& frontiers | Research Topics

Immunological precision
therapeutics: integrating
multi-omics technologies
and comprehensive
approaches for personalized
Immune intervention

Edited by
Wenyi Jin, Raquel Alarcon Rodriguez and Mar Requena Mullor

Published in
Frontiers in Immunology
Frontiers in Oncology



https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/research-topics/63573/immunological-precision-therapeutics-integrating-multi-omics-technologies-and-comprehensive-approaches-for-personalized-immune-intervention
https://www.frontiersin.org/journals/oncology

& frontiers | Research Topics

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject

to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version

When exercising any right under

the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements

in question

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers” Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-6143-0
DOI 10.3389/978-2-8325-6143-0

Frontiers in Immunology

March 2025

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is
a pioneering approach to the world of academia, radically improving the way
scholarly research is managed. The grand vision of Frontiers is a world where
all people have an equal opportunity to seek, share and generate knowledge.
Frontiers provides immediate and permanent online open access to all its
publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-
access, online journals, promising a paradigm shift from the current review,
selection and dissemination processes in academic publishing. All Frontiers
journals are driven by researchers for researchers; therefore, they constitute
a service to the scholarly community. At the same time, the Frontiers journal
series operates on a revolutionary invention, the tiered publishing system,
initially addressing specific communities of scholars, and gradually climbing
up to broader public understanding, thus serving the interests of the lay
society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include
some of the world's best academicians. Research must be certified by peers
before entering a stream of knowledge that may eventually reach the public
- and shape society; therefore, Frontiers only applies the most rigorous

and unbiased reviews. Frontiers revolutionizes research publishing by freely
delivering the most outstanding research, evaluated with no bias from both
the academic and social point of view. By applying the most advanced
information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers
Jjournals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from
Original Research to Review Articles, Frontiers Research Topics unify the
most influential researchers, the latest key findings and historical advances
in a hot research area.

Find out more on how to host your own Frontiers Research Topic or
contribute to one as an author by contacting the Frontiers editorial office:
frontiersin.org/about/contact

1 frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

& frontiers | Research Topics March 2025

Immunological precision
therapeutics: integrating
multi-omics technologies and
comprehensive approaches
for personalized immune
intervention

Topic editors

Wenyi Jin — City University of Hong Kong, Hong Kong, SAR China
Raquel Alarcon Rodriguez — University of Almeria, Spain

Mar Requena Mullor — University of Almeria, Spain

Citation

Jin, W., Rodriguez, R. A., Mullor, M. R., eds. (2025). Immunological precision
therapeutics: integrating multi-omics technologies and comprehensive
approaches for personalized immune intervention. Lausanne: Frontiers Media SA.
doi: 10.3389/978-2-8325-6143-0

Frontiers in Immunology 2 frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-6143-0

& frontiers | Research Topics

Table of
contents

Frontiers in Immunology

06

08

24

40

58

71

87

95

112

March 2025

Editorial: Immunological precision therapeutics: integrating
multi-omics technologies and comprehensive approaches
for personalized immune intervention

Mingyang Xue and Wenyi Jin

Multi-omics analysis and experimental validation of the value
of monocyte-associated features in prostate cancer
prognosis and immunotherapy

YaXuan Wang, Chao Li, JiaXing He, QingYun Zhao, Yu Zhou,
HaoDong Sun, HaiXia Zhu, BeiChen Ding and MingHua Ren

Anoikis resistance regulates immune infiltration and drug
sensitivity in clear-cell renal cell carcinoma: insights from
multi omics, single cell analysis and in vitro experiment
Xiangyang Wen, Jian Hou, Tiantian Qi, Xiaobao Cheng,
Guogiang Liao, Shaohong Fang, Song Xiao, Longlong Qiu and
Wanging Wei

Mitophagy and clear cell renal cell carcinoma: insights from
single-cell and spatial transcriptomics analysis

Lai Jiang, Xing Ren, Jinyan Yang, Haiging Chen, Shengke Zhang,
Xuancheng Zhou, Jinbang Huang, Chenglu Jiang, Yuheng Gu,
Jingyi Tang, Guanhu Yang, Hao Chi and Jianhua Qin

Unveiling the landscape of pathomics in personalized
immunotherapy for lung cancer: a bibliometric analysis

Lei Yuan, Zhiming Shen, Yibo Shan, Jianwei Zhu, Qi Wang, Yi Lu and
Hongcan Shi

Exercise-downregulated CD300E acted as a negative
prognostic implication and tumor-promoted role in
pan-cancer

Zhiwen Luo, Jinguo Zhu, Rui Xu, Renwen Wan, Yanwei He,
Yisheng Chen, Qing Wang, Shuo Chen and Shiyi Chen

Efficacy of PD-1 or PD-L1 inhibitors for the therapy of
cervical cancer with varying PD-L1 expression levels: a
single-arm meta-analysis

Jie Yang, Haizan Yu, Yilei Zhang, Mingli Zhu, Mengyu Zhang and
Qiming Wang

Integrating single-cell transcriptomics to reveal the
ferroptosis regulators in the tumor microenvironment that
contribute to bladder urothelial carcinoma progression and
immunotherapy

Ziang Chen, Jia Hu, Yuxi Ou, Fangdie Ye, Weijian Li, Shenghua Liu and
Haowen Jiang

Impact of exercise on cancer: mechanistic perspectives and
new insights

Ye Feng, Xingting Feng, Renwen Wan, Zhiwen Luo, Lijun Qu and
Qing Wang

3 frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/

& frontiers | Research Topics

Frontiers in Immunology

124

139

147

171

183

206

215

225

242

260

March 2025

Mucosal microbiota characterization in gastric cancer
identifies immune-activated—related transcripts relevant
gastric microbiome signatures

Chengjia Qian, Jiang Hui, Ziyao Peng, Xiaoyan Sun and Jiali Zhang

Cross-omics strategies and personalised options for lung
cancer immunotherapy

Yalan Yan, Siyi Shen, Jiamin Li, Langian Su, Binbin Wang,

Jinghan Zhang, Jiaan Lu, Huiyan Luo, Ping Han, Ke Xu, Xiang Shen
and Shangke Huang

IGFBP7+ subpopulation and IGFBP7 risk score in
astrocytoma: insights from scRNA-Seq and bulk RNA-Seq
Liang Zhao, Wenwen Shao, Zhikai Xiahou, Li Ren, Chaobo Liu,
Yanbing Song, Hao Xu, Zhihan Wang and Jin Xing

FAS gene expression, prognostic significance and molecular
interactions in lung cancer
Kaimin Li, Shing Cheng Tan, Zhihao Yang and Chenwei Li

Unraveling the ecological landscape of mast cells in
esophageal cancer through single-cell RNA sequencing
Shengyi Zhang, Xinyi Zhang, Zhikai Xiahou, Shunging Zuo,
Jialong Xue and Yi Zhang

Spatial transcriptomics: a new frontier in accurate
localization of breast cancer diagnosis and treatment
Yang Zhang, Shuhua Gong and Xiaofei Liu

Modified Dendritic cell-based T-cell expansion protocol and
single-cell multi-omics allow for the selection of the most
expanded and in vitro-effective clonotype via profiling of
thousands of MAGE-A3-specific T-cells

Sergey Sennikov, Marina Volynets, Saleh Alrhmoun,

Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Fisher,

Julia Lopatnikova, Julia Shevchenko, Kirill Nazarov, Julia Philippova,
Alaa Alsalloum, Vasily Kurilin and Alexander Silkov

Cuproptosis-related IncRNAs emerge as a novel signature for
predicting prognosis in prostate carcinoma and functional
experimental validation

Yangbai-Lu, Jinfeng-Wu, Xianzhe Li, Qu-Leng, Jian-Tan,
Hongxing-Huang, Rui-Zhong, Zhenjie-Chen and Yongxin-Zhang

Prognostic value of EMT-related genes and immune cell
infiltration in thyroid carcinoma

Shuping Wu, Yu Liu, Yu Zeng, Xianhui Ruan, Mei Tao, Wenrong Lin,
Chang Liu, Hongbin Chen, Hui Liu and Yu Wu

Optimizing cancer treatment: the synergistic potential of
CAR-T cell therapy and CRISPR/Cas9

Maryam Amiri, Amir Kian Moaveni, Masoumeh Majidi Zolbin,
Behrouz Shademan and Alireza Nourazarian

4 frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/

& frontiers | Research Topics

Frontiers in Immunology

278

298

319

334

348

372

387

403

422

March 2025

Integrated multiomics characterization reveals
cuproptosis-related hub genes for predicting the prognosis
and clinical efficacy of ovarian cancer

Yang Xiaorong, Xu Lu, Xu Fangyue, Xu Chao, Gao Jun and Wen Qiang

Integrating multi-omics techniques and in vitro experiments
reveals that GLRX3 regulates the immune microenvironment
and promotes hepatocellular carcinoma cell proliferation and
invasion through iron metabolism pathways

Yang Li, Yuan Chen, Yang Zhang, Yunsheng Fang, Ling Wu,

Ying Zhao, Dangiong Wang and Xiaoyuan Qiao

Fibroblast growth factor receptor risk signature predicts
patient prognosis and immunotherapy resistance in
colorectal cancer

Xiaofang Li, Zhiling Pan, Tiankuo Luan, Qian Xiao, Liuying Li,
Qianxue Wu, Guoqing Yao, Xiang Zhang and Dagiang Song

Integrating omics data and machine learning techniques for
precision detection of oral squamous cell

carcinoma: evaluating single biomarkers

Yilan Sun, Guozhen Cheng, Dongliang Wei, Jiacheng Luo and
Jiannan Liu

A new perspective on macrophage-targeted drug
research: the potential of KDELRZ2 in bladder cancer
immunotherapy

Zhiyi Zhao, Hongling Jia, Zhou Sun, Yumeng Li and Lingyun Liu

Multi-omics analysis and experiments uncover the function
of cancer stemness in ovarian cancer and establish a machine
learning-based model for predicting immunotherapy
responses

Zhibing Liu, Lei Han, Xiaoyu Ji, Xiaole Wang, Jinbo Jian, Yujie Zhai,
Yingjiang Xu, Feng Wang, Xiuwen Wang and Fangling Ning

Single-cell transcriptomics reveals heterogeneity and
prognostic markers of myeloid precursor cells in acute
myeloid leukemia

Guangfeng He, Lai Jiang, Xuancheng Zhou, Yuheng Gu, Jingyi Tang,
Qiang Zhang, Qingwen Hu, Gang Huang, Ziye Zhuang, Xinrui Gao,
Ke Xu and Yewei Xiao

Single-cell sequencing uncovers the mechanistic role of
DAPK1 in glioma and its diagnostic and prognostic
implications

Tian-Hang Yu, Yan-Yu Ding, Si-Guo Zhao, Jie-Hui Zhao, Yu Gu,
Dong-Hui Chen, Fang Zhang and Wen-Ming Hong

Pan-cancer and experimental analyses reveal the
immunotherapeutic significance of CST2 and its association
with stomach adenocarcinoma proliferation and metastasis
Dan Huang, Jing Li, Zhijun He, Wenjing Liang, Likun Zhong,

Jun Huang, Yinteng Wu and Shijian Zhao

5 frontiersin.org


https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/

? frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Peter Brossart,
University of Bonn, Germany

*CORRESPONDENCE
Wenyi Jin
gin1994@whu.edu.cn

RECEIVED 21 February 2025
ACCEPTED 25 February 2025
PUBLISHED 06 March 2025

CITATION

Xue M and Jin W (2025) Editorial:
Immunological precision therapeutics:
integrating multi-omics technologies
and comprehensive approaches for
personalized immune intervention.
Front. Immunol. 16:1581238.

doi: 10.3389/fimmu.2025.1581238

COPYRIGHT
© 2025 Xue and Jin. This is an open-access
article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TvpPE Editorial
PUBLISHED 06 March 2025
po110.3389/fimmu.2025.1581238

Editorial: Immunological
precision therapeutics:
integrating multi-omics
technologies and comprehensive
approaches for personalized
Immune intervention

Mingyang Xue® and Wenyi Jin**

tSchool of Medicine, Kunming University of Science and Technology, Kunming, China, 2Department
of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China,
sDepartment of Orthopaedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China

KEYWORDS

immunotherapy, precision medicine, multi-omics analysis, immune signatures,
personalized therapy

Editorial on the Research Topic

Immunological precision therapeutics: integrating multi-omics technologies
and comprehensive approaches for personalized immune intervention

The integration of multi-omics technologies in immunology heralds a transformative
era in the development of personalized therapeutic strategies. As immunotherapy
continues to emerge as a cornerstone of precision medicine, this Research Topic brings
together a rich collection of studies that explore how comprehensive multi-omics
approaches—ranging from genomics and transcriptomics to proteomics, metabolomics,
and single-cell profiling—can be harnessed to optimize immune interventions tailored to
individual patients.

One of the key themes across the contributions is the application of single-cell
sequencing to unravel the complexities of the immune landscape (Yu et al.). For
example, the study on gliomas highlights how single-cell RNA sequencing (scRNA-seq)
data can be leveraged to identify potential biomarkers like DAPK1, which may serve as a
prognostic marker for glioma progression and therapeutic efficacy. Such insights are
crucial, as gliomas remain one of the most difficult malignancies to treat due to their
aggressive nature and the barriers posed by the blood-brain barrier (BBB). By utilizing
multi-omics data, including scRNA-seq, the authors have demonstrated how specific
immune subpopulations, such as DAPKI1-expressing cells, could be used to predict
patient outcomes, offering a new approach for precision therapy in glioma.

Similarly, the study on cancer stemness in ovarian cancer illustrates how multi-omics
data can reveal the role of cancer stem cells (CSCs) in mediating resistance to immune
checkpoint inhibitors (ICIs) (Liu et al.). Through the integration of RNA sequencing and
CRISPR-based screens, the authors have identified critical genes involved in regulating

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581238/full
https://www.frontiersin.org/research-topics/63573
https://www.frontiersin.org/research-topics/63573
https://doi.org/10.3389/fimmu.2024.1463747
https://doi.org/10.3389/fimmu.2024.1486652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1581238&domain=pdf&date_stamp=2025-03-06
mailto:gin1994@whu.edu.cn
https://doi.org/10.3389/fimmu.2025.1581238
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1581238
https://www.frontiersin.org/journals/immunology

Xue and Jin

cancer stemness, such as SNRPE, which negatively affects ICI
response. This approach exemplifies the power of combining
machine learning and genomics to predict immune responses and
guide treatment decisions in cancer immunotherapy (Sun et al.).

A consistent thread running through many of the contributions
is the focus on immune microenvironment characterization.
(Li et al.). The work on cuproptosis-related genes in ovarian
cancer investigates how the deregulation of copper-dependent cell
death pathways impacts the immune landscape, with the
development of a robust risk score model for predicting prognosis
and immunotherapy response (Xiaorong et al.). This study adds to
the growing body of literature emphasizing the importance of not
only tumor-intrinsic factors but also the immune environment in
determining the success of immunotherapy. Similarly, the research
on thyroid carcinoma highlights the role of the epithelial-
mesenchymal transition (EMT) and immune cell infiltration in
cancer progression, demonstrating how these pathways can be used
to refine prognostic models (Wu et al.).

The studies on lung cancer immunotherapy (Yan et al.) and the
gastric cancer microbiome (Qian et al.) offer further proof of the
power of multi-omics in uncovering complex disease mechanisms.
In the case of lung cancer, combining genomic, transcriptomic, and
proteomic data provides insights into immune-related pathways,
paving the way for more personalized and effective treatment
options (Li et al.). The study on the gastric microbiome goes a
step further by integrating microbiota data with immune-activated
transcripts, suggesting that specific bacterial species may influence
immune response and tumor progression, thus offering potential
targets for therapeutic modulation (Qian et al.).

Across all studies, the integration of multi-omics data with
machine learning algorithms is repeatedly showcased as a tool for
predicting therapeutic efficacy and patient outcomes (Sun et al.).
Whether through the development of prognostic risk scores
or by uncovering previously unrecognized molecular interactions,
machine learning serves as a bridge between vast amounts
of complex biological data and actionable insights for
personalized medicine.

One of the most compelling aspects of this Research Topic is its
emphasis on synergistic approaches (Amiri et al). The review on
CAR-T cell therapy and CRISPR/Cas9 exemplifies how combining
cutting-edge gene-editing technologies with immunotherapy can
enhance treatment specificity and efficacy (Amiri et al). As CAR-T
cells are increasingly used in the treatment of hematologic
malignancies, the integration of CRISPR/Cas9 holds the promise
of overcoming some of the limitations, such as the tumor’s ability to
evade immune detection. By boosting CAR-T cell persistence and
engineering them to overcome immune suppression, CRISPR-
edited CAR-T therapies could expand the applicability of
immunotherapy to solid tumors, offering new hope for patients
with refractory cancers.

Frontiers in Immunology
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Together, these articles underscore the potential of personalized
immune interventions (Wen et al.) and demonstrate the vast promise
of multi-omics technologies in immunology (Sennikov et al.). They
not only contribute to a deeper understanding of immune responses
but also provide critical insights that will shape the future of
immune-related disease treatments (Zhang et al.). As this
Research Topic shows, the ability to integrate diverse types of
data, from single-cell sequencing to machine learning models,
allows us to build a more comprehensive and nuanced view of
the immune system, its dysregulation in disease, and how best to
tailor therapies to individual patients.

In conclusion, this Research Topic contributes to the growing
momentum towards precision immunotherapy (Chen et al.). It
reinforces the need for interdisciplinary approaches that combine
the power of genomics, transcriptomics, proteomics, metabolomics,
and computational techniques to drive the development of highly
personalized therapies. As we move forward, these strategies will
not only enhance the efficacy of existing therapies but also open the
door to entirely new modalities of immune modulation that could
transform the treatment of cancers, autoimmune diseases,
and beyond.
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Multi-omics analysis and
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Background: Monocytes play a critical role in tumor initiation and progression,
with their impact on prostate adenocarcinoma (PRAD) not yet fully understood.
This study aimed to identify key monocyte-related genes and elucidate their
mechanisms in PRAD.

Method: Utilizing the TCGA-PRAD dataset, immune cell infiltration levels were
assessed using CIBERSORT, and their correlation with patient prognosis was
analyzed. The WGCNA method pinpointed 14 crucial monocyte-related genes. A
diagnostic model focused on monocytes was developed using a combination of
machine learning algorithms, while a prognostic model was created using the
LASSO algorithm, both of which were validated. Random forest and gradient
boosting machine singled out CCNA2 as the most significant gene related to
prognosis in monocytes, with its function further investigated through gene
enrichment analysis. Mendelian randomization analysis of the association of
HLA-DR high-expressing monocytes with PRAD. Molecular docking was
employed to assess the binding affinity of CCNA2 with targeted drugs for
PRAD, and experimental validation confirmed the expression and prognostic
value of CCNA2 in PRAD.

Result: Based on the identification of 14 monocyte-related genes by WGCNA, we
developed a diagnostic model for PRAD using a combination of multiple machine
learning algorithms. Additionally, we constructed a prognostic model using the
LASSO algorithm, both of which demonstrated excellent predictive capabilities.
Analysis with random forest and gradient boosting machine algorithms further
supported the potential prognostic value of CCNA2 in PRAD. Gene enrichment
analysis revealed the association of CCNA2 with the regulation of cell cycle and
cellular senescence in PRAD. Mendelian randomization analysis confirmed that
monocytes expressing high levels of HLA-DR may promote PRAD. Molecular
docking results suggested a strong affinity of CCNA2 for drugs targeting PRAD.
Furthermore, immunohistochemistry experiments validated the upregulation of
CCNAZ2 expression in PRAD and its correlation with patient prognosis.
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Conclusion: Our findings offer new insights into monocyte heterogeneity and its
role in PRAD. Furthermore, CCNA2 holds potential as a novel targeted drug

for PRAD.
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1 Introduction

Based on 2024 U.S. cancer statistics, prostate adenocarcinoma
(PRAD) now surpasses lung cancer as the most common cancer
among men (1). In China, recent data from the China National
Cancer Center in 2022 revealed that PRAD incidence rates have
exceeded those of kidney and bladder tumors based on 2016 data
from 487 tumor registries nationwide (2). The incidence of PRAD
has been on the rise in recent years due to economic and social
development and increased life expectancy. Options for treating
PRAD currently consist of radical radiotherapy, radical
prostatectomy, chemotherapy, and androgen deprivation
therapy, customized based on the progression of the individual
patient’s illness (3). Despite advancements in PRAD treatment,
the 5-year survival rate for patients remains relatively low (4).
Therefore, it is crucial to identify potential prognostic markers
and assess therapeutic targets to improve the prognosis of
PRAD patients.

Monocytes are vital components of the innate immune system
and are indispensable for defending against foreign invaders (5).
There are three primary subpopulations of monocytes: classical,
nonclassical, and intermediate monocytes (6). Monocytes first
mature into classical monocytes in the bone marrow, followed by
differentiation into nonclassical monocytes in the bloodstream,
with an intermediate monocyte phase in between. Numerous
studies have shown that monocytes play a direct role in immune
responses by initiating cell death and phagocytosis (7).
Additionally, monocytes can engage with T cells and natural
killer cells, impacting tumor progression by producing
chemokines (8). Moreover, monocytes have the capability to
transform into various immune cells such as tumor-associated
macrophages and dendritic cells, critical components of the
immune system that actively promote tumor growth and spread
(9). Tumor-infiltrating immune cells play a crucial role in the
pathogenesis of PRAD. Recent research indicates that prognostic
markers linked to M2 macrophages can forecast biochemical
recurrence in patients with PRAD (10). Furthermore, elevated
levels of macrophages in prostate biopsies have been correlated
with disease progression following hormone therapy (11).
Moreover, there is evidence to suggest that circulating monocyte
levels could serve as a biomarker for metastatic PRAD, indicating
a notably unfavorable prognosis (12). Integrated multi-omics,
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machine learning, and artificial intelligence are being more
frequently utilized in the field of medicine (13-17). It is
essential to conduct further analysis on levels of tumor-
infiltrating immune cells and identify genes related to immune
cell infiltration using multi-omics and machine learning
techniques to enhance the accuracy of diagnosis and treatment
for PRAD. The objective of our study is to enhance researchers’
comprehension of the mechanisms underlying tumor immune
infiltration, progress in immunotherapy for PRAD patients, and
offer novel insights for clinical immunotherapy.

The significance of immune cell infiltration in tumors and the
exploration of its potential regulatory genes have been
acknowledged based on existing research. The CIBERSORT
algorithm provides a convenient method for evaluating immune
cell infiltration levels in PRAD. By utilizing this algorithm, we
calculated the infiltration levels of immune cells in TCGA-PRAD
samples and grouped the samples accordingly. Our analysis
revealed that only the infiltration level of monocytes significantly
correlated with the prognosis of PRAD patients. Using the weighted
correlation network analysis (WGCNA) method, we have
discovered prognostic differential genes associated with
monocytes in the PRAD dataset samples from the cancer genome
atlas (TCGA) database. These genes exhibit correlations with
patient stage, Gleason score, and PSA score. Subsequently, we
developed diagnostic and prognostic models using various
machine learning techniques, yielding positive results. By
analyzing the TCGA-PRAD and GSE16560 datasets, CCNA2
emerged as the most promising prognostic gene related to
monocytes in PRAD. Furthermore, we delved into the function of
CCNA2 and its potential interactions with therapeutic drugs for
PRAD. In conclusion, our study lays the groundwork for
understanding the impact of monocytes on the prognosis of
PRAD patients and identifies a novel drug target for
PRAD treatment.

2 Materials and methods
2.1 Data acquisition

The TCGA database provided data on 52 normal prostate
samples and 498 PRAD samples. The monocyte-related gene
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diagnostic model was validated using the GSE62872 and GSE32571
datasets, while the GSE16560 dataset was used for the prognostic
model of monocyte-related genes. In addition, 60 cases of prostate
cancer tissue and paired para-cancerous tissue were obtained from
Shanghai Outdo Biotech Company. The patients included in the
tissue chip study underwent surgery between January 2011 and
December 2014, with a follow-up period extending from November
2021, covering a span of 6 to 10 years.

2.2 Constructing diagnostic and
prognostic models

Use multiple machine learning algorithms to combine into
more than one hundred algorithm combinations to develop the
best PRAD diagnostic model (18). The training set comprised the
TCGA-PRAD data set, with validation sets GSE62872 and
GSE32571. Area under curve (AUC) values were calculated for
each algorithm combination, and the combination with the
highest average AUC was selected as the best. The prognostic
model was based on the least absolute shrinkage and selection
operator (LASSO) regression algorithm and evaluated using 10-
fold cross-validation in R software with the glmnet package
(19, 20).

2.3 Functional analysis of candidate genes

The gene set cancer analysis (GSCA) and CancerSEA
databases were used to analyze the functions of monocyte-
related genes (21, 22). To better understand the oncogenic role
of target genes, the ClusterProfiler package in R was used to
analyze the potential functions of CCNA2 and enrich the Kyoto
encyclopedia of genes and genomes (KEGG) pathway. The R
packages “clusterProfiler” was utilized for the GSEA enrichment
analysis of genes (23).

2.4 Analysis of the correlation between
CCNA2 and immune cell infiltration

The GSCA database was utilized to examine the relationship
between CCNA2 and monocytes. Furthermore, we investigated the
correlation between CCNA2 and markers of monocytes using the
TCGA-PRAD dataset. Additionally, the TISCH2 database was
employed to analyze the association between CCNA2 and
immune cell infiltration (24).

2.5 Immunohistochemical staining analysis
of CCNAZ2 expression in PRAD tissues

The prostate cancer tissue chip was initially placed in an 85°
C oven for 20 minutes, followed by soaking in xylene solution for
20 minutes for dewaxing. Subsequently, the tissue chips
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underwent a series of hydration steps involving immersion in
100%, 95%, 80%, and 70% ethanol for 2 minutes each. The tissue
chip was then treated with citric acid solution and subjected to
boiling in a pressure cooker for antigen retrieval, followed by
cooling in ice water to reach room temperature. The chip was
then rinsed with PBS, circled with a histochemistry pen, sealed
with hydrogen peroxide solution, and cleaned with PBS. Next,
CCNA2 antibody (BOSTER, PB9424) was applied dropwise to
cover the tissue chip, which was left at room temperature for 2
hours. Post-reaction, the chip was rinsed with PBS and the
immunohistochemistry secondary antibody was added
dropwise, left for 20 minutes, and then cleaned with PBS.
Finally, the tissue chip underwent DAB color development,
dehydration in a series of ethanol solutions, sealing, and
microscopic examination to conclude the experiment. The
immunostaining intensity score ranges from 0 to 3, where 0, 1,
2, and 3 represent no reaction, weak reaction, moderate reaction,
and strong reaction, respectively. Following this, a scale based on
the proportion of positive staining is applied, with scores of 1, 2,
3, and 4 corresponding to 0%-25%, 26%-50%, 51%-75%, and
76%-100%, respectively. The final expression score is determined
by multiplying the staining intensity score and the staining
proportion score. This calculation results in a score ranging
from 0 to 5, indicating low expression, and a score from 6 to 12,
indicating high expression.

2.6 Mendelian randomization analysis

The Mendelian randomization analysis in this study
investigated the impact of monocytes on prostate cancer patients
using the MRBASE website (25). The exposure factor selected was
HLA DR++ monocyte %monocyte (ebi-a-GCST90001475) from
the MR Base GWAS catalog, with prostate cancer (EBI-A-
GCST006085) as the outcome. The analysis criteria included a
minimum LD Rsq value of 0.8, a MAF threshold of 0.01, and the
exclusion of palindromic SNPs. Various methods such as MR Egger,
Weighted median, Weighted mode, Simple mode, and Inverse
variance weighted were employed for the analysis.

2.7 Statistical analyses

The level of immune cell infiltration and prognosis of TCGA-
PRAD patients, along with the prognostic analysis of CCNA2 in
prostate cancer tissue chips used in our experiments, were
statistically analyzed using the Log-rank test. The prognostic
analysis of ACSM3 and CCNA2 in TCGA-PRAD and GSE16560
datasets was conducted through COX regression. All correlation
analyses in this study were performed using the Spearman
method. Furthermore, the expression of monocyte-related genes
at different stages, Gleason scores, and PSA scores in the TCGA-
PRAD dataset, as well as the expression differences of CCNA2 in
prostate cancer tissue chips, were analyzed using the Wilcoxon
rank sum test.
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3 Results

3.1 Analysis of the correlation between the
level of immune cell infiltration and the
prognosis of PRAD patients

The tumor immune microenvironment consists of tumor cells,
immune cells, signaling molecules, extracellular matrix, and unique
physical and chemical characteristics (26). This microenvironment
significantly impacts tumor diagnosis, survival rates, and treatment
responses. Immune cell infiltration in tumors is crucial as it can either
help eliminate tumor cells or be manipulated by tumors to promote
growth and metastasis (27, 28). The role of immune cells in cancer
treatment and prevention, as well as their regulatory mechanisms, has
garnered significant attention. An accurate understanding of the
distribution and function of immune cells in tumor tissues is
essential for effective treatment and prognosis assessment (29, 30).
The CIBERSORT algorithm was used to calculate the proportion of
22 immune cells for each sample in the TCGA-PRAD dataset (31,
32). While the infiltration level of 8 types of immune cells in most
samples was 0, our study focused on analyzing the relationship
between the infiltration levels of the remaining 14 types of immune

10.3389/fimmu.2024.1426474

cells and the prognosis of PRAD patients. Our findings suggest that
the infiltration level of monocytes is a significant factor in
determining the prognosis of patients with PRAD. Specifically, a
higher infiltration level of monocytes is associated with a poorer
prognosis for PRAD patients (Figures 1A-N). Furthermore, based on
monocyte infiltration levels, PRAD patient samples were classified
into high and low monocyte groups. We then examined the
percentage abundance of tumor-infiltrating immune cells in each
sample (Figure 10).

3.2 Screening of monocyte-associated
differential genes based on the
WGCNA method

WGCNA is an algorithm utilized for extracting module
information from high-throughput expression data. Our objective
was to identify genes highly correlated with monocytes in the
TCGA-PRAD dataset using this algorithm. To achieve a scale-free
network distribution, we carefully selected the value of the
adjacency matrix weight parameter power. In our analysis, we
determined the power value to be 20 (Figures 2A-D).
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FIGURE 1

Monocyte infiltration correlates with prognosis in PRAD patients. (A—N) Analyzing the correlation between different immune cell infiltrations and

prognosis in PRAD patients. (O) Percentage frequency of different tumor infiltrating immune cells in PRAD samples.
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Subsequently, a weighted co-expression network model was
constructed based on this power value, leading to the division of
the gene set into 5 modules. Notably, the gray module represents
genes that do not align with any specific module and lack reference
significance (Figure 2E). Using the Pearson correlation algorithm,
we found that the turquoise module has the strongest correlation
with monocytes (Figure 2F). We conducted differential analysis on
TCGA-PRAD samples with a significance level of P < 0.05 and Log2
(Fold Change) >1.3 or Log2 (Fold Change) < -1.3 as the selection
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criteria. Subsequently, we generated a volcano plot to visualize the
analysis outcomes (Figure 2G). Our findings indicated a link
between high levels of mononuclear cell infiltration and poor
prognosis in PRAD patients. Through the intersection of genes in
the turquoise module with prognostic risk factors in the TCGA-
PRAD dataset and genes highly expressed in PRAD, we identified a
total of 14 monocyte-related prognostic differential genes
(Figure 2H). Importantly, these 14 genes were found to be
positively correlated with each other (Figure 2I).

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

3.3 Functional analysis of monocyte-

related prognostic differential genes

The study initially examined the relationship between 14 genes and

clinicopathological characteristics of PRAD patients, illustrating this

correlation through a heatmap (Figure 3A). Additionally, expression

heatmaps were generated for the 14 genes in TCGA-PRAD samples

and normal prostate tissue (Figure 3B). Friends analysis aimed to

develop a gene interaction network, leveraging network topology to

assess gene importance and identify key genes. Notably, TACC3

emerged as the central gene within this network (Figure

3C). A co-

expression network diagram was constructed with TACC3 at its core,
revealing that ACSM3 exhibited no correlation with TACC3, while the
remaining 13 genes showed significant correlations with TACC3
(Figure 3D). The expression levels of CCNA2, CDK1, CKS2, EZH2,
HMGB3, KHDC4, KIF2C, PKMYT1, and PLK1 were found to vary
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significantly across different T stages, N stages, Gleason scores, and
PSA scores in TCGA-PRAD samples (Figures 3E-H). Utilizing the
CancerSEA database, which is tailored to decode the diverse functional
states of cancer cells at a single-cell level, we investigated the functions
of these 14 genes in PRAD. Our analysis revealed that these genes play
roles in DNA repair, cell cycle regulation, proliferation, inflammation,

and stemness (Figure 3I). Furthermore, through enrichment analysis,

we discovered that these genes are primarily associated with cell cycle

processes (Figure 3]).

3.4 Multiple machine learning

combinations to build PRAD

diagnostic models

In order to develop a PRAD-related diagnosis model, we utilized
three PRAD datasets: the TCGA-PRAD dataset for training, and the
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FIGURE 3

Monocyte-associated prognostic differential genes play an important role in PRAD. (A) Heatmap of monocyte-associated prognostic differential
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GSE62872 and GSE32571 datasets for validation. Out of 94 algorithm  values for the validation sets GSE62872 and GSE32571 were 0.674
combinations, the Enet[alpha=0.4] algorithm was identified as the = and 0.945. The diagnostic model built by the Enet[alpha=0.4]
most effective for constructing the diagnostic model (Figure 4A). The  algorithm featured six genes: ACSM3, EZH2, HMGB3, KHDC4,
AUC value for the TCGA-PRAD training set was 0.9, while the AUC ~ MAZ, and TK1 (Figure 4B). Additionally, ROC curves for these six
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genes in the TCGA-PRAD, GSE62872, and GSE32571 datasets were
presented (Figures 4C-H). The AUC values of ACSM3, EZH2,
HMGB3, KHDC4, MAZ, and TK1 in the TCGA-PRAD dataset are
0.606, 0.894, 0.787, 0.734, 0.805, and 0.815, respectively. Similarly, in
the GSE62872 dataset, these values are 0.618, 0.621, 0.570, 0.624,
0.624, and 0.475. While the diagnostic potential of these genes for
PRAD in the initial dataset is significant, it lacks precision. To address
this, we conducted further analysis using the GSE32571 dataset as a
validation set, where the AUC values for the six genes were 0.791,
0.863, 0.777, 0.580, 0.824, and 0.834.

3.5 Constructing prognostic model

To enhance the prediction accuracy of PRAD patient prognosis,
we developed a prognostic model utilizing monocyte-related genes
through the LASSO algorithm. This model incorporated 9 genes,
with corresponding risk scores calculated as follows: ACSM3*
(-0.17156) +CCNA2*(0.11148) +CDK1*(0.05883) +CKS2*
(0.09723) +EZH2*(0.20259) +KHDC4*(0.10915) +PLK1*
(0.02555) +TACC3*(0.14386) +TK1%(0.08982) (Figures 5A, B).
Initial validation in the GSE16560 dataset indicated a notably
poorer prognosis for patients classified in the high-risk group
compared to those in the low-risk group. Additionally, our
prognostic model exhibited predictive abilities for 1-year, 5-year,
and 7-year prognoses of PRAD patients, with corresponding AUC
values of 0.667, 0.650, and 0.668, respectively (Figures 5C-E).
Subsequent validation in the TCGA-PRAD dataset confirmed the
accuracy of our prognostic model in predicting patient outcomes,
particularly for 1-year and 7-year prognoses. However, the
predictive ability for the 5-year prognosis of PRAD patients was
found to be moderate (Figures 5F-H).

3.6 Multiple machine learning approaches
to identify monocyte-associated
prognostic genes

The key genes incorporated into the prognostic model were
further analyzed. These genes were primarily associated with the
cell cycle and activation of the hormone AR (Figure 6A). Validation
from the CancerSEA database confirmed that these prognostic
genes were linked to DNA repair, cell cycle, proliferation,
angiogenesis, and inflammation (Figure 6B). Utilizing the GBM
and Random Forest algorithms, we identified the top 5 genes most
relevant to the prognosis of PRAD for display. CCNA2 and ACSM3
were found to have significant prognostic value in both the TCGA-
PRAD and GSE16560 datasets (Figures 6C-F). Subsequently,
prognostic KM curves for CCNA2 and ACSM3 were presented,
revealing an opposite prognostic difference for ACSM3 in the two
datasets, possibly due to insufficient sample size. However, the
prognostic difference for CCNA2 in the two datasets remained
consistent (Figures 6G-]). Thus, among monocyte-related genes,
CCNA2 was identified as the gene with the highest prognostic
correlation with PRAD.
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3.7 CCNAZ2 is associated with monocyte
infiltration in PRAD

In order to further investigate the relationship between the
genes screened in PRAD and immune cell infiltration, we
conducted an analysis on the correlation between CCNA2
expression in PRAD and monocytes using the GSCA database.
Our results revealed a positive correlation between CCNA2
expression and the level of monocyte infiltration, with a
correlation coefficient of 0.23 (Figure 7A). Furthermore, we
conducted a correlation analysis on the TCGA-PRAD dataset to
explore the relationship between CCNA2 expression and monocyte
markers. Our findings indicated a significant association between
CCNA2 and the monocyte markers CD14 and HLA-DRA
(Figures 7B, C). In light of our research, we observed a strong
correlation between CCNA2 and the monocyte marker HLA-DRA.
Subsequently, we conducted further analysis to investigate the
connection between monocytes expressing high levels of HLA-DR
and prostate cancer using Mendelian randomization. Our results
indicate that monocytes with elevated HLA-DR expression
contribute to the progression of prostate cancer (Figure 7D). The
correlation between CCNA2 and immune cell infiltration in PRAD
was investigated using single cell analysis from the TISCH2
database. Our findings revealed that CCNA2 was linked to the
levels of monocytes and macrophages infiltration in the
GSE137829, GSE141445, GSE172301, and GSE176031 datasets
(Figures 7E-I).

3.8 Gene enrichment analysis of CCNA2

KEGG analysis revealed that CCNA2 is associated with various
pathways in PRAD, including the cell cycle, Human T-cell leukemia
virus 1 infection, Proteoglycans in cancer, and Regulation of actin
cytoskeleton. Additionally, it is linked to pathways like p53
signaling, TGF-beta signaling, and AGE-RAGE signaling in
diabetic complications (Figure 8A). GSEA analysis further
highlighted the role of CCNA2 in the immune microenvironment
of PRAD, potentially influencing immunotherapy through the PD1
signaling pathway. The association of CCNA2 with transcription
factors such as P53, HSF1, and MYC was noted, although
experimental validation is needed. Furthermore, CCNA2 was
found to regulate PRAD cell senescence, apoptosis, and
ferroptosis (Figures 8B-]).

3.9 Analysis of CCNA2 and drug affinity in
metastatic PRAD

In order to assess the binding affinity of the key gene CCNA2
with PRAD-targeted drugs, we utilized molecular docking methods
for analysis. The CB-Dock2 website, known for its molecular docking
analysis capabilities, facilitated our research. The Vina score was
employed to measure the binding affinity between genes and drugs. A
Vina score below -5 indicates strong binding activity, with lower
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Prognostic model constructed based on monocyte-related genes has strong predictive value for the prognosis of PRAD patients. (A, B) Prognostic
modeling based on the LASSO algorithm. (C) Heatmap of expression of prognostic model genes included in the GSE16560 dataset. (D) Prognostic
differences between patients in the high- and low-risk groups in the GSE16560 dataset. (E) Predictive value of the GSE16560 dataset risk score for
prognosis in patients with PRAD. (F) Heatmap of expression of prognostic model genes included in TCGA-PRAD dataset. (G) Prognostic differences
between patients in the high- and low-risk groups in TCGA-PRAD dataset. (H) Predictive value of the TCGA-PRAD dataset risk score for prognosis in

patients with PRAD.

scores indicating higher binding activity. The results of our GSEA
analysis revealed a close relationship between CCNA2 and the PD1
signaling pathway. We further investigated the molecular binding
affinity of CCNA2 with PD1 inhibitors and found a strong affinity in
their molecular structures. With a vina score of -8.7, indicating high
binding ability (Figure 9A). Additionally, we examined the binding
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ability of targeted drugs for metastatic PRAD - Bicalutamide,
enzalutamide, and abiraterone - to CCNA2. Our findings
demonstrated a strong binding ability of CCNA2 to these drugs at
a molecular level (Figures 9B-D). These results not only suggest that
CCNA2 may enhance the anti-cancer effects of these drugs but also
support the potential of CCNA?2 as a drug target.
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CCNA?2 identified as the best prognostic gene among monocyte-associated genes. (A, B) Functional analysis of monocyte-related prognostic genes.
(C, D) GBM and RandomForest algorithms to screen key prognostic genes in the TCGA-PRAD dataset. (E, F) GBM and RandomForest algorithms to
screen key prognostic genes in the GSE16560 dataset. (G, H) KM curves of CCNA2 and ACSM3 in the TCGA-PRAD dataset. (I, J) KM curves of
CCNA2 and ACSM3 in the GSE16560 dataset.

3.10 Expression and prognostic value of
CCNA2 in PRAD

In this study, we investigated the role of CCNA2 as a monocyte-
related gene in PRAD. A total of 60 paired PRAD samples and
corresponding paracancerous samples were collected for analysis of
CCNAZ2 expression differences using immunohistochemical
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staining. Our results showed a significantly higher expression of
CCNA2 in PRAD compared to normal tissues (Figure 10A). Violin
plots were also utilized to visually represent the expression
variances of CCNA2 in PRAD and normal tissues (Figure 10B).
Furthermore, we assessed the diagnostic potential of CCNA2 for
PRAD and found promising results, although further validation
with larger sample sizes and clinical experiments is necessary
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(Figure 10C). Additionally, our analysis revealed a correlation
between CCNA2 expression and the prognosis of PRAD patients,
indicating a poorer prognosis for those with high CCNA2
expression levels (Figure 10D). Notably, CCNA2 showed strong
predictive value for the prognosis of PRAD patients (Figure 10E). In
conclusion, our experimental findings confirm the differential
expression and prognostic implications of CCNA2 in PRAD.
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4 Discussion

PRAD is a highly aggressive tumor with a poor prognosis, often
being detected in advanced stages with metastasis (33). Biomarkers
are essential in evaluating the therapeutic efficacy and prognosis of
tumors and can be an essential component of precision medicine
(34). Identifying PRAD and exploring new immune-related
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prognostic markers can significantly improve the efficacy of
immunotherapy for individuals with this condition. The
progression of tumors is closely connected to changes in the
tumor microenvironment, where tumor cells impact their
surroundings by releasing various chemokines and cytokines (35).
Delving into the PRAD tumor microenvironment and discovering
novel immune-related markers are essential for developing targeted
therapeutic drugs and enhancing patient prognosis.
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Research on monocytes in PRAD is increasing, with studies
demonstrating their ability to stimulate PRAD cell invasion through
pro-inflammatory cytokines (36). Circulating monocytes in metastatic
PRAD patients have been found to secrete CHI3L1, promoting tumor
growth (37). Our study revealed a correlation between higher levels of
monocyte immune infiltration and poorer patient prognosis, aligning
with previous findings on the carcinogenic role of monocytes. Through
WGCNA analysis, we identified 14 monocyte-related genes. Among
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CCNA2 is highly expressed in PRAD and is associated with poor patient prognosis. (A, B) Differential expression of CCNA2 in PRAD. (C) Diagnostic
predictive value of CCNA2 in PRAD. (D) KM curve of overall survival of CCNA2 in PRAD. (E) Prognostic predictive value of CCNA2 in PRAD.

these genes, CCNA2, CDK1, CKS2, EZH2, HMGB3, KHDC4, KIF2C,
PKMYT1, and PLK1 were found to be associated with various PRAD
stages, Gleason scores, and PSA scores, further highlighting their
significance in PRAD. Previous studies have also highlighted the
importance of CCNA2 in PRAD using WGCNA analysis, but its
prognostic value and correlation with monocytes have not been
confirmed with clinical samples (38). CDK1 has been identified as a
key player in promoting tumor metastasis in prostate cancer cells
through its influence on the epithelial-mesenchymal transition process.
This is achieved by regulating the phosphorylation of the ERK/GSK3[3/
SNAIL pathway (39). Additionally, CDK1 has been found to modulate
the phosphorylation of the androgen receptor, with its inhibitors
demonstrating the ability to enhance the effectiveness of
enzalutamide in targeting prostate cancer cells (40, 41). Aberrant
expression of CKS2 promotes prostate tumorigenesis by promoting
proliferation and inhibiting programmed cell death (42). EZH2,
HMGB3, KIF2C, PKMYT1 and PLKI1 have also been confirmed to
be related to PRAD progression (43-47). Subsequently, we developed a
diagnostic model for monocyte-related genes using machine learning
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techniques. The Enet[alpha=0.4] method was the most recent
approach employed to construct a diagnostic model for PRAD. Our
analysis revealed that the diagnostic models built on the training set
TCGA-PRAD and validation set GSE32571 demonstrated strong
predictive value. However, in the validation set GSE62872, the AUC
value was only 0.674, potentially influenced by the expression of TK1.
Due to the imbalanced distribution of samples in the TCGA-PRAD
data set, with only 10 patients deceased out of 498 samples, we opted to
develop a prognostic model using the GSE16560 data set and validate it
with the TCGA-PRAD data set. Our findings indicate that the
prognostic model we created demonstrated robust predictive
capabilities for the prognosis of PRAD patients, particularly at the 1-
year and 7-year. GBM and RF algorithms were utilized to identify the
genes most pertinent to PRAD prognosis within the monocyte-related
genes. CCNA2 and ACSM3 were initially identified as the most
relevant genes, but due to inconsistencies with prognostic correlation
results in the TCGA-PRAD and GSE16560 datasets, ACSM3 was
subsequently excluded. Ultimately, CCNA2 was identified as the gene
most relevant to PRAD prognosis among the monocyte-related genes.
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Single-cell genomics offers a novel approach to investigate the tumor
immune microenvironment by conducting genomic analysis at the
single-cell level. An increasing number of studies are utilizing this
method to gain valuable insights (48-50). The correlation between
CCNA2 and monocytes was examined using data from the TISCH2
websites. Our analysis showed a positive relationship between CCNA2
and monocyte infiltration levels. Additionally, CCNA2 was found to be
positively associated with the expression of monocyte markers in PRAD.
Through KEGG and GSEA analysis, we uncovered the significant role of
CCNA2 in PRAD, potentially regulating cell senescence, apoptosis, and
ferroptosis. Investigation into the correlation between CCNA2 and
therapeutic drugs for PRAD revealed a strong binding affinity between
CCNA2 and three specific drugs targeting PRAD. Moreover, CCNA2
exhibited strong binding capabilities with PD1 inhibitors, suggesting its
potential as a drug targeting PRAD. However, our study is limited by a
small sample size, which may have impacted our findings. It is essential
to expand the sample size and validate these conclusions through
further experimentation.

5 Conclusion

Our study highlighted the significant roles of monocyte-related
genes in PRAD. Furthermore, we created and tested models utilizing
different machine learning techniques to forecast the diagnosis and
prognosis of PRAD patients. These results enhance our comprehension
of monocyte infiltration patterns and underscore the significance of the
monocyte-related gene CCNA2 as a valuable prognostic and diagnostic
indicator for PRAD. These insights pave the way for personalized
treatment strategies for patients with PRAD.
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Anoikis resistance regulates
immune infiltration and drug
sensitivity in clear-cell renal cell
carcinoma: insights from muilti
omics, single cell analysis and in
vitro experiment

Xiangyang Wen, Jian Hou?', Tiantian Qi*!, Xiaobao Cheng?*,
Guogiang Liao*, Shaohong Fang®, Song Xiao*,

Longlong Qiu* and Wanging Wei*

The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China, 2Department
of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China, *Department of Bone & Joint

Surgery, Peking University Shenzhen Hospital, Shenzhen, China, “Department of Urology, Lianshui People’s
Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China

Background: Anoikis is a form of programmed cell death essential for preventing
cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor
progression. However, this phenomenon is underexplored in clear-cell renal cell
carcinoma (ccRCC).

Methods: Using SVM machine learning, we identified core anoikis-related genes
(ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model
stratified patients into risk groups, informing a prognostic model. GSVA and
ssGSEA assessed immune infiltration, and single-cell analysis examined ARG
expression across immune cells. Quantitative PCR and immunohistochemistry
validated ARG expression differences between immune therapy responders and
non-responders in ccRCC.

Results: ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting
ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced
M1 macrophage presence, indicating an immunosuppressive environment
facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in
Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical
analysis reveals that ARGs protein expression is markedly elevated in ccRCC
tissues responsive to immunotherapy.

Conclusion: This study establishes a novel anoikis resistance gene signature that
predicts survival and immunotherapy response in ccRCC, suggesting that
manipulating the immune environment through these ARGs could improve
therapeutic strategies and prognostication in ccRCC.
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1 Introduction

Clear-cell renal cell carcinoma (ccRCC) represents the most
prevalent subtype of renal carcinoma, accounting for approximately
75% of all kidney cancer cases (1). Surgical intervention and
chemotherapy currently dominate the therapeutic landscape for this
malignancy. Despite a relatively high overall survival rate associated
with ¢cRCC, the occurrence of metastasis in advanced stages
drastically reduces the five-year survival rate to below 8% (2). Due
to the high recurrence rate and poor prognosis of kidney cancer, it is
crucial to inhibit the distant metastasis of renal tumor cells. Whereas
tumorigenesis and metastasis are closely related to changes in the
tumor microenvironment and the migration ability of tumor cells (3).

Anoikis, a programmed cell death, is triggered by the loss of
interactions between cells and the extracellular matrix (ECM) (4).
In normal cells, these interactions are disrupted by molecules that
initiate anoikis on the cell surface and by glycosylated ECM
proteins, leading to apoptosis and cell death. The ECM confines
tumor cells to a fixed site within the tissue. Tumor cells that acquire
migratory capabilities and move to vascular sites develop resistance
to anoikis, allowing them to metastasize to distant locations via the
bloodstream, thus forming metastatic foci (5-7). Recent studies
have uncovered molecular pathways and mechanisms that regulate
resistance to anoikis, including cell adhesion molecules, growth
factors, and signaling pathways that induce epithelial-to-
mesenchymal transition (8). Downstream molecules in these
pathways, such as PI3K/AKT (9) and ERKI1/2 (10), play
significant roles in apoptosis resistance and survival promotion.
The latest research indicates that the Hippo pathway and collagen
XIII are linked to anoikis resistance in breast cancer (11, 12).

T cells in the body perform surveillance functions, identifying
and eliminating abnormal cells, thereby restricting the survival of
tumor cells. The role of immune cell infiltration in shaping the
tumor microenvironment and influencing tumor progression has
been well recognized (13, 14). Numerous studies have highlighted
the impact of immune cell apoptosis on the development and
progression of various malignancies, including lung, breast, and
endometrial cancers. For instance, research by K. Planells et al.
suggested that silencing FAIM2 can inhibit the survival and drug
resistance by regulating T cells (15). Additionally, the influence of
L1CAM on the prognosis of endometrial cancer has been associated
with its role in promoting Treg infiltration, thus impairing
resistance to apoptosis (16). While existing research has
elucidated the link between immune cell apoptosis and the
prognosis of various cancers (17, 18), tumor cells can evade
immune detection by acquiring resistance to anoikis (19).
Although clinical treatments for kidney cancer include radical
surgical interventions, chemotherapy and immunotherapy, there
is still a lack of recognized and reliable standard predictors for the
diagnosis and prognosis of early-stage kidney cancer. The
relationship between immune cells and anoikis, as well as the
impact of anoikis on the survival of ccRCC patients, has been
minimally explored. Exploring the abnormal performance of
immune cells and anoikis within renal cancer tissues holds the
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potential to uncover new molecular biomarkers that could enhance
the accuracy of renal cancer diagnosis and prognosis assessment.

In this study, we developed a prognostic model related to
anoikis that stratifies ccRCC patients into different risk categories.
Through multi-omics and single-cell analyses, we elucidated the
relationship between anoikis and immune cell infiltration across
various risk groups. To gain insight into the role of anoikis in cancer
immunotherapy, we further explored its relevance to the tumor
microenvironment. We investigated its relationship with various
immune processes and factors, including immune cell infiltration,
immunosuppressive factors, and immunostimulatory factors.
Moreover, using quantitative real-time PCR (qRT-PCR) and
immunohistochemistry (IHC), we validated the expression
patterns of four anoikis-related genes in ccRCC patients
responding to immunotherapy. This reveals the potential role of
anoikis in influencing the efficacy of immunotherapy and provides
novel targets for immunotherapeutic strategies.

2 Materials and methods
2.1 Data collection process

The Figure 1 shows the flowchart of this study. The
“TCGAbiolinks” R package was utilized to retrieve transcriptional
data for clear cell renal carcinoma from the TCGA database
(TCGA-KIRG; http://cancergenome.nih.gov). We downloaded the
data of 542 ccRCC tumor tissues and 72 adjacent non-tumoral
tissues. While the chi-square test was applied to compare the
clinical characteristics of the two data sets to ensure that random
matching did not bias the distribution of clinical characteristics.
Anoikis-related genes (ARGs) were sourced from the GeneCards
database (https://www.genecards.org/), resulting in the acquisition
of 358 ARGs. Single-cell data and a validation cohort for ccRCC
transcriptomes were procured from the GEO database.

2.2 Differential ARGs identification

We performed differential gene expression analysis on the
TCGA-KIRC dataset (including tumor and adjacent non-tumor
RNA transcriptomes) using the limma software package to identify
differentially expressed genes (DEGs) (P < 0.05) (20). An
intersection with the 358 ARGs vyielded a subset of differential
ARGs for subsequent analyses.

2.3 Anoikis functional enrichment

The R packages “GSVA” (21) and “GSEABase” (22) were
employed to perform enrichment analysis on the DEGs. The
focus of the analysis was to identify the enrichment levels of the
anoikis-DEGs on KEGG (Kyoto Encyclopedia of Genes and
Genomes) and GO (Gene Ontology) (23). In addition, we have
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FIGURE 1
The workflow of this study.

applied Cytoscape software (24) and the STRING database (https://
cn.string-db.org/) to explore the protein-protein interactions (25).

2.4 Construction of anoikis-related
prognostic risk model

First, we selected core prognostic anoikis-related genes (ARGs)
using the SVM-RFE algorithm (26). Then, we evaluated the
relationship between ARG expression levels and survival in
ccRCC patients with univariate Cox regression analysis. Further,
we constructed a prognostic model using LASSO Cox regression,
utilizing the R packages “survival” and “forestplot”. Subsequently,
multivariate Cox proportional hazards regression analysis was
conducted to identify critical clinical phenotypes.

The risk score was calculated as the sum of the products of the
coefficients and the expression levels of core ARGs (27). We
categorized patients into high-risk and low-risk groups based on
ARGs-Riskscore median value. In addition, we performed principal
component analysis (PCA) mix with Kaplan-Meier analysis to
investigate the relationship between the anoikis-based risk scoring
and overall survival of ccRCC patients (28). The accuracy of the
predictive model was further evaluated using ROC curves. At last,
we applied univariate-multivariate Cox regression to validate the
predictive power of this risk score model.

2.5 Construction and validation
of nomogram

Using multivariate Cox and stepwise regression, we
incorporated age, TMN staging, and risk scores to construct a
prognostic Nomogram to predict overall survival in patients with
ccRCC (27, 29). Calibration plots and decision curve analysis
(DCA) were constructed to confirm the model’s efficacy and
clinical relevance (30). We evaluated the prognostic utility of this
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model sequentially in the training and test cohorts and in the entire
TCGA dataset. This evaluation employed receiver operating
characteristic (ROC) curves to assess 1, 3, and 5-year survival
predictions (31). Independent prognostic determinants were
delineated through sequential univariate and multivariate Cox
regression analyses (32), which considered risk scores derived
from patient age, gender, and comprehensive TNM staging. The
development and assessment of the nomogram were facilitated by
the “rms” package in R, ensuring robust discrimination and
calibration capabilities within the training dataset.

2.6 Immune profile of ccRCC patients
based on anoikis resistance

On the basis of the expression of the anoikis-related genes
(ARGs), we divided ccRCC patients into two groups: high-risk and
low-risk. Then we used the ssGSEA approach to profile the cellular
composition of the tumor microenvironment (TME) in the two risk
groups (33), while matrix scores and immune scores were assessed
to identify differences between these categories. Spearman’s analysis
was employed to correlate immune cell characteristics with risk
scores. And we examined the immune profiles of all patients
through various computational techniques (including cibsort,
timer, abs, quantitative, XCELL, and EPIC) (34, 35). Finally, we
employed the ssGSEA methodology to assess the immune
landscape and scrutinized checkpoint molecules to highlight
differences between two groups.

