figure 3C). The mound–shoal complex has low P-wave velocity

and density, resulting in lower acoustic impedance compared
than the surrounding tight dolomite. The synthetic seismic record
using a 30 Hz wavelet (Figure 3D) shows that the presence of
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FIGURE 2
Diagram of the research workflow.

a mound–shoal complex leads to a decrease in the acoustic
impedance at the Deng four top, causing a pronounced amplitude
reduction on the wave peak. A weak amplitude peak response is
observed at the mound–shoal complex top, and a decrease in the
amplitude of wave trough reflections is observed within the complex
reservoir. Additionally, a weaker wave peak response is observed at
the base of the mound–shoal complex, suppressing the seismic
response of the siliceous interlayer and causing up-shifting of
the reflection.

From the forward modeling results, the seismic response of
the mound–shoal complex at the Deng four upper member can
be summarized as follows: (1) weak amplitude response at the top
of the mound–shoal complex, corresponding to a relatively low-
amplitude peak at theDeng four top boundary; (2) attenuation of the
trough reflection within the mound–shoal complex, possibly with a
weak-amplitude peak response at the bottom.

4.1.2 Seismic response of combined strike-slip
fault and fault-mound shoal

The main fault type in the Gaoshiti area is strike-slip faults;
these faults are characterized by small fault throws and steep dip
angles. Rock damage occurs on both sides of the strike-slip fault
planes, resulting in the development of fault damage zones and
associated fractures. A forward modeling model is established on
the basis of the characteristics of strike-slip faults (Figure 4A). Low-
impedance fault damage zones (orange areas) are present on both

sides of the fault plane, with P-wave velocities ranging from 5,500
to 6,000 m/s and gradually increasing away from the fault plane in
both directions.The synthetic seismic record shows time-shift along
the seismic event, accompanied by a decrease in amplitude on both
sides of the fault damage zone (Figure 4B).

We further consider simultaneous development of strike-slip
faults and mound–shoal complexes (Figure 4C). The corresponding
seismic response (Figure 4D) shows time-shift along the seismic
event and pronounced amplitude reduction on both damage zones.
A reflection event up-shift phenomenon is present in the lower
trough, faintly indicating the mound-like morphology of the
mound–shoal complex.

The seismic characteristics of the strike-slip fault system
include high-angle time-shift along the seismic event and
amplitude reduction on both sides of the fault damage zone. These
characteristics are somewhat similar to the response characteristics
of amplitude reduction in the mound–shoal complex. In reality,
associated fractures are developed near the fault damage zone of the
strike-slip fault, enhancing karstification and further weakening the
amplitude along the seismic event. Therefore, in cases where strike-
slip faults andmound–shoal complexes are both present, it is difficult
to distinguish the two based only on low-amplitude features. Using
weak amplitude features as the basis for mound–shoal reservoir
identification, while using seismic event time-shift features for
identifying strike-slip faults, can effectively reduce interference and
improve accuracy.
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FIGURE 3
Seismic forward modeling of mound–shoal facies reservoirs: (A) Geological model (without reservoir) (B) Synthetic seismic record (without reservoir)
(C) Geological model (with reservoir) (D) Synthetic seismic record (with reservoir).

FIGURE 4
Seismic forward modeling of strike-slip fault and faulted-mound shoal: (A) Geological model (strike-slip fault) (B) Synthetic seismic record (strike-slip
fault) (C) Geological model (mound–shoal with fault) (D) Synthetic seismic record (mound–shoal with fault).
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4.2 Reservoir and fault-system
identification

This study proposes an approach for multi-scale identification
based on the seismic characteristics of reservoirs and fault systems.
The thickness of mound–shoal facies reservoirs is generally
lower than the vertical resolution of seismic data; thus, further
enhancement of seismic resolution and extraction of small-
scale features are required to highlight the seismic response
characteristics of mound–shoal reservoirs. In contrast, strike-
slip faults are characteristically large-scale and extend over long
distances, allowing for identification in larger-scale data. Small-
scale seismic event folding and discontinuity artifacts may adversely
affect identification accuracy. By combining different seismic
attributes in seismic data at different scales, we can accurately
identify both mound–shoal facies reservoirs and strike-slip
fault systems.

4.2.1 Steerable pyramid processing and validation
In this study, the SP method is deployed to perform multi-

scale decomposition and reconstruction of seismic data, with
the aim of enhancing the quality of seismic data and further
highlighting the fault systems. The SP method is a multi-scale
data processing method based on image pyramids and directionally
steerable filtering. The specific principles of the method can be
found in the literature (Freeman and Adelson, 1991; Mathewson
andHale, 2008; Zhao et al., 2021), and will not be further elaborated
in this paper. The SP processing decomposes the seismic data of
the study area into five different frequency sub-bands (referred to
as L1–L5). The seismic profile of the original seismic data and
different SP processed sub-band data are shown in Figure 5, and
the corresponding spectral analysis of each seismic data is presented
in Table 1.

From the seismic profiles and spectral analysis, it can be
observed that sub-band L5 has a large scale but very low resolution,
and contains only macro-scale seismic information; therefore, its
contribution to identifying the fault systems and reservoirs is
minimal, and this sub-band is not considered further in this
study. L1–L4 are considered to be the key sub-bands for further
analysis. L1 has a higher seismic center and dominant frequency
compared to the original seismic data, with an overall frequency
enhancement of approximately 15 Hz. On the seismic profiles, L1
reveals more details and discontinuities in seismic events, thereby
capturing more small-scale geological information and details in
the original seismic data. Sub-band L2 is generally similar to the
original seismic profile, with a slightly higher center frequency
(38.4 Hz) than the original seismic data (32.8 Hz), and exhibits
similar geological structures and features while eliminating some
noise effects. L3 has a lower center frequency (26.3 Hz) compared to
the original seismic data. Although its resolution is slightly lower, it is
advantageous for highlighting larger-scale fault features compared to
the original seismic data, enhancing the continuity of seismic events
and eliminating some fault artifacts. L4 further emphasizes large-
scale geological structures compared to L3 but lacks detail, making
it suitable for comprehensive analysis in combination with other
sub-bands.

For the purpose of reservoir and fault systems identification,
the SP processed sub-bands are divided into two groups: the high-
frequency group (sub-bands L1 and L2) and the low-frequency
group (sub-bands L3 and L4). Then, we stack each group of sub-
bands to reconstruct new seismic data, with SP L1+2 representing
high-frequency data and SP L3+4 representing low-frequency data.
Both new seismic datasets maintain the resolution characteristics
of the sub-bands and effectively compensate for the deficiencies in
individual sub-band seismic data. In this study, the high-frequency
data (SP L1+2) are used for reservoir identification and the low-
frequency data (SP L3+4) are used for characterization of fault
systems.

To verify the effectiveness and enhancement of the SP
processing, we compare the processed datasets with the original
seismic data, and also apply the commonly used frequency
decomposition (FD) method as a comparison. Corresponding high
and low-frequency seismic data were constructed using the FD
method. The spectral analysis results for the SP and FD processed
data are provided in Table 1. The FD constructed seismic datasets
closelymatch the SP data in terms of dominant frequency and center
frequency, achieving maximum control over the frequency aspect.
However, as a result of differences in algorithms, the frequency
bandwidths of SP processed data are wider than those of frequency
decomposition data.

We compare SP low-frequency data with original seismic
data and FD low-frequency data (Figure 6). Typical seismic
profiles passing through faults are illustrated in Figures 6A–C;
the corresponding coherence attribute profiles are shown in
Figures 6D–F. Two large strike-slip faults are more clearly visible
in both the SP and FD low-frequency data than in the original
seismic data (Figures 6A–C).However, there is an obvious amplitude
distortion in the lower part of the FDprofile, with noticeable changes
in the wave peaks and troughs (Figure 6C). This phenomenon is
caused by the lack of translation invariance in the FD method,
resulting in pronounced amplitude changes on the seismic events.
When further considering the attribute profiles, we observe that
the coherence attributes of both the SP and FD data clearly show
the shape of the strike-slip fault. The difference is that the SP
data attribute eliminates some high-frequency noise and attribute
artifacts (Figure 6E), whereas the FD data attribute has some noise
and artifacts remaining (Figure 6F).

The comparison between the SP high-frequency data, the
original data and the FD processed data is illustrated using a
cross-well profile (Figure 7). In the original seismic profile, the
top boundary of the Deng 4 Formation exhibits strong wave
peak reflection characteristics with high continuity. A high-
quality mound–shoal reservoir (indicated by red circles in the
figure) is present near the top of the Deng four zone in well
GS10. However, because of the limited seismic resolution of the
original seismic data, wave interference occurs; as a result, the
weak amplitude response expected at the reservoir location is not
visible in Figure 7A. After SP processing, the seismic resolution is
improved, greatly reducing the wave interference phenomenon and
revealing the weak amplitude reservoir response at the Deng four
top boundary.The SP processing also enhances the seismic response
of the siliceous inter-layer throughout the region, corresponding
to the continuous wave peak 20 ms below the Deng four
top (Figure 7B).
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FIGURE 5
Seismic profiles of the original seismic data and SP processed sub-band data: (A) Original seismic data (B) Sub-band L1 (C) Sub-band L2 (D) Sub-band
L3 (E) Sub-band L4 (F) Sub-band L5.

TABLE 1 Results of spectral analysis of original seismic data and SP and FD processed data.

Seismic data Dominant frequency (Hz) Central Frequency (Hz) Frequency bandwidth (Hz)

Original seismic 30.4 32.8 16.5–47.7

SP Level 1 (L1) 46.9 44.5 30.7–56.1

SP Level 2 (L2) 39.1 38.4 23.8–50.5

SP Level 3 (L3) 23.6 26.3 17.3–33.3

SP Level 4 (L4) 11.7 15.4 4.4–21.6

SP Level 5 (L5) 7.8 8.2 2.1–12.4

SP Level 1+2 43 40.6 26.2–49.2

FD 1 (high-F) 43 43.1 36.2–50.3

SP Level 3+4 21.4 23.2 13.9–29.8

FD 2 (low-F) 20.1 23.3 16.0–27.2
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FIGURE 6
Comparison of original seismic data and SP and FD low-frequency data: (A) Original seismic data (B) SP low-frequency data (C) FD low-frequency data
(D) Coherence attribute of (A) (E) Coherence attribute of (B) (F) Coherence attribute of (C).

The FD high-frequency data (Figure 7C) also display weakened
amplitude at the Deng four top boundary. Although the weak
amplitude feature of the reservoirs in well GS10 are highlighted,
the Deng four top boundary shows poor continuity of seismic
events with excessively low amplitude. Obvious amplitude distortion
on the seismic events can be observed in the middle part of the
profile, which differs markedly from the structure of the original
seismic data. According to the spectral analysis results, although
FD processing enhances the center frequency and dominant
frequency of seismic data, the frequency bandwidth of the processed
seismic data is narrower. This difference results in the loss of a
large amount of low-frequency information, leading to obvious
changes in the geological structure and seismic events in the
seismic data.

From the above validation and analysis, it can be concluded that
SP low-frequency data can clearly characterize the shape of faults

by eliminating a large amount of high-frequency noise and artifacts,
which aids in interpreting large-scale fault systems. SP high-
frequency data markedly improve seismic resolution, highlighting
the weak amplitude features of the reservoir at the Deng four top
boundary. In the FD data, obvious changes are observed in the
stratigraphic structure and seismic events in both high- and low-
frequency data. These changes arise because in FD processing the
frequency changes lack translational invariance, making it difficult
to maintain good consistency between the decomposed frequency
components and geological features. In general, the SP method is
superior to the FDmethod in terms of stability and processing effects
at different scales.

4.2.2 Mound–shoal facies reservoir identification
We identify the mound–shoal facies reservoirs of the Deng

four member using SP high-frequency data. The identification is
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FIGURE 7
Comparison of original seismic data and SP and FD high-frequency data: (A) Original seismic data (B) SP high-frequency data (C) FD high-frequency
data. Red circles indicate a high-quality mound–shoal reservoir.

based on the seismic characteristics of the reservoir, which include:
(1) weak amplitude response at the Deng four top boundary; and
(2) attenuation of the trough reflection within the mound–shoal
complex, with decreased amplitude of peaks 20 ms below the Deng
four top boundary. These features indicate that the mound–shoal
reservoir causes an overall decrease in reflection amplitudes. The
average absolute amplitude can effectively be used to visualize the
amplitude decrease of the reservoir, with ideal reservoir locations
corresponding to low attribute values. We extract the average
absolute amplitude using a window from the Deng four top
boundary to 20 ms below the boundary to identify mound–shoal
reservoirs at the top of the formation.

Wells with higher productivity, such as GS122, GS125, and
GS132, have well trajectories passing through large segments of
reservoir zones (dark red color in Figure 8), whereas wells with
relatively lower productivity, such as GS119 and GS120, are located
in the brown-red areas with slightly higher attribute values. When
the well productivity is analyzed against the average attribute values
(Figure 12A), there is a negative correlation overall, consistent with
the understanding described above. However, it is notable that
the data points corresponding to wells GS10 and GS118 deviate
markedly from the correlation trend line. Well GS10 exhibits

good reservoir properties and is located in the low-value area,
indicating high-quality reservoirs in this well. The reason for the
low well productivity might be because of a shorter reservoir
thickness compared to other wells. The trajectory of well GS118
does not fall within the ideal low-amplitude reservoir zone, even
though it has very high productivity. It is preliminarily inferred
that, because the well trajectory passes through a strike-slip fault,
karstification surrounding the fault has resulted in the formation
of favorable fracture-porosity reservoirs around the fault zone. As
these reservoirs are not mainly controlled by sedimentary facies,
their presence is not obvious in the reservoir identification based on
detection of mound–shoal facies.

4.2.3 Strike-slip fault system identification
In fault identification, coherence attributes can effectively

highlight the features of large-scale fault systems. We extract 3D
coherence attributes from SP low-frequency data and identify the
fault systems of the Deng four member along the horizon. Strike-
slip faults are primarily oriented in the NW direction, with clear
shapes for most of the faults (Figure 9A). However, low-continuity
areas can be observed in certain faulted locations, and some outlier
values result in blurring near the faults. To address these issues,
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FIGURE 8
Identification of mound–shoal facies reservoirs based on amplitude. Black lines represent well trajectories, yellow bars represent well productivity, and
light-colored low-value areas indicate reservoir locations.

we deploy the tensor voting method to enhance the coherence
attribute. This method is based on analyzing structural tensor
characteristics and using eigenvalues voting to detect and enhance
structural features within the seismic data. The process can be
summarized in three steps: first, we input a 2D dataset (planar
seismic attribute) and use the gradient vectors to construct the
structure tensor for each pixel. Next, by analyzing the eigenvalues
of the structure tensors, we can extract the pixels with strong
anisotropy (referred as seed points, representing potential fault
locations). Finally, a specific voting domain is constructed, and
voting is performed on each seed point. The seed points of
potential faults will receive higher votes. By setting a reasonable
threshold, the tensor voting-enhanced attribute result is obtained
(Cui et al., 2021).

In this study, tensor voting is applied to coherence attributes to
further highlight the morphology of strike-slip fault systems. The
tensor voting processing effectively enhances the continuity of large-
scale faults and eliminates blurry regions caused by low attribute
values and noise interference, achieving an accurate representation
of the fault systems (Figure 9B). The major strike-slip faults in the
study area are primarily oriented northwest to southeast, with a
few faults oriented in northeast to southwest. The faults extend for
several kilometers, and some secondary minor faults and fractures
are also developed near the fault planes, consistent with the analysis
from previous tectonic movement.

To further assess the influence of the strike-slip fault system on
reservoir quality, we correlate well productivity with distance from
faults. Overall, there is a negative correlation between the two factors
(Figure 12B), indicating that wells closer to faults exhibit higher
production. The associated fractured zones of the strike-slip faults
have a certain impact on the reservoir development within a radius
of approximately 2 km, with more pronounced effects observed
within a range of 500 m around the fractured zone. This finding
suggests that the strike-slip fault system has a controlling effect on
reservoirs.

4.3 Reservoir spatial characterization and
sweet spot identification

4.3.1 Dual-factor-controlled reservoir spatial
characterization

As described above, reservoir identification based solely on
sedimentary facies results in a poor match with production data;
therefore, considering the control and modification effects of fault
systems on reservoirs is necessary. We characterize the distribution
of fault systems and mound–shoal sedimentary facies in three-
dimensional space, and merge these two volumes to achieve
spatial characterization of reservoirs under dual-factor control. First,
by setting thresholds to eliminate outlier values in the attribute
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FIGURE 9
Results of fault systems identification: (A) Fault identification before tensor voting (B) Fault identification after tensor voting.

volumes, 3D characterization volumes of the fault systems and
mound–shoal reservoirs are obtained (Figures 10A,B). Then, the
two modified attribute volumes are merged with the trajectories
of development wells (Figure 10C). The red region in the figure
indicates the development of strike-slip fault systems, and the yellow
region represents the distribution of mound–shoal facies reservoirs.
Themound–shoal facies aremore widely distributed than the strike-
slip fault systems, and overlap some strike-slip faults. Most of the
development wells, such as GS125 and GS132, pass through or are
located near mound–shoal reservoirs or strike-slip fault zones.

Thicker reservoir units are developed near the strike-slip fault
zones (Figure 10C), further indicating the controlling effect of
strike-slip faults on reservoir quality. We conclude that the control
of strike-slip fault systems on reservoirs mainly manifests in two
aspects: (1) large strike-slip fault zones provide migration channels
for oil and gas, making areas near the fault zones more favorable
for hydrocarbon accumulation; (2) strike-slip faults and secondary
fracture systems enhance karstification of carbonate reservoirs,
facilitating the formation of secondary pores and cavities and thus
improving reservoir properties. Under karstification, the secondary
dissolution porosity of the Deng 4 Member carbonate reservoirs
can increase by 5%–20%; additionally, because of the widespread
development of fractures associated with faults, the permeability
of carbonate matrix rocks can increase by one to two orders of
magnitude (Jiao et al., 2021; He et al., 2023).

To summarize, the carbonate reservoirs of the Dengying
Formation are controlled by two factors: mound–shoal sedimentary
facies and strike-slip fault systems. The mound–shoal facies serve
as the main material basis for reservoir development, determining
the type and distribution of reservoirs, while the strike-slip fault
systems further enhance hydrocarbon accumulation and reservoir
properties.

4.3.2 Identification of reservoir sweet spots
To further quantify the influence of sedimentary facies and

fault systems on reservoirs and to locate sweet spots, we deploy a
method combining normalization attribute fusion with a smoothing
filter. First, the planar predictive attributes of fault systems and
mound–shoal complexes are normalized separately using the
following equation:

y =
x− xmin

xmax − xmin
(1)

where x represents the original planar attribute value; xmax and
xmin correspond to the maximum and minimum values of the
original attribute, respectively; and y represents the normalized
attribute value.

After normalization, the two attributes are merged to obtain
a fusion attribute map that simultaneously reflects faults and
sedimentary facies (Figure 11A). In the figure, low values (bright
colors) denote the development of sedimentary facies and faults;
for example, bright yellow typically corresponds to reservoir areas
controlled by both faults and mound–shoal facies.

Finally, we extract favorable reservoir characteristics from the
fusion attribute using a 50 × 50 smoothing filter, as shown in Eq. 2:

Frac(m,n) = ∑25
i=−25
∑25

j=−25
Attribute(m+ i,n+ j) (2)

where m and n respectively correspond to the coordinates of the
attribute values;Attribute represents the fusion attribute coordinate;
and i and j correspond to the size of the smoothing window.

In the filtered fusion attributemap (Figure 11B), the red-colored
low-value regions indicate ideal reservoir development areas that
are controlled by both strike-slip faults and mound–shoal facies,
brown areas represent reservoirs that are likely influenced by single-
factor effects, and blue regions indicate reservoirs with low-quality
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FIGURE 10
Spatial 3D characterization of strike-slip fault systems and mound–shoal reservoirs: (A) 3D characterization of the strike-slip fault systems (B) 3D
characterization of mound–shoal reservoirs (C) Dual-factor-controlled 3D characterization.

properties or non-reservoir areas. The overall red “sweet spot” areas
are similar to the distribution ofmound–shoal facies reservoirs, with
a few variations in certain locations. This result further confirms
that the sedimentary facies control the reservoir distribution at a
larger scale.

There is a clear negative correlation between production data
and the filtered fusion attribute values (Figure 12C), indicating a
better overall fit and higher reliability compared to single-factor
identification results (Figures 12A,B). In summary, wells GS118,
GS125, andGS132 are located in the reservoir sweet spot area, which
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FIGURE 11
Identification of reservoir sweet spots: (A) Fusion attribute map of faults and mound–shoal facies (B) Fusion attribute map after smooth filtering.

is controlled by both faulting and sedimentary facies, and these
wells possess better reservoir properties and higherwell productivity
compared to other wells. Through this method, the sweet spots
(red areas) in the study area can be effectively identified, providing
support and assistance for further development in the study area.

5 Discussion

Our study demonstrates that integrating sedimentary facies and
fault systemsmarkedly improves the identification of reservoir sweet
spots in deep carbonate formations, specifically focusing on the
Dengying Formation in the Sichuan Basin.

Considering the complex seismic response characteristics
of sedimentary facies and fault systems, it is essential to
identify these features separately at different seismic scales. The
steerable pyramid (SP) method proved to be very effective at
decomposing seismic data into various scales, improving data
quality and resolution. This multi-scale method has been shown
to be more stable and effective than the traditional frequency
decomposition (FD) method, allowing us to better interpret the
complex geophysical responses associated with deep carbonate
reservoirs.

Selection of appropriate seismic attributes is also important
for the identification of sedimentary facies and faults. In this
study, we chose average absolute amplitude and coherence
attributes based on their seismic response characteristics; in
other areas, other types of amplitude-related or phase-related
attributes may be useful for identifying sedimentary facies. For
fault identification, commonly used attributes such as coherence,
variance and curvature are always worth trying, and the results
should be verified with well data to decide the proper attribute.

Tensor voting has also been proven to be an effective method to
enhance the identification results, particularly for improving fault
continuity; however, appropriate parameters should be set to prevent
over-enhancement.

In deep carbonate reservoirs, favorable sedimentary facies
always determine reservoir quality and distribution on a large
scale, and precisely locating these facies is the primary task of
reservoir identification. Fault systems serve as essential pathways
for hydrocarbon migration and accumulation; they also play a
crucial role in karstification, which improves reservoir quality.
Understanding fault systems helps to locate the ideal reservoir
sweet spots. Our identification of sedimentary facies and faults
is consistent with previous studies that suggested that both the
sedimentary environment and structural influences play critical
roles in reservoir quality. However, unlike prior studies that
primarily focused on single factors, our workflow provides a more
comprehensive analysis.

The implications of our findings are substantial for both
theoretical understanding and practical applications of sweet
spot identification. By considering multiple control factors, more
accurate and reliable reservoir sweet spot identification can be
achieved, which is essential for the efficient development of
hydrocarbon resources. However, our study has limitations; for
example, the specific carbonate reservoir characteristics of the
Sichuan Basin may not be directly applicable to other regions.
Additionally, in the present work, fault identificationmainly focused
on large-scale fault systems, and smaller-scale faults and fractures
were not fully considered. Future in-depth research will involve
several aspects: investigation of the applicability of our methods to
deep carbonate reservoirs in other regions; identification of multi-
scale faults and their associated fractures by using various seismic
attributes with different scales of seismic data, and analysis of the
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FIGURE 12
Analysis of reservoir controlling factors: (A) Well productivity versus amplitude attribute values (from Figure 8) (B) Well productivity versus well distance
from faults (from Figure 9B) (C) Well productivity versus filtered fusion attribute values (from Figure 11B).

contributions of faults and fractures at different scales to carbonate
reservoirs.

6 Conclusion

(1) The primary reservoir sedimentary facies in the Dengying
Formation is mound–shoal complexes. The study area was
influenced by multiple episodes of tectonic movements and
has developed fault systems primarily dominated by strike-
slip faults. The sedimentary facies were identified at a high-
frequency scale using amplitude attributes, and the strike-
slip faults were identified with coherence attribute and tensor
voting at a lower-frequency scale.

(2) Steerable pyramid processing is an effective way to improve
seismic data quality. This method involves decomposition
of the original seismic data into high-frequency and low-
frequency components. The high-frequency data improve
the seismic resolution and highlight the amplitude response
characteristics of reservoirs. The low-frequency data
effectively eliminate noise interference, facilitating attribute
identification. The steerable pyramid method is more stable
and effective in practical applications than the traditional
frequency decomposition method.

(3) In deep carbonate reservoirs, sedimentary facies and fault
systems have marked impacts on reservoir quality. Favorable
sedimentary facies generally determine reservoir quality and

distribution on a large scale, whereas fault systems serve as
essential pathways for hydrocarbon migration and potential
channels for carbonate karstification. Identifying sedimentary
facies and fault systems separately at different seismic scales is
an effective way to detect reservoirs. The proposed dual-factor
method can effectively locate reservoir sweet spots as part of
deep carbonate reservoir exploration and development.
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In-situ CT study on the effect of
cyclic gas injection and depletion
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behavior of fractured condensate
gas reservoirs
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Using subterranean rock cores as samples, the impact of depletion exploitation
and cyclic gas injection on the occurrence and dynamic utilization of
condensate oil and the damage to reservoirs were studied. Initially, the internal
pore structure of the rock core was analysed using computer tomography
(CT), followed by depletion and cyclic gas injection experiments, with in-
situ CT scanning of the samples. The results indicate that under different
fracture apertures, condensate oil exhibits wave flow and slug flow states.
The production effectiveness of cyclic gas injection is significantly superior to
depletion exploitation production, with condensate oil saturation decreasing by
over 30%. During cyclic gas injection, fractures serve as the main flow channels,
with condensate oil being extracted first. In cyclic gas injection, the most
significant effect is seen during the first injection, with a decrease in oil saturation
of around 3%. Subsequent injections show decreases of approximately 1% and
0.5% in oil saturation respectively. As the gas injection volume increases, the
extent of cumulative production rate improvement also gradually increases;
however, once the injection volume reaches the reservoir pressure, the rate
of cumulative production rate improvement will gradually decrease. These
findings provide technical support for optimizing the development mode of
condensate gas reservoirs, clarifying the seepage law of condensate oil and
gas, and providing technical support for the efficient development of fractured
condensate gas reservoirs.

KEYWORDS

in-situ CT, cyclic gas injection, phase behavior, fractured condensate gas reservoirs,
depletion exploitation

1 Introduction

Condensate gas reservoir refers to a special gas reservoir where the formation pressure
lies between the critical pressure under original formation conditions and the maximum
dew point pressure (Nasriani et al., 2015; Long et al., 2023; Dorhjie et al., 2024). Condensate
gas reservoirs exhibit the following characteristics: firstly, they exist in the reservoir in
both adsorbed and free states, with various accumulation methods. Secondly, the reservoir
contains complex pore structures such as nano-scale intra-granular pores, inter-granular
pores, and micro-scale fractures. Lastly, due to the abundant presence of micro-scale
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fractures, condensate gas reservoirs involve complex multi-scale
phase changes, leading to significant differences in phase behavior
compared to conventional phase changes (Hosseinzadegan et al.,
2023; Wang, 2023). Before reservoir exploitation, condensate gas
reservoirs remain in a gaseous state under the influence of formation
temperature and pressure. As the gas reservoir is developed, the
formation pressure gradually decreases, andwhen it reaches and falls
below the dew point pressure, a gas-liquid two-phase zone appears
(Liu et al., 2024). The precipitation of condensate oil increases
the permeability resistance of the surrounding reservoir rock,
resulting in a sharp decline in the overall gas reservoir production.
Therefore, studying the phase behavior of condensate gas reservoirs
in formations with continuously changing pressures is of crucial
importance for their development.

Choosing the appropriate method for condensate gas reservoir
exploitation is crucial for the recoveries of condensate gas and
condensate oil, directly impacting the final economic benefits.
During the depletion exploitation phase, when the pressure drops
to the maximum anti-condensation pressure, the condensate
oil saturation reaches its peak. Despite triggering retrograde
condensation after dropping to the secondary dew point pressure,
the decrease in condensate oil saturation is relatively small
(Jing et al., 2023).The production of condensate oil and the increase
in saturation lead to a significant decrease in the relative gas
permeability of the reservoir, reducing the gas well productivity.
At the same time, condensate oil precipitates and accumulates in
the wellbore area, complicating the wellbore conditions, reducing
production efficiency, and in severe cases, leading to well shutdown
(Salmani et al., 2020; Hosseinzadegan et al., 2023). The principle of
cyclic gas injection for exploitation involves periodically injecting
high-pressure gas (dry gas, surface-separated gas) to displace
condensate oil in wet gas, aiming to increase reservoir pressure and
prevent retrograde condensation (Kumar et al., 2015; Zhang et al.,
2020; Jiang, 2023). When condensate oil reserves are large and
content is high, employing pressure maintenance methods can
reduce condensate oil losses. The effectiveness and rationality
of maintaining formation pressure depend on factors such as
condensate oil content, oil and gas reserves, burial depth, pressure,
reservoir homogeneity and connectivity, drilling techniques, high-
pressure gas injection processes, and other factors (Faramarzi and
Sadeghnejad, 2020; Reis and Carvalho, 2022).

The PVT (Production verification test) experiment is currently
a common method for simulating the production conditions of
condensate gas (Passoni et al., 2024). Guo et al. (2020) studied
the effect of different gas injection methods on the flow pattern
of condensate gas through PVT experiments. Wang et al. (2022)
used a visual PVT device to study the retrograde condensation
phenomenon of condensate gas with temperature/pressure changes,
revealing that the dew point pressure of condensate gas in the
Wenchang 9-2 low-condensate gas field is close to the reservoir
pressure. With the development of artificial intelligence technology,
Alarouj et al. (2020) established a large database containing over
700 gas-condensate oil samples and a new model for calculating
dew point pressure, which significantly outperforms the simulation
results of existing state equations in terms of accuracy. Despite
the achievements in AI (Artificial Intelligence) prediction, it is still
limited by the quality and size of the dataset. Calculation based
on state equations is another method to determine the behavioural

characteristics of condensate gas phase. Shi et al. (2015) proposed
a new equation for gas condensate well deliverability, considering
the phase behaviour of gas condensate fluids in the wellbore.
The results indicate that neglecting wellbore phase behaviour can
lead to inaccurate predictions of gas and condensate production,
and validation cases show good agreement between the new
model and actual data. Traditional PVT experiments and AI-based
methods both fail to consider the impact of porous media on the
behaviour of condensate gas phase. Jing et al. (2023) dynamically
characterised the phase transition process of condensate gas in
porous media during the depressurisation depletion process using
real-time CT scanning and digital rock technology, suggesting that
the change in condensate oil content within the porous media
occurs synchronously throughout the depletion process. These
studies demonstrate the influence of porous media on the phase
behaviour of condensate gas, yet the phase transition characteristics
of condensate gas in fracture and matrix systems have not been
considered.

In summary, the research on the phase transition mechanisms
of condensate gas in porous media, especially the dynamic phase
evolution of condensate oil in complex fracture systems, under
different production processes still requires further refinement.This
study focuses on the rock cores in the target area, investigating the
dynamic evolution of multi-component condensate gas phases in
porousmedia.The condensate gas components in actual condensate
reservoirs were blended and subjected to PVT testing. The CT
scan data were processed using PerGeos, and the pore structure
of the rock core was analysed. Depletion and cyclic gas injection
(CGI) experiments were conducted in the rock core, obtaining
the distribution of condensate oil and gas at different pressures
using an in-situ CT system. Ultimately, the phase characteristics of
condensate oil in fractured porous media were described, and the
formation process and mechanism were summarised, comparing
the effects of different exploitation methods on the development of
condensate gas reservoirs.

2 Materials and methods

2.1 Fluid sample mixing

By combining samples of oil and gas collected on-site from
the target blocks, corresponding mixing work was carried out. The
composition of the oil and gas samples in the on-site separators is
shown in Table 1.

2.2 Rock samples

In the research area, the density of rock fractures exhibits
diversity, ranging from 1 to 15 fractures per meter. The fractures
vary widely in aperture, covering a range from a few micrometers
to several hundred micrometers, with a predominance of high-
angle fractures followed by vertical ones. Low-angle and horizontal
fractures are relatively less abundant (Figure 1). The wettability is
water wet, and the contact angle is 67.8°.

Field coring and logging results from the target block and
adjacent blocks indicate that the upper weathering zone of the

Frontiers in Earth Science 02 frontiersin.org35

https://doi.org/10.3389/feart.2024.1418821
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhao et al. 10.3389/feart.2024.1418821

TABLE 1 Oil and gas components in the separator.

Sample components Separator gas component mole fraction/% Separator oil sample component mole
fraction/%

CO2 9.00 —

N2 0.19 —

C1 76.99 6.67

C2 8.27 2.99

C3 2.95 2.32

iC4 0.96
1.53

nC4 0.46

iC5 0.35
1.52

nC5 0.31

C6 0.35 2.69

C7+ 0.17 82.28

TABLE 2 Pore-fracture statistical results of digital core.

Pore and fracture information of rock samples Value

Average pore volume (μm3) 46.108

Average pore diameter (μm) 1.911

Shape factor 1.068

Average maximum fracture opening (μm) 104.057

Average porosity 0.230

target block shows strong dissolution, severe weathering, and
mainly irregularly developed weathering mesh fractures, densely
interwoven like a spider web. The weathering degree gradually
weakens towards the lower part, with strong tectonic stress, mainly
developing structurally distributed fractures resembling layers. The
reservoir space includesmacro fractures, small tomedium fractures,
micro fractures, aswell as intergranular pores, dissolution pores, etc.,
resulting in a reservoir with multi-scale flow spaces and complex
pore-throat structures.

2.3 PVT experimental steps

The experimental fluid samples were prepared under formation
pressure of 46.90 MPa and formation temperature of 138°C
according to the production gas-oil ratio of 1420.89 m3/m3. The
sample preparation and PVT analysis method refer to the national
standard GB/T26981-2020 “Reservoir Fluid Physical Property
Analysis Method.”

2.4 Experimental setup and steps

2.4.1 Depletion exploitation

(a) Using the mixed reservoir fluid, the actual fractured core was
raised to reservoir temperature and maintained for 3–4 h.

(b) Then a system pressure of 50 MPa was established using
methane gas.

(c) Methane in the model was replaced with mixed condensate
gas to saturate the actual fractured core under reservoir
temperature and pressure conditions. Back pressure was slowly
reduced at the set pressure drop rate to initiate simulated
depletion exploitation.

(d) The production of oil and gas at the outlet was recorded, and
the production dynamics were analyzed.

(e) The CT raw data was processed using PerGeos software to
determine the distribution of condensate oil in the rock
fractures andpores. Condensate oil saturation is the percentage
of the ratio of oil volume in the effective pores in the core to the
effective pore volume of the rock (Figure 2).

2.4.2 Cyclic gas injection

(a) Preparation steps were the same as depletion exploitation.
(b) The experimental fluid in the fractured core was saturated

under reservoir temperature and pressure conditions with
methane from the mixed condensate gas. Back pressure was
slowly reduced at the set pressure drop rate to initiate simulated
depletion exploitation until 30 MPa.

(c) Associated gas was injected back to reservoir pressure and
maintained for half an hour, then production from two
production outlets was simultaneously produced, repeating
this process three times.
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FIGURE 1
Outcrop rock samples and plunger core samples in the study area.

(d) Post-processing steps were the same as depletion exploitation.

3 Results and discussion

3.1 PVT experiment

Traditional methods for studying the behavior of condensate
gas phase typically involve experiments to determine the
relationship between the pressure, temperature, and volume of
the condensate gas. Constant Composition Expansion (CCE)
and Constant Volume Depletion (CVD) are the most commonly
used experimental methods in PVT units, used to simulate the
phase behavior changes of condensate gas reservoirs during
development. To simulate the fluid component parameters of
the target reservoir block, corresponding separator oil and gas
samples were mixed. By conducting CCE and CVD under
reservoir temperature and pressure conditions, the laboratory
mixed fluid samples closely match the PVT experimental results
of the target block oil and gas samples (Figure 3). These results
indicate that the mixed fluid samples are representative, therefore,
subsequent microscopic experiments will use this oil sample
for testing.

