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Editorial on the Research Topic
Immune response in tuberculosis with comorbidities or coinfections

Tuberculosis (TB) remains a leading cause of infectious disease mortality globally. Its
pathogenesis is now understood to be heavily shaped by immunometabolic perturbations
and host comorbidities. In this context, the ten articles summarized in this Research Topic
collectively deepen our understanding of how metabolic disorders, immune-mediated
diseases, helminth infections, and viral coinfections converge to modulate TB immune
response, whose profiles may be associated with disease susceptibility or post-
treatment outcomes.

Several studies in this Research Topic illuminate the complex interplay between
diabetes mellitus (DM) and TB. Araujo-Pereira et al. offer a comprehensive overview of
TB-DM comorbidity, identifying chronic systemic inflammation and impaired immune
regulation as pivotal mechanisms fueling susceptibility and complicating treatment.
Complementing this, Ssekamatte et al. show how type 2 diabetes alters Mycobacterium
tuberculosis (Mtb)-specific CD4" and CD8" T-cell phenotypes, reducing interferon gamma
production and this occurs via an increasing of programmed cell death protein-1
expression, underscoring the impact of functional immune exhaustion in individuals
with latent Mtb infection (LTBI). Rajamanickam et al. further demonstrate that TB with
prediabetes is characterized by exacerbated profiles of pro-inflammatory cytokine and
chemokine, linking immune dysfunction to glycemic dysregulation. Additionally,
Ranaivomanana et al. reveal that DM skews longitudinal treatment monitoring
biomarkers—specifically, the monocyte-to-lymphocyte ratio and the release of interferon
gamma produced by T-cells specific to Mtb antigens—potentially limiting their interpretive
value in diabetic TB patients.

A critical implication of these findings is the pressing need for immunomonitoring
tools and personalized treatment strategies for TB-DM patients, especially in low-resource
settings where this comorbidity is on the rise.

Beyond metabolic disorders, anemia emerges as an underappreciated but potent
modulator of TB outcomes. Dasan et al. demonstrate that anemic TB patients
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experience higher bacterial burdens, more extensive lung pathology,
and worse treatment outcomes. These effects are mediated through
an imbalanced cytokine milieu favoring pro-fibrotic and
inflammatory pathways. This adds a new dimension to TB
management, suggesting that addressing anemia could serve as an
adjunctive intervention.

The immune landscape is further complicated by helminth
coinfections, as shown by Pushpamithran and Blomgran. Their data
indicates that Ascaris lumbricoides antigen exposure reprograms
macrophage-derived extracellular vesicles (EVs) to enhance Mtb
control while dampening Interleukin-1 betaproduction, via
microRNA-mediated modulation of Phosphoinositide 3-kinase/
Akt pathway and Mitogen-Activated Protein Kinase pathways.
This illustrates the immunoregulatory potential of helminths and
the therapeutic promise of EVs as immunomodulators in TB.

Autoimmune conditions and their treatments also significantly
affect TB immunobiology. Farroni et al. report that patients with
immune-mediated inflammatory diseases (IMID), such as
rheumatoid arthritis, retain intact Mtb-specific immune responses
production, and this occurs via via in vitro bacterial control, despite
their underlying immune dysfunction and immunosuppressive
therapies. However, Picchianti-Diamanti et al. warn that
immunomodulatory biologics, particularly tumor necrosis factor
inhibitors and Janus tyrosine kinase inhibitors, significantly increase
TB risk, underscoring the importance of rigorous LTBI screening and
prophylaxis in these populations. The discrepancy between preserved
immune function and elevated TB risk raises important questions
about the balance between systemic and compartmentalized
immunity in the context of immunosuppressive biologic therapies.

Although the relationship between other viral infections and TB
is not as strong as that of human immunodeficiency virus, some can
affect immunity and increase the risk of developing the disease or
worsening its course. However, due to its recent circulation in the
population, little is known about the impact of Severe Acute
Respiratory Syndrome Coronavirus 2 on patients infected with Mtb
Pena-Bates et al. show that individuals with LTBI and mild
coronavirus disease 2019 (Covid-19) exhibit enhanced CD8" T cell
cytotoxicity, mitochondrial stability, and attenuated pro-
inflammatory cytokine secretion compared to Covid-19-only
patients, suggesting a potentially immune modulation conditioning
by LTBL. Meanwhile, Kameni et al. reveal that polymorphisms in the
angiotensin-converting enzyme 2 gene influence cytokine responses
in TB-Covid-19 co-infection, suggesting that host genetics modulate
disease severity in co-infected individuals.

Together, these studies underscore the necessity for an
integrative view of TB pathogenesis, one that incorporates
immunogenetics, comorbidity profiles, and host-pathogen-
microbiome interactions. They also call for the development of

Frontiers in Immunology
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stratified treatment and monitoring protocols that reflect the
heterogeneity of TB hosts in real-world clinical settings.

However, gaps remain. While robust in design, several studies
rely on small cohorts, lack longitudinal validation or confined to
geographically distinct locations. Functional studies linking
cytokine signatures to bacterial clearance or tissue pathology are
needed to move from correlation to causation. Moreover, the
interplay between metabolic control (e.g., glycated hemoglobin
levels) and immune trajectory during TB therapy is insufficiently
characterized, limiting translational applications.

In conclusion, the convergence of TB with metabolic, autoimmune,
parasitic, and viral comorbidities demands a multidimensional
approach to research and care. Immunological profiling, coupled
with genetic screening and clinical biomarkers, holds promise for
identifying vulnerable subpopulations and optimizing TB control
strategies. As these findings integrate into practice, they may finally
tilt the balance in the global fight against TB.
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Introduction: Tuberculosis (TB) remains a significant health concern in India, and
its complexity is exacerbated by the rising occurrence of non-communicable
diseases such as diabetes mellitus (DM). Recognizing that DM is a risk factor for
active TB, the emerging comorbidity of TB and PDM (TB-PDM) presents a particular
challenge. Our study focused on the impact of PDM on cytokine and chemokine
profiles in patients with pulmonary tuberculosis TB) who also have PDM.

Materials and methods: We measured and compared the cytokine (GM-CSF,
IFN-vy, IL-1o/1L-1F1, IL-1B/IL-1F2, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, IL-13, IL-
17/IL-17A, IL-18/IL-1F4, TNF-o) and chemokine (CCL1, CCL2, CCL3, CCL4,
CCL11, CXCL1, CXCL2, CXCL9, CXCL10, and CXCL11) levels in plasma samples
of TB-PDM, only TB or only PDM using multiplex assay.

Results: We observed that PDM was linked to higher mycobacterial loads in TB.
Patients with coexisting TB and PDM showed elevated levels of various cytokines
(including IFNYy, TNFo,, IL-2, IL-17, IL-10, IL-1B, IL-6, IL-12, IL-18, and GM-CSF) and
chemokines (such as CCL1, CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL9, CXCL10, and
CXCL11). Additionally, cytokines such as IL-18 and GM-CSF, along with the chemokine
CCL11, were closely linked to levels of glycated hemoglobin (HbAlc), hinting at an
interaction between glycemic control and immune response in TB patients with PDM.

Conclusion: Our results highlight the complex interplay between metabolic
disturbances, immune responses, and TB pathology in the context of PDM,
particularly highlighting the impact of changes in HbAlc levels. This emphasizes
the need for specialized approaches to manage and treat TB-PDM comorbidity.

KEYWORDS

pre-diabetes, tuberculosis, cytokines, chemokines, metabolism, immunity
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1 Introduction

Tuberculosis (TB) remains a leading cause of death worldwide.
Globally, million people were estimated to be newly diagnosed with
TB with an estimated death due to TB being 1.3 million in 2022 (1).
The intersection of TB and type 2 diabetes (T2D) significantly
worsens health outcomes, increasing the risk of drug-resistant TB
strains and elevating relapse and mortality rates during treatment
(1, 2). In India, approximately 26% of TB patients also suffer from
diabetes, highlighting a critical public health issue (3, 4).

Pre-diabetes (PDM), a condition of intermediate hyperglycemia
characterized by impaired fasting glucose (IFG) or impaired glucose
tolerance (IGT), affects nearly 298 million people worldwide—a
figure projected to rise to 414 million by 2045 (5). PDM not only
increases the likelihood of progressing to diabetes but also amplifies
the risk of developing TB. This is attributed to an impaired immune
response which is further compromised in the presence of active
TB, potentially exacerbating dysglycemia (6-8).

Further, exacerbating the complexity, recent studies suggest that
the immune systems of individuals with PDM are dysregulated,
showing enhanced levels of pro-inflammatory cytokines including
Type 1 and Type 17 cytokines and others like IL-1(3, IFNB, and GM-
CSF, which are crucial in the pathogenesis of TB (9, 10). This
cytokine profile is similar to that of patients with TB and diabetes,
indicating a similar alteration in immune function that could
exacerbate TB progression (3, 9, 11-21). Moreover, PDM has
been shown to be associated with unfavorable treatment
outcomes in TB (9, 14, 22, 23).

Given the increasing prevalence of PDM and its potential to
progress to diabetes, understanding how PDM influences TB
pathogenesis is crucial. This study aims to explore the impact of
PDM on the cytokine and chemokine responses in patients newly
diagnosed with active pulmonary tuberculosis (TB). By comparing
cytokine levels in TB patients with and without PDM, we seek to
unravel how even modest disruptions in glycemic control could
influence the inflammatory milieu in TB, potentially informing
better management strategies for this dual burden of disease.

2 Methods and materials

2.1 Ethics statement

This study was approved by the Ethics Committees of the Prof.
M. Viswanathan Diabetes Research Center (ECR/51/INST/TN/
2013/MVDRC/01) and NIRT (NIRT-IN0:2014004). Informed
written consent was obtained from all participants. All the
methods were performed in accordance with institutional ethical
committee guidelines. The study participants were recruited from
the Effect of Diabetes in Tuberculosis Severity protocol conducted
under the RePORT (Regional Prospective Observational Research
for Tuberculosis) India consortium.

2.2 Study population

Individuals newly diagnosed with smear and culture-positive
pulmonary TB, both with and without PDM, were enrolled between
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2015 - 2018 in Chennai. This study analyzed baseline plasma
samples from a cohort of 66 participants divided into three
groups: 22 individuals co-positive for PDM and TB, 22 positive
for TB and normoglycemic (NDM), and 22 PDM who were TB-
negative. TB was diagnosed based on sputum smear and culture
positivity, employing Ziehl-Nielsen smear microscopy and culture
grading. In brief, before beginning anti-TB medication, all patients
had three sputum samples (spot-morning-spot) taken after being
instructed and shown how to provide high-quality sputum. Using
the Ziehl-Neelsen (ZL) method, all of the sputum samples were
stained for acid-fast bacilli (AFB). Individuals with pulmonary TB
were diagnosed by positive solid cultures in Lowenstein—Jensen
medium and were classified as 1+ (10-100 colonies), 2+ (>100-200
colonies) and 3+ (>200 colonies). Chest radiographs on enrollment
were graded by two blinded readers using a validated severity score
based on the percent area of lung involved with TB disease and the
presence or absence of cavities. Smear grades were used to
determine bacterial burdens and classified as 1+ (10-99 AFB in
100 fields), 2+ (1-10 AFB in each field) and 3+ (more than 10 AFB
in each field) based on World Health Organization guidelines and
according to the NTEP national laboratory guidelines (24). All
standard test methods for smear, culture (solid and liquid), and
Xpert MTB/RIF shall be carried out. Chest X-rays were used to
determine cavitary disease and unilateral versus bilateral
involvement. PDM was defined by a Glycated Hemoglobin
(HbA1lc) level of 5.7% to 6.4%, according to the American
PDM individuals were

asymptomatic with normal chest X-rays and Quantiferon TB-

Diabetes Association criteria.

Gold. Comprehensive assessments including anthropometric
measurements (e.g., BMI) and biochemical parameters (e.g.,
HbAlc, random blood glucose, total cholesterol, serum
triglycerides, HDL, and LDL cholesterol) were conducted.
Additional clinical features, such as the presence of cavitary
lesions and bilateral lung disease, were recorded.

2.3 Multiplex assay methodology

The levels of cytokines and chemokines were measured using
the Bio-Rad, MAGPIX multiplex system (Bio-Rad, MAGPIX
multiplex reader, xPONENT 4.2 acquisition and Bio-plex
manager 6.1 software). Luminex Human Cytokines Magnetic
Assay kit (R & D systems, USA) In brief, samples of plasma were
purified and stored frozen at —80 °C prior to Luminex assays. The
samples were thawed to room temperature and following the
manufacturer’s recommendations, the assay was performed to
measure the levels of cytokines and chemokines. The lowest
detection limits for cytokines were as follows: GM-CSF, 18.4 pg/
mL; IFN-y, 5.7 pg/mL; IL-10/IL-1F1, 10.6 pg/mL; IL-1B/IL-1F2, 3.5
pg/mL; I1L-2, 3.6 pg/mL; IL-4, 1.1 pg/mL; IL-5, 6.2 pg/mL; IL-6, 9.0
pg/mL; IL-10, 32.2 pg/mL; IL-12p70, 18.5 pg/mL; IL-13, 31.8 pg/
mL; IL-17/IL-17A, 9 pg/mL; IL-18/IL-1F4, 2.5 pg/mL; TNF-o,, 12.4
pg/mL and chemokines like CCL1, 1.57 pg/mL; CCL2, 31.8 pg/mL;
CCL3, 90.9 pg/mL; CCL4, 103.8 pg/mL; CCL11, 21.6 pg/mL;
CXCLI, 49.2 pg/mL; CXCL2, 49.2 pg/mL; CXCL9, 600.6 pg/mL;
CXCL10, 2.88 pg/mL and CXCL11, 21.6 pg/mL.
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2.4 Statistical analysis

Geometric means (GM) were calculated to describe the central
tendency of data. Group comparisons among the TB-PDM, TB, and
PDM were made using the Kruskal-Wallis test, with Dunn’s
multiple comparisons test applied to identify statistically
significant differences. The Spearman rank correlation coefficient
was used to assess correlations between variables. The cytokine and
chemokine levels were correlated with HbAlc levels. The linear
regression analysis was performed between the levels of cytokines
and HbAlc, RBG and total cholestrol. Data analysis was performed
using GraphPad Prism version 10.2.3 and JMP version 17.0.0.

3 Results
3.1 Characteristics of the study population

The demographic and biochemical baseline characteristics of
the study population are presented in Table 1. Individuals with TB-
PDM exhibited significantly higher levels of HbAlc (TB-PDM;
Geomean (GM) 5.92, IQR 5.9-6.12 vs. TB, GM 5.6, IQR 4.12-5.35;
PDM, GM 5.3, IQR 5.2-5.4; p = 0.0286), random blood glucose
(RBG) (TB-PDM; GM 101, IQR 80-148 vs. TB, GM 86, IQR 74—
116; PDM, GM 85, IQR 68-115; p = 0.0160), and total cholesterol
(TB-PDM; GM 168, IQR 145-198 vs. TB, GM 146, IQR 128-190;
PDM, GM 131, IQR 105-140; p = 0.0386) compared to those with
TB alone and PDM alone. No significant differences were observed
in age, sex, BMI, serum triglycerides, high-density lipoprotein

10.3389/fimmu.2024.1447161

cholesterol (HDL), or low-density lipoprotein cholesterol (LDL)
among the TB-PDM, TB, and PDM groups. As detailed in Table 2,
the subgroup with TB-PDM demonstrated significantly higher
bacterial loads than the TB-only group, with mean scores of 3+ in
acid-fast bacillus (AFB) staining and 4+ in culture results (p = 0.035
and p = 0.001, respectively). The prevalence of bilateral pulmonary
involvement and occurrence of pulmonary cavities were
comparable across the groups, with no statistically significant
differences noted.

3.2 TB-PDM is linked to higher systemic
levels of type 1 and type 17 cytokines

To explore the influence of PDM on the levels of type 1 and type
17 cytokines in individuals with active TB, we analyzed the
circulating concentrations of these cytokines. Specifically, we
measured type 1 cytokines (IFN-y, TNF-a, and IL-2) and the type
17 cytokine IL-17 in groups with TB-PDM, TB alone, and PDM
alone. As illustrated in Figure 1A, the levels of type 1 cytokines were
substantially elevated in the TB-PDM group (IFN-y: TB-PDM-
median, 189.2 pg/ml; IQR, 177.6-200.5 pg/ml Vs TB, median 119.5
pg/ml; IQR, 105.0-142.5 pg/ml Vs PDM, median 101.8 pg/ml; IQR,
83.08-113.3 pg/ml: p<0.0001) compared to those with only TB or
PDM. Similar patterns were observed for TNF-o. (TB-PDM-
median, 111.2 pg/ml; IQR, 109.3-118.8 pg/ml Vs TB, median
73.50 pg/ml; IQR, 71.28-81.15 pg/ml Vs PDM, median 41.40 pg/
ml; IQR, 41.40 -44.49 pg/ml: p<0.0001) and IL-2 (TB-PDM-
median, 95.20 pg/ml; IQR, 95.20 -97.23 pg/ml Vs TB, median

TABLE 1 Demographics and biochemistry profile of TB-PDM and TB and PDM individuals.

Parameter

Age 41 (18-65) 39.5 (20-65) 41.5 (22-65) 0.5647

Gender M/F 10/12 12/10 12/10 0.6821

BMI (kg/m?) 225 (16.4 - 24.5) 204 (14.6 - 22.3) 24.5 (15.5 - 30.10) 0.4876
Smear Grade: 0/1+/2+/3+ 0/12/4/6 0/9/10/3 NA
Cavitary Disease (Y/N) 6/16 5/17 NA
Lung Lesions (Unilateral/Bilateral) 15/7 16/6 NA

Biochemical Parameters

HbAlc (%) 5.92 (5.71-6.44) 5.6 (4.04-5.65) 5.3 (5.2- 54) 0.0286

RBG (mg/dl) 101 (78- 156) 86 (70-120) 85 (66-118) 0.0160

Total cholesterol (mg/dl) 168 (142-202) 146 (124-195) 131 (102-148) 0.0386

Serum triglycerides (mg/dl) 102 (64-424) 98 (56-384) 141 (50-179) 0.6382

HDL (ml/dl) 37 (29-59) 45 (25-66) 52.8 (30-96) 0.5926

LDL (ml/dl) 104 (44-180) 96 (52-146) 83. 5 (60-195) 0.6366

The values represent the geometric mean and the range (except for age where the median and the range) are shown.
Smear grades were used to determine bacterial burdens and classified as 1+ (10-99 AFB in 100 fields), 2+ (1-10 AFB in each field) and 3+ (more than 10 AFB in each field) based on World Health

Organization guidelines.

Unilateral Lung Lesions: These are lesions that affect only one lung or one side of the chest. They may appear as localized abnormalities on imaging such as X-rays.
Bilateral Lung Lesions: These lesions affect both lungs simultaneously. They can manifest as widespread abnormalities throughout both lungs or as multiple discrete lesions scattered across both

lung fields.
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TABLE 2 Clinical profile of TB-PDM Vs TB individuals.

TB-PDM TB (n = 22) p-value
(n=22)
AFB
1+ 12 9 0.035
2+ 4 10
3+ 6 3
Culture
1+ 14 13 0.001
2+ 1 9
3+ 7 0
Cavity
Yes 6 5 0.728
No 16 17
Bilateral
Yes 7 6 0.819
No 15 16

AFB smear result with respect to the number of M. tuberculosis culture-positive specimens
from three consecutive days of sputum samples.

Smear grades were used to determine bacterial burdens and classified as 1+ (10-99 AFB in 100
fields), 2+ (1-10 AFB in each field) and 3+ (more than 10 AFB in each field) based on World
Health Organization guidelines. According to the NTEP national laboratory guidelines.
Chest X-rays were used to determine cavitary disease and unilateral versus
bilateral involvement.

10.3389/fimmu.2024.1447161

57.12 pg/ml; IQR, 57.12-61.98 pg/ml Vs PDM, median 38.08 pg/ml;
IQR, 38.08-41.32 pg/ml: p<0.0001). Additionally, the level of the
type 17 cytokine IL-17A was significantly higher in the TB-PDM
group (TB-PDM-median, 53.31 pg/ml; IQR, 50.95-55.68 pg/ml Vs
TB, median 44.34 pg/ml; IQR, 37.95-45.88 pg/ml Vs PDM, median
30.57 pg/ml; IQR, 30.57-33.41 pg/ml: p<0.0001) than in those with
TB alone or PDM alone. The findings also revealed that the levels of
both type 1 and type 17 cytokines were higher in individuals with
TB compared to those with PDM. Therefore, TB-PDM is
characterized by an increase in both type 1 and type 17 cytokines,
indicating a more pronounced immune response in individuals
with both TB and PDM.

3.3 TB-PDM exhibits elevated systemic
levels of IL-10

In our investigation into the impact of PDM on type 2 and anti-
inflammatory cytokines in individuals with active TB, we assessed
the circulating concentrations of these cytokines. Specifically, we
analyzed type 2 cytokines (IL-4, IL-5, IL-13) and the anti-
inflammatory cytokine IL-10 in groups with TB-PDM, TB alone,
and PDM alone. As depicted in Figure 1B, there were no significant
differences in the levels of type 2 cytokines (IL-4, IL-5, IL-13)
between the groups. However, the circulating levels of the anti-
inflammatory cytokine IL-10 was notably higher in the TB-PDM
group (TB-PDM-median, 62.28 pg/ml; IQR, 56.88 - 67.65 pg/ml Vs
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FIGURE 1

TB-PDM TB PDM

Elevated Levels of Type 1 and Type 17 Cytokines in TB-PDM. Plasma levels of (A) Type 1 (IFNy, TNFo, IL-2) and Type 17 (IL-17) cytokines, (B) Type 2 (IL-4, IL-5,
IL-13), and regulatory (IL-10) cytokines, (C) and other pro-inflammatory cytokines (IL-1a, IL-1, IL-6, IL-12, IL-18, and GM-CSF) were measured via Bio-Rad,
MAGPIX multiplex system in individuals with TB-PDM (n=22), PDM (n=22), and TB (n=22). Data are presented as violin plots, with each circle representing an
individual (Navy Blue — TB-PDM; Maroon — TB; Light Blue — PDM). p-values were calculated using the Kruskal-Wallis test with Dunn’s multiple corrections.

Frontiers in Immunology

10

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1447161
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Rajamanickam et al.

TB, median 43.89 pg/ml; IQR, 37.14 - 47.40 pg/ml Vs PDM,
median 21.36 pg/ml; IQR, 20.16 - 22.55 pg/ml: p<0.0001)
compared to individuals with TB alone or PDM alone.
Additionally, IL-10 levels were significantly elevated in the TB
group compared to those with PDM alone. Therefore, TB-PDM is
characterized by increased levels of the anti-inflammatory cytokine
IL-10, suggesting a distinct immunological profile in individuals
with both TB and PDM.

3.4 TB-PDM presents with heightened
systemic levels of other pro-inflammatory
cytokines and IL-1 family of cytokines

In our investigation into the impact of PDM on the IL-1 family
and additional pro-inflammatory cytokines in individuals with
active TB, we analyzed the circulating concentrations of IL-10i,
IL-1B, IL-6, IL-12, IL-18, and GM-CSF. Comparing individuals
with TB-PDM, TB alone, and PDM alone, we observed significant
differences in cytokine levels, as depicted in Figure 1C. Specifically,
the circulating levels of IL-1o. (TB-PDM-median, 121.2 pg/ml; IQR,
110.1- 126.1 pg/ml Vs TB, median 69.80 pg/ml; IQR, 66.83 - 72.72
pg/ml Vs PDM, median 46.53 pg/ml; IQR, 46.53- 48.48 pg/ml:
p<0.0001), IL-1B3 (TB-PDM-median, 71.60 pg/ml; IQR, 57.59- 88.51
pg/ml Vs TB, median 44.96 pg/ml; IQR, 34.16 - 56.64 pg/ml Vs
PDM, median 29.84 pg/ml; IQR, 28.08 - 35.78 pg/ml: p<0.0001),
IL-6 (TB-PDM-median, 180.6 pg/ml; IQR, 149.5 - 235.9 pg/ml Vs
TB, median 59.42 pg/ml; IQR, 46.16 - 84.99 pg/ml Vs PDM,
median 38.54 pg/ml; IQR, 35.18 - 41.16 pg/ml: p<0.0001), IL-12
(TB-PDM-median, 79.26 pg/ml; IQR, 76.78 - 81.73 pg/ml Vs TB,
median 64.14 pg/ml; IQR, 61.37 — 69.26 pg/ml Vs PDM, median
34.63 pg/ml; IQR, 33.99 - 37.14 pg/ml: p<0.0001), and GM-CSF
(TB-PDM-median, 131.7 pg/ml; IQR, 119.71- 152.7 pg/ml Vs TB,
median 92.7 pg/ml; IQR, 90.06 - 95.34 pg/ml Vs PDM, median
84.14 pg/ml; IQR, 72.59 - 86.84 pg/ml: p<0.0001) were markedly
elevated in individuals with TB-PDM compared to those with TB
alone and PDM alone. Similarly, these cytokines were significantly
increased in individuals with TB compared to those with PDM
alone. These findings indicate that TB-PDM is characterized by
heightened systemic levels of the IL-1 family of cytokines and other
pro-inflammatory cytokines, suggesting an enhanced inflammatory
response in individuals with both TB and PDM.

3.5 TB-PDM is associated with elevated
systemic levels of CC and CXC chemokines

In our investigation to assess the impact of PDM on CC and
CXC chemokines in individuals with active TB, we analyzed the
circulating concentrations of various chemokines including CCL1,
CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL9, CXCL10,
and CXCL11. Comparing individuals with TB-PDM, TB alone, and
PDM alone, we observed notable differences in chemokine levels, as
illustrated in Figure 2. As shown in Figure 2A, CCL2 (TB-PDM-
median, 2105 pg/ml; IQR, 1820 - 2766 pg/ml Vs TB, median 839.5
pg/ml; IQR, 568 — 1160 pg/ml Vs PDM, median 458.6 pg/ml; IQR,
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337.2 - 554.4 pg/ml: p<0.0001), CCL4 (TB-PDM-median, 245.4 pg/
ml; IQR, 133.8 - 392.3 pg/ml Vs TB, median 172.7 pg/ml; IQR,
131.7 - 197.9 pg/ml Vs PDM, median 73.03 pg/ml; IQR, 59.36 -
94.31 pg/ml: p<0.0001), and CCL11 (TB-PDM-median, 253.9 pg/
ml; IQR, 228.1 - 276.5 pg/ml Vs TB, median 186.6 pg/ml; IQR,
183.8 — 214.2 pg/ml Vs PDM, median 90.37 pg/ml; IQR, 85.66 -
102.1 pg/ml: p<0.0001) levels were elevated in TB compared to
PDM individuals, indicating a distinct chemokine profile associated
with TB-PDM. Regarding CXC chemokines, individuals with TB-
PDM exhibited significantly higher levels of CXCL1 (TB-PDM-
median, 97.79 pg/ml; IQR, 32.38- 119.2 pg/ml Vs TB, median 26.99
pg/ml; IQR, 24.52 - 37.34 pg/ml Vs PDM, median 19.17 pg/ml;
IQR, 18.95 - 20.95 pg/ml: p<0.0001), CXCL9 (TB-PDM-median,
2.980 pg/ml; IQR, 2.940 - 3.383 pg/ml Vs TB, median 2.660 pg/ml;
IQR, 2.520 - 2.660 pg/ml Vs PDM, median 2.200 pg/ml; IQR, 2.048
- 2.520 pg/ml: p<0.0001), CXCL10 (TB-PDM-median, 4336 pg/ml;
IQR, 3588 - 5036 pg/ml Vs TB, median 3176 pg/ml; IQR, 2465 -
4179 pg/ml Vs PDM, median 1529 pg/ml; IQR, 1265 - 1912 pg/ml:
p<0.0001), and CXCL11 (TB-PDM-median, 36.58 pg/ml; IQR,
28.75 - 43.64 pg/ml Vs TB, median 25.18 pg/ml; IQR, 16.21 -
29.06 pg/ml Vs PDM, median 16.95 pg/ml; IQR, 15.77 - 16.95 pg/
ml: p<0.0001) compared to those with TB alone (Figure 2B).
Additionally, circulating levels of CXCL1, CXCL9, CXCL10, and
CXCLI11 were significantly elevated in TB individuals compared to
those with PDM alone. However, no significant differences were
observed in the level of CXCL2 between the groups. These findings
suggest that TB-PDM is characterized by markedly elevated
systemic levels of both CC and CXC chemokines.

3.6 Examining the relationship between
systemic cytokines/chemokines and
HbAlc levels

Our study aimed to elucidate the connection between systemic
cytokine and chemokine levels and the degree of glycemic control,
as reflected by HbAlc levels, in individuals with TB-PDM. Elevated
HbAIc values indicate poor blood sugar control. We assessed the
correlation between HbAlc levels (%) and the circulating levels of
various cytokines and chemokines. First, regarding cytokines, we
observed a negative correlation between HbAlc levels and the
systemic levels of IL-18 (r= -0.6335; p=0.0015) and GM-CSF
(r=-0.6126; p=0.0024), as depicted in Figures 3A, B. However, we
did not find significant correlations between HbA1c levels and other
systemic cytokines in TB-PDM individuals. Furthermore, we
explored the association between systemic chemokine levels and
glycemic control in Figures 3C, D. We investigated the correlation
between HbAlc levels (%) and the levels of CC and CXC
chemokines, including CCL1, CCL2, CCL3, CCL4, CCLI11,
CXCLI1, CXCL2, CXCL9, CXCL10, and CXCL11l. Among the
chemokines, CCL11 alone showed a positive correlation with the
levels of HbAlc (r= 0.4354; p=0.0428).

The linear regression analysis revealed significant associations
between specific cytokines and HbAlc levels. As illustrated in
Figure 4A, IL-18 (R®> = 0.4320; p = 0.0009), GM-CSF
(R* = 0.3229; p = 0.0058), and CCL11 (R* = 0.3580; p = 0.0033)
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PDM (n=22), PDM (n=22), and TB (n=22). Data are represented as violin plots, with each circle indicating an individual (Navy Blue — TB-PDM; Maroon
— TB; Light Blue — PDM). p-values were determined using the Kruskal-Wallis test with Dunn’s multiple corrections

demonstrated substantial positive correlations. In Figure 4B, IL-18
(R? = 0.3656; p = 0.0029) and GM-CSF (R* = 0.2162; p = 0.0292)
also exhibited significant positive relationships with RBG levels,
while CCL11 (R* = 04.896e-005; p = 0.9753) did not show a
significant association with RBG levels. Conversely, no significant
relationship was observed between total cholesterol levels and
cytokines or chemokines. Consequently, only specific cytokines
and chemokines were found to be associated with HbAlc (%)
and RBG levels.

4 Discussion

Diabetes mellitus (DM) and its precursor, PDM, are linked to
immune system dysfunction, involving alterations in cytokine and
chemokine levels, changes in immune cell types and activation
status, and increased apoptosis and tissue fibrosis (25). PDM shares
characteristics of glucose dysregulation and insulin resistance with
DM, potentially affecting susceptibility to TB (10, 26). Although TB
patients with PDM exhibit cytokines and chemokines profile akin to
type 2 diabetes (T2D), the impact of PDM on TB severity remains
unclear. In our study, TB patients with PDM demonstrated elevated
levels of various cytokines (IFNy, TNFa, IL-2, IL-17, IL-1a, IL-1f3,
1L-6, IL-12, IL-18, and GM-CSF) and chemokines (CCL1, CCL2,
CCL3, CCL4, CCL11, CXCLI, CXCL9, CXCL10, and CXCL11).
Our data also suggest that PDM is associated with increased
bacterial burdens but not disease severity.

Cytokines play a crucial role in TB progression and host defense
(27, 28). PDM and metabolic dysfunction are associated with mild
inflammation, as evidenced by elevated levels of pro-inflammatory

Frontiers in Immunology

12

cytokines observed in TB patients with PDM (29). Key cytokines
like IFN-y, TNF-q, IL-17A, IL-1a, IL-1f, IL-18, IL-12, and IL-6 are
vital in TB infections (30-33). IFN-y and TNF-o play crucial roles
in M. tb infections, IFN-v, for instance, plays a crucial role in
activating macrophages to combat intracellular mycobacteria, while
TNEF-a contributes to the formation of granulomas, essential for
containing mycobacterial growth, while IL-17A mediates memory
immune responses and appears to exacerbate inflammation in TB
patients with conditions like diabetes, potentially worsening disease
severity. IL-1 family cytokines, including IL-lo. and IL-1f, are
essential for resistance, and IL-18 and IL-12 are vital for
immunity. IL-1o. and IL-1f initiate and sustain inflammatory
responses against mycobacteria, whereas IL-18 enhances IFN-y
production crucial for effective immune responses. IL-6 inhibits
disease progression. IL-12 drives Thl differentiation and IFN-y
production, pivotal in combating TB, and IL-6 has diverse effects
including pro-inflammatory responses and B cell activation
(30-33). Furthermore, IL-18 and IL-12 are crucial for immunity
against M. tb infection (34, 35). Elevated systemic pro-
inflammatory cytokines, common in T2D, are associated with
increased TB risk (11, 12, 34-37). We have also previously shown
that LTB with PDM is associated with alterations in cytokine
production of NK cells, NKT cells, MAIT cells, and yd T cells
(38, 39). In our study, the TB-PDM group exhibited heightened
levels of various cytokines compared to TB or PDM alone. Disease
severity and bacterial burden were notably linked to this group,
possibly due to chronic low-grade inflammation induced by insulin
resistance or dysfunctional adipose tissue (11, 40). Elevated IL-17
levels in TB patients with diabetes may worsen inflammation and
pathology, contributing to more severe TB disease in individuals
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FIGURE 3

Correlation between Systemic Cytokines, Chemokines, and HbAlc Levels in TB-PDM. (A) A multiparametric matrix correlation plot depicts the
relationships between plasma cytokines (Type 1, Type 17, Type 2, regulatory, and other pro-inflammatory) and HbAlc levels in TB-PDM patients.
(B) Spearman’s correlation coefficients are visualized, with blue indicating positive correlations and red indicating negative correlations. (C) A
multiparametric matrix correlation plot depicting the relationships between plasma CC and CXC chemokines and HbAlc levels in TB-PDM patients.
(D) Spearman’s correlation coefficients are visualized, with blue indicating positive correlations and red indicating negative correlations.

with T2D. (13, 14, 41). The blood transcriptomic profiles of TB
patients with pre-diabetes resemble those of TB patients with T2D
more closely than those without dysglycemia, indicating that
immune responses to M.tb are impaired in the early stages of
dysglycemia in PDM (10). This is very similar to our previous
findings in overt DM and PTB (9). Our data suggest that early stages
of dysglycemia may contribute to the pro-inflammatory
environment in PDM patients.

IL-1ct and IL-1f are critical for TB resistance, as evidenced by
studies in mice (31, 42). Elevated IL-10 levels in T2D patients with TB
suggest its role in exacerbated immune dysregulation (31, 43-45) Our
findings support previous studies, indicating intensified
inflammatory reactions influenced by TB-induced immune
dysregulation in the TB-PDM group. T2D may worsen TB severity
by reducing alveolar macrophage activation via decreased IL-1p, IL-
12, and IL-18 release (46, 47). Our findings suggest increased levels of
pro-inflammatory cytokines and heightened responses from Thl and
Th17 cells and cytokines in patients with TB-PDM. Addressing
cytokine imbalances in TB and PDM individuals could improve
treatment outcomes.
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In the context of TB and concurrent PDM, inflammation plays
a crucial role, with chemokines emerging as key players (48-50).
This inflammatory environment can activate cytokine signaling
proteins, contributing to insulin resistance. Chemokines are vital
for recruiting immune cells to the lung during early infection stages
(50, 51). Notably, chemokines like CCL1, CCL2, CCL4, CCL5,
CCL11, CXCL8, CXCL10, and CX3CL1 are implicated in T2D
pathogenesis, affecting immunoregulation, inflammatory gene
induction, and insulin signaling modulation (50). Chemokines act
as signaling molecules in inflammation, activating pro-
inflammatory mediators and inducing a variety of inflammatory
factors. These factors trigger cytokine signaling proteins that
impede insulin signaling receptor activation in pancreatic cells,
thereby promoting insulin resistance (IR). This sequence of events
is implicated in the progression from PDM to T2D (50). However,
few studies have explored chemokine levels in TB and
T2D comorbidity.

Animal models have shown that abnormalities in specific
chemokine synthesis are linked to increased susceptibility to
Mpycobacterium tuberculosis (M.tb) infection (52). Animal models
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FIGURE 4

Relationship between IL-18, GM-CSF and CCL11 with HbAlc, RBG and Total cholesterol levels in TB-PDM. (A) Linear regression analysis depicting
the relationship of cytokines IL-18 and GM-CSF and chemokine CCL11 with HbAlc%. (B) Linear regression analysis depicting the relationship of
cytokines IL-18 and GM-CSF and chemokine CCL11 with RBG. (C) Linear regression analysis depicting the relationship of cytokines IL-18 and GM-
CSF and chemokine CCL11 with the levels of Total cholesterol. R? values and p-values are indicated for each relationship, with statistically significant

associations (p < 0.05)

of TB and diabetes exhibit exacerbated disease progression, with
increased bacterial burden and dysregulated chemokine expression
(53). CCR2 is a critical receptor involved in the development of
T2D. Adipocytes secrete inactive CCR2, which, when activated,
promotes the expression of inflammatory genes and reduces
insulin-dependent glucose uptake. Adipocytes also release CCL2,
which recruits macrophages to the site of inflammation. These
mechanisms contribute significantly to the pathogenesis of T2D
(50). CXCL10 plays a crucial role in initiating the destruction of §
cells. Additionally, CXCL10 can impair insulin secretion and reduce
the viability of B cells. The specific mechanism involves CXCL10-
inducing dysfunction in B cells, which has been shown to be
elevated in T2D patients (50). Our findings support these,
showing elevated CCL2/MCP-1 and CXCLIO levels in the TB-
PDM group, indicating increased bacterial burdens associated with
dysregulated chemokine expression. Individuals who have both TB
and PDM comorbidity exhibit elevated levels of pro-inflammatory
cytokines. The interaction between TB and PDM potentially
promotes pathology by enhancing the production of cytokines,
potentially exacerbating the progression of diabetes mellitus (9).
Further, the linear regression analysis suggests that IL-18 and
GM-CSF play significant roles in glucose metabolism as indicated
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by their associations with HbAlc and RBG levels. CCL11, while
associated with HbAlc, did not correlate significantly with RBG
levels, highlighting potential differences in its involvement in
glucose regulation compared to IL-18 and GM-CSF. Further
research into these cytokines’ mechanistic roles and clinical
implications could pave the way for targeted therapeutic
approaches in managing pre-diabetes and preventing its
progression to type 2 diabetes.

Our cross-sectional study lacks the ability to establish definitive
cause-and-effect relationships between PDM and TB. Our study
also suffers from the limitation of a small sample size. However, our
findings suggest that individuals with both TB and PDM have
elevated levels of pro-inflammatory cytokines and chemokines
compared to those with either TB or PDM alone, potentially
exacerbating TB pathogenesis in these patients. In TB-PDM
comorbidity, these factors likely synergize, exacerbating
inflammation and immune dysregulation, thus complicating
disease progression. Understanding these mechanisms is crucial
for developing effective strategies to manage TB-PDM comorbidity.
Longitudinal studies are needed to determine causation and
understand the complex processes underlying the relationship
between PDM and TB. This study did not investigate the
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responses following anti-TB treatment. However, future studies
addressing the reversibility of PDM and the impact of anti-TB
treatment on diabetes status would provide valuable
clinical insights.
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Impaired Mycobacterium
tuberculosis-specific T-cell
memory phenotypes and
functional profiles among
adults with type 2 diabetes
mellitus in Uganda

Phillip Ssekamatte™**, Rose Nabatanzi®, Diana Sitenda®,
Marjorie Nakibuule?, Bernard Ssentalo Bagaya®, Davis Kibirige®,
Andrew Peter Kyazze*, David Patrick Kateete®,

Obondo James Sande*, Reinout van Crevel®, Stephen Cose?
and Irene Andia Biraro**

‘Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of
Health Sciences, Makerere University, Kampala, Uganda, 2Medical Research Council/Uganda Virus
Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda,
3Department of Medicine, Uganda Martyrs Lubaga Hospital, Kampala, Uganda, “Department of
Internal Medicine, School of Medicine, College of Health Sciences, Makerere University,

Kampala, Uganda, Department of Internal Medicine and Radboud Centre for Infectious Diseases,
Radboud University Medical Centre, Nijmegen, Netherlands

Background: Efforts to eradicate tuberculosis (TB) are threatened by diabetes
mellitus (DM), which confers a 3-fold increase in the risk of TB disease. The
changes in the memory phenotypes and functional profiles of Mycobacterium
tuberculosis (Mtb)-specific T cells in latent TB infection (LTBI)-DM participants
remain poorly characterised. We, therefore, assessed the effect of DM on T-cell
phenotype and function in LTBI and DM clinical groups.

Methods: We compared the memory phenotypes and function profiles of Mtb-
specific CD4* and CD8™ T cells among participants with LTBI-DM (n=21), LTBI-
only (n=17) and DM-only (n=16). Peripheral blood mononuclear cells (PBMCs)
were stimulated with early secretory antigenic 6 kDa (ESAT-6) and culture filtrate
protein 10 (CFP-10) peptide pools or phytohemagglutinin (PHA). The memory
phenotypes (CCR7/CD45RA), and functional profiles (HLA-DR, PD-1, CD107a,
IFN-y, IL-2, TNF, IL-13, IL-17A) of Mtb-specific CD4" and CD8" T cells were
characterised by flow cytometry.

Results: Naive CD4" T cells were significantly decreased in the LTBI-DM
compared to the LTBI-only participants [0.47 (0.34-0.69) vs 0.91 (0.59-1.05);
(p<0.001)]. Similarly, CD8" HLA-DR expression was significantly decreased in
LTBI-DM compared to LTBI-only participants [0.26 (0.19-0.33) vs 0.52 (0.40-
0.64); (p<0.0001)], whereas CD4* and CD8" PD-1 expression was significantly
upregulated in the LTBI-DM compared to the LTBI-only participants [0.61 (0.53-
0.77) vs 0.19 (0.10-0.28); (p<0.0001) and 0.41 (0.37-0.56) vs 0.29 (0.17-0.42);
(p=0.007)] respectively. CD4" and CD8"* IFN-y production was significantly
decreased in the LTBI-DM compared to the LTBI-only participants [0.28 (0.19-
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0.38) vs 0.39 (0.25-0.53); (p=0.030) and 0.36 (0.27-0.49) vs 0.55 (0.41-0.88);
(p=0.016)] respectively. CD4" TNF and CD8" IL-17A production were
significantly decreased in participants with LTBI-DM compared to those with
LTBI-only [0.38 (0.33-0.50) vs 0.62 (0.46-0.87); (p=0.004) and 0.29 (0.16-0.42)
vs 0.47 (0.29-0.52); (0.017)] respectively. LTBI-DM participants had significantly
lower dual-functional (IFN-y*IL-2* and IL-2*TNF*) and mono-functional (IFN-y*
and TNF*) CD4" responses than LTBI-only participants. LTBI-DM participants
had significantly decreased dual-functional (IFN-y"IL-2*, IFN-y* TNF" and
IL-2*TNF*) and mono-functional (IFN-y*, IL-2" and TNF*) central and effector
memory CD4" responses compared to LTBI-only participants.

Conclusion: Type 2 DM impairs the memory phenotypes and functional profiles

of Mtb-specific CD4" and CD8" T cells, potentially indicating underlying
immunopathology towards increased active TB disease risk.

latent tuberculosis infection, diabetes mellitus, T cells, memory phenotypes,

functional profiles

Introduction

Despite significant efforts made to control tuberculosis (TB), the
increasing burden of diabetes mellitus (DM) threatens the progress
registered in reducing the global burden of TB, especially in low and
middle-income countries (LMICs) (1). According to the 2021
International Diabetes Federation (IDF) estimates, approximately
537 million adults (aged between 20 and 79) live with DM. This
figure is projected to rise to 783 million by 2045, with the most
significant increase in Africa (2). Tuberculosis remains one of the
leading causes of death from a single infectious agent, Mtb,
worldwide (3). Globally, approximately 7.5 million people were
newly infected with Mycobacterium tuberculosis (Mtb) or diagnosed
with TB in 2022, with nearly 1.3 million deaths occurring (3).
Epidemiologically, DM confers a 3-fold increase in the risk of
developing TB disease and is associated with TB treatment failure
and drug resistance (4). Indeed, it was recently reported that
participants aged > 40 years had increased odds of TB-DM
comorbidity (5) and that Africans with DM have an increased
latent TB infection (LTBI) risk (6). The risk for the development of
active TB (ATB) is thought to be due to the immune-compromised
status, but the underlying susceptibility mechanisms remain
largely unknown.

The quality of the T-cell response is essential for Mtb immunity.
CD4" and CD8" T cells are pivotal for immune control in Mtb-
infected humans and murine TB models (7, 8). T-cell memory
phenotypes are induced during LTBI and Bacillus Calmette-Guerin
(BCG) vaccination that play a protective role in humans and in
mice models (9-12). It is reported that LTBI is characterised by
differential expression of functional markers, including decreased
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HLA-DR expression, a marker that distinguishes LTBI and ATB
(13, 14), upregulated PD-1 expression, a marker that inhibits T-cell
effector functions (15, 16), as well as downregulated Th1 (7) and
Th17 (17, 18) cytokine production. Examining cytokine T-cell
polyfunctionality is essential as these cells have been associated
with resistance to infection (19, 20). Elevated frequencies of mono-
functional and dual-functional CD4" Thl cells are reportedly a
hallmark of active TB and DM (TB-DM) comorbidity (21). This
shows that type 2 DM modulates T-cell immune responses to Mtb,
which could profoundly affect TB pathogenesis. However, the
underlying immunological mechanisms for TB susceptibility
during DM remain to be elucidated, specifically with phenotypes
and functional markers during LTBI.

In this study, we hypothesised that type 2 DM modulates the
Mtb-specific memory phenotype and functional profiles of T cells
among participants with LTBI, leading to impaired responses and
potentially promoting TB susceptibility, progression or reactivation.
We aimed to assess the Mtb-specific CD4" and CD8" T-cell
memory phenotypes and functional profiles. We compared the T-
cell memory, activation, degranulation, exhaustion and cytokine
polyfunctionality profiles among participants with LTBI-
DM comorbidity.

Materials and methods
Study population and setting

Participants with LTBI and DM (LTBI-DM) and DM-only
participants were enrolled from October 2018 to March 2019 at
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the DM clinic at Kiruddu National Referral Hospital. This was part
of the Tuberculosis and Diabetes (TAD) study (22), a longitudinal
study which explored isoniazid prophylaxis outcomes among DM
participants with LTBI and ATB. Participants with LTBI-only were
enrolled in a TB household contact cohort [Kampala TB (KTB)]
study from May 2011 to January 2012, Kampala, Uganda, at Kisenyi
and Kitebi Health Centre IVs, as previously described (23). To get a
proper negative control group, the study utilised LTBI-only PBMC
samples from the KTB study, which did not collect DM-related
parameters [weight, random blood sugar (RBS), blood pressure and
HbAIc]. While LTBI-DM and LTBI-only are the main comparator
groups, the DM-only group was included as a negative control to
compare and assess how DM alone (without LTBI) might impact
immune function.

Study methods

Peripheral blood mononuclear cell samples taken from 54
participants were assayed using flow cytometry (LTBI-DM
[n=21], LTBI-only [n=17] and DM-only [n=16]). Diabetes
Mellitus was diagnosed based on the American Diabetes
Association (ADA) criteria (glycated haemoglobin [HbAlc] levels
> 6.5%), with normal ranges between 4% and 5.6% (24). Latent TB
infection was diagnosed based on positive results for QuantiFERON
TB-Gold (QFT)-Plus and QFT In-Tube assays. All participants
were adults and HIV-negative.

Peripheral blood mononuclear
cell isolation

Ten millilitres of heparinised blood collected by venepuncture
was transported within 4 hours to the immunology laboratory at the
College of Health Sciences, Makerere University and the MRC/
UVRI and LSHTM Uganda Research Unit, Kampala, Uganda, for
processing. Peripheral blood mononuclear cells (PBMCs) were
isolated using Ficoll-Histopaque density gradient centrifugation.
The Cells were counted and resuspended in cold foetal bovine
serum (FBS) supplemented with 10% dimethyl sulfoxide (DMSO).
Cells were then adjusted to a final concentration of 3x10° cells/ml.
Cells were transferred to a cold Mr FrostyTM freezing container
overnight at -80°C and then moved to liquid nitrogen (-197°C) for
long-term storage.

Cell stimulation and culture

Upon retrieval from liquid nitrogen, frozen cell vials (6x10°
cells) were thawed at a 37°C water bath in R20 (RPMI with 20%
FBS, 1% Penicillin/streptomycin, 2mM Glutamine, 25mM HEPES).
The PBMCs were rinsed and rested in R10 (RPMI with 10% FBS,
1% Penicillin/streptomycin, 2mM Glutamine, 25mM HEPES)
media in a humidified incubator at 5%CO,, 37°C for 4 hours.
The cells (200p1/2x106, resuspended in R20) were stimulated in a
humidified incubator at 37°C, 5%CO, for 18 hours (overnight) with
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Mtb-specific peptide pools of early secreted antigenic target-6 kDa
[ESAT-6 (21-peptide array; 10pg/ml)], and culture filtrate protein-
10 kDa [CFP-10 (22-peptide array; 10ug/ml)], all from BEI
Resources (Manassas, VA). The peptides consist of 15- or 16-
mers peptides (overlapping by 11 or 12 amino acids) spanning
the entire amino acid sequences for the ESAT-6 and CFP-10.
Phytohemagglutinin-lectin (PHA-L [10pg/ml, Millipore, Sigmal])
was used as a positive control, and unstimulated cells (R20 media)
as a negative control. Stimulations were performed for 2 hours, after
which Brefeldin A (5ug/ml, BioLegend) was added to all tubes. Cells
were further incubated and stimulated for 16 hours. All experiments
were performed in the presence of co-stimulatory antibodies, anti-
CD28 and anti-CD49d (1pg/ml each, BD Biosciences) and CD107a
brilliant violet (BV) 605 (H4A3, BioLegend) antibody for the
18 hours.

