
Coordinated by  

Denisa Maria Berbece

Edited by  

Christopher Edward Cornwall, Samuel Starko, 

Caitlin Blain and Maggie D. Johnson

Published in  

Frontiers in Marine Science

Impacts of climate 
change on seaweeds

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/research-topics/63594/impacts-of-climate-change-on-seaweeds
https://www.frontiersin.org/research-topics/63594/impacts-of-climate-change-on-seaweeds


November 2025

Frontiers in Marine Science frontiersin.org1

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is 

a pioneering approach to the world of academia, radically improving the way 

scholarly research is managed. The grand vision of Frontiers is a world where 

all people have an equal opportunity to seek, share and generate knowledge. 

Frontiers provides immediate and permanent online open access to all its 

publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-

access, online journals, promising a paradigm shift from the current review, 

selection and dissemination processes in academic publishing. All Frontiers 

journals are driven by researchers for researchers; therefore, they constitute 

a service to the scholarly community. At the same time, the Frontiers journal 

series operates on a revolutionary invention, the tiered publishing system, 

initially addressing specific communities of scholars, and gradually climbing 

up to broader public understanding, thus serving the interests of the lay 

society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely 

collaborative interactions between authors and review editors, who include 

some of the world’s best academicians. Research must be certified by peers 

before entering a stream of knowledge that may eventually reach the public - 

and shape society; therefore, Frontiers only applies the most rigorous and 

unbiased reviews. Frontiers revolutionizes research publishing by freely 

delivering the most outstanding research, evaluated with no bias from both 

the academic and social point of view. By applying the most advanced 

information technologies, Frontiers is catapulting scholarly publishing into  

a new generation.

What are Frontiers Research Topics? 

Frontiers Research Topics are very popular trademarks of the Frontiers 

journals series: they are collections of at least ten articles, all centered  

on a particular subject. With their unique mix of varied contributions from  

Original Research to Review Articles, Frontiers Research Topics unify the 

most influential researchers, the latest key findings and historical advances  

in a hot research area.

Find out more on how to host your own Frontiers Research Topic or 

contribute to one as an author by contacting the Frontiers editorial office: 

frontiersin.org/about/contact

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual 
articles in this ebook is the property 
of their respective authors or their 
respective institutions or funders.
The copyright in graphics and images 
within each article may be subject 
to copyright of other parties. In both 
cases this is subject to a license 
granted to Frontiers. 

The compilation of articles constituting 
this ebook is the property of Frontiers. 

Each article within this ebook, and the 
ebook itself, are published under the 
most recent version of the Creative 
Commons CC-BY licence. The version 
current at the date of publication of 
this ebook is CC-BY 4.0. If the CC-BY 
licence is updated, the licence granted 
by Frontiers is automatically updated 
to the new version. 

When exercising any right under  
the CC-BY licence, Frontiers must be 
attributed as the original publisher  
of the article or ebook, as applicable. 

Authors have the responsibility of 
ensuring that any graphics or other 
materials which are the property of 
others may be included in the CC-BY 
licence, but this should be checked 
before relying on the CC-BY licence 
to reproduce those materials. Any 
copyright notices relating to those 
materials must be complied with. 

Copyright and source 
acknowledgement notices may not  
be removed and must be displayed 
in any copy, derivative work or partial 
copy which includes the elements  
in question. 

All copyright, and all rights therein,  
are protected by national and 
international copyright laws. The 
above represents a summary only. 
For further information please read 
Frontiers’ Conditions for Website Use 
and Copyright Statement, and the 
applicable CC-BY licence.

ISSN 1664-8714 
ISBN 978-2-8325-7006-7 
DOI 10.3389/978-2-8325-7006-7

Generative AI statement
Any alternative text (Alt text) provided 
alongside figures in the articles in 
this ebook has been generated by 
Frontiers with the support of artificial 
intelligence and reasonable efforts 
have been made to ensure accuracy, 
including review by the authors 
wherever possible. If you identify any 
issues, please contact us.

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


November 2025

Frontiers in Marine Science 2 frontiersin.org

Impacts of climate change on 
seaweeds

Topic editors

Christopher Edward Cornwall — Victoria University of Wellington, New Zealand

Samuel Starko — The University of Western Australia, Australia

Caitlin Blain — The University of Auckland, New Zealand

Maggie D. Johnson — King Abdullah University of Science and Technology, 

Saudi Arabia

Topic coordinator

Denisa Maria Berbece — Victoria University of Wellington, New Zealand

Citation

Cornwall, C. E., Starko, S., Blain, C., Johnson, M. D., Berbece, D. M., eds. (2025). 

Impacts of climate change on seaweeds. Lausanne: Frontiers Media SA. 

doi: 10.3389/978-2-8325-7006-7

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-7006-7


November 2025

Frontiers in Marine Science frontiersin.org3

05	 Editorial: Impacts of climate change on seaweeds
Christopher E. Cornwall, Denisa M. Berbece, Caitlin O. Blain, 
Maggie D. Johnson and Samuel Starko

09	 Photosynthetic performance and antioxidant activity of 
Gracilariopsis lemaneiformis are sensitive to phosphorus 
deficiency in elevated temperatures
Di Zhang, Jia-Zhen Sun, Ming-Hui Fu and Chang-Jun Li

19	 Marine heatwave intensity and duration negatively affect 
growth in young sporophytes of the giant kelp 
Macrocystis pyrifera
Imogen Bunting, Yun Yi Kok, Erik C. Krieger, Sarah J. Bury, 
Roberta D’Archino and Christopher E. Cornwall

36	 Back to the past: long-term persistence of bull kelp forests in 
the Strait of Georgia, Salish Sea, Canada
Alejandra Mora-Soto, Sarah Schroeder, Lianna Gendall, 
Alena Wachmann, Gita Narayan, Silven Read, Isobel Pearsall, 
Emily Rubidge, Joanne Lessard, Kathryn Martell and Maycira Costa

51	 Ocean warming enhances the competitive advantage of 
Ulva prolifera over a golden tide alga, Sargassum horneri 
under eutrophication
Hailong Wu, Jiankai Zhang, He Li, Sufang Li, Chen Pan, Lefei Yi, 
Juntian Xu and Peimin He

64	 Sustainable seaweed aquaculture and climate change in the 
North Atlantic: challenges and opportunities
Reina J. Veenhof, Michael T. Burrows, Adam D. Hughes, 
Kati Michalek, Michael E. Ross, Alex I. Thomson, Jeffrey Fedenko and 
Michele S. Stanley

84	 Impact of climate change on the kelp 
Laminaria digitata – simulated Arctic winter warming
Moritz Trautmann, Inka Bartsch, Margot Bligh, Hagen Buck-Wiese, 
Jan-Hendrik Hehemann, Sarina Niedzwiedz, Niklas Plag, Tifeng Shan, 
Kai Bischof and Nora Diehl

95	 Perplexity and choice: challenges and future development of 
laver cultivation in Jiangsu Province, China
Jinlin Liu, Wei Liu and Jing Xia

104	 Benthic algal community dynamics on Palmyra Atoll 
throughout a decade with two thermal anomalies
Adi Khen, Maggie D. Johnson, Michael D. Fox and 
Jennifer E. Smith

Table of
contents

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/


November 2025

Frontiers in Marine Science 4 frontiersin.org

115	 Canopy-forming kelp forests persist in the dynamic 
subregion of the Broughton Archipelago, British Columbia, 
Canada
L. Man, R. V. Barbosa, L. Y. Reshitnyk, L. Gendall, A. Wachmann, 
N. Dedeluk, U. Kim, C. J. Neufeld and M. Costa

139	 From archives to satellites: uncovering loss and resilience in 
the kelp forests of Haida Gwaii
Lianna Gendall, Margot Hessing-Lewis, Alena Wachmann, 
Sarah Schroeder, Luba Reshitnyk, Stuart Crawford, Lynn Chi Lee, 
Niisii Guujaaw and Maycira Costa

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/


Frontiers in Marine Science

OPEN ACCESS

EDITED AND REVIEWED BY

Nuria Marba,
Spanish National Research Council
(CSIC), Spain

*CORRESPONDENCE

Christopher E. Cornwall

christopher.cornwall@vuw.ac.nz

RECEIVED 09 September 2025
ACCEPTED 18 September 2025

PUBLISHED 02 October 2025

CITATION

Cornwall CE, Berbece DM, Blain CO,
Johnson MD and Starko S (2025)
Editorial: Impacts of climate
change on seaweeds.
Front. Mar. Sci. 12:1702410.
doi: 10.3389/fmars.2025.1702410

COPYRIGHT

© 2025 Cornwall, Berbece, Blain, Johnson and
Starko. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Editorial

PUBLISHED 02 October 2025

DOI 10.3389/fmars.2025.1702410
Editorial: Impacts of climate
change on seaweeds
Christopher E. Cornwall1*, Denisa M. Berbece1, Caitlin O. Blain2,
Maggie D. Johnson3 and Samuel Starko4

1School of Biological Sciences and Coastal People Southern Skies Centre of Research Excellence,
Victoria University of Wellington, Wellington, New Zealand, 2Institute of Marine Science and Coastal
People Southern Skies Centre of Research Excellence, University of Auckland, Auckland, New
Zealand, 3Division of Biological and Environmental Science and Engineering, King Abdullah University
of Science and Technology, Thuwal, Saudi Arabia, 4Oceans Institute & School of Biological Sciences,
University of Western Australia, Crawley, WA, Australia

KEYWORDS

seaweed, macroalgae, ocean warming, marine heatwaves, coral reefs, aquaculture,
kelp forests
Editorial on the Research Topic

Impacts of climate change on seaweeds
Climate change is drastically altering the composition and abundance of seaweed-

dominated ecosystems throughout our oceans. Ocean warming and associated intensifying

marine heatwaves (Wernberg et al., 2016; Bunting et al., Trautmann et al., Gendall et al.,

Khen et al.), ocean acidification (Koch et al., 2013; Comeau and Cornwall, 2016), and

deoxygenation (Altieri et al., 2021) can all impact the physiology of seaweeds and the

ecological roles that they play. Ocean warming can cause long-term shifts in the ranges of

seaweed species, usually in the form of range retractions at warm edges and expansions at

cool edges (Straub et al., 2016). Marine heatwaves can elicit acute heat stress in seaweeds,

drive subsequent mortality, and result in phase shifts from one ecosystem type to another

(Wernberg et al., 2016, 2024). Ocean acidification causes the slow transformation of

ecosystems from those dominated by coralline algal substrate to those characterised by a

variety of turfing seaweeds or microalgae (Cornwall et al., 2024). Increasing intensity of

ocean deoxygenation and frequency of acute localized events will likely exacerbate the

effects of localized threats, but the effects of deoxygenation on seaweed communities remain

poorly understood compared to other climate change-linked stressors (Altieri et al., 2021).

Additionally, increased sedimentation caused by land use changes and increased storm

frequencies brought on by climate change (termed ‘coastal darkening’), is also an important

stressor of seaweed communities (Blain et al., 2021). Increased sedimentation can interact

with other stressors (e.g., temperature) or act on its own to alter the composition and

function of seaweed-dominated ecosystems (Wernberg et al., 2024). To better predict and

project how seaweed-dominated ecosystems will fare in the future, we require extensive

further evidence regarding how the effects of climate change will manifest on seaweeds of all

types across temperate, tropical, and polar regions.

Ocean warming is likely to have extensive impacts on the physiology and ecology of

seaweeds. Trautmann et al. examine the impacts of ocean warming on the kelp Laminaria

digitata in the Arctic during the winter months. They test the hypothesis that ocean

warming during the Polar Night would reduce survivability due to increased metabolism
frontiersin.org015
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and resource consumption under a period of complete darkness.

They found a reduction in energy stores, an increase in metabolic

rates, and a decline in various biochemical compounds under

winter warming. Despite a reduction in physiological health,

specimens that underwent warming remained in relatively healthy

condition, indicating that winter warming may not necessarily

cause a significant decline in L. digitata populations in the High

Arctic, at least in the near future.

Wu et al. investigated the combined effects of ocean warming

and eutrophication on the competition dynamics between two

bloom-forming seaweed species, Ulva prolifera (green tide) and

Sargassum horneri (golden tide). The results show that while both

seaweeds thrive with increasing temperatures and nutrients up to

25 °C, both had rapid declines in growth, pigment concentration,

and photosynthetic activity at 30 °C. Furthermore, under eutrophic

conditions, Ulva prolifera outcompeted Sargassum horneri,

particularly at higher temperatures. Collectively, these results

suggest that ocean warming and eutrophication, associated with

climate change, will facilitate the dominance of green tide blooms.

Zhang et al. assessed the photosynthetic growth response of the

rhodophyteGracilariopsis lemaneiformiswhen exposed to four different

nutrient conditions (full factorial high and low N and P) and two

temperatures (20 and 23 °C). They found photosynthetic and growth

rates of this species generally only increased by higher levels of both

nutrients (N+P), but that there were minimal effects of temperature.

Bunting et al. assessed how marine heatwaves of differing

intensities and durations impacted sporophytes of the giant kelp

Macrocystis pyrifera in a laboratory experiment in Aotearoa New

Zealand. They find that increasing both the duration (from 3 to 6

weeks) and intensity (from 18 °C to 20 or 22 °C) of marine

heatwaves act to reduce the growth of M. pyrifera. Moreover,
Frontiers in Marine Science 026
temperatures over 22 °C were found to have particularly strong

negative impacts on growth, as this was the only temperature

treatment to cause mortality, especially in the 6-week duration

treatment. This indicates marine heatwaves above 20 °C will be

especially problematic for this species in situ.

Understanding the drivers of kelp forest stability under ocean

warming requires long-term, spatially explicit datasets. Multiple

papers in this Research Topic develop such datasets using satellite-

based remote sensing and uncover patterns of change in kelp forests

across Western Canada. Despite its extensive ~26,000 km coastline,

the trajectories of Western Canada’s kelp forests have remained

largely unknown until recently, even with clear evidence of localised

climate impacts (Schroeder et al., 2020; Watson et al., 2021; Mora-

Soto et al., Starko et al., 2024; Wernberg et al., 2024).

Gendall et al. combined archival charts with satellite imagery to

reveal century-scale changes in Macrocystis forests of Haida Gwaii,

including a persistent loss in the early 1970s likely driven by ocean

warming. This is one of the earliest examples of climate-driven kelp

loss globally (Wernberg et al., 2024). These declines were isolated to

the warmest parts of the region, with nearby areas remaining stable.

Mora-Soto et al. extend this perspective to bull kelp (Nereocystis

luetkeana) in the Salish Sea, demonstrating that recent warming

caused major kelp losses in the warmer, inner parts of the region.

Notably, these declines occurred during the 2014–2016 marine

heatwave, which had extensive impacts on kelp along the west

coast of North America (Starko et al., 2025). However, cooler areas

were much more stable and did not experience these same declines,

similar to the findings of Gendall et al. Finally, Man et al. focus on

kelp forest dynamics in the Broughton Archipelago and report high

persistence of canopy kelps from 1984–2023, suggesting this cool

region may serve as a climate refuge.
FIGURE 1

Impacts of climate change on seaweed ecosystems reviewed in this Research Topic. Importantly, ocean warming and marine heatwaves will have
large consequences for kelp forest and coral/seaweed ecosystems, as well as seaweed aquaculture. The effects of temperature will also be highly
modified by local contexts and drivers, such as nutrient and sediment levels.
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Khen et al. assessed 11 years of benthic seaweed cover on the

coral reefs of Palmyra Atoll in the tropical central Pacific. In

addition to identifying that seaweed communities were dominated

by calcareous taxa on the fore reef and by fleshy taxa on the reef

terrace, they also found that marine heatwaves associated with El

Niño years (2009, 2015) dramatically altered seaweed abundances.

Fleshy seaweed tended to dominate reef communities after these

periods of warming, while calcifying green seaweeds in the genus

Halimeda declined. Palmyra Atoll’s relatively pristine reefs, provide

an opportunity to understand long-term patterns in seaweed

community dynamics in the absence of direct local human impacts.

Climate change will not only impact seaweed ecology, but also

impact their utility in aquaculture. Veenhof et al. provide a summary

of climate change related challenges to this industry, contrasted by the

various opportunities that seaweed aquaculture presents to enhance

ecosystem resilience. The primary challenges experienced are those

caused by changes to physical factors (such as ocean warming and

acidification), an increase in extreme weather events, and a heightened

prevalence of disease and herbivory (particularly by invasive species).

To overcome these challenges, Veenhof et al. present the following

recommendations: a) by selecting for restoration and aquaculture sites

that balance climate change impacts and species responses; b) utilising

genetic advancements to inform selective breeding and hybridization,

microbiome manipulation, and priming strategies; and c) progressing

aquaculture towards approaches that maximize both restoration

and cultivation.

Liu et al. examines challenges in Neopyropia yezoensis (laver)

cultivation in Jiangsu Province, China, focusing on the challenges it

faces due to climate change. Warming sea temperatures, extreme

weather, and high-density cultivation lead to crop failures, diseases,

intra-specific competition and economic losses. The paper proposes

strategies for sustainable, climate-resilient development, such as

cultivating heat-resistant alternatives like N. haitanensis, relocating

cultivation to cooler regions, integrating multi-trophic aquaculture

systems (IMTA), and aligning the industry with carbon credit

markets to improve future ecological and economic outcomes.

These measures aim to ensure long-term productivity while

mitigating environmental impacts.

Collectively, these studies emphasise the importance of local

environmental conditions in mediating seaweed responses to ocean

warming (Figure 1). This underscores the need for locally tailored

conservation and management strategies to protect these vital

ecosystems. Local variability in temperature extremes, ocean

acidification, nutrient concentrations, and seasonality will all

influence the response of seaweeds to ocean warming and marine

heatwaves. This editorial highlights an urgent need for more

experimental and observational work that tests the role of

multiple environmental drivers on seaweed ecology and physiology.
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Photosynthetic performance
and antioxidant activity of
Gracilariopsis lemaneiformis
are sensitive to phosphorus
deficiency in
elevated temperatures
Di Zhang1*, Jia-Zhen Sun2, Ming-Hui Fu1 and Chang-Jun Li1

1School of Ocean, Yantai University, Yantai, China, 2National Biopesticide Engineering Research
Centre, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences,
Wuhan, China
Due to anthropogenic input of nutrients and emissions of greenhouse gases,

macroalgae inhabiting coastal areas often experience drastic fluctuations in

nutrients and seawater warming. In this work, we investigated the

photosynthetic performance and antioxidant response of the commercially

important red macroalgae Gracilariopsis lemaneiformis under four different

nutrient conditions at 20°C and 23°C. Our results showed that the enrichment

of NO3
- and PO4

3- (high concentrations of nitrogen (N) and phosphorus (P),

denoted as HNHP) significantly enhanced photosynthesis and growth by up to

42% and 66% for net photosynthesis rate and 83% and 134% for relative growth

rate (RGR) under 20°C and 23°C, respectively, compared with natural seawater

(low concentrations of N and P, denoted as LNLP). However, enriching only with

PO4
3- (low concentration of N and high concentration of P, denoted as LNHP) or

NO3
- (high concentration of N and low concentration of P, denoted as HNLP)

brought no significant change in RGR. A two-way ANOVA analysis revealed an

interaction between nutrient variations and temperature, with elevated

temperature intensifying the inhibition observed under HNLP conditions. To

further elucidate this interaction, we assessed the damage and recovery

processes of the photosynthetic apparatus, along with the antioxidant

activities. The increased damage (k) and reduced recovery (r) rates of

photosystem II (PSII) in both LNLP and HNLP conditions indicated a

heightened susceptibility to photoinhibition in G. lemaneiformis, leading to

reactive oxygen species (ROS) accumulation and exacerbated oxidative stress,

culminating in decreased photosynthesis and growth rates. At higher

temperatures, these phosphorus deficiency-induced inhibitions were amplified,

as evidenced by increases in k values and ROS contents, coupled with a decrease
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in r values. In summary, our data suggest that the photosynthetic performance

and growth of G. lemaneiformis are vulnerable to phosphorus deficiency,

particularly in the context of future ocean warming. Consequently, phosphorus

fertilization during cultivation warrants more attention.
KEYWORDS

antioxidant enzymes, Gracilariopsis lemaneiformis, nutrient variations, ocean
warming, photosynthesis
Introduction

The growth of macroalgae is highly sensitive to variable

environmental changes, such as light fluctuations, temperature,

and nutrients (Zhang et al., 2020a, b; Cohen et al., 2022; Jiang et al.,

2022; Li et al., 2022). In coastal ecosystems, the levels of key

nutrients, primarily nitrogen (N) and phosphorus (P), undergo

dramatic shifts due to human activities. As an essential

component, N is involved in the formation of proteins,

chlorophyll, enzymes, nucleic acids, etc., and its availability

significantly influences the physiological performance of algae

(Roleda and Hurd, 2019). A number of studies have shown that

a high nitrogen concentration could significantly prompt

photosynthesis and growth of macroalgae , including

Gracilariopsis lemaneiformis (Chen et al., 2018; Jiang et al.,

2020), Ulva sp (Gao et al., 2018; Traugott et al., 2020). Similarly,

phosphorus, another vital macronutrient, also influences

photosynthetic productivity and biomass in the ocean (Karl,

2000; Kipp and Stüeken, 2017), with its enrichment shown to

enhance photosynthesis in species such as G. lemaneiformis (Xu

et al., 2010), Sargassum muticum (Xu et al., 2017) and Pyropia

yezoensis (Kim et al., 2019). Conversely, nutrient limitations often

decrease primary production by affecting carbon flux redirection

and cellular energy (Falkowski and Raven, 2007; Lin et al., 2016;

Brembu et al., 2017). In coastal areas, a previous investigation

showed that N concentrations ranged from 10 to 17 mmol L-1 and

the P concentration ranged from 0.2 to 1 mmol L-1 (Li et al., 2022).

Another report also demonstrated that the lowest P concentration

in core areas of large-scale macroalgae cultivation was only 0.08

mmol L-1 (Zhou et al., 2022). Such a dramatic fluctuation result in

the N:P ratio, from 17:1 to 50:1, which exceeds the Redfield ratio of

16:1, suggests that P availability may be a limiting factor

controlling algal photosynthesis and growth.

Temperature is considered to be another crucial factor that

affects the photosynthesis and growth of macroalgae (Ji and Gao,

2021). Anthropogenic activities have increased atmospheric carbon

dioxide (CO2) from roughly 280 ppm in pre-industrial times to over

410 ppm today. Under the SSP5-8.5 emissions scenario, the

greenhouse gas is expected to cause an increase in global mean

temperature of 4.3°C by the end of this century (Masson-Delmotte

et al., 2021), with ocean surface temperature potentially rising by
0210
2.34-2.82°C (Pörtner et al., 2019). Previous studies have shown that

ocean warming can have varied effects on algae—positive, negative,

or neutral—likely due to species-specific optimal growth

temperatures (Liu et al., 2020; Ji and Gao, 2021). For example, a

~3°C rise in eastern Tasmania led to a >90% decline in Macrocystis

pyrifera forests (Johnson et al., 2011). In Japan, a ~1°C temperature

increase favored warm-temperate species such as Ecklonia cava,

Ecklonia stolonifera, and Undaria peterseniana, while reducing

cold-temperate species such as Laminaria japonica, Kjellmaniella

crassifolia, and Costaria costata (Serisawa et al., 2004; Kirihara et al.,

2006). Another example in northern Spain, the decrease of Fucus

serratus and Himanthalia elongata was linked to a 1.5°C–2°C rise in

coastal seawaters (Duarte et al., 2013). These findings imply that

macroalgae are highly sensitive to changes in temperature

associated with global climate change despite being adapted to

natural variations in temperature.

Gracilariopsis lemaneiformis (Gracilariaceae, Rhodophyta), an

economically important marine crop, is the second largest

cultivated macroalga after Saccharina japonica in China (Zhou

et al., 2024). By using floating longlines and vegetative

propagation methods, G. lemaneiformis has been seasonally

cultivated from northern to southern China (Pang et al., 2017;

Xue et al., 2022). As reported, the cultivation area of G.

lemaneiformis in China is 13,924 hm2 and its annual output

reached 610,824 t (dry weight) in 2022 (Compiled by Fisheries

Bureau of Ministry of Agriculture, 2023). Such high production of

G. lemaneiformis not only provides food or industry resources but

also contributes to mitigating climate change through the

assimilation of inorganic carbon. Photosynthesis, the most general

and sensitive physiological response, is pivotal for understanding

how macroalgae adapt to varying temperatures and nutrient

conditions (Ye et al., 2013). Currently, a number of studies have

investigated the effect of nutrients or warming on photosynthesis

and growth of G. lemaneiformis (Yang et al., 2021; Li et al, 2022;

Zhou et al., 2024), while interaction between these factors has

received less attention. Moreover, those published papers tend to

focus on the reduction in photosynthetic efficiency, leaving the

mechanisms of photoinhibition and their impact on cellular

activities less explored. In our present study, changes in both

photosynthesis performance and antioxidant enzyme activity were

measured, aiming to characterize the different physiological
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responses of G. lemaneiformis subjected to nutrient variations and

ocean warming under natural sunlight.
Materials and methods

Experimental treatments

Thalli of Gracilariopsis lemaneiformis were collected from farmed

rafts offshore of Ningde, Fujian province of China (119.31°E, 26.39°N),

in December 2023, and transferred to the laboratory in a cooled

Styrofoam box. Following rinsing, weighted thalli of ~0.5 g fresh

weight (FW) were grown for 10 days in 1.5 L open-ended tubes

filled with artificial seawater, which was continuously aerated and

renewed every 2 days. According to previous studies (Jiang et al., 2022;

Zhou et al., 2022, 2024), as well as in-situ measurement of seawater

temperature (19.6°C), the ambient temperature was set as 20°C. The

warming treatment (23°C) was set following the prediction of SSP5-8.5

(Pörtner et al., 2019; Masson-Delmotte et al., 2021), where the ocean

surface temperature would increase by ~3°C. Under each temperature,

four nutrient levels were set as low concentrations of N and P (LNLP)

(N: 8 mmol L-1, P: 0.5 mmol L-1), low concentration of N and high

concentration of P (LNHP) (N: 8 mmol L-1, P: 10 mmol L-1), high

concentration of N and low concentration of P (HNLP) (N: 160 mmol

L-1, P: 0.5 mmol L-1), and high concentrations of N and P (HNHP) (N:

160 mmol L-1, P: 10 mmol L-1). The artificial seawater used in this study

was prepared according to Berges et al. (2001) without the addition of

major nutrients and elements. The tubes were partly immersed in two
Frontiers in Marine Science 0311
water baths, where the ambient water temperature, 20°C and 23°C,

were controlled by two heaters (SunSun, AR-450, SunSun Group Co.,

Ltd, China). Four nutrient levels were adjusted by adding NO3
- and

PO4
3- into artificial seawater. Three independent replicate cultures were

used for each treatment (n=3). The experiment set-up graphic is shown

in Figure 1.
Determination of relative growth rate and
contents of Chl a

Relative growth rate (RGR) was determined by measuring the

changes in FW of the thalli after 10 days and was calculated by using

the following equation RGR (% d-1) = 100×(lnN10-lnN0)/10, where

N10 and N0 represented fresh weights of the thalli at day 10 and

0, respectively.

Approximately 0.05 g (FW) thalli was ground and extracted in 5

mL absolute methanol at 4°C in darkness for 12 h. After

centrifugation at 4°C, 5000g for 15 min, the absorbance of the

supernatant was measured from 400 nm – 700 nm using a scanning

spectrophotometer (752N, INESA Co. Ltd., Shanghai, China). The

contents of chlorophyll a (Chl a, mg/g FW) were calculated

according to Porra (2002),

Chl a ðmg=gFWÞ¼ ½16:29� (A665 − A750)� 8:54� (A652 − A750)� � VE

m

where Ax is the absorbance under the x-wavelength, VE is the

volume of the methanol extraction, and m is the weight of the algae.
FIGURE 1

The graphic experiment set-up.
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Measurement and analysis of
chlorophyll fluorescence

A portable fluorimeter (AquaPen AP110, Photon Systems

Instruments, Brno, Czech Republic) was employed to measure the

photosynthetic performance of photosystem II (PSII). During the

measurements, a blue LED emitter with excitation light at 455 nm

was used to eliminate the effect of phycobiliproteins on chlorophyll

fluorescence. The minimal fluorescence (Fo) for 30 min dark-

adapted thalli was induced by a low irradiance (~0.15 mmol

photons m-2 s-1), and the maximum fluorescence (Fm) was

obtained during a saturating flash (4000 mmol photons m-2 s-1).

Following that, an actinic light with an intensity of 400 mmol

photons m-2 s-1 was employed to induce a steady state of

photosynthesis. The stable fluorescence (F) and the corresponding

maximum steady fluorescence (Fm') during the saturating flash were

monitored. The maximum photochemical quantum yield of PSII

(Fv/Fm), the non-photochemical quenching (NPQ), and the

effective photochemical quantum yield of PSII (YII) were

calculated as Fv/Fm = (Fm – Fo)/Fm; NPQ = (Fm – Fm')/Fm'; and

YII = (Fm' – F)/Fm', respectively.

According to Miao et al. (2018) and Heraud and Beardall

(2000), the damage and recovery processes of the photosynthetic

apparatus were obtained by periodically measuring the YII during

photoinhibitory exposure (~1000 mmol photons m-2 s-1). The

damage (k, min-1) and repair (r, min-1) rates were estimated

using the Kok model and calculated with the following equation:

Yn
Yo

=
r

k + r
+

k
k + r

� e−(k+r)=t

where Yn and Yo are YII at time tn and to, respectively.
Measurement of net photosynthesis and
respiration rates

Net photosynthesis and dark respiration rates were measured

with optical dissolved oxygen (DO) sensors (ProODO-BOD, YSI,

USA). Approximately 0.2 g FW of G. lemaneiformis from each

treatment was placed in a 100 mL BOD bottle containing

cultivation artificial seawater, which was stirred continuously

during the measurement. Temperature was maintained at either

20°C or 23°C, corresponding to the cultivation temperatures. The

net photosynthesis and dark respiration rates (mmol O2 h
-1 g-1 FW)

were determined as the variations of DO content during light (400

mmol photons m-2 s-1) and dark conditions, respectively.
Measurement of reactive oxygen species
content and antioxidant enzyme activity

Fresh samples were ground with liquid nitrogen and the tissue

homogenates were used to analyze the ROS (mainly referred to as

hydrogen peroxide, H2O2) content and enzyme (mainly referred to

as superoxide dismutase (SOD) and catalase (CAT)) activity of G.
Frontiers in Marine Science 0412
lemaneiformis with a commercial assay kit (Jiancheng, Nanjing,

China) following the manufacturer's protocols.
Statistical analyses

Statistical analyses were performed using SPSS 19.0 (SPSS Inc.,

Chicago, USA). The homogeneity of variance was examined using

Levene's test before all statistical analyses. One-way ANOVA and t-

test were used to establish differences among treatments. A two-way

ANOVA was used to identify the effects of warming, nutrients, and

their interactions. As shown in Figure 1, warming treatments were

achieved by heating the water in the tank, therefore, all ANOVA

analyses regarding warming in this study should be temperature

and tank effects. Differences were considered to be statistically

significant at p<0.05.
Results

Relative growth rate and Chl a content

As shown in Figure 2A, the RGR of Gracilariopsis lemaneiformis

displayed a significant difference among the treatments. Compared

with LNLP treatment (natural seawater), the enrichment with NO3
-

and PO4
3- (HNHP) significantly increased RGR by up to 83% and

134% in 20°C and 23°C, respectively, reaching 3.2% and 3.5% per

day. However, enrichment with only PO4
3- concentration (LNHP),

and enrichment with only NO3
- concentration (HNLP) showed no

significant effects on RGR. In terms of temperature variations, i.e.,

the temperature and tank effects, the higher temperature

significantly increased the RGR in the HNHP condition but

decreased in HNLP. A two-way ANOVA showed that both

temperature, nutrient variations, and their interaction

significantly affected RGR (Table 1). Considering the fact that

both NO3
- and PO4

3- are essential for pigment formation, a

significant increase of Chl a content was observed in HNHP

treatment, but not for LNHP and HNLP treatments (Figure 2B).

In contrast to higher values of RGR under 23°C, the elevated

temperature did not enhance the contents of Chl a (Figure 2B).
Chlorophyll fluorescence, photosynthesis,
and respiration

The maximum quantum yield of PSII (Fv/Fm) showed the

highest values in the HNHP treatment, with an average value of

~0.54 at both 20°C and 23°C, and the lowest values in the HNLP

treatment (Figure 3A). In terms of temperature, the values of Fv/Fm
in 23°C in the LNHP and HNLP treatments were significantly

higher than that in 20°C (t-test, p<0.05, p<0.05), while in the LNLP

and HNHP treatments, the values of Fv/Fm showed no significant

difference between 20°C and 23°C (Figure 3A, t-test, p=0.243,

p=0.197). In contrast, the NPQ was significantly upregulated in

the LNHP and HNLP treatment, with an average value of 0.39 and
frontiersin.org
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0.42 at 20°C and 23°C, respectively. The elevated temperature did

not affect the NPQ, except for the HNLP treatment (Figure 3B).

Similar to RGR, the net photosynthesis rate of G. lemaneiformis

showed the highest values in the HNHP treatment, with an average

value of 40.38 mmol O2 h
-1 g-1 FW and 45.81 mmol O2 h

-1 g-1 FW at

20°C and 23°C, respectively (Figure 4A). The LNHP treatment

brought no significant change to net photosynthesis rate (t-test,

p=0.189), and the HNLP treatment significantly decreased the net

photosynthesis rate (t-test, p<0.05). The elevated temperature

significantly increased the net photosynthesis rate in the HNHP

treatment (t-test, p<0.05), but this decreased in the HNLP treatment

(Figure 4A, t-test, p<0.05). Changes in respiration rate are shown in

Figure 4B; the highest values were observed in the HNHP treatment

and the lowest values were observed in the HNLP treatment

(Figure 4B). The elevated temperature showed no significant

effect on respiration rate, except for the HNHP treatment

(Figure 4B, t-test, p=0.176, p=0.237, p=0.467 for LNLP, LNHP,

and HNLP, respectively, and p<0.05 for HNHP).
Frontiers in Marine Science 0513
Damage and repair rates of photosystem II

The rates of damage and repair of PSII during photoinhibitory

exposure were estimated from the changes in the effective

photochemical quantum yield of PSII (YII). The damage rate

showed significantly higher values in low PO4
3- concentrations,

i.e., the LNLP and HNLP treatments, especially under the elevated

temperature (Figure 5A). The elevated temperature showed no

significant effects on the values of k in both the LNHP and

HNHP treatments (Figure 5A, t-test, p=0.105, p=0.217 for LNHP

and HNHP, respectively). By contrast, the repair rate showed

significantly higher values in high PO4
3- concentration, i.e., the

LNHP and HNHP treatments (Figure 5A). The elevated

temperature significantly decreased the repair rate by up to 8.5%,

3.4%, 16.1%, and 5.5% for LNLP, LNHP, HNLP, and HNHP,

respectively. Accordingly, the ratio between r and k also showed

significantly higher values in LNHP and HNHP treatments, and the

elevated temperature significantly decreased the r/k (Figure 5C). A

two-way ANOVA showed that temperature, nutrient variations,

and their interaction, significantly affected the value of k (t-test,

p<0.05, p<0.05, p<0.05) and r (Table 1, t-test, p<0.05, p<0.05),

except for the interaction with r (t-test, p=0.424).
FIGURE 2

Relative growth rate[%d-1, panel (A)] and Chl a content [mg/g FW,
panel (B)] of Gracilariopsis lemaneiformis after growing for 10 days
at four nutrients levels (LNLP, LNHP, HNLP and HNHP) and two
temperature (20°C, open bars, 23°C, grey bars). Each data point is
means ± SD (n=3). Different upper and lower letters above the bars
indicate significant differences between nutrients levels under 20°C
and 23°C, respectively (p<0.05, One-way ANOVA). Unconnected
line above the bars indicate significant differences between
temperature under each nutrients level (p<0.05, One-way ANOVA).
LNLP, low nitrogen and low phosphorus concentrations (N: 8mmol/
L, P: 0.5 mmol/L); LNHP, low nitrogen and high phosphorus
concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP, high nitrogen and
low phosphorus concentrations (N: 160mmol/L, P: 0.5 mmol/L);
HNHP, high nitrogen and high phosphorus concentrations (N:
160mmol/L, P: 10 mmol/L); FW, fresh weight; SD, standard deviation.
TABLE 1 Two-way ANOVA for the effects of temperature (20°C and 23°
C) and nutrients variations (LNLP, LNHP, HNLP, HNHP) on the relative
growth rate (RGR), the damage (k) and repair (r) rate.

Parameters
Source

of
variation

df
Mean
square

F p

RGR

Temperature 1 <0.001 5.645 0.03

Nutrients
variations

3 <0.001 273.413 <0.001

Temperature×
Nutrients
variations

3 <0.001 7.612 0.002

Error 16 <0.001

k

Temperature 1 0.005 70.080 <0.001

Nutrients
variations

3 0.011 154.024 <0.001

Temperature×
Nutrients
variations

3 0.001 9.236 0.001

Error 16 <0.001

r

Temperature 1 0.008 117.308 <0.001

Nutrients
variations

3 0.002 1.786 <0.001

Temperature×
Nutrients
variations

3 <0.001 0.715 0.424

Error 16 <0.001
frontie
LNLP, low nitrogen and low phosphorus concentrations (N: 8mmol/L, P: 0.5 mmol/L); LNHP,
low nitrogen and high phosphorus concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP, high
nitrogen and low phosphorus concentrations (N: 160mmol/L, P: 0.5 mmol/L); HNHP, high
nitrogen and high phosphorus concentrations (N: 160mmol/L, P: 10 mmol/L).
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Reactive oxygen species content and
antioxidant enzyme activity

The ROS content was estimated by quantifying the production of

H2O2 to assess the redox state of G. lemaneiformis under different

treatments. As shown in Figure 6, the ROS content showed significantly

higher values under the LNLP and HNLP treatments, while the

enrichment of PO4
3- significantly alleviated the production of ROS.

The elevated temperature increased the production of ROS in low PO4
3-

concentrations (t-test, p<0.05 for both LNLP and HNLP treatments),

but showed no significant effects on the LNHP and HNHP treatments

(t-test, p=0.382, p=0.417 for LNHP and HNHP, respectively).

In turn, changes in antioxidant enzyme activity showed similar

patterns. As shown in Figure 7, both SOD and CAT showed

significantly higher activities under both LNLP and HNLP

treatments, while decreased by the enrichment of PO4
3-. The elevated

temperature could further active the SOD and CAT activities in both

LNLP andHNLP treatments, but not for LNHP andHNHP treatments.
Frontiers in Marine Science 0614
Discussion

Effects of nutrients variations on
Gracilariopsis lemaneiformis

Nitrogen and phosphorus are both involved the synthesis of

amino acids and phycobilins, the transformation of enzymes, and

the formation of germ cells in macroalgae, which are all necessary

for growth (Zhou et al., 2024). In coastal areas, the drastic

fluctuations of nutrients induced by human activities often expose

macroalgae to an imbalance between nitrogen and phosphorus,

which affects their growth and survival (Chu et al., 2019). In the

present study, the enrichment of both PO4
3- and NO3

- prompted

the synthesis of Chl a and active photochemical efficiency, which led

to an increase in the net photosynthesis rate of Gracilariopsis

lemaneiformis and further resulted in a parallel increase in RGR.

However, enrichment of either PO4
3- or NO3

- alone did not

enhance photosynthesis or growth. In the case of disturbed N:P,
FIGURE 3

The maximum photochemical quantum yield of photosystem II [Fv/
Fm, panel (A)] and non-photochemical quenching [NPQ, panel (B)]
of Gracilariopsis lemaneiformis after growing for 10 days at four
nutrients levels (LNLP, LNHP, HNLP and HNHP) and two
temperature (20°C, open bars, 23°C, grey bars). Each data point is
means ± SD (n=3). Different upper and lower letters above the bars
indicate significant differences between nutrients levels under 20°C
and 23°C, respectively (p<0.05, One-way ANOVA). Unconnected
line above the bars indicate significant differences between
temperature under each nutrients level (p<0.05, One-way ANOVA).
LNLP, low nitrogen and low phosphorus concentrations (N: 8mmol/
L, P: 0.5 mmol/L); LNHP, low nitrogen and high phosphorus
concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP, high nitrogen and
low phosphorus concentrations (N: 160mmol/L, P: 0.5 mmol/L);
HNHP, high nitrogen and high phosphorus concentrations (N:
160mmol/L, P: 10 mmol/L); SD, standard deviation.
FIGURE 4

Net photosynthesis rate [mmol O2 h-1 g-1 FW, panel (A)] and
respiration rate 9mmol O2 h-1 g-1 FW, panel (B)] of
Gracilariopsis lemaneiformis after growing for 10 days at four
nutrients levels (LNLP, LNHP, HNLP and HNHP) and two
temperature (20°C, open bars, 23°C, grey bars). Each data point is
means ± SD (n=3). Different upper and lower letters above the bars
indicate significant differences between nutrients levels under 20°C
and 23°C, respectively (p<0.05, One-way ANOVA). Unconnected
line above the bars indicate significant differences between
temperature under each nutrients level (p<0.05, One-way ANOVA).
LNLP, low nitrogen and low phosphorus concentrations (N: 8mmol/
L, P: 0.5 mmol/L); LNHP, low nitrogen and high phosphorus
concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP, high nitrogen and
low phosphorus concentrations (N: 160mmol/L, P: 0.5 mmol/L);
HNHP, high nitrogen and high phosphorus concentrations (N:
160mmol/L, P: 10 mmol/L); FW, fresh weight; SD, standard deviation.
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the lower phosphorus treatment (HNLP) exhibited a worse effect,

showing lower values of RGR and net photosynthesis rate.

As essential nutrients, both nitrogen and phosphorus are not

only involved in the formation of chloroplast DNA and RNA, but

also highly necessary for the generation of ATP, the synthesis of

phospholipids, and the phosphorylation of photosynthesis proteins

(Scheerer et al., 2019). In our present study, the significant increase
Frontiers in Marine Science 0715
of Fv/Fm under the HNHP condition indicated efficient conversion

of absorbed light into chemical energy, as shown by higher net

photosynthesis rates. Conversely, the significant decline of Fv/Fm
under the HNLP condition suggested an inhibition of

photosynthesis, which could further lead to reduced production

of ATP and NADPH. As two essential molecules that fuel the

Calvin cycle, the diminished ability to fix carbon would naturally

result in a lower net photosynthesis rate and RGR. Similar results

were also reported in several other macroalgae (e.g. Sargassum

muticum in Xu et al., 2017; Ulva linza in Gao et al., 2018; and

Pyropia yezoensis in Kim et al., 2019). In addition to the limitation

of carbon fixation, photoinhibition-induced lower generation of

ATP would also inhibit the high turnover rate of D1 protein [the

core protein of photosystem II (PSII)], which is the prerequisite for

PSII to flexibly respond to environmental fluctuations (Powles,

1984; Long et al., 1994). To clarify the occurrence of P deficiency-

induced photoinhibition, non-photochemical quenching, the most

common and quickest photoprotection mechanism (Adams and

Demmig-Adams, 1994; Ruban, 2016), and the rates of damage and

repair of PSII, were measured. In G. lemaneiformis, a decrease in Fv/

Fm was always accompanied by an increase in NPQ (Figure 3),

indicating an increase in energy dissipation, especially under the

HNLP condition. Specifically, the required light energy for G.

lemaneiformis cultured in the HNLP condition should be much

less than that of other treatments, which easily suffer from

photoinhibition. In terms of the rates of damage and repair of

PSII during photoinhibitory exposure, the higher value of k and the
FIGURE 5

The damage [k, panel (A)], recovery [r, panel (B)] rates and the ratio
between r and k [r/k, panel (C)] of Gracilariopsis lemaneiformis after
growing for 10 days at four nutrients levels (LNLP, LNHP, HNLP and
HNHP) and two temperature (20°C, open bars, 23°C, grey bars).
Each data point is means ± SD (n=3). Different upper and lower
letters above the bars indicate significant differences between
nutrients levels under 20°C and 23°C, respectively (p<0.05, One-
way ANOVA). Unconnected line above the bars indicate significant
differences between temperature under each nutrients level (p<0.05,
One-way ANOVA). LNLP, low nitrogen and low phosphorus
concentrations (N: 8mmol/L, P: 0.5 mmol/L); LNHP, low nitrogen and
high phosphorus concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP,
high nitrogen and low phosphorus concentrations (N: 160mmol/L, P:
0.5 mmol/L); HNHP, high nitrogen and high phosphorus
concentrations (N: 160mmol/L, P: 10 mmol/L); SD, standard deviation.
FIGURE 6

The reactive oxygen species content (U/g FW) of
Gracilariopsis lemaneiformis after growing for 10 days at four
nutrients levels (LNLP, LNHP, HNLP and HNHP) and two
temperature (20°C, open bars, 23°C, grey bars). Each data point is
means ± SD (n=3). Different upper and lower letters above the bars
indicate significant differences between nutrients levels under 20°C
and 23°C, respectively (p<0.05, One-way ANOVA). Unconnected
line above the bars indicate significant differences between
temperature under each nutrients level (p<0.05, One-way ANOVA).
LNLP, low nitrogen and low phosphorus concentrations (N: 8mmol/
L, P: 0.5 mmol/L); LNHP, low nitrogen and high phosphorus
concentrations (N: 8mmol/L, P: 10 mmol/L); HNLP, high nitrogen and
low phosphorus concentrations (N: 160mmol/L, P: 0.5 mmol/L);
HNHP, high nitrogen and high phosphorus concentrations (N:
160mmol/L, P: 10 mmol/L); FW, fresh weight; SD, standard deviation.
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lower value of r suggested severe photoinhibition of PSII occurred

in P deficiency treatments (Figure 5). These results confirmed that

G. lemaneiformis was sensitive to P deficiency, which could induce

significant photoinhibition by decreasing the P utilization in

photophosphorylation (Scheerer et al., 2019; Zhou et al., 2024)

and retarding the repair of D1 protein.

Once the thermal energy dissipation could not satisfy the energy

balance between absorption and utilization, the excess excitation

energy would result in the accumulation of ROS (Logan et al., 1998,

2006), which is known to induce oxidative stress and damage

biomolecules such as pigments, proteins, and lipids in plants and

algae (Miller et al., 2010; Suzuki et al., 2012; Nahar et al., 2015;

Barati et al., 2019). In the present study, the production of ROS was

highly consistent with the damage and repair rates of the PSII, with

high content in P deficiency conditions (Figure 6). The antioxidant
Frontiers in Marine Science 0816
system that scavenges ROS has been previously reported as a second

line of defense against photoinhibition-induced oxidative stress

(Logan et al., 2006). Here, SOD and CAT, which are responsible

for turning O2
- into H2O2, and turning H2O2 to H2O, respectively,

show similar trends to the production of ROS, with higher values in

the P deficiency conditions. These results also confirmed that G.

lemaneiformis was sensitive to P deficiency, which could induce

severe oxidative stress by increasing photoinhibition risk.
Effects of warming on
Gracilariopsis lemaneiformis

Generally, the elevated temperature could accelerate the growth

of phytoplankton and macroalgae via upregulating the metabolic

activity (Lund, 1949; Charan et al., 2017; Schaum et al., 2017; Wu

et al., 2019). As mentioned above, the elevated temperature in this

study was achieved by heating the water in the tank; therefore, the

warming effect should be attributed to temperature and the tank. In

G. lemaneiformis, both the net photosynthesis rate and growth

under the HNHP treatment were increased by the elevated

temperature. Similar results were also observed in Chaetomorpha

linum and Gracilaria blodgettii, where their growth increased when

the temperature rose from 20°C to 35°C within a phosphorus

repletion condition (Zeng et al., 2020). In contrast, under P

deficiency conditions, the higher temperature negatively affected

both the net photosynthesis rate and growth in G. lemaneiformis. A

plausible explanation for this is that the limited available P is

prioritized for maintaining the basic functions of the cells and the

high requirement of P (a high P uptake rate) induced by the high

temperature could not be satisfied, resulting in a decrease in algal

biomass (Talbot and De la Noüe, 1993; Mandal et al., 2015; Zhou

et al., 2024). Additionally, the significant enhancement of k and

decline of r at 23°C also implied that the elevated temperature

increased the photoinhibition of G. lemaneiformis under P

deficiency conditions. Together with the increase in ROS

production (Figure 6) and antioxidant enzyme activity (Figure 7),

our data demonstrated that future warming would exacerbate P

deficiency-induced photoinhibition and oxidative stress.
Conclusion

Found in coastal areas, macroalgae are often exposed to drastic

environmental fluctuations due to anthropogenic activities,

including nutrient variations and seawater warming. The present

study indicates that G. lemaneiformis is particularly susceptible to P

deficiency, leading to significant photoinhibition and increased

oxidative stress, ultimately reducing growth. Furthermore,

projected seawater warming is likely to exacerbate the negative

impacts of P deficiency, amplifying photoinhibition and

oxidative stress.
FIGURE 7

The SOD [U/g FW, panel (A)] and CAT [U/g FW, panel (B)] activities
of Gracilariopsis lemaneiformis after growing for 10 days at four
nutrients levels (LNLP, LNHP, HNLP and HNHP) and two
temperature (20°C, open bars, 23°C, grey bars). Each data point is
means ± SD (n=3). Different upper and lower letters above the bars
indicate significant differences between nutrients levels under 20°C
and 23°C, respectively (p<0.05, One-way ANOVA). Unconnected
line above the bars indicate significant differences between
temperature under each nutrients level (p<0.05, One-way ANOVA).
SOD, superoxide dismutase; CAT, catalase; LNLP, low nitrogen and
low phosphorus concentrations (N: 8mmol/L, P: 0.5 mmol/L); LNHP,
low nitrogen and high phosphorus concentrations (N: 8mmol/L, P:
10 mmol/L); HNLP, high nitrogen and low phosphorus
concentrations (N: 160mmol/L, P: 0.5 mmol/L); HNHP, high nitrogen
and high phosphorus concentrations (N: 160mmol/L, P: 10 mmol/L);
FW, fresh weight; SD, standard deviation.
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Marine heatwave intensity and
duration negatively affect growth
in young sporophytes of the
giant kelp Macrocystis pyrifera
Imogen Bunting1*, Yun Yi Kok2, Erik C. Krieger1,3, Sarah J. Bury2,
Roberta D’Archino2 and Christopher E. Cornwall1

1School of Biological Sciences, and Coastal People Southern Skies Centre of Research Excellence,
Victoria University of Wellington Te Herenga Waka, Wellington, New Zealand, 2Oceans Science
Centre, National Institute of Water and Atmosphere Research Taihoro Nukurangi, Evans Bay,
Wellington, New Zealand, 3Red Sea Research Centre, King Abdullah University of Science and
Technology, Thuwal, Saudi Arabia
Kelp forests are productive and biodiverse ecosystems with high ecological,

cultural, and economic importance. However, the high sensitivity of kelp to

water temperature means that these ecosystems are vulnerable to marine

heatwaves (MHWs), especially at the equatorward edge of their range. To date,

few laboratory studies have compared the effects of MHWs of different durations

or intensities on kelp, and it is difficult to determine these effects from naturally

occurring MHWs in the field. We exposed juvenile sporophytes of the giant kelp

Macrocystis pyrifera from Wellington, Aotearoa New Zealand to simulated MHWs

three or six weeks in duration, at temperatures of 18°C, 20°C, and 22°C,

corresponding to 2, 4, and 6°C above local mean summer temperatures. While

all MHW treatments reduced mean kelp growth rates by over 30% relative to 16°C

controls, the 22°C treatments had much more severe and wide-ranging effects,

including rapid blade erosion, reduced chlorophyll fluorescence, tissue bleaching,

increased d13C values, andmortality. Nonetheless, sporophytes had some ability to

recover from heat stress; within the 18°C treatment, mean relative growth rates

neared or exceeded those within the control treatment within three weeks after

MHWs concluded. These results support the findings of previous studies which

indicate that M. pyrifera sporophytes experience a key physiological tipping point

around 20°C. Additionally, our findings suggest that juvenile M. pyrifera from the

Wellington population could be relatively resilient to MHWs if temperatures remain

at sub-lethal levels. However, if averageMHW intensities and durations continue to

increase over time, survival and recruitment of juvenile kelp could be adversely

affected, thus threatening the long-term persistence of giant kelp forests near the

warm edge of their range in New Zealand.
KEYWORDS

kelp, climate change, marine heatwaves, macroalgae, thermal stress, resilience
Abbreviations: CCM, Carbon dioxide concentrating mechanism; DIC, Dissolved inorganic carbon; DMSO,

Dimethyl sulfoxide; MHW, Marine heatwave; RGR, Relative growth rate; TA, Total alkalinity; d13C Ratio of
13C to 12C, expressed in ‰ units; d15N Ratio of 15N to 14N, expressed in ‰ units.
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1 Introduction

Kelp forests are highly productive and biodiverse temperate

marine ecosystems which occupy around a quarter of the world’s

coastlines (Wernberg et al., 2019). Kelps are ecosystem engineers

that modify their physical environment through shading (Arkema

et al., 2009) and alteration of current velocities (Gaylord et al.,

2007), as well as altering their chemical environment by increasing

oxygen concentrations and pH (Britton et al., 2016; Traiger et al.,

2022). Kelp sporophytes create complex three-dimensional

structures that serve as an important habitat for highly diverse

biotic assemblages (Teagle et al., 2017), especially of sessile

invertebrates (Graham, 2004; Arkema et al., 2009; Miller et al.,

2015) and fish (Villegas et al., 2019). The loss of kelp canopies can

cause severe declines in biomass and diversity within these

communities, including the complete loss of commercially

important species such as abalone (Graham, 2004; Vanella et al.,

2007; O’Connor and Anderson, 2010; Johnson et al., 2011; Arafeh-

Dalmau et al., 2019). Moreover, kelp forests contribute to many

ecosystem services, including carbon sequestration (Filbee-Dexter

and Wernberg, 2020), nutrient cycling (Wernberg et al., 2019), and

reduction of coastal erosion (Løvås and Tørum, 2001). Kelp also

holds cultural value and serves as food for some communities, and

has a broad variety of commercial uses, including biofuel and

production of pharmaceuticals (Wernberg et al., 2019; Li et al.,

2023). The economic value of the ecosystem services provided by

kelp forests globally is estimated to be as high as US$500 billion

(Eger et al., 2023).

Anthropogenic stressors currently threaten the persistence of

kelp forests and the biotic communities that they support. Kelps

and other macroalgae are thought to be particularly susceptible to

the impacts of ocean warming, as their large surface area to volume

ratio makes them highly responsive to changes in environmental

conditions (Smale, 2020). In kelps, thermal stress can cause

thinning of cellular structures, leading to reduced tissue strength

and rapid erosion (Simonson et al., 2015). Declines in abundance

and range shifts or contractions have been reported for numerous

kelp species within the past decade (Straub et al., 2016; Smale,

2020), and the total extent of kelp forests is declining at a global

scale (Krumhansl et al., 2016). Climate change is thought to be one

of the key drivers of these changes, along with pollution and

overgrazing due to overexploitation of predators that consume

grazers (Steneck et al., 2002; Wernberg et al., 2019). Climate

change can also have indirect negative impacts on kelp, such as

promoting range expansion by herbivores (Ling et al., 2009; Vergés

et al., 2014; Provost et al., 2017) and increased competition between

cold-temperate kelps and eurythermal algae (Filbee-Dexter and

Wernberg, 2018) or heat-tolerant invasive kelps (Edwards and

Hernández-Carmona, 2005; Smale et al., 2015; James and Shears,

2016; Lebrun et al., 2022; Wright et al., 2022).

The increasing frequency of marine heatwaves (MHWs) is an

important consequence of climate change that threatens kelp forest

ecosystems (Wernberg et al., 2023). MHWs are defined as

anomalously warm events in which sea surface temperatures

within a specified area exceed the 90th percentile, based on 30
Frontiers in Marine Science 0220
years of historical baseline data, for at least five days (Hobday et al.,

2016). They are often driven by interactions between local weather

and oceanographic conditions and increasing greenhouse gas

emissions (Salinger et al., 2019; de Burgh-Day et al., 2022; Kerry

et al., 2022). The increasing frequency of MHWs means that local

sea temperatures may exceed lethal thresholds for some species

much earlier than predicted by some models of future climate

scenarios that simply assess means changes in temperature (Harvey

et al., 2022). MHWs have been linked to severe declines in kelp

canopy cover (Wernberg et al., 2016, 2018; McPherson et al., 2021;

Tolimieri et al., 2023) and regime shifts from kelp forests to less

productive, turf algae-dominated ecosystems (Wernberg et al.,

2016). More broadly, MHWs can cause local extinctions of

sensitive macroalgal species (Smale and Wernberg, 2013;

Thomsen et al., 2019).

The giant kelp Macrocystis pyrifera is an abundant and

ecologically vital species, but its potential vulnerability to

climate change and MHWs is concerning. M. pyrifera is the

world’s most widely distributed kelp species and is spread

throughout temperate coastal regions of the Pacific basin,

including the west coast of the Americas, southeastern Australia,

and central and southern Aotearoa New Zealand (Mora-Soto

et al., 2020). M. pyrifera is also the world’s largest kelp species,

reaching lengths of up to 60 meters (Schiel and Foster, 2015).

MHWs and other extreme warming events have been linked to

declines in M. pyrifera canopy cover (Dayton et al., 1992; Arafeh-

Dalmau et al., 2019; Tait et al., 2021; Tolimieri et al., 2023).

Laboratory studies have found that exposure to elevated

temperatures can have a variety of adverse impacts on both

microscopic stages (gametophytes) and diploid, macroscopic

sporophytes of M. pyrifera, with gametophytes often having

greater thermal resilience than sporophytes (Ladah, 2000;

Hollarsmith et al., 2020; Le et al., 2024). The effects of increased

temperatures can include increased mortality (e.g., Ladah and

Zertuche-González, 2007; Fernández et al., 2020; Purcell et al.,

2024), reduced reproductive success (Muth et al., 2019;

Hollarsmith et al., 2020; Le et al., 2022; Fernández et al., 2023),

lower growth rates (Brown et al., 2014; Fernández et al., 2020,

2021), photosynthetic impairment (Umanzor et al., 2021), and

reduced pigmentation (Sánchez-Barredo et al., 2020; Umanzor

et al., 2021). Increasing the duration of exposure to elevated

temperatures can also increase the severity of these negative

effects on kelps (Leathers et al., 2023).