Although these experiments can provide essential high-pressure
physical properties of condensate gas, they also have limitations.
Traditional PVT experiments typically only provide macroscopic
properties of the condensate gas and cannot reveal the behavior
of condensate gas at a microscopic scale within porous media.
Understanding and predicting the productivity and recovery
efficiency of condensate gas reservoirs heavily rely on these
microscopic behaviors.

3.2 Porosity structure analysis

A representative elementary volume (REV) with voxel
dimensions of 400 × 400 × 400 was extracted from the CT scan
data of the core. However, due to external disturbances during the
scanning process, the resulting images had issues such as uneven
brightness, low contrast, and high noise levels. To enhance the image

quality, brightness, contrast, and filtering processes were required
(Wang et al., 2024).

By sequentially stacking multiple layers of 2D grayscale
images, a 3D grayscale image consistent with the actual core was
obtained.Thewatershed algorithmwas used for image segmentation
(Patmonoaji et al., 2020). The traditional watershed algorithm is a
morphological segmentation method based on topological theory.
In morphological segmentation methods, images are typically
treated as terrain surfaces, with each grayscale level corresponding
to a contour line. This approach establishes boundaries known
as “watersheds” around each local minimum value in the image,
making it straightforward to estimate image gradients and locate
gradient peaks for segmentation. Given the significant grayscale
variations at the phase edges of the core image, the gradient image
effectively describes these variations (Wang et al., 2023).

Following the segmentation process, a 3D digital core model
is created, as shown in Figure 4. Lower grayscale values represent
fractures within the core, while higher values represent rock matrix
particles. In the binary 3D digital core model, the matrix is
transparent, and the pore space is displayed in blue. The fracture
structures with good connectivity within the rock matrix are clearly
visible, presenting a sheet-like distribution. Different colours in
the 3D pore-fracture spatial distribution map represent different
pore clusters.

3.3 Analysis of condensed gas phase
behavior and microscopic mechanism

Based on the characteristics of rock pore structure and the
flow behavior of fluids within them, the internal structure is
defined as a dual-porosity medium, consisting of fractures and
matrix as two major systems. By utilizing CT image threshold
segmentation to identify the position of fractures, the blue area
represents condensed oil. In the 3D residual oil distribution
map, the shape of the condensed oil distribution aligns with
the shape of sheet-like fractures, indicating that fractures serve
as the main flow channels for condensed oil. Additionally,
wave-like flow of condensed oil is observed in large fractures
(Figure 5).
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FIGURE 2
Experimental flow, (A): constant speed and constant pressure pump, (B): intermediate vessel, (C): six-way valve, (D): real-time CT device, (E): gripper,
(F): hand pump.

FIGURE 3
Results of PVT experiments (A) Comparison of CCE experimental results, (B) Comparison of CVD experimental results.

A rock core region containing two intersecting fractures with
different apertures was extracted from the rock core data volume
(Table 2), with the aperture range of small fractures being 3–8 μm
and wide fractures being 20–50 μm. Within the distribution of
condensed oil, distinct phenomena of segmented flow andwave-like
flowwere observed in fractures, with segmented flowpredominantly
in small fractures and wave-like flow in wide fractures. Segmented
flow in small fractures consists of isolated segments without trailing
liquid droplets, with a thin oil film covering the fracture wall and
surrounding the segments. On the other hand, wave-like flow in
wide fractures was influenced by the interaction forces between oil
and gas phases and the fracture wall, resulting in a wave-like shape
of condensed oil on the fracture wall with significant differences in
film thickness between the top and bottom of the fracture.

The existence characteristics of condensed oil in porous media
and fractures are based on two fundamental theories: adsorption
theory and bound water film theory. Adsorption refers to the
continuous accumulation of gas or vapor molecules on the solid
surface acting as an “adsorbent” until reaching thermodynamic
equilibrium (Dąbrowski, 2001). Bound water refers to a layer of
water film adsorbed on the surface of rock particles due tomolecular
gravity and electrostatic forces, divided into adsorbed water within
the water film and thin filmwater on the outer layer of the water film
(Hu et al., 2024).

When the pressure is below the dew point pressure, condensed
oil droplets precipitate and adsorb on the surface of rock particles or
suspend in the condensed gas. As pressure decreases, the droplets
grow and coalesce, transitioning the liquid on the surface into a
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FIGURE 4
Pore structure analysis and residual oil distribution of 3D and 2D digital cores.

FIGURE 5
Condensate fugacity flow pattern in fractures in 3D core model (wave flow on the left, segment plug flow on the right).

continuous state and initiating gradual flow. The external layer of
condensed oil is influenced not only by molecular forces but also
by external forces such as gravity, pressure differential, and friction
with gas. Pressure differential has the greatest impact on the flow of

condensed oil, where the flow of condensed oil along the outer layer
of the pore wall is primarily due to pressure differential, directed
towards the pressure drop, resulting in the phenomenon of “wave-
like flow” of condensed oil (Nabae et al., 2020).
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FIGURE 6
Variation of condensate distribution inside the cores under depletion mining mode, (A) condensate saturation in the three cores, (B) fracture opening
versus condensate saturation, (C) pore diameter versus fracture condensate percentage.

When an adsorption layer forms on the surface of a wide
fracture in a condensed gas system, the thickness of the adsorption
layer compared to the pore space can be negligible. However, in
nanometer pores or microfractures, the thickness of the adsorption

layer cannot be ignored. There is a positive relationship between
the aperture of fractures and the ratio of condensed oil volume in
fractures to total condensed oil volume, meaning that the smaller
the fracture volume, the more difficult it is for the condensed gas
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FIGURE 7
Variation of condensate distribution within the core under multiple cycles of gas injection mode, and the proportion of condensate distribution in the
fractures and matrix [(A) Core I; (B) Core II; (C) Core III].

to mobilize the condensed oil within the fracture. These condensed
oils come into contact, merge, and eventually coalesce under
capillary forces, leading to capillary condensation and resulting
in the phenomenon of “segmented flow” of condensed oil (Wang
et al., 2004).

3.4 Depletion exploitation experiment

Depletion exploitation of condensate gas reservoirs has the
advantage of requiring less investment and simpler technology.

However, a drawback is the loss of a portion of valuable condensate
oil resources in the formation.Therefore, when employing depletion
methods for exploitation, the abandoned formation pressure of
condensate gas reservoirs is higher than that of dry gas reservoirs,
resulting in a lower recovery of condensate gas compared to dry
gas reservoirs (Abbasov and Fataliyev, 2016). To align with actual
field production, the depletion pressure for this simulation was set
at 30 MPa.

In Sample 1, as pressure decreased, the saturation of condensate
oil increased from 6.17% at 40 MPa to 12.22% at 30 MPa (Figure
6). Condensate oil primarily migrated through fractures, with
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FIGURE 8
Variation of condensate distribution inside the core under multiple cycle gas injection modes with different injection volumes, (A) variation of
condensate saturation inside the core; (B) degree of extraction in a single cycle; (C) degree of extraction in a cumulative cycle.

fractures and pores near fractures retaining more condensate
oil. Along the Z-axis, which was the direction of oil and
gas movement, the condensate oil content in the pores near
the outlet end of the rock core was greater than that at
the inlet end.

In Sample 2, as pressure decreased, the saturation of condensate
oil increased from 4.18% at 40 MPa to 9.86% at 30 Mpa.The fracture
aperture of Rock Core 2 was nearly twice that of Rock Core 1,
allowing condensate oil to almost completely fill the fracture surface
at 30 MPa.

In Sample 3, as pressure decreased, the saturation of condensate
oil increased from 2.03% at 40 MPa to 7.21% at 30 Mpa.The fracture
aperture of Rock Core 3 was slightly larger than that of Rock Core
2, with condensate oil in the fractures forming a complete plane,
filling most of the reservoir space with condensate oil. Rock Core
3 had the smallest average pore diameter, and only parts with large
pore volumes and connectivity had permeability. Therefore, the
condensate oil in the pores of Rock Core 3 was difficult to produce
passively, resulting in a relatively high volume fraction of condensate
oil in the pores.
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FIGURE 9
Variation of condensate saturation inside the core during depletion exploitation -cycle gas injection, A: variation of condensate saturation during
multiple rounds of cycle gas injection with different injection volumes, B: variation of condensate saturation in different cores under the same cycle gas
injection condition.

In summary, in the three depletion experiments, when the
pressure was reduced to 30 MPa, the average saturation of
condensate oil inside the rock cores was around 10%,mainly located
in fractures.There is a negative correlation between fracture aperture
and condensate oil saturation,meaning that larger fracture apertures
make it easier for condensate gas to carry away condensate oil,
reducing the impact on exploitation efficiency. Yang et al. (2020)
found in full-diameter rock core depletion tests that the gas recovery
in rapid depletion tests was lower than in slow depletion tests.
Conversely, without considering fluid flow in porous media, the
condensate oil recovery in rapid depletion tests was higher than in
slow depletion tests. This result is consistent with the conclusion
of this study, indicating that a faster gas flow rate leads to a higher
condensate oil recovery.

3.5 Cycle gas injection experiment

3.5.1 Influence of cycle gas injection frequency
For low-saturation condensate gas reservoirs with original

formation pressure higher than dew point pressure, pressure
maintenance development is suitable. This development method
first reduces pressure to near the dew point pressure by
depressurization and then conducts cyclic gas injection to maintain
pressure during production.

In the cycle gas injection experiment, the pressure was depleted
from 45 MPa to 30 MPa and then restored to 45 MPa with dry gas
for three cycles. In core sample one, after depletion, condensate oil
mainly exists in fractures, predominantly distributed in layers. To
characterize the distribution of condensate oil in the core, analysis
was conducted at the intersection of fractures. The saturation of
condensate oil in the core after depletion was 13.4%, and after
three cycles of gas injection, it decreased to 9.8%, 8.6%, and 8.1%
(Figure 7).

In core sample two, the saturation of condensate oil in the core
after depletion was 10.6%, and after three cycles of gas injection,

it decreased to 7.9%, 7.4%, and 7.0%. Core sample two has the
largest pore diameter, resulting in the most effective utilization of
condensate oil in the matrix. After depletion, condensate oil in the
matrix accounted for 4.2% of the total porosity, decreasing to 1.1%
after the third gas injection.

In core sample three, the saturation of condensate oil in the
core after depletion was 8.2%, and after three cycles of gas injection,
it decreased to 6.3%, 5.9%, and 5.6%. Core sample three has the
largest fracture aperture, resulting in the most effective utilization
of condensate oil in the fractures. After depletion, condensate oil in
the fractures accounted for 4.2% of the total porosity, decreasing to
1.7% after the third gas injection.

In summary, in the three gas injection experiments, the average
condensate oil saturation inside the core was 10% after the initial
pressure reduction to 30 MPa, decreasing to 7% after three gas
injections. In the condensate gas mixture system, the gas injection
process will form a non-equilibrium “gas-gas” coexisting phase
characteristic based on the difference in molecular potential energy.
When the gas injection pressure approaches the dew point pressure,
the injected dry gas will cause the remaining condensate gas system
to exhibit a three-phase coexistence phenomenon of dry gas phase,
condensate gas phase, and condensate oil phase. However, when
the gas injection pressure is higher than the dew point pressure,
the system shows a two-phase coexistence state of dry gas and
condensate gas (Ganjdanesh et al., 2019; Tang et al., 2021). During
the cyclic process, condensate oil in the fractures is first utilized and
extracted, with the most significant effect observed during the first
gas injection. As the three cycles of gas injection progress, the area
of condensate oil in the fractures decreases. The above results are
consistent with previous findings, indicating that gas injection can
effectively evaporate and push condensate towards productionwells,
thereby increasing condensate recoveries (Long et al., 2024).

The order of fracture aperture size was Sample 1 < Sample 2
< Sample 3, and the order of pore diameter size was Sample 3 <
Sample 1 < Sample 2. After utilizing condensate oil in the fractures,
the condensate oil in the matrix was then utilized. Condensate oil
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in the fractures was more easily evaporated into associated gas and
taken away during the production process compared to condensate
oil in the pores. In the three cycles of gas injection in core sample
three, the first cycle had the best effect, removing condensate oil
from the fractures, while the second and third cycles had less impact
on the condensate oil in the pores. The smaller the pore diameter,
the more difficult it was for the injected associated gas to utilize the
condensate oil within. This study aligned with Tang et al.’s (2021)
results in multiple cyclic injection experiments in underground gas
storage reservoirs of condensate gas fields, showing that condensate
oil in some small-scale pores was challenging to utilize.

3.5.2 Morphology and distribution of condensate
oil in different gas injection volume experiments

Two main methods of maintaining pressure during exploitation
are full pressuremaintenance and partial pressuremaintenance. Full
pressure maintenance involves keeping the pressure of the entire gas
reservoir above the dew point pressure by matching gas production
with gas injection until the condensate oil content and production
reach their economic limits. Partial pressure maintenance, on the
other hand, involves producing more gas than injecting when self-
produced gas is insufficient to meet injection requirements. This
method helps slow down pressure decline and reduce condensate oil
losses.

In the cyclic gas injection experiment with different injection
volumes, the pressure was first depleted to 30 MPa, then restored
to 40, 45, and 48 MPa in three repetitions, representing fully
and partially maintaining reservoir pressure development methods.
The results showed that better utilization of condensate oil was
achievedwhen the pressure was restored to higher levels. At pressure
restoration to 40, 45, and 48 MPa, the cumulative recovery of
condensate oil reached 21.4%, 31.6%, and 34.9% respectively (Figure
8). With increased injection volume, some liquid hydrocarbon
components in the remaining condensate oil in the reservoir
are extracted and evaporated into the injected gas, resulting in
condensate volume contraction. Meng and Sheng (2016) optimized
the parameters of gas injection through numerical simulations and
found that gas injection was an effective method to increase the
condensate oil recovery of shale gas reservoirs, with the optimal
injection time being when the pressure in the main condensation
area was raised above the dew point pressure.

Under the same injection volume conditions, the effectiveness
of condensate oil utilization decreased with each subsequent gas
injection. Compared to the other two groups, the effect of the
first gas injection was not significant when the gas was restored
to 40 MPa. When the gas was restored to 48 MPa, after three
gas injections, the best utilization of condensate oil in fractures
and matrix was observed, with the saturation of condensate oil in
fractures decreasing from 11.04% to 7.4% and in the matrix from
2.62% to 1.1%. As the injection volume increased, the oil production
gradually decreased because the injected gas first extracted the
light components from the condensate oil. As the injection volume
increased, the extraction process became more difficult, leading to
a gradual decrease in oil production. Additionally, with increasing
injection volume, the cumulative increase in recovery also gradually
increased. However, once the injection volume reached a certain
value, the rate of cumulative recovery enhancement gradually
slowed down.

3.5.3 Comparison of depletion exploitation and
cyclic gas injection exploitation effects

In this study, during depletion exploitation when the pressure
was reduced to 30 MPa, the average condensate saturation inside
the core was 10%. Fractures served as the main flow channels,
but there were oil film attachments on the walls. Segment plugs
formed in fractures with small apertures, making it difficult to
mobilise the condensate oil in the matrix. Upon switching to cyclic
gas injection exploitation, the majority of the condensate oil in the
fractures was effectively mobilised, while the mobilisation effect in
the matrix was weaker. The most significant effect was observed
during the first gas injection exploitation, with a decrease of around
3% in condensate saturation. In the second and third gas injection
exploitations, the condensate saturation decreased by approximately
1% and 0.5% respectively (Figure 9). Cyclic gas injection extraction
with full pressure retention ultimately recovered about 10% more
of the internal condensate compared to partial pressure retention.
These results indicate that compared to depletion exploitation, cyclic
gas injection can significantly increase the condensate oil recovery,
avoid the decrease of reservoir permeability caused by condensate
oil accumulation, with fracture patterns, volume of injections, and
injection recovery pressure being important factors influencing the
condensate oil recovery.

4 Conclusion

During the depletion process of condensate gas reservoirs, the
decrease in pressure leads to phase change of condensate gas in the
porous media, resulting in a reduction of residual condensate oil
and thus lowering the recovery. Therefore, studying the dynamic
behavior of condensate gas in porous media during different
production processes provides an effective way for the seepage
mechanism and development optimization of condensate oil and
gas, which is of great significance for guiding production.

This study utilised real-time CT scanning technology to
dynamically observe and analyse the morphology, occurrence, and
characteristics of condensate liquid during depletion and cyclic gas
injection processes. The research findings are as follows:

(1) The formation of oil films during the condensation process
of condensate gas flowing through rock pores, exhibiting
phenomena like “wave flow” and “segmented flow” closely
adhering to the inner walls of the pores, is a result of
intermolecular gravitational forces.

(2) In the depletion exploitation experiment, when the pressure is
reduced to 30 Mpa, the condensate oil saturation in the core is
around 10%, mainly present in the fractures. After depletion,
with cyclic gas injection, the condensate oil saturation can
decrease by over 30%, with the most significant effect seen in
the first gas injection, where the passive condensate oil mainly
comes from the fractures. After three cycles of gas injection,
the saturation of the condensed oil decreased by approximately
3%, 1%, and 0.5% respectively.

(3) In the cyclic gas injection experiment, with pressure restored
to 40, 45, and 48 MPa respectively, the cumulative recovery of
condensate oil reached 21.4%, 31.6%, and 34.9%, indicating
a positive relationship between gas injection volume and
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condensate oil recovery. However, once the injection volume
exceeds the formation pressure, the increase in condensate oil
recovery slows down.

(4) Comparing depletion exploitation and cyclic gas injection,
cyclic gas injection significantly improves condensate oil
recovery and reduces condensate oil damage to the reservoir.
Factors such as fracture pattern, volume of gas injections, and
recovery pressure are important factors influencing condensate
oil recovery.

In future experimental and numerical simulation studies on
condensate gas reservoirs, two key areas may require attention:

(1) Scale transformation: How to apply the condensate oil
occurrence and flow laws obtained at the microscale
to numerical simulations of gas reservoirs to guide the
optimization of production schedule.The scale transformation
issue is one of the unresolved challenges in oil and gas reservoir
development.

(2) Many indoor experiments and mechanistic studies lag behind
field practices. Therefore, it is essential to establish micro-
scale numerical simulation methods. However, there are still
many challenges in micro-scale numerical simulation work on
fractured condensate gas reservoirs, such as how to realize the
phase transition while flowing.Themass transfer laws between
fractures and matrix under these conditions are not clear.
Micro-scale numerical simulation of fractured condensate gas
reservoirs is also a significant research direction.
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The eastern Ordos Basin plays an important role in China’s coalbed methane
(CBM) industry, boasting considerable CBM resources and pronounced reservoir
heterogeneity, making it an ideal site for comparative research on deep and
shallowCBM geology. In order to dissect the fundamental reasons for significant
differences in production capacity between blocks and promotemutual learning
from successful development experiences, this paper conducts a systematical
study on the distribution characteristics of in-situ geological conditions of
CBM reservoirs based on extensive well-testing data. Additionally, through coal
permeability sensitivity experiments on coal samples with various Ro, max values,
burial depths, and initial permeabilities, this study explores the change law of
permeability during the process of CBM extraction. The results indicate that
as the burial depth of coal seam increases, so do the temperature, pressure,
and stress. Moreover, the distribution of geothermal gradient, reservoir pressure
gradient, horizontal stress gradient, and lateral pressure coefficient tends to
converge with increasing burial depth, with a turning depth typically between
1,000 and 1,500 m. Coal seams below 1,500 m generally exhibit a normal-fault
type stress field with normal-overpressure. In-situ permeability decreases with
depth, but the permeability in deep stress relief zones can be maintained at a
relatively high level. A lower initial permeability corresponds to a smaller stress
sensitivity coefficient and reduced temperature sensitivity effects, resulting
in slower permeability damage during CBM extraction. However, when the
reservoir pressure drops to depletion pressure, the maximum damage rate of
permeability increases significantly, underscoring the importance of reservoir
reconstruction in deepCBMdevelopment. This study provides a theoretical basis
for selecting favorable areas for CBM exploration and development, as well as
for designing efficient development plans in practice.
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1 Introduction

Report on China oil and gas resource exploration and
development in 2020 (Ministry of Natural Resources, PRC, 2020)
shows that, as of the end of 2020, China’s proven geological
reserves of CBM were 7259.11 × 108 m3, and the cumulative
production of CBM reached 288.66×108 m3, mainly from the
Qinshui Basin and the eastern Ordos Basin. The development of
shallow CBM in the Baode, Sanjiao, Liulin, and Hancheng blocks
in the eastern Ordos Basin is relatively mature. In recent years,
exploration and development work has gradually expanded to deep
blocks such as Yanchuannan, Linxing, Daning-Jixian, Shenfu, and
Shilou (Yang et al., 2022). However, the complexity of the geological
environment of CBM reservoirs has caused significant differences in
the development effects between blocks (Yan et al., 2021).

The in-situ geological environment of CBM reservoirs is mainly
reflected in three aspects: stress, temperature, and fluid pressure.
Based on the measurement data of reservoir stress in different
regions, previous researchers have recognized that the lateral
pressure coefficient (average horizontal principal stress/vertical
stress) of the formation exhibits a clear regularity in the vertical
direction (Brown and Hock, 1980; Zhao et al., 2007; Kang et al.,
2009; Qin et al., 2012; Chen et al., 2018a; Kang et al., 2019; Fu et al.,
2020). The stress field of shallow CBM reservoirs is mainly
horizontal stress. Due to its proximity to the surface and high degree
of structural development, the measurement results of stress are
scattered, and the distribution range of lateral pressure coefficients
is large. However, in deep CBM reservoirs, the principal stress
gradually transitions to the vertical direction, and the lateral pressure
coefficient continuously decreases and converges. As the burial
depth increases, the pressure of CBM reservoirs generally shows an
increasing trend (Liu et al., 2012; Milkov and Etiope, 2018; Fu et al.,
2020). On the one hand, increasing depth and stress can lead
to a decrease in pore volume compression, but due to a certain
fluid content, it can cause an increase in reservoir fluid pressure
(Zhong, 2003). On the other hand, the pressure of the reservoir is
also related to the mineralization degree of groundwater. Generally,
the higher the mineralization degree, the greater the static water
pressure gradient, and the greater the pressure of the CBM reservoir
(Wu et al., 2007). The difference in groundwater head height can
also cause changes in reservoir pressure and its pressure gradient
by controlling the direction of water flow. Generally, the lower the
head height, the smaller the pressure gradient, and the lower the
reservoir pressure (Zhang and Tang, 2001; Jing, 2012). Qin et al.
(2012) analyzed the fluid dynamics characteristics of the Shanxi and
Taiyuan formations in the eastern part of the Ordos Basin and found
that due to differences in rock permeability, the pressure system
of deep CBM reservoirs is significantly controlled by sedimentary
frameworks, often having relatively independent gas and pressure
systems. At the same time, coal seam temperature is widely believed
to have a linear positive correlation with burial depth (Liu, 2006;
Wu et al., 2013; Zhao et al., 2019; Fu et al., 2020). However, some
scholars have pointed out that the relationship between ground
temperature and burial depth is much more complex than a linear
relationship (Chapman et al., 1984). In addition to burial depth,
multiple factors can affect reservoir temperature (Xiao et al., 2009),
and ground temperature cannot be calculated solely by depth
(Gan et al., 2019).

As a reservoir mainly composed of organic matter, coal
seams are more sensitive to stress, pressure, and temperature
than conventional “inorganic” reservoirs. Under the influence of
high stress and formation temperature, the geological conditions
of deep CBM reservoirs are more complex (Chen et al., 2018b;
Salmachi et al., 2021). The permeability of coal seams is an
important indicator for the optimization of CBM exploration and
development areas, and the extremely low permeability of deep
coal seams is currently the key obstacle to the exploitation and
utilization of deep CBM resources (Ranathunga et al., 2014). The
permeability of CBM reservoirs is influenced by multiple factors
such as stress, reservoir pressure, and temperature (Li et al., 2012;
Song et al., 2013). Among them, the tectonic stress field is the
dominant factor in the permeability of coal seams. The ancient
tectonic stress field determines the formation and development
of fractures, while the current tectonic stress field determines the
closure degree of fractures (Bell, 2006; Chatterjee et al., 2019). Some
scholars have found that with the increase of effective stress, the
permeability of coal seams decreases exponentially (Dabbous et al.,
1974; Karacan and Okandan, 2001). However, some scholars hold
different views and explain the overall law of dynamic changes
in permeability. They believe that during the elastic-plastic strain
stage, as stress increases, fresh microcracks will continue to develop
in coal, and permeability will continue to improve; The closer to
the peak stress, the greater the generation of microcracks, which
are interconnected and have a sharp increase in permeability;
After reaching the peak strength, the coal rock loses its maximum
bearing capacity, and the permeability continues to increase, but the
growth rate slows down; When the elastic deformation reaches a
certain level, the permeability reaches its minimum value, and the
maximum permeability occurs during the softening or plastic flow
stage (Harpalani and Chen, 1992; Li et al., 2001; Wang et al., 2018).
It can be seen that the in-situ stress control effect of CBM reservoir
permeability characteristics still needs further research, but it can be
affirmed that as the burial depth increases, the anisotropy of stress
state will gradually increase its impact on coal seam permeability,
which needs to be paid attention to (Paul and Chatterjee, 2011;
Reisabadi et al., 2021).

The effect of temperature on coal seam permeability is also
a focus of attention for scholars. The control effect of coal seam
temperature on permeability is mainly reflected in two aspects:
on the one hand, as the temperature increases, the coal body
continuously expands, the methane migration channels decrease,
and the gas phase permeability also continuously decreases; On
the other hand, methane viscosity decreases with increasing
temperature, flow resistance decreases, and gas-phase permeability
increases accordingly (Cheng et al., 1998; Yang et al., 2005a; Pan
and Connell, 2011; Liu et al., 2021). Some scholars believe that
temperature has a certain negative effect on permeability as a
whole, but this negative effect is only more obvious when the
stress level is low, and gradually weakens with increasing stress
(Yang and Zhang, 2008; Gao, 2019). Moreover, the temperature
sensitivity of permeability in CBM reservoirs of different coal
ranks is different and generally weakens with increasing coal ranks
(Wu et al., 2017).

The eastern Ordos Basin is a hot area for CBM exploration
and development, with diverse geological conditions, providing
an excellent platform for comparative research. At present, due
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to the lack of core sampling and testing data of deep wells,
the study of differences between blocks is still chaotic, and
the permeability controlling mechanism of CBM reservoirs
is not yet clear, making it difficult to learn from successful
development experiences. Based on the analysis of drilling and
well testing data during the exploration and development of CBM,
this study determines the distribution characteristics of in-situ
temperature, pressure, stress, and permeability, as well as explores
the stress/temperature sensitivity and depth effect of permeability
through coal permeability sensitivity experiments.

2 Geological setting

The Ordos Basin is located in the western part of the North
China Plate in China and is a typical large-scale superimposed basin
with stable craton margins. The overall shape is rectangular with a
north-south distribution, and the terrain and structural complexity
continuously decrease from the basin edge to the inside of the
basin. The entire basin is composed of six primary tectonic units
(Figure 1A). The eastern Ordos Basin is mainly located in the Jinxi
Flexural Belt (Wang et al., 2010), transitioning to the Yishan Slope
on thewest side, and bordered by the Lishi Fault on the east, adjacent
to the Shanxi Platform. Spanning 500 km from north to south and
with a width of 40–60 km from east to west, the basin covers an
area of 2.7 × 104 km2. It exhibits a monocline structure with a high
eastern side and a low western side, with a dip angle of 2°–3°. The
CBM work area in eastern Ordos Basin is divided into ten major
blocks from north to south based on the structural pattern, namely,:
Baode, Shenfu, Linxing (East/Central/West), North Sanjiao, Sanjiao,
Liulin, Shilou (North/West/South), Daning-Jixian, Yanchuannan,
and Hancheng blocks (Figure 1B).

The Carboniferous-Permian coal-bearing strata in the eastern
Ordos Basin have undergone four tectonic changes since
sedimentation, including the Hercynian, Indosinian, Yanshanian,
and Himalayan periods (Li and Zhang, 2020) (Figure 1C). In the
Hercynian period, the North China ancient plate entered a slow
subsidence stage and began to receive sedimentation. The coal-
bearing strata of the Carboniferous-Permian marine-continental
transition phase was formed as a result (310–280 Ma). By the
end of the Late Permian, the burial depth of the top surface of
the Taiyuan Formation increased from north to south, ranging
from 200 to 1,200 m. From the early Triassic to the end of the late
Triassic, the subsidence rate of the strata increased sharply, and the
subsidence depth of the strata showed a nearly linear increase. The
subsidence rate was relatively stable, and the ancient temperature
also rapidly increased, leading to differences in the degree of coal
metamorphism. In the Indosinianmovement, the strata experienced
slight uplift and subsidence fluctuations. By the end of the Middle
Jurassic, the top surface of the Taiyuan Formation reached its
maximum burial depth, distributed from north to south within
the range of 1,600–3,600 m. Due to differences in burial depth,
the temperature difference between the north and south regions
reached 80°C (Li and Zhang, 2020). The Yanshan Movement has
significant implications for the evolution of tectonic morphology
in the eastern margin. At the end of the Early Cretaceous, the
crust rapidly uplifted, ending the sedimentation of the depression
basin. The overlying strata suffered from strong weathering and

erosion, continuous thinning, and greater uplift at the edge of the
basin. During the Himalayan period, the subsidence and uplift
amplitude of the coal seam are relatively small. According to the
lithological combination, the Carboniferous Permian strata in the
eastern Ordos Basin were divided from bottom to top into the Benxi
Formation, Taiyuan Formation, Shanxi Formation, Lower Shihezi
Formation, and Upper Shihezi Formation with multiple sets of coal
seams developed in Taiyuan and Shanxi formations (Chen, 1989)
(Figure 2). The coalification process in the eastern Ordos Basin
is mainly characterized by deep metamorphism, except for the
Zijinshan area, and the degree of coal metamorphism is increasing
from north to south as a whole (Li and Zhang, 2020).

3 Materials and methods

3.1 In-situ parameters acquisition

In-situ parameters including temperature, pressure, stress and
permeability are mainly derived from injection/pressure drop
well testing reports. The data obtained from hydraulic fracturing
in Central Linxing Block is limited, which is not enough to
characterize the difference in regional stress fields. Therefore,
log data are used to inversion the in-situ stress in the Central
Linxing Block. For detailed steps of the two methods, please refer to
Pu et al. (2022).

3.2 Coal permeability sensitivity
experiment

Eleven coal samples with various Ro, max values, burial depths,
and initial permeabilities were selected from different blocks
of the eastern Ordos Basin, including Central Linxing, Liulin,
Yanchuannan, and Hancheng, for comparative analysis of the
stress and temperature sensitivity of coal permeability. The
basic information of the coal samples is shown in Table 1. The
instrument used in this experiment is the AP-608 automated
permeameter-porosimeter produced by CoreTest in the United
States. Permeability measurement is based on the unsteady-
state pressure decay method. The confining pressure is loaded
through Hassler type/hydrostatic pressure, with a variation range of
500–9,500 psi, which is 3.45–65.5 MPa. To measure permeability,
a pressure pulse within the range of 100–250 psi (0.67–1.72 MPa)
is sent through the sample. The instrument has a pressure sensor
accuracy of ±0.1%, and the measurement range for permeability
is 0.001–10000 mD. The testing gas source uses high-purity
helium gas.

In order to investigate the impact of stress on coal permeability,
we employed changes in net confining pressure to simulate
variations in effective stress within the coal seam. Subsequently,
the coal permeability was measured in relation to changes in net
confining pressure, and the relationship between permeability and
effective stress was analyzed. The pressure of the CBM reservoirs
in the Liulin and Hancheng districts is within the range of 2.2–9.9
MPa and 4.1–11.9 MPa, respectively, with a maximum value not
exceeding 12 MPa. In order to better reflect the dynamic change
process of coal seam permeability with the increase of effective
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FIGURE 1
Geological map of the eastern Ordos Basin (A) Tectonic location; (B) Schematic map of CBM block zoning; (C) Schematic diagram of differential
tectonic evolution (modified from Li and Zhang (2020)).

stress in the process of CBM drainage in the Liulin and Hancheng
blocks, the experimental confining pressure range is 3.45–12 MPa,
and a total of 4 pressure points of 3.45, 6, 9, and 12 MPa are
set. For the Linxing and Yanchuannan samples with deeper burial
depth, due to their reservoir pressure reaching up to 21.22 MPa,
the testing pressure range is set to 3.45–25 MPa, and a total of
6 pressure points of 3.45, 5, 10, 15, 20, and 25 MPa are set. In
addition, due to the temperature of deep CBM reservoirs reaching
60°C, exploring the effect of temperature on the permeability
of CBM reservoirs is also of great significance. Therefore, in
addition to the above tests conducted at room temperature (20°C),
temperature sensitivity tests were conducted on the Lin 1 and Yan

1 samples, with two additional experimental control groups of 40°C
and 60°C added.

4 Results and discussion

4.1 In-situ geological conditions

4.1.1 Geotemperature field
The temperature conditions of coal seams directly affect

the adsorption, desorption, and production processes of CBM.
Therefore, revealing the in-situ temperature conditions of the coal
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FIGURE 2
Composite stratigraphic column of the Permo-Carboniferous coal-bearing strata in the eastern Ordos Basin (chronostratigraphy from Shen et al.
(2022), petrostratigraphy from Chen (1989), sequence stratigraphy from Liu, (2020)). Abbreviations: ST—systems tracts; TST—transgressive systems
tract; RST—regressive systems tract; MFS—maximum flooding surface.

seams in the eastern Ordos Basin is a prerequisite for conducting in-
depth theoretical research on deep/shallow CBM. The temperature
of strata may be influenced by multiple factors such as burial depth,

lithology, structural conditions, magmatic activity, groundwater
dynamic conditions, and the thickness of Cenozoic loose layers
(Tan et al., 2009; Liu et al., 2012; Zhang, 2012; Wu et al., 2013;
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TABLE 1 Basic information of the coal samples in coal permeability sensitivity experiment.

Block No. Depth (m) Ro,max (%) Initial
permeability

(mD)

Stress
sensitivity
coefficient
(−1MPa)

Maximum
damage rate

of
permeability

(%)

Cental
Linxing

Lin 1 1873 1.38 0.0432 0.102 87.55

Lin 2 1,631 1.23 0.2358 0.135 94.21

Lin 3 1,588 1.16 0.3903 0.127 92.23

Liulin

Liu 1 546 1.29 1.8214 0.226 84.95

Liu 2 661 1.32 1.9702 0.193 80.37

Liu 3 982 1.25 0.1236 0.240 86.66

Yachuannan

Yan 1 1,395 2.32 0.0659 0.160 96.59

Yan 2 1,072 2.01 0.5093 0.128 93.58

Yan 3 1,233 2.18 0.1501 0.172 97.55

Hancheng
Han 1 709 1.9 0.4891 0.206 82.48

Han 2 634 1.85 2.2453 0.285 91.31

Békési et al., 2020; Jiang et al., 2020). Among them, burial depth is
considered the most important influencing factor. Most scholars
have found through data statistics that coal seam temperature shows
a linear increasing trend with increasing burial depth (Peng et al.,
2017; Li et al., 2018; Békési et al., 2020), while geothermal gradient
is dispersed in the shallow part of the formation and concentrated
in the deep part (Yuan et al., 2009; Peng et al., 2017; Li et al., 2018).
By statistically analyzing the temperature and geothermal gradient
of CBM reservoirs in different areas of the eastern Ordos Basin,
and plotting their relationship with the burial depth of coal seams
(Figure 3), a similar pattern was found: the shallower of the coal
seam, the lower the temperature of the CBM reservoir, and the wider
the range of geothermal gradient changes. For example, coal seams
shallower than 648 m have a maximum temperature of no more
than 40°C, but their geothermal gradient changes in the range of
0.62°C–4.93°C/100 m. This indicates that the shallower the burial
depth of the coal seam, the more complex the geological factors that
affect the temperature of its reservoir (Lu et al., 2013);Thedeeper the
coal seam is buried, themore stable the geological conditions are, the
more significant the dominance of depth on reservoir temperature,
and the stronger the linear correlation between the two. On the
plane, the West Linxing Block with the deepest coal seam has
the highest reservoir temperature, followed by the Central Linxing
Block, with the highest reservoir temperatures reaching over 60°C.
The average geothermal gradient shows a gradually increasing trend
from north to south (Table 2).