Cell staining

After stimulations, cells were washed with Dulbecco’s
phosphate buffered saline (PBS [1X, Sigma-Aldrich]), followed by
staining with a fixable viability dye, zombie aqua (BioLegend) at
room temperature for 20 minutes in the dark. Cells were then
washed with cell staining buffer (BioLegend), blocked for Fcy
receptors using BD Fc block (2.5ug/ml, BD Biosciences) at room
temperature for 10 minutes in the dark. Cells were surface stained at
4°C for 30 minutes in the dark with the following antibodies: CD3
FITC (UCHT1; BioLegend), CD4 PerCP-Cyanine5.5 (A161A1;
BioLegend), CD8 BV650 (SK1; BioLegend), CCR7 PE-CF5%4 (2-
L1-A; BD Biosciences), PD-1 BV785 (EH12.2H7; BioLegend),
HLA-DR PE-Fire 640 (L243; BioLegend), and CD45RA APC-Cy7
(HI100; BioLegend). For intracellular cytokine staining, cells were
washed, fixed using fixation buffer (4% paraformaldehyde,
BioLegend), and permeabilised using working strength
intracellular staining permeabilisation wash buffer (1X,
BioLegend) according to manufacturer’s recommendations. Fixed
cells were intracellularly stained at room temperature for 20
minutes in the dark with the following antibodies: IFN-y PE/Cy7
(4S.B3; BioLegend), TNF APC (MAbI1; BioLegend), IL-2 PE
(MQ1-17H12; BioLegend), BCL-2 BV421 (100; BioLegend), IL-
17A APC-R700 (N49-653; BD Biosciences) and IL-13 Alexa Fluor
(AF) 350 (32116; R&D Systems). The cells were immediately
acquired on the CytoFLEX LX flow cytometer (Beckman
Coulter). The flow cytometry antibody panel, including clone and
catalogue number, is shown in Supplementary Table S1.

Data and statistical analysis

The flow cytometry data from this study was normalised to
minimise batch effects across the two study PBMC T-cell responses
using the ComBat algorithm from the “sva” package. The data was
then analysed using FlowJo v.10.10.0 (BD Biosciences, San Jose, CA,
USA) for Mac. Gating was standardised and set using Fluorescence
Minus One (FMO) and compensation controls to correct for
spectral overlap. Boolean combination gating was used to
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calculate frequencies corresponding to seven different combinations
of cytokines, including IL-2, TNF and IFN-Y. The gating strategy is
shown in Supplementary Figure S1. The data was Arcsine
transformed, and a linear regression model was fitted with age as
a covariate in all groups using R(v.4.4.0). The linear regression
results are reported in Supplementary Table S2. Statistical tests were
performed using GraphPad Prism (v.10.1.1; GraphPad Software, La
Jolla, CA, USA). To compare the memory phenotypes and
functional profiles of Mtb-specific CD4" and CD8" T cells
between participant groups, we used the Kruskal-Wallis with
Dunn’s tests for multiple comparisons for more than two
participant groups. Mann-Whitney U test was used for two-group
comparisons. The data was reported after background
(unstimulated) subtraction. Unless otherwise stated, all data were
reported for ESAT-6 and CFP-10 peptide stimulations. A p-value
<0.05 was considered statistically significant.

Results

Baseline characteristics of the
study participants

The baseline demographic and clinical characteristics of the
study participants are summarised in Table 1. Age (p<0.0001) and
systolic blood pressure (p=0.037) were statistically different between
the study participants. Particularly, LTBI-only [24 (24-32)]
participants had a lower median age compared to LTBI-DM [50
(47-56)] and DM [48 (39-54)] participants.

Type 2 DM alters the memory phenotype of Mtb-
specific CD4" and CD8™ T cells

We performed a memory phenotypic analysis of CD4" and CD8"
T-cell subsets in participant PBMC samples with LTBI-DM, LTBI-only

TABLE 1 Baseline characteristics of study participants.

10.3389/fimmu.2024.1480739

and DM-only. Flow cytometry was used to identify four categories of
T-cell memory phenotypes based on the expression of CD45RA and
CCRY7 as a percentage of total CD4" and CD8" T cells. The T-cell
memory phenotypes were defined as naive (CD45RACCR7"), central
memory (CM; CD45RA™CCR7"), effector memory (EM;
CD45RA"CCR7"), and terminally differentiated effector memory
(TEMRA; CD45RA'CCR7") (Figures 1A, B). Naive CD4" T cells
were significantly decreased in the LTBI-DM compared to the LTBI-
only participants (p<0.001), with naive CD8" T cells being slightly
decreased in the same participants (p=0.112) (Figures 1C, E, D, F).
Additionally, central memory CD4" and CD8" T-cell frequencies were
significantly increased in the LTBI-DM compared to the LTBI-only
participants [(p=0.002) and (p=0.044)] respectively (Figures 1C, E, D,
F). Compared to LTBI-only, participants with LTBI-DM had
significantly increased effector memory CD4" T cells (p=0.012)
(Figures 1C, E). No differences were observed for TEMRA CD4" and
CD8" T cells.

Type 2 DM impairs Mtb-specific CD4* and CD8"
T activation, exhaustion and degranulation
HLA-DR, an activation marker, is expressed on several cellular
populations, including CD4" and CD8" T cells (Figures 2A, B).
Mitb-specific HLA-DR expression on CD8" T cells was significantly
decreased in LTBI-DM (Figure 2B) compared to LTBI-only
participants (p<0.0001). Interestingly, Mtb-specific CD4" and
CD8" T-cell PD-1 expression was significantly upregulated in the
LTBI-DM compared to the LTBI-only participants [(p<0.0001) and
(p=0.007)] respectively (Figures 2C, D). PBMCs were stained with
CD107a (during incubation) to determine CD107a production.
Compared to LTBI-only, participants with LTBI-DM had
significantly impaired CD107a production by CD4" T cells
(p<0.0001) (Figure 2E). Though non-significant, LTBI-DM
participants had slightly impaired CD107a production by CD8" T
cells compared to the LTBI-only participants (p=0.161) (Figure 2F).

LTBI-DM LTBI (n=17) DM (n=16) p-value
(n=21)

Age, years (median [IQR]) 43 (30-52) 50 (47-56) 24 (24-32) 48 (39-54) <0.0001
Sex, n 0.287
Female (%) 35 (64.8) 11 (52.4) 13 (76.5) 11 (68.8)
Male (%) 19 (35.2) 10 (47.6) 4(23.5) 5(31.2)
Weight, Kg (median [IQR])* 71.8 68.0 752 0.464

(61.3- 87.3) (58.2- 82.2) (63.0- 91.2)
RBS, mmol/L (median [IQR])* 7.3 (3.5-13.1) 6.6 (0.0-9.0) 9.4 (5.5-14.2) 0.147
Systolic blood pressure, mm Hg (median [IQR])* 134 (125- 151) 147 (127-171) 129 0.037

(120- 138)

Diastolic blood pressure, mm Hg (median [IQR])* 83 (75-95) 90 (76-103) 81 (72- 85) 0.156
HbA1lc, % (median [IQR])* 7.0 (6.0-9.1) 7.3 (6.2-9.1) 6.6 (5.5-9.3) 0.308

*Missing in the LTBI-only group.
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FIGURE 1

Type 2 DM alters the memory phenotype of Mtb-specific CD4* and CD8* T cells. (A, B) Representative flow cytometry plots are shown for CD4*
and CD8* CCR7/CD45RA-defined T-cell memory subsets, respectively. PBMCs were stimulated and cultured for 18 hours with ESAT-6 and CFP-10
peptide pools plus brefeldin A and stained for surface markers. (C, D) Percentage expression of memory phenotypes in CD4* and CD8'T cells,
respectively. (E, F) Heat maps for the percentage distribution of all memory phenotypes in the three CD4" and CD8" T cell participant groups. Size
of participant groups: LTBI-DM (n = 21), LTBI (n = 17), DM (n = 16). Data represent medians and interquartile ranges. The non-parametric Kruskal-
Wallis and Mann-Whitney U tests were used to determine the statistical significance between the medians. p<0.05 (*), p<0.01 (**), p<0.001 (***).

Non-significant p-values were not shown.

Type 2 DM impairs the production of Mtb-
specific Th-1, Th-2 and Th-17 cytokines by CD4*
and CD8" T cells

To determine CD4" and CD8" T-cell functionality in terms of
cytokine expression, PBMCs were stained with TNF, IFN-y, IL-2,
IL-13 and IL-17A (intracellularly) (Figure 3). Of the Th-1 cytokines,
CD4" and CD8" T-cell Mtb-specific IFN-y production was
significantly decreased in the LTBI-DM compared to the LTBI-
only participants [(p=0.030) and (p=0.016)] respectively
(Figures 3A, B). Additionally, CD4" T-cell Mtb-specific TNF
production was significantly decreased in participants with LTBI-
DM compared to those with LTBI-only (p=0.004) (Figure 3E).
Finally, CD8" T-cell Mtb-specific IL-13 and IL-17A production
were increased and decreased in the LTBI-DM compared to the
LTBI-only participants, respectively [(p=0.033) and (0.017)]
(Figures 3H, J).

Type 2 DM impairs dual and mono-functional
Mtb-specific CD4" and CD8* T-cell responses

To further analyse the quality of Mtb-specific CD4" and CD8" T-
cell responses, we defined the polyfunctional potential of Mtb-specific
CD4" and CD8" T-cell responses based on their capacity to co-
express IFN-y, IL-2 or TNF by applying the Boolean gating strategy to
all samples using FlowJo and subtracting the non-specific
polyfunctional responses (Figure 4). LTBI-DM participants had
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significantly lower frequencies of dual-functional IFN-y'IL-2*
(p=0.018) and IL-2"TNF" (p=0.006) CD4" T cells compared to
LTBI-only participants (Figure 4A). Additionally, mono-functional
IFN-Y" (p<0.0001) and TNF" (p<0.001) CD4" T-cell responses were
significantly decreased in participants with LTBI-DM compared to
those with LTBI-only (Figure 4A). Regarding CD8" T-cell
polyfunctionality, only mono-functional IFN-y" responses
decreased significantly in participants with LTBI-DM compared to
those with LTBI-only (p=0.033) (Figure 4B).

Type 2 DM impairs triple, dual, mono-functional
Mtb-specific central and effector memory CD4*
T cell responses

Following on from our previous result, Boolean gating strategy
was further applied to all samples’ CD4" T-cell central and effector
memory responses to determine their polyfunctional capacity to
produce Mtb-specific IFN-y, IL-2 or TNF after non-specific
polyfunctional cytokine production subtraction (Figure 5). With
regards to central memory CD4" T-cell responses, LTBI-DM
participants had decreased dual-functional IFN-yIL-2" (p=0.002)
and IL-2"TNF" (p<0.001) frequencies compared to LTBI-only
participants (Figure 5A). Additionally, mono-functional IFN-y*
(p=0.001), IL-2" (p=0.011) and TNF" (p<0.0001) central memory
CD4" T-cell responses were significantly decreased in participants
with LTBI-DM compared to those with LTBI-only (Figure 5A).
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FIGURE 2

Type 2 DM impairs the HLA-DR, PD-1, and CD107A expression of Mtb-specific CD4+ and CD8+ T cells. The PBCMs were surface stained with HLA-
DR and PD-1 antibodies after 18 hours of incubation with ESAT-6 and CFP-10 peptide pools and brefeldin A. (E, F) For degranulation analysis of
CD4* and CD8" T cells, CD107a was added during stimulation. (A-D) Representative plots for HLA-DR and PD-1. Size of participant groups: LTBI-
DM (n = 21), LTBI (n = 17), DM (n = 16). Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U
tests were used to determine the statistical significance between the medians. p< 0.05 (*), p< 0.01 (**), p<0.001 (***) and p< 0.0001 (****). Non-

significant p-values were not shown.

Regarding effector memory CD4" T-cell responses, LTBI-DM
participants had decreased triple functional IFN-y"IL-2"TNEF"
(p=0.033), dual-functional IFN-y* TNF" (p=0.004) and IL-
2'TNF" (p<0.001) frequencies compared to LTBI-only
participants (Figure 5B). Additionally, mono-functional IFN-y*
(p<0.0001) and TNF" (p<0.0001) effector memory CD4" T-cell
responses were significantly decreased in participants with LTBI-
DM compared to those with LTBI-only (Figure 5B).

Discussion

Immunological dysregulation is one mechanism that accounts
for TB susceptibility and severity in DM, but it is not well elucidated
and remains poorly characterised. We performed an extended
analysis of the memory phenotypes and functional responses of
Mitb-specific CD4" and CD8" T cells to identify immunological
differences between LTBI-DM, LTBI-only and DM-only
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participants. Our study identified three key points: 1) Type 2 DM
alters the memory phenotype of CD4" and CD8" T cells; 2) Type 2
DM impairs T-cell activation and degranulation but promotes T-
cell exhaustion; 3) Type 2 DM impairs the CD4" and CD8" T-cell
Th1, Th2 and Th17 cytokine responses, as well as the polyfunctional
(triple, dual, mono) capacity of the CD4" T-cell, and central and
effector memory CD4" T-cell subsets. We showed that type 2 DM is
associated with profound impairment of Mtb-specific T-cell
responses, which could increase TB susceptibility.

This study reveals that naive CD4" T cells were decreased,
whereas the CD4" and CD8" T-cell central and effector memory
phenotypes were increased in the LTBI-DM compared to the LTBI-
only participants. The reduction in naive CD4" T cells is similar to a
study by Kumar and colleagues, who reported decreased naive CD4
T cells in active TB with DM participants (25). The decrease
indicates a potential compromise towards delayed or insufficient
immune responses against Mtb reactivation, allowing Mtb to
potentially proliferate and increase susceptibility to active TB
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Type 2 DM impairs the production of Mtb-specific Th-1, Th-2 and Th-17 cytokines by CD4" and CD8" T cells. The PBMCs were cultured and
stimulated for 18 hours with ESAT-6 and CFP-10 peptide pools, brefeldin A, and intracellularly stained for cytokines. (A-J) Representative plots for
CD4* and CD8" T-cell producing TNF, IFN-y, IL-2, IL-13, IL-17A cytokines. Size of participant groups: LTBI-DM (n = 21), LTBI (n = 17), DM (n = 16).
Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U tests were used to determine the
statistical significance between the medians. p<0.05 (*), p< 0.01 (**). Non-significant p-values were not shown.

disease (26). The significant increase of central and effector memory
T-cell frequencies in LTBI-DM participants implies a shift towards
an activated memory T-cell phenotype. Memory T cells are crucial
for long-term immune surveillance (27, 28) and rapid response
upon re-exposure to Mtb (29). This increase may reflect an immune
response to chronic Mtb stimulation or a compensatory mechanism
in response to impaired naive T-cell function. This could have
implications for both TB protection and disease progression, as an
increased T-cell memory phenotype could potentially contribute to
Mtb-related chronic inflammation, resulting in T-cell memory cells
with impaired immune function, including exhaustion, activation,
homing and cytokine production (30). Type 2 DM orchestrated T-
cell memory alteration may potentially decrease the overall
robustness of the T-cell memory response, potentially increasing
susceptibility to active TB disease.

The functional profiles and fitness of the T cells are significant
factors to consider when assessing Mtb-specific responses in the
face of DM. Our study reports significant upregulation of PD-1 on
T cells in the LTBI-DM participants, a consensus to several studies
that reported upregulation of PD-1 expression on T cells during
Mtb infection and active TB disease (15, 16). PD-1 impairs T-cell
proliferation during active TB disease (16) and Thl immune
function during Mycobacterium bovis BCG vaccination (31). Type
2 DM promoting increased PD-1 expression could have severe
implications for other T-cell functional responses, including
activation, degranulation and cytokine production. Interestingly,
we report that type 2 DM impairs T-cell activation and

Frontiers in Immunology

23

degranulation. CD8" T-cell HLA-DR expression was decreased in
the LTBI-DM participants compared to the LTBI-only group, an
association with a lower activation state, and consistent with
another human study that reported impaired HLA-DR expression
on H37Rv-infected monocyte-derived macrophages of DM patients
(32). HLA-DR is an activating receptor that binds and presents
antigens to T cells, thereby activating immune responses, including
cytokine and cytotoxicity functions to clear Mtb-infected cells (33).
Its expression has also been characterized with effector T cells (34).
The decrease in the CD8" T-cell activation state in the face of DM
could impair their cytotoxic functions (33), leading to increased risk
for LTBI acquisition and ATB progression. However, our study
reports that fewer CD8" (but not CD4") T cells were activated. This
needs a cautious interpretation, as TB immune impairment is often
related to CD4" T-cell HLA-DR dysfunction (35). Interestingly,
HLA-DR expression has previously been described as a biomarker
that distinguishes LTBI from ATB (36). Whether HLA-DR
expression could be used as a biomarker for identifying and
distinguishing TB phenotypes in coincident DM remains to be
assessed. In addition, our study reports that type 2 DM is associated
with compromised CD4" and CD8" T-cell CD107a, a marker for
degranulation and cytotoxicity function (37). Similar results have
been reported for which type 2 DM compromises the cytotoxic
effects of CD8" T and NK cells during active TB (38). CD4" and
CD8" T cells have been reported to kill Mtb-infected monocytes
directly by perforin and Fas/Fas Ligand independent pathways (39).
It is important to note differences in the expression profiles of PD-1
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Type 2 DM impairs dual and mono-functional Mtb-specific CD4* and CD8" T-cell responses. (A) Polyfunctional Mtb-specific CD4" T-cell responses.
(B) Polyfunctional Mtb-specific CD8"* T-cell responses. The X-axis represents the frequencies of Mtb-specific CD4" T cells producing all possible
IFN-v, IL-2 and TNF combinations. Data represent medians and interquartile ranges. The non-parametric Kruskal-Wallis and Mann-Whitney U tests
were used to determine the statistical significance between the medians. p<0.05 (*), p<0.01 (**), p<0.001 (***) and p< 0.0001 (****).

and HLA-DR in LTBI-DM and DM groups. These differences may
reflect distinct mechanisms of immune activation in the DM group
that are not directly related to Mtb-specific immune responses in
the LTBI-DM group. PD-1 and HLA-DR can be influenced by
various factors, including metabolic dysregulation caused by DM
(40, 41). Taken together, impairment of HLA-DR expression and
CD107a production by DM could promote heightened Mtb
replication and increased TB risk.

Next, we assessed the effect of DM on CD4* and CD8" T-cell
cytokine production, and we observed marked differences in
cytokine expression profiles for IFN-y, IL-2, TNF, IL-13 and IL-
17A. CD4" T-cell IFN-yand TNF, as well as CD8" T-cell IFN-y and
IL-17A production, were decreased, whereas CD8" T-cell IL-13
production was increased in the LTBI-DM participants compared
to LTBI-only participants. CD4" and CD8" T-cell IFN-y production
mediates TB protection by controlling the Mtb burden and
promoting host survival in mice (7) and humans (8). In addition,
T-cell-derived TNF plays a crucial role in the early control of TB
infection and promotes the formation of mature granulomas and
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the activation of infected macrophages in mice (42). Similarly, T-
cell IL-17A, a Th17 family cytokine, recruits immune cells to Mtb-
infected sites by upregulating chemokine expression, thereby
contributing to granuloma formation and stability (43, 44). On
the contrary, increased production of IL-13 is associated with lung
damage and the formation of necrotic lesions in mice, which
promotes and is consistent with human TB pathology (45, 46).
Impairment of the CD4" and CD8" T-cell cytokine responses by
DM in the face of TB infection could promote Mtb replication, thus
promoting TB pathology.

Lastly, we assessed the effect of DM on combinations of
polyfunctional Thl cytokine co-expression profiles of CD4" and
CD8" T cells, as well as CD4" T-cell memory phenotypes. Several
studies that have profiled the role of polyfunctional CD4" T cells in
producing multiple Thl cytokines (IFN-y, IL-2, TNF) during TB
infection have associated polyfunctional CD4" T cells with
protection against TB (47-51). It is conceivable that
polyfunctional T cells are more effective at controlling infection
than those producing single cytokines. Whether these can be used
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Type 2 DM impairs triple, dual, mono-functional Mtb-specific central and effector memory CD4" T-cell responses. (A) Polyfunctional Mtb-specific
central memory CD4" T-cell responses. (B) Polyfunctional Mtb-specific effector memory CD4" T-cell responses. The X-axis represents the
frequencies of Mtb-specific central and effector memory CD4* T cells producing all possible combinations of IFN-v, IL-2 and TNF. Data represent
medians and interquartile ranges. Kruskal-Wallis and Mann-Whitney U tests were used to determine the statistical significance between the medians.
p<0.05 (*), p<0.01 (**), p<0.001 (***) and p< 0.0001 (****). CM, Central memory; EM, Effector memory.

as targets for TB vaccination in the face of DM remains to be
assessed in more extensive studies. Our study is among the first to
evaluate the impact of type 2 DM on CD4" and CD8" T-cell
polyfunctionality, as well as the CD4" T-cell central and effector
memory polyfunctionality. Interestingly, BCG vaccination in mice
and humans has been reported to induce polyfunctional CD4
central and effector memory T cells that confer protective
memory immunity against TB in a mice model (11, 12). Our data
reveals that DM significantly impairs the dual (IFN-y'IL-2" and IL-
2"TNF") and mono (IFN-y" and TNF")-functional capacity of Mtb-
specific CD4" T cells in the LTBI-DM compared to the LTBI-only
participants. Additionally, DM significantly impaired the triple
(EM: IEN-y'IL-2"TNF"), dual (CM: IFN-Y'IL-2" and IL-2"TNF";
EM: IFN-y" TNF" and IL-2"TNF"), and mono (CM: IFN-y*, IL-2"
and TNF'; EM: IFN-y" and TNF")-functional capacity of the Mtb-
specific CD4" T-cell central and effector memory responses,
contributing to first evidence of DM immune impairment on
polyfunctional CD4" T-cell memory responses. The results are
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consistent with a study by Kumar et al. and colleagues (52) that
reported diminished frequencies of dual- and mono-functional
CD4" T cells in LTBI-DM participants. Moreover, Kamboj et al.
(53) reported improved Mtb clearance after restoring dual
functional IFN-Y"TNF" CD4" T cells, further highlighting the
importance of polyfunctional T cells as correlates of TB
protection. This study demonstrates DM immune-modulatory
effects and impairment of both Mtb-specific CD4" T cells and
their central and effector memory polyfunctional responses during
TB progression. This may promote increased TB disease risk and
increase active TB progression.

This study faces limitations, including a limited sample size. It is
also important to note that the data generated after in vitro culture
may not represent what occurs in vivo. In addition, HbAlc and
other DM-related parameters were not collected for participants in
the LTBI-only group as these were from another control group
comprised of household contacts of TB index patients (KTB study).
As a result, our analysis could not adjust for HbA1c levels across all
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groups. Hence, there remains a possibility of residual confounding
related to diabetes severity, which could influence some of the
observed immune differences between groups. Lastly, this focused
exclusively on T-cell responses to peptides derived from ESAT6 and
CFP10 peptides, representing only a subset of the numerous
antigens expressed by Mtb. Consequently, the findings related to
T-cell responses in this study may not be fully generalizable to the
overall T-cell response to Mtb.

In summary, this study advances the understanding of immune
impairment in the LTBI-DM comorbidity. Type 2 DM impairs the
memory phenotype and polyfunctional profiles of Mtb-specific
CD4" and CD8" T cells, which could influence the LTBI-DM
immunopathology towards increased TB disease risk.
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Background: Helminth coinfection with tuberculosis (TB) can alter the
phenotype and function of macrophages, which are the major host cells
responsible for controlling Mycobacterium tuberculosis (Mtb). However, it is
not known whether helminth infection stimulates the release of host-derived
extracellular vesicles (EVs) to induce or maintain their regulatory network that
suppresses TB immunity. We previously showed that pre-exposure of human
monocyte-derived macrophages (hMDMs) with Ascaris lumbricoides protein
antigens (ASC) results in reduced Mtb infection-driven proinflammation and
gained bacterial control. This effect was entirely dependent on the presence of
soluble components in the conditioned medium from helminth antigen-pre-
exposed macrophages.

Methods: Our objective was to investigate the role of EVs released from helminth
antigen-exposed hMDMs on Mtb-induced proinflammation and its effect on Mtb
growth in hMDMs. Conditioned medium from 48-h pre-exposure with ASC or
Schistosoma mansoni antigen (SM) was used to isolate EVs by ultracentrifugation.
EVs were characterized by immunoblotting, flow cytometry, nanoparticle
tracking assay, transmission electron microscopy, and a total of 377 microRNA
(miRNA) from EVs screened by TagMan array. Luciferase-expressing Mtb H37Rv
was used to evaluate the impact of isolated EVs on Mtb growth control
in hMDMs.
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Results: EV characterization confirmed double-membraned EVs, with a mean
size of 140 nm, expressing the classical exosome markers CD63, CD81, CD9, and
flotillin-1. Specifically, EVs from the ASC conditioned medium increased the
bacterial control in treatment-naive hMDMs and attenuated Mtb-induced IL-1B
at 5 days post-infection. Four miRNAs showed unique upregulation in response
to ASC exposure in five donors. Pathway enrichment analysis showed that the
MAPK and PI3K-AKT signaling pathways were regulated. Among the mRNA
targets, relevant for regulating inflammatory responses and cellular stress
pathways, CREB1 and MAPK13 were identified. In contrast, SM exposure
showed significant regulation of the TGF- signaling pathway with SMAD4 as a
common target.

Conclusion: Overall, our findings suggest that miRNAs in EVs released from
helminth-exposed macrophages regulate important signaling pathways that
influence macrophage control of Mtb and reduce inflammation. Understanding
these interactions between helminth-induced EVs, miRNAs, and macrophage
responses may inform novel therapeutic strategies for TB management.

macrophage extracellular vesicles, miRNA, CREB1, MAPK13, SMAD4, tuberculosis,

helminth-coinfection, inflammation

1 Introduction

Mycobacterium tuberculosis (Mtb), primarily targeting
macrophages in the lungs, remains a global health challenge
where a quarter of all humans are believed to have a latent
tuberculosis (TB) infection and over 10.6 million yearly develop
active TB disease (1). More than two billion people are infected with
intestinal helminths, and particularly soil transmitted helminths
affect more than 1.5 billion people in Africa, Asia, and Latin
America (2). It has been indicated that the pooled prevalence of
helminth coinfection among TB cases is approximately 30% (3)
with increased prevalence in high-burden settings (4). As helminths
can modulate the immune response to Mtb, helminth/TB
coinfection may alter TB progression and treatment efficacy,
complicate TB diagnosis, and affect vaccine effectiveness (3, 5).
Understanding the interaction between helminths and TB would
aid in alleviating the public health challenges associated with the
management of TB. During latent TB infection, the bacterium is no
longer believed to “lay” dormant, rather there is a constant immune
battle to keep the bacteria in check where resident macrophages
have an essential role in the containment of infection. Macrophages
exhibit diverse functions and communication modalities, including
the release of extracellular vesicles (EVs) containing biomolecules
capable of modulating immune responses. Macrophages and
dendritic cells are major producers of EVs (6). For instance,
macrophage-released EVs during systemic candidiasis infection
decrease the growth of Candida through the activation of ERK2
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and p38 (7), and EVs from toll-like receptor (TLR) 3-activated
macrophages confer anti-hepatitis C virus protection to
hepatocytes (8).

In inflammatory diseases such as TB, EVs have emerged as
important mediators recognized for regulating macrophage
activation and polarization, where they have been shown to
modulate the balance of M1/M2 macrophage polarization
through alterations in glucose metabolism (9). The protective
immune response against TB involves cell-mediated activation of
macrophages by interferon-gamma-releasing CD4 T cells, as well as
the efficient phagocytosis, autophagy, and other bactericidal traits of
M1-polarized macrophages, which release proinflammatory
cytokines such as TNF, IL-1B, and IL-6. During helminth/Mtb
coinfection, there is an increase in regulatory networks that dampen
Thl responses and induce Th2-dominated immune responses,
along with induction of regulatory T cells (10). Concurrently,
there is an increased polarization of alternatively activated (M2)
macrophages (11, 12), which are associated with tissue repair and
anti-inflammatory functions that may have a reduced ability to
control Mtb. However, it is not known whether helminth infection
stimulates the release of host-derived EVs to induce or maintain
their regulatory network that suppresses TB immunity.

By regulating gene expression, microRNAs (miRNAs) play a
crucial role in modulating immune responses. miRNAs have been
shown to influence innate immune responses, B-cell differentiation
and antibody production, and T-cell development and function
(13). For example, miR-146a, miR-21, and miR-155 have been
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described as principal regulators of inflammatory pathways in
myeloid cells (14). Major host defense mechanisms against Mtb
found regulated by miRNA include the triggering of apoptosis,
induction of autophagy, and stimulation of interferon-gamma and
TNF (15-17). Mtb can, however, manipulate these regulatory
miRNA expression patterns to evade host immune responses, and
so miRNAs have been implicated as biomarkers or regulators of
immunity during TB (17).

Exploring EV-mediated miRNA transfer for immune regulation
holds promise for novel TB therapeutic strategies. Coinfection with
helminths and other neglected tropical diseases can influence the
immune response, potentially impacting the efficacy of novel TB
treatments utilizing miRNA or their targets (18). Therefore, it is
crucial to assess how helminth exposure modulates miRNA
expression in EVs. Previous studies have demonstrated helminth
species-specific effects on TB immunity in endemic settings with
controls and TB patients (19), as well as in human monocyte-
derived macrophages (hMDMs) exposed to helminth antigens (11).
Our recent research showed that hMDMs exposed to Ascaris
lumbricoides antigens could mitigate Mtb infection-induced
inflammation (e.g., release of IL-1B and IL-6) and enhance
intracellular Mtb growth control when conditioned medium from
antigen-pre-exposed cells was reintroduced post-Mtb infection
(20). Therefore, this study aims to investigate whether EVs in
conditioned medium from helminth antigen-exposed hMDMs
mediate similar effects on treatment-naive hMDMs and explore
potential miRNAs that regulate the immune response to Mtb
during helminth coinfection. Besides the A. Iumbricoides protein
antigen, we also used the Schistosoma mansoni soluble egg antigen
for the generation of hMDM-conditioned medium and the
exploration of the effect of EVs derived by helminth antigen
exposure, as we previously observed that helminth species-
dependent variations are induced in macrophages and other
immune cells in vitro (11, 20) and in TB patients (10, 19, 21, 22).

2 Materials and methods
2.1 Ethics statement

Normal human serum (NHS) and buffy coat preparations from
whole blood, the source of peripheral blood mononuclear cells
(PBMCs) and monocytes, were obtained from healthy volunteers
from Linkoping University Hospital Blood Bank and Jonkoping
Hospital Blood Bank. All donor samples were de-identified and
anonymized before being provided to the researchers, ensuring
complete confidentiality. All the work was carried out in accordance
with the Declaration of Helsinki, not requiring a specific ethical
approval according to paragraph 4 of the Swedish law.

2.2 Helminth antigens

Whole worm protein extracts of A. lumbricoides (ASC) from
Allergen AB Thermo Fisher Scientific and S. mansoni soluble egg
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antigen (SM) donated by Professor Mike Doenhoff, Nottingham
University, Nottingham, UK, were used. The protein concentration
of each antigen was determined by Bradford assay and stored at
-80°C until used. Concentration and pre-exposure time of helminth
antigen was set based on our previous study (20), and that of the
work with macrophage exposure by others (23).

2.3 Generation of EV-free cell
culture medium

EV-free cell culture medium was prepared by ultracentrifugation
of NHS pooled from five donors at 120,000 x g overnight at 4°C
consecutively two times. The supernatant from double ultracentrifuged
NHS was then added at 10% to DMEM medium with 10 mM HEPES
and 1% L-glutamine used to prepare the medium, which was followed
by filtration with a 0.22-um Stericup quick-release vacuum-driven
filtration system (Millipore, Darmstadt Germany). This EV-free cell
culture medium was used for all incubations of mature macrophages
(hMDMs), from generating conditioned medium, preparation of
bacteria and infection experiments, and resuspending isolated EVs
for functional experiments.

2.4 Generation of hMDMs

hMDMs were generated following the methodology outlined in
previous studies (20). In brief, PBMCs isolated from buffy coats
were plated and allowed to adhere for 1.5-2 h. Non-adherent cells
were removed with warm Krebs-Ringer Phosphate buffer with
glucose, and adherent monocytes were allowed to differentiate for
6 days with fresh complete DMEM (containing 10% NHS pooled
from five donors, HEPES, L-glutamine, penicillin, and
streptomycin, without specific addition of growth factors) that
was replenished on the third day of culture. At day 6, mature
macrophages (hMDMs) were detached using trypsin and plated in
triplicate at 100,000 cells per well in 96-well plates in antibiotic-free
EV-free cell culture medium and hMDMs were rested overnight
before infected with Mtb. For generating cell culture supernatants,
which were the source of conditioned medium used for further
isolation and characterization of hMDM-released EVs, day 7
hMDMs were treated with or without 5 pg/mL of helminth
antigens in EV-free cell culture medium for 48 h.

2.5 Bacterial preparation, infection, and
luciferase measurement

Bacterial preparation and infection of hMDMs were performed
according to our previous study (20). In brief, we used Mtb H37Rv
(ATCC) carrying a luciferase construct cultured in Middlebrook
7H9 broth supplemented with 0.5% Tween 80 and 10% albumin-
dextrose-catalase enrichment (ADC; Becton Dickinson, Franklin
Lakes, NJ, USA) and 100 pg/mL hygromycin (Sigma) at 37°C to log
phase. For infection experiments, Mtb was prepared in EV-free cell
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culture medium and treatment-naive hMDMs infected with a
multiplicity of infection of four bacteria per cell for 1.5 h, before
these h(MDMs were washed and incubated for 5 days in EV-free cell
culture medium with or without ultracentrifuge preparations of
hMDM-derived EVs or conditioned medium depleted of EVs. Mtb
luciferase was measured for quantifying Mtb replication, and the
luciferase signal in both the supernatant and cell lysate were
measured using decanal (Sigma-Aldrich, St. Louis, MO, USA) as
the substrate. The luciferase signal from uninfected hMDMs was
subtracted from the Mtb luciferase signal in infected samples to
account for background noise. To determine the total Mtb growth
in each well, the relative luminescence values from the lysate and
supernatant were combined. The median value of each triplicate
was then either expressed as the absolute value of relative
luminescence units or normalized to the day 0 medians (day of
infection) from the same donor and treatment, generating an Mtb-
fold change relative to day 0.

2.6 Isolation of macrophage EVs

EVs were harvested from the cell culture supernatant of
hMDMs stimulated with helminth antigen for 48 h. In brief, 48-h
cell culture supernatants were centrifuged at 400 x g for 10 min at 4°
C to clear cells and debris, named conditioned medium throughout.
The conditioned medium was then centrifuged again at 2,000 x g
for 20 min at 4°C to remove apoptotic vesicles, followed by
ultracentrifugation with Beckman Coulter Optima L-80XP at
200,000 x g for 2 h at 4°C to isolate EVs. The pelleted EVs used
in functional experiments were here resuspended in EV-free cell
culture medium and added post-infection with Mtb. However, for
characterization purposes, the pellets obtained after initial
ultracentrifugation were additionally washed with EV-free PBS
(DPBS filtered through a 0.22-um pore size Stericup quick-release
sterile vacuum-driven filtration system) at 200,000 x g for 2 h at 4°
C. Subsequently, these pellets were resuspended in either EV-free
PBS for characterization or QIAzol for isolation of total RNA/
miRNA. For evaluating the functional role of EVs, a conditioned
medium without EVs was simultaneously generated. In brief,
supernatant collected from the initial ultracentrifugation was
again centrifuged at 7,500 x g for 15 min at RT in 100-kDa
Amicon Ultra concentrate filters to remove particles > 30 nm and
used as EV-free conditioned medium.

2.7 Characterization of macrophage EVs
with transmission electron microscopy

EV samples fixed with 1%-2% paraformaldehyde were analyzed
using transmission electron microscopy at the Linkoping University
Core Facility. EVs were identified and visualized using negative
staining. In brief, 5 pl of samples was mounted to a hydrophilic
formvar- carbon-coated, 300-mesh, copper electron microscopy
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grid (TED PELLA, Inc), and grids were washed, blotted, and
negatively stained with 2% uranyl acetate. Electron micrographs
were obtained using 80-kV transmission electron microscopy
(JEOL JEM 1400 Flash, JEOL LTD, Tokyo, Japan).

2.8 EV characterization using the
MACSPlex Exosome kit

Flow cytometric characterization of EV's was performed using the
MACSPlex Exosome kit from Miltenyi Biotec (order no. 130-122-
209), following the manufacturers instruction. In brief, each sample
containing 6 pg of EVs was incubated with 15 pL. of MACSPlex
Exosome Capture Beads before being washed with MACSPlex bufter
and subsequently incubated with 15 puL of MACSPlex Exosome
Detection Reagent cocktail (consisting of anti-CD9, anti-CD63, and
anti-CD81) in the dark at 4°C for 1 h. Then, samples were washed
twice with MACSPlex buffer and acquired by a Gallios flow cytometer
(Beckman Coulter), and data were analyzed using Kaluza 2.1 and
presented after being normalized to the median signal intensity
obtained from the buffer.

2.9 EV characterization with Western
blot analysis

To confirm that the pellets from ultracentrifuged conditioned
medium contained EVs and were free of cellular contamination,
samples underwent Western blot analysis. EV samples were boiled
for 5 min at 95°C with equal volume of 2x Laemmli sample buffer
containing 5% 2-f-mercaptoethanol and freshly added dithiothretol
(NuPAGE sample reducing agent). Proteins in EV lysates
were separated by SDS-polyacrylamide gel electrophoresis and
transferred onto nitrocellulose membranes (Merck). Nitrocellulose
membranes were blocked with 5% dry milk in PBS containing 0.075%
Tween 20 for 1 h at RT. Membranes were immunoblotted overnight
at 4°C with 1:2,000 diluted rabbit anti-human calnexin (Abcam,
ab92573) and mouse anti-human flotillin-1 (BD Sciences, cat.
610820). After washing with PBS containing 0.075% Tween 20, the
membrane was incubated with Alexa Fluor 680 goat anti-rabbit and
Alexa Fluor 790 goat anti-mouse secondary antibodies (Invitrogen,
1:1,000 diluted) for 1 h. After washing, protein bands were identified
with the Odyssey LI-COR CLX imaging system.

2.10 NTA measurement with
Nanosight NS300

EV samples used for the nanoparticle tracking analysis (NTA)
were diluted in PBS to a final volume of 1 mL. Ideal measurement
concentrations were found by pre-testing the ideal particle per
frame value (20-100 particles/frame). The following settings were
used according to the manufacturer’s software manual (NanoSight
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NS300 User Manual, MAN0541-01-EN-00, 2017): camera level
increased until all particles were distinctly visible not exceeding a
particle signal saturation. The ideal detection threshold was
determined to include as many particles as possible with the
restrictions that 10-100 red crosses were counted while only
<10% were not associated with distinct particles. Blue cross count
was limited to 5. Autofocus was adjusted so that indistinct particles
were avoided. For each measurement, five 1-min videos were
captured under the following conditions: cell temperature: 21°C;
syringe speed: 30 pL/s. After capture, the videos were analyzed by
the in-build NanoSight Software NTA 3.4 with a detection
threshold of 4. Hardware: embedded laser: 45 mW at 488 nm;
camera: sCMOS. The count of finalized tracks consistently exceeded
the suggested lower limit of 1,000 to minimize data skewing based
on single large particles (24).

2.11 miRNA isolation

For isolation of miRNA, EV pellets from ultracentrifugation
were resuspended and homogenized in QIAzol lysis reagent and
stored at —80°C until RNA isolation. Total RNA was isolated using
the miRNeasy Micro kit (cat. no. 217084, Qiagen) according to the
manufacturer’s protocol to include all miRNA. In brief, QIAzol-
lysed samples were thawed slowly on ice and incubated at RT for 5
min. At this, time control oligos (cel-miR-39-3p and ath-miR1591)
were added and mixed, followed by vigorous shaking with
chloroform, and incubated for 3 min at RT. After 15 min of
centrifugation, the upper aqueous phase was resuspended in 1.5
times the volume of 100% ethanol and transferred to RNeasy
MinElute spin columns. Using RWT, RPE buffer, and 80%
ethanol, spin columns were washed briefly under centrifugation.
miRNA in the spin columns was eluted with 14 pL of RNase-free
water by centrifugation at full speed for 1 min. The RNA
concentration was determined with an Agilent 2100 Bioanalyzer
using the RNA Pico chip.

2.12 Quantitative real-time PCR

miRNA expression profiling was conducted using the TagMan
Advanced miRNA Human A Card (A34714; Thermo Fisher
Scientific) following the manufacturer’s instructions. The assay
was performed using the QuantStudio 7 Flex Real-Time PCR
system (Applied Biosystems). Data analysis was carried out using
QuantStudio 3D Analysis Suite software version 3.1.6 (Life
Technologies Corporation), a web-based tool that employs the
comparative Cq (AACq) method for quantifying relative gene
expression across samples. Relative quantification (RQ) or fold
change (FC) was determined from the Cq values using the
equation RQ = 27*“9, Endogenous controls provided in the
TaqgMan Advanced miRNA assay card were utilized for data
normalization. hsa-miR-16-5p, which is a stable miRNA in cell
line, was used as endogenous control (25).
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2.13 Bioinformatics analysis

miRNA (RQ > 2) targets were extracted from mirWalk
(miRWalk.umm.uni-heidelberg.de), based on the following
conditions. Targets were selected if present in two of the three
data bases, e.g., if targets were commonly present in TargetScan and
miRDB, or if commonly present in mirTarBase (validated miRNA
targets) and miRDB. These targets were pooled and used for
functional enrichment analysis and GO (gene ontology) analysis
by utilizing the web-based gene set analysis toolkit (WebGestalt,
www.webgestalt.org) (26).

2.14 Statistical analysis

All statistical analyses were performed with Graph Pad Prism
8.4.3 (686). The data were presented as mean = SEM and analyzed
using ANOVA and Student’s t-test. Graphs prepared using ggplot2
in R studio 2023.12.1 are indicated in figure legends.

3 Results

3.1 Characterization of macrophage-
released EVs

Previously, we observed that cell-free culture supernatants from
48-h helminth antigen-exposed hMDMs can modulate intra-
macrophage Mtb growth control and infection-driven
proinflammation (20). In this study, we explored the role of EVs
in mediating this effect. To generate the conditioned medium of
helminth-exposed macrophages, similar to our previous work,
hMDMs were exposed to A. Iumbricoides protein antigen (ASC),
S. mansoni soluble egg antigen (SM), or left unexposed (control) for
48 h. EVs isolated from the conditioned medium of macrophage
culture supernatant using ultracentrifugation were verified through
a combination of methodologies to ascertain the true identification
of EVs, based on the MISEV2018 Guideline (27). Transmission
electron microscopy was used for generating images of EVs at high
resolution. The characteristic round double-membrane structures
of EVs with different sizes were observed in all samples of
macrophage-derived materials, and EV-free medium used for
culturing of hMDMs showed no presence of vesicles (Figure 1).
To confirm the biophysical features of EVs, further characterization
of the EVs was performed using nanoparticle tracking assay (NTA)
that utilizes light scattering properties for the determination of
vesicle size. This demonstrated that EVs from all treatments
exhibited an average size ranging from 50 to 150 nm (Figure 2),
in line with them being EVs (27). The MACSPlex exosome kit in
combination with flow cytometry analysis was additionally
performed to evaluate the surface marker expression of EVs. This
demonstrated the presence of canonical surface markers for EVs,
including CD63, CD81, and CD9 on all isolated EVs (28)
(Figure 3A). Notably, HLADR, a recognized indicator of antigen
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A Control EV

FIGURE 1

Confirmation of extracellular vesicles (EVs) released from human macrophages. Transmission electron microscopy (TEM) images of EVs released
from healthy human monocyte-derived macrophages (hMDM:s) that are unexposed (A), 48 h 5 pug/mL Ascaris lumbricoides antigen exposed (ASC)
(B), 48 h 5 pg/mL Schistosoma mansoni antigen exposed (SM) (C), or EV-depleted medium used for culturing of hMDMs (D). Magnification 20,000x;
the size of the scale bar is indicated in micrographs. Representative of n = 5 donors.

presentation and immune modulation, was highly expressed on the
surface of macrophage-derived EVs. There was no difference in the
marker expression on hMDMs EVs derived from the different
treatments. To assess the purity of the isolated EVs, we further
analyzed the presence of the typical EV marker flotillin-1 and the
impurity marker calnexin by Western blotting (Figures 3B, C).
Lysates from all isolated EVs expressed the specific EV marker
flotillin-1, without having calnexin, indicating the high purity of
isolated EVs.

3.2 Extracellular vesicles from helminth
exposure enhance Mtb growth control
in hMDMs

In our previous study, we found that adding back the
conditioned medium from 48-h helminth antigen pre-exposed
macrophages to the same cells after Mtb infection resulted in a
50% reduction of the total bacterial load compared to untreated on
day 5 post-infection (20). Utilizing a similar experimental setup, we
explored the effect of conditioned medium and capacity of isolated
helminth-induced macrophage EVs to modulate the growth of Mtb
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within macrophages that had not previously been exposed to
helminth antigens, i.e., treatment naive. The addition of the
conditioned medium resulted in an increased Mtb growth control
at day 5 post-infection, which was only significant with the ASC
conditioned medium (Figure 4A). More importantly, bacterial
growth control was also significantly increased when isolated EV's
from the ASC conditioned medium (ASC EVs) were added to
unexposed macrophages. To substantiate our finding, we
simultaneously used a conditioned medium that was depleted of
EVs, which showed a total loss in Mtb growth control (Figure 4B).
This shows that EVs from helminth-exposed macrophages indeed
can affect the intra-macrophage growth of virulent Mtb.
Conditioned medium or isolated EVs from preparations of SM-
exposed hMDMs did not affect bacterial growth to the same extent,
indicating a helminth species-dependent capacity in modulating
Mtb growth control in macrophages. Similar to our previous finding
of reduced Mtb infection-driven proinflammation provided by
conditioned medium from the ASC pre-exposed hMDMs (20), we
observed a significant reduction in IL-1f at day 5 post-infection
when macrophage EVs from ACS exposure were added to
treatment-naive hMDMs after Mtb infection (Figure 4C).
Conditioned medium from which EVs were isolated contained no
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Characterization of hMDM-derived EVs using nano particle tracking assay (NTA). Five 1-min videos captured per sample, merged, and average
reported. Representative NTA analysis (A). Scatter plot graphs of concentration of EVs per frame, concentration of EVs per milliliter, median size, and
mean size of released EVs (B); no statistical difference was observed between the treatment using one-way ANOVA. Data expressed as means + SEM

from n = 6 independent donors.

IL-1B (Figure 4D). This indicates that EVs from helminth-exposed
macrophages can regulate inflammation in TB.

3.3 Identification of differentially expressed
mMiRNA in EVs of helminth-
exposed macrophage

The TagMan advanced miRNA human A card that detects the
377 most common mature human miRNAs was used to analyze the
miRNA in isolated EVs of helminth antigen-exposed macrophages
obtained from five donors. Out of these miRNAs, 214 and 213 were
detectable in EVs from ASC and SM exposure, respectively. A total
of 75 miRNAs were upregulated with ASC compared to control,
and 70 were upregulated with SM compared to the control.
miRNAs were deemed upregulated if their RQ-fold change was >
2. Several miRNAs were overlapping between the two helminth
antigen exposures, and 39 miRNAs showed unique upregulation in
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response to ASC exposure, while 34 uniquely expressed miRNAs
were identified following SM exposure in the pooled data for the
donors. Subsequently, we explored the presence of miRNAs
commonly upregulated in all donors after ASC or SM exposure.
Our analysis revealed that miR-342-5p, miR-516b-5p, miR-570-3p,
and miR-188-3p were commonly upregulated in EVs from ASC-
exposed hMDMs across all donors. For SM exposure, miR-296-5p
and miR-452-5p were commonly upregulated across all donors
(Table 1). The heat map for the differential expression of all 377
miRNAs following helminth antigen exposure displayed a vast
donor variation (Supplementary Figure S1).

3.4 miRNAs from EVs show distinct
modulation of inflammatory pathways

To interpret the functional importance of the predicted miRNA
target genes, an over-representation analysis of KEGG pathway and
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FIGURE 3

Characterization of EVs using the MACSPlex Exosome kit and Western blotting for flotillin-1. (A) Median fluorescence intensity (MFI) fold over buffer

from different donors (n =

4) reported for markers twofold and above with the MACSPlex Exosome kit. No statistical difference was observed

between the treatments using one-way ANOVA. Data expressed as means + SEM. Isolated EVs carry flotillin-1 but not the impurity marker calnexin
(B, C). Isolated EVs were lysed in sample buffer and subjected to Western blot using anti-flotillin-1 (EV marker) and anti-calnexin (endoplasmic
reticulum protein) (B). Full scan of the entire original gel(s) (Supplementary Figure S5). Relative density of flotillin-1 (C). Data expressed as means +

SEM from n = 8 independent donors.

GO for the biological processes was performed using a web-based
gene set analysis toolkit. The analysis of the pooled miRNA targets
from five donors of ASC exposure revealed modulation of autophagy,
MAPK signaling pathway (Supplementary Figure S2) (29), ubiquitin-
mediated proteolysis, endocytosis, and PI3K/AKT signaling pathway
(Supplementary Figure S3) among the top 10 weighted pathways
(Figure 5A). These pathways were also found modulated when
analyzing each donor separately. Additionally, other FDR
significant pathways of relevance for TB were found to be involved,
such as the HIF-1 signaling pathway, TNF signaling pathway, and
mTOR signaling pathway. Similarly, in response to SM exposure,
modulation of the TGF-beta signaling pathway (Supplementary
Figure S4), MAPK signaling pathway, endocytosis, ubiquitin-
mediated proteolysis, and PI3K/AKT signaling pathway were
among the top 10 weighted pathways (Figure 6A), along with
several other FDR significant pathways including the RAS signaling
pathway, mTOR signaling pathway, and Wnt signaling pathway.
Furthermore, GO analysis for biological functions of the pooled
miRNA targets from five donors in ASC exposure demonstrated
that the affected biological processes were closely matching with
that found by the KEGG pathway analysis (Figures 5A, B).
Conversely, the GO analysis for biological functions of the pooled
miRNA targets of five donors in SM exposure demonstrated more
distinct biological functions among the top 20 significant biological
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processes that did not intuitively cover the MAPK signaling
pathway or the PI3K/AKT signaling pathway found targeted by
the KEGG pathway enrichment analysis of the same data
(Figures 6A, B). The biological processes found affected by ASC
and SM exposure showed a strong variation across helminth species
to induce a miRNA-dependent response. Collectively, these results
demonstrate that miRNAs in EVs from helminth antigen-exposed
hMDMs modulate inflammatory pathways.

Additional analysis using only the targets from the commonly
overexpressed miRNA across all donors showed similar biological
processes and pathways modulated with ASC exposure (Figure 7) as
for SM exposure (Figure 8), with regard to MAPK signaling
pathway and PI3K/AKT signaling pathway for ASC exposure and
TGF-beta signaling pathway for SM exposure, respectively.