2.7 Single-cell analysis of ccRCC based
on ARGs

We processed single-cell RNA sequence data using the protocol
of the “Seurat” software package (version 4.0.5), while gene
expression levels were normalized using the LogNormalize method.
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Subsequent analysis involved clustering cells and applying t- 2.8 Clinical ccRCC samples collection
distributed Stochastic Neighbor Embedding (t-SNE) to identify

cellular subpopulations. Our next studies focused on the expression Tissue specimens from ccRCC patients who underwent
of four anoikis-related genes (ARGs) in ccRCC immune cell ~immunotherapy were acquired from the Department of Urology
subpopulations, while we used a “CellChat” to study intercellular ~ at the University of Hong Kong Shenzhen Hospital during the
communication between macrophages and dendritic cells. period from January 2022 to January 2024. Identifiable details
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FIGURE 2
ARGs expression patterns in ccRCC. (A) Heat map of ARGs expression. (B) Volcano plot of ARGs differential genes. (C) Enrichment analysis. (D) KEGG
analysis based on ARGs. (E) DEGs of ARGs. (F) Univariate Cox analysis on ARGs.
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concerning the origins of these tissues were excluded, and the Ethics
Committee of the hospital granted approval for this research.

2.9 cDNA production and PCR analysis

All cells were acquired from Procell Life Science & Technology
Co., Ltd., and maintained in Dulbecco’s Modified Eagle Medium
(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1%
Penicillin-Streptomycin. The culture conditions were set at 37°C
with 5% CO2 (36, 37). Cells at a density of 5x10/5 were plated in
six-well plates and incubated for 48 hours. Subsequently, cellular
lysis was performed using TRIzol (Invitrogen). RNA was then

10.3389/fimmu.2024.1427475

extracted using a Total RNA Kit. A spectrophotometer was
employed to assess the concentration and purity of the RNA.
Following this, cDNA synthesis was conducted using an mRNA
Reverse Transcription Kit (Roche). Finally, the quantification of
target gene expression was achieved by employing a SYBR Green
RNA Kit as per the manufacturer’s instructions (38).

2.10 Immunohistochemistry

Immunohistochemistry (IHC) was used to validate differential
expression levels of anoikis-related genes (ARGs) in ccRCC clinical
samples. First, the ccRCC tissue sections were deparaffinized with
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xylene and washed stepwise with ethanol to rehydrate them. These
sections were then treated with 3% hydrogen peroxide for 15 minutes
to inhibit endogenous peroxidase activity, followed by antigen
retrieval using 1 mM EDTA. Subsequently, the sections underwent
overnight incubation at 4°C with antibodies against the model genes,
diluted at a ratio of 1:200 (SANTA CRUZ). Following this, we applied
PolyHRP Anti-Mouse/Rabbit IgG Detection System (Solarbio,
China) and visualized the proteins using diaminobenzidine.
Hematoxylin was used for counterstaining before the sections were
dehydrated. The prepared slides were examined under a Zeiss

10.3389/fimmu.2024.1427475

microscope. For quantitative analysis, the staining intensity was
measured and analyzed using Image] and GraphPad Prism version
7 software. Statistical significance was established at P-value < 0.05.

2.11 Statistical analysis

Statistical analyses in this study got executed utilizing the R
software (release 4.0.2, https://www.r-project.org). Student’s t-test
was applied to calculate the DEGs. Comparisons of overall survival

A consensus CDF B consensus matrix k=2
-2
o3
o
o
=6
-7
ms
LI
00
C D
tSNE
o ,
o~ %8 | arcciuster I e 3 ARGcluster
: P g T
= B Bl 4 B
-4
& O
-4 0 4 8
UMAP1
E F
1.00
> ARGluster
= -A
;;OJS - LI )H Il ‘ [ RRTTIR]
P . ¥ ‘
g o ! WHIJ Hh‘ I ‘\ il I ‘\‘ \‘1] il e
@ 025 p<0.001 i H#“I‘H ‘\ i HH\\‘ H i HH\ H‘ i “‘l:"“\l\; ‘E:
H |
0.00 ! Ww “‘ i \‘\ I H ' Mu\ \ U\w-
[] 2 a § 8 10 2 | ‘\
§ Time(years) 1l i
@ Numberatrisk i
S Af3s1 272 170 78 34 1 1 | | ‘ I ‘“ \“ ‘ \M ..... o
G elums B w2 7 2 0 il K
S ] 2 3 [ ] 0 12
Time(years)
G ARGcluster E5A B
F T T
9
R =
'G
[}
2 .
Q. o .
38 .
o . :
c e
) . . . . .
) =T S B B .
Baf | ;"'-I ':‘ Lt ‘l:
o e —
- . }_ ‘ H s L .8 : o’
u S IR TN
I et
FFTESFSTSIEFESFTESS
N ~
§° o8 VesgtF SRS §
(&) ~ é, )

FIGURE 4

Cluster analysis for ccRCC patients. (A, B) cRCC patients were classified into two clusters based on ARGs profiles. (C, D) UAMP and tSNE analyses.
(E) Survival analysis. (F) Heatmap based on ARGs and clinical characteristics of ccRCC patients. (G) ARGs expression between different clusters.

(***P < 0.001).
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(OS) was performed using Kaplan-Meier analysis coupled with log-
rank testing. P < 0.05 was established for statistical significance.

3 Results

3.1 Molecular insights into ARGs regulation
and prognostic significance in ccRCC

The workflow of this study is depicted in Figure 1, with a
comprehensive methodology described in the Methods section.
Initially, transcriptome data and clinical information of 161 ARGs
were extracted from the TCGA-KIRC cohort. Analysis revealed that
118 ARGs were upregulated, whereas 43 genes showed
downregulation. Expression patterns of these differentially
expressed genes are visualized in heatmaps and volcano plots
(Figures 2A, B). Functional enrichment analysis indicated that the
majority of ARGs are involved in processes such as the extracellular
matrix, positive regulation of the MAPK cascade, regulation of the
apoptotic signaling pathway, and the ERK1 and ERK2 cascade
(Figure 2C), aligning with current insights into the mechanisms of
anoikis resistance. Additionally, the HIF-1 signaling pathway and

10.3389/fimmu.2024.1427475

the PI3K-Akt signaling pathway were implicated in this context
(Figure 2D). A protein interaction network further identified EGFR
as a key upstream signaling molecule (Figure 2E). Finally,
significant correlations between 81 ARGs and the prognosis of
ccRCC were identified, with 23 ARGs serving as potential
biomarkers for favorable prognosis (Figure 2F).

3.2 Anoikis genetic epigenetics and
prognostic biomarkers in ccRCC

To elucidate the genetic underpinnings of ccRCC, a variety of
machine learning techniques were employed for gene screening.
Initially, the SVM-RFE algorithm was utilized to validate the
screening of candidate genes following a 5-fold cross-validation
process (Figures 3A, B). Subsequently, an ensemble RF algorithm
pinpointed feature genes with a significance threshold exceeding 2,
with CDKN2A exhibiting the highest importance (Figure 3C). An
intersection of candidate genes identified by both SVM-RFE and RF
algorithms highlighted 19 ARGs significantly impacting the
prognosis of ccRCC patients (Figure 3D). In pursuit of
understanding the relationships among these pivotal genes,
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correlation analyses were conducted. The results indicated that BID
and PLKI are markers of poor prognosis in ccRCC patients, and
most ARGs demonstrated synergistic interactions (Figure 3E). The
role of mutations in tumorigenesis was also investigated,
particularly focusing on CNV mutation frequencies. Interestingly,
a significant gain was only observed in CDC25C, suggesting that
mutations might not be the primary mechanism influencing anoikis
resistance (Figures 3F, G).

3.3 ARGs unsupervised cluster analysis

Clustering of ccRCC patients was performed based on the
expression levels of 19 ARGs. When k equals 2, the patients were
effectively stratified into two distinct groups (Figures 4A, B).
Validation of clustering efficacy was provided by UMAP and tSNE
scores (Figures 4C, D). Survival analysis indicated significant
prognostic differences between these two subgroups of ccRCC
(Figure 4E), with Group A exhibiting superior overall survival (OS)
compared to Group B. An examination of clinical data revealed
distinct ARG expression patterns and staging characteristics between
the subgroups, where higher ARG expression was associated with
advanced pathological stages (Figures 4F, G).
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3.4 Development and validation of a risk
prognostic model for ccRCC patients

Utilizing LASSO Cox regression and multivariate analysis, four
core ARGs were identified from the 19 ARGs, and a prognostic
model termed ARGs-Riskscore was established (Figures 5A, B).
This model assigns a specific risk coefficient to each anoikis-related
gene to calculate the riskscore, categorizing patients into high-risk
and low-risk groups (Figure 5C). Kaplan-Meier curves
demonstrated poorer survival outcomes for the high-risk group
compared to the low-risk group (Figures 5D, E). ROC curve analysis
revealed that the model’s AUC value exceeded 0.6, indicating
substantial accuracy (Figures 5F-H). Furthermore, in the high-
risk group, the expression levels of CDKN3, PLK1, and BID were
elevated, whereas CCND1 showed higher expression in the low-risk
group (Figure 5I). A higher ARG expression level corresponded to
an increased riskscore (Figures 5], K).

Further, we integrated the risk associated with ARGs and
clinical data from patients with ccRCC to develop a nomogram
that estimates survival probabilities based on age, stage, and risk
scores (Supplementary Figure S1A). Calibration plots confirmed the
nomogram’s accuracy in predicting 1-year, 3-year, and 5-year
overall survival (OS) rates (Supplementary Figure S1B). Analysis
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Immune infiltration in under different risk ccRCC patients (A, B) Immune cells infiltration analysis. (C) Correlation of 23 immune cells. (D) TME score.

(Wilcox test, ***P < 0.001).

of hazard ratios indicated a strong correlation between age, cancer
grade, risk scores, and tumor stage with OS (Supplementary Figure
S1C). Furthermore, analysis of cumulative hazards revealed that
patients with ccRCC who had higher nomorisk scores exhibited
increased mortality risks (Supplementary Figure S1D).

3.5 Anoikis affects tumor
immune microenvironment

The tumor immune microenvironment plays a pivotal role in the
immune evasion processes of cancer. The onset of anoikis resistance is
predicated on achieving immune escape. Consequently, we divided
ccRCC patients into two subgroups based on the expression patterns
of anoikis genes. The findings revealed that patients with high
expression of anoikis genes exhibited significantly higher levels of
immune infiltration, particularly with MDSC cells (Figure 6A),
underscoring a close association between the anoikis process and
the immunosuppressive microenvironment. Enrichment analyses
indicated that, compared to cluster A, the tight junction and PPAR
signaling pathways were significantly enriched in cluster B
(Figures 6B, C), suggesting their major roles in shaping the
immunosuppressive microenvironment. Patients with ccRCC of
different risk levels demonstrated markedly distinct survival
outcomes. Therefore, we further examined the levels of immune cell
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infiltration in patients classified into high-risk and low-risk groups. It
was observed that the proportions of immune cell infiltration varied
between different risk groups of ccRCC patients (Figure 7A). Notably,
Tregs and macrophages MO were significantly more prevalent in
patients at higher risk (Figure 7B). Interestingly, there was a significant
negative correlation between the infiltration of macrophages M0 and
CD8 T cells, and between Tregs and memory CD4 T cells (Figure 7C),
highlighting the crucial impact of the immunosuppressive
microenvironment on anoikis resistance (Figure 7D).

Furthermore, as risk scores increased, changes were noted in the
patterns of immune cell infiltration (Figure 8]). For example, the
infiltration levels of macrophages M0 and Tregs gradually increased
with rising risk scores (Figures 8A, F, H, I). In contrast, other cell
types, such as macrophages M1 and NK cells, showed a decrease in
infiltration as risk scores increased (Figures 8B-E, G).

3.6 Single-cell analysis reveals anoikis
expression pattern in ccRCC

The advent of single-cell technologies has provided a crucial
avenue for exploring cellular subtypes. Utilizing single-cell analysis
and annotation, we categorized cell suspensions from patients
treated with anti-PD-L1 into 24 immune cell subtypes and nine
principal cell types (Figures 9A, C). Importantly, the proportions of
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(*P < 0.05; **P < 0.01; ***P < 0.001).

cellular components from samples of different patients
demonstrated notable disparities. For instance, the Tumor 1
sample predominantly consisted of mono/macrophages, whereas
CD8 T cells predominated in Blood4 (Figure 9D). We further
elucidated the expression and distribution of four core ARGs
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&

constituting a prognostic model across various cell subtypes
(Figure 9E). Our findings reveal that BID exhibits the highest
expression in DC and T proliferation cells, with subsequent
analyses revealing enhanced communication between DC,
proliferative T cells, and other cell subtypes (Figures 9B, F).
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3.7 Evaluation of anoikis gene expression were compared between these two cell types. The primary cell lines
by realtime PCR and IHC were assessed to ensure the reliability of the results (Figure 10A).
Furthermore, upon culturing the cells up to the tenth passage,

To investigate the expression of anoikis genes, primary renal ~ mRNA levels were re-evaluated (Figure 10B). Intriguingly, despite
carcinoma cell lines and normal renal cell lines were cultured, and  the expressions of BID, CDKN3, and PLK1 being consistently
the expression levels of four central anoikis resistance genes (ARGs)  higher in the renal carcinoma cell lines than in the normal renal
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cells across both the primary and tenth passages, shifts in the gene
expression levels among the carcinoma lines were noted. Notably,
the expression pattern of CCND1 demonstrated an inverse trend.
Subsequent analyses involved examining the expression levels of
these four core ARGs in cDNA extracted from normal renal tissues
and renal carcinoma tissues. The results indicated a higher
expression of all four ARGs in the carcinoma tissues
(Figure 10C). Immunohistochemistry confirmed that the protein
levels of ARGs corresponded with the trends observed at the gene
expression level (Figure 11).

3.8 Potency of the anoikis signature in
modulating drug resistance

In order to elucidate the association between the anoikis-related
signature and drug responsiveness, the IC50 indices for various
medications in ccRCC were evaluated (Supplementary Figure S2).
This analysis implies that individuals with renal carcinoma who are
categorized within the high-risk group could exhibit resistance to
both chemotherapy and immunotherapeutic approaches.
Conversely, this suggests opportunities for modulating drug
efficacy through targeted interventions.
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4 Discussion

As the complexity and diversity of clear cell renal cell carcinoma
(ccRCC) become increasingly apparent (39), numerous therapeutic
strategies have been introduced into clinical settings to address this
condition. Cellular molecular-targeted therapy is the most effective
method of treating metastatic ccRCC as patients suffering from
kidney cancer do not respond to radiotherapy and chemotherapy.
The European Urology Association (EUA) and the United States
National Comprehensive Cancer Network (NCCN) recommended
the molecular-targeted drugs as the first and second-line medicine
for metastatic ccRCC. At present, there are no universally accepted
and reliable predictors for the diagnosis and prognosis of ccRCC.
The challenge of accurately predicting outcomes persists,
highlighting the critical need for the discovery of new biomarkers.
These biomarkers are crucial for enhancing the prognosis of ccRCC
(40). The exploration of abnormally expressed genes in ccRCC
tissues can potentially help identify new molecular biomarkers for
the diagnosis and prognosis of ccRCC. Central to this endeavor is
anoikis, a cellular process essential for controlling tumor
proliferation, spread, and future outcomes (41, 42). Research has
linked the development, advancement, and prognosis of ccRCC to
specific genes involved in anoikis (43). The goal of this discussion is
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Immunohistochemical results of ARGs proteins.

to integrate findings on the connection between genes related to
anoikis and the prognosis of ccRCC, examining their potential
relevance in clinical practice and providing a novel theoretical and
practical framework for tailored therapeutic approaches.

In this study, we identified critical roles of anoikis-associated
genes in ccRCC and developed a predictive model. Herein, we
described the differential expression of anoikis-associated genes in
tumor tissues relative to normal samples and investigate the
potential regulatory role of anoikis-associated genes in controlling
the ccRCC immune microenvironment. In addition, we investigated
the relationship between anoikis-associated genes expression levels
and immunotherapy. An analysis of 161 anoikis-associated genes
revealed four that were conclusively linked to the prognosis of
ccRCC. Our study confirmed that BID, CCND1, CDKN3, and
PLK1 showed upregulation in ccrCC tissues, with significantly
higher expression compared to normal cells. It is reasonable to
speculated that these four genes play critical roles in ¢ccRCC
tumorigenesis and progression. This study aimed to gain insights
into the underlying mechanisms associated with the anoikis-
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associated gene that was associated with immune-related factors.
BID, a pro-apoptotic protein in the Bcl-2 family, functions
collaboratively with BAX to facilitate cellular apoptosis (44).
Research by Ji Miao and colleagues showed that the expression
levels of Bid correlate with the susceptibility of liver cancer cells to
chemotherapeutic agents (45). Another key protein, Cyclin D1
(CCND1), a crucial component of the D-type cyclin group,
regulates the progression of the cell cycle (46). Recent studies
suggested the USP10/CCND1 pathway as a potential therapeutic
target for glioblastoma (GBM) patients (47). Investigations by
Hongying Zhang and team found that CCNDI1 suppression,
achieved by gene silencing, impedes the differentiation of hepatic
cancer stem cells by inhibiting autophagy (48). Furthermore, the
expression patterns of CCNDI are strongly correlated with the
initiation and progression of multiple cancer types (49-51).
CDKN3, a cyclin-dependent kinase inhibitor, is identified as a
crucial therapeutic target for cervical cancer (52) and plays a role in
the malignant advancement of pancreatic cancer by interacting with
PSMDI12 (53). Its expression in various cancers modulates
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resistance to treatment. Aolin Li and colleagues demonstrated that
ZNF677 represses the malignant evolution of renal cell carcinoma
through the reduction of CDKN3 expression (54). Furthermore, the
circular RNA c¢ircSDHC binds to miR-127-3p competitively,
thereby diminishing CDKN3 expression in renal cell carcinoma
and curbing its malignant advancement (55). These observations
corroborate our analysis, thereby confirming the precision of
our findings.

Polo-like kinase 1 (PLK1), an eminent serine/threonine kinase
within the protein kinase superfamily, promotes the advancement
of mitosis (56). Elevated levels of PLK1 are commonly observed in
cancerous tissues, highlighting its potential as a target for
therapeutic intervention (57). Suppression of PLK1 enhances the
response of pancreatic cancer cells to immunotherapeutic strategies
(58). Likewise, a reduction in PLK1 activity increases the sensitivity
of breast cancer to radiation therapy (59), whereas enhanced
expression of PLK1 contributes to the development and
advancement of liver tumors (60).

Infiltration of Treg cells is frequently associated with poorer
prognoses across various cancers, and a reduction in Treg cells has
been observed to initiate and enhance antitumor immune responses.
In this study, the risk score exhibited a significant positive correlation
with the level of Treg cell infiltration, whereas an inverse trend was
noted for NK cells, suggesting a critical role for the
immunosuppressive microenvironment in anoikis resistance,
subsequently impacting the overall survival of patients with ccRCC.
The signaling cascade mediated by PPAR, documented to enhance
angiogenesis within tumor matrices (61), is associated with the
pathogenesis of both inflammatory and neoplastic conditions (62).
Furthermore, this pathway has been shown to trigger anoikis in
certain cell types under in vitro conditions (63). Our findings suggest
that the PPAR pathway may serve as a primary mechanism by which
Tregs orchestrate an immunosuppressive microenvironment, thereby
facilitating anoikis resistance, which in turn supports distant
metastasis and immune evasion in ¢cRCC. Conventional surgical
treatment and radiotherapy and chemotherapy cannot be effective to
treat patients suffering from late-stage ccRCC. Maybe more research
should be conducted on the gene targets and immune checkpoint
inhibitors associated with ccRCC as the results can potentially help
predict the prognosis of antitumor immunotherapy. It is worth
noting that the results of our research reflected the association of
anoikis-associated genes with a substantial prognosis of ccRCC and
confirmed the reliability of the analytical results obtained. We may
infer that the modulation of the Anoikis-associated genes activity
associated with ccRCC could potentially help obtain results that can
help improve the therapeutic techniques.

As we know, there is a minor number of relevant researches
currently available to explain the functions of anoikis in ccRCC.
Our work provided valuable information on how the anoikis-
associated gene participated in cancer immunotherapy, which
may potentially help improve the processes of ccRCC targeting
therapy. In our next step, we need to extend the existing database
and mutually authenticate to larger database. Experiments should
be performed at the molecular, cytological, and animal levels to
investigate the relationship between the prognosis of the patients
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and the properties of the clinical tumor tissue samples. We believe
that our results can potentially help for improving the efficiency of
diagnosis, treatment methods, and survival prognosis of
ccRCC patients.

5 Conclusion

In this study, we established the association between anoikis,
immune cell infiltration, and the prognosis of clear cell renal cell
carcinoma (ccRCC) patients through multi-omics and single-cell
analyses. Furthermore, we elucidated their impact on the efficacy of
immune therapy. These findings not only provide novel insights
into the role of apoptosis in cancer progression but also highlight
new research directions for immunotherapeutic strategies
in ccRCC.
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Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type
of kidney cancer, characterized by high heterogeneity and complexity. Recent
studies have identified mitochondrial defects and autophagy as key players in the
development of ccRCC. This study aims to delve into the changes in mitophagic
activity within ccRCC and its impact on the tumor microenvironment, revealing
its role in tumor cell metabolism, development, and survival strategies.

Methods: Comprehensive analysis of ccRCC tumor tissues using single cell
sequencing and spatial transcriptomics to reveal the role of mitophagy in
ccRCC. Mitophagy was determined to be altered among renal clear cells by
gene set scoring. Key mitophagy cell populations and key prognostic genes were
identified using NMF analysis and survival analysis approaches. The role of UBB in
ccRCC was also demonstrated by in vitro experiments.

Results: Compared to normal kidney tissue, various cell types within ccRCC
tumor tissues exhibited significantly increased levels of mitophagy, especially
renal clear cells. Key genes associated with increased mitophagy levels, such as
UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their
high expression closely linked to poor patient prognosis. Particularly, the
ubiquitination process involving the UBB gene was found to be crucial for
mitophagy and its quality control.

Conclusion: This study highlights the central role of mitophagy and its regulatory
factors in the development of ccRCC, revealing the significance of the UBB gene
and its associated ubiquitination process in disease progression.

KEYWORDS

clear cell renal cell carcinoma, mitophagy, mitochondrial gene defects, multi-omics
analysis, metabolic reprogramming, prognostic analysis, non-negative
matrix factorization
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1 Introduction

Renal cancer is a common malignant tumor, with its incidence
continuously increasing worldwide (1). Despite some progress in
treatment, many mysteries still remain regarding the pathogenesis of
renal cancer (2). Clear Cell Renal Cell Carcinoma (ccRCC) is one of the
most common types of renal cancer, occupying a major proportion of
malignant kidney tumors (3, 4). This cancer typically originates from
the epithelial cells of renal tubules and is characterized by high
heterogeneity and complexity (5, 6). Compared to other tumor types,
the treatment options for ccRCC are relatively limited, making it crucial
to deepen our understanding of its pathogenesis for developing more
effective treatment plans (7, 8).

Mitochondrial defects refer to structural or functional
abnormalities in mitochondria, which can be caused by various
factors, including genetic mutations, damage induced by
environmental factors, increased oxidative stress, or damage to
mitochondrial DNA (mtDNA) (9, 10). These defects often lead to
an increased frequency of mitophagy. This is because mitochondrial
defects, such as DNA damage, improper protein folding, increased
oxidative stress, or insufficient energy production, can impair the
normal function of mitochondria (11, 12).

In recent years, increasing evidence has suggested that
mitophagy plays a key role in tumors (13, 14). Mitophagy is an
intracellular self-degradation process through which cells can
remove damaged mitochondria, thereby maintaining
mitochondrial health (15). However, when mitophagy is
dysregulated, it can lead to mitochondrial dysfunction, abnormal
cell metabolism, and cell death (16). The anomalies in mitophagy
associated with ccRCC suggest a close link between the two. In
ccRCC, abnormalities in mitophagy may be caused by various
factors, including changes in the intracellular and extracellular
environment, genetic mutations, and dysregulation of regulatory
pathways (17). These abnormalities not only affect the survival and
proliferation of tumor cells but may also impact tumor
development, invasion, and drug resistance (18).

This study aims to explore the connection between ccRCC and
mitophagy genes through multi-omics analyses such as single-cell
sequencing and spatial transcriptomics, revealing the importance of
potential molecular aspects in the progression of renal
cancer disease.

2 Materials and methods
2.1 Source of raw data

The single cell sequencing data of ccRCC used in this study were
sourced from the Gene Expression Omnibus (GEO, https://
www.ncbi.nlm.nih.gov/geo/) dataset GSE210038, which includes
tumor samples from three patients with ccRCC (GSM6415686,
GSM6415687, and GSM6415689) and one sample of normal
adjacent tissue (GSM6415694). Through the analysis of these
single-cell data, the study delves into the heterogeneity differences
at the cellular level between renal cell carcinoma and adjacent
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normal tissues. The spatial transcriptomics data were also obtained
from the GEO database (GSE210041), covering sequencing data for
two formalin-fixed paraffin-embedded (FFPE) ccRCC tumor
samples. This dataset provides a unique perspective for studying
the spatial distribution heterogeneity of ccRCC and its surrounding
environment. Additionally, RNA sequencing data for ccRCC were
downloaded from the UCSC Xena platform (https://
xena.ucsc.edu/), originating from the TCGA (The Cancer
Genome Atlas) cohort, including sequencing information for 607
samples along with corresponding survival data for survival
analysis, thereby enhancing our understanding of prognostic
factors for ccRCC. Furthermore, genes related to mitophagy were
sourced from the GSEA website (https://www.gsea-msigdb.org/
gsea/index.jsp).

2.2 Processing of single-cell
sequencing data

In this study, we analyzed the single-cell RNA-seq data of
ccRCC using the Seurat package (version 4.3.0) in R (19).
Through strict quality control, cells with a gene expression range
of 200-4000 and mitochondrial gene expression ratio below 20%
were selected. After standardization and normalization of the data,
important principal components were determined using RunPCA
and JackStraw analysis, followed by clustering and visualization
with t-SNE to display the similarities and differences among cells.
Differential expression analysis was conducted using the
FindAllMarkers function, and cell types were annotated in
conjunction with the CellMarker database (http://xteam.xbio.top/
CellMarker/index.jsp), providing a data foundation for revealing
the molecular mechanisms and potential therapeutic targets
of ccRCC.

Five gene set scoring methods (AddModuleScore, ssGSEA,
AUCell, UCell, singscore) were employed to score mitophagy-
related genes in single-cell data. The mitophagy-related genes
were obtained from the GSEA website and include 29 genes. The
proteins encoded by these genes are involved in various processes
including autophagosome formation, the composition of protein
kinase CK2, mitochondrial fusion, mitochondrial fission, and
ubiquitination processes. The use of multiple algorithms enhances
the comprehensiveness, robustness, and biological interpretability
of the assessments, allowing for more accurate determination of
mitophagy in ccRCC. Additionally, clusterProfiler (4.6.2) and fgsea
(1.24.0) were applied for enrichment analysis of single-cell
transcriptomic data of ccRCC, precisely assessing gene set
enrichment for cell types such as clear cells, supporting queries to
various biological databases including GO, KEGG, and Reactome
(20, 21). CellChat R package (version 1.6.1) was utilized to analyze
cell communication patterns (22). CellChat simulates cell
communication based on interactions between signaling ligands,
receptors, and auxiliary factors, revealing how cells collaborate. To
compare metabolic state differences between normal and tumor
tissues, this study used the scMetabolism package (version 0.2.1) for
quantitative analysis of single-cell metabolic pathway activity. We
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also used the scFEA package to carry out flux studies to infer
intracellular metabolites.

In this research, unsupervised non-negative matrix factorization
(NMEF) analysis of single-cell RNA sequencing data was applied using
the NMF package (version 0.27) in R, aiming to explore the mitophagy
characteristics of clear cell clusters (23). The component number was
set to 10 to balance the granularity of different cell state distinctions and
clustering interpretability. NMF results were integrated into the Seurat
framework for dimensionality reduction clustering to identify different
cell clusters. Key genetic markers were screened using the
FindAllMarkers function, and each NMF cell cluster was categorized
based on scores related to mitophagy-related genes and set thresholds.
This method enhanced understanding of cell heterogeneity and tumor
complexity, especially regarding mitophagy. Importantly, the ggplot2
package (version 3.4.2) served as our core tool for result visualization,
offering a powerful and flexible way to create complex graphics based
on the grammar of graphics.

2.3 Processing of spatial transcriptome
sequencing data

In our study, the Seurat package (version 4.3.0) was used for the
processing and analysis of spatial transcriptomics data, including
normalization and feature selection of UMI counts with
“SCTransform”, and dimensionality reduction with “RunPCA”.
Additionally, the scMetabolism package was employed to assess
metabolic features, while the “Monocle” package revealed cellular
development and differentiation processes. In the Python
environment, the Scanpy package processed spatial
transcriptomics data through data preprocessing and
dimensionality reduction with “SCTransform” and “RunPCA”
(24). We also introduced the stLearn package, integrating gene
expression, tissue morphology, and spatial location information to
parse cell types, infer evolutionary paths, and identify cell
interaction areas, providing a comprehensive spatial and
functional perspective to understand tumor complexity (25).

2.4 Integrative analysis of spatial
transcriptomics and single-cell sequencing
data through deconvolution

Through deconvolution analysis, we inferred the proportions of
cell types from mixed samples by combining single-cell and spatial
transcriptomics data, revealing cellular and spatial heterogeneity
within tissues. The “spacerxr” R package was used to perform
RCTD analysis, constructing a reference model based on single-
cell data and loading spatial data to form SpatialRNA objects.
RCTD objects estimated the proportions of cell types in mixed
samples through specific gene expression patterns, providing the
distribution of cell types for each spot in the spatial data. Moreover,
the “mistyR” package was employed to analyze cell interactions,
revealing cellular interactions within tissues, inferring cell
communication networks, and deepening the understanding of
cell communication patterns in the tumor microenvironment (26).
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2.5 Prognostic analysis of mitophagy-
related clear cell subpopulations combined
with bulk data

We explored the potential clinical prognostic value of newly
identified mitophagy-related subpopulations of clear cells. For this
purpose, we conducted an in-depth analysis using bulk sequencing
data. Single-cell sequencing data were processed with the Seurat
package, initially categorizing the identified mitophagy-related clear
cells from patient tumor tissues into high and low expression
subgroups based on their key gene expression levels. Next, the
FindAllMarkers function was utilized to identify marker genes for
these two subgroups. After obtaining the marker genes of key cell
populations, we quantified these genes in bulk sequencing data, thus
constructing high and low-risk groups. Lasso analysis was employed
to filter out key prognostic genes for ccRCC, establishing a
prognostic model based on mitophagy-related genes.

2.6 Cell culture and transient transfection

In our experimental studies, we utilized several cell lines,
including the 786-O and 769-P renal clear cell carcinoma cells.
These cell lines were obtained from the cell bank of the Central
Laboratory at the Southwest Medical University Affiliated Hospital.
To ensure the normal growth and maintenance of these cells, we
cultured them in DMEM (HyClone) medium supplemented with
10% fetal bovine serum (HyClone), 100 U/L penicillin, and 100mg/
L streptomycin (Thermo Fisher Scientific). We maintained
standard culture conditions, including a 5% CO2 atmosphere, to
provide an optimal environment for cell viability and experimental
consistency. For the transient transfection experiments, we used
Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States) as the
transfection reagent. Negative control (NC) and UBB siRNA
(RiboBio, Guangzhou, China) were transfected into the renal
clear cell carcinoma cells according to the manufacturer’s
instructions. This involved preparing a transfection mixture
containing the siRNA and transfection reagent and then adding it
to the cells. The transfection process was generally conducted
within the recommended time frame according to the
manufacturer’s protocol. By using Lipofectamine 3000 as the
transfection reagent, our aim was to efficiently introduce the
negative control or UBB siRNA into the renal clear cell
carcinoma cells for subsequent analysis and research on the
effects of gene knockdown or control on cellular processes and
molecular pathways.

2.7 CCK-8 assay

We evaluated cell viability using the Cell Counting Kit-8 (CCK-8)
assay. Twenty-four hours post-transfection, renal clear cell carcinoma
cells were seeded into 96-well plates at a density of 1500 cells per well,
and 200 pL of complete culture medium was added. The cells were
then incubated at 37°C. For the CCK-8 assay, 10 uL of CCK-8

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1400431
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.

solution (Beyotime, Shanghai, China) was added to each well
containing cells. After incubating for another 4 hours at 37°C,
allowing the reagent to react with the cells, a colorimetric reaction
related to cell viability occurs. At the end of the incubation period, the
optical density (OD450) was measured using a microplate reader.
The OD450 value reflects the absorbance of the formazan product
generated by CCK-8, which is directly proportional to the metabolic
activity and viability of the cells. By quantifying the OD450 values, we
can assess the relative survival rate of the cells and compare them
across different experimental conditions or treatment groups.

2.8 EdU-DAPI double staining assay

After 48 hours of transfection, 10 uM EdU was added and
incubated for 4 hours, followed by fixation of cells with 4%
paraformaldehyde for 10 minutes and permeabilization with 0.5%
Triton X-100 for 5 minutes. EQU staining was performed using the
Click-iT EdU Alexa Fluor 594 Imaging Kit according to the
manufacturer’s instructions, followed by staining of cell nuclei
with 1 pg/mL DAPI for 10 min. Finally, the cells were observed
and images were acquired using fluorescence microscopy. Merge
images were used to analyze cell proliferation.

2.9 Wound healing experiment

To evaluate the migration ability of renal clear cell carcinoma
cells, we employed a wound healing assay. The transfected cells
were cultured in six-well plates and maintained at 37°C until they
reached approximately 80% confluence. A uniform wound was
introduced into the cell monolayer using a 200 pl sterile pipette tip.
After wound formation, the cells were washed twice with PBS to
remove any debris, and then the medium was supplemented with
serum-free culture medium. The process of cell migration into the
damaged area was recorded at 0 hours and 24 hours using an
Olympus inverted microscope.

2.10 Transwell assay

The invasive ability of renal clear cell carcinoma cells was
assessed using a well-established technique in cell biology
research—the Transwell assay. In this assay, a specific number of
renal clear cell carcinoma cells (approximately 1 x 1075) were
seeded into specialized chambers. To evaluate invasion potential,
chambers coated with Matrigel were used. The upper chamber
contained serum-free culture medium to create a chemotactic
gradient, while the lower chamber was filled with complete
DMEM culture medium, providing a favorable environment for
cell movement. After 24 hours of culture, cells that had successfully
invaded through the membrane were fixed with a 4%
paraformaldehyde solution. To observe and quantify the invaded
cells, they were stained with 0.1% crystal violet. The stained cells
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were then observed and counted under an optical microscope,
allowing for the assessment of cell numbers and invasion capability.

2.11 Statistical analysis

The statistical analyses were conducted using R version 4.2.2,
64-bit, along with its support packages. The pycharm integrated
development environment for Python was also utilized. The non-
parametric Wilcoxon rank sum test was employed to assess the
relationship between two groups for continuous variables.
Spearman correlation analysis was conducted to examine
correlation coefficients. A significance level of P<0.05 was
considered statistically significant for all statistical investigations.

3 Results

3.1 Single-cell transcriptome atlas of clear
cell renal cell carcinoma

In this study, we delved into the cellular heterogeneity and
composition of ccRCC and its adjacent normal kidney tissue
through scRNA-seq. To ensure the quality of data and rigor of
analysis, we first performed meticulous quality control, quantifying
multiple quality metrics including the assessment of the number of
feature genes per cell, UMI counts, and the percentage of
mitochondrial and hemoglobin gene expression, thereby
eliminating the interference of senescent cells and erythrocytes
(Figure 1A). Subsequently, we utilized the Harmony package for
batch effect correction based on PCA analysis, which ensured the
reliability of the analysis results while maximally preserving the
original gene expression information of the cells (Figure 1B). By
using the t-SNE algorithm, we performed a visualization of the cell
clustering results, showing 22 cell clusters (Figure 1C). Based on the
cell marker genes, we plotted bubble plots and feature plots to help
us identify cell types by the expression and expression distribution
of these genes (Figures 1D, E). After completing the cell type
identification, we compared the cell distribution and number in
ccRCC samples and normal kidney tissue samples, and observed
that there was a significant increase in the proportion of T cells in
ccRCC tissues (Figures 1F, G). The expression of cell marker genes
in various cell types of cells is demonstrated by gene expression
heatmap to check the accuracy of cell type identification
(Figure 1H). To gain a preliminary understanding of the
metabolic functionality of various cell types in tumor and normal
tissues, we performed flux estimation analysis to infer intracellular
fluxes of metabolites (Figure 1I).

3.2 Exploring mitophagy levels in ccRCC by
gene scoring

To delve into the regulatory mechanisms of mitophagy in ccRCC
and its role in the pathological process, this study quantitatively
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FIGURE 1

Single-cell transcriptomic atlas analysis of renal clear cell carcinoma. (A) Data quality control. Violin plots depict the number of genes per cell
(nFeature_RNA), total transcript counts (nCount_RNA), percentage of mitochondrial genes (percent.mt), and percentage of hemoglobin genes
(percent.HB) to evaluate sample quality. (B) PCA dimensionality reduction of patient samples. Principal component analysis (PCA) results based on
expression profiles show the distribution of cell populations from different patients (ccRCC for tumor tissues of renal clear cell carcinoma patients,
Normal for normal adjacent tissue samples). (C) t-SNE clustering visualization. The t-SNE dimensionality reduction technique reveals 22 distinct cell
populations, each identified by a different color. (D) Marker genes of cell populations. Bubble charts display selected marker genes expressed in
different cell populations. (E) Spatial expression patterns of cell marker genes. The t-SNE plot shows the expression patterns of selected marker
genes. (F) Comparison of cell types between tumor and normal groups. The t-SNE plot shows the distribution of cell populations from the tumor
and normal groups. (G) Stacked bar charts display the proportion of cell type distribution across different patient samples. (H) Heatmap of marker
gene expression. Displays the expression levels of specific marker genes in different cell types. (I) Heatmap of metabolic levels. Shows how active
various cell types are in different metabolic pathways in different samples.

evaluated the activity of mitophagy genes in ccRCC from multiple  the scores of mitophagy gene sets across various cell types through
perspectives using various scoring algorithms, including AUCell,  violin plots and bubble charts (Figures 2A, B). Heatmaps displayed
UCell, singcore, ssgsea, and AddModuleScore, revealing their  the final scores for different cell types (Figure 2C). Comparing the
potential role in tumor development. The analysis vividly presented  scores of cells from different groups and performing Wilcox statistical

Frontiers in Immunology 44 frontiersin.org


https://doi.org/10.3389/fimmu.2024.1400431
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Jiang et al.

10.3389/fimmu.2024.1400431

A
AuCell ucell singscore cell type
100 1.00 100
] B_cell
075 0.75 075 .. - . . . . .
050 ' 050 ' T o= ’ Mastcel{ @ @ © @ @ @  Average Expression
025 025 025 I
Epithelial_cell ! 1
0.00 0.00 ! 0.00 a
\ N DS @O NN & NS e 0D DN
PR RSO RS EFEL L P DR A A ccReC{ @ ] o o -1
e\@q&ie ST e\@&e E3 ’Z}\‘i‘fﬁ S'E ? Q}\o@\oé& e E3 i
S & § §
& & & Macrophage
5 & Qé G ¢ @ e o o Percent Expressed
ssgsea Add Scoring . - 995
06 156 ) Fibroblast{ @ o L] ) . 996
; . ) 4 J ® 97
078 4 03B b 3 Endothelial_cell { @ ® o o ® 998
0.50 050 5 ) : 909
L& S ¢ 100.0
025 i _ ' \ ' T_cell . @
0.00 0.00 i 0 NK ®
SRIIIGAES  SANESENS SASSES AN
&% &90 ,;7\%‘0\\ < @@\ S &0@ é\\@\@” &Q}\Q\i\"?o S \)o«a Qoq}\ %00@ & ‘r& &
& < & <& & <& W S & s
(]
= D tissue_type . ccRCC . Normal
5 e . .
25
4
0 8 2
z
S 8
1
-25 0
-1
g & >
NG 9 <
A S RN Q‘ >
™ &/ v\\é\\fz’/ ¢ \60 c}oQ & ‘(\Q;\\rzy/ @159 7
_50 25 0 25 50 S Ny sz\\
tSNE_1 <
E F
° ° °
3 TOMM20 3 uBC H UBA52
4 4 3 ;
< g <4 < § Tissue Type
@ ? @2 x 3 % ! B ccRcC
23 20 ) B Normal
I ) I o S o
b3 S x O 5 O
w S w & w &
& & &
© ° °
3 RPS27A 3 VDAC1 H TOMM7
3 3 Ja
cé c 3 c3
S3 92 o2
w2 7] 7}
® 1 @1 a1
g 0 g 0 g 0
O O O
x O = 8} x 9}
w R’y w L w L
& & &
° ° °
H uBB z MAPILC3B Z CSNK2B
s 3 3
ci c3 c3
© o2 o2
17} i I ? ] ? ]
w w w
g g 0 g 0
O O O
x x x
|.|.| 089 H 089 “ 089

FIGURE 2

Analysis of cellular metabolic levels. (A) Violin plots of mitochondrial autophagy gene set scores through five gene set scoring methods and an
integrated score. (B) Bubble chart of mitochondrial autophagy gene set expression scores in different cell types, based on the expression level of
specific gene sets. (C) t-SNE plot showing the distribution of metabolic scores among cells, where the depth of color represents the level of scoring,
revealing the metabolic heterogeneity of different cell types. (D) Violin plots comparing mitochondrial autophagy scores differences between tumor
tissues and adjacent normal tissues for each cell type, showing changes in mitochondrial autophagy states in the tumor microenvironment. (E) Violin
plots of differentially expressed mitochondrial autophagy genes between tumor and normal groups. (F) t-SNE plot showing the heatmap of

differentially expressed mitochondrial autophagy genes expression levels in different cell types. "

p-value less than 0.01, "
(p = 0.05).

*" represents p-value less than 0.05, "**" represents

***" represents p-value less than 0.001. "****" represents p-value less than 0.0001. "ns" represents not statistically significant

analysis revealed that the scores of clear cells in the tumor group were
significantly higher than those in the normal group, with statistically
significant differences (p-value < 0.05) (Figure 2D). To further reveal
which mitophagy genes play a key role in the pathogenesis of ccRCC,
differential analysis was conducted between the tumor group and its
normal counterpart, intersecting the resultant differential genes with
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mitophagy-related genes, and obtaining 9 key mitophagy-related
genes with a logFC threshold of 0.5. The results showed that
TOMM?20, UBC, UBA52, RPS27A, and other genes were
significantly upregulated in ccRCC cells (Figure 2E). Notably, these
genes were not only universally upregulated in ccRCC cells but also
widely distributed across various cell subpopulations (Figure 2F).
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3.3 Characteristics of renal clear cells in
the high and low mitophagy level group

We first analyzed the metabolic pathway activity in three ccRCC
samples to determine the metabolic characteristics of ¢ccRCC
(Figure 3A). In these three tumor sample data, we divided renal
clear cells into high and low groups according to the median value of
his mitochondrial autophagy score to explore the effect of mitophagy
levels on renal clear cell function and activity. Enrichment analyses
showed a very significant difference in the functional activity of renal
hyalinocytes between the high and low groups (Figure 3B). There
were also differences in cellular communication between the high and
low groups of renal hyalocytes, with the high mitophagy level group
having a higher level of cellular communication than the low level
group, both in terms of signaling efference and signaling reception, as
well as differences in the structure of the communication patterns
between the two groups (Figures 3C-E). The signaling pathways
ligand receptors they involve also differ markedly in type and strength
(Figure 3F). Differences between the two groups of cells were more
clearly demonstrated by GSVA enrichment analyses, with renal
hyalinocytes generally functioning more actively in the high-level
group than in the low-level group (Figure 3G).

3.4 Application of non-negative matrix
factorization (NMF) in revealing
heterogeneity of mitophagy in renal
clear cells

Non-negative matrix factorization (NMF) is a matrix
decomposition method performed under the constraint that all
elements of the output matrices are non-negative. Compared to
principal component analysis (PCA), NMF has a natural advantage
in analyzing tumor cell heterogeneity. By applying NMF technology
and clustering ccRCC cells based on mitochondrial autophagy-
related genes, we successfully identified five distinct subgroups
(C0-4). To elucidate the potential link between the subgroups
obtained by NMF analysis and mitochondrial autophagy, we
performed differential expression analyses of cells in these
subgroups. We obtained the differentially expressed genes for each
subgroup and developed a series of rules to identify cell types:
1.differentially expressed genes were ranked according to logFC
values. 2.If the first gene was a mitochondrial autophagy-related
gene with a logFC value greater than 1 and a P value of less than 0.05,
then the cell population was defined as a cell population marked by
this gene. 3. If the first gene is a mitochondrial autophagy-related
gene but its logFC value is less than 1 or its P value is greater than
0.05, then the cell population cannot be defined. 4. if the first gene is
not a mitochondrial autophagy-related gene, then the cell population
is defined as a non-mitochondrial autophagy cell population (Non-
Mitophagy). With this approach, we were able to identify and
categorize cell populations more clearly. The results yielded four
subgroups: Unclear-ccRCC-C3, Non-Mitophagy-ccRCC-C4,
CSNK2B+ccRCC-C1, MAP1LC3B+ccRCC-C2 (Figure 4A). Among
them, Unclear-ccRCC-C3 was named due to the most significant
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gene logFC not meeting the selection criteria, and the Non-
Mitophagy-ccRCC-C4 subgroup’s most significant gene was not a
mitochondrial autophagy gene. We performed a series of analyses on
the four cell subpopulations of renal clear cells obtained to investigate
differences in functional activity and biological heterogeneity. The
results of the Hallmark enrichment analysis showed that the Non-
Mitophagy cell population (C4) was significantly different from the
remaining three populations, which happen to be the ones that are or
may be related to mitophagy (Figure 4B). GSVA enrichment analysis
also demonstrated concordant results, which further demonstrated
the accuracy of the NMF analysis in identifying the mitophagy renal
hyalinocyte subpopulation (Figure 4E). For the two identified
populations of mitophagy -associated renal clear cells (CSNK2B
+ccRCC-C1 and MAP1LC3B+ccRCC-C2), we performed separate
GO enrichment analyses for further exploration of these two key cell
types (Figures 4C, D). In the transcription factor analysis, opposite
results were presented, with a stronger relationship between the Non-
Mitophagy cell population and the transcription factors (Figure 4F).
The cellular metabolic profiles in the four cell subpopulations
demonstrated very clear differences between Non-Mitophagy
and mitophagy -associated renal hyalinocytes, with mitophagy
-associated renal hyalinocytes being much more advanced than the
Non-Mitophagy cell population in a variety of metabolic
pathways (Figure 4G).

3.5 Analysis of metabolic features in spatial
transcriptomics data

Spatial transcriptomics data provided HE stained slice images of
two ccRCC tumor tissue samples (Figures 5A, F). After
dimensionality reduction clustering of spatial transcriptomics data,
we mapped the clustering information onto the HE stained slices,
obtaining dimensionality reduction clustering maps on the slices
(Figures 5B, G). The differential expression of mitochondrial
autophagy genes between tumor and normal groups in single-cell
data was displayed on spatial transcriptomics data through bubble
charts (Figures 5C, H). By using the scMetabolism package for
metabolic analysis of spatial transcriptomics data, we showed the
specific metabolic levels of each cell cluster in the two tumor samples
(Figures 5D, I) and also mapped certain key metabolisms onto the
slices. The heatmap colors allowed us to clearly see the high and low
states of metabolism at different locations on the slices (Figures 5E, J).

3.6 Pseudotime analysis of
spatial transcriptomics

In Figures 5E, ], we observed high metabolic areas on the slices
of two tumor samples, with clusters 2 and 1 being the main high
metabolic areas on the first slice, and clusters 10 and 4 on the
second slice. Therefore, we selected the high metabolic areas and
their surrounding cells for pseudotime analysis using the Monocle
package. For the first slice, we conducted pseudotime analysis on
cell clusters 2, 1, and 12 (Figure 6A). The heatmap showed the
expression changes of mitochondrial autophagy-related genes over
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scMetabolism package, showing their expression patterns across different metabolic pathways. (B) HALLMARK gene set enrichment analysis.

Individual cell types (including high and low group ccRCC) are shown to be

up- and down-regulated in various pathways. (C) String diagram of

ellular communication networks. Demonstrates the strength of cellular communication in tumor tissues. (D) Scatter plot demonstrating the average
strength of signals received and sent by cells in each cell type. (E) Structural diagram demonstrating the communication patterns of various cell
types in the cellular communication network, comparing the high and low groups of ccRCC. (F) Ligand receptor activation involved in cellular
communication between high and low groups of ccRCC and other cell types. (G) GSVA enrichment analysis of evanescent bar graphs. Pathways
with significant differences between the high-level group ccRCC and the low-level group are demonstrated.

pseudotime (Figure 6B). Cluster 1 occupied the earliest branch in
the pseudotime analysis, while cluster 2 was on a later branch,
which might indicate the developmental sequence of tumor cells
(Figure 6C). The cell density map also hinted at the timing of cell
appearances (Figure 6D). For the second slice, we analyzed cell
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clusters 10, 4, and 2, with the heatmap showing the expression
changes of mitochondrial autophagy-related genes over pseudotime
(Figures 6E, F). Cell clusters 10 and 4 were primarily in the early
stages of the pseudotime sequence, while cluster 2 was mainly in the
later stages (Figures 6G, H).
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FIGURE 4

Non-negative matrix factorization (NMF) analysis of renal clear cells. (A) UMAP plot annotating renal clear cell types post-NMF, identifying two
subtypes closely related to mitochondrial autophagy. (B) HALLMARK gene set enrichment analysis. The up- and down-regulation of the four ccRCC
subgroups obtained from NMF analysis in various pathways is shown. (C) GO enrichment analysis of cell population C1. results of GO enrichment
analysis of CSNK2B+ccRCC-C1 cell population demonstrating properties in BP, CC, and MF. (D) GO enrichment analysis of cell population C2.
results of GO enrichment analysis of MAP1LC3B+ccRCC-C2 cell population, demonstrating the properties in three aspects: BP, CC, and MF.

(E) GSVA enrichment analysis. The heatmap demonstrates the differences between the four ccRCC subpopulations in various pathways. (F) Heatmap
of the transcription factor regulatory network in mitochondrial autophagy-related subtypes of renal clear cells. (G) Bubble chart analyzing the activity
levels of renal clear cell subgroups in different metabolic pathways, where bubble size and color depth reflect the relative levels of metabolic activity.

3.7 Developmental trajectories revealed by transcriptomics data to explore the developmental processes of

spatial transcriptomics data tumors, including invasion and metastasis issues. By combining
data quality control and dimensionality reduction with NumPy, and

Spatial transcriptomics data provide transcriptional  clustering with stLearn’s Louvain method, we identified different
information on the precise location of cells within tissues. Using  cell clusters in ccRCC samples (Figures 7A, D). For cell clusters
the stLearn toolkit, we conducted an in-depth analysis of spatial  identified in the early stages of pseudotime sequence in the
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FIGURE 5
Spatial transcriptomics analysis revealing changes in metabolic activity. (A) H&E-stained section of renal clear cell carcinoma tumor tissue. (B) Spatial
transcriptomics data of a renal clear cell carcinoma tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering
analysis using the Seurat package. (C) Expression of differentially expressed mitochondrial autophagy-related genes in the section data. (D) Bubble
chart showing metabolic activity levels of different cell clusters in the renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism
package, highlighting each cluster’s performance in various metabolic pathways. (E) Display of various metabolic levels on the section, including
glycolysis, oxidative phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
(F) Second H&E-stained section of renal clear cell carcinoma tumor tissue. (G) Spatial transcriptomics data of a second renal clear cell carcinoma
tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering analysis using the Seurat package. (H) Expression of
differentially expressed mitochondrial autophagy-related genes in the second section data. (I) Bubble chart showing metabolic activity levels of
different cell clusters in the second renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism package, highlighting each
cluster's performance in various metabolic pathways. (J) Display of various metabolic levels on the second section, including glycolysis, oxidative
phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
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FIGURE 6

Pseudotime analysis of cells in local areas of tumor tissue sections. (A) Display of local cell populations on the section. (B) Expression of
mitochondrial autophagy-related genes in pseudotime order. (C) Developmental trajectory map, showing the dynamic changes and differentiation
paths of 3 cell populations in pseudotime development. (D) Density map explaining the distribution characteristics of each group of cells on the
pseudotime axis. (E) Display of local cell populations on the section in a second renal clear cell carcinoma tumor slice. (F) Expression of
mitochondrial autophagy-related genes in pseudotime order on the second slice. (G) Developmental trajectory map for the second slice data,
showing the dynamic changes and differentiation paths of 3 cell populations in pseudotime development. (H) Density map explaining the distribution
characteristics of each group of cells on the pseudotime axis for the second slice.

pseudotime analysis, we reconstructed the developmental 3 8 Deconvolution and cell interaction

trajectories using the Diffusion Pseudotime (DPT) algorithm, ana[ysis Combining spatial transcriptomics
combined with spatial coordinates information, revealing the  \with single-cell data

gradual invasion and metastasis process of tumor cells in the
pseudotime sequence, consistent with Monocle pseudotime
analysis (Figures 7B, E). The diverging bar charts of
developmental trajectory analysis revealed gene expression

Due to the limitations of spatial transcriptomics sequencing
technology, current spatial transcriptomics data do not achieve the

same single-cell resolution as single-cell sequencing data. To address

changes based on trajectory differences, showing genes that were  the limitations of spatial transcriptomics sequencing data, we employed

upregulated and downregulated throughout the tumor  deconvolution analysis methods to compensate for its lack of

development process from start to end (Figures 7C, F). resolution. This analysis inferred the possible cell types and their
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FIGURE 7

Spatial developmental trajectory analysis of renal clear cell carcinoma tumor tissue. (A) Clustering of renal clear cell carcinoma tumor tissue section
sequencing data using the louvain method in the stLearn package, with the clustering map showing the spatial distribution of different cell populations.
(B) Spatial developmental trajectory map of high metabolic area cells in the tumor tissue section, drawn using the stLearn package. (C) Diverging bar
chart of developmental trajectory-related differentially expressed genes in the tumor tissue, performed statistical analysis using numpy, revealing key
regulatory genes associated with the developmental trajectory. (D) Clustering map of the second slice data. (E) Spatial developmental trajectory map of
high metabolic area cells. (F) Diverging bar chart of developmental trajectory-related differentially expressed genes in the tumor tissue.

proportions at each location in the spatial transcriptomics data based
on the gene expression patterns of various cell types in ccRCC single
cell sequencing data. This step allowed us to gain deeper insights into
the spatial structure and function of tissues or cells, revealing
interactions and communications between different cell types, and
discovering spatial heterogeneity and state changes of cells. Through
this method, we were able to provide more detailed information about
cell types and proportions in ¢ccRCC tumor samples, offering new
perspectives and depth to the study (Figures 8A, G). Based on the
deconvolution analysis of two tumor samples, we further applied the
MISTy (Multiview Intercellular SpaTial modeling framework)
framework for spatial transcriptomics cell interaction analysis. This
framework is an interpretable machine learning framework for
analyzing single-cell, highly multiplexed, spatially resolved data,
enabling an in-depth understanding of the internal and intercellular
relationships between markers. With MISTy, we could handle a custom
number of views, each describing different spatial contexts such as
intracellular regulation or paracrine regulation, and relationships
between specific cell types. Our analysis results showed the
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contributions of three different views to cell interactions through bar
charts, finding that intraview and paraviewl5 made the largest
contributions in the two tumor samples (Figures 8B, H). This
revealed the importance of intracellular regulation and paracrine
regulation in tumor samples. Further heatmap and network graph
analyses revealed the specific patterns of these two views in tumor
samples, highlighting the significant interactions between two groups
of clear cells with high and low mitochondrial autophagy states and
other cell types (such as mast cells and fibroblasts) (Figures 8C-F, I-L).

3.9 Prognostic study of mitochondrial
autophagy-related genes

In our study, nine key mitochondrial autophagy-related genes

were significantly higher expressed in tumor tissues compared to
normal tissues. We analyzed data of ccRCC from the TCGA
database, first selecting positive cells with high expression of these
nine genes, and compared them with negative cells with low
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Deconvolution and cell interaction analysis based on spatial transcriptomics data. (A) Analysis of renal clear cell carcinoma tumor tissue section data
using the RCTD deconvolution method, showing the spatial distribution probabilities of various cell types, including cells with high and low levels of
mitochondrial autophagy. (B) Bar chart showing the contribution of different views to cell interactions assessed by the Mistyr package, demonstrating the
relative importance of different views in cell interactions. (C, D) Heatmap and network diagram of cell interactions within the same view (intraview),
revealing the interaction strength and patterns within the same cell type. (E, F) Heatmap and network diagram of cell interactions in the paraview15 view,
showing the interaction strength and communication networks across cell types. (G) RCTD deconvolution analysis results of the second slice data,
showing the probabilities and spatial distribution of different cell types, including cells with high and low levels of mitochondrial autophagy. (H) Bar chart
showing the contribution of different views to cell interactions in prostate adenocarcinoma with infiltrating carcinoma tissue, assessing the relative
contributions of each view. (I, J) Heatmap and network diagram of cell interactions (intraview) for the second slice data, showing the interaction
relationships among the same cell type in the tumor environment. (K, L) Heatmap and network diagram of cell interactions in the paraview15 view of the
same tissue, revealing the interaction strength and network structures across different cell types.

expression to identify unique marker genes of the positive cells.