4.1.2 Reservoir pressure field
The definition of CBM reservoir pressure is the pressure acting

on the fluid inside the pores and fractures. It not only controls the

adsorption-desorption ability of coal seams to methane and other
gases but also serves as the driving force for the transportation and
production of CBM (Fu et al., 2001; Yang, 2015). Li et al. (2004)
found through analysis of well-testing data from 151 coal seams
in China that due to a series of factors such as complex geological
structure evolution, strong stratigraphic uplift and erosion, poor
coal seam permeability, complex stress conditions, and variable
hydrogeological conditions, CBM reservoirs are mainly under-
pressure reservoirs. Regarding the relationship between CBM
reservoir pressure and its gradient with burial depth, it is generally
believed that there is a linear positive correlation between reservoir
pressure and burial depth (Xu et al., 2010; Zhao et al., 2016;
Guo et al., 2020), while the pressure gradient of CBM reservoirs
has a characteristic of gradually converging from discretization as
burial depth increases from shallow to deep (Qin and Shen, 2016;
Chen et al., 2018a). This study collected 192 well-testing reservoir
pressure data points from 13 different blocks in the eastern Ordos
Basin and found similar patterns with a certain uniqueness. As
shown in Figure 4, there is a good linear correlation between the
CBM reservoir pressure from 427 to 2,195 m and the burial depth
(R2=0.7847), which is mainly because the pore volume compression
degree and groundwater mineralization degree are higher and the
water head height is lower as the depth increases (Zhong, 2003;
Wu et al., 2007; Jing, 2012). However, it should be noted that within
the depth range of 1,300–1,500 m, the pressure of the CBM reservoir
is relatively low. As for the relationship between reservoir pressure
gradient and depth, it is more complex. At depths below 1,300 m, it
exhibits the characteristic of “large interval span”, ranging from0.314
to 1.25 MPa/100 m. Within the range of 1,300–1,500 m, it exhibits
obvious “under-pressure” characteristics, ranging from 0.321 to 0.8
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FIGURE 3
The variation law of reservoir temperature and geothermal gradient of CBM reservoirs in different areas of the eastern Ordos Basin with burial depth.

MPa/100 m. Within the range of 1,500–2,200 m, it exhibits obvious
“normal to overpressure” characteristics, ranging from 0.706 to
1.169 MPa/100 m.

4.1.3 Stress field
Stress not only determines the degree of development and

closure of coal seam fractures but also controls the shape and
direction of fracturing fractures, thus playing an important role
in controlling the permeability of CBM reservoirs (Kang et al.,
2010; Meng et al., 2010; Kang et al., 2017). The gravity effect
and tectonic movement are the main reasons for the formation
of the stress field, with horizontal tectonic changes having the
greatest impact on the distribution characteristics of the stress
field (Zoback et al., 2003; Zhao et al., 2007; Ju et al., 2018). In
addition, the changes in the in-situ stress field of different types of
rocks are generally determined by the differences in the internal
characteristics (composition, structure, mechanical properties,
etc.) (Ward, 2016; Weniger et al., 2016; Mukherjee et al., 2021) and
external environment (burial depth, temperature, pressure, etc.) of
the rocks (Bell, 2006; Burra et al., 2014). Generally speaking, the
in-situ stress increases with the increase of the Young’s modulus
of the rocks. In terms of horizontal stress, magmatic rocks are
higher, followed by metamorphic rocks, and sedimentary rocks
are generally lower (Zhu and Tao, 1994). As an organic matter
aggregate with lower mechanical strength, CBM reservoirs have a
lower minimum horizontal principal stress than other sedimentary
rocks (Meng et al., 2011). In addition, various geological structures
such as faults, folds, and collapse columns are widely developed in
coal-bearing strata, and their stress heterogeneity is significant.
According to the different directions of stress, stress can
be divided into maximum horizontal principal stress (σh),
minimum horizontal principal stress (σH), and vertical principal
stress (σv).

Through a large amount of statistical analysis of the stress
data obtained from well testing parameters and the stress data
obtained from logging inversion, it was found that in addition to
vertical stress, the maximum and minimum horizontal principal
stresses also increase with increasing burial depth (Figure 5), which
is similar to previous research results (Xu et al., 2016; Zhao et al.,
2016; Chen et al., 2017; Chen et al., 2018b; Ju et al., 2021). Among
them, the linear relationship between the minimum horizontal
principal stress and the burial depth of the coal seam is more
significant than that of the maximum horizontal principal stress.
The correlation coefficient R2 of the former is 0.8336, and the
correlation coefficient R2 of the latter is 0.6356. In the vertical
direction, there is a transition surface around 1,500 m. That is, at
depths smaller than 1,500 m, the relation between the maximum
horizontal principal stress and the vertical stress is uncertain, while
at depths more than 1,500 m, the maximum horizontal principal
stress is smaller than the vertical stress. According to the magnitude
of the minimum horizontal principal stress, the stress levels of CBM
reservoirs at different depths can be divided into four categories,
including low-stress areas (0 < σh < 10 MPa), medium-stress zone
(10 < σh < 18 MPa), high-stress zone (18 < σh < 30 MPa), and
ultra-high stress zone (σh > 30 MPa). Therefore, coal seams buried
at depths of 500–1,000 m are mostly low to medium stress, coal
seams buried at depths of 1,000–1,500 m are mostly medium to
high stress, and coal seams buried below 1,500 m are mostly high
to ultra-high stress. As shown in Figure 6, both the maximum
and minimum horizontal principal stress gradient changes exhibit
the characteristics of “strong dispersion in the shallow and strong
convergence in the deep”. This indicates that the shallower the coal
seam is buried, the greater the influence of geological tectonic
conditions on the stress field, and themore severe the differentiation
of theminimumandmaximumhorizontal principal stress gradients.
At depths of over 1000m, the minimum and maximum horizontal
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FIGURE 4
The variation law of CBM reservoir pressure and reservoir pressure gradient with burial depth in the eastern Ordos Basin.

FIGURE 5
The variation law of coal seam stress with burial depth in the eastern
Ordos Basin.

principal stress gradients decrease to below 2 MPa/100m and 3
MPa/100m, respectively.

Regarding the variation of lateral pressure coefficient (the
ratio of average horizontal principal stress to vertical stress),
Brown and Hock (1980) summarized the relationship between
lateral pressure coefficient and coal seam burial depth through a

large amount of stress data from different regions around the world.
That is, the lateral pressure coefficient of shallow coal seams is
higher, and the variation range is larger, and as the burial depth
increases, both the lateral pressure coefficient and the variation
range continuously decrease. The above characteristics indicate that
the shallow CBM reservoir is mainly dominated by horizontal
stress, while the direction of the main stress in the deep CBM
reservoir gradually changes to vertical. Zhao et al. (2007) drew
inspiration fromHoek and Brown’s stress researchmethod and fitted
a regression curve between China’s lateral pressure coefficient and
burial depth. They compared it with Hoek and Brown’s global stress
statistical regression curve, showing that China’s stress has a similar
vertical evolution law to the world’s, and pointed out that the critical
depth is around 1,000 m. This study found that the lateral pressure
coefficient of CBM reservoirs in the eastern Ordos Basin shows a
characteristic of “dispersion at shallow and convergence at deep” in
the vertical direction and is overall above the Chinese average line
and the Hoek and Brown’s average line, that is, the lateral pressure
coefficient of coal seams is smaller under the same burial depth
conditions, which is largely related to the lower mechanical strength
of coal rock compared to other rock layers (Figure 7). In addition,
there is a transition interface between the lateral pressure coefficient
and the depth of the coal seam, with a wide distribution range of
lateral pressure coefficients ranging from 0.31 to 1.53 below 1,000 m;
At depths of 1,000 m or more, the lateral pressure coefficient is
generally less than 1.

The relative magnitude of σv, σh, and σH can reflect different in-
situ stress mechanisms. Where σv > σH > σh represents the normal
fault stress mechanism, that is, overlying gravity load dominates;
σH > σv > σh represents the mechanism of reverse fault stress
and σH > σh > σv represents the mechanism of strike-slip fault
stress, representing two forms of structural compression in different
directions. Figure 8 shows the stress field types of different blocks
in the eastern Ordos Basin. The Hequ, Baode, East Linxing, and
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FIGURE 6
Variation law of minimum/maximum horizontal principal stress gradient with burial depth in the eastern Ordos Basin.

FIGURE 7
Vertical evolution of lateral pressure coefficient of CBM reservoir in the eastern Ordos Basin.

Central Linxing blocks show σv > σH > σh type stress field as a whole.
The reason is that Hequ, Baode, and Linxing Dong were affected
by the NW-SE stretching and developed a series of northeastward
normal faults (Chen et al., 2014) during theHimalayanperiod,while
the coal seam in central Linxing Block was buried too deep and
the structure was relatively stable. In Sanjiao, Liulin, and North
Shilou blocks in central China, 62.90% of the CBM reservoirs exhibit
σH > σv > σh type stress field, 33.87% exhibit σv > σH > σh type,

and 3.23% exhibit σH > σh > σv type, indicating that the stress
mechanism of inverse fault is dominant and that of normal fault
is supplemented. To the Daning-Jixian, and Yanchuannan blocks,
the stress state transitioned to the normal fault stress mechanism
(σv > σH > σh), with local reverse fault stress mechanism (σH
> σv > σh). To the southernmost Hancheng Block, the stress
state of CBM reservoir is again transformed into the reverse fault
type compressive stress field, that is, σH > σv > σh, which is
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FIGURE 8
Stress field types of different blocks in the eastern Ordos Basin.

consistent with the structural density. On the whole, the stress
fields of three deep blocks, including central Linxing, Daning-
Jixian and Yanchuannan, are normal fault-type stress mechanisms
dominated by vertical stress. Among them, the Yanchuannan has
the most significant normal fault-type stress mechanism, and it has
the lowest average maximum/minimum horizontal principal stress
gradient and reservoir pressure gradient in the eastern Ordos basin
(Table 2).

4.2 In-situ permeability

The permeability characteristics of CBM reservoirs directly
determine the effectiveness of CBM development and are important
parameters for evaluating the potential of CBM extraction and
selecting favorable areas. At present, there are various methods
for measuring permeability, including core laboratory testing, well-
testing, reservoir simulation, and well logging inversion. Among
them, injection/pressure drop well-testing permeability is the
most widely used and can better reflect the characteristics of
in-situ permeability. This study statistically analyzed 140 well-
testing permeability data from 9 different blocks (Figure 9). Among
them, the permeability of Hequ, Baode, and East Linxing in the

northern part is the highest, mainly distributed in 0.1–10 mD. The
permeability of Sanjiao, Liulin, and North Shilou in the middle is
lower than that in the north, mainly distributed in 0.01–1 mD, and
there are locally high permeability areas greater than 1 mD. The
permeability variation range of the 5# coal seam in the Daning-
Jixian Block is 0.004–6.74 mD, and the permeability of the 8# coal
seam is between 0.008 and 4.36mD, with a large variation amplitude
and a decreasing trend with the increase of coal seam burial
depth. The permeability distribution of the 2# coal reservoir in the
Yanchuannan Block is between 0.013 and 0.99 mD, with an average
of 0.224 mD.The southernmost Hancheng Block has a permeability
distribution of 0.003–4.52 mD, with an average of 0.41 mD. The
permeability of CBM reservoir generally decreases with the increase
of burial depth, but the deep stress release zone can also have high
permeability, showing a large regional difference (Mukherjee et al.,
2020; 2021). In the Daning-Jixian Block, the Taoyuan anticline axis
and vicinity of faults are high-permeability zones (Li et al., 2019). In
the Yanchuannan Block, high-permeability zones are distributed in
areas with higher structural elevation and relatively well-developed
small fault zones (Chen et al., 2019; Zhang et al., 2020). In the
central Linxing Block, the intrusion of Zijinshan rock mass has
a strong reforming effect on the permeability of coal reservoir
(Pu et al., 2022).
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FIGURE 9
Distribution of well test permeability with burial depth in different blocks in the eastern Ordos Basin.

4.3 Permeability sensitivity analysis

4.3.1 Stress sensitivity analysis
As shown in Figure 10, the permeability of coal decreases in a

negative exponential form with the increase of effective stress. The
fitting curve formula can be uniformly expressed as follows:

K = αe−bP (1)

In Eq. 1,K is the gas permeability of coal under given effective stress
conditions, mD; P is the equivalent effective stress, MPa; α is the gas
permeability of coal at an effective stress of 0 MPa, i.e., the initial

permeability of coal; b is the permeability modulus, also known as
the stress sensitivity coefficient of permeability, MPa−1. The larger
the value of b, the more sensitive the coal permeability as effective
stress changes, that is, within the same stress variation range, the
greater the decrease in gas permeability (Wu et al., 2017).

The fitting results of 11 samples all have a high correlation,
with correlation coefficients between 0.9735 and 0.9998. The fitting
results show that the initial permeability of the samples is between
0.0432 and 2.2453 mD. Overall, the original permeability of coal in
the central Linxing and Yanchuannan blocks is significantly lower
than that in the Liulin and Hancheng, which is consistent with
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FIGURE 10
The variation law of coal permeability with effective stress increase.

the low permeability characteristics of deep CBM reservoirs. At
the same time, the fitting curve shows that under experimental
conditions, the stress sensitivity coefficient of coal rock samples
is between 0.102 and 0.285, and there is a significant difference
in stress sensitivity between blocks. The relative sizes are Central
Linxing < Yanchuannan < Liulin < Hancheng, with corresponding
mean values of 0.121, 0.153, 0.220, and 0.246 −1MPa, respectively
(Figure 10; Table 1). This is characterized by the lower the initial
permeability value, the smaller the stress sensitivity coefficient. On
the contrary, the greater the initial permeability, the larger the stress
sensitivity coefficient, and the faster the stress damage.

It can also be seen from Figure 10 that the 11 coal samples tested
overall reflect the following rules: when the effective stress is below
10 MPa, the CBM reservoir has strong stress sensitivity, and the
permeability decreases exponentially as the effective stress increases;
After the effective stress is greater than 10 MPa, the permeability of the
CBMreservoirslowlydecreaseswiththeincreaseofeffectivestress,and
the stress sensitivity weakens. To further quantitatively characterize
the change of coal permeability with effective stress, the concepts
of permeability stage damage rate (Dki) and permeability maximum
damage rate (Dkm) are introduced.

Dki refers to the proportion of permeability reduction before and
after pressurization, and its calculation formula can be expressed as:

Dki =
Ki − Ki+1

Ki
× 100% (2)

Where K i is the permeability of coal at the i th pressure point, mD;
K i+1 is the permeability of coal at the i+1 th pressure point.

The maximum damage rate of permeability (Dkm) refers to the
damage rate after the confining stress increases to the highest stress

point, which can be expressed as:

Dkm =
K1 − Kmin

K1
× 100% (3)

Where K1 is the coal permeability at the first pressure point, mD;
Kmin is the minimum permeability of coal achieved after applying
the maximum effective stress.

Figure 11 shows the trend of permeability damage rate of 11 coal
rock samples with increasing effective stress. It can be seen that as the
effective stress increases, the trend of the curve slows down, that is, the
permeability stage damage rate (Eq. 2) decreases with the increase of
effective stress, and the cumulativedamage rate continuously increases
until it reachesthemaximumdamagerate.Themaximumpermeability
damage rate (Eq. 3) of 11 samples ranges from 80.37% to 97.55%.
Amongthem, themaximumpermeabilitydamagerateof coal inLiulin
andHancheng areas ismostly less than90%,with anaverageof 83.99%
and 86.90%, respectively. In contrast, the maximum permeability
damage rate of coal samples in central Linxing and Yanchuannan
during the entire pressurization process is basically above 90%, with
an average of 91.33% and 95.91%, respectively.

4.3.2 Temperature sensitivity analysis
With the increasing depth of CBM extraction, the influence of

temperature on the permeability of CBM reservoirs is also receiving
more and more attention. As shown in Figure 12, when the same
coal sample is subjected to the same effective stress, the higher the
temperature, the lower the permeability of coal, and the overall
negative effect of temperature is exhibited. This negative effect is
mainly concentrated under conditions where the effective stress is less
than 10 MPa, and gradually weakens as the effective stress increases.
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FIGURE 11
Variation law of permeability damage rate of coal rock with the increase of effective stress.

FIGURE 12
Superimposed effect of stress and temperature sensitivity on coal permeability.

This is because the coal skeleton undergoes thermal expansion with
increasing temperature, causing a reduction in methane migration
channels and a decrease in coal permeability (Yang et al., 2005b).
However, when the effective stress is high, the pore and fracture
space in the coal has been greatly compressed, and the expansion
space of the coal matrix is extremely limited, so the negative effect of
temperature isno longersignificant. Inaddition, it canbeobservedthat
the higher the temperature, the greater the stress sensitivity coefficient
of coal rock permeability, and the faster the permeability damage
(Figure 12).Overall, bothhigh temperatureandhigh-stress conditions
can damage the permeability of coal, but the impact of temperature
on the permeability of CBM reservoirs is much smaller than stress,
especially under high-stress conditions.

4.3.3 Depth effect of coal permeability sensitivity
The depth effect of reservoir permeability sensitivity is complex.

The influence of depth on coal permeability is reflected in many
aspects, such as stress conditions, temperature, pore pressure, initial
permeability difference, andmaterial composition, etc., but the basic
reason is the compression difference of coal pores and fractures
under different depths and stress conditions (Burra et al., 2014;
Zhang et al., 2019). Therefore, the geological conditions and in-
situ conditions of different depths and regions are various, and

the evolution of permeability related parameters with depth is also
different, but there are basic rules to follow in the same region. As
shown in Figure 13, the initial permeability and stress sensitivity
coefficient of coal in the four blocks are strongly negatively
correlated with the depth of coal seam, and positively correlated
with the maximum damage rate of permeability. That is, the deeper
the coal seam is, the lower the permeability and stress sensitivity
coefficient are, and the slower the permeability damage will be in
the process of CBM drainage and production. However, when the
reservoir pressure drops to the depletion pressure, the maximum
damage rate of permeability increases. During the development
process of shallow CBM, the permeability can be maintained at a
relatively high level, which is beneficial for mining and is in good
agreement with the actual mining situation. As far as deep CBM is
concerned, its initial permeability is very low and is getting worse
during the development process. Taking several deep CBM Wells
in Central Linxing Block as an example, although most of them
have obtained industrial gas flow in the gas testing stage and their
resource conditions have been proved to be excellent, most of them
in the drainage stage show the characteristics of short initial gas
discovery time, low water production and short stable production
time (Chen et al. 2024a). Therefore, for deep CBM, a completely
different approach should be adopted from shallow CBM.

Frontiers in Earth Science 14 frontiersin.org60

https://doi.org/10.3389/feart.2024.1416308
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Zhang and Liu 10.3389/feart.2024.1416308

FIGURE 13
Depth effect of stress sensitivity.

4.4 Implications for deep CBM
development

The exploration paradigm for deep CBM has shifted from
targeting resource sweet spots to high-production sweet spots
(Xu et al., 2022). High-production zones must not only possess
a certain level of resource abundance but also exhibit relatively
high permeability and low stress, enabling extensive reservoir
reconstruction measures (Song et al., 2016). Drawing from the
practical development outcomes of deep CBM blocks, two primary
types of favorable zones can be discerned. One type is the structural
high section with a broad and gentle configuration (positive
micro-amplitude structure zone), denoting the coal reservoir that
underwent deep burial initially, followed by a certain degree of
structural uplift, leading to shallower burial depth of the local coal
seam and development of secondary cleats. This results in increased
permeability; however, without significant structural damage to
the roof and floor, the original gas reservoir remains relatively
well-preserved. The release of in-situ stress forms a relatively low-
stress area, with the two wings of the high section serving as
conduits for gas migration to the top. This facilitates the formation
of CBM-enriched and high-yield regions with high gas content,
saturation, and permeability. For instance, wells W7-5 and W6-
10X1 in the Hukou slope of the Daning-Jixian Block exhibit stable
gas production ranging from 4,000 to 5,000 m³/d (Yan et al., 2021).
The Yan 16 well group in the southern segment of the Wanbaoshan
structural belt in the Yanchuannan Block has maintained stable
production exceeding 2,000 m³/d for 8 years, with a peak daily
production of 8,000 m³/d (Chen et al., 2024b). The other type is
the upper slope of the enrichment area, formed at the top of the
slope belt due to the combined effects of compressive stress and
uneven crustal uplift. Taking theDaning-Jixian Block as an example,
the western part of the Taoyuan anticline represents a west-dipping
monoclinic structure.The upper slope zone in this region showcases
the best superimposition effect of gas content, permeability, and
in-situ stress characteristics. For example, Daning-Jixian’s TU1
and TL1 wells achieved average production of 1,266.82 m³/d
and 2,827.21 m³/d respectively, and cumulative gas production of
3,409,006 m³ and 5,962,587 m³ (Zhang et al., 2022).

Due to the low permeability of deep CBM reservoirs that
characterized by primary and fragmented structures, vertical stress

predominating, a lateral pressure coefficient less than 1, making the
formation of horizontal and long fractures challenging during the
vertical well fracturing process. The CBM development practices
in the Yanchuannan Block, Daning-Jixian Block, and Qinshui
Basin have demonstrated that the vertical well + horizontal
well combination mode not only reduces well spacing but also
interconnects a large number of fracture systems, facilitating
regional pressure reduction and enhancing the utilization of CBM
reserves (Zhu et al., 2019; Jiang and Yang, 2021; Zhang et al.,
2022). Deep CBM reservoirs exhibit large horizontal principal
stress differences, and artificially expanded fractures often intersect
natural fractures directly, posing challenges in forming a three-
dimensional fracture network (Dunlop et al., 2017). This issue has
been addressed in the Yanchuannan and Daning-Jixian blocks
through the implementation of high liquid volume (1,016–6,874 m3)
and large-scale fracturing measures (Yan et al., 2021; Chen et al.,
2024b). The effective fracturing approach of “creating long fractures
and remote support” in deep high-stress environments has led
to a breakthrough in the productivity of deep CBM wells
(Yan et al., 2021).

In contrast to shallow CBM reservoirs which are predominantly
undersaturated, deep CBM reservoirs, under the coupled control
of high temperature and pressure conditions, contain a significant
amount of saturated to supersaturated gas reservoirs (Kang et al.,
2019). Given the permeability sensitivity of deep coal reservoir,
the conventional “continuous, stable, long-term, slow” drainage
method suitable for shallow CBM is no longer viable. Production
practices in the Yanchuannan Block have shown that rapid
depressurization, coupled with effective fracturing and support,
is more conducive to achieving efficient and stable high yield in
deep CBM wells (Zhao et al., 2021). This is primarily attributed to
the fact that effective fracturing and support can to some extent
mitigate reservoir stress sensitivity effects; rapid depressurization
can prompt rapid desorption and accumulation of CBM in the near-
well region during the rapid or sensitive desorption stage, while
enhancing coal-rock matrix shrinkage effects to drive subsequent
gas production; rapid depressurization can also increase reservoir
pressure differentials near and far from the wellbore, enhancing
gas mass transfer efficiency in low-permeability CBM reservoirs
(Su et al., 2019; Zhao et al., 2021). Building on the successful
experience of the Yanchuannan Block, the application of rapid
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depressurization in deeper-buried coal reservoirs with higher gas
saturation in theDaning-Jixian andCentral Linxing blocks warrants
further theoretical exploration and practical validation.

5 Conclusion

This study integrates extensive in-situ geological data from the
eastern Ordos Basin and conducts coal permeability sensitivity
experiments to dissect the fundamental reasons for significant
production capacity differences between deep and shallow blocks
and promote mutual learning from successful development
experiences. The main conclusions drawn are as follows:

(1) Shallower coal seams usually have lower temperatures and
a wider variation range of geothermal gradients. Reservoir
temperature is more heavily influenced by depth in deeper coal
seams.

(2) CBM reservoir pressure increases linearly with burial depth
within the range of 427–2,195 m, with localized pressure low
anomalies observed at depths of 1,300–1,500 m. The pressure
gradient spans from 0.314 to 1.25 MPa/100 m at depths below
1,300 m, while 1,300–1,500 m is the “under-pressure zone” and
1,500–2,200 m is the “normal to overpressure zone.

(3) The vertical conversion interface of stress is located at 1,500 m,
below which the vertical stress is dominant. The horizontal
stress gradient and lateral stress coefficient both exhibit the
characteristic of “strong dispersion in shallow areas and strong
convergence in deep areas”with a critical depth of 1,000 m.The
stress field of CBM reservoirs is the result of the coupling effect
of tectonic condition and burial depth.

(4) In-situpermeability ofCBMreservoirs decreaseswith increasing
burial depth, primarily influenced by tectonic stress fields.
Stress release zones in deep CBM reservoirs often exhibit
high permeability, emphasizing the importance of reservoir
optimizationandreconstruction forefficientCBMdevelopment.

(5) Deep CBM high-yield areas are typically found in structurally
elevated regions with wide, gentle morphology and in the
upper slope in gas-rich zones. It is advised to utilize a
combination of vertical + horizontal wells and employ
a fracturing technique featuring “large-scale, high-volume,
multi rounds, continuous proppant injection”. Additionally,
implementing a “rapid depressurization” drainage system is
recommended to optimize production and efficiency.
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Although significant amounts of methane are present in anthracite coal
seams, coalbed methane resources cannot be extracted effectively and quickly.
This study mainly focused on investigating the pore system and methane
adsorption capacity to clarify the storage of coalbed methane. Anthracite coal
samples from the Anzenan coalbed methane block in China were collected,
and pore characterization methods (low-pressure N2 adsorption, mercury
injection experiments, and scanning electron microscopy (SEM) observations)
and methane isothermal adsorption experiments were conducted. The results
showed that few mesopores and nanoscale macropores were present in
the anthracite coal samples. The volume of the 2–300 nm pores in these
coal samples obtained from the N2 adsorption experiment was lower than
0.01 cm3/g. SEM observations also revealed that only a small number of
mesopores and nanoscale macropores could be seen, and most of these pores
were isolated. In terms of the methane isothermal adsorption data, it was
found these anthracite coals have a large methane adsorption capacity, and the
Langmuir volume ranges from 19.5 to 28.4 cm3/g, with an average of 22.2 cm3/g.
With increasing ash yield, the Langmuir volume decreased linearly, indicating
that methane molecules were mainly adsorbed in the organic matter of coal.
As methane is mainly adsorbed in the micropores of coal organic matter and
there are fewmesopores and nanoscalemacropores in the organic pores in coal,
there are not enough tunnels to transport the adsorbed methane molecules
to the outside. Thus, it is difficult to extract coalbed methane from anthracite.
This study reveals the impact of pore system limitations on the storage and
extraction of coalbed methane in anthracite coal. The findings can be applied to
the extraction of coalbed methane from anthracite coal seams worldwide.

KEYWORDS

anthracite coal, coalbedmethane, pore system, methane adsorption capacity, ash yield

1 Introduction

There are huge amounts of coalbed methane resources in the underground coal seams
(Moore, 2012; Qin et al., 2018; Hou et al., 2020; Joshi et al., 2023). However, most of these
natural gas resources have not been effectively exploited. In addition, coalbed methane is a
key factor threatening the safety of coal mining (Cheng and Pan, 2020; Tu et al., 2022;Wang
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FIGURE 1
Mercury injection and mercury extraction curves of the coal samples.

and Cheng, 2023). Although many studies have been conducted on
coalbed methane over the past 40 years, researchers have not found
many ways to exploit it (Bustin et al., 2016; Akhondzadeh et al.,
2021). Global coalbed methane production has decreased in recent
years. The exploration and exploitation of coalbed methane help
reduce the use of coal and mitigate greenhouse effects and climate
warming (Cho et al., 2019; Fan et al., 2019). Thus, more efforts are
needed to study coalbed methane.

Unlike conventional gas, coalbed methane is primarily stored
in coal as an absorbed gas (Chattaraj et al., 2016; Hou et al.,
2020; Mohamed and Mehana, 2020; Liu et al., 2021). Thus, the
evaluation of the methane adsorption capacity of coal is very
important for understanding the reservoir mechanism of coalbed
methane (Song et al., 2012; Liu et al., 2021). Isothermal adsorption
experiments (volumetric and gravimetric methods) are often used
to test the methane adsorption capacity of coal samples (Bustin
and Clarkson, 1998; Lorenz and Wessling, 2013). Previous studies
found that most methane adsorption data for coal conform to
the Langmuir equation (Moore, 2012; Perera et al., 2012). With
increasing pressure, the amount of methane adsorption first
increases significantly and then approaches a constant value
(Langmuir volume) (Moore, 2012). When the experimental
temperature increased, the amount of methane adsorbed decreased,
indicating that temperature had a negative effect on methane
adsorption in coal (Zhang et al., 2011; Li et al., 2022). In addition,
the methane adsorption capacity of coal is affected by many factors,
such as maturity, ash yield, and moisture (Crosdale et al., 1998;
Chalmers and Marc Bustin, 2007). During the coalification process,
the coalification of coal changes in stages: it first increases (Ro <
1.4%), then decreases (Ro = 1.4–3.7%), and finally decreases again
(Ro > 3.7%) (Zhong and Zhang, 1990; Zhong, 2004; Liu et al., 2021).
In addition, large amounts of methane have been generated from
these anthracite coals during past geological times, and the gas
content in anthracite coal seams is usually very high (Su et al., 2005;
Cai et al., 2011; Meng et al., 2017).

Previous studies have shown that the pore systems of coal
samples are complex, with most pores in coal being nanoscale

(Mastalerz et al., 2012; Wang et al., 2014; Nie et al., 2015; Yan et al.,
2020; Yu et al., 2020). Coalbed methane researchers usually
use CO2 adsorption experiments to study micropores (<2 nm)
(Nie et al., 2015; Zhao et al., 2016; Hu et al., 2020), and they use
mercury injection experiments and N2 adsorption experiments to
characterize the mesopores (2–50 nm) andmacropores (>50 nm) in
coal (Cai et al., 2013). In addition, scanning electron microscopy
(SEM) has been used to observe pores in coal. However, the
SEM technique can only observe pores larger than 30 nm
(Li et al., 2020; Zou et al., 2020). Although many techniques have
been applied in studies of coal pores, some key issues regarding
coal pores remain unclear. For example, we do not know how
differently sized pores connect or the generation mechanism of
different types of pores. Pores are not only storage spaces but also
transport channels of coalbed methane. Thus, the lack of clarity in
the pore system limits the effective exploration and exploitation of
coalbed methane.

Laboratory studies and exploration data have shown that the
coalbed methane content of anthracite coal reservoirs is very high
(Qin et al., 2018; Wang et al., 2020). However, the reason for the
difficulty in extracting these coalbed methane molecules remains
unclear (Wang Ruyue et al., 2018a; 2021).Therefore, this study aims
to determine the key factors affectingmethane storage and transport
tunnels. Eight anthracite coal samples were collected from Anzenan
coalbed methane blocks in the Qinshui Basin, China. Low-pressure
N2 adsorption experiments, mercury injection experiments, and
SEM were performed to study the pore systems in anthracite
coal. In addition, methane isothermal adsorption experiments were
conducted to investigate the methane storage in coal.

2 Samples and methods

2.1 Samples

Samples were collected from coalbed methane drilling cores in
theAnzenan coalbedmethane block.TheAnzenan coalbedmethane
block is located in the Qinshui Basin, the most successful coalbed
methane basin in China (Qin et al., 2018). Four of the eight coal
samples belong to the 10# coal seam, and the other four belong to
the 11# coal seam. Sampling was conducted from top to bottom
without channel sampling. All the samples were anthracite coal, and
the vitrinite reflectance (VRo)was approximately 2.1%.The ash yield
of the coal samples ranged from 9.49% to 30.45%, with an average
of 22.57%. The ash yields of the samples from the 10# coal seam
were usually higher than those of the 11# coal sample. In terms of
the maceral composition, vitrinite comprised more than 80% of the
total organic matter in coal samples. Inertinite content ranged from
5.89% to 19.21%, with an average of 14.23%.

2.2 Experiments

2.2.1 High-pressure mercury injection
experiments

High-pressure mercury injection experiments have proven to
be one of the most effective methods for testing pores >10 nm
in size (Okolo et al., 2015; Guan et al., 2020). This method has
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FIGURE 2
Pore size distribution of the coal sample obtained from the high-pressure mercury injection experiment.

advantages, including a wide pore-testing range (Okolo et al., 2015).
Before testing, the coal samples were crushed into small pieces
(approximately 1 cm3). During the experiment, the test pressure
was set to approximately 1–40,000 psi, and the corresponding pore
diameters ranged from approximately 200,000 to 5 nm.

2.2.2 N2 adsorption experiment
Low-temperature N2 adsorption experiments are commonly

used to test the nanopores in porous materials (Zhao et al., 2016;
Wang et al., 2017; Wang et al., 2018b). The size of the pores tested
by N2 adsorption experiments usually ranges from 2 to 300 nm
(Clarkson et al., 2013). The testing instrument used in this study
was ASAP 2420 (Micromeritics).The experimental temperature was
77 K. Approximately 2–3 g of the powder sample was used in the
experiment. As some air molecules can be adsorbed in the pores
of coal and occupy pore space, automatic degassing was performed
before the experiment. The degassing process would reduce the
effect of adsorbed air in the pores of the coal samples. Considering
that high degassing temperatures may cause changes in the pore
structure of the coal, as coal will undergo further coalification at
elevated temperatures, the degassing temperature should not be set
too high. In addition, based on the previous study by Adesida et al.
(2011), when the degassing temperature does not exceed 100°C, it
does not significantly affect the experimental results. During the
experiment, the equilibration interval was set to 10 s.

2.2.3 Methane isothermal experiment
Methane isothermal experiments were performed according to

the Chinese standard GB/T 19560-2008. Before the experiment, the
samples were crushed to 60–80 mesh. During the experiment, the
temperature was set to 30°C. Approximately 30 g of the coal powder
sample was used during the experiment. Moisture was added to the
coal samples before they were placed in the sample cell. Helium was
used to measure the sample volume and vacuum space.

2.2.4 SEM
SEM was performed using the ZEISS Scanning Electron

Microscope. The coal samples used in the SEM experiment were

blocks rather than power samples. Pores in the coal samples were
examined during the experiment. Some typical minerals were
also observed.

3 Results

3.1 Experimental data of high-pressure
mercury injection

The mercury injection and extraction curves of the five coal
samples are shown in Figure 1. It can be seen that the hysteresis
loops of the mercury injection and extraction curves are narrow.
This indicated that most of the mercury injected into the coal
sample was extracted when the pressure decreased, and the pores
in the coal samples were mainly open. Based on Figure 1, it
can be seen that the amount of intruded mercury in sample
N13-10-1 was much larger than that of the other coal samples.
The main growth in the intruded mercury volume is mainly
located at 5–20 psi. In addition, a slight increase can also be
observed in the high-pressure stage (pressure is greater than
10,000 psi). It should also be noted that at high-pressure stages,
small nanopores generally tend to be overestimated due to the
compression effect of the coal matrix (Peng et al., 2017; Li et al.,
2021). However, in the samples discussed in this study, these
compression effects are not apparent. For example, the experimental
data of N13-11-6 showed that with the mercury injection
pressure increasing from 2,081.311 psi to 27,866.113 psi, the
cumulative intruded mercury volume remained unchanged at
0.0105 mL/g.