3.5 Key mRNA found targeted by
commonly expressed miRNA in all donors

To focus on mRNAs relevant to TB, we further screened for
important mRNA targets across donors and identified CREBI,
MAPKI10, MAPK13, and SMAD4 as significant targets. CREBI, a
crucial component of the PI3K/AKT pathway and a key
transcription factor within the CREB family, was found targeted
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EVs from ASC-exposed hMDMs inhibit Mtb growth and lower infection-driven IL-1B. Treatment-naive hMDMs were infected with luciferase-
expressing H37Rv at a multiplicity of infection of four bacteria per cell for 1.5 h. Extracellular bacteria were removed and 50% of 48-h conditioned

medium (CM) from different treatments was added, n = 6 (A), or isolated

extracellular vesicles from these CM, n = 6, were added (B). Total luciferase

values calculated by combining luminescence signal from supernatant and lysate are shown. Day 5 post-Mtb infection levels of IL-13 and IL-6 in
cell-free culture supernatants of untreated hMDMs (Medium control) and extracellular vesicle (EV)-treated (C), and pre-infection levels of IL-1 and
IL-6 in the conditioned medium (CM) used to isolate EVs for B (D). Data expressed as mean + SEM from six independent donors with *p < 0.05 and
**p < 0.01 using one-way ANOVA with Dunn’s multiple correction. CONT EVs, isolated EVs from 48-h conditioned medium of unexposed hMDMs;
ASC EVs, isolated EVs from 48-h conditioned medium of ASC-treated hMDMs; SM EVs, isolated EVs from 48-h conditioned medium of SM-

treated hMDMs.

during ASC exposure. Ten miRNAs were found targeting CREB
family, and 3 (miR-342-5p, miR-516b-5p, and miR-570-3p) out of
10 miRNA were found across all donors (Figure 9A). MAPK10 and
MAPK13, also known as JNK3 and p389, respectively, belonging to
the mitogen-activated protein kinase (MAPK) family and having a
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dominant role in cytokine production, phagocytosis, and
antimicrobial response (23, 30), were also found targeted during
ASC exposure. The same three miRNAs that targeted CREB were
additionally found to target MAPK10 and MAPK13 (miR-342-5p,
miR-516b-5p, and miR-570-3p) (Figure 9B). Of note, among the
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TABLE 1 Commonly upregulated miRNA in EVs of helminth antigen-
exposed hMDMs across all donors.

Commonly upregulated miRNA with ASC exposure

miRNA CONTRQ ASCRQ SM RQ
hsa-miR-342-5p 1 139.3821 1.427668
478044_mir
hsa-miR-516b-5p 1 12.75203 1.844326
478979_mir
hsa-miR-570-3p 1 70.40454 0.329303
479053_mir
hsa-miR-188-3p 1 9.70081 4.69554*
477942_mir

Commonly upregulated miRNA with SM exposure

miRNA

hsa-miR-296-5p
477836_mir

hsa-miR-452-5p
478109_mir

CONTRQ ASCRQ SM RQ

1 13.39489* 547.9478

1 2.515781* 5.023398

ASC, miRNA in EVs from Ascaris lumbricoides antigen-exposed hMDMs; SM, miRNA in EVs
from Schistosoma mansoni antigen-exposed hMDMs; RQ, RQ-fold. *RQ-fold below 2 in one

or more donors.

FIGURE 5

10.3389/fimmu.2024.1454881

differentially expressed miRNAs from all conditions, these three
miRNAs were the only ones found to target MAPK10 and
MAPKI13. During SM exposure, there was induction of three
miRNAs that target SMAD4, out of which one miRNA (miR-452-
5p) was overexpressed in all donors (Figure 9C). SMAD4 was found
to be involved in regulating the TGF-beta signaling pathway.

4 Discussion

Helminth coinfection with TB has been recognized to influence
the immune response against Mtb. However, the precise impact of
helminths or their antigens on host-derived EVs and miRNAs
remains unknown. These EVs and miRNAs could potentially
modulate the immune system and macrophage control of Mtb
growth. In our previous work, we discovered that pretreatment
with A. lumbricoides antigens significantly altered Mtb growth
control and macrophage inflammatory capacity. Specifically,
conditioned medium derived from helminth-exposed macrophages
demonstrated improved control over Mtb growth, accompanied by a
reduction of infection-driven proinflammatory cytokines. Our major
finding in the present investigation is that A. lumbricoides antigen
exposure stimulates macrophages to release EVs and that these EV's
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were essential for enhancing macrophages’ intracellular Mtb growth
control. Although EVs, or rather CD9-, CD63-, CD81-, and flotillin-
1-expressing EVs, were released from macrophages to the cell culture
medium regardless of stimulation, only EVs from Ascaris exposure
significantly improved Mtb growth control and reduced infection-
induced IL-1P release in treatment-naive hMDMs. Across all donors
tested, EV's from Ascaris-exposed macrophages overexpressed miR-
342-5p, miR-516b-5p, miR-570-3p, and miR-188-3p. In contrast,
EVs from S. mansoni antigen exposure resulted in the overexpression
of miR-296-5p and miR-452-5p. These miRNAs play a crucial role in
modulating intracellular signaling cascades involved in Mtb growth
control and inflammation, notably targeting MAPK, PI3K/AKT, and
TGF-beta signaling pathways. Overexpressed miRNAs were found to
target crucial mRNA molecules, including CREB1, MAPKI10,
MAPK13, and SMAD4. Understanding these interactions between
helminth-induced EVs, miRNAs, and macrophage responses may
inform novel therapeutic strategies for TB management.

miRNA has been recognized for its modulatory role in host
immune responses, and in the response against Mtb particularly,
processes such as autophagy and apoptosis are targeted. For
instance, miR-155 has been shown to inhibit apoptosis in cells of
TB patients (15) and to contribute to autophagy-mediated clearance
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of mycobacteria by targeting Rheb (31). Although the six commonly
expressed miRNAs found herein, to our knowledge, have not been
studied in TB, they have been linked to the same pathways we found
through target prediction analysis. For example, miR-342-5p was
found to suppress PI3K/AKT in classically active macrophages and
act anti-inflammatory in an atherosclerosis plaque mouse model
(32), and in an acute kidney injury model, exosomes loaded with
miR-342-5p alleviated inflammation by targeting TLR9 to promote
autophagy (33). Additionally, miRNA-296-5p, which was
overexpressed in EVs after Schistosoma antigen exposure, has
been suggested to induce inflammation by activating NF-kB (34).
Similarly, the other miRNAs found expressed by helminth antigen
exposure have been seen to modulate the predicted pathways, e.g.,
autophagy (35), MAPK (36), and TGF-beta pathway (37).

Our target analysis based on the miRWalk data base revealed
important targets affected by our miRNAs. CREBI1, or cAMP
Response Element-Binding protein 1, is a significant target within
the PI3K/AKT pathway (Supplementary Figure S3) that regulates
the expression of immediate early genes and blocks the nuclear
localization of NF-kB p65, a crucial transcription factor involved in
immune responses against Mtb and inflammation. CREBI is
rapidly activated in hMDMs upon Mtb infection, generating a
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favorable environment conducive to Mtb growth through the
blockade of phagolysosomal fusion and inhibiting the necroptotic
pathway. Furthermore, inhibiting CREB1 resulted in intact nuclear
localization of NF-kB and enhanced macrophage Mtb growth
control (38). In line with this, it was reported that the Mtb-
induced CREBI activation and modulation of inflammation
through NF-kB p65 blockade in RAW murine macrophage-like
cells was reversed by siRNA silencing of CREB, leading to enhanced
Mtb growth control (39). Based on these findings and the fact that
CREBI1 was a common target for three of the miRNAs expressed
across all donors after stimulation with ASC, this is an important
mechanism for the enhanced Mtb growth control that we observe
with EV-stimulation of Mtb infected hMDMs. The CREB finding is
further supported by the biological function of the targeted genes as
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the PI3K/AKT signaling pathway was found modulated in all
donors with Ascaris exposure.

Other important targets modulated by miRNAs that were
overexpressed in EVs of Ascaris-exposed hMDMs was MAPK10
(JNK3) and MAPK13 (p388) (Supplementary Figure S2). These
targets belong to the family of MAPK that are major players during
inflammatory responses, especially in macrophages. p386 MAPK
was identified as a novel regulator of NLRP3 inflammasome
activation in primary human macrophages that mediates IL-1
cleavage and secretion (40). Additionally, IL-1f secretion was
decreased in response to LPS in bone marrow-derived
macrophages from p383- MAPK-deficient mice (41). Moreover, it
has been shown that p388 inhibition or deletion leads to a blockade
of CREB, that p38d is essential for mitogen- and stress-activated
kinase 1 (MSK1) phosphorylation or activation in bone marrow-
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derived macrophages, and that p388 regulated MSK1 downstream
targets that can limit inflammatory pathways downstream of TLRs
(42). Thus, the observed decrease in Mtb infection-driven IL-1[3
release from hMDMs treated with EVs from Ascaris-antigen
exposure aligns with the overexpressed miRNAs found targeting
MAPK13 (p383). While IL-1f is generally associated with the
restriction of intracellular Mtb growth (43) and IL-1B-deficient
mice have higher bacterial loads when infected with Mtb (44), IL-1
signaling must operate within a narrow range as both excessive and
defective IL-1B responses lead to lethal disease (45). EVs from
Ascaris-exposed hMDMs thereby seem to lower the infection-
driven IL-1B to an optimal range suitable for Mtb growth control.
In fact, excessive IL-1f3 production and hyper-inflammation caused
by various genetic polymorphisms have been associated with
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increased TB susceptibility, more severe forms of TB, including
extrapulmonary TB, and a worsened treatment outcome (46, 47).

Schistosoma-induced miRNAs (miR-452-5p) were found to
modulate the TGF-beta signaling pathway through the target
SMAD4, which was common across all donors. TGF-B signaling
is known to have an important function in macrophage
polarization, immune regulation, and tissue homeostasis. SMAD-
dependent TGF-B signaling pathways regulate M2 polarization,
whereas SMAD-independent TGF-f signaling pathways regulate
M1 polarization. SMADA4 is unexplored in the context of TB, but it
was reported that SMAD4-dependant TGE-3 signaling supressed
TLR signaling, thereby interrupting pathogen recognition and
induction of inflammatory responses (48). It was also previously
reported that inhibition of SMAD4 resulted in significantly
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enhanced renal inflammation (49). Our miRNA targeting SMAD4
induced by S. mansoni antigen exposure is therefore indicative of an
interrupted SMAD-dependant TGF-f signaling that could promote
an inflammatory environment. In line with this, we previously
showed that S. mansoni antigen exposure increased the M1 marker
CCR7 on hMDMs with decreased IL-10 secretion when infected
with Mtb (11). However, the effect of a manipulated TGE-
signaling (incurred by SMAD4 inhibition) during Mtb infection
could be argued to have the strongest effect on immune responses
during chronic TB infection when TGF-J is substantially elevated
(50). TGE-P1 is the strongest profibrotic cytokine discovered (51),
and TB granulomas can bear signs of TGF -f-driven fibrosis (52),
where TGF- levels are significantly higher in post-TB patients
with pulmonary fibrosis (53). Therefore, local miR-452-5p
administration strategies that modulate SMAD-dependent TGF-f3
pathways could be promising for reducing lung fibrosis in chronic
inflammatory diseases, including TB.

In conclusion, we found that helminth antigen exposure of
hMDMs generates EVs containing miRNA that target important
immune pathways involved in inflammation and Mtb growth
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control. These effects were found to be helminth species-specific.
Further mechanistic studies are needed to evaluate these miRNAs
or their targets as biomarkers or possible targets during
inflammatory diseases.
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Within the global health landscape, tuberculosis (TB) presents an ongoing
challenge, demanding innovative strategies for its control. This review spotlights
the intersection of TB with diabetes mellitus (DM), recognized by the World
Health Organization as a key risk factor in the TB epidemic. Particularly prevalent
in low and middle-income nations, the TB-DM comorbidity drives up TB rates
through a nexus of chronic inflammation. By delving into the epidemiological,
clinical, and inflammatory dimensions, we elucidate the impact of TB-DM on
patient prognosis and the multifaceted complications it introduces to disease
transmission, diagnosis, and treatment protocols. Our synthesis aims to offer a
fresh lens on TB-DM, fostering a nuanced understanding that could inform future
healthcare policies and interventions.

KEYWORDS

tuberculosis, diabetes mellitus, epidemiology, inflammation, multi-omics

1 Introduction

In the contemporary global health landscape, tuberculosis (TB), a persistent challenge,
intersects intricately with another widespread condition, diabetes mellitus (DM) (1, 2).
Recognized by the World Health Organization (WHO) as a crucial risk factor in the TB
epidemic, TB-DM comorbidity emerges as a significant concern, especially in low and
middle-income countries (1). The coexistence of TB-DM presents a unique challenge
in global health, demanding a nuanced understanding of their interplay, that affects TB
disease progression and individual outcomes. An integrated approach, incorporating both
traditional epidemiological methods and advanced molecular techniques, is essential to
fully comprehend and effectively address the TB-DM comorbidity.

TB remains one of the major causes of death by a single pathogen worldwide, leading
to a global health concern, with the disease affecting around 10 million people each year
(1). The interplay between the Mycobacterium tuberculosis (Mtb) and the host, mediated
by the inflammatory responses, determines a wide spectrum of clinical presentations.
The challenge of reducing the disease burden arises from different factors, including the
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influence of different comorbidities, mainly those that affect the
quality of inflammatory responses, such as HIV (3), malnutrition
(4) and DM.

DM is a chronic metabolic disorder that represents a
dramatically high burden to healthcare systems worldwide. It has
been reported that around half a billion people live with this disease
(2), mainly in low- and middle-income countries. Additionally,
DM is a significant contributor to global morbidity and mortality,
leading to an array of severe complications, including kidney
failure, stroke, and heart disease, and is directly responsible for
a substantial number of deaths annually (2). DM affects the
metabolism through multiple mechanisms, many of them related
to the activation of poorly controlled pro-inflammatory pathways
(5, 6), that influence disease progression and susceptibility to
infectious diseases, such as COVID-19 (7) and TB (8).

In this context, the TB-DM comorbidity has garnered
significant attention in the last years. Interestingly, some studies
revealed regional disparities in the immune profile resulting
from this interaction and emphasized the influence of socio-
demographic and clinical factors on both diseases (9, 10). This
article delves into the multifaceted relationship between TB and
DM, exploring how this interplay exacerbates TB incidence. Our
review compiles recent findings on the epidemiological, clinical,
and inflammatory aspects of this nexus, highlighting its profound
implications on patient outcomes and the broader challenges
it poses in disease management. By scrutinizing the TB-DM
interconnection, we aim to provide a comprehensive multiplatform
perspective that not only sheds light on the complexities of this
comorbidity but also suggests pathways for innovative healthcare
strategies and policy formulations.

References for this review were identified through searches of
PubMed for articles published from January, 1924, to January, 2024,
by use of the terms “tuberculosis,” “diabetes,” “hyperglycemia,”

» «

“epidemiology,” “immune profile,” “treatment outcomes,” “clinical
presentation,” and “omics.” Articles resulting from these searches
and relevant references cited in those articles were reviewed,
and the most relevant and recent papers published in English

were included.

2 Epidemiological trends of DM
among TB patients

The intersection of DM and TB poses a global health challenge,
as DM is recognized by the WHO as a primary risk factor for
new TB cases. Interestingly, many of the top 10 countries with the
highest DM rates are also significant contributors to the global TB
burden. Additionally, in these low and middle-income countries
the prevalence of DM is increasing, creating a dual challenge that
has serious public health implications (11). In a modeling study,
conducted in 13 high endemic TB countries, the authors used
dynamic tuberculosis transmission models to examine the impact
of DM on TB epidemiology (12). The previous prevalence of DM
in each of the 13 countries was accessed to simulate the future DM
prevalence and a country-specific model calibrated to estimate the
trend of TB incidence (12). Results show that lowering or stopping
the rise of DM can avoid 6 million TB incident cases and 1.1 million
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deaths due to TB in the 13 countries for 20 years (12). Therefore,
understand the epidemiological and clinical patterns of DM in TB
patients is vital for delivering patient-centered care and managing
these diseases to reduce the global TB impact (1).

The global prevalence of DM in TB cases exceeds 15%,
surpassing the prevalence in the general adult population by over
50% in 2021 (13, 14). A recent metanalysis, including 2.3 million
TB patients, identified that this trend is notably higher in North
America (19.7%), Western Pacific (19.4%), Southeast Asia (19.0%),
and Middle East and North Africa (17.5%) (13). While these
variations in DM prevalence among TB patients appear to correlate
with the general DM prevalence in each region, disparities within
the same regions suggest more intricate underlying factors. Of note,
these factors could be associated with the clinical management
of the patients, that could vary according to the region. India
and Sri Lanka, for example, possess a significantly higher burden
of TB-DM than the other countries in the South Asia region
(13, 15). This may be a reflection of the high coverage of
DM screening in TB clinics, as well as points to the potential
influence of regional epidemiological patterns, consumption habits,
environmental factors, and genetic predispositions, now being
explored through multiplatform studies, indicating a complex
interplay of epidemiological elements in TB-DM comorbidity.

Despite well established relationships between the diseases, it
is important to note that TB, as an infectious disease, could lead
to hyperglycemia. Therefore, the use of screening algorithms for
transient hyperglycemia displays pivotal role. In a case-control
study conducted in Tanzania between July 2012 and June 2014,
TB patients before treatment were paired with volunteers by sex
and age. All participants underwent DM tests, as fasting capillary
glucose, 2-h capillary glucose and HbAlc levels at enrollment (16).
TB patients were submitted again to the tests after the therapy, and
the authors found a significant decrease in DM prevalence (16),
highlighting the relevance of DM confirmation after TB treatment
to avoid an overestimation of the dual burden of diseases.

The prevention of progression from infection to disease is
crucial to control the TB diseases burden worldwide (1). Currently,
the identification of people infected with Mtb can be performed
with tuberculin skin test (TST) or interferon-y release assay
(IGRA). Both tests are based on the host immune response against
the bacilli, and could be affected by secondary morbidities that
affect the inflammatory responses, such as DM. Some reports have
associated DM with increases in the indeterminate IGRA results
(17). However, the association has been controversial in other
studies, where DM was not associated with indeterminate results
(18). A Brazilian study performed with 553 participants from a
high endemic area, highlight the QuantiFERON-TB Gold as a
good tool to screening TB infection in DM (19), a susceptible
population to TB infection and diseases. Of note, data suggests
also a higher incidence of DM among those with TB infection
(20). A retrospective cohort performed in the USA among US
Veterans included patients who received TST or IGRA during 2000
to 2015. Patients with previous DM diagnosis were excluded, and
the participants followed from TST/IGRA test date until date of
DM diagnosis, death or 2015 (20). The results revealed a higher
DM incidence among LTBI, when compared with those without
positive TST/IGRA, 1.012 vs. 744; HR 1.4 [95% CI 1.3-1.4] (20).
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Therefore, the investigation of TB infection in DM patients, as well
as dysglycemia in TB infected people, is crucial as a cost-effective
public health strategy to mitigate the impact of the epidemics.

The epidemiological factors associated with the TB-DM
dynamicity have been the focus of several studies. Among the
known risk factors, advanced age was consistently identified as a
prominent risk factor for TB-DM comorbidity (21, 22). Lifestyle
habits, such as sedentarism (23, 24) behavior, along with socio-
demographic factors like urban living and high-income status
(25, 26) have also been recognized as elements that increase the
TB-DM prevalence. Clinical variables such as a family history
of DM (24, 27, 28) further, contribute to an increase in the
risk of TB-DM. However, the relationship between Body Mass
Index (BMI) and TB-DM is unclear, with both low and high
BMI values, as well as obesity and malnutrition, having been
separately associated with TB-DM (24, 29). Furthermore, genetic
factors at the population level may significantly influence the
occurrence of TB-DM comorbidity. A study on Indian TB-DM
individuals and their household contacts (HHC) observed that
HHCs who developed TB, had a specific genetic pattern called the
“GG genotype” of the interleukin(IL)-6—174G>C gene, indicating
a genetic component in TB susceptibility (30). IL-6 is a cytokine
essential for initiating and regulating the immune response to
Mtb. Genetic variants affecting IL-6 can influence the immune
system’s ability to combat TB, impacting who may develop the
disease after exposure (30). The insights from epidemiological
and molecular studies on TB-DM comorbidity have significant
implications for future healthcare policies and interventions. The
relationship between clinical, lifestyle and genetic factors, such
as the IL-6 GG encourage the design of molecular epidemiology
projects to identify specific SNPs associated with increased disease
risk, explain varied disease burdens across populations and inform
tailored public health strategies, potentially reducing the incidence
and improving the management of TB-DM comorbidity.

3 Dissecting the clinical interplay and
implications of TB-DM comorbidity

The relationship between TB-DM represents a complex,
bidirectional nexus significantly impacting clinical presentation,
and disease dynamics and outcomes. DM is not only associated
with the prevalence of TB but also exacerbates its progression (31,
32). By 2050, projections suggest that one-third of TB incidence and
mortality within the Asia-Pacific region and similar environments,
will be attributable to DM (33). This alarming trend underscores
the need for integrated health strategies that address both TB and
DM, particularly in regions with high prevalence rates.

Clinically, DM complicates TB management. In recent
research spearheaded by our team, we uncovered a positive
association between DM and increased mycobacterial loads, as
well heightened Acid-Fast Bacilli (AFB) positivity, at diagnosis
in TB-DM participants if compared with those without DM (32,
34). Furthermore, DM has been implicated in the presence of
distinct lung lesions in chest radiographs of TB-DM patients in
our Brazilian cohort (35). The presence of DM also influences
the clinical presentation of TB, increasing the occurrence of TB
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symptoms such as hemoptysis, night sweats, and weight loss,
as well as elevates the clinical severity (34-38). In contrast,
TB-DM patients exhibited lower fever, reduced cough, and less
sputum production, leading to delays in diagnosis and initiating
appropriate treatment (39). The changes in clinical presentations
and the consequences of a late diagnosis and start of TB treatment
emerge as a clinical challenge in TB management and disease
burden control.

In addition, the available evidence suggests that the prevalence
of DM is higher among Drug Resistant (DR)-TB and Multidrug
Resistant (MDR)-TB patients compared to the general population.
A meta-analysis conducted in 2017 with 13 studies and 9,289
individuals shown a significant association between DM and MDR-
TB (OR 1.7 [95% CI = 1.32-2.22]) (40). A more recent meta-
analysis performed with 30 studies and including 225.812 patients
also demonstrated a risk of MDR-TB among DM (HR 0.81 [95%
CIL: 0.60-0.96]) (41).

It is important to emphasize that DM also impacts anti-TB
treatment, being associated with unfavorable outcomes, such as
death, treatment failure and relapse cases (15, 42). Specifically,
mortality and anti-TB treatment failure have been consistently
linked with DM and higher glycated hemoglobin (HbAlc) levels
(15, 43-46). Of note, treatment failure is more pronounced in TB-
DM comorbidity within low- and middle-income countries (47),
where DM conferred a 3.9 times increased risk of treatment failure
in contrast with TB-only patients (48, 49). A pooled metanalysis
also showed that TB relapse risk increases in TB-DM individuals
(15, 50). Furthermore, DM was associated with poor outcomes in
DTR-TB, with a risk of 1.56 times increased risk for unsuccessful
outcomes (51). Following treatment completion, patients with TB-
DM frequently require more extensive long-term care due to
their challenges with managing blood sugar levels, elevated risk of
cardiovascular disease, and potential for kidney damage (1).

DM also affects another important nexus to TB control: the
transmission cascade. The key factors are the increased bacterial
load, delayed diagnosis and unfavorable treatment outcomes in TB-
DM patients, as abovementioned, which directly contributes to a
higher transmission of Mtb. In a study from our group, conducted
with a longitudinal multicenter cohort, it was observed that TB-
DM patients shown an increased risk of Mtb transmission to their
close contacts, if compared to TB-only patients (52). These factors
interact in ways that enhance the transmission potential among TB-
DM patients, thereby underscoring the need for timely diagnosis
and targeted interventions to control the spread of TB in this
vulnerable population.

On the other hand, antitubercular therapy also affects DM
management. Due to drug interaction with rifampicin, a pivotal
drug in TB treatment, and changes in food consumption and
metabolic demand, with decreasing in systemic inflammation and
consequently increasing in appetite, the targeted HbAlc level
could be difficult to achieve in TB-DM (53). Additionally, despite
metformin is not metabolized by P450 enzymes (53), the drug is
a substrate for human transporters. Rifampicin could affect the
expression of organic cation transporter (OCT1) leading to hepatic
uptake of metformin, that could interfere in glucose levels in health
participants (54). However, a pharmacodynamic study in TB-DM
patients showed that rifampicin leads to changes in plasmatic
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concentration of metformin, but do not lead to changes in glucose
levels (55). Side effects in metformin use with rifampicin include
gastrointestinal effects and rarely lactic acidosis (56). These effects
could contribute to poor adhesion of both treatments, leading to a
cascade of complications, highlighting the relevance of TB-DM to
public health.

The challenges of TB-DM regarding clinical manifestations
and, consequently, outcomes play pivotal role in the future
direction of TB management. First, is necessary to expand the
glycemic tests among TB patients, identifying and treating DM
with better glucose control. On the other hand, among those DM
patients, an active search for TB is fundamental to early diagnosis
and treatment. In addition, it is important to focus on screening
close contacts of TB-DM individuals, given the higher risk of TB
infection. Finally, improving the understanding of the molecular
mechanisms associated with the worse clinical presentation and
unfavorable outcomes could help to tailoring effective and patient-
centered interventions, improving treatment, and contributing
with the burden control.

4 Cellular and molecular mechanisms
underlying TB-DM comorbidity

The varying global incidences of TB-DM and the notable
impact of DM on the clinical presentation, outcomes, and
transmission of TB underscore a complex and intricate synergy
between these conditions. In this landscape, multi-platform
approaches are essential for dissecting the intricate cellular and
molecular interactions in TB-DM comorbidity and provide a
comprehensive view of the inflammatory processes involved.
Such advancements have the potential to significantly enhance
prognosis, follow-up, and contribute to a reduction in the burden
of TB. In this context, several multimolecular biomarkers have
been explored with the goal of enhancing diagnosis and clinical
management of TB-DM patients.

4.1 Cellular immunology aspects

It becomes evident that the interplay between TB and DM
significantly alters immune cell function and response. However,
the mechanisms by which immune responses are impaired in
individuals with TBM-DM are not fully understood, being complex
and multifactorial. In TB infection, the effector functions of alveolar
macrophages are crucial to containing the infection within the
lungs (57). However, in DM patients, the functionality of these
cells is decreased due to metabolic alterations associated with
hyperglycemia (58, 59). DM impairs the functional activity of
neutrophils (60) and reduces macrophage migration to sites of
infection (57). Animal studies with diabetic mice have shown
a delay in innate immune response initiation, which includes
a compromise of nitric oxide production and phagocytic cell
functionality, notwithstanding cytokine stimulation (57). In this
same model, alveolar macrophages exhibited increased expression
of CCR2, which potentially hampers the migration of monocytes
to the lungs. Therefore, this may result in a compromised
capability to kill intracellular Mtb, thus further contributing to both
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infection susceptibility and increased bacterial load (57, 61, 62). In
addition, high blood glucose levels negatively impact the antigen
presentation capabilities, which are vital for initiating adaptive
immune responses against Mtb (63).

Similarly, the T cell response is notably affected, with DM
patients often displaying dysregulated T cell responses. This
dysregulation is hallmarked by imbalance in T helper (Th) cell
subsets, with decreased Th1 responses and increased Th2 and Th17
responses. Such an imbalance can significantly alter the host ability
to mount an effective response against TB. In a study comparing
euglycemic and diabetic mice, it was observed that at the onset
of infection diabetic mice exhibited a delayed activation of the
adaptive immune system. This delay was indicated by decreased
production of IFN-y and fewer Mtb antigen (ESAT-6) presence
compared to euglycemic mice (64, 65). Studies have shown that
the frequencies of T cells producing type 1 and type 17 cytokines
are significantly reduced in TB-DM patients compared to those
without DM. This suggests a compromised ability to mount an
effective immune response against Mtb due to altered cytokine
signaling (66).

The interplay between TB-DM leads to significant impairments
in both innate and adaptive immune responses. This results from
a combination of altered cytokine production, diminished T cell
functionality, innate immune cell dysfunction, phenotypic changes
in immune cell populations, and metabolic influences due to
hyperglycemia. These cellular alterations contribute to a weakened
immune defense against TB in diabetic individuals, underlining
the importance of targeted interventions that address these specific
cellular immune challenges in TB-DM comorbidity.

4.2 Genomics

Multi-omics research has delved deeper into the layers
of complexity in TB-DM comorbidity. Genomics, proteomics,
and transcriptomics, each provide unique insights into the
pathophysiological mechanisms in TB-DM. Genomic studies,
for instance, have identified genetic variants that predispose
individuals to TB-DM, revealing potential targets for personalized
medicine approaches. Polymorphisms on IL-6 and IL-18 genes
were associated with TB-DM comorbidity and the occurrence of
TB in close contacts (30). Another study analyzed the interferon-
gamma gene variants and found that the TACCCAGA haplotype
was negatively associated with TB-DM. The frequency of this
haplotype was high in healthy controls compared to TB-DM
patients, ehich may denote the importance of genetic variation in
TB-DM predisposition, as well as facilitate the identification of
individuals at risk.

Currently, new approaches have been applied to better
understand genetic variations and predispositions to TB in DM
population. Using Mendelian randomization, a recent study
selected 152 independent single-nucleotide polymorphisms (SNPs)
as instrumental variables to evaluate genetic causality between
type 2 DM and TB (67). Results reveal an increased risk of PTB
among type 2 DM in the East Asian population (67). Evaluating the
causal relationship between type 1 DM and TB, a Chinese group
assessed SNPs of type 1 DM and PTB (68). Additionally, data from
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Genome-Wide Association Study (GWAS) were utilized to explore
clinical traits of DM, such as glycemic traits, lipids and obesity (68).
Using inverse variance weighting method (IVW), weighted median
method, and Mendelian randomization-Egger regression were used
to evaluate the causal relationship, the group identified that type 1
DM and HDL-C were risk factors to PTB (68).

These findings collectively deepen our understanding of the
genetic interplay between TB and DM, emphasizing the need
for integrative approaches that consider genetic, metabolic, and
environmental factors in addressing TB-DM comorbidity.

4.3 Transcriptomics

In the realm of transcriptomics, investigations in samples from
TB-DM patients have illuminated the molecular pathways that
may be dysregulated in this comorbidity. The superposition of
TB-DM is marked by chronic inflammation, alongside qualitative
and quantitative changes in immune activation characterized by
distinct gene expression patterns. In a recent multi-center cohort
study involving TB-DM individuals (69), pathway enrichment
analysis had shown a notable trend toward heightened neutrophil
and innate immune pathway activation in TB-DM participants
even after anti-TB treatment commencement (69), that might
reflect persistent inflammation. The findings of this same study
unveiled that the genetic and immune responses may vary across
different geographical regions (69), as discussed in the sections
above. Additionally, the study dissect the correlations between the
HbAIc levels and some biological pathways, highlighting positive
correlation between HbAlc levels and pathways associated with
insulin resistance, metabolic dysfunction, diabetic complications,
and chromosomal instability (69). These correlations may play a
pivotal role in the pathophysiology of TB-DM, contributing to a
more severe clinical presentation and unfavorable outcomes.

Another multicentric study has found that DM amplifies the
expression levels of genes related to the innate inflammatory
response and reduces genes related to the adaptative immune
response in TB individuals (70). A decreased type I interferon
(IFN) response was identified in TB-DM participants if compared
to TB-only patients. Despite IFN-y be the most important IFN
type against Mtb, with direct effect in macrophage activation,
previous studies have identified an up-regulation in type I IFN in
TB only patients when compared to controls (71-74). Therefore,
type I IFN has also been associated with TB pathophysiology
(74, 75). Although the excessive IFN responses in TB only has
been associated with a deleterious activity (70). Additionally, a
Chinese study revealed 952 differentially expressed genes (DEGs)
in TB-DM, enriched in pathways associated with the cell cycle,
homeostasis, and immunological processes, highlighting changes
in several biological pathways induced by DM in TB patients
(76). Expanding the scope of transcriptomic studies in TB-DM
in a Brazilian cohort, the long non coding (Inc)RNA expression
analysis led to the identification of a distinct IncRNA signature,
which effectively distinguishes TB-DM from TB-only cases with
an accuracy of 90%—94%. Notably, the IncRNAs included in the
signature (LINCO2009, LINCO2471, ADM-DT, and GK-AS1) hold
a critical role in the pathways related to inflammatory activation
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against Mtb (77). These studies demonstrate that transcriptomics
has shed light on the field of TB-DM, revealing that there are
consistently altered pathways in TB-DM patients.

4.4 Proteomics

Proteomic analyses, through the quantification of cytokines,
chemokines, and other immune-related proteins, have significantly
advanced in the understanding of immune responses in TB-
DM. This approach has been essential in revealing how
hyperglycemia-induced metabolic alterations in DM patients
impair the functionality of the innate and adaptive immune
responses in TB-DM. Proteomic data in TB-DM also has the
potential to reveal key alterations in protein expression and point
toward potential novel biomarkers. These insights are crucial in
delineating the complex dynamics of immune dysfunction in TB
susceptibility, transmission, and treatment outcomes (57, 64, 65,
78-81).

In TB-DM patients, proteomic data indicates an increase in
proteins involved in the complement and coagulation cascade,
as well as in cholesterol metabolism. This elevation suggests a
potential link between lipid metabolism dysregulation and the
heightened inflammatory state observed in TB-DM comorbidity
(82). In another study, 18 differentially expressed protein spots were
identified in TB-DM patients. These alterations were associated
with potential metabolic complications specific to TB-DM and
shifts in proteins governing cell cycle and growth regulation hint
at disrupted processes like cell proliferation and apoptosis (83).

A recent mice study evaluates the changes induced by
TBDM in tissue level. Specifically in liver, a set composed of 60
proteins shows deregulation in TBDM when compared to TB only
mice. These proteins have been associated with small molecule
catabolic process, retinol metabolism, polyol biosynthetic process,
cysteine, and methionine metabolism (84). Functional analysis
reveals perturbations in 20 functional modules, that include
monocarboxylic acid metabolism, amino acids biosynthesis,
cysteine and methionine metabolism, retinol metabolism,
monocarboxylic acid metabolic process, polyol biosynthetic
process, steroid hormone biosynthesis, small molecule catabolic,
and biosynthetic process (84). Of note, cysteine and methionine
are associated with glutathione metabolism, and consequently
contributing with the balance of the oxidative stress. Is know that
the imbalance in reactive oxygen species contributing with tissue
damage in TB (85). Therefore, the study reveals that the alterations
in livre proteomic induced in TBDM leads to progression of
liver diseases (84). These findings not only provide a deeper
understanding of TB-DM pathophysiology but also open avenues
for new diagnostic, monitoring, and treatment strategies.

DM patients also present an altered cytokine milieu that favors
immune dysregulation. In several studies, with TB and TB-DM
individuals, it was observed that DM participants experienced
higher levels of inflammatory activation than those without
DM (81, 86). Patients with TB-DM have higher levels of pro-
inflammatory cytokines such as IFN-y, IL-1f, and IL-17, as well
as lower levels of anti-inflammatory cytokines such as IL-10,
compared to patients without DM. Additionally, throughout the
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anti-TB treatment, these markers remained elevated for a longer
period in TB-DM patients compared to non-DM individuals,
which characterized persistent hyperinflammation in this group
of individuals (86). In summary, the comorbidity of TB-DM is
hallmarked by chronic and unbalanced inflammation, reflected
in abnormal levels of proteins, and the superposition of these
disorders leads to qualitative and quantitative changes in immune
activation (69).

4.5 Lipidomic

Lipidomic changes have been studied in the context of TB-
DM, and it is known that the association TBDM leads to an
altered lipidomic (87). Some studies suggest that these altered lipids
levels are associated with the increased TB risk in DM patients.
In this context, glycerophospholipids were studied (88). The
study identified 14 glycerophospholipids differentially regulated
between TB and TB-DM, emerging as potentially biomarkers in
the field (88). Using lipidomic approaches to identify persistent
hyperinflammation by evaluating urinary lipid mediator profiles
of participants with TB and TB-dysglycemia, it was observed
that levels of a urinary metabolite of prostaglandin 2 (PGE-M)
and leukotriene 4 (LTE4) were consistently higher during anti-TB
treatment in the DM group compared to the normoglycemic group.
These lipid mediators play a crucial role in modulating the immune
response (89). Interestingly, in an adjusted multivariable model TB-
DM was independently associated with increased concentrations
of PGD-M, PGI-M, and LTE4 at baseline (89). This profile of
higher metabolites expression in TB-DM patients if compared
to TB-only patients helps explain why these individuals present
severe symptoms and more enduring lung damage more often
(86), which can be associated with unfavorable outcomes and
Mtb dissemination.

4.6 Metabolomics

Metabolomics, by analyzing the small molecule metabolites
present in TB-DM patients, offers insights into the metabolic
disruptions caused by the interplay of TB and DM. In studies
exploring metabolomics, specific metabolic changes induced by
TB-DM were delineated (90). Plasma amine and acylcarnitine
levels were measured in TB and TB-DM patients, with partial
least squares discrimination analysis showing robust group
discrimination (90). Notably, TB-DM exhibited lower levels of
choline, glycine, serine, threonine, and homoserine compared to
TB-only patients. Of note, the levels of these metabolites did
not normalize during treatment (90). In a recent Korean study,
plasma metabolic profiles of TB and TB-DM were investigated
using metabolomics and lipidomics (87). TB-DM participants
presented higher concentrations of bile acids and molecules related
to carbohydrate metabolism, as well as the depletion of glutamine,
retinol, lysophosphatidylcholine, and phosphatidylcholine (87).
Arachidonic acid metabolism, crucial for eicosanoid production,
emerged as a key factor in TB-DM pathophysiology (87).
Eicosanoids, extensively studied in TB and TB-DM (89, 91),
emerges as potential markers for diseases severity (80).
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4.7 Integrative analysis

Multi-omics investigations have significantly advanced our
comprehension of the complex interplay between these two
diseases. By integrating data from various omics layers such
as genomics, transcriptomics, proteomics, metabolomics, and
epigenomics, it is possible to achieve a holistic understanding
of the biological processes involved in TB-DM interaction
and consequently prognosis. Funding multi-omic studies is
fundamental to better understanding the pathophysiology of TB-
DM and its impact on anti-TB treatment outcomes as well as in the
identification of new targets to host directed therapies.

Using whole blood gene expression and plasma analytes (81),
a groundbreaking study identified that DM in comorbidity with
TB intensifies the neutrophilic inflammatory response, possibly
indicative of a higher bacterial load or a distinct disruption
in immune function. This heightened response was marked by
increased plasma levels of cytokines and growth factors, as well
as differentially expressed genes, that differentiate individuals with
TB-DM from the majority of those with only TB or DM (81).
Intriguingly, the expression patterns of TB-DM-exclusive genes
were linked to critical biological processes and therapeutic targets.
They were associated with endoplasmic reticulum stress, a vital
cell stress response, and showed connections to the mechanisms of
action of the antibiotic doxycycline and anti-cancer drugs such as
5-fluorouracil and semaxanib (81).

In another study, using a multi-platform approach to integrate
clinical, transcriptomic, lipidomic, and proteomic data from a
Brazilian TB-DM cohort, were identified several multimolecular
baseline markers—MMP-28, LTE-4, 11-dTxB2, PGDM, FBXO6,
SECTM1, and LINCO2009—that effectively differentiate between
TB-DM, TB-only, DM-only, and healthy control groups (92). After
anti-TB treatment onset, a notable decrease in these markers
was observed, correlating with microbiological cure. Significantly,
markers such as 11-dTxB2, SECTM1, and LINCO2009 not only
emerged as indicators for new host-directed TB treatments but also
as potential predictors of treatment outcomes (92). Furthermore,
this integrated molecular signature demonstrated high accuracy
in distinguishing TB-DM cases from TB-only, DM-only, and
healthy control (without TB and DM) groups in Brazil and
was validated in three external cohorts, outperforming signatures
derived solely from transcriptomic data (69, 92). Crucially, these
findings highlight that multimolecular signatures can be more
predictive and impactful for precision medicine compared to
single-omic approaches, underscoring the enhanced potential
of multi-omic platforms in advancing our understanding of
inflammatory and infectious diseases, as well in finding markers
that can be implemented in the clinical practice.

5 Paving the path for future
breakthroughs

The studies included in this review provide substantial
evidence of the interplay between TB and DM and highlight
the need for advanced research methodologies. Current evidence
in epidemiology demonstrates a global prevalence of DM in TB
cases, emphasizing age, lifestyle, socio-economic factors, family
history, and hypertension as key risk factors. However, there
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exists a knowledge gap that needs addressing to understand
the regional disparities in TB-DM comorbidity. Investment in
molecular epidemiology studies is crucial for this understanding
and is pivotal for developing targeted public health strategies. This
approach would not only elucidate regional differences but also aid
in formulating more effective, region-specific interventions.

The clinical nexus of TB-DM presents a bidirectional impact,
with DM complicating TB management and exacerbating disease
progression. Research shows a positive association between DM
and increased mycobacterial loads and distinct lung lesions,
underscoring the need for integrated health strategies addressing
both diseases. The next step in addressing TB-DM comorbidity
in the clinical point of view would involve developing more
targeted public health policies for individuals with both conditions.
This could include enhanced TB screening in DM patients
and the other way around, as well as expanding research into
contacts of these patients to assess transmission dynamics. It is
also important to highlight that further studies are needed to
evaluate how DM multimorbidity (such as chronic kidney disease,
fatty liver, and cardiovascular problems) affect the inflammatory
profile of the TB-DM patients, making complex the potential
identification of biomarkers or treatment targets. These strategies
would improve individual patient care and contribute to broader
public health efforts in managing and preventing the spread of
TB-DM comorbidity.

It is also known that DM impacts immune cell function and
response in TB, with specific genetic variations associated with
TB susceptibility. This points to the potential of using advanced
technologies like single-cell analysis to uncover new therapeutic
targets and biomarkers. This review provides several cellular
and molecular insights associated with TB-DM comorbidity. We
discussed the altered immune cell function in DM patients
which are crucial in containing TB infection, as well as the
influence of genetic factors, such as polymorphisms, and the role
of multi-omics in understanding molecular pathways disrupted
in TB-DM. Building on this, the use of multi-platforms, as
well as the addition cutting-edge technologies such as single-cell
analysis could be instrumental. This technology can allow for

10.3389/ftubr.2024.1487793

a more granular understanding of cellular responses in TB-DM
comorbidity at an individual cell level, potentially uncovering new
pathways and therapeutic targets. In addition, the development,
validation, and implementation of point-of-care testing for specific
biomarkers already identified through these advanced methods
could revolutionize early detection and monitoring of TB-DM
comorbidity. This approach aligns with the development of
predictive scores, integrating genetic, molecular, and clinical data
to accurately assess disease progression and treatment outcomes.
Additionally, considering the immune dis-function, a targeted TB
vaccine could play crucial role in diseases prevention. Some TB
vaccines has been developed, but anyone directed to population
with impaired inflammatory responses. A better understanding
of the nuances of immune activation and impairment in TB-DM
could help the development of a new TB vaccine focused on
DM patients.

Moreover, the creation and improvement of comprehensive
risk scores, incorporating socio-demographic, lifestyle, and
clinical variables, could greatly enhance the precision of public
health interventions. These scores, derived from multi-omic and
epidemiological data, could be tailored to specific populations,
considering regional variations in TB-DM comorbidity. Figure 1
encapsulates the current state of knowledge and future directions
in TB-DM comorbidity research. In essence, leveraging these
innovative technologies and approaches could bridge the gap
between current knowledge and the untapped potential in
managing TB-DM comorbidity, leading to more effective,
personalized treatment, and prevention strategies.

The intricate relationship between TB-DM is a worldwide
health threat, impacting treatment outcomes and mortality rates.
The synthesis of epidemiological, clinical, genomic, transcriptomic,
proteomic, and lipidomic studies is vital for understanding the
complexities of TB-DM comorbidity. The study of multi-omic
platforms emerges as an opportunity to gain insights into
disease pathogenesis, given that it simultaneously explores
several components of immune responses through multiple
assay platforms. The identification of precise biomarkers for
diagnosis and individualized treatment, along with public health
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strategies informed by molecular and epidemiological findings,
is crucial. This area of research holds the promise of significant
advancements, offering enhanced management of TB-DM

comorbidity and contributing to global public health outcomes.
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Background: Subjects with immune-mediated inflammatory diseases (IMID),
such as rheumatoid arthritis, with tuberculosis infection (TBI), have a high
probability of progressing to tuberculosis disease (TB). We aim to characterize
the impact of IMID on the immune response to M. tuberculosis (Mtb) in patients
with TBI and TB disease.

Methods: We enrolled TBI and TB patients with and without IMID. Peripheral
blood mononuclear cells (PBMCs) were stimulated with Mtb-derived epitopes
(MTB300). By flow-cytometry, we identified the Mtb-specific CD4" T cells as
cytokine-producing T cells or as CD25" CD134* CD4"* T cells. Memory and
activation status of Mtb-specific T cells were assessed by evaluating: CD153,
HLA-DR, CD45RA, CD27. Mycobacterial growth inhibition assay (MGIA) was used
to evaluate the ability of PBMCs to inhibit mycobacteria growth. A long-term
stimulation assay was used to detect a memory response.

Results: The IMID status and therapy did not affect the magnitude of response to
Mtb-antigen stimulation and the number of responders. TBI-IMID showed a
cytokine profile like TBI and TB patients. The Mtb response of TBI-IMID patients
was characterized by an effector memory and central memory phenotype as in
TBI and TB groups. This memory phenotype allowed the increased IFN-y
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production after 6 days of MTB300-stimulation. HLA-DR expression on Mtb-
specific T cells was associated with TB, whereas CD153 was associated with TBI
status. Finally, the TBI-IMID had an MGIA response like TBI and TB patients.

Conclusion: IMID condition does not affect key aspects of the immune response
to Mtb, such as the cytokine response, memory and activation profile, and the
ability to contain the mycobacteria replication. The immunological
characterization of the fragile population of TBI-IMID patients is fundamental
to understanding the correlation between protection and disease.

tuberculosis, rheumatoid arthritis, Thl, antigen-specific response, AIM assay, IFN-y, MGIA,

tuberculosis infection

Introduction

M. tuberculosis (Mtb), the etiological agent of tuberculosis (TB),
is a leading cause of death from a single infectious agent with an
estimated 10.8 million people falling ill with TB in 2023, and an
estimated 1.25 million people died (1, 2). It has been estimated that
a quarter of the world population has an immune response to Mtb
defined as TB infection (TBI) (3). TBI can progress toward TB
disease in 5-10% of TBI-infected subjects (4, 5). An immunological
balance between the host and Mtb allows the pathogen persistence
for years in a quiescent status continuously stimulating the immune
system (6). Several conditions could affect this fragile equilibrium
leading to a reactivation of Mtb replication and TB disease. Patients
with immune-mediated inflammatory diseases (IMID) such as
rheumatoid arthritis (RA) might have an increased susceptibility
to infections, including TB, because the disease process already
compromises their immune system. The risk ranges from 2.0 to 8.9
in RA patients with TBI not receiving IMID therapies and is lower
in psoriatic arthritis (PsA), and ankylosing spondylitis (AS) (7-11).
The relationship between immunity to Mtb and rheumatic disease
is complex, primarily due to immunosuppressive therapies used in
the management of IMID. Within the cells of adaptive immunity, T
cells, particularly CD4" T cells (helper T cells), play a crucial role in
fighting TB (12-16). However, IMIDs, such as RA, are characterized
by an aberrant immune response, often involving autoantibodies
and dysregulated T-cell responses leading to a higher risk of
developing TB disease (8, 9).

Conventional synthetic Disease-Modifying Antirheumatic
Drugs (csDMARDs), such as methotrexate, represent the first line
immunosuppressive therapy in IMID patients. In patients affected
by RA or PsA, biological (b-DMARDs) (17) and targeted synthetic
DMARD:s (ts-DMARDs) (18), are generally used after sDMARDs
failure/intolerance, being highly effective in reducing disease activity
and limiting disease progression. Although, this effectiveness can
come at the cost of an impaired ability to fight infections (11). TB
preventive therapy is mandatory for TBI-IMID patients undergoing
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treatment with bDMARDs and tsDMARDs such as TNF-o
blockers, anti-IL-6, and JAKs inhibitors, considered drugs at high
risk of TB reactivation (19). However, the highest TB risk is
reported only in patients undergoing therapies with anti-TNF-o
having a fourfold risk of developing TB disease (20), due to the
known role of TNF-o. in granuloma formation and integrity (21).
However, following a principle of caution, TB preventive therapy is
indicated as well as for other drugs targeting mechanisms of TB
immunity (19), significantly down-modulating the immune
function, and affecting T cells and macrophage function (7, 9-11)
such as JAKs and IL-6 inhibitors.

Therefore, before initiating immunosuppressive therapy, RA
patients are screened for TBI using tests such as the tuberculin skin
test (TST) or interferon-y release assays (IGRAs); if either of these
tests is positive, a chest X-ray is performed to exclude TB disease
(5, 11). If TBI is diagnosed, TB preventive therapy is proposed
(7, 22).

In the last years, many studies characterized Mtb immunity to
find new correlates of protection to have tools to monitor the
immune response for designing TB vaccine. Polyfunctional CD4+ T
cells simultaneously producing pro-inflammatory cytokines such as
IFN-y, TNF-0, and IL-2, have been deeply studied as a possible
correlate of TB protection without a unique and definitive
association with Mtb containment or Mtb replication (23, 24).

Despite this conflicting literature, BCG-based vaccine, the only
licensed TB vaccine, and the novel TB vaccine candidates induce
polyfunctional CD4" T cells with memory characteristics in both
animal models and human studies (23). Therefore, significant focus
remains on this specific subset of T cells, as they offer a viable means
to assess the memory response induced by vaccines or
Mtb infection.

An alternative tool to measure the Mtb-specific immunity is the
Activation-Induced Markers (AIM) assay. The simultaneous
expression of CD25 and CD134 identified the antigen-specific T
cells, as described in response to Mtb-antigen stimulation in HIV-
uninfected (25) and HIV-infected individuals (26). The CD134
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(OX40) is a member of the TNFR whereas the CD25 is the IL-2
receptor a-chain, these markers are fundamental for survival,
proliferation, and cytokine production upon antigen-specific
stimulation (25).

Beyond cytokine production, the surface expression of memory
and activation markers has been deeply studied. CD153, also known
as ‘CD30 ligand’, is a costimulatory molecule member of the TNF
superfamily (27). CD4" T cells expressing CD153 in response to
Mtb antigens are associated with Mtb protection in both animal and
human studies (28). They are inversely associated with the burden
of TB disease in humans (29), providing a potential correlate of
protection against pulmonary TB disease.