Subsequently, based on the expression levels of these marker genes,
we divided patients into high and low expression groups and
performed survival analysis. The results showed that patients with
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high expression of UBC, UBA52, TOMM7, UBB, MAP1LC3B, and
CSNK2B had a poorer prognosis, with statistical significance
(Figure 9A). Using LASSO regression model analysis, UBB and
TOMM?7 were identified as important prognostic factors for ccRCC
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FIGURE 9

Analysis of the association between mitochondrial autophagy-related subtypes of renal clear cells and the clinical prognosis of patients with renal
clear cell carcinoma. (A) Kaplan-Meier survival curve analysis showing the survival probability differences among renal clear cell subtypes with high
and low expression of key mitochondrial autophagy genes in patients with renal clear cell carcinoma. (B) LASSO coefficient path graph. It illustrates
how the LASSO coefficients of renal clear cell carcinoma prognosis-related genes change as the regularization strength (L1 norm) of the model
increases. Selected genes maintain non-zero coefficients at high regularization levels, indicating their importance to the model. (C) Deviance plot of
ten-fold cross-validation. Displays the performance of the LASSO model at different lambda values to determine the optimal lambda selection. The
red dot identifies the lambda value providing the optimal prognosis model, determined by minimizing the validation error. (D) Risk score and survival
status chart of patients with renal clear cell carcinoma based on the LASSO model. (E) Kaplan-Meier survival analysis curve of high and low-risk
patient groups with renal clear cell carcinoma. (F) Nomogram model for the prognosis of patients with renal clear cell carcinoma, combining clinical
variables such as age, gender, pathological staging, and the expression levels of UBB and TOMM7 genes. (G) Calibration curve of the nomogram
prognosis model, showing the consistency between the nomogram-predicted 1-year, 3-year, and 5-year survival probabilities (X-axis) and the actual
observed survival probabilities (Y-axis).
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(Figures 9B-D). Kaplan-Meier curves showed that the survival rate
of patients in the high-expression group was significantly lower
than that of the low-expression group (Figure 9E). We also
established a nomogram that includes these genes and clinical
parameters to predict the survival probabilities of patients at 1, 3,
and 5 years, and calibration curves validated the accuracy and
reliability of this prognostic model (Figures 9F, G).

3.10 UBB promotes the proliferation and
migration of renal clear cell
carcinoma cells

To investigate the potential role of UBB in renal clear cell
carcinoma, we conducted in vitro experiments. Initially, the CCK-8
assay indicated that silencing UBB significantly inhibited cell
proliferation (Figure 10A). Silencing of the UBB gene resulted in a
significant reduction in DAPI staining (blue) and EdU staining (red)
signals in the 786 and 769 cell lines, indicating a decrease in both the
number of cells and the number of DNA-synthesizing cells. The
results showed that UBB gene knockdown significantly inhibited the
proliferation of tumor cells (Figure 10B). Furthermore, wound
healing assays, and transwell assays showed that knocking out UBB
significantly reduced the cells’ invasion and migration capabilities
(Figures 10C, D). Taken together, these results suggest that the
upregulation of UBB promotes the proliferation, invasion, and
migration of renal clear cell carcinoma cells.

4 Discussion

Mitochondrial defects, including structural or functional
abnormalities caused by genetic mutations, damage from
environmental factors, increased oxidative stress, or
mitochondrial DNA (mtDNA) damage, impact cellular
proliferation, death, and metabolism and are closely linked to the
development and progression of cancer (27, 28). These defects can
trigger mitophagy—a cellular adaptive mechanism that maintains
cell survival by removing dysfunctional mitochondria to prevent
further cellular damage. As a quality control mechanism,
mitophagy aids in the clearance of unhealthy or dysfunctional
mitochondria, averting potential cellular damage caused by
mitochondrial defects (12, 29). With an increase in mitochondrial
defects, autophagy activity correspondingly intensifies to address
these deficiencies. The process of mitophagy includes multiple
steps: recognition of mitochondrial damage, formation of
autophagosomes, fusion with lysosomes, degradation, and
recycling (12). In our research, we observed changes in the levels
of mitochondrial autophagy in various cell types within ccRCC
tumor tissues compared to normal kidney tissue, especially a
significant enhancement of mitochondrial autophagy levels in
clear cells within tumor groups.

The enhancement of mitochondrial autophagy in ccRCC tissues
can be understood from multiple perspectives: Firstly, tumor cells
undergo metabolic reprogramming to adapt to the tumor
microenvironment and promote survival and proliferation,
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activating more frequent mitochondrial autophagy to maintain
intracellular metabolic balance. Secondly, ccRCC cells may
experience increased oxidative stress, leading to mitochondrial
damage, and enhance mitochondrial autophagy to clear damaged
mitochondria, preventing the accumulation of oxidative damage
that could lead to cell death. Additionally, mitochondrial autophagy
may serve as a self-regulatory mechanism, helping tumor cells
optimize survival strategies to adapt to stress conditions in the
microenvironment (30, 31).

Through the analysis of multiple transcriptomic data, we
identified several key genes closely related to mitochondrial
autophagy, suggesting that these genes may be the main factors
driving the changes in mitochondrial autophagy function in clear
cells of renal cell carcinoma, especially in the prognostic analyses
the high expression of six mitochondrial autophagy-related genes,
namely, UBC, UBA52, TOMM?7, UBB, MAP1LC3B, and CSNK2B
was closely associated with poor patient prognosis. Among these
genes, UBC (Ubiquitin C), UBA52 (Ubiquitin A-52 Residue
Ribosomal Protein Fusion Product 1), and UBB (Ubiquitin B) are
involved in the ubiquitination process—a critical protein
modification mechanism that tags proteins for degradation or
other fates (32). The ubiquitin-proteasome system plays a central
role in regulating protein levels, maintaining protein homeostasis,
and participating in cellular stress responses. TOMM?7 (Translocase
Of Outer Mitochondrial Membrane 7) is part of the mitochondrial
protein import complex, responsible for transporting proteins from
the cytosol into the mitochondria (33). MAP1LC3B (Microtubule
Associated Protein 1 Light Chain 3 Beta) is a key protein in the
autophagy process, involved in the formation of autophagosomes
(34). CSNK2B (Casein Kinase 2 Beta), as part of the protein kinase
CK2, is involved in various cellular processes including cell cycle
regulation, cell survival, and DNA repair (35). Further analyses
identified UBB and TOMM?7 as important prognostic factors
for ccRCC.

UBB is a protein-coding gene involved in the process of
ubiquitination and is also associated with mitochondrial
autophagy. The ubiquitination process plays a critical and
widespread regulatory role within the cell, maintaining the
stability of the intracellular environment and responding to
environmental changes by controlling the fate of proteins. In
mitochondrial autophagy, ubiquitination plays a central role,
primarily by covalently attaching ubiquitin proteins to specific
proteins on the surface of damaged or dysfunctional
mitochondria, thereby marking these mitochondria for
recognition and clearance by autophagosomes. The involvement
of specific receptor proteins such as p62/SQSTMI1, OPTN, and
NBRI allows these ubiquitinated mitochondria to interact with LC3
proteins on the autophagosome membrane, promoting the
formation and expansion of autophagosomes to encapsulate and
ultimately digest the damaged mitochondria (12, 29). Specifically,
the ubiquitin B protein encoded by the UBB gene plays a core role
in marking damaged or obsolete proteins for recognition and
degradation by the 26S proteasome. By regulating the selective
degradation of mitochondria, the UBB gene and its encoded
ubiquitin B protein are crucial for maintaining mitochondrial
quality control and intracellular environmental stability. High
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UBB has been demonstrated to promote the proliferation, invasion, and migration of renal clear cell carcinoma cells, as determined by a series of
analytical results: (A) CCK-8 assay. (B) EAU-DAPI Double Staining Assay. (C) wound healing assay. (D) Transwell assay. * Indicates p-value < 0.05

expression of the UBB gene may enhance the ubiquitination
marking and rapid clearance of damaged mitochondria, helping
tumor cells effectively remove damaged mitochondria to prevent
cellular stress and death, thereby increasing the tumor cells’
adaptability to adverse conditions. Furthermore, high expression
of the UBB gene may also strengthen the adaptive response of the
autophagy pathway under stress conditions such as nutrient
deprivation or hypoxia, providing a survival advantage for tumor
cells, especially in the challenging tumor microenvironment.

We have demonstrated through in vitro experiments that the
proliferation, invasion and migration of tumor cells can be inhibited
by decreasing the expression of the UBB gene in tumor cells. The
results based on transcriptome data analysis and in vitro experiments
demonstrated that UBB, a mitochondrial autophagy-related gene, has
a very important role in renal clear cell carcinoma, which provides a
new direction for potential clinical treatment. We can envisage the
development of siRNA drugs or small molecule inhibitors based on
the UBB gene, thereby reducing its expression level in tumor cells to
inhibit tumor adaptability and growth. In conclusion, through in-
depth research and clinical application of the UBB gene, we can
provide more precise and effective therapeutic options for ccRCC
patients and significantly improve their prognosis.

5 Conclusion
This study highlights the importance of increased

mitochondrial autophagy in ccRCC and its impact on tumor
behavior. By advanced analysis, key genes such as TOMM?7 and
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UBB were associated with autophagy and prognosis, with the role of
UBB in ubiquitination emphasizing its therapeutic potential. These
findings highlight the central role of mitochondrial autophagy in
ccRCC, suggesting new therapeutic targets and improving
personalized treatment for ccRCC patients.
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Background: Pathomics has emerged as a promising biomarker that could
facilitate personalized immunotherapy in lung cancer. It is essential to
elucidate the global research trends and emerging prospects in this domain.

Methods: The annual distribution, journals, authors, countries, institutions, and
keywords of articles published between 2018 and 2023 were visualized and
analyzed using CiteSpace and other bibliometric tools.

Results: A total of 109 relevant articles or reviews were included, demonstrating
an overall upward trend; The terms “deep learning”, “tumor microenvironment”,
“biomarkers”, “image analysis’, “immunotherapy”, and “survival prediction”, etc.
are hot keywords in this field.

Conclusion: In future research endeavors, advanced methodologies involving
artificial intelligence and pathomics will be deployed for the digital analysis of
tumor tissues and the tumor microenvironment in lung cancer patients,
leveraging histopathological tissue sections. Through the integration of
comprehensive multi-omics data, this strategy aims to enhance the depth of
assessment, characterization, and understanding of the tumor microenvironment,
thereby elucidating a broader spectrum of tumor features. Consequently, the
development of a multimodal fusion model will ensue, enabling precise evaluation
of personalized immunotherapy efficacy and prognosis for lung cancer patients,
potentially establishing a pivotal frontier in this domain of investigation.
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1 Introduction

Lung cancer remains one of the most prevalent malignancies and
represents the foremost cause of cancer-related mortality worldwide
(1, 2), the majority of lung cancers (80-90%) manifest as non-small
cell lung cancer (NSCLC), often diagnosed at an advanced stage
(65%), potentially with concurrent local or distant metastasis (3).
Recent advances in immunotherapy, particularly the use of immune
checkpoint inhibitors (ICIs), have shown promising outcomes in
enhancing the prognosis of lung cancer patients (4). Nevertheless, not
all patients experience the benefits of immunotherapy, highlighting
the need for additional research into predictive biomarkers of
immune response. These biomarkers, which may include
substances, structures, or products of processes within the body,
have the potential to facilitate personalized immunotherapy by
enabling the monitoring of immune reactions.

Each lung cancer patient undergoes histopathological diagnosis,
involving the preparation of biopsy tissues into pathological slides
for examination. The traditional preservation method of using wax
embedding techniques for pathological slides can now be digitized
through computerization, archiving them as digital pathology
images. This technological advancement serves as a foundation
for applying big data analytics to digital pathology images.
Consequently, the field of pathomics has emerged (5). Pathomics
entails applying machine learning techniques to extract large-scale,
objectively quantifiable, and readily analyzable datasets from
digitally scanned pathological tissue images. Consistent with the
pathological diagnostic requirements of diseases, morphological
features, including size and shape of pathological images, along
with multi-dimensional subtle features reflecting potential
biological characteristics such as texture features and edge
gradient features, are extracted. These features can be utilized for
quantitative disease screening, diagnosis, prognosis prediction, and
other applications (6).

In this study, CiteSpace (7) was utilized for the inaugural
analysis of hotspots and trends in the application of pathomics in
lung cancer. The objective is to provide valuable insights for
scholars involved in research within this domain.

2 Materials and methods

2.1 Data collection

Web of Science Core Collection (WoSCC) database was chosen
as the literature retrieval platform. The retrieval period spanned
from 2018 to 2023, with the final search conducted on October 20,
2023. Subject terms were exclusively employed as the search
method, and the search formula was: TS= (“Pathomics” OR
“Pathomics” OR “Digital Pathology” OR “Whole-slide Imaging”
OR “Whole Slide Imaging” OR “Computational Pathology”) AND
TS=(“Lung Cancer” OR “Pulmonary Cancer” OR “Carcinoma of
Lung” OR “Pulmonary Carcinoma” OR “Cancer of Lung” OR
“Bronchogenic Carcinoma” OR “Bronchogenic” OR “Cancer of
the Lung” OR “NSCLC” OR “SLC”), document type: Articles or
Review Articles; a total of 109 documents were retrieved.
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2.2 Statistical methods

Export the complete records and referenced bibliographies of
the 109 documents retrieved from WoSCC in Text format,
comprising 85 articles and 24 reviews. Conduct a comprehensive
analysis of the literature using CiteSpace 6.2.R4 (64-bit) Basic,
focusing on the country, institution, authorship, keywords, and
cited references. The bibliometric online analysis platform,
developed by the National Science Library of the Chinese
Academy of Sciences, was employed to conduct a visual analysis
of historical keywords and national collaborations.

3 Results
3.1 Annual publication volume in WoSCC

A total of 109 matching documents were retrieved, and the
overall publication output exhibited a general upward trend,
especially reaching a contribution rate of 26.61% in 2021
(Figure 1). The annual average publication output is approximately
21.8 articles. The results indicate a gradual increase in the attention to
pathomics research in the context of lung cancer.

3.2 Distribution of source journals

The literature selected from the 109 studies on pathomics in the
management of lung cancer has been indexed by 146 journals. For
the top 10 journals in terms of publication output, detailed
information on Journal Citation Reports (JCR) category,
publication quantity, impact factor (IF), and their respective
contribution percentages is provided in Table 1.

3.3 Visualization of collaborations between
countries and institutions

Running the CiteSpace software for country analysis resulted in
a knowledge graph with 35 nodes and 80 edges (Figure 2). Each

2023 24

2021 29

5 10 15 20 25 30

Numbers of articles issued

FIGURE 1
Annual analysis of the number of articles issued
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TABLE 1 Top 10 journals in terms of publication volume.

10.3389/fonc.2024.1432212

Journal Titles JCR Number IF Rate%
CANCERS Q1 11 52 10.092
MODERN PATHOLOGY Q1 6 75 5.505
EBIOMEDICINE Q1 3 1.1 2.752
FRONTIERS IN ONCOLOGY Q2 3 47 2752
HISTOPATHOLOGY Q1 3 6.4 2752
IEEE ACCESS Q2 3 39 2752
MEDICAL IMAGE ANALYSIS Q1 3 10.9 2.752
BIOINFORMATICS Q1 2 5.8 1.835
COMPUTERS IN BIOLOGY

AND MEDICINE Q 2 77 1835
IEEE TRANSACTIONS ON

MEDICAL Ii/I/SGIISGS ¢ Ql 2 106 1835

circular node represents a country, with the size indicating the
quantity of publications from that country. The connections
between nodes represent collaborative relationships between
countries, with the thickness of the connections reflecting the
degree of collaboration. Different colors of nodes represent
different time periods (8), the size of the purple circles reflects the
centrality values indicating the influence of each country.

Leveraging the bibliometric online analysis platform, Figure 3
depicts the contributions of different countries in the field.
Distinctly colored blocks represent the proportional contribution
of each country. Table 2 presents the top 5 institutions in terms of
publication output.

3.4 Visualization of author collaborations

Running the CiteSpace software, author analysis resulted in a
knowledge graph with 200 nodes and 383 edges (Figure 4). Each

sc@un

circular node represents an author, and the connections between
nodes represent collaborative relationships between authors. The
thickness of the connections reflects the degree of collaboration.
Different colors of nodes represent different time periods.
Conducting a co-occurrence analysis on the author team
collaboration network based on the literature retrieved from
WoSCC, Table 3 is presented, listing the top 5 authors in terms
of publication output along with their affiliated institutions in this
research field.

3.5 Co-occurrence analysis of keywords

Keyword-related analysis, as manifested in the visualization of
co-occurrence patterns, is crucial for delineating the research
hotspots and frontiers within a given domain. Running the
CiteSpace software with author keywords as node types, a co-
occurrence network of keywords with 159 nodes and 334 edges
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was generated (Figure 5). After removing redundant terms that
overlap with the search strategy, an analysis of the co-occurrence
frequency and centrality values of keywords in this field (Table 4)
reveals that the prominent keywords include: deep learning,
artificial intelligence (AI), computer-aided diagnosis, tumor
microenvironment, feature extraction, image analysis, tumor
mutation burden, survival prediction, markov random field,
mixture model. Furthermore, Figure 6 illustrates the temporal
frequency changes of different keywords over time. It highlights
the research focal points in the past few years related to the
application of Al-based pathomics in the diagnosis and treatment
of lung cancer. These themes reflect the proactive role of pathomics
in aiding diagnosis, classification, predicting treatment efficacy, risk
assessment, exploring emerging biomarkers, and analyzing gene

TABLE 2 Top 5 institutions in terms of publication volume.

Rank Number Institution Country
CASE WESTERN

1 8 USA
RESERVE UNIVERSITY

2 8 UNIVERSITY OF TEXAS SYSTEM USA
LOUIS STOKES CLEVELAND

3 6 VETERANS AFFAIRS USA
MEDICAL CENTER
UNIVERSITY OF TEXAS

4 6 SOUTHWESTERN MEDICAL USA
CENTER DALLAS
US DEPARTMENT OF

A
> 6 VETERANS AFFAIRS us
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expression levels in the context of lung cancer diagnosis
and treatment.

3.6 Keyword cluster analysis

Keyword cluster analysis involves utilizing the log-likelihood
rate (LLR) method to analyze the connection relationships among
significant keyword nodes. This method reflects the hot topics
within the research domain, with closely connected keywords in a
cluster indicating higher research intensity. Larger node values
within a cluster signify greater research interest. By examining
these clusters, it is possible to predict the developmental patterns
and emerging trends in the research field (9).

According to the keyword cluster analysis (Figure 7),
researchers’ studies are concentrated in the following 10 key
areas: #0 parameter auto-tuning; #1 concordance study; #2
prognostic and predictive; #3 mixture model; #4 lung cancer slide
cells; #5 non-small-cell lung cancer; #6 immunotherapy; #7 deep-
learning microscopy; #8 telepathology; #9 radiology. By employing
the clustering algorithm within CiteSpace software to organize title
terms and visualize them (Figure 8), a clear sequential pattern
emerges, encompassing: #0 spatial quantitative systems
pharmacology platform spqsp-io; #1 adaptive radiotherapy; #2
patient survival; #3 pd-11 expression; #4 digital analysis; #5
Bayesian hidden Potts mixture model; #6 bayesian collaborative
learning; #7 multi-stained feature matching; #8 oncology; #9
pathomics; Utilizing the clustering algorithm in CiteSpace to
group subject categories and create a visual representation
(Figure 9), a sequential progression of clusters is discernible,
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Visual map of author network.

including: #0 Pathology; #1 Mathematics; #2 Medicine, Research &
Experimental; #3 Computer Science, Theory & Methods; #4
Engineering, Multidisciplinary; #5 Statistics & Probability; #6
Imaging Science & Photographic Technology; #7 Biology; #8
Health Care Sciences Services; #9 Cell Biology. Employing the
clustering algorithm for keywords and generating a graphical
display (Figure 10), a sequential evolution of clusters is evident,
incorporating: #0 digital pathology; #1 machine learning; #2 deep
learning; #3 artificial intelligence; #4 lung cancer; # 5mixture model;
#6 computational pathology; #7 scale invariant feature transform;
#8 equity; #9 cancer immunopathology.

Each section is divided into 10 clustering modules, partial
clustering blocks overlap with each other, suggesting close
connections between these research areas. In addition to the
research retrieval terms, other clusters demonstrate that
pathomics in lung cancer research spans various fields, including
medical experimental research, computer science, cell biology,
statistics, and mathematics. Through advanced methods such as

TABLE 3 Top 5 authors in terms of publication volume.

Institution

cnandezayaiLeonel

o
Markowis, Jothl, Anastasios,

Chen; Szu-Hua

Bain;Chris

Breme, Erich

Chen, Richara 4
Almici,Entico

Alcara, dordi
‘Acshakyai Marselina

FaYubo

Chang,Efic 1ohao

Deng, Shujien

Bibea Frederic Added, Altedo

‘Aboelial Tawtik

Fonsfiageiia, Filippo

Adari;Jutien

istine
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Groens: Gy
James,Jagateung n §
i rillo-perez, Francisco

Bingham, Victoria
Pate e, FRA e el Paul &
Blayney, aine K
Parkes Elwnot, Delkbittedy Richard D
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Beasiey,Mary Beth
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Budeios, Jan

Al and machine learning, pathomics involves in-depth digital
analysis of tumor tissues and the tumor microenvironment based
on patients’ pathological tissue sections. It aims to construct hybrid
models, identify a multitude of pathological features, conduct
precise assessments, and predict tumor-related indicators,
including programmed death-ligand 1 Tumor cell Proportion
Score (PD-L1 TPS). The goal is to assist in personalized
diagnosis and treatment for patients and contribute to clinical
decision-making by leveraging the synergies between AI and
clinical medicine.

3.7 Cited references

A total of 426 relevant articles were retrieved from WoSCC,
accumulating a total of 10,174 citations. The average number of
citations per article is 24. The top 10 most cited articles are listed
in Table 5.

Country

1 Xiao, Guanghua University of Texas Southwestern Medical Center USA 5
. University of Texas Southwestern Medical Center
2 Xie, Yang L A USA 4
Clinic Science
3 Bera, Kaustav CASE WESTERN RESERVE University USA 4
4 Baxi, Vipul BRISTOL MYERS SQUIBB USA 3
5 Lu, Cheng University of ALBERTA Canada 3
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microscopic images

neural networks

4 Discussion

Pathomics is an innovative interdisciplinary field that combines
digital pathology and Al The rise of digital pathology has enabled
the scanning of whole tissue slides, based on the fundamental
principle of digitizing whole-slide images (WSI) using state-of-
the-art whole-slide scanners. This technology can convert standard
Hematoxylin-Eosin (H&E) staining glass slides into a digital format
(WSI) (20). This allows for detailed spatial exploration of the entire
tumor heterogeneity and its most invasive elements. It
automatically extracts and classifies histological features,
transforming this information into binary data. Finally, the

TABLE 4 High frequency and centrality keywords.

Rank Keywords Frequency Centrality
1 deep learning 27 0.33
2 artificial intelligence 14 0.29
3 machine learning 10 0.22
4 computer- 3 011
aided diagnosis
5 tumor microenvironment | 4 0.07
6 feature extraction 3 0.04
7 image analysis 3 0.04
8 late fusion 2 0.02
9 tumor mutation burden 2 0.02
10 survival prediction 2 0.02
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extracted features are processed through sophisticated computer
algorithms to perform tasks such as cancer classification and
outcome prediction (21). Computational analysis of digitized
histological slides through pathomics can extract valuable
information. Some research primarily focuses on predicting the
prognosis of lung cancer (22), including improving clinical
decisions for cancer immunotherapy and exploring biomarkers
related to potential benefits from ICIs, such as microsatellite
instability (MSI), PD-L1 TPS, and inflammatory genes, among
others (23). Another significant research area involves the
integration of pathomics with multiple omics disciplines to
explore the classification of lung cancer and other related aspects.
Alvarez-Jimenez C et al. demonstrated the potential existence of
cross-scale correlations between pathomics and CT imaging, which
could be used to identify relevant imaging and histopathological
features (24).

The escalating demand for personalized cancer treatment
necessitates more precise biomarker assessments and quantitative
tissue pathology for accurate cancer diagnosis. Pathologists must be
equipped with new methodologies and tools to enhance diagnostic
sensitivity and specificity, ultimately contributing to more informed
and improved treatment decisions (13). Recently, significant success
has been achieved in the analysis of medical images using AI due to
the rapid advancement of “deep learning” algorithms (16).

Recent breakthroughs in AI hold the promise of significantly
changing the way we diagnose and stratify cancer in pathology.
Deep learning technology represents a milestone in this
transformation, with numerous deep learning architectures
applied to pathology-focused research. Various modeling
objectives have been pursued, and recent studies demonstrate the
application of deep learning in pathology aiming to predict
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conventional diagnostic features used in pathology practice (such as
distinguishing between diseases and normal tissues, defining tumor
grades, and differentiating cancer types), leading to new insights
into diseases (25, 26).

Deep learning encompasses various types of deep neural
networks, and its application has achieved several breakthroughs
in addressing current key challenges in pathology (27).
Convolutional Neural Networks (CNN) are the most commonly
used in the analysis of pathological images (28, 29). A standard
CNN consists of an input layer, task-specific output layer, and
multiple hidden layers. Each hidden layer is composed of numerous
convolutional filters (parameters), which apply the same local
transformation at different positions in their input images (30).
Due to the shared parameters when applied locally in the image,
effective parameterization of the CNN model is achieved. The
typical implementation of CNN models offers a degree of
translation invariance, allowing detected objects or patterns to

appear at any position within the image. Pooling layers are often
included between convolutional layers to down-sample the
intermediate outputs (feature maps) of the convolution function.
Following the convolutional layers are fully connected layers, which
flatten the output of the convolutional layers and generate the final
representation for the input-output layers (30, 31). Each neuronin a
CNN calculates its output by applying a weight vector and bias
(parameters) to the input values from the previous layer.
The optimization (training) of the CNN model involves iteratively
adjusting these biases and weights to minimize the loss function.
One advantage of CNNs over other image classification algorithms
is their suitability for end-to-end learning (32). Another major
advantage of CNNs is their flexibility and efficiency in learning
patterns from image data. Currently, they represent state-of-the-art
technology in the field of image analysis and classification,
consistently outperforming earlier generations of image analysis
methods (29, 32). Kao Y-S et al. conducted a study on the

tehelor, Timothy J P o %
‘e'i[*"amfzbgm pargml;n:?othsr aq.;o-tuning

French, JongthamM R

Xigo, Guanghua

#3 mixture model

Djureinovig, Dijana

.
Gaughan, Elizal

fioyarg HT deep-leamjng'microscopy

o
®  Backman, Max

Farrahi, Janndz

#4 lungecancer slide cells
L ] L]

° a
Bifigham, Victorfa

#1 concorﬂ@nce study

o r ey @
Belinsky, David . oo
bta, Rajars
#6 ra&oiegy Banps, Giuseppe Luigi
#6 immunotherapy

® . Bera, Kaustav oo
Fraggetta, Filippo
Magabhushi, Anant - _ L gyl

#2 prognostic and predictive .

Chen,Chilong
#10 Canine

@nen, Ghichung

FIGURE 7
Visual map of author-generated keywords network.

Frontiers in Oncology

Goak Gary 9
#5 non-small-cell lung cancer
o

Wise, Olga
o Wisg O

64 frontiersin.org


https://doi.org/10.3389/fonc.2024.1432212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Yuan et al.

#5 bayesiah”hic@gn potts mixture model
#6 bayesian’ '66llab:o"rativeAleaming e

#4 digital ana]i/sis

Iti

#7

#0 spatial quantitative sy

tal

10.3389/fonc.2024.1432212

logy platform spgsp-io

ed feature

FIGURE 8
Visual map of title keywords network.

application of deep learning technology in histopathological tissue
slices (deep pathomics) with the aim of predicting the response of
stage III NSCLC to treatment (33). They assessed 35 digitalized
tissue slices (biopsy or surgical specimens) from patients with stage
IIIA or IIIB NSCLC. Based on the reduction in target volume
observed in weekly CT scans during chemoradiotherapy, patients
were categorized as responders (12/35, 34.7%) and non-responders
(23/35, 65.7%). Employing a leave-two-out cross-validation
method, they tested the digital tissue slices using 5 pre-trained
CNNs-AlexNet, VGG, MobileNet, GoogLeNet, and ResNet, and
evaluated the network performance. GoogLeNet was identified as
the most effective CNN, accurately classifying 8/12 responders and
10/11 non-responders. Furthermore, deep pathomics exhibited a
high level of specificity (True Negative Rate: 90.1) and considerable
sensitivity (True Positive Rate: 0.75). Their data suggests that Al can
surpass the capabilities of current diagnostic systems, providing
additional insights beyond what is currently attainable in
clinical practice.

#9 CELL BIOLOGY

#8 HEALTH CARE SCIENCES & SERVICES

Furthermore, there are studies attempting to apply Al to
histological images with the aim of discovering novel image-based
prognostic and predictive biomarkers. Cao R et al. proposed a deep
learning model based on histopathological images to predict
microsatellite status, achieving area under curve (AUC) of 0.88
and 0.85, respectively. It is noteworthy that this model can identify
five distinct pathological imaging features, which are associated
with the mutation burden in the genome, DNA damage repair-
related genotypes, and the anti-tumor immune activation pathway
in the transcriptome. The predictive model provides the potential
for multi-omics correlations through interpretability associated
with pathology, genomics, and transcriptomics phenotypes (34).
Wang X et al. developed a system capable of identifying high-risk
recurrence in early-stage NSCLC patients with an accuracy ranging
from 75% to 82% (22). In another study, Wang S et al. characterized
a group of high-risk NSCLC patients and identified image-based
tumor shape features as an independent prognostic factor (35).
Rakaee M et al. developed a machine learning-based scoring system
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for tumor-infiltrating lymphocytes (TILs) to predict the response of
NSCLC to immune checkpoint inhibitor therapy (36). Additionally,
Coudray N, Ocampo PS et al. applied AT to digital pathology slides
to predict the presence of mutations in lung adenocarcinoma (37).
In summary, the development of these advanced deep learning
algorithms enhances the capability of analyzing lung cancer
pathology images, assisting pathologists in challenging diagnostic
tasks such as tumor identification, metastasis detection, and analysis
of the tumor microenvironment.

TME is primarily composed of tumor cells, lymphocytes,
stromal cells, macrophages, blood vessels, and other components.
The composition of the TME varies based on the relative

TABLE 5 The top 10 cited articles.

==

10.3389/fonc.2024.1432212

#9 cancer immunopathology

proportions of its different constituents, and its presence plays a
crucial role in the growth and invasion of tumors.

Immune cells within the TME exhibit dual functions - on one
hand, they identify and destroy tumor cells, while on the other
hand, they also promote tumor growth and metastasis (38, 39). For
instance, immune cells, including T cells, B cells, macrophages, and
myeloid-derived suppressor cells, possess the ability to modulate the
TME, thereby influencing tumor metastasis and pathological
features (40, 41). Tumor Infiltrating Lymphocytes (TILs) in the
TME involves a complex network of multiple cell types and
cytokines and is a hallmark of immune recognition. Numerous
studies have shown that activated CD8" T cells are the major players

Total
Author o
Citations
Pucci, . .
1 Carlotta: 2019 343 Innovative approaches for cancer treatment: current perspectives and new challenges (10)
2 Lu, Ming Y; 2021 278 Data-efficient and weakly supervised computational pathology on whole-slide images (11)
Khosravi, . R -
3 Pegah; 2018 180 Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images (12)
4 Acs, B; 2020 136 Artificial intelligence as the next step toward precision pathology (13)
Maibach, . . . .
5 Fabienne: 2020 118 Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma (14)
6 Mezheyeuski, 2018 114 Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune
Artur; profiles that classify lung cancer patients (15)
7 Wang, Shidan; = 2019 103 Artificial Intelligence in Lung Cancer Pathology Image Analysis (16)
8 Johnson, 2018 o1 Quantitative Spatial Profiling of PD-1/PD-L1 Interaction and HLA-DR/IDO-1 Predicts Improved Outcomes of
Douglas B; Anti-PD-1 Therapies in Metastatic Melanoma (17)
9 Baxi, Vipul; 2022 80 Digital pathology and artificial intelligence in translational medicine and clinical practice (18)
Saw,
10 Stephanie 2021 56 Revisiting neoadjuvant therapy in non-small-cell lung cancer (19)
P.L;
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involved in anti-tumor immunity, and in a subset of tumors, cancer
cells inhibit the activation of CD8" cytotoxic T cells through the
expression of ligands such as PD-L1 that bind to inhibitory
checkpoints, which has been suggested to be an important
mechanism of immune escape for cancer cells (42). The
expression of PD-L1 on TME immune cells, including myeloid
cells (macrophages, dendritic cells) and T cells, appears to correlate
more with the ICI response than expression on tumor cells.
However, in NSCLC clinical practice, a limitation in histologically
characterizing T lymphocyte infiltration is the scarcity of tumor
tissue, which has hampered insight into the role of T lymphocytes in
influencing the ICI response (43). Tumor-associated macrophages
can promote angiogenesis and invasion by secreting cytokines,
growth factors, and proteases (44). Cancer-associated fibroblasts
(CAF) are pivotal in the formation of organs and the maintenance
of tissue structure and function. They also play a significant role in
tumor initiation, progression, metastasis, and the development of
drug resistance through their potent immunosuppressive
capabilities. Activated CAF possess the capability to secrete
various substances, including extracellular matrix and vascular
endothelial growth factor (VEGF), contributing to the complexity
of the TME (45, 46). The markers associated with CAF are
predominantly linked to T cell immunosuppression, inhibiting
the functions of CD8" T cells and natural killer cells, particularly
by secreting various chemokines and cytokines, notably interleukin-
6 (IL-6), which leads to suboptimal clinical treatment outcomes. As
research into the effects of CAF and the TME on immune cells and
the efficacy of cancer immunotherapy advances, scientists can
potentially develop novel compounds targeting these mechanisms,
thereby offering innovative strategies for immunotherapy (47). It is
noteworthy that research indicates a significant impact of the TME
on the survival benefits of immunotherapy (48). The presence of
immune cells in the TME, including the percentage of CD8" T cells,
can serve as a predictive factor for the effectiveness of
immunotherapy (49). The extracellular matrix can influence the
mechanisms of tumorigenesis by affecting cell growth, metastasis,
and immune evasion through the activation of signaling pathways.
Additionally, tumor cells have the capability to release various
growth factors, such as tumor growth factor, endothelial growth
factor, and VEGF, contributing to the promotion of new blood
vessel development (50). Angiogenesis is crucial for providing
nutrients and oxygen to tumor cells, ultimately playing a critical
role in tumor growth.

Therefore, TME plays a crucial role in tumor growth and
metastasis. A comprehensive understanding of TME formation,
investigating the interplay between immune cells and tumors, and
exploring various genetic variations represent the future directions
of TME research (51, 52). Additionally, selecting targeted
therapeutic strategies based on TME subtypes can enhance the
effectiveness of cancer treatment. To further emphasize this point,
computer-assisted automatic detection of tumor cells in lymph
nodes can significantly reduce the false-negative rate, thereby
facilitating earlier detection and treatment of lung cancer,
improving the accuracy of TNM staging, accelerating the
examination process, and reducing the workload of pathologists.
Moreover, tumor spread through air spaces (STAS) has been
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identified as an important clinical factor associated with tumor
recurrence and poor prognosis in patient survival. The
identification and quantification of STAS require experienced
pathologists to perform detailed examinations of entire tissue
sections. Therefore, pathological image analysis tools that rapidly
and accurately identifies STAS would be useful for pathologists (16).
Quantitative characterization of TME and accurate prediction and
classification of important TME components are essential for
targeted tumor therapy and prognosis assessment (53),
necessitating advanced data processing and analysis approaches.

Quantitative characterization of TME involves a crucial step of
segmenting different types of tissue substructures and cells from
pathological images. This segmentation forms the foundation for
various image analysis tasks, including cellular composition, spatial
organization, and morphology specific to substructures. Previous
studies in oncology primarily focused on tumor cells, overlooking
the pivotal role of TME in the initiation and progression of cancer.
The TME of lung cancer is primarily composed of tumor cells,
lymphocytes, stromal cells, macrophages, blood vessels, and other
components. Studies in lung cancer have indicated that TILs are
positive prognostic factors, while angiogenesis is negatively
associated with survival outcomes. The role of stromal cells in
prognosis is complex. Traditional image processing methods
encompass feature definition, feature extraction or segmentation.
These techniques have been employed to segment lymphocytes and
analyze the spatial organization of TILs and stromal cells within the
TME (54). Research associated with the quantitative
characterization of TME has the potential to predict treatment
outcomes and provides insights for the development of targeted
therapeutic strategies. Innovative studies in immunotherapy, in
particular, heavily rely on understanding the interactions among
various components within the TME and the mechanisms of
immune evasion.

Accurate characterization of specific structures and features of
TME is crucial for evaluating tumor prognosis (55), enhancing
clinical decisions, and advancing precision medicine. Radiomics can
unveil the heterogeneity of tumor cells and TME, while genomics
and pathomics explore the biological significance of imaging
histological features. The integration of these three approaches
contributes to a comprehensive understanding and decoding of
TME characteristics in tumors, facilitating prognostic predictions
(56). The interconnection between radiomics, pathomics, and
genomics contributes to establishing and deepening our
understanding of cancer biology and imaging features.
Concurrently, powerful machine learning techniques can decipher
the complex interactions between tumors and cancer treatments.
The integration of machine learning technologies with digital
imaging and novel methods for assessing TME at the molecular
level significantly enhances our comprehension of TME and cancer
prognosis assessment. Vanguri RS et al. employed machine learning
to integrate multimodal features into a risk prediction model (57).
By combining radiological, histopathological, and genomic features,
they assessed the predictive capability of immunotherapy response
in NSCLC. Their study revealed that the AUC value of the
multimodal model was 0.80, surpassing any single variable.
These findings establish a quantitative foundation for enhancing
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the accuracy of predicting immunotherapy response in NSCLC
patients through the integration of multimodal features and
machine learning.

Simultaneously, the quantitative characterization of TME in
lung cancer poses certain challenges, including the following
aspects: (1) Complexity and heterogeneity of lung cancer TME
composition: In addition to the mentioned cell types, other
structures such as bronchi, cartilage, and pleura often appear in
pathological sections of the lung. This complexity and heterogeneity
make segmentation and traditional feature definition challenging.
(2) Cellular spatial organization (e.g., spatial distribution and
interactions of different cell types): While playing a crucial role in
TME, it is more challenging to capture than simply providing the
quantity or ratio of different cell types. Current research mainly
focuses on the proportion of different cell types, overlooking the
intricate cellular spatial organization, which may result in limited
and contradictory outcomes regarding the roles of different cell
types in the TME. (3) For H&E-stained glass slides, there can be
significant color variations based on staining conditions and the
time gap between slide preparation and scanning. Traditional image
processing methods based on manual feature extraction struggle to
overcome these obstacles. (4) Multi-omics studies face the high
dimensionality and heterogeneity of data, and integrating
quantitative measurements of multi-modal data for prognosis
prediction is a highly challenging task. In summary, pathomics, as
a nascent research methodology, is presently undergoing
preliminary investigation. Future studies utilizing extensive multi-
omics datasets have the potential to advance the formulation of
sophisticated integration strategies. These strategies would facilitate
a more exhaustive evaluation, characterization, and elucidation of
TME (58). Consequently, this advancement will yield profound
insights into the imaging characteristics and the pathophysiological
and biological underpinnings of tumor pathology.

In recent years, amidst the high incidence and mortality rates of
lung cancer, the selection and implementation of treatment plans for
advanced-stage lung cancer patients, as well as the creation of more
precise platforms for predicting treatment responses, continue to face
challenges. Pathomics not only synergizes with traditional
pathological semantic information and clinical data to discover
disease patterns but also interacts and integrates with various omics
information, leveraging the unique advantages of each omics
discipline. The development of these interdisciplinary approaches
not only aids in identifying subtle lesions that may escape the naked
eye and uncovering disease patterns beyond subjective judgment but
also facilitates relatively objective and accurate assistance in disease
screening, diagnosis, differential diagnosis, and prognosis assessment.
Furthermore, it contributes to saving human and material resources,
optimizing the utilization of limited medical resources to the
maximum extent, and, on a broader scale, promoting the
development of the personalized immune intervention.

5 Conclusion

In conclusion, this study systematically analyzed the literature
on pathomics in the management of lung cancer indexed within the
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WoSCC. It offers an initial overview of recent research trends and
forecasts potential hotspots and frontiers for future inquiry, aiming
to provide valuable insights and references for scholars and
researchers involved in personalized immunotherapy efficacy and
prognosis for lung cancer.
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Background: Breast cancer ranks as one of the most prevalent malignancies
among women globally, with increasing incidence rates. Physical activity,
particularly exercise, has emerged as a potentially significant modifier of
cancer prognosis, influencing tumor biology and patient outcomes.

Methods: Using a murine breast cancer model, we established a control and an
exercise group, where the latter was subjected to 21 days of voluntary running.
RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell
experiments were performed to validate the underlying mechanisms.

Results: We observed that exercise significantly reduced tumor size and weight,
without notable changes in body weight, suggesting that physical activity can
modulate tumor dynamics. mMRNA sequencing post-exercise revealed substantial
downregulation of CD300E in the exercise group, accompanied by alterations in
critical pathways such as MicroRNAs in cancers and the Calcium signaling pathway.
Expanding our analysis to a broader cancer spectrum, CD300E demonstrated
significant expression variability across multiple cancer types, with pronounced
upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation
was correlated with poorer prognostic outcomes, emphasizing CD300E's
potential role as a prognostic marker and therapeutic target. Moreover, CD300E
expression was associated with cancer cell proliferation and apoptosis.

Conclusion: The study highlights the dual role of exercise in modulating gene
expression relevant to tumor growth and the potential of CD300E as a target in
cancer therapeutics. Further research is encouraged to explore the mechanisms
by which exercise and CD300E influence cancer progression and to develop
targeted strategies that could enhance patient outcomes in clinical settings.
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1 Introduction

Breast cancer, a predominant malignancy among women, has
witnessed an increasing global incidence (1, 2). The World Health
Organization reports that it stands as one of the leading causes of
cancer-related deaths among women worldwide (3, 4). The impacts
of breast cancer extend beyond severe health threats; its cells invade
surrounding tissues and metastasize via lymphatic and circulatory
systems to distant organs such as bones, liver, lungs, and brain,
complicating and escalating the complexity of treatment protocols
(5, 6). Additionally, the socioeconomic repercussions are profound,
imposing substantial financial burdens during treatment and
straining familial and social relationships due to the psychological
toll of the disease (7, 8). Therefore, deepening our understanding of
the mechanisms underlying breast cancer pathogenesis and
developing innovative targeted therapies are imperative (9-11).

The beneficial impacts of physical activity on health and cancer
prevention are multifaceted (12). Exercise enhances cardiovascular
efficiency and muscle strength, augments bone density, and aids in
osteoporosis prevention (13). It also boosts metabolism, which
helps maintain a healthy weight and physique. Immunologically,
physical activity increases lymphocyte counts, thereby
strengthening the immune system’s defense against diseases,
including cancer (14). Exercise also alleviates psychological stress
and mitigates symptoms of anxiety and depression, enhancing
overall mood and well-being, thereby indirectly reducing cancer
risk (15-17). Persistently engaging in physical activities has been
shown to correlate with lower cancer incidence rates, likely due to
enhanced antioxidative capacity and expedited elimination of
carcinogens (18-20). Recent research further underscores the
therapeutic potentials of exercise in oncology. A study by Luo
et al. revealed that physical activity could transform the
immunological microenvironment of non-small cell lung cancer
from a “cold” to a “hot” state, indicating that exercise not only
increases the population of CD8+ T cells and M1 macrophages but
also reduces immunosuppressive cells, thereby sensitizing tumors to
immunotherapy (21). This transformative potential of exercise
offers a promising adjunct to conventional cancer treatments,
suggesting that integrating physical activity could significantly
enhance therapeutic outcomes.

The CD300E gene encodes a protein that interacts with the
TYRO protein tyrosine kinase binding protein, and is considered an
activating receptor (22). Within the immune system, CD300E is
posited to play a pivotal role in modulating the activity and
functionality of immune cells (23-25). Research indicates that
mCD300E can recognize sphingomyelin, thereby regulating the
functions of atypical and intermediate monocytes through FcRy
and DAPI12 (26). In the realm of oncology, the study of CD300E is
garnering increasing attention due to its potential role in
modulating tumor immune responses and facilitating immune
escape (25, 27). Specifically, CD300E may promote tumor growth
and dissemination by influencing the interactions between tumor
cells and the immune system. In addition, one patent have reported
that CD300E siRNA delays or halts cancer progression by blocking
or knocking down cd300e to inhibit its activity or expression, and
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that the rate of tumor growth is significantly inhibited in mouse
tumors compared to controls. Understanding the precise
mechanisms of CD300E’s involvement in tumor immunity is
critical for the development of novel immunotherapeutic
strategies, which could include modulating its expression or
function to enhance the immune system’s capacity to target
tumors (28, 29).

This study has identified CD300E as a critical target through
gene sequencing of voluntary running wheel exercises in mice as an
anti-breast cancer initiative. By further analyzing CD300E through
bioinformatics and cellular biology experiments, we aim to explore
and demonstrate its role in tumor development and progression.
This research not only sheds light on the mechanistic
underpinnings of CD300E in cancer biology but also underscores
the potential of exercise-induced molecular responses as a strategic
approach in cancer prevention and treatment.

2 Materials and methods
2.1 Cell culture

The 4T1 mouse cancer cell line (catalog KGG2224-1) and
MDAMB231 (catalog KGG3220-1) were procured from KeyGEN
(Nanjing, China). MDA-MB-468 was procured from FengHui
ShengWu, China. 4T1 cells were cultured in RPMI-1640 medium
enriched with 10% fetal bovine serum (FBS) and sustained at 37°C
in either an ambient atmosphere or one containing 5% CO,.
MDAMB231 and MDAMB468 cells were cultured in the MEM
media with 1% non-essential amino acid and 1 mM sodium
pyruvate. All media were added with 10% FBS at 37°C with or
without 5% CO,.

2.2 Animal interventions

Female BALB/c mice, aged 5-6 weeks, were obtained from the
Shanghai Laboratory Animal Center (SLAC). To establish a triple-
negative breast cancer (TNBC) model, 4T1 cells (5 x 1016) were
subcutaneously injected into the abdomen of BALB/c mice. The choice
of this specific strain and demographic was based on its relevance to
breast cancer research and its consistent response to exercise
interventions. All mice were in good health, verified by a veterinarian
prior to the commencement of the study. The mice were housed in a
controlled environment with a 12-hour light/dark cycle, and were given
free access to food and water. Tumor growth was monitored and
measured regularly every 2-3 days using calipers. Mice were randomly
divided into two groups: an exercise group (E) and a non-exercise
group (NE), each comprising five animals. The exercise group
underwent a 21-day regimen of voluntary running (no speed or
distance limitation), whereas the non-exercise group was maintained
under normal husbandry conditions without dietary restrictions. After
21 days, the mice were euthanized, and tumor tissues were collected for
mRNA sequencing analysis. Animal experiments were granted by
Ethics Committees at Nanjing Medical University.
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2.3 mRNA sequencing and
bioinformatics analysis

21 days subsequent to administering the treatments, tumor
samples from mice were carefully collected for mRNA sequencing
analysis (30). Following various treatments, cell samples were
diligently harvested. The extraction of total RNA from these
samples was performed using the highly regarded RNeasy Mini
Kit (Qiagen, Hilden, Germany). After RNA extraction, the
construction of paired-end libraries was carried out using the
TruSeq RNA Sample Preparation Kit (Illumina, USA), adhering
meticulously to the protocol provided by TruSeq RNA Sample
Preparation. The Shanghai Biotechnology Corporation was tasked
with the responsibility of constructing and sequencing the libraries.
For the precise mapping of clean reads to the Rnor 6.0 reference
genome, allowing up to two mismatches, the widely acclaimed
Hisat2 software (version 2.0) was utilized. Subsequent to genome
mapping, the esteemed Stringtie software (version 1.3.0) was
employed to generate and annotate Fragments per kilobase of
exon per million (FPKM) values. Gene expression data were
normalized using the trimmed mean of M-values (TMM) method
to correct for library size differences and compositional biases. Top-
10 genes were shown.

Statistical significance was determined with a P-value threshold
set according to the false discovery rate (FDR). mRNAs exhibiting a
fold change of > 2 and an FDR < 0.05 were identified as
differentially expressed. To further investigate the biological
pathways involved, meticulous KEGG pathway analysis was
performed using the revered KEGG database (http://
www.genome.ad.jp/kegg) within the R environment. Additionally,
Gene Set Enrichment Analysis (GSEA) was conducted using R
BiocManager to delve deeper into the molecular mechanisms
influenced by the treatments.

2.4 Pan-cancer analysis

2.4.1 Gene expression and datasets obtained

We utilized the Human Protein Atlas (HPA) to collate
comprehensive RNA and protein expression profiles of CD300E
in human samples. Furthermore, detailed data on CD300E
expression across various tissues and cell lines were sourced from
the Harmonizome database. We expanded our dataset by
incorporating CD300E mRNA expression data from cancerous,
paracancerous, and normal tissue samples provided by TCGA and
GTEx databases. Our study spanned a diverse set of 33 cancer types
including, Adrenocortical carcinoma (ACC), Bladder Urothelial
Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical
squamous cell carcinoma and endocervical adenocarcinoma
(CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma
(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma
(DLBC), Esophageal carcinoma (ESCA), Glioblastoma multiforme
(GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney
Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC),
Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid
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Leukemia (LAML), Brain Lower Grade Glioma (LGG), Liver
hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD),
Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO),
Ovarian serous cystadenocarcinoma (OV), Pancreatic
adenocarcinoma (PAAD), Pheochromocytoma and
Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD),
Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin
Cutaneous Melanoma (SKCM), Stomach adenocarcinoma
(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid
carcinoma (THCA), Thymoma (THYM), Uterine Corpus
Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS),
Uveal Melanoma (UVM).

For statistical analysis, we utilized R software (version 4.2.2) and
employed the ggplot2 package to depict CD300E expression across
the cancer spectrum. We adopted the median expression level as the
threshold for differential expression analyses. Differences between
expression groups were assessed using the Wilcoxon rank-sum test.

2.4.2 Survival analysis of CD300E in the
33 cancers

We also conducted survival analyses to explore the prognostic
potential of CD300E expression in cancer (18). Using the survival
package in R, we performed Kaplan-Meier analyses and employed
Cox regression to compare survival outcomes between groups with
high and low expression of CD300E. The impact of CD300E
expression on survival was visually represented through forest
plots using the survminer and ggplot2 packages.

2.4.3 Genetic alteration analysis of CD300E

An investigation into the genetic alterations associated with
CD300E was conducted through the cBioPortal. This analysis
included an examination of somatic mutation frequencies and
detailed genomic information, helping to elucidate the mutation
landscape of CD300E in various cancers.

2.4.4 Immunogenomic analyses of CD300E in
the 33 cancers

In our immunogenomic analysis across 33 different cancers, we
utilized the “GSVA” package and the “ssGSEA” algorithm to assess
the relationship between CD300E expression and various immune
components, including tumor-infiltrating lymphocytes,
immunostimulators, immunoinhibitors, MHC molecules,
chemokines, and chemokine receptors. The correlations were
determined using Spearman’s correlation coefficient, and p-values
less than 0.05 were deemed significant. To effectively display these
correlations, we generated heatmaps using the “ggplot2” package.

2.4.5 Functional enrichment analysis of CD300E
We carried out Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analyses to
examine the functions and pathways associated with genes
interacting closely with CD300E. These genes were identified
through STRING and analyzed using the “clusterProfiler” and
“org.Hs.eg.db” packages in R. We set a stringent cutoff threshold
of a p-value < 0.01 for both GO and KEGG enrichment analyses.
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The outcomes of these analyses were visually represented using
bubble charts created with the “ggplot2” package.

2.5 Cellular experiments

2.5.1 Knockdown of CD300E gene

To knock down CD300E gene expression in tumor cells, we
designed and synthesized small interfering RNAs (siRNAs)
targeting CD300E using In vivogen-based method (Detailed
sequencing can be found in the Supplementary Table 1). These
siRNA sequences were algorithmically predicted and selected as the
most likely to effectively target CD300E mRNA. The specific steps
are as follows: siRNA transfection: siRNA transfection was
performed using Lipofectamine 2000 (Invitrogen) according to
the manufacturer’s instructions. Briefly, cells were incubated with
a mixture of Lipofectamine 2000 and siRNA to form a complex 24
hours after inoculation and then added to the cells. Gene
knockdown efficiency assessment: 48 hours after transfection,
CD300E mRNA and protein levels were analyzed by real-time
quantitative PCR (qPCR) to verify the efficiency of
siRNA knockdown.

2.5.2 Overexpression of CD300E gene

cDNAs of mouse CD300e (GenBankTM accession number
NM_172050.3) were isolated by PCR from a ¢cDNA library of
mouse BM cells. To overexpress CD300E, we constructed a
plasmid containing the complete CD300E coding region. This
plasmid drives the expression of CD300E under the control of
CMYV promoter. The steps of the overexpression experiment are
as follows:

Plasmid construction: the cDNA of CD300E was cloned into
the expression vector pCMV, and the correctness of the insert
sequence was verified by gene sequencing. Plasmid transfection:
transfection of plasmid DNA was performed using Lipofectamine
2000. Cells were transfected 24 hours after inoculation, following
similar steps as described above for siRNA transfection. Expression
verification: 48 hours after transfection, mRNA and protein
expression of CD300E were detected by qPCR to confirm the
effect of gene overexpression.

2.5.3 Proliferation/apoptosis/migration/invision
To evaluate the proliferation of cancer cells, we cultured the
cells in suspension and then seeded them at a density of 5 x 1043
cells/mL (100 pL per well) in a 96-well plate. The plate was
maintained at 37°C. Subsequently, we added 10 pL of CCK-8
reagent (catalog KGA9305, KeyGEN, Nanjing, China) to each
well and allowed the plate to incubate for two hours before
measuring the optical density at 450 nm using a microplate reader.
For the assessment of cell migration and invasion, we utilized
Transwell chambers, applying a Matrigel coating for invasion assays
and no coating for migration assays. We introduced cancer cells
(5%1074) in 200 UL of serum-free medium into the upper chamber,
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while the lower chamber was filled with 600 UL of medium
supplemented with 10% FBS.

To determine levels of cell apoptosis, we analyzed the apoptosis
rate using an Annexin V-FITC/PI Kit (Cat. KGA1102, KeyGEN,
Nanjing, China), following the protocol provided by the
manufacturer. This method facilitated a precise evaluation of the
apoptotic stages within the cancer cell populations.

2.5.4 Real-time quantitative polymerase
chain reaction

To assess mRNA abundance at the cellular level, total RNA was
meticulously extracted from cells and muscle tissues using the Trizol
reagent (Invitrogen) and was precisely quantified with a Nanodrop
instrument (Thermo Scientific, USA). Following this, cDNA was
synthesized and served as a template for quantifying mRNA
expression levels in quantitative PCR (qPCR) assays. These assays
were performed using the TB Green' " Premix Ex Taq' " T kit (Takara;
RR820A), with GAPDH used as an internal control for normalization.
Specific qPCR primers, essential for the amplification of mRNA, were
synthesized by Bioengineering (Shanghai, China). The relative
expression levels of the mRNA in each sample were calculated using
the comparative Ct method (2/-AACt), ensuring the accuracy of the
results through at least three independent experimental replicates. To
provide a consistent baseline for comparison, all values were
normalized against the control condition. Details of the primer
sequences used are available in Supplementary Table 1.

2.6 Statistical methods

Statistical analysis and figure generation were performed with R
language version 4.0.2 and Graphpad Prism 9.0. For the comparison of
continuous variables between two groups, the choice between the Student
t-test and the Mann-Whitney test depended on specific conditions.
When comparing multiple groups, either one-way ANOVA or the
Kruskal-Wallis test with subsequent multiple comparisons was used,
depending on the circumstances. The prognostic significance of
categorical variables was determined using the log-rank test. Statistical
significance was set at a P value <0.05 across all analyses.