Figure 2 illustrates the pore size distribution data of the coal
sample obtained from the high-pressure mercury experiment. The
pores in the coal were mainly macropores (larger than 50 nm). The
peaks of the incremental pore volume curve were mainly located
at 10,000 nm to 100,000 nm. The incremental pore volume with
a pore size smaller than 1,000 nm was low, indicating that a few
nanopores were formed in the coal samples. In addition, the peak
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FIGURE 3
N2 adsorption and desorption curves of coal samples: (A) data of four
coal samples from the 10# coal seam; (B) data of the other four coal
samples from the 11# coal seam.

of the incremental volume in the N13-10-1 sample was mainly
located at 10,000–30,000 nm, and comparably, the peaks of the
incremental volume of the other four coal samples were mainly
located between 40,000 nm and 100,000 nm. These large pores
are mainly cracks and cleats in the coal sample, which can form
during both the coalification and sample preparation processes.
In summary, the most important result of the mercury injection
experiment (Figures 1, 2) is that a few nanopores (<1,000 nm)
were found.

3.2 Experimental data of the low-pressure
N2 adsorption experiment

The N2 adsorption and desorption curves of the eight
coal samples obtained in the N2 adsorption experiments
are shown in Figures 3A, B. The N2 adsorption and desorption
curves of the coal samples from the 10# coal seam differed slightly

from those of the 11# coal seam. First, the N2 adsorption amounts
of the coal samples from the 10# coal seam were smaller than those
from the 11# coal seam. Second, the hysteresis loops of the coal
samples from the 10# coal seam were larger than those from the 11#
coal seam. In addition, for all eight coal samples, the N2 adsorption
amount increased significantly when the relative pressure exceeded
0.8. In addition, the desorption curves decreased at a P/P0 ratio of
approximately 0.5.

Based on the N2 adsorption data and BJH model, the pore size
distribution data were calculated, as shown in Figure 4. Generally,
the incremental pore volume increased with increasing pore size.
This indicates that larger nanopores contribute significantly more
pore volume than smaller nanopores. Among the eight coal samples,
the incremental pore volumes of the four coal samples (N13-10-1,
N13-10-2, N13-10-3, and N13-10-4) from the 10# coal seam were
smaller than those from the 11# coal seam (N13-11-5, N13-11-6,
N13-11-7, and N13-11-8).

The pore surface area distribution is illustrated in Figure 5.
These data were calculated using the BJH model and N2 adsorption
data. Comparing Figures 4, 5, the pore surface area distribution
curves significantly differed from the pore volume size distribution.
Because the pore surface area of smaller nanopores is much larger
than that of larger nanopores of the same volume, pores smaller than
10 nm contributed to a large proportion of the total pore surface
area. In addition, there were peaks in the pore surface area curves
located at 30–50 nm, indicating that the large nanopores contributed
significantly to the pore surface area. Similar to the pore volume
size distribution, the pore surface area at each pore size of the
coal samples from the 11# coal seam was larger than that of the
10# coal seam.

3.3 Experimental data of high-pressure
methane adsorption

Methane adsorption data are shown in Figure 6.
The lines in Figure 6 show the fitting lines for the Langmuir
adsorption equation. The fitting coefficient (R2) values were
all approximately 0.99, indicating that the methane adsorption
behavior of these coal samples agreed with the Langmuir adsorption
model. Generally, the incremental amount in methane adsorption
capacity increased with increasing pressure. In the low-pressure
stage (<3 MPa), methane adsorption increased quickly. However,
in the high-pressure stage, the amount of methane adsorbed
increases slightly with increasing pressure. The coal sample N13-
10-1 exhibited the largest amount of methane adsorption at each
pressure. The methane adsorption capacity of sample N13-11-6 was
the lowest.

4 Discussion

4.1 Nanopore and micro-scale pores in
coal

Previous studies identified different types of pores in coal
(Laubach et al., 1998; Mastalerz et al., 2012; Okolo et al., 2015;
Liu et al., 2017). In terms of pore size, coal pores can be divided into

Frontiers in Earth Science 04 frontiersin.org68

https://doi.org/10.3389/feart.2024.1413069
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Xu et al. 10.3389/feart.2024.1413069

FIGURE 4
Pore size distribution of the eight coal samples obtained from the N2 adsorption experiment.

FIGURE 5
Pore surface area distribution of the coal samples.

micropores (<2 nm), mesopores (2–50 nm), macropores (>50 nm),
fractures, and cleats (Okolo et al., 2015; Zou et al., 2016). Pores
in coal can be divided into organic and inorganic pores (clay
pores, pyrite pores, etc.) (Liu et al., 2017).Mesopores and nanopores
were rare, as illustrated in Figure 4. The pore volume of the
2–300 nm pores in the coal samples, as obtained from the N2
adsorption experiment, was less than 0.01 cm3/g, which is relatively
low (Wang et al., 2022). A previous study found that organic

matter can provide many micropores, which are the primary
sites for methane adsorption (Liu et al., 2021). Thus, the methane
adsorption capacity increased with increasing organic matter
content in coal.

Figure 7 shows the correlation between the pore volume
obtained from the N2 adsorption experiment and ash yield.
With increasing ash yield, the pore volume (2–300 nm pores)
of the coal samples increased linearly. This means that minerals
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FIGURE 6
Methane isothermal data of the coal samples (30°C).

FIGURE 7
Correlation between pore volume obtained by the N2 adsorption
experiment and ash yield.

have a positive effect on the generation of 2–300 nm pores.
SEM observations revealed small amounts of organic pores in
the coal samples. Although some organic pores were observed,
they appeared to be isolated. In the N2 adsorption experiments,
the tested pores were connected to the outside environment.
In addition, although some methane molecules may be present
in the isolated pores, they are not transported to the coalbed
methane wells because there are no transport tunnels for these
molecules. Some inorganic pores were observed in the SEM
images. As shown in Figure 8, some organic pores were formed
by pyrites, and some inorganic pores were formed between the
inorganic particles.

4.2 Key factors controlling the methane
adsorption capacity of coal

The methane adsorption capacity of coal is controlled by
different factors, as suggested in previous studies (Bustin and
Clarkson, 1998; Laxminarayana andCrosdale, 1999; Laxminarayana
and Crosdale, 2002). During coalification, the methane adsorption
capacities of coal samples first increase and then decrease (moisture-
equipped coal samples) (Zhong, 2004). In addition, the ash yield,
maceral composition, and pore structure are important factors
affecting the methane adsorption capacity (Bustin and Clarkson,
1998; Laxminarayana and Crosdale, 1999; Laxminarayana and
Crosdale, 2002). In this study, because the coal samples were
collected from the drilling core, the maturity of all the samples was
similar (Table 1). Thus, it is necessary to investigate other factors
that control the methane adsorption capacity. Figure 9 shows the
correlation between the Langmuir volume and ash yield. With
increasing ash yield, the Langmuir volume decreased linearly. This
indicates that the methane adsorption capacity of the minerals
in the coal was very low. These minerals contributed little to
the total methane adsorption. Previous studies found that clay
minerals in coal have methane adsorption capacities. In most
previous studies, the minerals in coal decreased the methane
adsorption amount (Laxminarayana and Crosdale, 1999).

As illustrated in Figure 10, the relationship between the
Langmuir volume and BET surface area (obtained from the N2
adsorption experiment) of these coal samples was not very obvious.
Overall, the Langmuir volume decreases with increasing BET
surface area. A similar correlation was also found in Figure 11,
where the correlation between the Langmuir volume and pore
volume was obtained from the N2 adsorption amount. With an
increase in the volume of the 2–300 nm pores, the methane
adsorption capacity decreased. The BET surface area and pore
volume obtained from the low-pressure N2 adsorption experiment
were contributed by 2–300 nm pores. However, the number of
2–300 nm pores (obtained from the N2 adsorption experiment)
in the coal samples was very low. In addition, micropores
(<2 nm) mainly contributed to the total pore surface area of
the coal samples. Methane molecules were mainly adsorbed in
the micropores because adsorption was caused by the interaction
forces between the methane molecules and the coal surface.
These mesopores have a weak effect on the methane adsorption
capacity. The 2–300 nm pores in coal were mainly contributed by
minerals, and as the mineral content increased, the pore volume
increased. Comparably, themethane adsorption capacitywasmainly
contributed by organic matter and decreased with increasing
mineral content.

Considering that minerals have a significant effect on the
methane adsorption capacity, the methane adsorption capacity
on an ash-free basis was calculated (Equation 1). With increasing
volatile matter content, both the Langmuir volume and ash-free
Langmuir volume decreased. When the influence of minerals was
removed, volatile matter had a negative effect on the methane
adsorption capacity. There may be several reasons why the methane
adsorption capacity decreased with increasing volatile matter
content. During this stage (anthracite coal),microporeswere formed
between the aromatic rings, and a lower volatile matter content
indicated more aromatic rings (Liu et al., 2021). During the volatile
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FIGURE 8
Pores in coal sample imaged by the SEM experiment. (A) Organic pores (N13-10-1 coal sample), (B) organic pores (N13-10-4 coal sample), (C) organic
and inorganic pores formed by pyrite minerals (N13-10-1 coal sample), and (D) inorganic pores (N13-10-3 coal sample).

TABLE 1 Properties of the coal samples.

Sample no. Coal seam Vitrinite
reflectance

Proximate analysis Maceral composition

Mad (%) Ad (%) Vdaf (%) FCd (%) Vitrinite (%) Inertinite (%)

N13-10-1 10# 2.13 1.24 12.95 9.49 78.79 94.11 5.89

N13-10-2 10# 2.42 1.16 16.35 9.87 75.39 80.79 19.21

N13-10-3 10# 2.06 0.64 22.87 12.40 67.57 80.87 19.13

N13-10-4 10# 2.10 1.12 14.84 10.17 76.51 81.33 18.67

N13-11-5 11# 2.30 0.88 30.45 15.09 59.06 85.6 14.4

N13-11-6 11# 2.17 0.81 29.09 14.23 60.82 87.2 12.8

N13-11-7 11# 2.10 0.68 29.43 15.55 59.60 89.55 10.45

N13-11-8 11# 2.02 0.74 24.58 14.51 64.48 86.72 13.28

matter test, some minerals generated gas. In addition, volatile
matter was produced during mineral catalysis. Thus, more minerals
resulted in more volatile matter. Considering that minerals have
a negative effect on methane adsorption capacity, the Langmuir
volume decreased with increasing volatile matter (Figure 12).
We also compared the methane adsorption capacities of different
maceral compositions and found that the maceral composition
had a weak effect on the methane adsorption capacity of the coal
samples. This is mainly because the maturities of the coal samples

are relatively high (Ro>2.0%), and the structure of vitrinite is similar
to that of inertinite.

Vaf =
V
(1‐Ad)
. (1)

Here, Vaf represents the methane adsorption capacity
(Langmuir volume) on an ash-free basis; V represents the
Langmuir volume obtained from isothermal methane experiment;
and Ad represents the ash yield.
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FIGURE 9
Correlation between the methane adsorption capacity (Langmuir
volume) and ash yield.

FIGURE 10
Relationship between the methane adsorption capacity (Langmuir
volume) and BET surface area obtained from the N2 adsorption
experiment.

4.3 Effects of the pore system and
adsorption capacity on coalbed methane
extraction

The coal samples in this study were all anthracite coal, and as
shown in Figure 6, these samples had a strong methane adsorption
capacity. Based on previous studies and the experimental data
obtained in this study, anthracite has a strong methane adsorption
capacity. This is one of the key reasons for the abundance of
coalbed methane resources in anthracite coal samples. However, the
mercury injection and the low-pressure N2 adsorption experiments
showed that the volume and surface area of the mesopores and
nanoscale macropores were quite low, indicating that there were

FIGURE 11
Correlation between Langmuir volume and pore volume obtained
from the N2 adsorption amount.

FIGURE 12
Correlation between the volatile matter and methane adsorption
capacity.

few mesopores and nanoscale macropores in the anthracite coals.
Based on the SEM observations, a similar conclusion was drawn;
mesopores and macropores were found on the surface of the coal
matrix. In addition, as the volume of mesopores and nanoscale
macropores increased with the mineral content, inorganic pores
occupied a significant proportion of the total mesopores and
nanoscale macropores. This means that the organic matter in coal
rarely forms mesopores or nanoscale macropores. In addition, the
mesopores and nanopores contributed little to the total amount of
methane adsorbed because they could not provide many adsorption
sites. Comparably, methane molecules in anthracite are mainly
stored in micropores (Cheng et al., 2017; Liu et al., 2021). These
micropores are primarily formed by coalmolecules (Liu et al., 2018).
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FIGURE 13
Pore system and the effect on coalbed methane extraction in anthracite coals.

Based on mercury injection, low-pressure N2 adsorption, SEM
observations, and methane isothermal adsorption experimental
data, the pore system of anthracite coals was clarified (Figure 13).
The pore system of anthracite can be divided into three parts. The
size and formation mechanisms of the different parts are different.
The first part consisted of micropores. Because these pores are
formed by coal molecules, micropores are universally developed in
the coal matrix (Cheng et al., 2017; Liu et al., 2021).Thus, numerous
micropores are present in anthracite coal (Liu et al., 2018). These
pores provide a large space and surface area formethane adsorption,
and anthracite coals have a large methane adsorption capacity, as
illustrated by the methane isothermal adsorption data (Figure 6).
The second part comprised mesopores and nanoscale macropores.
The volumes and surface areas of these pores were quite low.
Additionally, a large proportion of these pores were inorganic.
The third part comprised cleats and fractures. The sizes of these
parts were on the micro-meter scale. These pores can form during
coalification and tectonic movements (Laubach et al., 1998; Cheng
and Pan, 2020). There were a certain number of cleats and fractures
in the coal samples used in this study, as indicated by the mercury
injection data.

It should be noted that most of the methane molecules are
stored in micropores, and when these methane molecules are
transported outside the coal, they usually need to be transported
throughmesopores andmacropores and then to fractures and cleats.
Only a small number of micropores are directly connected to the
fractures and cleats in the coal. However, there were a fewmesopores
and nanoscale macropores. This means that there are insufficient
tunnels to transport methane molecules from the micropores to the

cleats and fractures. This makes the extraction of coalbed methane
difficult. In the exploitation of coalbed methane, it is important to
create tunnels to facilitate the transport of methane molecules from
micropores to cleats and fractures. The pore structure and methane
adsorption characteristics of anthracite coal observed in this study
are common features of anthracite (Markowski, 1998; Adsul et al.,
2023). Anthracite from other regions of the world also exhibits
similar characteristics, such as well-developed micropores, a lack of
nanoscale pores, and strong adsorption capacity, but a shortage of
nanoscale migration pathways (Mohanty and Pal, 2017). Therefore,
these findings can be universally applied to research on coalbed
methane extraction from anthracite.

5 Conclusion

(1) Different types of pore characterizationmethods (low-pressure
N2 adsorption, mercury injection experiment, and SEM
observation) showed that there were few mesopores and
nanoscale macropores in the eight anthracite coal samples
from the Anzenan coalbed methane block in the Qinshui
Basin, China.

(2) The volume of 2–300 nm pores in the eight anthracite coal
samples increased with increasing ash yield, indicating that
the organic matter of anthracite coal rarely formed pores on
this scale.

(3) The anthracite coal had a large methane adsorption capacity,
and the Langmuir volume increased with decreasing ash
yield, indicating that the methane molecules were mainly
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adsorbed in the micropores of the organic matter in the
coal. Considering that the coal samples are typical anthracite,
these findings are also applicable to other anthracite coals
worldwide. Therefore, creating pore connectivity pathways is
crucial for the extraction of coalbed methane from anthracite
coal globally.
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Lithium in coal, as a new type of associated mineral resource, has considerable
potential for exploration. Exploration of high-lithium coal seams is essential
for developing and using the associated lithium resources. To explore the
distribution of lithium resources in the early stages of development in
coal seams, the relationship between coal seam logging data and lithium
content was analyzed by taking Guojiadi Coal Mine (China) as example.
By analyzing the correlation between the different logging curves and the
lithium content in coal and combining the K-means algorithm to identify
the logging characteristics of different lithium-containing coal seams, we
finally obtained the logging identification characteristics of high-lithium coal
seams. The results reveal differences in the logging curves of coal seams
with different lithium contents. The natural gamma and lateral resistivity of
high-lithium coal seams are approximately 80 API and 100 Ω.M, respectively.
Our study shows that the early identification of high-lithium coal seams
can be evaluated from a logging perspective. We propose a preliminary
identification method of high-lithium coal seam based on logging curve
parameters by clustering analysis of borehole logging data to achieve
accurate prediction.

KEYWORDS

lithium, high-lithium coal seam, logging curve, logging response, cluster analysis,
Kmeans algorithm

1 Introduction

Lithium is a vital strategic metal that plays an important role in modern industry
and new energy technology (Dai and Finkelman, 2018; Li et al., 2024). When the lithium
content in coal exceeds a certain grade, lithium deposits associated with the coal can be
formed as sedimentary lithium deposits (Zhao et al., 2022). Global lithium resources are
plentiful, mainly distributed in North and South America. At the national level, lithium
is distributed in the US, Australia, and China (Kesler et al., 2012; Ambrose and Kendall,
2020; Jiu et al., 2022). In recent years, European countries, Russia, South Africa, China,
and other coal-producing countries have researched key metals such as lithium in coal
and have successively discovered key metal deposits in the coal system (Dai et al., 2020).
The development and use of associated lithium minerals in coal can be an important
supplementary source of lithium resources, which is of great importance to the research
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and development of metal element mineral resources in coal. China
is rich in coal resources. The enrichment of associated lithium has
been found in coal in many regions of China, and the quantity of
resources is considerable (Zhang et al., 2024). Western Guizhou is
a crucial coal-producing area in southwest China. The main coal-
bearing strata are in the Upper Permian Longtan Formation. Coal
frommultiple Late Permian coal-bearing basins in western Guizhou
is highly enriched in critical metals (Liu et al., 2019; Liu et al., 2021),
particularly lithium. Most research on associated lithium resources
in coal has focused on the geochemical characteristics, occurrence
status, enrichment sources, and mineralization rules of key metals
in coal based on numerous samples (Hu et al., 2018; Tang et al.,
2022). Nevertheless, few studies have focused on predicting lithium
enrichment areas in coal.

In exploration and drilling, a series of logging activities are often
carried out on the borehole. Conventional logging mainly includes
natural gamma logging and resistivity logging. Logging data record
stratigraphic information, geophysical parameters, and other related
information, which is widely used in lithofacies identification,
stratigraphic division, and other fields (Yan et al., 2018; Day-
Stirrat et al., 2021; Lai et al., 2023). In addition, trace element-
abnormal strata can be realized through a deeper interpretation
of the logging data. Many scholars use different data processing
methods, such as machine learning, neural networks, support
vector machines, and other methods, to interpret logging data from
multiple angles and successfully achieve different purposes, such as
coal rock detection and coal facies discrimination (Puskarczyk et al.,
2019; Hayat et al., 2020; Baudzis et al., 2021). With the rapid
development of modern logging technology, a substantial amount
of data are produced in the process of logging. Nevertheless,
choosing the appropriate means to deal with huge amounts of
data is particularly important. As a big data analysis method,
clustering analysis is suitable for processing of massive data and
can extract effective key information (Amjad and Chen, 2020).
The K-means algorithm is important in clustering analysis. The
algorithm is simple and efficient and can be applied to different
analysis purposes by flexibly selecting the K value (Ikotun et al.,
2023). Zhang et al. (2024) utilized K-means clustering for data
preprocessing and accurately predicted reservoir porosity and
permeability using conventional logging curves as input. Jing et al.
(2021) selected different mechanical parameters of rock samples,
analyzed geophysical logging data based on the K-means dynamic
clustering method, and realized a lithology classification. Lai et al.
(2024) also used the K-means algorithm to realize the automatic
identification of lithology and evaluated the water saturation of
shale reservoirs in combination with logging curves. However, few
studies have focused on the identification of abnormally high-
lithium concentrations in coal seams using logging data.

Therefore, the J1301 well of Guojiadi Coal Mine in Liupanshui
Coalfield of Western Guizhou was taken as the research object, and
the systematic logging was carried out to determine the lithium
content. Using the K-means clustering algorithm, we combined the
logging data with the lithium content in the coal seam to obtain
the logging response characteristics of the high-lithium coal seam.
The whole well-logging data are identified. It is hoped that high-
lithium coal seams can be identified during coal seam exploration
and drilling to provide theoretical guidance for the exploration and
development of associated lithium mineral resources in coal.

2 Samples and methods

2.1 Sample collection

The Guojiadi Coal Mine is a part of the Liupanshui Coalfield
(Figure 1A), which is located in the southeast wing of the Qingshan
Syncline in Panxian County and Pu’an County, southwest of the
Liupanshui Coalfield, Guizhou Province (China). The main axis of
the Qingshan syncline is distributed in the NE-SW direction, with an
inclination angle of 3°–25°. The southeast limb is locally steep, and
secondary folds and faults in the NE–SW direction have developed
on both limbs (Huang and Qu, 2021). The Liupanshui Coalfield
is located in western Guizhou Province and is a set of marine-
terrigenous coal-bearing deposits (Figure 1B). The paleogeography
of coal accumulation is the long delta plain type, and the sedimentary
environment is theupperandlowerdeltaplains.Themainsedimentary
system is the delta sedimentary system.The sedimentary type is based
on distributary channel deposition, including natural levees, crevasse
fans, and interdistributary bays on both sides of the river channel.The
transition zone between the upper and lower delta plains is the ideal
location for coal accumulation, with the best coal-bearing properties
(Bilal et al., 2023; Jamaluddin et al., 2023). Generally, there are many
coal seams, with mainly medium–thick coal seams. The coal seams
are widely distributed. The stability is good, and the ash and sulfur
contents are low (Jiang et al., 2020).

Well J1301 is located in the Guojiadi CoalMine.The coal-bearing
strata include coal seams No. 12, 17, 18, 20, 26, and 28, as well as a
few thin coal seams.The coal seamhas a thickness of 0.45–2.11 m and
a depth of 196–383 m. The lithology of the whole borehole is mainly
sandstone, including siltstone, argillaceous siltstone, fine sandstone,
and limestone.All coal seamsampleswere collectedduring thedrilling
process and immediately stored bags to prevent contamination. The
coalseamsencounteredduringdrillingwerenumbered1M–11Mfrom
top to bottom (Figure 1C). Long-source distance gamma (GGFR),
natural gamma (NG01), lateral resistivity (GR01), and apparent
resistivity (RS01) logging were performed simultaneously.

2.2 Test methods

Lithium content was determined by inductively coupled
plasma–mass spectrometry (ICP–MS,NEXION2000-B,PerkinElmer,
Inc.). The determination was conducted according to GB/T
14506.30–2010. Firstly, the sample is ground to a particle size of
200 mesh.TheICP-MSsampledigestionmethodisas follows:precisely
weigh 50 mg of coal sample ground to a particle size of 0.075 mm and
transfer it into a PTEF digestion vessel. Subsequently, add HF and
HNO3, seal the vessel, and heat it at a constant temperature of 190°C
for 36 h. Once complete digestion is achieved, remove the sample
and dry it thoroughly. Then, introduce 1 mL of HNO3 (1:1) at a
temperature of 24°C followed by another drying step. Dissolve the
salts using HNO3 (1:1) solution and subsequently add Rh internal
standard solution (500 mg). Further addition includes 2 mL of HNO3
and3 mLofdeionizedwaterbeforeplacing itback inthesteelcontainer
for heating at 140°C for 5 hours. After cooling down, remove the
digestion vessel, shake well, and transfer an aliquot volume of 0.4 mL
into a centrifuge tube with subsequent adjustment to reach a final
volume of 10 mL prior to instrument analysis.
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FIGURE 1
Location of well J1301 (A) Location of the study area; (B) Sedimentary environment of the study area; (C) Lithologic map of well J1301.

The cluster analysis method is used to identify the logging
characteristics of coal seams with different lithium contents.The core
concept of cluster analysis is “birds of a feather flock together.” The
algorithm classifies data objects separately based on the degree of
similarity between them, which is an unsupervised learning method
(Ahmed et al., 2020; Chen et al., 2020). The K-means clustering
algorithm is often used in practice. K-means clustering is a fast,
iterativeprocess(ShahrivariandJalili,2016;Capó et al.,2017).Figure 2
illustrates the workflow of the K-means algorithm.

3 Results

3.1 Sample Li content and logging results

By conducting GGFR, NG01, GR01, RS01 logging in the
J1301 well, and measuring the lithium content in the coal seam, we

obtained the lithium content in Well J1301 and the average value of
the corresponding log curves (Figure 3).

GGFR is a logging method used to obtain the formation
density using the gamma photon counting rate received by
the instrument. For different lithology strata, the scattering and
absorption capacities of the gamma photons are different, and the
count rates of gamma photons received by the detector are also
different (Chen and Zhang, 2022). The GGFR value of coal seams
ranges from 300 to 2700 CPS, with a mean of 900 CPS. The GGFR
value of the lithium-rich coal seam is between 300 and 1350 CPS.
NG01 is closely related to the ash content of coal but is generally
to the organic matter composition or the humic acid content of
coal (Gao et al., 2015). The NG01 values of coal seams range from
35 to 200 API, with an average of 133 API. The NG01 values of
a lithium-rich coal seam are between 35 and 120 API. The GR01
curve is mainly affected by the sedimentary environment, original
rock mineral composition, porosity, and cement. The electrical
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FIGURE 2
K-means flow chart.

parameters of each lithology vary greatly (Duan et al., 2023). The
GR01 value of coal seams ranges from 45 to 1300 Ω.M., averaging
of 214 Ω.M. The GR01 value of a lithium-rich coal seam is between
50 and 200 Ω.M. Generally, the measured resistivity is called the
apparent resistivity, RS01.The RS01 of coal seams ranges from 50 to
500 Ω.M, averaging 218 Ω.M. The RS01 of a lithium-rich coal seam
is between 60 and 260 Ω.M.The lithium content in the coal seam of
Well J1301 varies greatly, as shown in Figure 3.

The lithium content ranged from 4.46 μg/g to 171.93 μg/g, with
a mean of 82.44 μg/g. It shows a certain regularity in the vertical
direction, and the lithium content decreases from the upper coal
seam to the lower coal seam. The coal seams from J1301-5 coal and
above show different logging response characteristics from the coal
seams below.The lithium content of the J1301-5 coal and above coal
seams is above 90 μg/g. GGFR is between 300 and 600 CPS; NG01
is less than 100 API; GR01 is between 75 and 135 Ω.M, and RS01 is
less than 200 Ω.M. The lithium content in the coal seam below the
J1301-5 coal is below 90 μg/g. The GGFR range is 938–2183 CPS,
and the fluctuation is large.TheNG01 range is greater than 100 API.
GR01 is greater than 250 Ω.M, and RS01 is greater than 250 Ω.M.

3.2 Well-logging characteristics

Radar maps of the logging characteristics of different lithologies
are obtained by counting the logging characteristics of different
types of lithology (Figure 4). The logging characteristics of coal are
quite different from those of other lithologies.The GGFR and NG01
values of coal are much higher than those of fine sandstone and
siltstone.They are also quite different from argillaceous siltstone and
limestone.The RS01 of coal is similar to that of argillaceous siltstone
and lower than that of limestone, siltstone, and fine sandstone. The
GR01 of coal is larger than that of argillaceous siltstone and smaller
than that of fine sandstone, siltstone, and limestone. The RS01 of
coal is similar to that of argillaceous siltstone and lower than that
of limestone, siltstone, and fine sandstone. The GR01 of coal is

larger than that of argillaceous siltstone and smaller than that of
fine sandstone, siltstone, and limestone. Compared with the logging
characteristics of other lithologies, the logging characteristics of coal
have specific identification characteristics.Thewell-logging data can
be further identified by cluster analysis.

A scatter plot of the lithium content and different
logging responses at the corresponding depths is drawn for
correlation analysis (Figure 5). The lithium content strongly
correlated with RS01, with R2 reaching 0.60. The lithium content
shows the next highest correlation with NG01 and GR01 (R2 of
0.40). The correlation between the lithium content and GGFR is the
lowest, with R2 of 0.14.

3.3 Cluster identification of high-lithium
coal seams

K-means clustering analysis was performed on the J1301 well
logging data using SPSS (Statistical Package for the Social Sciences)
data analysis software to obtain the logging clustering center. Based
on the lithium content in coal seams, coal seams are divided into
high-lithium coal seams (lithium content >50 μg/g) and low-lithium
coal seams (lithium content <50 μg/g) (Sun et al., 2014). Lithium-
containing coal seams are the sum of high- and low-lithium coal
seams.Theoverall logging characteristics of the lithium-bearing coal
seam in Well J1301 in Guojiadi are as follows: GGFR = 901 CPS,
NG01 = 133 API, GR01 = 214 Ω.M, RS01 = 218 Ω.M. K-means
clustering was performed on the lithium-containing, high-lithium,
and low-lithium coal seams, and the number of clusters was divided
into 2, 3, and 4. Tables 1–3 list the clustering results.

The GGFR cluster center has a large fluctuation range, from
535 to 2503 CPS, but there is no apparent distinction in RS01.
No similarity is observed in the different center point gaps for
the different cluster numbers. A plot of the NG01 and GR01
(Figure 6) reveals some differences between the and low-lithium
coal seams. The NG01 and GR01 of the high-lithium coal seam are
approximately 80 API and 100 Ω.M, respectively. NG01 and GR01
of the low-lithium coal seam approximately 100 API and 150 Ω.M,
respectively. Hence, high-lithium coal seams can be identified using
the above indicators. K-means clustering is performed on the
logging data of the J1301 well using the above values as the logging
response characteristics of the well. A clustering center consistent
with the target horizon appears when the clustering number is set to
a higher value. The clustering results can be found in Tables 4, 5.

It can be found by clustering the whole-well data (Figure 7):
NG01 of the cluster center of cluster 15 is 83 API, and the GR01
is 102 Ω.M, which is consistent with the aforementioned high-
lithium target layer. The corresponding strata of cluster 15 are
mapped individually, and a cluster prediction map is prepared.
The high-lithium coal seams are comprehensively identified, and
more lithium-containing layers are identified in the non-coal parts,
as shown in Figure 8.

4 Discussion

Herein, lithium-bearing coal seams, high-lithium coal seams,
and low-lithium coal seams were divided according to their lithium
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FIGURE 3
Lithium content and corresponding logging curves for Well J1301.

FIGURE 4
Lithology logging identification template.

contents. Using statistical logging response characteristics, coal
seams with different lithium contents were compared, and the
logging response characteristics of the different lithologies were
analyzed.NG01 andGR01 of the low-lithiumcoal seamswere higher
than those of the high-lithium coal seams. Some scholars have
studied the logging response of coal seams in different regions and

found that the gamma ray of coal is 20–50 cps, and the resistivity is
500–1200 Ω.M, which is different from the high-lithium coal seam
in Guojiadi (Bhaskar, 2006; Chatterjee and Paul, 2013; Ghosh et al.,
2016). The analysis of the high-lithium coal seam in Guojiadi
shows that the high-lithium coal seam has a high gamma ray
value and a low resistivity value.
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FIGURE 5
Correlation diagram between lithium content and well logging.

TABLE 1 Clustering center of lithium-bearing coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 1706.85 534.32 1399.15 2386.40 495.36 432.19 1074.11 2426.96 1603.11

NG01(API) 212.44 96.97 221.21 172.60 89.97 76.53 208.13 172.43 207.08

GR01(Ω.M) 425.20 118.01 337.33 551.36 117.63 116.08 150.53 552.87 509.48

RS01(Ω.M) 325.08 169.12 289.36 365.33 168.15 166.21 203.41 364.91 359.95

TABLE 2 Clustering center of high-lithium coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 1957.55 549.37 2512.82 1424.00 491.04 433.95 972.20 1634.24 2512.82

NG01(API) 126.81 85.68 122.45 137.47 79.30 69.52 141.42 131.62 122.45

GR01(Ω.M) 483.34 102.17 334.55 400.90 98.30 97.74 118.63 599.82 334.55

RS01(Ω.M) 351.75 157.04 316.07 303.09 153.01 152.28 175.02 383.42 316.07
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TABLE 3 Clustering center of low-lithium coal seam in Well J1301 in Guojiadi.

logging
curve

Cluster 1 Cluster 2 Cluster 3

Center 1 Center 2 Center 1 Center 2 Center 3 Center 1 Center 2 Center 3 Center 4

GGFR(CPS) 535.94 1613.71 502.36 2272.36 1389.17 408.07 1706.03 2503.33 1118.09

NG01(API) 116.22 256.87 107.27 210.36 268.16 88.47 253.73 194.83 241.22

GR01(Ω.M) 147.90 408.78 148.97 755.71 293.20 150.14 456.13 1051.17 170.58

RS01(Ω.M) 192.15 316.67 192.70 412.31 279.59 192.39 347.49 464.92 219.33

FIGURE 6
Clustering results of different lithium-bearing coal seams.

The variation in lithium content can be essentially explained
by the difference in physical characteristics between high-lithium
and low-lithium coal seams. Lithium is generally hosted in clay
minerals, and high-lithium coal seams tend to have higher clay
mineral contents, which cause physical differences between seams,
thus affecting the logging characteristics. This result may be due
to the following reasons. 1) Lithium is generally found in clay
minerals in coal, and we can obtain lithium information indirectly
by analyzing the logging reflections of clay minerals in coal. When
the clay content is high, the lithium content in coal tends to be higher
than that in coal seams with lower clay content (Li et al., 2023). Clay
minerals tend to show lower gamma responses in the gamma logs
because their content is usually low, and as fine granular materials,
they exist in tiny particles in reservoirs such as coal seams.Therefore,
the peak value of clay minerals in NG01 logging curves is usually
low, and the NG01 signal may be weak compared to other common
minerals (such as quartz and feldspar) (Ehsan and Gu, 2020; Jiang,
2021). 2) Common minerals such as quartz and feldspar usually
have high electrical conductivity, so they will show higher values
in the resistivity logs. However, clay minerals contain relatively
more water and salt plasmas, resulting in lower lateral resistivity
(Han and Misra, 2018; Zhao et al., 2019). Many scholars have also
pointed out that coal has a wide range of gamma ray response,

especially when some thin coal seams are mixed with surrounding
rocks, which will make some coal seams have a higher gamma ray
response. This may lead to incorrect predictions of high-lithium
coal seams when using cluster analysis methods (Keskinsezer, 2019;
Yusefi and Ramazi, 2019).

A cluster center consistent with the target layer appears when
the whole-well logging data are clustered and the number of
clusters is set to a higher value. This result may be due to
the following reasons. 1) From the perspective of the K-means
clustering algorithm principle, setting different cluster numbers
will have different effects on the clustering results. An increase
in the number of clusters leads to an increase in the number
of cluster centers, and the distance between each cluster center
will increases. A larger number of clusters can better separate
different clusters. 2) From a practical perspective, rocks with
different lithologies will be encountered as the drilling depth
increases. These rocks have experienced different sedimentary and
diagenetic processes, and the corresponding logging characteristics
will differ. A higher clustering number can classify rocks of
different lithologies more accurately. At the same time, we also
need to consider other factors, such as the depth of the coal
seam and its thickness, which will affect the identification of high-
lithium coal seams. This increases the uncertainty of identification
(Antariksa et al., 2022).

The relationship between well-logging curves and lithium
content was obtained by analyzing and summarizing the responses
of well-logging curves of different types of coal seams in high-
lithium areas. The response characteristics of the logging curves
of coal seams with different lithium contents differed. For NG01
and GR01, there are still similar cluster centers when different
cluster numbers are set. This shows that coal seams with different
lithium contents are also significantly different, and this center
can be used as a basis for identifying high-lithium coal seams.
The well-logging curves were clustered and compared with the
aforementioned high-lithium coal seam clustering centers. High-
lithium coal seam clustering data were distributed throughout the
well. Hence, the data of the whole well can be identified using this
method, not just limited to a specific range, and some high-lithium
coal seams can be identified with high accuracy.