M. pyrifera grows throughout the South Island and at the

southern tip of the North Island of New Zealand, with its range

limited mostly by temperature (Hay, 1990). Three genetic clusters

have been identified for M. pyrifera diversity within New Zealand;

gametophytes from the northernmost populations have a higher

temperature threshold for successful fertilisation than those from

southern regions, perhaps indicating higher thermal tolerance (Le,

2022). MHWs have become increasingly severe within New Zealand

waters during the past three decades (Montie et al., 2023).

Modelling suggests that mean MHW intensities could increase by

up to 1.75°C by 2100 under a high greenhouse gas emissions

scenario (SSP3–7.0) (Behrens et al., 2022). MHWs have been
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linked to declines in M. pyrifera canopy cover throughout New

Zealand (Tait et al., 2021), and there is anecdotal evidence of losses

of M. pyrifera abundance throughout the Wellington region

(authors, pers. obs), near the northern distribution limit described

by Hay (1990). M. pyrifera abundance is predicted to decline near

the northern edge of its distribution in New Zealand in the near

future due to ongoing warming and MHWs (Cornwall et al., 2023).

Field studies of the impacts on MHWs on macroalgae must rely

on naturally occurring events and cannot easily separate the effects

of MHWs from other environmental stressors, nor determine the

relative importance of MHW duration and intensity, thus limiting

our ability to use past events to forecast future change. Manipulative

experiments which simulate the impacts of MHWs are a useful tool

to predict how wild populations might respond to MHWs of a

specified duration or intensity. Previous laboratory studies on the

effects of simulated MHWs on M. pyrifera sporophytes have

typically focused on relatively short, intense heatwaves (up to 7

days, with temperature increases of 6−8°C relative to local mean

temperatures), which led to severe reductions in growth and

photosynthetic performance (see Sánchez-Barredo et al., 2020;

Umanzor et al., 2021). In this study, we used a laboratory

experiment to simulate longer heatwave periods (21 or 42 days)

at several different temperatures (ranging from 2–6°C above local

summer mean temperatures) to assess the impacts of heatwave

duration and intensity on juvenileM. pyrifera sporophytes. Our aim

was to investigate how M. pyrifera populations near their warm

distribution limit in New Zealand might respond to a broad range of

present-day and future MHW scenarios. We hypothesised that the

severity of any negative physiological impacts of the heatwave

would be positively correlated with both the temperature and

duration of the heatwave.
2 Materials and methods

2.1 Spore collection and culture

Macrocystis pyrifera sori were collected by snorkelling at low

tide, at depths of 1–2 meters, at Kau Bay in Wellington Harbour

(41.29°S, 174.83°E) in the North Island of New Zealand in July

2022. Sori from several individuals were kept chilled and taken

immediately to the National Institute of Water and Atmosphere

Research’s (NIWA) experimental facility. These sori were rinsed

with freshwater and patted dry, then refrigerated overnight at 4°C.

The next day, sori were cut into 1–2 cm² fragments, then immersed

in F/2 nutrient-enriched filtered seawater (Guillard, 1975; AusAqua,

Wallaroo, South Australia) for about an hour to stimulate spore

release. The seawater slurry containing spores was then poured over

sheets of plastic mesh immersed in 400 mL glass jars. This mesh was

left undisturbed at 15°C for a few days to allow the spores to settle.

After settlement, the mesh sheets were transferred to tanks in a

temperature-controlled room set at 15°C. Light panels provided

steady illumination of around 30 mmol photons m−2 s−1 during a

12-hour photoperiod, giving a total daily dose of 1.3 mol photons

m−2. Seawater was sterilised using a 30 W UV steriliser (Trevoli,

Auckland, New Zealand) and recirculated in a 295 L capacity
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system, which included a 250 L sump and seaweed growth tanks

with an internal volume of 45 L. Water temperature was maintained

using a 500 W drop-in aquarium element (EHEIM, Deizisau,

Germany) located in the sump, which was controlled by a CN74

temperature controller (Omega Engineering, Norwalk,

Connecticut, USA) and an electronic relay coupled to a PT100

temperature probe (Omega Engineering, Norwalk, Connecticut,

USA), also located in the sump. Tank temperature was monitored

using HOBO Pendant MX Data Loggers (Onset, Bourne,

Massachusetts, USA).

Sporophytes with a blade length of at least 20 mmwere removed

from their original mesh sheets and re-attached to separate pieces of

mesh. Sinkers were tied to these mesh parcels to keep the

sporophytes submerged. The sporophytes were left for two weeks

to re-attach and were then transferred to the experimental tanks at

Victoria University of Wellington Coastal Ecology Laboratory on 4

October 2022.
2.2 Experimental conditions

The experimental setup consisted of eight 70 L (250 × 470 × 610

mm) water baths, each connected to a separate header tank. Each

water bath contained four separate 4 L (155 × 235 × 105 mm)

experimental tanks. Seawater was pumped continuously into the

header tanks from the nearby Taputeranga Marine Reserve, on the

south coast of Wellington. To stabilise pH, air was bubbled

constantly through the header tanks via air stones (Aqua One,

Ingleburn, Australia) connected to an LP-100 aerator pump (Resun,

Shenzhen, China). Seawater flowed from the headers into the

experimental tanks, then out into the water baths, at a rate of

approximately 120 mL per minute. Each tank contained a 2 W, 150

L h-1 HL-BT100B immersible pump (Hailea, Guangdong, China) to

maintain water motion. Tanks were scrubbed weekly to remove

epiphytic algae.

The tanks were illuminated on a daily 12:12 light/dark cycle,

with customised Zeus 70 LED panels (Ledzeal, Shenzhen, China).

These turned on at 08:00, increased steadily in intensity to a peak at

13:00 of around 65 mmol m−2 s−1 of photons of photosynthetically

active radiation (PAR), remained at that peak value for two hours,

then steadily decreased in intensity until they turned off at 20:00.

The LED panels predominantly emitted light in the blue and green

regions of the visible light spectrum, to mimic the light spectrum

available in subtidal habitats approximately 2 m deep along

Wellington’s south coast (see Krieger et al., 2023a). The tanks

received a total daily irradiance dose of approximately 1.6 mol

m−2 d−1. The water baths were surrounded by a mesh curtain to

limit exposure to external light sources.

Apex temperature probes (Neptune Systems, Morgan Hill,

California, USA) were placed in one tank within each water bath.

Probes were calibrated weekly against a reference thermometer

(FisherBrand, Waltham, Massachusetts, USA). The temperature

probes were connected via an Apex Classic programmable control

unit (Neptune Systems, Morgan Hill, California, USA) to 300 W

submersible heaters (Weipro, Zhongshan, China) within the water

baths, and to Hailea 300A 1/4HP external chillers (Hailea,
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Guangdong, China) connected to the header tanks. Heaters or

chillers were automatically switched on if the temperature in the

tanks exceeded 0.1°C below or 0.2°C above the target temperature.

To ensure consistency, temperature and pH were measured

weekly in the experimental tanks, water baths, and header tanks.

Temperature was measured using a Fisherbrand Traceable

Kangaroo Thermometer (FisherBrand, Waltham, Massachusetts,

USA) and pH was determined potentiometrically using an

IntelliCAL PHC101 glass electrode (Hach New Zealand,

Auckland, New Zealand). This electrode was calibrated weekly

against artificial seawater with Tris buffer added (Dickson et al.,

2007). The R package “seacarb” (Gattuso et al., 2021) was used to

convert the tank pH readings from millivolts to the total scale.

Water samples for nitrogen analysis were collected at two-week

intervals during the heatwave period, using methods derived from

Pritchard et al. (2015). Samples were taken using a 50 mL syringe

and passed through a 0.45 mm filter into a labelled 50 mL plastic

storage vial, then frozen at −20°C. A separate syringe and filter

were used for each sample. The seawater samples were later

analysed at the University of Otago’s Portobello Marine

Laboratory. A Lachat QuikChem 8500 Series 2 FIA auto

analyser (Hach New Zealand, Auckland, New Zealand) was used

to calculate the concentrations of NOx ions and ammonia using

methods derived from Strickland and Parsons (1972).

Two sporophytes were allocated to each experimental tank,

giving a total of eight for each experimental treatment and 16

controls. The largest and smallest individuals were apportioned as

evenly as possible between treatments. Sporophytes were scrubbed

gently with a toothbrush once a week to remove epiphytic algae and

dead tissue. Sporophytes were marked as dead if the blade

completely eroded or detached from the meristem. The initial

lengths of the sporophytes ranged from 20 to 95 mm, with an

arithmetic mean value of 50.5 ± 2.2 mm (mean ± standard error).
2.3 Heatwave simulations

Initially, all tanks were kept at a stable temperature of 16°C for

three weeks to allow the sporophytes to acclimate to laboratory

conditions. The 16°C treatment was chosen to approximate the

historical mean summer (i.e., December to February) sea surface

temperature throughout the Wellington region (Booth, 1975;

Krieger et al., 2023b; Supplementary Figure S1). Six different

heatwave scenarios were simulated. Three of the water baths were

subjected to three-week heatwaves, at temperatures of 18°C, 20°C,

and 22°C respectively. Another three water baths were subjected to

six-week heatwaves at the same temperatures. The remaining two

water baths were kept at 16°C to act as controls. The experimental

treatments were interspersed systematically to minimise the impact

of any non-treatment effects (i.e., A-3 from Hurlbert, 1984). At the

start of the simulated heatwaves, temperatures were increased by

increments of 2°C day-1, after Sánchez-Barredo et al. (2020) and

Umanzor et al. (2021), in order to simulate a rapid onset MHW;

temperatures were then lowered by 2°C daily increments at the end

of each heatwave period. After the three-week heatwave period, the
Frontiers in Marine Science 0422
sporophytes were left in the tanks for another three weeks to

examine whether they showed signs of recovery.

To compare the experimental scenarios to real-world MHWs,

daily sea surface temperature data for the greater Wellington region

were obtained from the National Oceanic and Atmospheric

Administration ’s “Optimum Interpolation Sea Surface

Temperature V2.1” dataset (Reynolds and Banzon, 2008). A

baseline seasonal climatology from 1982 to 2011 was constructed

for the greater Wellington region using the R package “heatwaveR”

(Schlegel and Smit, 2021) to detect and analyse MHWs that

occurred within the region between 1982 and 2023. These data

are summarised in the Supplementary Material (Supplementary

Figures S1–S3). Throughout the last three decades, there has been

an average of 3.2 MHW events per year throughout the greater

Wellington region, with a mean duration of 16 days and a mean

temperature anomaly of 1.27°C (Supplementary Figures S1–S3).

The 18°C treatment, or a temperature anomaly of approximately

2°C, is most similar to the mean temperatures during previous

summer MHW events within the Wel l ington region

(Supplementary Figures S1, S2). The 20°C treatment is more

representative of maximum temperature anomalies of 3–4°C

during more recent, strong heatwaves (Supplementary Figures S1,

S2). The 22°C treatment, corresponding to a 6°C temperature

anomaly, represents a worst-case scenario that has not yet

occurred in this region, but could become more plausible under

the most severe greenhouse gas emissions scenarios modelled by

Behrens et al. (2022). Numerous MHWs within the Wellington

region have lasted longer than three weeks, while a few events have

surpassed six weeks (Supplementary Figure S3).
2.4 Kelp performance

2.4.1 Growth
Sporophyte length measurements were taken weekly during the

acclimation and experimental phases. Length was measured to

the nearest millimetre using a ruler, from the base of the blade to

the apex. Relative growth rates (RGR; Kain and Jones, 1976) were

calculated on a week-to-week basis, and for the duration of the

acclimation and heatwave phases.

2.4.2 Chlorophyll fluorescence
Chlorophyll fluorescence was measured the day before the

heatwaves began, and on the days that the three- and six-week

heatwaves ended, using a Diving-PAM blue light fluorometer

(Walz, Effeltrich, Germany). The effective quantum efficiency of

photosystem II electron transport (Fv’/Fm’) was calculated by

measuring the ratio of variable fluorescence to maximum

fluorescence in the low-light adapted state. The fluorometer was

held near the base of the blade to ensure consistent assessment of

the youngest tissue.

2.4.3 Dissolved inorganic carbon uptake
Incubations were carried out during weeks two and five of the

heatwave period. Four sporophytes from each heatwave treatment
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and eight from the control treatment were assessed; one individual

was chosen at random from each experimental tank. For each

incubation, a 500 mL transparent plastic incubation chamber was

filled with water from an experimental tank, then one of the

sporophytes from that tank was placed into the chamber. A

stirrer bar was placed in the chamber’s lid, separated from the

sporophyte by a mesh grid. The chamber was then sealed

underwater to minimise the intrusion of air bubbles. The pH

within the tank was measured in millivolts using an IntelliCAL

PHC101 glass pH electrode (Hach New Zealand, Auckland, New

Zealand), and its temperature was recorded in °C using a

Fisherbrand Kangaroo Traceable Thermometer (FisherBrand,

Waltham, Massachusetts, USA). The chamber was then placed

upside-down on a 2mag MIXdrive 6 magnetic stirrer plate (2mag

AG, Munich, Germany) set to 200 revolutions per minute, within a

water bath set to the same temperature as the experimental tank,

under illumination of 70 μmol photons m−² s−1. After half an hour,

the chamber was taken out and the temperature and mV of the

water in the chamber were measured. The R package “seacarb”

(Gattuso et al., 2021) was later used to convert the pH readings to

the total scale using mV calibration in Tris buffer, following

Dickson et al. (2007).

A 150 mL water sample was taken from one of the header tanks

on each day that incubations were carried out, and salinity was

measured within that tank using an IntelliCAL CDC401

conductivity probe (Hach New Zealand, Auckland, New Zealand).

These water samples were filtered through 0.45 μm glass microfiber

discs (Whatman, Chalfont St. Giles, UK) and refrigerated in airtight

containers, then total alkalinity (TA) was determined through titration

and addition of 0.1 mol m-3 hydrochloric acid, according to the

methodology described in Huang et al. (2012), using an AS-ALK2

titrator (Apollo SciTech, Newark, Delaware, USA). Titrations were

carried out on at least three 25 mL subsamples from each water

sample. During each titration, the weight of water used was measured,

and the R package “seacarb” (Gattuso et al., 2021) was used to account

for the mass and salinity of the water sample and to increase the

accuracy of the calculated TA value. To assess the accuracy of these

results, titrations were also regularly carried out on Certified Reference

Material (University of California, San Diego, California, USA) with a

known TA value; the final calculated TA values for the reference

material remained within 95% confidence intervals.

The temperature, pH, and TA data were used to estimate the

change in total dissolved inorganic carbon (DIC) during each

incubation, using the CO2SYS Microsoft Office Excel program

(Pierrot et al., 2011). DIC uptake rates were then standardised

against the surface area of the sporophytes. This was estimated by

taking a photograph of each sporophyte with a 1 cm grid in the

background and counting the number of grid squares fully or

partially covered by each specimen.

2.4.4 Pigment content
After three weeks in heatwave conditions, tissue sub-samples

were taken from half of the sporophytes in the control and three-

week heatwave treatments. Four individuals were sampled from

each heatwave treatment, as well as eight from the control. Sub-

samples were not taken from the sporophytes on which incubations
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individuals. One small sporophyte was sacrificed at this

timepoint; the other sporophytes were returned to their tanks.

After the six-week heatwave ended, all surviving sporophytes

were sampled. Sub-samples were taken using a scalpel blade,

which was rinsed with ethanol between sampling to prevent

cross-contamination. These sub-samples were patted dry, then

sealed in Eppendorf tubes, which were wrapped in aluminium foil

and frozen at −20°C.

Chlorophyll a, chlorophyll c, and fucoxanthin were extracted

from these tissue samples using methods adapted from Seely et al.

(1972). Each sub-sample was patted dry, and around 0.05 g of tissue

was weighed out, then subsequently crushed in a mortar and pestle

with a known volume of dimethyl sulfoxide (DMSO). More DMSO

was used to wash the ground algal tissue into a 1.5 mL Eppendorf

tube, which was put on ice for at least 10 minutes, then centrifuged

at 13200 RPM for 10 minutes in a 5145 D centrifuge (Eppendorf,

Hamburg, Germany). After centrifuging, the supernatant was

transferred to a quartz cuvette (Starna Scientific, Hainault, UK).

More DMSO was added to fill the cuvette if necessary; the total

volume of DMSO used was in proportion to the mass of tissue used,

and did not exceed 1.5 mL per sample. A UV-1900i

spectrophotometer (Shimadzu, Kyoto, Japan) was used to

measure the absorbance of each sample between 400 and 700 nm

and to generate a spectrogram. Before running the algal samples, a

“blank” cuvette containing DMSO only was run to correct for the

absorbance of DMSO alone. Cuvettes were rinsed with DMSO

between samples to avoid cross-contamination.

Acetone was then added to the pellets. The volume of acetone

added to each sample was equal to the volume of DMSO used for

the same sample. The Eppendorf tubes were shaken for 1 minute,

then left on ice. After 1.5–3 hours, the Eppendorf tubes were

centrifuged at 13200 rpm for 10 minutes. The supernatant was

then transferred to a quartz cuvette, and spectrophotometry was

carried out. Another “blank” sample was run to account for the

absorbance of acetone, and cuvettes were rinsed with acetone

between samples. Peak and trough values from the spectrograms

were used to calculate the amount of chlorophyll a (Equation 1),

chlorophyll c (Equation 2), and fucoxanthin (Equation 3) per gram

of tissue in each sample.

Equation 1:

Chlorophyll   a =  
( P1A
72:8 +

P1D
73:6 )� V

m
(1)

Equation 2:

Chlorophyll   c =  
( T1D+T2D−0:297�P1D

61:8 + T1A+T2A−0:3�P1A
62:2 )� V

m
(2)

Equation 3:

Fucoxanthin =
( P2D−0:722(T1D+T2D−0:297�P1D)+0:049�P1D

130 + P2A−1:239(T1A+T2A−0:3�P1A)+0:027�P1A
141 )� V

m

(3)

Where m is the wet weight of the tissue sample in grams, V is

the total volume of DMSO or acetone used in litres, P1 is the

maximum absorbance value at the long-wavelength peak of the
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spectrograph (around 660 nm) in DMSO (P1D) or acetone (P1A), P2
is the maximum absorbance value at the short-wavelength peak

(around 450 nm), T1 is the minimum absorbance value at the

trough nearest the long-wavelength peak, and T2 is the minimum

absorbance value at the trough nearest the short-wavelength peak.

2.4.5 Total % carbon, % nitrogen, and stable
isotope values

Tissue samples were collected for stable isotope analysis from all

surviving sporophytes after the conclusion of the six-week

experimental period. These samples were wrapped in aluminium foil

and left overnight in an Isotherm convection oven (Esco Lifesciences

Group, Singapore) at 75°C. The dried samples were then homogenised

by grinding into powder with amortar and pestle, and were then sealed

in Eppendorf tubes. The mortar and pestle were rinsed with water and

dried between samples to avoid cross-contamination. Six additional

sporophytes were sampled from the culture facility at NIWA to obtain

baseline values and evaluate whether the different seawater sources

utilised by NIWA and the Coastal Ecology Laboratory could have

contributed to any differences in stable isotope ratios.

Stable isotope analyses were carried out at the NIWA

Environmental and Ecological Stable Isotope Analytical Facility in

Wellington. Dried algal samples were weighed to the nearest

microgram. Samples were analysed for total carbon content (%), total

nitrogen content (%), d13C, and d15N values using a DELTA V Plus

continuous flow isotope ratio mass spectrometer, linked to a Flash 2000

elemental analyser using a MAS200R autosampler (Thermo Fisher

Scientific, Bremen, Germany). International reference materials were

used to normalise the stable isotope values, after Paul et al. (2007).

Sample d15N values were two-point normalised using stable isotope data

from the daily analysis of National Institute of Standards and

Technology (NIST)8573 USGS40 L-glutamic acid and NIST8548

International Atomic Energy Agency (IAEA)-N2 ammonium sulfate.

Sample d13C values were two-point normalised using stable isotope data

from the daily analysis of NIST8573 USGS40 L-Glutamic acid and

USGS74 L-Valine #2. Data from the daily analysis of the following

materials were used to check accuracy and precision: USGS65 Glycine

(values of both d15N and d13C) and L-Valine #2 USGS74 (value of d15N
only). Precision was determined by the repeat analysis of a working

laboratory standardDL-Leucine (DL-2-Amino-4-methylpentanoic acid,

C6H13NO2, Lot 127H1084, Sigma, Australia). Repeat analysis of

international reference standards produced data accurate to within

0.5% for % carbon and % nitrogen, and 0.2 ‰ for d13C and d15N
values; and a precision of better than 0.2% for % carbon and % nitrogen,

and 0.1 ‰ for d13C and d15N values.
2.5 Statistical analysis

The Shapiro-Wilk test (Shapiro and Wilk, 1965) was used to

determine that the datasets from this experiment were normally

distributed. The R package “lme4” (Bates et al., 2023) was then used

to fit linear mixed-effects models to the data for growth rates, Fv’/

Fm’, DIC uptake, pigment content, total % carbon and nitrogen, and

d15N and d13C values. Temperature and heatwave duration were
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treated as fixed effects, while water bath was treated as a random

effect. Only the effects of temperature were assessed for the data

collected during the first three-week heatwave phase. The effects of

temperature, duration, and their interaction were assessed for the

data collected during the latter phase of the experiment, when the

three-week heatwaves had concluded while the six-week heatwaves

continued. Analysis of Variance (ANOVA) was then run on these

models, and p-values were generated using the R package “car” (Fox

et al., 2023). The R package “multcomp” (Hothorn et al., 2023) was

used to run pairwise Tukey’s tests (Tukey, 1949) on the models to

assess significant differences between individual treatments.
3 Results

Raw experimental data is accessible in the Supplementary Material

(“Supplementary Data”, Sheet 1–5). Temperature, pH, and nitrogen

availability data are available in the Supplementary Material

(“Supplementary Figures and Tables”, Supplementary Tables S1, S2).
3.1 Survival and physical appearance

By the third week in heatwave conditions, several of the

sporophytes within the 22°C treatments were visibly bleached, and

their blades were eroding rapidly (Supplementary Material, Images

S1A–D). Bleaching was also visible after five weeks at 20°C. Five

sporophytes died during the experiment. All deaths occurred in the 22°

C treatments, during the second half of the heatwave period; two

during week 4, and three during week 6. Four of the sporophytes within

the 22°C, six-week heatwave treatment died in total, giving a mortality

rate of 50%, while one sporophyte died within the 22°C, three-week

treatment, with a mortality rate of 12.5%.2
3.2 Growth

There was no consistent variation in mean RGR between

treatments during the acclimation period (Figure 1; p = 0.847).

Heatwave temperature had a significant negative relationship with

RGR during the three-week heatwave period (Figure 2; p< 0.001,

Table 1). This effect was noticeable after just one week in heatwave

conditions (Figure 1). By the end of the three-week heatwave, many of

the sporophytes in heatwave conditions were eroding faster than they

grew, including almost all of the sporophytes at 22°C. Mean RGR over

the three-week heatwave period were 1.46 ± 0.28 in the control

treatment, 0.17 ± 0.54 at 18°C, 0.50 ± 0.33 at 20°C, and −1.06 ± 0.23

at 22°C (mean ± SE) (Figure 2). The 22°C treatment was the only

treatment with a significantly lower mean RGR than the control

treatment over the three-week heatwave period (p< 0.001, Figure 2).

Heatwave temperature continued to have a significant negative

effect on RGR during the last three weeks of the experimental period

(p< 0.001, Table 1). Heatwave duration also had a significant effect

on long-term RGR during this period (p< 0.001, Table 1), as the

sporophytes which remained in heatwave conditions for six weeks
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continued to decline in length at a more rapid rate than those which

were returned to 16°C after three weeks. The sporophytes returned

to 16°C had some signs of recovery, with their mean RGR becoming

more positive during weeks four and five (Figure 1; day 49–56). The

sporophytes from the 18°C, three-week heatwave treatment had a

particularly high mean RGR during this period (Figure 2).

Conversely, many of the sporophytes that had been kept at 20°C

and 22°C continued to erode, although less rapidly than those that

remained in heatwave conditions (Figure 2). There was no evidence

for an interactive effect of heatwave temperature and duration. Over

the final three weeks of the experimental period, the sporophytes in

the 22°C, six-week heatwave treatment had a significantly lower
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mean RGR than the control treatment (p = 0.001), as well as the

three-week heatwave treatments at 18°C and 20°C (p< 0.001 and p =

0.029, respectively, Figure 2).
3.3 Chlorophyll fluorescence

Overall, there was little variation in mean Fv’/Fm’ values between

treatments, except for the 22°C heatwave treatment, which had a

significantly lower mean (0.704 ± 0.012) than any of the other

treatments after three weeks in heatwave conditions (p = 0.001,

Figure 3). This difference decreased by the end of the six-week
FIGURE 2

Mean relative growth rates (with standard error) of Macrocystis pyrifera sporophytes over each three-week experimental phase. Significant (p< 0.05)
differences between treatments are indicated by bars, with p-values provided.
FIGURE 1

Mean relative growth rates (with standard error) of Macrocystis pyrifera sporophytes measured weekly over the experimental period.
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heatwave; at that point, the mean Fv’/Fm’ value of the surviving

sporophytes in the 22°C, six-week treatment was 0.731 ± 0.010,

which was noticeably, but not significantly, lower than the other

treatments (Figure 3). Overall, temperature had a significant impact

on Fv’/Fm’ during the first three weeks of heatwave conditions (p =

0.004, Table 1), but not the latter half of the experiment (p =

0.706, Table 1).
3.4 Dissolved inorganic carbon uptake

DIC uptake rates were extremely variable within treatments; the

sporophytes with the highest uptake rates tended to be those kept at
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18°C and 20°C (Figure 4). Mean DIC uptake rates remained

relatively stable between the heatwave and recovery periods in the

20°C and 22°C, three-week heatwave treatments. However, there

was a noticeable, but non-significant, decline in mean DIC uptake

rates within the 18°C, three-week treatment, from 2.50 ± 0.40 μmol

hr-1 cm-2 during the heatwave to 1.99 ± 0.79 μmol hr-1 cm-2 during

the recovery period. Conversely, mean DIC uptake rates increased

non-significantly between week two and week five among the

sporophytes subjected to six-week heatwaves (Figure 4). There

was no relationship between temperature and DIC uptake (p =

0.642, Table 2); however, heatwave duration did have a significant

impact on temperature, due to the increase in average DIC uptake

rates within the heatwave treatments during the second half of the
FIGURE 3

Mean effective quantum yield of photochemical energy conversion (Fv’/Fm’) (with standard error) of Macrocystis pyrifera sporophytes at the end of
each experimental phase. Significant (p< 0.05) differences between treatments are indicated by bars, with p-values provided.
TABLE 1 Predicted effects of heatwave temperature, duration, and their interaction on Macrocystis pyrifera sporophyte relative growth rates (RGR),
chlorophyll fluorescence (Fv’/Fm’), and pigment content, obtained by fitting linear mixed-effects models to the data collected during the
heatwave experiment.

Week 3 Week 6

Response variable T (°C) T (°C) D T:D

Response p-value Response p-value Response p-value Response p-value

RGR −0.361 0.001 −0.580 < 0.001 −0.992 < 0.001 −0.052 0.879

Fv’/Fm’ −0.005 0.004 0.002 0.706 0.124 0.964 −0.006 0.259

Chlorophyll a
(g kg-1 wet blade)

−0.008 0.465 −0.048 0.020 −0.866 0.129 0.042 0.094

Chlorophyll c
(g kg-1 wet blade)

0.002 0.198 0.004 0.500 0.092 0.984 -0.005 0.427

Fucoxanthin
(g kg-1 wet blade)

−0.012 0.337 −0.018 0.656 -0.620 0.570 0.031 0.136
RGR were calculated for each three-week experimental phase. Effects are expressed as the predicted change in each response variable resulting from a °C increase in temperature (T), the predicted
difference in each response variable for the sporophytes exposed to a six-week heatwave relative to those exposed to a three-week heatwave (D), and the predicted effects of T and D in
combination. Water bath was treated as a random effect. The p-values are provided and highlighted in grey, and statistically significant effects (p< 0.05) are indicated in bold.
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six-week heatwave (p = 0.039, Table 2). There were no statistically

significant differences between individual treatments.
3.5 Pigment content

After three weeks in heatwave conditions, the sporophytes kept at

22°C had relatively low mean chlorophyll a (0.123 ± 0.031 g kg-1) and

fucoxanthin (0.095 ± 0.025 g kg-1) content when compared to the other

temperature treatments (Figures 5A, C). Chlorophyll a and fucoxanthin

content were also slightly lower (chlorophyll a: 0.173 ± 0.051 g kg-1;

fucoxanthin: 0.193 ± 0.027 g kg-1) at 18°C and higher (chlorophyll a:

0.233 ± 0.010 g kg-1; fucoxanthin: 0.252 ± 0.010 g kg-1) at 20°C when

compared to the control treatment (chlorophyll a: 0.204 ± 0.028 g kg-1;

fucoxanthin: 0.211 ± 0.027 g kg-1). However, these differences were not

statistically significant (Figures 5A, C; Table 1). Temperature had no

effect on chlorophyll c content (Figure 5B; Table 1).

The mean pigment content of the tissue samples taken at week

six was about twice as high as the week three samples. This trend

was consistent across all treatments, including controls, and all

three pigments analysed. The week six samples generally showed
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less variation in pigmentation between treatments when compared

to the week three samples (Figures 5D–F). However, the

sporophytes from the 18°C, three-week heatwave treatment had

noticeably higher mean chlorophyll a (0.524 ± 0.028 g kg-1) and

fucoxanthin (0.443 ± 0.092 g kg-1) content than the control

treatment (chlorophyll a: 0.398 ± 0.026 g kg-1; fucoxanthin: 0.353

± 0.019 g kg-1). The sporophytes from the 22°C treatments generally

had low chlorophyll a content when compared to the other

treatments, but this was not statistically significant. Overall, there

was statistical support for a decrease in chlorophyll a content with

increasing temperature at the six-week mark (p = 0.020, Table 1),

but not at the three-week mark (p = 0.465, Table 1). No statistically

significant relationships were found between heatwave temperature

or duration and chlorophyll c or fucoxanthin content (Table 1).
3.6 Total % carbon, % nitrogen, and stable
isotope values

There was a significant relationship between temperature and

total % carbon content (p = 0.009, Table 3), with mean values of %
TABLE 2 Predicted effects of heatwave temperature, duration, and their interaction on dissolved inorganic carbon (DIC) uptake rates of Macrocystis
pyrifera sporophytes, obtained by fitting linear mixed-effects models to the data collected during the heatwave experiment.

Week 2 Week 5

T (°C) T (°C) D T:D

Response p-value Response p-value Response p-value Response p-value

DIC uptake
(μmol hour-1

cm-2)

−0.047 0.642 −0.197 0.155 2.301 0.039 0.131 0.478
Effects are expressed as the predicted change in DIC uptake (μmol cm-2 hour-1) resulting from a 1°C increase in temperature (T), the predicted difference in DIC uptake for the sporophytes
exposed to a six-week heatwave relative to those exposed to a three-week heatwave (D), and the predicted effects of T and D in combination. Water bath was treated as a random effect. The p-
values are provided and highlighted in grey, and statistically significant effects (p< 0.05) are indicated in bold.
FIGURE 4

Mean dissolved inorganic carbon (DIC) uptake rates (with standard error) of Macrocystis pyrifera sporophytes at the mid-point of each
heatwave phase.
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carbon increasing consistently with temperature (Figure 6). The 20°

C and 22°C, six-week treatments both had significantly higher mean

% carbon values than the control treatment (p = 0.031 and p< 0.001,

respectively). No significant relationship was found between

temperature and % nitrogen content (p = 0.350, Table 3);

however, the 22°C, six-week treatment had significantly higher

mean % nitrogen (1.68 ± 0.12%) than the control and both 20°C

treatments (Figure 7). There was no consistent relationship between

temperature and mass carbon: nitrogen (C:N) ratios; the highest

values were found in the 20°C, six-week treatment (Figure 8; p =

0.720, Table 3). Stable isotope ratios were also affected significantly

by temperature, with both mean d13C values (Figure 9; p< 0.001,

Table 3) and d15N values (Figure 10; p = 0.043, Table 3) increasing

consistently with temperature among the sporophytes exposed to

six-week heatwaves. There were no significant differences in d15N
values between individual treatments, but the 22°C, six-week
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heatwave treatment had significantly higher d13C values than the

control or 18°C treatments (Figure 9).

The sporophytes that had been kept in heatwave conditions for

three weeks still showed some treatment effects at the end of their

recovery period, with elevated carbon content, d13C, and d15N
values relative to the control treatment. The 18°C, three-week

treatment was somewhat of an exception, as the sporophytes in

this treatment had slightly lower mean values of d13C (−25.25 ±

0.33‰) and d15N (5.08 ± 0.31‰) relative to the control treatment

(−24.90 ± 0.31‰ and 5.28 ± 0.18‰, respectively), however, these

differences are within the range of analytical precision of the stable

isotope measurements. Overall, total % carbon content and d13C
values followed similar trends with temperature (Figures 6, 9), and

subsequent modelling found evidence of a linear relationship

between the two variables (p = 0.009). Conversely, there was no

strong evidence of a relationship between total % nitrogen content
TABLE 3 Predicted effects of heatwave temperature, duration, and their interaction on % carbon and nitrogen content and d13C and d15N values,
obtained by fitting linear mixed-effects models to the data obtained from stable isotope analysis of Macrocystis pyrifera blade tissue samples taken at
the conclusion of the experiment.

Response variable T (°C) D T:D

Response p-value Response p-value Response p-value

Total carbon (%) 0.196 0.009 −10.328 0.226 0.571 0.116

Total nitrogen (%) −0.002 0.350 −1.157 0.991 0.058 0.307

Mass C:N ratio 0.182 0.720 4.524 0.622 −0.188 0.704

d13C (‰) 0.304 < 0.001 −1.490 0.158 0.075 0.678

d15N (‰) 0.146 0.043 0.792 0.241 −0.024 0.858
Effects are expressed as the predicted change in each response variable resulting from a 1°C increase in temperature (T), the predicted difference in each response variable for the sporophytes
exposed to a six-week heatwave relative to those exposed to a three-week heatwave (D), and the predicted effects of T and D in combination. Water bath was treated as a random effect. The p-
values are provided and highlighted in grey, and statistically significant effects (p< 0.05) are indicated in bold.
FIGURE 5

Mean concentrations of (A) chlorophyll a, (B) chlorophyll c, and (C) fucoxanthin (with standard error) in Macrocystis pyrifera blade tissue after three
weeks in heatwave conditions, and mean concentrations of (D) chlorophyll a, (E) chlorophyll c, and (F) fucoxanthin (with standard error) in blade
tissue at the end of the experiment.
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and d15N values (p = 0.074). There was no evidence that heatwave

duration had any significant effects on total % carbon, total %

nitrogen, d13C, or d15N values (Table 3).

The % carbon and % nitrogen content and carbon and nitrogen

stable isotope ratios of the sporophytes sampled directly from the

culture tanks at NIWA are summarized in the Supplementary
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Material (Supplementary Table S3). These sporophytes had a

mean d13C value of −29.94 ± 0.33‰, and a mean d15N value of

−3.22 ± 0.21‰; both values were much lower than any of the

experimental treatments. Conversely, the sporophytes in the culture

tanks had a mean % nitrogen content of 2.06 ± 0.05%, which was

much higher than any of the experimental treatments.
FIGURE 6

Mean % carbon content (with standard error) of Macrocystis pyrifera
blade tissue at the end of the experiment. Significant (p< 0.05)
differences between treatments are indicated by bars, with p-
values provided.
FIGURE 7

Mean % nitrogen content (with standard error) of Macrocystis
pyrifera blade tissue at the end of the experiment. Significant (p<
0.05) differences between treatments are indicated by bars, with p-
values provided.
FIGURE 8

Mean mass carbon:nitrogen (C:N) ratio, with standard error, of
Macrocystis pyrifera blade tissue at the end of the experiment.
Significant (p< 0.05) differences between treatments are indicated
by bars, with p-values provided.
FIGURE 9

Mean d13C values (with standard error) of Macrocystis pyrifera blade
tissue at the end of the experiment. Significant (p< 0.05) differences
between treatments are indicated by bars, with p-values provided.
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4 Discussion

4.1 Impacts of heatwave intensity
and duration

Increasing both the duration and intensity of marine heatwave

treatments used in this experiment had significant negative impacts

on the growth of Macrocystis pyrifera sporophytes. The 22°C

heatwave treatments, representing a 6°C temperature anomaly

relative to summer average temperatures, had larger impacts on

growth than any of the other treatments, and were the only

treatments with consistent negative impacts on survival,

photosynthetic performance, or pigmentation. These findings

suggest that local M. pyrifera populations experience a tipping

point near 22°C, beyond which significant physiological impacts,

including photosynthetic impairment and death, become much

more probable.

The longer heatwave had significantly greater impacts on blade

growth rates than the shorter heatwave; however, the impacts of

elevated temperatures on Fv’/Fm’ and pigmentation became less

pronounced over time. In the case of the 22°C treatment, this may

have been the result of the less thermally resistant sporophytes

dying over the course of the longer heatwave, rather than a sign of

acclimatisation to the increased temperature. We were unable to

assess the recovery rates of the sporophytes exposed to six-week

heatwaves due to time constraints; it would be worthwhile for future

studies to further investigate the capacity for M. pyrifera

sporophytes to recover from the effects of long-lasting heatwaves.

The M. pyrifera sporophytes used in this experiment were able

to recover from thermal stress to some extent. The sporophytes

exposed to an 18°C heatwave for three weeks appeared to be in good

health by the end of the recovery period, growing more rapidly than
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the control treatment. The DIC uptake rates from this experiment,

as well as previous studies (Fernández et al., 2020), suggest that M.

pyrifera sporophytes have higher thermal optima for

photosynthesis, at water temperatures between 17–20°C, than for

growth. Therefore, the sporophytes in the 18°C treatments may

have been able to photosynthesise more rapidly and accumulate

greater quantities of stored carbohydrates during the heatwave.

Since they were less severely affected by thermal stress than the

higher temperature treatments, they may have been better able to

direct these reserves towards growth and pigment production

during their recovery period.
4.2 Trends and comparisons to
previous findings

The consistent negative relationship between heatwave

temperature and M. pyrifera growth rates that was observed

during this study supports trends found in previous laboratory

experiments. Temperatures higher than 14°C are consistently

associated with reduced blade growth in M. pyrifera (Mabin et al.,

2019; Fernández et al., 2020; Umanzor et al., 2021); our results

mirror this trend, though we did not use a 14°C treatment here, as

our experiment was designed to assess responses to MHWs at local

summer temperatures. Our findings also support field observations

which linked a MHW event, with widespread temperature

anomalies of 1–4°C (equivalent to our 18°C and 20°C

treatments), to declines in M. pyrifera canopy cover throughout

southern New Zealand (Tait et al., 2021). Negative impacts on

survival, chlorophyll fluorescence, and photosynthetic performance

are often only observed at or above 20°C (Mabin et al., 2019;

Fernández et al., 2020; Sánchez-Barredo et al., 2020; Fernández

et al., 2021; Umanzor et al., 2021), as was the case in our

experiment, although they have sometimes been reported at lower

temperatures (Brown et al., 2014; Fernández et al., 2020). The

threshold for 100% mortality in young M. pyrifera blades from

Tasmania, Australia was between 24°C and 27°C (Fernández et al.,

2020). The Wellington population could have a similar survival

threshold; the study site used by Fernández et al. (2020) had a mean

summer sea surface temperature of around 16°C between 1980 and

2010 (Butler et al., 2020), which is similar to Wellington’s mean

summer sea surface temperatures. Around 30% of M. pyrifera

gametophytes from New Zealand survived at 23.6°C (Le et al.,

2024). Further studies would be required to confirm where the

survival threshold lies for sporophytes from the Wellington M.

pyrifera population. The effect of temperature on pigmentation in

M. pyrifera is variable (e.g., Mabin et al., 2019; Fernández et al.,

2020; Sánchez-Barredo et al., 2020; Umanzor et al., 2021); it has

been suggested that related stressors, such as nutrient depletion,

could be a more important driver of tissue bleaching in M. pyrifera

than temperature itself (Sánchez-Barredo et al., 2020).

The increased uptake of the heavier isotopes 13C and 15N byM.

pyrifera sporophytes at elevated temperatures in this study is

unusual when compared to previous studies (e.g., Fernández

et al., 2020). We considered the alternative hypothesis that the

seawater source used by NIWA, where the sporophytes were
FIGURE 10

Mean d15N values (with standard error) of Macrocystis pyrifera blade
tissue at the end of the experiment.
frontiersin.org

https://doi.org/10.3389/fmars.2024.1423595
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Bunting et al. 10.3389/fmars.2024.1423595
originally cultured, might have had higher concentrations of these

heavy isotopes than the source used by the Wellington University

Coastal Ecology Laboratory, and the heat-stressed sporophytes

might have preferentially retained these heavier isotopes due to

their reduced growth and tissue turnover rates. However, the

sporophytes grown under pre-experimental conditions at NIWA

had much lower mean d13C and d15N values than the sporophytes

used in the experiment. Hence, the increases in d13C and d15N
values with temperature within our experiment are likely a direct

response to the simulated heatwaves.

Macroalgal d13C values between -30 and -10 ‰ theoretically

indicate the use of both bicarbonate and carbon dioxide (CO2) as

carbon sources (Raven et al., 2002). In macroalgae, an increase in

photosynthetic rates can drive increased bicarbonate uptake to satisfy

the carbon requirements of photosynthesis (Cornelisen et al., 2007).

Direct uptake of bicarbonate is achieved by using CO2-concentrating

mechanisms (CCMs) (Raven et al., 2002; Meyer and Griffiths, 2013;

Sun et al., 2023), which are present inM. pyrifera (Hepburn et al., 2011;

Fernández et al., 2014). Although CCMs allow macroalgae to take up

and store more carbon, they are energetically and nutrient costly, and

these demands can limit the growth of CCM-using species in

unfavourable environmental conditions (Hepburn et al., 2011). The

correlation between total % carbon content and d13C values within our

samples suggests that the relationship between temperature and carbon

content may have been driven by increased bicarbonate uptake at

higher temperatures. Thermal stress could perhaps have driven these

kelp sporophytes to respond by actively taking up and storing more

DIC. Since kelp blade tissue strength is compromised at high

temperatures (Simonson et al., 2015), perhaps the sporophytes

exposed to simulated MHWs in our experiment prioritised storage

of carbohydrates instead of blade growth. These stored reserves could

theoretically have been used to increase blade elongation rates if

temperatures reduced, to compensate for reduced growth during the

heatwave. The strategy of directing more energy towards DIC uptake

and carbon storage could be disadvantageous in the long term, as the

high energetic costs associated with CCM operation might limit the

energy available for other necessary processes such as photosystem

operation and pigment synthesis. Follow-up studies would be necessary

to confirm whether, and how, thisM. pyrifera population is capable of

upregulating carbon storage in response to thermal stress. Perhaps this

could be examined by measuring the uptake rates of different carbon

species by kelp sporophytes, or by assessing the expression of genes

related to carbon acquisition and storage. In other kelp species, some

transcripts related to cell division and photosynthesis can be

downregulated under thermal stress (Hara et al., 2022; Liesner et al.,

2022), perhaps indicating a trade-off between acclimatisation to heat

stress and the efficiency of some biological processes.
4.3 Wider context

Some M. pyrifera populations are relatively resistant to MHWs

in the field, even when temperature anomalies exceed 4°C (Reed

et al., 2016). Even when severe canopy losses occur, M. pyrifera

stands can recover to their original canopy area and stem density
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within several months to two years after disturbance (Dayton et al.,

1992; Edwards, 2004; Edwards and Hernández-Carmona, 2005;

O’Connor and Anderson, 2010; Tolimieri et al., 2023). Juvenile

recruitment plays a central role in this recovery process (Graham

et al., 1997); recruitment success can also serve as an indicator of the

overall health and resilience of kelp forests (Barrientos et al., 2024).

Therefore, the ability of juveniles to survive MHWs, as

demonstrated by this study, is likely a key contributing factor to

the rapid recovery rates of M. pyrifera stands. However, kelp

population dynamics are affected by more traits than survivorship

rates alone. Larger M. pyrifera juveniles are much more likely to

survive, potentially because they are better able to compete for light

and less vulnerable to density-dependent mortality (Dean et al.,

1989). Our findings suggest that long-lasting MHWs could limit the

growth rates of new recruits. This means that even if they survive

the direct effects of thermal stress, these sporophytes may be more

susceptible to mortality due to other stressors, such as competition

for light (Dean et al., 1989). Thus, reduced growth, and increased

susceptibility to other stressors, could ultimately delay or prevent

canopy recovery. In the field, kelp population recovery can be

suppressed by long-lasting heatwaves (Arafeh-Dalmau et al., 2019),

as well as other stressors including grazing (Dayton et al., 1992;

Edwards, 2019) and wave exposure (Graham et al., 1997). MHWs

can also create more favourable conditions for more heat-tolerant

algal species, leading to increased competition (Wernberg et al.,

2016; Atkinson et al., 2020), which would likely place additional

pressure on thermally-stressed kelp recruits. In New Zealand, for

instance, MHWs could allow the invasive kelp Undaria pinnatifida

to outcompete native species (James and Shears, 2016).

Additionally, the deaths of less heat-tolerant individuals during

MHWs can lead to reductions in genetic diversity within kelp

populations. While this process of “genetic tropicalisation” may

lead to greater thermal tolerance at a population level, it also

increases the risk of inbreeding depression, and may cause a

reduction in overall adaptive capacity (Coleman et al., 2020). This

could ultimately limit the ability of kelp populations to adapt to

other threats, such as novel diseases or pollutants.

A 2°C anomaly relative to mean sea surface temperatures (i.e.,

the 18°C treatment) is the most representative of a typical MHW

event in the Wellington region (Supplementary Figures S1, S2), as

well as MHW events throughout New Zealand as a whole (Behrens

et al., 2022; MetOcean Solutions, 2023). However, mean and

maximum MHW intensities have been trending upwards within

New Zealand for the past two decades (Montie et al., 2023), and are

predicted to continue increasing (Behrens et al., 2022). The

Wellington region has already experienced temperature spikes

higher than 20°C during MHWs (Supplementary Figure S1), with

some sites within the region experiencing temperatures of up to

21.5°C (Krieger et al., 2023c). Modelling suggests that long-lasting

MHWs exceeding 22°C are presently unlikely to occur in the

regions where M. pyrifera grows within New Zealand, but these

could become more likely within the next century if global

greenhouse gas emissions continue to increase (Behrens et al.,

2022). Additionally, most models of historical and future

occurrence of MHWs in New Zealand rely on satellite data
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collected over broad spatial scales. The shallow coastal

environments where kelp grows are highly dynamic; temperatures

within these habitats could exceed MHW thresholds without being

recognised as a regional MHW. Therefore, it is valuable to

understand how M. pyrifera would respond to temperatures

higher than those recorded during contemporary MHW events.

Temperature anomalies greater than 4°C have been recorded

during MHWs in New Zealand, mostly in southern regions

(MetOcean Solutions, 2023). There is some evidence that warm-

edge kelp populations may be more resilient to increased

temperatures than higher-latitude populations (Ladah, 2000;

Muth et al., 2019; Hollarsmith et al., 2020; King et al., 2019;

Liesner et al., 2020), though there are exceptions (Cavanaugh

et al., 2019). Therefore, populations from New Zealand’s South

Island, whereM. pyrifera is most widespread (Shaffer and Rovellini,

2020), could theoretically be less heat-tolerant than the warm-edge

population studied here. Assessing the vulnerability of M. pyrifera

populations from southern New Zealand to MHWs would be a

worthwhile direction for further research.
4.4 Conclusion

This work demonstrates that marine heatwaves can reduce the

growth rates of juvenileM. pyrifera sporophytes in New Zealand, while

heatwaves surpassing 22°C have far more severe impacts, including

potentially reducing the photosynthetic efficiency and survivorship of

juveniles. Long-lasting heatwaves could suppress recruitment and

growth of juvenile kelp, potentially jeopardising the long-term stability

of local populations. However, the kelp studied here demonstrated a

high capacity for recovery after heatwaves, suggesting that populations

can persist if key temperature thresholds are not exceeded. If sea surface

temperatures around New Zealand continue to rise, and temperature

anomalies exceeding 6°C become more prevalent throughout central

and southern New Zealand, M. pyrifera could face a greater risk of

population collapse and local extinction.
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Ladah, L. B., and Zertuche-González, J. A. (2007). Survival of microscopic stages of a
perennial kelp (Macrocystis pyrifera) from the center and the southern extreme of its
range in the Northern Hemisphere after exposure to simulated El Niño stress. Mar.
Biol. 152, 677–686. doi: 10.1007/s00227-007-0723-z

Le, D. M. (2022). Thermal tolerance of the giant kelpMacrocystis pyrifera. University
of Otago, Dunedin, New Zealand. Available at: http://hdl.handle.net/10523/13600.

Le, D. M., Desmond, M. J., Pritchard, D. W., and Hepburn, C. D. (2022). Effect of
temperature on sporulation and spore development of giant kelp (Macrocystis pyrifera).
PloS One 17, e0278268. doi: 10.1371/journal.pone.0278268

Le, D. M., Desmond, M. J., Pritchard, D. W., and Hepburn, C. D. (2024). Thermal
threshold for fertilisation and gametophyte survivorship of the giant kelp Macrocystis
pyrifera. Mar. Ecol. Prog. Ser. 734, 23–33. doi: 10.3354/meps14559

Leathers, T., King, N. G., Foggo, A., and Smale, D. A. (2023). Marine heatwave
duration and intensity interact to reduce physiological tipping points of kelp species
with contrasting thermal affinities. Ann. Bot. 133 (1), 51–60. doi: 10.1093/aob/mcad172

Lebrun, A., Comeau, S., Gazeau, F., and Gattuso, J.-P. (2022). Impact of climate
change on Arctic macroalgal communities. Global Planet. Change 219, 103980.
doi: 10.1016/j.gloplacha.2022.103980

Li, J., Bergman, K., Thomas, J.-B. E., Gao, Y., and Gröndahl, F. (2023). Life Cycle
Assessment of a large commercial kelp farm in Shandong, China. Sci. Total Environ.
903, 166861. doi: 10.1016/j.scitotenv.2023.166861

Liesner, D., Fouqueau, L., Valero, M., Roleda, M. Y., Pearson, G. A., Bischof, K., et al.
(2020). Heat stress responses and population genetics of the kelp Laminaria digitata
(Phaeophyceae) across latitudes reveal differentiation among North Atlantic
populations. Ecol. Evol. 10, 9144–9177. doi: 10.1002/ece3.6569

Liesner, D., Pearson, G. A., Bartsch, I., Rana, S., Harms, L., Heinrich, S., et al. (2022).
Increased heat resilience of intraspecific outbred compared to inbred lineages in the
kelp Laminaria digitata: physiology and transcriptomics. Front. Mar. Sci. 9.
doi: 10.3389/fmars.2022.838793

Ling, S. D., Johnson, C. R., Frusher, S. D., and Ridgway, K. R. (2009). Overfishing
reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl.
Acad. Sci. 106, 22341–22345. doi: 10.1073/pnas.0907529106

Løvås, S. M., and Tørum, A. (2001). Effect of the kelp Laminaria hyperborea upon
sand dune erosion and water particle velocities. Coast. Eng. 44, 37–63. doi: 10.1016/
S0378-3839(01)00021-7

Mabin, C. J. T., Johnson, C. R., and Wright, J. T. (2019). Physiological response to
temperature, light, and nitrates in the giant kelp Macrocystis pyrifera from Tasmania,
Australia. Mar. Ecol. Prog. Ser. 614, 1–19. doi: 10.3354/meps12900

McPherson, M. L., Finger, D. J. I., Housekeeper, H. F., Bell, T. W., Carr, M. H.,
Rogers-Bennett, L., et al. (2021). Large-scale shift in the structure of a kelp forest
ecosystem co-occurs with an epizootic and marine heatwave. Commun. Biol. 4, 298.
doi: 10.1038/s42003-021-01827-6

MetOcean Solutions (2023). Recent marine heatwaves in Aotearoa New Zealand
(Wellington, New Zealand: Meteorological Service of New Zealand Ltd). Available at:
https://www.moanaproject.org/recent-marine-heatwaves.

Meyer, M., and Griffiths, H. (2013). Origins and diversity of eukaryotic CO2-
concentrating mechanisms: lessons for the future. J. Exp. Bot. 64, 769–786.
doi: 10.1093/jxb/ers390

Miller, R. J., Page, H. M., and Reed, D. C. (2015). Trophic versus structural effects of a
marine foundation species, giant kelp (Macrocystis pyrifera). Oecologia 179, 1199–1209.
doi: 10.1007/s00442-015-3441-0

Montie, S., Thoral, F., Smith, R. O., Cook, F., Tait, L. W., Pinkerton, M. H., et al.
(2023). Seasonal trends in marine heatwaves highlight vulnerable coastal ecoregions
and historic change points in New Zealand.New Z. J. Mar. Freshw. Res. 58 (2), 274–299.
doi: 10.1080/00288330.2023.2218102
Frontiers in Marine Science 1634
Mora-Soto, A., Palacios, M., Macaya, E. C., Gómez, I., Huovinen, P., Pérez-Matus, A.,
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Back to the past: long-term
persistence of bull kelp
forests in the Strait of
Georgia, Salish Sea, Canada
Alejandra Mora-Soto1*, Sarah Schroeder1, Lianna Gendall 1,2,
Alena Wachmann1, Gita Narayan3, Silven Read1,
Isobel Pearsall4, Emily Rubidge5, Joanne Lessard6,
Kathryn Martell 7 and Maycira Costa1*

1Spectral Lab, Department of Geography, University of Victoria, Victoria, BC, Canada, 2School of
Biological Sciences and Oceans Institute, University of Western Australia, Perth, WA, Australia,
3Fisheries and Aquaculture Department, Vancouver Island University, Nanaimo, BC, Canada, 4Marine
Science Program, Pacific Salmon Foundation, Vancouver, BC, Canada, 5Institute of Ocean Sciences,
Fisheries and Oceans Canada, Sidney, BC, Canada, 6Pacific Biological Station, Fisheries and Oceans
Canada, Nanaimo, BC, Canada, 7Islands Trust Conservancy, Victoria, BC, Canada
The Salish Sea, a dynamic system of straits, fjords, and channels in southwestern

British Columbia, is home to ecologically and culturally important bull kelp

(Nereocystis luetkeana) forests. Yet the long-term fluctuations in the area and

the persistence of this pivotal coastal marine habitat are unknown. Using very

high-resolution satellite imagery to map kelp forests over two decades, we

present the spatial changes in kelp forest area within the Salish Sea, before

(2002 to 2013) and after (2014 to 2022) the ‘Blob,’ an anomalously warm period in

the Northeast Pacific. This analysis was spatially constrained by local

environmental conditions. Based on nearshore sea surface temperatures (SSTs)

from four decades (1984–2022), we found two periods of distinct increases in

SST, one starting in 2000 and another in 2014. Further, the highest SST anomalies

occurred on warmer coastlines in the enclosed inlets and the Strait of Georgia,

while smaller anomalies were found on colder coastlines near the Strait of Juan

de Fuca and the Discovery Passage. The total area of bull kelp forests from 2014

to 2022 has decreased compared to 2002 to 2013, particularly in the northern

sector of the Salish Sea. Using the satellite-derived kelp data, we also present an

analysis of kelp persistence compared with historical distribution of kelp forests

depicted on British Admiralty Nautical Charts from 1858 to 1956. This analysis

shows that warm, sheltered areas experienced a considerable decrease in

persistence of kelp beds when compared to satellite-derived distribution of

modern kelp, confirming a century-scale loss. In particular, the presence of

kelp forests in the Strait of Georgia and on the warmest coasts has decreased

considerably over the century, likely due to warming temperatures. While the
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coldest coasts to the south have maintained their centennial persistence, the

northern Salish Sea requires further research to understand its current dynamics.

This research contributes to a wider understanding of temporal and spatial

factors for kelp from the regional perspective of the Salish Sea.
KEYWORDS

Nereocystis luetkeana, bull kelp, persistence, Salish Sea, Blob, satellite imagery
1 Introduction

In natural history, persistence is understood as a population or

species that did not become locally extinct during a given period of

time, or if it did, it recolonized the area within certain reference

bounds (Connell and Sousa, 1983). This definition recognizes the

inherent variability of ecosystems in the real world, which can be

particularly extreme in marine environments (Dayton et al., 1998).

Abiotic factors such as patch size, rocky substrate, or wave velocity

can increase the overall persistence of foundation species like kelp

forests (Young et al., 2016). However, the lack of long-term,

continuous surveys may underestimate the roles that biological

and physical interactions plus anthropogenic impacts have exerted

on them (Dayton et al., 1998). Paleoecological, archaeological, and

historical proxies can provide some clues about kelp forest presence

in the past (Jackson et al., 2001), allowing for the creation of

accurate baselines of ecological persistence and informed

perspectives toward effective management and conservation of

this crucial habitat.

Monitoring kelp forests is becoming crucial for several reasons,

such as their role as habitats for a multiplicity of organisms,

including some of economic importance like salmon (Shaffer,

2003). They also play an important role in atmospheric carbon

removal and sequestration (Pedersen et al., 2021) and have critical

value to local and indigenous communities (Turner, 2001; United

Nations Environment Programme, 2023; Wernberg et al., 2019),

among other existential values (United Nations Environment

Programme, 2023). Therefore, monitoring efforts have been

conducted to estimate their trends globally (Krumhansl et al.,

2016) and, specifically in British Columbia, kelps are conservation

priorities for informing the development of a regional marine

protected area (MPA) network (Gale et al., 2019; MPA Network

BC Northern Shelf Initiative, 2023), currently under development.

In order to create a kelp monitoring framework, it is important

to define the spatial and temporal bounds of the targeted kelp

habitat. For example, choosing to study when kelp forests changed

from a non-intervened starting point is challenging to achieve since

the coast has seen continuous human occupation for more than

20,000 years in the North American Pacific region (Erlandson et al.,

2007). However, there is an overall consensus that during the

industrial era, several types of disturbances—such as overfishing,
0237
mechanical destruction of habitats, and climate change—have

altered these ecosystems deeply (Dayton et al., 1998; Jackson

et al., 2001; Steneck et al., 2002).

For a broader perspective to determine a starting point before

the effects of the industrial era, important information sources are

the traditional knowledge of local First Nations (Kobluk et al., 2021)

and archaeological records (Dillehay et al., 2008; Erlandson et al.,

2007). Historical records can also be used to document kelp

distribution and help establish a baseline that goes back to the

times of European exploration. This is the case for historical floating

kelp records based on 1850s British Admiralty Charts in British

Columbia (Costa et al., 2020) and Washington State (Berry et al.,

2021; Pfister et al., 2017).