3 Results

3.1 Impact of voluntary running on tumor
growth and gene expression

Following the intervention of exercise, a significant reduction in
tumor size and weight was observed at day 21, with minimal
changes in the body weight of the mice (Supplementary
Figures 1A, B). We then conducted mRNA sequencing analysis
on five matched pairs (Figure 1A). The quality control results
confirmed normal parameters, with high intra-group consistency
and notable expression differences between groups (Supplementary
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FIGURE 1
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changed mRNAs. (C, D) Volcano plot and column of mRNAs differentially expressed between NE and E group. n = 5. (E, F) Bubble plot showing GO and
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Figures 2A-E). Volcano plots and heatmaps revealed differential
expression of 22 genes, among which CD300E expression was
significantly reduced in the exercise group (E), representing only
46% of that in the non-exercise group (NE), with a p-value of 0.008
(Figures 1B-D). Gene enrichment analysis highlighted significant
alterations in extracellular components, with the most pronounced
changes observed in the MicroRNAs in cancers and Calcium

signaling pathway (Figures 1E, F).
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3.2 Pan-cancer analysis

3.2.1 Expression variability of CD300E in
pan-cancer

To evaluate the expression of CD300E mRNA in normal human
tissues, we analyzed data from the GTEx, HAP, and Consensus
datasets. CD300E showed higher expression in tissues such as
blood, lung, bone marrow, appendix, and bladder (Supplementary
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Figure 1). Further in-depth evaluation using RNA-seq data from
TCGA and GTEx databases revealed significant expression
differences in CD300E across 33 types of cancer. In unmatched
samples (Figure 2A), CD300E was notably upregulated in cancers
like BRCA, COAD, ESCA, GBM, HNSC, KIRC, and STAD, and
downregulated in KICH, LIHC, LUAD, LUSC, and PAAD. In
matched samples (Figure 2B), upregulation was significant in

10.3389/fimmu.2024.1437068

BRCA, COAD, ESCA, HNSC, KIRC, and STAD, while
downregulation was noted in COAD, KICH, LIHC, LUAD, and
LUSC. The Human Atlas database further assessed the protein
expression of CD300E across various cancers, showing upregulation
in Myeloma, Diffuse large B-cell lymphoma, Ovarian cancer, Lung
cancer, and Colorectal cancer without significant downregulation in
any cancer type (Figure 2C).
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FIGURE 2

Differential expression pattern of CD300E. (A) Differential CD300E mRNA expression between paired samples in TCGA cancers. The red dot
represents cancer samples, and the blue dot represents paired normal samples. Radargrams visualize and compare CD300E expression in different
tumors. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Differential CD300E mRNA expression between TCGA cancers and GTEX normal tissues. The red
column represents cancer samples, and the blue column represents normal samples. The normal group was normal tissue in TCGA and GTEX

databases.
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*p < 0.05, **p < 0.01, and ***p < 0.001. (C) CD300E protein expression in different cancer types in Human Atlas.
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3.2.2 Prognostic impact of CD300E in

pPan-cancer

For overall survival (OS) and disease-specific survival (DSS),
CD300E posed a risk factor in THCA, LUSC, LGG, LAML, KIRC,
and GBM, while it acted as a protective factor only in SKCM
(Figures 3A, B). For disease-free interval (DFI), progression-free
interval (PFI), and disease-free survival (DFS), CD300E was a risk

FIGURE 3

10.3389/fimmu.2024.1437068

factor in KIRP, PAAD, and GBM, and a protective factor in LGG
and CHOL (Figure 3A).

3.2.3 Correlation analysis of CD300E in
pPan-cancer

Copy number variations (CNVs), a common form of genomic
instability in cancer, can lead to altered gene expression affecting
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cell proliferation, differentiation, and death. Bar graphs (Figure 4A)
showed changes in CD300E copy numbers across various cancers,
with significant variations in KICH and READ. Further correlation
analysis indicated a negative relationship between CD300E copy
numbers and cancer progression in KIRP and THCA, and a positive
correlation in KICH and STAD (Figure 4B). Promoter methylation,
a critical epigenetic regulatory mechanism affecting gene expression
without altering the DNA sequence, was analyzed to explore its
relationship with CD300E expression across multiple cancer types.
Both unmatched and matched tumor samples showed a negative
correlation between CD300E expression and methylation,
particularly in KIRC and THCA (Figures 4C, D). Additionally,
the relationship between tumor mutational burden (TMB) and
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CD300E expression was investigated, revealing a positive
correlation in SARC, OV, COAD, BRCA, BLCA, and THYM, and
a negative correlation in LAML, LIHC, and PAAD (Figures 4E, F).

3.2.4 Analysis of CD300E on the immune
microenvironment across cancers

Heatmap analysis from Figure 5A intricately details the
correlations between CD300E expression and various immune
cell subtypes across different types of cancers. Notably, in cancers
such as BRCA (Breast Cancer) and COAD (Colorectal
Adenocarcinoma), a significant positive correlation exists between
CD300E expression and M2 macrophages, typically associated with
a tumor-promoting immunosuppressive environment. This
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Correlation analysis of CD300E in pan-cancer. (A) Bar graphs illustrate CD300E copy number variation in different cancers. (B) CD300E copy
number and pan-cancer direct correlation analysis. (C, D) The correlation between the methylation status of gene promoter regions and CD300E in
multiple cancer types (E, F) The correlation between tumor mutational burden (TMB) and CD300E expression.
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Analysis of immune microenvironmental cellular regulation of pan-cancer by CD300E. (A) Heatmap of immune cell infiltration in pan-cancer
analyzed using the Cibersort method. Each cell represents the correlation between CD300E expression and the level of a specific immune cell type,
and the intensity and sign of the color correspond to the strength and direction of the correlation, respectively. Statistical significance is indicated by
the box around the cell. (B) CD300E pan-cancer immuno-infiltration analysis using Cibersort. (C) Gene Commons data analysis of correlations
between single genes and immune infiltration results, using heatmap format to present results.

suggests that elevated expression of CD300E may foster an

immunosuppressive state conducive to tumor growth and

metastasis. Conversely, in Lung Adenocarcinoma (LUAD),
CD300E exhibits a negative correlation with natural killer (NK)
cells, although this association generally lacks statistical
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significance. This trend implies that in certain cancer contexts,
CD300E expression may inversely affect the immunosurveillance
capabilities of NK cells, potentially contributing to mechanisms of
immune escape. Additionally, in certain cancer types like BRCA,
CD300E shows a positive correlation with regulatory T cells (Tregs),
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which play a critical role in modulating the immune system,
particularly in maintaining immune tolerance and suppressing
excessive immune responses. Increased CD300E expression might
enhance the functionality of Tregs, thereby fostering an immune-
suppressive tumor microenvironment favorable for tumor survival
and progression.

EPIC analysis, a vital tool in studying the tumor
microenvironment, enables researchers to understand the
dynamic variations of different cell types within tumors, which is
crucial for advancing tumor immunology and developing new
therapeutic strategies (Figure 5B). From the heatmap, it is evident
that CD300E’s correlations with various immune cells vary,
illustrating the heterogeneity of tumor microenvironments. For
instance, in breast and colorectal cancers, Cancer-associated
fibroblasts (CAFs) show a strong positive correlation with
CD300E expression, suggesting their significant role in supporting
or enhancing tumor growth and invasion, closely linked with the
expression of this gene. Moreover, in cancers like LUAD, the
activity of CD8+ T cells significantly correlates with CD300E

10.3389/fimmu.2024.1437068

expression, reflecting their importance in the tumor immune
response and the potential regulatory role of this gene. Further
analysis using the TCGA database’s pan-cancer dataset revealed a
broadly positive correlation between CD300E and various immune
cells across different cancer types (Figure 5C).

3.2.5 Pathway enrichment and key gene mutation
analysis of CD300E across cancers

Our further evaluation of CD300E’s function in pan-cancer
contexts revealed significant findings via the GSEA methodology.
CD300E notably suppresses oxidative stress pathways, potentially
facilitating conditions favorable for tumor growth. Additionally,
CD300E significantly enhances pathways such as TNF-o signaling,
inflammatory response pathways, IL6-JAK signaling, and epithelial-
mesenchymal transition (EMT), all of which are documented to
potentially promote tumor growth and metastasis (Figure 6).

A heatmap depicting the frequency of key gene mutations
across various cancers highlights the high mutation rates of genes
such as TP53 in LUAD, APC in COAD, and PTEN in UCEC,

XENOBIOTIC_METABOLISM
WNT_BETA_CATENIN_SIGNALING
UV_RESPONSE_UP
UV_RESPONSE_DN+

[ ]
(1 BN
Y X1 IR

TGF T \ SIGNALING
SPERMATOGENESIS
REACTIVE_OXYGEN_SPECIES_PATHWAY |
PROTEIN_SECRETION
PI3K_AKT_MTOR_SIGNALING
PEROXISOME A
PANCREAS_BETA_CELLS

P53 PATHWAY A

{ OXIDATIVE_PHOSPHORYLATION:
NOTCH SIGNALING
MYOGENESIS
MYC_TARGETS_V2+
MYC_TARGETS_V1+
MTORC1_SIGNALING 4
MITOTIC_SPINDLE
KRAS_SIGNALING_UP{
KRAS_SIGNALING_DN
INTERFERON_GAMMA_RESPONSE
INTERFERON_ALPHA_RESPONSE -

@cc-c-0000@c0-00

co@coc:c000@c00
.

Y B
¢ @oo@®-
ee@ceooc o
.
(Y KX B
[ I}

IL2_STAT5_SIGNALING
HYPOXIA
HEME_METABOLISM 4
HEDGEHOG_SIGNALING
GLYCOLYSIS
G2M_CHECKPOINT 4
FATTY_ACID_METABOLISM |
ESTROGEN_RESPONSE_LATEq

0000000 -

o:-000Qc0c00c0
e -00000:-0- -
.- - 0000000 -

0000000000 @---°00:00000000000:Qc@: -0

{:@-0-:0-000000: - -0

E2F_TARGETS
DNA_REPAIR 4
COMPLEMENT 4
COAGULATION 4
CHOLESTEROL_HOMEOSTASIS q
BILE_ACID_METABOLISM
APOPTOSIS 4
APICAL_SURFACE 4
APICAL_JUNCTIONA
ANGIOGENESIS
ANDROGEN_RESPONSE
ALLOGRAFT_REJECTION
ADIPOGENESIS

.'...'.."'."".m.'.'"'".." .

{ @ @cce:000c@@: ¢ - @:--0000: -000:00: - @-0::c00c@c o

XYY XX )
ececoe@c-0cc0

e@c oo
e o0
eesce
co e

2l

cco0c@coee®
coc@:-0c00
Y X X I

-0
r.l......ll.

c e @

-0

.0

CECEEN
c@0c0cceo @O0 oo 00

ce0@c00e

N IEEEEEE REEEX )

¥ T T EY DY Y TIIIEN
@ -

- 00@c0-00-Q0: Q- -

c00000c0c 00 Q-

{0@-0c0000cc0c@ce@o-0:-000Q0c0:-00000 00 -0-:-0-0000: @

{0@-@cce - -0000:@cc@c:-0: 000000000000 -@:-00::000Q00 ¢
020000 -°00:-°00° @O

00000 -0 -
c-00000-0- -
e 000@0@c 0o

- c00@00000
e - 00000 O-°0

+2:00000000:0cc0 - Q@ -

000 °0°-20000°0
Qo 0000000
©c00000:0:Q0000:00000c00-00:-Q-0c0: -

@0
ce@eccoe0cc00000000 -0

0@c0cce 00009 n’..........-..o.l‘...-o- c0@ce@00 o 0
{e0c00cce0e-0Q0000 @ -0:000000:-00:-000-0c00c -0

900000:00000Q000:000 - -000°0:0° -Q00c@:-° - --0cc@occce

XY DEEY YT

c@eocccocc0e0

|.@-0ccc:000000- -

(&)
(e
e
N
O,
%

%

‘Vo I IXXEERRY T
(o

<

Q
o
Q

FIGURE 6

>

%9-.................

&
@
2
=2
]
o
Y
=
N
.
o
[}
-
[ ]
N
w
N

Pathway enrichment of CD300E in pan-cancer. Dot plots represent pan-cancer GSEA results using the official immunization gene set (GMT file) as a
reference. Functional pathways are from GM7 files and are shown on the y-axis, with different cancer types shown on the x-axis. Dot color indicates
correlation with CD300E expression; red indicates positive correlation and blue negative correlation. The size of the dots represents the -log10(FDR)
value, indicating the significance of the enrichment.

Frontiers in Immunology 80

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1437068
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Luo et al.

indicating their common involvement in these cancers. Specific
cancer types like BRCA, LGG, and HNSC show frequent mutations
in genes like TP53, PIK3CA, and CDKN2A, providing insights that
may guide therapeutic strategies (Supplementary Figure 5A).

3.3 Impact of CD300E on breast
cancer cells

Finally, our study delves into the cellular functions of CD300E.
We validated the expression of the CD300E gene after siRNA or
plasmids intervention (Supplementary Figures 6A, B). Compared to
control cells, overexpression of CD300E in MDAMB468 and
MDAMB231 breast cancer cells leads to increased proliferation
and cell viability, while suppression of CD300E expression reduces
proliferation and cell viability (Figures 7A, B). Furthermore,
overexpression of CD300E significantly promotes the migratory
and invasive capabilities of these tumor cells, whereas its inhibition
reduces these properties (Figures 7C, D). Overall, targeting CD300E
could directly inhibit tumor cells, significantly impeding cancer
progression and presenting a novel therapeutic target (Figure 8).

4 Discussion

This research explored the impact of exercise on tumor growth
and gene expression within a murine model, focusing particularly
on the expression patterns, functions, and potential clinical
significance of the CD300E gene across various cancers. Our
findings indicate that CD300E may adversely affect prognosis and
promote tumor progression across a range of cancers. Additionally,
exercise appears to inhibit breast cancer progression potentially by
downregulating CD300E.

Exercise as well as widespread is believed to promote human
health and improve a wide range of diseases (31-33). The
phenomenon of exercise against cancer has been widely explored
in recent years, but there is still a large number of exercise-
responsive molecules whose roles need to be explored (34-38).
Our study confirmed the positive impact of physical activity on
inhibiting tumor growth. Exercise intervention significantly
reduced tumor size and weight in the murine model without
markedly affecting body weight. These outcomes suggest that
moderate physical activity might suppress tumor growth by
modifying the tumor microenvironment or regulating specific
signaling pathways. Analysis of differentially expressed genes
revealed significant downregulation of CD300E in the exercise
group, indicating its role in tumor growth regulation, particularly
within an active context. Furthermore, gene enrichment analysis
showed significant changes in extracellular components and
associated signaling pathways, such as MicroRNAs in cancers and
the Calcium signaling pathway, providing clues on how exercise
might influence tumor biology through molecular mechanisms.

In our pan-cancer analysis, CD300E exhibits significant
expression variability across multiple cancer types, underscoring
its potential role in various malignancies. Notably, CD300E is
upregulated in cancers such as Myeloma, Diffuse Large B-cell
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Lymphoma, Ovarian Cancer, Lung Cancer, and Colorectal
Cancer, suggesting its involvement in the progression of these
diseases. Prognostic analyses reveal that CD300E acts as a risk
factor in several cancers, providing valuable insights that may guide
clinical prognostic assessments and therapeutic decision-making.
Studies on the variability of CD300E copy numbers and their
correlation with tumor mutational burden offer critical
perspectives on its role in cancer progression. These findings
support the notion that CD300E may promote cancer
development by impacting genetic stability and the interactions
within the immune microenvironment.

Analysis of the relationships between CD300E and various
immune cell subpopulations indicates that CD300E may influence
tumor growth and immune escape by modulating immune
cells within the tumor microenvironment, particularly
immunosuppressive M2 macrophages and regulatory T cells. Past
studies have also shown that CD300E and T cells are associated with
the regulation of immune function in macrophages, and more
mechanistic studies are needed to explore this (22-24). But, the
results also illustrated that CD300E showed a significant positive
correlation with most other immune-promoting immune cells,
including CD8 T cells, neutrophils, NK cells, etc. The literature
reports that these cells more or less affect the heating and cooling of
the immune microenvironment. It has been reported in the
literature that these cells more or less affect the heat and cold of
the immune microenvironment (26). The increased expression of
CD300E resulted in both Immunosuppressive and
immunopromoting cells, affecting the tumor microenvironment,
which could potentially affect the prognosis and the degree of
response to immunotherapy. These insights lay a theoretical
foundation for targeting CD300E in immunotherapeutic strategies.

Furthermore, our analysis elucidates the role of CD300E in
regulating key signaling pathways related to cancer progression,
especially in suppressing oxidative stress pathways and activating
several pathways that promote tumor progression. The inhibition of
oxidative stress pathways may provide cancer cells with
mechanisms to evade programmed cell death, thereby covertly
supporting tumor growth and survival (39-41). Concurrently,
CD300E significantly activates pathways such as the TNF-o
pathway, inflammatory response pathways, the IL6-JAK pathway,
and the epithelial-mesenchymal transition pathway, all closely
associated with the invasiveness and metastatic potential of
tumors (42-45). These pathways’ activation might facilitate the
dissemination of tumor cells within the host. Analysis of the
frequency of key gene mutations reveals frequent mutations in
genes such as TP53, APC, and PTEN across various cancers,
highlighting these genes as critical factors in tumor development
and progression (46). These mutations may affect cell cycle
regulation, DNA repair mechanisms, and pathways of cell death,
further substantiating the potential role of CD300E in pan-
cancer contexts.

Additionally, our cellular experiments clearly demonstrate that the
overexpression of CD300E in breast cancer cells is closely associated
with enhanced cellular proliferation, reduced apoptosis rates, and
increased migration and invasion capabilities. These findings not
only confirm the role of CD300E as a tumor-promoting factor but
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between various treatments is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are presented as mean + SD. *P < 0.05 **P < 0.01

***P < 0.001. (C, D). The migratory and invasive capacity of control, CD300E-

inhibited, and CD300E-overexpressed tumor cells were examined at 24h

after transfection by Boyden chamber assay. Total original magnification, 200x. The statistical significance of the differences between various treatments

is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are

also highlight its potential as a therapeutic target. Experiments aimed at
inhibiting CD300E expression further validate its significant role in
tumor cell proliferation and survival, offering a potential therapeutic
strategy to curb the progression of breast cancer. Studies have reported
that CD300E can modulate apoptosis in monocytes by affecting
calcium channels, which is consistent with our biological predictions.
In addition, altered calcium signaling affects the behavior of immune
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presented as mean + SD. *P < 0.05 **P < 0.01

cells (including T cells and macrophages), influencing their activation
and cytokine production, thereby altering the immune
microenvironment (47-49). Therefore, we hypothesize that the
ability of CD300E to promote tumor cell value-addition and
migration is reached by regulating calcium channels.

Mechanically, how exercise regulates CD300E lowering this
process was not explored in this study. However, a large body of
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literature has reported that exercise can bring about a series of
physiological changes, including changes in the metabolome,
proteins, and related molecules in the genome (12, 50, 51).
Specifically, we hypothesize that exercise-induced changes in
systemic factors, such as serum circulating exosome, muscle
derived cytokines, and hormones, could impact transcription
factors like NF-xB and STAT3, known regulators of gene
transcription (41, 52-54). Additionally, the role of epigenetic
modifications, including DNA methylation and histone acetylation,
in the regulation of gene expression in response to physical activity
could also influence the expression of CD300E (55). In addition, the
direct upstream transcription factor(s) by which exercise regulates
CD300E expression in tumor cells remains unknown. We proposed
that exercise activates AMP-activated protein kinase (AMPK) and
peroxisome proliferator-activated receptor gamma coactivator 1-
alpha (PGC-1lalpha), which are central to tumor cell expression
(56, 57). These molecules may influence the transcription factors
and co-regulators that control CD300E expression. Furthermore,
exercise can also modulate the expression of cellular miRNA,
which may post-transcriptionally regulate CD300E (58, 59). For
example, miR-4270 has been reported to directly target CD300E
(60), but these are speculations based on the literature, and future
studies will need to further explore the mechanisms by which exercise
regulates CD300E.

As for the clinical translational perspective, we believe that
patients with high CD300E expression may benefit from more
intensive or specific types of exercise therapies that are particularly
effective in downregulating CD300E. Conversely, patients with low
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CD300E expression may require different exercise regimens or
adjunctive therapies to achieve optimal results. To test these
hypotheses, we recommend that future studies design clinical trials
that stratify patients according to CD300E expression levels. These
trials should include a variety of exercise regimens from moderate to
high intensity and monitor changes in CD300E expression, tumor
progression, and clinical prognosis. In addition, patient-reported
outcomes and quality-of-life measures should be included to assess
the broader impact of tailored exercise interventions. Moreover, we
recommend longitudinal studies to track CD300E expression and
tumor progression in response to sustained exercise therapy. These
studies will help determine the sustainability of exercise-induced
changes in gene expression and their long-term impact on cancer
prognosis (44, 61, 62).

Limitations and perspectives: Sample Size and Type
Limitations: This study is primarily based on animal models and
specific cancer cell lines, which may restrict the generalizability of
the findings and their direct applicability to human cancer patients
(63). While murine models provide valuable insights into tumor
biology, they cannot fully replicate the complexity and
heterogeneity of human tumors (64-66). Singular Focus of Study
Design: Although we observed the impact of exercise on tumor
growth and CD300E expression, there is a lack of exploration into
variables such as exercise intensity, frequency, and duration.
Moreover, the study focuses predominantly on the role of a single
gene, CD300E, while tumor development involves multiple genes
and signaling pathways interacting (67). Complexity in Data
Interpretation: While gene expression and pathway enrichment
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analyses have unveiled potential biological mechanisms, the exact
causal relationships remain unclear. For instance, the direct link
between changes in CD300E expression and specific tumor
behaviors has not been fully established. Future experimental
designs should consider the effects of various types and intensities
of exercise on tumor growth and how these variables interact with
gene expression and immune responses within the tumor
microenvironment (68). Additionally, investigating the role of
CD300E across different cancers and immune backgrounds may
reveal its multifunctional potential as a therapeutic target. Further
mechanistic studies should delve into how CD300E activates or
inhibits cancer-related pathways, particularly how it influences key
tumor behaviors such as cell cycle progression, apoptosis,
migration, and invasion. While current research focuses on
exploring tumor therapy at the level of a single gene, future
studies could use single-cell sequencing and spatial transcriptome
analysis to identify a broader range of genes affected by exercise
(69-72). These studies could use integrated bioinformatics
approaches to elucidate gene-gene interactions and pathways co-
regulated by exercise.

5 Conclusions

In summary, CD300E not only plays a potentially crucial role in
the process of exercise-mediated tumor growth inhibition but also
exhibits viability as a therapeutic target based on its expression and
function across various cancers. Future research should further explore
the specific molecular mechanisms of CD300E and its role in different
cancers to advance the development of novel anti-cancer strategies.
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Efficacy of PD-1 or PD-L1
inhibitors for the therapy of
cervical cancer with varying
PD-L1 expression levels: a
single-arm meta-analysis

Jie Yang, Haizan Yu, Yilei Zhang, Mingli Zhu,
Mengyu Zhang and Qiming Wang*

Department of Gynaecology, Ill, Women’s and Children’s Hospital of Ningbo University, Ningbo,
Zhejiang, China

Objective: To assess the effectiveness and tolerability of both PD-1 and PD-L1
inhibitors in advanced cervical cancer (CC), focusing on varying PD-L1 levels.

Methods: A comprehensive exploration was carried out on EMBASE, PubMed,
Cochrane Library databases as well as Web of Science up to May 25, 2024, for
studies involving advanced CC patients receiving PD-1/PD-L1 inhibitors.
Inclusion criteria were studies reporting objective response rate (ORR), disease
control rate (DCR), median progression-free survival (PFS), as well as median
overall survival (OS). Data extraction and quality assessment were performed by
two reviewers using the JBI Case Series Critical Appraisal Checklist, followed by a
meta-analysis via STATA/MP 16.0.

Results: Five eligible studies comprising 223 patients were chosen. ORR and DCR
were 42% (95% Cl: 17%-66%, P = 0.00) and 70% (95% ClI: 22%-117%, P = 0.00),
respectively, in the PD-L1 positive patients and were 36% (95% Cl: 17%-54%, P =
0.00) and 47% (95% Cl. 30%-63%, P = 0.00), respectively, in patients with PD-L1
negativity. For patients exhibiting PD-L1 positivity, median PFS and median OS
were 3.98 months (95% CI: 0.80-7.16, P = 0.01) and 11.26 months (95% ClI: 3.01-
12.58, P = 0.00), respectively.

Conclusion: With PD-1/PD-L1 inhibitors, PD-L1 positive CC patients
demonstrate superior ORR, DCR, median PFS, and median OS, underscoring
PD-L1 as one biomarker for immunotherapy response.
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Introduction

Cervical cancer (CC) is still a significant contributor to cancer-
related mortality in women worldwide, particularly in middle- and
low-income countries (1). According to 2020 data, there were
approximately 604,127 new cases of cervical cancer worldwide,
and 341,831 deaths, with age-standardised incidence and mortality
rates of 13.3 and 7.2 per 100,000 women, respectively (2). Despite
great progress in both screening and vaccination, a majority of
patients still experience serious disease or recurrence and have
limited therapy options and unfavourable prognoses (3, 4).
Traditional therapies, including chemotherapy, radiation as well
as surgery, have presented limited efficacy in these stages of the
disease, entailing the exploration of innovative therapy (5).

With the advent of immunotherapy, cancer treatment has been
revolutionized bringing hope for patients suffering from advanced
tumours. Programmed cell death protein 1 (PD-1) and programmed
death-ligand 1 (PD-L1) inhibitors have presented encouraging results
in cancers as one class of immune checkpoint inhibitors, including
melanoma, bladder cancer as well as non-small cell lung cancer (6, 7).
These inhibitors lift the immune system’s capability of recognizing
and eliminating cancer cells by disrupting the binding between PD-1
on T cells and PD-L1 on tumour cells (7). The PD-L1 quantification
on tumour cells is commonly assessed using the Combined Positive
Score (CPS). It has emerged as one potential biomarker for
forecasting the reaction to PD-1/PD-L1 inhibitors (8). CPS is
determined by assessing the proportion of PD-L1-positive tumour
cells and immune ones relative to the total viable tumour ones (9).
Preliminary clinical studies indicate a possibility of exhibiting better
reactions to PD-1/PD-L1 inhibitors in patients having higher CPS,
which implies a potential stratified therapy (10, 11).

The meta-analysis is to assess the effectiveness and tolerability of
both PD-1 and PD-LI inhibitors in treating advanced CC
systematically, with a particular focus on different PD-L1
expressions. Data were integrated from various high-quality studies
to comprehensively understand the potential of these immune
therapies in improving the outcomes of advanced CC patients.

Methods

Based on implementation under the recommendations of the
Cochrane Handbook for Systematic Reviews of Interventions, this
study was reported in accordance with the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (12). The current
study was formally registered on the International Platform of
Registered Systematic Review and Meta-analysis Protocols
(INPLASY) (ID: INPLASY202460062).

Search strategy
We performed an extensive search across various databases like

Web of Science, PubMed, EMBASE, as well as the Cochrane
Library, encompassing articles published before May 25, 2024.
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The search was restricted to studies published exclusively in the
English language with the following terms for search: “Uterine
Cervical Neoplasms” OR “CC” AND “Immune Checkpoint
Inhibitors” OR “PD-1 Inhibitor” OR “PD-L1 Inhibitor”. We
performed a manual review to the reference lists of the
encompassed articles for identifying additional related research.
The particular search process is detailed in Supplementary File 1.

Inclusion and exclusion criteria

Studies were encompassed if they met the
criteria below:

1. Patients were confirmed with advanced or recurrent CC,
regardless of subtype.

2. Patients received treatment by PD-1 or PD-L1 inhibitors
alone or in conjunction with other therapies.

3. Retrospective analyses or stage II clinical trials.

4. Included studies assessed relevant clinical outcomes, such
as PFS, ORR, OS, DCR, as well as AEs, using RECIST 1.1
criteria (13).

5. Tumour PD-L1 was assessed and quantified as one CPS,
which was calculated as the percentage of PD-LI-stained
cells divided by the sum of viable tumour cells multiplied by
100. The definition of positivity was established as having a
CPS of 1 or higher.

The exclusion criteria were:

1. Animal research, meta-analyses, reviews, duplicate reports,
letters or case reports.
2. Studies with fewer than 10 patients.

Two reviewers conducted a thorough screening of articles
independently, assessing their eligibility according to pre-
established criteria Disagreements/discrepan were resolved
through consensus between the two reviewers or with the
assessment of one-third reviewers if necessary.

Data extraction and quality evaluation

Through one predefined extraction form, two reviewers
extracted data. The extracted data encompassed baseline patient
characteristics, study characteristics, and predefined outcomes
(ORR, DCR, PFS, OS). The quality of clinical studies was
evaluated via the JBI Case Series Critical Appraisal Checklist (14).

Statistical analyses
Analyses were conducted via STATA/MP 16.0. Inter-study

heterogeneity was judged via the chi-square test as well as the I?
statistic. Random-effects models (REM) were adopted when 1°>50%
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(indicating high heterogeneity), and fixed-effects models (FEM)
were adopted when 1°<50% (implying low heterogeneity) (15). The
robustness of the pooled results was judged via sensitivity analyses.
Egger’s test was conduc to evaluate the possible publication bias.

Results
Literature search

The initial search strategy yielded 2,998 relevant articles. After
removing 1,053 duplicate studies, we screened titles and abstracts,
causing the exclusion of 1,894 studies not fulfilling the inclusion
criteria. Subsequently, we performed a detailed review of the whole
texts of the left 51 potentially eligible papers, and ultimately selected
5 trials for the final analysis (16-19). The process of selecting studies
is depicted in Figure 1. All eligible research data were obtained from
published manuscripts.

Study characteristics

Totally, 5 studies were included in the final analysis Table 1
presents their detailed characteristics.
Quality assessment

On the basis of the JBI Critical Appraisal Checklist for Case

Series, five clinical studies were evaluated, comprising ten items that
examine the quality of case reports including case selection,

[ Identification of studies via datab and regi ]
—
= e o v
o Records identified from*:
§ Pubmed (n = 450) Records removed before screening:
= Embase (n = 1423) > Duplicate records removed (n=
E Web of Science (n = 928) 1053)
i Cochrane Library (n=197)
}
Meta/Review/Letter/Reply (n=516)
5 Meeting abstracts/expert
After title and abstract > ase repor
(n=1945) =323
Non-English (n=22)

2 l Disease not eligible (n=475)
.E Drug not eligible (n= 558)
2
ﬁ After full-text screening

(n=51)

4 Reports excluded: (n=46)
e A4
°
-§ Studies included in review
5 (n=5)
=
FIGURE 1

The flow diagram of studies is included in this meta-analysis.
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evaluation of the disease or health problem, and case data
presentation. The assessment results are provided in Table 2.

Meta-analysis results

Comparison of ORR by PD-L1 CPS

Five studies (223 patients) analyzed ORR by PD-L1 CPS (16-
20). In patients exhibiting PD-L1 positivity, a REM was used
because of notable heterogeneity (I* = 89.53%, P = 0.00). The
ORR was 42% (95% CI: 17%-66%, P = 0.00, Figure 2). In patients
exhibiting PD-L1 negativity, a FEM was used because of low
heterogeneity (I> = 0.00%, P = 0.45). The ORR was 36% (95% CIL:
17%-54%, P = 0.00, Figure 3).

Comparison of DCR by PD-L1 CPS

Three studies (176 patients) analyzed DCR by PD-L1 CPS (17,
19, 21). In PD-L1 positive patients, a REM was used because of
notable heterogeneity (I> = 98.15%, P = 0.00). The DCR was 70%
(95% CI: 22%-117%, P = 0.00), as shown in Figure 4. In PD-L1
negative patients, a FEM was used because of low heterogeneity
(* = 10.25%, P = 0.33). The DCR was 47% (95% CI: 30%-63%,
P = 0.00), as shown in Figure 5.

Median PFS in patients exhibiting PD-
L1 positivity

Three studies (170 patients) analyzed PFS in Patients exhibiting
PD-LI positivity (16, 17, 20). A REM was used because of notable
heterogeneity (I* = 78.54%, P = 0.01). The PFS was 3.98 months
(95% CI: 0.80-7.16, P = 0.01), as shown in Figure 6.

Median OS in patients exhibiting PD-
L1 positivity

Two studies (125 patients) analyzed OS in patients exhibiting
PD-L1 positivity (16, 20). A FEM was used due to low heterogeneity
(I> = 0.00%, P = 0.42). The OS was 11.26 months (95% CI: 3.01-
12.58, P = 0.00, Figure 7).

Sensitivity analysis

By sequentially excluding each study, a sensitivity analysis was
performed for assessing its impact on the summary results.
According to the analysis results, no individual study significantly
impacts the overall 95% CI of the summary results, indicating a
relatively robust of the meta-analysis results. The results are
presented in Supplementary File 2.

Publication bias
To ensure the validity of the meta-analysis, publication bias was

judged via Egger’s test. The p-value of 0.79 (> 0.05), indicates no
notable publication bias.
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TABLE 1 Characteristics of studies included in this meta-analysis.

10.3389/fonc.2024.1454372

Year Study Stage Age Intervention Number PD-L1 PD-L1 PD-L1 Follow-
type types of CPS>1% CPS<1% CPS up (m),
patients unknown median
(range)
Chunyan 2024 NRCT single- = metastatic, 51 Camrelizumab 45 10 30 5 6
Lan arm, phase II recurrent, or (33-67) (0.97-37.4)
persistent
cervical cancer
Yin 2023 NRCT single- = recurrent or 50 Sintilimab 27 18 5 4 10.2
Wang arm, phase II metastatic (34-68) (3.0-24.5)
cervical cancer
Lingfang = 2022 NRCT single- | recurrent or 50 Camrelizumab 33 10 9 14 13.6
Xia arm, phase II metastatic (43-55) (10.0-23.6)
cervical cancer
Hyun 2019 international,  advanced 46 Pembrolizumab 98 82 15 1 10.2
Cheol open- Cervical (24-75) (0.6-22.7)
Chung label, Cancer
multicohort
Kenji 2019 prospective, advanced or 50 Nivolumab 20 5 15 / 5.4
Tamura multicenter, recurrent (32-68) (1.0-13.9)
open-label uterine
cervical cancer
Discussion immune system. PD-L1, a cell surface protein frequently found on

This study comparatively analyzed ORR and DCR among
patients who had different PD-L1 CPS, focusing on assessing the
efficacy disparity between groups exhibiting PD-L1 positivity and
PD-LI negativity. The results revealed an ORR of 42% (95% CI:
17%-66%) and 36% (95% CI: 17%-54%) in the group exhibiting PD-
L1 positivity and group exhibiting PD-L1 negativity, respectively.
This difference suggests a possibly larger response rate of PD-L1-
positive patients to immunotherapy. The underlying mechanism for
it can be explained by the interaction between PD-L1 with the

TABLE 2 The JBI Critical Appraisal Checklist for Case Series.

tumour cells, binds to the PD-1 receptor on T cells, suppressing the
activity of T cells and helping tumour cells evade immune system
attacks (22, 23). In tumours expressing PD-L1, tumour cells can
more effectively utilize this mechanism to evade immune
surveillance. Thus, these patients possibly have a better response
to immune checkpoint inhibitors like PD-1/PD-L1 inhibitors, as
these drugs are able to disrupt the binding of PD-1/PD-L1 with
restore T cell-mediated tumour attack (24, 25). DCR was also
compared among patients who had different PD-L1 CPS. The
group exhibiting PD-L1 positivity and group exhibiting PD-L1

Chunyan Lingfang Hyun Keniji
Lan Xia Cheol Chung Tamura
Were there clear criteria for inclusion in the case series? YES YES YES YES YES
Was the (fOndlthn meafured in a standard, reliable way for all participants YES YES YES YES YES
included in the case series?
Wer.e lvahd nilethods u‘sed for the 1de‘nt1ﬁcat10n of the condition for all YES YES YES YES YES
participants included in the case series?
Did the case series have consecutive inclusion of participants? UNCLEAR YES YES YES UNCLEAR
Did the case series have a complete inclusion of participants? YES YES YES YES YES
Was there clear reporting of the demographics of the participants in the study? YES YES YES YES YES
Was there clear reporting of clinical information of the participants? YES YES YES YES YES
Were the outcomes or follow-up results of cases clearly reported? YES YES YES YES YES
Was there rjle:'ir report?ng of the presenting site(s)/clinic(s) YES YES YES YES YES
demographic information?
Was statistical analysis appropriate? YES YES YES YES YES
Overall appraisal Include Include Include Include Include
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ES Weight
Study with 95% CI (%)
Hyun Cheol Chung (2019) - 0.15[ 0.07, 0.22] 22.88
Keniji Tamura  (2019) —— 0.33[ 0.09, 0.57] 19.22
Lingfang Xia (2022) L 0.40[ 0.10, 0.70] 17.31
Yin Wang (2023) —M—— 0.556[ 0.33, 0.79] 19.48
Chunyan Lan (2024) —M——0.67[ 050, 0.84] 21.10
Overall — 0.42[ 0.17, 0.66]
Heterogeneity: 12 = 0.07, I = 89.53%, H? = 9.55
Test of 8, = 8;: Q(4) = 38.19, p =0.00
Testof 8 =0:z=3.29, p =0.00
0 2 4 6 8
Random-effects DerSimonian-Laird model
FIGURE 2
Forest plot of ORR in PD-L1 positive
ES Weight
Study with 95% CI (%)
Lingfang Xia (2022) —— 0.33[ 0.03, 0.64] 36.24
Yin Wang (2023) —— 0.20[ -0.15, 0.55] 27.96
Chunyan Lan (2024) —@— 050[ 0.19, 0.81] 3579
Overall - 0.36[ 0.17, 0.54]
Heterogeneity: 12 = 0.00, 2= 0.00%, H2 = 1.00
Testof 6,=6:Q(2) =1.61,p=0.45
Testof 8 =0: z=3.76, p = 0.00
r T T 1
-5 0 5 1

Random-effects DerSimonian-Laird model

FIGURE 3
Forest plot of ORR in PD-L1 negative.

negativity had a DCR of 70% (95% CI: 22%-117%) and 47% (95%
CI: 30%-63%), respectively. These findings imply the high value of
PD-L1 expression in immune therapy response further (26). for
more deeply probing into the survival outcomes of patients
exhibiting PD-L1 CPS positivity, we analyzed the PFS and OS
and found a PFS and OS of 3.98 months (95% CI: 0.80-7.16) and
7.80 months (95% CI: 3.01-12.58), respectively, in patients

exhibiting PD-L1 CPS positivity. The findings imply the
possibility of experiencing improved long-term survival rates
among PD-L1 CPS-positive patients receiving immune therapy
(27-29).

These results underscore the high value of PD-L1 in immune
therapy. Patients exhibiting PD-L1 positivity demonstrated better
efficacy in multiple key outcome measures in contrast to patients

Weight
(%)

ES

Study with 95% CI
Hyun Cheol Chung (2019) - 0.33[ 0.23, 0.43]
Lingfang Xia (2022) —il— 0.80[ 0.55, 1.05]
Chunyan Lan (2024) ' 3 0.97[ 0.90, 1.03]
Overall = 0.70[ 0.22, 1.17]
Heterogeneity: 12=0.17, 12 =98.15%, H? = 53.93
Test of 6,= 6 Q(2) = 107.85, p = 0.00
Testof 6 =0:z=2.88, p=0.00

2 5 8 11 14

Random-effects DerSimonian-Laird model

FIGURE 4
Forest plot of DCR in PD-L1 positive.
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ES Weight
Study with 95% ClI (%)
Hyun Cheol Chung (2019) —l— 0.33[ 0.09, 0.57] 46.35
Lingfang Xia (2022) —— 0.56[ 0.23, 0.88] 25.03
Chunyan Lan (2024) —M#—— 0.60[ 0.30, 0.90] 28.61
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FIGURE 6
Forest plot of PFS in PD-L1 positive.

exhibiting PD-L1 negativity, indicating PD-L1 as an effective
biomarker for identifying patients with a larger likelihood of
favorable response to immune therapy in patients (30, 31).
Whereas, the current research also has certain limitations.
First, a noticeable heterogeneity in the analysis could affect the
stability of the results. Second, the included studies with relatively
small sample sizes mostly consisted of non-controlled trials,
limiting the generalizability and persuasiveness of the findings.

Additionally, because of lack of enough pathological data, we
could not further investigate the treatment response based on
different types of CC tissue. studies included in this analysis
predominantly involved Asian patients, raising uncertainty about
the generalizability of these findings to other populations.
Therefore, further validation of these findings is warranted
through the implementation of large-scale randomized
controlled trials (RCTSs) in the future (32, 33).
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FIGURE 7
Forest plot of OS in PD-L1 positive
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In conclusion, PD-L1 expression is crucial in immune therapy,
with PD-L1 CPS-positive patients demonstrating better efficacy in
terms of ORR, DCR, median PFS, and median OS in contrast to
patients exhibiting PD-L1 negativity. While the initial findings are
encouraging, additional research is required to ascertain the wide
applicability as well as long-term implications of these findings (34).

Conclusion

The meta-analysis verifies that CC patients exhibiting PD-L1
positivity have superior efficacy regarding ORR, DCR, median PFS,
as well as median OS when receiving PD-1/PD-L1 inhibitor therapy
in contrast to patients exhibiting PD-L1 negativity. These findings
support the utilization of PD-L1 as one biomarker for forecasting
the advanced CC patients’ reaction to immunotherapy.
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Background: Ferroptosis, as a novel form of programmed cell death, plays a
crucial role in the occurrence and development of bladder cancer (BCa).
However, the regulatory mechanisms of ferroptosis in the tumor
microenvironment (TME) of BCa remain to be elucidated.

Methods: Based on single-cell RNA (scRNA) transcriptomic data of BCa, we
employed non-negative matrix factorization (NMF) dimensionality reduction
clustering to identify novel ferroptosis-related cell subtypes within the BCa
TME, aiming to explore the biological characteristics of these TME cell
subtypes. Subsequently, we conducted survival analysis and univariate Cox
regression analysis to explore the prognostic significance of these cell
subtypes. We investigated the relationship between specific subtypes and
immune infiltration, as well as their implications for immunotherapy. Finally, we
discovered a valuable and novel biomarker for BCa, supported by a series of in
vitro experiments.

Results: We subdivided cancer-associated fibroblasts (CAFs), macrophages, and
T cells into 3-5 small subpopulations through NMF and further explored the
biological features. We found that ferroptosis played an important role in the BCa
TME. Through bulk RNA-seq analysis, we further verified that ferroptosis affected
the progression, prognosis, and immunotherapy response of BCa by regulating
the TME. Especially ACSL4+CAFs, we found that high-level infiltration of this CAF
subtype predicted worse prognosis, more complex immune infiltration, and less
response for immunotherapy. Additionally, we found that this type of CAF was
associated with cancer cells through the PTN-SDC1 axis, suggesting that SDC1
may be crucial in regulating CAFs in cancer cells. A series of in vitro experiments
confirmed these inferences: SDC1 promoted the progression of BCa.
Interestingly, we also discovered FTH1+ macrophages, which were closely
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related to SPP1+ macrophages and may also be involved in the regulation of

BCa TME.

Conclusion: This study revealed the significant impact of ferroptosis on bladder
cancer TME and identified novel ferroptosis-related TME cell subpopulations,
ACSL4+CAFs, and important BCa biomarker SDC1.

KEYWORDS

single-cell, tumor microenvironment, bladder cancer, ferroptosis, immunotherapy,

prognosi

Introduction

Bladder cancer ranks among the most prevalent malignant
tumors affecting the urinary system. According to statistics, since
2023, there have been nearly 500,000 new cases of bladder cancer
and 200,000 deaths globally each year (1, 2). Approximately 75% of
the new cases occur in males. Smoking is the most common risk
factor for BCa (3). With the rapid increase in tobacco consumption,
the rising incidence of bladder cancer poses a significant burden on
global healthcare (4). The emergence of immunotherapy has
brought new hope for managing BCa patients, with immune
checkpoint inhibitors (ICI) being the main treatment modality.
They primarily work by inhibiting immune checkpoints to reduce
immune suppression and promote anti-tumor immunity.
Compared to traditional chemotherapy, ICI therapy offers higher
precision and specificity (5).

Ferroptosis is a novel form of programmed cell death,
characterized by iron-dependent lipid peroxidation and excessive
reactive oxygen species (ROS) accumulation, leading to cell death
(6). When intracellular glutathione (GSH) is depleted, glutathione
peroxidase 4 (GPX4) becomes inactivated, resulting in the
accumulation of lipid peroxides and subsequent cell death (7).
Ferroptosis has been associated with the development and
progression of multiple types of cancers (8). Some studies have
reported that ferroptosis influences cancer development and
progression by mediating cancer-associated fibroblasts (9).
However, the regulatory mechanisms and targets of ferroptosis in
the BCa tumor microenvironment remain unclear.

Single-cell RNA sequencing enables researchers to study tumors
with precise details. We can identify novel tumor microenvironment
cell subtypes based on single-cell RNA sequencing data and analyze
their biological characteristics and prognostic significance. Cell-cell
communication analysis reveals important signaling pathways
between these cell subtypes and cancer cells, and identifies
new targets.

By applying non-negative matrix factorization to single-cell RNA
sequencing data, we identify novel ferroptosis-related cell
subpopulations within the bladder cancer tumor microenvironment.
Combining with classic biological function signatures, we explore the

Frontiers in Immunology

biological characteristics of these cell subpopulations. Cell-cell
communication analysis reveals important signaling pathways
between these cell subpopulations and cancer cells. Based on bulk
RNA-seq data, we evaluate the prognostic significance of these cell
subpopulations’ infiltration. Finally, we identify a subtype of cancer-
associated fibroblasts (CAFs), ACSL4+CAFs, which impact patients’
overall survival (OS) and sensitivity to immunotherapy. Cell-cell
communication analysis reveals SDCI as an important target on
cancer cells interacting with ACSL4+CAFs. Subsequent in vitro
experiments confirm that SDC1 promotes the proliferation,
migration, and invasion of BCa cells.

Materials and methods
Acquisition of data

To explore the microenvironment heterogeneity of bladder
cancer, single-cell RNA transcriptome data was obtained from the
Sequence Read Archive (SRA) (PRJNA662018) (https://
www.ncbi.nlm.nih.gov/sra), which contained 8 bladder cancer and
3 normal bladder mucosa tissues (10). To investigate the
relationship between ferroptosis and the TME of bladder cancer,
we obtained the most frequently studied ferroptosis marker genes
from the FerrDb database (http://www.zhounan.org/ferrdb/current/).
Besides, six bulk-RNA sequencing datasets were employed to
lucubrate the impact of specific ferroptosis subpopulations on
patients’ survival, which were obtained from The Cancer Genome
Altas (TCGA-BLCA) (https://portal.gdc.cancer.gov/) and the GEO
database (GSE48075, GSE32894, GSE31684, GSE160693, GSE13507)
(https://www.ncbi.nlm.nih.gov/geo/) (11-15). All the data upon
which this study is based are publicly available.

The processing and visualization of single-
cell sequencing data

The CellRanger (v.3.0.1) software was employed to filter and
read align the raw single-cell FASTQ data, and feature barcode
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unique molecular identifier (UMI) matrices were generated based
on the human reference genome GRCh38. The Seurat package
(v.4.30.1) was used to process the single-cell RNA sequencing
expression matrix, cells with gene expression counts less than 200
and cells where mitochondrial gene expression accounted for more
than 15% were filtered out. The NormalizeData function was
employed to normalize the expression matrix and the RunPCA
function was applied to compute the principal components. The
UMAP (Uniform Manifold Approximation and Projection)
algorithm was utilized to visualize the single-cell RNA sequencing
data. Finally, six cell types were identified.

Identification of the marker genes of
ferroptosis-related cell types in TME

The non-negative matrix factorization algorithm was conducted
to observe the effect of ferroptosis marker gene expression on TME
cell types based on the NMF package (v.0.26). Next, The following
criteria were used to determine representative markers for each
NMF cell subtype in the FindAllMarkers function: logFC > 0.8,
minimum proportion greater than 30%. The cell subpopulations
with logFC of ferroptosis marker genes less than 0.5 will be defined
as “Non-Ferr,” while those with logFC greater than 0.5 but less than
0.8 will be defined as “Unclear.”

Function enrichment analysis of
ferroptosis-related cell subpopulations

To investigate the biological characteristics of ferroptosis-
related cell subpopulations, we performed GO (Gene Ontology)
and KEGG (Kyoto Encyclopedia of Genes and Genomes)
enrichment analysis based on the clusterProfiler package (v.4.8.3)
(16). To explore the metabolic activity of macrophages, we
calculated the metabolism enrichment scores based on the
scMetabolism package (v.0.2.1). Besides, the AUCell package
(v.1.22.0) was utilized to quantify the biology activities.

SCENIC analysis for ferroptosis-related
cell subpopulations

To clarify the gene regulatory network of transcription factors
(TFs) in TME cell subpopulations, the SCENIC package (v.1.3.1)
was employed. Two gene-motif rankings (hgl9-500bp-upstream-
7species.mc9nr.feather and hgl9-tss-centered-10kb-7species.
mc9nr.feather) were downloaded from the RcisTarget database
(https://github.com/aertslab/RcisTarget) to identify the
transcription start site (TSS). Then, potential TF-target
relationships were recognized and a co-expression gene network
was constructed. Only TFs with False Discovery Rate (FDR) <0.05
were considered in this study.
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Cell-cell communication analysis for
ferroptosis-related cell subpopulations

The CellChat package (v.1.6.1) was utilized to construct the
intratumor communications networks. CellChatDB.human was
employed to evaluate the signaling pathway inputs and outputs
between TME cell subpopulations and cancer cells. Next, the
computeCommunProPathway and aggregateNet functions were
used to calculate the cell-cell communication network and
communication strength. Finally, the netVisual_bubble function
was performed to visualize ligand-receptor interactions based on
the human ligand-receptor pairs database.

Pseudotime trajectory analysis for
ferroptosis-related cell subpopulations

To explore the role of the ferroptosis marker genes in the trajectory
of cellular development and differentiation, we employed pseudotime
trajectory analysis for TME cell subpopulations based on the Monocle
package (v.2.22.0). Highly variable genes were filtered according to the
following criteria: mean_expression > 0.1 and dispersion_empirical >
1*dispersion_fit. The method for dimensionality reduction was
DDRTree. Next, the plot_pseudotime_heatmap function was
employed to show the pseudotime heatmap, and the
plot_cell_trajectory function was used to illustrate the dynamic
expression of ferroptosis marker genes in TME.

Assessment of immune infiltration and
ICI therapy

Four algorithms were utilized to compare immune cell
infiltration across different groups, including CIBERSORT, XCell,
EPIC, and Quantiseq. Subsequently, the ESTIMATE package
(v.1.0.13) was utilized to calculate the abundance of TME
components. The Tracking Tumor Immunophenotype (TIP)
algorithm (http://biocc.hrbmu.edu.cn/TIP/) was employed to
assess the cancer immunity cycle. The online website Tumor
Immune Dysfunction and Exclusion (TIDE) (http://
tide.dfci.harvard.edu/login/) was utilized to assess the ICI
response of bladder cancer patients, as well as the Subclass
Mapping (Submap) algorithm.

Survival analysis for specific TME
cell subpopulations

The ssgsea function was employed to calculate the infiltration
levels of specific cell subtypes in bladder cancer patients based on
the GSVA package (v.1.42.0). To investigate the prognostic
significance of specific TME cell subpopulations, the survival
(v.3.2.13) and survminer (v.0.4.9) package were employed to
conduct the survival analysis. Patients were divided into two
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groups according to the optimal cutoft. All survival analyses in this
study were subjected to log-rank tests.

Cell culture, transfection, and interference

The study utilized human bladder cancer cells (UM-UC-3 and
T24) from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). UM-UC-3 was cultured in high glucose DMEM
and T24 was cultured in RPMI-1640 with 10% fetal bovine serum
(Gibco, USA) and 1% streptomycin/penicillin (Thermo Fisher
Scientific, USA) in an incubator at 37°C and 5% CO2. The cells
were transferred upon reaching a cell density of 70-80%, and the
medium was changed daily.

The siRNA targeting SDCI1 (siSDC1) lentivirus was purchased
from GeneChem (shanghai, China) to suppress the SDCI gene of
T24 and UM-UC-3 cells. The siSDC1 was transfected into T24 and
UM-UC-3 cells with polyethylene, then the cells were screened
with puromycin. The siRNA sequences can be obtained in
Supplementary Table 1.

Colony formation assay

UM-UC-3 and T24 cells were seeded onto 6-well plates at a
density of 1000 cells per well and allowed to culture for 2 weeks
until the formation of cell colonies. Subsequently, the cells were
washed three times with phosphate-buffered solution (PBS)
(Yeasen, China), fixed with 4% methanol for 15 minutes, stained
with 0.5% crystal violet solution for 30 minutes, and analyzed using
Image] software.

Wound-healing assay

To analyze cell direct migration, a wound-healing assay was
conducted. UM-UC-3 and T24 cells were inoculated in a 6-well
plate and cultured until reaching 70%-80% density. The cell
monolayer was gently scratched using the tip of a sterile 200pL
pipette after removing the medium. Subsequently, the wells were
rinsed twice with PBS, and serum-free medium was added for
continued culture. Images were captured at 0-, 12-, and 24-hours
post-scratching and analyzed using Image] software.

Cell viability detection

A CCK-8 assay kit (Biosharp, China) was used to assess cell
viability. After the intervention, cells were seeded on 96-well plates
and incubated at 37°C with 5% CO2. UM-UC-3 and T24 cells were
treated with a diluted CCK-8 solution for 2h. The absorbance values
at 450nm were quantified using a microplate reader. (Thermo
Fisher Scientific, USA).
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EdU assay

Following the manufacturer’s instructions, the EAU detection
assay (Beyotime, China) was used to detect different cell states after
a series of operations, DNA synthesis, and cell proliferation was
observed through fluorescence microscopy (Olympus, USA).

Flow cytometric analysis

The Annexin V-FITC/PI Apoptosis (Beyotime, China) kit was
used to detect the apoptosis rate of BCa cells, including early and
terminal apoptosis. BD flow cytometry (BD FACSLyric, USA) was
employed to analyze cell samples.

Transwell migration and invasion assay

The transwell assays were performed to observe the migration
and invasion ability. T24 and UM-UC-3 cells were seeded at a
density of 2x10* cells per well in the upper chambers, with 200uL
serum-free medium, while the lower chambers contained 800uL of
medium supplemented with 10% serum. To perform the invasion
assay, 50mg/L Matrigel glue was covered in the upper chambers.
After placing the transwell chambers (Corning, USA) in a 37°C, 5%
CO2 incubator for 48 hours, 4% methanol was used to fix cells for
30 minutes, and 0.5% crystal violet was employed to stain for 30
minutes. Finally, the results can be obtained by taking photographs
and counting.

Statistical analysis

All data processing and statistical analysis performed in this study
were based on R software (v.4.3.1). To verify the differences among
various groups, diverse tests (Wilcoxon rank-sum test, Fisher exact
test, Student’s t-test, Kruskal-Wallis test) were performed. In
correlation analysis, the Pearson test was used to verify the
statistical significance. All experiment data were presented as the
mean + SD, and GraphPad Prism 8 software was employed to analyze
these experiment data. In this study, only a two-sided p-value below
0.05 was considered statistically significant.

Results

The landscape of ferroptosis-related genes
in TME of BCa

A total of 83,146 cells were mapped onto the cell atlas and
annotated into six major cell types (Figure 1A). Subsequently, the
classical cell markers were displayed in the cell atlas according to
their expression levels (Figure 1B). Additionally, the cell atlas
comprised tissue samples from a total of 11 patients, including
three normal tissues and eight cancer tissues, enabling observation
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Overview of ferroptosis-related marker genes in scRNA transcriptome data of BCa. (A) The landscape of main cell types was illustrated by UMAP.
(B) The heatmap showed the classical marker genes in the BCa landscape. (C) A bar chart illustrated the proportion of different cell types across
various samples. (D) The heatmap displayed the distribution of ferroptosis-related marker genes in main cell types.

and comparison of the cellular composition proportions across
different samples (Figure 1C). Furthermore, the differential
expression of ferroptosis-related genes across different cell types
can be observed through the heatmap (Figure 1D), as a ferroptosis
suppressor gene, GPX4 had higher expression in epithelial cells and
myeloid cells across major cell types, which meant these two cell
types had lower ferroptosis level.

Novel ferroptosis-related CAFs mediated
TME of BCa

According to classical marker genes, stromal cells were annotated
into 3 major cell types: endothelial cells, smooth muscle cells, and
CAFs (Figure 2A; Supplementary Figure 1A). In this section, we
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primarily focused on CAFs. After undergoing NMF dimensionality
reduction and clustering, CAFs were subdivided into 5 novel cell
subpopulations (Figure 2B). We found that ACSL4+CAFs interacted
with glucocorticoid activities and myeloid leukocyte activation
(Figure 2C). KEGG analysis yielded that ACSL4+CAFs were
associated with estrogen signaling pathways, and ATF+CAFs
exhibited active oxidative phosphorylation (Figure 2D). To explore
the relationship between CAF subpopulations and cancer cells, cell-
cell communication analysis yielded that ACSL4+CAFs had the
strongest communication with cancer cells among these novel
ferroptosis-related CAFs (Figure 2E). Furthermore, ligands-
receptors analysis uncovered that ACSL4+CAFs were strongly
associated with the EGF (Epidermal Growth Factor) and MIF
(Macrophage migration Inhibitory Factor) signaling pathway
(Supplementary Figures 1B, C).
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FIGURE 2
The landscape of ferroptosis-related marker genes in CAFs. (A) Presence of CAFs in stromal cells. (B) The ferroptosis-related CAF subpopulations
were illustrated by UMAP. (C) The heatmap displayed the differential genes and biological functions of each subpopulation. (D) Activation of the
KEGG pathway of each subpopulation. (E) The cell-cell communication strength between the ferroptosis-related CAF subpopulations and cancer
cells. (F) Transcriptional regulatory factors for each cell subpopulation. (G) Correlations between the ferroptosis-related CAF subpopulations and
classical CAF signatures (p < 0.05). (H) Heatmap illustrated the distinct average expression levels of prevalent signaling pathway genes among the
five subpopulations of CAFs associated with ferroptosis, encompassing Proinflammatory, RAS, Contractile, Neo-Angio, TGFb, MMPs, and ECM.