In connection with reality, lithium exists in coal seams, and may
also be enriched in other rocks, such as roof and floor plates (Dai
and Finkelman, 2018). In the clustering, a high-lithium coal seam
clustering center exists in the coal seam, and is distributed widely
in other lithologies, which is consistent with the above. The
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TABLE 4 Well logging clustering center of Guojiadi J1301 well (1–10).

logging
curve

Cluster

Center
1

Center
2

Center
3

Center
4

Center
5

Center
6

Center
7

Center
8

Center
9

Center
10

GGFR(CPS) 277.65 2026.73 237.20 1920.41 1219.41 1666.68 250.19 299.95 2501.00 331.26

NG01(API) 31.05 722.95 17.20 192.91 175.94 469.38 22.69 34.59 189.60 51.61

GR01(Ω.M) 810.41 218.00 2489.60 543.68 183.00 179.76 1928.50 443.77 1135.80 143.54

RS01(Ω.M) 433.04 259.22 580.58 380.20 224.31 230.58 547.11 354.38 477.63 204.84

TABLE 5 Well logging clustering center of Guojiadi J1301 well (11–20).

logging
curve

Cluster

Center
11

Center
12

Center
13

Center
14

Center
15

Center
16

Center
17

Center
18

Center
19

Center
20

GGFR
(CPS)

1635.50 2014.02 2534.33 272.89 469.54 1662.48 2087.29 311.65 795.51 1510.88

NG01
(API)

130.75 46.55 150.21 21.55 83.69 69.76 800.00 42.96 122.56 131.00

GR01
(Ω.M)

994.75 298.17 367.58 1356.50 102.44 258.78 475.14 252.20 109.96 533.23

RS01
(Ω.M)

460.12 301.64 326.95 500.96 157.56 279.18 362.72 280.77 161.58 376.95

FIGURE 7
Clustering center.

trace element content cannot be determined directly from the
logging curves because they only reflect the physical, chemical, and
petrological characteristics of the formation. However, by analyzing
the logging response characteristics of coal seams, coal seams with
different lithium contents can be distinguished and used as criterion.
This means that the early identification of high-lithium coal seams

can be evaluated from the perspective of logging. The possibility
of trace elements and their content range can be inferred from
a comprehensive analysis of the whole logging data and other
geological data. Further experimental analysis is required to confirm
the existence and content of trace elements.

5 Conclusion

The lithium content in theGuojiadi CoalMine is high, averaging
82.44 μg/g, which is much higher than the international lithium
content in coal and is highly representative. The lithium content
in the coal seam is strongly correlated with the RS01, GR01, and
NG01 logging curves. Coal seams with different lithium contents
have different logging characteristics. The NG01 and GR01 values
of high-lithium coal seams are approximately 80 API and 100 Ω.M,
respectively. The NG01 and GR01 values of low-lithium coal seams
are approximately 100 API and 150 Ω.M, respectively. Hence, high-
lithium coal seams can be identified by performing K-means
clustering on the natural gamma and lateral resistivity logs of the
entire drilling well and comparing the log characteristics of regional
high-lithium coal seams. The k-means clustering method is used to
identify high-lithium coal seams in Guojiadi Coal Mine. Although
there are some wrong classifications of high-lithium coal seams,
the differential analysis of different lithium-bearing coal seams and
the rapid identification of high-lithium coal seams are the main
contributions of this work. Most importantly, this study shows that
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FIGURE 8
Clustering result diagram.

the early identification of high-lithium coal seams can be evaluated
from a logging perspective.
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Most of the implementedmarine gas hydrate test exploitation in the world adopt
the depressurization method to break down the hydrate in the reservoir into
natural gas and then extract it, but because the gas production results are still
a certain distance away from the commercial exploitation, and it mainly stays
in the stage of theoretical research and trial exploitation. Based on two trial
productions in the Shenhu area of the South China Sea, this study established
a model for hydrate exploitation and investigated the impact of different well
types on the recovery rates of hydrates and free gas in different development
layers during depressurization. For the Class 1 hydrate reservoirs, horizontal
wells are the optimal solution to extract hydrate and free gas simultaneously
when exploiting the hydrate three-phase layer. Meanwhile, the effect of different
well spacing in vertical wells on the recovery rate of hydrate and free gas was
studied. It is found that the best recovery efficiency is achievedwhen the spacing
between two wells is 80 m. The lower the bottom flow pressure of the well, the
higher the production capacity, but its influence is limited.

KEYWORDS

class 1 hydrate reservoirs, depressurization exploitation, numerical simulation, recovery
rate, horizontal well

1 Introduction

Natural gas hydrate (NGH), commonly known as combustible ice, is a clathrate
crystalline compound formed by hydrocarbon gases such as methane and water under
high pressure and low temperature (McMullan and Jeffrey, 1965; Sloan and Koh, 2007).
NGH has the characteristics of high energy density, wide distribution, large scale, high
combustion value, clean and no pollution, etc. It is an energy source that has not yet been
effectively developed on a large scale on earth and is also known as the new alternative
energy source with the most development potential in the 21st century (Xu and Li, 2015;
Chibura et al., 2022; Wei et al., 2022). The efficient development of hydrate resources from
marine sediments is crucial in addressing the world’s energy shortage (Zhao et al., 2017;
Xu et al., 2019; Wei et al., 2021).

Frontiers in Earth Science 01 frontiersin.org87

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org/journals/earth-science#editorial-board
https://doi.org/10.3389/feart.2024.1444690
https://crossmark.crossref.org/dialog/?doi=10.3389/feart.2024.1444690&domain=pdf&date_stamp=2024-08-14
mailto:weina8081@163.com
mailto:weina8081@163.com
mailto:202114000002@stu.swpu.edu.cn
mailto:202114000002@stu.swpu.edu.cn
https://doi.org/10.3389/feart.2024.1444690
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/feart.2024.1444690/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1444690/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1444690/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1444690/full
https://www.frontiersin.org/articles/10.3389/feart.2024.1444690/full
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Wei et al. 10.3389/feart.2024.1444690

FIGURE 1
Classification of natural gas hydrate reservoirs. (A) Class 1, (B) Class 2 (C) Class 3 (D) Class 4.

Moridis et al. divided the natural hydrate accumulations into four
main classes that are defined by their geologic features and their initial
conditions (Moridis and Collett, 2003; Moridis and Reagan, 2007a;
Moridis and Reagan, 2007b; Moridis et al., 2007; Moridis and Sloan,
2007), and most of the current studies have been conducted based on
this classification. As shown in Figure 1, the Class 1 accumulations are
composedof two layers: theHydrate-BearingLayer (hereafter referred
to as HBL) and an underlying two-phase fluid layer containing gas
and liquid water. In Class 1 deposits, the bottom of the HBL occurs
under equilibrium conditions and defines the bottom of the stability
zone. In addition, depending on the composition of the HBL, it is
divided into two types: water-saturated (Class 1W) and gas-saturated
(Class 1G) (Moridis and Reagan, 2011a). In Class 2 deposits, an HBL
overlies a layerofmobilewater.Class 3 accumulations are composedof
a single zone, the hydrate interval (HBL), and are characterized by the
absence of an underlying zone of mobile fluids. A fourth class (Class
4) involves exclusively oceanic systems, and involves dispersed, low-
saturation hydrate deposits that lack confining geologic strata. Among
them, the Class 1 accumulations are currently the preferred target for
hydrate exploitation because the temperature and pressure conditions
in this class of hydrate reservoir are close to the phase equilibrium line,
meaning that only a small amount of decomposition driving force is
required for hydrate decomposition. Additionally, the Class 1 hydrate
reservoirs have the advantage that even if the hydrate decomposition
is minimal, a certain amount of gas can still be recovered during
exploitation due to the underlying free gas.

Natural gas hydrates are extracted by decomposing solid
hydrates into water and methane gas in the reservoir environment,
and then collecting the methane gas through extraction wells.
Currently, the exploitation methods of natural gas hydrate mainly
include depressurization (Wang et al., 2013; Zhao et al., 2015),
thermal stimulation (Cranganu, 2009; Nair et al., 2016), inhibitor
injection (Li et al., 2007; Villano et al., 2009), N2/CO2 replacement
(Ohgaki et al., 1996; Goel, 2006), and solid fluidization exploitation
methods proposed for the development of marine non-diagenetic
natural gas hydrate (Zhou et al., 2014; Zhou et al., 2017; Wei et al.,
2018; Zhou et al., 2018). Of these methods, depressurization and
heating methods are relatively simple to implement. However,

compared to the heating method, depressurization is more cost-
effective and has higher gas production efficiency. It is the
main method used in recent test exploitation and will be the
primary method for gas hydrate exploitation in the future. During
production in the Messoyakha hydrate reservoirs, depressurization
was the dominant mechanism (Makogon and Omelchenko,
2013). The first oceanic hydrate production trial in the Eastern
Nankai Trough achieved a gas production rate of 20,000 m3/d via
depressurization (Yamamoto, 2015). China conducted two trial
productions in the Shenhu Area of the South China Sea in 2017
and 2020, respectively. The first trial production used straight
wells for depressurization development, and the average daily
gas production was only 5,151 m3/d (Li et al., 2018), while the
second trial production used horizontal wells for depressurization
development, and the average daily gas production increased
significantly to 2.87 × 104 m3/d (Ye et al., 2020).

Due to the complexity, high investment, and unpredictability
of hydrate test exploitation projects, it is beneficial to use
powerful, flexible, and cost-effective numerical simulation
research methods to pre-evaluate hydrate reservoirs before their
extraction (Moridis, 2003; Konno et al., 2017). Various widely
used hydrate simulators, including TOUGH + HYDRATE (T + H)
(Moridis et al., 2011; Sun et al., 2019), HydrateResSim (Gamwo and
Liu, 2010), MH21-HYDRES (Masuda et al., 2008; Kurihara et al.,
2009), STOMP-HYD (Anderson et al., 2011), and CMG-STARS
(Myshakin et al., 2012; Lin et al., 2020), can be utilized to analyze
the hydrate production performance and determine exploitation
strategy preferences. At present, many numerical simulation studies
have been carried out on the depressurization production of natural
gas hydrate reservoirs.

Hong and Pooladi-Darvish (2003) simulated the
depressurization u7production of a two-dimensional cylindrical
natural gas hydrate reservoir, studied the influence of various
parameters on gas production behavior, and analyzed the natural
gas production potential of gas hydrate bearing formation. Moridis
and Reagan analyzed the production performance of hydrate
reservoir under different heat injection and depressurization
conditions. Li et al. (2011) established a single hydrate reservoir
production model and discussed the gas production efficiency of
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FIGURE 2
The regional geological setting and location of the two offshore NGH production test sites. The red rectangle in (A) indicates the production test area.
(B) illustrates the topography surrounding the production well and the trajectory of the well (Yu et al., 2021).

depressurization production in horizontal wells. In 2011, Moridis
and Reagan et al. (2011b) used the T + H to perform depressurizing
dissociation simulations of actual geological gas hydrate reservoirs.
The calculation results show that the gas production phase can
be divided into two phases. The first is the phase where the gas
production gradually increases, and the water production gradually
decreases, and the second is the phase where the fluid production
rate is very low. Moridis also compared the performance of a
vertical well and a horizontal well and found that production
using horizontal wells is approximately two orders of magnitude
larger than that from vertical wells accessing the same section
of the HBL. In 2012, Su et al. (2012) established a vertical shaft
depressurization mining model using T+H study based on the
real geological parameters in the Shenhu Sea, South China Sea.
The simulation results showed that the proportion of hydrate
decomposition produced water was too large when the vertical
wells were mined by depressurization, and the area could not be
mined economically and efficiently by using the depressurization
method alone. In 2015, Feng et al. (2015) compared the hydrate
production efficiency of single horizontal and double horizontal
wells. In 2018, Chen et al. (2018) tablished a geological model for
the hydrate trial production area in the Shenhu Sea area of the South

China Sea and predicted the potential production behavior of the
area. In 2022, Guo et al. (2022) demonstrated that the recovery rates
of hydrate and free gas are significantly influenced by well placement
and stimulation in different development configurations.

In 2021, Yu et al. (2019) further investigated the free gas
accumulation behavior in a methane hydrate reservoir by using
a multiple-well system with an assumed WS. They found that
the free gas accumulation zone was dramatically enlarged with
the increase in well spacing, which means a proper WS should
be carefully determined. Similarly, Terzariol and Santamarina.
(2021) also studied reasonable well spacing under the condition
of multi-well depressurization production of hydrate to explore
the synergistic interactions among wells. Their investigation
also indicated the optimal WS is mainly dependent on the
characteristic lengths, burdens permeability, well pressure, and
formation thickness. In 2023, Sun et al. (2023) compared the
production performance of vertical and horizontal wells with
different well spacing.The results show that the relatively longerWS
in homogeneous sediments with the same ultra-low permeability
means lower cumulative gas recovery, but the full opposite
phenomenon will be observed after increasing the formation
permeability, and subsequently, a method to determine the
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FIGURE 3
Construction of the class 1 hydrate reservoirs model for depressurization exploitation in the Shenhu Sea, South China Sea. (A) Hydrate reservoir model,
2017. (B) Hydrate reservoir model, 2020.

optimal well spacing by the minimum radius of curvature method
was proposed.

In 2013, Zhao et al. (2013) used T + H to numerically
simulate the gas production potential of a single vertical well
gas hydrate reservoir in the Qilian Mountain permafrost zone
of the Qinghai-Tibet Plateau with bottomhole pressures of 1,
1.5, and 2.5 MPa, respectively. The results suggest that lower
production pressures may not be conducive to exploiting the
gas production potential of hydrate reservoirs. Fan et al. (2013)
utilized the HydrateResSim simulator to model a horizontal
well for hydrate extraction under constant temperature and
pressure reduction, defining three pressure scenarios to analyze
heat injection efficiency and gas production rates. Results
indicated that the hydrate gas production rate increased
over time before stabilizing, with higher pressure reductions
leading to increased production capacity. In 2017, Merey and
Sinayuc et al. (2017) performed pressure reduction mining
analyses on hydrate reservoirs of varying thicknesses using the
HydrateResSim simulator for pressure reductions ranging from 2.0
to 6.0 MPa. Xia et al. (2019) introduced a novel depressurization
mode with decreasing bottom-hole pressure in 2020, investigating
its production characteristics numerically. They discovered that
as the depressurization exponent decreased, gas production,
dissociation, and the gas-to-water ratio all increased. Compared
to the proposed depressurization model, the index for hydrate
production at constant bottom-hole pressure was better; however,
it resulted in higher energy consumption within the hydrate
reservoir and more severe hydrate alteration. Therefore, a suitable
depressurization exponent should be selected to achieve a balance

between production and reservoir energy consumption during
depressurization production.

In summary, despite numerous preliminary evaluations
conducted on various well types, well spacings, and bottomhole
pressures, systematic discussions on the impact of different
production intervals on hydrate recovery rates, particularly
for Type 1 hydrate reservoirs, remain scarce. This study not
only updates the simulation benchmarks based on the latest
trial production data but also systematically investigates the
effects of distinct development intervals on the recovery rates
of Type 1 hydrate reservoirs. Through a comparative analysis
of two hydrate trial production campaigns conducted in the
Shenhu area of the South China Sea in 2017 and 2020, this
research, for the first time, elaborates on the specific impacts
of well types and development intervals on the recovery rates
of hydrates and free gas, which have often been overlooked
in previous studies. Furthermore, we assess the influence
of varying well spacings for vertical wells on production
performance, offering fresh insights into optimizing well spacing
designs. Unlike previous studies that primarily focused on
geological factors, our research underscores the significance of
development factors, such as well type selection and production
strategies, in enhancing recovery rates, and it presents, for
the first time, an Inflow Performance Relationship (IPR)
curve for hydrate production. These novel findings provide
vital engineering references for the development of hydrate
reservoirs in the South China Sea and other maritime regions
worldwide, particularly in implementing depressurization-based
extraction projects.
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TABLE 1 Parameters and models used in the simulations
(Li et al., 2018; Ye et al., 2020).

Parameter Value and model

Year 1st test (2017) 2nd test (2020)

Water depth (m) 1,266 1,225

Reservoir depth (mbsf) 200–278 207–297

Reservoir thickness (m) 78 90

The hydrate-bearing layer thickness (m) 35 46

The hydrate three-phase layer thickness (m) 15 25

The free gas layer thickness (m) 27 19

Initial temperature at the bottom of the
three-phase layer (°C)

15.12 16.15

Initial pressure at the bottom of the
three-phase layer (MPa)

15.05 15.95

Geothermal gradient (°C/100 m) 5.4 5.4

Average hydrate saturation in
hydrate-bearing layer (%)

34 31

Average hydrate saturation in hydrate
three-phase layer (%)

31 11.7

Average gas saturation in hydrate
three-phase layer (%)

16.4 13.2

Average gas saturation in free gas layer (%) 7.8 7.3

Average permeability of hydrate-bearing
layer (mD)

2.9 2.38

Average permeability of hydrate
three-phase layer (mD)

1.5 6.63

Average permeability of free gas layer (mD) 7.4 6.8

Average porosity of hydrate-bearing layer
(%)

35 37.3

Average porosity of hydrate three-phase
layer (%)

33 34.6

Average porosity of free gas layer (%) 32 34.7

Relative permeability model
KrA = (SA‐SirA)/(1‐SirA)

n

KrG = (SG‐SirG)/(1‐SirA)
nG

Composite thermal conductivity model Kθ = KθRD + (S
1/2
A + S

1/2
H ) ×

(KθRW‐KθRD) +φSIKθI

λ, P0, n, nG, SirA, SirG 0.30, 105 Pa, 3.5, 2.5, 0.3, 0.05

2 Mathematical model

2.1 T + H code introduction

The TOUGH+HYDRATE code (T+H) was developed by the
Lawrence Berkeley National Laboratory (LBNL) in the United

States and has been extensively used internationally in the field of
hydrates. T + H is a fully implicit compositional simulator that
accounts for four phases (gas, water, ice, hydrate) as well as three
components (CH4, H2O, NaCl), to simulate the decomposition
and formation processes of hydrates under different exploitation
modes, equilibrium conditions, and kinetic conditions. By solving
the coupled mass-energy balance equations and satisfying Darcy’s
law, T+H can simulate the coupled processes of phase transition,
heat transfer, and multiphase flow during hydrate extraction in
natural gas hydrate deposits (Moridis and Reagan, 2007b).

2.2 Model assumptions

The assumptions in this model are listed as follows (Moridis
and Reagan, 2007b). 1) Hydrate is a single methane hydrate with
a methane content of 100%. 2) Darcy’s law is valid in the simulated
domainundertheconditionsofthestudy.3)Neglectingthemechanical
dispersion of dissolved gases and inhibitors in the aqueous phase
during transport, disregardingmoleculardiffusionandhydrodynamic
diffusion. 4) Dissolved salts do not precipitate as their concentration
increases during water freezing. 5)The concentration of the dissolved
inhibitors is such that it does not affect the thermophysical properties
of theaqueousphase.6) Inhibitorsdonotreactwithreservoirminerals.
7)The pressure P < 100 MPa (14,504 psi).

2.3 Mathematical model in T+H code

In the T +H code,mass and heat balance considerations in every
subdomain (gridblock) into which the simulation domain is been
subdivided by the integral finite difference method dictate that:

d
dt
∫
Vn

 MkdV = ∫
Γn
 Fk ⋅ndΓ+∫

Vn

 qκdV (1)

where Vn is volume of subdomain n, m3; Mk is mass accumulation
term of component κ, kg·m-3; κ is hydrate(h) or methane (m) or
water (w) or water-soluble inhibitor (i) or heat (θ); Fk is Darcy flux
vector of component κ, kg·m-2·s-1; Γn is surface area of subdomain
n, m2; n is inward unit normal vector; qκ is source/sink term of
component κ, kg·m-3·s-1; t is time, s.

Under equilibrium conditions, themass accumulation termsMk

in Equation 1 is given by Equation 2 below.

Mκ = ∑
β≡A,G,I,H
 ϕSβρβX

κ
β,κ ≡ w,m, i (2)

where ϕ is porosity, dimensionless; β is solid-hydrate (H) or aqueous
(A) or gaseous (G) or solid-ice (I); Sβ is saturation of phase β,
dimensionless; ρβ is density of phase β, kg·m

-3; Xκ
β is mass fraction

of component κ ≡ w,m, i in phase β, kg/kg.
The mass fluxes of water, CH4, and inhibitor include

contributions from the aqueous and gaseous phases, are shown
in Equation 3.

Fκ = ∑
β≡A,G
 Fκβ,κ ≡ w,m, i (3)

because they are immobile, the contributions of the two solid
phases (β ≡ I,H) to the fluid fluxes are zero. The heat flux
accounts for conduction, advection, and radiative heat transfer, and
is given by Equation 4.
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FIGURE 4
Schematic diagram of production well design for two offshore NGH production test in the Shenhu Sea, South China Sea. (A) Vertical well model 2017.
(B) Horizontal well model 2017. (C) Vertical well model 2020. (D) Horizontal well model 2020.

Fθ = −kθ∇T+ fσσ0∇T
4 + ∑

β≡A,G
 hβFβ (4)

where kθ is composite thermal conductivity of the medium/fluid
ensemble, W· m−1·K−1; hβ is specific enthalpy of phase β ≡
A,G, J·kg−1; fσ is radiance emittance factor, dimensionless;
σ0 is Stefan-Boltzmann constant, Stefan-Boltzmann constant,
5.6687×10−8 J·m−2·K−4.

Under equilibriumconditions, the rate ofheat removal or addition
includes contributions of the heat associated with fluid removal
or addition, as well as direct heat inputs or withdrawals, and is
described by Equation 5.

qθ = qd + ∑
κ≡A,G
 hβqβ (5)

where qβ is the production rate of the phase β, kg·m−3. For a
prescribed production rate, the phase flow rates qβ are determined
internally according to the general different options available in the
TOUGH+ code.

Under different temperature and pressure conditions, hydrate
systems are in different phase states. When the equilibrium
state is broken, the state of the system will change. For the
phase equilibrium relationship between hydrate decomposition and
formation, Moridis (2023) has established a regression equation
based on data from several researchers reported by Sloan:

ln (pe) =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

−1.941× 105 + 3.310× 103T− 2.255× 101T2

+7.675× 10−2T3 − 1.304× 10−4T4 + 8.861× 10−8T5

(T ≥ 273,2K)

−4.389× 101 + 7.763× 10−1T− 7.273× 10−3T2

+3.854× 10−5T3 − 1.037× 10−7T4 + 1.099× 10−10T5

(T < 273.2K)
(6)

The effect of salinity on the dissociation equilibrium pressure-
temperature relationship is described by

Te = T+ΔTD (7)

where:

ΔTD = ΔTD,r

ln(1−Xc
mol,A)

ln(1−Xc
mol,A,r)

(8)

In Equations 6–8, T is temperature, K; pe is equilibrium pressure
at temperature T, Pa; Te is equivalent equilibrium temperature in
the presence of inhibitor, K; ΔTD is inhibitor-induced temperature
depression, K;ΔTD,r is temperature depression at the reference mole
fraction Xc

mol,A, K; X
c
mol,A is mole fraction of the inhibitor in the

aqueous phase; Xc
mol,A,r is reference mole fraction of the inhibitor in

the aqueous phase; The inhibitor studied in this article is NaCl.

3 Geological setting and model
construction

3.1 Geological setting

In 2015 and 2016, the China Geological Survey identified eight
hydrate deposits containing underlying free gas in the Shenhu
area, located on the northern slope of the Baiyun Sag within the
Pearl River Mouth Basin in the northern South China Sea, as
depicted in Figure 2A. Among these, the W11 and W17 deposits
were selected as the optimal targets for production testing.TheW17
site, situated in the Baiyun Sag of the Pearl River Mouth Basin,
features a complex seabed terrain characterized by a higher north
and lower south elevation, alongwith typical geological features such
as seamounts, erosional channels, steep slopes, and reverse slopes.
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FIGURE 5
Temporal and spatial evolution of exploitation in different well types, 2017. (A, C) Gas saturation Field. (B, D) Hydrate Saturation field.

Geological and tectonic activities have resulted in the formation
of a system of steeply inclined fractures and fault zones, providing
favorable conditions for the formation and accumulation of natural
gas hydrates.The first hydrate production test was conducted atWell
SHSC-4 in the W17 site in 2017, followed by a second test at Well
SHSC2-6, located approximately 500 m northwest of the first well,
in 2020. The locations of the test wells are illustrated in Figure 2B.
The simulated target reservoir is composed primarily of muddy
silt with mineral composition mainly consisting of quartz feldspar,
carbonate, and clay minerals, and its bound water saturation of
the reservoir is 65% or higher. The hydrate reservoir at this station
contains upper and lower capping layers, hydrate two-phase layer
(water + hydrate), hydrate three-phase layer (water + hydrate + free
gas), and underlying free gas layer (water + free gas), belonging to
theClass1 hydrate reservoir (Li et al., 2018). It has been reported that
the natural gas hydrates in the Shenhu Area of the South China Sea
originate from thermogenic gas sources and occur in the form of
structure I and structure II pore-filling types with methane content
of over 99% (Qin et al., 2020; Ye et al., 2020; Yu et al., 2021).

3.2 Model construction

This study constructed a rectangular hydrate reservoir model
(i.e., x-y-z coordinate system) for the first and second tests in the
Shenhu Sea based on the field data obtained from the tests site, as
illustrated in Figure 3. Figure 3A presents the geological model of
the first test exploitation. From the reservoir characteristics shown in
Table 1, it can be known that themarine hydrate reservoir at this site
is located 200–278 m beneath the seafloor (mbsf) where the water
depth is 1,266 m and the reservoir thickness is 78 m. Considering
the symmetrical characteristic, only half of the reservoir model
was taken into account. Furthermore, it was assumed that the
reservoir properties were uniform along the y-coordinate, so only
a planar reservoir model (i.e., xz coordinate system) was used as the
simulation domain.This reservoir model had a length of 90 m and a
height of 137 m. Along the z-coordinate, it was split into five layers
from top to bottom: i) overburden (OB, 30 m); ii) hydrate-bearing
layer (HBL, 35 m); iii) three-phase layer (TPL, 15 m); (iv) free
gas layer (FGL, 27 m); and v) underburden (UB, 30 m). Figure 3B
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FIGURE 6
Temporal and spatial evolution of exploitation in different well types, 2020. (A, C) Gas saturation Field. (B, D) Hydrate Saturation field.

FIGURE 7
Recovery curves of free gas and hydrate from different well types in 2017 and 2020. (A) 2017 (B) 2020.
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TABLE 2 Production well design of different well types and
exploitation layers.

Cases Design Remarks

Case 1 Vertical well, HBL Figure 8A

Case 2 Vertical well, HBL + TPL Figure 8B

Case 3 Vertical well, HBL + TPL + FGL Figure 8C

Case 4 Horizontal well, HBL Figure 8D

Case 5 Horizontal well TPL Figure 8E

Case 6 Horizontal well, FGL Figure 8F

depicts the geological model of the second test exploitation. From
the reservoir characteristics shown in Table 1, it can be known
that the marine hydrate reservoir at this site is located 207–297 m
beneath the seafloor (mbsf) where the water depth is 1,225 m and
the reservoir thickness is 90 m.This reservoir model had a length of
90 m and a height of 150 m. Along the z-coordinate, it was split into
five layers from top to bottom: i) overburden (OB, 30 m); ii) hydrate-
bearing layer (HBL, 46 m); iii) three-phase layer (TPL, 25 m); iv) free
gas layer (FGL, 19 m); and v) underburden (UB, 30 m).

The initial conditions and boundary conditions of the reservoir
for this numerical simulation are from the public data of two
tests in the Shenhu Sea, South China Sea, and the specific data
are shown in Table 1.The survey shows that the seafloor temperature
in the Shenhu sea area is 3.3–3.7°C, the heat flux is 74–78 mW/m2,
and the geothermal gradient is 4.3–6.77°C/100 m.30,31 Therefore,
we set the initial temperature at the bottom of TPL for the first
and second tests models to 15.12°C and 16.15°C the initial pressure
at the bottom of TPL to 15.05 MPa and 15.95 MPa, and the
geothermal gradient was set to 5.4°C/100 m. The OB and UB only
contained liquid water without any free gas or hydrates, and since
the corresponding reservoir conditions (i.e., average porosity and
permeability) have not been reported in the literature, they were
assumed to be identical with those of the HBL and FGL. In addition,
the gas that formed the natural gas hydrates in the reservoir model
was assumed to be 100% methane.

4 Results and discussion

4.1 Effect of well type

According to publicly available information, the second test
recovery yielded 5.57 times the daily gas production of the
first test recovery. To investigate whether the significant increase
in gas production was due to the well type factor, numerical
simulations of vertical and horizontal well extraction were carried
out using the geological parameters of the first and second
test production, respectively. The physical models established are
illustrated in Figure 4.

Figure 5 display the spatial and temporal evolution of the gas
phase saturation field and hydrate saturation field during the first
test exploitation, while Figure 6 illustrate the spatial and temporal

evolution of the second test exploitation. The left two panels of the
figure depict the changes in gas saturation during the production
process, while the right twopanels show the corresponding changes in
hydrate saturation. As seen in Figure 5A, initially, there are significant
differences in gas saturation and pressure gradients between layers,
allowing free gas to rapidly disperse near the well. However, after
20 years, the dispersion becomes limited to the immediate vicinity
of the well. Figure 5C reveals that during the early stages of gas
production, the exploitation of the two-phase hydrate layer using a
horizontalwell results in significantmigrationof freegas into this layer.
After 20 years of gas production, all free gas in the free gas layer near
the well is recovered, yet a considerable amount of free gas remains
in the two-phase hydrate layer. Figures 5B–D indicate that hydrate
decomposition initiates near the wellbore during the initial stages
of production using both vertical and horizontal wells. In the case
of vertical well production, hydrates surrounding the well are initially
extractedbydisruptingtheirequilibriumstate, leadingtoasignificantly
larger area of undecomposed hydrates remaining after 20 years of gas
production compared to that observed in horizontal well production.

Figure 6 show that the spatial and temporal evolution patterns
of the gas phase saturation field and hydrate saturation field during
both vertical and horizontal well exploitation observed in 2020 are
comparable to those in 2017. Thus, we will not discuss them further
here. Nonetheless, it is worth noting that the final remaining areas
of free gas and undecomposed hydrate zone differ significantly due
to the distinct geological conditions.

In addition, Figure 7 shows the variation of the recovery rate
over a 20-year mining period for both tests. Figure 7A illustrates the
recovery rates of hydrate and free gas from vertical and horizontal
wells during the first test in 2017.The recovery rate initially increases
rapidly during the early stage of depressurized extraction, followed by
a slower growth rate. After 20 years of depressurized extraction, the
freegas recovery rateandhydrate recovery rateare74.52%and56.88%,
respectively, for vertical wells, and 65.65% and 72.57%, respectively,
for horizontal wells. The recovery rate of free gas from vertical wells
is 8.87% higher than that from horizontal wells, while the recovery
rate of hydrate from vertical wells is 15.69% lower than that from
horizontal wells. In Figure 7B, the recovery rates of hydrate and free
gas from vertical and horizontal wells during the second test in 2020
are presented. After 20 years of reduced pressure extraction, the free
gas recovery rate is 79.22% and the hydrate recovery rate is 63.62%
for vertical wells, while the free gas recovery rate is 77.77% and the
hydrate recovery rate is 69.44% for horizontal wells. The recovery
rate of free gas from vertical wells is 1.45% higher than that from
horizontal wells, and the recovery rate of hydrate from vertical wells is
5.82% lower than that fromhorizontalwells. Basedon these results,we
can conclude that extracting the hydrate layer is more economically
efficient as the hydrate saturation is much higher than the free gas
saturation. Therefore, we recommend using horizontal wells for the
exploitation of the Class 1 hydrate reservoir under depressurization.

4.2 Effect of exploitation layer

Due to the abundance of numerical simulations on the first
trial production in 2017, there are relatively fewer numerical
simulations for the second trial production in 2020. Starting from
this section, numerical simulations will be conducted for the second
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FIGURE 8
Schematic diagram of production well design of different well types and exploitation horizon. (A) Class 1, (B) Class 2 (C) Class 3 (D) Class 4. (E) Class 5.
(F) Class 6.

trial production in 2020. In order to investigate the effects of different
well types and different production layers on the recovery rate of
hydrate and free gas, this section establishes a depressurization
productionmodel with different well types and different production
layers and analyzes the changes in the recovery rate of hydrate and
free gas.The design of the scheme is shown in Table 2, and themodel
is shown in Figure 8.

The recovery rates of different scenarios over a 20-year period
of exploitation are presented in Figure 9. As can be seen from
Figure 9A, Case 1 results in a recovery rate of 48.35% for free gas
and 38.96% for hydrate. In Case 2, the recovery rates increase to
76.55% and 58.40% for free gas and hydrate, respectively. Case 3
yields even higher recovery rates of 79.22% and 63.62% for free gas
and hydrate, respectively. The recovery rates of free gas and hydrate

are the highest when the straight wells are exploited to the free gas
layer, while the recovery rates of free gas and hydrate are the lowest
when the hydrate two-phase layer is exploited.Therefore, direct wells
are recommended to reach the free gas layer. From Figure 9B, it
is evident that after 20 years of exploiting horizontal wells, Case 4,
which exploits the hydrate two-phase layer, results in the highest
hydrate recovery rate of 74.55%, but the lowest free gas recovery
rate of 57.63%. This is because the reservoir permeability is low,
and the horizontal wells are not directly in contact with the free gas
layer, making it difficult for the free gas to flow upward. Therefore,
the gas produced by exploiting the hydrate two-phase layer is
mainly hydrate decomposed gas. Case 5, on the other hand, exploits
the free gas layer, resulting in the highest free gas recovery rate
of 84.61%, but the lowest hydrate recovery rate of 42.26%. This
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FIGURE 9
Recovery curves of free gas and hydrate from Cases 1–6. (A) Vertical well. (B) Horizontal well.

FIGURE 10
Schematic diagram of vertical wells with different well spacing for depressurization exploitation.

extraction effect is opposite to that of the hydrate two-phase layer,
increasing the extraction range of the free gas layer but not directly
contacting the upper hydrate layer. As a result, it only relies on
the pressure drop transfer of the free gas layer to promote hydrate
decomposition, which has a limited effect. The recovery rate of
hydrate is 69.44%, and the recovery rate of free gas is 77.77%. The
horizontal well arrangement can effectively connect the upper and
lower layers, which can increase the decomposition area of hydrate
and communicate with the lower free gas layer. Therefore, for long-
term exploitation, it is recommended to drill horizontal wells to

exploit the hydrate triple-phase layer, which can simultaneously
exploit hydrate and free gas. Hence, the optimal option for straight
well extraction is Case 3, and the optimal option for horizontal well
extraction is Case 5.

4.3 Effect of well spacing

This section examines the impact of various vertical well spacing
configurations on the recovery of hydrate and free gas. To illustrate,
we select a symmetric cross section (x = 190 m) with a width of
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FIGURE 11
Spatiotemporal evolution of gas saturation field and hydrate saturation field, well spacing of 70–90 m. (A, C, E) Gas saturation Field. (B, D, F) Hydrate
Saturation field.

FIGURE 12
Variation trends of the residual hydrate volume and the residual free gas volume in depressurization exploitation with different well spacing for
20 years. (A) Residual hydrate volume. (B) Residual free volume.
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FIGURE 13
Inflow performance relationship curve.

1 m from the diameter of the model, as shown in Figure 10. The
center of symmetry is positioned at x = 90 m, and we conduct
depressurization exploitation simulations using vertical spacing of
30, 40, 50, 60, 70, 80, and 90 m to compare the variations of
hydrate and free gas recovery rates under different vertical spacing
configurations.