For the most recent past in the Northeast Pacific, satellite

imagery has provided estimations of change from the decade of

1970s (Gendall et al., in prep.; Mora-Soto et al., 2024), 1980s (Bell

et al., 2015, 2020, 2023; Cavanaugh et al., 2011; Hamilton et al.,

2020; Man et al., in prep; McPherson et al., 2021; Nijland et al.,

2019), and from the decade of 2000s on (Cavanaugh et al., 2019;

Mora-Soto et al., 2024; Schroeder et al., 2020). The gap between the

historical and the contemporary (satellite-derived) kelp records in

British Columbia has not been filled yet.

A recent paper by Mora-Soto et al. (2024) analyzed the

resilience of bull kelp (Nereocystis luetkeana) forests from 2005 to

2022 in the southern Salish Sea of British Columbia, including a

sentinel site at the southern end of Vancouver Island with data

spanning back to 1972. There, kelp forests generally showed signs of

resilience to increased temperatures, probably due to a combination

of fewer marine heatwaves and a higher frequency of extreme wind-

wave motion during the growth season from 2020 to 2022 (Mora-

Soto et al., 2024). This study, nevertheless, lacks perspective on the

long-term trends in the greater Salish Sea ecosystem. Century-old

kelp records from an adjacent region, the Strait of Juan de Fuca,

confirmed that kelp forests have generally persisted, although they

have diminished in the eastern limit (Pfister et al., 2017). In

southern Puget Sound, bull kelp distribution has shown losses of

up to 96% compared to an 1878 baseline (Berry et al., 2021). Sea

surface temperature in the Salish Sea has shown an increase over the

century (Pfister et al., 2017) by 0.57°C per decade (Amos et al.,

2014), with an even warmer anomaly event in the North Pacific

called the ‘Blob’ of 2014–2019 (Bond et al., 2015) and analogous
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events (Chen et al., 2021) that maintained lingering effects even in

deep water (Jackson et al., 2018). As ocean warming is a clear threat

to kelp forest persistence globally (Schiel et al., 2004; Smale, 2020),

increasing nearshore temperatures may result in limited kelp

presence in the Salish Sea over a longer time frame.

Here, we complement the resilience work by Mora-Soto et al.

(2024) by analyzing the long-term persistence of floating kelp

canopies of Nereocystis luetkeana (kelp hereafter) in the Salish Sea

of British Columbia. The objectives of this research are twofold: to

determine the change in areal extent in modern kelp during the

period called the Blob and the years after (2014–2022) compared

with previously mapped kelp areas from 2002 to 2013; and to define

the long-term persistence of kelp over the century. For this analysis,

we used high-resolution satellite-derived kelp areal extent to

determine modern changes. Our long-term baseline is the oldest

published records of kelp presence based on British Admiralty

Nautical Charts from the late 19th to the early 20th centuries (Costa

et al., 2020). In order to facilitate comparisons within this

geographical area, the coastline was divided into clusters of

similar environmental conditions. Additionally, spring and

summer sea surface temperatures (SSTs) from 1984 to 2022 were

used to characterize nearshore SST trends along this extensive

coastline. This research adds crucial temporal and spatial data for

a more comprehensive understanding of the Salish Sea nearshore

ecosystem. Additionally, it brings a wider perspective about the

geographical diversity of nearshore ecosystems located along

temperate coastlines.
2 Methods

2.1 Environmental clusters

The study area spanned the British Columbian section of the

Salish Sea, from the southern limit of the Johnstone Strait (50.37° N)

to the Strait of Juan de Fuca (48.25°N) (Figure 1). In this research, the

northern Gulf lslands are Denman, Hornby, Lasqueti, and Texada,

whereas the southern Gulf Islands are Pender, Mayne, Salt Spring,

Galiano, Penelakut, Thetis, and Gabriola, among others not

mentioned in the text. The coastline of the study area was classified

by environmental clusters (clusters hereafter), defined by the spatial

distribution of abiotic factors, following a method developed by

Mora-Soto et al. (2024). The variables used in this study were:

nearshore Landsat-derived SST (Wachmann et al., 2024);

climatology in spring and summer (see section 2.2); fetch or

distance to the closest shore, measured as the linear distance in a

360° radius (Gregr et al., 2019); modelled wind speed at 10 m height,

expressed as m/seg, obtained from the Global Wind Atlas version 3.3

(Davis et al., 2023); modelled tidal current in m/s (Foreman et al.,

2004); and satellite-derived total suspended matter (TSM) for spring

and summer (mg/L) (Giannini et al., 2021). These variables were

sampled by alongshore points located 1000 m apart and 300 m away

from the coastline. Each variable was summarized by the mean of

values falling within a 100 m buffer around each point using zonal
Frontiers in Marine Science 0338
statistics. This dataset was clustered using K-means (Hartigan and

Wong, 1979) in R (R Core Team, 2024).

The environmental partition of the coastline resulted in five

clusters encompassing the main characteristics of the study area

(Figures 1, 2). Cluster 1 is the coldest coast, with a mean SST

climatology in spring and summer of 10.6°C and 12.0°C,

respectively. This cluster has the longest tidal amplitude current,

with a mean of 0.49 m/s. Cluster 2 is a moderately sheltered coast

with a mean fetch of 178 km and a slightly higher temperature, with

mean values of 12.2°C and 14.0°C for spring and summer,

respectively. Cluster 3, in the Strait of Georgia, has higher

temperatures (mean of 15.4°C and 18.3°C for spring and

summer) and is particularly exposed, resulting in higher fetch

(mean of 716 km) and wind speed (mean of 4.5 m/s). The highest

mean temperatures are found in Cluster 4 (15.8°C and 18.8°C for

spring and summer), as the most sheltered coast with a mean wind

speed of 2.5 m/s and fetch of 157 km. Cluster 5 is characterized for

having the highest TSM of the Salish Sea (mean of 15 mg/L), mainly

due to the plume of sediments from the Fraser River, thus

preventing this area from having any kelp presence. Lacking kelp

beds, Cluster 5 is not considered in the rest of the kelp analysis.
2.2 Nearshore SST

Nearshore sea surface temperature records for four decades

(1984–2022) were seasonally selected by spring and summer values

to characterize thermal conditions during the growth season for bull

kelp (Springer et al., 2010). Nearshore SST was obtained from

thermal bands from the Landsat constellation (courtesy of the U.S.

Geological Survey), available in Google Earth Engine (Gorelick

et al., 2017) and validated as a reliable source to obtain nearshore

temperature data (Wachmann et al., 2024). The temporal coverage

for each satellite was 1984–2011 for Landsat 5, 1999–2002 for

Landsat 7, 2013–2022 for Landsat 8, and 2022 for Landsat 9. SST

was extracted from an algorithm designed to integrate different

sensors and spatially overlapping imagery into a seasonal mosaic.

For every spring (May, June) and summer (July, August) season, the

image collection was filtered by selecting images of 50% or less

cloud coverage. The thermal pixel values from the filtered collection

were scaled, cloud-masked, and transformed from Kelvin to Celsius,

according to Wachmann et al. (2024). Two additional filters of

temperatures <7.0°C and the 30th percentile of the lowest values

were applied to discard any possible fog contamination on the

image. If the average value of the SST collection was within 1.5

standard deviations, it was considered a valid pixel to represent the

seasonal temperature; if not, the value was discarded.

The resultant seasonal mosaic was spatially joined to the sampling

points that were used as input for the cluster analysis (see section 2.1)

using the Spatial Join tool, whereas missing values were interpolated

using the Kriging tool in ArcGIS 10.8.1. As a result, seasonal temperature

per year from 1984 to 2022 was added to the table of attributes of the

points. Themean of this dataset was the seasonal climatology used in the

environmental cluster definition (see section 2.1).
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2.3 High-resolution satellite maps of kelp

Modern-day kelp, from 2002 to 2022 (modern kelp hereafter), was

mapped with archived high-resolution imagery of <6 m of spatial

resolution, which had a modest coverage for the northern sector of the

Salish Sea due to cloud cover and imagery quality (see annual coverage

in Supplementary Figures S1, S2). This dataset was grouped into two

main periods: 1) the years before the Blob (2002–2013), hereafter called

PreBlob, and 2) the period encompassing the Blob and subsequent

years (2014–2022), Blob+Post hereafter. Kelp was mapped by

classifying high-resolution remote sensing imagery from the summer

peak (July or August) at the lowest tide. The procedure follows previous

research (Cavanaugh et al., 2021; Gendall et al., 2023; Mora-Soto et al.,
Frontiers in Marine Science 0439
2024; Schroeder et al., 2019) and is summarized as follows: the

corrected and georeferenced image was masked from the lowest tide

mark to 40 m depth (low tide mask hereafter). Normalized Difference

Vegetation Index (NDVI; Kriegler et al., 1969), Green Normalized

Difference Vegetation Index (GNDVI; Gitelson et al., 1996), near-

infrared bands, and visible enhanced bands were segmented using the

multi-resolution segmentation tool and classified into kelp and no-kelp

classes in the eCognition software (Trimble Germany GmbH, 2021)

using expert knowledge. The outputs were maps of the maximum kelp

extent observed per year. These classifications were compared with

Google Earth imagery, ancillary data, and anecdotal observations.

Additional validation was conducted with in-situ mapping surveys

from different years, resulting in an accuracy of 70%.
FIGURE 1

Map of the study area, including the toponyms mentioned in this research. The coastline is classified into clusters defined by similar environmental
conditions, represented by points. The main polygons represent the total coverage of the high-resolution imagery available from 2002 to 2022.
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2.4 Historical kelp surveys from the 19th
and 20th centuries

The earliest written historical source of kelp distribution in

British Columbia comes from the British Admiralty Nautical

Charts (historical kelp hereafter), published from 1858 with

successive updates until 1956 (Costa et al., 2020). Kelp canopies

were often depicted as dendritic features, particularly in detailed,

fine-scale charts (<1:10,000), as they posed dangers to navigation

(Imray, 1870). Costa et al. (2020) georeferenced the complete
Frontiers in Marine Science 0540
dataset of nautical charts of the province, and kelp features were

digitized as a multi-polygon shapefile layer. The reliability of those

locations was then calculated by comparing them within a

bathymetry range of 40 m, resulting in 99% reliability. However,

given the diversity of scales and accuracies of the depicted kelp,

our analyses relied on their distributions instead of areal extents.

Non-kelp in the nautical charts may either represent a generalized

representation of coastlines or the actual absence of kelp. For this

reason, we only used the mapped historical kelp records for

this analysis.
FIGURE 2

Box and whisker plots characterizing the clusters by variables; the point in the center denotes the mean. SST, Sea Surface Temperature; TSM, Total
Suspended Matter. (A) SST climatology in spring (°C). (B) SST climatology in summer (°C). (C) Mean wind speed (m/s). (D) Tidal amplitude (m/s).
(E) TSM spring (mg/L). (F) TSM summer (mg/L). (G) Fetch (m). Cluster 1 represents the coldest areas with the highest current; Cluster 2 is moderately
cold and semi-sheltered; Cluster 3 is the exposed coast in the Strait of Georgia; and Cluster 4 is the most sheltered and warmest coast. Cluster 5 is
the coastline with the highest total suspended matter in the Salish Sea.
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2.5 Spatial and statistical analysis

Our spatial analysis was conducted by kelp area comparisons

between PreBlob and Blob+Post periods, nearshore SST anomalies

per cluster, and kelp persistence of historical versus modern

distributions (PreBlob and Blob+Post). To compare PreBlob with

Blob+Post periods, the intersecting kelp area between the PreBlob and

Blob+Post imagery coverages was chosen for analysis. The kelp layers

from both periods were spatially analyzed within the scale of segments

per cluster, as defined in section 2.1. The segments were defined by

the Voronoi distance among the alongshore points that intersected

with the low tide mask, consisting of polygons of ~1000 m in length.

Mapped kelp layers were spatially merged to the segments, adding

kelp area per segment (m2) as a variable. The non-parametric

Kruskal-Wallis chi-square test (Kruskal and Wallis, 1952) was used

to identify significant changes in kelp area per period (PreBlob and

Blob+Post) and cluster. Further, the study area was divided into a

northern sector and a southern sector to avoid underrepresentation of

the generally smaller northern kelp area.

The climatological baseline was defined by extracting the

averages of nearshore SSTs from 1984–2022 per cluster and

season (spring and summer) for the entire study area. The data

was compared with the seasonal nearshore SSTs per cluster by

calculating their anomalies as the difference between the nearshore

SST per cluster (by season and year) and their averages. The

Kruskal-Wallis test was used to examine temporal patterns that

could constitute specific periods of anomalies. For each period, the

difference in positive and negative values was used to describe

significant anomaly patterns and to identify differences

among clusters.

Lastly, the analysis was restricted to the historical distribution of

kelp beds from nautical charts to identify kelp persistence. If

historical kelp presence matched PreBlob or Blob+Post kelp

presence at the same segment, the segment was classified as

containing persistent kelp from historical to modern times. If not,

the segment was classified as non-persistent kelp.
3 Results

3.1 Nearshore SST anomalies and trends

Thermal anomalies of nearshore SST show three main periods

within the 1984–2022 baseline (Figures 3A, B). First, there was an

initial period of predominantly colder anomalies (0.0 to -3.0°C in

spring and summer) from 1984 until 1999. A second period,

starting in 2000, varied within a range of -3.0 to +3.0°C in spring

and -2.0 to +2.0°C in summer. Finally, a third period, starting in

2014, had a predominance of warmer anomalies in both the spring

and summer seasons.

Mean SSTs for Cluster 1, representing the coasts with the

coldest waters (see the temperatures in Table 1) and the highest

tidal currents, increased by 1.0°C for the spring and summer

seasons over four decades. Cluster 2, representing slightly warmer

and semi-sheltered coasts, expressed a mean increase of 1.6°C in the
Frontiers in Marine Science 0641
spring and 2.0°C in the summer. Cluster 3 had an average increase

of around 2.0°C for both seasons in the Strait of Georgia. Finally,

Cluster 4, representing the warmest and most sheltered coastlines,

showed an increase higher than 2.0°C in SSTs for both seasons. The

nearshore SST per cluster and season did not change significantly

from the northern to the southern sectors. All of the temporal

changes across periods were statistically significant (Kruskal-Wallis

test p-value <0.005).
3.2 High-resolution mapped kelp changes

The total kelp area mapped from 2002 to 2022 with high-

resolution imagery in the study area was 2,086 hectares. Kelp forests

largely dominated the southern sector from Burrard Inlet to

southern Vancouver Island (Figure 1). The northern sector had

more narrow kelp forests—smaller than one hectare per segment—

along the coastline of islands and channels (Figures 4A, B).

Specifically, the PreBlob distribution (Figure 4A) spanned the

complete Salish Sea; the larger areas in the southern sector (>6 ha)

were located along the coasts in the Strait of Juan de Fuca (Cluster 1

south), some semi-sheltered coasts in the southern Gulf Islands

(Cluster 2 south), and Burrard Inlet (Clusters 1 and 2 south). In

the northern sector, relatively small and narrow but continuous kelp

forests (between 1.5 to 6.0 ha) were present at Discovery Passage and

Quadra Island (Clusters 1 and 2 north). Small (<1.5 ha) and relatively

continuous forests were in the Strait of Georgia, particularly at

Galiano, Lasqueti, Texada, and Hornby Islands (Cluster 3 north),

while sparse kelps were found in more sheltered inlets (Cluster 4

north). The Blob+Post map (Figure 4B) showed a smaller and more

scattered distribution of kelp, with an absence of kelp in the central

Salish Sea (Strait of Georgia, Cluster 3 north), particularly around the

northern Gulf Islands, as well as the Discovery Passage and Quadra

Island (Clusters 1 and 2 north). In contrast, small but continuous kelp

beds were mapped in the southern Gulf Islands (Clusters 2 and 4

south). The distribution of kelp beds in Cluster 1 south in the Strait of

Juan de Fuca matched the PreBlob period, although the sizes of the

beds were relatively smaller.

Changes in kelp abundance were evident per cluster and sector

(north and south), either in the total area per cluster (Figure 5A) or as

area per segment (Figure 5B). The majority of the small kelp beds

mapped in the northern sector in the PreBlob period were not

detected in the Blob+Post period, meaning that kelp was not

present or the density of the canopies was too negligible to be

detected with the high-resolution remote sensing imagery. At the

cluster level (Figures 5A, B), the northern sector showed large and

significant declines in area per segment (Kruskal-Wallis test p-value

<0.05), in Cluster 1, Cluster 2, and Cluster 4 (1.8 ha PreBlob to 0.4 ha

in Blob+Post). Despite having less kelp presence in the northern Gulf

Islands, the total area in Cluster 3 remained relatively constant. In the

southern sector, Cluster 1 in the Strait of Juan de Fuca and Cluster 3

in the southern part of the Strait of Georgia had reductions in total

area from PreBlob to Blob+Post. In contrast, the semi-sheltered and

sheltered coasts of Clusters 2 and 4 in the interior of the Gulf Islands

showed significant increases in total area of kelp.
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3.3 Historical assessment of
kelp persistence

Historical kelp was compared to PreBlob and Blob+Post periods

to identify their persistence within a century time scale. The

historical kelp forests compared to the PreBlob distribution

(Figure 6A) showed a relatively high persistence of continuous

kelp beds in the extreme north (Discovery Passage and around
Frontiers in Marine Science 0742
Quadra Island, Clusters 1 and 2), the southern sector (Strait of Juan

de Fuca and southern Gulf Islands, Burrard Inlet), and some groups

of persistent kelp near Texada and Lasqueti Islands. Non-persistent

kelp areas dominated the central part of the Strait of Georgia

(Cluster 3). On the other hand, the historical distribution

compared to the Blob+Post period (Figure 6B) showed that non-

persistent kelp dominated the Strait of Georgia from the southern

Gulf Islands (Galiano, Penelakut, and Thetis Islands) to Quadra
B

A

FIGURE 3

Nearshore sea surface temperature anomalies per cluster in (A) spring and (B) summer; the values in the right corner show the total average from
1984 to 2022. Bold-dashed lines indicate the periods 1984–1999, 2000–2013 (PreBlob), and 2014–2022 (Blob+Post). The vertical line with * in
2002 indicates the initial year of the high-resolution mapping classification.
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Island in the northern extreme of the Salish Sea. Kelp persistence

remained in Burrard Inlet, southern Vancouver Island, and the

southern Gulf Islands.

Summarizing these changes at the Cluster and sector level

(Figure 6 and Table 2), the northern sector had a historical kelp

baseline presence of 179 segments. Among them, 45% were non-

persistent in the PreBlob period and 79% in the Blob+Post period. The

most exposed coastlines to high tidal current and colder temperatures

(Cluster 1), as well as more sheltered areas (Cluster 2), show a

moderate reduction in the PreBlob period that increased sharply in

Blob+Post, suggesting that an important reduction occurred in recent

years. On the exposed coasts in the Strait of Georgia (Cluster 3), a

small fraction of historical kelp persisted in the PreBlob period, which

also decreased for the Blob+Post. The warmest and most sheltered

areas (Cluster 4) had a small record of historical kelp that was reduced

to two and one segments in the PreBlob and Blob+Post

periods, respectively.
Frontiers in Marine Science 0843
In the southern sector (Figure 6 and Table 2), the coldest

coastlines show a noticeable long-term persistence among the 474

segments with historical kelp records. In general, 30% of the historical

kelp were non-persistent in the PreBlob and Blob+Post periods. Most

of the change occurred in the warmest and most sheltered areas of the

southern sector (Cluster 4) and some reductions in Clusters 2 and 3;

Cluster 1 remained stable in PreBlob and Blob+Post periods.
4 Discussion

4.1 General overview of kelp trends in the
Salish Sea

Nearshore ecosystems are spatially and temporally variable,

therefore, studies considering large spatial and temporal scales can

more accurately identify patterns of change in presence and
TABLE 1 Descriptive statistics of nearshore SST (°C) per season and cluster.

Season Cluster Period Min 1st Q. Median Mean 3rd Q. Max

Diff with
1984–
1999

S
p
ri
ng

1 1984–1999 9.6 10.0 10.2 10.2 10.3 10.8

2000–2013 9.5 10.2 10.6 10.7 11.4 12.1 0.5

2014–2022 10.3 11.1 11.2 11.2 11.4 12.1 1.0

2 1984–1999 10.9 11.3 11.5 11.5 11.9 12.2

2000–2013 10.1 11.8 12.4 12.3 13.0 13.6 0.8

2014–2022 12.0 12.5 13.4 13.2 13.6 14.1 1.6

3 1984–1999 12.9 13.8 14.5 14.6 15.0 17.6

2000–2013 13.0 14.5 15.0 15.6 16.8 18.3 1.0

2014–2022 14.1 15.8 16.4 16.4 16.9 18.2 1.7

4 1984–1999 13.1 13.9 15.0 14.8 15.3 17.8

2000–2013 13.2 15.1 16.3 16.0 17.4 18.4 1.2

2014–2022 15.4 16.0 17.3 17.1 17.6 18.7 2.3

S
um

m
er

1 1984–1999 10.3 11.1 11.3 11.3 11.4 12.7

2000–2013 10.8 11.9 12.4 12.1 12.6 12.8 0.8

2014–2022 12.4 12.7 12.9 12.9 13.1 13.4 1.6

2 1984–1999 11.3 13.1 13.3 13.3 13.7 14.1

2000–2013 13.1 13.8 14.4 14.1 14.5 15.2 0.9

2014–2022 14.8 15.1 15.3 15.3 15.5 16.2 2.0

3 1984–1999 15.5 16.6 17.3 17.3 18.0 19.3

2000–2013 17.7 18.1 18.4 18.5 18.9 20.4 1.2

2014–2022 17.6 19.2 20.1 19.7 20.4 20.6 2.4

4 1984–1999 16.6 17.3 17.9 17.8 18.2 19.0

2000–2013 17.3 18.4 18.9 19.0 19.5 20.7 1.2

2014–2022 19.1 20.1 20.3 20.3 20.6 21.5 2.5
Periods in this table are from 1984 to 1999; from 2000 to 2013; and from 2014 to 2022. The last column refers to the mean differences (°C) of 2000–2013 and 2014–2022 compared with
1984–1999.
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persistence (Steneck et al., 2002). In that regard, a dataset with long

enough time frame and/or broad enough area can help to provide an

understanding of kelp persistence beyond what is available to

monitor with satellite imagery. This study used high spatial

resolution satellite-derived kelp maps to compare areas and

presence of kelp in PreBlob versus Blob+Post periods, and it also

compared these periods with a baseline of historical nautical charts

and nearshore SST. Our aim was to provide the first large spatial and

temporal analysis of the long-term persistence of kelp in relation to

the most recent effects of the Blob in the Salish Sea, an enclosed sea

representing 3300 km of coastline of British Columbia, Canada. In

the last two decades, the PreBlob and Blob+Post periods show a

general decline in kelp area in the northern sector and stability in the

south. However, century-old records bring a new perspective on

these observations.

The comparison of the PreBlob with the Blob+Post period shows

that kelp in the northern section of the Salish Sea decreased

considerably in terms of area and distribution. A possible

explanation for these results is the magnitude of nearshore SST

anomalies using a baseline of four decades (1984–2022).

Our nearshore SST records display an acute span of higher

temperatures during and after the Blob anomaly of 2014–2019 (Blob

+Post period). However, this increase was already preceded by an

anomaly period of higher SST that started in 2000, which is in line with
Frontiers in Marine Science 0944
earlier studies (Amos et al., 2014). In the warmest coasts (Clusters 3 and

4), the Blob+Post spring and summer temperatures are 2.0°C higher

than in the 1984–1999 period. For these regions, these anomalies

represent temperatures near the lethal limit for gametophytes and blade

tissue (20.0°C), especially during long periods (Supratya et al., 2020;

Weigel et al., 2023). Consequently, we infer that the total area and likely

density of kelp canopies were negatively impacted, making them less

functional as forests.

To a certain extent, the local decrease of kelp in the warmer

coastlines of the Salish Sea can be related to similar events affecting the

broader Northeast Pacific region, including the Blob of 2014–2019.

Prolonged and extreme marine heatwaves exerted devastating changes

on kelp forests, shifting large areas of kelp habitat from previously

healthy ecosystems to infertile urchin barrens (Arafeh-Dalmau et al.,

2019; Cavanaugh et al., 2019; Rogers-Bennett and Catton, 2019).

Previous anomalous warming events combined with intense storm

activity and dampened nutrient levels meant a reduction in kelp growth

and life span (Dayton and Tegner, 1984; Tegner et al., 1997). Although

the nature and extent of kelp fluctuations have shown to be variable at

the local level (Cavanaugh et al., 2019; Mora-Soto et al., 2024; Starko

et al., 2022, 2024), absolute and relative high temperatures beyond a

stressing level are frequently associated with devastating kelp loss and

co-occurrence of cascading effects in the associated ecosystem

(Cavanaugh et al., 2019; McPherson et al., 2021).
FIGURE 4

Kelp area during: (A) PreBlob (2002–2013), and (B) Blob+Post (2014–2022). In (A, B), the size of the circles represents area per segment.
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In contrast, the coldest coasts in the northern sector, represented

by Clusters 1 and 2, were warmer by 1.0°C in spring and summer

compared to the 1984–1999 baseline but remained within the thermal

tolerance limit (<17.0°C) (Springer et al., 2010; Supratya et al., 2020).

The reasons for the kelp decrease in these clusters remain unclear and

require further studies. The southern section of the Salish Sea

remained relatively stable compared with the northern section.

Kelp beds changed in area from PreBlob to Blob+Post (-140.7 ha

in Cluster 1, +142.1 ha in Cluster 2, -10.8 ha in Cluster 3, +3.8 ha in

Cluster 4), but their distributions remained at similar locations,

suggesting that area fluctuations do not necessarily mean strong

drops in presence. This affirmation is supported by earlier research

on kelp resilience in this area (Mora-Soto et al., 2024).

Our data indicates that persistent kelp happens in Clusters 1

and 2 in the southern sector. This result could be explained by local
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variables, such as nutrient availability and currents. Nutrient

availability driven by freshwater inputs from the Fraser River

(Khangaonkar et al., 2021) and others could support kelp

presence, given that increased nitrogen positively increases the

density and size of sporophytes within the thermal tolerance limit

of 20.0°C (Weigel et al., 2023). In previous research, Berry et al.

(2021) have indicated that currents, either by superficial wave

velocity or deep-water mixing, play an important role in kelp

persistence in the Puget Sound region of the Salish Sea because

high hydrodynamic flows can bring nitrogen and other nutrients to

the kelp. As Clusters 1 and 2 south are represented by high tidal

amplitude current (m/s), high fetch, and lower SSTs, their behavior

support Berry et al. (2021)’s observations of kelp persistence at

highly dynamic and enhanced nutrient areas. In that case, high

fetch could be a complementary factor that helps sustain kelp
FIGURE 5

(A) Kelp total area by cluster corresponding to the northern and southern sectors of the Salish Sea during PreBlob (2002–2013) and Blob+Post
(2014–2022) periods. (B) Kelp area per coastal segment by period, cluster, and sector. The asterisks indicate significant differences (Kruskal-Wallis
test p-value <0.005).
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resilience under thermal stress and contributes to long-term

persistence (Mora-Soto et al., 2024; Pfister et al., 2017), as well as

the wind-motion regime that could potentially increase kelp

resilience (Mora-Soto et al., 2024). Lacking high fetch or large

freshwater inputs, Clusters 1 and 2 in the northern sector show less

resilient kelp than in the south.

4.2 Historical and ecological perspectives
of the Salish Sea kelp ecosystem

The persistence assessment, comparing PreBlob and Blob+Post

periods with the historical baseline, reveals that kelp beds in the
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northern sector of the Salish Sea are present in a minor portion of

the places where they existed in the late 19th and early 20th

centuries (55% and 21% of persistent kelp, respectively). Most of

the decreases in the northern sector occurred before the PreBlob

times in the warmest coastlines and the Strait of Georgia, while a

recent drop occurred in the Blob+Post times in the coldest and

semi-sheltered coastlines. On the other hand, the coldest coasts in

the southern sector, in the Strait of Juan de Fuca, show a constant

30% loss compared to the historical kelp baseline, implying that the

fluctuations of the last decades do not reflect significant changes in

long-term persistence. This result aligns with previous regional

research in Washington State (Berry et al., 2021; Pfister et al., 2017).
FIGURE 6

Comparison of historical long-term persistence of kelp from historical records with the (A) PreBlob period (2002–2013) and (B) the Blob+Post
period (2014–2022). In (A, B), crosses represent non-persistence and circles represent persistence classified by cluster, compared with the historical
nautical charts (1858–1956) from Costa et al., 2020. Donut charts at both sides summarize the persistence of the clusters in the northern (N) and
southern (S) sectors of the Salish Sea.
TABLE 2 Summary of the long-term persistence of segments in the northern and southern sectors of the Salish Sea (illustrated in Figure 6).

Sector Cluster Nautical Charts PreBlob Blob+Post

North = 179 segments

Cluster 1 22 (12%) 13 (7%) 6 (3%)

Cluster 2 61 (34%) 54 (30%) 18 (10%)

Cluster 3 85 (47%) 29 (16%) 12 (7%)

Cluster 4 11 (6%) 2 (1%) 1 (1%)

Non-persistent 81 (45%) 142 (79%)

South = 474 segments

Cluster 1 90 (19%) 90 (19%) 89 (19%)

Cluster 2 234 (49%) 177 (37%) 192 (41%)

Cluster 3 81 (17%) 57 (12%) 49 (10%)

Cluster 4 69 (15%) 8 (2%) 5 (1%)

Non-persistent 142 (30%) 139 (29%)
The numbers in PreBlob and Blob+Post refer to segments (%) compared to the Nautical Charts baseline.
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In previous research, Mora-Soto et al. (2024) showed that kelp

located around southern Vancouver Island and the southern Gulf

Islands (southern sector in this research) were resilient to marine

heatwaves that occurred between 2014 to 2019. In this study, we

show that in warmer locations like Cluster 4, a small fraction of kelp

had persisted compared to a century ago, indicating that the decline

happened before the decade of 2010. This finding largely agrees

with previous research spanning 145 years in the southern Puget

Sound, in the southern Salish Sea (Berry et al., 2021).

Other factors not analyzed in this research that may have played

a role in long-term trends of kelp persistence include the presence

(or lack) of nutrients (Weigel et al., 2023), plus effects of herbivory

from urchins (Estes et al., 2016; Estes and Duggins, 1995; Wilmers

et al., 2012) and kelp crabs (Dobkowski, 2017), with limited

presence of predators like sea otters (Enhydra lutris). Century-

long assessments have demonstrated that sea otters are drivers of

kelp recovery and area increases (Hollarsmith et al., 2024;

Nicholson et al., 2024). However, archaeological records show

that sea otters have been nearly absent in the Salish Sea for the

past 8,000 years (McKechnie and Wigen, 2011), contrary to the

Strait of Juan de Fuca and the western side of Vancouver Island

(Klinkenberg, 2012; Nichol et al., 2020). In contrast, spatial

distribution models of green, red, and purple urchins in the Salish

Sea built from species occurrence records from 2005–2021 (Nephin

et al., 2020), provided in the Supplementary Material, show a high

likelihood for the occurrence of red (Supplementary Figure S5) and

green (Supplementary Figure S6) urchins in both the northern and

the southern borders of the Salish Sea, matching kelp distribution

patterns. The urchin-kelp-sea otter link is a well-known factor

contributing to kelp persistence in the Northeast Pacific due to

the key ecological role of sea otters in exerting top-down control on

kelp herbivory (Estes et al., 2016; Estes and Duggins, 1995; Wilmers

et al., 2012). Since there is a relative lack of sea otters in the Salish

Sea, there may be more impact from urchins driving declines or

preventing recovery of kelp after stressing periods like the Blob, but

comparisons of past versus modern records to support that

correlation are missing. Further studies that take these dynamics

into account will need to be undertaken.

Another important factor to consider in future research is the

role of anthropogenic disturbances (Dayton et al., 1998; Steneck

et al., 2002) that could add more pressure on kelp already stressed

by ocean warming. Our data show that relatively century-persistent

kelp areas remain in highly populated areas like Burrard Inlet in

Vancouver (Cluster 2) and around the Greater Victoria area

(Clusters 1 and 2). However, a recent drop in kelp persistence

occurred near Quadra Island and the Discovery Passage (Clusters 1

and 2), which is a narrow pass within the Salish Sea extending to the

north of Vancouver Island, with relatively low levels of modern

human occupation. Still, there are visible effects of land use changes,

including logging, major shipping traffic routes, and industrial

activities, among others (Hollarsmith et al., 2022). This area

(Clusters 1 and 2 north) is characterized by the coldest clusters in

which, for the period of analysis, temperatures did not reach sub-

lethal levels for kelp growth (beyond 20.0°C; Supratya et al., 2020).

Evaluating the effects of mechanical removal of fronds, pollution, or

other types of disturbances could give more clues on the reasons for
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the decrease in remote and less populated areas, considering that

urbanization and other economic activities such as lumber

production and fishing have largely degraded ecosystems on the

eastern border of the Strait of Juan de Fuca and Puget Sound (Berry

et al., 2021; Pfister et al., 2017).
4.3 Use of remote sensing data to
determine long-term changes of kelp in
the study area

We acknowledge both the strengths and limitations of our

remote sensing approach. In the northern section, our modest

imagery coverage (limited by cloud cover and archived data

availability) for modern kelp was mainly represented by narrow

kelp beds along the coastline, while the more comprehensive

available imagery for the southern section showed more extensive

kelp beds. Narrow kelp beds are prevalent on the coastlines of

British Columbia, characterized by high-slope bathymetries and a

complex geography of islands and channels (Cavanaugh et al., 2021;

Gendall et al., 2023). In these areas, kelp beds are prone to more

uncertainties when mapped with medium-resolution (~30 m)

satellite imagery versus areas of low-slope bathymetries where

kelp areas are generally larger (Gendall et al., 2023; Mora-Soto

et al., 2021; Nijland et al., 2019). For this reason, this research used

only high-resolution imagery, which is limited in frequency but

brings the best results at detecting kelp in this region. In the

northern sector, the lack of modern kelp does not necessarily

mean that kelps have vanished completely; currents, tidal

fluctuations, water mixing, and the frequency of available imagery

could have played a role in reducing their detectability (Cavanaugh

et al., 2021; Gendall et al., 2023). Additionally, the semi-stochastic

nature of Nereocystis (Springer et al., 2010) can cause significant

variability in detecting kelp at the segment level (Mora-Soto et al.,

2024). Nevertheless, our protocol, which used very high-resolution

imagery compilation and a detailed mapping process, was designed

to detect and map conspicuous canopies. Therefore, our results

suggest that the northern canopies are not large or dense enough to

form functional underwater forests as found in the more extensive

kelp beds in the southern section of the study area. Our assemblage

of several coastline segments at the cluster level suggests that even

with very high-resolution imagery, there are fewer chances to detect

fringing kelp beds in modern records.
4.4 Management implications

The results of this study can inform present and future

management needs, such as managing kelp harvesting, identifying

potential marine protected areas, and prioritizing kelp restoration

projects in British Columbia and the Northeast Pacific

(Cavanaugh et al., 2021). Specifically, this research emphasizes that

realistic expectations for future restoration projects will be better

informed by considering both the historical baseline and local

environmental conditions. As the Strait of Georgia coastline and

most sheltered coastlines (Clusters 3 and 4) predominantly show
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non-persistent kelp in modern times compared to historical kelp,

restoring these habitats to reach the historical baseline may be a

difficult task, considering the present environmental conditions. The

recent kelp decrease in the northern area could be the focus of more

urgent attention, while the extreme southern reaches of the study area

do not seem to be of immediate concern unless environmental

conditions change. Further studies are recommended to understand

the causes of losses in remote areas, while more experimental in-situ

data could lead to a new chapter on the conservation and restoration

of coastal ecosystems in the Salish Sea.
5 Conclusion

This research explored the long-term persistence of kelp forests

in the Salish Sea of British Columbia, Canada, by comparing remote

sensing-derived modern snapshots (2002–2013 and 2014–2022),

representing PreBlob and Blob+Post conditions, respectively, and

contrasting them with historical kelp from the late 19th to early

20th centuries. These data were complemented with nearshore SST

from a baseline of four decades (1984–2022). Nearshore

temperatures showed a warming trend, with two anomaly periods

starting in 2000 and 2014. Further, higher temperature anomalies

occurred in warmer areas than in colder areas. The colder coasts in

the southern section, from southern Vancouver Island to the Gulf

Islands, fluctuated in kelp area but remained persistent in

comparison with the historical record. Kelp area also fluctuated

along the coasts of the Strait of Georgia and the most sheltered

coastlines, but kelp beds only persisted in small fractions compared

to their historical distributions. On the coldest coasts of the

northern section, kelp was seldom found in the 2014–2022

period, suggesting that more studies are required to understand

the underlying reasons for the area decrease along these coastlines.

Overall, given the clear evidence of increasing temperatures and

previous literature showing the adverse effects of temperature on

Nereocystis, further studies should consider nearshore SST among

the root causes that negatively impact kelp persistence. These data

could help to determine the best strategies for conserving and

restoring this ecosystem in present and future times.
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Ocean warming enhances
the competitive advantage
of Ulva prolifera over a golden
tide alga, Sargassum horneri
under eutrophication
Hailong Wu1,2*, Jiankai Zhang1,2, He Li1,2, Sufang Li1,2,
Chen Pan1,2, Lefei Yi1,2, Juntian Xu1,2 and Peimin He2,3

1Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University,
Lianyungang, China, 2Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu
Ocean University, Lianyungang, China, 3College of Marine Ecology and Environment, Shanghai Ocean
University, Shanghai, China
Recent years have seen the Ulva green tide and Sargassum golden tide become

commonplace in the coastal waters of China. However, little is known on how the

combination of ocean warming and eutrophication would affect the interaction of

green and golden tides. In this study, we cultured the green tide alga Ulva prolifera

and the golden tide alga Sargassum horneri under different temperatures (5, 10, 15,

20, 25, and 30°C) and two nutrient concentrations (Low nutrient, LN: 5 mM-nitrate

and 0.5 mM-phosphate; High nutrient, HN: 500 mM-N and 50 mM-P) in both

monoculture and coculture systems to investigate the physiological responses and

their competitive relationships. In monocultures, the growth of U. prolifera and

S. horneri, along with pigment concentrations and photosynthesis, increased with

rising temperature, reaching a plateau at 15 - 25°C. However, when the

temperature increased to 30°C, the growth of U. prolifera and S. horneri

decreased abruptly, with S. horneri even suffering death. In coculture, the

growth of both U. prolifera and S. horneri was inhibited compared to the

monoculture, with the greatest decline observed in S. horneri at 25°C under two

nutrient conditions. Our results show that U. prolifera would outcompete

S. horneri under high temperature in coculture, suggesting that ocean warming

would enhance the competitive advantage of green tide over golden tide under

eutrophication in the future.
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1 Introduction

Macroalgae, as important primary producers in the coastal

zone, contribute about 1521 Tg C yr−1 of the global net primary

production (Krause-Jensen and Duarte, 2016). Through carbon

fixation, sequestration and habitat provision, they often play

significantly structural roles in coastal ecosystems (Machado and

Oliveira, 2024). Due to continued anthropogenic pressure on

marine systems, many macroalgae species have been harmed by

environmental changes and face an uncertain future, jeopardizing

their important contributions to global productivity and ecosystem

service (Hanley et al., 2024).

It is widely recognized that human-induced greenhouse gas

emissions (CO2, methane, etc.) have been the primary driver of

global warming since the industrial revolution (IPCC, 2019). Over

90% of the anthropogenic increase in heat is absorbed by the global

ocean, leading to ocean warming (Durack et al., 2014). The average sea

surface temperature has risen by 1.1°C up to now, and is predicted to

further increase 1.9 – 5.8°C by the end of the century based on

Representative Concentration Pathway (RCP) 8.5 (Gattuso et al., 2015;

IPCC, 2019). In addition, macroalgae also experience diurnal and

seasonal temperature variations in the nature (Martin and Gattuso,

2009). It is well established that temperature directly influences

intracellular biochemical reactions and metabolic activities, thereby

affecting their survival and growth (Zou and Gao, 2014b; Chen et al.,

2018). In a suitable range, increased temperature is beneficial for the

photosynthesis and growth of macroalgae (Fan et al., 2014; Zou and

Gao, 2014a). However, temperatures below or above this range can

slow down growth or even cause cellular damage and mortality. High

temperatures could trigger the Ulva to generate more reactive oxygen

species (ROS), resulting in oxidative damage to proteins, lipids, DNA

within cells (Apel and Hirt, 2004). Macroalgae have also evolved ROS

scavenging mechanisms to cope with the potential damage from ROS,

such as superoxide dismutase (SOD), ascorbate peroxidase (APX),

glutathione peroxidase (GPX) and catalase (CAT) (Apel and Hirt,

2004). A previous report found that temperatures exceed 35°C inhibit

the photosynthetic performance of Ulva conglobate (Zou and Gao,

2014a). Moreover, tropical seaweeds such as Wurdemannia miniata

and Valonia utricularis were found to be induced to death under

extreme high temperatures (Pakker and Breeman, 1996). Moreover,

ocean warming will expand the distribution of tropical and temperate

species towards the poles (Dıéz et al., 2012), which was supported by a

model prediction (Jueterbock et al., 2013).

Under the influence of prevalently industrial and agricultural

activities, the anthropogenic input of nutrients (e. g. nitrogen and

phosphorus) into coastal waters has continuously increased, leading

to eutrophication, a trend that threatens the health of coastal

ecosystems worldwide (Paerl et al., 2014; Malone and Newton,

2020). It has been shown that elevated nutrient concentrations

reduce biodiversity, impact marine habitats, and alter ecosystem

functions (Yang et al., 2005; Liu et al., 2009; Mineur et al., 2015).

Nitrogen is a crucial component of many compounds, such as the

photosynthetic enzyme, Rubisco (Dawes and Koch, 1990); and

phosphorus is also an essential element in macroalgal cells for

genetic replication, energy supply, and growth metabolism (Zer

and Ohad, 2003). The increase in nitrogen and phosphorus
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concentrations could enhance the growth and biomass of

macroalgae (Li et al., 2016). Moreover, temperature also influences

algal growth rates by affecting nutrient uptake rates through the

nitrate reductase activity (NRA) (Granbom et al., 2004). Feng et al.

(2021) also reported that NRA of Ulva prolifera, associated with

growth, decreased with the rising temperature while exceeded 15°C.

Macroalgae have competitive advantages due to its higher

affinity with nutrients, leading to frequently outbreaks of

macroalgae blooms (Luo et al., 2012). As an opportunistically

growing macroalgal genera, Ulva is strongly adaptable to

environment which has high tolerance for variable temperature,

salinity, irradiance and nutrient concentrations (Taylor et al., 2001;

Xiao et al., 2016). At optimal temperature conditions from April to

June, detached green patches of Ulva species had grown rapidly and

accumulated to form green tides, transporting northward into the

Yellow Sea of China by monsoon winds and ocean currents (Sun

et al., 2008; Liu et al., 2010, 2021b; Xia et al., 2024). Meanwhile,

Large-scale drifting biomass of Sargassum horneri, known as golden

tides, has been reported in the Yellow Sea since 2010 (Liu et al.,

2018; Su et al., 2018; Wang et al., 2023). These drifting macroalgae

originally grew on the rocky bottom. In spring, the increased

buoyancy provided by their numerous sporophyte vesicles could

keep the plants floating after detachment, forming the drifting

biomass on the sea surface (Yoshida, 1963). Sargassum from the

coastal region of Shandong Peninsula drifted southwards in winter

months, while Sargassum along the coast of Zhejiang Province

drifted northwards in summer, eventually reaching the largest

Pyropia aquaculture area of China (Xing et al., 2017; Zhang et al.,

2019; Liu et al., 2021a). In recent years, green and golden tides have

frequently occurred simultaneously due to excessive nutrient

inputs, resulting in a severely economic and ecological disaster in

China’s coastal waters (Su et al., 2018; Xiao et al., 2020b).

Under the complex context of global climate changes coupled with

regional eutrophication, harmful algal blooms are gradually

increasing. In particular, the frequency of green and gold tides

caused by Ulva and Sargassum has increased by years, replacing red

tides as the main disasters in the coastal waters of China (Feng et al.,

2024). However, few studies have been conducted to investigate the

competition between Ulva and Sargassum under the combined effects

of local stressor of eutrophication and global stressor of ocean

warming. In this study, U. prolifera and S. horneri were selected and

treated to explore the physiological responses and their competitive

relationships of the typical harmful algae to high nutrients availability

and temperature change scenarios in the Yellow Sea of China. Our

results are expected to provide helpful insights into understanding the

adaption mechanism and competitive relationships of two macroalgae

species under ocean warming and eutrophication in the future.
2 Materials and methods

2.1 Sample collection and
experiment design

Floating samples of U. prolifera and S. horneri were collected

from Gaogong island, Lianyungang city, Jiangsu province (119.53°E;
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34.91°N) and the nearshore sea of Dongtai, Yancheng city, Jiangsu

province of China (121.33°E; 33.02°N) in early June of 2020,

respectively. The in situ nutrient levels were 10.72 mmol L−1 nitrate

and 0.42 mmol L−1 phosphate in coastal area of north Jiangsu in early

summer (Wang et al., 2022). Considering that June is the end of the

life cycle in S. horneri, the thalli should be a bit senescent. The thalli

were transferred to the laboratory under low temperature conditions

in a cool container within 2 hours. After removing the sediments and

impurities using filtered and autoclaved seawater, healthy thalli were

selected and pre-cultured in 1 L balloon flasks containing sterile

seawater enriched with von Stosch’s enrichment (VSE) Medium (Ott,

1965), which was aerated continuously and changed every 2 days.

The cultures were kept in an intelligent illumination incubator

(Jiangnan GXZ-300C, Ningbo, China) at 20°C with a 12 h: 12 h

(light/dark) photoperiod under 100 mmol photons m−2 s−1

light intensity.

After the pre-culture of one week, thalli samples with similar

length and shape were chose and divided randomly to different

treatments. Approximately 0.10 g (fresh weight, FW) thalli were

cultured in 500 mL sterile seawater enriched with VSE medium. Six

temperature treatments (5, 10, 15, 20, 25, and 30°C) were obtained

using different incubators (same brand model to avoid the influence

of light), while two levels of nutrient [Low nutrient, LN: 5 mmol L−1

N (nitrate) and 0.5 mmol L−1 P (phosphate); High nutrient, HN: 500

mmol L−1 N and 50 mmol L−1 P] were set based on VSE medium.

The LN condition represented the low nutrient levels and HN

condition was set as eutrophication (Wang et al., 2022). At the same

time, we also selected three temperatures (15, 20, and 25°C) to study

the competition between U. prolifera and S. horneri under

eutrophication conditions. The initial biomass of U. prolifera and

S. horneri were about 0.05 g (FW) in coculture, respectively. The

medium was renewed every 3 d to maintain the abundance of

nutrients. Triplicate cultures were conducted for two weeks and all

the parameters were measured at the end of culture period.
2.2 Measurement of growth

The relative growth rates (RGR) of U. prolifera and S. horneri

were estimated by changes in biomass (FW), which were performed

according to the following formula:

RGR(% d−1) = ln(Wt=W0)=t� 100% (1)

where the W0 and Wt are the initial and final fresh weight of

thalli after t days culture, respectively.
2.3 Measurement of photosynthetic
pigments and soluble protein

To determine pigments content, about 0.02 g FW per sample

were cut into pieces and extracted in absolute methanol and kept at

4°C for 24 h in darkness (Porra et al., 1989). The value of Chl a and

Car might be low due to the incomplete extraction without

grinding. After centrifugation (Centrifuge 5407, Eppondorf,
Frontiers in Marine Science 0353
Germany) at 5000×g for 10 min, the supernatant was scanned by

a spectrophotometer (UV-1800, Shimadzu, Japan) at 470, 652, and

665 nm, respectively. The concentrations of Chlorophyll a (Chl a)

and carotenoids (Car) were determined according to the methods of

Wellburn (1994):

Chl a (mg g FW−1) = (15:65� A665 − 7:53� A652)� V=FW (2)

Car (mg g FW−1) = (1000� A470 + 1403:57� A665 − 3473:87� A652)=221� V=FW

(3)

where the A470, A652, and A665 were the absorbance of samples

at respective wavelength, V is the volume of methanol, and FW is

the fresh weight of samples.

Soluble protein contents were measured according to the

methods of Bradford (1976). Briefly, about 0.02 g FW thalli was

homogenized in phosphate buffer (0.1 M, pH 6.8) and then

centrifuged at 5000× g for 15 min at 4°C. The supernatant was

mixed with Coomassie brilliant blue G-250 dye solution and

scanned at 595 nm by spectrophotometer to calculate the soluble

protein contents (SP, mg g FW−1) based on the standard curve of

bovine serum albumin.
2.4 Measurement of photosynthesis
and respiration

The photosynthetic oxygen evolution and respiration of these

two species were measured with a Clark-type electrode (Oxygraph,

Hansatech, UK) at the end of experiments. Samples of thalli were

cut into 0.5 cm length segments and placed in culture conditions for

about 2 h to alleviate cutting damage (Xu and Gao, 2012). During

the middle light period (10:00−16:00), about 0.02 g FW thalli were

transferred into the reaction chamber containing 5 ml fresh growth

medium. The light (100 mmol photons m−2 s−1) and temperature

condition were set at the same with every culture condition, and

seawater in the chamber was stirred during the measurement to

keep the oxygen signal steady. The decreased rate (in dark

condition) and increased rate (in light condition) of oxygen

concentrations were defined as net photosynthetic rate and dark

respiration, respectively.
2.5 Assessment of superoxide
dismutase activity

Superoxide dismutase (SOD) activity was were examined by

using nitroblue tetrazolium (NBT) method (Merzbach and

Obedeanu, 1975). Approximately 0.05 g of samples was

homogenized in 4 mL phosphate buffer (0.05 M, pH 7.8) and

then centrifuged at 5000× g for 10 min at 4°C. The supernatant of

the crude extract of SOD was mixed with the NBT solution. After

20 min incubation under 80 μmol photons m−2 s−1 at 25°C, the

absorbance at 560 nm was measured. The amount of SOD that

reduces NBT by 50% is defined as the SOD activity.
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SOD activity (U g FW−1) ¼ (Ac−As)� V=(Ac� 50%�FW� Vt) (4)

where the Ac and As represent the absorbance of mixed NBT

solution (V) with distilled water and sample enzyme, respectively.

Vt is the crude extract of fresh weight (FW) thalli samples.
2.6 Statistical analysis

All data were expressed as mean of triplicate analysis ± standard

deviations. Before performing parametric tests, data were tested for

homogeneity of variance (Levene test, see Supplementary Table S1 in

Supplementary Materials) and normality (Shapiro-Wilk test,

Supplementary Table S2). Two-way ANOVA was performed to

assess the interactive effects of temperature and nutrient levels.

Three-way ANOVA employed to determine the effects of

temperature, nutrient and coculture. One-way ANOVA was applied

to analyze the statistical differences among different temperature

treatments under LN and HN conditions. An independent-samples

t-test were used to compare the differences between LN and HNwithin

the same temperature treatment and differences between monoculture

and coculture under the same condition. Considering that temperature

treatments were achieved by different incubators (same brand model)

and one incubator per temperature, it should be noted that all ANOVA

analyses assessing temperature in this study assess the temperature plus

incubator effects. Tukey’s honest significant difference (Tukey HSD)

was used for ANOVA analysis and differences were termed significant

when p < 0.05.
3 Results

3.1 Relative growth rate of U. prolifera and
S. horneri

Two-way ANOVA analysis indicated that there were significant

individual and interactive effects of temperature (i.e. the temperature

and incubator effects) and nutrient on the relative growth rate (RGR)

of U. prolifera (Table 1, p < 0.001, p < 0.001, p = 0.009),. The growth

of thalli in both LN and HN conditions enhanced with the increased

levels of temperature, peaking at 20°C (17.2 ± 1.0% for LN, 20.1 ±

3.0% for HN), and began decline at temperature above 25°C. RGR

were significantly affected by HN at 5, 15, and 30°C (Figure 1A, p <

0.001, p = 0.009, p = 0.039). For S. horneri, temperature and the

interaction with nutrient had significant effect on RGR of thalli

(Table 1, p < 0.001, p < 0.001). In general, RGR of S. horneri

showed an increased trend with temperatures (Figure 1B).

Specially, RGR began to plunge at 30°C, and was even negative

under HN condition.

In coculture, RGR of both U. prolifera and S. horneri were

declined compared to those in monoculture (Supplementary Table

S3, Figure 1C, p = 0.002, p = 0.029). RGR of U. prolifera were

significantly enhanced by HN compared to LN at 15 and 20°C (p =

0.029, p = 0.021), and S. horneri showed the same trend (p = 0.006, p

= 0.005). Coculture with U. prolifera led to the obvious decline in
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RGR of S. horneri, which were decreased by 61.2% and 49.7%

compared to monoculture at 25°C under LN and HN, respectively

(p < 0.001, p = 0.002). Meanwhile, even though the RGR of

U. prolifera were reduced by 18.6% and 10.4% compared to

monoculture at 25°C under LN and HN, respectively, it was still

highest in the coculture.
3.2 Pigment contents of U. prolifera and
S. horneri

The Chlorophyll a (Chl a) content of U. prolifera was

significantly influenced by temperature, nutrient, and the

interaction between them (Table 1, p < 0.001, p < 0.001, p < 0.001).

Meanwhile, the carotenoids (Car) content was only significantly

influenced by temperature (p < 0.001). The Chl a of thalli was

increased with rising temperature at the range of 5-25°C, especially

under HN condition, and reached a maximum 309.4 ± 52.8 mg g−1

under LN at 30°C and 520.8 ± 46.8 mg g−1 under HN at 25°C,

respectively (Figure 2A). HN significantly promoted the Chl a

content of U. prolifera at 15, 20, and 25°C (p = 0.005, p = 0.018,

p = 0.004). Similarly, the Car content was increased with the

temperature up to 20°C, and declined at higher temperatures (25

and 30°C), which was in line with growth (Figure 3A).
TABLE 1 Statistical analyses (two-way ANOVA) of physiological traits of
Ulva prolifera and Sargassum horneri grown under various temperature
and nutrient conditions in the monoculture.

Trait
Temperature Nutrient T × N

df F Sig. df F Sig. df F Sig.

U. prolifera

RGR 5 51.2 <0.001 1 21.2 <0.001 5 4.0 0.009

Chl a 5 29.5 <0.001 1 46.6 <0.001 5 9.3 <0.001

Car 5 15.2 <0.001 1 2.8 0.108 5 1.0 0.459

NPR 5 10.1 <0.001 1 473.6 <0.001 5 4.2 0.007

DR 5 19.8 <0.001 1 170.4 <0.001 5 18.1 <0.001

SP 5 54.3 <0.001 1 25.9 <0.001 5 3.7 0.013

SOD 5 293.7 <0.001 1 107.1 <0.001 5 13.4 <0.001

S. horneri

RGR 5 157.9 <0.001 1 4.0 0.058 5 20.4 <0.001

Chl a 5 89.3 <0.001 1 12.8 0.002 5 5.4 0.002

Car. 5 237.5 <0.001 1 0.1 0.723 5 1.5 0.214

NPR 5 124.5 <0.001 1 8.7 0.007 5 3.6 0.015

DR 5 46.0 <0.001 1 4.5 0.045 5 0.8 0.560

SP 5 44.6 <0.001 1 3.1 0.091 5 0.1 0.986

SOD 5 224.9 <0.001 1 8.5 0.008 5 0.8 0.549
frontie
The physiological parameters include the relative growth rate (RGR), the pigment content of
chlorophyll a (Chl a), carotenoid (Car), net photosynthetic rate (NPR), dark respiration (DR),
soluble protein (SP), and superoxide dismutase activity (SOD). df means degree of freedom,
F means the value of the F statistic, and Sig. indicates p-value.
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Temperature and nutrient had individual and interactive effect

on Chl a content of S. horneri (p < 0.001, p < 0.002, p = 0.002), and

only temperature had an individual effect on Car content of thalli

(Table 1, p < 0.001). The Chl a of S. horneri was enhanced with

increased temperature but declined at 30°C under LN and HN

conditions (Figure 2B). HN only increased significantly the Chl a at

10°C compared to LN (p = 0.006). Similarly, the Car of S. horneri

was promoted slightly by temperature until up to 30°C, with a

substantial decline (Figure 3B).

In coculture, both Chl a and Car contents of U. prolifera were

decreased compared to those in monoculture (Supplementary

Tables S4, S5, Figures 2C, 3C, p < 0.001, p < 0.001). Increased

temperature only enhanced the Chl a of U. prolifera under HN

condition. Meanwhile, HN promoted the Chl a of thalli at three

temperatures compared to LN (p = 0.007, p = 0.001, p < 0.001). In

addition, coculture with U. prolifera inhibited the Chl a of S. horneri

at all treatments (p = 0.006, p = 0.003, p = 0.012 for 15, 20, 25 under

LN and p = 0.003, p = 0.020, p = 0.116 for 15, 20, 25 under HN) but
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significantly enhanced the Car content of thalli by 10.3% at 15°C

under LN (p = 0.047). HN only significantly enhanced the Chl a of

S. horneri at 20 and 25°C (p = 0.027, p = 0.023).
3.3 Photosynthesis and respiration of
U. prolifera and S. horneri

The net photosynthetic rate (NPR) and dark respiration rate

(Rd) of U. prolifera were significantly influenced by temperature,

nutrient and their interaction (Table 1, p < 0.001, p < 0.001, p =

0.007 for NPR, and p < 0.001, p < 0.001, p < 0.001 for Rd). NPR of U.

prolifera thalli showed a relative stability regardless of temperature

under LN and HN conditions (Figure 4A). However, the increased

temperature enhanced the Rd ofU. proliferawithin a range of 5 - 25°

C (Figure 5A). At the different temperatures, HN condition

promoted both the NPR and Rd of thalli significantly except for

the Rd under 5 and 10°C.
FIGURE 1

Relative growth rate (RGR) of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture
(A, B) and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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As for S. horneri, Temperature and nutrient had individual effects

on NPR and Rd of thalli, and only had an interactive effect on NPR

(Table 1, p < 0.001, p = 0.007, p = 0.015 for NPR, and p < 0.001, p =

0.045 for Rd). The NPR of S. horneri was enhanced with increased

temperature within a range of 5-20°C, then decreased at temperature

above 25 °C under LN and HN (Figure 4B). However, the Rd of S.

horneri showed an increasing trend with the temperatures, and

reached the highest value of 67.5 and 73.9 mmol O2 g
−1 FW h−1 at

30°C under LN and HN condition, respectively (Figure 5B).