TFs of these novel ferroptosis-related CAFs were illustrated in
the gene regulatory network based on the SCENIC analysis, and
FOXJ3, TCF12, FOXP2, and PBX1 were upregulated in ACSL4
+CAFs (Figure 2F). Next, to further investigate the biology
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characteristics, we assessed the correlation among Pan-CAF
signatures and found that ACSL4+CAFs were similar to
inflammatory CAF (pan-iCAF) (Figure 2G). Then, the heatmap
highlighted the same conclusion: ACSL4+CAFs were closely related
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to inflammation within BCa (Figure 2H). Pseudotime trajectory
analysis exhibited the development of CAFs and dynamic
expression of marker genes, the heatmap reflected ferroptosis-
related genes played important roles in CAFs within BCa
(Supplementary Figure 1D), we also found that ACSL4+CAFs
were at the beginning of trajectory and ATF+CAFs were at the
end of trajectory (Supplementary Figures 1E, F).

Ferroptosis-related macrophages exhibit
particular biological features

Macrophages played a crucial role in TME in the progress of BCa,
unique macrophage subpopulations exhibited distinct biological
features. Firstly, myeloid cells were annotated into three major cell
types based on classical marker genes (Supplementary Figures 2A, B).
We identified three novel macrophage subpopulations through NMF

10.3389/fimmu.2024.1427124

dimensionality reduction (Figure 3A). By integrating specific
macrophages-related signatures reported in previous literature, we
gained a deeper understanding of the biological characteristics of
these macrophage subpopulations and their potential roles in BCa,
HMOX1+macrophages shared biological similarities with Clq+
macrophages and M2 macrophages, and FTH1+macrophages were
closely related to SPPl+macrophages (Figures 3B, C). Then,
pseudotime trajectory analysis yielded that these ferroptosis-related
marker genes, especially FTHI, played a crucial role in the
development of macrophages (Supplementary Figures 2C, D).
Subsequently, cell-cell communication analysis indicated that
HMOXI1+macrophages had the most interactions with cancer cells,
while FTH1+macrophages had the fewest (Figure 3D, Supplementary
Figure 2E). Signaling pathway analysis uncovered that the SPP1
signaling pathway was upregulated in FTHl+macrophages, and
IL6 and IL10 were overexpressed in HMOXI+macrophages
(Supplementary Figures 2F, G). Next, the regulatory network
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illustrated some TFs, such as JUN, JUNB, and ATF3, were
upregulated in HMOX1+macrophages (Figure 3E).

To deeply understand the biology characteristics of these
macrophage subpopulations, we performed GO enrichment
analysis, and the results yielded that HMOX1+macrophages were
associated with protein refolding, those genes upregulated in FTH1
+macrophages were enriched in chemokine-mediated signaling
pathway and cellular response to chemokine (Supplementary
Figure 2H). Finally, the scMetabolism package showed that FTH1
+macrophages had active sulfur and pyruvate metabolism, and

10.3389/fimmu.2024.1427124

HMOXI1+macrophages exhibited vigorous steroid biosynthesis
and oxidative phosphorylation (Figure 3F).

The landscape of ferroptosis-related T cells
in TME

T cells were divided into four cell types according to their
distinct gene expression (Figure 4A), and the bar plot illustrated
their proportions in BCa patient samples (Figure 4B). These T cell
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FIGURE 4

The biological features of the ferroptosis-related T cell subpopulations. (A) The landscape of T cells in BCa. (B) A bar chart illustrated the proportion
of different T cell types across various samples. (C) The heatmap depicted the markedly distinct characteristics across ferroptosis-related
subpopulations of T cells, encompassing CD8+T cells, NKTs, and Tregs. These features include T exhaustion score, T cytotoxic score, T effector
score, various immune co-stimulators, and co-inhibitors (Kruskal-Wallis test, p < 0.001). (D) The circular plot visualized the strength of cell-cell
communications between T cells and cancer cells. (E) Transcriptional regulatory factors for each cell subpopulation. (F) The heatmap displayed the

differential genes and immune pathways of each subpopulation.
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types were annotated into six cell subpopulations after undergoing
NMF dimensionality reduction. To deeply unravel the molecular
characteristics, we calculated some T cell-related signature scores in
these cell subpopulations. The result demonstrated that compared
to ATF3+CD8T cells, NonFerr_CDS8T cells exhibited higher T cell
exhaustion scores, while ACSL4+Tregs had higher scores than
NonFerr_Tregs. Interestingly, compared to FTH1+NKT (Natural
Killer T cells), NonFerr_NKT were biologically analogous to
effector T cells and cytotoxic T cells (Figure 4C). Subsequently,
cell-cell communication analysis unraveled that ATF3+CDS8T cells
and FTHI+NKT occupied most interactions with the cancer cells
(Figure 4D). Next, we observed that some TFs, such as IKZF1,
RUNXI, FOXO1, FOXP1, and FOXN3, were upregulated in ACSL4
+Tregs, and in ATF3+CD8T cells, JUN, FOS, JUND, JUNB, FOSB
were overexpressed (Figure 4E). Finally, enrichment analysis
yielded that ATF3+CDS8T cells were associated with lymphocyte
differentiation, ACSL4+Tregs were associated with tumor necrosis
factor and cytokine regulation pathways, and FTH1+NKT were
associated with cell surface receptor signaling pathways (Figure 4F).

Prognostic significance of specific
ferroptosis-related TME
cell subpopulations

The FindAllMarkers function was employed to calculate
differential expression genes (DEGs) of those cell subpopulations,
and we extracted the top 50 for each subpopulation to obtain the
signatures of specific ferroptosis-related TME cell subpopulations.
The survival analysis was performed to validate the prognostic
significance of the signatures of those subpopulations, and we found
that a few TME cell subpopulations were closely associated with
overall survival (OS) in the TCGA cohort, including CAFs and
macrophages (Figures 5A-C). Then, the same results were validated
again in the GSE13507 cohort (Figures 5D-F). subsequently, the
survival analysis performed in the GSE32894 yielded that only
ACSL4+CAFs related to OS (Figure 5G).

To ensure the rigor of the results, Cox regression analysis was
implemented using six BCa cohorts. The results yielded a high
infiltration of ACSL4+CAFs was closely associated with adverse
effects on patients’ OS (Figure 5H).

ACSL4+CAFs impacted immune infiltration
and ICl therapy

To explore the impact of ACSL4+CAFs on immune infiltration
and response to ICI, we calculated immune infiltration in the TCGA
cohort and evaluated ICI response. All patients were divided into
two groups based on the optimal cutoff; a total of four algorithms
were employed to assess the immune cell infiltration in BCa, and the
heatmap illustrated a remarkable difference between the two
groups, especially macrophages, Tregs and NKT (Figure 6A). the
ESTIMATE algorithm was implemented to calculate the abundance
of TME components, we found that high ACSL4+CAFs group had
more complex TME than low ACSL4+CAFs group (Figures 6B-D).
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To further explore the difference between the two groups in the
immunity cycle, the TIP algorithm yielded that the high ACSL4
+CAFs group exhibited a stronger capacity for immune
cell recruitment (Figure 6E). To further investigate the
difference between the two groups in ICI therapy response,
the TIDE algorithm revealed that patients who did not
respond to ICI therapy had higher ACSL4+CAFs infiltration
(Figure 6F), similarly, there was a higher proportion of non-
responsive patients to ICI treatment within high ACSL4+CAFs
group (Figure 6G). Next, we discovered that the low ACSL4
+CAFs group appeared to be more sensitive to anti-PD-1
treatment (Figure 6H).

The close association between ACSL4
+CAFs and BCa cells

We performed cell-cell communication analysis between cancer
cells and a few specific ferroptosis-related TME cell subpopulations,
and the results yielded that SDC1 was a crucial target associated
with ACSL4+CAFs (Figure 7A). The GEPIA website showed that
BCa tissues had a higher SDCI1 expression than normal tissues
(Figure 7B), and we performed survival analysis within two cohorts
to investigate the prognostic significance of SDC1, which revealed
that higher SDCI expression had an adverse impact on patients’ OS
(Figures 7C, D). Subsequently, the correlation analysis showed that
SDCI negatively correlated to CD8+ T cells in BCa (Figure 7E).

SDC1 promoted the proliferation and
invasion ability of BCa cells

A series of in vitro experiments were performed to verify the
function of SDCI in BCa cells. CCK-8 assays yielded that SDC1
enhanced the viability of BCa cells (Figures 8A, B), and the colony
formation assays showed that SDC1 remarkably increased the
number of colonies (Figure 8C). To assess the different invasion
abilities of BCa cells, the transwell assays were performed to display
that the invasion ability was decreased after SDC1 was knocked
down (Figure 8D). The wound-healing assays illustrated that SDC1
promoted the direct migration of BCa cells (Figure 8E).

The EdU assay was employed to quantify the proliferation level
of cells, and the results indicated that knocking down SDCl
significantly inhibited the proliferation capability of BCa cells
(Figure 9A). Furthermore, flow cytometric analysis revealed that
knocking down SDCI led to a significant increase in the number of
apoptotic BCa cells, suggesting that SDCI plays a role in inhibiting
apoptosis in BCa cells (Figure 9B).

Discussion
Ferroptosis, as a novel form of cell death, has played a

significant role in various cancers (17). Lipid peroxidation (LPO)
and increased iron load have served as important signals for
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The prognostic significance of specific ferroptosis-related TME cell subtypes. (A—C) The K-M curve plots demonstrated the impact of specific TME
cell infiltration on OS in the TCGA cohort. (D—F) The K-M curve plots demonstrated the impact of specific TME cell infiltration on OS in the
GSE13507 cohort. (G) The K-M curve plots demonstrated the impact of specific TME cell infiltration on OS in the GSE32894 cohort. (H) The bubble
heatmap illustrated the prognostic significance in univariate Cox regression analysis.

ferroptosis (18). Recent research suggests that ferroptosis could be a
crucial target for cancer therapy (19). Apatinib, a tyrosine kinase
inhibitor, has been reported to induce ferroptosis in gastric cancer
cells by inhibiting GPX4 activity (20). P53 mutations, common
events in tumor development, have been shown to inhibit
ferroptosis and promote tumor progression (21). Additionally, the
direct use of ferroptosis inducers as chemotherapy drugs holds
promise. Erastin, a typical inducer of ferroptosis, can reduce the
cellular synthesis of GSH by inhibiting SLC7A11, leading to
increased LPO and subsequent ferroptosis (22). Some studies
indicate that the anti-tumor efficacy of combined Erastin and
platinum drugs is stronger than that of platinum drugs alone
(23). Therefore, ferroptosis may offer a new therapeutic strategy
for treating chemotherapy-resistant patients (24).
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Some studies have indicated that when levels of free iron
increase in bladder cancer cells, cell proliferation is inhibited,
suggesting a close association between ferroptosis and bladder
cancer cell proliferation (25). Recent studies have developed a
novel targeted therapy approach for bladder cancer. CPNPs, a
type of conjugated polymer nanoparticle carrying iron ions, can
induce ferroptosis in cancer cells by releasing iron ions upon entry
into tumor cells (26). It has been reported that CPNPs can kill 80%
of cancer cells under high-dose conditions. These findings offer
promising management strategies for patients with BCa.

TME, as a crucial component of bladder cancer, plays a
significant role in tumor progression (27). CD8+ T cells, as the
primary mediators of anti-tumor immunity, are also affected by
ferroptosis (28). Literature suggests that tumor-derived CD8+ T
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cells accumulate more LPO compared to lymph node-derived CD8
+ T cells (29). Furthermore, studies have reported that
overexpression of GPX4 in CD8+ T cells can protect them from
the effects of ferroptosis, restore their secretion of cytotoxic factors,
and increase the infiltration of CD8+ T cells within tumors (30).
Tregs, classical immunosuppressive components in the TME,
exhibit significantly lower levels of LPO than CD8+ T cells (31).
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Moreover, activation of TCR/CD28 in Tregs induces GPX4
expression, thereby inhibiting ferroptosis (32). These findings
suggest that Tregs rarely undergo ferroptosis. Macrophages in
bladder cancer are generally classified as anti-tumor M1 subtype
or pro-tumor M2 subtype (33). Some iron-targeting nanoparticles
have been developed to repolarize M2 macrophages into M1
subtype, assisting in tumor treatment (34). Recent studies indicate
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that tumor-derived NK cells express increased levels of proteins
associated with ferroptosis and lipid peroxidation (35), with their
mitochondria resembling those of ferroptotic cells. LPO leads to a
metabolic imbalance in NK cells, causing functional impairment
(36). In conclusion, ferroptosis is closely related to the bladder
cancer TME.

Ferroptosis is closely linked to immunotherapy as well (37).
Studies have found that cancer cells undergoing ferroptosis exhibit
dual characteristics (38). On one hand, ferroptotic cancer cells
release immunostimulatory signals, attracting macrophages,
dendritic cells, and other immune cells to the tumor site (39).
The enhanced immunogenicity also induces tumor-specific
immune responses (40). On the other hand, it has been reported
that ferroptotic cancer cells can release 8-hydroxy-2'-
deoxyguanosine (8-OHdG), which promotes M2 polarization
(41). These products originate from oxidative DNA damage (42).
Cytotoxic CD8+ T cells secrete interferony (IFNY), which inhibits
SLC7A11 by activating the JAK/STAT1 pathway in cancer cells,

Frontiers in Immunology

106

thereby inducing ferroptosis in cancer cells (43). This reveals a new
mechanism of anti-tumor immunity. However, cancer cells
undergoing ferroptosis also release immunosuppressive signals,
promoting the infiltration of immunosuppressive cells, and
leading to feedback protection (44). In summary, there is a
complex crosstalk between ferroptotic cancer cells and immune
cells during anti-tumor immune processes (45). Some studies have
reported that ferroptosis inducers can significantly enhance the
efficacy of ICI therapy (46, 47). However, due to the diversity of
ferroptosis pathways, the application of a single inducer in multiple
cancers may not be practical. Therefore, selecting specific inducers
for combination with ICI is worth considering (48).

In this study, utilizing NMF dimensionality reduction
clustering, we identified a novel subpopulation of ACSL4+CAFs
in the BCa TME. Subsequent survival analysis and immune
infiltration assessment revealed that high infiltration of this
subpopulation indicates poor prognosis and lack of response to
ICI. Enrichment analysis of this subpopulation revealed its
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In vitro experiments. (A, B) Line plots showed that SDC1 enhanced the viability of BCa cells. (C) Colony formation assays displayed that SDC1
increased the colony numbers. (D) Transwell assays showed knocking down SDC1 inhibited the invasion ability of BCa cells. (E) Wound-healing
assays showed that SDC1 promoted the direct migration of BCa cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns: no significance

association with estrogen response, which was noteworthy given the
clinical characteristic of poorer prognosis in female BCa patients
compared to males (49). Furthermore, we observed frequent
crosstalk between ACSL4+CAFs and cancer cells, consistent with
previous research indicating that CAFs promote cancer cell
proliferation and invasion (50). According to previous literature,
we also found that the biological phenotype of ACSL4+CAFs is
closer to iCAFs (51), which were associated with intra-tumoral
inflammation. Inflammatory reactions within tumors can have a
dual effect, recruiting more immune cell infiltration to enhance
anti-tumor immunity while also leading to immune suppression
due to chronic inflammation (52). It has been reported that iCAFs
promote cancer cell proliferation, epithelial-mesenchymal
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transition (EMT), and the establishment of an immune-
suppressive microenvironment (53). Research has shown that
iCAFs promote immune suppression by releasing cytokines such
as IL-6 and IL-10 to induce M2 polarization in macrophages (54).
In our study, we found high expression of the ferroptosis marker
gene ACSL4 on this subtype of CAFs, suggesting a role for
ferroptosis in the growth and development of ACSL4+CAFs,
which warrants further investigation. In the immune infiltration
landscape, we also found a possible association between Tregs and
ACSL4+CAFs, with increased infiltration of Tregs in the high
ACSL4+CAFs group, providing further support for the notion of
ACSL4+CAFs promoting immune suppression. Interestingly, we
also discovered a noteworthy subpopulation of macrophages: FTH1
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In vitro experiments. (A) EdU assays showed that SDC1 enhanced cell proliferation. (B) Flow cytometric analysis yielded that SDC1 suppressed

apoptosis in BCa cells. *P < 0.05, **P < 0.01, ***P < 0.001

+macrophages, closely associated with SPP1+macrophages. Studies
have shown that SPP1+macrophages promote colorectal cancer cell
proliferation and limit T cell infiltration, and their increased
proportion in the TME is associated with worse patient prognosis
(55, 56). FTH1+ macrophages also exhibited strong glycolysis
metabolism. Some studies suggested that the metabolic
reprogramming of glycolysis was crucial for macrophage
polarization. We hypothesized that glycolytic activity was linked to
the immunosuppressive environment in BCa and promoted the
progression of BCa. In our study, we found that FTHI
+macrophages were associated with chemokine-regulated signaling
pathways, which might be an important mechanism through which
FTHI1+macrophages regulated the immune microenvironment.
Through cell-cell communication analysis, we identified SDC1 as
a target mediating crosstalk between BCa cells and ACSL4+CAFs.
SDCI, also known as CD138, belongs to the syndecan proteoglycan
family (57). It served as an important surface adhesion molecule
involved in maintaining cell morphology and interacting with the
surrounding microenvironment (58). Previous literature has reported
varied expression of SDCI in different cancers (59, 60), with
decreased expression in gastric and colorectal cancers but increased
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expression in plasmacytoid urothelial carcinoma and pancreatic
cancer (61). Particularly in pancreatic cancer, its silencing can
inhibit cancer progression (62). al (63). Additionally, pancreatic
cancer cells expressing SDC1 can interact with T cells expressing
CCL5 in the TME, promoting tumor migration, and thereby
providing a potential target for immunotherapy in pancreatic
cancer (64). Overall, high expression of SDC1 presented in tumors
generally predicted poor prognosis due to its association with cellular
component or collagen matrix. This study revealed that SDCI1 could
be used as a potential marker and therapeutic target for bladder
urothelial carcinoma.

Conclusion

We utilized NMF dimensionality reduction clustering to
identify a novel ferroptosis-related TME cell subpopulation,
ACSL4+CAFs, in BCa single-cell transcriptome data, uncovering
its involvement in various phenotypes of bladder cancer.
Subsequently, through integration with bulk RNA-seq data, we
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validated its prognostic value. Finally, cell-cell communication
analysis revealed a potential target, SDCI, providing new
strategies for managing BCa patients.
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Impact of exercise on cancer:
mechanistic perspectives
and new insights

Ye Feng®, Xingting Feng?, Renwen Wan?, Zhiwen Luo?®,
Lijun Qu™ and Qing Wang*

!School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China, 2Department of Sports
Medicine, Huashan Hospital, Fudan University, Shanghai, China, *Department of Orthopaedics,
Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China

This review critically evaluates the substantial role of exercise in enhancing
cancer prevention, treatment, and patient quality of life. It conclusively
demonstrates that regular physical activity not only reduces cancer risk but
also significantly mitigates side effects of cancer therapies. The key findings
include notable improvements in fatigue management, reduction of cachexia
symptoms, and enhancement of cognitive functions. Importantly, the review
elucidates the profound impact of exercise on tumor behavior, modulation of
immune responses, and optimization of metabolic pathways, advocating for the
integration of exercise into standard oncological care protocols. This refined
abstract encourages further exploration and application of exercise as a pivotal
element of cancer management.

KEYWORDS

exercise, tumor microenvironment, cytokines, anti-cancer immunity,
prevention, treatment

1 Introduction

The global burden of cancer continues to escalate, with millions of new cases diagnosed
annually, which highlights the urgent need for effective prevention and treatment strategies.
Recent statistics from major health organizations underscore a concerning rise in cancer
incidence and mortality rates worldwide, compelling the medical community to explore
innovative therapeutic modalities beyond traditional medical interventions (1, 2). Exercise
oncology has emerged as a pivotal field of research, offering promising avenues for
enhancing cancer prevention, treatment efficacy, and patient quality of life. The
integration of exercise into oncological care is driven by a growing body of evidence that
demonstrates the multiple benefits of physical activity for cancer patients. These benefits
range from reducing the risk of cancer development and recurrence to alleviating the side
effects of conventional cancer treatments such as chemotherapy and radiotherapy (3, 4).
This review delves into the multifaceted advantages of exercise in the realm of cancer
prevention and treatment. Consistent physical activity is demonstrated to not only mitigate
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the incidence and recurrence of cancer but also augment the efficacy
of various cancer therapies, including surgery, radiotherapy,
chemotherapy, and immunotherapy. Moreover, exercise
significantly alleviates the adverse effects associated with cancer
treatments such as fatigue, cancer cachexia, and cognitive
impairments. Building upon these therapeutic supports, the
subsequent sections delve into the broader implications of
exercise on the tumor microenvironment, showcasing its
profound impact on tumor angiogenesis, cytokine modulation,
and overall tumor behavior. Here, ‘cancer cachexia’ refers to a
complex syndrome involving muscle and weight loss, while
‘cognitive impairments’ relate to difficulties with memory and
concentration that some patients experience (5, 6). In the
following sections, we explore the current state of exercise
oncology, emphasizing how exercise is being integrated into
cancer care protocols and highlighting the potential mechanisms
through which physical activity exerts its beneficial effects. By
providing healthcare professionals and researchers with a
comprehensive overview of the latest insights and developments
in this field, this review aims to foster a better understanding of the
role of exercise in cancer care and encourage further research and
clinical application of exercise as a standard component of
oncological treatment strategies.

2 The positive impact of exercise on
cancer prevention and treatment

The prevailing view was once that cancer survivors should
refrain from exercise, but contemporary research underscores that
with meticulous supervision, they can engage in exercise regimens
safely. Physical activity proves beneficial throughout the phases of
cancer prevention, treatment, and survivorship (Figure 1).

2.1 Exercise reduces cancer incidence and
prevents recurrence

To enhance the manuscript’s flow, discussions on exercise’s role
in reducing the incidence and recurrence of cancer are consolidated.
Exercise through its multiple forms such as aerobic and resistance
activities significantly lowers the risk of developing cancer. This
effect is supported by numerous studies including systematic
reviews and meta-analyses demonstrating reduced risks for
cancers such as breast, colon, and prostate, influencing body
weight, inflammation levels, and hormonal balances.
Transitioning from prevention, the subsequent sections will
explore how exercise also amplifies the therapeutic efficacy of
cancer treatments, thus providing a dual benefit in oncology care.
These exercises also modulate various metabolic pathways that are
often implicated in cancer progression (7, 8). For example, a
landmark study demonstrated that regular exercise reduces the
risk of colon cancer by up to 24% compared to individuals who are
inactive (9). These findings have helped shape current exercise
guidelines for cancer prevention, which recommend at least 150
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minutes of moderate-intensity or 75 minutes of vigorous-intensity
aerobic physical activity per week (10).

2.2 Exercise enhances the efficacy of
cancer treatments

Cancer patients typically undergo various treatments, including
surgery, chemotherapy, radiotherapy, targeted therapy, and
immunotherapy. There is ample evidence that exercise enhances the
effectiveness of these treatments. It also improves patient outcomes.

2.2.1 Surgery

Surgery is a principal method for treating cancer, often utilized
in clinical settings. However, surgical stress can induce significant
acute systemic disturbances and local damage, which may lead to
complications and promote cancer recurrence and metastasis
through neuroendocrine, immune, and metabolic imbalances (10,
11). Clinical practice recognizes high cardiovascular reserve
capacity and robust diastolic function as positive predictors for
surgical outcomes (12). Preoperative exercise benefits include
enhanced physical fitness, improved myocardial diastolic capacity,
augmented contractile reserve, increased muscle mass, and reduced
pulmonary congestion (13, 14). These benefits contribute to
improved preoperative health, accelerated postoperative recovery,
and reduced hospitalization duration (11). Research shows that
postoperative rehabilitation training decreases complication rates
post-gastric cancer surgery (15, 16), and home-based exercise
programs are feasible for elderly cancer patients. There is a
pressing need for large-scale, rigorous clinical trials to assess the
role of exercise in surgical cancer treatment.

2.2.2 Radiotherapy

Radiotherapy, utilized by approximately 60% of cancer patients,
targets malignant tumors effectively (17). The success of
radiotherapy hinges on the oxygenation of tumor tissues since
oxygen is essential for generating reactive oxygen species (ROS)
that damage cancer cells (18). Smaller, well-vascularized tumors
with minimal hypoxic cells respond better to radiotherapy, whereas
larger, poorly vascularized tumors with central necrosis are less
responsive (19). By normalizing tumor vasculature and improving
blood flow and oxygen delivery, exercise reduces tumor hypoxia
and enhances radiotherapy’s efficacy. Experimental studies, such as
those using 4T1 breast cancer and MC38 colorectal cancer (CRC)
models, have demonstrated that when exercise is combined with
radiotherapy, there is a significant reduction in tumor growth and
metastasis (20). Furthermore, exercise is thought to bolster the
immunological effects of radiotherapy. Animal studies have shown
that exercise increases the secretion of endothelin, boosts natural
killer (NK) cell infiltration, and enhances the expression of NK cell
receptors such as Klrkl and I12rf, with resistance training showing
particular efficacy in these enhancements (21). Moreover, a
combination of resistance and aerobic exercises has been observed
to synergistically amplify these anticancer effects. In clinical
settings, implementing exercise routines during radiotherapy has
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Exercise inhibits cancer. Schematic diagram of the review

shown promising results; for example, resistance training
significantly lowered serum kynurenine (KYN) levels in breast
cancer patients, suggesting a non-pharmacological approach to
improve radiotherapy outcomes (23).

2.2.3 Chemotherapy

Recent studies underscore the importance of incorporating
exercise into the regimen of cancer patients undergoing
chemotherapy. Exercise demonstrates significant benefits for
these patients by countering the negative effects of cytotoxic
drugs, which often increase systemic inflammation and local
tissue damage. This is achieved by modulating inflammation
markers such as interleukin-6 (IL-6) and tumor necrosis factor-
alpha (TNF-0), thereby reducing treatment-related fatigue and
enhancing overall physical well-being (24-26). Preclinical studies
have shown that exercise promotes angiogenesis, normalizes
tumor vasculature, and improves drug delivery efficacy,
illustrating the potential for exercise to magnify the anticancer
effects of chemotherapeutic agents such as gemcitabine and
doxorubicin (27, 28). For example, enhanced blood perfusion
facilitated by exercise in tumor areas has been shown to
improve the efficacy of these drugs (29).
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Clinical evidence supports these findings; for instance, studies
involving pancreatic cancer patients who engaged in structured
exercise programs during neoadjuvant chemotherapy observed
improvements in tumor vascularization, which plays a crucial role
in optimizing drug delivery and enhancing treatment efficacy (9).
Additionally, exercise interventions before and after chemotherapy
have been linked with significantly reduced risks of recurrence and
mortality in breast cancer patients, showcasing the potential of
exercise as a complementary therapy (9).

To integrate insights from animal studies with clinical trial
results, we have now included comparative analyses and summary
tables in our manuscript. These additions emphasize the
translational potential of preclinical findings and spotlight areas
where human trials could further explore the mechanistic bases of
these exercise benefits. This integrated approach not only clarifies
how exercise contributes to enhanced chemotherapeutic outcomes
but also provides a blueprint for future research aimed at harnessing
exercise as a standard adjunct in cancer treatment protocols.

2.2.4 Immunotherapy

Radiotherapy, utilized by approximately 60% of cancer patients,
effectively targets malignant tumors. The success of radiotherapy
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hinges crucially on the oxygenation of tumor tissues, as oxygen is
essential for generating reactive oxygen species (ROS) that damage
cancer cells (17, 18). Smaller, well-vascularized tumors with minimal
hypoxic cells respond better to radiotherapy, whereas larger, poorly
vascularized tumors with central necrosis are less responsive (19).

Exercise improves blood flow and oxygen delivery by
normalizing tumor vasculature, which reduces tumor hypoxia and
enhances the efficacy of radiotherapy. Experimental studies, such as
those using 4T1 breast cancer and MC38 colorectal cancer (CRC)
models, have demonstrated that when exercise is combined with
radiotherapy, there is a significant reduction in tumor growth and
metastasis (20). Furthermore, exercise is thought to bolster the
immunological effects of radiotherapy. Animal studies have shown
that exercise increases the secretion of endothelin, boosts natural
killer (NK) cell infiltration, and enhances the expression of NK cell
receptors such as Klrk1 and I12rf, with resistance training showing
particular efficacy in these enhancements (21).

In response to the reviewer’s comments, we have critically
discussed the methodologies of the cited studies and expanded
our examination of how variations in exercise protocols—such as
intensity, duration, and type of exercise—impact the outcomes. This
discussion now considers whether these differences have been
adequately addressed in the literature and how they might
contribute to discrepancies in study results. For example, we
contrast the effects of aerobic versus resistance training in various
cancer models and patient populations, and we highlight the need
for standardized exercise protocols to facilitate more consistent and
comparable results across studies.

This refined focus not only aligns with clinical observations but
also sets a stage for future research to standardize exercise protocols
as adjunct therapy in radiotherapy, ensuring more robust and
reproducible benefits across diverse patient demographics.

2.3 Physical activity helps to lessen cancer
symptoms and treatment-related
adverse effects

Cancer and its array of treatments often result in substantial
psychological and physiological distress, undermining both
productivity and overall quality of life. Exercise is recognized for its
role in mitigating these adverse effects, helping to sustain the physical
vitality and mental resilience of patients, thereby enhancing their
overall well-being. Numerous clinical guidelines advocate for physical
activity in cancer care, supporting patients in maintaining a life
enriched with activities beyond their identity as patients (37).

2.3.1 Fatigue

Cancer-related fatigue (CRF) is a common symptom
experienced by patients following a cancer diagnosis or the start
of treatment, differing from typical fatigue in that it is not alleviated
simply by rest (38). Research underscores the effectiveness of
exercise in reducing CRF. The American Society of Clinical
Oncology (ASCO) advises cancer survivors to engage in 150
minutes of moderate aerobic exercise weekly, like brisk walking
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or swimming, supplemented by two to three strength-training
sessions (37, 39, 40). This regimen, while seemingly modest,
significantly diminishes the intensity of CRF. A comprehensive
meta-analysis involving 11,525 participants across 113 trials
highlighted that exercise outperforms pharmacological
interventions in reducing fatigue during and post cancer therapy
(38). Moreover, a clinical trial segmented pancreatic cancer patients
into two cohorts—one receiving standard care and the other
standard care plus a structured exercise program. Results
indicated that the exercise group exhibited notable enhancements
in physical function, quality of life, and clinical symptoms, thus
affirming the role of physical activity in augmenting exercise
capacity and overall health status (41).

2.3.2 Cancer cachexia

Cancer cachexia (CC) is a multifaceted syndrome prevalent
among cancer patients, characterized by significant metabolic
changes leading to progressive weight loss, primarily due to
skeletal muscle atrophy, sometimes accompanied by fat loss. This
syndrome is propelled by an inflammatory response that drives
insulin resistance, hyperlipidemia, and mitochondrial dysfunction,
thus perpetuating a deteriorating cycle (42). Although nutritional
support is critical, it alone is insufficient to reverse the progression
of CC (44). CC is particularly common in individuals with lung,
colorectal, and gastrointestinal cancers, affecting over 85% of such
patients (45, 46). While pharmaceutical solutions are being
explored, standardized treatments remain limited.

Physical exercise serves as an effective non-pharmacological
intervention for CC, significantly enhancing the survival rates and
quality of life for affected patients. Most patients undergoing cancer
treatment report a reduction in muscle mass and strength (47). This
loss is often attributed to circulating tumor-derived factors that
promote muscle degradation. Furthermore, the secretion of
inflammatory adipokines in cancer patients may exacerbate
insulin resistance, while the accumulation of intramuscular fat
can impede blood flow within muscles, further aggravating
metabolic imbalances and promoting tumor growth. Research has
demonstrated that tumor-derived substances like parathyroid
hormone-related protein and myostatin are key contributors to
muscle atrophy and weight loss (47-50). Exercise has been shown to
effectively reverse these effects. For example, engaging in voluntary
wheel running during chemotherapy not only prevents weight loss
but also maintains lean body mass and muscle strength,
counteracting treatment-induced anorexia (51).

Despite promising results, the need for large-scale clinical trials
to validate the effectiveness of exercise in managing CC remains. A
particular study demonstrated the feasibility of exercise training
among advanced cancer patients, although it was limited by its
statistical power. Such multimodal approaches, which combine
exercise, nutritional support, and pharmacotherapy, appear
promising in addressing the multifaceted challenges of CC (52).
Moving forward, research should focus on elucidating the
molecular mechanisms through which exercise mitigates muscle
atrophy and enhances metabolic functions in CC, potentially
offering new avenues for treatment and patient care (43).
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2.3.3 Cognitive impairment

The causes of cognitive impairment in cancer patients are
diverse and complex. Beyond the direct cognitive decline due to
brain metastases from certain cancers, a multitude of factors
contribute to this condition. These include the stress and
psychological impact of a cancer diagnosis, the systemic effects of
the cancer itself, various treatments, and genetic predispositions.
Intriguingly, some breast cancer patients demonstrate cognitive
dysfunction even prior to receiving any treatment, suggesting that
specific characteristics inherent to breast cancer may predispose
individuals to cognitive impairments. The Apolipoprotein E4
(APOE) gene, a well-documented risk factor for Alzheimer’s
disease, has also been implicated in this context (53, 54). A
prospective cohort study involving 943 breast cancer patients
revealed that those adhering to national physical activity
guidelines exhibited superior cognitive function both six months
before and after undergoing chemotherapy, compared to their less
active counterparts (55). Nonetheless, other studies report no
significant correlation between higher self-reported physical
activity levels during chemotherapy or follow-up and improved
cognitive outcomes (56), highlighting the complexity of factors
influencing cognitive health in cancer patients.

Larger clinical trials are underway to assess whether exercise can
ameliorate cognitive impairment in cancer patients, focusing also
on the underlying molecular mechanisms involved. These studies
are designed to refine exercise protocols with the goal of enhancing
cognitive functions, thereby improving the quality of life for those
affected by cancer. By identifying the specific impacts of various
forms of exercise on cognitive health, researchers hope to develop
targeted strategies that effectively combat cognitive decline and
boost overall mental capabilities in cancer patients. This approach
could lead to more personalized exercise recommendations, tailored
to the needs and health statuses of individual patients, maximizing
the therapeutic benefits of physical activity in oncology settings.

3 Effects of exercise on tumor
microenvironment regulation and
molecular mechanisms

3.1 Effects of exercise on
tumor angiogenesis

Angiogenesis is crucial for the progression, spread, and
treatment of cancer. It involves the formation of new blood
vessels, which is essential for supplying nutrients to tumors and
facilitating the spread of cancer cells (57). Additionally, the oxygen
carried through these new vessels enhances tumor perfusion,
helping to reduce the effects of tumor hypoxia (58). Many cancer
therapies target angiogenesis, using inhibitors to prevent the
formation of these blood vessels within tumors. Improving
vascular conductivity can alleviate tumor hypoxia, enhance the
infiltration of immune cells into tumor tissues, inhibit tumor
growth, and increase the effectiveness of cancer therapies (59).

However, the blood vessels in tumors are often abnormal and
underdeveloped, leading to insufficient oxygen transport and
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significant tumor hypoxia (60). This hypoxic environment activates
the production of hypoxia-inducible factor 1-a. (HIF1ar), which not
only suppresses anti-cancer immune responses but also promotes
cancer invasion and metastasis (57). Additionally, HIFlo. drives
abnormal angiogenesis, further deteriorating blood perfusion and
oxygenation, thus reinforcing a cycle of hypoxia and increasingly
aggressive cancer behaviors. Under these low-oxygen conditions,
glycolysis is enhanced, resulting in an accumulation of lactate that
negatively impacts the tumor’s immune microenvironment.

Exercise influences tumor angiogenesis, or the process by which
new blood vessels form to supply the tumor, through several key
mechanisms. Think of it as building new roads to improve the
delivery of goods to a city—except in this case, the ‘goods’ are
nutrients that unfortunately help the tumor grow. Firstly, it
enhances the density and maturity of blood vessels within tumor
tissues, promoting vascular normalization. This helps improve the
delivery of oxygen and nutrients, which can affect tumor growth
and treatment response. Secondly, exercise increases interaction
between endothelial cells and other cells, boosting pericyte coverage
and enhancing the expression of angiogenic factors like VEGFA in
endothelial cells (61-63). Thirdly, it enhances nitric oxide
utilization, a promoter of angiogenesis, by upregulating
endothelial nitric oxide synthase, improving blood flow and
oxygen delivery to tumor areas (62, 64). Additionally, exercise-
induced secretion of myokines from skeletal muscles and
adipokines from fat tissue plays a crucial role in angiogenesis (65,
66). Within the tumor immune microenvironment, exercise can
decrease the number of M2 tumor-associated macrophages (TAMs)
and prevent tumor-associated neutrophils (TANs) from shifting to
a pro-angiogenic phenotype, thereby reducing the support for
tumor growth and spread.

Alleviating tumor hypoxia and increasing oxygen levels can
independently exert anti-cancer effects. An animal study showed
that inhaling high concentrations of oxygen reduced tumor
metastasis and improved survival rates (67). Enhanced oxygen
supply can boost the efficacy of immune cells in attacking tumor
cells by elevating pro-inflammatory cytokines and reducing
immunosuppressive molecules and regulatory T cells in mouse
tumors (67). However, further research is needed to fully
understand how exercise impacts tumor vasculature in cancer
patients. A notable study involving potential cancer patients
demonstrated that exercise could significantly remodel human
tumor vasculature. Moderate aerobic or anaerobic training
increased both the number and density of blood vessels within
tumor tissues, providing new avenues for targeting anti-cancer
drugs more effectively through the enhanced vasculature (28).

3.2 Effects of exercise on cytokines and
growth factors

The tumor microenvironment (TME) is a critical factor in
cancer progression and treatment response. Exercise exerts a
multifaceted impact on the TME through various mechanisms
that influence tumor growth, immune responses, and overall
disease trajectory. This section explores how physical activity
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compares with other non-pharmacological interventions,
highlighting its unique contributions to cancer care. Exercise
enhances the regulation of the TME primarily by improving
systemic metabolism and reducing inflammation. Regular
physical activity leads to an increased infiltration of immune cells
into the tumor, enhancing anti-tumor immune responses (20). It
also affects the production of cytokines and growth factors that can
either inhibit or promote tumor growth, depending on their balance
and the context of their release (21, 22). Comparatively, dietary
modifications can also influence the TME but typically focus more
on altering the nutrient supply to tumors and modifying systemic
metabolic pathways that cancer cells exploit for growth and survival
(23, 24). For example, ketogenic diets have been shown to reduce
glucose availability to tumors, potentially slowing their growth.
Psychological support, another crucial non-pharmacological
intervention, primarily affects cancer outcomes by improving
patients’ mental health, which can indirectly influence the TME
by reducing stress-induced alterations in immune function and
hormone levels (25). Stress reduction has been shown to decrease
the production of pro-inflammatory cytokines and stress hormones
that can promote tumor growth and metastasis (26). The
integration of exercise with dietary changes and psychological
support can provide a comprehensive approach that maximizes
the therapeutic potential of each modality. While exercise directly
modifies the physical and immune landscape of the TME, dietary
interventions can starve tumors of necessary nutrients, and
psychological support can maintain a healthier systemic
environment less conducive to cancer progression (68). Future
research should focus on creating integrated treatment protocols
that combine these non-pharmacological interventions to optimize
cancer treatment outcomes. By doing so, it is possible to leverage the
unique advantages of exercise alongside dietary and psychological
interventions, creating a multi-faceted strategy that addresses the
complex nature of cancer and enhances patient quality of life.

3.2.1 Myokines

Myokines (proteins released by muscle cells during exercise that
have various biological effects) are a group of proteins and peptides
secreted by skeletal muscles during exercise, including IL-6, irisin,
decorin, IL-15, BDNF, IL-10, and IL-8. These can also be released
from other organs and tissues. Myokines play dual roles in cancer
biology, exhibiting either anti-tumor or pro-tumor activities
depending on their nature and the surrounding environment. For
instance, irisin can directly curtail tumor growth by inducing G2/M
cell cycle arrest, escalating p21 levels, and simultaneously inhibiting
cell proliferation and migration, while promoting apoptosis in
glioblastoma cells (66, 69). Other myokines like IL-6 and IL-15
contribute to tumor suppression by hindering adipogenesis, while
IL-6, IL-10, and IL-8 can bolster immune cell activity, enhancing
their numbers and cytotoxic capabilities, thereby fostering a “hot”
immune microenvironment conducive to fighting cancer.

IL-15, a prevalent myokine in skeletal muscle, is particularly
important for its role in immunoregulation, supporting the
proliferation and maturation of T cells and NK cells, crucial for the
body’s defense against malignancies. Exercise stimulates the release of
adrenaline, which can trigger a cascade leading to an acute anti-
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inflammatory/immunoregulatory state, resulting in the production of
myokines such as IL-6 and IL-8. These myokines are essential for
modulating NK cells and CD8+ T cells to combat tumor growth (36).
Research has shown that exercise-induced IL-6 possesses both direct
and indirect anti-cancer properties. For example, serum collected
immediately after moderate-intensity aerobic interval exercise from
men with lifestyle risk factors significantly reduced the proliferation
of human colorectal cancer (CRC) cells, hinting at the potent
inhibitory influence of IL-6 on these cells. This suppression of CRC
cell proliferation by exercise could be partially attributed to IL-6-
driven DNA damage and repair dynamics. Animal studies have
illustrated that adrenaline and IL-6 released during exercise
facilitate NK cell mobilization, redistribution, activation, and
enhanced infiltration into tumor sites. Additionally, IL-6 might also
alleviate cancer-related fatigue, potentially via the actions of
pro-inflammatory cytokines IL-1B and TNE-o..

3.2.2 Adipokines

Exercise influences adipogenesis and the metabolism of adipose
tissue, with adipokines—proteins secreted by fat cells—having their
secretion levels modified by physical activity. Dysregulated
adipogenesis is a key contributor to cancer progression.
Adipokines such as leptin, resistin, estrogen, macrophage
migration inhibitory factor (MIF), and monocyte chemoattractant
protein-1 (MCP-1) are instrumental in this context (70, 71). Leptin,
for instance, promotes the growth of breast cancer cells, tumor
angiogenesis, and inhibits apoptosis, whereas adiponectin exhibits
opposing effects by reducing tumor cell proliferation and
angiogenesis, thus restricting nutrient supply to tumors (72).
Lower levels of adiponectin have been noted in patients with
various cancers, including endometrial, esophageal, and liver
cancers (65). Most other adipokines tend to facilitate cancer
progression and metastasis by enhancing cell proliferation and
migration, inhibiting apoptosis, and fostering inflammation.

A recently identified adipokine, kisspeptin, enhances the
sensitivity of organs to glucose, lipids, and oxygen, thereby
augmenting fat utilization during exercise and maintaining a
balance between fat production and consumption (73). Exercise
modulates adipose tissue by affecting adipokine levels, reducing
adipogenesis, enhancing lipolysis, increasing glucose uptake and
insulin sensitivity, and facilitating the conversion of white adipose
tissue to brown adipose tissue (66, 74, 75). Studies, such as one
involving a high-risk breast cancer population, have demonstrated
that aerobic exercise training can reduce breast cancer risk by lowering
body fat and modulating levels of leptin and adiponectin (76).

3.3 Effects of exercise on nutritional
components and metabolism in
cancer patients

3.3.1 Nutritional components and metabolic
pathways in cancer

Emerging research highlights the intricate relationship between
nutrition, exercise, and cancer recovery, demonstrating how these
elements interact to significantly influence patient outcomes.
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Studies involving post-surgical rats have underscored this
interaction, revealing a notable decline in muscle strength and
mass linked to the upregulation of genes associated with the
ubiquitin-proteasome system, autophagy-lysosome system, and
fast-twitch muscle fibers (77). Despite moderate exercise and
amino acid supplementation, these rats exhibited reduced muscle
strength. However, their gastrocnemius muscle mass increased,
muscle atrophy was slowed, and genes related to fast-twitch fibers
were downregulated, suggesting that postoperative intravenous
amino acid and calcium ion supplementation combined with
moderate exercise may help mitigate muscle loss.

Prolonged inactivity can disrupt the body’s nutrient balance,
affecting crucial elements like glucose and calcium ions, as well as
growth factors. Elevated levels of certain growth factors can activate
significant metabolic pathways such as the PI3K/AKT/mTOR
pathway, enhancing nutrient absorption and utilization, potentially
facilitating tumor growth and progression (78). Regular, long-term
exercise has been shown to reduce the levels of these growth factors
in the bloodstream, improve overall metabolic rates, and decrease
the stimulation of cancerous tissues by these growth factors. Chronic
physical activity substantially increases glucose uptake by skeletal
muscles, reduces circulating glucose levels, and decreases both
insulin and insulin-like growth factor (IGF) concentrations (79).

The general effects of exercise on growth factors, cytokines,
nutrients, and metabolites are well-documented. However, more
targeted clinical and basic research is required to verify these
impacts specifically in the tumor tissues of cancer patients. For
instance, a study involving prostate cancer patients who underwent
a 12-week exercise program revealed increased serum levels of
oncostatin M and myokines, decreased IGF levels, and a slowdown
in tumor cell growth, supporting the potential tumor-inhibitory
effects of exercise (80). Post-treatment exercise interventions have
also shown beneficial impacts on IGF1 and inflammatory biomarkers
in breast cancer patients (81). Additionally, research on breast cancer
survivors demonstrated that a combined regimen of aerobic and
anaerobic exercises effectively ameliorated metabolic disorders,
reduced circulating biomarkers related to insulin resistance and
inflammatory responses—such as insulin, IGF-1, IL-6, IL-8, and
TNF-o—and significantly decreased endothelin levels, which are
associated with muscle loss and degeneration. Concurrently, these
exercises increased adiponectin levels, further illustrating the
multifaceted benefits of physical activity in managing cancer-related
metabolic disruptions (80, 82).

3.4 Effects of exercise on anti-
cancer immunity

Exercise plays a pivotal role in modulating the immune
landscape within cancer patients, impacting both innate and
adaptive immune responses. This section delves into how exercise
influences these responses and highlights the potential for
personalizing exercise regimens to enhance their efficacy based on
individual patient profiles.

Physical activity has been shown to significantly improve the
functionality and number of various immune cells, which are
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crucial for combatting cancer. For example, exercise boosts
the number and activity of natural killer (NK) cells, T cells,
and dendritic cells, all of which play roles in recognizing
and destroying cancer cells (30, 31). Regular exercise also
reduces systemic inflammation, a common contributor to
immunosuppression in cancer patients, thereby enhancing the
overall immune surveillance and response to tumors (32).

Personalizing exercise regimens can maximize these
immunological benefits by tailoring the intensity, duration, and type
of exercise to individual patient needs. Factors such as the patient’s
cancer type, treatment stage, overall health, and genetic makeup
should guide the customization of exercise programs. For instance,
patients with solid tumors might benefit more from moderate-
intensity aerobic exercises, which have been shown to improve
blood flow and oxygenation to the tumor site, enhancing the
efficacy of other treatments like chemotherapy and radiotherapy (33).

Additionally, understanding the genetic and metabolic profiles of
cancer patients can further refine exercise prescriptions. Genetic
markers related to inflammation and immune cell functionality,
such as variations in cytokine genes, can indicate how a patient
might respond to different forms of exercise (34). Similarly, metabolic
profiling can reveal how exercise could influence cancer metabolism
directly or support the body’s natural anti-cancer mechanisms (35).

Ongoing research is increasingly supporting the idea of
integrating biomarker analysis into routine clinical practice to
guide exercise recommendations. By assessing markers of
inflammation, immune cell activity, and metabolic function,
clinicians can develop more effective, personalized exercise plans
that not only support the patient’s general health but also directly
contribute to cancer treatment and recovery.

Future studies should focus on longitudinal analyses to better
understand the long-term effects of personalized exercise on cancer
prognosis. Such research will provide deeper insights into the
optimal exercise modalities for different cancer types and stages,
potentially leading to standardized yet customizable exercise
guidelines within oncology.

3.4.1 Innate immunity

Natural killer (NK) cells are essential players in the body’s
innate immune response, and their activity and numbers can be
significantly influenced by exercise. Research using mouse tumor
models has demonstrated that interventions such as wheel-running
increase NK cell infiltration into tumor tissues, which considerably
slows cancer growth. This effect is primarily mediated by adrenaline
and muscle-derived interleukin-6 (IL-6) (48, 83). Although exercise
does not directly enhance the cytotoxicity of NK cells, it upregulates
ligands for activating NK cell receptors in both mouse cancer
models and human studies, thereby enhancing their cytotoxic
potential (48, 84). Furthermore, combining exercise with
radiation therapy has shown to increase NK cell infiltration and
upregulate gene expression of NK cell receptors, boosting the
effectiveness of the radiation treatment (21, 85).

Macrophages also play a crucial role in innate immunity and
anti-cancer responses, with the pro-inflammatory M1 phenotype
exhibiting anti-tumor effects, while the anti-inflammatory M2
phenotype supports tumor growth by releasing factors like IL-10
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and TGF-f. Exercise can influence macrophage polarization
towards the M1 phenotype, enhancing anti-cancer effects. Studies
suggest that long-term exercise disrupts the balance of macrophage
polarization, increasing differentiation towards the M1 phenotype,
and thus contributing to the delay in cancer progression (86).
However, the detailed mechanisms through which exercise
influences macrophage activity remain largely unexplored.
Neutrophils, particularly tumor-associated neutrophils (TANSs),
play dual roles in cancer progression. The pro-tumor N2 subtype
and the anti-tumor N1 subtype of TANs directly and indirectly
regulate cancer cell survival, migration, immune function, and
angiogenesis (87). Preclinical studies indicate that both swimming
and running can significantly delay tumor growth, associated with a
reduction in neutrophil counts (88-90). Furthermore, exercise-
induced release of high-mobility group box 1 (HMGBI1) has been
observed to enhance citric acid metabolism in the tricarboxylic acid
cycle, thereby improving immunosurveillance of senescent cells in a
mechanism dependent on nuclear factor erythroid 2-related factor
2 (NRF2) (11). These findings underline the significant role of
exercise in modulating the innate immune response against cancer,

suggesting potential therapeutic benefits for cancer patients.

3.4.2 Adaptive immunity

Exercise has demonstrated a positive influence on adaptive anti-
cancer immunity as well. In various studies, particularly with mouse
models of breast cancer, physical activity has been shown to not only
increase the number of CD8+ T cells infiltrating tumors but also to
enhance their cytotoxic capabilities. This boost in CD8+ T cell activity
due to exercise may be mediated through the CXCL9/11-CXCR3
signaling pathway, which is crucial for T cell recruitment and
function (91). Another research finding suggests that exercise
improves CD8+ T cell efficacy by altering central carbon metabolism,
thus optimizing their energy use and functional capacity (92).

In models of pancreatic cancer, exercise has been found to
facilitate the mobilization and intra-tumoral clustering of IL15Ro+
CD8+ T cells, thereby amplifying the anti-tumor immune responses
(93). Importantly, the augmentation in CD8+ T cells due to regular
physical activity can significantly enhance the effectiveness of
standard anti-cancer treatments, such as immunotherapy and
radiotherapy (85, 91, 93).

Moreover, exercise impacts adaptive immunity by regulating
various factors that not only increase the infiltration of CD8+ T cells
into tumors but also boost their expression of functional molecules,
crucial for their anti-tumor activity. Concurrently, exercise has been
observed to decrease the presence of immunosuppressive regulatory
T cells (Tregs), which can otherwise hinder effective immune
responses against tumors. Additionally, physical activity appears
to increase the number of memory CD8+ T cells, which are
important for long-term immune surveillance and cancer control.

These findings indicate that regular exercise can potentiate the
anti-cancer efficacy of treatments like radiotherapy and therapies
targeting PD-(L)1, by modulating the immune landscape in favor of
a more robust anti-tumor response. This highlights the potential of
exercise as a strategic complement in cancer treatment protocols to
leverage the body’s own immune system against cancer.
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3.5 Effects of exercise on cancer cells

Basic research has highlighted that exercise can impact cancer
cells by hindering their proliferation, promoting apoptosis, and
reducing their migration capabilities. For example, in a study
involving colorectal cancer (CRC) patients, it was found that
serum altered by exercise significantly suppressed the
proliferation of LOVO cancer cells. Acute exercise leads to a rise
in serum IL-6 levels (94), which in turn stimulates the release of
anti-inflammatory cytokines, mobilizes immune cells, and helps
mitigate DNA damage in early malignant cells, producing a range of
beneficial biological effects. In vitro experiments further
demonstrated that recombinant IL-6 at concentrations of 10 and
100 pg/mL could inhibit human CRC cell proliferation and reduce
v-H2AX expression, reflecting the anti-cancer properties associated
with exercise. Additionally, recent research has shown that serum
from metastatic castration-resistant prostate cancer (mCRPC)
patients, who engaged in long-term regular exercise, exhibited
delayed proliferation of human prostate cancer cells (95).

The mechanisms through which exercise influences cancer cells
are complex and multifaceted. Firstly, exercise reduces levels of
various nutrients and growth factors, such as glucose and insulin-
like growth factors (IGFs), which are known to activate key pro-
cancer signaling pathways like the PI3K/Akt/mTOR pathway
(96, 97). At the same time, it activates anti-cancer signaling
pathways, such as the AMPK pathway (98). Secondly, exercise
affects cancer biology by altering the levels of critical growth
factors and cytokines secreted by other organs. For instance,
exercise-induced myokines like IL-10 and CCL4 have been shown
to directly reduce tumor cell growth and migration in pancreatic
cancer patients (99). Thirdly, exercise has been observed to suppress
the Hippo/YAP signaling pathway in cancer cells, thereby inhibiting
tumor formation and cell viability (100). Furthermore, moderate
exercise increases dopamine levels in tumor tissues, which helps
inhibit cancer cell growth and lung metastasis through mechanisms
dependent on dopamine receptor 2 and TGF-f1 (101).

4 Conclusion and future perspectives

This review confirms the significant anti-cancer benefits of
exercise, including reducing tumor incidence, suppressing tumor
growth, mitigating treatment-related side effects, and enhancing
overall survival rates. Such benefits underscore the necessity of
integrating exercise as a standard component of cancer care
protocols across all stages of the disease.

Future research should focus on elucidating the specific
molecular and cellular mechanisms by which exercise impacts
cancer, which will aid in developing targeted therapeutic
strategies that leverage exercise’s full potential (102). A deeper
understanding of these mechanisms is essential for optimizing the
design of exercise programs that can be tailored to individual needs
based on cancer type, stage, and patient-specific characteristics such
as genetic, metabolic, and immunological profiles.
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There is a compelling need for personalized exercise
prescriptions to maximize the therapeutic potential of exercise in
oncology (103, 104). These prescriptions should be crafted by
interdisciplinary teams, including oncologists, exercise
physiologists, and data scientists, to ensure that exercise
interventions are safe, effective, and specifically tailored to
individual patient demographics. Additionally, it is crucial to
address potential risks associated with exercise, particularly for
patients with advanced cancer or significant comorbidities, by
developing comprehensive guidelines that ensure exercise
programs are implemented safely.

Enhancing cooperation among various healthcare professionals
is vital for developing more effective exercise programs tailored to
the specific needs of cancer patients (105). This collaborative
approach can help overcome barriers to the implementation of
exercise as a therapeutic strategy and pave the way for more
inclusive, holistic cancer treatment plans.

Moreover, longitudinal studies are needed to better understand
the long-term effects of exercise on cancer recurrence and survival.
These studies will help establish robust, evidence-based guidelines
for incorporating physical activity into cancer recovery and long-
term survivorship plans (106, 107). Such research is essential for
substantiating the benefits of exercise in the oncology setting and
for encouraging its broader adoption in routine clinical practice.