Similarly, other memory and activation markers have also been
associated with different TB statuses. The CD27 downregulation
(24, 30-32) and HLA-DR upregulation (28, 33-36) on Mtb-specific
T cells, are associated with TB disease. Rigorous studies showed that
the mycobacterial growth inhibition assay (MGIA) can be used to
evaluate vaccine efficacy (37, 38), providing alternative standardized
tools to evaluate the ability of the immune response to in vitro
control the Mtb replication.

Currently, a great effort is underway to develop a new vaccine
against TB disease (39-43). Since the TBI-IMID individuals
represent an eligible population for TB vaccination, it would be
important and clinically relevant to evaluate the status of the
immune response to Mtb in these vulnerable subjects at higher
risk of developing TB disease. However, few data are available on
the Mtb-specific immunity of TBI subjects with IMIDs (42, 44-49).

Based on these premises, we aim to characterize the specific
immune response to Mtb antigens in IMID patients with TBI and
TB disease evaluating cytokine production, memory and activation
markers, and MGIA. A control cohort of TB, TBI, and healthy
control (HC) subjects without IMID was included. While TB
patients serve as a model for Mtb replication, TBI-IMID subjects
represent a model for Mtb containment. Additionally, TBI-IMID
subjects are a vulnerable population that can be useful in dissecting
the immunologically specific aspects of the TB spectrum.

Materials and methods
Study population

This study was approved by the Ethical Committee of the
National Institute for Infectious Diseases Lazzaro Spallanzani-
IRCCS (approval number 72/2015 and approval number 27/
2019). Written informed consent was required to participate in
the study. TB patients, TBI subjects and HC were enrolled from
2015 to 2023.

Since TBI in individuals with IMID is associated with a higher
risk of progressing to TB disease (7), TB preventive therapy is
offered before starting biological therapy. Note that in this study we
enrolled 3 patients taking biologic drugs at the time of enrolment
and TBI diagnosis. Note that these patients were not screened at the
beginning of biologic therapy, although indicated by guidelines
(50, 51), and the screening was prescribed only at the time of the
therapy switching.
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TBI diagnosis was based on a positive score to QuantiFERON
(QFT)-Plus assay (Diasorin, Vercelli, Italy) without clinical,
microbiological, and radiological evidence of TB disease.

TBI-IMID patients with a negative response to QFT-Plus
showing radiological evidence of scars in the upper lung lobes and
reporting a past exposure to TB cases (51), were considered TBI, and
preventive therapy was proposed. Among the 9 subjects with TBI-
IMID scored negative to QFT-Plus, 2 were taking anti-IL-6 drugs, 2
were taking csDMARDs and corticosteroids, 1 was under sDMARDs
and 1 under corticosteroids. TBI and TBI-IMID cohorts were enrolled
before starting the TB preventive therapy. TB disease diagnosis was
based on microbiological and radiological signs of disease. TB patients
were enrolled before starting treatment or within 7 days after therapy
initiation. Among the TB-IMID patients, 3 were enrolled between 14
and 40 days of TB therapy and 3 within 7 days of TB therapy. Note
that 3 TB-IMID were taking anti-TNF-o. drugs at the time of TB
diagnosis. Unfortunately, the type of IMID biologic therapy was
unknown for one TB-IMID patient. As a control, we enrolled HC
who scored negative for QFT-Plus. Demographic and clinical
characteristics of all cohorts used in this study are reported in
Table 1 and Figure 1. As this is an observational study with
unpredictable outcomes, we selected a “convenient sample” of
subjects, considering laboratory workflow, enrollment duration,
patient flow in the hospital, and experimental protocol costs.

To perform this study, we followed the STROBE statement
checKlist for case-control studies (https://www.strobestatement.org/
fileadmin/Strobe/uploads/checklists/STROBE_checklist_v4_
case-control.pdf).

Stimulation and reagents

Withdrawing blood samples were collected in Heparin Blood
Collection Tubes (BD Vacutainer® Blood Collection Tubes).
Peripheral blood mononuclear cells (PBMCs) were isolated using
Ficoll density gradient centrifugation with the SepMateTM tubes
(StemCell; Cat.85460) within 4 hours from sampling. Cells were
frozen in heat-inactivated fetal bovine serum (FBS) + 10% DMSO
and stored in liquid nitrogen until further use. Thawed cells were
cultured at a concentration of 0.5-1.0 x 10°/mL in 96-multiwell plate
for 24 and 48 hours at 37°C, 5% CO, in complete medium [RPMI-
1640 (Gibco, CA, USA), 10% fetal bovine serum (FBS) (Gibco, Life
Technologies Italia, Monza, Italy), 2mM L-glutamine, and 1%
penicillin/streptomycin solution]. PBMCs were stimulated with a
pool of 300 Mtb-derived peptides (MTB300, 1.5 ug/ml) (52).
MTB300 peptide megapool contained a mixture of 300 Mtb-
derived T-cell epitopes from 90 Mtb proteins (including ESAT-6
can CFP10) that target a large fraction of Mtb-specific CD4" T cells,
which share epitopes with NTM species (52-54). As positive control
cells were stimulated with staphylococcal enterotoxin B (SEB)
(Merck Life Science Cat. S4881) at 200ng/mL. The costimulatory
monoclonal antibodies o-CD28 and o-CD49 (1ug/mL each) (BD
Biosciences, San Jose, USA) were added. BD Golgi Plug was added
after 1 hour for cytokine detection, when appropriate. Unstimulated
cells were incubated with costimulatory antibodies and Golgi
Plug only.
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TABLE 1 Clinical characteristics of the enrolled patients.

10.3389/fimmu.2024.1484143

TBI TB TBI-IMID = TB-IMID HC TOTAL p Value
N (%) 39 (29.5) 37 (28) 33 (25) 6 (4.5) 17 (12.9) 132 (100)
Age median (IQR) 45 (32-55) 47 (32-55.5) | 58 (48.5-66.5) | 51 (41-62.25) | 39 (36.5-49.5) | 49 (36-57.75) 0.0004*
Female N (%) 21 (54) 10 (27) 20 (61) 2(33) 13 (76.5) 66 (50) 0.0048**
Origin N (%)
West Europe 25 (64) 11 (29.7) 21 (63.6) 2(33.3) 17 (100) 75 (57.2)
East Europe 6 (15.4) 13 (35.1) 5 (15.2) 3 (50) 0 (0) 27 (21)
Africa 3(7.7) 4(10.8) 2(6.1) 1(16.7) 0(0) 10 (7.6) na**
Asia 2(5) 7 (18.7) 1(3) 0 (0) 0(0) 10 (7.6)
South America 3(7.7) 2 (54) 4 (12.1) 0 (0) 0(0) 9 (6.9)
BCG-vaccinated N (%) 13 (33.3) 25 (83.3) 12 (36.4) 4 (66.7) 0(0) 54 (41.2) <0.0001**
Type of IMID N (%)
Rheumatoid arthritis - - 20 (60.6) 1(16.7) - <0.0001 *
Psoriatic arthritis - - 10 (30.3) 2(33.3) -
Polymyalgia rheumatica = - 1(3) = -
Psoriasis - - 2(6.1) 1(16.7) - na*®
Crohn disease - - - 1(16.7) -
Ulcerative colitis - - - 1(16.7) -
Patients under IMID Therapy N (%) 20 (61) 5(83) 0.2857 **
Type of IMID therapy N (%)
B - - 3(15) 2 (40) 0.1183 %
B+C - - - 2 (40) na %
C - - 4(20) -
cDMARDs - - 4(20) 1 (20)
cDMARDs +/- C +/- - - 9 (45) -
QTF-Plus N (%) at the time of enrolment®
Positive 39 (100) 23 (76.7) 24 (73) 4 (66.7) 0(0) 87 (66.4)
Negative 0(0) 11 (36.7) 9 (27) 0 (0) 17 (100) 39 (29.8) \
Indeterminate 0 (0) 2(6.7) 0 (0) 1(16.7) 0(0) 3(23) .
Not available 0 (0) 1(3.3) 0 (0) 1(16.7) 0(0) 2 (15)

N, Number; TBI, TB infection; TB, tuberculosis; IMID, inflammatory mediated immune disease; HC, healthy control; BCG, bacillus Calmette-Guérin; QFT, QuantiFERON; IQR, interquartile
range; B, Biological; C, Corticosteroids; cDMARDs, conventional DMARDs; na, not applicable, since Chi-square calculations are only valid when all expected values are greater than 1.0 and at
least 20% of the expected values are greater than 5; *Kruskal- Wallis test; **Chi Square test; *Chi Square test among TBI-IMID patients; **Chi Square test among TB-IMID patients; *Chi Square

test among TB, TBI-IMID and TB-IMID; Significant p values are reported in bold.

Intracellular staining assay and flow-
cytometry analysis

To characterize the antigen-specific immune response to
MTB300, we stained cultured PBMCs after 24h and 48h of
incubation. Intracellular staining for cytokine evaluation was
performed after 24h of incubation, using: Fixable Viability Stain
700, CD3 V450 (clone UCHT1), CD8 APC-H7 (clone SK1), CD27
BV605 (clone L128), CD45RA PE-Cy?7 (clone L48), HLA-DR BV786
(clone G46-6), CD153 PE (R&D System, clone 116614), and CD4
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ECD (Beckman Coulter, clone SFCI12T4D11), IEN-y APC (clone
B27), IL2 PerCP-Cy5.5 (clone MQ1-17H12) and TNF-o FITC (clone
MADbI11) (BD). Brilliant Stain Buffer (BD) and Cytofix/Cytoperm
(BD) were used according to the manufacturer’s instructions.
Activation-induced markers (AIM) were evaluated after 48h of
incubation (25) using: Fixable Viability Stain 700, CD3 PE-Cy7
(clone SK7), CD8 APC-H7 (clone SK1), CD25 BV480 (clone 2A3),
CD27 BV605 (clone L128), CD134 BV421 (clone ACT35), HLA-
DR BV786 (clone G46-6) (all from BD), CD153 PE (R&D System,
clone 116614) CD4 ECD (Beckman Coulter, clone SFCI12T4D11).
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FIGURE 1

Scheme of subjects enrolled in the study. A total of 132 patients, with different TB statuses and with or without IMID, were enrolled for the study.
The number of subjects used for each methodology is reported (Created in BioRender.com).

At least 100,000 lymphocytes were acquired using DxFLEX
(Beckman Coulter) cytometer. Data were analyzed with Flow]Jo
software (version 10.8.1), PESTLE and SPICE software [provided by
Dr. Roederer (version for MacBook, Vaccine Research Center,
NIAID, NIH, USA)].
positive if the percentage of the stimulated cells were at least 2-

Antigen-specific response was scored

fold higher compared to the unstimulated control and if the events
gated were at least 10 (see Supplementary Figure S1 for the gating
strategy). The analyses were conducted blindly by two different
operators (EP and CF).

In vitro evaluation of the MTB300-specific
antigen response after 6 days

The long-term assay was performed in a subgroup of the
enrolled subjects with TBI, TB, TBI-IMID, and HC. Thawed
PBMCs were seeded at 1x10°/mL in a 96-multiwell plate,
stimulated with MTB300-peptides (1.5 pg/ml) and cultured for 6
days in a complete medium with o-CD28 and o.-CD49 monoclonal
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antibodies (mAb) (lpg/mL each). At day three, recombinant
human IL-2 protein (Bio-techne/R&D System) at 5 ITU/mL was
added (55). The supernatant was collected after 24h and after 6 days
to evaluate the IFN-y-specific response. The IFN-y production was
evaluated by ELISA assay (Diasorin, Vercelli, Italy) according to the
manufacturer’s instructions and the result was expressed as pg/
ml (56).

Mycobacterial growth inhibition assay

The ability of the immune system to inhibit mycobacterial
growth was assessed in vitro (57). Two million of PBMCs were
seeded in 300ul in complete medium, without antibiotics, in a 48-
well plate and 300ul of RPMI containing 300 CFU of Bacillus
Calmette- Guérin (BCG) Pasteur. Infected PBMCs were incubated
for 96 hours at 5% CO,. Cells were lysed with sterile water and
transferred into the MGIT tube supplemented with 800 pL of
PANTA (antibiotics) and OADC broth (Becton Dickinson).
MGIT tube were incubated in a Mycobacterial Detection System
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(BACTEC MGIT 960) until the detection of positivity and growth.
As control, the bacterial inoculum used was added directly to a
MGIT tube: 300 CFU of BCG Pasteur without added cells were
placed directly in the BACTEC MGIT 960 machine on day 0. Data
were analyzed as time to positivity (TTP) and expressed in hours,
subtracting the TTP of experimental control by the TPP of each
experimental condition (ATTP).

Statistical analysis

Data were analyzed using Graph Pad Prism (Version 8.2.1) and
SPSS software. The median and interquartile ranges (IQRs) were
calculated for continuous measures. For pairwise comparison,
Mann-Whitney U and Wilcoxon tests, were used, as appropriate.
Friedman’s test was used to compare paired data. Receiver Operator
Characteristic (ROC) was used to determine the cut-off values and
sensitivity/specificity of long-term stimulation with MTB300 at day
1 and day 6 in TB patients and HC individuals.

Results
Characteristics of the population

One hundred and thirty-two individuals with different TB
status and with or without IMID, and HC were enrolled.
Differences were found for age (p=0.0004) and proportion of
females (p=0.0048). About 57% of the enrolled subjects were
from Western Europe and 41% were BCG vaccinated. Most TBI-
IMID patients had RA (60.6%) and 61% were under
immunosuppressive therapy at the time of enrolment. None of
TBI-IMID patients developed TB after one year from the end of TB
preventive therapy. All the TB-IMID patients were under
immunosuppressive therapy (Table 1). The characteristics of the
specific cohorts for flow-cytometry, long-term and MGIA studies
are described in Supplementary Tables S1-S3.

Evaluation of Mtb-specific CD4" T cells in
TB and TBI subjects with and without IMID

To characterize the antigen-specific response, we evaluated both
the cytokine-producing T cells and the AIM-positive cells (Figure 2,
Supplementary Table S1). Unfortunately, we did not have sufficient
CD8 responders to allow a robust analysis, so we focused only on
the CD4™" T-cell response. We performed the cytometry study on 26
TBI, 22 TB, 30 TBI-IMID, and 6 TB-IMID individuals
(Supplementary Table S1). The cytokine-producing cells in
response to MTB300 stimulation, hereafter referred to as Thl-
response, were similar among groups (Figure 2A). Likewise, the
frequency of IFN-y", TNF-o.", and IL-2" CD4" T cells was similar
among groups (Figures 2B-D). Differently, after 48h of incubation,
the frequency of antigen-specific CD4" T cells, identified as
CD257CD134" (AIM assay), was higher in the TBI-IMID
compared to the TBI individuals (p=0.034) (Figure 2E). In
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response to SEB, we observed a comparable distribution of Th1-
response among groups and a significantly higher frequency of
CD25"CD134" CD4" T cells in TBI compared to TB (p= 0.033) and
significantly lower frequency compared to the TBI-IMID cohort
(p=0.024) (Supplementary Figures S2A-E). To better discriminate
the effect of IMID therapy on the ability to respond to Mtb
stimulation, we stratified the patients according to the type of
IMID therapy (Tables 2, 3) Immunosuppressive therapy in the
TBI-IMID and TB-IMID cohorts did not have an impact on the
number of Mtb responders evaluated as Thl CD4" T cells and
CD25"CD134" CD4" T cells (AIM assay) (Tables 2, 3).

Cytokine profile of Mtb-specific CD4™"
T cells in TB and TBI subjects with and
without IMID

We investigated the functional cytokine profile of Mtb-specific
CD4" T cells by applying a boolean gating analysis. All groups were
characterized by the presence of IFN-y" IL-2" TNF-0." CD4" T cells,
IFN-y IL-2" TNF-o" CD4" T cells, IFN-y" IL-2" TNF-0" CD4" T
cells, IFN-y IL-2" TNF-o" CD4" T cells; whereas the IFN-y" IL-2
TNF-of CD4" T cells were represented in all groups except for the
TB. Note that the TB-IMID showed the highest proportion of IFN-y
IL-2° TNF-0." CD4" T cells compared to other groups (Figure 2F).
We then assessed differences by analyzing the total polyfunctional or
monofunctional proportion for each group (Figure 2G). We observed
a similar proportion of polyfunctional and monofunctional Mtb-
specific CD4" T cells among TBI, TB, and TB-IMID. Although not
significant, TB-IMID patients were characterized by a predominance
of monofunctional cytokine-producing CD4" T cells (Figure 2G).
Moreover, in response to SEB, we found a comparable polyfunctional
profile among cohorts with a similar proportion of the different T-cell
subsets (Supplementary Figure S2F).

Activation profile of Mtb-specific CD4"*
T cells in TB and TBI subjects with and
without IMID

Activation status of Thl-specific CD4" T cells in response to
MTB300: we evaluated the surface expression of CD153 and HLA-
DR on Thl-specific CD4™ T cells after 24h of MTB300-stimulation.
TB patients showed a higher frequency of Thl-specific HLA-DR
CD4" T cells compared to TBI-IMID (p=0.0203); a similar, but not
significant trend, was observed compared to TBI (Figure 3A). The
HLA-DR expression on Thl CD4" T cells agrees with previous
studies (28). Differently from a previous study (28), the frequency of
Th1-specific CD153+ CD4+ T cells was not modulated after 24h of
MTB300-stimulation (Figure 3A).

Activation status of AIM" CD4" T cells in response to MTB300-
stimulation: we evaluated the surface expression of CD153 and
HLA-DR on AIM* CD4" T cells after 48h of MTB300-stimulation
(Figure 3B). In this case, we observed an increased frequency of
Mtb-specific CD153" CD4" T cells in TBI-IMID compared to TB
(p=0.0014) and in TBI-IMID compared to TBI (p=0.0168). Note
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FIGURE 2
Evaluation of Mtb-specific CD4 T-cell response in TB and TBI subject with and without IMID. PBMCs were stimulated with Mtb-specific antigens

(MTB300) for 24 or 48 hours and immune response was evaluated by flow-cytometry. All the analyses were performed only among the responders.
(A) Antigen-specific response evaluated as total CD4 Thl cytokine-producing cells after 24 h of stimulation. (B) Antigen-specific response evaluated
as total IFN-y* CD4 T cells after 24 h of stimulation. (C) Antigen-specific response evaluated as TNF-a" CD4" T cells after 24 h of stimulation.

(D) Antigen-specific response evaluated as IL-2* CD4" T cells after 24 h of stimulation. (E) Antigen-specific response evaluated as CD25* CD134"
CD4™" T cells after 48h of stimulation. (A—E) Tables under the graphs report the number of CD4* T-cell responders to MTB300. Horizontal red lines
indicate the median and each dot represents a single subject. Statistical analysis was performed using the Mann-Whitney test. (F) Pie charts
representing the proportion of different cytokine-producing CD4" T-cell subsets. (G) Pie charts representing the proportion of monofunctional and
polyfunctional antigen-specific CD4" T cells. (F, G) Boolean gate combination and Wilcoxon matched-pairs signed rank test were applied. TB,
tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated inflammatory disease; IFN-v, interferon-gamma; IL-2, interleukine 2; TNF-a, tumor
necrosis factor alpha.

TABLE 2 Flow-cytometry study: number of TBI-IMID subjects responding to MTB300-stimulation, stratified according to the IMID therapy.

Type of assay Enrolled patients according to Responders Non-responders p value
IMID therapy N (%) N (%)
Patients in therapy over total 11/23 (48) 2/23 (87)
0.6175°
Patients not in therapy over total 7/23 (30) 3/23 (13)
Thi Type of therapy over all patients in therapy
B 0 (0) 1(50) *
C 3 (27.3) 0 (0) na
cDMARDs 2 (18.2) 1 (50)
cDMARDsS +/- C +/- 6 (54.5) 0 (0)
Patients in therapy over total (%) 12/30 (40) 6/30 (20)
0.7116°
Patients not in therapy over total (%) 7/30 (23) 5/30 (17)
CD25+ CD134+ Type of therapy over all patients in therapy
(AIM) B 1(8)* 2(33) ™
C 3(25) 1(17) na
cDMARDs 2(17) 1(17)
cDMARDs +/- C +/- 6 (50) 2 (33)

N, number; TBI, TB infection; TB, tuberculosis; IMID, inflammatory mediated immune disease; B, Biological; C, Corticosteroids; cDMARDs, conventional DMARDs; AIM, Activation Induced
Marker; n, Number; na, not applicable since Chi-square calculations are only valid when all expected values are greater than 1.0 and at least 20% of the expected values are greater than 5; *Fisher’s

exact test *anti-CD20; **anti IL-6.
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TABLE 3 Flow-cytometry study: number of TB-IMID subjects responding to MTB300-stimulation stratified according to the IMID therapy.

Type of assay Enrolled patients according to Responders Non- responders
IMID therapy N (%) N (%)
Patients in therapy over total 4/6 (66.6) 1/6 (16.7)
>0.9999°
Patients not in therapy over total 1/6 (16.7) 0/6 (0)
Thl Type of therapy over all patients in therapy
B *2 (40) 0 (0)
B+C **1 (20) **1 (100) na
cDMARDs 1 (20) 0 (0)
Patients in therapy over total 4/6 (66.6) 1/6 (16.7)
>0.9999°
Patients not in therapy over total 1/6 (16.7) 0/6 (0)
CD25+ CD134+
(AIM) Type of therapy over all patients in therapy
B *2 (40) 0 (0)
B+C **1(20) 1 (100) na
cDMARDs 1 (20) 0 (0)

N, number; TBI, TB infection; TB tuberculosis; IMID, inflammatory mediated immune disease; B, Biological; C, Corticosteroids; cDMARDs, conventional DMARDs; AIM, Activation Induced
Marker; n, Number; na, not applicable, since Chi-square calculations are only valid when all expected values are greater than 1.0 and at least 20% of the expected values are greater than 5; *Fisher’s
exact test; *one patient was under anti-TNF-o. therapy and one patient was under unknown biologic therapy; **patient was under anti-TNF-o. therapy and corticosteroids.

that, even if not significant, the median frequency of Mtb-specific
CD153" CD4" T cells in TBI individuals was higher than in TB
patients. The analysis of the different CD153*" HLA-DR*" CD4"
T-cell subsets showed an increase of all subsets at 48h at the expense
of the CD153" HLA-DR™ CD4™ T cells (Figures 3C, D).

Activation status in response to SEB: we observed an increase of
the different CD153*" HLA-DR*" CD4" T-cell subsets in response
to SEB stimulation compared to the response at 24h and 48h post in
vitro stimulation (Supplementary Figure S3).

CD27, CD153, and HLA-DR evaluation on Th1-specific CD4" T
cells in response to MTB300: We evaluated the surface expression of
CD27, CD153, and HLA-DR on Thl-specific CD4" T-cells in

response to MTB300 (Figure 4). The TBI and TBI-IMID subjects
had a higher frequency of CD27" CD153” HLA-DR' compared to the
TB (p=0.0148 and p=0.0434 respectively). TB patients had a higher
frequency of CD27° CD153" HLA-DR' CD4" T cells compared to
TBI (p=0.0265) or TBI-IMID (p=0.0295) subjects. Despite the low
number of subjects evaluated, the TB-IMID individuals showed an
activation profile like the TB patients, with a higher frequency of
CD27 CD153  HLA-DR" CD4" T cells compared to TBI (p=0.0429).

CD27, CD153, and HLA-DR evaluation on Th1 CD4" T cells in
response to SEB: we found a similar distribution of the activation
markers among groups with a prevalent proportion of the CD27*
CD153" HLA-DR CD4" T-cell subset (Supplementary Figure S4).
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FIGURE 3

HLA-DR- and CD153 expression on Mtb-specific CD4" T cells in TB and TBI subjects with and without IMID. PBMCs were stimulated with Mtb-
specific antigens (MTB300) for 24 hours and 48 hours and the immune response was evaluated by flow-cytometry. The activation profile (CD153"/~
HLADR*/") of Mtb specific T cells was evaluated only among the responders. (A) Activation profile of antigen-specific response, defined as total CD4
Th1 cytokine-producing cells; horizontal black lines indicate the median and each dot represents a single subject. (B) Activation profile of antigen-
specific response, defined as CD25" CD134* CD4" T- cell response; horizontal lines indicate the median and each dot represents a single subject.
(C) Pie charts representing the proportion of different CD153"/"HLADR*/~ CD4" Th1 cytokine-producing cells. (D) Pie charts representing the
proportion of different CD153*"HLADR™/~ CD25% CD134* CD4™" T cells. Statistical analysis was performed using the Mann-Whitney test and
Wilcoxon test. TB, tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated inflammatory disease; h, hours.
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Memory profile of Mtb-specific CD4 Thl
cells in TB and TBI subjects with and
without IMID

Then, we investigated if the IMID status may affect the specific
response to MTB300, by characterizing the memory profile after 24h of
incubation. To have enough events to be analyzed, we evaluated the
expression of CD45RA and CD27 within the Mtb-specific T cells
producing any Thl cytokines (IFN-y, TNF-o,, or IL-2). We identified
the naive (N) T cells as CD45RA™ CD27", the central memory (CM) as
CD45RA'CD27", the effector memory (EM) as CD45RA"CD27 and
the effector (E) as CD45RA'CD27" (Figure 5) (24). In all groups,
independently of the IMID status, the MTB300-specific T cells were
mainly CD45RA"CD27" (CM) and this subset was significantly higher
in the TBI compared to the TB (p=0.024) (Figure 5B). Both TB and
TB-IMID groups showed an increased frequency of the double
negative CD45RA'CD27" MTB300-specific CD4 T cells (EM), this
difference was significant comparing TB and TBI-IMID subjects
(p=0.0417). Note that TBI-IMID individuals showed a high
frequency of CD45RA™ CD27" T cells (N) compared to the others.
In all groups, we found a low frequency of the CD45RA™ CD27 T cells
(E) (Figure 5B). Within each group, as shown by the pie charts, the
distribution of the different memory subsets was statistically significant
(Figure 5A). In response to SEB, we did not find significant differences
among groups. However, we found an expansion of the

10.3389/fimmu.2024.1484143

CD45RA"CD27" (N) and a reduction of the CD45RA"CD27 T cells
(EM) compared to the MTB300 response (Supplementary Figure S5).
Overall, our data indicated that IMID status did not strongly affect the
memory profile. Furthermore, we showed that TB patients, regardless
of the IMID status, had a higher proportion of Mtb-specific CD45RA”
CD27 T cells (EM) than TBI subjects, as TB patients downregulated
the CD27 expression (30, 58).

The long-term Mtb stimulation increases
the IFN-y production in subjects with
different TB status independently of IMID

We next evaluated if the IMID subjects were able to improve their
Mtb-specific T-cell response after 6 days of Mtb antigen stimulation. In
a subgroup of individuals (Supplementary Table S2), PBMCs were
long-term cultured and the Mtb-specific IFN-y response was evaluated
by ELISA. The supernatants were collected after 1 day and after 6 days
of incubation (Figure 6). The IFN-y production significantly increased
after 6 days of stimulation (TBI: p<0.0001; TBI-IMID: p<0.0001; TB:
p<0.0001) (Figure 6A). To select a cut-off of the MTB300-stimulation
test, we performed a ROC analysis comparing HC and TB patients (day
1: AUC 0.85, p=0.0011; day 6 AUC 0.84, p=0.0016) (Supplementary
Figure S6). We selected 0.2750 IU/mL as day 1 cut-off (73% sensitivity
and 90% specificity) and 2.1750 IU/mL for day 6 (73% sensitivity and
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Activation profile of Mtb-specific CD4 Thl cells in TB and TBI subject with and without IMID. PBMCs were stimulated with Mtb-specific antigens
(MTB300) for 24 hours and the immune response was evaluated by flow-cytometry. Antigen-specific response was defined as total CD4 Thl
cytokine-producing cells and the activation profile was evaluated only among the responders. (A) Pie charts representing the proportion of cD27t"
CD153""HLADR*/~ CD4 T-cell subsets; Wilcoxon matched-pairs signed rank test were applied. (B) Frequency of antigen-specific CD27*/~ CD153*/
HLADR*/~ CD4 T-cell subsets. Horizontal red lines indicate the median and each dot represents a single subject. Statistical analysis was performed
using the Mann-Whitney test. TB, tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated inflammatory disease.
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100% specificity). Based on the selected cut-off we found that 46.7% of
TBI, 70% of TB, and 50% of TBI-IMID scored positive to MTB300 at
day 1, while 73% of TBL, 70% of TB, and 61% of TBI-IMID had a
positive response after 6 days of stimulation (day 1 vs day 6: TBI
p=0.0350; TB p>0.9999; TBI-IMID p=0.8064) (Table 4). Evaluating the
rate of change, we found the highest increase in TBI subjects compared
to the other groups (Table 4).

We then investigated whether the ability to retrieve a specific
response was related to the memory T cells. We focused on patients
with a positive long-term response after 6 days of stimulation and
scored positive for an Mtb-specific Thl-response after 24 hours of
stimulation. In all groups, we observed a significant predominant
memory-subset responsible for the increased IFN-y production
reported at day 6 (p<0.0001) (Figure 6B).

The long-term Mtb stimulation increases
the IFN-y production in TBI-IMID patients
scored QFT-plus positive and QFT-

plus negative

We focused on the TBI-IMID cohort stratifying subjects according
to the QFT-Plus results (Figure 7, Supplementary Table S2).

10.3389/fimmu.2024.1484143

The frequency of IFN-y production increased in both TB-IMID
QFT-Plus positive and QFT-Plus negative (p=0.0156; p=0.0023
respectively). Applying the selected cut-off, at day 6, 4/9 QFT-Plus
negative (44%) had a positive long-term response, and 14/21 QFT-Plus
positive (67%) had a positive long-term response. Both groups showed
a high frequency of CD45RA™ CD27" and CD45RA™ CD27 Thl-
specific CD4 T cells (p=0.0001) (Figure 7B). Subjects were also
evaluated for their ability to produce Thl-specific cytokines in
response to MTB300 (Figure 7C). The total Thl-specific response
was comparable among groups.

MGIA response in TB and TBI subjects with
and without IMID

To evaluate if the IMID status impaired the ability of PBMCs to
control mycobacteria replication, we used the MGIA, using the
vaccine strain BCG, in a subgroup of individuals with different TB
statuses and with or without IMID (Figure 8). Clinical and
demographical characteristics are reported in Supplementary
Table S3. The MGIA response, expressed as the time to positivity
(TTP) (59), was compared among different groups (Figure 8). No
TTP differences were observed among groups, indicating that TBI-
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FIGURE 5

Memory profile of Mtb-specific CD4 Thl cells in TB and TBI subject with and without IMID. PBMCs were stimulated with Mtb-specific antigens
(MTB300) for 24 hours and the immune response was evaluated by flow-cytometry. Antigen-specific response was defined as total CD4 Thl
cytokine-producing cells and the memory profile was evaluated only among the responders. (A) Pie charts representing the proportion of CD27*/-
CD45RA"" CD4 T-cell subsets; Wilcoxon matched-pairs signed rank test were applied. (B) Frequency of antigen-specific CD27*/~ CD45RA*" CD4
T-cell subsets. Horizontal red lines indicate the median and each dot represents a single subject. Statistical analysis was performed using the Mann-
Whitney test. N, number; TB, tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated inflammatory disease.
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Long-term Mtb stimulation increases the IFN-y production in subjects with different TB status with and without IMID and healthy controls. (A) PBMCs
were stimulated with Mtb-specific antigens (MTB300) for 6 days in the presence of IL-2. IFN-y was evaluated by ELISA on day 1 and day 6 on
supernatants. (B) Memory profile of Mtb-specific CD4 Thl cells. PBMCs were stimulated with Mtb-specific antigens (MTB300) for 24 hours and the
immune response was evaluated by flow-cytometry. Antigen-specific response was defined as total CD4 Thl cytokine-producing cells and the
activation profile was evaluated only among the responders. The graph represents the frequency of MTB300-specific CD27*- CD45RA*" CD4 T-cell
subsets of subjects tested in the long-term stimulation assay. Horizontal red lines indicate the median and each dot represents a single subject. Statistical
analysis was performed using the Wilcoxon matched-pairs signed rank test. TB, tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated

inflammatory disease; HC, healthy control; IFN-v, interferon-gamma.

IMID could control the mycobacteria replication like non-
IMID individuals.

Discussion
Summary

In this study, we showed that the memory and activation status of
individuals with TBI-IMID are similar to those of patients with TB or
TBI without IMID. This finding suggests that TBI-IMID individuals
possess effective Mtb-specific immunity and can control
mycobacterial replication, as assessed by MGIA, just like non-IMID
subjects. Additionally, TB-IMID patients exhibit a cytokine response
and activation profile similar to TBI individuals without IMID. Thus,
other immunological mechanisms might account for the impaired
Mtb-specific immunity in this susceptible IMID group.

Mtb-specific T cells

To evaluate Mtb-specific immunity besides the response to
ESAT-6 and CFP-10 (RD1 antigens) evaluated by QFT-Plus, we
used a different Mtb-peptide pool, the “MTB300-peptide-
megapool” containing a mixture of 300 Mtb-derived T-cell
epitopes from 90 Mtb proteins (including ESAT-6 can CFP10)
targeting a large fraction of Mtb-specific CD4+ T cells and sharing
epitopes with NTM species (52-54). All groups’ patients respond to
MTB300-stimulation in terms of cytokine-production or AIM"
CD4" T cells. TB therapy reduces the Mtb load in the host,
leading to a decreased Mtb-specific immune response (60-62). In
our experimental setting, half of TB-IMID patients have been
enrolled during TB therapy. Although a limited number of
patients enrolled, the TB-IMID cohort showed a similar level of
cytokine-producing CD4" T cells or AIM™ CD4" T cells compared
to TB individuals enrolled before starting the TB therapy.

TABLE 4 Number of responders to in vitro long-term stimulation with MTB300.

Number of responders

(Cut-zifaficl).ﬂs) (Cut—?)affy=g.175) FEID G G TITEE
TBI [N/total (%)] 14/30 (46.7) 22/30 (73) 0.0350 1036.56
TB [N/total (%)] 19/27 (70) 19/27 (70) >0.9999 213.20 0.0772
TBI-IMID [N/total (%)] 14/28 (50) 17/28 (61) 0.8064 930.66

N, number; TB, tuberculosis, TBI, tuberculosis infection, IMID, inflammatory mediated immune disease; * Chi-Square test; **Kruskal- Wallis test. Significant p values are reported in bold.
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Long-term Mtb stimulation increases the IFN-y production in TBI-IMID individuals stratified according to the QFT-Plus response. (A) PBMCs were
stimulated with Mtb-specific antigens (MTB300) for 6 days in the presence of IL-2. IFN-y was evaluated by ELISA at day 1 and day 6 on supernatants
in TBI-IMID QFT-Plus negative and QFT-Plus positive. (B) Memory profile of Mtb-specific CD4 Thl cells. PBMCs were stimulated with Mtb-specific
antigens (MTB300) for 24 hours and the immune response was evaluated by flow-cytometry. Antigen-specific response was defined as total CD4
Th1 cytokine-producing cells and the activation profile was evaluated only among the responders. (C) Antigen-specific response evaluated as total
CD4 Th1 cytokine-producing cells after 24 h of stimulation. Pie charts represent the proportion of different cytokine-producing CD4" T-cell subsets.
Horizontal red lines indicate the median and each dot represents a single subject. Statistical analysis was performed using the Mann Whitney test and
the Wilcoxon matched pairs signed rank test. TB, tuberculosis; TBI, tuberculosis infection; IMID, immune-mediated inflammatory disease; IFN-y,

interferon-gammea; IL-2, interleukine 2; TNF-a, tumor necrosis factor alpha.

All groups’ patients, independently of IMID and TB status, had
polyfunctional CD4" T cells producing at least two cytokines and
monofunctional CD4" T cells for IFN-y or TNF-o as previously
demonstrated for MTB300 (52). According to the literature, the
polyfunctional response is associated with infection control in the
case of HIV and L.major infections (63, 64), whereas controversial
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FIGURE 8

Comparison of MGIA response as TTP in TBI, TB, TBI-IMID, and
healthy control individuals. TPP is expressed in hours. As an
experimental control, the bacterial inoculum used was added
directly to an MGIT tube. The TTP of experimental control was
subtracted by the TPP of each experimental condition. Data are
represented as the median. Mann-Whitney test was applied. TB,
tuberculosis, TBI, TB infection; TTP, time to positivity; HC,
healthy control.
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data are available for TB (23). In our study, TBI-IMID showed a
cytokine profile like TBI and TB patients, indicating that the Mtb-
specific cytokine response is not altered by the IMID status.
Differently, TBI individuals living with HIV infection had a lower
percentage of cytokine-producing Mtb-specific CD4" T cells and a
decrease of the double positive IFN-y" IL-2~ TNF-o." CD4" T cells
(65). These results indicate different mechanisms characterizing the
groups at high TB risk such as the IMID subjects and the people
living with HIV. A higher polyfunctional response associated with
the TBI-IMID status and a monofunctional response characterized
the TB-IMID patients, suggesting a loss of polyfunctional CD4" T-
cell response in TB disease. Since half of TB-IMID patients have
been enrolled during TB therapy, this status may lead to a
monofunctional response switching. Our recent findings support
these data, indicating that TB therapy did not significantly impact
the cytokine response in TBI-IMID. However, it did result in a
notable reduction of triple functional CD4 T cells in both TBI
subjects and TB patients (44). Despite the small size of the TB-IMID
cohort, we present these findings as describing such a rare group
warrants further research to explore any potential link between
Mtb-specific responses and TB outcomes. Lastly, we believe these
findings could aid in developing new correlates of protection for
patients with varying TB statuses.

According to the literature, the antigen-specific response can be
investigated by the co-expression of CD25 and CD134 through the
AIM assay (25). Our results indicated that IMID-therapy does not
affect the count of either cytokine or AIM responders. The AIM
assay reveals a stronger immune response than the intracellular
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cytokine assay, making the differences between groups more
evident. This finding is supported by an earlier study that
demonstrated the AIM assay’s superior capability in detecting
antigen-specific T cells compared to cytokine-producing T
cells (66).

Memory status of Mtb-specific
CD4* T cells

Given the conflicting data on the relationship between cytokine
profiles and TB protection, other elements of the immune response,
such as the memory and activation status of antigen-specific T cells,
were evaluated.

Here we showed that TBI-IMID patients were characterized by an
Mitb-specific memory response CD45RA™ CD27%", as previously
described in TB and TBI individuals (24, 67-69). In particular, the
Mtb-specific CD45RA™ CD27~ CD4" T cells (effector memory)
characterized the TB patients, whereas the Mtb-specific CD45RA
CD27" CD4" T cells (central memory) characterized the TBI
individuals. These results highlight the role of the different T-cell
subsets contrasting the Mtb replication. The presence of Mtb at a
low replication rate during the TBI status constantly stimulated a
central memory response fundamental to containing the Mtb load.
Vice versa, during the TB disease, the frequency of Mtb-specific effector
memory T cells increases to actively contrast the Mtb replication. These
findings are consistent with earlier studies on patients with varied TB
status, both with and without IMID (24, 44), and those with HIV (67).

The memory phenotype is fundamental for the increased IFN-y-
specific response after MTB300-long-term stimulation. It has been
demonstrated that TBI-IMID subjects have a low IFN-y response to
QFT-Plus and a high proportion of results in the uncertain range (70).
The long-term stimulation allows the recovery of the Mtb-specific
response in TBI-IMID scored negative to QFT-Plus, suggesting this
approach as an alternative diagnostic tool in this category of TBI
subjects. Note that TBI-IMID had a high proportion of Mtb-specific
CD45RA* CD27" CD4" T cells and this proportion was lower in TBI-
IMID QFT-Plus negative compared to QFT-Plus positive. Since the
CD45RA" CD27" T-cell subset could contain the stem cell memory T
cells CD45RA" CD27" CCR7", as already demonstrated in TBI
individuals (71), this subset may play a role in our TBI-IMID cohort
modifying the phenotype of Mtb-specific T cells.

Activation status of Mtb specific
CD4* T cells

Studies in animal models have demonstrated that Mtb-specific
CD4 T cells expressing CD153 are protective against Mtb infection
(28, 29, 72, 73). Moreover, the Mtb-specific CD153" CD4" T cells
are inversely proportional to bacterial load and TB severity in
patients with TB disease (29). In this study, we observed an
increased CD153 expression only after 48 hours of MTB300-
stimulation in TBI-IMID and TBI individuals. The TBI-IMID
showed an increase of Mtb-specific CD153" CD4" T cells
compared to TBI, supporting the role of autoimmunity in the
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CD153-expression (74). Age could be an important factor
influencing this result, considering that our study population was
older (Table 2) than the cohorts of previous studies describing the
CD153-expression on Mtb-specific T cells (28, 29, 33). Since the
expression of CD153 has been associated with senescence-
associated T-cell impairment (75), we retain that age could be an
important factor influencing this result. Based on this evidence,
probably other mechanisms associated with immune-senescence
affected the CD153 expression on Mtb-specific CD4" T cells. Also,
the origin of our patients may have had an impact on CD153
expression. Our TBI population was mainly from low TB endemic
countries, whereas the previous studies were performed in Africa
(28, 29, 33), where repeated exposures to Mtb could affect the Mtb-
immunity and modify the activation status.

The expression of HLA-DR on Mtb-specific T cells is increased
in TB after 24 hours of MTB300-stimulation, as previously shown
(28, 33, 34). Moreover, the HLA-DR expression increased in all
groups after 48 hours of Mtb stimulation indicating a time-
dependent differentiation of CD4" T cells (66). The TB-IMID
patients seem to have a high proportion of activated Mtb-specific
HLA-DR" CD4" T cells, like TB patients. Differently, in TBI-IMID,
the proportion of Mtb-specific HLA-DR" CD4" T cells is like TBI,
demonstrating a comparable activation status independent of the
IMID comorbidity. Interestingly, the expression of HLA-DR and
CD27 on Mtb-specific CD4" T cells demonstrated a dichotomous
profile: the Mtb-specific CD27~ CD153" HLA-DR" CD4" T cells
associated with TB status and the Mtb-specific CD27" CD153
HLA DR CD4" T cells associated to TBI status, indicating a highly
differentiated profile in patients with TB (24).

Mycobacterial growth inhibition assay

In this study we aimed to characterize the Mtb-specific
immunity, however, we included the MGIA experiment to have a
global evaluation of the immune defense against mycobacteria,
looking simultaneously at the innate and adaptive compartments.
Monocyte subsets are key cells of the innate immune response and
are fundamental to stimulating adaptive immunity acting as
antigen-presenting cells. It has been demonstrated that the
monocytes/lymphocytes (M/L) ratio has a predictive value for TB
disease, in particular, a high M/L is associated with the TB disease
(76). MGIA is a largely used test to monitor the vaccine response
and a powerful tool to indirectly test the presence of functional T
cells and competence of the innate compartment (37, 38). Our
results demonstrated that TBI-IMID had the same ability as TBI
and TB to contain the mycobacteria replication evaluated by MGIA.

Translational application of the study

Since the BCG-based vaccine is the only TB vaccine licensed
and has a low efficacy for protecting adolescents and adults from TB
disease, the development of new vaccine strategies is the main goal
of the TB control programs (77). The fragile population of TBI-
IMID patients is a potential target of the new vaccine approach, and
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its immunological characterization is fundamental to develop new
biomarkers of protection and disease and to develop alternative
therapeutic strategies based on host-direct therapy (78). Since few
studies are available on Mtb-immunity in IMID patients (44, 48,
70), we contributed to build the immunological story characterizing
the TBI-IMID subjects.

Limits of the study and future directions

The non-homogeneous IMID cohort may limit the solidity of
data, however, the different types of ongoing IMID-therapy did not
have an impact on the number of responders, as previously shown
(44, 70). Due to the availability of cells, not all patients were
characterized using the same methodology. Nonetheless, the
statistically significant differences observed among the groups
validate the consistency of our results. The immunological
scenario of IMID is large and complex, however, we tried to
summarize a particular aspect of the disease that increases the
risk of TB development. Larger studies are needed to elucidate other
features of the Mtb-induced immunity. In particular the
investigation of specific mechanisms that increase the TB risk in
patients undergoing therapy such as IL-6 or JAK inhibitors (19).
Although the number of TB-IMID patients enrolled was low, we
included this population because it was an opportunity to study
Mtb immunity in a rare cohort, larger studies are necessary to
eventually identify a correlation between the Mtb-specific immune
response and TB outcome. Since TBI-IMID subjects had remote
exposure to Mtb and TBI had a recent TB contact, future studies
should include TBI with a remote TB exposure. It is known that
only 5% of TBI individuals progress to TB disease within the first 5
years from the TB contact (79), whereas only 2% evolve to TB
disease during their lifetime (80). Studying TBI individuals with
different statuses of TB exposure is a useful approach to understand
which type of immunity promotes the eradication or the efficient
containment of Mtb. In low TB-endemic countries, TBI patients
with remote exposure are not eligible for TB preventive therapy (22)
and therefore the evaluation over time of their Mtb immunity could
contribute to describing the mechanisms of Mtb containment.

Besides these limitations, we deeply characterized the immune
response to Mtb of patients with different TB status in the presence
or absence of IMID, showing that IMID status did not affect the
Mtb immunity. Recently, it has been demonstrated that Mtb DNA
can be detected in PBMC from subjects with TBI and TB disease. In
particular, the CD34" cells represent a niche for Mtb (81). This
approach could be applied to immunological studies to find a
correlation between the Mtb-specific immune response and the
presence of Mtb in the circulating reservoir.

Conclusions
We added a contribution to the knowledge of Mtb immunity in

this fragile cohort to TBI-IMID subjects demonstrating that TB-
IMID patients had a cytokine response, a memory and activation
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profile, and an ability to contain the mycobacteria replication similar
to TBI individuals without IMID. The immune tools available do not
completely explain the mechanisms of impairment of Mtb-specific
immunity in this vulnerable population and new approaches are
needed to overcome this limitation.
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exacerbates disease severity and
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Introduction: Anemia has been shown to be an independent predictor of disease
progression and death in tuberculosis (TB) patients, significantly impacting TB in
several ways. This dual burden poses significant challenges for TB control efforts.
However, the mechanism by which anemia influences disease severity, bacterial
burden, and TB treatment outcomes remains poorly understood.

Methods: In this study, we aimed to compare bacterial burdens, disease severity,
and TB treatment outcomes in TB patients with or without anemia. Participants
were recruited from Chennai, South India, as part of the prospective Effect of
Diabetes on Tuberculosis Severity (EDOTS) study conducted from February 2014
to August 2018. Anemia was defined as hemoglobin (Hb) levels <13 g/dL and
<12 g/dL for males and females, respectively. We employed chest X-rays to
assess bilateral lung and cavitary diseases and sputum smear grades to measure
bacterial loads in TB subjects. Treatment outcomes were defined as favorable or
unfavorable. Cytokine profile was measured using multiplex ELISA.

Results: The study comprised of 483 culture-confirmed TB individuals, with 288
positives for anemia {Median Hb was 11.0 [interquartile range (IQR)], 10.3-12.3}
and 195 negatives [Median Hb was 14.3 (IQR), 13.5-15.2]. The study revealed
that TB patients with anemia had significantly higher bacterial loads [adjusted
prevalence ratio (aPR), 4.01; 95% Cl, 2.22-6.63; p < 0.001], cavitary lung lesions
[aPR, 3.36; 95% Cl, 1.95-5.68; p < 0.001] and unfavorable treatment outcomes
[aPR, 1.61; 95% CI, 1.31-2.19; p = 0.046] compared to those without anemia.
Our data also show that TB is associated with significantly lower levels of type-
1 cytokines (IFNy and IL-2) but significantly higher levels of pro-inflammatory
cytokines (IL-6, IFNa, and IFNB) and pro-fibrotic factors (VEGF, EGF, FGF-2, and
PDGF-AB/BB) in anemic individuals compared to those without anemia.

Conclusions: These findings highlight a clear association between anemia and
increased TB severity, elevated bacterial loads, and poor treatment outcomes.
Our data also suggest that anemia might be associated with the modulation of
cytokine responses, which could impart a detrimental effect on TB pathogenesis.
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72 frontiersin.org


https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org/journals/tuberculosis#editorial-board
https://www.frontiersin.org/journals/tuberculosis#editorial-board
https://www.frontiersin.org/journals/tuberculosis#editorial-board
https://www.frontiersin.org/journals/tuberculosis#editorial-board
https://doi.org/10.3389/ftubr.2024.1462654
http://crossmark.crossref.org/dialog/?doi=10.3389/ftubr.2024.1462654&domain=pdf&date_stamp=2025-01-14
mailto:saravanan.m@icerindia.org
https://doi.org/10.3389/ftubr.2024.1462654
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/ftubr.2024.1462654/full
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org

Dasan et al.

Introduction

Tuberculosis (TB) remains a major global health threat,
resulting in millions of new cases and fatalities annually (1).
Anemia is a common risk factor and hematological abnormality
associated with TB, with a prevalence of 20-94% in TB patients
(2, 3). On the contrary, the likelihood of TB among anemic
patients is higher than non-anemic patients (2-4). Anemia
is defined as the insufficiency of erythrocyte mass to deliver
adequate oxygen to peripheral tissues (5). TB is known to
cause “anemia of inflammation” a condition in which systemic
inflammation may change iron metabolism and lower red blood
cell counts (6). The reduction of erythropoiesis by inflammatory
indicators, malabsorption syndrome, and nutritional inadequacies
are elucidated as the underlying pathophysiology of anemia in TB
patients (7).

Anemia profoundly impacts the course and severity of TB
in several ways and has been found to be an independent
predictor of disease progression and fatality in TB patients (8,
9). TB patients with anemia have heavy sputum bacillary load
and worsened pulmonary infection (10, 11). Studies indicate
that anemia is associated with more severe forms of TB and
unfavorable disease outcomes, including increased mortality rates
and extended treatment periods (12-17). Anemia may increase
the risk of complications like pulmonary dysfunction due to
larger infectious zones in the lungs, further aggravating TB
outcomes (18, 19). Additionally, anemia exacerbates the adverse
impacts of TB medications, including gastrointestinal disorders and
hepatotoxicity (20, 21).

Cytokines from the innate and adaptive immune systems play
crucial roles in orchestrating the immune response to TB. Immune
alterations favor the survival, multiplication, and dissemination
of Mycobacterium tuberculosis (Mtb) and associated sequelae
(22, 23). Cell-mediated Thl immunity, coordinated by Interferon
(IEN)-y, is required to suppress Mtb inside macrophages at
the infection site in the lung (24, 25). Thl cytokines typically
activate macrophages and cytolytic T cells to kill intracellular
Mtb via the induction of reactive oxygen and nitrogen species,
antimicrobial peptides, and autophagy (26). Conversely, Th2
cytokines, such as Interleukin (IL)-4 and IL-13, induce anti-
inflammatory reactions that impede pathological inflammation
while concurrently impeding macrophage and T cell capacity to
efficiently eliminate Mtb (27). Pro-inflammatory cytokines such
as IL-6 are multifunctional cytokines that play a crucial role in
regulating the immune response, inflammation, and hematopoiesis
and are key mediators of anemia of inflammation (24, 28).
However, expression of these cytokines in immune responses to TB
in anemic individuals have not been explored in detail, and clear
data on their impact on bacterial burdens, disease severity, and
treatment outcomes are lacking.