The spatial and temporal evolution of hydrate and free gas
saturation extracted using depressurization at a well spacing
of 30–60 m is shown in Supplementary Figures S1-S4. Figure 11
exhibit the spatial and temporal characteristics of hydrate and free
gas saturation extracted using depressurization at a well spacing of
70–90 m. Figure 12 shows the variation trends of residual hydrate
volume and residual free volume in 20 years of depressurized
exploitation with different well spacing. As indicated in Figure 12A,
the amount of residual hydrate extracted using double wells
decreases gradually over time. The larger the spacing between
double wells, the less residual hydrate is extracted after 20 years
of operation. When the spacing between wells is 80 m and 90 m,
the difference in the amount of residual hydrate is minimal.
Combining the observations from Figure 11, it can be deduced
that when the well spacing is 80 m, the undecomposed hydrate
area between two wells is small, whereas when the well spacing is
90 m, the undecomposed hydrate area between two wells is larger.
On the other hand, Figure 12B shows that the amount of residual
free gas decreases rapidly initially, followed by a slower decline
over time. However, the impact of different well spacing on the
amount of residual free gas is not significant. To minimize the
waste of hydrate resources, it is recommended to use double wells
for hydrate exploitation in vertical wells with a well spacing of
approximately 80 m.

4.4 Effect of bottom hole flowing pressure

The flow pressure at the bottom of the well is the most critical
anthropogenic factor during pressure-reduction mining. Figure 13
displays the IPR (inflow performance relationship) curves for

20 years of vertical and horizontal well mining. Production capacity
gradually declines as the bottom flow pressure rises, and at the same
bottom flow pressure, the production capacity of horizontal wells is
greater than that of vertical wells.

5 Conclusion

The specific purpose of this work is to conduct a numerical
simulation study on depressurization exploitation for the class 1
hydrate reservoirs in the Shenhu sea of the South China Sea
considering different development factors. In addition, the effects of
different well types and different exploitation layers on the recovery
rate of hydrate and free gas were analyzed. The effects of well
spacing on enhanced hydrate recovery from vertical wells were also
thoroughly investigated. Some important conclusions were drawn
from the simulation results as below:

(1) For the first type of hydrate reservoir, under the same
geological conditions, the highest hydrate and free gas recovery
rates are achievedwhenmining to the free gas layer in a vertical
well, which is the most effective approach. After 20 years of
pressure-reduced extraction, the recovery rates of free gas and
hydrate are 79.22% and 63.62%, respectively.Themost effective
approach is that the horizontal wells can extract hydrate and
free gas at the same time when exploiting the hydrate three-
phase layer. In the 2020 field test, the recovery efficiency of free
gas from the optimal horizontal well is inferior to that from the
optimal vertical well by 1.45%, but the recovery efficiency of
hydrate is 5.82% higher than that from the vertical well. Since
hydrate is more valuable to be extracted, the horizontal well is
more effective.

(2) The best exploration efficiency is achieved when the spacing
between two wells in a straight well is 80 m. In horizontal
wells, the best recovery performance is achieved in the
hydrate triple-phase layer. The recovery rates of free gas and
hydrate were 77.77% and 69.44%, respectively, after 20 years of
depressurization.

(3) The lower the flowpressure at the bottomof thewell, the higher
the production rate, but its influence is limited. Excessively
low pressure will result in the hydrate layer freezing, so the
bottomhole flow pressure should not be lower than the “four-
phase point” of the hydrate phase equilibrium curve.
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The establishment of a natural gas production model under multi factor control
provides support for the formulation of planning schemes and exploration
deployment decisions, and is of great significance for the rapid development
of natural gas. Especially the growth rate and decline rate of production can
be regulated in the planning process to increase natural gas production. The
exploration and development of conventional gas in the Sichuan Basin has a long
history. Firstly, based on the development of conventional gas production, the
influencing factors of production are determined and a productionmodel under
multi factor control is established. Then, single factor analysis and sensitivity
analysis are conducted, andmulti factor analysis is conducted based on Bayesian
networks. Finally, combining the multivariate Gaussian mixture model and
production sensitivity analysis, a production planning model is established to
predict production uncertainty under the influence of multiple factors. The
results show that: 1) the production is positively correlated with the five
influencing factors, and the degree of influence is in descending order: recovery
rate, proven rate, growth rate, decline rate, and recovery degree. After being
influenced by multiple factors, the fluctuation range of production increases
and the probability of realization decreases. 2) The growth rate controls the
amplitude of the growth stage, the exploration rate and recovery rate control
the amplitude of the stable production stage, the recovery degree controls the
amplitude of the transition from the stable production stage to the decreasing
stage, and the decreasing rate controls the amplitude of the decreasing stage.
3)The article innovatively combines multiple research methods to further obtain
the probability of achieving production under the influence of multiple factors,
providing a reference for the formulation of production planning goals.

KEYWORDS

Bayesian network, multivariate Gaussian mixture model, analysis of influencing factors,
sensitivity analysis, production probability calculation, production planning model

1 Introduction

Carbon peaking and carbon neutrality are major national strategies aimed at promoting
high-quality economic and social development through the transformation of the energy
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system, and promoting the transformation of the energy system
from fossil energy to renewable energy. Natural gas belongs to
low-carbon fossil energy, with a strong development foundation
and huge development potential. Moderately leveraging the unique
advantages of clean, low-carbon, efficient, and stable natural gas is
of great significance for the high-quality development of China’s
natural gas industry and the smooth realization of carbon peak and
carbon neutrality goals (Song et al., 2023; Nuo et al., 2022; Jian et al.,
2018; Jun et al., 2024; Wang et al., 2024; Arun Kumar et al., 2020).
In addition, the development of natural gas production is highly
uncertain due to various factors such as reserve utilization efficiency,
economic factors, geological factors, and development factors
(Hongbing and Han, 2023; Haitao et al., 2021; Jianliang and Nu,
2020). Reasonable production target planning is of great significance
to the exploration and development of natural gas and can promote
the rapid development of natural gas. Therefore, establishing a
natural gas production prediction model under multi factor control
provides support for the preparation of planning schemes and
exploration deployment decisions, and is of great significance for the
rapid development of natural gas.

There has been some research on methods and models for
predicting natural gas production, and they have been well applied
both domestically and internationally. Tongfei and Yanrui, 2022
proposed a new discrete fractional nonlinear grey Bernoulli model
with power terms, which has the advantages of most grey prediction
models, such as fractional order cumulative operation and time
power terms. Then, taking the consumption and production of
natural gas in China from 2003 to 2020 as an example, the
feasibility and effectiveness of the model were verified. The results
indicate that the predictive ability of this model is superior to
other models. Chong et al., 2022 established an optimized grey
system model with weighted score accumulation, which has good
predictive performance. Then, taking the natural gas production of
Germany, Italy, and Canada as examples, the feasibility of the model
was confirmed through comparison with the competitive model,
and the model was used to study China’s natural gas production.
The results indicate that this model is very suitable for predicting
and analyzing China’s natural gas production. Yingying et al., 2022
established a semi analytical shale gas constant pressure production
capacity prediction model and verified it with actual production
data. Research has shown that this method has certain theoretical
reference value in reducing the risk of production prediction
during the production process of shale gas wells and guiding the
optimization of development plans. In addition, many scholars
have applied algorithms to predict energy sources such as natural
gas. Durmuş and Safa, 2022 proposed a new improved Artificial
bee colony (M-ABC) method, which adaptively selects the optimal
search equation to estimate energy consumption in Turkey more
accurately. The results show that the model based on M-ABC
algorithm is more successful in estimating energy demand. Durmuş
Özdemir (Özdemir et al., 2022) developed a new adaptive artificial
bee colony algorithm, which can adaptively select the appropriate
search equation to estimate the transportation energy demand
more accurately. The results show that the error of this algorithm
is lower. (Bilici et al., 2023) compared the performance of four
different meta-heuristic algorithms used to estimate gas demand
in Turkey. The results show that PSO-Quadratic model is the most
successful in predicting observed gas consumption. The research of

these scholars has brought some inspiration, and suitable models or
algorithms can be used to predict natural gas production.

Although domestic and foreign scholars have optimized
production prediction models, these methods all combine models
and historical data to predict the development trend of production,
without considering factors that affect natural gas production,
such as proven rate, recovery rate, decline rate, etc., and are not
suitable for environments with multi factor control (Marta et al.,
2020; Erick et al., 2022; Palanisamy et al., 2021). Therefore, it is
necessary to establish a production target prediction model that
considers various influencing factors. Guo et al., 2021 used Monte
Carlo probability method to obtain the probability distribution and
growth curve of various production risk factors and production of
the Carboniferous gas reservoir in eastern Sichuan. In addition,
the sensitivity analysis of risk factors was conducted using the
fuzzy comprehensive evaluation method, and the natural gas
production and realization probability under different risk factors
were obtained. Jianzhong et al., 2016 used a gas field in the Ordos
Basin as an example to construct an optimal extraction model for
natural gas resources. They analyzed the impact of factors such as
the extraction scale of the gas field, recovery rate, discount rate, and
gas well depletion period on the optimal exploration path of the
gas field. Since these studies only consider the impact of a single
factor on production, they cannot reflect the coupling effect of
multiple factors on production in actual production. Therefore, it is
necessary to combine multiple influencing factors and calculate the
multivariate probability of production realization. In view of many
factors affecting natural gas production, this paper comprehensively
considers the change rule and realization probability of production
under the influence of different factors, which makes up for the
shortcomings of current research. Due to the need to simultaneously
consider multiple factors for mixed probability calculation and
establish a multi factor prediction model, Bayesian networks and
Gaussian mixture models are needed.

Bayesian networks are developed by J Pearl was proposed
in the 1980s as a powerful tool for representing, manipulating,
and inferring beliefs about the real world. They are used to
demonstrate the probability relationships between random variables
and serve as models for the joint probability distribution of these
variables (Duygu and Derya, 2019; Yaser et al., 2021; Haoran et al.,
2022; Jiří et al., 2023; Qi et al., 2018 proposed a fuzzy probability
Bayesian network method for dynamic risk assessment. FPBN
has been established to analyze and predict the propagation of
network security risks, and an approximate dynamic inference
algorithm has been proposed for dynamic assessment of ICS
network security risks. Yang et al., 2021 proposed a system level
fatigue reliability assessment model based on Bayesian networks,
treating bridge decks as a parallel system. A fatigue probability
reliabilitymodel was derived using themain S-N curve. Kyung et al.,
2024 realized Bayesian inference of all conditional probabilities
within the network at low power and low energy consumption, and
achieved a normalized mean squared error of ∼7.5×10−4 through
division feedback logic with variational learning rate to suppress the
inherent variation of the memristor. Therefore, Bayesian networks
can be used to solve the calculation problem of mixed probabilities
of multiple factors.

Gaussian Mixture Model (GMM) is a special type of finite
mixture model that assumes that the basic distribution of data
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is composed of a mixture of multiple Gaussian distributions.
GMM has been widely applied in various scientific fields,
including computer vision, pattern recognition, and supervised
and unsupervised learning (Luca, 2023; Cangqi et al., 2020; Maruf,
2021; Joachim et al., 2024; Zhe et al., 2020 used a Gaussian mixture
model to estimate the probability density function of wave height
in the context of second-order random wave theory. Two methods
were used to construct a Gaussian mixture probability distribution,
and three sets of observation data were applied to further validate
the accuracy and effectiveness of the Gaussian mixture model;
Chunsheng et al., 2020 proposed a variational autoencoder that
optimizes Gaussian mixture model prior. This method utilizes a
Gaussian mixture model to construct a prior distribution, and
utilizes the KL distance between the posterior distribution and
the prior distribution to achieve iterative optimization of the prior
distribution based on data. (Chen et al., 2024) reconstructed the
probability density function of input random variables by using
a Gaussian mixture model, proposed a K-value criterion for the
selection of segmentation direction considering both nonlinearity
and variance, and then divided the components of input random
variables into a Gaussian mixture model, which has a small variance
along the direction determined by the k value.Therefore, a Gaussian
mixture model can be used to stack the distribution results of
multiple probability calculations to obtain a mixed model that
considers multiple factors.

Based on the development of conventional gas production in
the Sichuan Basin, this article first determines the influencing
factors of production by combining production planning models,
and establishes a production prediction model under multi factor
control. Then, based on the analysis of various factors, the
variation patterns of production and realization probability under
the influence of single factors were obtained. Combined with
sensitivity analysis, the sensitivity degree of different factors was
obtained, and the impact range of each factor was preliminarily
determined. In addition, amulti factor analysis was conducted based
on Bayesian networks, using the detection rate and recovery rate
as prior probabilities to obtain binary distribution probabilities and
implementation probabilities of other factors, as well as production
variation graphs under the influence of multiple factors. Finally,
combining the weight results of the multivariate Gaussian mixture
model and sensitivity analysis, a production planning model is
established to predict production uncertainty under the influence
of multiple factors.

2 Production uncertainty prediction
theory

2.1 Bayesian network

Bayesian networks are directional graphs that combine network
structures, covering knowledge frommultiple fields such as artificial
intelligence, probability theory, and decision theory. Bayesian
networks use directed acyclic graphs to represent the correlation
and degree of influence of each information element. Among them,
nodes are used to represent each feature attribute, directional
arrows connecting nodes represent the correlation of each feature
attribute, conditional probability represents the degree of influence

between each feature attribute, and combines prior probability with
sample information, correlation relationships, and probability tables
(Deyan et al., 2022; Li et al., 2022; Dongfeng et al., 2020; Jianliang
and Nu, 2020; David et al., 2022).

Bayesian networks have an important and commonly used
characteristic. After the preceding nodes are determined, each
subsequent node is independent of each other and directly related
to the preceding node. Therefore, the probability of the preceding
node can be used as a prior probability, and the probability
of each subsequent independent node can be calculated. The
existence of this feature also proves that Bayesian networks
can conveniently calculate joint probability distributions, using
Formula 1 to calculate multivariate non independent joint
conditional probability distributions.

P(x1,x2, ...,xn) = P(x1)P(x2|x1)P(x3|x1,x2)...P(xn|x1,x2, ...,xn−1)
(1)

In Formula 1, P(xn|x1,x2, ...,xn−1) represents the probability of
node xn under the probability of other nodes. In this case, other
nodes are not independent, but xn is independent.

In Bayesian networks, due to the above properties, the joint
conditional probability distribution of any combination of random
variables is shown in Formula 2, where Parents represents the joint
probability of the preceding nodes of xi.

P(x1,x2, ...,xn) =
n

∏
i=1

P(xi|Parents(xi)) (2)

In Bayesian network, there can be multiple directed paths
between nodes, meaning that there may be multiple subsequent
nodes after a preceding node, and all subsequent nodes may
be affected by the preceding node. There may be correlation
or independence between subsequent nodes. Therefore, after
determining the prior probability of the preceding node, the
corresponding probability of the subsequent nodes can be obtained,
which provides a good idea for the research of natural gas production
prediction affected by multiple factors. Some factors that are bound
to have an impact can be used as pre nodes to calculate their prior
probabilities, and then study the implementation probabilities of
other factors and their impact on production.

Based on the research approach described above, a Bayesian
network with conditional probability distribution can be established
to calculate the probability of factors affecting gas production in the
gas field. As shown in Formula 3, both A and Bi represent various
influencing factors that occur when predicting production in a
certain gas region.P(A) is a prior probability, which is the probability
of being selected as a leading node. P(Bi|A) is the probability of
other factors calculated after the prior probability is known. P(A|Bi)
is the binary probability obtained by considering both A and Bi.
To study the impact of multiple factors on natural gas production,
it is necessary to calculate the production prediction results and
realization probabilities under multiple factors. Therefore, it is
necessary to take some factors as prior probabilities and then
calculate the probabilities of other factors. Currently, it is necessary
to adopt the research method of Bayesian network.

P(A|Bi) =
P(Bi|A)P(A)

∑n
i=1

P(Bi|A)P(A)
(3)

Frontiers in Earth Science 03 frontiersin.org104

https://doi.org/10.3389/feart.2024.1454449
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2024.1454449

FIGURE 1
Univariate normal distribution function diagram.

2.2 Multivariate Gaussian mixture model

The Gaussian mixture model can be seen as a model composed
of multiple Gaussian models, which are hidden variables of
the mixture model. A mixed model can use any probability
distribution, and the Gaussianmixedmodel is used here because the
Gaussian distribution has good mathematical properties and good
computational performance, which can better analyze the trend
of data changes. There is interference between different Gaussian
models that changes the distribution shape of the mixed model, and
the combined model is affected by the shape of other sub models
(Andreas, 2021; Adriana and Martha, 2021; Julie and Agnes, 2020).
Below is a detailed explanation of this.

The Gaussian distribution can be regarded as a normal
distribution, and the distribution function of a single Gaussian
model is shown in Formula 4. Figure 1 shows the univariate normal
distribution function.

f(x) = 1
√2πσ

e−
(x−μ)2

2σ2 (4)

Among them, μ is the mean, σ is the standard deviation.
When considering two Gaussian models simultaneously,

the combined bivariate Gaussian model distribution function is
shown in Formula 5, and Figure 2 shows the bivariate normal
distribution function.

f(x1,x2) =
1

2πσ1σ2√1− p2
exp (− 1

2(1− p2)
(
(x1 − μ1)

2

σ21

+
(x2 − μ2)

2

σ22
−
2p(x1 − μ1)(x2 − μ2)

σ1σ2
)) (5)

Among them, x1 satisfies the normal distribution N(μ1,σ
2
1),

x2 satisfies the normal distribution N(μ2,σ
2
2), p is the correlation

coefficient, p = C12
σ1σ2

, C12 is the covariance, C12 = E− μ1μ2, and E is
the expected value of the binary Gaussian model.

FIGURE 2
Binary normal distribution function diagram.

The distribution function of the multivariate Gaussian model is
derived analogously, as shown in Formula 6.

f(x1,x2, ...,xn) =
1

√(2π)n|Σ|1/2
exp (−1

2
(x− μ)TΣ−1(x− μ)) (6)

Among them, Σ is the covariance matrix, T is the transposed
symbol, μ is the mean.

After analyzing the influencing factors of natural gas production,
this article uses a multivariate Gaussian mixture model to establish
a production planning model. Firstly, establish a single Gaussian
model based on each factor, and thenuse the superposition approach
to combine the five Gaussian models together to form a production
planning model under multi factor control.

2.3 Production uncertainty prediction
model

From the historical production of natural gas, the development
of production will go through multiple cycles, with each cycle
showing three stages of growth, stability, and decline. Currently,
natural gas in the Sichuan Basin is undergoing the fourth production
cycle of development. According to the requirements of production
planning, under a certain ultimate recoverable reserve URR, the
production goes through a growth period, a stable production
period, and a decreasing period, with a stable production period
of 20 years. Finally, a production planning chart is generated.
As shown in Figure 3, based on the historical production data of
conventional gas in the Sichuan Basin, boundary conditions are set
to predict the development trend of production. From the figure,
using the data from 1953 to 2023 as historical data, predictions
will be made after 2023, with a production growth period from
2023 to 2032, a stable production period from 2032 to 2051, and a
production decline period after 2051. The area of the entire curve is
equal to the ultimate recoverable reserve URR.

When planning production, it is necessary to consider factors
that may affect changes in production. To reasonably screen the
influencing factors of production, combined with the production
planning chart, starting from different stages of production
development, determine the influencing factors. Firstly, during
the production growth stage, the production will show different
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FIGURE 3
Historical development and production planning curve of conventional gas in Sichuan Basin.

growth rates with changes in the growth rate. Secondly, during the
stable production stage, the degree of extraction will also affect
the production during the stable production period. Finally, in
the stage of production decline, production will show different
degrees of decline with changes in the decline rate. In addition,
the development of the entire production is also controlled by the
ultimate recoverable reserve URR, which is also influenced by the
proven rate and recovery rate. In summary, the factors that affect
the development of production include the proven rate, recovery
rate, growth rate, degree of recovery at the end of stable production
period, and decline rate.

By constraining the production and time during the stable
production period through these five influencing factors, multiple
equations are established, as shown below.

[Qls + (Q+Q0) ∗
tm − t0

2
] + t ∗ Q ∗ cc + dj ∗ Q = URR (7)

Q−Q0

tm − t0
= k ∗ Q0 (8)

dj =
n

∑
i=1
(e−m)i (9)

URR = Qr ∗ tml ∗ csl (10)

Among them, Q is the production during the stable production
period, and tm is the time to enter the stable production period.
These two variables need to be determined.

Qls is the historical cumulative production, Q0 is the initial
production (predicted from 2024, production in 2023 is Q0), t0

is the time corresponding to the initial production, t is the stable
production period years (stable production period of 20 years, t
is 20), i is the decreasing period years (decreasing by 50 years,
i is 50), Qr is the resource quantity, all of which are known
quantities.

Among them, tml is the proven rate, csl is the recovery rate, cc
is the recovery degree control coefficient, k is the growth rate, and
m is the decline rate. These five variables, as risk factors, have an
impact on the stable production period Q and the time to enter
the stable production period tm in the production planning model.
The final production uncertainty prediction model obtained is as
follows.

Q(t) =
{{{{
{{{{
{

Q0 ∗ (1+ k)(
t−t0) (t0 ≤ t ≤ tm)

Q(tm ≤ t ≤ tm + 19)

Q ∗ (e−m)t−tm−19 (t ≥tm+19)

(11)

∑Q(t) +Qls = URR (12)

Formula 11 is a production prediction model, where Q(t) is the
production prediction result, t is the prediction time, t0 is the last
year of historical production, tm is the time of entering the stable
production period, Q0 is the production of the last year of historical
data, Q is the stable production period production, k is the growth
rate, andm is the decreasing rate.

Formula 12 is the model boundary condition, ∑Q(t) is the
cumulative value of production prediction results, and URR is
the ultimate recoverable reserves.

Frontiers in Earth Science 05 frontiersin.org106

https://doi.org/10.3389/feart.2024.1454449
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2024.1454449

3 Analysis of factors affecting
production prediction

3.1 Single factor analysis

Based on the historical production data and exploration and
development parameters of conventional gas in the Sichuan Basin,
an analysis is conducted on five influencing factors: proven rate,
recovery rate, growth rate, stable production end recovery degree,
and decline rate.The quantitative analysis of production influencing
factors requires objective and accurate evaluation of different factors,
and requires the generation and calculation of a large amount
of factor data. Therefore, the Monte Carlo method is suitable for
quantitative research of production influencing factors.

When estimating production probability based on the principle
of Monte Carlo method, the problem to be solved must first be
transformed into the expected value of a certain probability model.
Then, the model is randomly sampled and simulated on a computer
to extract sufficient randomnumbers andperform statistical analysis
on the problem to be solved (Li et al., 2022; Simone et al., 2023).

Assuming the distribution density of the known random
variable f(x) is ψ(x). The mathematical expectation of
variable f(x) is:

E = ∫
x1

x0
f(x)ψ(x)dx (13)

In the formula, E is the expectation, [x0, x1] is the interval of
random sampling, and f(x) is the random variable, ψ(x)The density
function of a random variable.

According to the distribution density function ψ(x) Randomly
select N sample points xi, and use the arithmetic mean of the
function value f(xi) corresponding to the sample points as the
integral estimation value.

EN =
1
N

N

∑
i=1

f(xi) (14)

In the formula, EN is the estimated integral value, xi is the
extracted sample, f(xi) is the function value of the extracted sample,
and N is the number of samples.

Randomly extract variable values based on the probability
distribution density function of the variables. After many
independent simulations of the variable values, the probability
density distribution of the objective function can be obtained.Monte
Carlo simulation can achieve the calculation process of variable
random sampling.

In subsequent research, it is necessary to calculate the
prediction results and implementation probability of production
under different factors, which requires random sampling. Taking
the exploration rate as an example, the range of exploration rates is
obtained based on actual production, and then a random sampling
that conforms to a normal distribution is carried out within the
range. 1,000 exploration rates are selected, and the remaining four
factors are kept as the average to calculate the production and
probability of achievement.

Firstly, the exploration rate and recovery rate are analyzed,
both of which directly affect the ultimate recoverable reserve
URR of natural gas, thereby affecting the overall amplitude of the
production planning model, as shown in Figure 4. As shown in the

FIGURE 4
Prediction curves of conventional gas production under different URR
conditions.

figure, when other conditions are constant, the larger the ultimate
recoverable reserve URR, the greater the production during the
stable production period, and the later the time to reach the stable
production period. As can be seen from Formulas 7–12, URR is
the boundary condition for production prediction, and the result
is controlled. Therefore, URR should first be used to study the
influence of proved rate and recovery efficiency, and then take them
as prior conditions to study other factors by using Bayesian network,
to obtain the production prediction results under multi-factor
control. In addition, the distribution probability density is calculated
by Formulas 13, 14, as shown in the orange bar chart in Figure 5.

The proven rate of conventional gas in the Sichuan Basin is
40%–60%, and the recovery rate is 40%–50%. Under the separate
influence of these two factors, the variation of stable production
period production with factors and the probability of achievement
are shown in Figure 5. From the figure, the production during the
stable production period increases with the increase of the proven
rate (or recovery rate), but the increase amplitude is inconsistent.
The change in production shows a relatively gentle trend in the
middle and a sharp change at both ends. This is because after using
a normal distribution for Monte Carlo random sampling, within the
range of proven rates (or recovery rates), the probability of sampling
in the middle is high, while the probability of sampling at both ends
is low, resulting in a denser production result in the middle and a
looser production result on both sides.

Among them, under the influence of the proven rate, the range
of stable production period production is 360–440 × 108m3, and
the production is concentrated in 380–420 × 108m3. Under the
influence of recovery rate, the range of stable production period
production is 355–455 × 108m3, and the production is concentrated
in 390–430 × 108m3.

Then analyze the three factors of growth rate, stable production
at the end of the period, and decline rate. The trend of changes
in the production planning curve and production development
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FIGURE 5
Production probability plots at different proved rates and recovery rates.

probability curve under the separate influence of three factors
is shown in Figure 6.

From Figures 6A1, B1, as the growth rate increases, the
increase in production before entering the stable production period
increases, and the productionwill enter the stable production period
earlier, and the production during the stable production period is
larger. The growth rate of conventional gas is between 5%–15%, and
a normal distribution is used for random sampling with a mean of
10%. The range of stable production period production is 380–440
× 108m3, and the production is concentrated in 400–430 × 108m3.

From Figures 6A2, B2, as the degree of recovery at the end of the
stable production period increases, the cumulative production at the
end of the stable production period is greater, and the production
will enter the stable production period later, and the production
during the stable production period is greater. The recovery rate
at the end of the stable production period is between 60%–70%,
and a normal distribution is used for random sampling, with a
mean of 65%.The range of production during the stable production
period is 385–430 × 108m3, and the production is concentrated in
395–420 × 108m3.

From Figures 6A3, B3, as the decline rate increases, the decrease
in production after entering the decline period is greater. Therefore,
under other conditions that remain unchanged, the cumulative
production before entering the decline period is greater, and
the production will enter the stable production period later, and
the production during the stable production period is greater.
The conventional gas decline rate is around 5%–20%, and a
normal distribution is used for random sampling, with an average
of 12.5%. The range of stable production period production
is 380–430 × 108m3, and the production is concentrated in
390–420 × 108m3.

3.2 Single factor sensitivity analysis

From the content of Section 3.1, different factors have varying
degrees of impact on production.Therefore, in subsequent research,
it is necessary to first determine the degree of impact of each

factor, which requires sensitivity analysis to study the degree of
impact of each factor on the production prediction results during
the stable production period (Endong et al., 2023; Shuai-hua and
Huang, 2020).

Anton Sysoev (Anton, 2023) proposed an alternative method
based on finite fluctuation analysis, which obtained a set of
sensitivity measures for each input through sensitivity analysis.
And the described method was compared with the Sobol index
calculation method, proving the consistency of the proposed
method. This is a very good sensitivity analysis method, but
this article adopts different perspectives for research. This article
analyzes the factors that affect production and needs to combine
with actual production conditions to study the probability of
achieving predicted production. Therefore, the article takes the
probability of achieving production as the boundary and studies the
maximum and minimum values that can be achieved by a single
factor in the range of 0%–100%. The larger the fluctuation range
of production, the greater the amplitude and possibility of changes
in the actual production process, indicating that production is most
sensitive to this factor.

In this section, sensitivity analysis of production prediction
results under single factor is carried out, and the research results
are as follows. The stable production period production and
probability of achievement under different influencing factors
are shown in Figure 7. From the perspective of fluctuation range,
the proven rate and recovery rate have the greatest impact on the
production during the stable production period. The curve changes
in the figure show a trend of flat in the middle and steep at both
ends, which is also because all factors are randomly sampled using a
normal distribution, resulting in concentrated values in the middle
and scattered values at both ends.

Sensitivity analysis is conducted based on the production
probability graph results of five factors. Since the range of probability
of realization is all 0%–100%, the maximum and minimum values
of probability are taken to obtain the minimum and maximum
production under each influencing factor. Subtraction results in
production fluctuations.The larger the fluctuation value, the greater
the impact of this factor and the greater its weight. Finally, normalize
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FIGURE 6
Production prediction curve and Production probability graph under different factors. (A1) Production prediction with different growth rates. (A2)
Production prediction with different extraction degree. (A3) Production prediction with different decline rates. (B1) Production probability of growth
rate. (B2) Production probability of extraction degree. (B3) Production probability of decline rate.

the production fluctuation value, calculate the weight value, and
convert it into a percentage, which is the sensitivity level of the
influencing factors, as shown in Table 1.

The sensitivity level of influencing factors is shown in Figure 8.
From the figure, the factors that have a significant impact on the
stable production period production are the proven rate, recovery
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FIGURE 7
Production probability diagram under different factors.

rate, and growth rate, while the factors that have a smaller impact
are the extraction degree and decline rate.The sensitivity and weight
values of the influencing factors will serve as the basis for subsequent
calculations.

Based on the analysis of production planning, the target for
stable production period production planning of conventional gas
is 390 × 108m3. By benchmarking the planned production to the
production probability diagram, the predicted range of achievement
probability is obtained, as shown in Figure 9. As shown in the figure,
the probability range for achieving a stable production period of 390
× 108m3 under five factors is 70%–98%, with a probability greater
than 70%, indicating a high possibility of achieving the production
planning goal.

3.3 Multifactor analysis

After completing the single factor analysis of production, amulti
factor analysis of production is carried out by combining Bayesian
networks and binary Gaussian models. The specific research ideas
are as follows. When conducting multi factor analysis, it is not
possible to simultaneously consider the data calculation and graphic
drawing of the five factors, therefore, the ultimate recoverable
reserve URR is used as the entry point. Firstly, study the impact of
the binary probability of proven rate and recovery rate on ultimate
recoverable reserve URR and production. Further study the impact
of the binary probability generated by the proven rate and recovery
rate on production based on the remaining three factors.

In the actual production process, there are many factors that
affect natural gas, so it is necessary to study the probability of
achieving production during different stable production periods
when considering multiple factors at the same time, and develop
extraction plans based on the relationship between production and
probability. For example, first determine the impact and probability
of exploration rate and recovery rate on production, and then
combine Bayesian networks to calculate the impact and probability

of growth rate, exploration rate and recovery rate on production
under the combined effect. Based on the results, determine the
appropriate range of growth rate in actual production.

The conventional gas exploration rate in the Sichuan Basin is
between 40%–60%, and the recovery rate is between 40%–50%.
Due to the normal distribution used for random sampling, the
combination of proven rate and recovery rate is also a normal
distribution value, with a range of 16%–30%, which means the
average is 23%. The conventional gas resource quantity Qr =
122300× 108m3, the range of ultimate recoverable reserve URR is
calculated using Formula 9, and the trend of production during
stable production period is predicted based on ultimate recoverable
reserve URR. The results are shown in Figure 10.

From Figure 10A, ultimate recoverable reserve URR increases
with the increase of proven rate and recovery rate, and the
amplitude of change in proven rate has a more significant impact
on ultimate recoverable reserve URR. The ultimate recoverable
reserve URR range of conventional gas is 19568− 36690×
108m3. From Figure 10B, the production shows a curved trend
with the increase of proved rate and recovery rate, and the overall
trend also increases with the increase of proved rate and recovery
rate. Under the influence of proven rate and recovery rate, the range
of stable production period production is 339–502 × 108m3.

The probability of determining the distribution of proven rate
and recovery rate is a normal distribution, with a mean of 23%
and a value range of 16%–30%. Using it as a prior probability and
other influencing factors as subsequent nodes, establish a Bayesian
network anduse a binaryGaussianmodel to calculate the probability
of influencing factors.

Take the growth rate as an example to illustrate.The distribution
probability of the growth rate is a normal distribution with a
mean of 10% and a value range of 5%–15%. As these variables all
follow a normal distribution, the Bayesian distribution probability
of the growth rate follows a binary normal distribution. Then, the
distribution probability is converted into a cumulative probability
to obtain the Bayesian implementation probability diagram of the
growth rate, as shown in Figure 11. From the figure, when the growth
rate, proven rate, and recovery rate are small, the probability of
realization is relatively high. As the influencing factors increase,
the probability of realization gradually decreases. The probability
map of implementation under Bayesian networks will also serve as
the basis for the subsequent establishment of multivariate Gaussian
mixture models.

Maintain the other influencing factors unchanged, and use
Formula 6 to calculate the trend of production changes during the
stable production period under the mixed influence of three factors,
as shown in Figure 12. From Figure 12A, the trend of production
change is an irregular surface graph, and production does not
completely increase with the increase of growth rate. It is only a
monotonic increasing relationship between production and growth
rate within a specific range of proven rate and recovery rate. This
pattern can be clearly seen from Figure 12B. Compared with the
red and blue lines, when the exploration rate and recovery rate are
high, even if the growth rate is low, the stable production period
production is relatively high. This is because the production is
influenced by a mixture of three factors. In actual production, the
range of each factor should be determined based on the production
situation, to reasonably control the production. Under the influence
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TABLE 1 Influencing factors sensitivity analysis results table.

Achievable
probability

(%)

Production
(108m3)

Proven rate Recovery rate Growth rate Extraction
degree

Decline rate

100 Minimum
production

359.96 356.43 378.74 384.1 379.05

0 Maximum
production

441.55 454.18 439.14 428.33 429.65

Production fluctuation value 81.59 97.75 60.4 44.23 50.6

Sensitivity level 24.39% 29.22% 18.05% 13.22% 15.12%

FIGURE 8
Sensitivity degree diagram of influencing factors.

FIGURE 9
Production probability diagram under different factors.

of proven rate, recovery rate, and growth rate, the range of stable
production period production is 352–500 × 108m3.

Project the three-dimensional production map on the
production growth rate surface and combine it with the calculation
results of the implementation probability to obtain the production
probability map under the Bayesian network. From Figure 12B, the
results are shown in the blue curve at the lowest proved recovery
rate and the red curve at the highest recovery rate. In the figure,
when the stable production period production is about 390 ×
108m3, the corresponding probability of achievement is about 70%,
while in single factor analysis, the corresponding probability of
achievement is 90%.This is because the prior probabilities of proven
rate and recovery rate are considered. Currently, under the Bayesian
network, the impact of growth rate on production changes, and the
probability of achievement decreases, reducing the likelihood of
achieving production planning goals.

Similarly, the analysis of extraction degree and decline rate
is consistent with the analysis process of growth rate. Using the
proven rate and recovery rate as known probabilities, calculate the
binary distribution probability of the recovery degree, and then
obtain the probability of achieving the recovery degree, as shown
in Figure 13A. Finally, combine Formula 6 to calculate the trend
of production with the recovery degree, as shown in Figure 13B.
The trend of change is an irregular surface graph, which shows that
the production does not increase completely with the increase of
recovery degree, but only shows amonotonic increasing relationship
between production and recovery degree in a specific proved rate
recovery rate interval. Under the influence of proven rate, recovery
rate, and recovery degree, the range of stable production period
production is 376–490 × 108m3.

Using the proven rate and recovery rate as known probabilities,
calculate the binary distribution probability of the decline rate, and
then obtain the probability of achieving the decline rate, as shown
in Figure 14A. Finally, combine Formula 6 to calculate the trend of
production change with the decline rate, as shown in Figure 14B.
The trend of change is an irregular surface graph, which shows that
production does not increase completely with the increase of decline
rate, but only shows a monotonic increasing relationship between
production and decline rate in a specific proved rate recovery
interval. Under the influence of proven rate, recovery rate, and
decline rate, the range of stable production period production is
374–483 × 108m3.
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FIGURE 10
URR and production change trend chart. (A) URR variation with proven rate and recovery rate. (B) Production variation with proven rate and
recovery rate.