In coculture, NPR and Rd of both U. prolifera and S. horneri

were decreased significantly compared to those in monoculture

(Supplementary Tables S6, S7, Figure 4C and 5C, p < 0.001, p <

0.001 for NPR and Rd in U. prolifera, and p < 0.001, p < 0.001 in S.

horneri). However, compared to monoculture, the highest drop of

NPR in U. prolifera was about 33.0% and 30.8% under LN and HN

at 20°C (p = 0.011, p = 0.002), while the highest drop in S. horneri

was about 79.78% and 67.0% at 25 °C (p < 0.001, p < 0.001),

respectively. Moreover, HN enhanced the NPR of thalli under all

treatments. Similarly to the trend of Rd in U. prolifera and S. horneri
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under monoculture, temperature enhanced the Rd of U. prolifera

and S. horneri in coculture.
3.4 Soluble protein content of U. prolifera
and S. horneri

Significant individual and interactive effects of temperature and

nutrient were observed on soluble protein content (SP) of U.

prolifera (Table 1, p < 0.001, p < 0.001, p = 0.013). In general, the

SP of U. prolifera showed a rising trend with the increased

temperature except under HN at 30 °C. Compared to LN, HN

promotes SP at all temperatures, with significant differences at 20

and 25°C and a maximum value of 2.7 ± 0.2 mg g−1 at 25°C

(Figure 6A, p = 0.008, p = 0.010).

As for S. horneri, only temperature had an individual effect on SP

(Table 1, p < 0.001). The SP of thalli in both LN and HN treatments

enhanced with the increased temperatures, peaking at 15 and 20°C,

and thereafter declined at temperature above this optimal point.
FIGURE 2

Content of Chlorophyll a in Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture
(A, B) and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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Compared to LN, HN enhanced SP, but there was no significant

difference between them under all temperatures (Figure 6B).
3.5 Superoxide dismutase activity of
U. prolifera and S. horneri

Temperature, nutrient, and the interaction between them had

significant effect on SOD of U. prolifera (Table 1, p < 0.001, p <

0.001, p < 0.001). The SOD of thalli was enhanced with the

temperature increased until 25°C, but decreased significantly at

higher temperature (30°C) (Figure 7A). HN promotes SOD activity

at all temperatures, but only was significant at 15, 20, and 25°C

compared with LN condition (p = 0.032, p = 0.005, p < 0.001).

As for S. horneri, Temperature and nutrient had significant

individual effect on SOD (Table 1, p < 0.001, p = 0.008). The SOD

activity showed a significant increase by rising temperatures under
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both LN and HN conditions, with the maximum value of 987.8 ±

71.0 and 1021.8 ± 68.1 U g−1 FW at 30 °C, respectively (Figure 7B).

HN enhanced the SOD significantly only at 15 °C compared with

LN condition (p = 0.023).
4 Discussion

As main species of green and golden tides, U. prolifera and

S. horneri both respond positively to temperature and

eutrophication. In this study, the growth of U. prolifera and S.

horneri, along with pigment concentrations and photosynthesis,

increased with rising temperature, reaching a plateau at 15 − 25°C.

However, when the temperature increased to 30°C, the growth of U.

prolifera and S. horneri decreased abruptly, and the latter even

suffered death. In cocultures, the growth of both U. prolifera and S.

horneri was inhibited compared to the monocultures, with
FIGURE 3

Content of Carotenoid in Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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the greatest decrease in S. horneri at 25°C under two

nutrient conditions.
4.1 Response of U. prolifera and S. horneri
to temperature

Temperature is an important factor that limits the cellular

enzymatic activities (Raven and Geider, 1988). In this study,

proper warming promoted pigments synthesis in both U. prolifera

and S. horneri in monoculture, which was reported in other

macroalgae (Figures 2, 3) (Wu et al., 2022). The enhancement of

Chl a and carotenoids in the two macroalgal genera allow the algae

to absorb more light energy and maintain higher photosynthetic

rates (Figure 4) (Jiang et al., 2016). In addition to its light-capture

role, carotenoids can also act as auxiliary antioxidant that reduces
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damage caused by high temperature (Yoshiki et al., 2009). The high

photosynthetic rate in PSII system, which provides more ATP and

NADPH for subsequent physiological processes, improved the

growth ultimately (Figure 1) (Jiang et al., 2016). Moreover, the

rising temperature increased the mitochondrial respiration (Zou

and Gao, 2014a). This similar phenomenon was observed for both

algae at temperature from 5 to 25°C in this experiment (Figure 5).

The increased consumption of carbon compound by respiration in

nighttime could provide more ATP and carbon skeletons for the

synthesis of pigment and soluble protein contents (Figures 2, 3, 6)

(Zou and Gao, 2014a). Warming would cause algal cells to produce

ROS, and algae can scavenge the increased reactive oxygen species

(ROS) by activating antioxidant systems, one of which is superoxide

dismutase (SOD), to prevent organelles from oxidative damage (Liu

et al., 2017). The SOD activity of U. prolifera and S. horneri

increased with rising temperature from 5 to 25°C (Figure 7).
FIGURE 4

Net photosynthetic rate of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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However, when temperature was up to 30°C, the scavenging

efficiency of ROS by antioxidant in thalli was reduced, which led

to the inhibition of all physiological parameters in both genera in

this experiment. Although the SOD activity of U. prolifera was

reduced at 30°C, it was still able to maintain low growth due to the

highly environmental adaptability (Xiao et al., 2016). For S. horneri,

the SOD activity was still at a high level at 30°C, but the thalli still

suffered leaf shedding, which ultimately led to negative algal growth

(Liu and Pang, 2010).
4.2 Effects of eutrophication on U. prolifera
and S. horneri

In natural waters, Nitrogen and phosphorus are essential

components for cellular metabolic synthesis and critical factors

limiting algal primary productivity. Therefore, nutrient enrichment
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often enhances the physiological performance of Ulva spp (Kang

et al., 2016; Li et al., 2016; Kang and Chung, 2017). In this study,

pigment synthesis, soluble proteins were increased in both U.

prolifera and S. horneri due to higher availability of nutrients,

which ultimately improved their photosynthesis and growth

(Figures 1-5). Furthermore, the morphology of Ulva spp. could

enhance the nutrient uptake rates at elevated nutrient

concentrations, affecting the metabolism of macroalgae, which

could produce more Rubisco using nitrogen (Zer and Ohad,

2003). This is also verified by our results that nutrient enrichment

promotes pigmentation and photosynthesis of U. prolifera more

than that in S. horneri (Figures 2-4). Temperature plays a crucial

role in the nutrient uptake, nitrate reductase activity of algae (Cade-

Menun and Paytan, 2010; Gao et al., 2018). Our results also showed

inconsistent enhancement effects of nutrient enrichment on the two

macroalgal genera under various temperature conditions, indicating

different nutrient requirements of macroalgae at different

temperatures (Fan et al., 2014).
FIGURE 5

Dark respiration rate of Ulva prolifera and Sargassum horneri grown under various temperature and nutrient conditions in the monoculture (A, B)
and coculture (C). Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and
different lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether
there was a significant difference between LN and HN under the same temperature conditions (p < 0.05).
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4.3 Competition between U. prolifera and
S. horneri

In recent years, coexisting outbreaks of green and golden tides

in coastal waters have occurred, yet have been little studied in

laboratory (Xiao et al., 2020a; Zhao et al., 2021). In the present

study, three temperature and two nutrient levels were selected to

investigate the competition between U. prolifera and S. horneri. The

results showed that the photosynthesis and growth of both U.

prolifera and S. horneri in coculture were decreased compared to

monoculture, suggesting ecological niche competition between the

two genera (Figures 1, 4). Moreover, the pigment contents of U.

prolifera did not change significantly in coculture compared to

monoculture under both LN and HN conditions. However, an

interesting finding is that the pigment contents of S. horneri were

dramatically reduced, especially under nutrient-rich conditions

(Figures 2, 3). Many factors could affect the coculture experiment,

including shading, competition of nutrients, and allelopathy. The

decline may be attributed to allelopathic effects from U. prolifera, as

the abundant nutrients under HN condition are unlikely to be

depleted given that the medium was renewed every 3 d to maintain

nutrient levels. Additionally, the initial biomass of the thalli was

consistent, with approximately 0.10 g FW for each species in

monoculture and 0.05 + 0.05 g FW for both species in coculture.
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Furthermore, photosynthesis of both genera was declined compared

to monoculture (Figure 4), suggesting that the allelopathic

compounds may initially damage the photosynthetic apparatus,

thereby inhibiting growth, as observed in other cocultures of

macroalgae and microalgae (Ye and Zhang, 2013; Gao et al.,

2019). Although the pigment contents of S. horneri was lower

than those of U. prolifera, its photosynthesis was maintained at a

higher level. Under these three temperature conditions, U. prolifera

maintained a relatively stable photosynthetic rate, showing its

stronger adaptability (Xiao et al., 2016). Meanwhile, at 15 and 20°

C, S. horneri exhibited higher photosynthetic rates and lower

respiration rates, resulted in more carbon accumulation for higher

growth compared to U. prolifera under HN condition, suggesting

that it was more competitive below 20°C (Figures 1, 4, 5). At 25°C,

photosynthesis of S. horneri decreased and respiration increased

dramatically, ultimately leading to a reduction in growth that was

much lower than in monoculture (Figures 1, 3, 4). One reason for

this phenomenon might be that temperature changes alter

allelopathic efficiency and/or sensitivity (Semmouri et al., 2024).

This suggests that coculture with U. prolifera weakened the

resistance of S. horneri to high temperatures and exacerbated its

apoptosis eventually. Further studies are required to confirm this

conclusion, as allelopathic compounds were not directly measured

in this study.
FIGURE 6

Content of soluble protein in Ulva prolifera (A) and Sargassum horneri (B) grown under various temperature and nutrient conditions in the
monoculture. Different uppercase letters represent significant differences among different temperature treatment under LN (p < 0.05), and different
lowercase letters represent significant differences among different temperature treatment under HN (p < 0.05). Asterisk indicates whether there was
a significant difference between LN and HN under the same temperature conditions (p < 0.05).
frontiersin.org

https://doi.org/10.3389/fmars.2024.1464511
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Wu et al. 10.3389/fmars.2024.1464511
5 Conclusion

Our study investigated the combined impacts of ocean warming

and eutrophication on the green tides and golden tides macroalgae and

the interaction between them for the first time. As mentioned above,

the temperatures in this study were achieved by different incubators,

but one per temperature; therefore, the temperature effect is a

combined temperature plus incubator effect. In conclusion, the

findings demonstrate that the appropriate or seasonal temperature

increases can promote the photosynthesis ofU. prolifera and S. horneri.

This effect is further exacerbated by eutrophication, which lead to the

rapid blooms of Ulva and Sargassum and subsequently result in

frequent outbreaks of green and golden tides. When green and gold

tides occur simultaneously, the high environmental adaptivity of Ulva

enables it to exacerbate the decline of Sargassum during periods of high

temperatures. This suggests that green tides would outcompete golden

tides in coastal waters under seasonal transition from spring to

summer and even in future scenarios of ocean warming.
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Sustainable seaweed aquaculture
and climate change in the
North Atlantic: challenges
and opportunities
Reina J. Veenhof1*, Michael T. Burrows1, Adam D. Hughes1,
Kati Michalek1, Michael E. Ross1,2, Alex I. Thomson1,
Jeffrey Fedenko3 and Michele S. Stanley1

1Scottish Association for Marine Science, Argyll, Oban, United Kingdom, 2Culture Collection of Algae
and Protozoa (CCAP), Argyll, Oban, United Kingdom, 3Shell Technology Center, Shell Exploration and
Production Inc., Houston, TX, United States
Seaweed aquaculture is gaining traction globally as a solution to many climate

issues. However, seaweeds themselves are also under threat of

anthropogenically driven climate change. Here, we summarize climate-related

challenges to the seaweed aquaculture industry, with a focus on the developing

trade in the North Atlantic. Specifically, we summarize three main challenges: i)

abiotic change; ii) extreme events; and iii) disease & herbivory. Abiotic change

includes negative effects of ocean warming and acidification, as well as altered

seasonality due to ocean warming. This can lower biomass yield and change

biochemical composition of the seaweeds. Extreme events can cause

considerable damage and loss to seaweed farms, particularly due to marine

heatwaves, storms and freshwater inputs. Seaweed diseases have a higher

chance of proliferating under environmentally stressful conditions such as

ocean warming and decreased salinity. Herbivory causes loss of biomass but is

not well researched in relation to seaweed aquaculture in the North Atlantic.

Despite challenges, opportunities exist to improve resilience to climate change,

summarized in three sections: i) future proof site selection; ii) advances in

breeding and microbiome manipulation; and iii) restorative aquaculture. We

present a case study where we use predictive modelling to illustrate suitable

habitat for seaweed cultivation in the North Atlantic under future ocean warming.

Notably, there was a large loss of suitable habitat for cultivating Alaria esculenta

and Laminaria digitata. We show how selection and priming and microbe

inoculates may be a cost-effective and scalable solution to improve disease-

and thermal tolerance. Co-cultivation of seaweeds may increase both yield and

biodiversity co-benefits. Finally, we show that aquaculture and restoration can

benefi t f rom col laborat ing on nursery techniques and push for

improved legislation.
KEYWORDS

seaweed aquaculture, climate change, breeding, ocean warming, salinity, restorative
aquaculture, site selection, omics
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1 Introduction

Climate change is putting increased pressure on food production,

creating a rising demand for sustainable aquaculture solutions

(Subasinghe et al., 2009). Among the different avenues of

aquaculture, seaweeds are a promising candidate. Seaweeds are

capable of growing without the addition of nutrients or fertilizers

and can be used in a multitude of downstream applications

(Buschmann et al., 2017). In addition, seaweeds have great potential

to increase sustainability of mariculture projects, such as in restorative

aquaculture or integrated multitrophic aquaculture (IMTA; Duarte

et al., 2022). Currently, almost all (97%) commercially grown seaweeds

come fromAsia, with China, Indonesia, and South Korea being the top

three global producers (Sultana et al., 2023; Khan et al., 2024).

However, the seaweed cultivation industry is growing in other parts

of the world, including the North Atlantic (Figure 1). In 2024, a total of

1,240.86 KT wet weight of seaweed was produced annually by 139

companies, with the main species for cultivation being Saccharina

latissima, Ulva sp. and Alaria esculenta (Figure 1, data sourced

from www.phyconomy.net).

For seaweed aquaculture to expand in the North Atlantic, there

are still many challenges that need to be addressed. Despite

recognition as an emerging industry, there is a significant lack of

seaweed policy and regulation in countries bordering the North

Atlantic (Campbell et al., 2020; Naylor et al., 2021). Largely,

seaweed policy is based on existing shellfish regulation, with some

nations, such as Scotland and Norway, having started to develop

independent seaweed aquaculture policies (Alexander et al., 2015;

Wood et al., 2017). Seaweed cultivation requires large spatial areas

for operations to be economically feasible, which is largely due to

current market values for seaweeds and the costs associated with
Frontiers in Marine Science 0265
small-scale farming (Hughes and Black, 2016). Available space in

the marine environment is highly contested, with potential

solutions for avoiding conflict including the combination of

seaweed with other aquaculture or marine-related industries, or

offshore operations (Hughes and Black, 2016; Kim et al., 2017;

Duarte et al., 2017). In addition, social licensing to build large scale

seaweed farms in the North Atlantic may not yet be on par with

other parts of the world (Billing et al., 2021), and the nursery phase

of seaweed farming is still labor intensive and therefore costly.

Next to the economic, social, environmental and policy

challenges of seaweed aquaculture (reviewed in for example

Alexander et al., 2015; Campbell et al., 2019; Kerrison et al., 2015;

Wood et al., 2017; Visch et al., 2023), there are concerns regarding

seaweed aquaculture viability in relation to climate change threats.

Climate stressors have long been recognized to affect natural

seaweed habitats (e.g. Harley et al., 2012; Wernberg et al., 2023;

Steneck et al., 2002; Schiel et al., 2004). At the same time, the

commercial growth of seaweeds has been suggested as a solution to

certain climate stressors, through carbon capture, pH buffering,

waste-water remediation and offering a low-carbon alternative to

certain products (reviewed in for example Yong et al., 2022; Sultana

et al., 2023; Ross et al., 2023; Duarte et al., 2022). However, climate

change stress will also have a profound effect on the seaweed

growing industry (Chung et al., 2017). Climate change effects on

the seaweed aquaculture industry have been reviewed for specific

locations such as California (Kübler et al., 2021), the UK and

Ireland (Callaway et al., 2012), the Gulf of Maine (Bricknell et al.,

2021), Korea (Kim et al., 2019) and Norway (Stévant et al., 2017), as

well as focusing on specific species such as tropical red seaweeds

(Largo et al., 2017). This review focuses on the seaweed aquaculture

species relevant to the North Atlantic (Figure 1). The species
FIGURE 1

Production numbers and main species of seaweed cultivated in the North Atlantic seaweed industry. Data were taken from www.phyconomy.net in
August 2024 and collated for visual presentation. Companies were only included if active seaweed growing took place in the North Atlantic (i.e. excluding
any Pacific companies from Canada and the USA, and companies only practicing wild harvesting. Onshore cultivation and companies practicing both
wild-harvesting and cultivation were included). (A) Map of the North Atlantic defined as area 21 and 27 of the FAO Major Fishing Areas, depicted by the
two blue areas. In red is the number of seaweed cultivation companies per country, as well as the metric KT (kilo ton) of wet weight produced annually.
(B) Main species grown in the North Atlantic seaweed industry, ordered by number of companies cultivating these species.
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cultivated span across all three domains of seaweeds, therefore

responses to climate change will differ. We summarize the main

climate change challenges facing the seaweed aquaculture industry.

At the same time, we address emerging opportunities and potential

solutions to some of the challenges. As the focus is on the North

Atlantic, most species discussed are of a temperate distribution.

However, where relevant, examples might be provided from tropical

seaweed aquaculture, particularly if the research is innovative and

paves the way for technological improvements from which the

temperate aquaculture industry may learn.
2 Challenges

Climate change is driving profound changes in seaweed

ecosystems globally (Wernberg et al., 2023; Filbee-Dexter and

Wernberg, 2018; Smale, 2020). Anthropogenic CO2 has been

steadily rising since the start of the industrial era, which has

driven multiple changes in the environment affecting marine

ecosystems (Allen et al., 2009). The acceleration of carbon

emissions has caused global atmospheric temperatures to rise, and

a large proportion of that temperature increase is absorbed by the

ocean, causing ocean temperatures to increase (Reichert et al., 2002;

Bronselaer and Zanna, 2020; Goodwin et al., 2015). Ocean systems

are also becoming more acidic due to increased absorption of

atmospheric CO2 (Doney et al., 2009; Iida et al., 2021; Ma et al.,

2023a). Through increased temperatures, weather patterns are

shifting globally resulting in increased rainfall, which in turn can

change salinity levels in coastal areas (Marsooli et al., 2019).

Extreme events such as storms and marine heatwaves are also

increasing in frequency and intensity (Coumou and Rahmstorf,

2012; Smale et al., 2019). The direct effects of ocean warming have

other indirect consequences upon seaweed ecology and aquaculture,

such as altered herbivory rates, species range shifts and the

prevalence of disease (Vergés et al., 2014; Krumhansl et al., 2016;

Gachon et al., 2010). All these ocean change factors represent risk

and may influence seaweed aquaculture endeavors. The challenges

they present are discussed here.
2.1 Challenge 1: abiotic change

2.1.1 Ocean warming
Increasing ocean temperatures have been identified as a major

challenge to seaweed aquaculture industries, though it also may

increase areas available for aquaculture (Largo et al., 2017; Chung

et al., 2017). Global climate change is predicted to increase sea

surface temperatures from an average 1.5°C to 3.5°C under low- and

high-emission CMIP6 models, respectively (Kwiatkowski et al.,

2020; IPCC, 2023). Since the latitudinal distribution of seaweed is

largely constrained by temperature (Smale, 2020; Jayathilake and

Costello, 2020), this could have a profound impact upon ecosystem

ecology, as well as existing and future seaweed and IMTA

enterprises (Chung et al., 2017). Temperature stress has effects on

both the individual level, altering a seaweed’s morphology and
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biochemical profile (Eggert, 2012), and population level, including

range shifts, genetic shifts, and decreased productivity of the whole

ecosystem (Harley et al., 2012; Wernberg et al., 2023; Coleman et al.,

2020a). However, how this may impact seaweed aquaculture

remains uncertain and requires more detailed study and models

to predict impacts.

Seaweeds have a multitude of mechanisms to acclimate, protect,

or repair in response to temperature stress, among them adjusting

cell membrane fluidity and production of a suite of enzymes to

protect against intracellular reactive oxygen species (ROS) which

may be formed in response to temperature stress (e.g. Eggert, 2012;

Choo et al., 2004; Britton et al., 2020; Hammann et al., 2016)

However, their upregulation will come at a metabolic cost. which

reduces growth and net primary productivity (NPP) as temperature

increases (Harley et al., 2012; Eggert, 2012). This has been observed

in the northeast Atlantic, where net primary productivity (NPP)

and biomass standing stock of Laminaria hyperborea was

respectively 1.5 and 2.5 times greater in northern sites compared

to the southernmost sites in the UK, across a temperature gradient

of ~2.5°C (Smale et al., 2020). Overall trends show that NPP of

seaweed systems is highest in temperate regions, where ocean

temperatures are between 10-18°C (Pessarrodona et al., 2022).

This indicates that ocean warming may shift areas of greatest

NPP from temperate to arctic regions, which currently represent

lower NPP rates. For higher NPP in seaweed farming, farms may

thus be best placed in cooler thermal regions, or use species that

have a higher NPP under increased temperatures. For example, the

pseudo-kelp Saccorhiza polyschides has a higher mean NPP and a

larger capacity to respond to thermal stress compared to Laminaria

ochroleuca, in part due to its annual life cycle (Biskup et al., 2014).

However, this does not take into account that NPP can become

temperature acclimated (Davison et al., 1991; Kübler and

Davison, 1995), or that photosynthetic rates may be adapted to

local temperatures (King et al., 2020; Smolina et al., 2016). In

addition, NPP can be influenced by other abiotic factors, e.g. light

regimes or CO2, and biotic factors, e.g. life history stage or tissue

type, which adds extra caution to extrapolating NPP measurements

from limited data points (Franke et al., 2023; Veenhof et al., 2024).

Increased temperature can also alter the biochemical

composition of seaweeds. As a majority of seaweeds are processed

downstream for their primary and secondary metabolites

(Buschmann et al., 2017), this can have a large impact on

marketable products for the seaweed aquaculture industry. The

effects of climate change on seaweed metabolites have recently been

reviewed, and we refer to this body of work for further reading

(Park et al., 2023). Briefly, the composition of carbohydrates, amino

acids, and other metabolites can change under temperature stress

potentially altering the overall nutritional composition of the

seaweed (Park et al., 2023), which will likely have knock-on

effects for human consumption (Shalders et al., 2022). Mixed

reports show both no effect of temperature stress on the

nutritional quality of seaweeds (Ecklonia radiata and Sargassum

sp.; Shalders et al., 2023) or a decrease in nutritional quality with

increased temperatures (Macrocystis pyrifera, Derbesia tenuissima;

Lowman et al., 2022; Gosch et al., 2015), which could be due to
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separate stress tolerances between species. Research should address

the changes in nutritional quality of seaweeds commonly grown

for commercial aquaculture. This is particularly important as

consistent biochemical composition of the seaweeds is key for

delivering products to end-users such as the food- and feed

industry (Park et al., 2023).

Range shifts of seaweeds induced by warming may change the

species composition of natural seaweed populations, which may

affect the total nutritional value of those seaweed environments

(Shalders et al., 2023). Similarly, in the context of seaweed

aquaculture, the species that are viable for culture and their

nutritional content at one specific site may change with ocean

warming. Or, the time of harvest may be shortened to earlier in the

season from current operational farms. As such, projections of

seaweed species’ distributions in a future ocean are crucial for

marking locations suitable for seaweed aquaculture. Climate change

has already resulted in the range shift of commercially important

populations of seaweed. For instance, in North America, there has

been a decline in S. latissima and Laminaria digitata populations on

the southern range edge and in warming hotspots (Feehan et al.,

2019; Filbee-Dexter et al., 2016). In Europe, shifts in seaweed

distributions have also been reported, including poleward shifts in

the cold-water species S. latissima and A. esculenta from Northern

Europe (Moy and Christie, 2012; Simkanin et al., 2005). Warmer

water affiliated L. ochroleuca and L. hyperborea have been reported

to decline in Southern Europe (Piñeiro-Corbeira et al., 2018;

Casado-Amezúa et al., 2019), but are expanding into Northern

Europe (Schoenrock et al., 2019; Rinde et al., 2014). These examples

indicate that site-specific consideration should be given to which

species are currently suitable for aquaculture, and which species

might offer more appropriate candidates for cultivation under

future warming scenarios and predicted species range shifts.

2.1.2 Ocean acidification
An increase in atmospheric CO2 leads not only to ocean

warming, but also to ocean acidification (OA). Rising

atmospheric CO2 levels are tempered by oceanic uptake,

removing approximately one third of all anthropogenic released

carbon (Iida et al., 2021). Yet this uptake causes a shift in ocean

carbonate chemistry (Doney et al., 2009; Kwiatkowski et al., 2020).

As CO2 is absorbed by the oceans, it reacts with seawater to create

carbonic acid, causing pH levels to decrease and thus making

seawater overall more acidic (Raven et al., 2005). On average,

anthropogenic emissions of greenhouse gases have caused pH to

decrease in ocean surface seawater by around 0.1 since the

beginning of the industrial era (Iida et al., 2021). Future estimates

predict that oceanic pH could drop by another 0.2 - 0.3 units by the

end of this century (IPCC, 2023). Coastal seas, where most seaweed

aquaculture currently takes place, are more at risk of acidification

than the open ocean. This is due to the multiple sources of CO2 and

acidic sources that coastal seas are exposed to (such as river inputs,

discharge, erosion runoff, etc.), compared with the well-buffered

open ocean that is only significantly affected by atmospheric CO2

(Chan et al., 2017; Clements and Chopin, 2017).
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Seaweeds are predicted to have a mixed response to OA as

concentrations of dissolved CO2 increase (Roleda and Hurd, 2012).

Calcifying seaweeds are expected to have a negative response

toward acidification, yet few studies have examined the response

of non-calcifying seaweeds dominating the aquaculture trade

(Buschmann et al., 2017; Kim et al., 2017). For non-calcifying

seaweeds, it is hypothesized that increased acidification may

either have a neutral or a beneficial effect, especially if the

seaweed does not use carbon concentrating mechanisms (CCM)

as an active carbon uptake strategy (Kübler and Dudgeon, 2015).

Britton et al. (2019) studied the effect of diel fluctuating pH levels

(representative of coastal environments) on two seaweed species

without CCMs. Effects were species-specific, where diel pH

fluctuation reduced photosynthesis in the red seaweed Callophyllis

lambertii, but increased OA benefited physiological rates.

Conversely, another rhodophyte, Plocamium dilatum, showed no

effects of pH fluctuations or OA. Other studies support the findings

of species-specific responses to OA (Paine et al., 2023; Ho et al.,

2021; Taise et al., 2023; van der Loos et al., 2019b) suggesting that its

effects are not just dependent on the method of carbon acquisition,

but also species-specific enzyme activity and natural pH

fluctuations (Britton et al., 2019; van der Loos et al., 2019b).

In addition, some degree of pH fluctuation happens naturally in

many seaweed environments, caused by carbon cycling of the

seaweeds. Dissolved inorganic carbon is taken up during the day,

increasing the surrounding water pH, and decreases pH during the

night as they release CO2 through respiration (Noisette et al., 2022).

Organisms (including seaweeds themselves) which reside in these

diel cycle systems are subjected to highly variable pH and CO2

concentrations that can be of a similar or larger magnitude to the

near-future changes expected to occur due to OA (Frieder et al.,

2012; Krause-Jensen et al., 2015). As such, these species may be less

susceptible and more resilient toward ocean acidification.

2.1.3 Altered seasonality
Both growth and biochemical composition of seaweed species

vary temporally. Growth is often determined according to season,

such that it is mostly related to available daylight hours independent

of other abiotic factors (Lüning, 1994, 1993). On the other hand,

processes such as nutrient accumulation in seaweeds may be

influenced by temperature, the type and concentration of water

nutrient and other abiotic factors that vary seasonally (Rioux et al.,

2009; Suresh Kumar et al., 2015). As such, ocean change may cause

a mismatch between the optimal environmental conditions for

biomass acquisition and intended biochemical composition at

harvest time. For example, in cold-water species, such as kelps

and fucoids, highest growth is achieved over winter and/or spring

when daylight and SST increase, while growth diminishes in

summer (Lüning, 1993). While daylength dictates growth,

seasonal temperature influences lipid and fatty acid composition

(Britton et al., 2021). Elevated water temperatures earlier in the

season may thus shift the biochemical composition of harvested

species, which will affect end-consumers if harvest time is kept

similar, but may also influence the broader fisheries industry
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through trophic interactions (Shalders et al., 2022). This may be

mitigated by shifting of harvest season to earlier in the season,

which may offer a potential opportunity for a second harvest later in

the season. Seasonal mismatches may also occur between spore

production and the ideal conditions for microscopic life phases of

seaweed to grow and recruit (Martins et al., 2017; Bartsch et al.,

2013). While the commercial culture of gametophytes is generally

achieved under controlled lab conditions, spores are often sourced

from wild populations. Tracking optimum time frames for spore

harvesting as seasons shift may thus be of relevance to future

aquaculture projects (Veenhof et al., 2023).

The seasonal effects of temperature may also interact with

effects from ocean acidification. OA can stimulate growth and

nitrogen accumulation during warmer seasons in Gracilaria

lemaneiformis and thus a shift of harvest period to later in the

season may be beneficial in an acidifying ocean (Chen et al., 2018).

Season can also determine whether OA exacerbates or mitigates the

negative effect of ocean warming, which may have knock-on effects

for time of harvest. For example, in Fucus vesiculosus, OA mitigate

the effects of warming in spring and early summer, but the

mitigating effect of OA on temperature stress ceased in high

summer (Graiff et al., 2015). The results suggest that ocean

acidification may impart benefits to temperature resilience in

some seaweeds, but that these benefits are limited beyond certain

temperature thresholds (24°C, F. vesiculosus), and at certain

seasonal time-points (spring, F. vesiculosus).

Iodine is one of many biochemical components of seaweeds that

can vary seasonally and with environmental conditions. Iodine is a

key food supplement derived from seaweeds, but can be harmful to

for example thyroid function when consumed in excess through

seaweed consumption by both humans and animals (Farebrother

et al., 2019). Iodine from seaweeds can also bio-accumulate in

higher trophic levels, for instance in abalones in integrated

aquaculture systems, leading to a risk of excess consumption

(Xu et al., 2019). Increased temperature can increase iodine

concentration in Ecklonia cava (Satoh et al., 2019). In contrast,

iodine content increased in winter during colder conditions for

L. digitata (Nitschke et al., 2018). Iodine content also significantly

increased in monocultures of cultivated kelp as compared to wild

stands of S. latissima (Roleda et al., 2018). In cultivation trials for S.

latissima, early deployment (October) decreased iodine content as

compared to late (January) deployment, demonstrating the clear

influence of seasonality on iodine accumulation (Arlov et al., 2024).

Currently, many available seaweed food products already contain

more iodine per serving portion than is recommended by the

Scientific Committee on Food (Aakre et al., 2021; Redway and

Combet, 2023). As such, increased iodine content from shifts in

season or time of harvest may cause increased risk of excess iodine

intake. In addition, increased iodine may be excreted as volatile

halocarbon compounds particularly under ocean warming

scenarios, which can increase radiative forcing if released in large

quantities (Keng et al., 2020). However, at current scale, Atlantic

aquaculture is unlikely to pose a significant effect on global radiative

forcing (Duarte et al., 2022).
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2.2 Challenge 2: extreme events

2.2.1 Storms
Ocean warming has been linked to an increase in storm events

and other extreme weather events (Meehl et al., 2000). There is

evidence for the enhanced poleward movement of storms in the

mid-latitudes due to the increase in atmospheric water vapor and

strengthening of upper-level wind velocities (Tamarin-Brodsky and

Kaspi, 2017; Wolf et al., 2020). This could increase the risk of severe

winter storms over the mid-latitudes in Europe resulting in intense

rainfall and stronger winds (Wolf et al., 2020). Changes in the

strength of the North Atlantic Oscillation (NAO) towards the end

of the 21st century may lead to regional differences in the frequency

and intensity of storms. Storms and wind speeds over Central and

Western Europe may increase in prevalence and strength, which

have the potential to be more destructive to coastal systems (Wolf

et al., 2020; Woollings et al., 2012). The North Atlantic coast of

North America is also expected to see an increase in tropical storms

and hurricanes due to increasing SSTs in the North Atlantic

(Marsooli et al., 2019; Villarini and Vecchi, 2012). Increased

storms can damage seaweed aquaculture infrastructure, which are

often submerged floating longlines (Figure 2), resulting in economic

losses and potential risk of marine pollution, affecting overall

sustainability of a seaweed farm (Campbell et al., 2019).

The biology of the seaweeds themselves can also be affected by

increased storminess. The morphology of cultivated seaweed

species (e.g. frond length and width) and the ability of their

holdfast to stay secured may be affected by increased

hydrodynamic forcing caused by the increase in storm frequency

and strength. For example, the cultivated kelp species S. latissima

generally grows longer and thinner in higher energy, exposed

environments where stronger wave action and current strength

occur (Peteiro and Freire, 2013). Deploying morphologically plastic

crops in increasingly storm-affected environments could result in

the direct loss of biomass, as well as compositional changes, due to

‘skinnier’ growth forms, generally better adapted to high wave

energy (Koehl et al., 2008). It may be more desirable to cultivate
FIGURE 2

Harvest of sugar kelp (Saccharina latissima) at an experimental
seaweed farm, Scotland. This farm utilizes the traditional submerged
longline design. Photo credit: A. O’Dell (Scottish Association for
Marine Science).
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species that are able to adapt to grow in high energy environments

and maintain high biomass, such as the kelp species L. hyperborea

and A. esculenta (Pedersen et al., 2012; Stamp, 2015; Smale and

Vance, 2015).

Seasonal variations in the individual kelp biomass and surface

area can decrease effects of wave action, whereby a loss in kelp tissue

due to erosion or spore production results in less storm-generated

drag so that the kelp is less prone to detachment and better able to

withstand peak water velocities (de Bettignies et al., 2013, 2015).

Peak water velocities and minimum individual biomass both occur

over the autumn-winter season. This reflects the kelps adaptive

response to severe hydrological impact. Kelp survival is also

enhanced by a strong holdfast attachment to the substrate,

although holdfast fatigue can occur over time with maturity

(de Bettignies et al., 2015). Indeed, resilience to high wave-energy

environments can change with life stage, where young plants and

old plants are both at higher risk of dislodgement (Thomsen et al.,

2004). Increased storms can thereby influence choice of deployment

times, as optimal nutrient and light conditions for holdfast

development in autumn in the Atlantic region coincide with

periods of increased storms during which early life stages may

become easily dislodged (Kerrison et al., 2015). Despite the

increased risk of breakage through entanglement and drag, high

wave-energy can increase NPP in certain species of kelps (Smale

et al., 2016; Pedersen et al., 2012), though high energy storms in

coastal areas can also reduce light availability through sediment

turbidity, decreasing NPP (Franke et al., 2023).

2.2.2 Freshwater input and flooding
With increasing incidence of storms and cyclones also comes

the increased risk of flooding and freshwater input to surface waters

(Marsooli et al., 2019). Freshwater runoff from terrestrial systems

can temporarily decrease the salinity in near-coastal waters and

impact biodiversity (Gillanders and Kingsford, 2002). In polar

regions, seasonal increase of ice melting may also contribute to

freshwater influxes (IPCC, 2023; Timmermans and Marshall, 2020).

Riverine runoff can also cause nutrient influxes as well as decreased

light availability due to increased turbidity (Gillanders and

Kingsford, 2002). All these factors may influence growth and

performance of seaweeds and are thus re levant for

seaweed aquaculture.

Lowered salinity can cause considerable damage to a seaweed

crop, depending on the severity of the salinity fluctuation and the

species involved. Euryhaline species with high tolerance for salinity

changes such as Ulva sp. and red seaweeds including Gracilaria sp.

could be good candidates for aquaculture near major river mouths

(Glauco et al., 2024; Yu et al., 2013). However, many of the species

currently targeted for aquaculture in the Atlantic, for instance many

Laminarian species, have a lower tolerance for reduced salinity. For

example, E. radiata kelp forests have been reported to decline as a

result of increased rainfall and flooding off the Australian coast

(Davis et al., 2022b). Adverse effects of reduced salinity can also be

compounded by temperature or light stress (Monteiro et al., 2021;

Diehl et al., 2020; Spurkland and Iken, 2011). Some kelp

sporophytes endemic to the Arctic display a tolerance to low
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salinity (5-33 ppt) offering potential candidates for aquaculture

in low salinity environments (Muth et al., 2021). Whilst under

osmotic stress, brown algae can synthesize mannitol, a low

molecular weight carbohydrate, which acts as an osmolyte and

prevents damage from low salinities (Iwamoto and Shiraiwa, 2005;

Diehl et al., 2023). Other compositional changes observed in brown

seaweeds include a higher percentage of fermentable sugars (glucose

and mannitol) due to low salinity in S. latissima and L. digitata as

opposed to higher biomass and protein content at high salinity

(Nielsen et al., 2016). The effect of salinity on biochemical

composition varies with species and populations (Diehl et al.,

2023), highlighting the need for further research in this area on

aquaculture species.

Increase in frequency and severity of extreme weather is also

predicted to cause deterioration in water quality in coastal areas,

through enhanced runoff, flooding events and upwelling (Nazari-

Sharabian et al., 2018). Though seaweeds can mitigate nutrient and

pollutant increase through absorption, the increased variability in

nutrient loading in coastal waters has also been directly linked to the

establishment of invasive algal species in new areas (Incera et al.,

2009; Bermejo et al., 2020). Nutrient loading can increase growth of

faster growing invasive species on and near slow-growing cultivated

species. This in turn leads to a reduced quantity of the biomass

produced and a competition for nutrients, light and space (Pedersen

and Borum, 1996). Flooding can cause epiphytes and diseases to

decrease crop yields, which makes them unsuitable for harvest and

consumption and may have consequences for food security (Behera

et al., 2022; Ward et al., 2020). In addition to nutrient runoff and

eutrophication, decreased clarity of seawater due to sediment

discharge may majorly impact upon the production of seaweed

farms, as it does in natural seaweed beds (Tait et al., 2021). This is

especially relevant in more urbanized areas, where many river-

linked systems have already experienced a lowering in water clarity,

also called coastal darkening, such as the North Sea. Coastal

darkening can reduce carbon acquisition up to 95% in kelps,

which has major consequences for kelp farming in coastal areas

(Blain et al., 2021). Research shows that despite a decrease in light

availability, good crop yields may still be obtained in certain

seaweed species due to greater nutrient availability (van der

Molen et al., 2018).

2.2.3 Marine heatwaves
As well as driving an increase in average SST, climate change

also contributes significantly to the increased frequency and

intensity of marine heatwave events (defined as spikes of

anomalous temperatures lasting at least five consecutive days)

(IPCC, 2023; Sen Gupta et al., 2020). In the last century, marine

heatwaves have doubled in intensity and duration (Oliver et al.,

2018). These heatwaves can cause direct mortality of seaweeds and

can favor the establishment of non-native or invasive species

(Atkinson et al., 2020). Marine heatwaves have been directly

linked to increased incidence and susceptibility to algal diseases,

pests, and epiphytes, including the tropical bacterial disease ‘ice-ice’

in Kappaphycus sp. and Eucheuma spp (Largo et al., 2017). Ice-ice is

a major disease of Kappaphycus and has been reported to have
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caused local losses on farms in Indonesia of up to $17,300–18,500

USD, and amounting to an estimated $100 million USD losses

annually in the Philippines (Ward et al., 2020, 2022).

Short-term thermal stress may alter both productivity and

biochemical composition of cultivated seaweeds. Short-term

temperature stresses have been linked to reduced product quality

in K. alvarezii, in particular in terms of the yield and characteristics

of extracted carrageenan (Kumar et al., 2020). Likewise, brown

seaweeds can reduce photosynthesis, protein and total fatty acid

content in response to heatwaves (Britton et al., 2023; Nepper-

Davidsen et al., 2019). On the other hand, certain species have

shown no change in their biochemical composition in reaction to

marine heatwaves (Shalders et al., 2023). Most research on marine

heatwaves to-date has focused on the effects on natural seaweed

populations (Smith et al., 2024, 2023; Smale et al., 2019), pointing to

a knowledge gap on how marine heatwaves will affect chemical

composition and productivity of farmed seaweed. These studies

often mark warm-edge populations as most vulnerable to marine

heatwaves, indicating that site selection should ideally be in the

center range of the species of interest. Sudden loss of crops or

disease outbreaks may be linked to marine heatwaves, but further

evidence is required. In addition, seaweed farms are often located in

sheltered areas which may be more exposed to localized surface

warming, especially in areas of reduced tidal exchange. More

fundamental and applied research is essential to enable technical

and strategic mitigation strategies, such as lowering growing lines to

cooler waters, to be proactively employed before marine heatwaves

occur, thereby minimizing damage and economical loss to

seaweed farms.
2.3 Challenge 3: disease and herbivory

2.3.1 Disease
Physiological impacts from the changes in temperature, salinity,

and CO2 on seaweeds are often compounded by increased disease

and pest susceptibility due to cumulative physiological stresses and

reduced fitness (Largo et al., 2017; Qiu et al., 2019). Increased

disease susceptibility can also be caused by environmental factors

that disturb the microbiota that naturally occur on the seaweed,

termed ‘dysbiosis’, which then leaves the seaweed vulnerable to

invasion of pathogenic microbes (Egan and Gardiner, 2016). For

example, decreased survival in the seaweed Delisea pulchra was

caused by warmer waters, inducing stress and increasing its

susceptibility to bacterial infection. This then led to an increased

occurrence of bleaching events, which in turn further damaged and

stressed the seaweed (Campbell et al., 2011).

Research on diseases in seaweed species has so far focused on

species of aquaculture interest (Gachon et al., 2010; Ward et al.,

2020). Of these, there is more research available on tropical species,

such as Kappaphycus and Eucheuma species, including the

widespread infection that commonly afflicts them, ‘ice-ice’

(Behera et al., 2022). Ice-ice presents a clear example of ocean-

warming induced disease spread, as stock is more susceptible to

infection with ice-ice during spikes of warming or heatwave events

(Largo et al., 2017). For example, a significantly higher susceptibility
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to ice-ice (from 0 to 100% infection) following just one week of >30°

C water temperatures was shown in lab studies of K. alvarezii

(Largo et al., 1995). Similar patterns of association between disease

outbreaks in Kappaphycus and Eucheuma sp. and heatwave events

or spikes of low salinity have also been observed in natural

populations and on cultivation lines (Pang et al., 2015; Ndawala

et al., 2022).

There is less available knowledge on prevalent diseases and their

interactions with environmental factors in temperate species

currently used in Atlantic aquaculture (but see Ward et al., 2020).

White spot disease in S. japonica causes blisters and white spots on

the front, and can decrease iodine and crude protein content by

~20%, as well as lower photosynthetic pigment concentrations and

daily growth rates (Wang et al., 2021). Green rotten disease

meanwhile strikes early, mostly affecting S. japonica juveniles (Li

et al., 2020). Cataloguing different pathogens has mainly focused on

bacteria and fungi. Epiphytes and viruses may also cause

considerable damage and need further research attention (Behera

et al., 2022; Matsson et al., 2019). Creative solutions need to be

developed to minimize the threat of crop diseases under ocean

change and foster collaboration. A fantastic, albeit short-lived,

example of this was the web-portal where farmers can report

seaweed disease and send samples found on their farms

(Strittmatter et al., 2022). Lessons can be learned from some of

the problems encountered with tropical seaweed aquaculture, where

the extensive use of cloning has reduced the gene pool and is

thought to have lowered disease resistance (Valero et al., 2017).

However, solutions can also be found in tropical aquaculture, for

example, usage of mixed crops which can enhance resilience to

diseases (Pang et al., 2015).

2.3.2 Herbivory
Grazing is a well-known mechanism controlling the range and

productivity of natural seaweed beds (Ling et al., 2015; Vergés et al.,

2016; Dayton et al., 1984). Despite extensive attention on the effects

of grazing on wild seaweed populations, little is known about the

effects of herbivory on commercially grown seaweeds in the North

Atlantic (Behera et al., 2022). As with diseases, most of the

knowledge is concentrated around the tropical species

Kappaphycus and Eucheuma. Grazing of these cultivated species

can lead to tissue damage, and thus crop loss (Mantri et al., 2017),

but also an increased risk of further infection (Tan et al., 2020).

Grazing can trigger the seaweeds defense mechanisms, which in

turn can change the biochemical composition of the crop and may

lower the nutritional or palatable quality of the products (Cruz-

Rivera and Villareal, 2006; Toth et al., 2007). As an example, many

brown seaweeds increase phlorotannin content as a reaction to

grazing (Pavia and Toth, 2000; Taylor et al., 2002).

In the context of climate change, there are certain factors which

may exacerbate grazing activity on commercial farms.

Topicalization is the movement of tropical species into temperate

habitats, where they can cause substantial damage to seaweed beds

(Vergés et al., 2016). Tropical fish can cause more extensive damage

than native species, as they are adapted to feed continuously and are

able to remove large portions (60 - 97%) from seaweed systems

daily (Hay and Fenical, 1988). In tropical reef systems, this
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maintains a balance between coral and seaweed abundance

(Bellwood and Fulton, 2008). However, in temperate reef

environments, this mode of grazing can often be unsustainable

and detrimental to seaweed populations (Vergés et al., 2016;

Bennett et al., 2015). Atlantic fish assemblages are shifting

towards more warm water affiliated species (Chust et al., 2024;

Horta e Costa et al., 2014). The inclusion of large-scale farms in

these temperate environments may allow tropical grazers to flourish

in these regions under ocean warming, potentially acting as initial

foothold habitats for invasive species and resulting in spillover to

natural seaweed populations. In addition, metabolic theory predicts

that increased temperature increases oxygen consumption (Gillooly

et al., 2001), which can lead to increased consumption in some

grazers (Leung et al., 2021; O’Connor, 2009; Carey et al., 2016).

Chemical defense mechanisms against grazers may also be reduced

under warming and acidified conditions (Kinnby et al., 2021).

Compounding factors such as these may exacerbate grazing

impact on seaweed farms under ocean change.

Grazing by herbivorous fish in temperate aquaculture systems

has already been observed on S. latissima and U. pinnatifida

(Peteiro and Freire, 2012). The types of grazers that may affect

seaweed farms will depend on the location of the farm. With

inshore farms, it is expected that similar grazers to those of

natural seaweed beds will interact with the farmed seaweed, both

macrograzers (e.g. fish and sea urchins) and mesograzers (small

crustaceans and gastropods). However, with the introduction of

open ocean seaweed farming, novel interactions between grazers,

epifauna and the farmed seaweed may occur. Currently, there are

very few offshore, open ocean farms in operation but there is

considerable interest given the spatial scale needed to make

seaweed farming more economically viable (Visch et al., 2023;

Bak et al., 2020). It will be vital to thoroughly research any

potential interactions harmful for either the farmed seaweed or

the environment at large before open ocean aquaculture ventures

are carried out at scale.
3 Opportunities

As the effects of climate change become more severe, there is a

greater drive for researching potential solutions and adaptations in

seaweeds to changing climate conditions. With increasingly

sophisticated oceanographic and climate modelling, future

conditions at potential cultivation sites may be more accurately

predicted to assist in the selection of seaweed aquaculture sites and

species with changing oceans in mind. In the era of ‘omics’

approaches, there are opportunities in breeding and trait selection

for climate resilience, as well as enhancing performance through

targeted microbe treatments (Li et al., 2023; Kim et al., 2017). And

finally, the capacity and motivation to restore natural seaweed

habitats has increased with the public awareness that many

seaweed ecosystems are under threat from climate change (Eger

et al., 2023). Many individual restoration projects have sprung up

worldwide in recent years, however technical challenges remain in

terms of scale and feasibility (Coleman et al., 2020b). Here we

highlight the benefits from closer collaboration between restoration
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and aquaculture ventures and investigate the use of restorative

approaches in aquaculture beneficial to both industry and the

environment it depends on.
3.1 Opportunity 1: ‘future-proof’
site selection

Site selection is the first barrier to overcome when starting a new

seaweed cultivation operation. The environmental conditions of the

site must include the suitable range for the chosen species over the

cultivation cycle in order to ensure adequate crop quantity and

quality (Kerrison et al., 2015). This will include seawater

temperature, salinity, nutrient and light levels, as well as prevalent

current and wave regime. However, environmental conditions are

set to shift in response to climate change, which will affect not only

existing aquaculture operations, but also the siting of future

developments. With careful consideration, sites and species can

be selected with an eye on future climate conditions.

3.1.1 Site considerations in a changing climate
Current cultivation sites in the North Atlantic are often

positioned in naturally sheltered, coastal and estuarine

environments to facilitate operations and minimize wave and

storm damage. The physical resilience of aquaculture

infrastructure and gear (such as anchored lines or mooring

systems) must be modified to withstand increased loading and

mechanical failure due to storm surge damage such as increased

wave current velocities, high winds and large waves (Bricknell et al.,

2021). For example, infrastructure designs may be optimized to

dissipate wave energy and take into consideration local

geomorphology and hydrology to select sheltered sites at peak

storm surge timings. As such, a farm site can even protect the

shoreline from damaging wave action and increase coastal resilience

(Zhu et al., 2021). However, the selection of such sites is not

straightforward. With increased storms, increased flooding is

expected to affect tide-surges in estuarine and coastal systems, for

which there is currently a lack of accurate modelling capacity

(Bricknell et al., 2021). Resolving these issues through improved

modelling may greatly improve spatial planning of seaweed farms

with consideration given to future storm and flooding events.

Another important consideration with regard to increased

flooding is the increased influx of freshwater and decreased

salinity, which can have detrimental effects on seaweed beds

(Davis et al., 2022b). Choosing sites with higher vertical mixing

and/or upwelling may better help mitigate against the impact of

osmotic stress, as they restore salinity to ambient levels.

Alternatively, cultivation of seaweed at greater depths, with

adjustable depth control, or on offshore sites may resolve some of

these issues as salinity is more stable at greater depths and offshore

(Stammer et al., 2021). Light may become limited at greater depths,

though successful cultivation and greater depths have been reported

from pilot off-shore farms as water clarity often improves offshore

(Bak et al., 2020).

Increasing average SST, as well as increased occurrences of

marine heatwaves, may make sites unsuitable for the cultivation of
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certain species in the near future. However, suitable management

plans can help to mitigate negative outcomes. Marine heatwaves can

be forecast with reasonable accuracy up to one year in advance (Jacox

et al., 2022). Digital resources, such as www.marineheatwaves.org,

which can be used for real-time monitoring and future prediction of

marine heatwaves, are becoming an increasingly powerful tool for

preventative strategies and policies. For example, both the United

States and Australia recently implemented nationwide marine

heatwave briefings designed to aid the shellfish aquaculture

industry in mitigating damage (Hobday et al., 2023). As the

seaweed aquaculture industry uses controlled environment

nursery systems for seed-line production, operations may choose

to deploy later in the season if heatwaves are predicted to occur at

the time of deployment. This delayed deployment however comes at

the cost of greater risks of autumn storms and increased light

limitation during the critical early grow-out stage.

3.1.2 Future range shifts of Atlantic
commercial species

With increasingly sophisticated models of historic and future

natural kelp distributions, a clearer picture emerges of where net

gain/loss in kelp biomass will occur under long-term ocean

warming (e.g. Krumhansl et al., 2016; Davis et al., 2022a;

Goldsmit et al., 2021; Gouvêa et al., 2024; Assis et al., 2024,

2022). However, analysis of range shifts that focus specifically on

commercially important species in the context of seaweed

aquaculture remain scarce (but see Assis et al., 2018; Wilson

et al., 2019). We, therefore, present a case study where we project

future distributions based on thermal niche of five commercially

important species in the North Atlantic; L. digitata, A. esculenta, S.

latissima, L. hyperborea and Palmaria palmata. Projections use the

ssp370 medium-high warming scenario and project to a near-future

of 2070 (methods fully described in Garcıá Molinos et al. (2016); see

also Supplementary Material for clarification).

Climate velocity trajectory (CVTs, Figure 3) models show

projected losses at warm edges of species ranges and gains at cold

edges. Together, these approximate the simple predictions of shifts

in the isotherms corresponding to thermal limits. Losses at warm

edges were projected to be severe for some species. They include a

complete loss by 2070 of L. hyperborea and S. latissima from

northern Spain (Figures 3C, E), reduction in range in the same

area for P. palmata (Figure 3D), and extensive loss of range in

southwest Britain, Ireland, and France for A. esculenta and L.

digitata (Figures 3A, B). Importantly, the projected distributions

indicate that large parts of the UK, Ireland and North America will

be unsuitable for growing A. esculenta by 2070, and parts of Spain

and France unsuitable for S. latissima, both species being currently

favored in Atlantic aquaculture (Figure 1). A shift in the species

considered for aquaculture to more thermally tolerant species, for

example L. ochroleuca and S. polyschides, may mitigate some of

these losses (Casado-Amezúa et al., 2019).

CVT models suggest that all species examined would have

newly suitable areas for growth at the cold edges of their

distributions. Range expansions in the sugar kelp S. latissima and

winged kelp A. esculenta may occur in the Russian Arctic, but less

area appears suitable in Greenland and the Canadian Arctic.
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Aquaculture activity will not be limited by considerations of

population connectivity and available rocky substrate, although

use of species in newly thermally suitable areas may be limited by

other factors. Most importantly among these are water clarity,

salinity fluxes and the extreme seasonality of light availability,

which may be a constraint for poleward expansion of cold-

temperate species of seaweed (Filbee-Dexter et al., 2019) and thus

cultivation of seaweed in these regions. For example, Laminaria

solidungula is endemic to the Arctic, though kelps common in the

Atlantic and suited for aquaculture such as S. latissima, A. esculenta,

and L. digitata grow in the Arctic as well (Wiencke and Amsler,

2012; Filbee-Dexter et al., 2019). Generally, if a kelp is a seasonal

anticipator (starting growth and reproduction under short-day

conditions in winter and early spring, anticipating summer

conditions) they may fare well under Arctic conditions, where

long daylight coincides with low nutrient conditions (Wiencke

and Amsler, 2012; Kain, 1989). This growth under suboptimal

light conditions is facilitated by the storing of carbon acquired

during summer periods, in the form of laminarian and/or lipids,

thus potentially changing biochemical composition compared to

temperate kelps (Scheschonk et al., 2019; Olischläger et al., 2014).

Many kelps growing in the North Atlantic originated in the Pacific

with multiple crossings of the Arctic occurring in their evolutionary

past (Starko et al., 2019), while recent genomic data shows that

kelps persisted through several periods of glaciation (Bringloe et al.,

2022). This indicates that North Atlantic kelps may already be

adapted to grow under future polar conditions. Trials with

commonly cultured species under darkness would be beneficial to

understand the constraints of expanding seaweed aquaculture into

the Arctic as more areas become continuously free of sea ice.
3.2 Opportunity 2: advances in breeding &
microbiome manipulation

3.2.1 Breeding and hybridization
Advances in genomic research on seaweeds has greatly

expanded the toolkit available for breeding desirable traits in

seaweeds. So far, many of the breeding efforts in seaweeds have

been focused on increased biomass and growth, and most available

knowledge is on the few species grown in large quantities in Asia,

predominantly of the genera Gracilaria, Porphyra, Saccharina,

Undaria and Ulva (Patwary et al., 2021). Through a mixture of

self-fertilization, cross breeding between populations, and selection

of well-performing offspring, strains of S. japonica and U.

pinnatifida now exist in China and Korea that yield far higher

growth and dry biomass weights than in early cultivar lines (Li et al.,

2016a; Shan et al., 2016; Li et al., 2016b). The number of available

seaweed genomes for commercially grown species has also

increased rapidly in the past decade offering platforms for further

genetic breeding programs (Wang et al., 2020; Nelson et al., 2024).

A recent leap in sequencing effort has made a further 110 seaweed

genomes publicly available, spanning 105 different species (Nelson

et al., 2024). Among cultivated seaweeds, several have been

successfully genetically modified to express recombinant proteins,

including S. japonica, U. pinnatifida, K. alvarezii, Porphyra
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yezoensis and Ulva lactuca (Trujillo et al., 2024). Recently, CRISPR-

Cas9 has been used to successfully gene edit Ectocarpus and S.

japonica gametophytes which were able to produce sporophytes,

paving the way for further gene-editing studies (Shen et al., 2023;
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Badis et al., 2021). The use of transcriptomics, metabolomics and

proteomics are still in their early stages for most seaweeds

compared to terrestrial crop species (Patwary et al., 2021).

However, exciting advances have been made in recent years
FIGURE 3

Projected geographical distributions of North Atlantic aquaculture species by 2070 under the medium-high ssp370 warming scenario from shifts in
isotherms from present-day range locations. Maps show projected changes for (A) Alaria esculenta, (B) Laminaria digitata, (C) Laminaria hyperborea,
(D) Palmaria palmata, and (E) Saccharina latissima. New areas of habitat (Gain, blue) are where conditions become climatically suitable, while habitats
lost (Loss, red) are where future temperatures are likely to exceed maximum baseline temperatures within the distribution range. Stability (brown) is
indicated where populations persist.
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which offer potential solutions to the challenges presented by

climate change, which are discussed below.

With increasing pressure from climate change, there has been an

increased effort to discover and characterize environmentally resilient

strains of seaweeds for cultivation. Onemajor advance in this area has

been the identification of the molecular basis of stress responses in

several species of seaweed, such as heat shock proteins (HSPs)

(Hammann et al., 2016; Eggert, 2012; Smolina et al., 2016). HSPs

are key players in stress response in land plants and protect cells from

damage due to heat (and other) stress (Timperio et al., 2008). Stress-

related transcriptomic studies have mostly been carried out on red

seaweeds, paving the way to understanding the molecular basis for

stress resilience in algae more widely. For example, P. yezoensis

displays upregulation of HSP under increased temperature stress

(Sun et al., 2015). More recently, transcriptomic analysis showed that

thermal resilience is higher among outbred crosses of L. digitata,

which was underpinned by differentially expressed genes (Liesner

et al., 2022). Interestingly, whilst inbred and outbred crosses

performed similarly physiologically, the underlying protein

expressions were different, indicating a divergent metabolic

pathway to cope with temperature stress (Liesner et al., 2022). Such

use of transcriptomics in breeding experiments under heat stress

provides invaluable data that may be further used in targeted

molecular breeding.