To address this knowledge gap, our study aimed to compare
bacterial burdens, disease severity, and TB treatment outcomes
in TB patients with or without anemia. Moreover, to explore the
immunological underpinnings of the interaction between anemia
and TB, we examined circulating plasma levels of a large panel
of cytokines and pro-fibrotic factors in TB patients with or
without anemia.
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Materials and methods

Ethics statement

The study was approved by the ethics committees of
the National Institute for Research in Tuberculosis (NIRT)
and the Prof. M. Viswanathan Diabetes Research Center
(MVDRG; ECR/51/INST/TN/2013/MVDRC/01).

Patient consent statement

Informed written consent was obtained from all
participants, and study procedures adhered to institutional

ethical guidelines.

Study population and data variables

Participants were recruited from Chennai, South India, as part
of the prospective Effect of Diabetes on Tuberculosis Severity
(EDOTS) study conducted from February 2014 to August 2018.
Anemia was diagnosed based on WHO criteria (hemoglobin
concentration <12 g/dL in women and <13 g/dL in men) (29).
The study included adult individuals aged 25-73 who were newly
diagnosed with positive sputum smears and culture. All the
participants were screened for diabetes and nutritional indices.
Smoking and alcohol consumption status were recorded. Exclusion
criteria were previous TB episodes, prior TB treatment, drug-
resistant TB, positive HIV status, use of immunosuppressive
medications, pregnancy, and lactation. A complete blood count was
done on all samples in a DxH 520 hematology analyzer (Beckman
Coulter). Anthropometric measurements (height, and weight),
and biochemical parameters were procured using standardized
techniques. Low body mass index (LBMI) was described based on
the American Heart Association/American College of Cardiology
guidelines (LBMI < 18.5 kg/m?), overweight by body mass index
(BMI) 25-29.9 kg/m?, and obesity defined by BMI threshold of
>30.0 kg/m?. Diabetes was defined as an glycated hemoglobin
(HbAIc) reading of 6.5% or greater and a fasting blood glucose
of >126 mg/dl, according to the American Diabetes Association
criteria. A sample of the individuals with a result of total cholesterol
(TC) < 130 mg/dl, triglyceride (TG) < 90 mg/dl, low-density
lipoprotein cholesterol (LDL-C) < 100 mg/dl, and high-density
lipoprotein cholesterol (HDL-C) < 40 mg/dl were considered as
hypolipidemic while individuals with the result of TC > 200,
TG > 150, LDL-C > 130 mg/dl, or HDL-C > 40 mg/dl were
classified as hyperlipidemic. Vitamin D deficiency was defined
as <30ng/mL. High or low serum albumin were determined
according to serum albumin level of > or < 3.9 g/dl. Chest X-
rays were utilized to assess the presence of bilateral lung disease
and cavitary lesions and chest x-rays were read by two independent
radiologists. Sputum smear grades were used to measure bacterial
loads in individuals with TB and classified as 0, 14+, 24, and
3+ with 0 being no bacteria in microscopy and 3+ the highest
number of bacteria. The laboratory investigators were blinded to
the chest x-ray and bacteriology results. All recruited TB patients
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received anti-TB treatment through Directly Observed Treatment
Short Course (DOTS) therapy as per WHO recommendations,
monitored by the National Tuberculosis Elimination Program
(NTEP). Follow-up extended through 6 months of treatment
and 1-year post-treatment completion. Treatment outcomes were
defined as favorable or unfavorable. Favorable treatment outcome
(cure) was defined as negative results of sputum cultures at
months 5 and 6 of treatment without recurrent disease during
follow-up. Unfavorable treatment outcomes included treatment
failure defined as positive sputum culture results at month 5 or
6, all-cause mortality, or recurrent TB within 12 months after
initial cure. These participants did not receive any treatment
for anemia.

Multiplex assays

Circulating plasma cytokines and pro-fibrotic levels were
measured in a subset of anemic (n = 288) and non-anemic
(n = 195) TB individuals using multiplex Luminex assay (Bio-
Rad Laboratories, Inc.). The analytes measured included cytokines
[Interferon (IFN)-y, Interleukin (IL)-2, Tumor Necrosis Factor
(TNF-a), IL-4, IL-5, IL-6, IL-13, IFN-a, and IFN-B] and pro-fibrotic
factors (Vascular endothelial growth factor (VEGF), Epidermal
growth factor (EGF), Fibroblast growth factor (FGF-2), and
Platelet-derived growth factor (PDGF)-AB/BB). The experiment
was conducted according to the manufacturer’s instructions
(R&D Systems).

Statistical analysis

Before analysis, the data was thoroughly checked for
completeness and consistency. Continuous variables were
examined for normality using the Shapiro-Wilks test and were
found not to be normal. The data was then presented using
frequency, percentages, median and quartiles. Measurements of
central tendency utilized geometric means (GMs). Differences
in continuous variables between the two groups were examined
using the Wilcoxon rank sum test, while the relationship between
groups and factors such as sputum smear grade, bilateral lung
lesion, cavitary lesion, and TB treatment failure and relapse
were examined using the Pearson chi-square test. Statistically
significant differences between two groups were analyzed
using the non-parametric Mann-Whitney U-test with Holm’s
correction for multiple comparisons. Generalized linear models
with binomial regression and log-link functions were used to
identify key factors. The selection of covariates for the regression
model was determined based on data availability, a review of
relevant literature, and the opinions of subject matter experts.
Prevalence ratios (PR) and adjusted prevalence ratios (aPR) were
calculated along with the corresponding 95% confidence intervals
(CIs). Covariates with significant PR, were considered when
adjusting for aPR. Data analysis was performed using STATA
software, version 15.0 (StataCorp., Texas, USA), with all P-values
considered two-sided and statistical significance set at the 0.05
a level.
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Results

Study population characteristics

The study comprised 483 culture-confirmed TB individuals,
with 288 positives (101 male, 187 female) for anemia and 195
negatives (90 male, 105 female). Median age was 45 vyears
[interquartile range (IQR), 36.0-53.0] for participants with anemia
and 47 years (IQR, 36.3-52.0) for participants without anemia.
There were no statistically significant differences in age, BMI,
smoking, alcohol use, and HbAlc between the TB subjects with
anemia and those without anemia. However, significant differences
were observed in gender (p = 0.0175; Table 1) and notable
differences in certain hematological and biochemical parameters
(Table 2). Individuals with anemia exhibited significantly lower
levels of red blood cells (RBC; GM of 4.4 g/dL vs. 5.1 mg/dL; p <
0.0001), hemoglobin (Hb; GM of 11 vs. 14.3 g/dL; p < 0.0001), and
hematocrit (HCT; GM of 34.9 vs. 42.4%; p < 0.0001), and elevated
monocyte counts (GM of 708.2 vs. 620.1 cells/uL; p = 0.0404)
compared to subjects without anemia. Additionally, biochemical
parameters such as triglycerides (GM of 97.1 vs. 104.1 mg/dL; p
= 0.0310), total cholesterol (GM of 157.3 vs. 168.2 mg/dL; p =
0.0083), LDL (GM of 89.6 vs. 95.4 mg/dL; p < 0.0001), total protein
(GM of 7.9 vs. 8.2 g/dL; p = 0.0048), serum albumin (GM of 3.8
vs. 4.2 g/dL; p < 0.0001), and Vitamin D (GM of 15.4 vs. 17.4 IU;
p = 0.0269) were significantly lower in individuals with anemia
compared to subjects without anemia.

Association of clinical co-morbidities with
anemia in TB individuals

No significant differences were observed in age, BMI, smoking,
alcoholism, or HbA1c) between the two groups (Table 3). However,
significant differences were noted in gender (female). The PR for
female individuals with anemia was 3.21 (95% CI: 1.52-3.31; p =
0.009), and this association remained significant after adjusting for
possible confounders (aPR 2.50, 95% CI: 1.90-2.40; p = 0.028).

Anemia is associated with increased
radiographic TB disease severity and
greater bacterial burdens

Anemia was significantly associated with an increased risk of
cavitary disease (PR, 4.62; 95% CI, 3.04-7.08; p < 0.001) but not of
bilateral lung lesions (PR, 2.21; 95% CI, 0.98-3.12; p = 0.287). After
adjusting for confounding variables, anemia remained significantly
associated with a higher risk of cavitation (aPR, 3.36; 95% CI,
1.95-5.68; p < 0.001), indicating increased TB disease severity in
individuals with anemia. Additionally, anemia was significantly
associated with an elevated risk of higher smear grades (PR, 5.51;
95% CI, 3.45-9.34; p < 0.001). This association persisted after
adjusting for confounders, with anemia remaining significantly
associated with increased smear grades (aPR, 4.01; 95% CI, 2.22-
6.63; p < 0.001), indicating higher bacterial burdens in TB patients
with anemia (Table 4).

frontiersin.org


https://doi.org/10.3389/ftubr.2024.1462654
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org

Dasan et al. 10.3389/ftubr.2024.1462654

TABLE 1 Demographics and clinical characteristics of the study population.

Variable Overall, N = 4832 Participants with Participants without p-value
anemia, N = 288 anemia, N = 195
(59.6%)? (40.4%)?

Age in years, median (IQR) 45.0 (36.0 - 52.0) 45.0 (36.0 - 53.0) 47.0 (36.3 - 52.0) 0.649"
Age classification (in years), n (%) 0.787¢
Up to 35 years 112 (23.2) 59 (24.1) 53 (22.3)
36-45 years 136 (28.2) 64(26.1) 72 (30.3)
46-55 years 153 (31.7) 80 (32.7) 73 (30.7)
>55 years 82 (17.0) 42 (17.1) 40 (16.8)
Gender, n (%) 0.0175°
Female 292 (60.5) 187 (64.9) 105 (53.8)
Male 191 (39.5) 101 (35.1) 90 (46.2)

20.0 (17.5 - 23.3) 203 (17.9 - 23.4) 19.9 (17.5 - 23.0) 0.356"

Body mass index (kg/m?2), median (IQR), and body mass index classification (kg/m?2), n (%)

Normal (18.5-24.9 kg/m?) 190 (39.3) 93 (38.0) 97 (40.8) 0.730¢
Undernourished (<18.5 kg/m?) 154 (31.9) 76 (31.0) 78 (32.8)
Overweight (25.0-29.9 kg/m?) 91 (18.8) 49 (20.0) 42 (17.6)
Obesity (>30 kg/m?) 48 (9.9) 27 (11.0) 21(8.8)
6.8 (5.7-10.3) 6.7 (5.7 —10.4) 7.9 (5.8 - 10.4) 0.5014°

Glycated hemoglobin (HbAlc) %, median (IQR), and diabetes mellitus (DM) (HbAlc%), n (%)

No, DM (<5.7%) 94 (19.5) 54 (22.0) 40 (16.8) 0.068¢
Pre, DM (5.7-6.4%) 127 (26.3) 54 (22.0) 73 (30.7)

DM (>6.5%) 262 (54.2) 137 (55.9) 125 (52.5)

Smoking status, n (%) 0.191¢
Non-smoker 139 (28.8) 66 (26.9) 73 (30.7)

Smoker 125 (25.9) 58 (23.7) 67 (28.2)

Unknown 219 (45.3) 121 (49.4) 98 (41.2)

Alcohol use, n (%) 0.464°
Yes 249 (51.6) 122 (49.8) 127 (53.4)

No 75 (15.5) 36 (14.7) 39 (16.4)

Unknown 159 (32.9) 87 (35.5) 72 (30.3)

Cavitary lung lesions, n (%) <0.001¢
No, cavitary lung lesions 198 (41.0) 123 (50.2) 75 (31.5)

Cavitary lung lesions 285 (59.0) 122 (49.8) 163 (68.5)

Bilateral lung lesions, n (%) 0.004¢
No, bilateral lung lesions 96 (19.9) 36 (14.7) 60 (25.2)

Bilateral lung lesions 387 (80.1) 209 (85.3) 178 (74.8)

AFB smear testing, n (%) <0.001¢
Smear —ve 63 (13.0) 47 (19.2) 16 (6.7)

Smear +ve 420 (87.0) 198 (80.8) 222 (93.3)

TB treatment outcome, n (%) 0.538°
Favorable outcome 448 (92.8) 229 (93.5) 219 (92.0)

Treatment failure/relapse 35(7.2) 16 (6.5) 19 (8.0)

?Median (IQR) or frequency (%).

YMann-Whitney test.

“Wilcoxon rank sum test; Pearson’s Chi-squared test.

Anemia was defined as <12 g/dL for Female and <13 g/dL for Male.
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TABLE 2 Hematological and biochemical parameters of the study

10.3389/ftubr.2024.1462654

TABLE 3 Association of clinical co-morbidities with anemia in TB

population. individuals.
Parameters  Participants Participants Variable Anemia/  p-value Anemia/  p-value
with anemia without TB B
(n = 288) anemia PR (95% aPR (95%
GM (range) (n = 195) Cl) (@l))
GM (range) . . .
EEEEEEEEE——— Socio-demographic characteristics-Sex
WBC count, 97.4 (40-269) 94.1 (40-2000) 0.2656
x10%cells/ul Male Reference 1.009 Reference 0.028
Lymphocyte 1,889 (500-4,015) 2062.3 (560-5,445) 0.0533 Female 3.21 2.50
count, (1.52-3.31) (1.90-2.40)
6
x10°cells/ul Age, years
Neutrophil 6,077 (1,632-16,020) | 6512.8 (2,646-14,000) 0.5622
count, cells/ul 18-34 Reference 0.879 Reference 0.981
Monocyte 708.2 (146-2,421) 620.1 (182-1,870) 0.0404 35-44 Lol 1.60
count, cells/ul (0.81-1.96) (0.92-2.03)
45-54 1.40 1.76
RBC, g/dL 4.4 (3-6.4 5.1 (4-6.7 0.0001
¢ (3-64) (4-6.7) = (0.76-2.21) (0.87-2.01)
Hb, g/dL 11 (6.3-12.9) 14.3 (13-20.1) <0.0001 ~ss5 110 L1
Hematocrit, % 34.9 (22-57) 42.4 (26-58) <0.0001 (0.61-2.02) (0.46-1.98)
Platelets, 344.2 (90-800) 323.1 (123-817) 0.0719 Smoking
3
10°/ul No Reference 0.991 Reference 0.541
FBG, mg/DI 129.2 (74-516 140.5 (62-417 0.0560
mg/ ( ) ( ) Yes 2.01 120
HbAIC, % 6.7 (4.5-15.3) 7.9 (4.9-17.7) 0.5014 (0.89-3.25) (0.76-2.54)
Triglycerides, 97.1 (50-275) 104.1 (42-348) 0.0310 Unknown 1.98 1.91
mg/dL (1.74-2.87) (0.82-3.10)
Total 157.3 (80-294) 168.2 (91-330) 0.0083 Alcoholism
::;};;femL No Reference 0.928 Reference 0.571
Yes 2.50 1.80
HDL, L 5 (17— 7.5 (21— 764
mg/d 35.5 (17-69) 37.5 (21-66) 0.7647 (0.71-4.20) (0.40-3.71)
LDL, mg/dL 89.6 (33-187) 95.4 (35-223) 0.0411 Unknown 581 130
VLDL, mg/dL 31.1 (13-157) 32.9 (10-166) 0.0796 (0.41-3.50) (0.51-2.60)
2
Urea, mg/dL 16.6 (5-79) 17.5 (7-57) 0.0506 BMI (kg/m*)
Creatinine, 0.8 (0.5-1.7) 0.9 (0.5-2.1) 0.0540 Normal Reference 0.0781 Reference 0.211
mg/dL (18.5-
24.9)
Total bilirubin, 0.5 (0.3-2) 0.6 (0.3-2.1) 0.0648
mg/dL Under 3.20 2.54
nutrition (0.51-2.80) (0.61-1.71)
Total protein, 7.9 (5.7-10.4) 8.2 (6.1-10.1) 0.0048 (<18.5)
g/dL .
Overweight 2.68 1.52
Serum 3.8(2.3-5.4) 42(2.5-5.2) <0.0001 (25.0- (0.31-2.41) (0.87-2.50)
albumin, g/dL 29.9)
Serum 4.0(2.3-7) 3.9 (2.6-5.9) 0.0652 Obesity 1.60 1.7 (0.71-4.51)
globulin, g/dL (=30.0) (0.86-2.71)
SGOT, U/L 18.0 (6-91) 17.9 (6-145) 0.9843 HbA1lc (%)
SGPT, U/L 14.6 (4-141) 15.6 (5-76) 0.0512 NDM Reference 0.741 Reference 0.438
(<5.7)
Alkaline 269.9 (102-957) 259.4 (94-707) 0.9963
phosphatase, PDM 1.52 1.92
U/L (>5.7- (0.75-2.01) (0.73-0.90)
<6.4)
Vitamin D, IU 15.4 (3-47) 17.4 (3-67) 0.0269
DM 1.10 1.30
*Mann-Whitney test. (>6.4) (0.61-1.47) (0.61-0.10)

GM, geometric mean; WBC, Whole blood cells; RBC, Red blood cells; Hb, Hemoglobin;
FBG, Fasting blood glucose; HbAlc, Glycated hemoglobin; HDL, High density lipoprotein;
LDL, Low density lipoprotein; VLDL, Very low-density lipoprotein; SGOT, serum glutamic-
oxaloacetic transaminase; SGPT, Serum Glutamate Pyruvate Transaminase.

PR, prevalence ratio; aPR, adjusted prevalence ratio; CI, Confidence interval; BMI, Body
mass index; HbAlc, Glycated hemoglobin; NDM, Non-diabetes mellitus; PDM, Pre-diabetes
mellitus; DM, Diabetes mellitus.

Frontiers in Tuberculosis 76 frontiersin.org


https://doi.org/10.3389/ftubr.2024.1462654
https://www.frontiersin.org/journals/tuberculosis
https://www.frontiersin.org

Dasan et al.

TABLE 4 Association of anemia with bacterial burden, disease severity,
and treatment failure/relapse in TB.

Outcome  Anemia/ Anemia/  p-value
variable TB
aPR (95%

Cl)
Sputum 5.51 <0.001 4.01 <0.001
smear grade [3.45-9.34] [2.22-6.63]
Bilateral lung 221 0.287 1.96 0.354
lesions [0.98-3.12] [0.84-4.52]
Cavitary lung 4.62 <0.001 3.36 <0.001
lesions [3.04-7.08] [1.95-5.68]
TB treatment 1.72 0.019 1.61 0.046
failure/relapse [1.11-2.61] [1.31-2.19]

TB, tuberculosis; PR, prevalence ratio; aPR, adjusted prevalence ratio; CI, confidence interval.

Anemia is associated with increased risk of
unfavorable TB treatment outcomes

Anemia was significantly associated with an increased risk
of unfavorable treatment outcomes (PR, 1.72; 95% CI, 1.11-
2.61; p = 0.019). This association persisted even after adjusting
for confounding variables, with anemia remaining significantly
associated with unfavorable treatment outcomes (aPR, 1.61; 95%
CI, 1.31-2.19; p = 0.046). These findings indicate a heightened risk
of treatment failure or TB recurrence in TB patients with anemia
(Table 4).

Anemia is associated with altered levels of
cytokines and pro-fibrotic factors in TB

The circulating levels of TNF-a, IL-4, IL-5, and IL-13 did
not significantly differ between the two groups. However, pro-
inflammatory cytokines [IFN-a (GM of 15.18 vs. 13.91 pg/ml,
p < 0.0001), IFN-B (GM of 6.69 vs. 6.53 pg/ml, p < 0.0001),
IL-6 (GM of 146.53 vs. 133.69 pg/ml, p = 0.0032)], and pro-
fibrotic factors [VEGF (GM of 217 vs. 154.71 pg/ml, p < 0.0001),
EGF (GM of 384.22 vs. 317.56 pg/ml, p < 0.0001), FGF-2
(GM of 2,584.82 vs. 2,000.96 pg/ml, p = 0.0011), and PDGEF-
AB/BB (GM of 1,758.71 vs. 1,601.31 pg/ml, p = 0.0093)] were
significantly elevated in TB individuals with anemia compared to
those without anemia. Conversely, the circulating plasma levels
of type 1 cytokines [IFN-y (GM of 275.56 vs. 313.81 pg/ml, p <
0.0001), IL-2 (GM of 104.75 vs. 121.96 pg/ml, p = 0.0006)] were
significantly diminished in TB individuals with anemia compared
to those without anemia (Figures 1, 2). Thus, anemia is associated
with heightened levels of pro-inflammatory cytokines and pro-
fibrotic factors and diminished levels of type 1 cytokines in
TB individuals.

Discussion

To enhance TB management, targeted interventions must
investigate the risk factors associated with disease progression
and poor treatment outcomes (30). Anemia is a prominent
comorbidity with TB (19). However, existing literature on the
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relationship between anemia and disease severity is scarce and
inconsistent. While some studies suggest that anemia does not
significantly predict TB risk (31-33), others identify it as a potential
risk factor (34-36). This discrepancy underscores the necessity
for robust, well-designed studies with larger sample sizes and
standardized methodologies.

Consistent with prior research, our study revealed a substantial
burden of anemia among TB patients in our cohort (37, 38).
Notably, we observed higher rates of anemia among female TB
patients compared to males, likely attributed to physiological
differences, dietary habits, and variation in health-seeking behavior
between genders (39). In contrast to non-anemic subjects,
individuals with anemia exhibited a marked increase in monocyte
levels and significant decreases in Hb, HCT, and RBC. Recent
studies have linked elevated monocytes to poor prognosis and
delayed pulmonary cavity closure in TB patients with anemia (10).
Experimental evidence suggests that reduced Hb levels in anemic
TB patients may result from the severity of TB infection and
inflammation, impacting erythropoiesis and exacerbated by iron
deficiency (40, 41). Hence, individuals with TB-related anemia
may have a longer time for the proliferation and accumulation
of Mtb, exposing them to inflammation for a longer time (12).
The decreased production of RBC might result in reduced oxygen-
carrying capacity and tissue hypoxia, which may have an impact
on cytokine levels, leukocyte function, bone marrow function,
and tissue destruction in TB (42, 43). Furthermore, our findings
revealed that subjects with anemia had significantly lower levels of
vitamin D and serum albumin compared to non-anemic subjects.
Low serum albumin levels serve as a predictor of anemia and
indicate the severity of inflammation (44, 45). The biological
plausibility of lower vitamin D in anemia is supported by evidence
suggesting that vitamin D regulates hepcidin production, thereby
controlling iron homeostasis and erythropoiesis (46, 47).

Biomarkers for TB unfavorable treatment outcomes can play
a major role in identifying novel TB intervention strategies
(48-54). Cytokines are critical in the host defense against
mycobacterial infections, serving as markers of disease severity
and bacterial burden in active TB (55-57). Research shows that
LBMI significantly impacts both acquired and innate host defense
mechanisms, increasing susceptibility to TB (58-62). Our findings
add to this knowledge by demonstrating that TB with coexistent
anemia is associated with reduced levels of type 1 cytokines and
increased pro-inflammatory and pro-fibrotic factors, potentially
heightening TB risk. Our data indicate that TB patients with anemia
have lower circulating levels of type 1 cytokines (IFNy and IL-
2), suggesting impaired protective immunity (63, 64). The reduced
production of these cytokines in anemic individuals suggests a
higher risk for severe TB due to weakened cell-mediated immunity,
aligning with studies reporting lower type 1 cytokine levels in
individuals with LBMI and TB compared to those with normal or
high BMI (58, 62).

Loss of immune control in TB often results from excessive
pro-inflammatory cytokine production, leading to neutrophil
This
granuloma remodeling and lung tissue destruction (65). We found

infiltration and pathological inflammation. promotes
significantly elevated pro-inflammatory cytokines (IL-6, IFNa,
and IFNB) in TB patients with anemia compared to non-anemic

individuals. This aligns with previous research linking high
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FIGURE 1

Anemia is associated with altered levels of cytokines in TB individuals. The figure illustrates the cytokine profile in anemic and non-anemic TB
individuals. Circulating plasma cytokines including Interferon gamma (IFN vy), Interleukin-2 (IL-2), Tumor necrosis factor alpha (TNF-a), Interferon
alpha (IFN ), Interferon beta (IFN ), Interleukin-6 (IL-6), Interleukin-4 (IL-4), Interleukin-5 (IL-5), and Interleukin-13 (IL-13) were measured. Each data

point represents an individual subject, with the bar indicating the geometric mean (GM) cytokine level. Statistical analysis was performed using the
Mann-Whitney U-test.
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FIGURE 2

Anemia is associated with heightened levels of pro-fibrotic factors in TB individuals. The figure illustrates the pro-fibrotic factors profile in anemic
and non-anemic TB individuals. Circulating plasma pro-fibrotic factors including Vascular endothelial growth factor (VEGF), Epidermal growth factor
(EGF), Fibroblast growth factor 2 (FGF-2), and Platelet-derived growth factor (PDGF-AB BB) were measured. Each data point represents an individual
subject, with the bar indicating the geometric mean (GM) cytokine level. Statistical analysis was performed using the Mann—-Whitney U-test.

IL-6 levels to inflammation-related anemia, which inhibits iron
absorption and exacerbates TB progression (66, 67). Additionally,
high IL-6 concentrations are associated with anemia in TB/HIV
co-infected patients (68). Pro-fibrotic factors are crucial in
bacterial infection processes. Our study showed increased levels
of pro-fibrotic factors (VEGE EGF, FGF-2, and PDGF-AB BB)

in anemic individuals compared to non-anemic individuals.
VEGE, associated with pleural inflammation and fibrosis in TB
patients, has been found at elevated levels in smear-positive and
culture-positive TB subjects (69). Systemic VEGF levels also rise

significantly in TB patients with cavitations and bilateral disease
involvement (70).
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In this study, rigorous control was exercised over several
factors known to influence disease severity and bacterial burdens,
such as age, BMI, diabetes, smoking status, and alcohol use. The
findings of this study provide valuable insights into the association
between anemia and TB disease severity. Notably, our study
revealed several key findings that warrant further exploration. We
observed that TB patients with coexistent anemia exhibit more
severe disease manifestations, including lung cavitation, indicative
of advanced TB disease. These findings align with previous research
suggesting that such lesions negatively impact patients and may
lead to poor treatment outcomes, relapses, and drug resistance
(71). Our results revealed a strong correlation between anemia
and elevated bacterial burdens in TB patients, a key indicator of
transmission (10). Our data further confirm that TB individuals
with anemia were at a significantly higher risk of experiencing
unfavorable treatment outcomes, including treatment failure or TB
recurrence. This finding aligns with previous research indicating
that anemic patients with TB-HIV co-infection exhibit poor
treatment outcomes and a heightened degree of inflammatory
perturbation (72).

Our study suffers from the limitation of not measuring red
cell indices (MCV, MCH, and MCHC) or biochemical measures
(iron, ferritin, hepcidin, and transferrin) to assess the type of
anemia. Another limitation of our study is that cytokine levels
exhibit a great degree of overlap between groups and that there
is variability in the responses of different individuals in the
same group. It is theoretically possible that other factors not
examined in this study could have contributed to the differential
responses. Nevertheless, our study offers novel insights into the
immunological underpinnings of the anemia-TB comorbidity.

Conclusion

Our study reveals intricate interactions between anemia and
disease severity, bacterial burdens, and treatment outcomes in TB
patients. Importantly, our data highlights the significant association
of anemia with the cytokine milieu in TB, suggesting a plausible
biological mechanism for the increased disease severity observed
in TB individuals with coexistent anemia. Our findings highlight
the critical need for further research and interventions aimed
at addressing the complex interplay between anemia and TB to
optimize patient outcomes and advance TB control efforts.
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Assessing the effects of diabetes
mellitus on the monocyte-to-
lymphocyte ratio and the
QuantiFERON-TB gold plus
assays for tuberculosis treatment
monitoring: a prospective
cohort study

Paulo Ranaivomanana®, Arimanitra Razafimahefa®’,

Mame Ndiaye®, Crisca Razafimahatratra®, Haja Ramamonijisoa®,
Perlinot Herindrainy?, Mamy Raherison®,

Antso Hasina Raherinandrasana®, Julio Rakotonirina®,
Jonathan Hoffmann®, Rila Ratovoson?

and Niaina Rakotosamimanana™

tMycobacteriology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar, 2Epidemiology
and Clinical Research Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar, *Department of
Diabetology, Association Malgache Contre le Diabéte (AMADIA), Antananarivo, Madagascar, “Centre
Hospitalier Universitaire de Soins et Santé Publique Analakely (CHUSSPA), Antananarivo, Madagascar,
5Medical and Expertise Department, Fondation Mérieux, Lyon, France

Diabetes mellitus (DM) is an important risk factor for the development of active
tuberculosis (TB). QuantiFERON-TB Gold Plus (QFT-P), white blood cell count
(WBC) assays and monocyte-to-lymphocyte ratio (MLR) reflect the inflammatory
reactions associated with TB and offer the potential to monitor TB treatment to
allow a better management of the disease. The aim of this study was to assess the
influence of DM on the respective performances of QFT-P and WBC assays in
their capacities to monitor the treatment of drug-sensitive pulmonary TB (TBP).
The QFT-P and WBC were prospectively compared between TB patients with
and without DM at inclusion (D0), at the end of treatment (M6) and two months
after the end of treatment (M8). After laboratory measurement of glycated
hemoglobin (HbAlc), the patients were categorized into two groups: the TBP
(n=43) and the TBDM (n=30) groups. The TBDM patients were characterized by
an elevated Mycobacterium tuberculosis-specific QFT-P IFN-yresponse after TB
treatment compared to the TBP group (p<0.001 and p<0.05, respectively, after
TB1 and TB2 antigens stimulation). A significantly higher proportion of positive
QFT-P tests was observed in the TBDM group compared to the TBP group (91.3%
vs 64.1%) at the end of the treatment (p=0.03). MLR analysis showed a decrease
of MLR value after TB treatment for both diabetic and nondiabetic TB patients
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(p<0.001 and p<0.05). These data reflected from immune-host based tests used
to monitor the TB treatment, seemed to further suggest that TB with
concomitant DM is associated with a persistent inflammatory response after

TB treatment.

tuberculosis, treatment monitoring, diabetes mellitus, QuantiFERON-TB gold plus,
white blood cell count, monocyte to lymphocyte ratio

1 Introduction

The World Health Organization (WHO) has identified diabetes
mellitus (DM) as an important risk factor for tuberculosis (TB) and
therefore recommends diabetes screening for active TB patients (1).
Low- and middle-income countries account for approximately 80%
of the global diabetes burden, and more than 90% of the global TB
burden (2). For most patients, TB therapy provides a cure, but
treatment failure and relapse can occur. It is now well established
that DM is associated with an increased risk of progressing from
latent TB infection to active TB disease. Moreover, TB patients with
DM more frequently suffer from adverse TB outcomes, including
delayed sputum conversion on treatment, TB treatment failure,
death, and recurrent TB (1, 3-5). These outcomes are associated
with moderate to severe adverse effects and long treatment
durations that induce a lack of patient adherence to the treatment
regimen and promote the emergence of drug resistance. Continuous
monitoring and early identification of people with TB who are at
risk of poor treatment outcomes could reduce the number of people
who do not complete treatment. The WHO currently recommends
sputum smear microscopy or mycobacteriological culture
conversion at the end of the intensive phase of treatment for
monitoring treatment response in adults with pulmonary TB (6).
However, these microbiology-based methods rely on sputum
samples, which are not readily available in all populations (e.g.,
pediatric TB, people living with HIV, extrapulmonary TB).
Furthermore, while smear microscopy is related to poor
sensitivity and specificity for outcome prediction, the TB culture
has limited availability in primary care settings, and the delay in
time to results constrains its clinical use.

There are novel tests and biomarkers in the pipeline that offer the
potential to monitor TB treatment efficacy, predict outcomes, identify
cure, and allow optimization of management. These potential tests
include those using host characteristic assays, including assays for
cytokines, transcriptomic profiles, and other biomarkers that are
associated with the inflammatory reactions following TB infection.
Some of these proposed tests, such as QuantiFERON-TB Gold Plus
(QFT-P), white blood cell count (WBC) and the monocyte-to-
lymphocyte ratio (MLR), are already commercialized to detect TB
infection or used as routine basic laboratory measures for clinical
practice. The QFT-P test, while primarily designed and validated for
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detecting Mycobacterium tuberculosis infection and guiding
prophylactic treatment decisions in populations at higher risk of
developing TB, has also been explored in research settings for its
potential utility in detecting TB disease and monitoring TB treatment
(7, 8). Patients with diabetes often have more severe inflammation at
the time they are diagnosed with TB and experience higher risks for
adverse TB treatment outcomes, with more severe lung damage in
patients with pulmonary TB. This can have serious consequences like
relapse or death, as frequently reported in TB patients with
concomitant DM (TBDM) (4, 9). This inflammatory status can
also alter the performance of host-immune-based assays’ capacity
to monitor TB treatment (3, 10-12). The aim of this study was to
assess the influence of DM on the respective performances of QFT-P
and WBC, two available tests already used in clinical practice, in their
capacities to monitor the TB treatment of drug-sensitive pulmonary
TB. Considering the significant worldwide occurrence of both TB and
DM, integrating changes related to DM in TB immunodiagnostic and
immuno-monitoring tests can enhance the care provided to
TB patients.

2 Materials and methods
2.1 Study design and participants

We conducted a prospective cohort study from January to
December 2019 to consecutively recruit newly confirmed active
TB patients from individuals with presumptive pulmonary TB
seeking diagnosis at the main anti-TB center in Antananarivo,
Madagascar. The inclusion criteria for active TB disease were
adult pulmonary TB patients (> 18 years old) who tested positive
for conventional TB microbiological and molecular tests, and able
to provide informed consent. For each included TB participant,
sociodemographic information was collected, including age, sex,
body mass index (BM], calculated as weight in kilograms divided by
height in meters squared), BCG vaccination status, alcohol
consumption and smoking habits. Two control groups (=18 years
old) were randomly and simultaneously recruited, including i)
community healthy volunteers (HC) without any clinical signs/
symptoms of TB, recruited at the anti-rabic center of the Institut
Pasteur de Madagascar, and ii) confirmed DM patients without any
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clinical signs/symptoms of TB, recruited at the main Diabetes
center of Antananarivo (AMADIA). Individuals who tested
positive for HIV, children under 18 years of age, and individuals
with other known comorbidities were excluded.

2.2 TB and DM diagnosis

Pulmonary TB is confirmed with sputum AFB smear
microscopy using the auramine technique and/or the Loweinsten-
Jensen (L]) solid media culture and/or Xpert MTB/RIF at inclusion.
The results were classified based on bacterial load as follows: AFB
smear microscopy grades: 0 (no AFB observed), 1+ (10-99 AFB in
100 fields), 2+ (1-10 AFB per field in 50 fields), and 3+ (more than
10 AFB per field in at least 20 fields). Culture grades: 0 (no colonies),
1+ (1-100 colonies), 2+ (more than 100 discrete colonies), and 3+
(confluent growth or innumerable colonies).

DM was screened at the time of recruitment of the confirmed
TB patients with an initial fasting plasma glucose (cut-off point at >
6.1 mmol/L), and two points raised of glycated hemoglobin
(HbAlc) were offered as confirmatory tests. Laboratory
measurement of HbAlc with a diagnostic cut-off point > 6.5%
was used as the gold standard for the diagnosis of diabetes. To
account for potential transient hyperglycemia, we made secondary
analyses, defining diabetes by repeated raised HbAlc at the end of
the TB treatment. HbAlc was measured in 1 mL of whole blood
collected in ethylenediaminetetraacetic acid (EDTA) tubes and
processed using immunoturbidimetry (Quest, Tucker, GA, USA).
DM status was classified according to the American Diabetes
Association guidelines (13) with a slight adjustment based on age-
dependent HbAlc reference intervals (14).

2.3 TB treatment and follow-up visits

All patients were treated with the Directly Observed Treatment,
Short Course (DOTS) and received the same TB treatment
according to the WHO Drug-susceptible tuberculosis treatment
recommendation (15) with a 6-month regimen composed of four
first-line TB medicines: isoniazid (H, oral dose of 4-6 mg/kg/day),
rifampicin (R, oral dose of 8-12 mg/kg/day), pyrazinamide (Z, oral
dose of 20-30 mg/kg/day), and ethambutol (E, oral dose of 15-25
mg/kg/day). The regimen is a combination of those four drugs
(HRZE) for 2 months followed by isoniazid and rifampicin (HR) for
4 months, administered daily. TB patients were followed up at the
end of therapy after 6 months (M6) and at two months after the end
of therapy (M8). At each of the three visits, a sputum sample and
blood were collected for AFB smear microscopy, L] culture, QFT-P
assay, and WBC count.

2.4 QuantiFERON-TB gold plus assay

To perform the QFT-P and WBC count, 7 mL of whole blood was
drawn in lithium heparin blood collection tubes. Four (4) mL were used
for the QFT-P assay, and the remaining 3 mL were used for complete
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WBC, HbAlc, and the HIV test. The QFT-P assay was performed
according to the manufacturer’s instructions (Qiagen). Briefly, venous
blood was collected in lithium-heparin tubes at the health centers, and
then one mL of blood was dispensed into each of the four QFT-P assay
tubes (Nil, TB1, TB2, Mitogen) where antigen stimulations were
initiated within 8 hours from venipuncture and incubated at 37°C
for 16 + 24 hours (aiming at 18 hours’ incubation time). After
incubation, the tubes were centrifuged, and aliquots of the plasma
supernatants were stored at -20° C. IFN-y ELISA was performed in
batches according to the QFT-P protocol (Qiagen). ELISA results were
converted to international units per milliliter (IU/mL) and interpreted
using the QFT-P software supplied by the manufacturer (TB Gold Plus
Analysis Software v2.71). All IFN-y concentrations were nil-corrected.
The results were classified as positive, negative, or indeterminate
according to the manufacturer’s instructions, with a diagnostic IFN-y
cut-off of 0.35 IU/mL in either of the two antigen tubes. QFT-P
conversion was defined as a change from negative to positive, and
reversion as a change from positive to negative on serial testing

2.5 White blood cells count assay

Complete WBC was performed with an XN 1000 automated
hematology analyzer (Sysmex). The XN-1000 is a standalone,
benchtop analyzer using a single XN-Series module. The XN-1000
automated analyzer provides a complete WBC and nucleated red
blood cell (NRBC) count using the White Count and Nucleated Red
Blood Cells (WNR) and the White blood cell differential count
(WDF) channels. The blood cells are analyzed by flow cytometry-
based optical measurement after red cell and platelet lysis, membrane
permeabilization of the leukocytes, and introduction of a
fluorochrome that binds to leukocyte nucleic acids. Scattergrams
are generated after three-dimensional analysis of each cell signal
according to cell volume (FSC: forward scatter light), cell structure
(SSC: side scatter light), and cell fluorescence (SFL: side fluorescent
light). The WNR channel evaluates the leukocyte and basophil counts
and provides a systematic NRBC count. The WDF channel provides a
count of the neutrophils, lymphocytes, eosinophils, monocytes,
immature granulocytes, and a high-fluorescence lymphocyte count
(HFLC). The monocyte-to-lymphocyte ratio (MLR) was determined
by dividing absolute monocyte counts by absolute lymphocyte counts
at each study time point.

2.6 Data collection and statistical analysis

Sociodemographic, clinical, and biological data were recorded in a
dedicated RedCap® (Research Electronic Data Capture) software
database (16). Statistical analysis was performed using GraphPad
Prism (version 9 for Windows, GraphPad Software, Boston,
Massachusetts USA). Categorical variables were analyzed using
Fisher’s exact test adjusted with Bonferroni’s post-hoc test (17).
Normal continuous variables were analyzed with Student’s t-test and
One Way ANOVA test. Non-normal continuous variables were
analyzed with Mann-Whitney and Wilcoxon sum-rank tests for
impaired and paired analysis respectively, and by One Way ANOVA
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test with Dunn’s Kruskal-Wallis rank sum-test (impaired) and
Friedmann test (paired) for multiple comparisons post-hoc test (18).

2.7 Ethical considerations

This study was approved by the Ethical Committee for
Biomedical Research of Madagascar (N° 099/MSANP/SG/
AGMED/CERBM). Written informed consent was obtained prior
to enrolment. All research was performed in accordance with
relevant guidelines/regulations.

3 Results

3.1 Enrolment, clinical characteristics,
follow-up visits, and sociodemographic
data of study participants

Figure 1 shows the enrolment and follow-up visit flowchart of the
study participants. Among the 92 eligible participants in the TB active
group, a total of 73 newly confirmed pulmonary TB patients were
included in the study. A total of 10 participants were excluded due to
the following health conditions: high blood pressure (n=5), asthma
(n=2), meningitis (n=1), measles (n=1), and gastritis (n=1).

10.3389/fimmu.2024.1451046

Additionally, 9 patients were excluded for having a negative TB
test. Most patients were simultaneously positive for sputum smear
microscopy (82%, 60/73) and/or culture (89%, 65/73) and/or Xpert
(100%, 73/73). After laboratory measurement of HbAlc, these
patients were categorized into 2 groups: the active pulmonary
group without DM (TBP, n=43) and the active pulmonary with
DM groups (TBDM, n=30) (Figure 1). Control groups including
Diabetes only (DM, n=30) and healthy asymptomatic blood donors
(HC, n=50) were enrolled. The clinical groups with DM (TBDM and
DM) had a statistically significant higher age compared to HC groups
(p<0.0001, Table 1). However, there was no statistical age difference
between TBDM and TBP patients (p=0.058). A statistically
significant lower body mass index (BMI) was observed with the
TBP (17.6 Kg/m2) and TBDM (18.4 Kg/m2) groups compared to the
DM group (23.1 Kg/m2) (p<0.0001). The frequency of underweight
individuals (BMI<18.5) was significantly higher in both the TBP and
TBDM groups compared to the DM group (p<0.0001), highlighting
the pronounced impact of TB on nutritional status in affected
individuals. Table 1 also shows that a statistically significant higher
alcohol consumption (p<0.003) and higher smoker proportions
(p=0.008) were observed within the TBP compared to TBDM.
Then, in the downstream analysis, we decided to only perform
with TB patients (TBP and TBDM) who simultaneously do not
smoke and do not drink alcohol. Regarding the follow-up visits, 39
TBP and 16 TBDM patients had successfully achieved their TB

Participant enrolment

-

1

Eligible TB suspected participants
N=92

|

Standardized questionnaire and
informed consent

|

| Sputum: AFB/ U culture /  Xpert |

Excluded: other diseases N=10 f*

Excluded: negative TB test N=9 1
v

Included TB confirmed patients

P

N | DMN=30 | | HCN=SO |
b ]
| Blood (6 mL) i I
L‘l—i
| DO: HBALC+ QFT-P+WBC f~----=-- T { 30 TBDM |- { 300M [ soHc |
+  RefusalandLFUN=13 |
[ Me: QFT-p + wac — 1 4018P  |ornenes + 208OM |
| Refusaland LFUN=5
| M8:QFT-P + WBC bomemmenes | 3978P }oooe- + 16780M |

FIGURE 1

Flowchart of inclusion, follow-up visits and data collection process. AFB, acid fast bacilli; TBP, tuberculosis patient without diabetes mellitus; TBDM,
tuberculosis patient with diabetes mellitus; DM, patient with diabetes mellitus; HC, healthy asymptomatic individuals; QFT-P, QuantiFERON-TB Gold
Plus; WBC, White blood cell count; LFU, lost to follow up; HBAlc, glycated hemoglobin A1C; LJ, Lédwenstein Jensen; Xpert, Xpert MTB/RIF Ultra.
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TABLE 1 Sociodemographic and clinical characteristics of study participant at inclusion.

Study p-value p-value
demographics TB vs TBDM All group
Age (Median, range) 31 (22-45) 43 (35-56) 59 (38-63) 34 (22-44) 0.058 <0.0001
Sex (N, %)
Male 32 (74.4) 19 (63.3) 9 (30.0) 15 (30.0) 0.43 <0.0001
Female 11 (25.6) 11 (36.7) 21 (70.0) 35 (70.0)
gigﬁ(ig’/ z;)ge) 17.2 (16.0-18.9) 18.0 (16.6-19.2) 22.9 (21.2-25.0) 0.18 <0.0001
BMI category
Underweight 34 (79.0) 18 (60.0) 1(3.3) 0.20 <0.0001
Normal weight 8 (18.7) 11 (36.7) 21 (70.0)
Overweight 1(23) 1(3.3) 8 (26.7)
BCG Vaccination (N, %)
Yes 32 (74.4) 27 (90.0) 29 (96.7) 46 (92.0) 0.10 0.01
No 11 (25.6) 3 (10.0) 1(3.3) 4 (8.0)
HbAF % 5.6 (5.4-5.9) 8.2 (7.0-9.1) 9.3 (7.6-11.1) 4.5 (3.4-5.1) <0.0001 <0.0001
(Median, range)
Alcohol (N, %)
Yes 24 (55.8) 6 (20.0) 3 (10.0) 0.003 <0.0001
No 19 (44.2) 24 (80.0) 27 (90.0)
Smoking (N, %)
Yes 24 (55.8) 7 (23.3) 4(13.3) 0.008 0.0003
No 19 (44.2) 23 (76.7) 26 (86.7)
Total 43 30 30 50

TBP, tuberculosis patient without diabetes mellitus; TBDM, tuberculosis patient with diabetes mellitus; DM, patient with diabetes mellitus; HC, healthy asymptomatic individuals; BMI, Body
mass index; BCG, Bacille Calmette and Guerin; HBAlc, Glycated hemoglobin A1C; N, number.

treatment and completed their QFT-P and WBC count assays from
the inclusion (DO0), at M6 to the M8 follow-up visits (Figure 1).
Respectively, 40 and 20 patients were followed until the end of the TB

TABLE 2 Comparison of AFB smear, culture and Xpert results between
TBP and TBDM groups at inclusion (DO).

Grade  TBP(n, %) TBDM (n, %) P-value
treatment for TBP and TBDM (Figure 1). All of them presented {7z (7%}
negative TB culture at the end of their treatment and were clear from AFB 0 8 (18.6) 8 (26.7) 0.82
any clinical TB signs at M6. Among the TBDM patient, only five Smear : E ggg; :82:2;
individuals (n=>5) did receive anti-diabetic treatment in parallel with 34 10 (23.3) 5 (16.6)
their anti-TB treatment. Table 2 shows the degree of positivity of AFB
Culture 0 5 (11.6) 6 (20.0) 0.9
smear microscopy and culture results within the TBP and TBDM 1+ 10 (23.2) 5(167)
groups at inclusion (D0). No significant difference was observed 2+ 13 (30.2) 13 (43.3)
between the TBP and TBDM patients regarding the degree of 3+ 15(350) 6 (200
positivity of AFB smear, culture and Xpert results. Xpert Not detected 2 (4.6) 3(10.0) 0.55
Low 5(11.6) 6 (20.0)
Medium 9 (21.0) 6 (20.0)
3.2 QuantiFERON-TB gold plus results High 27 (628) 15 (50.0)
Total 43 30

In order to evaluate the mpact of DM on IFN_Y p roduction TBP, tuberculosis patient without diabetes mellitus; TBDM, tuberculosis patient with diabetes

upon Mycobacterium tuberculosis antigen stimulation during TB
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treatment, the plasma IFN-y concentrations in response to TB1 and
TB2 antigens were first measured with the QFT-P assay and
compared between the TBP, TBDM, DM, and HC clinical groups.
Atinclusion (D0), no statistical difference in the proportion of QFT-
P positive, negative, and indeterminate results was observed between
the TBP vs TBDM nor between the other study groups (p=0.2)
(Table 3). Furthermore, after quantitative analysis, no statistical
differences in the baseline level of IFN-y produced in QFT-P
positive results after stimulation with TB1 (p=0.11) and TB2
(p=0.19) antigens were observed between the clinical groups
(Supplementary Figure 1). Additionally, our results did not reveal
any statistically significant differences in IFN-y levels among the
various smear and culture grades within the TBP and TBDM groups
(p>0.05). The results revealed weak correlations between IFN-y levels
and both smear/culture grades and Xpert-derived bacillary load.

TBP and TBDM had a follow-up visit at M6 from their TB
treatment and two months after the completion of the TB treatment
(M8) timepoints. TBDM group showed higher IFN-y produced by
the QFT-P after stimulation with both antigens, TB1 (p<0.001) and
TB2 (p<0.05), at M6 compared to DO. In contrast no significant
differences were observed in the TBP group at these timepoints or
between M6 and M8 (Figure 2). When applying the manufacturer’s
recommendations for qualitative results, while no statistical
difference of QFT-P results was observed between the two clinical
groups at inclusion (D0) and M8, a significantly higher proportion
of positive QFT-P results was observed for the TBDM group
compared to the TBP group (91.3% vs 64.1%) (p=0.03) at the
achievement point of the treatment (M6) (Figure 3). During follow
up, there were no significant differences in QFT-P responses
between TBDM patients receiving anti-diabetic treatment and
those not receiving it (p>0.05).

3.3 QuantiFERON-TB gold plus conversion/
reversion rates

The QFT-P conversion and reversion rates during TB treatment
showed that the TBDM patients had higher conversion rates (83.3%
for TBDM vs 38.4% for TBP, p<0.05) and no reversions (0% for
TBDM vs 21.7% for TBP, p<0.01) compared to the TBP at the end
of the TB treatments (M6). Notably, five out of six TBDM patients
with a negative QFT-P result at DO had QFT-P conversion at M6,
and 1/6 remained QFT-P negative at M6 (Figure 3B). Besides, none

TABLE 3 QuantiFERON-TB Gold Plus results with the 4 study groups
at inclusion.

QFT- TBP TBDM DM HC P-
P (n, %) (n, %) (n, %) (n, %)  value
POS 25 (58.1) ‘ 17 (56.7) 14 (46.7) 25 (50.0) 0.2
NEG 15 (34.9) ‘ 10 (33.3) 16 (53.3) 23 (46.0)
IND 3 (7.0) ‘ 3 (10.0) 0 (0.0) 2 (4.0)
Total 43 ‘ 30 30 50

TBP, tuberculosis patient without diabetes mellitus; TBDM, tuberculosis patient with diabetes
mellitus; DM, patient with diabetes mellitus; HC, healthy asymptomatic individuals; QFT-P,
QuantiFERON-TB Gold Plus; POS, positive; NEG, negative; IND, indeterminate.
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FIGURE 2

Dynamics of QuantiFERON-TB Gold Plus interferon-y
concentrations in TBP and TBDM groups throughout TB treatment:
(A) Stimulation by TB1-specific antigen and (B) by TB2-specific
antigen. Data represent median with 95% confidence interval. Data
were analyzed using Friedman'’s multiple pairwise comparisons test.
*: p < 0.05 ***: p<0.001. TBP, tuberculosis patient without
diabetes mellitus; TBDM, tuberculosis patient with diabetes mellitus;
QFT-P, QuantiFERON-TB Gold Plus; DO, baseline before treatment
initiation; M6, end of treatment, after six month; M8, 2 months after
the end of treatment.

of the TBDM patients who had a positive QFT-P result at D0
reverted their QFT-P test as negative, and all remained QFT-P
positive at M6 (Figure 3B). No statistical differences in QFT-P
indeterminate proportion between the groups at the different
follow-up visits were observed (Figure 3).