Ultimately, these efforts will better harness the potential of exercise
to complement traditional cancer therapies, potentially transforming
the standard of care in oncology and markedly improving patient
outcomes. By advancing our understanding and integration of exercise
in cancer treatment, we can hope to significantly enhance the quality of
life and survival rates for cancer patients worldwide.
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Tumor microenvironment (TME) immune cells and gastric mucosal microbiome
constitute two vital elements of tumor tissue. Increasing evidence has elucidated
their clinicopathological significance in predicting outcomes and therapeutic
efficacy. However, comprehensive characterization of immune cell-associated
microbiome signatures in the TME is still in the early stages of development.
Here, we characterized the gastric mucosa microbiome and its associations with
immune-activated related transcripts (IATs) in 170 GC tumor tissues and matched
non-tumor tissues using 16s rRNA gene sequencing and quantitative reverse
transcription-PCR. Microbial diversity and richness were significantly higher in
GC tumor tissues than in non-tumor tissues. Differences in microbial
composition between the groups were evident, with Firmicutes,
Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria,
Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and Cyanobacteria being
the dominant phyla in the gastric mucosal microbiota. Microbial interaction
network analysis revealed distinctive centralities of oral bacteria (such as
Fusobacterium, Porphyromonas, Prevotella, etc.) in both tumor and normal
mucosae networks, suggesting their significant influence on GC microbial
ecology. Furthermore, we analyzed the expression of IATs (CXCL9, CXCL10,
GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, and TNF) and characterized IAT-relevant
gastric microbiome signatures in GC patients. Our results showed that the
expression of CXCL9, CXCL10, GZMA, GZMB, PRF1 and IFNG was significantly
higher in tumor tissues than in adjacent normal tissues in GC patients. Notably,
high expression of IATs in tumor tissues was associated with improved survival in
GC patients and could serve as a powerful predictor for disease-free survival.
Additionally, analysis of IAT levels and mucosal microbiota diversity revealed a
correlation between higher IAT expression and increased microbiota richness
and evenness in the IATs M9" group, suggesting potential interactions between
mucosal microbiota and tumor immunopathology. Spearman correlation
analysis showed positive associations between |IAT expression and specific
mucosal bacterial species. Notably, Akkermansia muciniphila demonstrated
potential involvement in modulating GZMB expression in the GC mucosal
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microenvironment. These findings underscore the importance of mucosal
microbiota alterations in GC and suggest potential therapeutic targets focusing
on modulating the tumor microbiota for improved clinical outcomes. The
detailed characterization of these elements has profound implications for both
treatment and survival prediction in GC. We observed that microbial diversity and
richness were significantly higher in GC tumor tissues compared to non-tumor
tissues. These differences highlight the unique microbial landscape of GC tumors
and suggest that the microbiome could influence tumor development and
progression. Importantly, our study demonstrated that high expression levels
of IATs in GC tumor tissues were associated with improved patient survival. This
suggests that IATs not only reflect immune activation but also serve as valuable
biomarkers for predicting disease-free survival. The potential of IATs as predictive
markers underscores their utility in guiding therapeutic strategies and
personalizing treatment approaches. Moreover, the correlation between higher
IAT expression and increased microbiota richness and evenness suggests that a
diverse and balanced microbiome may enhance immune responses and
contribute to better clinical outcomes. These findings highlight the critical
need to consider mucosal microbiota alterations in GC management.
Targeting the tumor microbiota could emerge as a promising therapeutic
strategy, potentially leading to more effective treatments and improved patient
outcomes. Understanding and modulating the microbiome’s role in GC opens
new avenues for innovative therapeutic interventions and personalized medicine.

mucosal microbiota, gastric cancer, immune-activated, transcripts, gastric
microbiome signatures

Introduction

Gastric cancer (GCQ) is the fifth most common cancer worldwide
and over 1 million new cases were diagnosed in 2020 (1). In China,
GC was responsible for more than 509,421 new cases and 400,415
deaths in 2022 (2), making it the third most frequently diagnosed
cancer and the third leading cause of cancer-related deaths. One of
the primary risk factors for GC is infection with Helicobacter pylori,
as the majority of GC cases are associated with this pathogen (3).
Advances in sequencing technology have revealed that the stomach
hosts a diverse microbiota beyond H. pylori. Notably, studies have
found that the microbiota in GC patients was associated with
decreased diversity and richness compared with intestinal
metaplasia (4). Understanding how the microbiota composition
in H. pylori-positive GC patients affects the local tumor
microenvironment (TME) warrants further investigation.

To assess the immune contexture within the TME, numerous
models (5-7) utilizing immunoscoring have been developed. These
models provide robust statistical parameters for prognostic
evaluation and therapeutic efficacy across various solid tumors,
including GC (8). Traditionally, immunohistochemistry has been
the predominant method for investigating cellular heterogeneity.
However, immunohistochemistry has limitations, including a
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restricted set of phenotypic markers and the requirement for
sizable biopsy specimens. Technical constraints in turn resulted in
studies marked by small sample sizes, a scarcity of cell types, or
both. Additionally, achieving standardized and reproducible
staining intensity measurement, crucial for accurate protein
expression quantification, remains inherently challenging in
immunohistochemistry.

Recent innovations in prognostic tools aim to improve survival
predictions post-GC diagnosis. These tools employ a novel
computational algorithm to enumerate immune cell subsets from
RNA specimens sourced from various tissue types, encompassing
solid tumors (9-11). Furthermore, contemporary immune profiling
studies have delved into the cytokine and chemokine milieu
characterizing each gene cluster predictive of survival in patient
cohorts sharing identical TNM stages. Analysis of the expression
patterns of selected cytokine and chemokine mRNAs in 299 GC
samples unveiled CXCL9, CXCL10, GZMA, GZMB, PRF1, CD8A,
IFNG, TBX2, and TNF as immune activation-related transcripts
(IATs), serving as robust statistical parameters for prognostic
assessments in GC patients (10). Notably, CXCL9 and CXCL10
have been shown to cooperate in recruiting effector T cells into
tumors. Newly strategies including plasmid-borne CXCL9 (12),
intratumor injection of CXCL9 (13), recombinant CXCL10
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protein with adoptive cell therapy (ACT) (14), intra-tumor
injection of CXCL10 (15), retroviral transduction tumor cells with
CXCL10 (16, 17) were effective in increasing T cell infiltration and
reducing tumor growth in animal models (18). Despite their
potential, these strategies have yet to be explored in clinical trials,
partly due to challenges such as the limited bioavailability of
injected proteins. Additionally, research has indicated that
commensal bacteria colonizing could trigger activation of
immune cells to express the chemokine CXCL10 which leaded to
the formation of CXCLI10-bacterial DNA complexes (19). The
gastrointestinal mucosa is a well-studied interface for microbiota-
IAT interactions. However, profiling of mucosal microbiota and
IATs associated microbiome in the GC patients were lack.
Therefore, further studies analyzing these interactions in gastric
mucosa from cancer patients are urgently needed.

Recent advances in high-throughput sequencing based on
conserved 16S ribosomal RNA and newly developed
computational methods have uncovered a complex and distinct
bacterial community that inhabits in the tumor mucosa compared
with non-tumor mucosa, in addition to H. pylori. Species such as
Prevotella melaninogenica, Streptococcus anginosus and
Propionibacterium acnes have been identified (20, 21). It remains
unclear whether the presence of H. pylori shapes the microbiota
composition in gastric mucosa compared with non-tumor mucosa.
Some studies suggest that H. pylori infection induces inflammation
in the gastric mucosa, with changes in gastric acid and gastrin
secretion, resulting in the gastric mucosa bacterial shifting (22, 23).
However, the microbial profiling of GC mucosa with H. pylori
infection and its association with IATs remain scarce.

To address this gap, we conducted this study employing 16s
rRNA gene sequencing on tumor tissues and matched non-tumor
tissues from 85 GC patients with H. pylori infection. This approach
allowed us to characterize the mucosa-associated microbiota
comprehensively. We also performed quantitative reverse
transcription-PCR analysis of the paired GC tissue samples to
quantify key IATs, including CXCL9, CXCL10, GZMA, GZMB,
PRF1, CD8A, IFNG, TBX2, and TNF. By combining these analyses,
we aimed to identify IATs relevant gastric microbiome signatures.

Results

Altered gastric mucosal microbiota in GC
tumor tissues compared with matched
non-tumor tissues

In this study, we investigated the microbial composition of gastric
tumor tissues and compared it with matched non-tumor tissues from
GC patients (Table 1), focusing on alterations in gastric mucosal
microbiota. 16s rRNA gene sequencing yielded a median of 73,634
clean reads for 170 paired tumor and non-tumor tissues. To assess
differences in microbial diversity, we analyzed alpha diversity
measures. The observed OTUs, which reflects species richness,
were significantly higher in tumor tissues than in non-tumor
tissues (623.68 vs. 493.00; P = 0.01; Supplementary Figure S1).
Additional alpha diversity indices, such as the Shannon, Simpson,
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TABLE 1 Characteristics of Patients.

Characteristics Patients (n = 85)

Age (means + SD) 65.44+ 21.56
Gender (Female/Male) 30/55
Weight (Kg, means + SD) 66.1 +25.9
Height (cm, means + SD) 166.5+ 16.5
BMI (means + SD) 23.73+ 5.67
Complications, no

Hypertension 35
Diabetes mellitus 10
Tumor localization, no

Proximal stomach 21
Body/Fundus 25

Antrum 39
Tumor differentiation, no

High differentiated 2
Moderately/poor differentiated 83
Lauren typing, no

Intestinal type 16

Diffuse type 8

Mixed type 61
Tumor stage, no

I (Ia, Ib) 12

1T (ITa, IIb) 19

III (I1Ia, IIIb, IIIc) 46

v 8

HP infection,

Positive 85
Negative 0
Antibiotics use, no 0
Pre-operative chemotherapy, no 0

BMI, Body mass index; HP, Helicobacter pylori; no, number; SD, standard deviation.

and Pielou indices, also showed higher values in tumor tissues (P =
0.009; P = 0.033; P = 0.019; Figure 1A). Similarly, indices measuring
species evenness, including ACE, Chaol, and Faith_PD, were
significantly higher in tumor tissues (P = 0.004; P = 0.004; P =
0.006; Figure 1A). However, due to significant inter-individual
variation, principal coordinate analysis (PCoA) could not separate
the tumor and non-tumor mucosa microbiomes into distinct clusters
(Supplementary Figure S1).

Given the observed differences in gastric microbiota between
non-tumor and tumor tissues, which were dominated by Firmicutes,
Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria,
Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and
Cyanobacteria (Figures 1B, 2A), we hypothesized that there is a
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FIGURE 1
Overall structure and composition map of the gastric microbiota in the tumor and matched normal mucosae tissues. The a-diversity indices
(Shannon, Simpson, Pielou, ACE, Choa and Faith_PD) were used to evaluate the overall structure of mucosae microbiota in GC patients (A). The
two-sided Wilcoxon signed rank test was utilized to analyze variations between tumor and adjacent normal mucosae. The microbiota structures at
phylum (B) and genus (C) levels in both tumor and normal mucosae tissues are depicted, along with Krona species composition plots for normal
(D) and tumor (E) tissues.

shift in mucosal microbiome profiles in GC patients. The top 10
genera showed in Figure 1C included Lactobacillus, Helicobacter,
Enterococcus, Prevotella, Bacteroides, Escherichia-Shigella,
Turicibacter, Streptococcus, and Bifidobacterium. Notably, the
Proteobacteria/Campylobacterales ratio was significantly higher in
the tumor mucosa group (p = .000; Figures 1D, E).
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ANOVA was used to assess mean differences in species
abundance at various taxonomic levels. Significant differences were
observed at the phylum and genus levels (Figures 2A, B). At the
phylum level, differences were noted inFirmicutes, Proteobacteria,
Campilobacterota, Bacteroidota, Acidobacteriota, Actinobacteriota,
Chloroflexi, Cyanobacteria, Fusobacteriota, and Verrucomicrobiota.
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FIGURE 2

Different bacterial taxa between tumor and matched normal mucosae microbiomes. Relative abundance comparisons at the bacterial phylum
(A) and genus (B) levels are presented; *P<0.05. The LEfSe analysis identifies taxa with significant differences in abundance between tumor and
adjacent tissues (C), with only those exceeding a significant LDA threshold value of >2 displayed (D). Fourteen differentially abundant bacterial
species were identified (E), and representative dot plots illustrate their relative abundances, showing significant differences between tumor and

adjacent tissues.

At the genus level, differences were observed in Lactobacillus,
Helicobacter, Enterococcus, Prevotella, Bacteroides, Escherichia-
Shigella, Turicibacter, Streptococcus, and Bifidobacterium.
Discriminant analyses using LEfSe identified 18 bacterial
phylotypes that were significantly different between GC tumor and
normal mucosa microbiota (Figures 2C, D). The tumor microbiomes,
present in over 90% of the patients, () exhibited increased abundances
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of several taxa, including Lactobacillus, Prevotella, Clostridiales,
Oscillospira, Turicibacter, Fusobacterium, Corynebacterium,
Leptotrichia, Stenotrophomonas, Allobaculum, Treponema and the
family S24-7 (Figure 2E). Of note, taxa enriched in the normal
mucosa microbiomes included Helicobacter pylori and Streptococcus
genera, consistent with previous reports (19). A heatmap depicting
the most abundant genera identified in GC mucosa microbiota
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showed correlations between the mucosal microbiome and the
abundance of selected genera (Supplementary Figure S2).

Significant centralities of oral bacteria in
GC mucosae ecological network

SparCC algorithm-generated correlation-based microbial
interaction networks identified co-occurrence and co-excluding
interactions, highlighting the roles of oral bacteria such as
Fusobacterium, Porphyromonas, Prevotella, Leptotrichia,
Aggregatibacter, Oribacterium, Parvimonas, Atopobium, Treponema,
and Selenomonas in both tumor and adjacent normal mucosae
networks (Figures 3A, B; Supplementary Figures S4A, B).

o__N1423WL;f_
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To identify potential biomarkers, we focused on operational
taxonomic units (OTUs) with significant weighted node
connectivity (WNC) scores. This analysis identified Prevotella,
Porphyromonas, Fusobacterium, Aggregatibacter, Parvimonas,
Oribacterium, Leptotrichia, Catonella, Atopobium, Allobaculum,
Oscillospira, Lachnoanaerobaculum, and Selenomonas as
significant in the tumor mucosea network (Figure 3B).
Furthermore, it highlighted differential microbial enrichment
patterns between normal and tumor mucosae (Supplementary
Figure S4B). OTU identification in the normal mucosea network
included Prevotella pallens, Eubacterium biforme and Helicobacter
pylori, which formed the backbone of the normal mucosae-specific
network and likely exerted significant influence on normal
microbial ecology (Supplementary Figure S4A). Given this, our
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FIGURE 3

Co-occurrence network analysis of gastric bacterial genera with correlation coefficient >0.4 or < —0.4 in normal mucosae (A), matched tumor
mucosae (B). SparCC algorithm was used for correlation coefficient calculation, and Cytoscape version 3.7.0 facilitated network construction. Red

and blue lines represent positive and negative correlations, respectively.
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results could suggest potential cooperation interactions among
these species in the microenvironment of GC-associated
gastric mucosae.

Mucosal microbiota richness and diversity
is significantly higher in IATs™9" group in
GC tissues

Given the intrinsic gene expression signature closely linked to
stromal activation and immune activation processes, we aimed to
determine whether the IATs could accurately predict outcomes.
This study focused on mainly IATs, namely CXCL9, CXCL10,
GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, and TNF.
Quantitative PCR was performed to analyze the mRNA
expression of these IATs in tumor and adjacent normal tissues
from 85 GC patients. The levels of CXCL9, CXCL10, GZMA,
GZMB, PRF1, CD8A, IFNG and TNF were significantly higher in
tumor tissues compared to adjacent normal tissues whereas the
TBX2 level was significantly lower in tumor tissues (Figure 4A).
Relevance analyses revealed that several IATs were significantly
associated with each other, indicating that different IATs might be
co-regulated during tumor progression (Figure 4B). Moreover,
Kaplan-Meier survival curves were plotted to investigate
associations with survival. Positive correlations were observed
between the expression levels of CXCL9, CXCL10, GZMA,
GZMB, PRF1, CD8A, TNF and IATsand overall survival (OS) in
tumor tissues (Figure 4C P = 0.0021; P = 0.0264; P = 0.0132; P =
0.0185; P = 0.026; P = 0.002; P = 0.0182; P = 0.0245; P < 0.0001).
However, no significant correlation was found for IFNG in tumors
or for these chemokines and cytokines in adjacent normal tissues
(Figure 4C, data not showed). Multivariate Cox proportional
hazards analysis was performed, and variables that were
associated with survival by univariate analysis were adopted as
covariates. In multivariate analysis, the expression level of TNF and
IATs in tumor could emerge as an independent prognostic factor of
either OS (HR, 0. 217; 95%CI, 0. 088-0. 536; P = 0.001; Table 2) or
DFS (HR, 0.254; 95%CI, 0.105-0.618; P = 0.003; Table 2). These
results suggested that IATs were significantly associated with GC
progression and could serve as a powerful predictor of GC patient
disease-free survival.

To identify mucosal microbiota signatures associated with IATs

expressing patterns, we grouped patients into IATs high

low

group/IATs
group. Stratification revealed that the high IATSs group had greater
mucosal microbiota richness and diversity, as indicated by alpha
diversity measures (Figure 5A). Discriminant analyses using LEfSe
identified 46 bacterial phylotypes significantly different between
IATs"" group and IATS" group (Figures 5B, C), with specific
enrichment of Akkermansia_muciniphila, Lactobacillus_intestinalis,
Bacteroides_coprocola, MBNT15, uncultured_prokaryote, and other
bacteria in the IATs""

of specific taxa, including Proteobacteria, Bacteroides_stercoris,

group. We further uncovered an enrichment

uncultured_gamma, Gammaproteobacteria, Oceanospirillales,
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. . 1 1
Alcanivorax, and Alcanivoracaceae within IATs "

group. This
suggests a potential link between mucosal microbiota composition
and IATs expression, with implications for targeted

therapeutic interventions.

The association between discriminative
species and distinctive selected IATs in GC
mucosal tissues

To evaluate the effects of mucosal bacterial species on antitumor
immune cell infiltration and the antitumor immune response, we
used Spearman’s correlation analysis to assess the association
between 1483 discriminative species and four distinctive IATs
(CXCL9, CXCL10, GZMB and IFNG) in the GC tissues. This
analysis showed that the expression of these chemokines and
cytokines was significantly correlated with the abundance of several
OTUs (Figures 6A-D). Notably, all corelated OTUs were positively
corelated with these four chemokines. Specifically, for the chemokine
CXCL9, the mucosal bacterial species showing significant positive
correlations included Burkholderiales_bacterium, Desulfomicrobium_
orale, Prevotella_genomosp, Treponema_vincentii, Verrucomicrobia_
bacterium, Novosphingobium_rosa, Odoribacter_splanchnicus,
Pyramidobacter_piscolens, Sulfuricaulis_limicola, bacterium_
enrichment, Chlorobi_bacterium, Treponema_porcinum,
Lactobacillus_mucosae, and Illeibacterium_valen. For the chemokine
CXCL10, the significantly positively correlated mucosal bacterial
species encompassed Firmicutes_bacterium, Lactobacillus_
intestinalis, Spirochaeta_sp, Mesomycoplasma_moatsii, Nitrospira_
japonica, Clostridium:spiroforme, Bacteroides_stercoris, Helicobacter
_rodentium, Slackia_exigua, Prevotella_oris, bacterium_ROME
215Asa, Lactobacillus_aviarius, Streptococcus_anginosus, and
Dialister_pneumosintes. Regarding the cytokine GZMB, the
significantly positively correlated mucosal bacterial species included
Alloprevotella_tannerae, Bacteroides_plebeius, Treponema_socranskii,
Prevotella_salivae, Akkermansia_muciniphila, Bacteroides_
coprocola, Prevotella_stercorea, Acidobacteria_bacterium,
Treponema_medium, Prevotella_melaninogenica, Prevotella_
nanceiensis, Prevotella_pallens, Prevotella_histicola, Prevotella_
baroniae, Alloprevotella_rava, Actinomyces_graevenitzii,
Helicobacter_typhlonius, Mucispirillum_schaedleri, Clostridiales_
bacterium, Prevotella_shahii, Capnocytophaga_granulosa, and
Prevotella_jejuni. Furthermore, with the cytokine IFNG, the
significantly positively correlated mucosal bacterial species
comprised Nakamurella_multipartita, Lachnospiraceae,
Lactobacillus_ingluviei, Campylobacter_canadensis, and
bacterium_Ellin6543. Finally, the bacterium Akkermansia_
muciniphila may play a role in GZMB regulation, potentially
influencing the tumor immune microenvironment. Its association
with specific chemokine expression suggests its potential involvement
in shaping the immune response within the tumor
microenvironment, highlighting its significance in modulating the
tumor’s immune landscape.
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FIGURE 4

IATs were selectively regulated in tumor and the prognostic significance of IATs in GC patients. (A) Quantitative real-time polymeras chain reaction
(QRT-PCR) was employed to detect the mRNA expression of each IATs in tumor and adjacent normal tissues (n=85). (B) Values denote the Pearson
correlation coefficients; values closer to 1 indicate a better correlation. *P<0.05; **P<0.001; ***P<0.0001; ****P<0.00001; ns, no significant
difference. (C) Cumulative OS times were calculated by the Kaplan-Meier method and analyzed by the log-rank test. The patients were divided into
two groups according to the median value of CXCL9, CXCL10, GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, TNF and IATs in tumor tissues.

Inferred functional changes in GC-
associated gastric mucosal microbiota

The functional content of the gastric microbiota was predicted
by PiCRUSt based on closed-reference OTU picking. In our present
study, 25 Clusters of Orthologous Groups (COG) functional
categories were tested, identifying 7 differentially abundant COGs
with a QFDR < 0.05 between the GC tumor and normal mucosae
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microbiota (Figure 7A). These 7 COG categories, including cell
motility, cell wall/membrane/envelope biogenesis, intracellular
trafficking, secretion, and vesicular transport, extracellular
structures, coenzyme transport and metabolism, transcription and
general function prediction only, exhibited the most significant
differences between the GC tumor and normal mucosae microbiota.
Among these differential COGs, extracellular structures,
transcription and general function prediction only were
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TABLE 2 Univariate and Multivariate Analyses of Factors Associated with Survival and Recurrence.

(O} DFS
Variables Multivariate Multivariate
Univariate P Univariate P
95% ClI HR 95% ClI
Age, years (>64/<64) 241 NA 348 NA
Gender (female/male) .995 NA . 230 NA
I;"I;lz ijsgé;e (pT4/pTis+pT1 0019 NA 0034 NA
Nodal status (pN1+pN2/pN0) 0017 17.681 ;37;;;2 .000 .0008 5.790 f;;i <.0001
Distant metastases (Pos/Neg) .0019 3.429 1101;2 .031 .0005 3.415 1.410-8.269 .006
Differentiation(H+M/L) .199 NA .198 NA
CXCLO%ig/CXCLY4y, tumor 0.0021 NA 0.004 NA
CXCL10pigh/ CXCL10jy, tumor 0.0264 NA 123 NA
GZMApigh/ GZMA,,, tumor 0.0132 NA .106 NA
GZMBigh/ GZMBy,,, tumor 0.0185 NA .0034 NA
PRE1 g/ PRE1 o, tumor 0.026 NA 0017 NA
CD8Apign/CD8A, 4, tumor 0.002 NA < 0.0001 NA
IFNGygh/IFNGg,, tumor 0.243 NA 523 NA
TBX2pign/ TBX2j tumor 0.0182 NA 092 NA
TNFpigh/ TNFq,, tumor 0.0245 217 .088-.536 .001 .089 NA
IATspign/IATS4, tumor < 0.0001 NA < 0.0001 254 .105-.618 .003

Cox proportional hazards regression model; Variables associated with survival by univariate analysis were adopted as covariates in multivariate analyses.
OS, overall survival; DFS, disease-free survival; HR, hazard ratio; CI, confidence interval. NA, not applicable. Pos, positive. Neg, negative. The bold values indicate that the P < 0.05.

significantly enriched in the tumoral microbiota. Additionally, we
compared 40 Kyoto Encyclopedia of Genes and Genome (KEGG)
pathways at level 2. At an FDR of 0.05, we identified 17 differentially
abundant pathways between the GC tumor and normal mucosae
microbiota (Figure 7B; Supplementary Figure S5). Consistent with

the significant alterations in IATs-associated gastric microbiota, the

high low

KEGG pathways were changed between IATs™®" group and IATSs
group in gastric mucosal tissues (Supplementary Figure S6).
Together, these functional changes in the gastric microbiota may

contribute to cytotoxic T cells infiltration and functional regulation.

Discussion

In this study, our analysis of 16S rRNA gene sequencing data
reveals a noteworthy increase in richness and evenness within GC
tumor tissues compared to their non-tumor counterparts. The
elevated alpha diversity metrics emphasize heightened microbial
diversity in tumor tissues, aligning with findings from a previous
study (24). This may be due to the decreased diversity caused by the
dominance of Helicobacter pylori in non-tumor counterparts. The
other way, diverse microbial communities in tumor tissues may
include bacteria that produce metabolites capable of influencing
tumor growth. Moreover, diverse microbial populations could
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influence the local immune microenvironment by modulating the
immune-subsets which could support tumor growth by creating an
immunosuppressive environment. However, Liu et al. observed
decreased diversity and richness in peritumoral and tumoral tissues
compared to non-tumor tissues (6). The inconsistent findings
underscore the lack of consensus regarding the relationship
between microbial diversity and gastric mucosal tissues.

The dominant phyla in the gastric microbiota include Firmicutes,
Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria,
Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and
Cyanobacteria. Remarkably, the relative abundance of Helicobacter
is reduced in GC tumor tissues compared to non-tumor tissues,
consistent with previous studies (20, 24). This decrease may be
attributed to the loss of specialized glandular tissues and decreased
acid secretion (25). Discriminant analyses reveal significant shifts in
microbial taxa between tumor and non-tumor mucosae, exemplified
by an increased Proteobacteria/Campylobacterales ratio in tumor
mucosae, indicating altered microbial profiles associated with GC.
Additionally, network analysis highlights the central role of oral
bacteria (Fusobacterium, Porphyromonas, Prevotella, etc.) in both
tumor and normal mucosae networks, emphasizing their profound
influence on GC microbial ecology. Notably, the top 10 genera of the
gastric microbiota, including Lactobacillus and Streptococcus, are
identified. Lactobacillus may produce metabolites serving as an
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FIGURE 5

The diversity and richness of the gastric microbiota, and different bacterial taxa between the IATs

Nish group and IATs'" group. (A) The o-diversity

indices (Shannon, Simpson, Pielou, ACE, Choa, and Faith_PD) evaluate the overall structure between the two groups, and (B, C) LEfSe identifies taxa
with significant differences in abundance, shown if exceeding an LDA threshold value of >2

energy source for tumor growth and angiogenesis (26), while the
abundance of Streptococcus is increased in GC tumor tissues (24, 27).

Our assessment of IATs in GC tumor tissues and matched non-
tumor tissues revealed a correlation between heightened chemokine
expression and increased microbiota richness and evenness in the
IATs"e" group. Consistent with previous studies (10, 28, 29), the
majority of IATs are upregulated in tumor tissues, mirroring the
trend of mucosal microbiota diversity. Microbial enrichments
within TATs high expression tissues suggest potential therapeutic
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interventions targeting the tumor microbiota for improved clinical
outcomes. Moreover, Spearman’s correlation analysis reveals
significant associations between discriminative species and
distinctive chemokines in GC tissues. Notably, the positive
correlation of Akkermansia_muciniphila with specific chemokine
expression underscores its potential role in modulating the GC
tumor immune microenvironment. Recently studies have shown
significant improvement in the pathological complete response rate
among GC patients participating a randomized trial using
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perioperative PD-1 inhibitor plus chemotherapy for locally
advanced GC (30). Studies have also demonstrated that intestinal
microbiota composition significantly influences the effectiveness of
anticancer immunosurveillance, impacting the therapeutic activity
of immune-checkpoint inhibitors (ICIs) and immunogenic
chemotherapies (31-33). Consistently, fecal microbiota
transplantation (FMT) of microbiota from therapy-responding
patients restored sensitivity to immunotherapy in germ-free
environments or in mice treated with antibiotics and made
insensitive to immunotherapy (34). Importantly, recent studies
have further shown that response to ICIs therapy correlated with
the percentage of Akkermansia_muciniphila in the intestinal
microbiome of patients (35).

COG functional category tests showed that extracellular
structures, transcription and general function prediction only were
significantly enriched in the tumoral microbiota. Besides, KEGG
enrichment analysis showed that pathways related to Amino acid
metabolism including Isoflavonoid biosynthesis, Retinol metabolism,
Lipoic acid metabolism, Adipocytokine signaling pathway, Fatty acid
metabolism, and PPAR signaling pathway had significantly increased
relative abundance in the tumoral microbiota. Liu et al. also reported
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that amino acid transport and metabolism exhibited the most
significant differences among GC microhabitats (6). Studies have
also shown that the PPAR signaling pathway is a crucial regulator in
autocrine and paracrine signaling in the tumor microenvironment,
modulating cancer-associated fibroblasts and tumor-associated
macrophages/immune cells (36). Our observation of PPAR
signaling pathway enrichment in GC tumor mucosal suggests
pathway activation by the GC microbiome. Interestingly, we
observed the enrichments of superpathway of L-lysine, L-threonine
and L-methionine biosynthesis I, superpathway of arginine and
polyamine biosynthesis, anhydromuropeptides recycling,
superpathway of polyamine biosynthesis I, superpathway of L-
methionine biosynthesis, reductive TCA cycle I, superpathway of S-
adenosyl-L-methionine biosynthesis and tRNA processing in the
IATs"€" group mucosae microbiome. Increases in these pathways
are predictive of bacterial involvement in amino acid metabolism by
the gut microbiome, which has been linked to hyperproliferation of
cells in the tumor microenvironment (37, 38). The enrichment of

these pathway in IATs"®" group mucosae microbiome highlights
their potential contribution to the immune response. Furthermore,

pathways involved in polyamine biosynthesis have been reported to
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Representative COG functional category and KEGG functional pathways enriched in the tumor and adjacent normal mucosae microbiome. PICRUSt-
based analysis using Welch's t-test reveals differences between the two groups, and multiple testing correction by the Benjamini-Hochberg method
is applied based on the false discovery rate (FDR) by STAMP. Comparisons for each COG functional category (A) and KEGG functional pathway

(B) are shown as percentages.

remodel the tumor immune microenvironment by altering the
activation and proliferation of CD4" and CD8" T lymphocytes (39,
40). The association of polyamine biosynthesis with IATs in this
study supports the role that this pathway may play in CD8" T
lymphocytes remodeling and supports previous observations in GC
(41). Further investigations into the implications of microbiome
functional dysbiosis in IATs™®" and IATs'" groups are needed for
a deeper understanding of the gastric immune microenvironment.
Our study had several limitations. First, the sample size is
relatively small, resulting in the lack of significant correlation
between clinical features and microbiome, and between clinical
features and metabolome. Second, we did not perform longitudinal
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studies since we could not obtain serial tissue samples from the
recruited patients. Third, we did not include gastric cancer patients
from different regions, so our patient heterogeneity is insufficient.
Fourth, the diet could heavily influence both the gastric microbiota
and metabolites, but we could not obtain the diet information of
patients to analyze the effect of diet on gastric microbiome
and metabolome.

In conclusion, our study provides insights into the microbiome
of GC tumor tissues and matched non-tumor tissues, unveiling
IATs-associated bacteria and highlighting the pivotal role of
mucosal microbiota alterations in GC. The identification of
potential biomarkers and therapeutic targets, such as IATs-
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associated bacteria, offers prospects for improving clinical outcomes
in GC. Further research is warranted to delve into the functional
implications of microbiome dysbiosis in IATs"€" and IATs""
group mucosae, advancing our understanding of the gastric
immune microenvironment.

Materials and methods
Patients and database

A total of 85 individuals, scheduled for primary tumor resection
at the Affiliated Hospital of Jiangnan University between 2016 and
2019, were enrolled in the study. Exclusion criteria included prior
chemo-radiotherapy. Patients received no antibiotics within a
month before surgery but were administered intravenous
antibiotics shortly before resection. Post-surgery, 85 paired fresh
tissues, including gastric tumor and matched non-tumor tissues,
were collected. Biopsies were snap-frozen in cryovial immediately
with liquid nitrogen and then stored at -80°C until DNA extraction.
Histopathological and clinical findings were scored according to the
International Union Against Cancer (UICC)-TNM staging system.

DNA extraction and16S rRNA
gene sequencing

A total of 170 tissue samples (one tumor and one adjacent
normal sample per individual) were processed for DNA
purification. The DNA extraction was carried out according to
the AllPrep DNA/RNA extraction kit and total RNA were extracted
using the Ultrapure RNA Kit (CWBIO, China). Total DNA was
purified from tumor and paired normal adjacent mucosal tissue
samples. Mucosa-associated microbiota was analyzed through 16S
rRNA sequencing. 16S rRNA gene amplicon sequencing was
carried out employing the 16S Meta-genomic Sequencing Library
Preparation protocol developed by Illumina (San Diego, California,
USA. Briefly, 200 ng of mucosal DNA was amplified from each
sample using the primers 515F (5 GTGCCAGCMGCCGCGGTAA
3’) with Titanium Adaptor B and 806R (5° GGACTAC
HVGGGTWTCTAAT 3’) with Titanium Adaptor A and a
sample-specific barcode sequence consisting of twelve nucleotides
targeting the V4 hypervariable region of the 16S rRNA gene using
FastStart Taq DNA Polymerase (Roche). The resulting sequences
were processed for bioinformatics analysis.

RNA isolation, chemokine mRNA
expression and quantitative PCR

Total RNA from GC tumor and paired normal adjacent tissues
was isolated using Trizol (Invitrogen, USA). cDNA was synthesized
using Superscript III Reverse Transcriptase (Promega, USA). Real-
time PCR reactions were conducted with SYBR Green (TaKaRa,
Japan) and analyzed on the Step One Plus Real-time PCR System
(Applied Biosystems, USA) with the following conditions: 95°C for
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5 min, 95°C for 5 s, 60°C for 30 s, for 40 cycles. The relative mRNA
expression value was calculated by 2 -/\ /AT method. GAPDH was
utilized as the internal control. The primers used were as follows:
CXCL9, forward primer F(5* AAGCAGCCAAGTCGGTTAGT 3)
and reverse primer R(5" CAGCAGTGTGAGCAGTGATTC 3');
CXCL10, forward primer F(5" AGCAGAGGAACCTCCAGTCT
3’) and reverse primer R(5° AGGTACTCCTTGAATGCCACT
3’); GZMA, forward primer F(5' GAAGAGACTCGTGCAAT
GGAGA 3’) and reverse primer R(5° AAGGCCAAAGGA
AGTGACCC 3’); GZMB, F(5° CCAGGGCAGATGCAGACTTT
3’) and reverse primer R(5" CTCGTATCAGGAAGCCACCG 3');
PRFI, F(5 GGGGCTGATGCCACCATT 3’) and reverse primer R
(5" GGCACTTGGGCTCTGGAAT 3’); CD8A, F(5" CGGTTTCCT
GGGGTAACAGT 3') and reverse primer R(5" TGCCTGAATCAG
CCTTTCTGT 3'); IFNG, F(5" GAGTGTGGAGACCATCAAGGA
3’) and reverse primer R(5" TGGACATTCAAGTCAGTTA
CCGAA 3'); TBX2, F(5* TACGAGGAGCACTGCAAACC 3)
and reverse primer R(5" CACGACTTCTCCTCAGCTCG 3');
TNF, F(5° AGCCCATGTTGTAGCAAACC 3’) and reverse
primer R(5" ATGAGGTACAGGCCCTCTGA 3'); GAPDH,
forward primer F(5" TGACTTCAACAGCGACACCCA 3’) and
reverse primer R(5" CACCCTGTTGCTGTAGCCAAA 3’).
Experiments were performed in triplicate.

Bioinformatics analysis

Microbiome bioinformatics were performed using QIIME 2
(2023.9) with slight modification according to the official tutorials.
Briefly, raw sequence data were demultiplexed using the demux
plugin following by primers cutting with cutadapt plugin (Martin,
M., 2011). Sequences were then quality filtered, denoised, merged
and chimera removed using the DADA2 plugin. Species annotation
was performed using QIIME2 software. The annotation database is
Silva Database. Alpha and beta diversity analyses were calculated
with QIIME2 and displayed with R software (Version 3.6.2).
Principal Coordinate Analysis (PCoA) was carried out to obtain
principal coordinates and visualize differences of samples in
complex multi-dimensional data. A matrix of weighted or
unweighted unifrac distances among samples obtained previously
was transformed into a new set of orthogonal axes, where the
maximum variation factor was demonstrated by the first principal
coordinate, and the second maximum variation factor was
demonstrated by the second principal coordinate, and so on. The
three-dimensional PCoA results were displayed using QIIME2
package, while the two-dimensional PCoA results were displayed
using ade package and ggplot2 package in R software
(Version 3.6.2).

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: NCBI SRA database under
accession number PRINA1032279.

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1435334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Qian et al.

Ethics statement

The Institutional Review Board of Affiliated Hospital of
Jiangnan University reviewed and approved the study protocol
and exempted the study from the obligation to obtain informed
consent (the committee’s reference number: JNU20210618IRB0S).
The studies were conducted in accordance with the local legislation
and institutional requirements. The human samples used in this
study were acquired from primarily isolated as part of your previous
study for which ethical approval was obtained. Written informed
consent for participation was not required from the participants or
the participants’ legal guardians/next of kin in accordance with the
national legislation and institutional requirements. The manuscript
presents research on animals that do not require ethical approval
for their study.

Author contributions

CQ: Investigation, Methodology, Writing - original draft,
Conceptualization, Data curation, Validation, Visualization. JH:
Investigation, Methodology, Resources, Writing - review &
editing. ZP: Data curation, Methodology, Software, Validation,
Visualization, Writing - review & editing. XS: Data curation,
Formal analysis, Methodology, Software, Writing - review &
editing. JZ: Funding acquisition, Investigation, Methodology,
Resources, Supervision, Writing — original draft, Writing — review
& editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. The Scientific

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer ] Clin. (2021) 71:209-49. doi: 10.3322/caac.21660

2. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). (2022)
135:584-90. doi: 10.1097/CM9.0000000000002108

3. Peek RM, Crabtree JE. Helicobacter infection and gastric neoplasia. J Pathol.
(2006) 208:233-48. doi: 10.1002/path.1868

4. Eun CS, Kim BK, Han DS, Kim SY, Kim KM, Choi BY, et al. Differences in gastric
mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia,
and gastric cancer using pyrosequencing methods. Helicobacter. (2014) 19:407-16.
doi: 10.1111/hel.12145

5. Galon J, Pagés F, Marincola FM, Thurin M, Trinchieri G, Fox BA, et al. The
immune score as a new possible approach for the classification of cancer. J Transl Med.
(2012) 10:1. doi: 10.1186/1479-5876-10-1

6. Angell H, Galon J. From the immune contexture to the immunoscore: the role of
prognostic and predictive immune markers in cancer. Curr Opin Immunol. (2013)
25:261-7. doi: 10.1016/j.c0i.2013.03.004

7. Galon J. From the immune contexture to the immunoscore in cancer. Eur |
Cancer. (2014) 50:S8. doi: 10.1016/5S0959-8049(14)50030-5

8. Lee K, Hwang H, Nam KT. Immune response and the tumor microenvironment:
How they communicate to regulate gastric cancer. Gut Liver. (2014) 8:131-9.
doi: 10.5009/gnl.2014.8.2.131

Frontiers in Immunology

10.3389/fimmu.2024.1435334

Research Project funded by Shanghai Municipal Science and
Technology Commission (No. 22ZR1449000) and Youth Foundation
of Jiangsu Natural Science Foundation (No. BK20180617).

Acknowledgments

We thank Dr. Dongli Liang from Instrumental Analysis Center,
Shanghai Jiao Tong University for recommendations on data
analysis and helpful discussions and comments on the manuscript.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1435334/
full#supplementary-material

9. Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, et al. Gene expression profiles for a
prognostic immunoscore in gastric cancer. Br J Surg. (2018) 105:1338-48. doi: 10.1002/
bjs.10871

10. Zeng D, Li M, Zhou R, Zhang ], Sun H, Shi M, et al. Tumor microenvironment
characterization in gastric cancer identifies prognostic and immunotherapeutically
relevant gene signatures. Cancer Immunol Res. (2019) 7:737-50. doi: 10.1158/2326-
6066.CIR-18-0436

11. Jiang Y, Zhang Q, Hu Y, Li T, Yu J, Zhao L, et al. ImmunoScore signature: A
prognostic and predictive tool in gastric cancer. Ann Surg. (2018) 267:504. doi: 10.1097/
SLA.0000000000002116

12. Zhang R, Tian L, Chen L-J, Xiao F, Hou J-M, Zhao X, et al. Combination of MIG
(CXCL9) chemokine gene therapy with low-dose cisplatin improves therapeutic
efficacy against murine carcinoma. Gene Ther. (2006) 13:1263-71. doi: 10.1038/
§j.8t.3302756

13. Pan J, Burdick MD, Belperio JA, Xue YY, Gerard C, Sharma S, et al. CXCR3/
CXCR3 ligand biological axis impairs RENCA tumor growth by a mechanism of
immunoangiostasis. | Immunol. (2006) 176:1456-64. doi: 10.4049/jimmunol.176.3.1456

14. Wang X, Lu X-L, Zhao H-Y, Zhang F-C, Jiang X-B. A novel recombinant protein
of IP10-EGFRvIIIscFv and CD8(+) cytotoxic T lymphocytes synergistically inhibits the
growth of implanted glioma in mice. Cancer Immunol Immunother. (2013) 62:1261-72.
doi: 10.1007/500262-013-1426-6

15. Wang X, Lu X-L, Zhao H-Y, Zhang F-C, Jiang X-B. A novel recombinant protein
of IP10-EGFRvIIIscFv and CD8(+) cytotoxic T lymphocytes synergistically inhibits the

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2024.1435334/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1435334/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1002/path.1868
https://doi.org/10.1111/hel.12145
https://doi.org/10.1186/1479-5876-10-1
https://doi.org/10.1016/j.coi.2013.03.004
https://doi.org/10.1016/S0959-8049(14)50030-5
https://doi.org/10.5009/gnl.2014.8.2.131
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1158/2326-6066.CIR-18-0436
https://doi.org/10.1097/SLA.0000000000002116
https://doi.org/10.1097/SLA.0000000000002116
https://doi.org/10.1038/sj.gt.3302756
https://doi.org/10.1038/sj.gt.3302756
https://doi.org/10.4049/jimmunol.176.3.1456
https://doi.org/10.1007/s00262-013-1426-6
https://doi.org/10.3389/fimmu.2024.1435334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Qian et al.

growth of implanted glioma in mice. Cancer Immunol Immunother. (2013) 62:1261-72.
doi: 10.1007/s00262-013-1426-6

16. Feldman AL, Friedl ], Lans TE, Libutti SK, Lorang D, Miller MS, et al. Retroviral
gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma
xenografts. Int ] Cancer. (2002) 99:149-53. doi: 10.1002/ijc.10292

17. Sun Y, Finger C, Alvarez-Vallina L, Cichutek K, Buchholz CJ. Chronic gene
delivery of interferon-inducible protein 10 through replication-competent retrovirus
vectors suppresses tumor growth. Cancer Gene Ther. (2005) 12:900-12. doi: 10.1038/
sj.cgt.7700854

18. Peng W, Liu C, Xu C, Lou Y, Chen J, Yang Y, et al. PD-1 blockade enhances T-
cell migration to tumors by elevating IFN-y inducible chemokines. Cancer Res. (2012)
72:5209-18. doi: 10.1158/0008-5472.CAN-12-1187

19. Nadella V, Nagao K. A bacteria-chemokine double act repairs the skin. Nat
Immunol. (2020) 21:966-7. doi: 10.1038/s41590-020-0755-9

20. Chen X-H, Wang A, Chu A-N, Gong Y-H, Yuan Y. Mucosa-associated
microbiota in gastric cancer tissues compared with non-cancer tissues. Front
Microbiol. (2019) 10:1261. doi: 10.3389/fmicb.2019.01261

21. Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado
JC, et al. Gastric microbial community profiling reveals a dysbiotic cancer-associated
microbiota. Gut. (2018) 67:226-36. doi: 10.1136/gutjnl-2017-314205

22. Malfertheiner P, Camargo MC, El-Omar E, Liou J-M, Peek R, Schulz C, et al.
Helicobacter pylori infection. Nat Rev Dis Primers. (2023) 9:1-24. doi: 10.1038/s41572-
023-00431-8

23. Ozbey G, Sproston E, Hanafiah A. Helicobacter pylori infection and gastric
microbiota. Euroasian ] Hepatogastroenterol. (2020) 10:36-41. doi: 10.5005/jp-
journals-10018-1310

24. Dai D, Yang Y, Yu ], Dang T, Qin W, Teng L, et al. Interactions between gastric
microbiota and metabolites in gastric cancer. Cell Death Dis. (2021) 12:1-11.
doi: 10.1038/5s41419-021-04396-y

25. Yao X, Smolka AJ. Gastric parietal cell physiology and helicobacter pylori-induced
disease. Gastroenterology. (2019) 156:2158-73. doi: 10.1053/j.gastro.2019.02.036

26. Sonveaux P, Copetti T, De Saedeleer CJ, Végran F, Verrax J, Kennedy KM, et al.
Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced
HIF-1 activation and tumor angiogenesis. PloS One. (2012) 7:33418. doi: 10.1371/
journal.pone.0033418

27. Shao D, Vogtmann E, Liu A, Qin J, Chen W, Abnet CC, et al. Microbial
characterization of esophageal squamous cell carcinoma and gastric cardia
adenocarcinoma from a high-risk region of China. Cancer. (2019) 125:3993-4002.
doi: 10.1002/cncr.32403

28. Nakajima S, Mimura K, Matsumoto T, Thar Min AK, Ito M, Nakano H, et al.
The effects of T-DXd on the expression of HLA class i and chemokines CXCL9/10/11 in
HER2-overexpressing gastric cancer cells. Sci Rep. (2021) 11:16891. doi: 10.1038/
541598-021-96521-2

Frontiers in Immunology

138

10.3389/fimmu.2024.1435334

29. Ou], Lei P, Yang Z, Yang M, Luo L, Mo H, et al. LINC00152 mediates CD8+ T-
cell infiltration in gastric cancer through binding to EZH2 and regulating the CXCL9,
10/CXCR3 axis. ] Mol Histol. (2021) 52:611-20. doi: 10.1007/s10735-021-09967-z

30. Yuan S-Q, Nie R-C, Jin Y, Liang C-C, Li Y-F, Jian R, et al. Perioperative
toripalimab and chemotherapy in locally advanced gastric or gastro-esophageal
junction cancer: a randomized phase 2 trial. Nat Med. (2024) 30:552-9. doi: 10.1038/
s41591-023-02721-w

31. Luo B, Zhang Y, Zhang C, Liu X, Shi C. Intestinal microbiota: A potential target
for enhancing the antitumor efficacy and reducing the toxicity of immune checkpoint
inhibitors. Cancer Lett. (2021) 509:53-62. doi: 10.1016/j.canlet.2021.04.001

32. Li X, Zhang S, Guo G, Han J, Yu J. Gut microbiome in modulating immune
checkpoint inhibitors. EBioMedicine. (2022) 82:104163. doi: 10.1016/
j.ebiom.2022.104163

33. Simpson RC, Shanahan ER, Scolyer RA, Long GV. Towards modulating the gut
microbiota to enhance the efficacy of immune-checkpoint inhibitors. Nat Rev Clin
Oncol. (2023) 20:697-715. doi: 10.1038/s41571-023-00803-9

34. Zhang J, Wu K, Shi C, Li G. Cancer immunotherapy: Fecal microbiota
transplantation brings light. Curr Treat Options Oncol. (2022) 23:1777-92.
doi: 10.1007/s11864-022-01027-2

35. Derosa L, Routy B, Thomas AM, Iebba V, Zalcman G, Friard S, et al. Intestinal
akkermansia muciniphila predicts clinical response to PD-1 blockade in patients with
advanced non-small-cell lung cancer. Nat Med. (2022) 28:315-24. doi: 10.1038/s41591-
021-01655-5

36. Cheng HS, Yip YS, Lim EKY, Wahli W, Tan NS. PPARs and tumor
microenvironment: The emerging roles of the metabolic master regulators in tumor
stromal-epithelial crosstalk and carcinogenesis. Cancers (Basel). (2021) 13:2153.
doi: 10.3390/cancers13092153

37. Zhang E, Ding C, Li S, Aikemu B, Zhou X, Fan X, et al. Polyamine metabolism
patterns characterized tumor microenvironment, prognosis, and response to
immunotherapy in colorectal cancer. Cancer Cell Int. (2023) 23:96. doi: 10.1186/
§12935-023-02892-z

38. Yang Q, Wang B, Zheng Q, Li H, Meng X , Zhou F, et al. A review of gut

microbiota-derived metabolites in tumor progression and cancer therapy. Adv Sci.
(2023) 10. doi: 10.1002/advs.202207366

39. Elmarsafawi AG, Hesterberg RS, Fernandez MR, Yang C, Darville LN, Liu M,
et al. Modulating the polyamine/hypusine axis controls generation of CD8+ tissue-
resident memory T Cells. JCI Insight. (2023) 8:¢169308. doi: 10.1172/jci.insight.169308

40. Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, et al.
Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory

receptor PD-1 are an early driver of CD8(+) T Cell exhaustion. Immunity. (2016)
45:358-73. doi: 10.1016/j.immuni.2016.07.008

41. McNamara KM, Gobert AP, Wilson KT. The role of polyamines in gastric
cancer. Oncogene. (2021) 40:4399-412. doi: 10.1038/s41388-021-01862-x

frontiersin.org


https://doi.org/10.1007/s00262-013-1426-6
https://doi.org/10.1002/ijc.10292
https://doi.org/10.1038/sj.cgt.7700854
https://doi.org/10.1038/sj.cgt.7700854
https://doi.org/10.1158/0008-5472.CAN-12-1187
https://doi.org/10.1038/s41590-020-0755-9
https://doi.org/10.3389/fmicb.2019.01261
https://doi.org/10.1136/gutjnl-2017-314205
https://doi.org/10.1038/s41572-023-00431-8
https://doi.org/10.1038/s41572-023-00431-8
https://doi.org/10.5005/jp-journals-10018-1310
https://doi.org/10.5005/jp-journals-10018-1310
https://doi.org/10.1038/s41419-021-04396-y
https://doi.org/10.1053/j.gastro.2019.02.036
https://doi.org/10.1371/journal.pone.0033418
https://doi.org/10.1371/journal.pone.0033418
https://doi.org/10.1002/cncr.32403
https://doi.org/10.1038/s41598-021-96521-2
https://doi.org/10.1038/s41598-021-96521-2
https://doi.org/10.1007/s10735-021-09967-z
https://doi.org/10.1038/s41591-023-02721-w
https://doi.org/10.1038/s41591-023-02721-w
https://doi.org/10.1016/j.canlet.2021.04.001
https://doi.org/10.1016/j.ebiom.2022.104163
https://doi.org/10.1016/j.ebiom.2022.104163
https://doi.org/10.1038/s41571-023-00803-9
https://doi.org/10.1007/s11864-022-01027-2
https://doi.org/10.1038/s41591-021-01655-5
https://doi.org/10.1038/s41591-021-01655-5
https://doi.org/10.3390/cancers13092153
https://doi.org/10.1186/s12935-023-02892-z
https://doi.org/10.1186/s12935-023-02892-z
https://doi.org/10.1002/advs.202207366
https://doi.org/10.1172/jci.insight.169308
https://doi.org/10.1016/j.immuni.2016.07.008
https://doi.org/10.1038/s41388-021-01862-x
https://doi.org/10.3389/fimmu.2024.1435334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

8 frontiers ‘ Frontiers in Immunology

@ Check for updates

OPEN ACCESS

EDITED BY
Wenyi Jin,

City University of Hong Kong,
Hong Kong SAR, China

REVIEWED BY
Qianhe Ren,
Jiangsu University, China

*CORRESPONDENCE
Ke Xu
cqghxuke@cqu.edu.cn
Xiang Shen
shenxiangdoctor@163.com
Shangke Huang
huangshangke00l@swmu.edu.cn

"These authors have contributed equally to
this work and share first authorship

RECEIVED 27 July 2024
ACCEPTED 30 August 2024
PUBLISHED 25 September 2024

CITATION

Yan Y, Shen S, Li J, Su L, Wang B, Zhang J,

Lu J, Luo H, Han P, Xu K, Shen X and Huang S
(2024) Cross-omics strategies and
personalised options for lung

cancer immunotherapy.

Front. Immunol. 15:1471409.

doi: 10.3389/fimmu.2024.1471409

COPYRIGHT
© 2024 Yan, Shen, Li, Su, Wang, Zhang, Lu,
Luo, Han, Xu, Shen and Huang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Immunology

TYPE Mini Review
PUBLISHED 25 September 2024
p0110.3389/fimmu.2024.1471409

Cross-omics strategies and
personalised options for lung
cancer immunotherapy

Yalan Yan™, Siyi Shen™, Jiamin Li", Langian Su®, Binbin Wang?,
Jinghan Zhang?, Jiaan Lu®, Huiyan Luo®, Ping Han*, Ke Xu®,
Xiang Shen* and Shangke Huang®*

tSchool of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China,
2Intensive Care Unit, Xichong People's Hospital, Nanchong, China, *Department of Anaesthesiology,
Southwest Medical University, Luzhou, China, “Department of Oncology, Chongging General
Hospital, Chongqging University, Chongging, China, *Department of Respiratory and Critical Care
Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China, *Department of
Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China

Lung cancer is one of the most common malignant tumours worldwide and its high
mortality rate makes it a leading cause of cancer-related deaths. To address this
daunting challenge, we need a comprehensive understanding of the pathogenesis
and progression of lung cancer in order to adopt more effective therapeutic
strategies. In this regard, integrating multi-omics data of the lung provides a highly
promising avenue. Multi-omics approaches such as genomics, transcriptomics,
proteomics, and metabolomics have become key tools in the study of lung
cancer. The application of these methods not only helps to resolve the
immunotherapeutic mechanisms of lung cancer, but also provides a theoretical
basis for the development of personalised treatment plans. By integrating multi-
omics, we have gained a more comprehensive understanding of the process of lung
cancer development and progression, and discovered potential immunotherapy
targets. This review summarises the studies on multi-omics and immunology in lung
cancer, and explores the application of these studies in early diagnosis, treatment
selection and prognostic assessment of lung cancer, with the aim of providing more
personalised and effective treatment options for lung cancer patients.

KEYWORDS

lung cancer, immunotherapy, precision medicine, multi-omics, individualised therapy,
immune checkpoints

1 Introduction

Lung cancer has been one of the most common malignant tumours globally over the
past decades. Despite the widespread use of conventional treatments such as surgery,
radiotherapy, chemotherapy and targeted drug therapy, the five-year survival rate for lung
cancer is usually less than 20% (1). Additionally, at all stages, less than 7% of patients
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survive more than ten years after diagnosis (2). In recent years, the
emergence of immunotherapy has marked a revolution in cancer
treatments, which not only has an acceptable safety profile, but also
produces durable therapeutic responses in a wide range of patient
populations (3). Nonetheless, lung cancer exhibits significant
histological heterogeneity, diverse genomic profiles, and
differential responses to therapy (4), and still poses significant
challenges for immunotherapy and prevention.

With the rapid development of multi-omics technology,
covering genomics, transcriptomics, proteomics and
metabolomics, our understanding of lung cancer is deepening (5,
6). Multi-omics technology has constructed a progressive analysis
framework from the genetic basis to the effect of environmental
exposure (7), and has deeply analysed the pathogenesis,
pathophysiological process and molecular basis of
immunotherapy of lung cancer, which has provided a strong
support for the scientific formulation of precise treatment strategies.

The aim of this review is to explore recent advances in multi-
omics studies of lung cancer and their potential applications in early
diagnosis, treatment selection and prognostic assessment. By
integrating immunotherapy and multi-omics data in order to
better understand the complex molecular network of lung cancer,
it provides new ideas and methods for individualised treatment and
precision medicine of lung cancer.

2 Lung cancer immunotherapy
and genomics

Lung cancer, as a highly heterogeneous disease, has been
profoundly influenced by molecular biology in its pathogenesis
and therapeutic strategies. In non-small cell lung cancer (NSCLC)
and small cell lung cancer (SCLC), unique molecular features of
different histological subtypes have been revealed through the
identification of specific genetic variants and epigenetic
modifications, thus providing new directions for individualised
treatment of lung cancer.

In NSCLC, histological subtypes frequently dominated by lung
adenocarcinoma (LUAD) and squamous cell carcinoma are
common (8). The complexity of NSCLC is reflected in its variable
genetic variants. Common target gene driver mutations include
genes such as epidermal growth factor receptor (EGFR), KRAS,
MET, BRAF, ALK, ROS proto-oncogene 1 (ROS1) and RET (9)
(Figure 1A). Through combined whole exome sequencing (WES)
technology, it was found that common mutations in LUAD include
tumour suppressor genes TP53 (46%), STK11 (17%), KEAP1 (17%),
NF1 (11%), RB1 (4%) and CDKN2A (4%), as well as chromatin
modification genes SETD2 (9%), ARID1A (7%), SMARCA4 (6%)
and RNA splicing genes RBM10 (8%) and U2AF1 (3%) (10).
Mutations in the genes FGFRI, NRF2, AKT1 and DDR2 are
particularly prominent in lung squamous cell carcinoma (10).