FIGURE 11
Binary probability plot of growth rate. (A) Distribution probability of growth rate. (B) Achievable probability of growth rate.

3.4 Summary of factor analysis

By conducting a single factor analysis of production, the
fluctuation range of influencing factors was determined, and it
was clarified that under the influence of a single factor, the
stable production period production increased with the increase of
influencing factor values. Under the influence of the proven rate,
the range of stable production period production is 359.96–441.55

× 108m3; Under the influence of recovery rate, the range of stable
production during the production period is 356.43–454.18 × 108m3;
Under the influence of growth rate, the range of stable production
period production is 378.74–439.14 × 108m3; Under the influence of
extraction degree, the range of stable production period production
is 384.1–428.33 × 108m3; Under the influence of the decline rate,
the range of stable production period production is 379.05–429.65 ×
108m3. As shown in Table 2, the recovery rate has the greatest impact
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FIGURE 12
Calculation results under the influence of growth rate. (A) Production variation with growth rate. (B) Projected production probability graph.

FIGURE 13
Calculation results under the influence of extraction degree. (A) Achievable probability of extraction degree. (B) Production variation with
extraction degree.

on the production, and the degree of recovery has the least impact
on the production.

By conducting sensitivity analysis on the factors affecting
production, the sensitivity levels of five factors were obtained and
converted into weight values for the establishment of subsequent
multi factor production planning models. When the production
planning target is determined to be 390 × 108m3, the probability
of achieving it under the influence of a single factor will

exceed 70%, indicating a high possibility of achieving the target
production.

By conducting a multifactor analysis of production, the
distribution probability of the proven rate and recovery rate was
used as a prior probability. The binary distribution probability
and implementation probability of the other three factors were
calculated, and the trend of stable production period production
under the mixed action of multiple factors was predicted. The

Frontiers in Earth Science 12 frontiersin.org113

https://doi.org/10.3389/feart.2024.1454449
https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org


Li et al. 10.3389/feart.2024.1454449

FIGURE 14
Calculation results under the influence of decline rate. (A) Achievable probability of decline rate. (B) Production variation with decline rate.

TABLE 2 Production prediction results table under different factors.

Influencing factor Proven rate Recovery rate Growth rate Extraction degree Decline rate

Minimum production (108m3) 359.96 356.43 378.74 384.1 379.05

Maximum production (108m3) 441.55 454.18 439.14 428.33 429.65

Production fluctuation value (108m3) 81.59 97.75 60.4 44.23 50.6

production during the stable production period does not increase
entirely with the increase of influencing factor values, and only
within a certain range can this law be met. In addition, taking
the production probability projection diagram of growth rate as
an example, the variation of stable production period production
and its corresponding realization probability under the mixed
effects of multiple factors was analyzed. The results showed that
compared to the influence of single factors, the probability of
achieving production targets under multiple factors decreased. In
actual planning, it is necessary to consider the combined effects of
multiple factors to more accurately carry out production planning.

4 Establishment of production
planning model

Through the previous calculations, the influence law and
sensitivity level of a single factor, as well as the probability of
achieving mixed effects of multiple factors and the trend of
production changes were obtained. Then, based on the sensitivity

of a single factor, weight values are assigned to obtain a single
factor production planning model. The impact of each factor
on production planning is preliminarily analyzed. Finally, a
multivariate Gaussian model is used to overlay and combine the
single factor production model to obtain a multi factor production
planning model.

When establishing a production planningmodel, it is considered
that the greater the impact of a certain factor on production, the
higher the proportion of that factor in the model. Therefore, the
results of the sensitivity analysis in the previous section are used
as weights in the production planning model. According to the
sensitivity analysis results in Section 3.2, the sensitivity degree of the
influencing factors is converted into weight, and the weight matrix
of the five factors, namely, the proven rate, recovery rate, growth rate,
recovery degree, and decline rate, is R= [0.25,0.29,0.18,0.13,0.15].
Based on historical data of conventional gas production, allocation
is made according to weights, and production planning models
are established based on different factors to obtain production
prediction curves with different proportions, as shown in
Figure 15.
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FIGURE 15
Production prediction curves for different factors.

The black curve in the figure represents the conventional gas
production prediction curve, which is composed of five other curves
stacked together. The remaining curves represent the production
planning model after assigning weights to each of the five factors
individually. As shown in the figure, the production curve of growth
rate is concentrated in the growth period, the production curve
of proven rate and recovery rate is concentrated in the stable
production period, and the production curve of recovery degree and
decline rate is concentrated in the decline period.

From this, the growth rate affects the trend of production
changes during the growth period by controlling the amplitude of
growth, and the proven rate and recovery rate affect the overall size
of the production prediction curve by controlling the size of ultimate
recoverable reserve URR, thereby affecting the trend of production
changes throughout the entire life cycle.Themost significant impact
is the size of production during the stable production period, and the
degree of recovery affects the trend of production changes before and
after the decline period by controlling the cumulative production
at the end of the stable production period, The decline rate affects
the trend of production during the decline period by controlling the
magnitude of the decline.

Figure 16 shows the trend of production changes under the
mixed influence of five factors since 2020, namely, the multi factor
production planning chart.The influencing factors of the coordinate
axis represent five different factors, from 1 to 5, which are the proven
rate, recovery rate, growth rate, extraction degree, and decline rate.
As the value of the coordinate axis increases, the factors also overlap
and have an impact on the production prediction results. As shown
in the figure, the production prediction curve gradually becomes
complete with the superposition of influencing factors, and finally
forms a production planning curve that includes growth period,
stable production period, and decreasing period.

From the graph, it can be seen that various factors have an
impact on the production planning model.The growth rate controls
the amplitude of the production growth stage, the proven rate and
recovery rate control the amplitude of the stable production stage,

the extraction degree controls the amplitude of the transition from
the stable production stage to the decreasing stage, and the decline
rate controls the amplitude of the decreasing production stage.
Under the combined influence of five factors, the production will
reach a peak of 423 × 108m3 in 2045, with a stable production
period of 2038–2051. The production planning model can study
the forecast results of the production change over time under the
influence of different factors, and obtain the influence of each factor
on the production at different stages, to better adjust the factors
according to the demand in the actual production and achieve the
production target.

5 Conclusion

This article establishes a production uncertainty prediction
model under multi factor control based on the development of
conventional gas production in the Sichuan Basin. By analyzing the
factors affecting production, the variation patterns of production
and probability of achievement under the influence of single factors
were obtained, and the sensitivity levels of different factors were
obtained through sensitivity analysis. In addition, a multi factor
analysis was conducted based on Bayesian networks, using the
detection rate and recovery rate as prior probabilities to obtain
binary distribution probabilities and implementation probabilities
of other factors, as well as production variation graphs under the
influence of multiple factors. A production planning model was
established by combining the weight results of the multivariate
Gaussian mixture model and sensitivity analysis. The conclusion is
as follows.

1) The established production uncertainty model can effectively
predict the development trend of production under the control
of multiple factors. From the prediction results, production
is positively correlated with the five influencing factors of
proven rate, recovery rate, growth rate, extraction degree, and
decline rate. During the stable production period, production
will increase with the increase of the value of the influencing
factors, and the degree of influence of the factors from large to
small is: recovery rate, recovery rate, growth rate, decline rate,
and extraction degree.When the impact of production changes
from single factor to multiple factors, the fluctuation range of
stable production increases, and the probability of achieving
the target production decreases.

2) Based on the weight values of the degree of influence of factors,
establish single factor and multi factor production planning
models. From the perspective of production development
trends, the growth rate controls the amplitude of the
production growth stage, the proven rate and recovery rate
control the amplitude of the stable production stage, the
extraction degree controls the amplitude of the transition
from the stable production stage to the decreasing stage,
and the decline rate controls the amplitude of the decreasing
production stage. These conclusions provide reference for the
formulation of production planning goals.

3) Unlike conventional research that considers the impact of
a single factor on production, this article comprehensively
considers multiple influencing factors, studies the changes in
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FIGURE 16
Production planning model under the influence of multiple factors. (A) side view. (B) front view.

natural gas production, calculates the probability of achieving
production, and provides a reference for the formulation of
production planning goals. In addition, the article establishes
an uncertainty prediction model (Formulas 11, 12), which
can effectively combine multiple factors to predict natural gas
production.

4) The article analyzes the five main influencing factors of
natural gas production, and comprehensive research has
certain innovation. However, the influencing factors involved
in the research are all those involved in the exploration and
development process, and there are also some economic factors
(such as investment and cost) that have not been considered.
Therefore, more factors can be further considered to analyze
the trend of production changes, to develop more suitable
production planning schemes.
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Tight sandstone water-bearing gas reservoirs typically exhibit low porosity and
low permeability, with reservoir rocks characterized by complex pore structures,
often featuring micron-scale or smaller pore throats. This intricate reservoir
structure significantly restricts fluid flow within the reservoir, necessitating a
certain threshold pressure gradient (TPG) to be overcome before flow can
commence. This study focuses on the Ordos Basin and explores the influence
of high water content tight sandstone gas reservoirs on TPG under different
water saturation and formation pressure conditions through experiments. A
mathematical model of TPG is established using multiple linear regression
method. The results show that TPG is primarily affected by water saturation,
followed by formation pressure. As the water saturation increases, the TPG
of the core decreases, and the change becomes more pronounced when
the water saturation exceeds 50%. As formation pressure increases, the
weakening of the slippage effect in gas molecules leads to TPG stabilization,
especially when local pressure exceeds 25.0 MPa. The research also shows that
low-permeability cores exhibit greater TPG variation with pressure changes,
while high-permeability cores remain more stable. A mathematical model
was developed and validated to predict TPG based on permeability, water
saturation, and formation pressure. These findings highlight the need tomonitor
formation water content during tight sandstone gas reservoir development
to optimize production strategies, providing valuable insights for improving
reservoir management and guiding future research.

KEYWORDS

tight sandstone gas reservoir, threshold pressure gradient, mathematical model, water
saturation, formation pressure

Abbreviations: β, Dimensionless constant; τ0, Yield stress of oil, MPa; Ka, Absolute permeability, mD;
µ, Viscosity, mPa·s; Sw, Water saturation; Swi, Initial water saturation; Swc, Bound water saturation; P,
Formation Pressure, MPa.
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1 Introduction

Tight sandstone gas reservoirs possess vast reserves and
significant development potential, with their proportion in oil and
gas exploration and development steadily increasing,making them a
crucial unconventional oil and gas resource (Civan, 2017; Sun et al.,
2017; Zhang et al., 2019; Wang S et al., 2022; Farouk et al., 2024a;
Farouk et al., 2024b). It is expected that the annual production of
low-permeability tight gas reservoirs in China will reach about 600
× 10 m3 by 2030 (Zhang et al., 2020; Ren et al., 2022). For example,
the Ordos Basin in China contains large gas reserves and hosts
some of the most developed gas fields. The reservoirs in this basin
are characterized by low porosity, low permeability, and strong
heterogeneity, which present significant challenges for gas reservoir
development (Zhang et al., 2021;Wang R. et al., 2022). Additionally,
the gas reservoirs contain a significant amount of water, which
negatively impacts the production capacity of gas wells. This is
due to poor natural productivity, complex seepage mechanisms,
and the scattered distribution of remaining gas (Lan et al., 2014;
Zheng et al., 2020; Fu et al., 2020; Fu et al., 2021). This accelerates
reservoir damage and further reduces the development efficiency
of gas reservoirs, making it challenging to achieve long-term stable
production in the tight and complex water-bearing gas reservoirs of
the Ordos Basin.

The geological conditions of tight gas reservoirs are complex,
characterized by poor reservoir properties, strong heterogeneity, low
porosity, low permeability, and high water saturation. Additionally,
under water-bearing conditions, complex interactions between
water and gas occur within the reservoir, contributing to the
complexity of fluid flow mechanisms. Research has shown that in
low-permeability gas reservoirs, the flow paths of gas and water
are extremely narrow, which facilitates the formation of water films
at the pore throats (Tian et al., 2020; Chen et al., 2023; Tian et al.,
2023). These water films significantly hinder gas flow, requiring
the gas to overcome the resistance of the film before it can start
moving (Zeng et al., 2011; Li et al., 2016; Tian et al., 2018). The
minimum pressure difference required to overcome this resistance
is commonly referred to as the threshold pressure gradient (TPG).
Under ideal conditions, gas flow follows Darcy’s law, where the
flow rate and pressure gradient curve exhibit a linear relationship,
intersecting at the origin (Tian et al., 2014; Dong et al., 2019).
However, in low-permeability porous media, gas flow deviates from
Darcy’s law, and the flow rate and pressure gradient curve display

TABLE 1 The TPG prediction models.

Prediction
formula

Reservoir type Scholar

G = βτ0
√ka

Oil Reservoir Pascal (1981)

G = α( ka
μ
)
β

Porous medium Prada and Civan (1999)

G = αkaβ Low permeability
reservoir

Zeng et al. (2010)

G = αSwβk
γSw

σ

a Tight gas reservoir Yang et al. (2015)

G = αk−βa (Swi − Swc)
γ Tight gas reservoir Liu (2023)

a partially nonlinear relationship (Zeng et al., 2011; Wang and
Sheng, 2017; Liu, 2019; Liu et al., 2019). The intersection point of
the nonlinear curve with the x-axis represents the TPG. At higher
pressures, the flow rate and pressure gradient become approximately
linear, and the extension of this linear curve intersects the x-axis
to form the pseudo TPG. Extensive research has confirmed the
presence of TPG in tight gas reservoirs, which leads to nonlinear
fluid flow characteristics (Feng et al., 2024). The existence of a TPG
implies that gas will only start to flow when the pressure difference
within the reservoir reaches or exceeds this critical value. Moreover,
a continuous pressure gradient must be maintained during gas
flow to prevent the reformation of the water film; otherwise, the
flowmay be interrupted (Amann-Hildenbrand et al., 2012;Hu et al.,
2018). Therefore, the TPG is a critical factor influencing the
development efficiency of low-permeability gas reservoirs (Civan,
2017). In the development process, it is essential to fully consider the
impact of TPG on gas flow and optimize the development strategy
accordingly to enhance the recovery rate (Shanley et al., 2004;
Hu et al., 2018).

Research indicates that the productivity of gas wells diminishes
as the TPG increases. A higher TPG requires a greater production
pressure differential for fluid to start flowing, directly resulting
in reduced production. To enhance production capacity, it is
necessary to adopt measures that lower the TPG, such as
enhancing reservoir permeability via techniques like hydraulic
fracturing. Simultaneously, it is crucial to carefully manage
the production pressure differential to prevent a decline in
gas production efficiency due to excessive pressure differences.
Hence, exploring the TPG of tight sandstone is of utmost
importance (Cao et al., 2017; Song et al., 2015).Laboratory testing
methods for determining the TPG can be broadly categorized
into steady-state and unsteady-state approaches. The steady-
state method is particularly effective for directly measuring the
TPG, as it involves observing the minimum pressure required
to maintain a constant flow rate through the sample. This
approach provides a direct assessment of the TPG. In contrast,
unsteady-state methods are often quicker to implement and are
valuable for capturing dynamic flow behaviors and transient effects
associated with the TPG. Although unsteady-state methods may
not offer as direct a measurement of the TPG as the steady-
state approach, they can provide insights into time-dependent flow
phenomena (Bai et al., 1993).

Laboratory experiments have not only confirmed the existence
of a TPG in tight reservoirs but have also revealed a significant
correlation between this gradient and key physical properties
of the reservoirs. Specifically, the experimental data demonstrate
a clear inverse relationship between the TPG and reservoir
permeability: the lower the permeability, the higher the required
TPG. Additionally, there is a positive correlation between the
TPG and water saturation in the reservoir, indicating that an
increase in water saturation directly leads to a corresponding
increase in the TPG (Miller and Low, 1963; Boukadi et al.,
1998). For example, Zhu et al. observed that in low-permeability
gas reservoirs, the TPG increases as permeability decreases or
water saturation increases (Zhu et al., 2011). However, they did
not establish a definitive correlation between these parameters.
Dong et al., through core experiments, found that the TPG
increases with the rise in effective stress and developed dynamic
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TABLE 2 Parameters of natural core samples.

Layer Sample Diameter, cm Length, cm Porosity
%

Permeability, mD

J30H1

1# 2.5 5.61 3.057 0.069

2# 2.5 5.64 11.356 0.352

3# 2.5 5.21 11.311 0.679

4# 2.5 5.79 12.699 1.135

J30S2

5# 2.5 5.73 4.482 0.063

6# 2.5 5.12 6.852 0.236

7# 2.5 5.66 7.311 0.809

8# 2.5 6.12 2.239 1.280

J58H1

9# 2.5 5.39 3.933 0.049

10# 2.5 5.76 5.231 0.183

11# 2.5 5.96 9.943 0.684

12# 2.5 5.61 11.921 1.054

Average 2.5 5.63 7.533 0.549

TABLE 3 Composition of the synthesized formation water.

Layer Concentration, mg/L Salinity, mg/L Water type pH

K++Na+ Ca2+ Mg2+ Ba2+ SO4
2− HCO3

− Cl−

J30H1 8,050 9,906 195.1 158.7 46.2 214 28,679 48,126 CaCl2 6.27

J30S2 8,577 9,170 283.9 106.2 37.5 333.9 29,451 47,603 CaCl2 6.20

J58H1 6,957 8,191 184.8 145.1 39 184 23,840 40,326 CaCl2 6.32

TPG models for cores with different permeability. However,
their study did not take into account the influence of water
content on the TPG (Dong et al., 2019). Ding et al. conducted
a TPG test under reservoir conditions and concluded that
the start-up pressure gradient increases with the decrease of
pore pressure (Ding et al., 2017). Under reservoir conditions, as
core permeability decreases and water saturation increases, the
TPG becomes greater. However, no starting pressure model has
been constructed to account for these factors. Atif Zafar et al.
considered the effects of water saturation, permeability, and pore
pressure on the TPG. However, they only constructed separate
models for the influence of water saturation, pore pressure, and
permeability on the TPG, without comprehensively considering
the relationship among the three factors. This limitation reduces
the practical applicability of their findings for production guidance
(Zafar et al., 2020).

Many scholars have conducted studies on the mathematical
description models of the initiating pressure gradient across

different reservoir types, as summarized in Table 1. Pascal H. et al.
Utilized the finite difference method to investigate the threshold
pressure in linear reservoirs, taking into account low-speed flow,
and proposed a mathematical model for the TPG that incorporates
rock shear stress and permeability. However, their model only
considers the properties of the rock itself and lacks consideration
of the fluid’s influence on the TPG (Pascal, 1981). Prada A.
et al. applied the TPG to correct Darcy’s law for low-speed flow.
They determined that fluid can only pass through the porous
medium when the flow force is sufficient to overcome the TPG.
A mathematical model for the TPG was developed, taking into
account the fluid properties. (Prada and Civan, 1999). Zeng et al.
(2010) studied the influence of different fluid components on
the TPG of rocks and proposed a mathematical model for the
TPG. However, their model only considers fluid properties and
lacks consideration of rock properties. Liu, (2023) suggested that
as production time increases, the gas flow space expands, and
flow resistance decreases. They improved the formula for the TPG
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TABLE 4 Fitting result of dynamic TPG of cores with different
permeabilities.

Layer Sample Permeability/mD Formula

J30H1

1# 0.069 G = 0.357×
10−3S0w

.42P−0.33

2# 0.352 G = 0.316×
10−3S0w

.39P−0.24

3# 0.679 G = 0.293×
10−3S0w

.37P−0.21

4# 1.135 G = 0.264×
10−3S0w

.28P−0.19

J30S2

5# 0.063 G = 0.56×
10−3S0.382w P−0.95

6# 0.236 G = 0.32×
10−3S0.28w P−0.69

7# 0.809 G = 0.31×
10−3S0.25w P−0.54

8# 1.280 G = 0.29×
10−3S0.11w P−0.34

J58H1

9# 0.049 G = 0.48×
10−3S0.72w P−0.93

10# 0.183 G = 0.42×
10−3S0w

.62P−0.55

11# 0.684 G = 0.38×
10−3S0w

.54P−0.47

12# 1.054 G = 0.31×
10−3S0.38w P−0.31

and developed a calculation formula that considers the effects of
permeability, initial water saturation, and bound water saturation.
However, in actual production, it is challenging to accurately
determine bound water saturation, which limits the practical
significance of their model. Yang et al. (2015) conducted research
on the threshold pressure effect in low-permeability tight gas
reservoirs and quantitatively characterized the TPG of Sulige low-
permeability tight gas reservoirs using a formula that incorporates
the absolute permeability and water saturation of the reservoir.
All the above theoretical models were developed under normal
pressure conditions, neglecting the influence of formation pressure
on the TPG.

To address this, this article first establishes a dynamic
TPG testing device for tight gas reservoirs under water-
bearing conditions by constructing a high-precision back
pressure control system. We conducted tests on the dynamic
TPG of tight gas reservoirs with varying water saturation
levels across different reservoirs and analyzed the effects
of permeability, water saturation, and formation pressure
on the TPG. Finally, mathematical models for the TPG in
various reservoirs were developed. This research provides a
reference and foundation for accurately understanding the TPG

characteristics of tight gas reservoirs and for formulating reasonable
development plans.

2 Experimental material and
procedures

2.1 Experimental materials

The experimental cores were taken from four samples,
each with different permeability, from the J30S1, J30S2, and
J58H1 layers of tight gas reservoirs in the Ordos Basin. The
porosity and permeability of these cores were measured using
the single chamber method based on Boyle’s Law and the
pulse decay method, respectively. The parameters of the natural
core samples are listed in Table 2. The injection fluids used
were synthesized formation water and nitrogen. The properties
of the synthesized formation water are listed in Table 3, and
the water was prepared based on the actual properties of the
formation water from the study block. The temperature was set
to 85°C, reflecting the actual gas reservoir temperature of the
study block.

2.2 Experimental procedures

The experiment utilized a combination of the improved bubble
method and the flow velocity pressure difference method, with the
flowchart shown in Figure 1. First, the rock core is cleaned and
dried for 48 h to determine its dry weight. Then, the rock core is
placed in an intermediate container and vacuumed for 12 h. Water
is pumped into the container and pressurized to 5 MPa for 24 h to
fully saturate the core’s pores. The saturated water mass of the rock
core is thenmeasured.The saturated core is placed into a core holder,
and a confining pressure of 5 MPa is applied using a confining
pressure pump. After the pressure stabilizes, nitrogen gas is used to
displace the core at a constant pressure while continuously weighing
it. Displacement is stopped when the core’s water saturation reaches
70%. The confining pressure is then set to 40 MPa, and the back
pressure is adjusted to the specified level. After the fluid pressure
within the core stabilizes, the inlet pressure is gradually increased.
At each pressure point, once the flow stabilizes, the gas flow rate,
corresponding time, and pressure are measured until a complete
flow curve is obtained. After completing the initial experiment,
the core is re-saturated and displaced to water saturation levels
of 60%, 50%, 40%, and 30%, with the experiment repeated for
TPG testing.

To ensure the stability of the water saturation in the core
during the experiment, a low-speed pressurization method was
employed to prevent the water phase from flowing due to excessive
pressurization speed. The weighing method was used to accurately
determine the water saturation before and after the experiment. If
the error inwater saturation before and after the experiment remains
within 2%, it can be concluded that only single-phase gas flow
occurred during the experiment. Conversely, if the error exceeds
this range, it is considered that gas-liquid two-phase flow occurred
in the core, requiring the core to be cleaned and the experiment to
be repeated.
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FIGURE 1
Apparatus of dynamic TPG test.

FIGURE 2
Schematic diagram of pressure gradient curve of non-Darcy flow.

3 Results

3.1 Effect of water saturation on TPG

Figure 2 shows the pressure gradient and flow rate curves for
core 6# when the water saturation is 60% and the formation
pressure are 15, 20, 25, and 30 MPa, respectively. It can be
seen from the Figure 2 that when the pressure gradient are less
than 0.092, 0.106, 0.114, and 0.123 MPa/m, the curve is nonlinear.
This is because the pressure gradient in this area is low, and due
to the Jamin effect, gas cannot pass through the core pores. As the
pressure gradient gradually increases, the slope of the curve changes
significantly, and the rate of increasing gas flow relative to the square
of the pressure gradient is approximately linear. Extending the linear
part of the curve to the X-axis, it will intersect with the X-axis at a

point where the pressure gradient corresponding to that point is the
TPG of the core.

The variation of TPG with water saturation was measured
in three reservoirs at a formation pressure of 15MPa, as shown
in Figure 3. The variation law of the TPG of three reservoirs
was measured through experiments, as shown in Figure 3. The
experimental results show that the TPG of the reservoir exhibits
a clear regularity, generally increasing rapidly with the increase
of the original water saturation. Under the same water saturation
conditions, reservoirs with lower permeability correspond to more
significant TPG. All three reservoir curves show that when
the water saturation is greater than 50%, there is a significant
turning point in the amplitude of the TPG change, and the TPG
increases rapidly. Among them, J30S2 and J58H1 show more
pronounced performance.This is because when the water saturation
is high, the gas in the core is difficult to form a continuous
phase flow, but is divided into many small bubbles. These tiny
bubbles are subjected to capillary forces during their flow process,
resulting in the so-called Jamin effect when passing through the
core throat, which refers to the additional resistance caused by
the shape change of the bubbles when passing through narrow
channels. As the water saturation increases, the flow resistance
caused by bubble segmentation and Jamin effect also increases
accordingly, resulting in an increase in reservoir TPG at the
macro level.

When the water saturation is 30%, the TPG of rock cores with
permeability less than 0.1mD is 0.026 MPa/m, 0.086 MPa/m, and
0.048 MPa/m, respectively. J30S1 has the least impact on water
saturation. When the water saturation increases from 30% to 70%,
the TPG increases by 114.27%. J30S2 and J58H1 increase by
314.19% and 316.37%, respectively. The threshold pressure range
for J30S1 is 0.026–0.036 MPa/m, J30S2 is 0.086–0.131 MPa/m, and
J58H1 is 0.048–0.103 MPa/m. At the same water saturation, as the
core permeability increases, the TPG decreases. When the water
saturation is 30% and the permeability of the three layers increases
from less than 0.1mD to greater than 1mD, the TPG decrease by
29.5%, 86.03%, and 75.83%, respectively. Similarly, when the water
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FIGURE 3
TPG of rock cores with different water saturation in three layers. (A) J30H1, (B) J30S2, (C) J58H1.

FIGURE 4
Comparison of NMR spectra of three layers.

saturation reaches 70%, the TPG decrease by 36.14%, 52.18%, and
75.54%, respectively. By conducting nuclear magnetic resonance
analysis on three core layers with permeability less than 0.1mD,

as shown in Figure 4, The pore distribution of J30S2 and J58H1 is
mainly concentrated in micropores and small pores smaller than
1 µm. The proportion of mesopores and macropores in J30H1
accounts for 53.44% of the total pores, the smaller pore throats of
J30S2 and J58H1 will result in greater capillary force, while J30S2
and J58H1 account for 23.57% and 20.13% of the total pores. The
smaller pore throats in J30S2 and J58H1 need to overcome stronger
capillary force to push gas through the pore throats, thus requiring
higher pressure to initiate gas flow. On the contrary, the larger pore
throat structure of J30H1 results in a smaller TPG.

3.2 Effect of formation pressure on TPG

To study the variation of the threshold pressure in dense
experimental rock cores under different formation pressures, pore
pressures were set at 15, 20, 25, and 30 MPa, respectively, with
corresponding confining pressures set at 25, 30, 35, and 40 MPa.
The difference between confining pressure and pore pressure was
kept constant during the experiment to ensure the permeability
of the rock core remained stable. When the water saturation
is 30%, the relationship between formation pressure and TPG
is shown in Figure 5.
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FIGURE 5
TPG of rock cores under different formation pressures in three layers. (A) J30H1, (B) J30S2, (C) J58H1.

Under low formation pressures, the TPG of tight gas reservoir
cores decreases as pressure increases. However, once the local
pressure exceeds 25.0 MPa, the rate of change in the TPG
significantly diminishes and eventually stabilizes. The primary
reason for this phenomenon is the significant impact of the slippage
effect on gas permeation behavior in the cores of tight gas reservoirs.
The slippage effect, also known as the Klinkenberg effect, refers to
the phenomenonwhere gas flow in a porousmedium at low pressure
exhibits higher permeability compared to liquid permeability under
the same conditions. This occurs because, at lower pressures, gas
molecules have longer mean free paths and undergo slip at the pore
walls, thereby increasing the apparent permeability and resulting in
a lower measured TPG.

As formation pressure gradually increases, gas density rises,
the mean free path between molecules shortens, and the frequency
of collisions with pore walls decreases. Consequently, the slippage
effect weakens, the increase in gas permeability becomes less
pronounced, and the rate of change in the TPG decreases until it
stabilizes. Once the local pressure exceeds 25 MPa, the gas density
is sufficiently high, the influence of the slippage effect essentially
disappears, and gas flow behavior begins to resemble conventional
Darcy flow as described by Darcy’s law. Thus, the TPG stabilizes.

When formation pressure changes, cores with lower
permeability exhibit more significant variations in the TPG, while
cores with higher permeability show a relatively smaller range of
TPG changes. Specifically, for cores with permeability exceeding
1.0 mD, the TPG remains almost stable with changes in formation
pressure, decreasing by 12.41%, 12.88%, and 16.91%, respectively.
In contrast, for cores with permeability less than 0.1 mD, the TPG
decreases by 19.68%, 44.93%, and 39.68%. This difference can be
attributed to the varying influence of the slippage effect in cores
with different permeabilities. At the same formation pressure, as the
core permeability increases, TPG decreases. When the formation
pressure is 15MPa, the permeability of the three layers increases
from less than 0.1mD to greater than 1mD, and the TPG decreases
by 21.21%, 85.45%, and 73.28%, respectively. Similarly, when the
formation pressure is 30MPa, the TPGdecreased by 27.69%, 76.98%,
and 81.25%, respectively. In low-permeability cores, the pore
channels are narrow, making the slippage effect more pronounced,
which significantly increases gas permeability at low pressures and
thus causes a substantial decrease in TPG. Conversely, in high-
permeability cores, the pore channels are relatively wide, and the
slippage effect is weaker, resulting in a more gradual and stable
change in TPG.
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FIGURE 6
The fitting curve between TPG and water saturation.

FIGURE 7
The fitting curve between TPG and formation pressure.

4 Discussion

4.1 Establish of mathematical model for
dynamic TPG

Through the study of the variation of TPG with water saturation
and formation pressure, the relationship between TPG, water
saturation, and formation pressure was statistically fitted, as shown
in Figures 6, 7. The corresponding expression for a single factor was
obtained as shown in Equation 1.

G = aSw
bPc (1)

Where G is the TPG (MPa/m), P is the formation pressure
(MPa), and Sw is the water saturation (%).The parameters a,b,and c
are fitting coefficients. A total of 12 sets of coefficients a,b,and c were

FIGURE 8
The comparison between the newly developed model and other
models (Yi et al., 2006; Huang et al., 2016; Zhu et al., 2022).

obtained through fitting,and the expressions for the TPG in cores
with different permeabilities across the three layers were derived,
as shown in Table 4. To explore the relationship between the TPG
and core permeability, the coefficient a, b, and c was fitted to the
core permeability. The detailed steps are outlined in the Appendix.
Finally, the mathematical models for the TPG of the three layers are
obtained as shown in Equations 1–3.

J30H1:G = 2.78× 10−4K−0.09SW
−0.13K+0.45P−0.19K

−0..19
(2)

J30S2:G = 3.02× 10−4K−0.12SW
−0.24K+0.37P−0.37K

−0.39
(3)

J58H1:G = 3.38× 10−4K−0.14SW
−0.27K+0.66P−0.34K

−0.22
(4)

4.2 Model validation

In order to verify the reliability of the model proposed in
this article, different models were used to calculate the TPG
using J30H1 as an example. The predicted results are shown in
Figure 8. From the Figure 8, it is evident that there is a significant
discrepancy between the theoretical calculation results of previous
researchers and the measured values. However, the theoretical
value of the TPG calculated using the new model bears little
difference from the measured value, thus validating the rationality
and accuracy of the new model. It can effectively describe and
evaluate the TPG of tight sandstone gas reservoirs containing water.

The general formula for TPG can be effectively utilized to rapidly
determine the TPG for reservoirs with varying permeability. For
instance, by selecting three reservoirs with permeabilities ranging
from 0.1 mD to 1 mD, calculations can be performed to generate a
graph depicting the relationship between TPG, formation pressures,
and water saturation levels in the study area, as illustrated in
Figure 9. The results presented in Figure 9 indicate that water
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FIGURE 9
The TPG relationship diagram of three reservoirs under different formation pressures and water content conditions.

saturation exerts a more significant influence on TPG compared to
formation pressure.This finding underscores the critical importance
of closely monitoring changes in formation water content during
the development of tight sandstone gas reservoirs to ensure optimal
reservoir management and production efficiency.

5 Conclusion

This study conducted a comprehensive analysis of the variation
in threshold pressure gradient (TPG) under different water
saturation and formation pressure conditions for tight sandstone gas
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reservoirs in the Ordos Basin, China, through experimental
research and mathematical modeling. The key conclusions
are as follows:

(1) The study revealed that TPG is closely related to both water
saturation and formation pressure, with water saturation
having a significantly greater impact on TPG compared to
formation pressure.

(2) As formation pressure increases, the slippage effect of gas
molecules gradually diminishes, resulting in a decrease in
the rate of change of TPG, which eventually stabilizes.
When the local pressure exceeds 25.0 MPa, the slippage effect
almost disappears, and gas flow behavior approaches the
conventional flow described by Darcy’s law, leading to a
stabilized TPG.

(3) The study also found that TPG in low-permeability cores
exhibits greater variation with changes in formation
pressure, whereas TPG in high-permeability cores remains
relatively stable. In low-permeability cores, the slippage effect
significantly enhances gas permeability, resulting in larger
fluctuations in TPG.

(4) Based on the experimental data, a mathematical model
was established to describe the relationship between TPG,
permeability, water saturation, and formation pressure. The
model’s applicability was validated through case studies,
providing a theoretical basis for predicting TPG in gas
reservoirs with varying permeability.

In the development of tight sandstone gas reservoirs,
special attention should be paid to changes in formation
water content, as it has a more pronounced impact on TPG.
This insight is crucial for formulating effective development
strategies. Future research should integrate actual production
data to further optimize and refine the model, enhancing its
applicability and predictive accuracy under complex geological
conditions.
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Appendix

According to studies 3.1 and 3.2, it is known that the TPG
is influenced by the permeability of the rock core. To investigate
the influence of different reservoir permeability on the TPG, the
relationship between the coefficients a, b, and c and permeability
in Equation 1 was fitted, using J30H1 as an example, as shown in

Figure A1. The coefficients a, b and c exhibit a linear or exponential
relationship with permeability. By substituting the relationship
between the coefficients and permeability into Equation 1, the
mathematicalmodel for the TPG as a function of permeability, water
saturation, and formation pressure for J30H1was obtained, as shown
in Equation 2. Similarly, mathematical models for J30S2 and J58H1
were established, as shown in Equations 3, 4.

FIGURE A1
Coefficient and permeability fitting curve.
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Introduction: Coal reservoir fractures serve as critical storage spaces and
migration pathways for coalbed methane (CBM), significantly influencing CBM
enrichment. The characteristics of coal reservoir fracture development can be
obtained using traditional simulationmethods, but these still have shortcomings.
This work presents an optimization approach for the traditional method.

Methods: This study introduces an optimization approach for traditional
methods with two novel contributions. This study integrates the simulation of
tectonic stress fields with fracture prediction, using surface sandstone fractures
as constraints to reconstruct the paleostress field of the coal seam, while also
accounting for the influence of coal thickness on fracture development to
calculate fracture density.

Results: The predicted fracture density results were validated against measured
values from the Bailongshanmine and Xiongdong coal mine with a relative error
of approximately 12%, suggesting a reasonable degree of reliability.