Huang et al. (2022) trialed genomic selection in kelp breeding in

S. latissima, where genotyped gametophytes were used to grow

sporophytes, which were then evaluated for desirable traits such as

increased wet and dry weight. The next breeding cycle used genetic

selection to perform optimal crosses with gametophytes containing

beneficial traits as defined by genotyping. Genetic selection at the

gametophyte stage was successful which resulted in higher yields

(weight, length) in farmed sporophytes, the effects of which

increased over several breeding cycles, indicating genetic gain

(Huang et al., 2023). Some roadblocks to successful use of genetic

selection in seaweed breeding still remain, e.g. difficulties in

upscaling bulk cultures of gametophytes, improving spore

survival, and in inducing spore release of desirable sporophytes to

start the next breeding cycle (Huang et al., 2022). If these roadblocks

can be overcome, genetic selection may be useful in the selection of

climate stress resilient strains for future deployment. Furthermore,

legislation around breeding and genetic modification in kelps is not

yet well-defined in many countries, and should be underpinned by

knowledge on genetic variety in local populations, as well as the

scale of genetic impact from farm to wild populations (Goecke

et al., 2020).

Whilst many of these advances can help make seaweed farms more

resilient to ocean change, care should be taken to not negatively impact

genetic diversity in natural seaweed beds (Campbell et al., 2019; Hu

et al., 2023). The widespread use of clonal monocultures, as well as

threats from climate change, can result in the loss of wild genetic

resources that underpin climate resilience (Goecke et al., 2020;

Coleman et al., 2020a; Valero et al., 2017). Efforts to map wild

genetic diversity in seaweed species of cultivation interest are

improving (e.g. Fouqueau et al., 2024), alongside efforts to biobank

and preserve wild genetic resources for future use (Wade et al., 2020;

Brakel et al., 2021). Taking note of genetic diversity within farms may
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not only help in preserving genetic diversity of wild populations but can

also enhance resilience of the farmed species to climate change.

Through hybridization, which may preserve genetic diversity,

physiological performance under stress can be increased (Goecke

et al., 2020; Hu et al., 2023). This has been shown in multiple kelp

species (e.g. Martins et al., 2019; Murúa et al., 2021; Hara and Akiyama,

1985) and Porphyra (Kim, 2011). Interestingly, fecundity inM. pyrifera

gametophytes appears influenced by the degree of relatedness, as well

as population of origin (Camus et al., 2021; Solas et al., 2024). This

indicates that interpopulation breeding may also benefit productivity at

the nursery stage, depending on the population of origin.

3.2.2 Priming of early life history stages
Another promising avenue for advancing stress tolerance of

broodstock is through priming the early life history stages of

seaweed with sublethal levels of stress, so that the subsequent adult

generation is more resilient to that stressor (Jueterbock et al., 2021).

As this can be done without the need for inbreeding or performing

outcrosses, this does not increase risk of genetic depression in either

farmed or natural populations. The molecular basis for priming is

relatively well established in agriculture practices, where this

technique is routinely used to enhance crop stress resilience (Liu

et al., 2022a). Exposure to heat stress, for example, triggers certain

genes to switch on, which is retained in later life stages through

epigenetic modification such as methylation (Liu et al., 2022a).

However, as seaweeds often have several life history phases, the

basis of passing on ‘stress memory’ diverges from that of land plants.

Recently, cold-priming of L. digitata gametophytes was shown to

improve thermal resilience in the sporophyte generation, which is

thought to be a result of epigenetic modification (Gauci et al., 2022).

Increased methylation under both cold and warm temperature stress

has been found in G. lemaneiformis (Peng et al., 2018). In S. latissima,

methylation patterns were associated with culturing conditions, and

differed significantly from field samples, as well as differing between

populations of origin, showing the importance of environment in

determining methylation patterns (Scheschonk et al., 2023). In S.

japonica, heat stress caused an increase of methylation, which in turn

regulated genes connected to heat stress response such as the

production of HSPs (Liu et al., 2023a). Cross-stressor use of

priming has also proven effective in A. esculenta, where high light

doses during early cultivation decreased the thermal stress response

of sporophytes (Martins et al., 2022). These results indicate that

priming may be an effective and relatively easy to achieve method of

increasing thermal resilience in seaweed stocks used for aquaculture.

However, the effect of priming has only been tested in gametophytes

and juvenile sporophytes. Whether the increased resilience to

temperature stress from priming carries over into adult cultivated

sporophytes remains to be tested.

3.2.3 Microbiome manipulation in the
nursery stage

There is increasing research interest in the role of microbiota on

the physiology and ecology of the seaweed host. The microbial

community and the host, together termed the holobiont, can be

considered as one functional entity responding and adapting to

environmental change (Egan et al., 2013; van der Loos et al.,
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2019a). As microbes have short generation spans, they can be of use

in accelerating adaptation to environmental change in the host

organism and, as such, have received attention in the context of

climate change adaptability of seaweeds (Eger et al., 2022;Wood et al.,

2019). As early as the 1980s, research on Ulva sp. showed abnormal

development of morphological characteristics when changing the

epibiotic community associated with the Ulva host (Provasoli and

Pintner, 1980). Since then, research has expanded to characterize,

identify and isolate beneficial strains of microorganisms involved in

seaweed growth and disease resistance. A recent review by Li et al.

(2023) outlines a pathway for using microbiota manipulation for

improving the seaweed aquaculture industry. Here, we focus on some

studies that have the potential to increase climate change resilience of

cultivated species.

Disease resistance is one major pathway in which microbiota

can be exploited to increase climate change resilience of cultivated

seaweed species. For example, identification of a bacterial strain

(Phaeobacter sp. BS52) that protects against opportunistic harmful

microbial invasion causing bleaching in Delisea pulchra (using the

model pathogen Aquimarina sp. AD1) shows a potential pathway of

enhancing disease resistance through manipulation of microbial

communities (Li et al., 2022a). As D. pulchra is more susceptible to

pathogens under elevated temperature, the addition of BS52 may

enhance its resilience to ocean warming. Moreover, the beneficial

effects of BS52 were applicable to a non-native host, Agarophyton

vermiculophyllum, where inoculation worked better in reducing

harmful effects of a bleaching disease as compared to its native

microbiota (Li et al., 2022b). In S. japonica, differences in associated

microbiota between healthy and infected juvenile sporophytes offer

the potential for developing microbial inoculates to enhance

resistance against white bleaching disease, which has a damaging

effect on the nursery stages of this cultivated kelp (Ling et al., 2022).

Based on this, a beneficial strain of bacteria was isolated (Vibrio

alginolyticus X-2) which increased S. japonica’s immune response

and disease resistance via changing the transcriptome and

metabolome of inoculated juvenile sporophytes (Ma et al., 2023b).

Inoculation of early life history stages may be an effective way of

improving overall disease and climate resilience in cultivated species,

as this can be done in vivo in nursery facilities, and whole broodstocks

can be treated at once. There are, however, some significant knowledge

gaps in how effectively the microbiota transfer from one life stage to

the next. Recently, some indication was found that the parent

microbiota transfers to the gametophyte in M. pyrifera, as there was

a significant effect of population of origin on the microbiome of

gametophyte cultures (Osborne et al., 2023). In addition, strains were

identified (within theMesorhizobium genus) that were associated with

increased biomass acquisition in the sporophyte stage (Osborne et al.,

2023). Contrastingly, Davis et al. (2023) found little to no transference

of nursery gametophyte microbes to the out-planted sporophytes ofA.

marginata and S. latissima. Instead, species, time of year and source

microbiota influenced the associated microbiota on cultivated

sporophytes (Davis et al., 2023). Recruitment of microbial

communities in cultivated Sargassum fusiforme seedlings was also

mostly governed by stochastic processes (Liu et al., 2023b).

There is increased evidence that the microbiota of the seaweed

holobiont plays a role in the response of the host to thermal stress.
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The ability to maintain stable microbiota through host selection

under thermal stress was linked to invasiveness in G.

vermiculophylla (Bonthond et al., 2023). Thermal stress also

changes the microbiota of Cystoceira compressa and E. radiata,

among other species, which subsequently affects both growth and

photosynthetic capability (Qiu et al., 2019; Mancuso et al., 2023).

However, direct evidence for microbial inoculation increasing

thermal resilience is still lacking. Juveniles of Dictyota dichotoma

did not perform better when inoculated with a mix of naturally

occurring microbiota, neither did the inoculum affect the epibiota

(Delva et al., 2023). However, this may have been due to the

sourcing of the inoculum, which was taken from seawater at the

same temperature as the lower thermal treatment. This shows that

ample opportunity still exists to examine the potential of enhanced

stress tolerance in seaweeds via microbiota manipulation, and

conflicting results point to knowledge gaps defining the

underlying mechanisms of the role of microbiota in seaweed

stress resilience.
3.3 Opportunity 3: restorative aquaculture

While seaweed aquaculture production continues to accelerate,

there is an increasing awareness of the simultaneous threat to

natural seaweed beds from changing climate. Initiatives to restore

natural seaweed ecosystems have developed worldwide in the last

few decades (e.g. Eger et al., 2023; Vergés et al., 2020; Chung et al.,

2013). However, large-scale restoration projects are still rare. There

are some success stories, for example active restoration of 500-800

hectare of seaweed habitat in Korea and Japan (Eger et al., 2020),

8500 hectares of macrophyte habitat (also including seagrass) in

China (Liu et al., 2022b) and the protection of 30,000 hectares of

kelp habitat for rewilding in the English Channel (Williams et al.,

2022). While these are all steps in the right direction, large scale

restoration will need significant investment of both time and

monetary funds, as well as technological advances in growing and

breeding seaweeds (Eger et al., 2020). There is an opportunity for

collaboration between aquaculture and restoration projects, as

investment and technical advances will be more likely to develop

in the aquaculture sector. This synergy is required so that maximum

benefits can be derived from restorative approaches to seaweed

aquaculture, which will be discussed in this section.

3.3.1 Co-culture
Improving resilience in both aquaculture and restoration

projects may be boosted by using co-culture techniques rather

than growing one target species for restoration and cultivation.

There are not many studies available yet which examine a more

ecosystem-based approach to growing seaweed, such as is being

trialed in agriculture with the use of restorative and permaculture

practices (Corrigan et al., 2022). However, there are some studies

that indicate that diversifying crops grown in aquaculture facilities

can increase yield. For example, co-culture of Kappaphycus sp. with

Euchema denticulatum increased resistance against ice-ice during

the summer months, when chances of infection rise with ocean

temperatures (Pang et al., 2015). In their study, co-culturing was
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achieved by alternating longlines growing one species each, and

infection rates of ice-ice and the epiphyte Neosiphonia savatieri

were reduced from ~80% in individually cultured species, to ~14%

in co-culture (Pang et al., 2015). Furthermore, the co-culture of

cultivated seaweeds with species that are non-palatable to grazers

such as Caulerpa and Halimeda spp. also decreased grazing of

Gracilaria sp. by herbivores (Ganesan et al., 2006). Co-culture may

thus increase resilience to ocean-warming induced disease, while

also increasing the potential increasing derived biodiversity benefits

of a seaweed farm by increasing macroalgal diversity.

This concept may be extended to co-culture with species of

shellfish or finfish, which has been more widely researched.

Integrated multitrophic aquaculture (IMTA) may have further

knock-on benefits for the local system it is placed in by absorbing

nutrients and dissolved CO2 (Duarte et al., 2022; Kim et al., 2017; Ross

et al., 2023). This lowers pH locally and provides a chemical refuge for

marine calcifiers such as shellfish, limiting low saturation levels of

aragonite (WArag) and thus lowering the risk of shell dissolution

(Fernández et al., 2019; Falkenberg et al., 2021). In turn, the shellfish

provide additional nutrients (e.g. nitrate, urea, phosphate) for seaweed

growth, thus increasing the potential for large-scale macroalgal

cultivation and providing economic benefits for both the seaweed

and shellfish farm. However, the pH-buffering capacity of seaweeds is

highly species-specific and depends on the local community structure

and prevailing hydrodynamic conditions (Ricart et al., 2023). Some

studies show a significant increase in pH, O2 and WArag in seaweed

farms which can increase shellfish growth, as well as large fluctuations

in pH hypothesized to help shellfish adapt to acidification (Xiao et al.,

2021; Li et al., 2021; Young et al., 2022). Others have found no benefits

derived from co-culturing shellfish with several species of seaweed (Leal

et al., 2024). Overall, more research is required in this area, particularly

regarding the cumulative effect of OA and warming on seaweed

performances. Often the negative impact of ocean warming
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outweighs any beneficial effect of acidification (Graba-Landry et al.,

2018; Britton et al., 2020; Wahl et al., 2020). In addition, a better

understanding is needed for the co-culture of shellfish and seaweeds

regarding target species and productivity rates and their interactions

with local environmental factors.

3.3.2 Restoration and cultivation co-benefits
Besides bio-buffering in a commercial IMTA context, seaweed

farms may also be used as a pH buffering strategy in naturally

occurring ecosystems which rely on calcifying species (e.g. coral

reefs, maerl beds, oyster reefs). These species are most vulnerable to

OA as their structural integrity is threatened by lowered oceanic pH

(Doney et al., 2009). For example, seaweed farming partially

mitigated OA in a coral reef ecosystem, but mitigation success (in

terms of maximum increase in pH and WArag) depended on the

optimum location, size, seaweed density and harvesting strategy of

the farm (Mongin et al., 2016). To the best of our knowledge, this is

the only study that has investigated benefits of acidification in the

context of coral reefs, but the projected co-benefits certainly warrant

further research.

Other ways in which restoration and aquaculture industries

can benefit from collaboration is through knowledge sharing and

generating funds to achieve successful restoration. Certainly, one

of the main roadblocks to many restoration initiatives is lack of

funding, as well as technical knowledge and facilities for

cultivating seaweeds on a large scale (Eger et al., 2020). The

aims of aquaculture and restoration industries are distinct:

where aquaculture may be concerned mostly with increasing

biomass and composition of the product, restoration is

interested in successful transference of ecosystem-wide benefits.

There are, however, some areas in which these two industries

overlap. For example, both industries will benefit from climate-

proof solutions to cultivation, maintaining genetic variety in
FIGURE 4

Summary of strengths and weaknesses of seaweed cultivation in the context of climate change, and the opportunities and challenges facing the
seaweed industry.
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biobanks and cost-effective technologies for large-scale

deployment. In particular, the maintenance and provision of

seedstock by commercial scale nurseries to support restoration

has the potential to accelerate restoration scale and success

(Filbee-Dexter et al., 2022). Currently, many restoration projects

propagate their own seedstock derived from small source

populations or transplanted adult individuals, which is both

costly and diminishes the chances of success through lack of

genetic resilience (Eger et al., 2022). Commercial scale nurseries

have the knowledge and skills to increase resilience and genetic

diversity in their broodstock, which will benefit restoration by

increasing robustness to climate change. Recent biobanking

initiatives focusing on Atlantic species are paving the way for

preserving genetically diverse broodstock (e.g. the SeaStrains

initiative by the Global Seaweed Coalition, and several biobanks

like Biobancos (Portugal), the Seaweed Nursery at the Scottish

Association for Marine Science (UK), and CCAP (UK)). Another

factor that can hinder both aquaculture and restoration initiatives

is permitting, social license and legislation (Eger et al., 2022;

Wood et al., 2017). A more integrated push from both

restoration and aquaculture industries may increase the speed

and efficacy in which the necessary legislative changes for both

coastal cultivation and restoration are achieved.
4 Conclusion

Globally, seaweed aquaculture is currently a major contributor

(~50%) to ocean-based aquaculture production and has the

potential to expand further as the need for sustainable food and

materials increases (FAO, 2022). The seaweed industry, however,

faces key challenges from ongoing climate change. In this review we

have summarized some of the major challenges that the industry is

facing through climate change stressors. On the other hand, we have

highlighted opportunities for increasing resilience and sustainable

development. These findings are summarized in Figure 4. Whilst

some of the challenges are considerable, the strengths and

opportunities highlighted in this review outnumber the

weaknesses and threats, emphasizing the great potential of the

seaweed industry as a sustainable industry. In recent years, there

has been a lot of media attention on seaweed as a solution to many

climate issues, creating a ‘seaweed hype’. To deliver on its promise

however, technological difficulties and practical challenges

pertaining to thermal tolerance, genetic diversity, scalability and

disease resistance must be overcome. Here we have summarized

research efforts that can provide a solution to some of these hurdles,

and we hope to inspire further research in the three areas of

opportunity: ‘Future-proof’ site selection, development of selective

breeding and microbe inoculations for increased resilience, and

taking a restorative or ecosystem approach to seaweed aquaculture.

In the face of climate change, seaweed aquaculture offers a globally
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sustainable solution to some of the most pressing challenges related

to food security and environmental stress.
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Impact of climate change on
the kelp Laminaria digitata –
simulated Arctic winter warming
Moritz Trautmann1, Inka Bartsch2, Margot Bligh1,3,
Hagen Buck-Wiese3, Jan-Hendrik Hehemann1,3,
Sarina Niedzwiedz1, Niklas Plag4,5, Tifeng Shan6, Kai Bischof1

and Nora Diehl1,2*

1Faculty of Biology and Chemistry & Center for Marine Environmental Sciences (MARUM), University
of Bremen, Bremen, Germany, 2Alfred Wegener Institute, Helmholtz Centre for Polar and Marine
Research, Bremerhaven, Germany, 3Max-Planck-Institute for Marine Microbiology, Bremen, Germany,
4Institute of Biological Sciences, University of Rostock, Rostock, Germany, 5Julius Kühn-Institute (JKI)
– Federal Research Centre for Cultivated Plants, Brunswick, Germany, 6Institute of Oceanology,
Chinese Academy of Sciences, Qingdao, China
The Arctic is seasonally exposed to long periods of low temperatures and

complete darkness. Consequently, perennial primary producers have to apply

strategies to maximize energy efficiency. Global warming is occurring in the

Arctic faster than the rest of the globe. The highest amplitude of temperature rise

occurs during Polar Night. To determine the stress resistance of the ecosystem-

engineering kelp Laminaria digitata against Arctic winter warming, non-

meristematic discs of adult sporophytes from Porsangerfjorden (Finnmark,

Norway) were kept in total darkness at 0°C and 5°C over a period of three

months. Physiological variables, namely maximum quantum yield of

photosynthesis (Fv/Fm) and dry weight, as well as underlying biochemical

variables including pigments, storage carbohydrates, total carbon and total

nitrogen were monitored throughout the experiment. Although all samples

remained in generally good condition with Fv/Fm values above 0.6, L. digitata

performed better at 0°C than at 5°C. Depletion of metabolic products resulted in

a constant decrease of dry weight over time. A strong decrease in mannitol and

laminarin was observed, with greater reductions at 5°C than at 0°C. However, the

total carbon content did not change, indicating that the sporophytes were not

suffering from “starvation stress” during the long period of darkness. A decline

was also observed in the accessory pigments and the pool of xanthophyll cycle

pigments, particularly at 5°C. Our results indicate that L. digitata has amore active

metabolism, but a lower physiological and biochemical performance at higher

temperatures in the Arctic winter. Obviously, L. digitata is well adapted to Arctic

Polar Night conditions, regardless of having its distributional center at lower

latitudes. Despite a reduced vitality at higher temperatures, a serious decline in

Arctic populations of L. digitata due to winter warming is not expected for the

near future.
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1 Introduction

The Arctic is one of the regions that is changing most rapidly

due to climate factors, feedback mechanisms and changes in energy

transport towards the poles (Richter-Menge et al., 2017; Previdi

et al., 2021). This results in 3.8 times faster warming in the Arctic

than the global average (Rantanen et al., 2022), with the strongest

temperature rise detected during the winter months (Wang et al.,

2017; Maturilli et al., 2019). Generally, organisms populating the

Arctic must have the ability to survive extreme abiotic conditions

due to the strong seasonality (Zacher et al., 2009). For instance,

Arctic kelps have to endure extreme photoperiodic conditions

(Gattuso et al., 2020). In winter, they are exposed to very low

temperatures and months-long complete darkness (Polar Night).

Due to climate change, however, strong fluctuations in sea surface

temperature (SST) have occurred in recent decades. For example, in

Kongsfjorden, Svalbard, winter SST minima of −1.8°C were

measured, while the maximum SST reached ~5°C (Huang et al.,

2021; see Supplementary Material; Diehl et al., 2024).

Kelp forests are among the largest biogenic structures of marine

benthic habitats and are highly productive ecosystems with

structural complexity and phyletic diversity (Steneck et al., 2002;

Wernberg et al., 2019). By definition, they are formed by brown

algae of the order Laminariales, which dominate shallow rocky

shores of temperate and Arctic regions. As sedentary organisms,

kelps are particularly affected by changes in their environment and

rising temperatures result in shifts in distribution and abundance of

many species (Smale et al., 2019). On the one hand, new suitable

and ice-free habitats are expected to increasingly appear in the

future (Krause-Jensen et al., 2020; Castro de la Guardia et al., 2023).

Changes in kelp abundance have already been observed in High

Arctic regions (Bartsch et al., 2016; Düsedau et al., 2024). On the

other hand, elevated temperatures generally stimulate the metabolic

activity of organisms (Pörtner et al., 2005), and may therefore have

a negative impact on the dark survival of kelps (Gordillo et al.,

2022). Yet, the mechanisms of winter survival are still poorly

understood and only a few studies have investigated acclimation

of kelps to the Polar Night (Scheschonk et al., 2019; Gordillo et al.,

2022; Summers et al., 2023; Diehl et al., 2024).

Kelps have evolved various mechanisms to acclimatize to

abiotic variations in the environment (Hurd et al., 2014). Due to

the seasonal photoperiods in the Arctic, growth and reproduction of

most kelps species is limited to a short time in spring and summer,

while in winter they undergo a “starvation mode” due to the lack of

light for photosynthesis (Wiencke et al., 2009; Gordillo et al., 2022).

The vitality of kelps can be determined via fluorescence-based

measurements of the maximum quantum yield of photosystem II

(Fv/Fm), a common parameter for assessing the health and stress

level of photosynthetic organisms, including macroalgae (Dring

et al., 1996; Dring, 2006). As they are part of the cellular machinery

for photosynthesis, pigment contents in some seaweeds decrease

during Polar Night, when the metabolism of the organisms slows

down to survive this period of total darkness (Wiencke et al., 2009).

Moreover, the de-epoxidation state of the xanthophyll cycle

pigments (DPS), an intracellular stress response, is affected by

light and low temperatures (Fernández-Marıń et al., 2011; Li
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et al., 2020; Monteiro et al., 2021). The carbohydrates mannitol

and laminarin play a crucial role in surviving the Polar Night.

Mannitol is the primary photosynthesis product and an important

short-term storage carbohydrate in brown algae (Yamaguchi et al.,

1966). In summer, when photosynthesis rates are high, mannitol is

converted into the polysaccharide laminarin, the long-term storage

carbohydrate (Johnston et al., 1977). In periods of darkness,

laminarin can be reconverted into mannitol to maintain

important metabolic functions (Yamaguchi et al., 1966; Johnston

et al., 1977; Küppers and Kremer, 1978). We hypothesize that

winter warming could accelerate the use of carbon reserves and

increase the decomposition of the biomass. Monitoring dry weight

and the total carbon content alongside quantifying mannitol and

laminarin provides information on the consumption of carbon-

containing metabolites as well as the storage carbohydrates.

Laminaria digitata (Hudson) J.V. Lamouroux is a broadly

distributed cold–temperate to Arctic North Atlantic kelp growing

on hard substrates in the sublittoral zone. In the East Atlantic, it is

present from Southern Brittany to Spitsbergen (Lüning, 1990), where

it survives up to four months of Polar Night. The species is described

to survive and grow at temperatures as low as 0°C, with a temperature

optimum at 10°C (Bolton and Lüning, 1982; tom Dieck (Bartsch),

1992). Recent studies showed a distinct decrease in digitate kelps

(including L. digitata) in Arctic fjords (Düsedau et al., 2024),

potentially in response to changes in the underwater light climate

as a consequence of increased meltwater run-off (Schlegel et al.,

2024). Liesner et al. (2020) showed that lower temperatures (5 vs. 15°

C) led to a higher phenotypic plasticity, as well as higher growth rates

of juvenile sporophytes, highlighting the importance of cold seasons

for the survival of L. digitata and potential threats of climate change.

Exposing L. digitata gametophytes to low temperatures (5 vs. 15°C)

also facilitated a positive growth response from subsequent juvenile

sporophytes at sub-optimal low (0°C) and warm (20°C) conditions

(Gauci et al., 2022).

The aim of this study was to determine the resistance of L.

digitata sporophytes to simulated temperature increases during the

Polar Night in the High Arctic. Therefore, we kept discs from L.

digitata sporophytes at temperatures of 0°C and 5°C in total

darkness for three months. Various physiological and biochemical

variables were monitored during the experiment. We hypothesized

that higher temperatures during Polar Night would lead to an

increased metabolism and therefore a reduced survival capacity of

L. digitata.
2 Material and methods

2.1 Sampling and experimental design

Twenty adult sporophytes (~75–200 cm) of Laminaria digitata

(Hudson) J.V. Lamouroux were collected at Porsangerfjorden

(N 70°24’, E 25°32’; N 70°29’, E 25°39’; N 70°30’, E 25°42’),

Finnmark in Northern Norway (Figure 1A). Individuals were

sampled on July 12, 2022 at depths of 3–5 m, and stored in

running seawater until July 20. Between 20 and 50 discs (ø 2.8

cm) per sporophyte were cut 10–40 cm above the meristem and
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kept moist, cool, and dark during transport. The experiment was

conducted at the Alfred Wegener Institute in Bremerhaven,

Germany. The samples arrived on July 22. After arrival, the discs

were cultivated in a climate chamber at 5°C (± 0.5°C) and constant

light (30 µmol photons m−2 s−1, l ~380–700 nm, ProfiLux 3 with

LED Mitras daylight 150, GHL Advanced Technology,

Kaiserslautern, Germany) over three days for recovery

(Figure 1B). After the recovery period, the subsamples from 12

sporophytes were distributed across the replicates, treatments and

time points. To do so, 20 healthy discs (Dring et al., 1996; Fv/Fm
>0.6 data not shown) from one individual each were used per

replicate and treatment (n = 6), e.g. 0°C Replicate A. First

biochemical sampling was conducted on August 01 (week 0 =

“w0”). Therefore, five discs per replicate were randomly selected

before the acclimation began, shock-frozen in liquid N2 and stored

at −80°C until further processing. Then, the samples were

maintained in two separate climate chambers (0°C and 5°C; ±

0.5°C) in the dark and the 0°C replicates were stepwise acclimated

from 5°C to 0°C. Over a period of three months, three more

biochemical samplings were conducted in the same way

(September 02: “w4”, September 30: “w8”, October 27: “w12”).

During the experiment, each replicate was kept in an aerated 2 L

clear plastic bottle containing 1/40 Provasoli-enriched seawater

[1/40 PES, 13.7 µmol NO3
− L−1; 0.55 µmol PO4

3− L−1] in total

darkness (0 µmol photons m−2 s−1), simulating Polar Night

conditions in this High Arctic fjord Kongsfjorden, Svalbard

(Bischof et al., 2019). Water was exchanged twice a week.
2.2 Species identification

As discrimination between digitate Laminaria digitata,

Hedophyllum nigripes and Laminaria hyperborea is difficult based
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on morphology alone (Longtin and Saunders, 2015; Dankworth

et al., 2020), we genetically identified the collected specimens.

Genomic DNA was extracted from subsamples, which were

stored in silica gel, using a plant genomic DNA extraction kit

(DP305, Tiangen Biotech, China) following the manufacturer’s

instructions. Species were identified according to the method of

Mauger et al. (2021), which involves amplifying a fragment of the

mitochondrial COI gene (COI-5P). In short, two PCR reactions

(PCR1 and PCR2) were conducted using a Taq Master Mix kit

(Accurate Biology, China) and a T-gradient thermocycler

(Biometra, Germany), with the primers and programs outlined in

Mauger et al. (2021). PCR products were separated by

electrophoresis, and then stained with GelRed and visualized

under UV light. The amplified fragment patterns were compared

with Mauger et al. (2021) to identify species.
2.3 Physiological response variables

Maximum in vivo chlorophyll-fluorescence of photosystem II

(Fv/Fm) was measured weekly, using a pulse-amplitude-modulated

fluorometer (Imaging-PAM, Walz GmbH Mess- und Regeltechnik,

Effeltrich, Germany) to assess algal vitality. The I-PAM was set up

to determine the initial amplitude of the fluorescence signal (Ft)

between 0.15 and 0.2 (Int. 4, Gain 4, Damp. 4, SP 8, Width 0.8 s).

Pictures of the samples were taken every two weeks against a

white background to exclude potential effects of the discs’ size on dry

weight (DW). A ruler was included in the pictures for reference. Areas

of the discs (cm2) were determined using ImageJ (Version 1.54d, Java

1.8.0_345, Wayne Rasband, National Institute of Health, USA). For

monitoring the DW (w0, w4, w8, w12), samples were freeze-dried

(Alpha 1–4 LO plus, Martin Christ Gefriertrocknungsanlagen GmbH,

Osterode am Harz, Germany) and then weighed.
FIGURE 1

(A) Map of Northern Norway and Porsangerfjorden (Finnmark). The orange dots mark the sampling locations of Laminaria digitata. (B) Experimental
setup. Week 0 (w0), w4, w8, and w12: Biochemical sampling during the experiment. Map was created with ggOceanMaps (Vihtakari, 2024).
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2.4 Biochemical response variables

Total carbon (Total C) and nitrogen (Total N) were analyzed

following the protocol of Graiff et al. (2015). 2–3 mg of freeze-dried

samples were weighed into tin cartridges and incinerated at 950°C

in an elemental analyzer (Vario EL III, Elementar). Acetanilide was

used as a standard (Verardo et al., 1990).

Mannitol content was determined following the methods of

Diehl et al. (2020). In short, 1 mL of 70% ethanol was added to

10–15 mg of freeze-dried samples and incubated at 70°C for three to

four hours in a water bath. The samples were then centrifuged for

5 min at 13,000 rpm. 800 mL of the supernatant was transferred and

evaporated to dryness. The pellets were re-dissolved in ultrapure

water (0.055 µS/cm) by vortexing and ultrasonication. Resuspended

samples were then centrifuged for 5 min at 13,000 rpm. Mannitol

content in the supernatants was determined following the protocol

of Karsten et al . (1991). A High Performance Liquid

Chromatography system (HPLC; Agilent Technologies 1200

series, Santa Clara, California, USA) was used with a guard

cartridge (Phenomenex, Carbo-Pb2+ 4 x 3.00 mm I.D.) and an

analytical Aminex Fast Carbohydrate Analysis Column (100 х

7.8 mm, 9 mm, BioRad, Munich, Germany) using ultrapure water

as mobile phase. Calibration standards contained 0.5, 1.0, 2.5, 5.0

and 10.0 mM mannitol. Initial (w0) values were set to 100% and

other samples to percentage of the initial.

Laminarin content was quantified following the methods of

Becker et al. (2017) and Becker and Hehemann (2018). Laminarin

was first extracted from 35–65 mg of freeze-dried material with 50

mM 3-(N-morpholino)propanesulfonic acid (MOPS) buffer (pH

7.0) at 4°C for 5 h (Scheschonk et al., 2019). Three recombinantly

expressed laminarinases (FbGH30, FaGH17A and FbGH17A) were

used to specifically hydrolyze laminarin to glucose (Becker et al.,

2017). The reducing ends of sugars were quantified via the

PAHBAH assay (Lever, 1972). The concentration of laminarin in

each sample was calculated by comparison to non-hydrolyzed

samples and calibration against a standard curve of Laminaria

digitata laminarin (Sigma-Aldrich) processed in the same way as

the extracts. Calibration concentrations were 7.8125, 15.625, 31.25,

62.5, 125, 250 and 500 µg mL−1. Concentrations were converted to

mg of laminarin per mg DW.

Pigments were analyzed following the methods of Koch et al.

(2015). 45–55 mg of freeze-dried samples were extracted in 1 mL

90% fridge-cold acetone at 4°C in darkness for 24 h. The

filtered supernatant was analyzed by HPLC (LaChromElite®

system, L-2200 cooled autosampler, DA-detector L-2450; VWR

Hitachi International). Pigments were separated on a Spherisorb®

ODS-2 (250 × 4.6 mm, 5 mm;Waters) column following the gradient

from Wright et al. (1991). Reference standards were laboratory

standard solutions (DHI Lab Products) of chlorophyll a (Chl a),

chlorophyll c2 (Chl c2), fucoxanthin (Fuco), violaxanthin (V),

antheraxanthin (A) and zeaxanthin (Z). The accessory pigment

pool (Acc; Chl c2 + Fuco) as well as the pool size of the

xanthophyll cycle pigments (VAZ; V+A+Z) were determined in

mg g−1 DW. The ratios of VAZ:Chla and Acc:Chla were calculated to

detect modulations in the photosynthetic apparatus. In addition, the
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de-epoxidation-state of the xanthophyll cycle (DPS), describing the

process of converting V via A to Z, which reduces intracellular stress

by dissipating excess energy (Wiencke and Bischof, 2012), was

calculated after Colombo-Pallotta et al. (2006).
2.4 Statistics

As initial Fv/Fm values (w0) differed significantly between 0°C

and 5°C, Fv/Fm and all other variables were displayed as “% of w0”.

“R” version 4.2.2 (R Core Team, 2022) was used for statistical

evaluation. First, extreme outliers (Bonferroni, p < 0.05) were

excluded. Normal distribution and homogeneity of variances were

checked for all datasets using a Shapiro-Wilk test (p > 0.05) and

Levene’s test (p > 0.05) respectively (Zuur et al., 2013). Data were

also checked visually for normal distribution. If data appeared

normally distributed, they were not transformed, regardless of the

Shapiro-Wilk test statistic. The F-statistic for small sampling sizes is

robust to a moderate deviation from the normal distribution

(Blanca et al., 2017). Variation in Fv/Fm and area of all discs were

examined using repeated unifactorial ANOVAs followed by post

hoc Tukey tests. All other variables measured for the subsampled

discs were assessed with two-factorial ANOVAs followed by post

hoc Sidak tests, due to multiple pairwise comparison. When

interpreting the data, it must be taken into account that the

samples were cultivated in two different climate chambers, so that

the temperature treatments contain a certain chamber effect. All

statistical evaluations of the physiological and biochemical response

variables are summarized in Supplementary Table S2.
3 Results

3.1 Species identification

Based on genetic data, the collected specimens were confirmed

to be Laminaria digitata (Hudson) J.V. Lamouroux (Supplementary

Figure S1).
3.2 Physiological response variables

The physiological vitality of Laminaria digitata, measured as

the maximum quantum yield of photosystem II (Fv/Fm as % of w0;

Figure 2 was strongly affected by the temperature treatments (0°C >

5°C, p < 0.001). Within each temperature treatment there were no

significant changes over time. Fv/Fm was similar at both

temperature treatments up to w6. From w8 onwards vitality of

samples at 0°C increased slightly, while a trend toward decreasing

vitality was observed for samples at 5°C. Throughout the entire

experiment, Fv/Fm (raw data as “absolute values”) in both

treatments remained above 0.6 (Supplementary Table S1).

Although dry weight (DW as % of w0; Figure 3A) of the freeze-

dried samples decreased significantly between w0 and w12 for pooled

0°C and 5°C (p < 0.01), no significant weight loss over time was
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determined for 0°C and 5°C when considered individually. Time-

integrated DW did not differ between the temperature treatments.
3.3 Biochemical response variables

The ratio between carbon and nitrogen (C:N as % of w0; Table 1)

in the samples was affected by the temperature treatments (p < 0.05),

decreasing significantly from w0 to w12 in samples at 5°C (p < 0.01)

but not in samples at 0°C. These changes reflect higher total nitrogen

contents (Total N) toward the end of the experiment. Total N (% of

w0; Table 1) increased significantly over time at 5°C (p < 0.01),

whereas no significant differences were measured for total carbon

content (Total C; Figure 3B) of the samples at both temperature

treatments. While not statistically significant, trend towards

decreasing Total C over time were observed for both temperature

treatments. Comparison of the raw data (absolute values) of C:N

(Supplementary Table S1) revealed that ratios were slightly above 20

at the beginning of the experiment and declined to 17.9 ± 1.9 (0°C,

p = 0.29) and 13.4 ± 0.6 (5°C, p < 0.01) at w12.

Mannitol content (% of w0; Figure 3C) decreased significantly

over time (0°C: p < 0.01; 5°C: p < 0.001) in both treatments. While

there was no significant difference between the two temperature

treatments, a trend was observed to lower mannitol concentrations

at 5°C compared to 0°C. Laminarin content (% of w0; Figure 3D)

differed significantly between the temperature treatments (p < 0.05),

with lower concentrations measured in samples at 5°C than at 0°C.

Significant changes over time were only found for samples at 5°C

(w0 > w12; p < 0.05).
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Content of Chla, Acc and VAZ (% of w0; Figures 4A–C) in

samples decreased over time. Trends to higher concentrations in

samples at 0°C than in samples at 5°C were observed for all

pigments. Chla, depleted significantly from w0 to w12 of the

experiment when treatments were pooled (p < 0.05; Figure 4A).

when considering treatments individually there was no significant

decrease in Chla over time for either 0°C or 5°C. for a significant

reduction in Acc content (% of w0; Figure 4B) was only measured at

5°C (p < 0.05), resulting in significant differences between the

temperature treatments (p < 0.05). The greatest effects of

sampling time and temperature were detected for VAZ, which

was significantly depleted in samples from w0 to w12 at both

temperatures (p < 0.001; Figure 4C) and was significantly higher

in samples at 0°C than in samples at 5°C (p < 0.01). No significant

changes between w0 and w12 were observed in the relative (% of w0;

Figure 4D) or absolute (Supplementary Table S1) values of DPS.

While temperature had no significant effect on relative DPS,

absolute DPS values were significantly higher at 0°C than at 5°C

(p < 0.001) at the end of the experiment. Acc:Chla (% of w0;

Table 1) increased over time (p < 0.05) at 0°C, while VAZ:Chla (%

of w0; Table 1) decreased over time at both temperature treatments

(p < 0.001), with lower values at 5°C (p < 0.01).
4 Discussion

This study determined the impact of Arctic winter warming on

Laminaria digitata sporophytes in a simulation of High Arctic Polar

Nights. Over a period of three months in darkness, physiological
FIGURE 2

Vitality (maximum quantum yield of photosystem II; Fv/Fm) of Laminaria digitata, monitored weekly over three months under Polar Night conditions
at 0°C (blue) and 5°C (red). Values are given as % of week 0 (w0) and means ± SD (n = 6). Significances between temperatures are indicated by black
asterisks (p < 0.001***).
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variables and underlying biochemical metabolites were monitored

in samples maintained at 0°C and 5°C. The two temperature

treatments represented the mean and the maximum winter

temperatures that have already been measured in the High Arctic,

for example in Kongsfjorden, Svalbard (Huang et al., 2021; see

Supplementary Material; Diehl et al., 2024). From our results

(Figure 5), it can be deduced that L. digitata sporophytes from

Arctic regions are well adapted to prolonged darkness regardless of

temperature and do not reach the end of Polar Night with a

considerable lack of storage reserves and pigments.

Relative changes in vitality indicated that L. digitata performed

better at 0°C compared to 5°C. Yet, a certain chamber effect in

combination with the temperature treatments cannot be ruled out

as the samples were maintained in two different climate chambers.

Relative Fv/Fm values increased for samples at 0°C and decreased for

samples at 5°C from week 8 onwards. However, absolute Fv/Fm
values were never below 0.6, so all samples could be considered vital

for the duration of the experiment (Dring et al., 1996). Laminariales

have been observed to maintain a good vitality after long periods of

darkness before (Scheschonk et al., 2019; Gordillo et al., 2022;

Summers et al., 2023; Diehl et al., 2024).
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The degradation of metabolites during prolonged darkness was

reflected in a continuous loss in DW over time, as has also been

observed for other kelps (Gordillo et al., 2022). However, contrary

to previous data on Saccharina latissima and Alaria esculenta,

weight loss in L. digitata did not increase at enhanced

temperatures (3°C vs. 8°C; Gordillo et al., 2022). By visually

observing the discs and monitoring disc area every two weeks, we

were able to exclude any impact of decomposition on the DW

(Supplementary Table S1; Supplementary Figure S2).

During polar winter kelps rely on accumulated energy stores, and

must therefore be particularly energy efficient (Wiencke et al., 2009). In

times of prolonged darkness, kelp derive mannitol from stocks of

laminarin that they replenished during summer (Johnston et al., 1977;

Küppers and Kremer, 1978). Accordingly, mannitol can be considered

the main metabolite for respiration during the Polar Night. It must be

taken into account that the storage carbohydrate content varies

between the meristem and the distal part of the sporophyte

(Scheschonk et al., 2019). By conducting the experiment with

subsamples taken from the central part of the phylloid, we aimed to

eliminate any impact of these variations. Mannitol content of L.

digitata decreased by 37% (0°C) and 65% (5°C) over the three-
FIGURE 3

(A) Dry weight (DW) (B) Total carbon (Total C), (C) Mannitol and (D) Laminarin of Laminaria digitata, monitored every four weeks over three months
under Polar Night conditions at 0°C (blue) and 5°C (red). Values are given as % of week 0 (w0) and means ± SD (n = 6). Significances between
temperatures are indicated by black asterisks (p < 0.05*). Time-integrated significances between w0 and w12 within each temperature are marked
by blue and red asterisks (p < 0.01**, p < 0.001***).
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month experiment, while laminarin decreased by 40% and 90%

respectively. When comparing energy stocks in the cold–temperate

kelp S. latissima from Kongsfjorden (Svalbard), Scheschonk et al.

(2019) measured comparably high declines of mannitol and

laminarin between October and February. They concluded that the

strong reduction (>90%) of laminarin over the Polar Night maintains
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the metabolic functions of the kelp in that period. Additionally, lower

laminarin concentrations were measured in L. digitata at higher

temperatures during an experimental Polar Night treatment, as also

observed in S. latissima (Scheschonk et al., 2019). The faster

consumption of storage carbohydrates at higher temperatures

suggests an increased energy requirement of L. digitata at 5°C. An
TABLE 1 Biochemical variables of Laminaria digitata monitored over three months under Polar Night conditions at 0°C and 5°C.

Variable Temperature Week % of w0 Statistical comparison

C:N 0°C w0 100 ± 0 0°C > 5°C* w0 = w12

w4 87.3 ± 12.9

w8 90.9 ± 23.0

w12 84.6 ± 21.4

5°C w0 100 ± 0 w0 > w12**

w4 88.1 ± 20.8

w8 66.8 ± 11.7

w12 67.4 ± 17.0

Total N 0°C w0 100 ± 0 0°C < 5°C* w0 = w12

w4 102.3 ± 14.5

w8 111.9 ± 29.9

w12 115.1 ± 25.5

5°C w0 100 ± 0 w0 < w12**

w4 108.5 ± 9.8

w8 131.9 ± 6.3

w12 143.1 ± 33.8

Acc:Chla 0°C w0 100 ± 0 0°C > 5°C** w0 < w12*

w4 102.8 ± 5.3

w8 105.1 ± 4.4

w12 108.0 ± 5.0

5°C w0 100 ± 0 w0 = w12

w4 100.2 ± 3.0

w8 104.5 ± 4.2

w12 96.2 ± 4.7

VAZ:Chla 0°C w0 100 ± 0 0°C > 5°C** w0 > w12***

w4 84.8 ± 10.9

w8 69.0 ± 19.1

w12 68.0 ± 21.4

5°C w0 100 ± 0 w0 > w12***

w4 75.6 ± 8.3

w8 52.9 ± 7.4

w12 50.9 ± 8.6
C:N, carbon to nitrogen ratio; Total N, total nitrogen; VAZ:Chla, ratio of xanthophyll cycle pigment pool to chlorophyll a; Acc:Chla:, ratio of accessory pigments to chlorophyll a. Values are given
as % of week 0 (w0) and means ± SD (n = 6). Significances are indicated by asterisks: p < 0.05*, p < 0.01**, p < 0.001***.
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even stronger rise in winter temperatures in the future could

completely deplete L. digitata energy stocks before the end of the

Polar Night and thus might lead to starvation or extensive stress. A

faster consumption of storage carbohydrates with increasing

temperatures during Polar Night was not observed for Laminaria

hyperborea (Diehl et al., 2024). The different responses of Laminariales

to winter warming will presumably have an impact on seaweed

diversity and species abundance in the High Arctic in the future.

Nonetheless, despite the almost complete depletion of laminarin

stocks at 5°C, L. digitatawas not exposed to a “starvation stress” during

three months of total darkness, as seen in stable total carbon content

(Total C) over the three-month experiment. Although tendencies

towards decreasing Total C content were observed in the samples,

the degradation was less than 10% and independent from temperature.

Consequently, L. digitatamust have developed a strategy to preserve C

during the Polar Night period. For S. latissima, also no changes in Total

C were measured after four months of darkness (Gordillo et al., 2022).

We assume that at complete darkness similar processes take place in L.

digitata as have been described for the growth phase, when

Laminariales remobilize and utilize their storage carbohydrates for
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energy generation (Gómez and Huovinen, 2012). Laminarin is first

transformed into mannitol. Subsequently, mannitol is degraded

stepwise to generate cellular energy, releasing CO2 which can be

directly recovered by the enzyme phosphoenolpyruvate

carboxykinase (PEP-CK) (Gómez and Huovinen, 2012). Comparable

to the mechanism of dark carbon fixation (Wiencke et al., 2009), this

allows an efficient recycling of every available C molecule to the kelp.

Since we worked with non-meristematic tissues of L. digitata and the

total C content was unaffected throughout the experiment, we assume

that L. digitata uses the same strategy employed to restore C in times

when photosynthesis is not possible. Our samples were taken in July

during Polar Day, hence with almost “full carbohydrate stores” (Singh

et al., 2024). We conclude that the carbohydrate reserves accumulated

over the summer are sufficient to maintain the physiological functions

of L. digitata during Polar Nights in future warming scenarios, as

reflected in high Fv/Fm values at enhanced temperatures.

This conclusion is further supported by an observed increase in

total nitrogen content (Total N) during the experiment. High

environmental N availability in winter, which exceeds the N demand

for protein and amino acid synthesis, enables and regulates the
FIGURE 4

(A) Chlorophyll a (Chl a) (B) Accessory pigments (Acc) (C) Pool of xanthophyll cycle pigments (VAZ) and (D) De-epoxidation state of the xanthophyll
cycle pigments (DPS) of Laminaria digitata, monitored every four weeks over three months under Polar Night conditions at 0°C (blue) and 5°C (red).
Values are given as % of week 0 (w0) and means ± SD (n = 6). Significances between temperatures are indicated by black asterisks (p < 0.05*, p <
0.01**). Time-integrated significances between w0 and w12 within each temperature are marked by blue and red asterisks (p < 0.05*, p < 0.001***).
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remobilization of carbon stocks in Laminariales (Gómez and

Huovinen, 2012). We kept our samples under realistic Arctic winter

nutrient conditions (~14 µmol NO3
− L−1; Rokkan Iversen and Seuthe,

2011) and observed an increase in Total N over time, with significant

increases at 5°C of about 40%. Potentially, a higher metabolic and

enzymatic activity at 5°C enabled enhanced N uptake (Harrison and

Hurd, 2001). The stable Total C and increased Total N contents led to

C:N ratios below 20 towards the end of the experiment, showing that

the samples were not N-limited at both temperatures (Atkinson and

Smith, 1983).

The pigment content of seaweeds responds to metabolic

processes and light availability (Blain and Shears, 2019), while

metabolism and enzyme activity are in turn dependent on

temperature (Daniel et al., 2008). Polar red algae are known to

strongly adjust their pigments concentrations during the seasonal

cycle, degrading pigments during long dark exposure (Wiencke et al.,

2009). Pigment degradation during extended darkness is not yet

confirmed for kelps, e.g., in Arctic S. latissima populations

(Scheschonk et al., 2019; Gordillo et al., 2022). We observed that all

pigments in L. digitata tend to deplete over three months in the dark,

decreasing more at 5°C than at 0°C. Strongest reductions were

measured in the xanthophyll cycle pool (VAZ). Chla remained

almost stable and Acc only decreased significantly at 5°C. While
Frontiers in Marine Science 0992
Chla is the main photosynthetic pigment and Acc are important

antenna pigments, VAZ are not directly involved in the process of

photon harvesting, but act as photo-protective pigments (Falkowski

and Raven, 2007). Though VAZ content was highly depleted during

the experiment, the protective mechanism of the xanthophyll cycle

(DPS) was still active and slightly increased over time. DPS increases

during stress, such as dehydration or high and low temperatures, and

is known to be active in the dark (Fernández-Marıń et al., 2019; Li

et al., 2020; Monteiro et al., 2021). We assume that the pigments in L.

digitata were degraded to save energy or function as an additional

energy source to outlast the long period of the Polar Night, while still

keeping the photosynthetic machinery and photo-protective

mechanisms intact, as was shown by Summers et al. (2023).

Pigment reduction was enhanced at 5°C compared to 0°C, which

aligns with higher physiological activity in L. digitata at 5°C.

In summary, our study has shown that the cold–temperate to

Arctic kelp L. digitata is well adapted to Polar Night conditions in

the Arctic. Although it has a lower performance and reveals higher

biochemical activity levels at 5°C than at 0°C, our results indicate

that Arctic winter warming alone will not result in a serious decline

of Arctic L. digitata populations in the near future. Nevertheless,

interactions between warming and changing light conditions, e.g.

due to terrestrial or glacial run-off, have to be considered in studies
FIGURE 5

Summary of the biochemical acclimation strategies by Laminaria digitata sporophytes to Arctic winter warming during three months of Polar Night.
Picture of L. digitata by D. Liesner.
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on the prospective distribution of L. digitata in High Arctic regions

(Niedzwiedz and Bischof, 2023; Düsedau et al., 2024).
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1 Introduction

Seaweed cultivation holds significant importance in addressing global challenges. On

the one hand, it aids in alleviating the food crisis. On the other hand, it offers substantial

ecological benefits, such as enhancing carbon sequestration, facilitating nitrogen cycling,

and mitigating eutrophication (He et al., 2008; Wu et al., 2015; Mantri et al., 2023).

Globally, the dominant cultivated economic seaweeds include Laminaria spp.,

Kappaphycus spp., Gracilaria spp., Neopyropia spp., and Undaria spp (Park et al., 2021;

Khan et al., 2024). In 2022, the annual global production of seaweed is estimated to be

approximately 36.4 million metric tons (live weight), with red algae accounting for about

55.8% and brown algae for approximately 43.8% (FAO, 2024). Asia constitutes the

principal region for seaweed cultivation, representing over 97% of global production,

with China (about 60%), Indonesia (about 25%), South Korea (about 5%), and the

Philippines (about 4%) being the largest contributors to this industry (Khan et al., 2024;

Liu et al., 2024).

Among them, the Neopyropia species, a type of high-end red algae, is highly favored

among consumers (Li et al., 2023) and possesses rich edible and medicinal values

(Subramaniyan et al., 2021; Zhao et al., 2023; Wu et al., 2024). It is frequently utilized

for the production of foods such as laver sushi and laver pancakes. Consequently, the

significance of laver cultivation is self-evident. China boasts the world’s largest laver

cultivation area, with total production reaching 209,939 metric tons (dry weight) in 2023

(Fishery Administration Bureau of Ministry of Agriculture and Rural Affairs et al., 2024).

The main cultivated laver species include Neopyropia haitanensis, Neopyropia yezoensis,

Neopyropia acanthophora, and Neopyropia dentata (Wang et al., 2020; Wu et al., 2024).

Notably, Jiangsu Province, China, serves as the leading production area for the highly

sought-after N. yezoensis (Figure 1).
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The N. yezoensis aquaculture industry in the Subei intertidal zone

of Jiangsu Province originated in the 1970s of the 20th century (Liu

et al., 2021a). After more than 50 years of development, the intertidal

zone in Jiangsu Province has become the largest global N. yezoensis

aquaculture area, leading both nationally and globally. For instance,

in 2023, the area of laver cultivation in Jiangsu Province reached

33,393 hectares, approximately 51.81% of the total national laver

cultivation area. During the same year, the production of laver in

Jiangsu Province reached 35,936 metric tons (dry weight), accounting

for about 17.12% of the total national laver production (Fishery

Administration Bureau of Ministry of Agriculture and Rural Affairs et

al., 2024). The industry is of considerable scale and has

comprehensively enhanced the coastal economic development and

industrial reputation of Jiangsu Province. Furthermore, many

impoverished individuals have achieved poverty alleviation and

wealth accumulation through seaweed cultivation (Li et al., 2011).
Frontiers in Marine Science 0296
Nevertheless, the laver cultivation industry in Jiangsu Province

is progressively encountering certain challenges, such as extreme

marine events and disasters. This opinion article aims to identify the

key factors affecting laver cultivation in Jiangsu Province and

proposes recommendations for its sustainable development.
2 The principal elements influencing
the development of laver cultivation
in Jiangsu Province

2.1 Climate change

For the growth stages of seaweed, extreme climate changes can

lead to cellular and subcellular damage in the thalli, ultimately
FIGURE 1

Laver cultivation areas in the coastal seawaters of Nantong (A), Yancheng (B), and Lianyungang (C) cities in Jiangsu Province.
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affecting its growth, quality, and yield (Khan et al., 2024). Currently,

the negative impact of climate change on seaweed aquaculture is a

long-term and widespread issue encountered in global aquaculture

processes (Veenhof et al., 2024), which is difficult to resolve

effectively in the short term. Over the past six decades, the sea

surface temperature in the Southern Yellow Sea (SYS) has generally

shown an increasing trend, with a warming amplitude of

approximately 0.61°C. This indicates that under the backdrop of

global warming, the SYS region has exhibited a warming trend (Guo

et al., 2024). Concurrently, the interannual and multidecadal

variability of sea surface temperature in the SYS is also associated

with large-scale climatic factors such as El Niño-Southern

Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) (Wang

and Yu, 2014), leading to anomalous warming of regional seawater

temperatures in certain years. Elevated seawater temperatures

indirectly promote the frequent occurrence of diseases and other

factors that hinder the growth of N. yezoensis. Currently, climate

warming is leading to frequent occurrences of seedling rot, slow

growth, and significant reductions in yield during the cultivation of

Neopyropia, resulting in economic losses for the laver cultivation

industry in the SYS region in recent years (Figure 2A). For instance,

from late 2016 to mid-2017, influenced by factors such as

abnormally high temperatures in the Haizhou Bay area, the

production of N. yezoensis in Lianyun District, Lianyungang City,

Jiangsu Province, was severely reduced, with a decrease of about

60% compared to the previous year (Lianyun District People's

Government, 2017).

Extreme weather events triggered by climate change also

warrant attention. At the end of April 2021, an infrequent event

featuring extreme winds and thunderstorms occurred in the Subei

intertidal zone of the SYS, with wind gusts reaching level 14. This

event resulted in direct economic losses exceeding 140 million RMB

Yuan in Nantong City, Jiangsu Province (Lu and Du, 2022), and the

large-scale collapse of Neopyropia cultivation rafts (Lu and Du,

2022). Tens of thousands of raft components, including ropes and

bamboo poles (Figure 2B), are being swept into the ocean (Sun et al.,

2022a), causing economic losses to laver farmers. It affected the

smooth progress of the Neopyropia raft recovery operations, and in

addition, caused casualties, either directly or indirectly (CCTV,

2021). Similarly, in January 2016, Lianyungang City, Jiangsu

Province experienced severe sea ice and strong winds caused by

extremely cold weather. This affected over 7,000 hectares of N.

yezoensis cultivation area, leading to incalculable economic losses

for local farmers (Sohu, 2016).

In addition, rising global CO2 concentrations contribute to

ocean acidification, which can impact interspecific competition

among seaweeds (Feng et al., 2024). Although the elevated CO2

levels alleviate the competitive relationship between N. yezoensis

and the harmful epiphyte Ulva species (e.g., Ulva prolifera), the

long-term perspective indicates a growing competitive advantage

for Ulva under this climate change scenario (Sun et al., 2021).

Traditionally, N. yezoensis is considered a cold-tolerant seaweed,

whereas U. prolifera exhibits a greater capacity to endure higher

temperatures compared to N. yezoensis. Micropropagules of U.

prolifera are persistently present in the SYS region (Cao et al.,

2023; Xia et al., 2024a), and the areas on the raft components not
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colonized by laver are also conducive to the attachment of U.

prolifera, leading to the subsequent occupation of ecological niches

by U. prolifera on the raft structures (Zhang et al., 2019a).

Concurrently, as U. prolifera matures, it demonstrates a stronger

ability to absorb nutrients than N. yezoensis, thereby allowing the

epiphytically growing U. prolifera to gradually establish a growth

advantage (Shan, 2022). This results in Ulva species with an

enhanced capability to occupy ecological niches, which

subsequently impacts the normal growth of laver and affects the

future development of Neopyropia aquaculture in the SYS region.
2.2 Diseases

Neopyropia yezoensis is susceptible to various diseases during

cultivation and growth due to the impact of global climate change,

harmful microbial infection, and overcrowding during cultivation

(Kim et al., 2014). Common diseases include seedling rot, chytrid

blight, green spot disease, and white rot (Qiu et al., 2019; Yang et al.,

2020; Bae et al., 2024), which frequently lead to the genetic

characterization decline of laver populations. In addition, the

coastal waters of Jiangsu Province are severely eutrophic (Liu

et al., 2013), and heavily polluted sea areas are particularly prone

to harmful pathogens proliferation. These pathogens negatively

impact seaweed growth, ultimately reducing laver yield and

causing significant economic losses for local farmers. For

instance, in 2004, approximately 5,000 hectares of N. yezoensis in

the Nantong City maritime area suffered from severe rot, resulting

in an estimated loss of 60 million RMB Yuan (Yangtze Evening

Post, 2004). Similarly, in 2016, over 1,300 hectares of N. yezoensis in

the Rudong County maritime area of Nantong City experienced rot,

with cost losses alone amounting to around 40 million RMB Yuan,

causing economic losses to more than 3,000 laver farmers (Wang,

2016). In January 2019, 134 hectares ofN. yezoensis in the Yancheng

City maritime area exhibited rot, which was caused by the

pathogenic bacterium Opliidopsis sp (He et al., 2021).