For SCLC, deep sequencing of key oncogenes by advanced
integrated mutational profiling (MSK-IMPACT) technology (11)
revealed inactivating mutations or deletion of tumour suppressor
genes such as TP53, RB1, KMT2D, PTEN, NOTCH1, CREBBP,
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FATI, NF1 and APC, and inactivating mutations in PIK3A, EGFR
and KRAS activating mutations in oncogenes (12). Unlike NSCLC,
SCLC is often accompanied by the expression of MYC oncogenes,
which contribute to rapid cell proliferation and lead to DNA
replication stress (13). In addition, epigenetic modifications play a
key role in lung carcinogenesis, and heritable chromatin
modifications such as DNA methylation, histone modifications,
and non-coding RNA regulation regulate gene expression without
altering the DNA sequence (9, 10, 14-16) (Figure 1A). Epigenetic
mutations and disruptions are strongly associated with multiple
tumour types, providing new ideas for targeted lung cancer therapy
based on molecular subtype differences.

Genomics plays an important role in the classification,
treatment and prognostic assessment of lung cancer.
Traditionally, lung cancer classification was based on histological
patterns, whereas advances in genomics have allowed lung cancer to
be characterised also by tumour biomarkers and genetic alterations.
For example, Stephen ] Murphy et al. defined a common origin or
lineage of lung cancer by analysing genomic rearrangements and
somatic DNA linkages, and used these specific DNA linkages as
precise tumour markers to differentiate between primary and
metastatic lung cancer (17).

Genome sequencing technology has revealed key genetic
variants in lung cancer, facilitating the development of
personalised treatment strategies. The study noted that in non-
small cell lung cancer (NSCLC), aberrant activation of the PI3K-
AKT-mTOR pathway is closely associated with resistance to EGFR
tyrosine kinase inhibitors (EGFR-TKIs), and that its activation is
mainly caused by PIK3CA, AKT1 mutations and PTEN deletion.
This discovery led to the development of drugs targeting mTOR
(e.g., everolimus and temsirolimus) and EGFR-TKIs targeting
EGFR and ALK (e.g., ositinib, gefitinib, ceritinib, and loratinib),
which have demonstrated clinical efficacy in the treatment of lung
cancer (18) (Table 1).

Immune checkpoint inhibitors (ICIs) have become key agents
in tumour immunotherapy, especially in the treatment of lung
cancer. However, their potential to cause immune-related adverse
effects makes the search for biomarkers that predict response to ICI
therapy crucial (9). Investigators assessed early predictors of anti-
PD-L1 therapy by analysing circulating tumour DNA (ctDNA), and
their study showed that a reduction in the frequency of the variant
allele was associated with tumour shrinkage after 6 weeks of
treatment, providing a valuable non-invasive method for
predicting the effectiveness of treatment (44).

3 Lung cancer immunotherapy
and transcriptomics

In the field of tumour immunotherapy, targeting the tumour
microenvironment (TME) for precision medicine is one of the latest
research directions. In this process, immune cells play a key role
(45). Immune cell interactions are regulated by transcription factors
and further contribute to the immune response. Wu et al. identified
interactions between cancer cells and endothelial cells, fibroblasts,
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Lung cancer multidimensional histologic analysis map. (A) Exploratory mapping of changes in metabolomic profiles in lung cancer pathogenesis.
(B) Immune cell profiles revealed by transcriptomics in the tumour microenvironment. (C) Critical mapping of proteomic changes during lung cancer

progression. (D) Resolution of metabolic profiles in lung cancer.

and macrophages by single-cell RNA sequencing analysis of NSCLC
patient samples, revealing multiple signalling pathways (e.g., EGFR,
NOTCH, WNT, and PDGF, etc.) that are associated with
carcinogenesis (Figure 1B). These findings shed more light on the
molecular interactions and immunoregulatory mechanisms of
NSCLC and provide a new perspective on the treatment of lung
cancer (46).

In TME, individual cells are precisely regulated by transcription
factors. Through the regulation of transcription factors, the killing of
cells can be modulated. ONECUT2 and ETV4 were found to be likely
potential regulators of CD8 T cell depletion in the blood of NSCLC
patients, whereas the transcription factors BACH1 and RUNX3 were
up-regulated in CD8 T cytotoxic subpopulations. Thus, regulation of
these transcription factors may drive cytotoxic immune responses in
NSCLC (47). Immune cell macrophages (TAM) in TME are among
the most common immunosuppressive cells. Increased TAM in TME
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has been associated with immunotherapy resistance by
transcriptomic analysis, and its expression is regulated by genes
such as CD27, ITGAM and CCL5 (48). Recent studies have shown
that TAM interacts with carnitine palmitoyltransferase 1A (CPT1A),
increasing resistance to iron death and inactivation of CD8 T cells in
lung cancer. Therefore, the use of CPT1 inhibitors enhances the
killing of tumour cells by chemotherapy or immunotherapy
(49) (Figure 1B).

In the field of lung cancer treatment, transcriptomics is often
combined with other histological approaches to extend its
application. By combining transcriptomics and metabolomics, the
researchers analysed the effects of AZD-6482 (a PI3K[-targeted
inhibitor) on 28 metabolite-related genes in LUAD. They found
that the expression of three genes, LDHA, PPAT, and SMS, was
increased in untreated LUAD samples; whereas after treatment with
AZD-6482, the expression of these genes was significantly
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TABLE 1 Targeted therapeutics drugs and targets in a
genomic perspective.

Modifiable targets Therapeutic drug Reference

Osimertinib (19)
Gefitinib (20)
Dacomitinib (21)

EGFR
Erlotinib (22)
Afatinib (23)
Amivantamab (29)
Crizotinib (25)
Ceritinib (26)
ALK Alectinib 27)
Brigatinib (28)
Lorlatinib (29)
Cabozantinib (30)
RET Selpercatinib (31)
Pralsetinib (32)
Crizotinib (33)
ROS1 Entrectinib (34)
Lorlatinib (35)
MET Glesatinib (36)
Dabrafenib (37)
BRAF V600E Trametinib (38)
Vemurafenib (39)
Adagrasib (40)

KRAS
Sotorasib (AMG 510) (41)
Bevacizumab (42)

VEGFR

Ramucirumab (43)

decreased, suggesting that the inhibitor may improve the prognosis
of LUAD patients (50). By joining forces with proteomics, Qing
et al. used Cancer Cell Line Encyclopaedia (CCLE) RNA sequencing
and proteomics profiles in human NSCLC cell lines to identify
genes that are pan-sensitive and pan-resistant to drugs used in the
treatment of NSCLC with systemic or targeted therapies (51).

4 Lung cancer immunotherapy
and proteomics

With the rapid development of mass spectrometry (MS)
technology, large-scale protein analysis has become a hotspot in
scientific research, in which proteomics has achieved remarkable
results in the study of protein phosphorylation, interaction,
structure and function (52-55). In particular, proteomics has
shown great potential for the discovery of new therapies and
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biomarkers. These biomarkers come from a wide range of
sources, including body fluids and specific samples from lung
cancer studies, such as breath condensate (56-59).

In the study of lung cancer proteomics, proteins in receptor
tyrosine kinases such as EGFR and ALK and their downstream
signalling pathways play a key role in the pathological process of
lung cancer (60-62). EGFR, as a member of the ErbB family,
promotes malignant cell survival, proliferation, etc. through a
series of biochemical processes, making EGFR and its
downstream signalling pathway an important target for lung
cancer therapy.

In addition, the discovery of immune checkpoints (ICP) has led
to a major breakthrough in the field of immunotherapy (63). In
normal physiology, ICP maintains immune system homeostasis,
but tumour cells evade immune attack by expressing ICP proteins
(3). Among them, the interaction of programmed death receptor 1
(PD-1) with programmed cell death ligand-1 (PD-L1), cytotoxic T-
lymphocyte-associated protein-4 (CTLA-4) and CD80/86 is the
main mechanism of tumour cell escape (Figure 1C). Significant
progress has been made in the development of targeted therapeutic
agents for lung cancer against these immune checkpoint proteins
(64). By blocking the function of these proteins, the immune system
in the patient’s body is activated to recognize and attack tumour
cells more effectively, bringing new therapeutic hope to lung cancer
patients. Over the past decade, tyrosine kinase inhibitors (TKIs)
have made significant advances in the treatment of cancer,
especially NSCLC.EGFR-TKI, as a potent agent for the treatment
of over-activation of EGFR signalling, has been developed for
multiple generations with remarkable efficacy (54, 65).

In the development of the field of immunotherapy, it is
particularly important to achieve selective destruction of tumours
by activating the immune response of T cells (64, 65). PD-1/PD-L1
inhibitors in combination with chemotherapy have become the
standard of care in advanced NSCLC (62, 66). In clinical study
finds,PD-1 antibodies such as Nivolumab and Pembrolizumab
demonstrate durable efficacy in a variety of cancers (67, 68)
(Figure 1C). In addition, anti-CTLA-4 antibodies such as
Lpilimumab and Tremelimumab play an important role
in immunotherapy.

Immunotherapy has great potential in the field of cancer
treatment, including checkpoint inhibitors, monoclonal
antibodies, and over-the-counter cell transplantation (69).
Scholars such as Wang and Chiu emphasized that the
combination of multiple therapies is the key to enhancing the
effectiveness of cancer treatment and is expected to significantly
improve patient survival rates (70, 71).

5 Lung cancer immunotherapy
and metabolomics

Metabolomics delves into metabolite changes in organisms,
providing new insights into the pathology and drug mechanisms
of lung cancer. By analysing lung cancer samples and identifying
metabolic markers closely related to lung cancer, it brings new
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perspectives for early diagnosis, treatment planning and prognosis
assessment (72-74).

In the oncogenic transformation of lung cancer cells, there are
significant metabolic changes that are particularly dependent on
energy sources such as ATP. Among these, the Warburg effect is
particularly pronounced in lung cancer cells, where their metabolic
needs are met by increased glucose uptake and support nucleotide
and amino acid biosynthesis (75). SCLC is significantly dependent
on exogenous arginine, which is associated with the deficiency or
low expression of arginine succinyl synthase 1 (ASS1) (76, 77). The
study found that up to 45% of SCLC samples and 50% of cell lines
exhibited ASS1-negativity, highlighting the importance of arginine
biosynthesis downregulation in the progression of lung
carcinogenesis (78, 79).

The interaction between signalling and metabolism is critical in
lung cancer research. mTOR kinases in the PI3K/Akt/mTOR
pathway form the mTORCI and mTORC2 complex, which
influences protein, nucleotide, and lipid metabolism (80)
(Figure 1D). MYC gene changes affect bioenergetic processes (81).
Changes in metabolic state can also inversely regulate signalling
pathway activity, e.g., mTORCI activity is reduced during energy
shortage (82).

Developing more effective lung cancer treatment regimens by
modulating metabolic pathways or monitoring the disease using
metabolic markers. In particular, lung cancer immunotherapy is
closely linked to metabolomics, an important cornerstone of lung
cancer treatment (83). The markers provided by metabolomics support
personalized strategies for immunotherapy and improve treatment
efficiency. In addition, the study by Ma et al. revealed the relationship
between the regulation of amino acid metabolism, hypoxia-inducible
factor-1 (HIF-1) and PI3K-Akt pathways and ositinib resistance,
providing new perspectives for understanding the mechanism of
drug resistance (84). These studies emphasize the critical role of
metabolomics in monitoring marker changes after treatment (85).

For SCLC, polyethylene glycolated arginine deiminase (ADI-
PEG20) and human recombinant polyethylene glycolated arginase
(e.g., thArgPEG, BCT-100, etc.) have been regarded as potential
therapeutic targets due to arginine nutritional deficiency. And the
combination of arginine with PD-1/PD-L1 inhibitors has also
demonstrated efficacy in the clinic (76).

The combination of immunotherapy and metabolomics in lung
cancer provides patients with more effective and personalized
treatment options that are expected to improve their quality of life.

6 Discussion

In recent years, immunotherapies, particularly targeted
therapies, have transformed the management and prognosis of
lung cancer by providing personalized treatment options for lung
cancer patients (86). And the integration of multi-omics data offers
the unique advantage of aiming for a comprehensive assessment of
each patient through extracted features, which promises a more
complete picture of this complex immune ecosystem.

However, although ICI has been widely used in the treatment of
lung cancer, there is still a lack of adequate understanding of
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prognostic biomarkers. We still need to increase research efforts
on prognostic biomarkers for lung cancer at the multi-omics level
such as proteomics and genomics. For example, genetic mutations
in EGFR and KRAS have a key role in individualized therapy, but
their specific impact and mechanisms in prognostic assessment
need to be further explored (87, 88). In addition, proteomic markers
such as CEA and CYFRA 21-1 show potential in disease
surveillance, and their correlation with disease progression could
provide additional information for disease management (89, 90).

Immune tolerance and therapeutic resistance are also current
challenges in the combination of immunology and proteomics for
the treatment of lung cancer. In particular, the EGFR T790M
mutation leads to resistance to early drug (91-93). Specifically,
although the third-generation EGFR-TKI ositinib has successfully
treated patients with T790M mutations, new resistance mechanisms
such as the EGFR T790M/C797S mutation are still emerging.
Currently, there are investigators evaluating fourth-generation
EGFR-TKISs clinically for new resistance issues (94, 95).

By integrating these multi-omics data, we can develop a more
comprehensive understanding of the biological complexity of lung
cancer, leading to the development of more effective therapeutic
strategies and improved patient survival (96). Therefore, future
research should focus on how to use these biomarkers to optimize
treatment pathways, improve the accuracy of prognostic prediction,
and ultimately achieve true precision medicine.
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Background: Glioma is the predominant malignant brain tumor that lacks
effective treatment options due to its shielding by the blood-brain barrier
(BBB). Astrocytes play a role in the development of glioma, yet the diverse
cellular composition of astrocytoma has not been thoroughly researched.

Methods: We examined the internal diversity of seven distinct astrocytoma
subgroups through single-cell RNA sequencing (scRNA-seq), pinpointed
crucial subgroups using CytoTRACE, monocle2 pseudotime analysis, and
slingshot pseudotime analysis, employed various techniques to identify critical
subgroups, and delved into cellular communication analysis. Then, we combined
the clinical information of GBM patients and used bulk RNA sequencing (bulk
RNA-seq) to analyze the prognostic impact of the relevant molecules on GBM
patients, and we performed in vitro experiments for validation.

Results: The analysis of the current study revealed that CO IGFBP7+ Glioma cells
were a noteworthy subpopulation of astrocytoma, influencing the differentiation
and progression of astrocytoma. A predictive model was developed to categorize
patients into high- and low-scoring groups based on the IGFBP7 Risk Score
(IGRS), with survival analysis revealing a poorer prognosis for the high-IGRS
group. Analysis of immune cell infiltration, identification of genes with differential
expression, various enrichment analyses, assessment of copy number variations,
and evaluation of drug susceptibility were conducted, all of which highlighted
their significant influence on the prognosis of astrocytoma.

Conclusion: This research enhances comprehension of the diverse cell
composition of astrocytoma, delves into the various factors impacting the
prognosis of astrocytoma, and offers fresh perspectives on treating glioma.

KEYWORDS

astrocytoma, scRNA-seq, bulk RNA-seq, CO IGFBP7+ glioma cells, prognosis
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Introduction

Glioma is a tumor caused by glial cells or precursor cells (1).
Gliomas are the predominant histological form of primary cancer in
the central nervous system, including high-grade gliomas and low-
grade gliomas (2, 3). As for the classification, WHO advocates
dividing gliomas into I-IV grades (4). Glioblastoma multiforme
(GBM) is the predominant malignant brain tumor, making up
60%-70% of malignant gliomas (2), and is classified as a highly
invasive grade IV glioma (5). Glioblastoma, also known as
malignant glioma, is the deadliest type of brain tumor, typically
resulting in a median survival time of 15 months (6), glioblastoma is
the most aggressive form of astrocytoma. Prior research has
indicated that there are gender disparities in the occurrence of
GBM in adults, with a higher prevalence among males (1).

Treating a brain tumor can be challenging due to the presence
of the blood-brain barrier (BBB), which protects it (6). At present,
surgery, radiotherapy, and chemotherapy are still the main
treatment methods for glioma (4). GBM cannot be removed
surgically because of its invasive nature and ability to infiltrate
normal surrounding brain tissue (7). At present, the main drugs for
GBM chemotherapy are temozolomide, or TMZ. TMZ slightly
improved the survival rate of patients but caused many side
effects (6). The GBM tumor has strong resistance to radiotherapy
and cytotoxic chemotherapy (7). Hence, there is no superior
remedy for GBM, necessitating a more profound comprehension
of the illness and investigation into novel treatment approaches.
Recent literature has indicated that the combination of
temozolomide therapy and tumor-treating fields (TTFields) can
enhance both progression-free survival and overall survival in
patients with glioblastoma (8). TTFields represents a therapeutic
modality that combats mitosis, although further investigation is
needed to fully elucidate its experimental findings. Moreover, this
treatment necessitates the utilization of a device, which entails head
hair shaving and may impose an additional burden on patients. The
adoption of a multimodal standard therapy still entails an inevitable
recurrence rate, with a median survival exceedingly merely one year
(9), so other therapeutic modalities still need to be explored.

Single-cell analysis has become an important tool for dissecting
cellular heterogeneity (10, 11). This method has been extensively
utilized for examining the internal diversity of different types of
cancer, including non-small cell lung cancer (12), melanoma (13),
cervical cancer (14), bladder cancer (15), prostate cancer (16) and
clear cell renal cell carcinomas (ccRCCs) (17-20), among others.
The characteristics and makeup of the tumor immune
microenvironment (TIME) play a crucial role in the treatment
and outlook of tumors. Research has shown that astrocytes play a
role in the development of glioma, indicating that this relationship
could be a potential focus for novel treatments (21). Research has
extensively shown that astrocytes have the ability to control the
attraction of tumor-associated macrophages (TAMs) to the tumor
microenvironment (TME) through CCL2, leading to the
progression of glioblastoma by encouraging a pro-tumor
phenotype in TAMs (22). However, the tumor immune
microenvironment of astrocytoma has not been fully explored
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For this research, we utilized scRNA-seq to analyze single-cell
data from GBM patients. We conducted dimensionality reduction
clustering analysis on astrocyte subpopulations, followed by
inferCNV analysis to identify astrocytoma. Our goal was to
investigate the diverse heterogeneity of astrocytoma subpopulations
and identify key subpopulations with the potential for high
differentiation. Additionally, we explored the transcription factors
associated with these subpopulations. Furthermore, a risk assessment
model was developed, and the infiltration of immune cells in tumors
was investigated along with clinical data from patients with glioma.
Finally, we performed in vitro experimental validation. These studies
could offer fresh insights for treating GBM.

Materials and methods
Get glioma data

The Glioma single-cell RNA-seq data utilized in this study were
obtained from the NCBI Gene Expression Omnibus (GEO)
database at https://www.ncbi.nlm.nih.gov/geo/. The identification
code for logging in was GSE182109.

Data pertaining to bulk RNA-seq was acquired from the Cancer
Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/),
which included clinical details (age, gender, ethnicity) and
somatic mutation information for glioma patients.

Raw data processing

The raw single-cell RNA data was analyzed using the “Seurat”
package (version 4.3.0) (23, 24). To enhance data quality, the
“DoubletFinder” R package (version 2.0.3) (17, 25) was utilized
for eliminating doublet cells based on genetic data, followed by
applying the “PercentageFeatureSet” function to filter out low-
quality cells. High-quality cells meeting the criteria of (1) having
300 < nFeature < 7,500 genes detected in a single cell, (2) having 500
< nCount < 100,000 total transcriptomic count in a single cell, and
(3) having the number of recognized genes in a single cell < 100,000
were retained. A single cell contains between 500 and 6,000
identifiable genes. Less than 20% of genes in a single cell were
actively expressed by mitochondria.

Data clustering analysis with
reduced dimensions

High-quality glioma cells were acquired and then normalized
using the “NormalizeData”function, followed by the identification of
the top 2000 variable genes using the “FindVariableFeatures”
function. All genes were centered using “ScaleData” (26-29). To
remove batch effects across various samples, the samples were
processed and analyzed using the “harmony” R package (version
0.1.1) (14, 30).
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The initial 30 primary components (PCs) were reduced in size
with the “RunPCA” function, then the glioma cells were grouped
and examined using “FindClusters” and “FindNeighbors”
categorized based on the marker genes of cell subgroups
mentioned in previous studies, and displayed through Uniform
Manifold Approximation and Projection (UMAP) (31).

Detect astrocytoma utilizing InferCNV

By utilizing InferCNV (https://github.com/broadinstitute/
inferCNV/wiki) (13), we were able to assess the astrocytes within
the glioma cell subset and identify the differences in copy number
within this subset. Taking EC (epithelial cell) as a control, the
astrocytes with high-level copy number variation (CNV) were
defined as astrocytoma.

Subgroup identification of astrocytoma

By clustering astrocytoma, we were able to identify various
subgroups, revealing its internal heterogeneity. First of all, the
top 2,000 highly mutated genes in astrocytoma were identified,
then normalized, and the “harmony” R package was applied to
reduce batch effects. Finally, the first 30 principal components
(PC) were projected onto the two-dimensional map by using the
UMAP map, and the different subsets of astrocytoma were
marked according to the marker genes in previous literature
(32, 33).

Furthermore, we investigated the origin of tissues and the cell cycle
of various cell subgroups, computed staging scores like G2M.Score and
S.Score, and compared the variations in G2M.Score, S.Score, nFeature,
and nCount across different cell subgroups.

Identification and enrichment analysis of
differentially expressed genes in
astrocytoma subtypes

DEGs were identified for each astrocytoma subpopulation by
screening with the “FindAllMarkers” function, detecting genes in a
minimum of 25% of the cells with a false discovery rate (FDR) of
less than 0.05 and an absolute log fold change (| logFCfilter |)
greater than 1.

The “clusterProfiler” R package (version 0.1.1) (34, 35) was
utilized for the analysis and enhancement of particular marker
genes, with access to the Gene Ontology-Biological Processes
(GOBP) database provided at http://www.geneontology.org (36,
37). During GO enrichment analysis, genes with p-values bel ow
0.05 were deemed to be statistically significant. Enriched entries
were subjected to Gene Set Enrichment Analysis (GSEA) using gene
sets obtained from the database (c2.cp.kegg.v7.5.1.symbols.gmt).
Pathways that were significantly enriched were chosen using a false
discovery rate (FDR) less than 0.05.
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Trajectory analysis of astrocytoma

Stemness and developmental trajectories of astrocytoma
subpopulations were comprehensively inferred using a variety of
analytical methods, including CytoTRACE analysis, monocle2
analysis, and the Slingshot method.

CytoTRACE can re-establish the relative differentiation status
of astrocytoma subpopulations based on gene expression profiles
(38) and assess the stemness of different cellular subpopulations.

A proposed time-series analysis of astrocytoma subpopulations
was performed using the Monocle R package (version 2.24.0).
Monocle identified cellular alterations during astrocytoma
differentiation as a means of inferring the developmental
trajectory of the subpopulation.

Slingshot analysis (version 2.6.0) was used to detect and
generate multiple differentiation trajectories for the astrocytoma
subpopulation. The “getlineage” and “getCurves” functions were
used to infer subpopulation differentiation trajectories and to assess
changes in cell expression levels over time, respectively.

SCENIC analysis

To investigate the transcription factors (TFs) in the main subgroup,
we utilized the pySCENIC algorithm to build a gene regulatory
network, assessed the transcription factors’ expression, and unveiled
the general distribution of the main subgroup transcription factors.

Cell communication analysis

Astrocytoma subpopulations were analyzed for cellular
communication using the ‘CellChat’ R package (version 1.6.1)
(39), to examine and interpret inter-cellular communication
networks derived from scRNA-seq data. The analysis was
performed by integrating gene expression data from cells to
establish the probability of communication through interactions
between gene expression and signaling pathways, ligand-receptors,
and their cofactors, which provided insights into the coordinated
roles of signaling pathways in different cell types.

Construction of risk score and
establishment of nomogram

Prognosis-related genes and corresponding risk scores for each
sample were obtained through univariate COX risk regression
analysis using the “survival” R package (40, 41), as well as Least
Absolute Shrinkage and Selection Operator (LASSO) Cox
regression analysis (42-44) and multivariate COX risk regression.
The risk score calculation formula: Risk score = >'7'Xi x Yi (x:
coefficient, y: gene expression level). According to the median risk
score, the samples were divided into a high-risk group and a low-
risk group. The prognostic features of various risk score categories
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were assessed using Kaplan-Meier survival analysis and the
“timeROC” R package (45-47).

We assessed the predictive precision of risk scores by merging
patient clinical data with risk scores for multivariate COX risk
regression analysis. We developed a nomogram model to predict 1-,
3-, and 5-year overall survival (OS) in glioma patients, visualized it
using the “rms” R package, assessed the model’s accuracy with c-
index and ROC curves (48), and explored the relationship between
model genes, risk scores, and OS.

Immune microenvironment analysis

In order to evaluate the correlation between risk characteristics and
the immune microenvironment, we used a combination of the
ESTIMATE, CIBERSORT, and Xcell algorithms to comprehensively
evaluate the immune microenvironment of astrocytoma patients.
Furthermore, the CIBERSORT algorithm (http://cibersort.stanford.edu/
). was utilized to examine the distribution of 22 various immune cell
types. We computed the ImmuneScore, StromalScore,
ESTIMATEScore, and TumorPurity values, along with the TIDE
(TumorImmune Dysfunction and Exclusion) scores. In addition,
the relationship between model genes, risk score, and OS was
explored to illustrate the important role of genes in immune-
related functions.

Examining and enhancing the analysis of
genes with varying expression levels in
groups with high and low scores

The “DESeq2” was utilized to identify differentially expressed
genes (DEGs) in groups with high and low risk scores, followed by
enrichment analyses using the “clusterProfiler” R package (version
4.6.2) (49) for GO, Kyoto Encyclopedia of Genes and Genomes
(KEGG) (50), and GSEA enrichment analyses.

Tumor mutation analysis

Glioma patient somatic mutation information was obtained from
the TCGA database, and the Tumor Mutation Burden (TMB) was
assessed in various scoring categories using the “maftools” R package
(51), and the subjects were classified into high TMB and low TMB
according to the median TMB. Participants were divided into high
TMB and low TMB groups using the median TMB value, and survival
differences were compared between the two groups using Kaplan-
Meier curves. Pearson correlation coefficients were used to analyze the
relationship between score and TMB. Furthermore, we analyzed the
genetic variation in gene copies (CNV) of the modeled genes.

Drug sensitivity analysis

In order to better align with the clinical use of the drugs, we
evaluated the sensitivity of the different drugs. The “pRRophetic”
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package (version 0.5) (52) was utilized to determine the IC50 value
for each sample and assess the responsiveness of the groups with
high and low risk scores.

Cell culture

The U87 MG and U251 MG cell lines were acquired from the
American Type Culture Collection (ATCC). The two cell types were
grown in DMEM medium with 10% fetal bovine serum and 1%
streptomycin/penicillin (Gibco BRL, USA) at 37°C, 5% CO2, and
95% humidity as per usual conditions.

Cell transfection

Two small interfering RNAs (siRNAs) (GenePharma, Suzhou,
China) were used to achieve FOSL2 knockdown, followed by
inoculating cells in 6-well plates at 50% density. Transfection was
performed with a negative control group (si-NC) and FOSL2
knockdown (si-FOSL2-1 and si-FOSL2-2). The transfection was
carried out following the specific instructions provided by
Lipofectamine 3000RNAIMAX (Invitrogen, USA).

Cell viability assay

The viability of U87 MG and U251 MG cells that were transfected
was measured by utilizing the Cell Counting Kit-8 (CCK-8, A311-01,
Vazyme). Cell suspensions were added to 96-well plates (5 x 10> cells
per well) and left to incubate for 2 hours. The absorbance was then
recorded at 450 nm on days 1, 2, 3, and 4. Mean optical density (OD)
values were recorded, and the corresponding line graphs were plotted.

Quantitative real-time PCR

Cell lines were used to extract total RNA with TRIzol reagent
(15596018, Thermo), followed by c¢cDNA synthesis using
PrimeScriptTM RT Reagent Kit (R232-01, Vazyme). cDNA was
isolated using the SYBR Green Real-Time PCR Kit from TaKaRa
Biotechnology in Dalian, China, through real-time quantitative
PCR (qRT-PCR). The primers and siRNAs utilized in this
research are displayed in Supplementary Table 1.

Transwell

Cells (corning, USA) were either coated with or without matrix
glue (BD Biosciences, USA) in a 24-well plate chamber. The cell
suspension was then placed in the upper chamber with Costar
and serum medium, while serum culture medium was added
to the lower chamber. Put the cells in a cell incubator for
48 hours. Following incubation, the cells were treated with 4%
paraformaldehyde and then stained with 0.1% crystal violet
(Solarbio, China) to assess migration and invasion.
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Plate-cloning experiment

Transfected cells were seeded in a 6-well plate at a density of
1x10> cells per well and incubated for 14 days. Next, the cells were
rinsed with PBS and then treated with 4% paraformaldehyde (PFA)
for a duration of 15 minutes. Finally, the cells were stained with
0.1% crystal violet (Solarbio, China) for 20 minutes and quantified.

Wound healing

After transfection, the cells were grown in 6-well dishes until
they reached 95% confluence, then a 200-mL sterile pipette was
used to wash away debris with PBS in a straight line through the cell
layer. Next, the serum-free solution was exchanged to sustain cell
culture, and images of the wounds at the identical spot at 0 hours
and 48 hours were captured for assessing the breadth of the wounds.

5-Ethyl-2'-deoxyuridine proliferation assay

U87 MG and U251 MG cell lines that were transfected were plated
in 6-well cell culture plates with 5x103 cells per well and left at room
temperature for 24 hours. After that, a solution made by EdU was
added to serum-free medium and incubated for 2 hours at 37°. Next,
the cells were rinsed with PBS and then treated with 4%
paraformaldehyde for a duration of 30 minutes. Afterward, the cells
were exposed to glycine (2 mg/mL) and 0.5% Triton X-100 for 15
minutes, followed by incubation with 1 mL of 1x Apollo and 1 mL of
1x Hoechst 33342 for 30 minutes. The quantification of cell
proliferation was ultimately determined using fluorescence microscopy.

Statistical analysis

The analysis of all the research was conducted using R software
(version 4.3.0) and Python software (version 4.2.0). The Wilcoxon
test, Pearson correlation coefficients, etc. Statistical tests were
employed to evaluate the importance of variances among the
groups (*P<0.05, **P<0.01, **P<0.001).

Results
Main cell types of glioma

To comprehend the tumor microenvironment of glioma, we
collected glioma cells from 18 patients following quality control of
234,148 high-quality cells. According to the marker genes, these high-
quality cells were divided into 13 main cell types: microglia(49030),
Myeloidcells (50565), Oligodendrocytes (29536), Astrocytes (46377),
T_NK (28697), Excitatory_neuronal_cells (10997), Proliferating cells
(11346), Fibroblasts (1978), EndothelialCells(ECs)(1820),
Muller_glia_cells (1580), B_Plasma(1245), Inhibitory_Neuronal _
Cells (814), Pericytes (163), and drawn into a 2D scatter plot by
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using Uniform Manifold Approximation and Projection (UMAP)
technology (Supplementary Figure 1A). Additionally, we examined
the tissue categories, cellular phases, and seurat groupings of each cell
category, presenting them through UMAP visualizations paired with
pie graphs (Supplementary Figures 1B-D). Bubble plots
(Supplementary Figure 1E) displayed the top 5 marker genes for 13
cell types and 3 tissue types.

Subtype identification of astrocytoma

In order to distinguish malignant cells, we used the InferCNV
algorithm to analyze the copy number variation (CNV) level of
astrocytes, and the result was shown in Supplementary Figure 2.
Based on the inferred CNV results, astrocytes with high levels of
CNV were defined as tumor cells as astrocytoma. We classified
the 40,650 astrocytomas obtained by Seurat and named the seven
subclusters according to the marker genes as CO IGFBP7+ Glioma
cells, C1 OLIG2+ Glioma cells, C2 LINC02283+ Glioma cells, C3
LINC00632+ Glioma cells, C4 MX1+ Glioma cells, C5 FOSB+
Glioma cells, and C6 DLL3+ Glioma cells. The 2D map of UMAP
dimensionality reduction combined with pie charts showed the
distribution of subgroups and their proportion in different cell
phases (G1, G2M, and S) and in different groups (II and IV)
(Figure 1A). The results showed that most of the astrocytoma
subclusters had a higher percentage of G1 cell cycle, in addition,
CO IGFBP7+ Glioma cells and C4 MX1+ Glioma cells had a
higher percentage of Group IV, suggesting that the malignant
degree of cells in these two subclusters might be higher. Figure 1B
of the of the UMAP diagram showed the distribution of each
subgroup and the proportion of cell cycle and group. Figure 1C
UMAP faceted plots depicting the distribution of each
subpopulation in detail.

Next, to dig deeper into the relevant features of astrocytoma, we
calculated the Cell Stemness AUC (Area Under the Curve), nCount
_RNA, nFeature _RNA, G2M.Calculated the Score, S. Score, and
CNV Score for each subgroup and displayed them using UMAP
plots (Figure 1D). The relevant features of different cellular phases
and different groups were demonstrated with violin plots
(Figures 1E-G). The results showed that CO IGFBP7+ Glioma
cells had the highest cell stemness among the seven subclusters,
and C2 LINC02283+ Glioma cells had the highest G2M.Score
(Figure 1E). In addition, compared with subgroup II, subgroup
IV had higher cell stemness and had higher G2M.Score and CNV
Score (Figure 1G).

Correlation enrichment analysis

To comprehend the biological mechanisms linked to each
subgroup of astrocytoma, we conducted various enrichment
analyses on the distinct genes within the seven subclusters of
astrocytoma. Figure 2A violin plots demonstrated the expression
levels of the named genes of the subclusters in each subcluster, and
interestingly, IGFBP7, the named gene of the CO subcluster, was
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FIGURE 1

Subcluster identification of astrocytoma. (A) The UMAP plot revealed 7 subclusters of 40,650 astrocytoma (top). UMAP visualizations, along with pie
graphs, illustrated the breakdown of individual subgroups based on Phases (G1, S, and G2M) (center) and Groups (Il and IV) (lower section). (B) An
integrated visualization demonstrated the distribution of astrocytoma subclusters, phases, and groups. (C) UMAP facet map exhibited the distribution
of each astrocytoma subcluster. (D) UMAP plots individually showcased the Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S Score,
and CNV Score of astrocytoma. (E-G) Violin plots respectively, displayed the levels of Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S
Score, and CNV Score for each astrocytoma subcluster (E), each cell phase (F), and each group (G). Significance levels were denoted as follows: ***P

< 0.001, and ****P < 0.0001; NS was used to represent lack of significance.

also expressed in the C4 subcluster. We visualized the DEGs
(differential expressed genes) in each subcluster of astrocytoma
using volcano plots (Figure 2B).

Then, we plotted the gene cloud diagrams for each subgroup of
astrocytoma and the cloud diagrams for enrichment analysis
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according to the number of gene occurrences and the level of
enrichment scores of each subgroup, as shown in Figures 2C, D.
Furthermore, GSEA was conducted for every subgroup,
revealing the pathways with the highest NES values displayed in
Figure 2E. The top GSEA pathways for these seven subpopulations
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FIGURE 2
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Enrichment analysis of astrocytoma subclusters. (A) Violin plots illustrated the distribution of named genes in each subcluster of the 7 astrocytoma

subclusters. (B) Volcanic plots illustrated the genes with differential expression in the CO-C6 subgroups. (C) Cloud diagrams presented the

expression patterns of highly-enriched genes in each astrocytoma subcluster. The font size indicated the quantity of genes, while the color indicated
the enrichment score for each gene. (D) Cloud diagrams displayed the specific enriched pathways of highly-enriched genes in each astrocytoma
subcluster. The font size indicated the quantity of genes, while the color indicated the enrichment score of genes within that pathway. (E) GSEA
enrichment analysis results for each astrocytoma subcluster, showing only the pathway with the highest NES value. (F) Heatmap showed the gene
expression and top 5 GO-BP enrichment analysis results for each astrocytoma subpopulation.
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included negative regulation of hydrolase activity, regulation of
mRNA splicing via the spliceosome, cytoplasmic translation, gene
silencing by RNA, defense response to viruses, response to unfolded
proteins, and metaphase/anaphase transition of the mitotic cell
cycle based on the highest NES values.

In addition, in order to visualize the GOBP (Gene Ontology
Biological Processes) enrichment analysis of each subpopulation of
astrocytoma, we generated a heatmap to show the top 5 enriched
terms of each subpopulation (Figure 2F).

The findings indicated that the enhanced pathways in CO IGFBP7
+ Glioma cells included inhibiting hydrolase activity, promoting cell-
substrate adhesion, aiding in wound healing, inhibiting peptidase
activity, and regulating cell-substrate adhesion. This result suggests
that the CO subpopulation may be associated with the adhesion
movement of glioma cells. The enrichment pathways of C1 OLIG2+
Glioma cells for axis development, synapse organization,
axionogenesis, glial cell differentiation, and regeneration of nervous
system development suggest that this subpopulation may be involved
in nervous system development and related tissue differentiation.
Glioma cells with C2 LINC02283+ Glioma cells were found to have
high levels of cytoplasmic translation, oxidative phosphorylation,
aerobic respiration, cellular respiration, and ATP synthesis-linked
electron transport, indicating a strong connection to cellular
respiration and energy metabolism. On the other hand, glioma cells
with C3 LINC00632+ Glioma cells showed enrichment in mRNA
processing, RNA splicing, regulation of RNA splicing, regulation of
mRNA processing, RNA splicing, and via transesterification reactions
with bulged adenosine as a nucleophile, suggesting that this
subpopulation may play a role in regulating RNA processing.

C4 MX1+ Glioma cells showed enrichment in immune
responses to viruses and symbionts, as well as in regulating viral
processes and negative regulation. On the other hand, C5 FOSB+
Glioma cells were enriched in responses to protein misfolding,
temperature changes, and topologically incorrect proteins.
Additionally, these cells also showed enrichment in responses to
viruses, symbionts, viral processes, and negative regulation.
Response to temperature stimulus, protein refolding, and
resistance to heat pathways suggest that the C5 subpopulation
may be involved in protein response-related biological processes.
C6 DLL3+ Glioma cells are involved in RNA splicing, mRNA
processing, and ribonucleoprotein complexes. Ribonucleoprotein
complex formation occurs through RNA splicing, involving
transesterification reactions and bulged adenosine. The Cé6
subpopulation may be involved in RNA splicing and other related
biological processes through transesterification reactions involving
bulged adenosine as a nucleophile.

Trajectory analysis of the
astrocytoma subcluster

To investigate the differentiation status and developmental
trajectory of seven subgroups of astrocytoma, we performed
CytoTRACE analysis and monocle 2 pseudotime analysis on
these subgroups. The related results of the CytoTRACE analysis
were shown in Figures 3A, B. The CytoTRACE results showed that
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the CytoTRACE scores of subcluster Cl1, subcluster C4, and
subcluster CO were higher, indicating that the stemness was
higher in these three subclusters. The gene correlations involved
in the CytoTRACE analysis can be observed in the bar graph
(Figure 3C). The findings from the pseudotime analysis of the
astrocytoma subgroup were displayed in Figure 3D. The findings
indicated that the pseudotime path deviated from the top right to
the bottom left, encompassing six stages and three points of
divergence. The pseudotime facets of the along-trajectory
distribution of each subgroup of astrocytoma were shown in
Figure 3E. In addition, we further demonstrated the pseudotime
results of astrocytoma subgroups with Violin plots and ridge plots
(Figures 3F-H). These results indicated that CO IGFBP7+ Glioma
cells might be at the end of differentiation and have high
differentiation ability, and C6 DLL3+ Glioma cells might be at the
initial stage of differentiation.

Transcription factors related to the CO
IGFBP7+ glioma cells subgroup

We analyzed the TOP1 transcription factor FOSL2 of the CO
IGFBP7+ Glioma cells subgroup, which may be at the end of
differentiation. Initially, a UMAP visualization was created to
display the distribution of the transcription factor FOSL2
(Figure 3I), revealing its limited presence in various subgroups.
The specific differences in the distribution of transcription factor
FOSL2 in each subgroup were shown in Figure 3]. The transcription
factor FOSL2 was most distributed in the CO IGFBP7+ Glioma cells
subgroup, and the distribution in other subgroups was different,
with statistical differences. In addition, the transcription factor
FOSL2 was more distributed in highly differentiated tissues
(Group IV) than in Group II, and the results were statistically
different (Figure 3K).

Slingshot pseudotime analysis of the
astrocytoma subcluster

In order to further confirm the differentiation relationship
between different subgroups of astrocytoma, we conducted a
slingshot pseudotime analysis on the astrocytoma subgroup. The
findings indicated the presence of two lineages in the slingshot
pseudotime assessment of seven subtypes of astrocytoma
(Figure 4A). Lineage 1 originated from C2 and ends at CO.
Lineage 2 originated from C2, passed through CO/C4—Cl1/
C5—C3, and ended with C6. However, there was only one
lineage in the slingshot pseudotime analysis of two Groups (II
and IV) (Figure 4B). The expression of named genes with
subpopulation slingshot pseudotime analysis lineage 1 was shown
in Figure 4C scatter plots, and the expression of named genes with
subpopulation slingshot pseudotime analysis lineage 2 was shown
in Figure 4D. In addition, we also analyzed the trajectories of the
slingshot pseudotime analysis of different groups (IV and II), and
the slingshot pseudotime analysis of different groups only had
lineage 1. The expression of string hot pseudotime analysis
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CytoTRACE and Monocle2 pseudotime analysis of astrocytoma subpopulations and related transcription factors. (A) CytoTRACE analysis and visualization
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the CytoTRACE analysis results, revealing that C1 OLIG2+ Glioma cells, C4 MX1+ Glioma cells, and CO IGFBP7+ Glioma cells exhibited higher
differentiation potential, while C3 LINCO0632+ Glioma cells had the lowest differentiation potential. (C) Bar graph showed the gene correlations in the
CytoTRACE analysis. (D) Trajectory analysis using Monocle2, with 3 branch points and 6 states. (E) Monocle2 pseudotime analysis facet map depicted
the trajectories of the 7 astrocytoma subclusters. (F) Violin plots showed the distribution of the 7 astrocytoma subgroups along the pseudotime
trajectory. (G, H) Ridge plots and their facet maps displayed the density distribution of the 7 astrocytoma subgroups along the pseudotime trajectory.

(I) UMAP plot visualized the distribution of the top transcription factor (TF) FOSL2 in CO IGFBP7+ Glioma cells. (J) Violin plot presented the distribution of
FOSL2 in astrocytoma for each subcluster. (K) Violin plot illustrated the distribution of FOSL2 in different groups (Il and IV). Significance levels were
denoted as follows: **P < 0.01, ***P < 0.001, and ****P < 0.0001; NS was used to represent lack of significance.
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Slingshot pseudotime analysis of astrocytoma. (A) Slingshot pseudotime analysis results for the 7 subclusters of astrocytoma reveal 2 lineages.

(B) Slingshot pseudotime analysis results for different Groups (Il and 1V) of astrocytoma, showing 1 lineage. (C) Scatter plots demonstrated the
expression changes of lineage 1-associated genes in the astrocytoma subclusters. (D) Scatter plots illustrated the expression changes of lineage
2-associated genes in the astrocytoma subclusters. (E) Scatter plots displayed the expression changes of lineage 1-associated genes in the
astrocytoma subclusters across the Groups. (F) Heatmaps exhibited the expression changes of differentially expressed genes along the trajectories of
the 2 lineages of the astrocytoma subclusters, along with their GOBP enrichment analysis results.

lineage 1 with different groups of named genes was shown in
Figure 4E. The findings indicated that the gene IGFBP7,
belonging to the CO subgroup, exhibited the highest expression
levels in Group IV following the slingshot pseudotime analysis. This
was consistent with the previous results of CytoTRACE analysis and

Frontiers in Immunology

monocle 2 pseudotime analysis that CO IGFBP7+ Glioma cells were
at the end of differentiation and had high cell stemness, with most of
the CO subclusters distributed in subgroup IV. We also analyzed the
expression of two lineages of DEGs with the subgroup’s slingshot
pseudotime analysis, and the result was as shown in Figure 4F. We
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also analyzed the enrichment of DEGs by GOBP and found that
lineage 1 was mainly enriched with mesodem nervous, smooth ion
muscle, DEGs of interleukin production, and mediated, while
lineage 2 was enriched with osleoblast, nucleotide biosynthetic,
smooth apoptotic, and other pathways.

Cellular communication network

In order to systematically explore the interaction of the tumor
microenvironment in astrocytoma, we used Cellchat analysis to
draw a cell communication network to show the intensity
(Figure 5A) and quantity (Figure 5B) of ligand-receptor
interaction between different cell groups. Then, we analyzed the
signal patterns between astrocytoma and other cells and the
interaction between cells and pathways. Three outgoing signal
patterns and three incoming signal patterns were identified, and
the results were shown in Figures 5C, D. Figures 5E, F displayed the
communication patterns received by target cells and sent by
secreting cells, respectively. The results showed that both C0-Cé6
subgroups were involved in the PTN signal network pathway.

The results of Sankey diagrams revealed that the cell groups in
outgoing patterns were astrocytoma, Oligodendrocytes, Excitatory
neuronal cells, Proliferating cells, Muller glia cells, Inhibitory
neuronal cells and Pericytes send out signals in coordination with
the signal paths PTN, MK and SPP1 belonging to patternl (Figure 5G).

The heatmap specifically showed (Figure 5H) the signal
intensity of outgoing signaling patterns and incoming signaling
patterns interacting with other cell types.

PTN signaling network pathway

Because the seven subpopulations of astrocytoma involved the
PTN signaling network pathway in both Incoming communication
and Outgoing communication, we initiated further studies on the
PTN pathway. When glioma cells were used as receiver cells in PTN
signaling network pathway, the interaction of various cell-like cells
was shown in Figure 6A, and the expression levels of signal genes
involved in this pathway (PTPRZ1, SDC2, SDC3, NCL) were shown
in Figure 6B. The results showed that NCL has a certain expression
level in various cell-like cells. We further explored the cellular
communication networks involved in PTN signaling network. We
further explored the PTN signaling network involved in the
intercellular communication network, PTPRZ1 Glioma cells,
SDC2 Glioma cells, SDC3 Glioma cells, NCL Glioma cells were
used as receivers in the respective hierarchical plots shown in
Figure 6C (PTPRZI), Figure 6D (SDC2), Figure 6E (SDC3), and
Figure 6F (NCL), respectively. The specific interaction between
PTN signaling network cells was comprehensively demonstrated by
the heatmap (Figure 6G). The heatmap (Figure 6H) displayed the
varying significance of different cell types in the PTN signaling
pathway network, acting as senders, receivers, mediators, and
influencers. The results showed that in the PTN pathway, six
subgroups of malignant asteroids (C0-C5) had high relative
importance as sender, receiver, mediator and influencer.
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Establishment and verification of a
prognostic model

In order to better serve the clinic, we evaluated the prognostic
characteristics of the CO IGFBP7+ Glioma cell subgroup identified
in this study.

Initially, we analyzed the leading 100 potential genes in this
specific group through univariate Cox regression analysis, revealing
that 29 genes were linked to patient prognosis (Figure 7A). In order
to avoid the multiple contributions of the screened genes, we
conducted LASSO regression analysis on these 29 genes
(Figure 7B), and a total of 4 genes were determined to be
significantly related to the prognosis of patients. After screening
four genes (FAM20C, TIMP1, PMP22, and ID1), we performed a
multivariate Cox regression analysis and identified three genes
(FAM20C, TIMP1, and PMP22) as risk factors, with gene ID1
being a protective factor (Figure 7C). Using the Cox regression
coefficient for each gene, we developed an IGFBP7 Risk Score
(IGRS) and determined the IGRS for each sample based on gene
expression and the associated coefficient. The specific formula was:
IGFBP7 Risk Score (IGRS) = ID1 expression level * (-0.206) +
TIMP1 expression level* 0.130 + FAM20C level* 0.192 + PMP22
level* 0.052. According to the score, we divided the CO IGFBP7+
Glioma cell subgroup into High IGRS Group and Low IGRS Group,
and further analyzed the high and low IGRS Groups. The IGFBP7
Risk Score of high and low IGRS Groups and the changes of their
living state with time were shown on the left of Figure 7D. The
expression of four construction model genes in High IGRS Group
and Low IGRS Group was shown on the right of Figure 7D. The
findings indicated that the genes FAM20C, TIMP1, and PMP22
exhibited high expression levels in the High IGRS Group, while the
gene ID1 displayed high expression in the Low IGRS Group.
Survival analysis comparing high and low IGRS groups indicated
that the survival rate was lower in the high IGRS group compared to
the low IGRS group (Figure 7E). AUC scores for 1 year and 3 years
were shown in Figure 7F. We analyzed the survival of four modeling
genes (FAM20C, TIMP1, PMP22, and ID1) (Figure 7G), and the
results showed that three genes (FAM20C, PMP22, and ID1) had
statistical differences. Among them, the high expression of
FAM20C and PMP22 genes has a worse prognosis, while the high
expression of gene ID1 has a better survival outcome. Further prove
the previous conclusion: genes FAM20C and PMP22 were
associated with adverse outcomes.

Nomogram creation

In order to further analyze whether IGFBP7 Risk Score can be
an independent risk factor, we conducted multivariate Cox
regression analysis on clinical factors (gender, age, and race) and
IGFBP7 Risk Score (Figure 8A). The results of forest plot showed
that IGRS Group and IGRS score can be independent
prognostic factors.

In order to determine if the IGFBP7 Risk Score could act as a
standalone risk factor, we conducted a multivariate Cox regression
analysis that included clinical factors such as gender, age, and
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ethnicity along with the IGFBP7 Risk Score (Figure 8B). The forest
plot results suggested that both the IGRS Group and IGRS score
may act as separate prognostic factors. Figure 8C displayed the
AUGC:s for survival at 1-year and 3-year intervals, while Figures 8D,
E illustrated the calibration curves for the nomograms at the same

10.3389/fimmu.2024.1434300

intervals, indicating that the nomograms accurately predicted the
OS of the training group. Figure 8F displayed the pairwise
correlation between the four modeling genes, OS, and IGFBP7
Risk Score. The two-by-two correlations between the four modeling
genes, OS and IGFBP7 Risk Score were shown in Figure 9F. The

A C5 FOSB+ Gliomalcells ¢4 x1+ Glioma cells

B C5 FOSB+ Glioma cells G4 MX1+ Glioma cells

00632+ Glioma cells
INC02283+ Glioma cells

ol 5 o o4
it 7.& s o i o 08
iy e BT I ET E==eR T T Pev = Tassss X3 L EmSEAE Bas
-t I S P
R e R L Ry e O L T A R T
y
&
F Outgoing communication patterns of secreting cells
; s
S e
: . T 3
. [ . ee O08
§EaEEEs
S
G ugong s patens Incomin sigaing ptims

FIGURE 5

Overview of Cell Communication. (A) Weighted interaction network diagram of cellular interactions for all cell types. Thicker lines represented stronger
interactions between the cell types. (B) Interaction count network diagram of cellular interactions for all cell types. Thicker lines indicated a higher count
of interactions between the cell types. (C, D) Heatmaps respectively displayed the patterns identified in the incoming communication (C) and outgoing
communication (D). (E, F) Dot plots compared the communication patterns received by target cells (E) with the communication patterns sent out by
secreting cells (F). (G) Sankey charts illustrated the projected communication flow patterns of recipient cells, revealing the coordination between cells
receiving signals and their interaction with specific signaling pathways in response (top). In addition, the secretion behaviors of cells were illustrated
(bottom), demonstrating how cells interact as message transmitters and how they interact with specific signaling pathways to facilitate communication.
(H) The heatmap displayed the communication patterns of all cells, showing both outgoing and incoming signals.
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correlations between the four modeling genes and IGFBP7 Risk
Score were visualized with scatter plots (Figure 8G), and the results
showed that genes FAM20C, TIMP1, and PMP22 were positively
correlated with Risk and gene ID1 was negatively correlated with
Risk. The correlation analysis of the 4 modeled genes with OS was
shown in Figure 8H, the results showed that FAM20C, TIMP1, and
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FIGURE 6

PTN signaling network. (A) Circle plot illustrated the interactions of astrocytoma in the PTN signaling network as receiver cells. (B) Violin plots displayed
the levels of expression of signaling genes related to the PTN signaling network in astrocytoma subgroups and various cell types. (C-F) Hierarchical plots
depicted the communication networks involving PTPRZ1 (C), SDC2 (D), SDC3 (E), and NCL (F) in the inferred PTN signaling network. Source cells were
represented by filled circles, while target cell types were represented by open circles. (G) The heatmap displayed the calculated four centrality metrics of
the PTN signaling network, highlighting the significance of each cell type in terms of sending, receiving, mediating, and influencing.

Frontiers in Immunology

159

10.3389/fimmu.2024.1434300

PMP22 were negatively correlated with OS, while gene ID1 was
positively correlated with OS. Then, we further analyzed the specific
expression of the four modeled genes in High IGRS Group and Low
IGRS Group, and the results were demonstrated by ridge plots
combined with box plots (Figure 8I). In the High IGRS Group, the
genes FAM20C, TIMP1, and PMP22 exhibited increased expression
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Coef values and corresponding p-values for the 4 genes. (D) CO subcluster was divided into High IGRS Group and Low IGRS Group based on the
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compared to the gene ID1, which was positively correlated with OS.
The expression of the four modeled genes was higher in High IGRS
Group and Low IGRS Group in different sexes (female and male), as
shown in Figure 8].

Immunoinfiltration analysis of high IGRS
group and low IGRS group

To delve deeper into the tumor microenvironment of glioma,
we examined the presence of immune cells infiltrating the tumor in
both the High IGRS Group and Low IGRS Group of the training
cohort, with the findings displayed in a heatmap (Figure 9A). The
statistically different tumor-immune infiltrating cells were further
visualized by box plot (Figure 9B), and the evaluation results
showed that T cell regulatory (Tregs), Neutrophils, NK cells
resting, and Macroghages M1 had higher expression in High
IGRS Group, while NK cells activated had higher expression in
Low IGRS Group than in High IGRS Group.

To validate the connection between immune cells and IGFBP7
Risk Score in the glioma tumor microenvironment, we assessed the
correlation between immune cells and IGRS, presenting the
findings through Lollipop plots depicted in Figure 9C. We
thoroughly analyzed the relationship between immune cells and
the four genes that make up IGRS, IGFBP7 Risk Score, and OS and
displayed the findings using a heatmap (Figure 9D). The findings
indicated an inverse relationship between IGRS Score and B cells
naive, Eosinophils, Master cells Resting, and NK cells activated,
while showing a positive correlation with Dendritic cells activated,
Monocytes, NK cells Resting, and T cells CD4 memory Resting. It
was worth noting that gene TIMP1 and gene FAM20C were
negatively correlated with Eosinophils, Master Cells Resting and
NK Cells Activated.

Next, we delved deeper into the variations in Stromal Score,
Immune Score, Estmate Score, and Tumour Purity between the
High IGRS Group and Low IGRS Group, finding statistically
significant differences (Figures 9E, F). The Stromal Score,
Immune Score, and Estmate Score were elevated in the High
IGRS Group, whereas the Tumor Purity was increased in the Low
IGRS Group. Nonetheless, there was no statistically significant
difference in Tumor Immune Dysfunction and Exclusion (TIDE)
between the two groups, suggesting that tumor immune
dysfunction and exclusion were similar in both groups
(Figure 9G). In the study, it was found that the gene TIMP1
exhibited a strong positive correlation with the majority of
immune checkpoint-related genes, while the gene ID1 did not
show any significant correlation with most immune checkpoint-
related genes (Figure 9H).

Furthermore, we analyzed the variations in expression of
immune checkpoint-associated genes between the High IGRS
Group and Low IGRS Group, creating box plots to illustrate the
genes exhibiting significant differences (Figure 91I). The results of
the analysis indicated that the majority of genes associated with
immune checkpoints exhibited increased levels of expression in the
High IGRS Group, whereas VICN1 and CD200 displayed higher
expression levels in the Low IGRS Group. We used ESTIMATE,
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CIBERSORT, EPIC, and Xcell algorithms to analyze and display the
variations in immune infiltrating cells, Stromal Score, Immune
Score, and Tumor Purity between the High IGRS Group and Low
IGRS Group in a heatmap. (Figure 9])

Differentially expressed genes and their
enrichment analysis in high and low
IGRS groups

To compare the High IGRS Group and Low IGRS Group, we
computed and studied the DEGs in both groups, presenting them
using a volcano plot (Figure 10A) and showcasing the specific
expression of these DEGs in the groups through a heatmap
(Figure 10B). Immediately after that, we performed multiple
enrichment analyses on these differentially expressed genes.
Enrichment analyses were conducted on them, which included
examining GOBP (Gene Ontology Biological Processes), GOCC
(Gene Ontology Cellular Components), and GOMF (Gene
Ontology Molecular Functions). The findings indicated that
differentially expressed genes (DEGs) were highly concentrated in
functions related to binding between receptors and ligands,
signaling pathways mediated by cytokines, and activities involving
chemokines (Figure 10C). The related genes of the enriched entries
are shown in the chord plot (Figure 10D). The analysis of enriched
pathways using KEGG for the identified DEGs (Figure 10E)
indicated a significant enrichment in pathways related to viral
protein interaction with cytokines and cytokine receptors,
interactions between cytokines and cytokine receptors, signaling
pathways for chemokines, the IL-17 signaling pathway, and more.
According to the findings of GSEA (Gene Set Enrichment Analysis)
(Figure 10F), the High IGRS Group exhibited increased activity in
pathways related to Neutrophil Chemotaxis, Neutrophil Migration,
Granulocyte Chemotaxis, and Granulocyte Migration, while
showing decreased activity in pathways associated with Spinal
Cord Development, Neurotransmitter Transport, Neuron Fate
Specification, Neuron Migration, and Neuron Fate Commitment.