3.4 WBC, monocyte and
lymphocyte counts

Before the initiation of TB treatment, the TB active groups (TBP and
TBDM) had higher absolute WBC counts compared to the healthy
control group (HC) (p<0.05 and p<0.001) (Figure 4A). TBDM also
showed a significantly higher WBC count compared to its DM clinical
counterpart group (p<0.05) (Figure 4A). Figures 4B, C show that TBDM
and TBP patients displayed statistically significant higher monocyte
(p<0.01 and p<0.05) with lower lymphocyte counts compared to HC
and DM groups. The results did not reveal any significant associations
between bacterial burden (by AFB smear, culture and Xpert) and
leukocyte counts at inclusion within the two groups.
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FIGURE 3

QuantiFERON-TB Gold Plus results dynamic proportion with the TBP (A) and TBDM (B) throughout TB treatment. TBP, tuberculosis patient without
diabetes mellitus; TBDM, tuberculosis patient with diabetes mellitus; QFT-P, QuantiFERON-TB Gold Plus; POS, positive; NEG, negative; IND,
indeterminate; DO, baseline before treatment initiation; M6, end of treatment, after six month; M8, 2 months after the end of treatment.

After their TB treatment, significant decreases in absolute WBC
counts were observed in the TBP and TBDM clinical groups at both
M6 and M8 (Figure 5A). Moreover, a significant decrease in
monocyte absolute count within the TBP and TBDM group was
observed after treatment compared to inclusion (p<0.05)
(Figure 5B). While a statistically significant increase in
lymphocyte absolute count was observed in the TBDM group
after treatment both at M6 (p<0.01) and M8 (p<0.0001), no
significant increase in lymphocyte absolute count was observed
with the TBP after TB treatment (Figure 5C).

3.5 Monocyte-to-lymphocyte ratio analysis

After determining the MLR at inclusion, a significantly higher
ratio was observed for both TBP and TBDM groups compared to
their respective control counterparts, i.e., HC (p<0.0001) and DM
groups (p<0.01 and p<0.0001, respectively for TBP and TBDM)
(Figure 6). After the TB treatment, a significant decrease in the MLR
was observed both at M6 and M8 in the TBP group (p<0.05,
Figure 7). The same trend was observed with the TBDM at M6
and M8 but with a higher statistical difference compared to the
trend observed with the TBP (p<0.001). A significant decline of the
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MLR level was observed with both TB active group after successful
TB treatment. No statistical differences were observed regarding the
MLR at M6 and M8 compared to HC (Supplementary Figure 2).
The same trends were observed when analyzing the neutrophil-to-
lymphocyte ratio (NLR) in both groups (Supplementary Figure 3).
At baseline (D0), significantly higher NLR values were observed,
which steadily declined following successful TB treatment at M6
and M8. During follow up, there were no significant differences in
MLR and NLR responses between TBDM patients receiving anti-
diabetic treatment and those not receiving it (p>0.05).

4 Discussion

Host characteristic assays, which are based on monitoring the
host immune system, are alternative sputum-independent options
for monitoring and predicting TB treatment outcomes. These assays
can be performed in primary health care settings, where TB patients
often first enter the health care system (6). Most of the technologies
used for monitoring TB treatment are still in the early stages of
development and are limited to central laboratories. These available
TB monitoring tests have also faced challenges due to the host’s
heterogeneous variations, including co-morbidities associated with
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FIGURE 4

Comparison of baseline absolute white blood cell count between
TBP, TBDM, HC and DM. (A) Leucocyte absolute count/mm? of
whole blood. (B) Monocyte absolute count/mm? of whole blood. (C)
Lymphocyte absolute count/mm? of whole blood. Box plots
represent median and interquartile range (IQR) of the data. The
upper and lower edges of the boxes represent the third and first
quartiles (@3 and Q1), respectively, while the line inside the box
represents the median (Q2). Data were analyzed using Kruskal-Wallis
with Dunn’s multiple comparison test. *: p < 0.05, **: p < 0.01, ***: p
< 0.001, ****: p < 0.0001. TBP, tuberculosis patient without diabetes
mellitus; TBDM, tuberculosis patient with diabetes mellitus; DM,
patient with diabetes mellitus; HC, healthy asymptomatic individuals.
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FIGURE 5

Dynamics of main white blood cell types proportion throughout TB
treatment in TBP and TBDM groups. (A) Leucocyte absolute count/
mm?3 of whole blood. (B) Monocyte absolute count/mm3 of whole
blood. (C) Lymphocyte absolute count/mm3 of whole blood. Data
represent median with 95% confidence interval. Data were analyzed
using Friedman’s multiple pairwise comparisons test. *: p < 0.05, **:
p < 0.01, ****: p < 0.0001. TBP, tuberculosis patient without
diabetes mellitus; TBDM, tuberculosis patient with diabetes mellitus;
DO, baseline before treatment initiation; M6, end of treatment, after
six month; M8, 2 months after the end of treatment.
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Comparison of baseline monocyte-to-lymphocyte (MLR) ratio
between TBP, TBDM, HC and DM groups. Box plots represent
median and interquartile range. The upper and lower edges of the
boxes represent the third and first quartiles (Q3 and Q1),
respectively, while the line inside the box represents the median
(Q2). Data were analyzed using Kruskal-Wallis with Dunn’s multiple
comparison test. **: p<0.01, ****: p < 0.0001. TBP, tuberculosis
patient without diabetes mellitus; TBDM, tuberculosis patient with
diabetes mellitus; DM, patient with diabetes mellitus; HC, healthy
asymptomatic individuals.

infection, as well as the practicalities of translating biomarkers into
simple and rapid tests that are more suitable for low- and middle-
income countries (LMICs) (8).

The aim of this study was to assess the influence of diabetes
mellitus (DM) on the respective performances of QuantiFERON-
TB Gold Plus (QFT-P) and white blood cell counts (WBC), two
available tests already used in clinical practice, in their capacities to
monitor the TB treatment of drug-sensitive pulmonary TB. While
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FIGURE 7

Dynamics of monocyte-to-lymphocyte (MLR) ratio throughout TB
treatment with TBP (blue line) and TBDM (red line) groups. Data
represent median with 95% confidence interval. Data were analyzed
using Friedman’s multiple pairwise comparisons test. *: p < 0.05,
*xx% p < 0.0001. TBP, tuberculosis patient without diabetes mellitus;
TBDM, tuberculosis patient with diabetes mellitus; DO, baseline
before treatment initiation; M6, end of TB treatment, after six
month; M8, 2 months after the end of TB treatment.
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IGRA from QFT-P has already been reported to vary depending on
the TB treatment course (7, 19), the influence of DM on the QFT-P
was mainly reported in cases of TB infection detections. Our study
is consistent with previous studies that identified persistent
inflammation with notably systemic type 1 and pro-inflammatory
response during anti-TB treatment in TBDM patients (9, 20-22). In
the present study, DM appeared to not influence the QFT-P
qualitative result proportions at baseline, with identical
performance in TBP, TBDM, and DM clinical groups, and no
significant difference was observed in the quantitative responses to
TB1 and TB2 antigens between diabetics and nondiabetic TB
patients at inclusion. However, higher Mycobacterium
tuberculosis-specific responses were reported in infected patients
with prediabetes and may reflect pathological inflammatory and
ineffectual responses to TB or active Mycobacterium tuberculosis
replication in participants with diabetes (23). After TB treatment, a
systematic review of about 30 studies found that quantitative IGRA
responses generally decrease during treatment for TB (19).
However, in the present study, after TB treatment, a significantly
higher IFN-y response was observed in the TBDM patients
compared to those without DM (TBP). Moreover, a higher
conversion rate (83.3%) and a low reversion rate (0.0%) were
observed within the TBDM patients, as all treated TBDM patients
with positive QFT-P at baseline remained positive until the end of
treatment at M6. This observed heightened IFN-y response in
TBDM compared to TBP raises intriguing questions regarding
the interplay between these two conditions and their impact on
immune responses to TB treatment. This finding aligns with
previous studies indicating that DM can exacerbate inflammatory
responses and alter immune function, potentially influencing
treatment outcomes in TB (22, 24). We suggest that following
successful TB treatment, improved glycemic control may help
restore immune function, enabling T cells to regain their capacity
to produce IFN-y. In other hand, this improved glycemic control
following successful TB treatment might not only restore immune
function but also help modulate the high concentrations of IFN-y
that persist post-treatment. This regulatory effect could play a
crucial role in re-establishing immune homeostasis. While the
interferon-gamma overactivation or dysregulation is known to
play a role in the development or exacerbation of dysglycemia
(25) by for instance promoting insulin resistance and contribute to
dysglycemia. Hyperglycemia on the other hand can indeed impair
the function of immune cells which can result in chronic
inflammation and tissue damage (26). Hyperglycemia and
inflammation create a feedback loop in which high blood glucose
levels promote the release of pro-inflammatory cytokines and other
inflammatory mediators like the interferon-gamma. These, in turn,
contribute to insulin resistance and chronic inflammation,
worsening dysglycemia. Over time, this feedback loop can lead to
serious complications, especially in conditions like type 2 diabetes,
where inflammation and insulin resistance perpetuate one another.
Managing blood glucose levels and controlling inflammation are
crucial to breaking this cycle and preventing the progression of
metabolic disorders. Additionally, we anticipate that pulmonary
impairment post-TB could be more pronounced in patients with
concurrent diabetes due to the prolonged inflammatory state. Our
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study may shed light on the heterogenous patterns of IGRA levels
following treatment due to the high degree of variation between
participants, which need to be adapted for DM and patients with
similar dysregulated immune systems in order to be useful for
monitoring anti-tuberculous treatment in clinical practice (27). The
higher conversion rate and minimal reversion rate observed
exclusively within the TBDM group suggest a distinct immune
profile in these patients after treatment. The persistent positivity of
QFT-P among all initially positive TBDM patients may simply
imply a sustained immune activation despite treatment completion,
which could reflect ongoing inflammation or impaired immune
regulation in the context of DM (20-22).

Besides the QFT-P assay, we also performed WBC count
analysis and monitored the monocyte to lymphocyte ratio (MLR)
in the two groups (TBP and TBDM) prior to, during, and after
completion of TB treatment. Prior to TB treatment, elevated WBC
and monocyte counts with lymphopenia were observed in both
groups of TB patients (TBP and TBDM). After TB treatment, WBC
and monocyte absolute counts globally decreased for the two groups
of TB patients treated (Figure 5A), indicating a systemic response to
TB therapy, regardless of DM comorbidity. These findings suggest
that while DM may predispose individuals to altered immune
function and inflammatory responses (24), it does not
significantly impact the overall dynamics of WBC levels in TB
patients prior to treatment initiation. MLR has been observed to be
associated with active TB and other studies have reported decreases
in the MLR values after anti-TB treatment (28-31). Thus, the MLR
assay can be used as a biomarker to identify TB and monitor the
effectiveness of anti-TB therapy (30, 32). It has been reported that
DM can modulate the dynamics of the immune cells, notably the
monocytes and lymphocytes (33-36). In the TB field, DM could
affect the basal activation state of some effector cells and their
capacity to control Mycobacterium tuberculosis infection (37).
However, in the present study, our results showed that DM does
not globally affect the WBC dynamics in TB patients prior to
treatment, and a MLR decrease was observed in both the TBP
and TBDM groups after TB treatment. Thus, this reduction in MLR
values following TB treatment in both groups reflects the efficacy of
anti-tuberculosis therapy in modulating systemic inflammation,
suggesting a restoration of immune balance and resolution of the
inflammatory milieu associated with active TB infection (22). While
further investigation should be conducted to assess the physical
lung tissue damages and the persisting inflammation due to DM
following TB treatment, it is worthwhile to notice that in the present
study, like the TBP group, all the TBDM patients had successful
TB treatment.

In this study, we did not show any differences in QFT-P or MLR
results between TBDM patients receiving diabetes treatment and
those not receiving it during TB follow-up. It suggests that diabetes
management alone may not significantly alter immune response
markers in TB treatment. This aligns with studies indicating that
while diabetes can modulate immune function, glycemic control
might not lead to measurable changes in TB-specific immune
markers, such as IFN-7y release or lymphocyte reactivity. Chronic
hyperglycemia in diabetic patients can induce a state of immune
dysregulation that persists despite glucose-lowering interventions,
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affecting both innate and adaptive immunity without necessarily
resulting in immediate changes in TB-specific immune responses
during treatment (38). Additionally, diabetes is known to impact
both pro-inflammatory and anti-inflammatory cytokine pathways,
creating a complex immune environment that diabetes treatment
alone may not fully normalize during the course of TB therapy (39).
In this study, prediabetic patients were included in the TBDM
group to enable a broader analysis of the spectrum of diabetes-
associated TB. However, the relatively small number of participants
in the prediabetic subgroup may have limited the statistical power
to detect subtle immunological differences within this group. Based
on the two points of HbAlc during the study period, none of the
TBP patients changed to a diabetic status (TBDM), and none of the
TBDM patients presented with transient DM.

In conclusion, our study provides insights into the complex
interaction between TB and DM and their implications for
treatment monitoring and immune response dynamics. Despite
limitations in sample size, the limited number of TBDM patient
receiving anti-diabetic treatment, the absence of treatment failure
cases, and the prospective nature of our study, which does not
account for retrospective biases or pre-existing health variations
among participants, our findings highlight the distinct immune
profiles observed in TB patients with and without DM, particularly
regarding the performance of host immune-based assays such as
QFT-P and MLR in monitoring treatment response. Our results
suggest that, while DM may not globally affect WBC dynamics in
TB patients prior to treatment, it can influence immune responses
to TB treatment. This is evidenced by the heightened IFN-y
response and persistent QFT-P positivity observed in TBDM
patient post-treatment, which may potentially contribute to
immune-associated pathologies and poor clinical damage control.
These findings highlight the importance of considering DM as a
potential modifier of TB treatment outcomes and highlight the need
for tailored monitoring strategies in this vulnerable population. To
further investigate these dynamics, future studies should consider
analyzing additional cytokines using the plasma samples stored in
our biobank. Finally, while further research is needed to validate
these findings in larger, more diverse patient cohorts and to explore
the long-term implications of DM on TB treatment outcomes, our
study emphasizes the significance of implementing comprehensive
monitoring strategies and personalized approaches to TB
management, particularly in regions with a high burden of both
TB and DM.
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Tuberculosis (TB) is the leading cause of death in the world from an infectious
disease. Its etiologic agent, the Mycobacterium tuberculosis (Mtb), is a slow-growing
bacterium that has coexisted in humans for thousands of years. According to the
World Health Organization, 10.6 million new cases of TB and over 1 million deaths
were reported in 2022. It is widely recognized that patients affected by chronic
autoimmune arthritis such as rheumatoid arthritis (RA), psoriatic arthritis (PsA), and
ankylosing spondylitis (AS) have an increased incidence rate of TB disease compared
to the general population. As conceivable, the risk is associated with age >65 years
and is higher in endemic regions, but immunosuppressive therapy plays a pivotal
role. Several systematic reviews have analysed the impact of anti-TNF-o agents on
the risk of TB in patients with chronic autoimmune arthritis, as well as for other
biologic disease-modifying immunosuppressive anti-rheumatic drugs (0DMARDs)
such as rituximab, abatacept, tocilizumab, ustekinumab, and secukinumab.
However, the data are less robust compared to those available with TNF-o
inhibitors. Conversely, data on anti-IL23 agents and JAK inhibitors (JAK-i), which
have been more recently introduced for the treatment of RA and PsA/AS, are limited.
TB screening and preventive therapy are recommended in Mtb-infected patients
undergoing bDMARDs and targeted synthetic (ts)DMARDs. In this review, we
evaluate the current evidence from randomized clinical trials, long-term extension
studies, and real-life studies regarding the risk of TB in patients with RA, PsA, and AS
treated with bDMARDs and tsDMARDs. According to the current evidence, TNF-a.
inhibitors carry the greatest risk of TB progression among bDMARDs and tsDMARDs,
such as JAK inhibitors and anti-IL-6R agents. The management of TB screening and
the updated preventive therapy are reported.

KEYWORDS

tuberculosis disease, TB infection, rheumatoid arthritis, psoriatic arthritis, ankylosing
spondylitis, biologic DMARDs, JAK inhibitors, preventive therapy
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1 Introduction

Tuberculosis (TB) is the leading cause of death in the world
from an infectious disease. Its etiologic agent, the Mycobacterium
tuberculosis (Mtb), is a slow-growing bacterium that has coexisted
in humans for thousands of years. According to the World Health
Organization (WHO), 10.6 million new cases of TB and over 1
million deaths were reported in 2022 (1).

As a respiratory pathogen, the transmission occurs through
inhalation of aerosols or droplets containing bacilli expelled by a
person with TB disease. An estimated quarter of the world population
has been infected with Mtb (1). Most TB cases are reported in low- and
middle-income countries. In particular, more than two-thirds of people
with TB live in Bangladesh, China, India, Indonesia, Nigeria, Pakistan,
Philippines and South Africa (1). This heterogeneous distribution is due
to the differences between countries in terms of social and economic
development and health-related factors, such as alcohol use disorders,
diabetes, HIV infection, smoking and undernourishment, which are
known to increase the risk of TB disease (2). In addition to health
conditions, immunosuppressive therapies affecting the immune system,
including those used for rheumatoid arthritis (RA), psoriatic arthritis
(PsA) and ankylosing spondylitis (AS), increase the risk of TB disease in
Mtb-infected individuals (3).

Following infection, the majority (90%) control Mtb replication
through innate and adaptive immunity establishing a state referred to
as TB infection (TBI), and in the past called latent TB infection (4). On
the other hand, 5-10% of the infected subjects can develop TB disease;
half of them within the first 5 years, and half during their lifetime.

TB is traditionally classified as primary or secondary according to
the time between the initial infection and the onset of the clinical disease.
Primary TB occurs in previously uninfected subjects after de novo
infection, whereas secondary TB develops in a previously sensitized
host, and it may occur following reactivation of Mtb infection or
reinfection from external source. Indeed, secondary TB usually, but
not always, develops in a person with a weakened immune system (5).

In the context of Mtb infection, a dynamic equilibrium between
the host and the microbe is present, with bacilli that can switch from
a dormant state to intermittent or active replication depending on
the capability of the host immune system to contain or not Mtb
replication (6, 7). Therefore, TB is referred to as a “continuum
process” characterized by different stages between TB infection and
TB disease, as described elsewhere (8, 9).

In this review, we revised the current evidence from randomized
clinical trials (RCTs), long-term extension studies (LTEs), and real-
life studies regarding the risk of TB in patients with chronic
autoimmune arthritis including rheumatoid arthritis (RA),
psoriatic arthritis (PsA), and ankylosing spondylitis (AS), treated
with biologic and targeted disease-modifying immunosuppressive
anti-rheumatic drugs ()lDMARDs; tsDMARDs).

2 Immunopathogenesis of TB

The immune response to Mtb infection is multifaceted and it
involves both innate and adaptive immune response (4, 10). Upon
infection, bacilli are phagocytosed by alveolar macrophages, which
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represent the first defense line against Mtb due to their
antimicrobial mechanisms (11, 12). However, Mtb has evolved
different mechanisms to avoid its elimination by inhibiting
phagosome maturation and acidification, and escaping autophagy
in macrophages (13-15), which become a permissive niche for
Mtb replication.

As the infection progresses, macrophages migrate into the lung
interstitium where they recruit other innate cells such as neutrophils,
monocytes, macrophages, and dendritic cells due to the release of
cytokines, including TNF-o, IL-1c, IL-6, IL-1B and IFN-y, thus
favouring the dissemination of mycobacteria to uninfected cells.
Once activated, T and likely B cells are recruited to the site of
infection contributing to the formation of the organized granuloma, a
structure known as the hallmark of TB (10). The immune
microenvironment within the granuloma influences the prognosis
and outcome of TB disease leading to different scenarios: Mtb
clearance, bacterial replication causing primary TB, bacterial
dormancy, or reactivation of the infection (16-19).

CD4" Thl cells producing cytokines such as IFN-y and TNF-o.
have been identified as the most important cell subset to control
Mtb infection. The differentiation of naive CD4" T cells to Th1 cells
is promoted by IL-12, a cytokine released by antigen presenting cells
(APCs) (20). IFN-y and TNF-o enhance the antibacterial activity of
macrophages by increasing autophagy, promoting phagosome
maturation, and inducing the production of antimicrobial
peptides. Besides macrophages, IFN-y and TNF-o. activate B cells
and the cytotoxic CD8" T cells. Both cytokines are of utmost
importance for the formation and maintenance of a well-
organized granuloma (21).

The role of Th17 cells, whose differentiation is induced by IL-23,
is controversial. Th17 response seems to be involved in the early
steps of protection from Mtb infection, and the recruitment of
neutrophils, macrophages, and Th1 cells to the site of infection
(22, 23). Th17 cells enhance the expression of cytokines (IL-17A,
IL-17F, IL-21 and IL-22) and antimicrobial peptides that lead to
phagocytosis of Mtb (23). IL-17 may be released by either innate
lymphocytes of the ILC3 class or Th1/Thl7, and it seems to be
implicated in the maturation process of granulomas (24). However,
an overproduction of IL-17 was also associated with exaggerated
recruitment of neutrophils and inflammation leading to
immunopathology (25, 26). As with IL-17, also the excessive
production of other pro-inflammatory cytokines such as TNF-o,
IL-1, IEN-y may result in tissue damage and bacterial growth. A
balance is crucial to control progression to TB disease (27).

The pivotal role of IL-12, IFN-y, and TNF-o in controlling Mtb
infection is corroborated by the higher susceptibility to TB disease
of the individuals treated with immunosuppressive therapies like
TNF-a inhibitors (28-30), or individuals with innate defects of the
IL-12/IFN-y axis (31-33), with HIV infection (34) or with primary
immunodeficiencies associated with T-cell deficiency (35).

Mendelian susceptibility to mycobacterial disease (MSMD) is
an inborn error of immunity associated with a selective
predisposition to mycobacterial infections. MSMD involves
specific mutations in 18 genes (IFNG, IFNGRI, IFNGR2, STATI,
IL12B, IL12RBI, IL12RB2, IL23R, RORC, TBX21, IRFS8, SPPL2A,
ISG15, TYK2, JAK1, ZNFX1, NEMO, CYBB), which are associated
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with an impaired IFNY/IL-12 response/production (35). Moreover,
patients with defects of CD40 ligand (CD40L) and NF-kB signaling
are more susceptible to mycobacterial disease, as this pathway is
involved in the IL-12 production (36).

A number of distinct Mendelian disorders are also caused by
inborn errors in components of the IL-6 family of cytokines and
their signaling pathways (STAT3 and GP130) (37). The majority of
patients with TYK2 defects, one of the three Janus kinases (JAKs)
associated with GP130 signaling, shows defects in type I antiviral
and mycobacterial immunity (38).

In addition to the use of TNF-o inhibitors, the inherited TNF
deficiency has been identified as a genetic aetiology of recurrent
pulmonary TB in adults observed within 1 year of the end of
treatment. TNF deficiency seems to be responsible for the selective
impairment of reactive oxygen species (ROS) production by
alveolar macrophages. The ROS production is crucial for the
phagocytic control of Mtb (39).

Regarding B cells and antibodies (Abs), initially there was some
scepticism about their effective contribution to the host defense against
Mtb due to the intracellular nature of the pathogen (40, 41). However,
although B cells and Abs may not be able on their own to counteract
Mtb, the accumulating evidence shows that they can favour and
enhance cell-mediated immunity (42). Indeed, Abs binding to Mtb
can mediate different processes such as antibody-dependent cellular
cytotoxicity, antibody-dependent cellular phagocytosis, and
complement activation, thus helping to reduce the mycobacterial
burden (42). However, B cells are not limited to antibody
production. They can act as antigen-presenting cells by presenting
mycobacterial antigens to T cells, thereby inducing their activation. In
addition, once activated, B cells can release cytokines, thus affecting the
activity of different immune cells (43, 44). The role of B cells in
controlling Mtb infection is corroborated by the association of TB
disease with reduced B cell count and function (45, 46).

Considering the pivotal role played by the host immune response
in controlling Mtb replication, risk factors for the progression to TB
disease include immunosuppressive therapies (Figure 1).

3 Patients with chronic autoimmune
arthritis and TB risk

Patients with chronic autoimmune arthritis such as RA, PsA
and AS are at higher risk of infections and related complications,
which are the main cause of mortality in these conditions (47).

It is widely recognized that patients affected by RA, PsA, and AS
have an increased incidence rate of TB disease compared to the
general population, primarily related to immunosuppressive
therapy rather than the disease itself. As conceivable, the risk is
associated with age >65 years and is higher in endemic regions, but
the use of immunosuppressive therapy plays a key role also in low
TB endemic countries (3, 48). There is evidence that corticosteroids
(CCS) can increase the risk of TBI reactivation in a dose-dependent
manner (49, 50).

Among ¢sDMARDs commonly used for the management of
RA, PsA, and AS, leflunomide and azathioprine have emerged as
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having the highest risk, whereas sulfasalazine and methotrexate
appear to confer only low to moderate risk (50, 51). In the last 20
years, biologic DMARDs (bDMARD:s) have significantly improved
the treatment of rheumatologic diseases, including RA, PsA, and
AS, contributing to introduce the ambitious target of remission/
minimal disease activity.

Anti-TNFo, agents were the first bDMARDs to be adopted and
are still the most used worldwide. Currently, 4 anti-TNF
monoclonal antibodies and one receptor fusion protein are
available: adalimumab (ADA), etanercept (ETN), infliximab
(IFX), golimumab (GOL), and certolizumab (CTP). Other
bDMARDs are used exclusively for the treatment of RA,
including the anti-IL6 receptors tocilizumab and sarilumab, as
well as the anti-CD20 rituximab. In contrast, the anti-IL12/23
ustekinumab, anti-IL23 guselkumab and risankizumab, and IL-17
inhibitors secukinumab and ixekizumab are used only for PsA and
AS. Finally, the CTLA4-Ig abatacept and JAK inhibitors (JAK-i) are
approved for both RA and PsA/AS. The increased risk of TB in
patients with chronic autoimmune arthritis undergoing anti-TNF
agents is widely recognized (3, 52-55). Although the data are less
robust, there are also substantial data available for other bDMARDs
such as rituximab, abatacept, tocilizumab, ustekinumab, and
secukinumab (56-58).

Conversely, data on anti-IL23 agents and JAK inhibitors (JAK-i),
which have been more recently introduced for the treatment of RA
and PsA/AS, are scarcer.

4 Specific biological therapy for
autoimmune arthritis and TB risk

In the following section, we describe the mechanism of action of
bDMARDs and tsDMARDs used for the treatment of RA, PsA, and
AS, and analyze how inhibiting specific pathogenic pathways might
affect the integrity of the TB granuloma. We then summarize the
main data on TB risk associated with these therapeutic agents from
RCTs, LTE, and real-world studies in these pathologies (Table 1).
Indeed, it is important to underline that RCT's provide very reliable
and complete data, but patients with TB disease were not included,
and patients with TBI could be enrolled only after having received
TB preventive therapy according to local guidelines. On the other
hand, real-life studies (registries and observational studies) are
affected by a higher risk of bias, but can also report cases of TBI
patients who did not receive preventive treatment; thus, they are
particularly relevant for inferring the impact of b/tsDMARDs on
the natural course of TBL

4.1 TNF-a inhibitors

TNF-a is a pivotal cytokine in the pathogenesis of RA, PsA,
and AS, as it acts on different cells such as synoviocytes,
macrophages, chondrocytes, and osteoclasts. It induces local
inflammation and pannus formation, contributing also to
cartilage degradation and bone erosions (59, 60). High TNF-o
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FIGURE 1

Schematic representation of the immune response targets of disease-modifying immunosuppressive anti-rheumatic drugs used for the management
of IMID patients. Both innate and adaptive immunity (B and T cells) play a key role in controlling Mtb infection. Immunosuppressive therapies
targeting host immune factors increase the risk for progression to TB. IMID, immune-mediated inflammatory disease; IFN, interferon; IL, interleukin;
JAK, Janus kinase; MHC, major histocompatibility complex; PDE4, phosphodiesterase-4; TCR, T cell receptor; TGF, tumor growth factor. Created

with BioRender.com.

levels have been observed in the synovial fluid and synovium of
patients with RA and PsA (60).

As previously mentioned, TNF-o is also critical for the
formation and maintenance of Mtb granulomas. TNF-o. enhances
the phagocytic capacity of macrophages, promotes the production
of reactive nitrogen and oxygen species to kill intracellular bacteria,
and facilitates the recruitment of immune cells at the site of
infection (21).

TNF-o inhibitors neutralize TNF-o activity, by disrupting the
immune response necessary for granuloma integrity, and leading to
mycobacterial growth and dissemination with progression to
TB disease.

There are remarkable differences among anti-TNF-o agents in
their ability to inhibit TNF-o,, that can explain the reported
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differences in TB risk. Anti-TNF-o. mAbs target and neutralize
both soluble and membrane-bound TNF-o. with high affinity, and
also have some cross-reactivity with Lymphotoxin (LT)-o (61). On
the other hand, ETN, being a dimeric fusion protein, binds to the
trimeric form of soluble TNF-o. and, only to a lesser extent, to
membrane-bound TNF-o and LT-o. (62, 63).

The more comprehensive blockade of TNF-ou activity and
functions in immune defense mechanisms by anti-TNF-o. mAbs
may contribute to the observed higher risk of TBI reactivation.

The early clinical trials of IFX and ETN revealed a significant
risk of TB, leading to the introduction of mandatory TB screening
guidelines for patients starting anti-TNF-o. therapy.

In particular, in the ATTRACT and ASPIRE RCTs there were
70 cases of TB disease among patients receiving IFX for an
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TABLE 1 TB risk associated to the different biological drugs used for rheumatic patients.

Mechanism of Action  Biologic Rheumatologic TB risk TB screening
indications mandatory
TNF Inhibitors Infliximab RA, PsA, SpA High
Adalimumab High
Etanercept Medium/High Yes
Golimumab Medium/High
Certolizumab Pegol Medium/High
IL-6R Inhibitors Tocilizumab RA Medium Yes
Sarilumab
JAK Inhibitors Tofacitinib RA, PsA, SpA
Baricitinib RA Medium Yes
Upadacitinib RA, PsA, SpA
Filgotinib RA
CTLA4-Ig Abatacept RA, PsA Low Yes
IL-12/23 Inhibitor Ustekinumab PsA Low Yes
IL-23 Inhibitors Guselkumab PsA Low Yes
Risankizumab
IL-17 Inhibitors Secukinumab PsA, SpA Low Yes
Ixekizumab
CD20 Inhibitor Rituximab RA Low No
PDE4 Inhibitor Apremilast PsA Low No

*Risk based on mechanism of action and TB IR before the introduction of systematic TB screening.

incidence rate (IR) of approximately 0.5-1.0/100 patient-years (PY);
the majority of these cases occurred within the first few months of
therapy (64).

ETN showed a lower incidence of TB in its pivotal ERA trial;
however, the risk was still significant enough to warrant concern
with an IR of 0.02-0.1/100PY (65). By the early 2000s, both the Food
and Drug Administration (FDA) and the European Medicines
Agency (EMA) had issued guidelines recommending TB
screening before starting treatment with anti-TNF-o agents.

The subsequent implementation of screening protocols has
significantly reduced TB rates, contributing to the lower incidence
observed in LTE studies and real-world applications of IFX, ADA,
and ETN, as well as with newer anti-TNF-o agents like golimumab
and certolizumab pegol (52). Indeed, the IR of TB reactivation in
clinical trials and LTEs conducted after the introduction of TB
screening, decreased to 0.2-0.3 for IFX and to 0.1-0.2/100PY for
ETN and ADA (66-79).

Also, golimumab and certolizumab pegol trials reported
relatively low rates of TB. Indeed, the GO-BEFORE and GO-
FORWARD golimumab studies found an IR of 0.2/100PY,
whereas the RAPID 1-2 certolizumab trials found an IR of 0.1/
100PY (80-84).

Different registries evaluated the incidence of TB in patients
receiving TNF-o inhibitors after the introduction of TB screening
protocols with similar results. Among these, the RABBIT registry
reported an IR of 0.14/100PY, the BIOBADASER found an IR of
0.05-0.1/100PY, while the ARTIS registry reported an IR of 0.15/
100PY (85-87).

Data from previous systematic reviews and meta-analyses
showed similar data, with an IR of 0.18/100PY in rheumatic
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patients receiving anti-TNF-o, 4 times higher compared to
rheumatic patients not receiving these therapies (88). Rigorous
screening and prophylactic treatment are required on the
summary of product characteristics (SmPC) of anti-TNF-o. agents.

4.2 Anti-IL6R

Tocilizumab (TCZ) is a humanized monoclonal antibody
targeting the human IL-6 receptor (IL6R). It was approved by
EMA in 2009 for the treatment of RA patients. Sarilumab is another
fully human monoclonal antibody targeting the IL-6R, more
recently approved for RA treatment.

IL-6 is a versatile cytokine with a wide array of functions,
including modulation of acute phase reactant pathways, B and T
lymphocytes, blood-brain barrier permeability, synovial
inflammation, and hematopoiesis. This cytokine plays a crucial
role in bridging innate and adaptive immune responses, and in
facilitating the recruitment of macrophages. Dysregulation of the
IL-6 axis is implicated in the inflammatory pathways of various
autoimmune disorders, such as RA.

Previous studies on experimental mice models showed that IL-6
plays a significant role in the protection against Mtb, and the
absence of IL-6 leads to an early increase in bacterial load with a
concurrent delay in the IFN-y induction. However, IL6 knockout
mice contained and controlled bacterial growth and developed a
protective memory response to secondary infection, demonstrating
that while IL-6 is involved in stimulating early IFN-y production, it
is not essential for the development of protective immunity against
Mtb. The role of IL-6 in human TB remains controversial, and the
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specific functions of the IL-6 produced by B cells are still poorly
understood, despite its abundance in TB-infected lungs. Some
studies have reported increased concentrations of IL-6 in the sera
of patients with advanced pulmonary TB compared to healthy
controls, as well as elevated IL-6 gene expression in peripheral
blood cells of TB patients, supporting a potential pathophysiological
role (89, 90).

Furthermore, a recent study demonstrated that treatment with
in vitro TCZ does not inhibit IFN-y-specific response on whole
blood from patients with TB disease stimulated with two different
Mtb antigens, differently from the effects observed with ETN and
IFX, both of which led to a reduced IFN-y response (57, 91, 92).

A comprehensive safety analysis and systematic review
published in 2014 assessed the incidence of TB in patients treated
with TCZ from RCTs and LTE studies, and found no cases of TB
disease among 15485 RA patients (29). A meta-analysis of RCT's
trials and LTEs found 9 cases of TBI reactivation on 12509PY for an
IR of 0.069/100PY (93). Data from the British Society for
Rheumatology Biologics Register for Rheumatoid Arthritis
(BSRBR-RA) showed one case of TB disease among 2171 RA
patients treated with TCZ, resulting in an IR of 0.026/100PY (94).

Observational studies from European countries and a Japan
nationwide study did not detect TB cases in TCZ users (95). Finally,
a recently published nationwide observational study on RA patients
from Korea, an intermediate TB burden country, reported 10 TB
cases on 2185PY for an IR of 0.45/100PY (96).

The IR was similar to ETN and higher in TBI patients than
those without TBI, indicating different effects between de novo
infection and TB reactivation. Screening for TBI is mandatory in the
SmPC of IL6R inhibitors.

4.3 Anti-1L-17

The IL-17 family encompasses six proteins (IL-17A to IL-17F)
and five receptors (IL-17RA to IL-17RE). While IL-17A and IL-17F
individually possess limited inflammatory potency, their robust
inflammatory effects primarily stem from their ability to recruit
immune cells and synergize with other pro-inflammatory cytokines
like TNF-o, IL-1B, and IL-22. Through the recruitment and
activation of neutrophils, IL-17A and IL-17F serve as pivotal
components in the innate immune response against extracellular
bacteria and fungi. Their protective role is particularly important on
mucosal surfaces and skin, where they are rapidly released upon
appropriate stimulation, thereby serving as a crucial link between
innate and adaptive immune responses.

The involvement of IL-17 in TB pathogenesis has been debated,
raising concerns and uncertainties about TB risk. Indeed, early
granuloma formation may depend on IL-17A, but IL-17A-induced
neutrophil recruitment may also increase pathological lesions and
bacterial burden in chronic pulmonary infections. Notably, an in
vitro study on a microgranuloma human model demonstrated that
anti-TNF-q, treatment could induce Mtb reactivation, whereas anti-
IL17 treatment was comparable to control, indicating a lack of effect
on Mtb dormancy. Moreover, mice lacking both IL-17RA and IL-22
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pathways still managed to control TB, suggesting no compensatory
relationship between these pathways. In contrast, TNF-o.-deficient
mice succumbed rapidly (97). In a series of studies by Khader and
Cooper, low-dose aerosolized bacteria were delivered to the lower
airways of the lungs in IL-17/IL-23 deficient mice (98, 99). Notably,
the absence of IL-23 and IL-17 in the lung leads to more severe
inflammation, suggesting that these cytokines help maintaining the
granuloma integrity in later stages of Mtb-induced inflammation by
limiting neutrophil death.

Secukinumab (SEK), a fully human monoclonal IgG1 antibody,
specifically targets and inhibits IL-17A. Following the
demonstration of its significant efficacy in phase 3 studies in
2015, it was approved for treating PsA and AS in 2016. Pooled
data from 5 phase III trials on PsA (FUTURE program), and 4
phase III trials (MEASURE program) on AS, on a total of 2523 and
977 patients respectively, reported 5 cases of new TBI (one PsA and
2 AS patients), and no cases of TB disease (100). In LTE studies (1-5
years) in patients with PsA and AS, the safety profile was consistent
with that of previous phase III studies, and no new TB infections or
TB disease reactivations were observed (101). Notably, Liu et al.
reported zero cases of reactivation among 3 PsA/AS patients with
TBI who did not receive TB preventive therapy (102). Ngoc et al. in
2022 described a case of TB disease from Vietnam in a 19-years-old
man affected by AS after two years of SEK treatment (103).

Ixekizumab (IXE) also neutralizes IL-17A but, differently from
SEK, it is a humanized IgG4 monoclonal antibody. This structural
variation contributes to its higher affinity for IL-17. Its approval for
PsA and AS was granted in 2018. No TB disease cases from pooled
analysis of 3 RCTs (SPIRIT program) on PsA patients were
recorded. In the PsA studies, 32 (2.9%) patients resulted in TBI
during the study, of whom 20 were discontinued per-protocol.
Interestingly, among the remaining 12 patients continuing IXE
treatment, no cases of TB reactivation were reported, even though
only 7 patients received TBI therapy (104).

Finally, bimekizumab (BMK) represents a humanized IgGl
monoclonal antibody with dual neutralizing effects against both
IL-17A and IL-17F. It has been very recently approved for the
treatment of PsA and AS. A total of 267 PsA patients from BE
COMPLETE trial and its open-label extension 1-yr follow-up (BE
VITAL trial), reported no cases of TB disease (105). Data from two
phase III BE MOBILES trials on AS, did not report TB disease cases
at 1-yr follow-up. Finally, a total of 303 patients with active AS from
BE AGILE trial and its open-label extension study reported no cases
of TB disease (106, 107). We still need data from real-life studies
and longer follow-ups. TB screening is only suggested in the SmPC
of anti-IL17 agents.

4.4 Anti-IL-23 and [L-12/23

IL-12 and IL-23 are heterodimeric cytokines containing p35 and
p40 subunits, and p19 and p40 subunits, respectively. IL-12 and IL-23
are produced by APCs, such as dendritic cells, macrophages, and
monocytes. IL-12 plays a key role in the differentiation of naive CD4"*
T cells into Th1 cells, whereas IL-23 is involved in the expansion and
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maintenance of Th17 cells. A role for IL-12 and IL-23 dysregulation
in the pathophysiology of PsA has been suggested (108).

Ustekinumab (UST) is a human monoclonal antibody that binds
the p40 subunit shared by both IL-12 and IL-23, effectively
suppressing their functions. It was approved for the treatment of
PsA patients in 2013. No TB disease cases were observed neither in
pivotal studies (PSUMMIT program) on a total of 1073 PsA patients,
nor in their LTE data (109, 110). Few data from available real-life
observational studies on PsA patients did not report cases of TB
reactivation, and previous reviews have assessed the risk of TB
reactivation as very low (111). A case of peritoneal TB in a PsA
patient from Philippines, on UST treatment, with multi bio-failure,
and after having been treated for latent TB, was observed (112).
Screening and treatment of TBI are recommended in the SmPC
supplied with UST.

Guselkumab (GUS) is a fully human IgGlA monoclonal
antibody, which specifically binds to the p19 subunit of IL-23. It
stands as the first of its class to gain approval for the treatment of
PsA patients.

Risankizumab (RSK) is a humanized immunoglobulin GI
monoclonal antibody that specifically inhibits IL-23 by binding to
its p19 subunit, and it has been recently approved to treat PsA.
Pooled data from DISCOVER 1 and 2 trials on 748 patients with
active PsA for GUS reported zero cases of TB reactivation at 1-year
follow-up (113, 114). RSK safety data sets from 4 phase II and III
trials (KEEPSAKE program) in PsA on a total 1542 patients
representing 2741.6PY, reported one case of TB disease in a
patient from Taiwan previously treated with a 9-month course of
isoniazid prophylaxis (115, 116). There is still very little real-life
data on anti-IL-23 in PsA patients with RSK. Takeda et al. reported
the case of a 64-year-old man affected by PsA who developed active
pulmonary TB after two months of GUS therapy (the patient was
negative at baseline TB screening) (117).

Notably, several real-world data are available for patients with
psoriasis. A total of 68 and 25 TBI patients, who did not receive any
or adequate TBI preventive therapy, were treated with RSK and
GUS, respectively (118-122). Remarkably, there were no
documented cases of TB reactivation, which corroborates the
safety profile of anti-IL-23 agents in patients with TBI who did
not receive prophylactic care. In the SmPC of anti-IL-23 agents is
indicated that patients should be evaluated for TBI before

starting treatment.

4.5 Anti-CD20

Rituximab (RTX) is a chimeric monoclonal antibody targeted
against CD20, which is expressed on the surface of normal and
malignant B lymphocytes. It was first approved by the FDA in 1997
for the treatment of malignancy, and in February 2006 for the
treatment of patients with moderately to severely active RA, who
did not adequately respond to one or more anti-TNF-o: agents. RTX
binds via its F(ab0)2 portion to the CD20 antigen expressed on B
lymphocytes, whereas its Fc domain plays immune effector functions
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to mediate B cell lysis in vitro. RTX cytotoxicity is mediated by three
different mechanisms including antibody-dependent cellular
cytotoxicity, complement-dependent cytotoxicity, direct disruption
of signaling pathways, and triggering of apoptosis (123, 124).

RTX’s targeted action on B cells, which spares the critical TNF-
o pathways necessary for TB containment, likely explains its lower
associated risk of TB reactivation compared to anti-TNF-o
therapies as reported by several data (125-127). No cases of TB
disease have been reported in patients receiving RTX in 9 RCTs
conducted in 3623 RA patients. In two LTEs in RA patients, two
cases of TB disease have been reported during a follow-up time of
9.5 years (IR 0.018/100PY) (29, 128). Data from real-life studies and
registries found very few cases of de novo TB infection or TB disease
reactivation during RTX treatment (129-132).

Data from observational studies and registries reported very few
cases of TB disease. In particular, only one TB case was reported in
2484 RA patients treated with RTX in the German GENIRIS study,
and 2 cases from the BSRBR-RA registry during 17154PY (0.012/
100PY) (127, 133).

Finally, a meta-analysis including data from several clinical trials
and LTEs reported that the IR of TB disease was high (>0.040/100PY)
for patients treated with tofacitinib and all biologics but RTX (0.020/
100PY) (93). Overall RTX emerged as having one of the lowest
pooled IR of TB among bDMARDs. In line with this evidence, the
summary of product characteristics of RTX does not specifically
mandate routine screening for TB before initiating therapy.

4.6 CTLA-Ig

Abatacept (ABT) is a fully human recombinant fusion protein
composed of the extracellular binding domain of human cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), fused to a modified
segment of human IgGl. Its mechanism of action involves blocking
the CD80/CD86 costimulatory pathways, thus preventing the
activation of naive T cells. ABT binds to CD80 and CD86 on APCs
with higher affinity compared to CD28 on T cells, effectively interfering
with the interaction between CD28 and CD80/CD86 (134). ABT has
been approved by the EMA for the treatment of RA since 2007, 10
years later it received approval for the treatment of PsA patients.

Its peculiar mechanism of immune modulation, which avoids
direct cytokine inhibition, seems to be a key factor that likely
contributes to its safer profile compared to anti-TNF-o regarding
the overall risk of infections and, in particular, TB reactivation.

Pooled data from 8 RCTs and LTE studies on RA patients
revealed an overall IR of 0.0066/100PY (135). A recent 10-year
international post-marketing study found a very low IR across
different registries (ARTIS, FORWARD, RABBIT) with only one
event on a total of 9652PY of exposure (136). TB rates were low but
slightly higher in two Canadian and USA registries, with 9 cases on
1067PY and 17 cases on 3994PY, respectively (137). Finally, a recent
meta-analysis of LTEs showed a low estimated pooled IR of 0.07/
100PY (93). Despite these reassuring data, screening for TBI is
recommended in the SmPC of abatacept.
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4.7 Apremilast

Apremilast, an oral phosphodiesterase-4 (PDE4) inhibitor that
effectively modulates various inflammatory mediators, has
demonstrated efficacy with a favorable safety profile in several
RCTs involving PsA patients with peripheral involvement (138).

These trials excluded patients with TB disease, but they did not
require TBI screening for enrolment. This finding is noteworthy:
patients with TBI treated with apremilast without preventive
therapy showed no instances of reactivation (139).

Analysis of pooled data from the PALACE I-II-III studies
involving a total of 1493 PsA patients, reported zero cases of TB
disease (140). A comprehensive retrospective analysis using a large
US-based claims database, including patients diagnosed with
psoriasis and/or PsA who were administered at least one dose of
apremilast between 2014 and 2018, identified only two cases of TB
disease among 10074 patients (141).

Overall, available data highlight the minimal association of
apremilast with TB reactivation. Notably, the prescribing
information for apremilast does not mention the necessity for TB
screening before initiation of treatment.

4.8 JAK inhibitors

Janus kinase inhibitors (JAK-i) are non-receptor tyrosine
kinases associated with the cytoplasmic domain of type I and II
cytokine receptors, which are activated after the engagement by
their cognate ligands. Once phosphorylated, they phosphorylate
signal transducers and activators of transcription (STATs), which
then induce gene activation essential for cellular functions like
signaling, growth, and survival (142).

The JAK family comprises four cytoplasmic non-receptor
tyrosine kinases: JAKI, JAK2, JAK3, and TYK2. JAK-i are
categorized into two generations. The first generation includes
small molecules like baricitinib (BAR) and tofacitinib (TOF),
which act as non-selective inhibitors of JAKs. In contrast, second-
generation drugs such as filgotinib (FLG) and upadacitinib (UPA)
exhibit more selective inhibitory activity against JAK1 than other
JAK (143, 144). UPA and TOF are approved for the treatment of
RA, PsA, and AS, whereas FLG and BAR are approved for RA only.

Tt can be speculated that the broad immunosuppressive effects
exerted by the mechanism of action of JAK inhibitors, particularly
through the downregulation of IFN-y, TNF-a, and IL-6, could
disrupt critical host defenses, including macrophage activation,
granuloma formation, and Mtb containment.

Notably, in a BALB/c mice model, TOF was shown to diminish
the control of Mtb, leading to increased bacterial replication in the
lungs during chronic paucibacillary TB. This model is designed to
replicate latency in a manner analogous to human TBI (145).
Screening for TBI is recommended in the SmPC of all JAK-i.

Data on TOF and TB were pooled from 7061 patients across the
completed 2 phase I, 10 phase I, 6 phase III, 1 phase IIIb/IV index
studies, and 2 open-label LTE studies (total exposure 22875PY). TB
disease was reported in 36 (0.5%) patients, with an IR of 0.2/100PY.
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Pulmonary and non-pulmonary TB occurred in 17 and 19 patients
respectively, with most cases occurring in geographical regions
endemic to TB (146). Twenty-six cases of TB disease were
identified from a post-marketing surveillance analysis of TOF, on
a total of 5671 RA patients for an IR of 0.21/100PY, most of which
were from regions with high background IR for TB (147). Finally, a
retrospective, single-center analysis from Western India reported 4
TB cases on a total of 102 RA patients treated with TOF (148).

Regarding baricitinib, an integrated study from 9 RCTs
conducted over 20 countries in patients with RA and one LTE
study with a follow-up period of up to 7 years, showed a total IR for
TB disease of 0.2/100 PY (15 out of 3770 patients; 14744 PY) (149,
150). The IR did not increase with prolonged exposure and the
events occurred mainly in endemic countries.

Data on TB risk in patients receiving UPA are pooled from 12
clinical trials (SELECT program) on 3209 patients with RA
(9079.1PY), 907 patients with PsA (1872.3PY) and 182 with AS
(320.1PY), showed only one case of TB reactivation (151-153). The
long-term extensions analysis on 3209 RA patients for 11661.5PY,
recorded one case of disseminated TB, one case of peritoneal TB, two
cases of pulmonary TB, one case of female genital tract TB and 174
cases of TBI reactivation (154). No cases of TB disease were recorded
in the RCTs and LTE studies conducted in PsA and AS patients,
whereas a total of 51 cases of TBI reactivation were reported
(155-157). We still have a few real-life data on UPA. In two recent
prospective longitudinal multicenter Italian studies in RA patients
enrolling 71 and 60 patients respectively, neither TB disease nor new
TBI were detected during the 6 months follow-up (158, 159).

The FINCH programme, a 52-week phase 3 RCT evaluated FLG
in 833 RA patients, recorded no cases of TB disease (160).

Ninenty-one cases of TB disease reactivation and no new onset
TB disease cases were reported in the DARWIN clinical trial and its
LTE analysis on 739 RA patients (161). Overall, these findings suggest
that JAK-i carry a risk of TB, particularly in endemic regions.