It should be clarified that seaweed cultivation inevitably faces

diseases to varying degrees (Khan et al., 2024). These diseases

encountered during laver cultivation are not unique to China but

represent a global issue (Yang et al., 2020). For example, between

2013 and 2014, an outbreak of green spot disease in the laver farms

in Sunchon, South Korea, could cause complete rot of laver thalli

within 1-2 days, resulting in a loss of 1.1 million USD, equivalent to

10.7% of total farm sales (Kim et al., 2014). The sudden onset of

such diseases during N. yezoensis cultivation often prevents timely

and effective mitigation measures to reduce disease damage,

ultimately leading to substantial losses for laver farmers.
2.3 High-density cultivation

Neopyropia yezoensis cultivation demands high-quality

seawater and thrives best in waters with moderate flow velocity

and strong water exchange capacity (He et al., 2018). In Jiangsu

Province, suitable cultivation areas have been largely exploited,

limiting the potential for further expansion of the cultivation scale.
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Similarly, N. yezoensis struggles to grow in low-nutrient sea areas

(Huang et al., 2023). Although the high levels of nitrogen and

phosphorus in Jiangsu’s coastal waters support the growth of

Neopyropia, the extensive cultivation area and high cultivation
Frontiers in Marine Science 0498
density inevitably restrict growth due to the limited carrying

capacity of the sea area (Shan, 2022). Taking the outer radial

sandbars of Dafeng District in Yancheng City as an example, the

laver cultivation scale once spanned a continuous distribution of
FIGURE 2

Death and detachment of Neopyropia yezoensis (indicated by brownish-red areas) on laver cultivation nets due to unusually high temperatures,
along with Ulva species (green areas) remaining on the tidal flats after manual cleanup (A); Damage to laver cultivation facilities caused by extreme
wind events, leading to the drift of some raft components into open waters (B); A laver cultivation area in Binhai County, Yancheng City, Jiangsu
Province, which did not comply with the maritime usage standards, has subsequently been banned by the government (C); Ulva species, which
appear as green areas, are epiphytic on laver cultivation rafts (D); Laver farmers are removing the green seaweed tide that is attached to the ropes
(E); The accumulation of invasive golden seaweed tide on laver cultivation rafts is damaging the raft facilities and affecting the normal growth of N.
yezoensis (F); Laver farmers in the coastal waters of Nantong City, Jiangsu Province, are beginning to experiment with the cultivation of Neopyropia
haitanensis (G).
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13,000 hectares. However, the excessive scale of cultivation

adversely affected seawater exchange within the cultivation area

(Shan, 2022). As a result, laver in the center parts of the cultivation

zone could not receive sufficient nutrient replenishment, leading to

deficiencies essential for growth (Shan, 2022). Additionally, the

close proximity of cultivation facilities also facilitates the rapid

spread of diseases, further reducing laver yields (Shan, 2022).

Concurrently, some marine areas in Jiangsu Province have been

engaged in aquaculture activities that do not comply with

regulations established by the Chinese government (Figure 2C).

This noncompliance has exacerbated the scope and cultivation

density of laver cultivation activities, creating additional

challenges. Lin et al. (2021) identified two special utilization zones

and six port shipping areas in Jiangsu Province where unreasonable

or illegal laver cultivation activities occurred. These activities

involved a total of 135.84 hectares, primarily concentrated in

locations such as Tianwan Nuclear Power Plant Special

Utilization Zone, Ganyu Port Special Utilization Zone, Shiqiao

Port Shipping Area, Xuwei Port Shipping Area, Ganyu Port

Shipping Area, Lvsi Port Shipping Area, Xiaomiao Hong Port

Shipping Area, and Jinniu Port Shipping Area (Lin et al., 2021).
2.4 Impacts of green tides disaster

Green seaweed blooms have persisted in the SYS for eighteen

consecutive years (Zhang et al., 2019b; Xia et al., 2024b),

predominantly caused by U. prolifera, which has led to significant

adverse effects on marine aquaculture and related fisheries industries

(Cao et al., 2023; Yao et al., 2024). On the one hand, the attachment of

various Ulva species to laver cultivation facilities (Han et al., 2013;

Huo et al., 2015) competes with Neopyropia for ecological niches and

nutrients (Figure 2D), thereby impeding laver growth. On the other

hand, removing attached green seaweeds during production incurs

substantial labor costs for laver farmers (Sun et al., 2022a). Notably,

the outbreak of large-scale green tide disasters near laver cultivation

areas is rarely observed globally, with no similar reports from other

countries or regions’ laver cultivation areas.

To effectively mitigate the scale of green tide outbreaks, the

Ministry of Natural Resources of the People’s Republic of China is

currently focusing on reducing the biomass of U. prolifera attached

to laver cultivation rafts in Jiangsu Province (Liu et al., 2021b; Xia

et al., 2022; He et al., 2023; Sun et al., 2022b), and has taken

measures to curb illegal occupation of marine areas for seaweed

cultivation (Jiangsu Laver Association, 2020). Additionally, laver

farmers are encouraged to proactively adjust their raft cultivation

schedules, including withdrawing facilities in advance during the

production cycle and conducting early cleanup of green seaweeds

(Figure 2E). These measures are aimed at maximizing ecological

benefits (Sun et al., 2022a). However, these actions also impacted

seaweed yields in Jiangsu Province, posing challenges to the long-

term formation of a “common interest group” that balances fishery

production and green tide control. For instance, in 2021, Jiangsu

Province collectively retired approximately 4,000 hectares of laver

cultivation and reduced the area of sea used for laver cultivation by

about 6,400 hectares. By May 8, 2021, all laver cultivation facilities
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were brought ashore, prematurely ending the laver production

period spanned the late 2020 to mid-2021. This adjustment

resulted in a revenue reduction of 1-1.2 billion RMB Yuan for the

province’s laver cultivation industry (Diao and Ma, 2021) and led to

widespread dissatisfaction among regional laver farmers about the

potential economic impacts of green tide disaster management.

Furthermore, since 2023, the funds allocated for green tide disaster

prevention have nearly approached the actual direct economic

benefits of laver cultivation in Jiangsu Province. Taking 2024 as a

case in point, the annual investment in green tide prevention special

funds (including both central and local government financial

allocations) has exceeded one billion RMB Yuan, underscoring

the financial burden of addressing this ecological challenge.
2.5 Impacts of golden tides disaster

The phenomenon of golden tide disasters impacting the laver

cultivation industry is currently observed only in the marine regions

of Jiangsu Province. The proliferation of Sargassum horneri, the

primary species responsible for golden tides, has posed significant

challenges to laver cultivation activities in Jiangsu Province in recent

years. Since 2016, large-scale gatherings of drifting S. horneri have

been frequently observed in the coastal waters off Jiangsu during

winter and spring (Wang et al., 2023). The arrival of the golden tide

“algal mat” in the laver raft cultivation area (Figure 2F) led to the

structural collapse of some rafts (Zhuang et al., 2020). Moreover,

golden tide seaweed entangled in the laver cultivation nets hinders

Neopyropia from conducting photosynthesis effectively, leading to

damage during its growth stage. To address this issue, laver farmers

are compelled tomanually remove S. horneri tangled around the rafts,

which not only increases labor costs but also causes the detachment of

Neopyropia during this process. Such disruptions often result in

significant financial losses, amounting to hundreds of millions of

RMB Yuan for local laver farmers (Liu et al., 2021c). For instance,

from the winter of 2016 to the spring of 2017, the golden tide disaster

severely impacted the laver cultivation industry in Jiangsu Province,

causing economic losses of up to 500 million RMB Yuan in the laver

cultivation industries of Yancheng and Nantong cities (Liu et al.,

2018). Currently, there is no effective method to mitigate the golden

tide macroalgal biomass at their source, as the origin of recent golden

tide outbreaks in China remains unclear (Wang et al., 2024).

Therefore, when laver cultivation activities are affected by golden

tide disasters, manual clearance remains the only viable approach to

minimize economic losses.
3 Optional strategies for the
sustainable development of laver
cultivation in Jiangsu Province

3.1 Cultivating heat-resistant laver varieties

Given the current climate warming trend, effective alleviation

measures are challenging (Liu et al., 2021b). In areas where N.
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yezoensis is no longer suitable for growth, it could be worthwhile to

gradually attempt the cultivation of heat-resistant strains, such asN.

haitanensis (Zhou et al., 2023), which can contribute to the

sustainable development of the laver cultivation industry in

Jiangsu Province. Following the successful pilot cultivation of N.

haitanensis in the SYS (Figure 2G), some laver farmers have opted

to cease the cultivation of N. yezoensis in favor of N. haitanensis,

while others have initiated experiments in the rotation planting of

N. yezoensis and N. haitanensis. Taking 2024 as an example,

Lianyun District People’s Government of Lianyungang City has

encouraged laver farmers to engage in the rotational cultivation of

N. haitanensis and N. yezoensis (Liandao Subdistrict, 2024). Laver

farmers in Liandao Subdistrict have collectively piloted the

cultivation of N. haitanensis over an area of approximately 800

hectares, achieving a bountiful harvest in October 2024, with an

estimated annual yield of 15 tons per hectare (live weight), resulting

in an annual output value of up to 130 million RMB Yuan (Liandao

Subdistrict, 2024). At present, the Jiangsu Provincial Government’s

promotion of the pilot rotational planting and cultivation scheme

for N. yezoensis and N. haitanensis has achieved initial success and

is deemed worthy of further promotion and application.
3.2 Promoting standardization and
orderliness in laver cultivation

At present, theChinese government has focused on addressing the

illegal occupation of maritime areas for aquaculture, explicitly

prohibiting the establishment of new aquaculture projects that

occupy natural coastlines or fall within ecological protection red

lines (Ministry of Natural Resources of the People's Republic of

China, 2024). It has gradually cleared areas of illegal and unlicensed

Neopyropia cultivation and withdrawn cultivation within the

ecological red line areas (Figure 2C). Meanwhile, efforts are

underway to optimize the spatial planning and layout of laver

cultivation by adhering to principles of high-quality, ecological, and

standardized development. These efforts gradually transferring laver

cultivation rafts from nearshore tidal flats to deeper sea areas and

strengthening the management and supervision of no-culture zones,

limited-culture zones, and aquaculture zones (Jiangsu Laver

Association, 2020; Lianyungang Municipal Bureau of Agriculture

and Rural Affairs, 2021). In addition, research and promotion of

technologies to prevent the attachment of Ulva on laver cultivation

rafts are being carried out (Jiangsu Provincial Bureau of Geology,

2024). Efforts are also being made to strengthen the management of

aquaculture waste, such as discarded Ulva species by promoting the

centralized treatment and resource utilization of aquaculture

production waste. These measures aim to reduce the initial biomass

ofU. prolifera, the dominant species in green tide outbreaks in the SYS,

providing a scientific basis for the ecological cultivation of laver and

green tide prevention.

Simultaneously, relevantgovernmentdepartments are researching

the resource andenvironmental carrying capacities under the guidance

of superior authorities toprovide theoretical and scientific foundations

for determining the appropriate cultivation scale of Neopyropia in

Jiangsu Province. In response to excessive laver cultivation density, the
Frontiers in Marine Science 06100
government recommends reducing high-density cultivation and

gradually guiding farmers and enterprises to control cultivation

density within a reasonable range (Lianyungang Municipal Bureau

of Agriculture and Rural Affairs, 2021). Appropriately reducing

cultivation density also helps slow the spread of diseases during the

cultivation process. To address these issues, Shan (2022) suggests

controlling the continuous distribution scale of laver cultivation rafts

and reducing theoverall cultivation area. Furthermore, the government

or industry associations could coordinate to divide the continuous

distribution areas into several smaller zones, increasing the spacing

between these zones to allow for sufficient seawater exchange. At the

same time, individual farmers or aquaculture enterprises could reduce

the density of raft arrangements, expanding the current spacing from

approximately 4meters to 6-7meters (Shan, 2022). This approach will

ensure seawater exchange, reduce disease incidence, and effectively

increase the yield per unit area of laver cultivation.
3.3 The industrial chain could transition to
regions at higher latitudes

There is a significant demand forN. yezoensis cultivated in China

(Li et al., 2023) from countries including Japan, the United States, and

South Korea. To meet this demand, it is crucial to maintain the

cultivation scale of N. yezoensis in Jiangsu Province (Figure 1) and

other regions of China. Yang et al. (2021) reported that in the lower-

salinity marine waters of Nantong City, elevated ocean temperatures

suppress the activity of antioxidant enzymes and the expression of

related genes within N. yezoensis, rendering the seaweed more

vulnerable to disease and decay. To address these issues, a

progressive relocation of the N. yezoensis cultivation industry from

the southern coastal waters of Jiangsu Province to the cities of

Yancheng and Lianyungang is imperative. Notably, parts of this

industry have already been transferred to the marine areas of

Shandong and Liaoning provinces in China, where the colder

seawater conditions during the same cultivation period are more

conducive to N. yezoensis growth and can mitigate the risk of disease

and decay (Yang et al., 2021). Moreover, it is anticipated that by 2050,

the suitable growth range forN. yezoensis in the East Asian region will

expand to include the Sea of Okhotsk in Russia (Zhou et al., 2023).

Shifting the N. yezoensis industrial chain towards higher-latitude

regions is expected to enhance both yield and quality.

Furthermore, considering the frequent outbreaks of green tides

and other biological disasters in mid- and low-latitude regions (Yao

et al., 2024), as well as the impact of ocean warming, algal bloom

outbreaks, are expected to occur earlier and expand further (Qi

et al., 2022). Gradually relocating the laver cultivation industry to

higher-latitude regions may help reduce the impact of algal bloom

disasters and ensure the sustainable development of the industry.
3.4 Transformation of the laver fishery
economic model

The laver cultivation industry, characterized by its labor-

intensive nature, requires substantial labor input throughout the
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production cycle while typically yielding modest economic returns.

In the future, integrating the laver cultivation cycle with Integrated

Multi-Trophic Aquaculture (IMTA) models (Kang et al., 2013) may

help mitigate significant monoculture risks and unlock considerable

economic potential (Lianyungang Municipal Bureau of Agriculture

and Rural Affairs, 2021). For example, in 2021, Lianyungang City

established a new Integrated Multi-Trophic Aquaculture (IMTA)

management model incorporating the co-cultivation of shellfish

and seaweeds. Demonstration farming under this model produced

positive results, achieving an economic benefit of 3.19 million RMB

Yuan and generating significant carbon sequestration effects

(Ministry of Education of the People's Republic of China, 2023).

With the establishment of IMTA systems and supporting

infrastructure, additional opportunities for developing

recreational and ecotourism farms, such as “new energy+” marine

farms (Yi and Li, 2024), can emerge. This synergy between

agriculture and recreational fishing has the potential to maximize

economic benefits and increase income for laver farmers. However,

the adoption and refinement of such development models still

require ongoing feasibility studies and remain highly dependent

on the maturity of the service industry at the national level.

Currently, local governments at various levels in China are

gradually formulating relevant laws and regulations. For instance,

from January 1, 2025, to December 31, 2029, the Shandong

Provincial Government will permit recreational fishing activities

within marine ranching areas (Shandong Provincial Department of

Agriculture and Rural Affairs, 2024). This initiative is expected to

promote the integration of marine aquaculture with recreational

fishing, enhancing the overall income of farmers.

In addition, by further integrating laver cultivation into carbon

emission trading markets and exploring blue carbon economic

development pathways, future carbon sink revenues could

support both the advancement of laver cultivation and the

stabilization of marine ecosystems, thereby achieving mutually

beneficial outcomes. For example, leveraging the blue carbon

value of laver (Cangnan County People's Government, 2022),

Yonggui Aquaculture Family Farm in Rudong County has

secured a “laver carbon credit loan” valued at 1.75 million RMB

Yuan, using future revenue rights from carbon reduction and

sequestration generated by laver cultivation as collateral (The

People's Government of Nantong Municipality, 2023). Notably,

the Chinese government is actively promoting the regulation and

orderly development of carbon sink trading. The “Interim

Regulations on the Administration of Carbon Emission Rights

Trading”, effective May 1, 2024 (The State Council of the People's

Republic of China, 2024), provide institutional guarantees for

carbon emission rights trading at the national legislative level.

However, the realization of specific economic, ecological, and

social benefits still depends on the establishment of a

comprehensive carbon sink trading accounting standard system.

At present, the transformation of the laver fishery economic model

is still in its early exploratory stage and requires further practical

innovation and robust government policy support.
Frontiers in Marine Science 07101
4 Conclusion

This opinion article systematically outlines the current state of

the laver (N. yezoensis) cultivation industry in Jiangsu Province,

the challenges it faces, and strategies for sustainable development.

Jiangsu Province, as the world’s largest cultivation area for N.

yezoensis, plays a critical role in local economic development and

provides a substantial supply of high-quality laver to the global

market. However, factors such as climate change, diseases, high-

density cultivation, green tides, and golden tide disasters pose

severe threats to laver cultivation. To address these challenges, we

propose key development strategies, including the cultivation of

heat-resistant laver varieties, improving standardization and

order in laver cultivation practices, relocating the industry chain

to higher latitude regions, and transforming the laver fishery

economic model. The implementation of these strategies will

support the sustainable development and industrial upgrading

of Jiangsu Province’s laver cultivation industry, as well as the

formulation of long-term aquaculture development strategies.

Additionally, these measures will contribute to marine

ecosystem protection, achieving a win-win situation for both

economic and ecological benefits.
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Benthic algal community
dynamics on Palmyra Atoll
throughout a decade with two
thermal anomalies
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California, San Diego, La Jolla, CA, United States, 2Biological and Environmental Sciences and
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Coral reef algae serve many important ecological functions, from primary

production to nutrient uptake and reef stabilization, but our knowledge of

longer-term effects of thermal stress on algae in situ is limited. While ocean

warming can facilitate proliferation of algae and potential phase shifts from coral to

macroalgal-dominated states, algal responses may vary by species, genus,

functional group, or type (e.g., calcareous vs. fleshy). We used 11 years of annual

monitoring data (2009-2019) that spans two El Niño-associated heatwaves to

examine benthic algal community dynamics on Palmyra Atoll in the central Pacific

Ocean. We quantified the percent cover of algal taxa via image analysis of

permanent benthic photoquadrats from two habitats on Palmyra: the deeper,

wave-exposed fore reef (10 m depth) and the shallower, wave-sheltered reef

terrace (5 m depth). Each habitat was characterized by distinct algal communities:

predominantly calcareous taxa on the fore reef and predominantly fleshy taxa on

the reef terrace. Patterns in abundance fluctuated over time and/or in response to

thermal anomalies in 2009 and 2015. Fleshy algae generally increased in cover

post-warming, which coincided with large declines of the calcified macroalgae,

Halimeda spp. Long-term monitoring of coral reef algal communities is critical for

understanding their differential responses to thermal stress and can improve

projections of ecosystem functioning in the context of global change.
KEYWORDS

long-term monitoring, seaweed, macroalgae, Halimeda, community composition,
thermal stress, coral reefs, climate change
1 Introduction

Benthic algae are key components of coral reef ecosystems, where they contribute to

primary production and reef building as well as sand, sediment, and carbonate production.

The dominance of one functional group or taxon over another has implications for coral

reef functioning and the ecological services they provide (Woodhead et al., 2019). Although
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many coral reefs across the globe are shifting from coral to algal

dominance (Pandolfi et al., 2003; McManus and Polsenberg, 2004;

Hughes et al., 2010, 2017), algae are inherently a natural component

of healthy coral reefs. Despite their functional, morphological, and

taxonomic diversity (Fong and Paul, 2011), reef algae remain

understudied relative to other reef taxa. Aside from some short-

term laboratory studies, little is known about how individual algal

taxa or functional groups respond to a combination of stressors in

nature (Wernberg et al., 2012). Thus, in situ studies integrating

natural environmental conditions with longer-term benthic algal

community dynamics are essential for revealing possible reef

community trajectories in the coming decades.

Algae on coral reefs are often classified into functional groups

(e.g., turf, crustose coralline algae, and macroalgae), based on the

underlying assumption that shared traits correspond to similar

ecological roles, functions, or processes. Algal functional groups

have previously been defined by their susceptibility to herbivory

(Steneck and Watling, 1982), their nutrient uptake, productivity, and

turnover rates (Littler and Littler, 1980; Littler et al., 1983), or their

morphology, internal anatomy (e.g., cortication), thallus structure,

and branching pattern (Steneck and Dethier, 1994; Balata et al.,

2011). However, there is still a potential for variable responses to

environmental conditions within functional groups, particularly

following disturbance events (Phillips et al., 1997). Moreover,

calcareous algal taxa (in which photosynthesis is coupled with the

deposition of calcium carbonate) and non-calcareous (i.e., fleshy)

taxa are differentially affected by environmental stressors (Johnson

et al., 2014). While the functional group approach (when based on

morphological traits) can sometimes predict community assemblage

(Stelling-Wood et al., 2020), these traits may not accurately represent

functional identity (Mauffrey et al., 2020) and individual genus and/

or species variability must be considered (Fong and Fong, 2014;

Ryznar et al., 2021).

Two algal functional groups that are sometimes pooled in reef

benthic studies, yet have distinct ecological roles, are the crustose

coralline algae (CCA) and the algal turfs. CCA are encrusting,

calcifying red algae that stabilize the reef framework and support

structural complexity (Teichert et al., 2020; Littler and Littler, 2013;

Steneck, 1986). They also contribute to carbonate production,

possibly more so than reef-building corals (Cornwall et al., 2023).

By releasing chemical cues that induce settlement in coral larvae

(Harrington et al., 2004), CCA further promote reef growth and

resilience. The ecological contributions of CCA on coral reefs are

threatened by environmental change, as they are sensitive to

thermal stress in both experimental and field settings (Martin and

Gattuso, 2009; Short et al., 2015). “Turf algae” (algal turfs) refers to a

mixed assemblage of largely fleshy filamentous algae, juvenile

macroalgae, and/or cyanobacteria less than 2 cm tall (Adey and

Steneck, 1985). Algal turfs are opportunistic and rapid colonizers of

open space after coral bleaching or disease outbreaks (Diaz-Pulido

and McCook, 2002). They are a main food source for herbivorous

grazers (Carpenter, 1986), but can have negative effects on reefs by

inhibiting coral recruitment (Birrell et al., 2008) or harboring

pathogenic microbes that compromise coral health (Pratte et al.,

2018). Despite occupying much of the benthos on today’s reefs

(Wismer et al., 2009), they are often miscategorized as “bare space”
Frontiers in Marine Science 02105
and, thus, grossly underestimated in surveys of benthic community

coverage. Turfs thrive under conditions that threaten corals,

including nutrient pollution (Smith et al., 2010), warming

(Johnson et al., 2017), ocean acidification (Falkenberg et al.,

2013), and sedimentation (Birrell et al., 2005), which suggests that

their abundance on reefs will continue to increase with the

progression of climate change (Harris et al., 2015; Tebbett and

Bellwood, 2019).

Another distinction lost with the typical categorization of algae

is the presence or absence of a calcium carbonate skeleton (i.e.,

calcification). The relative balance of fleshy to calcareous or reef-

building taxa may be indicative of more degraded vs. “healthier”

coral reefs (Smith et al., 2016), and thus tracking the abundance of

calcareous and fleshy algal taxa is useful for assessing ecosystem

status. Moreover, fleshy and calcareous taxa have different

ecological functions, whether beneficial or detrimental. Fleshy

macroalgae typically grow faster than calcareous macroalgae and

are generally more edible to herbivores. However, fleshy macroalgae

can harm corals directly through abrasion, or indirectly by releasing

toxic allelochemicals (Rasher and Hay, 2010), causing hypoxia and

physiological stress (Barott et al., 2012) by limiting photosynthetic

activity and depleting the corals of energy (Titlyanov et al., 2007).

Calcareous algae are generally more benign competitors with corals

than fleshy algae (Barott et al., 2012; but see: Keats et al., 1997a and

Longo and Hay, 2015, where corals frequently experienced damage

from contact with calcareous algae), although their competitive

ability may be influenced by seasonality (Brown et al., 2020).

Therefore, to holistically evaluate the ecological implications of

stressors such as warming, it is informative to look not only at

variability across individual algal taxa or functional groups, but also

between fleshy and calcareous algae.

For algae and other primary producers, temperature is expected to

increase metabolic and photosynthetic rates until a thermal tolerance

limit is exceeded (Davison, 1991). Calcification in calcareous algae may

initially benefit from warmer temperatures until prolonged exposure

leads to mortality or reduction in productivity, as seen in experimental

studies (Martin and Gattuso, 2009; Page et al., 2021; but see: Krieger

et al., 2023). In contrast, fleshy algae have been found to respond

positively to thermal stress in field studies (McClanahan et al., 2001;

Burt et al., 2013; Graham et al., 2015). The combined effects of

temperature and other stressors can be synergistic (Ellis et al., 2019)

or antagonistic (Darling et al., 2010). For example, ocean acidification

has been found to cause net negative or species-specific effects on

tropical calcareous algae while stimulating growth in some fleshy algae

(Johnson et al., 2014), but when combined with warming, effects can be

more complex or interactive (Diaz-Pulido et al., 2012; Kram et al., 2016;

Johnson et al., 2017).

The calcareous macroalgal genus Halimeda is a group of

siphonous green algae that contribute significantly to productivity

and calcification on coral reefs (Hillis-Colinvaux, 1980), and can

cover up to 20% of the benthos (Perry et al., 2020). Halimeda is one

of the most ubiquitous tropical algal genera with representative

species occurring on reefs around the world. Indeed, Halimeda spp.

may contribute more to tropical carbonate budgets than corals

(Rees et al., 2007) due to their fast growth and high turnover rates

(Vroom et al., 2003; Smith et al., 2004). Most species of Halimeda
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are holocarpic and as such, when they reproduce they die and their

calcified segments break down into sand (Harney and Fletcher,

2003). Halimeda spp. are synchronous spawners that release all of

their gametes simultaneously, leading to complete adult mortality

(Hay, 1997), although the exact mechanisms that trigger their

reproduction are unknown (Clifton and Clifton, 1999; Clifton,

2013). Considering the high abundance, cosmopolitan

distribution, and ecological significance of Halimeda spp., it is

important to monitor their cover on a consistent basis as well as

before, during, and after thermal anomalies. Few studies have

examined the long-term changes in cover of Halimeda spp. in

situ (but see: Lambo and Ormond, 2006, where Halimeda cover

decreased in Kenya at the time of the 1998 coral bleaching event but

increased drastically by 2004).

Here, we measured benthic algal cover over an 11-year time

series of permanent benthic photoquadrats from two reef habitats

on Palmyra Atoll. Thermal anomalies occurred in both 2009 and

2015 (Williams et al., 2010; Fox et al., 2019), which allowed us to

explore how temperature may influence algal community dynamics.

Our objectives were to (i) describe benthic algal community

composition on the fore reef and reef terrace habitats, (ii)

quantify the abundance of individual algal taxa or functional

groups, (iii) compare fleshy (turf and fleshy macroalgae) vs.

calcareous (CCA and calcareous macroalgae) cover, and (iv)

determine whether benthic algal cover varied over time, with

temperature, and/or by habitat. Additionally, for the major

calcareous macroalgal genus, Halimeda, we measured yearly

changes in benthic cover by habitat and site to validate our

hypothesis that Halimeda spp. may be temperature-sensitive and

negatively affected by warm-water events.
2 Methods

2.1 Study site

Palmyra Atoll (5.89 °N, 162.08 °W), U.S.Minor Outlying Islands, is

located in the Northern Line Islands, central Pacific. Palmyra was

designated as a National Wildlife Refuge in 2001 and this protection

was further expanded in 2009 as part of the Pacific Remote Islands

Marine National Monument. The Atoll was temporarily occupied by

the U.S. military during World War II but is currently uninhabited

aside from a small field research station. Thus, its reefs are considered

quasi-pristine (Sandin et al., 2008) and relatively undisturbed from

localized human impacts such as fishing or pollution, yet are still

susceptible to global climate change. Palmyra’s benthic communities

are dominated by reef-builders such as hard corals and CCA, with

remaining surfaces covered by turf algae, macroalgae, soft corals, and

other invertebrates (Braun et al., 2009; Williams et al., 2013; Khen

et al., 2022).
2.2 Data collection

In September 2009, permanent monitoring plots were

established in the two major reef habitats on Palmyra: the wave-
Frontiers in Marine Science 03106
exposed fore reef (FR) at 10 m depth and the wave-sheltered reef

terrace (RT) at 5 m depth, with four sites per habitat and ten

replicate plots (90 cm x 60 cm) per site (Supplementary Figure 1),

for a total surveyed area of 21.6 m2 at each habitat. Replicate plots

were 5 m apart along a 50 m transect perpendicular to shore,

marked by stainless steel eye bolts in opposing corners that were

secured to the benthos with marine epoxy. At least once a year from

2009 to 2019, usually in the late summer or early fall, plots were

photographed by SCUBA divers with a Canon G-series camera

attached to a PVC frame that maintained a fixed distance from the

substrate. All images were digitized (i.e., manually traced) in Adobe

Photoshop (Creative Cloud) to quantify abundance of algal taxa in

terms of planar areas or percent cover at the functional group level

for CCA and turf, family-level for peyssonnelioids, and genus or

species-level for other macroalgae. Algae were identified visually by

morphology, and taxa were grouped as either calcareous (CCA,

Halimeda spp., Galaxaura rugosa, and Peyssonneliaceae sp.) or

fleshy (Avrainvillea sp., Lobophora sp., Dictyosphaeria spp.,

Caulerpa serrulata, and turf) based on the presence or absence of

biogenic calcium carbonate structures. Palmyra’s thermal history

was obtained from a revised percentile-based method of estimating

Degree Heating Weeks (DHW; Liu et al., 2006) developed by

Mollica et al. (2019), which more accurately captures the degree

of accumulated thermal stress experienced by central equatorial

Pacific reefs than traditional DHW (Fox et al., 2021).
2.3 Statistical analyses

All analyses were conducted in R software version 3.6.3 (R Core

Team, 2018). First, using only annual time points taken during the

late summer or fall (excluding irregular time points to minimize the

effect of seasonal variation), we constructed a non-metric

multidimensional scaling (nMDS, via metaMDS in vegan for R;

Oksanen et al., 2019) ordination plot visualizing the trajectory of

algal community composition through time at each habitat. This

nMDS was based on Bray-Curtis dissimilarity measures for square-

root-transformed algal percent cover data (Anderson, 2001). We

applied a square-root transformation to balance the effect of

disproportionately-abundant taxa. We tested the effects of habitat,

year, and/or their interaction by conducting a three-way

permutational multivariate analysis of variance (PERMANOVA

with 9999 permutations via adonis in vegan; Anderson, 2001;

Oksanen et al., 2019) on the same Bray-Curtis distance matrix.

We did not include site as a nested factor because not all algal taxa

were present at each site within a habitat. To identify which algal

taxa were the main contributors to differences among habitats, we

ran a SIMPER or “similarity percentages” analysis (via simper in

vegan; Clarke, 1993; Oksanen et al., 2019).

To test whether percent cover of fleshy or calcareous algae

varied by habitat and/or over time (only for consistent annual time

points), we ran two-way analyses of variance (ANOVAs) with

Type-II sum of squares. Assumptions of normality and

homogeneity of variance were checked through visual inspection

of the residuals. We did not incorporate repeated measures and

instead treated years independently because different algal
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populations were sampled each year rather than the same

individuals. Post-hoc letter groupings were assigned via Tukey’s

multiple comparisons using multcomp (Hothorn et al., 2008).

Next we explored possible effects of temperature on a single

taxon of interest, Halimeda, through an analysis of covariance

(ANCOVA) with Type-II sum of squares. Habitat was considered

a fixed factor and temperature (in terms of percentile-based DHW

values during the week of sampling) was considered a continuous

factor. We also examined the relationship between accumulated

thermal stress and Halimeda cover using Pearson’s correlation. To

further investigate patterns in abundance for this genus, we plotted

its percent cover within each quadrat, by site, over time. Lines were

smoothed by locally-weighted regression (i.e., LOESS in ggplot2;

Wickham, 2016). Finally, we calculated the difference in mean

percent cover of Halimeda by site (with quadrats as replicates)

between consecutive years. Two-tailed t-tests were used to

determine which sites experienced significant changes not

overlapping zero (e.g., an increase or decrease in percent cover

one year later).
3 Results

3.1 Algal community composition in each
habitat over time

The benthic algal community on Palmyra’s fore reef was calcifier-

dominated compared to the fleshy-dominated reef terrace (Figure 1;

Supplementary Figure 1). Certain taxa were only present in either

habitat: G. rugosa on the reef terrace and Avrainvillea sp. on the fore

reef. Across both habitats, the most abundant algal taxa or groups on

Palmyra included CCA (exhibiting a percent cover range of 0 to

87.6% of the benthos within a single quadrat, average = 20.2 ± 17.4%

SD), turf (percent cover = 0 to 88.3%, average = 16.7 ± 17.6%),
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and Halimeda (percent cover = 0 to 92.3%, average = 8.4 ± 12.4%).

The least abundant algal genera were Avrainvillea (percent cover = 0

to 1.7%, average = 0 ± 0.1%), Dictyosphaeria (percent cover = 0

to 27.1%, average = 0.4 ± 1.7%), and Caulerpa (percent cover = 0 to

46.6%, average = 0.6 ± 3.3%). Distinct yearly trajectories of algal

community composition were seen in each habitat (Figure 2).

Benthic algal community composition on Palmyra varied

significantly by habitat (p <0.001) and year (p <0.001), with an

interaction indicating that habitats changed differently across years

(p <0.001; Supplementary Table 1). There was more year-to-year

variation in algal community composition on the fore reef

compared to the reef terrace, particularly after the second thermal

anomaly in 2015. However, habitat was a better predictor for algal

community composition than year, explaining 11.6% of the

variation (R2 = 0.116; Supplementary Table 1) compared to 4.3%.

A SIMPER analysis revealed that the taxa contributing most to

habitat differences were CCA, turf algae, and Halimeda

(Supplementary Table 2). Calcareous algae (particularly CCA,

Halimeda spp., and Peyssonneliaceae sp.) were more abundant on

the fore reef whereas fleshy algae (turf, Lobophora sp., C. serrulata,

and Dictyosphaeria spp.) were more abundant on the reef terrace.
3.2 Cover of individual algal taxa by habitat
and year

Overall, CCA were more abundant on the fore reef than the reef

terrace, covering 25.3 ± 0.8% (mean ± SE) and 15.4 ± 0.8% of the

total benthos, respectively (Figure 3B). In contrast, turf algae were

more abundant on the reef terrace than the fore reef at 21.3 ± 1.0%

and 11.5 ± 0.5% cover, respectively (Figure 3H). Between fall 2014

and fall 2015 on the reef terrace, there was a decline in CCA from

20.0 ± 3.2% to 12.7 ± 2.9% and a concomitant rise in turf algae from

19.6 ± 3.5% to 28.6 ± 3.7%; the increase in turf at the time of the
FIGURE 1

Benthic algal community composition over time on Palmyra from 2009 to 2019 at the (A) Fore Reef and (B) Reef Terrace habitats in terms of relative
proportions of each taxon or functional group.
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second thermal anomaly was seen to a lesser extent on the fore reef.

However, by fall 2017, turf and CCA cover were restored to pre-

disturbance levels in both habitats. Other algal groups were far less

abundant than turf and CCA. Benthic cover of C. serrulata, found

almost exclusively on the reef terrace, was highest in the fall of 2010

and 2019 at 3.6 ± 1.5%, but dropped to undetectable levels in fall

2012, 2014, and 2018 (Figure 3A). Similarly, also on the reef terrace,

Dictyosphaeria spp. (D. cavernosa and D. versluysii) comprised up

to 1.5% total cover but were nearly negligible in the fall of 2014,

2015, 2018, and 2019 (Figure 3C). The reef terrace had 4.3 ± 0.6%

cover of G. rugosa in fall 2019 but was typically around 2.5%

(Figure 3D). There was consistently higher cover of Lobophora sp.

on the reef terrace (5.0 ± 0.5%) compared to the fore reef (1.9 ±

0.2%; Figure 3F). Cover of Peyssonneliaceae sp., found mainly at the

fore reef, was lowest in the fall of 2017 at 1.2 ± 0.3% yet reached up

to 10-15% of the benthos every fall between 2011 and 2014

(Figure 3G). Avrainvillea sp. was not plotted because it occupied

less than 0.01% of the benthos.Halimeda spp. (primarilyH. opuntia

with minor coverage by H. taenicola and H. fragilis) were more

abundant on the fore reef, at 14.2 ± 0.8% cover throughout the time

series compared to 4.4 ± 0.3% on the reef terrace (Figure 3E).
3.3 Calcareous vs. fleshy algal trajectories
by habitat

Throughout the time series, the fore reef had higher cover of

calcareous algae than fleshy algae, at 46.5 ± 0.8% (mean ± SE) and

13.4 ± 0.5%, respectively (Figure 4A), whereas the reef terrace had

similar cover of calcareous and fleshy algae, at 22.1 ± 0.8% and 28.0
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± 0.9%, respectively (Figure 4B). Percent cover of fleshy algae varied

by habitat (p <0.001) and year (p <0.001) with no significant

interaction (Supplementary Table 3). Percent cover of calcareous

algae also varied by habitat (p <0.001) and year (p = 0.004), with

habitats changing differently over time (p = 0.011). On the reef

terrace, the cover of calcareous algae remained consistent through

time whereas on the fore reef, calcareous algae were replaced by

fleshy algae at the time of the second thermal anomaly in 2015 but

re-stabilized by fall 2017. A similar yet less pronounced response

was observed on the reef terrace.
3.4 Abundance of Halimeda spp. with
respect to temperature

Several months after the first thermal anomaly, Halimeda cover

dropped from 18.8 ± 3.2% (mean ± SE) in fall 2009 to 5.8 ± 0.8% in

spring 2010 on the fore reef and 5.4 ± 1.0% to 2.2 ± 0.4% on the reef

terrace (Figure 3E). By late summer 2010, Halimeda cover had

decreased significantly at four out of eight sites (Supplementary

Table 5) but increased in subsequent years. Between fall 2014 and

fall 2015, Halimeda cover decreased again at all sites; its cover during

the second thermal anomaly was among its lowest throughout the

time series, at 4.5 ± 0.9% on the fore reef and 0.7 ± 0.2% on the reef

terrace. Regardless of the amount ofHalimedawithin each quadrat or

site, its abundance followed a similar trajectory with sharp declines by

2015, and growth or no change thereafter (Supplementary Figure 2).

Between fall 2016 and fall 2017, Halimeda cover increased

significantly at six out of eight sites by up to 20% (Supplementary

Table 5). Thus, in all cases where significant differences were detected,
FIGURE 2

Non-metric multidimensional scaling (nMDS) based on Bray-Curtis dissimilarity measures of benthic algal community composition by taxon (in terms
of square-root-transformed percent cover data). Lines terminating in an arrowhead represent the yearly trajectory of each habitat (Fore Reef in
orange, Reef Terrace in red) from 2009 to 2019. Asterisks denote thermal anomalies in 2009 and 2015.
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the sites that changed did so in the same direction. There were

significant effects of percentile-based DHW (p = 0.023) and habitat (p

<0.001) on Halimeda cover (Supplementary Table 4). A negative

relationship between Halimeda cover and accumulated thermal

stress was seen (Figure 5), with a linear correlation on the reef

terrace (Pearson’s r = -0.65, p = 0.03) but not on the fore reef

(Pearson’s r = -0.03, p = 0.92).
4 Discussion

As corals suffer widespread declines due to climate change,

there has been a corresponding rise in the abundance of algae on

reefs worldwide (Pandolfi et al., 2003; Hughes et al., 2017; Reverter

et al., 2021). However, “algae” encompass a heterogenous group of

functionally, phylogenetically, morphologically, and taxonomically

distinct taxa (Fong and Paul, 2011). While short-term changes in

macroalgal abundance on coral reefs, including seasonality, have

been well-documented (Aguila Ramıŕez et al., 2003; Ateweberhan
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et al., 2006; Lefèvre and Bellwood, 2010), longer-term dynamics of

benthic algae at the community, functional group, or species level

remain poorly characterized. Here, we present results of an 11-year

time series from Palmyra Atoll in the central Pacific Ocean. From

2009 to 2019, the cover of fleshy and calcareous algae was more

stable at the reef terrace but fluctuated at the fore reef. At the time of

the second, more-severe thermal anomaly in 2015, there was a

general decrease in calcareous algae at both habitats accompanied

by an increase in fleshy algae which was restored within two years.

Given Palmyra’s remote location and high level of federal

protection, such data sets can provide baseline information on

coral reef algal communities in the context of global stressors.

Long-term ecological monitoring is necessary for detecting

trends in species abundance and distribution through time. Prior

to this study, the latest comprehensive analysis of Palmyra’s benthic

algal community composition was based on summary data from

surveys conducted sporadically between 2004 to 2008 (Braun et al.,

2009). Before that, knowledge of algal diversity on Palmyra was

limited to early explorers’ species lists (Rock, 1916; Dawson et al.,
FIGURE 3

Percent cover (mean ± SE) of (A) Caulerpa serrulata, (B) Crustose Coralline Algae, (C) Dictyosphaeria spp., (D) Galaxaura rugosa, (E) Halimeda spp.,
(F) Lobophora sp., (G) Peyssonneliaceae sp., and (H) Turf Algae, by habitat (Fore Reef in orange, Reef Terrace in red). Dashed vertical lines indicate
thermal anomalies in 2009 and 2015.
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1955; Dawson, 1959). In 2008, the most abundant macroalgal

genera on Palmyra were Halimeda, Lobophora, Galaxaura, and

Dictyosphaeria (Braun et al., 2009). This remained consistent

through 2019, although we also identified C. serrulata as a

common macroalgal taxon on the reef terrace (Supplementary

Table 2). Additionally, Braun et al. (2009) mentioned high cover

of the red alga Dichotomaria marginata near a shipwrecked

longliner vessel which was removed in 2013. Dichotomaria was

absent from our analyses, although not all of the same reef habitats

or sites were represented here, and our study involved small-scale
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photoquadrats as opposed to large spatial scale surveys. Braun et al.

(2009) found algal communities to be relatively similar across sites

from the reef terrace and fore reef habitats across the atoll, whereas

in the present study, algal communities showed significant

differences by habitat and time, with more overall stability at the

reef terrace. Calcareous algal cover was consistently higher at the

fore reef, although it is worthwhile to note that Palmyra’s reef

terrace is largely occupied (up to 50%) by hard corals (Fox et al.,

2019; Khen et al., 2022, 2024). Overall, fleshy algal abundance on

Palmyra (average percent cover = 20.8%) was low in comparison to
FIGURE 5

Percent cover of Halimeda spp. (mean ± SE) by habitat (Fore Reef in orange, Reef Terrace in red) corresponding to the percentile-based Degree
Heating Weeks (DHW) at each observation time point, labeled by year.
FIGURE 4

Percent cover (mean ± SE) of calcareous (in purple) and fleshy algae (in green) on Palmyra at the (A) Fore Reef and (B) Reef Terrace habitats, along
with post-hoc letter groupings for significant (a = 0.01) differences among years. Dashed vertical lines indicate thermal anomalies in 2009 and 2015.
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reefs with local human populations (average percent cover = 59.3%

according to Smith et al., 2016) whereas calcareous algal abundance

(average percent cover = 34.4%) was much higher than that of

inhabited islands (average percent cover = 16.9%; Smith

et al., 2016).
4.1 Environmental drivers of algal
community structure

Ecological succession and community structure can be shaped

by physical forces such as light and sediment transport (Glynn,

1976), irradiance and water motion (Done, 1982), and wave energy

(Dollar, 1982). On Palmyra, local environmental factors likely

contributed to the spatial variability in benthic algal communities

by habitat. The shallower, wave-sheltered reef terrace, which

receives more light, solar irradiance (Hamilton et al., 2014), and

an influx of nutrients and sediments from the nearby lagoon

(Rogers et al., 2017), had a higher relative abundance of turf and

other fleshy algae throughout the study (Figure 1; Supplementary

Figure 1). The fore reef, which is subject to more wave action and

water motion (Williams et al., 2013; Hamilton et al., 2014; Gove

et al., 2015), had a higher relative abundance of calcareous algae.

Calcified crusts such as CCA and peyssonnelioid taxa are resistant

to high wave energy, which may explain their dominance at this

habitat, as has been seen elsewhere in the tropical Pacific (Page-

Albins et al., 2012). Coralline algae can also shed their epithallial

cells to prevent fouling by fleshy organisms and reinforce their

foundation in wave-exposed habitats (Keats et al., 1997b).

Articulated algal morphologies such as Halimeda are more

vulnerable to dislodgement by waves (Steneck and Dethier, 1994),

but nutrients supplied from upwelling and internal tides on the fore

reef (Williams et al., 2018) may have promoted their growth (Smith

et al., 2004). While temperature could be expected to differ by

habitat, our observations were limited to 10 m depth and upwelling-

induced cooling on Palmyra has only been found to occur below 15

m (Fox et al., 2023).
4.2 Role of herbivory in benthic
algal communities

Although we did not quantify herbivore abundance in this

study, given that Palmyra has very high fish biomass (Williams

et al., 2011; Edwards et al., 2014) and that grazing pressure drives

algal succession (Carpenter, 1986; Hixon and Brostoff, 1996),

biological factors such as grazing may have further contributed to

differences in algal community structure. In our photoquadrat time

series, algal turfs often appeared cropped (pers. obs.), indicative of

grazing. Herbivores can help control fleshy algal cover (Littler et al.,

2006; Burkepile and Hay, 2009) and their presence is associated

with higher cover of corals and CCA (Smith et al., 2010). With

herbivores now being used as a restoration tool to reverse coral-

algal phase shifts on degraded reefs (Mumby, 2014; Ladd and

Shantz, 2020), Palmyra exemplifies the role of herbivory in

maintaining a “healthy” calcifier-dominated reef. Palmyra’s reef
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system is dominated by top predators and larger-bodied grazers

(e.g., parrotfish and surgeonfish) as opposed to small planktivores

or echinoids (Sandin et al., 2008). Hamilton et al. (2014) found that

Palmyra’s reef terrace had a higher density of herbivorous fish and

higher grazing intensity (in terms of bite rates) than the fore reef.

Most herbivorous fish on Palmyra feed preferentially on algal turfs

(Hamilton et al., 2014), which are more abundant on the reef terrace

(although parrotfish bite scars are also seen frequently on CCA on

the fore reef; see Charendoff et al., 2023), suggesting that habitat-

specific differences in algal and herbivore assemblages

are interrelated.
4.3 Evidence of thermal sensitivity in
Halimeda spp.

Our study also provides observational evidence that the

calcareous macroalgal genus, Halimeda, may be sensitive to

warming. At both habitats on Palmyra, benthic cover of

Halimeda was among its lowest in 2015 (Figure 5), when

percentile-based DHWs reached a value of 7.76 (or a monthly

mean sea surface temperature of 29.8 °C; National Oceanic and

Atmospheric Administration’s Coral Reef Watch). Perhaps if

temperatures on Palmyra had reached a more extreme upper

limit, this would have had a more measurable impact on

Halimeda cover across the atoll. It has previously been proposed

that Halimeda growth and calcification could benefit from seawater

temperatures ranging from 24 to 32 °C, but that temperatures above

34 °C will have consequences that may become lethal at 36 °C (Wei

et al., 2020). Other experimental studies have shown that exposure

to elevated temperatures can either inhibit (Sinutok et al., 2011) or

enhance (Campbell et al., 2016) photosynthetic efficiency,

calcification, and growth in Halimeda spp., indicating that results

may be context-dependent or species-specific (Schubert et al.,

2023). Given their role in both primary and calcium carbonate

production on reefs (Rees et al., 2007), and as a preferred food

source to many reef fishes (Mantyka and Bellwood, 2007; Hamilton

et al., 2014), refining the thermal sensitivity limits of Halimeda by

species (while also taking into account accumulated thermal stress)

and identifying the mechanisms behind this observed phenomenon

will be ecologically relevant in the face of global climate change.
5 Conclusion

In conclusion, more species-specific studies on the thermal

tolerance of benthic algae are needed in order to better

understand current and potential impacts of climate change on

coral reefs. Additionally, comparing calcareous vs. fleshy responses

of benthic algae in situ will be useful for assessing ecosystem status

in the context of rising seawater temperatures. Long-term

monitoring in relatively unimpacted locations, such as Palmyra

Atoll, allows us to track baseline algal community dynamics over

time. To strengthen the value and resolution of these ecological data

sets, future efforts should consider larger-scale surveys with higher

sampling frequency. Although Palmyra’s reefs have remained
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calcifier-dominated as of 2019, successional trajectories from

Palmyra could inform mitigation strategies at more degraded

reefs shifting toward fleshy algal dominance.
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Canopy-forming kelp forests
persist in the dynamic subregion
of the Broughton Archipelago,
British Columbia, Canada
L. Man1*, R. V. Barbosa1,2, L. Y. Reshitnyk3, L. Gendall 1,4,
A. Wachmann1, N. Dedeluk5, U. Kim5, C. J. Neufeld2,6,7

and M. Costa1

1Department of Geography, University of Victoria, Victoria, BC, Canada, 2The Kelp Rescue Initiative,
Bamfield Marine Sciences Centre, Bamfield, BC, Canada, 3Hakai Institute, Victoria, BC, Canada, 4UWA
Oceans Institute, University of Western Australia, Crawley, WA, Australia, 5Na̱mg̱is First Nation, Alert
Bay, BC, Canada, 6Department of Biology, University of British Columbia, Okanagan Campus,
Kelowna, BC, Canada, 7LGL Limited Environmental Research Associates, Sidney, BC, Canada
Canopy-forming kelp forests act as foundation species that provide a wide range

of ecosystem services along temperate coastlines. With climate change, these

ecosystems are experiencing changing environmental and biotic conditions;

however, the kelp distribution and drivers of change in British Columbia remain

largely unexplored. This research aimed to use satellite imagery and

environmental data to investigate the spatiotemporal persistence and resilience

of kelp forests in a dynamic subregion of cool ocean temperatures and high kelp

abundance in the Broughton Archipelago, British Columbia. The specific

objectives were to identify: 1) long-term (1984 to 2023) and short-term (2016

to 2023) kelp responses to environmental changes; and 2) spatial patterns of kelp

persistence. The long-term time series was divided into three climate periods:

1984 to 1998, 1999 to 2014, and 2014 to 2023. The first transition between these

periods represented a shift into cooler regional sea-surface temperatures and a

negative Pacific Decadal Oscillation in 1999. The second transition represented a

change into warmer temperatures (with more marine heatwaves and El Niño

conditions) after 2014. In the long-term time series (1984 to 2023), which

covered a site with Macrocystis pyrifera beds, kelp area increased slightly after

the start of the second climate period in 1999. For the short-term time series

(2016 to 2023), which focused on eight sites with Nereocystis luetkeana beds,

most sites either did not change significantly or expanded in kelp area. This

suggests that kelp areas remained persistent across these periods despite

showing interannual variability. Thus, the dynamic subregion of the Broughton

Archipelago may be a climate refuge for kelps, likely due to cool water

temperatures that remain below both species’ upper thermal limits. Spatially,

on a bed level, both species were more persistent in the center of the kelp beds,

but across the subregion, Macrocystis had more persistent areas than

Nereocystis, suggesting life history and/or other factors may be impacting
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these kelp beds differently. These findings demonstrate the spatiotemporal

persistence of kelp forests in the dynamic subregion of the Broughton

Archipelago, informing the management of kelp forest ecosystems by First

Nations and local communities.
KEYWORDS

kelp forests, remote sensing, Macrocystis pyrifera, Nereocystis luetkeana, persistence
1 Introduction

Canopy-forming kelp forests (order Laminariales) are key

habitats in temperate marine regions globally (Jayathilake and

Costello, 2021) and are vulnerable to climate change impacts (Reed

et al., 2016; Smale, 2020; Wernberg et al., 2024), which can potentially

disrupt ecosystem functions, such as habitat provision, fisheries

production, nutrient cycling, carbon sequestration, and cultural

value (Lamy et al., 2020; Eger et al., 2023; Turner, 2001). Kelp

distribution and extent are affected by changes in environmental

and biotic conditions, including ocean temperature, salinity,

exposure, light, nutrient availability, and the abundance of kelp

grazers and predators (Jayathilake and Costello, 2021; Springer

et al., 2010; Druehl, 1977; Traiger and Konar, 2018; Hollarsmith

et al., 2022; Starko et al., 2024a). These conditions are often closely

related to temperature in region-specific ways; for example, in the

Northeast Pacific Ocean, warmer waters can correlate with lower

salinities (Druehl, 1977), poor nutrient availability (Lowman et al.,

2022), and ecological regime shifts (Burt et al., 2018; Hamilton et al.,

2021). Furthermore, studies have shown how ocean temperatures

directly or indirectly drive kelp dynamics (e.g. Jayathilake and

Costello, 2021; Gonzalez-Aragon et al., 2024; Hamilton et al., 2020;

Bell et al., 2020; Starko et al., 2022; Mora-Soto et al., 2024a, 2024b).

In the Northeast Pacific Ocean, temperature changes can occur

at variable time scales, from steady long-term trends or cyclic

changes spanning decades or years, to short-term marine

heatwaves, affecting the kelp dynamics differently (Cavanaugh

et al., 2011; Krumhansl et al., 2016; Levitus et al., 2000; Mora-Soto

et al., 2024a; Smith et al., 2024; Wernberg et al., 2024). Since the

1950s, long-term increases in ocean temperatures have primarily

been driven by anthropogenic climate change (Cheng et al., 2022)

and can drive changes in kelp distribution and area (Beas-Luna et al.,

2020; Berry et al., 2021; Mora-Soto et al., 2024a). For instance, Berry

et al. (2021) documented a shift in kelp distribution and a 63%

decrease in its area coinciding with a 0.7°C sea-surface temperature

(SST) increase throughout the 20th century in Puget Sound,

Washington. Additionally, ocean temperatures are influenced by

cyclic climatic oscillations (Di Lorenzo et al., 2008), such as the El

Niño Southern Oscillation (ENSO) (quantified with the Oceanic

Niño Index, ONI) and the Pacific Decadal Oscillation (PDO), which

are multi-year and decadal modes of climate variability (Di Lorenzo

et al., 2008). These oscillations often lead to warming in the
02116
Northeast Pacific Ocean when in a positive phase (Di Lorenzo and

Mantua, 2016), with consequent changes in kelp responses. For

instance, kelp areas decreased after shifting to positive PDO and ONI

but rebounded after the oscillations shifted to negative phases in the

Strait of Juan de Fuca (Pfister et al., 2018) and the Strait of Georgia

(Mora-Soto et al., 2024a); conversely, kelp disappeared after a

positive PDO shift in the 1970s and did not rebound afterward in

Gray Bay, Haida Gwaii (Gendall et al., submitted).

Furthermore, ocean temperature change can also manifest in

the form of short-term marine heat waves (MHWs), which are

anomalously warm events (>5 days) with temperatures above the

90th percentile based on a 30-year climatological baseline (Hobday

et al., 2016). A higher frequency and magnitude of MHWs have

been observed due to climate change (Frölicher et al., 2018) and are

generally associated with positive PDO and ONI years (Di Lorenzo

and Mantua, 2016), resulting in prolonged, anomalously warm

conditions (Bond et al., 2015). Such conditions were present

during the Blob of 2014 to 2016, a prolonged MHW (Bond et al.,

2015) that devastated kelp forests across the Northeast Pacific

Ocean (Bell et al., 2023; Arafeh-Dalmau et al., 2019; Starko et al.,

2024; Mora-Soto et al., 2024a, 2024b). Kelp was reduced after the

Blob to 60% of its pre-Blob distribution in Barkley Sound (Starko

et al., 2022), to 21% of its pre-Blob distribution in the Northern

Salish Sea (Mora-Soto et al., 2024b), and to 13% of its historical area

in Haida Gwaii (Gendall et al., submitted).

Kelp forest persistence and resilience to ocean warming and

climatic oscillations can be characterized in temporal and spatial

domains. In this context, persistence refers to the continued existence

of kelp forests through time (Connell & Sousa, 1983), and resilience

refers to kelps returning to a reference state after a disturbance, such

as thermal stress periods (Holling, 1973). Some studies consider kelp

persistence and resilience in the temporal domain, including

increasing, decreasing, or no change in kelp areas within a specific

study site or region (e.g. Cavanaugh et al., 2019; Mora-Soto et al.,

2024a, 2024; etc.). Other studies investigate kelp persistence and

resilience in the spatial domain, i.e., identifying areas where kelp is

often present. (e.g. Schroeder et al., 2020; Hamilton et al., 2020;

Cavanaugh et al., 2023; Arafeh-Dalmau et al., 2023). Currently, kelp

forests are declining globally (Krumhansl et al., 2016), however, their

persistence and resilience to climate change have been spatially

variable, with decreases in 38% of the regions, increases in 27% of

regions, and no change in 35% of regions (Krumhansl et al., 2016).
frontiersin.org
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This variability in persistence and resilience is often due to spatially

explicit patterns in environmental and biotic conditions (Smale, 2020;

Bell et al., 2023; Starko et al., 2024a), which can influence the amount

of stress the kelps directly experience, as well as have implications for

adaptation and ecosystem-scale responses to stressors (Starko et al.,

2024b). For instance, kelp areas are expanding in the Arctic due to the

increase in ice-free areas (Filbee-Dexter et al., 2019), and conversely,

are diminishing in subtropical latitudes such as in Baja California due

to the increase in ocean temperatures (Cavanaugh et al., 2019; Beas-

Luna et al., 2020; Bell et al., 2023). Beyond global-scale variability, this

spatially driven variation in kelp persistence and resilience can be

observed at a regional scale in British Columbia (BC), Canada. Kelp

areas are increasing on the northwest coast of Vancouver Island

where keystone predators (sea otters) have returned (Watson and

Estes, 2011; Starko et al., 2024a), and displaying no change in area in

the cooler waters of the Strait of Juan de Fuca (Mora-Soto et al.,

2024a). Conversely, kelp areas decreased in the warmer waters of the

central Gulf Islands and Northern Salish Sea (Mora-Soto et al., 2024a,

2024b). This spatial variation in kelp responses can also be found on

local scales (a few kilometers or less), with kelps persisting on the

cooler outer coasts and displaying loss in the warmer inlets, for

instance, in Barkley Sound and around the Gray Bay and Cumshewa

Inlet region of Haida Gwaii (Starko et al., 2022; Gendall et al., 2023).

As such, local-scale studies are needed to understand the response of

kelp to environmental conditions.