Discussion: Based on the results of the fracture simulation predictions, it
is believed that the coal seam fracture density in the study area is mostly
10–20 lines/m and that the sweet spot for CBM development is located in the
Yuwang block.

KEYWORDS

coal reservoir, fracture, numerical simulation, quantitative prediction, tectonic stress

1 Introduction

In coal reservoirs, the storage spaces and migration pathways of coalbed methane
(CBM) are jointly formed by the pore–fracture system, which is an important index
that determines the success of CBM development projects (Moore, 2012; Li and Liu,
2022; Zhang et al., 2019). Most of the regional fractures are formed under the control of
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tectonic stresses; hence, the characteristics of the tectonic stress field
determine the spatial distribution, development, and evolution of
these fractures (Zhou et al., 2006; Liu et al., 2023). Concurrently,
most coal-bearing basins experience superimposed and reworked
tectonic processes of varying magnitudes and phases, including
compression, shearing, and extension (Liu et al., 2000). Tectonic
movements control the formation and distribution of fractures and
pores in coal reservoirs, reshaping their structural characteristics
and ultimately altering the permeability of the coal reservoir (Ju
et al., 2005; Pang et al., 2017). Accordingly, numerical simulations
are used as feasible and practical approaches for restoring the paleo
stress fields and predicting fractures in coal reservoirs.

In the 1990s, Qian et al. (1994) explored the use of numerical
simulations to invert the stress field for fracture prediction, and
this approach has been used in oil and gas fields. Numerical
simulation of the tectonic stress field involves establishing a
numerical model of the study area to simulate and calculate the
stress field distribution using finite element software (Carminati
and Vadacca, 2010; Zhou et al., 2021; Ren, 2019). Wu et al. (2011)
used numerical simulation to study the fracture development in the
Longmaxi formation; Wang et al. (2016) numerically simulated the
low-permeability sandstone reservoirs of the Yanchang Formation
using ANSYS software. Wang (2007) combined rock mechanics
with numerical simulation to establish a quantitative relationship
between the stress field and fracture parameters as well as realize
quantitative fracture predictions; this method was successfully
applied to the Dina gas field. Since then, numerical simulations have
been widely used for quantitative predictions of reservoir fractures.
Predicting reservoir fractures based on the paleo stress field is
more accurate (Fang et al., 2005; Fang et al., 2017); however, this
method has been primarily used on sandstone, carbonate, and shale
formations, with relatively fewer studies on fracture prediction in
coal reservoirs.

Studies have shown that fracture development is influenced
by the thickness of the rock formation (Dixon, 1979). McQuillan
(1973) and Ladeira and Price (1981) showed that fracture
spacing has a linear relationship with layer thickness when
the layer is less than 1.5 m thick or a nonlinear relationship
when the layer thickness exceeds 1.5 m. Jiang and Wang (2015)
noted that there is an exponential relationship between the
fracture density of the rock layer and its thickness. However,
most reservoir simulations are based on basic mechanical
properties, such as Poisson’s ratio and Young’s modulus, and do
not take into account the effects of reservoir thickness on the
fractures.

Therefore, this paper introduces an optimized method for
predicting fractures in CBM reservoirs. The proposed method
uses surface fractures as boundary constraints to initially simulate
the paleotectonic stress field during the critical period of fracture
formation. Subsequently, by considering the influence of thickness
on the evolution of the coal seam fractures, an optimized
fracture prediction model is used to forecast fractures in the
9# coal seam of the established mining area. Finally, based
on the fracture prediction outcomes, the sweet spots for CBM
development are delineated, thereby establishing a foundation for
further exploration and development.

2 Geological conditions and the key
period of fracture formation

The geotectonic position of the Laochang area is in the
Pu’an-Shizong depression of the Nanpanjiang-Youjiang basin. The
Youjiang Basin (Figure 1) is along the southwestern margin of the
Upper Yangzi landmass; it is connected to the North Vietnam
landmass in the southwest, to the Yinzhi landmass through the
Jinshajiang-Maoguishan Suture Belt and Majiang Suture Belt,
and to the Qinzhou Suture Belt in the southeast. The basin
is bounded by the Mile-Shizong Fault in the northwest and
Ziyun-Luodian Fault in the northeast. Inside the basin, the
northwest Baise-Longlin Fault and northeast Nanpanjiang Fault are
developed.

2.1 Stratigraphy and coal-bearing strata of
the study area

In the Laochang area, the strata exposed from oldest to youngest
include the Permian system: Maokou Formation (P2m), Longtan
Formation (P3l), and Changxing Formation (P3c), the Triassic
system: Kaiyuan Formation (T1k), Feixianguan Formation (T1f ),
Yongning Formation (T1y), and Gejiu Formation (T2g), as well
as the Quaternary system (Q). The distribution of outcrops is
controlled by the structural influences of the Laochang anticline,
with the exposed strata becoming progressively older toward the
core of the anticline. The Upper Triassic strata are missing, and
only the Wailu Formation is in direct contact with the Quaternary
unconformity in the area.

The coal-bearing strata in the Laochang area belong to theUpper
Permian Longtan Formation (P3l) and Changxing Formation (P3c).
The Longtan Formation is divided into upper and lower parts, with
the main exploitable coal seam 9# being concentrated in the upper
part; its thickness ranges from 0 to 17.53 m, and the total exploitable
thickness is approximately 18.46 m. The lower part of the Longtan
Formation is dominated by tuff, sandstone, shale, and coal seams.
The Changxing Formation contains the main recoverable coal seam
6# with a single-layer thickness of 0–6.65 m and total recoverable
thickness of approximately 8.97 m; it is in conformable contact with
the base of the Longtan Formation.The present study focuses on the
9# coal seam of the Longtan Formation.

2.2 Tectonic features of the study area

The Laochang area is surrounded by the Baise-Longlin Fault,
Nanpanjiang Fault, and Mile-Shizong Fault, which divide the South
China landmass from the Yangzi landmass. Moreover, there are
ancient uplifts between the fa zones located near the Laochang
and Dashuijing areas. Owing to the ancient uplifts, the area
surrounding Laochang has developed interspersed dome and basin
structures; arcuate structures parallel to the boundaries of the
uplift are also formed near the margins (Figure 2). For instance,
an arcuate fault zone developed in the southern part of the
Laochang area, while the northern and western parts formed the
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FIGURE 1
Tectonic outline of the Youjiang Basin (Gui and Wang, 2000).

Dehei-Qingkou arcuate compressional deformation belt.The central
part features a rhombic dome, the eastern part has a clockwise
rotating pivot structure, and the northern part has a series of
extensional faults (Wang, 2007).

During the Indosinian movements, the southern part of the
Nanpanjiang Fault was extruded by NNW-SSE stresses, and these
stresses changed to NW-SE on the northern side of the fault. At the
same time, owing to the existence of the Dashuijing ancient uplift,
folds were formed parallel to the Nanpanjiang Fault and boundary
of the Dashuijing ancient uplift, which then compounded to form
the arcuate structures of the Tsuiyang Fault and Xiaolajia Fault.
Thus far, the main tectonic framework of the study area was formed
under the influence of the Indosinian stress field. During the Early
and Middle Yanshanian periods, the study area was subjected to
NE-SW compressive stress; during the Late Yanshanian period, the
study area was in a NWW-SEE tensile environment; during the
Himalayan period, the area was transformed into an EWextensional
stress environment, which further modified the tectonics of the
study area (Guo et al., 2004).

2.3 Characteristics of fracture
development and the key period of
formation

Owing to weak tectonic deformations in Yuwang and its
surrounding area, the recovered paleo stress field based on the
statistical fracture data is more credible. In addition, the fractures in
the study area are predominantly conjugate shear joints, which are
conducive to restoring the paleo stress field. Using the stereographic
projection method, the original orientations of the structural
fractures in the horizontal state of the rock layerwere restored. Based
on the corrected fracture data, a contoured equal-area projection
map was drawn to determine the dominant orientations of the
conjugate structural fractures.

To investigate the fracture development in the study area, we
selected 19 outcrops to calculate the orientations and density of
fractures from different formational episodes to reconstruct the
principal stresses individually. The results show that the fractures
in the study area experienced three stages of tectonics in different
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FIGURE 2
Tectonic outline of the Laochang area.

directions. The statistical results indicate that a total of 12 outcrop
fracture measurement points predominantly show development of
the NW-NNE fractures, and the maximum compressive stresses
recovered in the NNW-SSE direction, which belongs to the
Indosinian period (Figure 3). Three of the field outcrop fracture
measurement points focus on the development of the NNW-NEE
fractures, and the maximum compressive stresses are in the NW-
SE direction, which belongs to the Early and Middle Yanshanian
periods. Four of the fracture measurement points show dominant
fractures developing in the NE-NWWdirection, with themaximum
compressive stresses being in the NEE-SWW direction, belonging
to the Himalayan period (Figure 3). Obviously, the Indosinian
fractures account for a higher proportion in the study area, and it
is assumed that the tectonic stresses of the Indosinian movements
have the greatest influence on fracture formation in the study area.

For instance, at the 92404 fracture point (Figure 4), the
Feixianguan Formation is exposed with yellowish-brown thin-
bedded silty fine sandstone. The strike and dip of this formation
is 130°∠10°, indicating a relatively gentle stratification with the
development of two sets of fracture systems. The fracture dip is
significant and nearly perpendicular to the stratum. The first set of
conjugate shear fractures trend NW and NNE, indicating NWW-
SSE compressional stress from the Indosinian period; the second
set of conjugate shear fractures trend SWW and NNW, indicating
NW-SE compressional stress from the Yanshanian period.

3 Fracture prediction principles

In this paper, fracture development in the surface rock layers
was taken as a constraint, and ANSYS finite element simulation
software was used to invert the paleotectonic stress field during the
critical period; then, the fracture density computation model was
used to predict the density and orientation of the fractures by taking
the rock layer thickness into account. Thus, it is necessary to first
clarify the mathematical theoretical model of stress on the density
and orientations of the fractures.

3.1 Relationship between fracture density
and stress

Fractures are formedwhen the rock stress approaches or exceeds
its ultimate strength, such that the internal binding force of the
rock is damaged and the rock is no longer integral, thus producing
deformations of various sizes. Accordingly, fracture deformations
can be described as local responses of the rock to applied stress.
According to the Mohr–Coulomb model of fracture strength, each
rock variety has its own inherent shear strength τ0. Under the
premise that all other conditions remain unchanged, τ0 is a constant.
For a given cross section of the rock, when the applied shear stress
reaches or exceeds τ0, shear fractures may be formed along the
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FIGURE 3
Tectonic outline and conjugate joint stress analysis diagram of the Laochang area.

section. Wang (2007) established the following equation set based
on energy conservation (Figure 5):

{{{{{{{{{{{{
{{{{{{{{{{{{
{

W f =
1
2E
(σ21 + σ

2
3 − 2μσ1σ3 − 0.85

2σ2p + 2μσ30.85σp)

σp =
2C0 cos φ+ (1+ sin φ)σ3

1− sin φ

W f = Dvf(J0 + σ3b)

D′l f =
2DvfL1L3 sin θ cos θ− L1 sin θ− L3 cos θ

L21 sin
2θ + L23 cos

2θ
,

(1)

whereW f is the energy dissipated during loading; considering that
the energy dissipated as elasticwaves is negligible, the loading energy
denotes the power consumed during fracture formation (J/m3).
Furthermore, E is the elastic modulus of the rock stratum (GPa); σ1,
σ2, and σ3 are the external stress values (MPa); μ is the Poisson’s ratio
of the rock stratum; C0 is the cohesive force representing the shear
strength in the event that C0 = 0 (Pa); φ is the internal friction angle
(°); J0 is the surface energy of the fractures when the corresponding
confining pressure is zero (J/m2) and is equivalent to the surface
energy of the fractures obtained by uniaxial compression testing;Dvf
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FIGURE 4
Equal density map of the 92404 fracture joint and its field development conditions.

FIGURE 5
Relationships between the parameters and stress for fractures within the representative elementary volume (Wang, 2007).

is the ratio of the total surface area of the fractured rock mass to its
representative elementary volume and represents the volumedensity
of the fractures within the representative elementary volume; b is the
fracture aperture; σp is the rock breakdown pressure (MPa); θ is the
rupture angle of the rock fractures (°) and is defined as the angle
included between the fracture surface and σ1; L1 and L3 refer to the
respective rock lengths in the directions of σ1 and σ3 (m).

The confining pressure impedes fracture formation as the energy
accumulated in the rock needs to overcome the intrinsic cohesion
due to the intermolecular forces as well as the confining pressure
to experience lithological disruption and form a fracture. The
surface energy of the fractures is a combination of the effects of
the intrinsic properties of the rock and pressure impediments to
fracture formation. According to the theory of maximum strain
energy density and maximum tensile stress in brittle fracture
mechanics, brittle materials like rocks fracture when the rate of

release of the elastic strain energy accumulated in the material is
equal to the amount of energy required to produce a unit area of
the fracture surface. Therefore, the following energy equation is
established:

W f = Dvf(J0 + σ3b) (2)

Adopting the fracture bulk density to describe the fractures
comprehensively reflects the fracture information and is less affected
by the size of the unit; however, this is not conducive to the study of
fractures in coal reservoirs. In fracture research, emphasis is placed
on the fracture trace density (or fracture spacing), which refers to the
number of fractures per unit length (with fracture spacing being the
reciprocal of the fracture line density). Consequently, it is necessary
to establish a formula for the fracture line density.
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FIGURE 6
Relationship between stratum thickness and fracture density.

In particular, the volume and trace density of the fractures can
be converted as follows:

D′l f =
2DvfL1L3 sin θ cos θ− L1 sin θ− L3 cos θ

L21 sin
2 θ+ L23 cos

2 θ
. (3)

According to Equation 3, there is no necessary relationship
between the fracture line density and stratum thickness. However,
Jing et al. (2014) and Wang (2014) believed that there is a negative
power function relationship between the two variables. When the
rock stratum is thin (thickness: <10 cm), the stratum thickness has
the most significant influence on fracture line density. When the
rock layer is medium-thick (thickness: 10–50 cm), the influence
of the formation thickness on the stratum declines rapidly. In
some areas, the fracture density may increase abnormally under
the influence of tectonics. If the stratum is thick or superthick, the
fracture line density is comparatively low and tends to be stable.
The fracture data compiled from previous field outcrop observations
show a similar negative power function relationship between the
fracture line density and stratum thickness (Figure 6).

Wang (2007) proposed a model that does not consider the effect
of thickness on the fracture line density; here, it was considered that
the depth of the fracture formed under stress is greater than the rock
thickness, i.e., the fractures extend throughout the model. However,
during fracture formation, although some of the microfractures
eventually extend throughout the model to form fractures, there
are still numerous microfractures with depths less than the rock
thickness that are unable to penetrate the entire model or can only
form small fractures inside the rock. During actual measurements,
such fractures are not counted, resulting in lower measured fracture
line density values.

In addition, owing to the non-homogeneous nature of the
rock, there are bound to be differences between the fractures

in the homogeneous model and those in the actual rock. This
means that under stress, the lengths of the fractures formed by
interconnectedmicrofractures in the direction of σ2 will be different,
resulting in some of the fractures failing to penetrate the model.
To solve this problem, we consider that the non-homogeneous
regions in the rock are distributed more randomly. In this case,
the lengths of the fractures in the direction of σ2 are normally
distributed (Figure 7).

For rocks of thickness h, fractures with lengths greater than h
in the σ2 direction were successfully observed in the field. However,
fracture lengths less than h are developed inside the rock, making it
difficult to observe them visually. Therefore, the measured fracture
density can be expressed by the following equation:

Dl f = D
′
l f ×∫
+∞

h

1
√2πα

e−
(l2−l0)

2

2α2 dl2, (4)

where l0 is the fracture length along σ2 under homogeneous
conditions, and l2 is the measured length in the same direction.
Moreover, both α and l0 are subjected to the actions of rock stratum
lithology and stress, whose specific values should be determined
according to the physical conditions of the specific areas. In this
scenario, the relationship between the fracture line density and stress
can be expressed by the following equation set:

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

w f =
1
2E
(σ21 + σ

2
3 − 2μσ1σ3 − 0.85

2σ2p + 2μσ30.85σp)

σp =
2C0 cosφ+ (1+ sinφ)σ3

1− sinφ

w f = Dvf(J0 + σ3b)

D′l f =
2DvfL1L3 sinθcosθ− L1 sinθ− L3 cosθ

L21 sin
2 θ+ L23 cos

2 θ

Dl f = D
′
l f ×∫
+∞

h

1
√2πα

e−
(l2−l0)

2

2α2 dl2.

(5)
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FIGURE 7
Schematic illustration of the fracture lengths.

FIGURE 8
Fracture development prediction model for coal reservoirs.

Theoretical analysis results were compared with the field survey
outcomes, and it was found that the expected value of the
fracture length along σ2 was rather small for fractures formed
inside the rock. In actual field conditions, it is less likely for
the rock thickness to be less than the corresponding expected
value. Consequently, a relationship similar to the negative power
function exists between the stratum thickness andmeasured fracture
density. Thus, the expected fracture lengths may be set to 0 in the
σ2 direction.

3.2 Relationship between fracture
orientation and stress

Based on the Mohr–Coulomb shear fracture criterion, an
angular bisector of the conjugate fractures is in the stress direction.
If the stress direction is known, we only need to acquire the
rupture angles of the coalbed fractures under stress to roughly
predict the orientations of the coal reservoir fractures. Based on
long-term geological research, Ramsay (1980) proposed that the
conjugate shear angle is variable, i.e., it can be less or more than 90°.
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FIGURE 9
Schematic illustration of the coal reservoir fracture development prediction model for the Laochang area.

TABLE 1 Rock mechanical parameters of the Laochang area for numerical simulation.

Element name Density (kg/m3) Young’s modulus (GPa) Poisson’s ratio

Siltstone 2,800.00 4.00 0.30

Fault zone of the rock stratum 2,000.00 0.80 0.34

Coal seam 1,350.00 3.00 0.30

Fault zone of the coal seam 1,000.00 0.60 0.34

However, according to the Cullen–Moore rupture criterion, there
are no rupture angles larger than 90° or that such angles larger than
90° cannot be expressed mathematically. Although the relationship
between the conjugate shear angle and confining pressure can be
expressed by envisioning the ultimate stress Moore envelope as
a parabola, when the conjugate shear angle is close to 90°, the
field measurement is at 0.5°, and the error of the derived pressure
reaches several orders of magnitude. Later, Lin (1993) improved this
method by replacing the parabola with an ellipse to better represent
the relationship between the conjugate shear angle and confining
pressure. Accordingly, Lin (1993) proposed an ellipse parameter
t as follows:

t0 = arctan[sin(
φ
2
) tan (90° −φ)], (6)

t = arctan[sin (
φ
2
) tan (V)]. (7)

When V = 90°, t = 90°. Then, the shear strength of the rock can
be expressed as

τ = |
4C0 sin (t)

sin (φ) sin (t0)
|. (8)

By substituting Equations 6, 7 into Equation 8, i.e., the measured
values of shear strength and cohesive force of the rock, the theoretical
value of the rupture angle can be obtained.Thus, under the premise of
a known stress direction, the fracture orientation can be clarified.

4 Coal reservoir fracture prediction

Fractures formed under the influence of tectonic stress exhibit
a spatial distribution and an evolutionary development dictated by
the regional tectonic stress field. Research on fracture formation
and distribution in the Laochang area show that the fractures are
formed under the control of lithology and tectonic stress as well
as the influence of rock stratum thickness. The tectonic stresses
exerted on rock strata and coal reservoirs are consistent to a certain
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FIGURE 10
Mesh generation diagram for the Laochang area.

extent. Thus, ANSYS finite element numerical simulations were
conducted to establish a prediction model by placing the coal
reservoir and a certain thickness of the rock layer in the same
stress field. Field measurements of the fracture density values of
the outcrop rock layers and surface structural characteristics were
adopted as constraints to fulfill the equivalent stress inversion during
the critical period of fracture formation in the study area. Hence, the
overall fracture development and distribution rules can be predicted
for the coal reservoir in accordance with the distribution of the
surface fractures. Subsequently, by incorporating the thickness of
the simulated coal seam stratigraphy from the study area in the
mathematical model, it is possible to obtain the predicted fracture
density distribution within the coal reservoir that closely matches
the actual measured fracture density (Figure 8).

4.1 Prediction model

The construction of the prediction model entails building a
unified geometric model, building the model, andmesh generation.

4.1.1 Unified geometric model
Since the formation of the Permian coal measures, the Laochang

area primarily experiences tectonic movements due to Indosinian,
Yanshanian, and Himalayan influences. As observed from the field
fracture measurement data and principal stress restoration results,
the Indosinian period is the critical stage of fracture formation;
therefore, we consider it as the target period for this simulation.
However, stresses in the Laochang area during the Indosinian period
vary in both direction and magnitude, which is not conducive
to the establishment of the model. Hence, the model scope was
extended to the southern district of the Laochang area. In this case,

the entire model roughly covers places from the Laochang ancient
uplift to the northeastern boundary of the Dashuijing ancient uplift.
Based on the geological evolution of the Laochang area, the model
is initially simplified by removing the structures formed during
and after the Indosinian period while retaining only the basement
structures that existed before. Finally, to facilitate stress loading,
the model was rotated to generate a simulation model for the
Laochang area (Figure 9).

The stresses should be applied so that they are maximally
consistent with the actual scenarios. During the Indosinian period,
the closure of the Mayang River and Qinzhou remnant troughs
almost created a south–north stress, but the study area was
influenced by the Nanpanjiang Fault such that the direction of
stress shifted to NNW-SSE. This result is consistent with the stress
recovery results from the fractures in the field. According to the
tectonic framework surrounding the Laochang area, the Dashuijing
ancient uplift and Nanpanjiang Fault are deemed to be located to
the southwest and southeast of this area, respectively. In the actual
process of tectonic evolution, different modes of stress attenuation
produced different stress strengths and directions near the Laochang
area. Based on the structural outline map of the Luoping area, it is
inferred that stress along the southeastern boundary of Laochang
area is in the northwest direction, and fault zones and folds are
densely formed along the Nanpanjiang Fault by the stresses applied
directly on it during the Indosinian period. Along the southwestern
boundary of the Laochang area, the stresses are almost in the
south–north and NNE directions, resulting in simple faults and
wide but gentle folds; the reason for this is that the stresses from
the Indosinian movements act on the Dashuijing ancient uplift via
the Nanpanjiang Fault and finally affect the Laochang area, which
could lead to stress attenuation to a certain extent. Basement faults
were found at the northwest and northeast boundaries of Laochang
area. Therefore, the stress status of the surroundings for the model
is designed as follows. In addition to inward extrusion along
the ancient uplift boundary, the southeastern stress is far greater
than the southwestern component. Moreover, the displacements
of the basement faults remain unchanged. The rock mechanical
parameters of the Laochang area are obtained experimentally from
the collected samples (Table 1).

4.1.2 Model construction
Transformation from a geometric to geological model was

realized by attaching the rock mechanical parameters representing
the properties of different units to the geometric model. In
combination with the results of the field geological survey, the
siltstone of the Feixianguan Formation exposed in the Laochang
area was selected as the reference stratum. Based on the rock
mechanical experiments, the Young’s modulus and Poisson’s ratio
that represent the mechanical properties of the rock were included
with the originalmodel to establish the geologicalmodel for siltstone
in the Laochang area.

Once the geological model is constructed, the unit model must
be selected. Generally, for the 3D geological model, PLANE183 is
selected as the basic unit in the finite element analysis.

4.1.3 Mesh generation
Given the complex geological conditions, the automatic mesh

division methods available in simulation software cannot accurately
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TABLE 2 Measured data processing to predict fracture density in the Laochang area.

Lithology Measured
fracture
density
(lines/m)

Thickness (m) Predicted
total fracture

density
(lines/m)

SD Probability Normal
probability

Absolute
difference

Siltstone

19.00 0.35 40.00 2.00 0.48 0.43 0.0445

19.00 0.09 40.00 2.00 0.48 0.48 0.0071

19.00 0.10 40.00 2.00 0.48 0.48 0.0051

18.00 0.12 40.00 2.00 0.45 0.48 0.0261

Coal seam
78.00 1.20 290.00 1.36 0.27 0.19 0.0802

30.00 1.70 290.00 1.36 0.10 0.11 0.002

FIGURE 11
Simulation results of the maximum principal stress in the study area.

represent the complex geological structures and lithologies.
However, manual mesh division can take into account different
material properties. During mesh division, rock bodies with
different material properties should be categorized with different
units, and the parts wherein the rock properties vary should
be refined using a denser mesh where appropriate. It is also
important to avoid the use of obtuse angles within the units.
Concurrently, the special characteristics of the strata and structures
must be considered to determine the combination of units and
specific division method to be employed. In accordance with
mesh generation principles, quadrilateral meshes were primarily
adopted in this work. Specifically, the geological model of the
entire research area was divided into 5,609 elements and 18,925
nodes to reflect the geological tectonic characteristics of the main
research area (Figure 10).

4.1.4 Data selection and processing
The data from field measurements are first screened, and the

fracture points from the Indosinian period are selected and classified
according to lithology. Then, the variance of the fracture density in
the mathematical formula is calculated based on the relationship
between the rock layer thickness and fracture density (Table 2).

4.1.5 Mechanical model
Using the generated mesh, the boundary conditions of the stress

field were loaded for the study area to realize conversion from a
geological model to a mechanical model. In addition to applying
appropriate stresses along the bottom and right-side boundaries
of the model, constraints were imposed on the model boundaries
adjacent to the Mile-Shizong Fault and Baise-Longlin Fault to
restrict displacement of the basement faults.
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FIGURE 12
Simulation results of the minimum principal stress in the study area.

As seen from the previous paleo stress measurements from the
vicinity of the research area, the corresponding differential stress
was designed as approximately 100 MPa. By applying stresses to the
boundaries along the sides of the model, the stress distribution was
obtained for the research area, followed by calculation of the fracture
density predictedusing the constrainedpoints.Then, the calculated and
measuredfracturedensityvalueswerecompared,andtheerrorsbetween
them were further analyzed. Finally, the stress magnitudes along the
sideswere adjusted according to the experimental findings. By ensuring
that thedifferential stressmagnitudes remained roughlyunchanged, the
above procedures were repeated until the predicted fracture density of
the surface was maximally similar to its measured value.

Error analysis was performed based on the relative errors
calculated as follows:

R =
|MeasuredJointDensity−PredictedJointDensity|

MeasuredJointDensity
× 100%,

(9)

where R is the relative error.
Considering that the fracture densitiesmeasured during the field

surveymayhave errors, especiallywhen the values at the observation
points are rather low, the relative errors may greatly inconvenience
the overall error analysis. Hence, absolute error is introduced to
support the error analysis as follows:

r = |MeasuredJointDensity−PredictedJointDensity|, (10)

where r is the absolute error.
The fracture density was calculated using the simulation results

of themaximumandminimumprincipal stress values under varying
stress conditions (Figures 11, 12). Under the condition that the
extremal stress values are 8 MPa and 100 MPa, the predicted fracture
density calculated by using Equation 5 is slightly different from the
measured valuewith respect to the constraint points. Specifically, the

relative errors are all below 9%, and the absolute errors are less than
2 fractures per meter, which are calculated by using Equations 9, 10.

4.2 Prediction results

By modifying the mechanical parameters of the surface
geometric model as well as lithological parameters used in the
calculations, it is possible to perform a forward modeling of
the structural evolution of the coal reservoir by substituting the
thickness of the coal seamat each point in Equation 4.This allows the
simulation and prediction of the fracture density as well as fracture
orientations within the coal reservoir.

4.2.1 Fracture density distribution prediction
Using the self-programmed command flow, all node coordinates

and stress values of the paleo stress field simulation results were
extracted, and the fracture density prediction was calculated using
Equations 1–3. Finally, the node coordinates and predicted fracture
density were imported into Surfer to draw the contour map of the
overall fracture density of the coal reservoir (Figure 13). Xiao (2017)
reported that the overall fracture density in the Laochang area ismainly
controlled by large-scale boundary faults and ancient uplifts, while the
local fracture density anomalies are influenced by different tectonic
combinations in the area. Based on the current results from the paleo
stress field study on the key period of fracture formation in the study
area, we note that Laochang and its surrounding areas were subjected
to NNW-SSE stresses during the Indosinian period, which resulted in
bidirectional lateral extrusion stresses perpendicular to the boundaries
of the Nanpanjiang Fault and Dashuijing ancient uplift. Thus, the
fracturedensity in the study area gradually decreases fromthe southeast
to northwest direction.

The findings of previous studies regarding the thickness of the 9#

coal seam in the study area (Figure 14) were applied as the thickness
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FIGURE 13
Contour map of the predicted fracture density for coal reservoirs in the Laochang area without considering stratum thickness.

parameter values in the fracture mathematical model to calculate
the fracture density using Equation 4; then, the measured fracture
density contour map of the coal reservoir was obtained using the
contour map of its total fracture density as well as the contour
map of the thickness of the 9# coal seam (Figure 15). Comparing
the measured and calculated fracture densities after considering
the effects of thickness, the relative error in fracture density is
less than 13% (Table 3), which indicates that the predicted results
have a certain degree of confidence. According to the results, the
number of fractures measured in the coal reservoir in the Laochang
area mostly ranges from 10 to 20 per meter, while some regions may
have up to 80 fractures permeter or above. Under tectonic influence,
the fractures in the Laochang area have a higher distribution density
in the south than in the north as well as higher density in the west

than in the east. Owing to the impact of thickness, fractures are
mainly developed in the east of F1-19 as well as other places next to
B401, F9, and F10, where the coal seams are rather thin. The fracture
density of the coal reservoir in the Yuwang block is generally high.
In the northern part of the Laochang anticline, rapid increases in the
coal seam thickness cause the fracture density to decline rapidly. In
some zones, the number of fractures is even as low as 1 per meter.

4.2.2 Fracture orientation prediction
The coordinates of all the nodes and directions of the stress

values were extracted using the self-programmed command flow.
After simple calculations, the data were imported into Surfer to
obtain the statistical results. The predicted stress direction of the
coal reservoir in the Laochang area is mostly between 150° and
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FIGURE 14
The Thickness contour map of the 9# coal seam in the Laochang area (Wang, 2007).

155°. The stress direction is roughly NNW and perpendicular to
the Nanpanjiang Fault. Given the presence of basement faults, the
stress directions may change perpendicular to such faults. Along
the east side of the Mile-Shizong Fault, the stresses move gradually

downward from 152° to 150°; in contrast, the stresses near the
Baise-Longlin Fault move upward from 152° to 155°.

Based on the stress directions obtained from the simulations and
theoretical rupture angles obtained by calculations, the following
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FIGURE 15
Contour map for the predicted fracture density of coal reservoirs in the Laochang area considering stratum thickness.

TABLE 3 Error analysis of the fracture density prediction considering stratum thickness for coal reservoirs in the Laochang area.

Observation
point

Thickness of
coal seam (m)

Measured
fracture density

(lines/m)

Predicted
fracture density

(lines/m)

Relative error (%) Absolute error
(lines/m)

Bailong Mountain coal
mine

1.70 30.00 33.81 12.71 2.81

Xiongdong coal mine 1.20 78.00 68.00 12.27 9.57

conclusions can be drawn (Table 4). When the fracture formation
in the coal reservoir does not change with progressive deformation
or preliminary rupture, two major sets of fractures are developed in
the coal reservoir; the fracture strikes from one set are roughly at
193°, while those from the other set are at about 116°. In addition,

unusual concentration or changes in the stress direction in the area
due to inhomogeneities in the coal and rock can lead to abnormal
changes in the direction and density of the fractures. However, the
overall tendency for variation should generally be similar to the
corresponding predicted outcomes.
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TABLE 4 Rupture angles for coal reservoirs in the Laochang area.

Observation
point

Fracture set
1

Fracture set
2

Rupture
angle

Calculated
value of
rupture
angle

Relative
error (%)

Absolute
error

Bailong Mountain
coal mine

29.00°∠82.00° 315.00°∠81.00° 106.00° 103.19° 1.73 1.81

Xiongdong coal
mine

210.00°∠85.00° 135.00°∠81.00° 105.00° 103.19° 2.65 2.81

4.2.3 Sweet spot area optimization
Permeability and gas content are the factors that directly control

CBM accumulation (Fang et al., 2005). Although the permeability
generally decreases with increasing burial depth, the development
of fracture systems in deep coal reservoirs can enhance permeability
(Sun et al., 2014); therefore, cleat density is crucial for CBM
development. Based on the simulation results presented herein,
thicker coal seams tend to have lower cleat densities and lower
permeability. The Yuwang Block is characterized by relatively
thin coal seams with well-developed cleats and good connectivity,
resulting in high permeability. However, excess tectonic stresses can
lead to significant deformation of the coal seams and the formation
of mylonitic coal, which would reduce permeability (Jiang et al.,
2005). The Yuwang Block exhibits a simple geological structure
and lacks major faults and folds, suggesting a high potential for
CBM. Furthermore, the coal seam thickness is correlated with
the gas content, with thicker seams generally exhibiting lower
gas content (Qin et al., 2000). Although the Yuwang Block generally
has thin coal seams, the presence of small-scale folds in the northern
region, particularly within the synclinal structures, has resulted in
locally thicker coal seamswithwell-developed cleats; these represent
the areas with the highest potential for CBM development.

Based on previous studies of the present-day in situ stress
in the Yuwang region, the maximum horizontal principal stress
in the Yuwang Block is approximately in the south–north
direction (Ju et al., 2020). Previously reported fracture prediction
results for the Laochang area within the region indicate that the
dominant joint sets are oriented NNE and NEE. One of these joint
sets forms a smaller angle with the present-day SHmax orientation.
Consequently, this joint set exhibits higher effectiveness under the
influence of the current stress regime, leading to increased coal
seam permeability and enhanced CBM migration. Therefore, the
most suitable areas for CBM exploitation would be the middle
and southern parts of the Yuwang block. This conclusion is also
consistent with the previously reported sweet spot for coalbed gas
development in the Laochang area.

5 Conclusion

This paper entails recovery and evaluation of the paleotectonic
stress field in a study area using numerical simulations by taking the
Laochang area as an example and drawing on the development of
fractures in the adjacent layers of the coal seam. Accordingly, the
method for calculating the reservoir fracture density is optimized

to the study area to realize prediction of the coal reservoir fracture
density and direction.Themain findings of this study are as follows:

1) Traditional approaches of simulating tectonic stresses are often
limited by their reliance on experimental stress parameters
without incorporating geological constraints such as faults.
This study introduces a method to integrate tectonic stress
field simulation with fracture prediction by using surface
sandstone faults as the constraints for stress inversion. The
sandstone layer, which is geographically aligned with the coal
reservoir, provides a natural dataset for analyzing the stress
history influencing both the sandstone layer and coal reservoir.
This integration is expected to improve the accuracy of stress
predictions and enhance our understanding of the geological
structures in the study area.

2) The fracture density calculation model was improved by
specifically considering the effect of the rock layer thickness on
the fracture density. The fracture density calculation formula
previously summarized by researchers does not account for
the influence of stratum thickness on fracture density. In the
Laochang area, there is an inverse power function relationship
between the fracture density and stratum thickness. Owing to
the heterogeneity of the rock layer, there are variations in the
fracture lengths in the σ2 direction. In this study, we consider
that the heterogeneous regions in the rock are distributed
randomly and that the fracture lengths in the σ2 direction
follow a normal distribution. Thus, fractures are observed
in the field only when their lengths exceed the rock layer
thickness.

3) According to the prediction results of the fracture simulations,
it is believed that the fracture density of the coal reservoir in
the study area is mostly 10–20 per meter. Overall, the fracture
density distribution in the coal reservoir trends high in the
south to low in the north and high in the east to low in the west.
Ultimately, through integrated analysis of the fracture density
and orientation, coal seam thickness, structural complexity,
and the present-day stress field within the study area, the
Yuwang block is determined as the sweet spot for CBM
development in the Laochang area.
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