5 Screening strategies and preventive
therapy for TB

It is estimated that approximately one-fourth of the global
population has an immune response to Mtb, indicating previous
exposure or infection with the bacterium (1). Since 2015, the WHO
has recommended screening and treating TBI in populations at
higher risk of progression to the disease, within preventive actions
of the WHO End TB Strategy (3, 162).

Patients with autoimmune diseases candidates for biological
treatment are considered at risk of progressing to TB. Therefore,
International guidelines (163) recommend screening and TBI
preventive treatment of those with a TBI diagnosis who are
candidates for biological treatment. Patients are screened for TBI
either using skin tests, or interferon-y release assays (IGRAs) based
on the national guidelines in place (6, 164). Skin tests are based on
the intradermal inoculation in the forearm of the purified protein
derivative (PPD) as in the tuberculin skin tests (TST), or on ESAT-6
and CFP-10, as in the new generation of skin tests (165).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1494283
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Picchianti-Diamanti et al.

IGRAs are blood tests based on in vitro stimulation with ESAT-6
and CFP-10; the read-out is based on IFN-y or IP-10 detection that can
be performed in automated or semi-automated ways (6, 164).

In countries with BCG vaccination, where TST may show false
positives, ESAT-6 and CFP-10 based assays (IGRAs or skin tests)
are preferred. If either the skin test or IGRA is positive, the patient is
considered with TBI (162, 166) and will undergo a chest X-ray
(CXR) to exclude TB disease (162). A baseline CXR can be useful
also for those who score negative on skin tests or IGRA to evaluate
lung apical scores compatible with spontaneously healed TB, such
as non-calcified nodules with distinct margins and fibrotic linear
opacity (167). If TBI is diagnosed from a positive skin test or IGRA
without lung lesions, or based solely on lung apical scars, preventive
treatment is offered to those at high risk to develop TB (162).

TB preventive therapy aims to eliminate the remaining replicating
mycobacteria in the body, thus resulting in a lower risk of developing
the disease. This has proven to be effective in preventing TB in several
populations, including children (162, 168, 169).

6 TB preventive therapy drugs and
drug regimens

TB preventive therapy comprises one or two antibiotics and is
different from the therapy used for TB disease, in which four antibiotics
are used to reduce the likelihood of acquired drug resistance. This
assumes that in TBI the acquired drug resistance is unlikely, given the
small number of viable bacteria present.

Drugs commonly used for TB preventive therapies may cause
adverse reactions such as liver or neuro-toxicities (Table 2).
Isoniazid (INH) is an oral antibiotic with intracellular and
extracellular activity against Mtb. Isoniazid has been used
globally, with an average protective effect for TB of 60% during
the observation period (170). The duration is 6 months, although, in

TABLE 2 TB preventive therapies and their side effects.

10.3389/fimmu.2025.1494283

1982, a randomized trial in subjects with fibrotic pulmonary lesions
showed that the risk for developing TB disease compared with
placebo was reduced by 21%, 65%, and 75%, respectively for 3-, 6-,
or 9-months therapy, after 5 years of follow-up (171). However, a 6-
month regimen was shown to be more cost-effective than 3 or 12
months for the reduction of side effects, regimen adherence and
increased adherence (162, 172-174). Neuropathy can arise as an
isoniazid side effect due to the inhibitory effect of isoniazid on the
function of pyridoxine metabolites; therefore, pyridoxine (vitamin
B6) supplementation is recommended especially in those with
alcohol abuse, malnourished, and pregnant women (175).

Rifamycins, a group of oral antibiotics such as rifampin and
rifapentine, inhibit bacterial RNA synthesis by binding to the DNA-
dependent RNA polymerase. These antibiotics are used to treat TBI
by themselves or in combination with isoniazid to limit the side
effects and the poor adherence to the long treatment duration of
isoniazid (162).

Rifampicin regimens, like the 4-month course of rifampicin (4R)
(162) or even shorter regimens, like the 3-month course of isoniazid
and rifampicin (3HR), showed good safety and completion rates,
particularly among children, with dispersible fixed-dose
combinations aiding administration (176-178). For adults,
however, liver toxicity and completion rate are comparable to those
of longer isoniazid preventive therapy (177, 179). Administering a
once-weekly dose of isoniazid and rifapentine for 12 weeks (3HP) is
associated with lower rates of hepatotoxicity and higher completion
rates when compared with isoniazid, although it was linked with the
incidence of a hypersensitivity systemic immune response (177).
Conversely, a recent meta-analysis indicated an increased incidence
of grade 3 and 4 adverse events as well as a greater rate of treatment
discontinuation for the 3HP regimen when compared with the 6-9
month isoniazid preventive therapy (IPT) (180).

A regimen of one-month daily INH and rifapentine (1HP) is an
alternative for HIV-infected patients, and WHO conditionally

Major side effects Pyridoxine
supplementation
INH 5 mg/kg/die 6 months Liver, peripheral neuropathy Recommended
(max 300 mg/die)
INH 5 mg/kg/die 9 months Liver, peripheral neuropathy Recommended
(max 300 mg/die)
Rifampicin 10 mg/kg/die 4 months Liver
(max 600 mg/die)
INH+ Rifampicin 3 months Liver, peripheral neuropathy Recommended
Rifapentine+ INH Isoniazid 900 mg/weekly 3 months Liver, peripheral neuropathy, SDR* Recommended
Rifapentine 900 mg/weekly
Rifapentine+ INH Isoniazid 300 mg/day Rifapentine 1 month Liver, peripheral neuropathy Recommended
600 mg/day
Levofloxacin <45 kg 750 mg/day; Tenosynovitis, QT elongation,
> 45 kg, 1g/day gastrointestinal symptoms

SDR, systemic drug reaction, defined as either (1) hypotension, urticaria, angioedema, acute bronchospasm, or conjunctivitis; or (2) >4 flu-like symptoms, Age Impact on 3HP with >1 being

grade 2 or higher.
The name of the drugs is highlighted in bold.
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recommended it for people aged above 13 years, although
additional evaluations of safety and efficacy are needed in people
without HIV (162).

For contacts of people with MDR-TB, WHO recommends
using levofloxacin daily for six months to protect contacts
following exposure to MDR-TB (181, 182).

For isoniazid and rifamycin therapies, as liver damage and
neurotoxicity are the main side effects, conditions such as diabetes
mellitus or alcoholism predisposing to neuropathy development, or
chronic hepatitis B and C predisposing to liver injuries need to be
carefully evaluated. Therefore, especially in patients with
rheumatological disorders that often experience a metabolic
syndrome (183), at baseline before starting therapy, we need to
evaluate fast glycemia, glycated hemoglobin, HBsAg/Ab, hepatitis C
virus Ab, and transaminase levels. To evaluate the risk of side effects
to preventive therapies based on rifapentine, new strategies based
on Whole-Blood Gene Signature have been proposed (184).

In patients treated with biological therapies, few studies
are available regarding the side effects of preventive TB therapy
(3, 185-187). A moderate and transient increase of isoniazid-
induced liver damage has been reported (186, 188). Similarly,
in a large Italian study, it was shown that 95% (280/295) of
rheumatological patients completed TB preventive therapy with
isoniazid and 96% with rifampicin (27/28). Importantly, patients
who stopped taking isoniazid due to side effects successfully finished
their treatment with rifampicin, showing that switching
medications can still provide a good option for completing TB
preventive therapy (3, 186, 187).

Although the data available are limited, this evidence suggests
that patients undergoing biological therapy generally tolerate
preventive treatments and complete the full course.

7 Management of preventive therapy
in rheumatological patients

Before initiating preventive therapy, the physician needs to
conduct a thorough medical history asking for previous exposure
to TB cases and for previous liver disease, alcohol use, and
concurrent treatments (to identify potential drug interactions).
Patients should be informed about the symptoms of potential
liver damage and should also be advised on whom to contact if
these symptoms appear.

Blood control intervals of blood count, transaminases, YGT, and
bilirubin should be fixed at initially 2-weekly then 4-weekly.

Methotrexate, commonly used for RA and PsA, carries a risk of
liver toxicity (189). During TB treatment, it is crucial to balance the
risk of arthritis flares with potential liver damage in patients taking
methotrexate (190). Although specific guidelines are lacking,
switching to less hepatotoxic ¢sDMARDs, such as
hydroxychloroquine or sulfasalazine, may be advisable,
particularly for patients with stable disease activity. Patients with
pre-existing liver conditions require even greater caution due to
their increased susceptibility to toxic effects.
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If preventive therapy is not tolerated, the rheumatologist should
consider prescribing anti-rheumatic treatment with a low risk of TB
disease reactivation. This procedure must be written and shared
with the patient. Afterward, both the rheumatologist and the patient
need to carefully monitor the occurrence of possible symptoms of
mycobacterial reactivation to promptly isolate the patient to avoid
further transmission, diagnosis, and treatment.

Importantly, after a fully completed therapy for TB disease or
TBI, no further TB therapy needs to be given. It is assumed that
preventive therapy kills all mycobacteria, and therefore no further
preventive TB treatment is needed. IGRA results can remain
positive, even after preventive therapy (191, 192), because these
tests indicate the presence of an immune response against Mtb,
not the presence of Mtb itself (193). Few data are present on the
importance of repeated annual TB screening in a non-endemic
area (185, 194). Evidence suggests that serial IGRA testing among
low-risk patients on DMARDs results in a very low incidence of
newly diagnosed TBI. Consequently, it is recommended to
conduct targeted TBI screening based on risk factors related to
TB —such as geographical origin, comorbidities like diabetes, or
travel to endemic areas— before IGRA testing, rather than
implementing universal annual screening in non-endemic
regions (185, 194).

8 Conclusions

In conclusion, based on the available evidence, patients with
chronic autoimmune arthritis under immunosuppressive treatment
have an increased risk for TB reactivation. Among bDMARDs,
TNF-o inhibitors are associated with an increased risk of TB
progression compared to other treatments; however, the risk is
not negligible, especially for JAK-i and anti-IL-6R agents.

Based on the WHO recommendations, either skin tests or IGRAs
are acceptable for TBI screening. Stratification of TB risk is important
to drive the bDMARDs choice. The preventive treatment for TB is
well tolerated in patients undergoing b and tsDMARDs.
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Introduction: SARS-CoV-2 and Mycobacterium tuberculosis (Mtb) share
similarities in their modes of transmission, pathophysiological symptoms, and
clinical manifestations. An imbalance in the immune response characterised by
elevated levels of some inflammatory cytokines caused by tuberculosis (TB) and
COVID-19 may increase the risk of developing a severe disease-like condition. It
has been reported that TB increases the expression levels of Ace2 (angiotensin
converting enzyme 2) and Tmprss2 (transmembrane protease serine 2) proteins,
which are essential for COVID-19 pathogenesis. Single nucleotide
polymorphisms (SNPs) variants of ace2 and tmprss2 genes can impact virus
and host-cell interactions and alter immune responses by modulating cytokine
production. This may modify the susceptibility and/or severity in COVID-19-
infected people. The role of SNPs in ace2 and tmprss2 in relation to Mtb and
SARS-CoV-2 co-infection is relatively underexplored.

Method: In this study, genotype frequency of 10 SNPs of ace2 and 03 SNPs of
tmprss2 genes in a Cameroonian cohort consisting of COVID-19-positive (n =
31), TB-positive (n = 43), TB-COVID-19 co-infected (n = 21), and a control group
(n = 24) were studied. The immune response was estimated by quantitating
inflammatory cytokine levels alongside self-reported and clinically diagnosed
symptoms. The relationship between specific genetic mutations in these ace?2
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gene SNPs and their impact on cytokine expression levels in Mtb and SARS-CoV-
2 co-infected patients was investigated.

Results: We identified wild-type, heterozygous, and double-mutant genotypes in
seven SNPs (rs2285666, rs6632677, rs4646116, rs4646140, rs147311723,
rs2074192 and rs4646142) in ace2 gene, which showed significant variations in
distribution across the study groups. Our most significant findings include the
association of double mutant alleles (AA) of rs4646140 and rs2074192 in the ace2
gene with decreased IL-6 and IL-2 expression levels respectively in TB-COVID-
19 participants. Also, the double mutant alleles (AA) of rs4646116 were
responsible for increased expression level of IL-2 in TB-COVID-19 patients.
Additionally, elevated serum levels of AST, urea, and D-dimer, as well as
increased plasma concentrations of IL-10, IFN-y, and TNF-o, have been
associated with co-infections involving Mtb and SARS-CoV-2.

Conclusion: These biomarkers may reflect the complex interplay between the two
pathogens and their impact on host immune responses and disease progression.
This study highlights the critical role of genetic and immunological factors in shaping
altered immune responses during co-infections involving Mtb and SARS-CoV-2. By
elucidating these factors, the findings provide a foundation for a deeper
understanding of host-pathogen interactions and their implications for disease
progression and outcomes. Furthermore, this research has the potential to drive
advancements in diagnostic approaches enabling more accurate detection and
monitoring of co-infections.

ace2, tmprss2, SNPs, COVID - 19, tuberculosis, Mycobacterium tuberculosis, SARS-CoV-
2, immune response

Introduction

Tuberculosis (TB) is a global public health concern and is endemic
in low middle-income countries, primarily those in sub-Saharan Africa
and Asia. According to the Global TB Report 2024 by the World
Health Organization (WHO), 8.2 million cases and 1.25 million deaths
were reported in 2023, placing TB again as the leading infectious
disease killer in 2023 (1). In 2020, the COVID-19 pandemic overtook
TB-related deaths and incidences, making it the most contagious
disease with the highest mortality. During this period, 3,931,534
cases and 100,952 deaths due to COVID-19 were reported in sub-
Saharan Africa (SSA) (2). COVID-19, first reported in Hubei Province
in China in December 2019, is caused by Severe Acute Respiratory
Disease Syndrome Coronavirus 2 (SARS-CoV-2) (3). SARS-CoV-2
and Mycobacterium tuberculosis (Mtb) are major infectious causes of
death. They do not cause similar diseases; however, they show few
similarities in their modes of transmission, symptoms and
manifestations (4). They transmit through respiratory tract secretions
via aerosol mode and cause lower respiratory tract infections,
pneumonia and associated lung fibrosis. Both diseases share similar
clinical symptoms, such as cough, fever, weakness, and dyspnea. An
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imbalance of immune response, including significantly decreased
absolute counts of T-cells and increased pro-inflammatory cytokines
levels, may influence the risk of developing TB and COVID-19
diseases, among others (4). The cytokine storm causes a significant
biological response identified in patients with severe COVID-19 due to
the over-activation of the inflammatory cascade in the tissues exposed
to harmful stimuli like injury, toxic chemicals or pathogens (5).
Coronavirus enters the host’s cell by binding its spike protein to
the angiotensin-converting enzyme 2 (Ace2) receptor at the surface of
the host. The ace2 gene is located on the long arm of human
chromosome 17 and consists of 26 exons and 25 introns (17g23.3)
with a mass of ~92.5 kDa (6). Ace2 catalyses the conversion of
angiotensin I into angiotensin 1-9, and angiotensin II into the
vasodilator angiotensin 1-7 (7)). It possesses a catalytic and
collectrin-like domain that spans the membrane and makes it a
surface protein. The spike protein of SARS-CoV-2 binds to the
catalytic domain of Ace2, leading to a conformational change,
thereby causing the viral entry into the host cell (8).
Transmembrane protease serine 2 (Tmprss2) is a protein encoded
by the tmprss2 gene on autosomal chromosome 21q22.3, which
regulates cell signaling and modulates host response to infection
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(9). However, in SARS-CoV-2 infection, tmprss2 primes the viral
glycoprotein by cleaving the spike protein at the S1/S2 junction and
the S2 site (10). Both tmprss2 and ace2, expressed in the lung
bronchial epithelial cells, are critical for viral entry of SARS-CoV-2
(11). Some studies have demonstrated that tmprss2 activity is
essential for viral spread and pathogenesis, enabling the entry of
SARS-CoV-2 in ace2-expressing cells but not in cells without ace2
(12, 13). Ziegler and colleagues have shown that Mtb infection
increases ace2 expression in the lung tissues through interferon
stimulation (14). Single nucleotide polymorphisms (SNP), which
represent a change in a single DNA building block, are one of the
most common types of genetic variation amongst humans. It usually
plays a role in altering disease severity and/or susceptibility by
altering the structure and function of a gene which encodes a
protein or by affecting the binding of enzymes that regulate cellular
processes among several others. In the context of COVID-19, SNPs in
ace2 and tmprss2 genes have been studied in several populations to
elucidate the impact on the establishment of COVID-19 (6).
Susceptibility to SARS-CoV-2 infection could be defined by age,
gender, pre-existing comorbidities, genetic background, predisposing
factors such as health status, immunological state of the host and
lineage of the pathogen (15). The host ace2 and tmprss2 genes play a
vital role in disease severity, viral replication, and inflammation, and
variations at genetic levels, such as SNPs, may affect their function
(16). Mutations in SNPs of ace2 and/or tmprss2 genes could influence
immune response by modulating cytokine production and may
contribute to immune imbalance in Mtb/SARS-CoV-2 co-infected
patients. Limited literature is available on the effect of SNPs in ace2
and tmprss2 and their response to COVID-19 and TB association. In
this study, 95 participants with either TB and/or COVID-19
alongside a control group of 24 participants who reported no
history of either TB or COVID-19 were recruited from a
Cameroonian cohort. Their biochemical and immunological
parameters were analyzed, followed by genotyping to investigate
the mutation patterns in the ace2 and tmprss2 genes. The findings
shed light on specific mutations in these genes that may impact
susceptibility, severity, or immune dynamics in the context of
COVID-19 and TB co-infection.

Material and methods followed

Ethics statement, study participants
recruitment and classification

A written formal consent was obtained from the Cameroon
National Ethical Committee for Research in Human Health (N°
2020/07/1265/CE/CNERSH/SP) in Yaoundé for this study. This
study was carried out in compliance with bio-ethical laws and data
protection state and following good clinical practice. All study
participants recruited presented signs and symptoms of a
respiratory disease. These participants were enrolled at the
Djoungolo District Hospital, Jamot Hospital, Ekoumdoum Baptist
Hospital and Red Cross Hospital in Yaoundé during the COVID-19
pandemic from September 2020 to December 2023. This study was
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conducted in two phases: a prospective component spanning from
June 2022 to December 2023 and a retrospective component covering
the period from September 2020 to December 2022. The prospective
study enrolled participants from Jamot Hospital, including
individuals diagnosed with TB and a control group for comparative
analysis. In the retrospective study, participants were selected from
Djoungolo District Hospital, Ekoumdoum Baptist Hospital, and Red
Cross Hospital, focusing on individuals who were either COVID-19
positive or co-infected with TB and COVID-19. Recruited
participants were assessed for medical history, tobacco
consumption and TB medication history. We assessed the
following variables: i) socio-demographic factors such as age, sex,
occupation, number of co-inhabitants, ii) COVID-19 and TB history,
asthma history, HIV status, hypertension, diabetes mellitus, tobacco
and alcohol consumption, iii) clinical characteristics such as cough,
fever, headache, sore throat, asthenia, chest pain, loss of smell. The
vitals were measured by clinicians at the time of patient enrolment
using a thermometer for temperature and a sphygmomanometer for
heart rate and blood pressure. Other symptoms viz, cough, sore
throat, bloody sputum, rhinorrhoea, chest pain, myalgia, arthralgia,
fatigue, loss of smell and headache were self-reported by participants
and noted by clinicians at the time of enrolment. Demographic details
and clinical characteristics are presented in Table 1. Every participant
underwent clinical examination and laboratory assessment for
COVID-19, TB and other infectious diseases endemic in the
region, such as Influenza A, B, malaria, HIV and Hepatitis B. A
group of symptomatic individuals who tested negative for COVID-
19, TB, and the other infectious diseases mentioned above, who had
been screened during the study, were enrolled as controls.
Nasopharyngeal samples, which tested positive for only COVID-19
by RDT and real-time PCR, were considered COVID-19 positive;
sputum samples that tested positive for only TB by microscopy and
real-time PCR were included as TB-positive participants and those
which tested positive for both infections only were considered as TB-
COVID-19 co-infected. Exclusion criteria for the study groups were
existing comorbidities such as malaria, Influenza A and B, HIV,
Hepatitis and unwillingness to give signed informed consent. Written
and signed informed consent was obtained from every recruit before
the start of the study. Study protocol and consent forms were
reviewed and approved by the Centre’s regional ethical committee
in Yaoundeé. The study population was later classified into COVID-19
positive, TB positive, TB-COVID-19 association, and controls.

Nasopharyngeal sample collection
and processing

Nasopharyngeal samples were collected from the participants
by inserting the swab provided about 2 - 2.5 cm into the nostrils.
The HIGHTOP Antigen Rapid Test device that Qingdao Hightop
Biotech Company manufactured was used according to the
manufacturer’s instructions. The QIAamp viral RNA mini kit
extracted coronavirus RNA from nasopharyngeal samples. A
confirmatory COVID-19 diagnosis was later made using real-time
PCR using the Logix Smart ABC (Cat #: ABC-K-001) test utilizing
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TABLE 1 Socio-demographic and clinical characteristics of study participants by study group (control, COVID-19, tuberculosis (TB), and TB-COVID-19).

Characteristics Control (24) @ COV (31) TB (43) TBCOV (21)

p-values

Age (mean + SD) 305+ 6.7 373 +128 36.8 +17.2 37.7 £ 14.5 ns
Male n (%) 11 (45) 17 (55) 32 (74) 13 (62) N/A
Female n (%) 13 (55) 14 (45) 11 (36) 8 (38) N/A
Temperature (°C) 372+0.7 374 +0.7 37.6 £ 0.6 373 +£08 ns
Heart Rate bpm (mean + SD) 88.5 = 16.4 87.5 + 10.6 86.6 + 10.5 87.5+ 8.7 ns
Respiratory Rate bm (mean + SD) 189+ 1.3 16.8 +2.8 173 £3.1 179+ 1.2 p<0.05
Systolic blood pressure BP/mmHg (mean + SD) 117.8 + 10.9 1229 + 19.0 125.3 + 20.1 118.5 + 8.4 ns
Diastolic Blood Pressure BP/mmHg (mean + SD) 769 + 8.8 80.7 + 14.7 77.8 £ 13.8 79.8 +10.2 ns

02 saturation % (mean + SD) 98.0 £ 1.3 96.6 + 1.8 979 £ 1.1 957 £3.2 p<0.05
Fever n (%) 11 (45.5) 22 (70.9) 20 (46.6) 15 (71.4) P=0.05
Cough n (%) 12 (50) 23 (74.2) 23 (53.5) 18 (85.7) ns
Sore throat n (%) 5(22.7) 9 (29) 10 (23.3) 9 (45) ns
Bloody sputum n (%) 0 (0) 1(3.2) 7 (16.3) 2 (10) p<0.05
Rhinorrhoea n (%) 10 (41.7) 12 (38.7) 7 (16.3) 7 (35) ns
Chest pain n (%) 5(22.7) 9 (29) 11 (25.6) 12 (57.1) ns
Myalgia n (%) 5(22.7) 12 (38.7) 9 (20.9) 8 (40) ns
Arthralgia n (%) 12 (50) 6 (19.4) 9 (20.9) 11 (52.3) ns
Fatigue n (%) 12 (50) 13 (41.9) 9 (20.9) 17 (80.9) p<0.05
Loss of smell n (%) 5(20.8) 9 (29.0) 6 (13.9) 6 (30) ns
Headache n (%) 11 (45.8) 19 (61.3) 7 (16.3) 16 (76.1) p<0.05

SD, standard deviation; ns, non-significant; bpm, beats per minute; bm, breathes per minute; °C, degree Celsius; 02, oxygen; COV, COVID-19; TB, Tuberculosis; TBCOV, Tuberculosis-COVID-
19 association; NA, Not applicable.

the patented Co-Primer technology (17) according to the Blood sample collection and storage
manufacturer’s instructions. The Co-Primer triplex assay uses
extracted viral RNA to detect Influenza A, B and SARS-CoV-2

(gene RdRp and E-gene) in upper respiratory tract samples and

5 ml of whole blood was collected into commercially available
anticoagulant-treated tubes (EDTA) and dry tubes. The blood was
even saliva (Netongo et al., unpublished data). centrifuged 5000 r.p.m for 10 mins. Plasma was obtained from
blood collected in EDTA tubes, while serum was obtained from dry

. . tubes. Both were then aliquoted and stored at -80°C for future use.
Sputum sample collection and processing

Sputum samples were collected using plastic cups with 40 mL
capacity. After collection, sputum microscopy was carried out. A
slide was prepared for each sample, fixed, and later stained
following the Zeihl-Nelseen staining technique. A confirmatory
real-time PCR using the SARAGENE"" Mycobacterium
tuberculosis test COSARA Diagnostics Ltd India and Logix Smart
Mtb Kit (Cat #: MTB-K-007)-Co-Diagnostics inc, USA was
performed on extracted bacterial DNA according to
manufacturer’s instruction. This test detects the presence or
absence of IS6110 and MPB64 genes from Mpycobacterium
tuberculosis. The test kit includes an internal control to identify
possible qPCR inhibition and verify the quality of
sample extraction.
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Evaluation of biochemical markers assays
involved in TB and COVID-19 diseases

A set of serum biochemical markers aspartate aminotransferase
(AST), alanine aminotransferase (ALT), Urea, creatinine (CREA),
direct bilirubin (BIL-D), total bilirubin (BIL-T) and D- DIMER. AST,
ALT, UREA and CREA were quantified using the PreciseMAX
reagent kit according to the manufacturer’s instructions and results
read on the semi-automatic biochemistry analyzer. Serum levels of
bilirubin were determined by the photometric detection of the azo
derivatives obtained by the serum reaction with the diazonium ion of
sulfamic acid. D-dimer was measured in serum using the dry fluoro-
immunoassay analyzer (WWHS Biotech. Inc Shenzhen, P.R China).
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Measurement of pro-inflammatory and
anti-inflammatory cytokine levels involved
in COVID-19 and TB

Serum cytokines (IL-6, IFN-y, TNFo, IL-10, IL-2 and IL-1B)
were assayed in serum using sandwich ELISA Origene kits (Origene
Technologies, Inc, Rockville, MD 20850, US) according to
manufacturer’s instruction.

DNA extraction and single nucleotide
polymorphism genotyping

Genomic DNA was harvested from the peripheral blood using
the commercially available Quick-DNA™ Miniprep Kit (QIAamp
DNA Blood Mini kit, Qiagen, Germany), according to the
manufacturer’s instruction and its quality was verified in
agarose gels stained with ethidium bromide nucleic acid gel
stain (Thermo Fisher Scientific, C.A, USA). Then, the DNA
concentration was measured using nanodrop (Thermo Fisher
Scientific, C.A, USA), and purity was determined by calculating
the A260/280 ratio. The extracted genomic DNA was stored at
-80°C until used in the genotyping reaction. SNPs were analyzed
by real-time polymerase chain allelic discrimination technology
using TagMan SNP genotyping assay kit (Thermo Fisher
Scientific, Waltham, MA, United States) on a Co-Dx Box
Magnetic Induction Cycler qualitative Time Polymerase Chain
Reaction (qPCR) machine (Co-Diagnostics Inc USA, Cat #
MIC001355). The ten variants analyzed for the Angiotensin-
converting enzyme gene (ACE 2) were rs2285666, rs4240157,
rs4646142, rs4646116, rs6632677, rs4646140, rs147311723,
rs2074192, rs35803318, rs4646179 and while three genotype
variants were determined for the Transmembrane serine
protease 2 Polymorphisms (TMPRSS2) gene, namely
rs12329760, rs75603675 and rs61735791. Specifically, genotype
variants were determined using the TaqManTM SNP Genotyping
Master Mix kit from Thermo Fisher Scientific, C.A, USA (Cat #:
4381656) that reveals Ace2 rs4646179 A>G, rs147311723 G>A,
rs4646142 G>A, rs2074192 C>T, rs35803318 C>T, rs4646140
C>T, rs6632677 G>C, rs4646116 T>C, rs2285666 C>A,
rs4240157 C>G and Tmprss2 rs12329760 C>G, rs75603675
C>A, rs61735791 C>A mutations.

The reaction mix of each sample was composed of 5 pL of 2X
TaqMan Genotyping Master Mix, 0.5 uL of TagMan assay (20X),
and 4.5 pL RNase-free water. The thermal cycling protocol is
optimized at 95°C for 10 min for AmpliTaq Gold, UP Enzyme
Activation, followed by denaturation step at 95°C for 15 s and
annealing/extension at 60°C for 1 min for 40 cycles. The qPCR
was performed on a Co-Diagnostics PCR instrument (Co-
Diagnostic, INC, Salt Lake City, USA), and the results were
analyzed using Co-Diagnostic genotyper software. This software
was used to plot the findings of the allelic discrimination data as a
scatter plot of Allele 1 (VIC® dye) versus Allele 2 (FAMTM dye).
Each well of the 96-well reaction plate was represented as an
individual point on the plot.

Frontiers in Immunology

10.3389/fimmu.2025.1533213

Data analysis and management

The data was anonymized before analysis with numerical
variables. All comparisons of cytokines and biochemical biomarkers
data were analyzed using Graph Pad Prism 8.0. Arithmetic means,
medians and standard deviation were also determined using built-in
MS Excel 2016 Home Edition commands. Test techniques include
independent student t-test and Oneway ANOVA test, one for
comparing 2-independent groups and the other for more than 2-
independent groups. SNP frequencies were expressed as numbers (%)
in each group. The chi-square test was used to determine p-values
and the association of genotypes with one of the groups.

Results

Socio-demographic and clinical
characteristics of study participants

All study participants presented signs and symptoms of a
respiratory disease. Participants were enrolled at the Djoungolo
District Hospital (102), Jamot Hospital (n=83), Ekoumdoum Baptist
Hospital (n=118) and Red Cross Hospital (n=96) in Yaounde during
the COVID-19 pandemic from the period of September 2020 to
December 2023. The location of the study site in the Centre region of
Cameroon is illustrated in Figure 1A. Every participant underwent
clinical examination and laboratory assessment for COVID-19 and
TB. Recruited participants were assessed for medical history, tobacco
consumption and TB medication history. From 399 participants, 280
were excluded from the study due to the presence of other
comorbidities such as Influenza A and B, HIV, malaria and
Hepatitis (n=156), use of anti-TB treatment (n=9), missing consent
and unconfirmed diagnosis (n=115). In total, only 119 participants
were retained for this study. The study populations consisted of four
groups: COVID-19 positive (n= 31), TB positive (n= 43), TB-
COVID-19 positive (n= 21) and a set of controls (n= 24). The
control group consisted of participants who tested negative for all
the above-mentioned diseases screened at the time of the study.
Patient recruitment workflow is illustrated as a flowchart in
Figure 1B. The proportion of males to females was 60% and 40%,
respectively. The most frequent symptoms in the COVID-19 group
(n=31) were cough (74%), fever (70.9%) and headache (61.3%). The
main clinical signs reported during TB-COVID-19 association (n=21)
were cough (85.7%), fatigue (80.9%) and headache (76.1%). TB
patients (n=43) presented predominant symptoms such as cough
(53.5%), fever (46.6%) and chest pain (25.6%). Details of
sociodemographic and clinical data are summarized in Table 1.

Serum AST, Urea and D-dimer levels are
significantly higher in the TB- COVID-
19 association

Every study participant’s blood clotting factor and other
biochemical parameters were evaluated to determine disease
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severity in TB and/or COVID-19. To monitor participants’ liver
and kidney function, we measured the expression levels of those
enzymes (ALT, AST, Urea, creatinine and bilirubin) reflecting these
organs’ function (Figure 2A). TB-COVID-19 co-infected patients
had higher AST levels than TB mono-infected (p<0.001) and
controls (p<0.05). AST levels were higher than the normal range
(> 34 TU/L) in 50% (10) of participants with TB-COVID-19, 18%
(8) with TB and 26% (8) with COVID-19 (Table 2). Urea levels in
TB-COVID-19 co-infected patients were also significantly higher
than in individuals with only TB (p<0.001) or COVID-19 (p<0.01)

10.3389/fimmu.2025.1533213

and controls (p<0.001). It was noticed that all TB-COVID-19 co-
infected patients had urea levels exceeding the normal serum
concentration (> 20 mg/dL). Conversely, 74% (18) of COVID-19-
positive participants and 72% (19) of TB-positive patients exhibited
abnormal urea levels (Table 2). The COVID-19 group showed
significantly elevated ALT levels compared to both the TB (p <
0.0001) and TB-COVID-19(p < 0.001) groups. ALT levels
exceeding 36 IU/L were found in 8 COVID-19-positive
participants and 2 TB-COVID-19 co-infected participants
(Table 2). When comparing the AST and ALT profiles across the
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FIGURE 1

Study participant recruitment and classification. (A) Map showing the Centre region of Cameroon with different study sites. Samples for this study
were collected at four hospitals: JH, DDH, RCH, and EBH, which are situated in Yaoundé. The sample sizes from each district were as follows: JH:
83; DDH: 102; RCH: 96; and EBH: 118. The map was created using QGIS version 3.32.3. (B) Based on COVID-19 and Tuberculosis infection status,
participants were grouped into Controls: COVID-19 positive, Tuberculosis positive, and Tuberculosis and COVID-19 association. In total, our sample
size consisted of 119 participants. JH, Jamot Hospital; DDH, Djoungolo District Hospital; RCH, Red Cross Hospital; EBH, Ekoumdoum

Baptist Hospital.
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four study groups, we found that 26% (8 out of 31) of COVID-19-
positive participants exhibited AST levels above the normal range.
Interestingly, these same individuals also had ALT levels exceeding
the normal range. Conversely, in TB-COVID-19 and TB, we found
an increased expression level of AST but normal ALT levels in most
participants. The D-dimer levels, which are essential for evaluating
coagulation abnormalities in clinical settings, were measured
among the study participants. In this study, over 53% (18) of TB-
positive and 57% (12) TB-COVID-19 co-infected participants
demonstrated elevated D-dimer levels (> 0.5 mg/dL) compared to
just 25% (6) of control participants. Notably, a small subset of
COVID-19 patients also exhibited abnormal D-dimer levels,

A. Biochemical parameters

10.3389/fimmu.2025.1533213

highlighting the test’s significance in this context. Serum
creatinine levels were significantly higher in TB positive patients
than those with COVID-19 (p<0.001) and TB-COVID-19
association (p<0.05) (Figure 2A). Elevated creatinine levels
exceeding 1.4 mg/dL were noted in some of the patients: 16% (5)
of those with COVID-19, 14% (6) with TB, and 19% (4) of those co-
infected with TB and COVID-19 (Table 2). Plasma levels of total
bilirubin were significantly higher in COVID-19 mono-infection
compared to control (P<0.05), whilst no significant difference was
observed between the COVID-19, TB and TB-COVID-19
association groups. Total serum bilirubin levels were abnormal (>
1.2 mg/dL) in three subgroups: 32% (10) COVID-19-positive
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FIGURE 2

Increased serum levels of AST, UREA, D-dimer and plasma levels of IL-4, IL-10, TNF-a, IFN-y showed association with Tuberculosis and COVID-19
co-infection. Each individual's data point is shown, with median values indicated by horizontal lines, the other lines above and below the median
represent the interquartile range (IQR) and the minimum and maximum values as appropriate. (A) Biochemical parameters such as AST, ALT, D-
dimer, Total-bilirubin, Direct-bilirubin, Urea and Crea were measured using spectrophotometry-based assays. (B) Plasma levels of anti-inflammatory
cytokines are associated with TB/COVID-19association. Sandwich ELISA using Origene kits was employed to measure the systemic levels of anti-
inflammatory cytokines (IL-10 and IL-4) and pro-inflammatory (TNF-a, IFN-y, IL-6, IL-2 and IL-B) in plasma samples of the study population.
Unpaired t-test was carried out between various combinations to determine statistically significant differences. AST, Aspartate aminotransferase; ALT,
Alanine aminotransferase; CREA, Creatinine; TNF, Tumour necrosis factor; IFN, Interferon; IL, interleukin; TB, tuberculosis; COV, COVID-19; TBCOV,

Tuberculosis and Covid-19 association. *p <0.05, **p <0.01, ***p <0.001.
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participants, 23% (10) of TB-positive participants, and 43% (9) of
the TB-COVID-19 co-infected group (Table 2). Furthermore, direct
bilirubin levels were elevated (>0.5 mg/dL) in 32% (14) of TB-
positive participants and 24% (5) of TB-COVID-19 patients, in
contrast to none of COVID-19 patients and 21% (5) of controls
(Table 2). These results indicate liver and kidney function damage
in TB-COVID-19 co-infected patients.

Higher plasma IL10, IFN-y and TNF-a levels
are associated with Mycobacterium
tuberculosis and SARS-CoV-2
co-infections

Given the fact that disease severity can be determined by both
tissue or organ damage and an exacerbated immune response, this
study evaluated immune response involved during TB and/or
COVID-19. To monitor the inflammation score, plasma IFN-y,
TNF-q, IL-6, IL-10, IL-4, IL-2 and IL-1P levels were observed
between study groups. Plasma levels of two pro-inflammatory
cytokines (TNF-oo and IFN-y) were found to be significantly
higher in the TB-COVID-19 co-infected group when compared
to the mono-infected groups; COVID-19 (p<0.05 and p<0.001) and
TB (p<0.001 and p<0.001) positive groups respectively. In the
COVID-19 group, plasma IL-2 levels were significantly higher
than TB-COVID-19 (p<0.05) co-infected participants. Plasma IL-
1P levels did not vary across the COVID-19, TB and TB-COVID-19
groups but were significantly lower in control participants
(p<0.001) compared to TB-COVID-19 co-infected participants.
TB-positive participants expressed significantly higher plasma IL-
6 levels compared to TB-COVID-19 (p<0.001) and COVID-19
(p<0.001) positive participants. Among the two anti-inflammatory
cytokines that were measured in this study, plasma IL-10 levels were

10.3389/fimmu.2025.1533213

significantly higher in TB-COVID-19 co-infected patients
compared to the TB (p<0.0001) and COVID-19 (p<0.01) mono-
infected patients. Plasma IL-4 levels expressed by COVID-19, TB
and TB-COVID-19 patients did not vary significantly (Figure 2B).
The above results indicate an imbalance in immune response
during Mtb and SRAS-CoV-2 co-infection.

Wild-type, heterozygous, and double-
mutant genotypes in 07 SNPs (rs2285666,
rs6632677, rs4646116, rs4646140,
rs147311723, rs2074192 and rs4646142) in
the ace2 gene showed significant
variations in distribution across the

study groups

To identify the common mutations in ace2 and tmprss2 genes
present within a cohort of the Cameroonian population, we
identified frequent SNPs of these genes which have been reported
to be associated to COVID-19 susceptibility and/or severity. The
mutations in allelic expression of 10 SNPs positions in ace2
(rs2285666, rs4240157, rs4646142, rs4646116, rs6632677,
rs4646140, rs147311723, rs2074192, rs35803318, rs4646179) and
03 in tmprss2 genes (rs12329760, rs75603675, rs61735791) were
profiled in every study participant (Figures 3A, B). The principal
findings of our study, detailed in Supplementary Table 1, revealed a
significant statistical association among the four groups concerning
genotypes for seven SNPs, including rs6632677 (p<0.05), rs4646116
(p<0.05), 54646142 (p< 0.05), rs2074192 (p< 0.05), rs147311723
(p< 0.05), rs4646140 (p< 0.05), and rs2285666 (p=0.004). The
double mutant alleles of the ace2 gene, specifically rs4646140
(GG) and rs6632677 (GG), were more prevalent in the TB-
COVID-19 than in COVID-19 group (Figure 3).

TABLE 2 Comparison of liver, kidney, and coagulation test ranges across study groups: Control, COVID-19, TB, and TB-COVID-19.

Control (n=24)

Biochemical Normal Within Above Within
parameters range normal normal normal
range range range
n (%) n (%) n (%)
ALT 7-50 IU/L 24 (100) 0 (0) 23 (74)
AST 540 ITU/L 23 (96) 1(4) 23 (74)
Urea 5-20 mg/dL | 10 (42) 14 (58) 8 (26)
Creatinine 0.7-1.3 23 (96) 1(4) 26 (84)
mg/dL
Direct Bilirubin <0.5 mg/dL | 19 (79) 5(21) 31 (100)
Total bilirubin <1 mg/dL 23 (96) 1(4) 21 (68)
D-dimer 0.2-0.5 20 (83) 4(17) 30 (97)
mg/dL

COVID-19 (n=31)

TB (n=43) TB-COVID-19 (n=21)
Above Within Above Within Above
normal normal normal normal normal
range range range range range
n (%) n (%) n (%) n (%) n (%)
8 (26) 43 (100) 0 (0) 19 (90) 2 (10)
8 (26) 35 (81) 8 (19) 11 (52) 10 (48)
23 (74) 12 (28) 31 (72) 1(5) 20 (95)
5 (16) 37 (86) 6 (14) 17 (80) 4 (20)
0 (0) 29 (67) 14 (33) 16 (76) 5 (24)
10 (32) 33.(77) 10 (23) 12 (57) 9 (43)
1(3) 20 (47) 23 (53) 9 (43) 12 (57)

This table displays the biochemical parameters for liver function, kidney function, and coagulation profiles for each participant, categorized into Control, COVID-19, TB, and TB-COVID-19

groups. The values are compared against established reference ranges from the literature, highlighting deviations and potential abnormalities associated with each condition.
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Association between the seven (rs2285666,
rs6632677, rs4646116, rs4646140,
rs147311723, rs2074192 and rs4646142)
ace2 gene SNPs, which exhibited variations
across the study groups, and cytokine
expression levels in TB-COVID-

19 individuals

This study evaluated whether the wild-type, heterozygous, and
double-mutant genotypes in these SNPs in ace2 gene impact
variations in the expression levels of some pro-inflammatory (IL-
6, IL-2, TNF-o and IFN-7) and anti-inflammatory (IL-10) cytokines
in individuals with both TB and COVID-19. Only statistically
significant association were reported in Figure 4. Our most
significant findings include the association of double mutant
alleles of rs4646140 and rs2074192 in the ace2 gene with
decreased IL-6 and IL-2 expression levels respectively in TB-
COVID-19 participants. Additionally, the double mutant alleles of
rs4646116 were linked to elevated IL-2 levels (Figure 4).

Discussion

Given the fact that TB and COVID-19 share similar signs and
symptoms, misdiagnosis of disease due to clinical parameters alone
is likely to be prevalent. All participants from the diseased group in
this study had a high frequency of cough, fever, headache and
fatigue, consistent with earlier reports (20-22). It has been
documented that kidney and liver function could be altered
during COVID-19 and TB infections through increased AST,
ALT, urea, creatinine and bilirubin levels. In this study, increased
serum AST, urea and D-dimer levels were associated with Mtb and
SARS-CoV-2 co-infection. Significantly higher serum AST levels
observed in the TB-COVID-19 patients in this study corroborated
earlier reports (23-25). Higher AST levels in disease groups could
be associated with worse outcomes (18). Higher serum urea levels in
TB-COVID-19 co-infected patients in this study corroborated a
previous report (26). Increased D-dimer levels in patients with
concurrent TB and COVID-19 in this study may indicate elevated
thrombotic risks. This is consistent with findings reported in
Pakistani populations (27). The elevation of D-dimer, a fibrin
degradation product, often correlates with inflammation and
coagulopathy, critical considerations in managing patients with
these comorbidities (28). An increase in expression levels of D-
dimer reported in this study among TB-COVID-19 co-infected
patients is generated and reported in severe inflammatory responses
involving other diseases. Monitoring D-dimer levels could be
essential for assessing thrombotic risk and guiding treatment
strategies. As observed in various studies, elevated serum ALT
levels in COVID-19 patients can suggest underlying liver
dysfunction (23, 28, 29). COVID-19 has been associated with
hepatic impairment, and increased ALT is often a marker of liver
injury. Zhang et al. noted similar findings, highlighting the
importance of monitoring liver function in COVID-19
patients (30).

Frontiers in Immunology

10.3389/fimmu.2025.1533213

One significant finding reported in this study was an imbalance
immune response in TB-COVID-19 co-infected patients
demonstrated by high levels of IFN- vy, TNF-o. and IL-10. IFN-y's
role is partially reflected by the fact that it increases the production
of proinflammatory cytokines via activation of the JAK-STAT
pathway, leading to clinical manifestations of disease (31).
Elevated IFN-y levels in TB-COVID-19 may contribute to the
abnormal systemic inflammatory responses that increase disease
severity. While IFN-y production shows subject-specific variations,
reduced levels were reported in active TB patients (30, 32). Also,
TNF-0,, which is a key cytokine involved in inflammatory responses
in TB and COVID-19, demonstrated higher levels in TB-COVID-
19 positive patients. A recent study in mice models found that
combining TNF-o. and IFN-y induced a cytokine-mediated
inflammatory cell death signaling pathway via JAK-STAT1 (19).
Increased TNF-ou production could facilitate viral infection and
exacerbate organ damage. Some studies suggest that blocking TNF-
o with inhibitors can strongly modulate the balance between
effector T cells and regulatory T cells, potentially enhancing
immune regulation. In addition, inhibiting TNF-o. has been
shown to reduce levels of IL-6, IL-1, adhesion molecules, and
vascular endothelial growth factor (VEGF) in rheumatoid arthritis
(RA) patients, as reported in various clinical cohort studies on
COVID-19 (31).Recent research has demonstrated that the synergy
between TNF-o and IFN-y is crucial for triggering robust cell death
by activating the JAK/STAT1/IRF1 axis in human monocytic cells
(THP-1) and primary human umbilical vein endothelial cells (19).
Other pro-inflammatory cytokines such as IL-6, IL-2 and IL-1f
showed varying expression levels among the diseased participants.
Higher plasma IL-6 levels observed in TB patients discriminated
efficiently from the other study participants (33-35). IL-6 levels
associated with pro-inflammatory cytokine variants contribute to
the cytokine storm, deteriorating COVID-19 outcomes (35, 36).
The higher levels of IL-2 expressed during COVID-19 in this study
corroborate other studies (37-40). A previous report demonstrated
that IL-2 levels helped determine the prognosis of lung damage in
influenza A patients (41). IL-1B, another pro-inflammatory
cytokine, was expressed at higher levels in the TB, COVID-19
and TB-COVID-19 co-infection groups compared to the controls.
This finding aligns with previous research on TB and COVID-19
patients (42, 43). IL-10, an anti-inflammatory cytokine, was found
at significantly higher levels in TB-COVID-19 patients than other
groups. Previous studies have also reported elevated IL-10 levels in
TB-COVID-19 patients compared to those with either TB or
COVID-19 alone, regardless of severity (27, 28). Plasma IL-4
levels in TB-COVID-19 co-infected patients were significantly
higher than in the other diseased and control groups,
corroborating earlier reports (44).

Despite data regarding variations in genotype frequencies of
ace2 and tmprss2 during SARS-CoV-2 infection, limited
information is available about their implication in TB and
COVID-19 association. Our data adds considerable insight to the
literature on mutations of ace2 and tmprss2 involved in TB-
COVID-19 association pathogenesis. The present study sought to
identify genotypic variations in human ace2 and tmprss2 genes,
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Wild-type, heterozygous, and double-mutant genotypes in seven SNPs (rs2285666, rs6632677, rs4646116, rs4646140, rs147311723, rs2074192 and
rs4646142) in ace2 gene showed significant variations in distribution across the four study groups: Genomic DNA isolated using Zymo Human DNA
Isolation Kit was subjected to quantitative real-time PCR with TagMan probes. TagMan SNP Genotyping Assays were employed to identify SNPs in
ace2 and tmprss2 genes. (A) specific genotype frequencies in ace2. (B) specific genotype frequencies in tmprss2. Multigroup analysis was carried out
using the Chi-square test, and SNPs having a p-value of less than 0.05 were considered to have a significantly perturbed presence between the
groups (Control, TB, COV, and TBCOV). TB, Tuberculosis positive; COV, COVID-19 positive and TBCOV, Tuberculosis and COVID-19 association.
Asterisks represent p-values determined after multivariate analysis that was done using the Chi-square test comparing the mutation patterns in the

four groups, namely, control, TB, COVID-19, and TB-COVID-19.

associate them with immune response and correlate these with
susceptibility to Mtb and SARS-CoV-2 co-infection. Numerous
studies and reports have consistently demonstrated that the host
Ace2 receptor plays a pivotal role as the primary entry point for the
SARS-CoV-2 virus. At the same time, Tmprss2 has been identified
as a crucial enzyme responsible for facilitating the activation of the
viral spike protein, enabling its fusion with the host cell membrane
and subsequent viral entry (10, 25, 45). Specific changes in the ace2
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and tmprss2 gene sequences, which may increase the binding
affinity and/or expression levels, may affect the entry of the
SARS-CoV-2 (46). Populations with specific SNPs in the ace2 and
tmprss2 genes have shown increased susceptibility to COVID-19
and TB-COVID-19 association (47-49). Reports by Chen and
collaborators in the evaluation of the relationship between genetic
variants of the ace2 gene and circulating levels of Ace2 found several
allele frequencies of ace2 coding across different populations (South
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FIGURE 4

Reduced IL-6 and IL-2 levels linked to double mutant alleles of ACE2 gene polymorphisms rs4646140 and rs2074192 in TB-COVID-19 co-infected
patients. The wild-type, heterozygous, and double-mutant genotypes in seven SNPs (rs2285666, rs6632677, rs4646116, rs4646140, rs147311723,
rs2074192 and rs4646142) in ace2 gene were associated with expression levels of some pro-inflammatory (IL-6, IL-2, TNF-a and IFN-y) and anti-
inflammatory (IL-10) cytokines in individuals with both TB and COVID-19. Only statistically significant association are reported. The letters on the x-
axis denote specific genotypes (wild-type, heterozygous mutant and double mutant). The bars represent the median values of cytokine levels, with
error bars indicating the interquartile range (IQR). Horizontal lines and corresponding values above the bars indicate statistical comparisons, with p-

values provided to highlight significant differences between groups.