Canopy-forming kelp species such as Macrocystis pyrifera and

Nereocystis luetkeana can be present at the ocean surface and have

biomass that is detectable by optical remote sensing tools, equipping

researchers with the ability to survey kelp across large spatial and

temporal scales (Stekoll et al., 2006; Cavanaugh et al., 2011, 2019;

Bell et al., 2015; Schroeder et al., 2019, 2020; Nijland et al., 2019;

Mora-Soto et al., 2020, 2024a, 2024b; Gendall et al., 2023). Mid-

resolution satellite imagery such as Landsat (spatial resolution: 30 to

80 m), available since 1972 (NASA, n.d.1), provides data to discern

trends observed over multiple decades (Cavanaugh et al., 2011; Bell

et al., 2020; Gendall et al., 2023; Mora-Soto et al., 2024a). This

enables researchers to differentiate kelps’ interannual variability

from monotonic trends (Reed et al., 2015; Wernberg et al., 2019)

and establish a more historical and accurate baseline of kelp areas

(Bell et al., 2023; Mora Soto et al., 2024a). On the other hand, high-

resolution satellite imagery such as Rapideye (5 m), Planetscope (3

m), and Quickbird-2 (1.84 m), allows for better accuracy when

mapping fringing and smaller kelp beds (e.g., Gendall et al., 2023;

Mora-Soto et al., 2024a), although their temporal coverage and

resolution are more limited (Rapideye: 2009 to 2020, Planetscope:

2016 to present, Quickbird-2: 2001 to 2015) (Planet, 20242; ESA,

n.d, a3.; ESA, n.d., b45). This difference in data sources results in a

trade-off between spatial resolution, the ability to detect smaller kelp

beds (Gendall et al., 2023), and the time series length. Due to the

range of kelp bed sizes present on the BC coast, from large offshore

beds to small fringing beds, utilizing satellite imagery of different
1 https://landsat.gsfc.nasa.gov/satellites/timeline

2 https://developers.planet.com/docs/data/rapideye/
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spatial and temporal resolutions improves our ability to uncover

temporal trends and identify areas of persistence and/or resilience

in kelp beds of various sizes and distribution (e.g., Gendall et al.,

2023; Mora-Soto et al., 2024a).

Here, we use satellite imagery to define the persistence and

resilience of kelp forests to environmental changes in the dynamic

subregion of the Broughton Archipelago, BC, Canada. The dynamic

subregion is characterized by cool water temperatures, relatively flat

bottom slopes, high seawater salinity, exposure, and tidal current

speeds (Foreman et al., 2009; Brewer-Dalton et al., 2014; Lin and

Bianucci, 2023). Specifically, this study addresses the following two

objectives: 1) to identify the temporal responses of Macrocystis

pyrifera and Nereocystis luetkeana, respectively, to changes in

temperature and climatic oscillations, and 2) to identify spatial

patterns of kelp persistence. We achieved these objectives by first

characterizing environmental conditions in the Broughton

Archipelago across various spatial scales with 1) local SST

climatologies from temporally discontinuous Landsat data, 2)

regional SST and MHW climatologies from temporally continuous

in-situ measurements, and 3) global ONI and PDO indices. Next, we

identified kelp persistence and resilience at oneMacrocystis site (time

series length: 1984 to 2023) and eight Nereocystis sites (time series

length: 2016 to 2023) and compared them to the environmental

changes. In this study, kelp persistence was quantified in two

domains: (1) temporal persistence corresponding to an increase or

no significant change in kelp area at the site level throughout the

studied time series, and (2) spatial persistence corresponding to the

existence of persistent areas inside each site where kelp was present

>50% of the time series. Conversely, non-persistence is defined as (1)

a temporal decrease in kelp and/or (2) spatially, the lack of any

persistent area. Synthesizing both spatial and temporal domains, a

kelp forest would be deemed resilient if the system experienced a

disturbance and yet still displayed both temporal and spatial

persistence. If the kelp forest displayed both spatial and temporal

persistence but did not experience any disturbance, evaluating its

resilience would not be possible. This study synthesizes both spatial

and temporal domains to provide valuable information about the

status of the kelp forests and their responses to environmental

variability to the local First Nations and their monitoring efforts. At

a broader spatial scale, this study also contributes to regional and

global endeavors to understand the status and responses of kelp

forests during an era of unprecedented climate change.
2 Methods

2.1 Study area

This study was conducted on the traditional and unceded

territories of the Kwakwa̱ ka̱ ’wakw peoples (Umista Cultural
3 https://earth.esa.int/eogateway/missions/worldview

4 https://earth.esa.int/eogateway/missions/planetscope/description

5
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Society, n.d.6) within the Broughton Archipelago. This region sits at

the interface of two major bodies of water: the Johnstone Strait and

Queen Charlotte Strait, near the northeast of Vancouver Island, BC,

Canada (Figure 1). The Broughton Archipelago features many

islands in the west and glacially carved fjords in the east (Shugar

et al., 2014; Davies et al., 2018). Due to its strong environmental

gradient in seawater temperature and clear differences in

bathymetry, this region can be distinctly divided into two

subregions: the cooler, dynamic western archipelago, and the

warmer, sheltered, eastern fjords (Foreman et al., 2009; Brewer-

Dalton et al., 2014; Lin and Bianucci, 2023). This environmental

gradient and spatial differences in bathymetry drive kelp

abundance, with the larger and denser kelp beds that can be

detected with satellite imagery only located in the dynamic

subregion, whereas the smaller, fringing beds that are challenging

to detect with satellite imagery are in the fjord subregion (Man et al.,

in prep). We focused on the dynamic subregion due to the limited

availability of high-resolution satellite imagery in the fjord

subregion (Figure 1). This subregion is dominated by Nereocystis

beds, except for on the north shore of Malcolm Island, which is

lined with large, dense beds primarily composed of Macrocystis

(Man et al., in prep; Sutherland, 1990). Macrocystis and Nereocystis

are the only canopy-forming kelp species in the subregion, and

“kelp” hereafter collectively refers to both species. Nereocystis, as an

annual species, tends to display more interannual variability than

Macrocystis, a perennial species (Dayton et al., 1984; Springer

et al., 2010).

Local community members, including First Nations, have

revealed that, generally, the kelp forests have declined in density

and coverage in their territories (Broughton Aquaculture Transition

Initiative (BATI), unpublished, 2021; Salmon Coast Field Station

(SCFS), unpublished, 2023). Community members have also

reported specific locations of kelp change in the region, including

an increase around Malcolm Island, and decreases at an offshore

kelp bed at the mouth of the Nimpkish River (“NR”), at a nearshore

kelp bed off the shore of the Alert Bay Lighthouse (“ABL”), and

along the salmon migration routes in the fjords near now-

decommissioned open-net salmon farms (SCFS, 2023; Mountain,

pers comm, 2023).

One Macrocystis site and eight smaller Nereocystis sites were

selected to represent the temporal dynamics of kelp beds of different

species and sizes exposed to different environmental conditions.

The Macrocystis site encompasses the entire north shore of

Malcolm Island (spanning 11.6 km2), and the eight smaller

Nereocystis sites (ranging from 0.03-1.45 km2 per site) represent

the portion of the eastern shore of Malcolm Island with high kelp

abundance and the smaller islands east of Malcolm Island

(Figure 1). Only one Macrocystis site was selected as this was the

only area within the Broughton Archipelago whereMacrocystis was

present. The bottom substrate type at the Macrocystis site was

primarily mixed rocky and sandy substrate, with kelp growing on

the rocky areas (Haggarty et al., 2020; Man et al., in prep). The

smaller site approach was chosen for the Nereocystis sites rather
6 https://umistapotlatch.ca/notre_terre-our_land-eng.php
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than mapping all of their coastlines due to the geomorphological

complexity of the area, which imposed a challenge for the satellite

remote sensing of kelp because of the increased land adjacency

effects (Cavanaugh et al., 2021). The Nereocystis sites included the

offshore kelp beds at the mouth of the Nimpkish River (NR), the

nearshore kelp beds off the shore of the Alert Bay Lighthouse (ABL),

the eastern coastline of Alert Bay (ABE), the eastern tip of Malcolm

Island (MIE), Pearse Islands (PI), Bold Head (BH), Wedge Island

(WI), and South Leading Islet (SLI) (Figure 1). PI, BH, and WI had

primarily shallow (<20 m depth) rocky bottom substrate,

surrounded by deeper (>20 m) areas where kelp cannot grow

(Haggarty et al., 2020). ABL, ABE, and MIE had mixed rocky and

sandy bottom substrates, and NR and SLI had mixed rocky and

sandy bottom substrates surrounded by pure sandy substrates

which cannot support kelp growth (Haggarty et al., 2020).

The locations of the Macrocystis and Nereocystis sites were

selected opportunistically during a field visit and based on their

importance to the Mamalilikulla First Nation, ‘Na̱ mg̱ is First Nation,
and Kwikwasut’inuxw/Haxwa’mis First Nation. These three

Nations formed the Broughton Aquaculture Transition Initiative

(BATI), a coalition that emphasized the need to continue

monitoring and protecting the Archipelago’s kelp forests due to

their importance as nearshore salmon habitat (BATI, unpublished,

2021). The Macrocystis and the Nereocystis sites experience slightly

different environmental and topographical conditions from each

other, with the Macrocystis site having flatter slopes and lower tidal

current speeds than the Nereocystis sites (Davies et al., 2018;

Foreman et al., 2009).
2.2 Data compilation and processing

The following data were compiled: (1) local, regional, and

global-scale environmental conditions, (2) Landsat-derived

canopy kelp area (1984 to 2023) at the Macrocystis site, and (3)

Planetscope-derived kelp area (2016 to 2023) at the Nereocystis sites

(both “kelp area” hereafter) (Figure 2). In addition, very high-

resolutionWorldview-2 and GeoEye-1 imagery was used to validate

kelp classifications derived from Landsat and Planetscope imagery

(Figure 2). The environmental variables were used to define climate

periods (years with similar environmental conditions) (Figure 2).

Objective 1 (identify the temporal responses ofMacrocystis pyrifera

and Nereocystis luetkeana, respectively, to changes in temperature

and climatic oscillations) was achieved by analyzing both long-term

and short-term kelp time series alongside environmental changes at

local, regional, and global scales (Figure 2). Objective 2 (identifying

spatial patterns of kelp persistence) was achieved by spatially

combining yearly kelp areas (Figure 2).

2.2.1 Environmental conditions
The environmental conditions from the past four decades (1984

to 2023) were compiled to evaluate their roles as drivers of kelp area

change. Environmental data was acquired to represent three

different spatial scales: 1) Local: Summer climatologies compiled

from temporally discontinuous Landsat-derived SST from the

Macrocystis and Nereocystis sites; 2) Regional: spring, and
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FIGURE 2

A flow chart representing the data compilation and processing, as well as the spatial and temporal dimensions of the study, and how satellite-
derived kelp classifications and environmental data are combined to achieve the objectives of the study.
FIGURE 1

The main map shows the study area (the dynamic subregion of the Broughton Archipelago), with the Macrocystis site on the north shore of Malcolm
Island marked in a dashed black outline and the eight Nereocystis sites marked in solid black outlines. The Nereocystis sites include kelp beds at
Nimpkish River (NR), Alert Bay Lighthouse (ABL), Alert Bay East (ABE), Pearse Islands (PI), Bold Head (BH), Wedge Island (WI), and South Leading Islet
(SLI). The background of the main map is the mean Landsat-derived SST from the summers (July and August) of 2016 to 2023. The left inset map
shows the location of the study area at a provincial scale relative to Vancouver Island (VI) and mainland BC (BC). The right inset map shows the study
area (marked by the red rectangle) situated within the Queen Charlotte Strait region, relative to the location of the Pine Island Lighthouse (PIL), from
which the regional SST and MHW metrics were derived (see 2.2.1). Macrocystis and Nereocystis graphics were obtained from phylopic.org, with the
former created by Harold N Eyster (CC BY 3.0, Attribution 3.0 Unported), and the latter created by Guillaume Dera (CC0 1.0 Universal Public Domain
Dedication license.)
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summer climatologies derived from temporally continuous (daily)

in-situ SST measurements collected at Pine Island Lighthouse about

57 km north of the study area (Figure 1), representative of the

Queen Charlotte Strait region; and 3) Global: annual ONI and PDO

indices representing the climatic conditions of the broader

Northeast Pacific Ocean.

Local SST

We characterized local SST changes in the study area by

deriving mean summer (July-August) SST climatologies from the

thermal infrared band of Landsat 5, 7, 8, and 9 imagery (“local SST”

hereafter, spatial resolution: 30 m) for each year; note that this

dataset was temporally discontinuous due to low availability of

imagery related to frequent high cloud cover. Furthermore, only

summer SST was considered for the local-level dataset due to the

even more frequent high cloud cover present during spring in the
Frontiers in Marine Science 06120
Broughton Archipelago. To create the SST climatologies, we first

compiled all cloud-free Landsat images captured during the

summer months from 1984 to 2023, excluding years with only

one cloud-free image to prevent skewing the summer mean with

short-term extremes. As a result, only 13 years of mean local SST

data were analyzed out of the total 40-year period for the

Macrocystis site (Table 1). For each of the 13 years, mean local

SST was calculated using zonal statistics in a polygon spanning the

entirety of theMacrocystis site (Figure 1), buffered 300 m away from

the shoreline. This reduced the interference of land temperature on

the water pixels, producing accurate nearshore SST data

(Wachmann et al., 2024). Mean local Landsat SST data for the

Nereocystis sites were available for 26 out of the 39 years analyzed

(Table 1). For each of these 26 years, local SST was calculated using

zonal statistics in a 200-m radius buffer 300 m from any land

(Wachmann et al., 2024). These annual mean summer SST
TABLE 1 The environmental variables at local, regional, and global scales.

Variable Temporal availability Temporal
resolution

Explanation

Local (from the Macrocystis and Nereocystis sites, all derived from Landsat thermal bands)

Local summer SST (°C) Macrocystis site: 1985, 1990, 1995, 2003,
2005, 2006, 2008, 2009, 2010, 2013 to
2017, 2020, and 2023
Nereocystis site: 1984, 1985, 1990, 1993,
1995, 1997, 2003 to 2011, 2014 to 2018,
and 2020 to 2023

Discontinuous July & August mean calculated from available cloud-free
Landsat images

Regional (all derived from the Pine Island Lighthouse in-situ daily measurements)

Regional summer SST (°C) July & August, 1984 to 2023 Continuous July & August mean calculated from daily data

Regional spring SST (°C) May & June, 1984 to 2023 Continuous May & June mean calculated from daily data

Regional summer SST anomaly (°C) July & August, 1984 to 2023 Continuous The difference between the yearly summer mean (July-August) and
the total summer (July-August) climatological mean calculated from
daily values

Regional spring SST anomaly(°C) May & June, 1984 to 2023 Continuous The difference between the yearly spring (May-June) SST for that
year and the total spring (May-June) climatological mean calculated
from daily values

The 2-year mean of regional spring
SST (°C)

May & June, 1983 to 2023 Continuous For a year n, this is a 2-year moving mean of spring SST
measurements from years n-1 to n

The 2-year mean of regional
summer SST (°C)

July & August, 1983 to 2023 Continuous For a year n, this is a 2-year moving mean of summer SST
measurements from years n-1 to n

The 3-year mean of regional spring
SST (°C)

May & June, 1984 to 2023 Continuous For a year n, this is a 3-year moving mean of spring SST
measurements from years n-2 to n

The 3-year mean of regional
summer SST (°C)

July & August, 1984 to 2023 Continuous For a year n, this is a 3-year moving mean of summer SST
measurements from years n-2 to n

Pre-summer MHW (°C days) September-June, 1983 to 2023 Continuous For a year n, the sum of the total cumulative intensity of all MHWs
from September of year n-1 to June of year n

Summer MHW (°C days) July-August, 1984 to 2023 Continuous For a year n, the sum of the total cumulative intensity of all MHWs
from July to August.

Global (all derived from NOAA, 2024a, 2024b)

ONI May-August, 1984 to 2023 Continuous Z-scored spring and summer ONI calculated from the mean spring
and summer ONI for that year

PDO May-August, 1984 to 2023 Continuous Z-scored spring and summer PDO calculated from the mean spring
and summer PDO for that year.
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measurements were then compiled into site-specific climatologies.

Note that although local SST measurements for the Nereocystis sites

were acquired between 1984 and 2023, their kelp time series only

ranged from 2016 to 2023 due to the limited availability of

Planetscope imagery.

Regional SST and MHWs

We characterized the regional SST based on daily in-situ SST

measurements collected at Pine Island Lighthouse (“regional SST”

hereafter), compiled from 1982 to 2023 (Fisheries & Oceans

Canada, 20247) (Figure 1). Pine Island Lighthouse is 57 km away

from Malcolm Island, thus representing the general environmental

conditions of the Queen Charlotte Strait region rather than the local

conditions at the sites. However, its high temporal resolution

allowed us to calculate MHW frequencies and magnitudes

(Hobday et al., 2016, 2018).

The following metrics were calculated from the daily regional

SST measurements: (i) spring (May-June), and summer (July-

August) SST climatologies, (ii) mean yearly spring and summer

SST anomalies, and (iii) two- and three-year mean climatologies of

regional spring and summer SST. Spring and summer SST metrics

represented the conditions during stages of high kelp growth and

peak kelp biomass, respectively (Springer et al., 2010). Winter SST

metrics, which would represent the environmental conditions

present during the kelp gametophyte stages (Springer et al., 2010),

were not included as there were a few winter months with no SST

data collected (December 2018-January 2019, December 2019 to

January 2020, and December 2020 to January 2021), compromising

the continuity of the data. The two- and three-year SST means were

computed for each season to evaluate the potential lagged effects of

temperature changes on kelp (Pfister et al., 2018) (Table 1).

Beyond the SST metrics above, MHWs were identified from the

regional daily SST measurements, with an MHW defined as when

the maximum observed day temperature surpasses the day’s

seasonal climatology and 90th percentile temperature threshold

for more than five days, sensu Hobday et al. (2016). Following

Hobday et al. (2016, 2018), we calculated four MHW categories (I -

IV), corresponding to multiples of the seasonal difference between

the climatological mean and the climatological 90th percentile. A

Category I MHW surpasses the climatological 90th percentile once,

and a Category II MHW twice, etc. Multiples of this difference vary

by location and time of year; thus the category may not directly

correspond to the maximum intensity. For example, a MHW on

December 2, 2016, of maximum intensity 2.0°C, was classified as

Category II because this event surpassed the climatological 90th

percentile of this season twice, yet another MHW on September 24,

2019, of maximum intensity 2.5°C was only classified as Category I

because this event surpassed the climatological 90th percentile of

that season only once. After identifying the MHWs, the cumulative

intensity of each MHW was calculated as the MHW’s temperature

anomaly (°C) multiplied by the number of heatwave days. For each

year n, the following metrics were noted: (i) total pre-summer
7 https://open.canada.ca/data/en/dataset/719955f2-bf8e-44f7-

bc26-6bd623e82884
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MHW cumulative intensity, which is the cumulative intensity of all

MHWs that occurred from September 1st of year n-1 to June 30th

of year n, and (ii) total summer MHW cumulative intensity, which

is the combined cumulative intensity of all MHWs between July and

August of year n. The total pre-summer MHW cumulative intensity

would represent the MHWs occurring in the fall and winter of year

n-1, and in the spring of year n, which may affect the kelp spores

and gametophytes that will eventually reach canopy height as

sporophytes in year n (Springer et al., 2010), thus affecting the

kelp area detected in year n. Although there were data gaps in the

SST during the winter months from 2018 to 2020 (December 2018 -

January 2019, December 2019 - January 2020, and November 2020 -

Jan 2021), we determined that it was still suitable to use the pre-

summer MHW metrics because some of these months were still

represented, from September of year n-1 to June of year n.

Regardless, this limitation should be kept in mind when

interpreting the results for 2018-2020, where pre-summer MHW

cumulative intensity may be underestimated.

Global: climatic oscillations

The global environmental conditions were characterized by the

mean yearly ONI and PDO (NOAA, 2024a8, 2024b9). Mean yearly

ONI and PDO were calculated from spring and summer (May to

August) values and were then rescaled using Z-scores to identify

when each index was above or below their 40-year climatological

mean, following the methods of Mora-Soto et al. (2024a). This

resulted in an ONI and PDO Z-score for each year (Table 1), with

positive values indicating warmer years with less optimal conditions

for kelp (Mora-Soto et al., 2024a)

2.2.2 Mapping canopy kelp area
Kelp area was quantified by classifying satellite imagery from

1984 to 2023. Higher-resolution satellite imagery was selected to

map the floating kelp area in the Nereocystis sites than the

Macrocystis sites, as higher-resolution imagery is more

appropriate for mapping the fringing Nereocystis beds typical of

this region (Cavanaugh et al., 2021; Gendall et al., 2023). Landsat

imagery (spatial resolution: 30 m, 1984 to 2023) was selected to map

the large kelp beds at the Macrocystis site, creating a longer time

series. Planetscope imagery (spatial resolution: 3 m, 2016 to 2023)

was used to represent kelp changes at the smaller Nereocystis sites

after the Blob (Bond et al., 2015). Then, very-high-resolution

Worldview-2 and GeoEye-1 imagery (spatial resolution: 0.46 and

1.84 m, respectively) obtained from 2017 and 2023 were used to

validate the satellite-derived kelp area classifications.

Long-term Macrocystis time series

For theMacrocystis site, the kelp area was derived from Landsat

imagery using two different classification approaches: Multiple

Endmember Spectral Mixture Analysis (MESMA) (Cavanaugh
8 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/

ensostuff/ONI_v5.php

9 https://www.ncei.noaa.gov/access/monitoring/pdo/
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et al., 2011; Bell et al., 2020) and Object-Based Image Analysis

(OBIA) (e.g. Gendall et al., 2023; Mora Soto et al., 2024a). The

mixture of approaches was used due to the availability of a pre-

existing dataset from 1984 to 2020 (Reshitnyk, unpublished data,

2024) classified using MESMA. Additional classifications of kelp

area using OBIA allowed us to expand the time series to include

2021 to 2023. For the 1984-2020 Landsat dataset, atmospherically

corrected surface reflectance products (Landsat Collection 1 Level-2

reflectance data) were downloaded from the United States

Geological Survey Earth Explorer website10 for the sites for

Landsat sensors TM, ETM+, and OLI for each year. To mask out

intertidal areas, a land mask was derived for the region using a

single Landsat scene collection at a 0.2 m tide (Mean Lower Low

Water) to remove all land and intertidal pixels (mask creation

details in Supplementary material S1). Classification of the kelp area

followed methods described by Bell et al., 2020. Following cloud and

land masking, for each scene, a binary classification decision tree

was used to classify each pixel into one of four classes: seawater,

cloud, land, and kelp. A Multiple Endmember Spectral Mixture

Analysis (MESMA) (Bell et al., 2020; Roberts et al., 1998) was used

to determine the kelp fraction contained in each kelp pixel. We

converted the fractional cover dataset to a binary time series based

on a fractional kelp cover threshold of 13% (Houskeeper et al., 2022:

Cavanaugh et al., 2011). The final dataset represents the maximum

kelp area for a given year. 1992 was excluded from this analysis as

there was no available cloud-free imagery for the study area.

For the 2021-2023 Landsat dataset, we used one yearly cloud-

free Landsat image acquired during low tide between spring and

summer, thus representing the kelp area captured at peak biomass

(Springer et al., 2010). For each image, the land was masked out,

and a Normalized Difference Vegetation Index (NDVI) and linear

enhancements were applied to increase the spectral separability

between kelp and water (following the protocols in Gendall et al.

(2023). Each image was classified using an OBIA approach (OBIA

classification methods in Supplementary material S2). For the entire

time series (1984 to 2023), the kelp area was normalized as a

percentage of the maximum kelp area, i.e. aggregated area of all kelp

detected for the entire time series.

Short-term Nereocystis time series

Planetscope imagery was used to derive kelp areas for the short-

term time series (2016 to 2023) covering the eight Nereocystis sites

(Table 2). One cloud-free summer image acquired at a tidal height

less than 2.50 m above the chart datum was used to derive each

year’s kelp area. The processing and classification of the short-term

time series followed the methods delineated in Gendall et al. (2023).

Imagery from 2016 required atmospheric correction as only top-of-

atmosphere reflectance products were available. Atmospheric

correction was performed using a Rayleigh correction, with dark

targets selected using the darkest pixel histogram adjustment

method described in Hadjimitsis et al. (2004). Atmospheric

correction was not conducted on imagery from 2017 to 2023, as

surface reflectance products were available. In terms of geometry,
10 earthexplorer.usgs.gov
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georeferencing using a single-order polynomial transformation

against the ArcGIS base map was conducted if an image was

misaligned relative to the base map. Next, areas where kelp

cannot grow (i.e. land, deep water (>20 m), and sandy and mud

substrate) were masked from imagery to avoid false positives in kelp

area classifications following the methods outlined in Gendall et al.

(2023). The land mask was manually delineated based on the lowest

tide Planetscope image (tidal height: 0.716 m) in this kelp time

series, acquired on August 4, 2023; the sandy and mud substrate

mask was created using the BC bottom patch model (Haggarty et al.,

2020); and the deep water mask (depths >20.0 m) was created using

a coastal digital elevation model for Pacific Canadian waters (Davies

et al., 2018). Following the masking step, a Near-Infrared/Green

(NIR/G) band ratio and linear enhancements were applied to the

imagery before classification (Gendall et al., 2023). The images were

subsequently classified using the aforementioned OBIA methods

(see details in the classification methods in Appendix S2), resulting

in yearly kelp area products from 2016 to 2023 for each Nereocystis

site. Finally, yearly kelp areas were normalized into percent

kelp area.

Methods comparison and validation of kelp area products

We ensured that the MESMA-based yearly kelp aggregate area

classification method (as used in 1984 to 2020 Macrocystis site

classifications) and OBIA-based non-aggregate kelp area

classification method (as used in 2021 to 2023 Macrocystis site

classifications and 2016 to 2023 Nereocystis site classifications)

created comparable results by conducting a sensitivity analysis.

Two Landsat summer images, from 1986 and 2015, covering part of

the Macrocystis site already classified using MESMA, were

additionally classified using OBIA. The percent kelp area derived

from the OBIA classification was within a 1% difference from that of

the MESMA classification; thus, the two classification methods were

deemed comparable.

Moreover, we confirmed that there were no confounding effects

of tidal height on the percent kelp area by fitting a linear mixed

model for the short-term time series (tidal height range: 0.716-2.500

m), with percent kelp area as the dependent variable, tidal height as

a fixed effect, and site as a random effect (R package “lme4”, Bates

et al., 2015). This analysis confirmed that the percent kelp area was

not significantly affected by tidal height (p=0.320) and, therefore,

suitable for use in subsequent data analysis. This test was not

conducted for the long-term time series as the kelp area for each

year was derived from multiple images of various tidal heights,

minimizing the tidal height-induced variability associated with

this dataset.

The satellite-derived kelp area products were validated by

comparing the spatial overlap between the kelp classifications and

very high-resolution satellite images (spatial resolution: 0.460-1.84

m). The very high-resolution satellite images provided more

accurate representations of the kelp beds due to the reduced pixel

mixing between kelp and water (Cavanaugh et al., 2021; Gendall

et al., 2023). As the validation of all the yearly kelp classifications

was challenging due to the lack of historical in-situ data and very

high-resolution imagery, we selected one year to validate the kelp

classification approach of each of the time series and assumed this
frontiersin.org

https://doi.org/10.3389/fmars.2025.1537498
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Man et al. 10.3389/fmars.2025.1537498
validation would be representative of the other years. For the long-

term Macrocystis time series, a Worldview-2 image (spatial

resolution: 1.84 m, acquired on August 1, 2017), was used to

validate the Landsat-based classification of the Macrocystis site

kelp beds from 2017. For the short-term Nereocystis time series,

we validated the 2023 Planetscope-derived classifications of six

Nereocystis sites’ kelp beds by using a pan-sharpened Worldview-

2 image (spatial resolution: 0.46 m, acquired on August 4, 2023) and

a pan-sharpened GeoEye-1 image (spatial resolution: 0.46 m,

acquired on August 6, 2023) (Table 2). Overall accuracy of 89.7%

and 89.1% were found for the long-term and the short-term time

series, respectively (Details on validation methods and results in

Supplementary Material S3, Supplementary Table S1).
2.3 Data analysis

2.3.1 Identifying environmental trends at different
spatial scales and climate periods

The Modified Mann-Kendall test (Hamed and Rao, 1998, R

package: rtrend), a non-parametric test for monotonic trends

adjusted for serial autocorrelation, was used to investigate

significant temporal trends of local summer SST climatologies,

regional spring and summer SST climatologies, and MHWs.

Here, a significant and positive Z-statistic would indicate an

increasing trend, a significant and negative Z-statistic would

indicate a decreasing trend, and a non-significant test result

would indicate no significant temporal trends. We did not test for

trends in PDO and ONI as these climatic oscillations are inherently

cyclical (Norel et al., 2021).

The time series of environmental variables were statistically

organized into climate periods to define kelp area changes between

these periods. This is because kelp can generally show lagged

fluctuations for one to two years in response to environmental

conditions due to the potential multi-year impacts of environmental

changes (Pfister et al., 2018; Mora-Soto et al., 2024a). The climate

periods were identified by defining changepoints, i.e., points in the

time series where abrupt changes in temporal trends occur (Zhao

et al., 2019), in the regional spring and summer SST. These datasets

were selected to define the transitions between climate periods

because of the in-situ nature and the continuity of the time series

(Table 1); the local satellite-derived SST data was not fit for this
Frontiers in Marine Science 09123
analysis due to its temporally discontinuous nature (see section

2.2.1). The changepoint analysis was conducted using the Bayesian

Estimator of Abrupt change, Seasonal change, and Trend (BEAST)

algorithm, an ensemble algorithm that leverages time series

decomposition models using Bayesian model averaging (Zhao

et al., 2019, R package: rBeast). We further conducted Kruskal-

Wallis tests to define significant differences in each environmental

variable (Table 1) between climate periods, and Dunn’s tests with

the Benjamani-Hochberg adjustment for multiple testing were used

for post hoc comparisons (Kruskal and Wallis, 1952; Dunn, 1964;

Benjamini & Hochberg, 1995).

2.3.2 Long-term (1984 to 2023) and short-term
(2016 to 2023) kelp response to
environmental changes

The modified Mann-Kendall test (Hamed and Rao, 1998) was

used to define both long-term (1984 to 2023) and short-term (2016

to 2023) temporal trends in the kelp area at each site. Here, a

significant and positive Mann Kendall’s Z-statistic would indicate

increasing kelp area, a significant and negative Z-statistic would

indicate decreasing kelp area, and a non-significant test result would

indicate no significant temporal trends. An increase or no

s ignificant change in the ke lp area would ind ica te

temporal persistence.

In addition, for the long-term Macrocystis time series, the

Kruskal-Wallis test (Kruskal and Wallis, 1952) was conducted to

identify potential differences in kelp area between the climate

periods. Dunn’s test was used for post hoc comparisons, with the

Benjamini-Hochberg correction for multiple testing (Dunn, 1964;

Benjamini & Hochberg, 1995). Furthermore, linear models with

different combinations of regional and global environmental

variables were tested to define the most significant environmental

variables affecting changes in the kelp area. The tested variables

(predictors) included yearly, two-year, and three-year average

climatologies of spring and summer SST/SST anomalies, pre-

summer and summer MHWs, PDO, and ONI. The Landsat-

derived local SST climatologies were not used as predictors in this

linear model due to the lack of data for several years of the time

series. All the predictor variables were tested for collinearity using

Kendall’s correlation test and visual data exploration (Kendall,

1948). The Akaike Information Criteria (AIC) (Akaike, 1974) was

used to determine the most suitable combination of predictors from
TABLE 2 Table detailing imagery used for the long-term and short-term time series, as well as imagery validation.

Spatial
coverage

Temporal
coverage

Data source Classification method Purpose

Macrocystis site 1984 to 2023 Landsat 5, 7, 8 9
(30 m)

1984 to 2020 (MESMA)
2021 to 2023 (OBIA)

Create long-term kelp
time series

Eight
Nereocystis sites

2016 to 2023 Planetscope
(3 m)

OBIA Create a short-term kelp
time series

Macrocystis site Aug 1, 2017 Worldview
(1.84 m)

Not classified, a 30 m grid was overlaid and all grids with >50% kelp
were visually identified as kelp

Validation of long-term kelp
time series

Six
Nereocystis sites

Aug 4, 2023, Aug
6, 2023

Worldview,
GeoEye (0.46 m)

Not classified, a 10 m grid was overlaid and all grids with >50% kelp
were visually identified as kelp

Validation of short-term kelp
time series
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the non-autocorrelated variables. The assumptions of the linear

model were visually evaluated with histograms of the model

residuals, residuals’ quantile-quantile plots, plots of the fitted

values vs residuals, and statistically evaluated for the normality

assumption using Shapiro-Wilk tests (Shapiro and Wilk, 1965). A

plot of the residuals vs the observed site numbers was used to

identify patterns in the order of the data, which tests for the

assumption of the independence of observations, whereas a plot

of the models’ fitted vs residuals values was used to test for the

linearity and constant variance assumptions. All visualizations were

consistent with the assumptions required by the model, and the

result of the Shapiro-Wilk tests confirmed that the model residuals

were normal.

A similar comparison of kelp area change across climate periods

and linear model analysis of the effect of environmental conditions

were not conducted for the Nereocystis sites due to the reduced time

series. However, a descriptive characterization of the observed kelp

percent area change and the local environmental conditions during

and after the end of the Blob (2016 to 2023) was conducted. These

included noting down the mean local summer SST at each site,

identifying the hottest and coolest sites, as well as years of kelp loss.

2.3.3 Spatial patterns of kelp persistence
Persistent kelp areas within the maximum kelp area were

defined as areas (m2) where kelp was present for more than 50%

of the time-series length (>19 years of presence for the long-term

Macrocystis time series; >4 years for the short-term Nereocystis time

series). Our definition of a persistent area was adapted from the

“refugia” definition of Cavanaugh et al. (2023), who identified as

refugia areas of kelp that occurred in 50% of the years in a

Planetscope-derived time series (2016 to 2021 in their case). We

simply defined these as “persistent” areas rather than “refugia”, as

the study area did not experience environmental conditions

detrimental to kelps as the term “refugia” would imply (see

results). We identified the spatial distribution of kelp persistence

at each site using the ‘Count overlapping features’ tool in ArcGIS

Pro 3.0 (ESRI, Redlands, United States), which indicated where and

how many times the yearly kelp areas overlap, using the ‘Count

overlapping features’ tool in ArcGIS Pro 3.0 (ESRI, Redlands,

United States). Finally, the percent of the persistent kelp area
persistent   kelp   area
maximum   kelp   area

� �
was calculated for each site.
3 Results

3.1 Environmental conditions and their
differences among climate periods at local,
regional, and global scales

At the regional level, the mean spring SST ranged from 8.4°C to

11.1°C, and mean summer SST ranged from 9.6°C to 12.6°C

(Figure 3, SST anomalies in Supplementary Figure S1), with no

temporal trends in either regional spring or summer SST (modified

Mann-Kendall’s test: spring: Z-statistic = 0.187, p=0.0911; summer:

Z-statistic = 0.195, p=0.0785; Table 3). Based on the mean summer

and spring regional SST, the changepoints analysis (Supplementary
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Table S2) indicated three climate periods: Period 1 represents

generally warmer ocean temperatures from 1984 to 1998, Period

2 represents cooler temperatures from 1999 to 2013, and Period 3

represents the highest temperatures of the time series from 2014 to

2023 (Figure 3). Accordingly, mean spring and summer regional

SST were different across all periods (Figure 3, Table 3). For both

spring and summer, Period 1 (spring SST: 9.8 ± 0.41°C, summer

SST: 10.7 ± 0.31°C) had significantly warmer SST than Period 2

(spring SST: 9.2 ± 0.47°C, summer SST: 10.1 ± 0.41°C, Figure 3,

Table 3). Furthermore, Period 3 (spring SST: 10.5 ± 0.37°C, summer

SST: 11.6 ± 0.5°C, summer SST anomaly: 0.9 ± 0.53°C) had

significantly warmer SST than both Periods 1 and 2

(Figure 3, Table 3).

At the local scale, the Landsat-derived SST showed some

variability, with the Macrocystis site presenting warmer SST (11.5

± 0.96°C) (climatological summer mean ± standard deviation) than

the Nereocystis sites (10.1 ± 1.05°C). On average, the hottest

Nereocystis sites were ABL, ABE, and SLI (~10.3°C), and the

coolest Nereocystis site was BH (9.4 ± 0.72°C) (Figure 4A,

Supplementary Table S3). Across the three identified climate

periods, the mean local SST significantly increased for the

Macrocystis site and six Nereocystis sites (ABL, ABE, MIE, BH,

WI, PI) (Figure 4A, Table 3A), with ~1.4°C (Table 3A) higher SST

in Period 3 (Macrocystis site: 12.5 ± 0.42°C, Nereocystis sites: 10.6 ±

0.71°C) than in Period 1 (Macrocystis site: 10.3 ± 0.20°C,Nereocystis

sites: 9.2 ± 0.54°C). However, neither Periods 1 nor 3 had significant

differences with Period 2 regarding the mean local SST (Figure 4B,

Table 3A). For the other two Nereocystis sites (NR, SLI), local SST

measurements were not significantly different among the periods

(Figure 4B, Table 3A), although local SST peaked in 2004 in sites

NR and SLI, reaching mean summer temperatures of 14.2 ± 1.50°C

and 12.0 ± 0.31°C. respectively.

On the regional scale, 57 MHWs were identified between

January 1983 and August 2023. Among these, 27 were in

Category I, 23 in Category II, 6 in Category III, and 1 in Category

IV (Figure 5A). The most intense (Category IV) MHW occurred on

30 July 2020, lasting six days and reaching a maximum temperature

intensity of 15.4°C (a +4.7°C anomaly), with a total cumulative

intensity (calculated as the mean temperature anomaly of the

MHW multiplied by the number of heatwave days) of 18.2°C

days. The most cumulatively intense MHW occurred at the

beginning of 2016, starting on 20 January and lasting 98 days,

resulting in a cumulative total of 146.0°C days, and reaching a

maximum intensity of 10.8°C (a +2.2°C anomaly). Note that there

were several winter months with no SST data available, namely

December 2018 - January 2019, December 2019 - January 2020, and

November 2020 - Jan 2021 (see section 2.2.1), thus the lack of

MHWs detected during those periods may be attributed to this

reason. Furthermore, the pre-summer cumulative MHW intensity

may be underestimated as a result. The pre-summer MHW time

series did not display any temporal trends, but the summer MHW

time series exhibited a statistically significant increase (Table 3B).

Pre-summer MHW cumulative intensity was not significantly

different across periods. However, summer MHW cumulative

intensity was different across Periods 1 and 3, and 2 and 3, with

Period 3 representing the highest MHW intensity (Period 1: 1.2 ±
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54.32°C days, Period 2: 1.7 ± 6.21°C days, Period 3: 26.4 ± 106.84°C

days) (Supplementary Figure S2, Table 3B). Note that Period 3 had a

high standard deviation for cumulative summer MHW intensity

because most days did not have MHWs, but the MHWs that did

occur had high cumulative intensity (°C days).

On the global scale, Period 1 (1984 to 1998) generally showed

positive PDO (mean Z-score ± SD: 0.617± 0.855) and ONI (0.203 ±

1.13) values, reaching the highest PDO (2.09) and the second
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highest ONI (2.20) of the time series in 1997 (Figure 5B).

Interestingly, the lowest ONI (-1.84) in the time series was also

documented within Period 1 in 1988. Period 2 (1999 to 2023)

displayed mostly negative PDO (-0.425 ± 0.817) and ONI (-0.292 ±

1.13), although a positive PDO and ONI were documented from

2002 to 2007. When comparing differences in oscillations between

Periods 1 and 2, PDO was significantly more negative in Period 2

than in Period 1, whereas there were no significant differences in
FIGURE 3

(A) Mean regional spring SST, and (B) mean regional summer SST from 1984 to 2023. All data was derived from the Pine Island Lighthouse daily SST
climatology (1984 to 2023), with error bars representing the standard deviations. The vertical black lines depict the transitions between the
climate periods.
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TABLE 3 Mann-Kendall’s test results testing for significant increases, decreases, or lack thereof in environmental variables from 1984 to 2023, with
cells colored in grey, and Kruskal-Wallis and Dunn’s test results representing environmental differences between climate periods with cells colored in
white (P1 = Period 1, P2 = Period 2, P3 = Period 3) at A) local, B) regional, and C) global scales.

Testing for significant monotonic
trends in each variable

Testing for significant differences between climate periods
for each environmental variable

Variable Modified Mann-
Kendall’s Z-statistic (if
p-value is significant, +
= increasing trend, - =
decreasing trend)

Modified Mann-
Kendall’s p-value

Kruskal-
Wallis c2

Kruskal-
Wallis p-value

Dunn’s test

Pair Z statistic Adjusted p-
value
(Benjamini-
Hochberg
method)

A: Local SST

Malcolm Island
(Macrocystis site)

3.85 0.000121 9.18 0.0102 P1-P2 1.76 0.0974

P1-P3 3.02 0.00744

P2-P3 1.66 0.0974

NR 0.0528 0.958 0.875 0.646 N/A N/A N/A

ABL 2.96 0.00310 9.88 0.00716 P1-P2 1.97 0.0988

P1-P3 3.14 0.00503

P2-P3 1.51 0.132

ABE 2.36 0.0185 7.70 0.0213 P1-P2 1.04 0.298

P1-P3 2.68 0.022

P2-P3 1.92 0.109

MIE 2.66 0.00790 4.81 0.0902 NA NA NA

PI 2.06 0.0397 5.13 0.0770 NA NA NA

BH 3.48 0.000492 11.2 0.00362 P1-P2 1.68 0.0937

P1-P3 3.35 0.00240

P2-P3 1.68 0.0937

WI 3.75 0.000178 12.2 0.00228 P1-P2 2.19 0.0569

P1-P3 3.43 0.00181

P2-P3 1.08 0.280

SLI 1.96 0.0501 5.68 0.0584 P1-P2 0.16 0.349

P1-P3 2.26 0.0549

P2-P3 2.18 0.260

B: Regional

Regional spring SST 1.10 0.270 22.4 1.39×10-5 P1-P2 -2.58 1.51×10-2

P1-P3 2.43 1.51×10-2

P2-P3 4.68 8.59×10-6

Regional summer SST 1.76 0.315 26.4 1.88×10-6 P1-P2 -2.77 7.71×10-3

P1-P3 2.66 7.71×10-3

P2-P3 5.08 1.10×10-6

Cumulative pre-
summer MHW

0.394 0.693 4.59 0.101 NA NA NA

Cumulative
summer MHW

3.13 0.00173 15.90 0.000354 P1-P2 0.039 0.969

P1-P3 3.60 0.000931

P2-P3 3.60 0.000931

C: Global

ONI N/A N/A 2.03 0.363 N/A N/A N/A

PDO N/A N/A 8.03 0.0181 P1-P2 -2.57 0.0202

P1-P3 -1.93 0.106

P2-P3 0.38 0.703
F
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Bolded values represent statistical significance.
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ONI (Figure 5B, Table 3C). Period 3 (2014 to 2023) started with

positive ONI (0.180 ± 1.12) and PDO (-0.273 ± 1.09), with the

highest ONI of the time series (2.21) documented in 2015. However,

from 2020 onwards, both ONI and PDO shifted negative, with PDO
Frontiers in Marine Science 13127
reaching its lowest value of the time series (-1.91) in 2023, although

ONI became positive again in 2023 (1.47). Ultimately, there were no

significant differences in both ONI and PDO between Periods 1 and

3, and between Periods 2 and 3 (Table 3C).
FIGURE 4

(A) Scatterplot showing the mean local summer SST for the Macrocystis site (“Malcolm Island”) and each Nereocystis site (as denoted by the
abbreviated site names) from 1984 to 2023, with the error bars around each point representing the standard deviation for each year. The vertical
black lines in 1999 and 2014 represent the boundaries between climate periods. The modified Mann-Kendall’s Z-statistic and p-value are reported in
the top left corner for sites with significant monotonic trends. The green shaded areas of each site’s panel represent the length of the kelp time
series analyzed for each site. (B) The differences in mean local summer SST between each period. Sites with an asterisk (*) are sites with significant
differences in local SST across periods. Different letters above each boxplot denote significant pairwise differences.
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3.2 Long-term (1984 to 2023) and short-
term (2016 to 2023) kelp response to
environmental changes

The maximum kelp area at the Macrocystis site (1984 to 2023)

covered 4.84 million m2. Percent kelp area ranged from 24.0%

(absolute area: 1.15 million m2) to 71.0% (3.44 million m2), with a

mean of 50.0% (2.46 million m2) of the maximum kelp area.

Further, we found a statistically significant increase in kelp area

(Mann Kendall’s t=0.247, p=0.0300, Figure 6A) across all three

climate periods. Among the climate periods, we observed

statistically significant differences in kelp area between Periods 1

and 2 and between Periods 1 and 3, but not between Periods 2 and 3

(Figure 6A). Specifically, there was a slight increase in kelp area

from 43.9 ± 9.34% in Period 1 to 53.8 ± 11.5% in Period 2, which

remained high at 55.4 ± 10.4% in Period 3 (Figure 6B; Kruskal-

Wallis c2 = 7.56, p=0.0228; Dunn’s test: Period 1 vs Period 2: c2 =
2.35, p=0.0380; Period 1 vs Period 3, c2 = 2.35, p=0.0380, Period 2

vs Period 3, c2 = 0.348, p=0.727). Considering the kelp time series

in its entirety, without division between climate periods, the results

of the linear model showed no effects of 1-, 2-, or 3-year averages of

spring and summer SST, pre-summer and summer cumulative

MHW intensities, PDO, or ONI on kelp area, regardless of the

combination of predictor variables used (Supplementary Table S4).

For the short-term time series, the maximum kelp areas across

all Nereocystis sites ranged from 11,800 m2 (BH) to 214,000 m2

(MIE) (Figure 7). On a site level, mean percent kelp areas across all

surveyed years ranged from 19.0 ± 30.2% (4,010 ± 6,360 m2) at ABL

to 58.5 ± 13.3% at PI (111,000 ± 25,100 m2), with a total mean

percent kelp area across all sites of 43.1 ± 19.3% (Figure 7) Most

sites’ mean kelp areas exhibited parametric behavior, except ABL,

which had a left-skewed pattern caused by kelp loss in the years

2018, 2019, 2022, and 2023 (Figure 7). The eight Nereocystis sites

also displayed variable temporal trends in kelp areas from 2016 to

2023. Six Nereocystis sites displayed no temporal trends (ABL, MIE,

PI, BH, WI, SLI), one displayed a significantly decreasing trend

(NR, modified Mann-Kendall’s Z-statistic = -4.26, p=0.000203),

and one displayed a significantly increasing trend (ABE, modified

Mann Kendall’s Z-statistic = 2.85, p=0.00443, Figure 7).
3.3 Spatial patterns of kelp persistence

The spatial analysis indicated that theMacrocystis site had 77.0%

persistence, i.e., 77.0% of the maximum kelp area was present for

more than 19 years out of the 38-year time series (Figure 8). The

Macrocystis beds at the eastern part of theMacrocystis site were less

spatially persistent than the western part (Figure 8). Five Nereocystis

sites (NR, ABE, MIE, WI, SLI) had 20.6-33.8% persistence, i.e., area

that was present for more than 4 years out of the 8-year time series

(Figure 9). Sites PI and BH had larger proportions (53.1% and 53.6%

respectively) of persistent kelp area, and ABL had no persistent kelp

area (0.00% area). For both Macrocystis and Nereocystis sites, the
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persistent areas were mainly distributed in the center and inshore

areas of each kelp bed (Figures 8-9).
4 Discussion

We found that kelp was both spatially and temporally persistent

in the dynamic subregion of the Broughton Archipelago, with

increases in the area occupied by Macrocystis. Specifically, we

identified temporal trends in the kelp area and associated them

with the changing environmental conditions using a long-term kelp

change time series from 1984 to 2023 of the Macrocystis site and a

short-term kelp change time series from 2016 to 2023 of the

Nereocystis sites. We also identified spatial patterns of persistence

by spatially combined kelp areas for each site.
4.1 Long-term (1984 to 2023) and short-
term (2016 to 2023) kelp response to
environmental changes

Overall, the kelp area in the Broughton Archipelago was mostly

temporally persistent. Kelp percent area increased monotonically in

the Macrocystis site from 1984 to 2023, specifically increasing by

9.90% in Period 2 and staying high throughout Period 3. The

increase in kelp area at the Macrocystis site on the north shore of

Malcolm Island corroborates reports from community members

(SCFS, unpublished, 2023). This temporal increase indicated

persistence in Macrocystis area from 1984 to 2023, which may be

explained by the increase in local SST from ~10.0 to 13.0°C. This

potentially represents a move towards more ideal environmental

conditions for Macrocystis, which has an optimal thermal range

from 12.0 to 17.0°C (Lüning and Neushul, 1978), although this

range could vary among populations and life stages (e.g. spores,

gametophytes, or sporophytes) (Muth et al., 2019; Hollarsmith

et al., 2020; Le et al., 2022). For example, an increase from 9.5 to

12.9°C was experimentally associated with a ~5.00 mm increase in

Macrocystis gametophyte germ-tube length (Le et al., 2022), and a

10.0 to 14.0°C increase to be associated with a ~2% increase in the

relative growth rate of Macrocystis blades (Fernández et al., 2020).

The local SST increases in the study area always remained below the

upper thermal limits for Macrocystis, which lie around 18.0-25.0°C

(Hay, 1990; Le et al., 2022; Ladah and Zertuche-González, 2007).

On the contrary, regional and global environmental conditions

were not linked to significant changes in kelp area (based on the

linear model results, Supplementary Table S4). This is likely as

regional and global conditions occasionally diverged from the

conditions kelps were facing locally in the nearshore environment

(Brewer-Dalton et al., 2014; Lin and Bianucci, 2023). For example,

the colder SST in Period 2 was only observed in the regional SST

and inferred from the negative PDO, but not the local SST time

series, which increased continuously throughout all three climate

periods. Furthermore, occasional intense MHWs and higher local
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SST were observed during and after 2020, despite a shift to more

negative ONI and PDO during the same time. A similar disparity

was found between local SST and global climatic oscillations in

other parts of BC. For instance, local SST continuously increased

after 2020 in the Salish Sea, despite climatic oscillations

transitioning to negative phases (e.g. Amos et al., 2015; Mora-

Soto et al., 2024a), suggesting that the local SST increase in the

Broughton Archipelago may be linked to local oceanographic

conditions and variation in coastal geomorphology (Brewer-

Dalton et al., 2014; Lin and Bianucci, 2023). Despite mismatches

in environmental conditions of different scales during certain years

of the time series, generally speaking, Period 3 had higher local and

regional SST, a higher frequency and magnitude of MHWs, and

more positive PDO and ONI. Similar conditions observed in the

Strait of Georgia and Barkley Sound resulted in a subsequent

decrease in kelp area (Mora-Soto et al., 2024a; Starko et al, 2022).

However, in the dynamic subregion of the Broughton Archipelago,

both local and regional measurements of SST remained within
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Macrocystis’ optimal thermal range during Period 3, and

consequently, we did not observe decreases in the kelp area. This

reinforces the observation that local temperature gradients can

greatly influence kelp responses in the face of regional events

such as MHWs (Starko et al., 2024b). It is unknown whether the

climatic oscillations affected other environmental conditions not

investigated in this study (e.g. nutrient availability) (Whitney, 2015;

Bond et al., 2015), which may have impacted kelp physiology

(Hollarsmith et al., 2022). Regardless, climatic oscillations did not

directly relate to significant changes in the kelp area at the

Macrocystis site.

Aside from environmental changes, there may be biotic

conditions at play, such as a low abundance of sea urchins

(Eisaguirre et al., 2020). Although not investigated in this study,

Man et al. (in prep) found no sea urchins during a one-time

sampling effort during the summer of 2023 at the Macrocystis

site, suggesting that the absence or low abundance of sea urchins

may have been conducive to kelp persistence at theMacrocystis site.
FIGURE 5

Regional and global conditions across the three climatic periods identified (Period 1, Period 2, and Period 3). For both panels, the black lines
represent the transitions between climate periods. (A) MHWs and their associated duration and category level. The x-axis shows the date of each
MHW’s maximum intensity peak, and the y-axis shows the maximum intensity of each MHW. The size of each dot corresponds to the duration of
each MHW. The MHW category corresponds to the multiples of the seasonal difference between the climatological mean and the climatological
90th percentile. The color of each MHW corresponds to its category level, with a darker color representing a higher category. (B) Z-score of mean
spring and summer Pacific Decadal Oscillation (PDO) and Oceanic Niño Index (ONI) from 1984 to 2023.
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Continuous time-series data about other environmental and biotic

conditions could elucidate what specifically drove the increase in

Macrocystis area in the study area.

Our observations of Macrocystis persistence in cooler waters

corroborated patterns observed in cooler areas throughout the

Northeast Pacific coast. For instance, centennial increases in the

Macrocystis area were also observed in Southeast Alaska by

Hollarsmith et al. (2024), which the authors attributed to various

factors including temperature increases and the reintroduction of

the sea otter, a keystone predator. Persistence in Macrocystis area

was also observed in Cumshewa Inlet (Gendall et al., submitted),

Ella Beach, BC (Mora-Soto et al., 2024a), and the outer coast of

Washington (Pfister et al., 2018), where local summer SST increases

(~10.0 to 14.0°C) over the past few decades were similar to those

observed in the Broughton Archipelago and did not reach the upper

thermal limits of Macrocystis. Similarly, these cooler, northern

regions (BC and Washington) displayed Macrocystis persistence

in response to the Blob of 2016. Conversely, the warmer southern
Frontiers in Marine Science 16130
regions (Central to Southern California, and Baja California Norte

and Sur), which reached summer temperatures of ~17.0-24.0°C,

experienced areal decreases to ~2-57% of their pre-Blob baseline

(Mora-Soto et al., 2024b; Pfister et al., 2018; Cavanaugh et al., 2019;

Bell et al., 2023).

Kelp persisted in most of the Nereocystis sites from 2016 to

2023, although some sites showed different trends in the kelp area.

Specifically, ABL did not display a significant temporal trend, but

exhibited kelp losses in four of the eight studied years, corroborating

community anecdotes of kelp decrease in the area (SCFS,

unpublished, 2023). Similarly, kelp also declined significantly at

NR, confirming community reports of kelp decrease near Alder Bay

and Green Island, which comprise the eastern areas of NR (Figure 9;

SCFS, unpublished, 2023). An examination of Figure 9 revealed that

the eastern areas of NR were indeed less spatially persistent. The

observed increase in kelp area at ABE also reinforced local reports

of a recent increase in kelp area after past decreases (SCFS,

unpublished, 2023). Some of our results, however, contrasted with
FIGURE 6

Kelp area changes in the Macrocystis site (Malcolm Island). (A) The temporal changes in the yearly kelp area from 1984 to 2023. Vertical lines in A)
indicate the boundaries between periods. The Z-statistic represents the direction of monotonic change as determined by the modified Mann-
Kendall’s test, with negative values representing negative trends and positive value representing positive trends. The p represents the p-value. There
is no data available for 1992. (B) Boxplots showing the differences in the median kelp area and their associated interquartile ranges among climate
periods. Identical letters above the boxes represent no significant differences in median kelp area between the pair of periods as determined by the
Kruskal-Wallis test, whereas different letters above the boxes represent significant differences in median kelp area between the respective periods.
frontiersin.org

https://doi.org/10.3389/fmars.2025.1537498
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Man et al. 10.3389/fmars.2025.1537498
some other community reports of kelp trends: e.g. a kelp increase at

MIE after urchin harvesting began in that area, although the start

date of urchin harvesting was not reported (Mountain, pers comm,

2023). Such discrepancies between the local community members’

observations and our results may be linked to different study

periods or time scales since they did not report the years where

the changes in the kelp area were observed (SCFS, unpublished,

2023; Mountain, pers comm, 2023). Thus, it is possible that the

changes identified by the local community were observed outside of

the timeframe covered in this study between 2016 to 2023.

Furthermore, short-term studies (<20 years) are less likely than

long-term studies (>20 years) to capture patterns of kelp decrease

due to kelp’s high interannual variability and environmental

conditions’ multi-year or decadal dynamics (Wernberg et al.,

2019). Therefore, it is also possible that our short-term time series

was simply not long enough to detect the changes reported by local
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communities, or that Nereocystis’ high interannual variability in

canopy-forming area may have skewed community observations

based on when the observations were made.

The observed overall kelp persistence in the Nereocystis sites

may be partially explained by the local SST (~9.0-12.0°C), similar to

the patterns observed in theMacrocystis site, Local SST increased at

some of the Nereocystis sites but mostly remained below the upper

thermal limits of Nereocystis (around 12.0-16.0°C for sporophytes,

and 16.0-18.0°C for gametophytes, depending on the population)

(Pontier et al., 2024; Korabik et al., 2023; Weigel et al., 2023).

However, local SST may not be the only variable affecting kelp area

changes, as kelp area only decreased at ABL and NR, despite local

SST not increasing beyond 12.0°C between 2016 and 2023 at both

sites. While examining the spatial patterns of kelp loss, we noted

that the sites ABL and NR were close to each other and near the

mouth of the Nimpkish River, which brings pulses of warmer water
FIGURE 7

(A) Changes in percent kelp area in the 8 Nereocystis sites from 2016 to 2023. Sites with “N” under the site name are sites with no significant
temporal trends, the site with “D” had a significantly decreasing trend, and the site with “I” had a significantly increasing trend, as per the modified
Mann-Kendall test results. The significant test result is shown for the associated site. (B) Boxplot showing median kelp area and their associated
interquartile ranges from 2016 to 2023 at each site. The mean percent kelp area for the Macrocystis site (“Malcolm Island”) from 2016 to 2023 is also
included for reference, although it is not part of the short-term time series.
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above 20.0°C into the nearshore environment. This suggests the

possibility that warmer freshwater pulses not captured from

satellite-derived local SST and long-term regional SST averages

may have affected kelp abundance (Figure 1, Barbosa & Man,

personal communication, March 7, 2023). ABE, a site where the

kelp area increased, did not have significantly different

environmental conditions than the other six sites, which

displayed no significant temporal change. Thus, the different

temporal kelp trends in ABE, NR, and ABL may also be

attributed to other environmental and/or biotic factors not

researched in this study. One potent ia l ly important

environmental factor not addressed here may be seasonal
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sediment outflows from the Nimpkish River, which may have

increased the turbidity of the water, decreasing light availability at

NR and ABL for kelps and affecting their growth. The phenomenon

of river outflows limiting kelp growth has been observed in

Southern Chilean Patagonia (Huovinen et al., 2020), however,

further study is needed to test this hypothesis for these two sites.

A potentially important biotic factor may be the understory kelps

which can outcompete the more ruderal Nereocystis (Dayton et al.,

1984; Springer et al., 2010), since a one-time underwater field

inspection conducted by Man et al. (in prep) uncovered high

understory kelp abundance at NR and ABL, which cannot easily

be detected from satellite imagery (Cavanaugh et al., 2021). Similar
FIGURE 8

Maps showing the spatial patterns of kelp persistence at the Macrocystis site: the north shore of Malcolm Island. (A) shows the number of years of
kelp presence out of the 39 years investigated, which was used to determine the areas of kelp persistence. The yellow-red scale indicates the
number of years of kelp presence. (B) shows the persistent area in pink and the maximum kelp area in green. The total percentage area of the
maximum kelp area that is persistent is indicated in (B) For both panels, the frame around the kelp beds shows the area considered for the analysis.
Refer to Figure 1 for the location of the Macrocystis site.
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to the Macrocystis site, regional and global environmental

conditions did not appear to affect the overall kelp persistence in

the Nereocystis sites, likely because these conditions differed from

local SST conditions.

Kelp area in the Nereocystis sites remained mostly persistent

during and after the Blob (Figure 7). It is important to note that the

time series for the Nereocystis sites started at the end of the Blob

(2016), lacking a pre-Blob baseline for theNereocystis sites. Therefore,

our results could mean that Nereocystis was either not affected by the

Blob or was affected by the Blob and did not recover to possible

higher pre-Blob abundances. This echoes findings of Nereocystis

persistence after the Blob in Oregon (Hamilton et al., 2020) and in

the southern Salish Sea (Mora-Soto et al., 2024a, 2024b), where SST

remained cooler (~12.0-15.0°C). On the other hand, this contrasts

with findings of Nereocystis trends in Northern California

(McPherson et al., 2021; Cavanaugh et al., 2023; Bell et al., 2023),

Southern Puget Sound (Berry et al., 2021), and the northern and

central Salish Sea (Mora-Soto et al., 2024b; Starko et al., 2024a), where

Nereocystis area declined after the Blob and showed limited recovery.

The reasons for these kelp declines vary from higher SST (summer
Frontiers in Marine Science 19133
temperatures: ~13.0 to 20.0°C) to an increase in sea urchins after the

loss of a keystone predator (sunflower sea stars) after the Blob

(Hamilton et al., 2021), neither of which have been documented in

the Broughton Archipelago.

Overall, we identified primarily persistent kelp forests,

including Macrocystis and Nereocystis kelp areas, in the dynamic

subregion of the Broughton Archipelago. As the documented SST

trends remained within the favorable range for kelps throughout

both time series, we cannot conclude if the kelps would be resilient

to further SST increases (up to 20.0°C) in the study area, such as

those observed SST increases in the northern Salish Sea, Southern

Puget Sound, the sheltered parts of Barkley Sound, and in

California. Regardless, the kelp forests have likely persisted for a

long time in the study area, as all but two sites (BH and WI) were

historically documented to have kelp present in the 1850s to 1950s

based on records in the British Admiralty nautical charts (Figure 10;

Costa et al., 2020). Note that this historical information only serves

as a record of kelp presence, not kelp absence (Costa et al., 2020),

thus, the lack of historical kelp documentation at BH does not

necessarily mean that kelp was absent from the 1850s to the 1950s.
FIGURE 9

Maps showing the spatial patterns of kelp persistence at each Nereocystis site. (A) shows the number of years of kelp presence out of the eight years
investigated, when higher resolution satellite images were available, which was used to determine the areas of kelp persistence. The yellow-red
scale indicates the number of years of kelp presence. (B) shows the persistent area in pink and the maximum kelp area in green. The total
percentage area of the maximum kelp area that is persistent is indicated in (B) Refer to Figure 1 for the location of each Nereocystis site.
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The likely centennial persistence of kelp suggests that the dynamic

subregion of the Broughton Archipelago represents a climate refuge

for kelp. Similar patterns of persistence can be expected and have

been observed in other similar temperature regimes such as the

more exposed areas of the Strait of Juan de Fuca (Mora-Soto et al.,

2024a; Pfister et al., 2018) and Oregon (Hamilton et al., 2020), in the

absence of other stressors such as high water turbidity and sea

urchin abundance (Huovinen et al., 2020; Eisaguirre et al., 2020). It

is important to consider that this observation of persistence in the

dynamic subregion may not apply to other parts of the Broughton

Archipelago, such as the fjord subregion, which have smaller,

fringing kelp beds that are subject to significantly different

environmental conditions (Man et al., in prep). Indeed, local

community members have anecdotally noted decreases in kelp

distribution and area in the fjord subregion, including near now-

decommissioned open-net salmon farms (Mountain, pers comm,

2023). Future research can investigate kelp area changes in the fjord

subregion using very-high-resolution satellite imagery (e.g.

Worldview-2 at 0.46 m spatial resolution), which may be capable

of accurately detecting the smaller, fringing kelp beds.
4.2 Spatial patterns of kelp persistence

Kelp beds of both species had similar spatial patterns of

persistence, with the center and inshore areas of kelp beds being

more persistent than the edges. This reinforces spatial patterns

found in Macrocystis forests in Southern California (Young et al.,

2016), and Nereocystis forests in Northern California (Arafeh-

Dalmau et al., 2023), Oregon (Hamilton et al., 2020; Arafeh-

Dalmau et al., 2023), and the outer coast of Washington (Arafeh-

Dalmau et al., 2023). The spatial pattern of persistence may be

associated with local variations in environmental and biotic factors,

including current conditions, kelp dispersal, and sea urchin

abundance (Jackson and Winant, 1983; Graham, 2003; Reeves

et al., 2022). For instance, water current velocities are higher at

the edges of the kelp bed than on the inside due to kelp plants’

ability to buffer water currents (Jackson and Winant, 1983).

Therefore, physical disturbances to kelps are more prone to

happen at the kelp bed edges (Bekkby et al., 2019), potentially

affecting its spatial persistence (e.g. Young et al., 2016). Currents

may also play a role in kelp spore dispersal, with currents typically

traveling further away at the kelp bed edge than in the interior,

carrying zoospores away from the bed (Graham, 2003). In contrast,

in the kelp forest interior, the drag from the high density of kelp

sporophytes modifies current flow to primarily oscillate within the

kelp bed, maintaining high levels of spore supply (Graham, 2003),

and potentially contributing to the higher spatial persistence in the

kelp bed interior. Biotic factors, such as increased urchin grazing at

the edges of a kelp bed compared to the inside, may also cause lower

kelp persistence at the edges (Reeves et al., 2022). However, it is

unlikely that this is the situation at most of our study sites, as only
1 1 h t t p s : / / b c m c a . c a / d a t a fi l e s /

individualfiles/bcmca_eco_vascplants_eelgrass_bioband_atlas.pdf

Frontiers in Marine Science 20134
some were documented to have abundant urchins (Man et al.,

in prep).

Beyond the potential influence of environmental and biotic

drivers on the spatial patterns of persistence, the variable

environmental conditions during the satellite imagery acquisition

could have also affected the observed kelp area. Potential

environmental conditions affecting the observed kelp area in the

satellite images include the tidal height, which can submerge the

edges of the kelp bed (short-term dataset tidal height: 0.716-2.50 m),

and the currents that move kelps in different directions (Timmer

et al., 2024). Timmer et al. (2024) found that kelp bed area can

decrease by an average of 22.5% around the edges of the kelp bed

per meter of tidal increase during low current speeds (<0.100 m/s)

and 35.5% at high current speeds (>10.0 m/s). However, that study

was conducted using drone imagery, thus the specific impacts of a

tidal height increase on kelp bed edge submersion as detected from

satellite imagery may slightly differ due to the difference in spatial

resolution. We have reduced the influence of tidal height on

detected kelp area by 1) aggregating images acquired under the

different tidal heights for the long-term dataset and 2) testing and

confirming with a linear mixed model the lack of a significant effect

of tidal height on kelp area for the short-term dataset. No

information on current speeds during the time of satellite

imagery acquisition was available, however, according to the

regional model by Foreman et al. (2009), tidal current speeds are

generally high (~0.390 m/s) at the Nereocystis sites, thus it is

possible that some kelp was submerged by the tidal currents.

Nonetheless, the non-persistent areas in the short-term time

series were all larger than 35.5% of the maximum kelp areas, thus

it is unlikely that the spatial pattern of persistence can be entirely

attributed to tidal height and tidal current speeds.

The proportion of persistent kelp area varied within the

Macrocystis site. A visual assessment of the Macrocystis site

showed that the western parts have more persistent kelp areas,

whereas the eastern part had a smaller percentage of persistent kelp

areas. Fieldwork conducted for Man et al. (in prep) and historical

data from the BC Shorezone Mapping System11 revealed submerged

eelgrass beds interspersed between the Macrocystis at the eastern

end of the north shore and homogenous Macrocystis patches at the

western end. Thus, interspecific competition between Macrocystis

and eelgrass may lead to smaller areas of persistence, a phenomenon

that has been documented between other seaweed and seagrass

species (Alexandre et al., 2017).

The kelp beds in the Nereocystis sites generally had lower

proportions of spatially persistent area than in the Macrocystis

site. ABL, the only Nereocystis site with years of kelp loss, was not

spatially persistent, even in the center of its maximum kelp area.

NR, the Nereocystis site with significantly decreasing kelp area, had

22.8% persistent area, with no persistent areas in the eastern part of

the site. The sites that displayed no significant temporal changes,

i.e., temporal persistence, had 20.6-53.6% spatially persistent areas;

and the site where kelp was increasing (ABE) had a 33.8% spatially

persistent area. It is important to note that for the Nereocystis sites,

the threshold for kelp persistence was only 4 years out of the 8-year

time series, much lower than that of the longer time series (19 out of

38 years), which may have led to the different percentages of
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persistent area between the long-term and short-term datasets.

However, the lower persistence levels in the Nereocystis sites, as

compared to the Macrocystis sites, may also be partially explained

by Nereocystis’ ruderal quality and annual life history, which leads

to higher interannual variability than other perennial kelp species,

such as Macrocystis (Dayton et al., 1984; Springer et al., 2010). The

phenomenon of Nereocystis having higher spatial variability than

Macrocystis was also observed on the Washington coast (Pfister

et al., 2018), which the study authors also attributed to Nereocystis’

ruderal nature.
5 Conclusion

This study examined kelp forest responses to environmental

changes in the dynamic subregion of the Broughton Archipelago

across different spatial and temporal scales. Temporally, we

documented overall kelp persistence in the dynamic subregion of

the Broughton Archipelago, including areal increases from 1984 to

2023 in the Macrocystis site and primarily no significant change in
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kelp area at Nereocystis sites from 2016 to 2023. Increased local SST

into the thermal optimum of Macrocystis was associated with

increases in the Macrocystis area, whereas regional SST, MHWs,

and climatic oscillations did not affect it. The Nereocystis area did

not appear to be affected by environmental conditions at local,

regional, and global scales, likely as temperatures remained within

its thermal optimum. Spatially, we found that most sites had

spatially persistent kelp, and areas in the center of a kelp bed

were more likely to be persistent than the edges. The Macrocystis

site had more spatially persistent areas than the Nereocystis sites.

In a broader context, our findings add to the understanding of

kelp forest trends and patterns of persistence in the face of

environmental changes in BC, the Northeast Pacific Ocean, and

other temperate regions globally. The patterns observed in the

dynamic subregion of the Broughton Archipelago reinforce

findings that regional events such as MHWs may not negatively

impact kelp populations if local conditions are favorable.

Ultimately, by filling in the geographic gaps of kelp change, this

study can inform marine spatial planning efforts for kelp

conservation, management, and restoration.
FIGURE 10

Map showing the location of historic kelp forests (1850s to 1950s) as documented in the British Admiralty nautical charts (red) and the maximum
kelp area as derived from ‘present-day’ (Macrocystis site: aggregate from 1984 to 2023, 8 Nereocystis sites: aggregate from 2016 to 2023) satellite
imagery (green). Note that the historic kelp polygons are only evidence of kelp presence, not kelp absence, and their shapes and sizes may not be
related to the size of the actual kelp beds present during that time (Costa et al., 2020). Refer to Figure 1 for the location of each Macrocystis and
Nereocystis site.
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From archives to satellites:
uncovering loss and resilience in
the kelp forests of Haida Gwaii
Lianna Gendall 1,2*, Margot Hessing-Lewis3, Alena Wachmann1,
Sarah Schroeder1, Luba Reshitnyk3, Stuart Crawford4,
Lynn Chi Lee5, Niisii Guujaaw4 and Maycira Costa1

1Spectral Lab, Geography, University of Victoria, Victoria, BC, Canada, 2The Oceans Institute,
University of Western Australia, Crawley, WA, Australia, 3Hakai Institute, Campbell River, BC, Canada,
4Marine Planning Program, Council of the Haida Nation, Skidegate, BC, Canada, 5Gwaii Haanas
National Park Reserve, National Marine Conservation Area Reserve, and Haida Heritage Site,
Skidegate, BC, Canada
Coastal foundation species such as kelps, corals, and seagrasses play vital roles in

supporting marine biodiversity and ecosystem services globally, but are

increasingly threatened by climate change. In particular, kelp forests are highly

dynamic ecosystems experiencing natural fluctuations across seasons and

climate cycles, e.g., El Niño Southern Oscillation, Pacific Decadal Oscillation.

As climate change increases variability in these cycles and extreme events such

as marine heatwaves become more frequent, long term data are essential to

understand deviations from the norm and to better estimate trends of change.

This study uses a century-long dataset to examine kelp forest responses to

regional drivers in Haida Gwaii, British Columbia, by combining remote sensing

data from 1973-2021 with a snapshot of kelp distribution derived from historical

records from 1867-1945. We reveal complex patterns of change, with kelp losses

and resilience varying at different spatial scales. Kelp forests that had likely

persisted for over a century exhibited an overall declining trend of 5 ± 2% per

decade starting in the 1970s. Throughout the time series kelp area was driven by

multi-year impacts of the Pacific Decadal Oscillation, El Nino Southern

Oscillation, sea surface temperature anomalies and marine heatwaves, such as

the 1998 El Niño and the 2014-2016 marine heatwave known as the ‘Blob’. In the

warmest areas, kelp forests completely disappeared during the 1977 Pacific

Decadal Oscillation shift. Cooler areas showed greater resilience, buffering the

loss at the region wide scale, highlighting the importance of local gradients in

understanding areas vulnerable to climate change. Lastly, local in situ surveys

showed a lack of urchin barrens, and the presence of turf algae in the study

region, further supporting the hypothesis that temperature, not herbivory, drove

kelp forest loss in this region.
KEYWORDS

kelp forest canopy, El Niño, marine heatwave, resilience, persistence, scale-dependent
responses, sea surface temperature, Pacific Decadal Oscillation (PDO)
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Introduction

Coastal ecosystems, such as kelp forests, mangroves, and seagrass

meadows, play pivotal roles in supporting global biodiversity by

providing habitat, sequestering carbon, and delivering ecosystem

goods and services (Wernberg et al., 2019; Cooley et al., 2022).

However, the resilience of these ecosystems are threatened by climate

change impacts (Krumhansl et al., 2016; Filbee-Dexter and Wernberg,

2018; Wernberg et al., 2019). Among these ecosystems, kelp forests,

which cover nearly a third of the world's coastlines (Jayathilake and

Costello, 2021), stand out as some of the planet's most productive

ecosystems (Pessarrodona et al., 2022) but, despite their global

significance, are the second most vulnerable coastal ecosystem to

climate change after coral reefs (Cooley et al., 2022).

Climate change poses significant threats to kelp forests through

both direct impacts of temperature and indirect effects primarily

driven by altered species interactions (Wernberg et al., 2019). Direct

impacts include rising sea surface temperatures (SST), storms and

marine heatwaves (MHWs)—prolonged periods of anomalously

warm water (Hobday et al., 2018). Increases in SST can reduce

survival, growth and reproduction through physiological stress,

while MHWs can cause sudden mortality by exceeding local

temperature thesholds, even in populations far from range edges

(Druehl, 1978; Arafeh-Dalmau et al., 2019; Rogers-Bennett and

Catton, 2019; McPherson et al., 2021; Filbee-Dexter et al., 2022;

Starko et al., 2022, 2024).

These temperature-driven effects manifest differently across

geographic regions. At warm range edges, rising temperatures can

drive kelp forest tropicalization either directly through temperature

stress (Wernberg, 2021) or indirectly through the poleward

expansion of tropical grazers (Vergés et al., 2016). In more

temperate waters, the impacts of extreme events like MHWs and

storms vary depending on local conditions (e.g., Mora-Soto et al.,

2024a; Mora-Soto et al., 2024b; Starko et al., 2024). While storms

can cause dislodgement through increasing wave height (Dayton

and Tegner, 1984), waves may sometimes mitigate MHW impacts

by increased mixing or reducing grazing (Hamilton et al., 2020;

Starko et al., 2022).With the intensification of the El Niño cycle,

MHWs and poor nutrient conditions are predicted to increase with

the potential for the entire ocean to enter a permanent MHW state

by 2100 (RCP 8.5 scenario; Oliver et al., 2019) likely having severe

consequences for kelp forest across the world.

As a result of climate change, kelp forest distributions are already

undergoing rapid transformations with significant differences in the

scale and direction of change across the globe (Krumhansl et al., 2016).

As predicted, these changes have led to significant kelp forest losses in

some regions. In Western Australia, for example, approximately

100,000 ha of Ecklonia radiata forests were lost from the warm edge

of its distribution during the 2011 marine heatwave (Wernberg, 2021),

and in Southern Norway, approximately 780,000 ha of Saccharina

latissima forests transitioned to turf reefs from increased warming and

eutrophication (Filbee-Dexter et al., 2022). Alternatively, some places

have shown stability despite climate change, like Southern Chile and

the Falkland Islands, where stable SSTs maintain persistentMacrocystis

pyrifera forests (Mora-Soto et al., 2021). In a few locations, kelp forests

are even expanding, like South Africa's Ecklonia maxima forests
Frontiers in Marine Science 02140
(Bolton et al., 2012) or where sea ice has disappeared in the

Canadian Arctic (Filbee-Dexter et al., 2019). These diverse patterns

of change highlight the challenge of deciphering relationships between

kelp forests and environmental drivers in a time of rapid global change.

Along the west coast of North America, kelps form large floating

canopies that experience diverse environmental conditions, leading to

complex patterns of change similar to global trends (Krumhansl et al.,

2016). The overharvesting and extirpation of sea otters, key predators

of herbivorous sea urchins, by the late 1800s, caused grazing-induced

losses of kelp forests across North America (Watson and Estes, 2011).

However, sea otter reintroductions along the northwest coast of

Vancouver Island (Watson and Estes, 2011), and the expansion of

remnant populations in central California (Nicholson et al., 2024),

have supported kelp forest recovery in a small portion of sea otters’

historical range. More recently, an unprecedented mass of warm

water formed in the northeastern Pacific in 2014, compounded by a

strong El Niño in 2015-2016, leading to the large-scale MHW event

known as ‘The Blob’ (Di Lorenzo and Mantua, 2016). This led to

severe kelp forest declines in Baja California (Arafeh-Dalmau et al.,

2019) and the transition of kelp forests to urchin barrens in Northern

California, exacerbated by the seastar wasting disease epidemic,

where the loss of the seastar Pycnopodia helianthoides led to an

increase in urchin herbivory (Rogers-Bennett and Catton, 2019).

Conversely, during the same 2014-2016 ‘Blob’ MHW, kelp forests

remained stable in Southern California and Oregon (Reed et al., 2016;

Hamilton et al., 2020). In British Columbia (BC), Canada, research on

kelp forests trends remains sparse, with most studies relying on

localized in situ surveys or short time series (Sutherland et al., 2008;

Watson and Estes, 2011; Schroeder et al., 2019; Starko et al., 2022,

2024). Notably, only a few studies include continuous time series

exceeding five years (Mora-Soto et al., 2024a, 2024b; Starko et al.,

2024). This limited scope leaves significant knowledge gaps in

understanding the complex patterns of change along most of BC's

intricate coastline, highlighting the need for longer series to

disentangle natural variability from long-term trends.

In this study, we investigate environmental heterogeneity and

geographic scale within a region of BC's complex coastline to

understand the variability in kelp forest responses to regional climate

drivers, such as the Pacific Decadal Oscillation (PDO), El Niño

Southern Oscillation (ENSO), North Pacific Gyre Oscillation

(NPGO), SST anomalies, and MHW metrics. To achieve this, we

compiled a long-term dataset of floating kelp forest canopy area from

the Cumshewa Inlet and Gray Bay region (Figure 1), located within the

Haida Gwaii archipelago, Canada, where local indigenous communities

have observed recent declines (HMTK Participants et al., 2011; MaPP,

2021). Specifically, we assessed long-term changes in kelp forest

distribution by comparing historical data (1867-1945) with satellite

imagery (1973 to 2021). Using the satellite imagery time series (1973 to

2021; Table 1), we then quantified kelp forest trends and environmental

drivers of change at regional (800 km²), subregional (five distinct

areas), and local (1 km segments) scales. Based on the observed

increases in climate disturbances in this region, we hypothesized that

greater environmental heterogeneity at the regional scale would confer

higher resilience. Specifically, we expected less drastic declines and

more recovery after climatic events, like El Niño and MHW events, at

the regional scale. In contrast, we expected more variable responses at
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the local and sub-regional scales, where outcomes would likely depend

on each area’s position along local environmental gradients, such as

SST, fetch, wind and tidal current.
Methods

Study region

Haida Gwaii is a remote archipelago located off Canada's

mainland Pacific coast (Figure 1) and the recognized Aboriginal

title lands of the Haida Nation (Haida Nation and Canada, 2024a,

2024b). The archipelago is characterized by cool, nutrient-rich

marine environments which support extensive Nereocystis

luetkeana and Macrocystis pyrifera (Lindstrom, 2023;syn.

Macrocystis tenuifolia) kelp forests (HMTK Participants et al.,

2011; Lee et al., 2021). The boundaries of the study region were

defined to include the Hlk̲ inul ChiiG̲as.sgii SG̲aagiidaay Protection
Management Zone designated in the Haida Gwaii Marine Plan

(MaPP, 2015) to protect an extensive kelp forest. Our study region

of 800 km² on the northeast coast of Moresby Island (Figure 1)

spans a sea surface temperature gradient of ~3°C and a strong

exposure (fetch, wind and tidal current) gradient, allowing us to

represent a wide range of conditions while minimizing the impact

of confounding variables when comparing across vast distances. Sea

otters were extirpated from Haida Gwaii during the maritime fur
Frontiers in Marine Science 03141
trade (1785-1840) and have not yet returned (Lee et al., 2021). This

region is characterized by dense, large Macrocystis forests

throughout (Figure 1c), with smaller dense patches of Nereocystis

forests around Cumshewa Head (Figure 1a). These kelp forests are

detectable from medium- to high-resolution satellites allowing us to

monitor kelp forest change back to the 1970s (Gendall et al., 2023).

Haida people note the importance of the Cumshewa and Flagstaff

areas within the study region as crucial ecological and cultural areas

for Macrocystis harvest for the herring-roe-on-kelp fishery (in

Haida: k’aaw), however, have observed kelp declines in the early

2000s (HMTK Participants et al., 2011; MaPP, 2021) highlighting

the need for increased monitoring and management (MaPP, 2015).

Kelp canopy area time series

The time series comprises two components: (i) a historical

snapshot of century-old kelp presence recorded in British

Admiralty charts, and (ii) kelp canopy area derived from satellite

imagery collected from 1973 to 2021. The British Admiralty charts

data were created between 1867 and 1945 (hereafter historical kelp;

Costa et al., 2020). Charts with scales ranging from 1:6,080 to

1:500,000 were scanned, georeferenced, and manually digitized to

capture hand-drawn kelp features. In cases where overlapping kelp

features were present on multiple charts, in the same region, the

highest-resolution charts were prioritized. Each kelp feature was

assigned a reliability category based on the depth of the seafloor
FIGURE 1

(a) Map of the study region where the maximum kelp area across the complete time series (1973-2021) is shown in gray. (b) Map of the Haida Gwaii
archipelago and study region shown in red in relation to the mainland coast of British Columbia and Alaska, showing bathymetry in meters (m) below chart
datum and the location of the Bonilla Island Lighthouse, the location of the in situ SST data. (c) Image showing an example of the size and density of giant
kelp (Macrocystis) forests found within the study region in relation to a 10 m research vessel.
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below the feature, with all features within the study region classified

as 'Very High' reliability due to their occurrence in depths shallower

than 40 m. These charts, originally designed to map potential

navigational risks for mariners, provide only a snapshot of kelp

presence and should not be used to infer absences, as not all kelp

forests may have been mapped. As such, the historical kelp

distribution (Costa et al., 2020) was visually compared with the

kelp distribution derived from the satellite imagery time series and

was not included in any statistical analyses.
Frontiers in Marine Science 04142
To construct a satellite imagery time series (1973-2021) of floating

kelp forest canopy area (hereafter kelp area), we adopted the

methodological framework outlined in Gendall et al. (2023). This

framework includes: 1) imagery compilation and assessment, 2)

imagery preprocessing, 3) classification, and 4) validation (see

Supplementary Methods for detailed description of each step). To

collect and assess the imagery, we compiled a dataset of archived

remote sensing imagery from 1973 to 2021, with resolutions ranging

from high (0.5 m) to medium (60 m; Table 1). Images were selected
TABLE 1 Summary of medium- to high resolution archived satellite imagery used to build the time series of kelp canopy area where the resolution
refers to the spatial resolution of the multispectral imagery, inputs refer to band and band indices (NDVI: Normalized Difference Vegetation Index,
GNDVI: NDVI with green instead of red, RE: red-edge, NIR: near-infrared) used in the object-based image classification and global accuracy refers to
the measure of global accuracy attained in the validation of the classification.

Sensor Resolution Years Inputs Source Global Accuracy

Landsat 1-3 60 m
resampled
from
80 m

1973-74
1976-77

NDVI
Green
Red
NIR

Freely Available from United States Geological Survey (USGS) –

Landsat 4-5 30 m 1982
1984-86
1988-92

NDVI
Green
Red
NIR

Freely Available from United States Geological Survey (USGS) 89%

Landsat 7 30 m 2001-02 NDVI
Green
Red
NIR

Freely Available from United States Geological Survey (USGS) –

Spot 2-4 20 m 2006
2008
2011

NDVI
Green
Red
NIR

Available to researchers through the Centre national d'études
spatiales (CNES)

–

Spot 5-7 10 m 2005-06
2009
2016

NDVI
Green
Red
NIR

SPOT 7 imagery was purchase from Apollo Imaging Corp. 93%

Geoeye-1 1.84 m 2017 G-NDVI
Green
Red
NIR

Private data sharing agreement 89%

Quickbird-2 2.62 m 2008
2013

GNDVI
Green
Red
NIR

Private data sharing agreement 92%

Worldview-2 1.84 m 2013 RE/Yellow
Green
Red
NIR

Private data sharing agreement 91%

Rapideye 5 m 2010-12
2014-15

RE/Green
Green
Red
RedEdge
NIR

Available to researchers through Planet Labs Inc 88%

Planetscope 3.7 m 2017-
2021

NIR/
Green
Green
Red
NIR

Available to researchers through Planet Labs Inc 94%

Aerial
Imagery

0.5 m 2007 Red/Green
Green
Blue

Private data sharing agreement 88%
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based on criteria (Supplementary Table S1, see Supplementary

Methods) controlling for cloud cover, tidal conditions

(Supplementary Figure S1), haze, waves, glint, and acquisition month

(Schroeder et al., 2019; Cavanaugh et al., 2021; Gendall et al., 2023).

The final image dataset consisted of 52 suitable images spanning 48

years. Imagery preprocessing included geometric corrections,

atmospheric corrections, masking of land, deepwater and soft

substrate (Gendall et al., 2023). Steep sloping bathymetry result in a

narrow band of depths that are habitable to kelp before becoming too

deep, limiting the extent of kelp forests to thin, fringing strips close to

shore making detection difficult from medium-resolution satellites

(Gendall et al., 2023). To mitigate uncertainties related to mapping

small kelp forest canopies at varying resolutions, we excluded these

areas of steep sloping bathymetry, exceeding 11.4%, from the analysis

(Gendall et al., 2023). However, these steep sloping nearshore areas that

were removed only accounted for 0.01% of the overall kelp area in the

study region (Gendall et al., 2023).

To improve the detectability of kelp from non-kelp features in the

imagery, we generated band indices/ratios specific to kelp (Table 1;

Supplementary Table S2), which were linearly enhanced and integrated

with the original bands for input into the classification process. Satellite

imagery was classified utilizing eCognition Developer Software

(Trimble Germany, 2011) with enhanced indices/ratios and bands as

inputs. The classification results were validated by cross-referencing

with available field and historical data (Gendall et al., 2023;

Supplementary Table S3). When considering all sensors included in

the validation, the overall global accuracy ranged between 88% and

94% (Table 1; Supplementary Table S3), where most errors were

associated with sparse, fringing, or partially submerged kelp canopy

(Gendall et al., 2023).

Scale of analyses

Regional
At the regional scale of analysis, we investigated the total kelp

area of the entire study region through time and examined the

relationship with regional drivers, including the PDO, ENSO,

NPGO, SST anomalies, and MHW metrics. Since the dominant

kelp in the region is Macrocystis, a perennial species, the annual

averages, or sums in the case of MHW metrics, for the year

preceding the month when most images were acquired were used.

As most of images were acquired in July, annual measures were

therefore calculated as the conditions experienced between August

of the previous year and July of the sampling year (hereafter referred

to as year and denoted by the year the image was acquired).

Annual averages of PDO (Huang et al., 2017), NPGO (Di

Lorenzo et al., 2008), and ENSO (NOAA, 2015) were calculated

from monthly data spanning 1969 to 2021. Annual SST anomalies

(°C) and MHW metrics were calculated using daily in situ SST

measures from the Bonilla Island lighthouse station (53°29'34.5" N;

130°38'17.0" W, Figure 1, Chandler, 2010). Bonilla Island

lighthouse, located approximately 80 km from the study region,

is the nearest site with continuous SST data dating back to the

1960s. Both MHW metrics and SST anomalies were calculated

using a 55-year climatology starting in 1966. SST anomalies were

calculated as the annual average temperature (°C) deviations above
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or below the time series climatological average. MHWmetrics were

calculated using the heatwaveR package in R (Schlegel and Smit,

2018), where a MHW was defined as a period of at least five

consecutive days during which SST exceed the 90th percentile of the

climatological average (Hobday et al., 2016). MHW days were

calculated as the sum of the total number of days classified as a

MHW in a given year. MHW cumulative intensity was calculated as

the sum of daily temperature anomalies (°C) exceeding the

climatological threshold, accumulated over the duration of all

MHW events within a given year. While satellite-derived SST

data, such as the Optimum Interpolation Sea Surface

Temperature (OISST; Huang et al., 2021), are available for the

study region, they do not cover the full temporal duration of the

time series. A comparison of MHWmetrics from Bonilla lighthouse

and OISST data from the study region, revealed strong correlations

for both MHW days (r = 0.90, df = 39, p<0.001) and MHW

cumulative intensity (r = 0.85, df = 39, p<0.001; Supplementary

Figure S2). Therefore, Bonilla lighthouse data were deemed suitable

to represent MHW conditions within the study region.

To statistically compare kelp with regional drivers, annual kelp area

was normalized as the percentage of the maximum kelp area observed

through time and linear regressions were employed to assess temporal

trends and relationships with regional drivers at multi-year scales. We

examined the influence of previous years' conditions by considering

one-, two-, and three-year metrics of regional drivers. The regional

drivers exhibited some level of correlation (Supplementary Table S4), in

which ENSO, PDO, SST anomalies and MHW metrics displayed

positive correlations, and the NPGO showed an inverse correlation.

Across all climate variables, SST anomalies showed a warming trend of

0.62°C between 1973 and 2021 (Supplementary Table S5). We assessed

model residuals for normality (Faraway, 2004), and selected the best

models based on the Akaike Information Criteria adjusted for a small

sample size (AICc, Hurvich and Tsai, 1993). Univariate relationships

between each regional driver and kelp area were tested, followed by the

creation of multivariate models incorporating significant variables.

Since most regional drivers were correlated (Supplementary Table

S4) and largely represent temperature, we did not include non-

significant predictors or test for interactions unlikely to exist. This

approach simplifies analyses, reduces overfitting, and focuses on the

most important drivers of kelp forest area (Anderson and Burnham,

2002; Coelho et al., 2019). All statistical analyses were conducted using

R Studio (R Core Team, 2021) with the lme package (Bates et al., 2015).

Subregions
Subregions were defined by clustering areas together with

similar local environmental conditions of SST, fetch, wind and

tidal currents. Landsat Analysis Ready Data (ARD) Surface

Temperature (ST) from Landsat 5, 7, and 8 thermal sensors were

used to quantify local SST conditions, as they offer the highest

resolution SST data currently available (30 m; Dwyer et al., 2018;

Wachmann et al., 2024). Local SST climatology was derived from all

available cloud-free Landsat ARD ST images from July or August

between 1984 to 2021 (1988, 1989, 2007, 2009 to 2011, 2014, 2015,

and 2017) as clouds greatly increase the inaccuracy of SST

measurements (Wachmann et al., 2024). As a proxy for exposure,

fetch was estimated at 50 m intervals along the coastline and refers
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to the sum of fetch (max = 200 km), which is calculated by summing

the distance to the nearest land mass at every 5° bearing around

points on the shoreline (Gregr et al., 2019). Local wind conditions

were represented using a raster of mean wind power density (W/m²,

250 m resolution) at 10 m above sea level sourced from the Global

Wind Atlas (Davis et al., 2023) and tidal currents were represented

by root mean square average tidal speed (m/s) obtained from the BC

Marine Conservation Analysis Marine Atlas (BCMCA, 2011).

We divided the entire study region into segments, each

approximately 1 km in shoreline length, following the

methodology outlined by Berry et al. (2003; Supplementary Figure

S3, See Supplementary Methods) from the shoreline to the 20 m

bathymetry limit using a bathymetry dataset from the Canadian

Hydrographic Service (Davies et al., 2019). All local environmental

conditions of SST, fetch, wind, tidal currents and depth were

averaged per 1 km segment. We then employed a spatially

constrained cluster analysis (k nearest neighbors = 4) in ArcMap

(ESRI, 2018) to group 1 km segments into subregions based on local

conditions excluding depth. To prevent statistical redundancies and

the overweighting of correlated variables in the spatially constrained

cluster analysis (Ketchen and Shook, 1996), we removed correlated

drivers using Spearman rank-order correlations.

Similarly to the regional scale assessment, we normalized the

timeseries of kelp area as a percentage of the maximum kelp area for

each subregion and used linear regressions to show trends through

time and relationships with regional drivers of PDO, ENSO, NPGO,

SST anomalies, MHW days and MHW cumulative intensity. We

defined 'resilience' at both the regional and subregional scale as

areas that were variable but experienced no declining trends. In

other words, we describe resilience as areas that exhibited

resistance, ability to persist through disturbance, and/or recovery,

the ability to bounce back following a disturbance (as defined by

Holling, 1973) but did not specifically separate and quantify

resistance and recovery.

Local
At the local scale, a kelp persistence analysis (Schroeder et al.,

2019) was performed on the 1 km segments (Supplementary Figure

S3). Persistence was quantified as the percentage of years kelp was

present in a segment across the entire time series, with 100%

indicating continuous presence, lower values indicating reduced

persistence, and 0% indicating a complete absence of kelp from a

given segment. To better understand how local environmental

conditions influence persistence, we examined the relationships

between persistence and local conditions of SST, fetch, wind, tidal

current and depth using linear regressions.

In August 2021, we conducted field surveys to investigate

factors influencing kelp forest dynamics that could not be

captured through remote sensing data, and to lend insight into

the patterns of change documented in the time series analyses. In

particular, we used photo-quadrats and a remotely operated vehicle

(ROV) to quantify substrate type, urchin presence, and understory

seaweed composition in areas where kelp had disappeared, persisted

or was never present. Photoquadrats consisted of a goPro Hero 7

affixed to a tripod mounted on a 1m² quadrat. Both the photo-

quadrats and the QYSEA Fifish V6 ROV were deployed from a boat
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at points across the study region. To ensure we spanned a gradient

of no kelp to persistent kelp forests, we first used a stratified random

sampling approach to create points in the northern part (Gray Bay

and Flagstaff subregions) of the study region and opportunistically

haphazardly added points in the field to increase sample size. To

provide a comparison between persistent kelp forests in the

northern and southern subregions we were able to sample eight

points within the Cumshewa West subregion. However due to

logistical constrainst were unable to sample within the Cumshewa

East and Mathers Creek subregions.

A single representative frame was used from the ROV footage to

avoid issues of spatial auto-correlation, issues of video quality in

high current areas, and to make the ROV footage comparable with

the photoquadrat data. The combined photoquadrat (n = 44) and

ROV data (n = 4), resulted in a total sample size of 48. We identified

urchin abundance, dominant substrate types, and dominant

understory seaweeds present in ImageJ software (Schneider et al.,

2012). Substrate types were classified into five categories: sand

(0.06-2 mm grain size diameter), granule (2-4 mm), pebble (4-

64 mm), cobble (64-256 mm), and boulder (0.25-3 m; Greene et al.,

1999). Understory algae were categorized into three dominant

functional groups: turf (short benthic algae), branched

(Desmerestia sp.), and kelp (large brown algae in the

order Laminariales).
Results

Regional variability of kelp area over the
last century

The historical distribution of kelp from approximately a century

ago (1867-1945; Figure 2a) closely mirrored the distribution of the

maximum kelp area observed in satellite imagery from 1973

(8.18 km2; Figure 2b). However, since the historical kelp

distribution was represented as artistic, hand-drawn features on

maps, direct comparisons of kelp area were not possible.

Our satellite imagery analysis revealed a regional declining

trend of 5 ± 2% (± SE) per decade between 1973 and 2021

(p<0.05, R² = 0.11, df = 1,33), with significant variability driven

by regional drivers like the ENSO, PDO, SST anomalies and MHW

metrics (Figure 3; Table 2). Warmer conditions coincided with

lower kelp area, with environmental factors explaining up to 29% of

the variance in kelp area (Table 2; Supplementary Table S6). Our

best models identified the ENSO (one-year averages), SST

anomalies (one-year to two year averages) and MHW metrics

(MHW days and MHW cumulative intensity, one- to two-year

sums) as equally good predictors (DAICc < 2) of regional kelp area

(Table 2; Supplementary Table S6).

The time series exhibited periodic losses and recoveries with

kelp area initially declining by 75% between 1973 and 1977

(Figures 2b, c, 3a) coinciding with the PDO phase shift

(Figure 3b). This PDO phase shift was marked by an annual

average SST anomaly of 0.26°C and a 10 day MHW in may of

1977 (Figures 3b–d). Subsequent fluctuations were tied to major El

Niño events (e.g., 1983, 1998) and the 2014-2016 ‘Blob’ MHW. In
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1998, one of the strongest El Niño events on record occurred, with

SST of 1.23°C above average, a total of 193 MHW days and a MHW

cumulative intensity of 348.67°C (Figures 3b–d). This event aligned

with the time series minima, where only 5% of the kelp area

(0.43 km²) remained (Figure 2e), however recovered to 33% by

1999 (Figure 2f).

In the study region, the 2014-2016 ‘Blob’ MHW had minimal

impacts on regional SST in 2014, but led to SST anomaly of 0.92°C

with a total of 179 MHW days in 2015, and in 2016 a SST anomaly

of 0.91°C with a total of 114 MHW days (Figures 3b–d). This event

corresponded with the second and third lowest kelp areas at 13%

and 17% in 2015 and 2016, respectively (Figures 2g, 3a). Following

the ‘Blob’, SST remained above average for the duration of the study

period (2016-2021), however, not as extreme, allowing kelp forests

to recover to 48% by 2021 (Figures 2h, 3a).
Subregional spatially explicit responses

We employed a spatially constrained cluster analysis to group

local 1 km segments into subregions based on fetch, local SST, wind,

and tidal current. Fetch, wind, and tidal current exhibited high

correlations (fetch and wind r = 0.78, fetch and tidal current r =

0.86, wind and tidal current r = 0.80, df = 237, p<0.001).

Consequently, only fetch and SST were included in the cluster
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analysis. The pseudo-F-statistic analysis (Milligan and Cooper,

1985) defined five as the number of optimal subregions (pseudo-

f-statistic: 4 groups = 272.92, 5 groups = 303.61, 6 groups =

279.9233; Supplementary Table S7). Gray Bay (subregion 1) and

Flagstaff (subregion 2) were characterized by warm SSTs and

moderate fetch, wind and current speeds (Figure 4a;

Supplementary Table S7). Cumshewa East and West (subregions

3 and 4, respectively) were characterized by cooler SST, however,

Cumshewa West had lower fetch, wind and tidal current (i.e. was

more sheltered) than Cumshewa East. Mathers Creek (subregion 5)

was characterized by warmer SSTs and low fetch, wind and

current speeds.

Five subregions exhibited varying responses to climatic events,

largely driven by differences in SST. Warmer more exposed

subregions like Gray Bay and Flagstaff experienced drastic

declines, with complete kelp loss in Gray Bay after 1977

(Figures 4a, b). Flagstaff showed a long-term decline of 9 ± 2%

per decade (p<0.001, R² = 0.34, df = 1,33), with minimal recovery

after the loss in the late 1970s (Figures 2c, d, 4c). Three-year SST

averages best explained the variation (42 %) in the Flagstaff

subregion (Table 2; Supplementary Table S8). By the early 21st

century, approximately 90% of the original kelp area in the Flagstaff

subregion had disappeared (Figure 4c).

In contrast, the cooler Cumshewa East and Cumshewa West

subregions displayed resilience, with no significant long-term
FIGURE 2

(a) Map of the historic distribution of kelp canopy derived from British Nautical charts. (b-h) Maps of kelp canopies derived from satellite imagery
from notable years.
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declining trends (Figures 4a, d, e). Kelp area in both subregions still

fluctuated with environmental conditions, with ENSO (one-year and

two-year averages) and MHW metrics (MHW days and MHW

cumulative intensity, one- to three-year sums) explaining up to 25%

(Cumshewa East) and 34% (CumshewaWest) of variation in kelp area
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(Table 2; Supplementary Tables S9, S10). However, unlike the

northern subregions, these cooler subregions demonstrated a greater

capacity for recovery following events, such as the 1977 PDO shift, the

1983 El Niño, and the 1998 El Niño (Figures 4d, e). Kelp area declined

drastically during the 2014-2016 MHW in both subregions, however,
TABLE 2 Lowest AICc value of linear regressions of normalized kelp area by regional driver for the regional and subregional scale of analysis (p value
< 0.5 *, <0.01**, <0.001***).

Scale of analysis Best Predictor Model Regression Coefficient R2 AICc df

Region ENSO (One-year average) +
SST (Two-year average)

-10.48*
-14.99**

0.2987 308.2649 2,33

Flagstaff
(2)

SST (three-year average) -36.56*** 0.4179 300.9599 1,33

Cumshewa East
(3)

ENSO (two-year average) -21.29*** 0.2080 316.7684 1,32

Cumshewa West
(4)

ENSO (one-year average) -19.78*** 0.3209 318.9754 1,33

Mathers Creek
(5)

PDO (one-year average) -15.25*** 0.2145 331.7842 1,33
FIGURE 3

(a) Time series of normalized kelp area from 1973 to 2021 with major events displayed in red (b) Annual z-scores of climate indices, Pacific Decadal
Oscillation (PDO), El Niño Southern Oscillation (ENSO), and North Pacific Gyre Oscillation (NPGO; inverted scale), such that positive values represent
warm conditions (red) and negative values (blue) represent cool conditions. (c) Annual SST anomalies calculated using a 55-year historical average
starting in 1966, where bars represent either positive (red) or negative (blue) anomalies in degrees Celsius above or below the time series average.
(d) Annual sum of marine heatwave days calculated as number of days above the 90th percentile of the climatological average.
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CumshewaWest rebounded to approximately 77% (2017-2021), while

Cumshewa East only reached 28% (Figures 4d, e).

The Mathers Creek subregion, despite being geographically

warmer like Flagstaff and Gray Bay subregions, exhibited

resilience similar to Cumshewa East and Cumshewa West

(Figures 4a, f). In the Mathers Creek subregion, the PDO (one-

year averages) and ENSO (one- and two-year averages) explained

up to 24% of the variation in kelp area (Table 2; Supplementary

Table S11). This subregion supported the lowest proportion of kelp

area (maximum of 0.21 km2 in 1990; Figure 4f), which was largely

located around the mouth of Mathers Creek in the cooler portion of

the subregion.
Local responses to
environmental gradients

At the local scale, variability of kelp persistence was significantly

explained by local conditions of SST, wind, tidal current and depth

where less wind, shallower depths and lower tidal currents

coincided with higher persistence (Supplementary Table S12).

Specifically, our best model included SST, wind and depth, which

explained 41% of variation in kelp persistence (Supplementary

Table S12). In Gray Bay, shallow water segments (2-5 m depth)

experienced the warmest SST and exhibited no kelp persistence
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(0%; Figure 5a). Segments further offshore in Gray Bay showed low

persistence (3-5%) and coincided with areas where kelp forests had

entirely disappeared during the late 1970s PDO shift. In the

Flagstaff subregion, kelp canopy persistence closely mirrored the

SST gradient, where the warmer northern segments displayed low

persistence (3-31%) with no recovery, and cooler southern

segments demonstrated high persistence (67-95%), regularly

recovering after climate events when cross referenced with the

time series. In the more resilient subregions, the more sheltered

nearshore segments in Cumshewa East (3), Cumshewa West (4),

and Mathers Creek (5) maintained persistent kelp forests. Further

offshore within the shallower mid-channel areas of Cumshewa East

(3) and Cumshewa West (4), a core kelp area known as Fairbairn

Shoals remained persistent throughout the time series.

Where kelp was lost, field surveys suggested the habitat

transitioned to turf-dominated reefs rather than urchin barrens.

In particular, we observed only five individual urchins within the

study region (n = 48), and in subregions Gray Bay and Flagstaff,

where kelp was lost, the understory community was predominantly

composed of short turf seaweeds and branched brown algae such as

Desmarestia spp. on subtrate primarily composed of a mix of

granule and cobble (Figures 5b, c). In the Flagstaff subregion,

only one site where kelp was lost supported an understory kelp

community; this site was closest to the remaining kelp forests. In

contrast, where kelp canopy persisted, an abundant understory of
FIGURE 4

(a) Map of subregions derived from the environmental cluster analysis showing the local SST climatology across the region and average temperature
experienced in each subregion derived from the Landsat satellite thermal band. (b-f) Time series of normalized kelp area from 1973 to 2021 for each
subregion with major events displayed in red.
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kelp species were found on a variety of substrate types from pebble

to boulders and bedrock (Figures 5b, c).
Discussion

Climate change poses multifaceted threats, driving rapid shifts

in kelp forest distributions, with some regions experiencing severe

reductions, while others have remained stable or even expanded,

complicating efforts to identify and disentangle drivers operating

across spatial and temporal scales (e.g., Cavanaugh et al., 2011;

Krumhansl et al., 2016; Pfister et al., 2018; Hamilton et al., 2020;

Starko et al., 2022; Mora-Soto et al., 2024a). Using remote sensing

(1973-2021) and historical data (1867-1945) from Haida Gwaii, we

found that the kelp forest distribution in the early 1970s closely

matched historical distribution, suggesting century-long stability

prior to the significant declines observed in the late 1970s in the

study region. In the satellite time series, kelp area fluctuated with

regional drivers at one-, two- and three- year averages showing

multi-year impacts where warmer conditions corresponding with

reduced kelp area. While we observed a long-term declining trend at

the regional scale, this decline was less severe than the declines

observed in the warmest areas of the local and subregional scales,

supporting the initial hypothesis that greater environmental

heterogeneity confers higher resilience at broader spatial scales.

Local and subregional kelp dynamics exhibited more variable

trends, supporting the second hypothesis that the response to

regional drivers is primarily determined by positioning along

local gradients such as SST. Moreover, in situ observations

supported that temperature, not urchin grazing, was the primary

driver of loss and resilience in this study region.
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Regional drivers and change across
a century

The inclusion of historical data and medium resolution satellites

revealed substantial kelp forest losses that would have gone

undetected using only high-resolution satellite imagery.

Specifically, we discovered a major episodic decline in the 1970s

of kelp forests that had likely persisted for over a century – a finding

that emerged only through our analysis of pre-1984 data sources,

including nautical charts (1867-1945) and early Landsat imagery.

The creation of long-term time series are crucial, as shorter time

series (< 20 years) can mask important patterns in kelp forest

resilience due to high interannual variability (Bell et al., 2020;

Wernberg et al., 2019). While most remote sensing of kelp

canopy on the Pacific Coast of North America focuses on 30 m

Landsat imagery from 1984 onwards (e.g., Cavanaugh et al., 2011;

Bell et al., 2020; Hamilton et al., 2020), researchers have successfully

integrated diverse historical records to establish long-term

baselines. Examples include the use of early 20th century kelp

census data in Washington (Pfister et al., 2018), historical surveys

from unpublished theses and aerial photography dating to the 1930s

in South Australia (Carnell and Keough, 2019), Darwin's

observations on the Voyage of the Beagle in Southern Chile

(Mora-Soto et al., 2021), and nineteenth-century nautical charts

in the Salish Sea (Mora-Soto et al., 2024b) – the latter revealing

similar patterns of kelp loss in warmer regions. This underscores

how incorporating historical data sources, despite their varying

quality, resolution and methodologies, is essential for establishing

accurate pre-industrial ecological baselines and understanding the

true magnitude of changes that may otherwise be obscured by

recent data alone.
FIGURE 5

(a) Locations of in situ survey sites overlaid over a map of the local persistence metric. (b, c) Stacked bar plots showing (b) the percent of substrate
classes and (c) dominant understory algae classes documented in areas of no kelp, kelp loss and kelp persistence.
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Our findings emphasize that regional drivers, such as the PDO,

ENSO, SST anomalies, and MHW metrics, are critical in explaining

kelp forest dynamics, with impacts extending beyond immediate SST

stress, with multi-year metrics explaining more variation in kelp area

than single-year averages. Many studies corroborate that these

regional drivers at multiple scales, from MHW metrics to large

scale climate cycles like the PDO and ENSO, impact kelp forest

conditions, where warm conditions are detrimental to kelp forests

(e.g., Cavanaugh et al., 2011; Bell et al., 2020; Arafeh-Dalmau et al.,

2019; Wernberg et al., 2019; McPherson et al., 2021; Wernberg,

2021). The extended multi-year impacts likely result from complete

mortality of whole kelp plants rather than surface die back, as

mortality reduces the reproductive capacity of the remaining kelp

forest even after favorable conditions return (Cavanaugh et al., 2011;

Pfister et al., 2018; Schroeder et al., 2019; Starko et al., 2022).

Regional drivers not only influence SST but also interact with

other oceanic conditions exacerbating not only changes in kelp

forests but the ecosystem as a whole. For instance, the significant

kelp declines in the 1970s coincided with the 1977 PDO shift,

which brought warmer SSTs, a deepening of the thermocline, low

nutrient availability and increased ocean stratification across the

North Pacific (McGowan et al., 2003; Parnell et al., 2010). This

shift triggered a cascade of declines in other coastal systems,

particularly in California such as reduced plankton biomass,

larval fish abundance, fisheries landings, and similarly,

Macrocystis biomass (McGowan et al., 2003; Parnell et al.,

2010). Notably, the documented loss of kelp forests in this study

predates the widespread coral reef declines attributed to the 1983

El Niño (Oliver et al., 2009) challenging the notion that kelp

forests are not sensitive indicators of broader climate change

impacts (Reed et al., 2016).
Spatially explicit responses across scales

Local heterogeneity in factors like SST can either ameliorate or

exacerbate the responses of foundation species like kelp forests to

regional drivers, leading to complex patterns of decline and

resilience (Russell and Connell, 2012; Starko et al., 2022). In our

study region, cooler areas, like Cumshewa East and West,

contribute to this resilience, as kelp forests there exhibited a

stronger ability to endure and recover after adverse regional

conditions. This spatial pattern of temperature-dependant

responses has been documented elsewhere on the Pacific Coast,

with losses concentrated in warmer areas during the 2014-2016

‘Blob’MHW in Barkley Sound (Starko et al., 2022) and the southern

Salish Sea (Mora-Soto et al., 2024a). The complex coastline of

British Columbia and Alaska creates high environmental

heterogeneity (Starko et al., 2019; Cavanaugh et al., 2021), making

it crucial to consider local factors such as temperature, wave

exposure, and trophic dynamics (e.g., Watson and Estes, 2011;

Rogers-Bennett and Catton, 2019; McPherson et al., 2021; Starko

et al., 2022, 2024) to understand kelp forest variability and

accurately forecast species responses to climate change moving

forward (Russell and Connell, 2012).
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In addition to temperature, local patterns of exposure, wind and

current can either ameliorate or exacerbate the response of kelp

forest to regional drivers. In more exposed locations, storms can

tear up large swaths of kelp forests like the intense storms during the

1983 El Niño in Point Loma, California, that led to a loss of 560 ha

of kelp forests (Dayton and Tegner, 1984). Recent work shows that

storm tracks have intensified on the coast of BC from the 1960s

onwards (Abeysirigunawardena, 2010) and with the significant

negative relationship between kelp persistence and wind in the

study region, storms could have compounded or caused some of the

loss or variation not explained by regional or local drivers in

this study.
In situ evidence of temperature-driven loss

Multiple lines of evidence, the lack of urchins, and presence of

turf reefs, in our 2021 field survey suggest that temperature, rather

than herbivory, likely drove kelp forest declines in the study region.

Despite the presence of urchin barrens (HMTK Participants et al.,

2011; Lee et al., 2021), and the absence of sea otters since the late

1800s (Lee et al., 2021) in Haida Gwaii, our field survey found no

urchin barrens and very few individual urchins in areas of kelp loss

and persistence. The absence of urchin barrens is particularly

notable as they are known to persist for years to decades due to

urchins’ ability to slow metabolic activity when food resources are

scarce (Spindel et al., 2021). Additionally, the patchy mix of

unconsolidated substrate – consisting of sand, pebbles, cobbles

and boulders, is known to dissuade urchins from foraging (Laur

et al., 1986) and may limit the distribution of urchins across the

study region. Notably, in Gray Bay, where kelp was never present,

both turf and eelgrass dominated shallow areas on sand and

pebbles. This distribution pattern aligns with known habitat

requirements, as canopy forming kelp require larger hard

substratum such as cobbles, boulders or bedrock to provide

secure attachment points (Druehl, 1978; Gregr et al., 2019; Starko

et al., 2022), suggesting that substrate type likely plays a key role in

determining kelp forest distribution across the region. Additionally,

in areas where kelp disappeared, we found predominantly turf and

branched algae (Desmarestia spp.) – a transition pattern commonly

observed from temperature driven kelp losses in other regions of the

globe, such as Western Australia (Wernberg, 2021), Atlantic

Canada, France and Denmark (Filbee-Dexter and Wernberg,

2018). While our conclusion about herbivore impacts in this

system is supported by two lines of evidence, our single time-

point highlights the need for further research to fully understand

trophic dynamics in this ecosystem.
Methodological considerations,
and limitations

The regional and local drivers included in this study did not

account for all variation observed in kelp area and persistence.

Variability in other potential drivers, such as nutrients (e.g.,
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Zimmerman and Kremer, 1986), light availability (e.g., Deysher and

Dean, 1986), salinity (e.g., Druehl, 1978) and local stressors from

human activities like pollution or overharvesting, are known to

impact kelp forests (e.g., Foster and Schiel, 2010; Pfister et al., 2018),

but data were unavailable for the region. Warmer SST often

coincides with lower nutrients and salinity (Druehl, 1978), which

generally slows kelp growth, weakens tissue and diminishes

reproduction (Zimmerman and Kremer, 1986). As such, nutrients

likely play an important role alongside SST in regulating kelp

dynamics but were unavailable in this region. Although light data

were unavailable, the significant relationship we found between

depth and kelp persistence likely reflects the influence of light

availability, as light attenuation increases with water column

depth (Timmer et al., 2022).

While coastal development, point-source pollution and

overharvesting can drive kelp declines (Foster and Schiel, 2010;

Pfister et al., 2018), anthropogenic stressors are likely minimal in

Haida Gwaii given its small population (< 5000 people) and

minimal development (Statistics Canada, 2017) when compared

to densely populated coastal areas with observed kelp declines like

in Washington or South Australia (Krumhansl et al., 2016; Pfister

et al., 2018). Although Macrocystis kelp was historically harvested

for the herring-roe-on-kelp commercial fisheries in the Flagstaff

subregion, BC’s strict harvest limits leave the majority of the kelp

plants intact minimizing harvest impacts. While turbidity related to

logging runoff on Haida Gwaii (Klein et al., 2012) could impact

kelp, the persistence of healthy kelp forests at the mouth of Mathers

Creek—the region's only river—suggests minimal impacts from

both turbidity and reduced salinity. Instead, the river's outflow may

actually buffer SST impacts as evidenced by the retention of kelp

forests in the Mathers Creek subregion despite losses in the

similarly warm Flagstaff and Gray Bay subregions.

Previous work suggests that interannual changes in kelp area up

to 7% could potentially arise from errors associated with measuring

kelp area at different spatial resolutions (Gendall et al., 2023). While

measurement uncertainty is an inherent challenge in remote

sensing of kelp forests, the magnitude of kelp decline we observed

far exceeds the potential error threshold identified by Gendall et al.

(2023). Additionally, our focus on long-term trends and persistence

over multiple decades helps mitigate the influence of such errors on

our overall findings (Magurran et al., 2010). This approach to

analyzing temporal patterns is sound as it emphasizes directional

changes over long time scales rather than year-to-year fluctuations

that might be influenced by artifacts or uncertainties in remote

sensing measurements. Additionally, our use of multiple temporal

metrics—including both area changes at the regional and

subregional scale and persistence patterns at the local scale—

provide complementary lines of evidence that strengthen our

confidence in the patterns of kelp forest change herein.
Conclusion

This century-long analysis of kelp forests in Hada Gwaii

elucidates the complex interplay between climate change and kelp
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forest dynamics operating across multiple spatial scales. Our

analysis showed that kelp forests that likely remained stable for

over a century began showing significant declines in the 1970s, with

a regional loss of 5 ± 2% per decade. These responses varied across

spatial scales. With local environmental conditions – particulary

SST – playing an important role in determining outcomes. Warmer

areas experienced complete kelp loss following the 1977 PDO shift,

while, cooler areas exhibited greater resilience and the capacity to

recover from large-scale climatic events, such as el Niño and MHW

events. The absence of urchin barrens and presence of turf-

dominated reefs in areas of kelp loss suggest that temperature,

rather than herbivory, was the primary driver of decline in this

study region. These findings offer valuable insights for the

integration of historical data and the consideration of scale-

dependent responses when assessing climate change impacts on

coastal ecosystems. Continued monitoring and conservation efforts

remain essential to ensure the persistence and resilience of these

vital coastal ecosystems.
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