Asian, East Asian, African, European, and mixed American
populations). The allele frequencies of 11 of the 15 eQTLs
(expression quantitative trait locus) that were linked to expression
were more significant in East Asians (0.73-0.99) than in Europeans
(0.44-0.65), which is indicative of the differential susceptibility to
SARS-CoV-2 among different cultures (50). Such reports on the
structural and regulatory variants of ace2 and tmprss2 conferring
susceptibility to COVID-19 from the Cameroonian population are
limited. Reports showed that African populations are genetically
predisposed to low ace2 and tmprss2 expression, partly explaining
the lower incidence of COVID-19 (18). On the other hand, allelic
frequencies contributing to higher ace2 and tmprss2 expressions in
South Asian, Southeast Asian, and East Asian populations reported
higher infection rates (51, 52). In this study, we monitored
polymorphism patterns in ace2 and tmprss2 to find a correlation
with higher genetic susceptibility to TB-COVID-19. The high
incidence rate of COVID-19 and TB-COVID-19 co-infected
males could be potentially attributed to the presence of the ace2
gene on the X-chromosome (53). A recent report demonstrated an
inverse correlation between ace2 expression levels and estrogen
levels in SARS-CoV-2 patients (54). Estrogen may contribute to the
suppression of ace2 expression thus explaining and might partly
explain the protective factors in females against COVID-19 (55).
We observed the association of double mutant alleles of rs4646140
and rs2074192 in the ace2 gene with decreased IL-6 and IL-2
expression levels respectively in TB-COVID-19 participants. This
may confer a protective effect against severe COVID-19 or worse
outcome during these co-infections. Also, the double mutant alleles
(AA) of rs4646116 were responsible for increased expression level
of IL-2 in TB-COVID-19 patients. While IL-2 is crucial for T cell
activation and expansion, persistently high levels can lead to T cell
exhaustion, reducing their ability to effectively combat the virus
hence prolonging infection. High IL-2 levels have been associated
with severe COVID-19 cases, suggesting it could serve as a
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biomarker for disease severity (41). Monitoring IL-2 levels might
help identify patients at risk of progressing to severe illness. The
double mutant alleles (AA) of SNP rs2074192 in ace2 were common
in TB-COVID-19 co-infected patients. This implies that the AA
allele may play a role in the susceptibility or pathophysiology of co-
infection with these two diseases hence suggesting a potential
genetic predisposition that could influence how these individuals
respond to these infections. However, further research would be
needed to fully understand the biological mechanisms and
implications behind this finding.

It is essential to acknowledge the limitations of a small sample
size, and the fact that participants were not monitored over an
extended period as it can restrict the generalizability of the findings.
The lack of long-term monitoring limits the ability to observe
potential changes in biomarkers or disease progression over time.
Future research with larger, longitudinal cohorts would be valuable
to confirm and expand on the relationships between these SNPs and
other research indices. Also, the SNP distribution evaluated in this
study may be population-specific and may differ among different
populations. The survey of polymorphisms from diverse genetic
backgrounds might explain the vulnerability to diseases. This study
has a limited scope of cytokine profiling due to the restricted
number of cytokines analyzed. While several key cytokines were
investigated, the study did not include a comprehensive panel of
cytokines that could offer a more complete picture of the immune
response. Furthermore, the cytokine levels measured were specific
to certain time points, and longitudinal investigation could have
provided more insights into cytokine dynamics during disease
progression or treatment.

In summary, this study indicates that the double mutant alleles
of rs2074192 and rs4646140 in the ace2 gene reduced IL-2 and IL-6
production in TB-COVID-19 individuals which could potentially
lead to milder disease outcomes in these individuals. Whilst the
double mutant alleles of rs4646116 increased inflammatory

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1533213
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kameni et al.

response through increase IL-2 production which may lead to
deleterious outcomes in TB-COVID-19 individuals with time.
These findings highlight the need for a human genetics initiative
to understand better the genetic factors influencing susceptibility
and/or severity during TB-COVID-19 association. This could
inform prevention and treatment strategies during the
future pandemic.
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Introduction: The chronic nature of latent tuberculosis infection (LTBI) allows it
to coexist with diverse pathologies. However, it remains unclear whether
immune alterations associated with LTBI influence COVID-19 coinfection and
patient outcomes. This study aims to compare the immune phenotype of
patients with LTBI/COVID-19 to those with COVID-19 alone, in order to assess
whether latent tuberculosis infection induces significant immune cell alterations.

Methods: Peripheral blood mononuclear cells were cultured and stimulated with
the SARS-CoV-2 Spike protein and Mycobacterium bovis Bacillus Calmette-
Guérin (M. bovis BCG) to evaluate cellular distribution and function.

Results: the LTBI/COVID-19 group exhibited a narrower range of symptoms and
required less complex treatment regimens than the COVID-19 group. The
cellular evaluation revealed that individuals with COVID-19 displayed a distinct
immune profile, characterized by a predominance of monocytes expressing pro-
inflammatory and regulatory markers, including TNFR2, HLA-DR+TNFR2, and
CD71. While CD4+ T cell subpopulation distribution and function were similar
across groups, LTBI/COVID-19 and COVID-19 exhibited similar frequencies of
CD8+perforin+ and CD8+Granzime B+ T cells. However, LTBI/COVID-19
displays lower soluble levels of granzyme B and perforin in culture
supernatants and perforin, granulysin, and sFas in plasma compared to COVID-
19. Notably, CD8+ T cells from LTBI/COVID-19 showed higher antigen-specific
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degranulation than COVID-19. Moreover, LTBI/COVID-19 individuals
predominantly displayed CD4+ and CD8+ T cells with highly polarized,
compact mitochondria at baseline, which remained unchanged under
stimulation. In contrast, COVID-19 had T cells with highly polarized,
fragmented mitochondria at baseline, a profile that persisted under stimulation.

Conclusion: The findings reveal significant alterations in monocytes and T cells
of individuals with LTBI/COVID-19, suggesting that co-infection may induce
changes in the cellular phenotype and cytotoxic function of CD8 T cells.

latent tuberculosis, COVID-19, coinfection, T lymphocytes, mitochondrial changes

1 Introduction

The World Health Organization (WHO) reported that
tuberculosis (TB) caused 1.25 million deaths worldwide in 2023
and noted 10.8 million active TB cases (1). Those with active TB
typically have a cough lasting three weeks or more, and they can
spread the infection (2). Most people exposed to the bacteria
Mpycobacterium tuberculosis (Mtb) have an immune response that
controls but does not eliminate it, leading to latent TB infection
(LTBI). Individuals with LTBI show no symptoms and cannot
spread the disease; although not a source of infection, they are
considered a reservoir for future active TB cases. At least one-fourth
of the world’s population has LTBI, making it a significant global
health issue (3).

An individual with LTBI can remain in this state throughout his or
her life without developing TB. Although it may coexist with various
comorbidities and infections, these are at high risk for developing
pulmonary TB (4, 5). It has been reported that CD4+ T cell depletion
associated with severe COVID-19 and corticosteroid-based treatments
could induce the activation of pulmonary TB in individuals with LTBI
(6, 7). However, there is very little data on the immunological
consequences of LTBI in co-infection with COVID-19 (8).

The SARS-CoV-2 infection, the causative agent of COVID-19,
induces a wide clinical spectrum ranging from asymptomatic to
severe disease (9). Patients who develop respiratory complications
and severe disease exhibit significant immune dysregulation,
including cytokine release syndrome, exhausted NK and CD8+ T
cells, mitochondrial metabolic alterations in T cells, and decreased
secretion of type I interferons (9, 10). Collectively, these
abnormalities often result in fatal outcomes.

The introduction of SARS-CoV-2 vaccines significantly reduced
the number of individuals with severe disease and associated
mortality rates (11). Experimental studies have demonstrated that
SARS-CoV-2 vaccines, including AZD1222/Covishield and BV152/
Covaxin, elicit a memory response in CD4+ and CD8+ T cells that
persists over time, providing long-term protection through T cell-
induced immune pathways (11-13). A murine model has proposed

Frontiers in Immunology

that prior exposure to M. tuberculosis (Mtb) may confer protection
against SARS-CoV-2; similarly, it has been suggested that vaccination
with Bacillus Calmette-Guérin (BCG) might provide comparable
protection (14-16). However, the results of these studies remain
controversial and vary depending on the population and the type of
vaccine administered during early childhood (17).

Data indicate that aging patients with LTBI/COVID-19
coinfection exhibit modulation of their immune response, which
has been associated with the presence of Mtb infection (18, 19).
Conversely, another study found that patients infected with Mtb
(whether LTBI or active TB) have a limited SARS-CoV-2-specific
response, notably reduced IFN-y release, suggesting a potential
detriment to an adequate immune response during LTBI/
COVID-19 coinfection (20).

Additionally, studies have examined the impact of SARS-CoV-2
vaccination on individuals with active TB who have received SARS-
CoV-2 vaccination. These cells were exposed to SARS-CoV-2
antigens, and notable immunological alterations were identified,
including a reduction in CD8+CD69+ and CD8+TNF+ T cells and
an increase in CD4+IL-10+ T cells, suggesting that Mtb infection
promotes an anti-inflammatory profile (21).

Despite efforts to elucidate the impact of LTBI during acute
COVID-19, several questions about Mtb and SARS-CoV-2
coinfection remain unanswered. This study analyzes the
immunologic phenotype during mild COVID-19 in a group of
individuals who have received a mixture of SARS-CoV-2 vaccines,
were previously vaccinated with BCG in early childhood, and have
been identified as having latent tuberculosis infection (LTBI) to
assess its influence on patient outcomes.

2 Materials and methods

2.1 Ethics statement

This study was approved by the Institutional Ethics Committee
of the Instituto Nacional de Enfermedades Respiratorias Ismael
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Cosio Villegas (INER, protocol number B23-23). All participants
signed a written informed consent. All procedures in this work
followed the ethical standards indicated in the Helsinki Declaration.

2.2 Study populations

From October 2023 to May 2024, healthcare workers from the
Instituto Nacional de Enfermedades Respiratorias Ismael Cosio
Villegas (INER) were invited to participate in a study. The
medical staff evaluated all participants in the Occupational and
Preventive Health Department for clinical evaluation. 110
healthcare workers (over 18 years) were recruited.

All individuals have received the SARS-CoV-2 vaccination, and
94% received the BCG vaccination in early childhood. Eight subjects
were excluded from the study due to their decision to discontinue
participation or insufficient sample size. Furthermore, subjects who
had been diagnosed with Human Immunodeficiency Virus (HIV)
infection, active TB, cancer, chronic obstructive pulmonary disease,
solid organ transplant recipients, or those who had been prescribed
immunosuppressive or anticoagulant therapy were excluded from
the study.

A reverse transcriptase polymerase chain reaction for SARS-
CoV-2 (qRT-PCR, BioFire Diagnostics, LLC, USA) and

t 2
¢ L
r . \ f
T |
Healtcare workers

(clinical evaluation)
n=110

Excluded n=8

gRT-PCR for SARS-CoV-2

10.3389/fimmu.2025.1566449

QuantiFERON-Gold plus (QFT, Qiagen, HD, Germany) to
identify Mtb infection were performed in all participants. They
were classified into four groups: healthy donors (HD, n=20), latent
TB infection (LTBI, n=15), mild COVID-19 (COVID-19, n=52),
and coinfection LTBI/mild COVID-19 (LTBI/COVID-19, n=15)
(details in Figure 1). This study only included mild COVID-19
patients, and according to the WHO definition and the institutional
clinical staff, mild COVID-19 is considered when patients have no
viral pneumonia and hypoxemia and present an oxygen saturation
>92%; consequently, no patient required hospitalization or
supplemental oxygen. Additionally, showed at least 2 of the
following symptoms: cough, fever, or headache, accompanied by
at least 1 of the following signs or symptoms: difficulty breathing,
anosmia, joint or muscle pain, throat pain, and nasal congestion
(22, 23).

2.3 Peripheral blood mononuclear cells

20 ml of EDTA blood samples were collected from healthcare
workers into BD Vacutainer tubes (BD Biosciences, CA, USA).
Then, peripheral blood mononuclear cells (PBMC) were isolated by
a density gradient (LymphoprepTM, Accurate Chemical-Scientific,
NY, USA). The trypan blue (GibcoTM, NY, USA) exclusion assay

Vaccines: Primary vaccination schedule:
BCG (94%) Pfizer-AstraZeneca (55%)
Influenza (93%) Pfizer-AstraZeneca-Sputnik (10%)
SARS-CoV-2*(100%) AstraZeneca-Sputnik (8%)

— QFT for Mtb infection

Healthy Donor (HD) Latent TB infection (LTBI) COVID-19 LTBI/COVID-19
n=20 n=15 n=52 n=15
gRT-PCR (-) gRT-PCR (-) gRT-PCR (+) qRT-PCR (+)
\ QFT (-) QFT (+) QFT (-) QFT (+) )
Vv

1. PBMC were culture 24 hours with BCG, SARS-CoV-2 protein Spike, and both stimuli
¢ Frecuency of Monocytes and T cell subpopulations (n=6; FC)
* Morphofunctional evaluation of mitochondria (n=6; FC)

2. PBMC were culture 4 hour with antigen-specific and polyclonal stimuli
« T cells degranulation (n=4; FC)

3. Soluble proteins evaluation in plasma and cell culture supernatant
* Cytokines and cytotoxic molecules levels (n=15; LEGENDplex™ assay)

FIGURE 1

Workflow of recruited individuals. 110 healthcare workers (over 18 years) were recruited. All have received SARS-CoV-2 vaccination. Eight subjects
were excluded from the study due to their decision to discontinue participation or insufficient sample size, and 102 were classified according to the
reverse transcriptase polymerase chain reaction (QRT-PCR) and QuantiFERON-Gold plus (QFT) tests, to identify the SARS-CoV-2 or Mycobacterium
tuberculosis (Mtb) infection, respectively. The study population was divided into four groups: healthy individuals (HD, n=20), individuals with latent
TB infection (LTBI, n=15), individuals with confirmed mild SARS-CoV-2 infection (COVID-19, n=52), and individuals with latent TB infection and
confirmed mild SARS-CoV-2 infection (LTBI/COVID-19, n=15). The cells of these individuals were evaluated to measure monocyte and T cell
subpopulations’ parameters (n=6 per group), determine the degranulation capacity of CD8+ and CD4+ T cells (h=4 per group), and assess cytokines
in plasma (n=15 per group) and culture supernatant (n=6 per group) under specific stimuli. FC, Flow Cytometry; PBMC, peripheral blood

mononuclear cells. Created in https://BioRender.com.
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was used to determine the number of viable cells, and a minimum of
90% viability was required to process the use of the cells. Plasma was
obtained and stored at —70 °C until use. To note, cells used for the in
vitro studies were selected from those patients that did not present
comorbidities to avoid variables.

2.4 Culture of BCG and in vitro infection
assay

A suspension of BCG Pasteur strain 1172 P2 was prepared in
the Middlebrook 7H9 broth medium BD (Becton Dickinson, USA)
supplemented with oleic albumin dextrose catalase (OADC) (24).
After a 21-day incubation period at 37°C, the mycobacterial stock
solution was harvested. Aliquots of disaggregated mycobacterial
stock cultures were prepared and stored at —70°C until required for
in vitro infections. The mean concentration of the frozen BCG stock
suspensions after disruption of mycobacterial clumps was
determined by counting colony-forming units (CFU) on 7H10
agar plates in triplicate serial dilutions of the disaggregated
stock suspensions.

For infection assay, a suspension of bacteria was prepared;
briefly, an aliquot of bacteria was thawed and centrifuged at 6000
x g for 5 min. The bacterial pellet was resuspended in RPMI 1640
medium supplemented with 2 mM L-glutamine,1M HEPES
(GibcoTM, NY, USA), and 10% fetal bovine serum (GibcoTM) and
shaken in the presence of sterile 3 mm glass beads. The resulting
mycobacterial suspension was centrifuged to remove residual large
lumps, and single-cell suspensions of bacteria were used for the
infection of PBMC. Then, PBMC (1x10°/mL) were infected with
BCG Pasteur strain at a multiplicity of infection (MOI) of 1 (1 cell
per 1 bacteria). The infected PBMC were incubated at 37°C for 4
hours, and no phagocytosed bacteria were eliminated by washing.
Then, cells were stimulated, as described below.

2.5 PBMC stimulation

1x10° of PBMC/mL of HD (n=6), LTBI (n=6), COVID-19
(n=6), and LTBI/COVID-19 (n=6) were plated in RPMI-1640
medium supplemented with 2 mM L-glutamine, 1M HEPES
(GibcoTM), and 10% fetal bovine serum (GibcoTM).

Three different stimuli conditions were performed: a) PBMC
infected with BCG Pasteur strain (MOI 1), b) PBMC stimulated
with the recombinant SARS-CoV-2 Spike (S1+S2) protein, here
after called as only spike (Biolegend, CA, USA) at 1 pg/mL
concentration and, ¢) PBMC were infected with BCG (MOI 1)
plus the spike (1 pg/mL). The culture was maintained for 24 hours
(h) at 37°C in a 5% CO, humidified atmosphere. After the
incubation, the supernatants were recovered and frozen at -20°C.
The recovered cells were prepared for flow cytometry staining.
Unstimulated PBMC (mock control) were cultured in the same
conditions. Supernatant cultures were recovered and stored at
-20°C until use.
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2.6 Flow cytometry: staining and analysis
strategy

1x10° PBMC of HD (n=6), LTBI (n=6), COVID-19 (n=6), and
LTBI/COVID-19 (n=6) were recovered at the end of the culture,
and extracellularly stained with monoclonal antibodies (mAb)
against CD2, CD3, CD14, CD16, HLA-DR, CD120a, CD120b,
CD71, CD274, CD8, CD4, CD69, CD98, CD279, TIM3
(Biolegend, CA, USA), for 30 min at 4°C in the dark, washed
with cell staining buffer (BioLegend) and fixed.

For intracellular staining, a mAb cocktail against T-bet, GATA-
3, perforin, and granzyme B was used. Briefly, after extracellular
staining, cells were washed with cell staining buffer and
permeabilized with BD Cytoﬁx/CytopermTM buffer (BD
Biosciences) for 20 min at 4°C. Following, it was incubated with
the intracellular mAb cocktail for 30 min at 4°C in the dark. Finally,
the cells were washed and acquired.

For mitochondria evaluation, briefly, PBMC were stained for 15
min 37°C with mitotracker green FM (500 nM) and mitotracker
Deep Red (250 nM) probes. Following, cells were washed, and an
extracellular stain was done. MDIVI1 (Sigma-Aldrich, USA), a
mitochondrial fusion inductor, allowed us to distinguish
compacted from fractionated mitochondria, and FCCP (Sigma-
Aldrich), an uncoupler of oxidative phosphorylation, allows us to
obtain a polarized/depolarized mitochondrial mass control, were
used as controls.

Data were acquired using a LSRFortessa' "~ BD flow cytometry
with FACSDiva 6.1.3 software (BD Biosciences). Fluorescence
Minus One (FMO) condition was stained and acquired in parallel
to identify background levels of staining, and dead cells were
excluded using the viability staining Zombie Red Dye solution
(BioLegend). In each condition, at least 50,000 events per sample
were acquired. The flow cytometry (FCS) data file was analyzed
using Flow Jo (Flow Jo) ™y10.10.1 (Flow Jo, LLC, OR, USA). More
details of the antibodies used can be found in Supplementary
Table S1.

The analysis strategy involves selecting live cells employing the
viability plot (Zombie Red negative). Subsequently, the limitation of
the single T cells through forward scatter (FSC-A vs. FSC-H) was
performed. Subsequent PBMC were chosen through side scatter
and forward scatter (FSC-A versus SSC-A), and a second singlets
events plot was made (SSC-A versus SSC-H) (Supplementary
Figure S1A).

Subsequently, PBMC was selected, and further analysis was
conducted on CD2- or CD2+ cells, monocytes (CD2-CD14+), and
T cells (CD2+CD3+), along with their CD4+ or CD8+
subpopulations. For monocytes, activation markers such as HLA-
DR and CD71, as well as death or survival receptors TNFR1 and
TNFR2, respectively, were evaluated. Moreover, classical monocytes
(CD14+CD16-) and non-classical monocytes (CD14+CD16+) were
assessed. In the T cell gate, activation (CD69) and exhausted-like
phenotype (PD-1, and TIM-3) markers were assessed. In addition,
into the T cells CD4+ gate, GATA-3 and T-BET were evaluated to
define the Thl or Th2 profile, while at the CD8+ gate, granzyme
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and perforin were analyzed to assess the presence of cytotoxic
molecules (Supplementary Figure S1A).

The CD4+ and CD8+ gates were evaluated, utilizing MDVT1
and FCCP controls to delimit the cutoffs for mitochondrial
fragmentation and polarization. Employing Mitotracker Green
FM (a mitochondrial mass indicator) and Mitotracker Deep Red
(a mitochondrial membrane potential-dependent indicator), cells
were divided according to the presence of fractionated or
compacted mitochondria and high or low polarized
(Supplementary Figure S1B).

2.7 CD8+ T cell degranulation

For the polyclonal stimuli, 1x10° PBMC/mL of HD (n=4), LTBI
(n=4), COVID-19 (n=4), and LTBI/COVID-19 (n=4) were plated
in RPMI-1640 medium supplemented and maintained at 37°C. A
mADb anti-CD107a (Biolegend) (5 pL/mL) was added, and after 30
minutes, a mixture of phorbol-12-myristate-13-acetate with
ionomycin (PMA/IO, Thermo Fisher Scientific, CA, USA) at 1X
of was added. The cultures were incubated for 4 h, but 2 h before the
end of the culture, monensin (0.002 mM, Biolegend) was added to
the cell culture. Kinetics of CD8+ T cell degranulation was
performed, including four time points: basal, 1, 2, and 4 h.

For antigen-specific stimuli, 1x10° PBMC/mL of HD (n=4),
LTBI (n=4), COVID-19 (n=4), and LTBI/COVID-19 (n=4) were
plated in RPMI-1640 supplemented. Briefly, after 30 min of culture
assay, anti-CD107a was added and stimulated with the spike and
BCG for 4 h at 37°C. Two hours before the end of the culture assay,
monensin was added. After polyclonal or antigen-specific stimuli,
extracellular staining was done to identify CD3, CD4, and CD8.

Data were acquired using a FACSCanto ™ flow cytometer
with FACSDiva 6.1.3 software (BD Biosciences). In each condition,
at least 50,000 events per sample were acquired. The flow cytometry
(FCS) data file was analyzed using Flow Jo (Flow Jo) ™ $10.10.1
(Flow Jo, LLC, OR, USA).

2.8 Soluble molecules evaluation

Following instructions provided by the manufacturer
(BioLegend), IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-y, TNF-q,
soluble Fas, soluble FasL, Granzyme A, Granzyme B, Perforin,
and Granulysin were measured in plasma samples and
supernatants from culture assays using the LEGENDplex human
CD8/NK panel (kit’ details in Supplementary Table S1). Data were
collected using a FACSAccuri C6™ with CFlow software
(BD Biosciences).

2.9 Statistical analysis
The D’Agostino-Pearson test was used to test the normality of

data. Non-normally distributed variables are shown as median value
and interquartile range (IQR, 25-75). Kruskal-Wallis test with
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Dunnett’s post-test was used for multiple comparisons. In relation
to the clinical laboratory data, they presented a normal distribution,
so they were analyzed by means of the One-Way Anova test, the data
were expressed as the mean and the respective maximum and
minimum values. p<0.05 were considered statistically significant
(GraphPad Software, V9.0.2). Details on size sample are provided
in the Supplementary Material.

The Heat map was created in the interface of Morpheus, in which a
matrix of values is mapped to a matrix of colors. The values are
assigned to colors using the minimum and maximum of each row
independently. Versatile matrix visualization and analysis software
(Morpheus, https://software broadinstitute.org/morpheus).

3 Results

3.1 Demographic and clinical
characteristics

Demographic characteristics were compared between groups
(Supplementary Table S2). In summary, the cohort consisted of
young adults, predominantly female, who had received at least two
doses of the SARS-CoV-2 vaccine. Most patients received a
combination of vaccines, with the following combinations standing
out: Pfizer-AstraZeneca (55%), Pfizer- AstraZeneca-Sputnik (10%), and
AstraZeneca-Sputnik (8%). Approximately 70% received their last dose
in December 2022, 20% in February 2022, and 10% received their last
vaccine in November 2021. All subjects received the last doses of the
vaccine in similar data before being enrolled.

Overweight and obese were the most common comorbidities in the
COVID-19 and LTBI/COVID-19 groups, respectively. 49% reported
contact with TB patients (because of the nature of their work). With
respect to SARS-CoV-2 exposure, the majority of individuals had been
ill and diagnosed at least once with COVID-19, although in the HD
and LTBI groups, it was not possible to know the time of their last
SARS-CoV-2 infection (Supplementary Table S2).

No significant differences between the groups regarding
hematological and biochemical parameters (Supplementary Table
S3). In contrast, LTBI/COVID-19 exhibited a narrower range of
symptoms compared to COVID-19; symptoms such as asthenia,
adynamia, abdominal pain, fatigue, dyspnea, ageusia, and anosmia
were not reported (Supplementary Figure S2, upper panel). As a
result, treatment schedules differed between the groups: 73% of
LTBI/COVID-19 cases were managed adequately with paracetamol,
levodropropizine, and fexofenadine, whereas the COVID-19 group
required more complex treatment regimens (Supplementary Figure
S2, lower panel).

3.2 Circulating TNFR1+ monocytes are
predominant in LTBI/COVID-19, whereas
COVID-19 has TNFR2+ monocytes

Within the monocyte gate (CD2-CD14+), the expression of
HLA-DR was evaluated, and no significant differences were
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observed (Figure 2A, up). However, compared to HD, the frequency
of monocytes expressing the transferrin receptor (CD71), an
indirect activation marker, was increased in COVID-19
individuals without stimulation (p<0.05), in response to spike
(p<0.01) and to BCG (p<0.05). Meanwhile, LTBI/COVID-19
showed an increase in the frequency of CD71+ monocytes in
response to spike and BCG+spike (Figure 2A, up).

Subsequently, the frequency of classical (CD14+) and non-
classical (CD14+CD16+) monocytes was evaluated. It is observed
that COVID-19 shows a decreased frequency of classical monocytes
compared to LTBI/COVID-19 (p<0.05), and it is maintained even
with Spike and BCG stimulus (Figure 2A, mild). In contrast,
COVID-19 has increased the frequency of non-classical
monocytes compared to LTBI/COVID-19 (p<0.05), and it was
observed without stimuli or with spike (Figure 2A, mild).

The expression of TNFRs was evaluated due to their involvement
in COVID-19 severity (25, 26). Compared to HD and COVID-19,
LTBI/COVID-19 had an increased frequency of TNFR1+ monocytes
without stimulation (p<0.05), and this increase was sustained upon
stimulation with spike (p<0.05) and BCG/spike (p<0.05). Conversely,
compared to HD and LTBI/COVID-19, COVID-19 exhibited an
increased frequency of TNFR2+ monocytes without stimulation
(p<0.05), which persisted after stimulation with a spike (p<0.05),
BCG (p<0.05), and BCG/spike (p<0.05) (Figure 2A, down).

Given that TNFR1 and TNFR2 mediate opposing functions, we
investigated their expression specifically on antigen-presenting
monocytes (HLA-DR+). We found that the frequency of HLA-DR
+TNFR1+ monocytes was not significantly altered. However, at
baseline, the frequency of HLA-DR+TNFR2+ monocytes was elevated
in COVID-19 compared to HD, LTBI, and LTBI/COVID-19 (p<0.05).
This increase persisted under stimulation in COVID-19 individuals
compared to LTBI and LTBI/COVID-19 (p<0.05) (Figure 2B).

3.3 Activation and Th1/Th2 profile of CD4+
T cell is not modified during LTBI/COVID-
19 coinfection

Data showed that the frequency of CD4+ and CD8+ T cells and
the CD4/CD8 ratio were not different between groups
(Supplementary Figure S3). Activation of T cells did not show
important differences, only to note that HD increased the frequency
of CD4+CD69+ T cells after BCG stimulation, whereas the
frequency of CD8+CD69+ T cells was lower in HD at baseline
compared to other groups (Supplementary Figure S4).

Next, we evaluated whether CD4+ T cell function was altered by
assessing Th1 (T-bet) and Th2 (GATA3) profiles. Despite COVID-
19 individuals having a discreet increase in the frequency of CD4
+T-bet+ T cells following spike stimulation, compared to HD, the
GATA3/T-bet ratio was not modified (Figure 3A). We measured
pro- and anti-inflammatory cytokines in the supernatant to confirm
the inflammatory profile. At baseline, compared to HD and LTBI/
COVID-19, COVID-19 had elevated levels of pro-inflammatory
cytokines IFN-y (p<0.01) and TNF (p<0.05). However, COVID-19
individuals also showed increased levels of the anti-inflammatory
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cytokine IL-10 at baseline (p<0.05) and after spike stimulation
(p<0.05) (Figure 3B); all together suggested that the Th1/Th2 profile
is not altered even under the coinfection context. Plasmatic levels of
selected pro- and anti-inflammatory cytokines did not differ
significantly between groups (Supplementary Figure S5A).

3.4 CD8+ T cells of LTBI/COVID-19 show
similar behavior to those of COVID-19, but
soluble cytotoxic molecules are decreased

Compared to HD, COVID-19 has increased the CD8+Perforin+ T
cells’ frequency at baseline (p<0.05). In response to spike stimuli, both
COVID-19 and LTBI/COVID-19 showed an increased frequency of T
CD8+Perforin+ cells (p<0.05) compared to HD. Additionally, LTBI/
COVID-19 maintained a high frequency when cells were stimulated
with BCG/spike compared to HD and LTBI (p<0.05). The frequency of
CD8+Granzyme B+ T cells did not differ significantly between groups
or stimuli. However, the frequency of T CD8+ cells double-positive for
Granzyme B and Perforin increased in both COVID-19 and LTBI/
COVID-19 compared to HD upon spike stimulation (p<0.05), and
COVID-19 maintained this high frequency with BCG/spike
stimulation (p<0.05) (Figure 4A).

Following, soluble cytotoxic molecule levels were evaluated in
the culture supernatant. Compared to COVID-19, LTBI/COVID-19
produced lower levels of perforin and granzyme B at baseline
(p<0.05), a pattern that persisted after stimulation with spike and
BCG/spike (p<0.05). Granzyme A levels did not differ between
groups (Figure 4B). Furthermore, plasmatic levels of perforin and
sFas (p<0.01), were lower in LTBI/COVID-19 compared to
COVID-19 (Figure 4C). Granulysin levels were also lower in
LTBI/COVID-19 compared to COVID-19, LTBI, and HD
(p<0.05, p<0.01) (Figure 4C). However, systemic levels of
granzyme A, granzyme B, and sFasL did not differ significantly
between groups (Supplementary Figure S5B).

3.5 CD8+ T cells from LTBI/COVID-19 have
not an exhausted-like phenotype and
exhibit high antigen-specific degranulation
capacity

Given the discrepancy between intracellular and soluble
cytotoxic molecules in LTBI/COVID-19, we assessed PD-1 and
TIM-3 expression to determine whether T CD8+ cells exhibited an
exhausted-like phenotype. The frequency of CD8+PD-1+ T cells
was higher in LTBI compared to HD in response to stimuli
(p<0.05), though no significant difference was observed between
COVID-19 and LTBI/COVID-19. Conversely, the frequency of
CD8+TIM-3+ T cells was higher in COVID-19 than in LTBI/
COVID-19 following stimulation with spike or BCG/spike (p<0.05),
although LTBI still displayed a higher frequency compared to HD
(p<0.05) (Figure 5A).

To confirm cytotoxic function, degranulation capacity was
evaluated by CD107a expression. T CD8+ cells from all groups
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The expression of the receptor on monocytes is different in the LTBI/COVID-19 vs COVID-19 group. Peripheral blood mononuclear cells stimulated
with BCG (MOI 1:1) and S protein (1ug/mL) were cultured for 24 hours, recovered, and evaluated by flow cytometry, n=6 per group. Into the gate
CD2-CD14+ (monocytes), the frequency of monocytes HLA-DR+, classical monocytes CD14+, Non-Classical monocytes CD14+CD16+, CD71+,
and TNFR1+ and TNFR2+ (A) was evaluated. Into the gate monocytes HLA-DR+, the frequency of TNFR1+ and TNFR2+ was evaluated (B). Data are
represented as medians with an interquartile range (IQR, 25-75), and each point represents individual data. The statistical comparison was performed
using Kruskal-Wallis's test, *p<0.05, **p<0.01. NS, not stimulated; HD, healthy donor; LTBI, latent tuberculosis infection; COVID-19, individual with
COVID-19; LTBI/COVID-19, individual with latent tuberculosis and COVID-19 coinfection.

Frontiers in Immunology

129

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1566449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Peria-Bates et al.

(A) CD4+T cells (CD2+CD3+CD4+)

10.3389/fimmu.2025.1566449

@ HD® LTBI® COVID-19 @ LTBI/COVID-19

10+ N 20+
)
)
° °
8- ° 8- °
[ ] ° 154 [ ] '.E
= L < Jud
S L2 S ° = o
- -~ 'Y [}
£ |e & 104 e ° ° . 2 ° °
.05 2 . el <
2 g ° Q4 ° . ®
2
] ﬁ ] o A ﬂ ﬁ
(B) Cytokines in Culture Supernatant (24 Hours)
3,000 % « 150009 * 2,500 % "
*k >x * x
- 2,000 °
— L4 =
= - - -
E 20 . g %0 E 1504 o ° °
> ° ° < o
s ° ° 2 <
= ° ° vl S 1,000
Z 1000 o £ 50001 =
500
o - 0

NS

Spike BCG BCG+Spike

NS

FIGURE 3

Spike BCG BCG+Spike

NS

BCG BCG+Spike

Thl and Th2 responses are at comparable levels, with no evident predominance of one over the other. Peripheral blood mononuclear cells stimulated
with BCG (MOI 1:1) and spike (1ug/mL) were cultured for 24 hours, recovered, and evaluated by flow cytometry, n=6 per group. Into the gate, CD2+CD3
+ (T cells), the frequency of T CD4+ nuclear markers T-bet (Thl) or GATA-3 (Th2) (A), and assessment of cytokines in culture supernatant by
LEGENDplex™ (B) were evaluated. Data are represented as medians with an interquartile range (IQR, 25-75), and each point represents individual data.
The statistical comparison was performed using Kruskal-Wallis's test, *p<0.05, **p<0.01. NS, not stimulated; HD, healthy donor; LTBI, latent tuberculosis
infection; COVID-19, individual with COVID-19; LTBI/COVID-19, individual with latent tuberculosis and COVID-19 coinfection.

showed similar degranulation capacity following polyclonal
stimulation. Degranulation began at 1 hour and peaked at 4
hours post-culture. The frequency of CD8+CD107a+ T cells was
higher in LTBI/COVID-19 than in other groups but without
statistically significant (Figure 5B, left). When evaluating antigen-
specific degranulation at 4 hours post-culture, LTBI/COVID-19
exhibited a higher frequency of T CD8+CD107a+ cells compared to
COVID-19 when stimulated with BCG (p<0.05), and higher than
LTBI when it was stimulated with spike (p<0.05) (Figure 5B, right).

Recently, it was highlighted the presence of cytotoxic CD4+ T
cells to compensate for exhausted CD8+ T cells in TB patients (27).
First, we evaluated the exhausted-like phenotype in CD4+ T cells,
and our data showed that the PD-1 expression on CD4+ T cells was
unaltered. However, the frequency of CD4+TIM-3+ T cells was
elevated in COVID-19 compared to HD at baseline (p<0.01). Under
stimulus conditions, LTBI (p<0.01), COVID-19 (p<0.001), and
LTBI/COVID-19 (p<0.01) groups exhibited higher TIM-3+
frequencies than HD (Figure 5C).

We also observed CD4+ T cells with degranulation capacity
(CD107a+) across all groups. The maximum frequency of CD4
+CD107a+ T cells at 4 hours post-culture was lower than CD8
+CD107a+ T cells (10% vs. 30%, respectively). To note, with
polyclonal stimulus, all groups showed a maximum of 10% of
CD4+CD107a+ T cells (Figure 5D, left); interestingly, under
antigen-specific stimuli, the top of degranulation was similar to
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the observed with polyclonal stimulus, suggesting that most of
cytotoxic CD4+ T cells are antigen-specific (Figure 5D, right).

3.6 The LTBI/COVID-19 coinfection
modulates the morpho-functionality of the
mitochondria of T cells

The mitochondrial morpho-functionality in T cells was evaluated.
Into de CD4+ and CD8+ T cells, the regions evaluated were high-
polarized compacted mitochondria (HCM); high-polarized
fractionated mitochondria (HFM); low-polarized compacted (PCM)
and low-polarized fractionated (PFM) (Figure 6A).

The data demonstrated that compared to COVID-19, LTBI/
COVID-19 has predominantly CD4+ T cells with high-polarized
compacted mitochondria (HCM) at baseline (p<0.0001) and a
similar profile is maintained even with stimulus (Figure 6B). On
the contrary, compared to LTBI/COVID-19, COVID-19 has
predominantly CD4+ T cells with high-polarized fractionated
mitochondria (HFM) at baseline (p<0.01) and a similar profile is
maintained even with stimulus (Figure 6B).

A similar behavior was observed in CD8+ T cells, where LTBI/
COVID-19 has predominantly HCM CD8+ T cells at baseline
(p<0.01) and maintained with stimulus, whereas COVID-19 has
predominantly HFM CD8+ T cells at baseline and maintained
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Secretion of cytotoxic molecules differ in LTBI/COVID-19 vs COVID-19 individuals. Peripheral blood mononuclear cells stimulated with BCG (MOI
1:1) and spike (lug/mL) were cultured for 24 hours, recovered, and evaluated by flow cytometry. Frequency of CD8+Perforin+, CD8+ Granzyme B+,
and CD8+ Granzyme B+Perforin+ T cells (CD2+CD3+ gate), n=6 per group (A). Levels of cytotoxic molecules in the culture supernatant evaluated
by LEGENDplex assay, n=6 per group (B). Plasma levels of cytotoxic molecules were evaluated by LEGENDplex assay, n=10 (HD) and n=15 (LTBI,

COVID-19, and LTBI/COVID-19) (C). Data are represented as medians with

an interquartile range (IQR, 25-75), and each point represents individual

data. The statistical comparison was performed using Kruskal-Wallis's test, *p<0.05, **p<0.01. NS, not stimulated. HD, healthy donor; LTBI, latent
tuberculosis infection; COVID-19, individual with COVID-19; LTBI/COVID-19, individual with latent tuberculosis and COVID-19 coinfection.

under stimulus (Figure 6C). T cells with low-polarized compacted
(PCM) mitochondria were not altered (Figures 6B, C).

3.7 LTBI/COVID-19 individuals exhibit
distinct receptor profiles and unique

immunological features compared to
COVID-19 individuals

Our results show that LTBI significantly impacts the immune
cell profile, and the set of symptoms also differs from those of
COVID-19 individuals with or without LTBI. To simplify the
molecular immune landscape between groups, a heatmap was
made representing the groups evaluated on the vertical axis and
the experimental conditions applied for each of them. On the
horizontal axis, the molecules and receptors evaluated for the
different cell groups are shown. The blue colors indicate lower
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values, the white colors indicate medium values, and the red colors
represent high values.

Figure 7A shows that the profile of monocyte subsets from
individuals with LTBI/COVID-19 is more similar to HD and
LTBI than to COVID-19. Similarly, LTBI/COVID-19 has
predominantly CD4+ and CD8+ T cells with highly polarized,
compact mitochondria like HD and LTBI, whereas T cells from
COVID-19 show highly polarized, fragmented mitochondria
(Figure 7A). Finally, LTBI/COVID-19 has lower plasmatic
levels of cytotoxic molecules compared to COVID-19
(Figure 7B), and it is similar to that observed in vitro under
stimuli (Figure 7A).

The data evaluated suggest that the profile of an individual with
LTBI/COVID-19 generates a unique immunological signature
compared to individuals with COVID-19, which could point to a
regulatory role of Mtb in this viral infection, however, further
evaluation is needed to determine the phenomenon.
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the frequencies of CD8+CD107a+ (B), and CD4+CD107a+ were evaluated (D). Data are represented as medians with an interquartile range (IQR, 25-
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NS, not stimulated. HD, healthy donor; LTBI, latent tuberculosis infection; COVID-19, individual with COVID-19; LTBI/COVID-19, individual with

latent tuberculosis and COVID-19 coinfection.

4 Discussion

Clinical studies have indicated that COVID-19 can induce the
progression of LTBI to active TB in previously infected individuals
(6, 8, 28). However, limited studies have highlighted the
immunological alterations in LTBI that modulate the immune
response during co-infection with COVID-19.

Based on cross-sectional studies, patients with asymptomatic
COVID-19 and LTBI showed elevated levels of serum cytokines,
chemokines, growth factors, and immunoglobulins compared to
patients with COVID-19 alone. Despite not being vaccinated
against SARS-CoV-2, these findings suggest a stronger immune
response against the virus (18). Similarly, other reports indicated
that patients admitted with COVID-19 and LTBI exhibited higher
counts and proportions of neutrophils, monocytes, and
lymphocytes than those with COVID-19 alone (29).

This study investigates the impact of LTBI in individuals
vaccinated against SARS-CoV-2 and with mild COVID-19. Given
the nature of our cohort (healthcare workers), all enrolled subjects
reported receiving the SARS-CoV-2 and BCG vaccines. It is
important to note that the HD control group used to evaluate the
phenotypic profile and functional capacity in response to Spike and
BCG proteins intentionally included individuals who had
previously experienced COVID-19. This choice reflects the
current context in the world and allows us to assess immune
alterations potentially arising from memory responses generated
by prior SARS-CoV-2 infection and/or vaccination, as previously
reported (30); in this way, observed differences include the

Frontiers in Immunology

132

background generated only by the memory. Our data revealed
that individuals with COVID-19 displayed a distinct immune
profile characterized by a predominance of monocytes expressing
pro-inflammatory and regulatory markers, including TNFR2, co-
expression of HLA-DR/TNFR2, and CD71. In contrast, the
monocyte subsets in LTBI/COVID-19 individuals were more
similar to those of healthy donors (HD) and LTBI individuals.
Furthermore, compared to COVID-19 individuals, LTBI/COVID-
19 individuals showed an increased degranulation capacity of CD8+
T cells, along with similar frequencies of CD8+perforin+ and CD8
+Granzime+ T cells, and reduced levels of soluble cytotoxic
molecules regardless of the stimuli. Similarly, the levels of soluble
cytotoxic molecules in the peripheral circulation were reduced.
LTBI/COVID-19 individuals exhibited T cells with highly
polarized, compact mitochondria, whereas COVID-19 individuals
had highly polarized, fragmented mitochondria.

Previous studies indicated that monocytes from vaccinated mild
COVID-19 patients do not show significant alterations (31-33),
which is in concordance with our data on HLA-DR+ monocytes.
On the other hand, LTBI/COVID-19 exhibited monocyte
frequencies more similar than HD, suggesting that LTBI modifies
the cell’s presence, probably by a chronic activation. It has been
reported that monocytes from LTBI do not modify CD16 and HLA-
DR expression after LPS stimulus (34). In our study, we observed a
reduction in classical monocytes and an increase in non-classical
monocytes in COVID-19, a pattern not observed in LTBI/COVID-
19, suggesting a modulatory role of LTBI on monocytes (35).
Further research is needed to evaluate their functionality,
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LTBI/COVID-19 coinfection and antigenic stimuli modulate T cells mitochondrial function. Peripheral blood mononuclear cells stimulated with BCG
(MOI 1:1) and spike (lug/mL) were cultured for 24 hours, recovered, and evaluated by flow cytometry (n=6 per group). Into the gate, CD2+CD3+ (T
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metabolism, and migration in response to specific antigens to
determine whether these differences in monocyte frequencies
between COVID-19 and LTBI/COVID-19 aid in better regulation
of the inflammatory status.

Numerous studies have associated elevated levels of soluble
TNFR1 and TNFR2 with the severity of COVID-19 (25, 36, 37). The
COVID-19 individuals enrolled in this study did not present severe
or critical illness. Consequently, soluble forms of these receptors
were not evaluated. Nevertheless, LTBI/COVID-19 individuals
displayed an increased frequency of TNFR1+ monocytes, whereas
COVID-19 individuals exhibited TNFR2+ monocytes, primarily
within the HLA-DR+ monocyte subset. TNFR1 has been linked to
mediating cell death, while TNFR2 is associated with cell survival.
Their roles in mycobacterial infections have been extensively
studied (38, 39). These results raise new questions, such as
whether TNFR1 mediates monocyte subset regulation during

Frontiers in Immunology

133

LTBI/COVID-19 through cell death promotion, as reported in
other contexts (40, 41). On the contrary, TNFR2 may promote
monocyte survival, favoring a specific monocyte profile (42).

We did not identify differences in blood parameters, including
lymphocyte frequency, between groups. Interestingly, LTBI/COVID-
19 individuals exhibited less severe symptoms. Other studies have
suggested that LTBI enhances innate and adaptive immunity due to
prior Mtb exposure, which may provide a protective effect in COVID-
19 co-infection by preventing lymphopenia, a condition associated with
higher mortality rates (43). Additionally, we did not observe an altered
Th1/Th2 profile, consistent with the findings of Song HW et al. (44).

It is essential to highlight that there are differences between
COVID-19 and LTBI/COVID-19, even without stimulation. It is
suggested that LTBI/COVID-19 exhibits these immunological
changes as a characteristic associated with LTBI, with only minor
changes related to stimulation. The Spike protein has been
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Distinct receptor profiles and immunological features in LTBI/COVID-19 vs. COVID-19 individuals. Heatmap displaying the expression levels of all
cell markers evaluated in this study. In this dataset, red indicates increased marker expression, while blue represents decreased expression relative
levels. Each column corresponds to one of the six individuals analyzed, categorized by their respective stimulus conditions and classification group.
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populations (A). An evaluation of the plasma soluble proteins was carried out, classifying them according to the group to which they correspond (B),

n=10 (HD) and n=15 (LTBI, COVID-19, and LTBI/COVID-19). HD, healthy donor; LTBI, latent tuberculosis infection; COVID-19, individual with
COVID-19; LTBI/COVID-19, individual with latent tuberculosis and COVID-19 coinfection, NS, not stimulated. Created in Morpheus, https://

software.broadinstitute.org/morpheus.

implicated in cytokine release syndrome, favoring severe or critical
COVID-19 (45), which was probably not observed in our study
because it included only individuals with mild COVID-19.
Moreover, all groups reported a mixture of vaccines based
primarily on the Spike protein, and previous reports have
indicated that immunization influences the response to the Spike
protein (11-13). A recent study showed that BCG vaccination does
not affect the immune response to COVID-19 or SARS-CoV-2
vaccines such as AstraZeneca or Pfizer (46).

In our study, we cannot determine whether the low response to
the Spike protein is influenced by prior BCG vaccination (received
in childhood by 94% of the enrolled subjects). It should also be
considered that the subjects are healthcare workers with a high risk
of exposure to Mtb and other non-tuberculous mycobacteria. This
raises a new question about whether exposure to mycobacteria is
sufficient to modify the immune response to SARS-CoV-2 antigens.

Unlike CD4+ T cells, CD8+ T cells from LTBI/COVID-19
individuals exhibited increased degranulation capacity upon
antigen-specific stimulation. However, levels of soluble cytotoxic
molecules were reduced both in vitro and in vivo. Previous studies
have reported that COVID-19 patients experience diminished
cytotoxic responses, with CD4+ T cells acquiring a cytotoxic
profile to compensate for CD8+ T cell dysfunction (47). It has
also been suggested that CD8+ T cells with low perforin levels
during the acute phase of severe SARS-CoV-2 infection may predict
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long COVID (48). Moreover, decreased levels of sFas and sFasL
have been linked to compromised clearance of SARS-CoV-2-
infected cells, adverse outcomes, and increased risk of organ
failure (49, 50).

Previous studies have demonstrated that exhaustion markers,
such as CD39 and TIM-3, are elevated on CD8+ T cells during
COVID-19 and active TB, while PD-1 is not prominently expressed
(27, 51-53). However, in our study, we did not observe an
exhausted profile of T cells. Although the expression of the
regulatory molecule TIM-3 was altered on both CD4+ and CD8+
T cells, this alone does not indicate an exhausted profile. Instead, it
may be associated with the discrepancy between intracellular and
soluble cytotoxic molecule levels observed in LTBI/COVID-
19 individuals.

Regarding the increased degranulation capacity of CD8+ T cells
in LTBI/COVID-19 individuals, it has been previously reported that
CD8+ T cells from individuals living with HIV and with an
undetectable viral load exhibit a potent cytotoxic response
following SARS-CoV-2 vaccination (54). Given the low levels of
soluble cytotoxic molecules, an important question arises: How do
these cells effectively control mycobacterial growth or viral
replication? We speculate that, although cells from LTBI/COVID-
19 individuals display efficient degranulation in response to stimuli,
their cytotoxic capacity may not be optimal, as suggested by the low
levels of cytotoxic molecules. This finding aligns with the impaired
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cytotoxic function observed in TB patients, likely due to chronic
antigen exposure (27), which could potentially compromise
pathogen control. Alternatively, it might represent a regulatory
mechanism to prevent excessive immune activation and
tissue damage. However, further studies are needed to respond to
this speculation and determine the true consequences of
this observation.

Although the presence of CD4+ T cells with a cytotoxic
phenotype has been reported in both COVID-19 and TB (27, 48),
our study specifically identified that LTBI/COVID-19 individuals
possess these unconventional CD4+ T cells, which appear to be
entirely antigen-specific.

Mitochondrial fragmentation has been associated with altered
metabolism, characterized by decreased cellular energy levels,
increased apoptosis, excessive production of toxic molecules, and
reduced immune response efficacy (10, 55). Our data demonstrated
that LTBI/COVID-19 individuals predominantly exhibit T cells
with a mitochondrial profile distinct from that observed in COVID-
19 individuals. These findings suggest that SARS-CoV-2 induces
mitochondrial stress, consistent with several studies highlighting
this process in viral infections (55-57).

However, pre-existing chronic infections such as LTBI appear to
condition a different mitochondrial response, which could be crucial
for maintaining diverse cellular mechanisms. In the context of LTBI/
COVID-19, lower mitochondrial fragmentation does not necessarily
indicate cellular well-being; instead, it may reflect a more balanced
state of mitochondrial dynamics, potentially influenced by LTBIL. A
study on acute COVID-19 demonstrated that increased mitochondrial
mass could prevent apoptosis, creating an intracellular environment
favorable for virus propagation in infected cells (10, 55).

Further research, including specific metabolic investigations, is
needed to determine whether this phenomenon is driven by
mitochondrial fusion or fission mechanisms. Additionally, these
studies may aim to elucidate the potential long-term
immunometabolic consequences in the affected individuals.

Our study is not free from limitations. First, we cannot clarify
the timing of the last COVID-19 diagnosis in the reference groups
(HD and LTBI). Second, we are unable to determine if there is any
immunological involvement of the BCG vaccine and prolonged
exposure to Mtb respiratory disease in the recruited individuals.
Finally, we cannot ascertain with QuantiFERON how long the
patient was infected with Mtb, thus it is also not possible to
determine whether individuals with LTBI still harbor viable bacilli
that could induce subsequent Mtb development or if these bacilli
trigger ongoing immunologic changes.

5 Conclusion

The findings reveal significant alterations in monocytes and T
cells of individuals with LTBI/COVID-19, suggesting that
coinfection of both pathologies may induce changes in the
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immune phenotype, impacting cytotoxic function and cellular
activation. However, further investigation is necessary to elucidate
the mechanisms underlying these responses and to ascertain their
impact on individuals’ clinical progression.
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