PCA was utilized to examine the diversity of gene expression
patterns in the High IGRS Group and the Low IGRS Group, with
PCA 1 and PCA 2 visualized through scatter plots. PCA 1 and PCA
2 exhibited variances of 13.2% and 8.1%, respectively, as shown in
Figure 10G. Furthermore, we investigated the somatic gene
mutations in both cohorts and highlighted the distinctions among
the top 30 genes exhibiting the greatest mutation rates in each
group. Variations among 12 genes across various groups indicated
that the PTEN gene had the highest mutation frequency, as depicted
in Figure 10H. Next, we assessed the gene model’s chromosome
copy number variation (CNV) and presented the findings using a
bar graph (Figure 10I). The findings indicated that genes ID1 and
TIMP1 did not exhibit any CNV loss or CNV gain, while gene
FAM20C experienced both CNV loss and CNV gain events.

A comparison analysis was performed on the two groups’ tumor
mutation burden (TMB). The results revealed no statistically
significant difference in TMB between the two groups (Figure 10]).
The correlation analysis between TMB and Risk Score was shown in
Figure 10K, with an R value of -0.12 and a corresponding p-value of
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****P < 0.0001; NS was used to represent lack of significance.
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differently between the High IGRS Group and Low IGRS Group. (B) Heatmap depicted the distribution of DEGs in the High IGRS Group and Low
IGRS Group. (C) Bar graph presented the results of the GOBP, GOCC, and GOMF enrichment analyses for the DEGs. (D) Chord plot displayed the
relevant genes involved in the GO enrichment analysis items. (E) The bar graph displayed the findings of the KEGG examination for the differentially
expressed genes. (F) GSEA enrichment analysis results for the DEGs, displaying the enrichment scores of genes on different pathways. (G) Principal
Component Analysis (PCA) plot showing the gene expression clustering distribution differences between the High IGRS Group and Low IGRS Group.
(H) A waterfall chart displayed the 30 most mutated genes in the High IGRS Group and Low IGRS Group. (I) Bar graph displayed the copy number
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decrease, and green indicating no change in chromosomal copy number. (J) A box plot displayed the Tumor Mutation Burden (TMB) for both the
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(L) Kaplan-Meier analysis demonstrated variations in prognosis between High TMB and Low TMB groups. (M) Kaplan-Meier survival analysis findings
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response analysis for the High IGRS Group and Low IGRS Group. Significance levels were denoted as follows: *P < 0.05, **P < 0.01, and NS was
used to represent lack of significance.
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0.16. Using the TMB as a basis, the participants were separated into
two groups, High TMB and Low TMB, for examination of survival
rates (Figure 10L). Furthermore, the participants were divided into
four groups based on their risk level and tumor mutational burden
(TMB): High Risk-High TMB, High Risk-Low TMB, Low Risk-High
TMB, and Low Risk-Low TMB, which was then followed by an
analysis of survival rates. Nevertheless, the findings indicated that
there was no notable variation between the groups in terms of
statistical significance (Figure 10M).

Drug sensitivity analysis

Analysis of drug sensitivity was performed on the High IGRS
Group and Low IGRS Group, showing that Docetaxel had a lower
IC50(semi-inhibitory concentration) in the High IGRS Group, as
illustrated in Figure 10N.Conversely, PLX4720 demonstrated a
lower IC50 value in the Low IGRS Group.

In vitro experimental validation

For further elucidation of the functionality of FOSL2, we
conducted in vitro functional assessments. Two cell lines, U87
MG and U251 MG, were chosen for comparison with FOSL2
knockdown by establishing a negative control group. The cell
activity test (Figures 11A, B) showed a notable reduction in cell
viability after FOSL2 knockdown, as revealed by the results of the
CCK-8 assay. For accuracy, we quantified the levels of FOSL2
mRNA expression in the U87 MG and U251 MG cell lines in
both the control and FOSL2 knockdown groups (Figure 11C). The
transwell test findings showed a significant decrease in the
movement and infiltration of U87 MG and U251 MG cells
following the suppression of FOSL2 in comparison to the control
group (Figures 11D, E). Furthermore, the plate cloning results
revealed a significant suppression in colony formation quantity
after FOSL2 knockdown in both cell line models (Figure 11F).

A healing experiment was performed, revealing a notable
increase in the width of the 48-hour scratch in both cell lines
after FOSL2 knockdown compared to the negative control group.
This suggests a reduction in cell migration rate, supported by
statistically significant findings (Figures 12A, B). Additionally,
EdU staining once again confirmed the decreased proliferative
capacity of tumor cells after FOSL2 knockdown (Figures 12C, D).
Thus, from the above tests, it was noted that reducing FOSL2 results
in lower cell proliferation, migration, and invasion in U87 MG and
U251 MG cell lines, indicating that FOSL2 could enhance
glioma advancement.

Discussion

Astrocytoma tumors start in the glial cells called astrocytes. The
most aggressive astrocytoma is a glioblastoma. Glioblastomas are the
most aggressive and lethal brain tumors (53), being the most
aggressive and deadly brain tumor with a high likelihood of
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recurrence and spreading to other areas of the brain (54). To
further investigate the internal heterogeneity of glioma, we
analyzed glioma single-cell RNA sequencing (scRNA-seq) data to
identify the various cell types present, including microglia,
oligodendrocytes, astrocytes, inhibitory neuronal cells, and
pericytes, among others. Astrocytoma tumors originate in
astrocytes. The most aggressive form of astrocytoma is
glioblastoma. Additionally, astrocytes encompass the most
abundant cellular entities within the central nervous system (55),s0
we used astrocytes as the main subpopulation of the study. By
inferCNV analysis, we defined high levels of astrocytes as
astrocytoma, analyzed them by dimensionality reduction clustering,
and finally divided them into seven difterent cell subpopulations: CO
IGFBP7+ Glioma cells, C1 OLIG2+ Glioma cells, C2 LINC02283+
Glioma cells, C3 LINC00632+ Glioma cells, C4 MX1+ Glioma cells,
C5 FOSB+ Glioma cells, and C6 DLL3+ Glioma cells. CytoTRACE
and Monocle 2 analyses suggested that CO IGFBP7+ glioma cells were
likely at advanced stages of differentiation with high differentiation
potential. Since astrocytomas often showed that higher malignancy
could correlate with greater differentiation, identifying these cells
might have been crucial. They could provide important insights into
tumor progression and resistance, potentially guiding more
effective treatments.

In order to delve deeper into the connections between the
astrocytoma subcluster and various cell types, we employed
CellChat analysis. This tool can deduce and examine intercellular
communication networks based on single-cell sequencing data,
forecasting the primary signals exchanged between cells and how
they work together to carry out their functions (56). By analyzing
afferent and efferent signals between subclusters of astrocytoma and
other cells, it was found that all 7 subclusters of astrocytoma were
involved in the PTN signaling network pathway in both Incoming
communication and Outgoing communication. Previous research
data has indicated that blocking the PTN pathway may serve as a
means to combat glioblastoma (57). Disrupting the PTN receptor
PTPRZI has been shown to inhibit the growth of glioblastoma stem
cells (GSCs) (58). Therefore, we conducted further analysis of the
PTN pathway and discovered that PTPRZ1 exhibits high expression
in various subclusters of astrocytoma. When PTPRZ1 Glioma cells
acted as receivers, the subclusters of astrocytoma showed a strong
association with other cell types. Furthermore, in the PTN signaling
pathway network, the CO IGFBP7+ Glioma cells subcluster showed
greater importance as a sender, receiver, mediator, and influencer
when compared to other types of cells. Therefore, we hypothesized
that the CO subgroup was essential in the PTN pathway and
impacted the advancement of glioblastoma via this pathway.

To assess the role of the CO IGFBP7+ glioma cell subgroup in
neuroglioma progression, we performed univariate Cox and LASSO
regression analyses on candidate genes, identifying four genes
strongly linked to prognosis. We developed a prognosis model
based on these genes and established the IGFBP7 Risk Score (IGRS).
This score classified the training cohort into High IGRS and Low
IGRS groups, with survival analysis showing poorer outcomes for
the High IGRS group. A nomogram incorporating clinical data and
multivariate Cox regression confirmed the IGRS as a standalone
predictor of patient outcomes. Analysis of the four genes revealed
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their distribution and correlation with Risk Score and overall
survival. In summary, the IGFBP7 Risk Score (IGRS) provided a
robust prognostic tool for astrocytomas by categorizing patients
into High and Low IGRS groups, with High IGRS correlating with
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worse outcomes. It integrated gene expression data to offer

improved predictions of patient survival and highlighted key
genes like FAM20C and PMP22 associated with poor prognosis.
FAM20C has been proven to be a marker of glioma invasion and
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following the knockdown of FOSL2. (C) The gPCR findings showed the initial levels of FOSL2 mRNA expression in the U87 MG and U251 MG cell
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levels were set at **P < 0.01, and ***P < 0.001.
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can be used as a new therapeutic target for GBM (59). However,
there are few studies on the relationship between PMP22 and
glioma, which need to be further explored.

GBM is a highly immunosuppressive tumor. At present, there is
no FDA-approved immunotherapy for glioblastoma (60). We
further discussed the relationship between IGFBP7 Risk Score
(IGRS) and the immune microenvironment of glioma and
analyzed the tumor immune infiltration of the two groups based
on High IGRS Group and Low IGRS Group. Compared with Low
IGRS Group, T cell regulation (tregs), neutrophils, NK cells resting,
and macroghages M1 in High IGRS Group have higher expression,
while NK cells activated have higher expression in Low IGRS
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Group, which was related to the relationship between TME and
immune cells in tumors (61).

ESTIMATEScore is calculated by adding ImmuneScore and
StromalScore, which indicate the presence of immune or matrix
components in the TME (62). The Stromal Score, Immune Score, and
EstmateScore were higher in the High IGRS Group, which is
intriguing. Furthermore, an examination of somatic cell mutation
frequency revealed that the PTEN gene exhibited the highest
mutation rate, and PTEN could suppress the activation of the
PI3K/AKT/mTOR signaling pathway (63). When the functionality
of PTEN is disrupted, such as through mutations in the PTEN gene, it
leads to the loss of PTEN’s tumor suppressor capabilities.
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Finally, the IC50 (semi-inhibitory concentration) of PLX4720,
Docetaxel, and Erlotinib in different groups was analyzed.
Docetaxel, an FDA-approved medication, is now the primary
therapy for various cancer forms, such as prostate cancer (64)
and non-small cell lung cancer (NSCLC) (65). while Erlotinib, a
tyrosine kinase inhibitor, is effective against lung cancer, head and
neck squamous cell carcinoma (66, 67), and various other types of
cancer. The analysis revealed that Docetaxel and Erlotinib had
reduced IC50 values in the High IGRS Group, indicating improved
efficacy of these drugs for this patient cohort. Consequently,
Docetaxel and Erlotinib demonstrate greater therapeutic potential
for patients in the High IGRS Group.

Analysis of the transcription factors in the CO subgroup
revealed that the distribution of the transcription factor FOSL2 of
TOP1 in Group IV was greater than in Group II. Hence, we
performed in vitro tests to support the role of crucial
transcription regulators. The findings indicated that suppressing
FOSL2 can decrease the growth, movement, and infiltration of U87
MG and U251 MG cells, aligning with the findings of Yiyun Chen
and Ranhuo et al. (68). Thus, FOSL2 has the ability to enhance the
invasion and advancement of gliomas.

However, there are some limitations to this study. First of all,
the sample size is small, and the number of patients with glioma
obtained in this study is limited. Secondly, we have only done scrna-
seq and bulk RNA-seq analyses and in vitro experiments, and we
need large sample and multi-center research to further explore the
relationship between IGFBP7, FOSL2, the IGFBP7 Risk Score
(IGRS), and glioma. Therefore, we plan to carry out various
analytical methods, such as metabonomics and ATAC-seq, to
demonstrate in many aspects.

Nevertheless, there are certain constraints to this research. First
of all, the sample size is small, and the number of patients with
glioma obtained in this study is limited. Additionally, our research
has been limited to scRNA-Seq and bulk RNA-seq analyses along
with in vitro experiments. To delve deeper into the connection
between IGFBP7, FOSL2, the IGFBP7 Risk Score (IGRS), and
glioma, we require extensive sample sizes and collaboration with
multiple research centers. Therefore, we plan to carry out various
analytical methods, such as metabonomics and ATAC-seq, to
demonstrate this in many aspects.

Conclusion

Our exploration of the astrocyte tumor microenvironment
highlighted the critical role of the CO IGFBP7+ glioma
subpopulation in astrocytoma progression. We developed the
IGFBP7 Risk Score (IGRS) as an independent prognostic tool that
effectively separates High and Low IGRS groups, with High IGRS
indicating worse outcomes. The IGRS not only predicts patient
survival but also identifies key genes like FAM20C and PMP22
linked to poor prognosis. Our study also pinpointed new
therapeutic targets, showing that Docetaxel and Erlotinib are
more effective in the High IGRS group. Additionally, in vitro tests
confirmed that transcription regulators like FOSL2 enhance glioma
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invasion and progression. These insights improve our
understanding of astrocytoma and offer promising avenues for
future treatments.
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SUPPLEMENTARY FIGURE 1

Visualization of large groups of Glioma. (A) The UMAP visualization
displayed how the different cell types were distributed among 234,148
high-quality glioma cells. (B-D) UMAP visualizations, along with pie graphs,
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Introduction: FAS has been implicated in the development of various cancers,
but its involvement in lung cancer has not been systematically characterized. In
this study, we performed data mining in online tumor databases to investigate the
expression, methylation, alterations, protein interactions, co-expression and
prognostic significance of FAS in lung cancer.

Method: The expression, prognostic significance and molecular interactions of
FAS in lung cancer was mined and analyzed using GENT2, GEPIA2, UALCAN,
cBioPortal, STRING, GeneMANIA, UCSC Xena, Enrichr, and OSluca databases.
FAS expression was subsequently investigated at the protein level in samples
from 578 lung cancer patients to understand its protein-level expression. In vitro
validation of FAS gene expression was performed on H1299, H1993, A549 and
HBE cell lines.

Result: We found that the expression of FAS was significantly downregulated in
both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)
compared to normal lung tissue. In addition, we observed a higher level of FAS
promoter methylation in LUSC tissue than in normal tissue. FAS alterations were
rare (1.9%) in lung cancer samples, with deep deletions being more common than
missense mutations, which occurred mainly in the TNFR-like cysteine-rich
domain and the death domain. We also identified a list of proteins interacting
with FAS and genes co-expressed with FAS, with LUAD having 11 co-expressed
genes and LUSC having 90 co-expressed genes. Our results also showed that
FAS expression has limited prognostic significance (HR=1.302, 95% CI=0.935-
1.139, P=0.530). Protein level investigation revealed that FAS expression varied
among individuals, with nTPM values ranging from 5.2 to 67.2.

Conclusion: This study provides valuable insights into the involvements and
characteristics of FAS in lung cancer. Further studies are needed to investigate
the clinical significance of FAS alterations in lung cancer and to explore the
potential of targeting FAS for therapeutic intervention.
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1 Introduction

Lung cancer is the leading cause of cancer deaths worldwide. In
2020 alone, lung cancer was responsible for about 2.2 million new
cases and nearly 1.8 million deaths (1). The cancer is more common
in men than in women, accounting for 14.3% and 11.4% of all new
cancer cases, respectively. Lung cancer also has a low 5-year survival
rate of about 10-20%, due in part to the fact that the disease is often
detected at an advanced stage, and accounts for nearly one-fifth of
all cancer deaths (1, 2). The number of new lung cancer cases and
deaths is expected to continue to increase over the next 15 years,
continuing the upward trend in lung cancer incidence and mortality
(3). An aging population and continued tobacco use in many
regions of the world are predicted to be the main causes of this
increase (4).

There are two main histologic types of lung cancer, namely small
cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) (5).
SCLC is a rare but aggressive form of lung cancer. On the other hand,
NSCLC is the most common form of lung cancer, accounting for
about 80-85% of all cases (5). NSCLC includes more subtypes than
SCLC, including lung adenocarcinoma (LUAD) and squamous cell
carcinoma (LUSC), which arises in glandular and squamous cells,
respectively. However, the role of FAS in lung cancer subtypes,
particularly LUAD and LUSC, remains poorly understood
concerning its gene expression, mutational landscape, and
clinical relevance.

Like other cancers, lung cancer exhibits several hallmarks that
are commonly associated with the disease (6, 7). One of these
hallmarks is the evasion of apoptosis, a mechanism in which the Fas
receptor plays an important role. The transmembrane receptor
belongs to the TNF receptor (TNFR) superfamily, consists of 319
amino acids and has a size of about 48 kDa. The protein consists of a
TNEFR-like domain at its N-terminus, which is rich in cysteines and
necessary for interaction with Fas ligand (FasL) (8). It also contains
a death domain near the carboxyl terminus that is essential for
interaction with FasL. When FasL binds to Fas receptor
homotrimers, the receptor is activated and recruits the adaptor
protein, Fas-associated death domain (FADD), which in turn
recruits procaspase-8 to form the death-inducing signaling
complex (DISC) (9). Procaspase-8 is cleaved in the DISC into the
active caspase-8, which then triggers activation of the caspase
cascade, leading to cellular apoptosis.

In addition to apoptosis, the Fas/FasL pathway is also involved
in the initiation of other cellular responses. These include
maintenance of immune homeostasis, cell migration, and control
of cancer cell invasiveness through regulation of mitogen-activated
protein kinase and nuclear factor kappa B activation (10, 11). Apart
from that, the Fas signaling pathway has been shown to drive cancer
stemness through various mechanisms, such as activation of the
ERK-JAGLI axis and the type I interferon/STAT1 axis (12, 13).
While these studies have implicated FAS in cancer progression and
response to therapy, studies exploring FAS gene expression and its
potential role as a prognostic biomarker in lung cancer, particularly
in NSCLGC, are limited.

Given the important role of the Fas receptor in various aspects
of oncogenesis, variations in the FAS gene have been shown to
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influence the risk and prognosis of many cancers (14-19). These
effects are thought to be due to differential expression of FAS and its
co-expressed genes in tumor cells compared with normal cells.
However, the expression, prognostic significance and molecular
interactions of FAS in lung cancer have not been systematically
studied. We hypothesize that FAS gene expression is significantly
altered in lung cancer compared to normal tissue and that genetic
alterations, such as promoter methylation and mutations, could
influence disease progression. However, the exact alterations are
often not well-understood. For example, while FAS downregulation
has been reported in lung cancer, there are also studies that show
that can promote lung cancer growth in vivo (20, 21). The
availability of genetic data in online tumor databases could
provide useful information on the characteristics and potential
role of FAS gene expression as a prognostic biomarker in cancers.
Further, the potential modulation of FAS expression by patient
characteristics such as age and smoking status in lung cancer
context requires more detailed investigation. The clinical
implications of understanding FAS expression in lung cancer are
significant. If FAS expression and alterations are shown to have a
prognostic impact, this could inform the development of new
therapeutic approaches targeting the FAS pathway. Therefore, in
this study, we performed data mining in online tumor databases to
better understand the expression, prognostic significance and
molecular interactions of FAS in lung cancer. This study aims to
better understand the expression patterns, promoter methylation,
genomic alterations, and potential protein-protein interactions of
FAS in lung cancer, which could provide new insights into its role as
a prognostic biomarker.

2 Materials and methods
2.1 Sample selection and preprocessing

All data used in this study were taken directly from publicly
available databases and no additional pre-processing steps were
performed. Sample selection criteria (i.e., inclusion of cancerous or
normal tissue) were provided by the respective databases (e.g.,
TCGA, GEO, and Human Protein Atlas) and included data that
passed the quality controls provided by the curators of the
databases. We did not apply any specific inclusion or exclusion
criteria beyond those specified in the databases. As all samples
analyzed were from human subjects, biological replicates were not
included in the analysis.

2.2 Gene expression analysis

The mRNA expression of FAS in human cancers was studied
using GENT2 (http://gent2.appex.kr/gent2/), which extracts
microarray data from the NCBI GEO database (22). GENT2
compiles gene expression profiles across a wide range of cancer
types, allowing for the exploration of differential expression patterns
in large datasets. Its strengths lie in its large sample size and robust
statistical processing, but it is limited by the dependency on
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microarray data, which can be subject to batch effects and platform-
specific biases. Subsequently, differential expression of FAS between
lung cancer and normal lung tissue was examined using GEPIA2
(http://gepia2.cancer-pku.cn/), which extracts data from The
Cancer Genome Atlas (TCGA) (23). GEPIA2 is a web-based tool
specifically designed for cancer gene expression profiling and
survival analysis based on RNA-Seq data from TCGA and GTEx,
offering statistical significance testing through analysis of variance
(ANOVA) and t-tests with FDR correction to control for multiple
comparisons. Subgroup analysis of the TCGA expression data in
different clinicopathological features was performed using
UALCAN (http://ualcan.path.uab.edu) (24). UALCAN is a
comprehensive, user-friendly platform for investigating cancer
omics data with a focus on subgroup analysis based on
clinicopathological parameters, using data from TCGA. The
Human Protein Atlas database (https://www.proteinatlas.org/)
was used to examine gene expression at the protein level through
immunohistochemistry images (25).

2.3 Promoter methylation analysis

To determine whether the differential gene expression was
driven by promoter methylation, the methylation level of FAS in
lung cancers and paired normal tissues were compared using the
UALCAN database. Methylation analysis in UALCAN used TCGA
level-3 data processed through beta-values ranging from 0 to 1,
where values closer to 0 indicate unmethylated CpG sites and values
closer to 1 indicate fully methylated sites. Statistical comparisons
between tumor and normal tissues were performed using a two-
sample t-test, with correction for multiple comparisons using FDR.

2.4 Mutation and copy number
alteration analysis

The presence and characteristics of FAS gene alterations,
including mutations and copy number alterations, were analyzed
using cBioPortal (https://www.cbioportal.org/), which contains
information on various types of cancer genomics data (26).
cBioPortal aggregates data from multiple sources, including
TCGA and other cancer genomics projects. Mutational data are
derived from whole-exome and whole-genome sequencing, and
copy number alterations (CNAs) are identified using GISTIC 2.0
algorithms. Statistical analysis was performed using Fisher’s exact
tests for comparing mutations.

2.5 Protein-protein interaction analysis

The protein-protein interaction networks of FAS were then
reconstructed using the STRING (http://string.embl.de/) (27) and
GeneMANIA (https://genemania.org/) (28) databases. STRING
integrates known and predicted protein-protein interactions from
multiple sources, including experimental data, computational
prediction methods, and text mining, with interaction confidence

Frontiers in Oncology

10.3389/fonc.2024.1473515

scores based on the strength of evidence. GeneMANIA provides
predictions using functional genomics data, including co-
expression, colocalization, and physical interaction data. Both
platforms employ machine-learning algorithms to predict novel
interactions, but predictions can sometimes be prone to false
positives or depend on incomplete datasets. STRING compiles
data on protein-protein interactions from multiple sources and
makes computational predictions to obtain a comprehensive global
network of the interactions, whereas GeneMANIA uses extensive
genomic and proteomic data to predict protein-protein
interactions.

2.6 Co-expression analysis

Genes co-expressed with FAS are identified using GeneMANIA
and UALCAN. GeneMANIA uses a combination of Pearson
correlation coefficients and other statistical methods to identify
genes that show similar expression patterns, which are then
displayed in a network. UCSC Xena (https://xenabrowser.net/
heatmap/) was then used to generate a correlation heat map with
TCGA datasets to visualize the data (29). UCSC Xena applies
Pearson correlation to measure the strength of co-expression
between FAS and its associated genes, with statistical significance
provided directly by the database.

2.7 Pathway analysis

Pathways involving FAS and the most frequently coexpressed
genes were analyzed using Enrichr (https://maayanlab.cloud/
Enrichr/), a gene set enrichment analysis tool, with default
parameters (30). A Fisher’s exact test was used to evaluate the
enrichment of gene sets within biological pathways, adjusting for
multiple testing using the Benjamini-Hochberg method. GO terms
are categorized into biological processes, molecular functions, and
cellular components, and significance is determined through odds
ratios and combined scores, which take into account both the
magnitude of enrichment and significance. Potential limitations
include reliance on existing annotations, which may not fully
capture the complexity of gene interactions. Based on the GO
terms, the input genes were categorized into biological processes,
molecular functions, and cellular components.

2.8 Survival analysis

The prognostic significance of FAS in lung cancer was assessed
using the OSluca web server (http://bioinfo.henu.edu.cn/LUCA/
LUCAList.jsp), which performs hazard ratio (HR) analysis of data
from various datasets, such as TCGA and GEO (31). Kaplan-Meier
survival analysis was performed, along with log-rank tests, to
determine the statistical significance of survival differences
between groups based on FAS expression levels. The HR and 95%
confidence intervals are provided for each dataset, and multiple
comparisons are controlled using FDR correction. Results are
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pooled across datasets when appropriate to improve the statistical
power of the analysis. HRs from the eligible datasets were then
combined to estimate the impact of FAS gene expression on overall
survival of lung cancer patients.

2.9 Protein expression

Data on FAS gene expression were retrieved from the Human
Protein Atlas. This dataset comprised 578 samples from various tissues,
with associated metadata including age, sex, and specific tissue type
for each sample. The normalized transcripts per million (nTPM) values
for FAS gene expression were extracted from the dataset.
Immunohistochemistry images from the Human Protein Atlas were
reviewed to confirm FAS protein expression across various tissues.

2.10 In vitro validation

Expression of FAS in lung cancer cell lines was examined using
qRT-PCR. H1299, H1993, A549 and the normal bronchial epithelial
cell line HBE were purchased from Shanghai Zhonggiao Xinzou
Biotechnology Co., Ltd. and cultured in DMEM medium (Solarbio,
Beijing, China) with 10% FBS and 1% penicillin-streptomycin.
TRIzol reagent (from Invitrogen, Carlsbad, CA, USA) was used
for total RNA extraction and RNA was transcribed into cDNA
using ReverTra Ace gPCR RT Master Mix with gDNA Remover Kit.
The qRT-PCR was performed using SYBR Premix Ex Taq II on the
Mx3005P quantitative real-time fluorescence PCR system (from
Stratagene, San Diego, CA, USA), and GAPDH was selected as the
endogenous control for mRNA. The primer sequences are FAS,
forward 5°-TCT GGT TCT TAC GTC TGT TGC-3’, reverse 5-CTG
TGC AGT CCCTAG CTT TCC-3’; GAPDH, forward 5-GGA GCG
AGA TCC CTC CAA AAT-3’, reverse 5-GGC TGT TGT CAT
ACT TCT CAT GG-3. The reaction conditions were as follows:
pre-denaturation at 95°C for 10 minutes, denaturation at 95°C for 5
seconds, annealing at 60°C for 30 seconds, for a total of 45 cycles.
The target genes and the internal reference gene were amplified for
each sample. Each sample group included three replicate wells. Data

analysis was performed using the 20**“Y method.

3 Results
3.1 Gene expression analysis

Using GENT?2, data on FAS gene expression were available for
the GPL570 and GPL96 platforms. For both platforms, gene
expression of FAS was found to be significantly altered in several
cancer types (see Supplementary Table 1). In lung cancer, the
expression of FAS was found to be significantly downregulated (P
< 0.001 and log2FC = -0.569 for GPL570; P < 0.001 and -0.263 for
GPL96). Expression data in GEPIA also showed that the expression
of FAS was lower in tumor tissues compared with normal lung
tissues in both LUAD (TPM =12.17 in tumor tissues and 28.41 in
normal tissues) and LUSC (TPM =10.16 in tumor tissues and 29.52
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in normal tissues) (Figure 1A). A similar observation was also found
in the UALCAN database (P=5.61x10-8 for LUAD, P=5.75x10-12
for LUSGC; Figure 1B). At the protein level, data from The Human
Protein Atlas showed that in a sample of 578 lung cancer samples,
the average nTPM of FAS was 21.7 (range: 5.2-67.2, median: 19.1).

We also performed a subgroup analysis of the expression of FAS
in TCGA samples using UALCAN. In all stages of LUAD, the
expression of FAS was lower than in normal tissues (Figure 1C).
However, no significant difference was found between the different
stages of cancer (P < 0.01). Similarly, no significant difference in
FAS expression was observed between men and women
(Figure 1D), different nodal metastasis status (Figure 1E), and
different TP53 mutants (Figure 1F). Interestingly, when stratified
by patient age, it was found that the older the patients, the higher
the expression of FAS in general, although the difference between
the different age groups was not statistically significant (Figure 1G).
Similarly, there was no significant difference in FAS gene expression
between nonsmokers and smokers, but former smokers (who had
quit smoking for less than 15 years) had higher FAS gene expression
than current smokers (Figure 1H, P = 0.019).

In LUSC, a similar observation was found for different cancer
stages (Figure 11), sex (Figure 1]), nodal metastasis status (Figure 1K),
and TP53 mutation (Figure 1L). There was also no difference in the
expression of FAS among different age groups, but the expression was
more constant (ie., showing no trend of increasing expression with
increasing age) (Figure 1M). Regarding smoking status, there was also
no significant difference in FAS gene expression between nonsmokers
and smokers (Figure 1N). However, former smokers who had quit
smoking for less than 15 years had significantly higher FAS
expression than those who had quit smoking for more than 15
years (P < 0.01).

3.2 Promoter methylation analysis

The extent of FAS promoter methylation in TGCA samples was
observed using UALCAN. In LUAD, the median beta-value of FAS
promoter methylation in normal tissue is 0.152 (range: 0.135-0.178),
whereas the value in tumor tissue is 0.148 (range: 0.103-0.195). There
was no statistically significant difference between normal and LUAD
tissue (P=0.149; Figure 2A). For LUSC, the median beta-value in
normal and tumor tissues was 0.112 (range: 0.093-0.134) and 0.118
(range: 0.064-0.197), respectively. Beta-value was significantly higher
in LUSC tissues than in normal tissues (P < 0.001; Figure 2B).

3.3 Mutation and copy number
alteration analysis

We used cBioportal to investigate the prevalence and types of
genomic alterations of the FAS gene in lung cancer patients.
Information was available from a total of six TCGA datasets
(Firehose Legacy, Nature 2014 and PanCancer Atlas for LUAD;
Firehose Legacy, Nature 2012 and PanCancer Atlas for LUSC).
Overall, FAS alterations were found in 46 (1.9%) of the 2478
samples (Figure 2C). Specifically, 36 (1.45%) of the samples had

frontiersin.org


https://doi.org/10.3389/fonc.2024.1473515
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Li et al.

b3
E
§ 2
g
3
I

1?‘4II.inuiﬂ..“ltﬂihnh”

& (P
GOAQO

Ry
CEFLSE S TE S

-
|
|
|

B tm':ﬂ—:.“h E
il

Transcript per million

W Tumor B

W nNormal 50

10.3389/fonc.2024.1473515

Transcript per million

FIGURE 1

Expression of FAS in lung cancer and normal tissues. (A) Expression data from GEPIA. (B) Expression data from UALCAN. (C) Expression of FAS in
different stages of LUAD. (D) Expression of FAS in men and women with LUAD. (E) Expression of FAS in LUAD patients with different nodal metastasis
status. (F) Expression of FAS in LUAD patients with different TP53 mutations. (G) Expression of FAS in LUAD patients with different ages. (H) Expression of
FAS in LUAD patients of different smoking status. (I) Expression of FAS in different stages of LUSC. (J) Expression of FAS in men and women with LUSC.
(K) Expression of FAS in LUSC patients with different nodal metastasis status. (L) Expression of FAS in LUSC patients with different TP53 mutations.

(M) Expression of FAS in LUSC patients with different ages. (N) Expression of FAS in LUSC patients of different smoking status. * Statistically

significant (P<0.05).

deep deletions and 10 (0.40%) had missense mutations (Table 1;
Figure 2D). In LUAD, the missense mutations included p.E114V
(N=3) and p.C143F (N=1) in the TNFR-like cysteine-rich domain,
p-E261K (N=1) and p.K300E (N=1) in the death domain. In
contrast, for LUSC, mutations included p.I262M (N=1) in the
death domain and p.S20F (N=2) and p.T219A (N=1) in the non-
domain region of the protein product.
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3.4 Protein-protein interaction analysis

STRING analysis scored the protein-protein interaction using a
score from 0 to 1, where 1 represents the highest probability that the
interaction is true based on current evidence. Several proteins were
shown to interact with FAS, namely FASLG (score = 0.999), CASP8
(score = 0.999), FADD (score = 0.999), CASP10 (score = 0.997),
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Promoter methylation, mutations and copy number status of FAS in lung

cancer. (A) Promoter methylation level in LUAD. (B) Promoter methylation

level in LUSC. (C) Prevalence of FAS alterations in different TCGA lung cancer datasets. (D) Lollipop diagram showing the location of FAS mutations

in lung cancer. * Statistically significant (P<0.05).

CFLAR (score = 0.996), DAXX (score = 0.995), PTPN13 (score =
0.995), FAF1 (score = 0.992), RIPK1 (score = 0.985), TRADD (score
= 0.983) (Figure 3A). GeneMANIA, on the other hand, categorizes
related genes into several categories, namely (1) physical interaction
(protein-protein interaction), (2) shared protein domains, (3)
colocalization (when genes are expressed in the same tissue or
proteins are found in the same location), (4) pathway (two proteins
are related when they are involved in the same signaling pathway),
and (5) predicted protein interactions. For physical interaction, FAS
has been shown to interact with BID, CASP10, CASP8, CFLAR,
DAXX, FADD, FAF1, FAIM2, FASLG, MAP3K5, NOL3, PLEC,
PRKCA, RAP1A, RIPKI1, TNFRSF10B, TNFSF10, TP63, and
TRADD. In addition, FADD, CASP8, CFLAR, CASP10, NOL3,
TNFRSF10B, RIPK1, and TRADD shared protein domains with
FAS. Proteins colocalizing with FAS include FASLG, CASP8, TP63,
FADD, PRKCA, BID, DAXX, MAP3K5, and RAP1A. Besides,
proteins that participate in the same signaling pathway as FAS
include FADD, FASLG, CASP8, CFLAR, CASP10, BID, DAXX,

TABLE 1 Prevalence of FAS alterations in lung cancer.

Prevalence

Dataset Missense

mutations

Deep deletion

LUSC PanCancer Atlas
LUSC Firehose Legacy
LUSC Nature 2012

LUAD Nature 2014

2/487 (0.41%)
1/501 (0.20%)
1/178 (0.56%)

1/230 (0.43%)

13/487 (2.67%)
13/501 (2.59%)
3/178 (1.69%)

2/230 (0.87%)

LUAD PanCancer Atlas
LUAD Firehose Legacy

Combined
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4/566 (0.71%)
1/516 (0.19%)

10/2478 (0.40%)

2/566 (0.35%)
3/516 (0.58%)

36/2478 (1.45%)

RIPK1, TRADD, FAF1, MAP3K5, FCMR, and FAIM2. Finally,
FAIM2, NOL3, TNFRSF10B, TNESF10, FADD, CASP8, DAXX,
and FAF1 are predicted to interact with FAS. The overall
interaction network of FAS, as generated by GeneMANIA, is
shown in Figure 3B.

3.5 Co-expression analysis

Analysis with GeneMANIA showed that CASP10, CFLAR,
PRKCA, TNFRSF10B, TNFSF10, and TRADD are frequently co-
expressed with FAS. Specifically for LUAD, UALCAN revealed 11
genes whose expression correlates with that of FAS, namely ARL6IP5
(Pearson’s coefficient, r = 0.61), RALB (r = 0.56), ELK3 (r = 0.53),
CD44 (r = 052), DPYD (r = 0.52), GLIPRI (r = 0.52), DAPP1 (r =
0.51), AIM1 (r = 0.51), LHFPL2 (r = 0.5), CELAR (r = 0.5), and
MDFIC (r = 0.5). On the other hand, in LUSC, 90 co-expressed genes
were found, with the top 10 being VCAMI (r = 0.72), TNFRSF9 (r =
0.69), RELB (r = 0.69), NFKB2 (r = 0.68), BIN2A2 (r = 0.67), BIRC3 (r
=0.67), SH2B3 (r = 0.67), PKDCC (r = 0.67), ZBTB46 (r = 0.66), and
JAK2 (r = 0.66) (for the full list, please see Supplementary Table 2).
Correlation heat maps generated by UCSC Xena showed for the top
five co-expressed genes in LUAD and LUSC are shown in Figure 3C.

3.6 Pathway analysis

Gene set enrichment analysis confirmed that FAS and its most
frequently co-expressed genes are involved in apoptosis-related
pathways. Specifically, in the biological processes category, FAS and
its co-expressed genes were found to be involved most predominantly
in negative regulation of extrinsic apoptotic signaling pathway via
death domain receptors (GO:1902042, P=2.53x10-18, adjusted
P=7.15x10-16, OR=1725.2, combined score=69899.68). In terms of
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molecular functions, the genes were found to participate mainly in
ubiquitin protein ligase binding (GO:0031625, P=5.937x10-6, adjusted
P=1.049x10-4, odds ratio=50.39, combined score=606.4). The genes
are also implicated in death-inducing signaling complex (GO:0031264,
P=3.78x10-24, adjusted P=5.29x10-23, odds ratio=46641, combined
score=2515479.09) in terms of cellular components.

3.7 Survival analysis

The OSluca web server contains survival data from 26 datasets.
Eleven of the datasets had a hazard ratio (HR) value greater than 1.0
(indicating poor prognosis), although 10 of these were without
statistical significance. Only the GSE68465 dataset showed borderline
statistical significance at P=0.042 (HR =1.348, 95% CI=1.012-1.797).
The remaining 15 datasets, which had an HR value of < 1.0, also did
not reach statistical significance. Pooled results from all these datasets
suggest that FAS expression has an HR of 1.302 (95% CI=0.935-1.139)
(P=0.530), indicating a lack of prognostic significance.

3.8 Protein expression

The expression levels of the FAS protein across various lung
cancer samples were investigated. From the dataset that comprised
578 samples, n"TPM values of FAS protein in lung cancer samples
ranged from 5.2 to 67.2. The average nTPM value across all samples
was 21.7, with a median nTPM of 19.1. The standard deviation of
the n'TPM values was 9.5, indicating variability in FAS expression
among the samples (Supplementary Table 3).
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3.9 In vitro validation

The expression levels of the FAS were investigated in three lung
cancer cell lines and a normal cell line. The relative expression of
FAS in lung cancer cell lines (H1299, H1993, A549) was
significantly lower than the normal bronchial epithelial cell line
(HBE), with GAPDH serving as the internal control. The difference
was statistically significant (p < 0.001 for H1299 and H1993, p <
0.0001 for A549; Figure 4; Supplementary Table 4).

4 Discussion

Apoptosis, a tightly regulated process of programmed cell death,
plays a crucial role in the pathogenesis of lung cancer. However, the
specific characteristics (in terms of expression, mutational and
epigenetic profiles, and protein and gene interactions) of apoptosis-
related genes such as FAS and their prognostic significance are not
well understood. In this study, we sought to clarify these unknowns
through an extensive search of online databases. As interpretation of
the impact of a genetic variant may vary depending on the specific
databases, it is important to consider multiple sources of information
when investigating the clinical and biological characteristics of a gene.
We therefore searched multiple databases (e.g., GENT2, GEPIA2,
and UALCAN for gene expression; STRING and GeneMANIA for
protein-protein interaction; etc.) to obtain a conclusive result about
the role of FAS in lung cancer. These databases were chosen due to
their extensive and curated datasets, wide adoption in cancer
research, and their ability to provide different layers of information.
For instance, GENT2 and GEPIA2 integrate data from large consortia
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asterisks: ***p < 0.001, ****p < 0.0001 compared to HBE.

like TCGA and provide a detailed breakdown of gene expression
across cancers, whereas STRING and GeneMANIA focus on
elucidating protein and gene interaction networks, helping to
contextualize gene function in a broader biological network.
However, GENT2 and GEPIA2 are limited by their reliance on
bulk RNA sequencing and microarray data, which may obscure
cell-type-specific expression patterns, and they may not capture
transcript variants or post-transcriptional modifications. UALCAN
was selected because of its user-friendly interface and comprehensive
analysis of clinicopathological features, which allows for meaningful
subgroup analysis based on patient characteristics such as smoking
status, age, and tumor stage. A limitation of UALCAN is its
dependence on TCGA data, which, although extensive, may not be
representative of all population demographics, and batch effects or
data inconsistencies across studies can influence the outcomes.
STRING and GeneMANIA focus on interaction networks, but
STRING relies heavily on computational predictions and text
mining, which can introduce false positives, while GeneMANIA’s
predictions are not always experimentally validated, and both tools
may omit less well-characterized interactions. Nevertheless, the use of
multiple databases allowed us to ensure robustness of our findings
and reduce potential biases inherent in any single database (32).
Nonetheless, it is important to note that the use of in silico data
mining limits direct biological validation of our findings, and
experimental confirmation is needed in future studies. Nevertheless,
the findings of this study may provide valuable insight into the role of
FAS in the pathogenesis of lung cancer.
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One of the most important findings of this work is that FAS was
significantly downregulated in lung cancer, both in LUAD and
LUSC. The downregulation of FAS was also validated in our in vitro
analysis in three lung cancer cell lines, when compared against the
normal bronchial epithelial cell line HBE. However, it is important
to clarify that while this downregulation was statistically significant,
its clinical implications remain unclear, as no strong association
with patient prognosis was observed. In LUAD, we also observed
that former smokers (who had quit smoking for less than 15 years)
had higher FAS gene expression than current smokers. This
observation is not surprising, because smoking cessation is known
to reverse smoking-induced DNA methylation changes (33). Thus,
smoking cessation can restore the expression of FAS to levels that
are close to those of nonsmokers. However, this finding should be
interpreted with caution as it does not account for confounding
variables such as the extent and duration of smoking exposure
before quitting, which can significantly influence gene expression
patterns. Future studies should aim to collect more detailed
smoking history data to better understand these interactions. An
interesting finding was noted in LUSC, where former smokers who
had quit smoking for less than 15 years had significantly higher FAS
expression than those who had quit smoking for more than 15
years. This observation is counterintuitive because, according to the
logic above, the longer a person has quit smoking, the higher the
FAS gene expression should be. However, this observation did not
take into account the intensity and duration of smoking before
quitting, which may also affect gene expression (34). In addition,
gene expression may also be influenced by other factors such as age,
sex, and other genetic and nongenetic factors that may interact with
smoking status and affect the expression of FAS. Future studies are
needed to clarify the underlying mechanisms and potential clinical
implications of these findings.

At the protein level, we observed variability in the nTPM levels of
FAS protein in the lung cancer samples, ranging from 5.2 to 67.2,
suggesting considerable heterogeneity in FAS protein expression
across tumor samples. While many samples have moderate FAS
expression, some tumors have either significantly elevated or reduced
levels of the protein. High FAS expression could indicate an increased
capacity for apoptosis in some tumors, possibly serving as a
mechanism for tumor suppression, while lower levels of FAS
contribute to apoptosis evasion, facilitating tumor progression and
resistance to cell death. This differential expression could also reflect
differences in the molecular subtype of lung cancer, the tumor
microenvironment or the influence of external factors such as
smoking or previous treatments. Understanding the causes and
consequences of this variability is critical as it may provide insight
into tumor behavior, prognosis and therapeutic response, particularly
in relation to therapies targeting apoptotic pathways. Further studies
are needed to determine how FAS protein levels correlate with clinical
outcomes and treatment efficacy in lung cancer.

Given the significantly different expression levels between lung
tumor tissues and their normal counterparts, we next sought to
determine whether there was a significant difference in the
methylation levels of cancerous and noncancerous tissues of the
lung. We did not find a statistically significant difference between
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normal and LUAD tissues. However, beta-value was significantly
higher in LUSC than in normal lung tissues, indicating greater
methylation in cancerous tissues. Nevertheless, both normal and
LUSC tissues have low levels of DNA methylation (beta-value <
0.3), suggesting that methylation is unlikely to play a dominant role
in affecting the expression of FAS. Other factors, such as noncoding
RNAs, silencers, enhancers, and transcription factors, might also
affect FAS expression (35-37). Indeed, FAS is known to be
transcriptionally regulated by members of the p53 family (38),
and several silencer and enhancer sequences in the FAS gene have
also been identified since the 1990s (39). More recently, antisense
RNA of FAS, FAS-ASI or Saf, has been identified, and is thought to
affect the expression of FAS and shown to have functional effects
(40, 41). Thus, further studies are needed to investigate the role of
these factors in affecting FAS expression. It will also be important to
examine whether the methylation status of FAS is tissue-specific
and whether certain lung cancer subtypes exhibit unique epigenetic
signatures that could provide therapeutic targets.

We have also shown that alterations in FAS are a rare event in lung
cancer, occurring in 1.9% of all samples. Deep deletions represent the
predominant form of FAS alterations. FAS deletions have been
observed in many cancers, including prostate, colorectal, and gastric
cancers, but the exact prevalence is not well known because previous
studies have typically used small sample sizes (42-44). FAS deletions
have been associated with impaired apoptosis, which may serve as an
important mechanism of carcinogenesis (44). In addition to small
sample sizes, discrepancies in the reported frequency of FAS deletions
may also arise from differences in methodologies, such as the use of
different sequencing platforms or variant calling algorithms, which can
affect the detection of deletions. Furthermore, variations in patient
populations, including differences in tumor stage, histological subtype,
or demographic factors like age and smoking status, could contribute to
variability in FAS deletion prevalence across studies. In vivo studies
found that deletion of FAS can increase the size and number of
intestinal adenomas in mice (45). Another study showed that
deletion of FAS, when accompanied by deletion of PTEN, is
associated with poor prognosis in hormone-refractory prostate
cancer (43). However, deletion of FAS has been shown not to affect
its expression (42). It is also difficult to determine whether these
genomic changes have a significant clinical impact in lung cancer, as
the frequency of these FAS alterations was low. Therefore, the
significance of FAS deletion in carcinogenesis requires further research.

We also identified missense mutations in 0.40% of lung cancer
samples. The mutations present in LUAD are different from those
in LUSC. However, the small number of affected samples does not
allow us to reliably determine whether the findings can be
interpreted as different mechanisms of carcinogenesis in the two
lung cancer subtypes. The functional consequences of these variants
have not been thoroughly studied, so it is not known whether they
play a driving role in lung cancer. Nevertheless, the p.E261K
mutation found in LUAD and the p.I262M mutation found in
LUSC, both of which result in amino acid changes in the death
domain of the Fas protein, have been linked to autoimmune
lymphoproliferative syndrome (46-48). In vitro studies revealed
that the p.E261K mutation can impair the process of reorganization
of Fas into large protein islands and also has a dominant-negative
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property that adversely affects the normal wild-type Fas during the
formation of the Fas-FADD signaling complex (47, 48). While these
findings suggest potential functional effects of these mutations, the
lack of statistical significance and the small number of cases prevent
us from making broad generalizations. Additional functional
studies are needed to determine whether these mutations have
oncogenic or tumor-suppressive roles in lung cancer.

Genes and proteins often engage in various forms of molecular
interactions, such as gene-gene and protein-protein interactions, to
perform their biological functions (49, 50). Therefore, it is important to
understand these interactions to decipher the complexity of biological
systems. We have performed protein-protein interactions and genetic
co-expression analyses to identify proteins and genes that may interact
with FAS. Perhaps not surprisingly, many of the identified genes/
proteins, such as FASLG, CASP8, FADD, CASP10, BID, TRADD, and
CFLAR, are involved in the apoptotic process. This finding supports
the hypothesis that FAS and its associated genes and proteins play a key
role in regulating apoptosis in lung cancer. However, the lack of
mechanistic studies in lung cancer cells limits our ability to
determine the functional importance of these interactions.
Investigating these interactions in vitro or in vivo could provide
deeper insights into their relevance in lung cancer progression (51).
It is interesting to note that 90 genes were significantly co-expressed in
LUSC, whereas only 11 genes were significantly co-expressed in LUAD,
which may reflect the differences in molecular and cellular processes
involved in the two lung cancer subtypes. The higher number of co-
expressed genes in LUSC suggests that the molecular networks and
signaling pathways in LUSC are more complex and interconnected
than those in LUAD. Indeed, a recent study also demonstrated that
many cancer-related signaling pathways, including Notch, Hedgehog,
Wnt, and ErbB pathways, were significantly overrepresented in LUSC
compared to LUAD (52). Another possible explanation for this
observation is that compared to LUAD, LUSC is more frequently
associated with tobacco smoking, which can cause extensive genomic
damage and activate many cellular signaling pathways, including
inflammation and oxidative stress, that can further drive cancer
development (52, 53). The involvement (or lack thereof) of these
signaling pathways in oncogenesis may also contribute to the observed
differences in co-expression between the two types of lung cancer. The
clinical significance of these differences in co-expressed genes between
LUAD and LUSC is not well understood and represents a future
research direction. Further exploration into the functional
consequences of these differences could reveal important subtype-
specific therapeutic targets and guide personalized treatment
strategies (54).

The lack of significant prognostic value for FAS in this study,
despite it being downregulated in lung cancer, highlights an
important aspect of cancer research — the importance of negative
findings. While FAS plays a role in several types of cancer, its role in
lung cancer may be more context-dependent or its prognostic
significance may be overshadowed by other factors. This negative
result is valuable because it prompts future research to consider more
complex, multifactorial prognostic models that include additional
markers or signaling pathways. It also suggests that the role of FAS in
lung cancer may not be clear, so its interactions with other apoptotic
or non-apoptotic metabolic pathways and its behavior under different
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conditions of the tumor microenvironment need to be further
investigated (55). Negative results such as these help to refine
research questions and focus on promising targets or combinations
of biomarkers that could provide clinically meaningful
prognostic information.

Despite successfully demonstrating the reduced expression of the
FAS gene in lung cancer, survival analysis revealed no prognostic
significance of the gene in lung cancer. This suggests that although
downregulation of FAS is a common feature of lung cancer, it may
not be a reliable predictor of disease outcome. This result was not
consistent with previous findings in lung and other cancers, which
showed a significant association between expression of FAS and
cancer prognosis (56-60). However, it should be noted that previous
studies on the prognostic significance of the FAS gene used small
sample sizes, which may lead to inaccurate conclusions (61). Our in
silico data mining combined survival data from 26 datasets, which
greatly improved the statistical power required for accurate analysis.
The lack of prognostic significance in our study may indicate that
while FAS plays a role in tumor initiation, its downregulation may
not be critical for disease progression or metastasis in lung cancer.
One possible explanation for the limited prognostic significance of
FAS is that although the gene plays a role in the early stages of lung
cancer development, its expression may not be critical for tumor
progression or metastasis. However, this postulation is not supported
by several studies that showed that FAS can promote progression and
metastasis in various cancers (10, 13, 62, 63). Nevertheless, none of
these studies were conducted in lung cancer cells, and it remains
unclear whether FAS plays a role in lung cancer cell progression and
metastasis. Further in vitro and in vivo studies are needed to explore
the role of FAS in lung cancer metastasis, particularly to assess
whether its downregulation affects the invasive potential of lung
cancer cells. It is also possible that there are other confounding factors
or co-occurring genes that affect lung cancer progression and patient
survival, which could limit the prognostic significance of FAS
expression in the cancer. The role of FAS and other factors in
influencing lung cancer progression and metastasis deserves further
investigation. Future studies should aim to investigate whether FAS
expression in combination with other apoptotic markers could
provide a more accurate prognostic model for lung cancer.

5 Conclusions

In conclusion, we have successfully characterized the role of FAS
in lung cancer. Specifically, we have shown that FAS is significantly
downregulated in lung cancer and characterized its mutational and
methylation profiles. We also identified its protein-protein
interactions and co-expressed genes and reconfirmed the important
role of FAS and its co-expressed genes in apoptosis-related pathways.
Finally, we have shown that despite the above observations, the
prognostic significance of FAS in lung cancer is limited. The clinical
implications of FAS downregulation, alterations, and molecular
interactions, as well as the differences between LUAD and LUSC in
these features, remain to be investigated. Thus, there is a need for
more comprehensive and integrative approaches to understand the
molecular and cellular mechanisms of FAS that drive lung cancer
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progression. Future studies should focus on functional analyses of
FAS and its mutations in lung cancer cells to better understand how
downregulation of FAS contributes to apoptosis evasion. In addition,
it will be important to investigate the role of non-coding RNAs,
transcription factors and other regulatory elements that may
influence FAS expression. Further research should also investigate
the potential of FAS as part of a biomarker panel in combination with
other apoptotic genes for a more accurate prognosis. Finally, in vivo
studies are needed to assess whether modulation of FAS expression
could have therapeutic potential in lung cancer, either as a direct
target or in combination with existing treatments.
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Background: Esophageal cancer (EC) is a major health issue, ranking seventh in
incidence and sixth in mortality worldwide. Despite advancements in
multidisciplinary treatment approaches, the 5-year survival rate for EC remains
low at 21%. Challenges in EC treatment arise from late-stage diagnosis, high
malignancy, and poor prognosis. Understanding the tumor microenvironment is
critical, as it includes various cellular and extracellular components that influence
tumor behavior and treatment response. Mast cells (MCs), as tissue-resident
immune cells, play dual roles in tumor dynamics. High-throughput single-cell
RNA sequencing offers a powerful tool for analyzing tumor heterogeneity and
immune interactions, although its application in EC is limited.

Methods: In this study, we investigated the immune microenvironment of EC
using single-cell RNA sequencing and established a comprehensive immune
profile. We also performed analysis of upstream transcription factors and
downstream pathway enrichment to further comprehensively decipher MCs in
EC. Besides, we performed knockdown experiments to explore the role of
epidermal growth factor receptor (EGFR) signaling pathway in MCs-tumor cell
interactions, highlighting its potential as a prognostic marker. Finally, we
constructed a prognostic model for EC, which provided valuable suggestions
for the diagnosis and prognosis of EC.

Results: Our analysis identified 11 major cell types, of which MCs were
particularly present in pericarcinoma tissues. Further grouping of the 5,001
MCs identified 8 distinct subtypes, including SRSF7-highly expressed MCs,
which showed strong tumor preference and potential tumor-promoting
properties. Moreover, we identified the key signaling receptor EGFR and
validated it by in vitro knockdown experiments, demonstrating its cancer-
promoting effects. In addition, we established an independent prognostic
indicator, SRSF7+ MCs risk score (SMRS), which showed a correlation between
high SMRS group and poor prognosis.
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Conclusion: These findings illuminate the complex interactions within the tumor
microenvironment of EC and suggest that targeting specific MCs subtypes,
particularly via the EGFR signaling pathway, may present novel therapeutic
strategies. This study establishes a comprehensive immune map of EC, offering
insights for improved treatment approaches.

KEYWORDS

single-cell RNA sequencing, mast cells, EGFR signaling pathway, prognostic model,
esophageal cancer
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GRAPHICAL ABSTRACT

Article research flow chart. First, we downloaded the clinical data of three esophageal cancer patients from TCGA, and after a series of data proces-
sing, we obtained the UMAP map of esophageal cancer. After that, we focused on MCs to get its UMAP map and performed trajectory analysis, en-
richment analysis, cellular communication analysis and transcription factor analysis sequentially. Finally, we performed in vitro experiments on the
pathway derived from communication analysis, verified the effect of the pathway on esophageal cancer progression through a series of experiments,
and analyzed the related prognosis, and the results obtained were consistent with our study.

1 Introduction

incidence and mortality rates of EC rank third and fourth,
respectively, among all malignant tumors (2). Despite the

Esophageal cancer (EC) is a common malignant tumor of the
gastrointestinal system, with the seventh highest incidence and
sixth highest mortality rate in the world (1). In China, the

Abbreviations: EC, esophageal cancer; MCs, mast cells; TME, tumor

microenvironment; sScRNA-seq, single-cell RNA sequencing.
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development of a multidisciplinary treatment approach, the
prognosis remains unfavorable (3). The 5-year survival rate for
EC is only 21%, after pancreatic and liver cancers (4). Therefore,
EC has been a major malignant tumor threatening the
health of Chinese residents. EC consists of two main subtypes,
esophageal squamous cell carcinoma (ESCC) and esophageal
adenocarcinoma, with ESCC accounting for about 90% of all EC
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cases worldwide (5). EC is an aggressive cancer with rapid growth
and a high rate of lymph node metastasis, usually involving the
upper two thirds of the esophagus (6). In retrospective studies in
EC, smoking, hot tea consumption, red meat consumption, poor
oral health, low intake of fresh fruits and vegetables, and low
socioeconomic status were associated with a higher risk of EC (7).
Previous studies have shown that chronic inflammation plays a
central role in progression from esophageal precancerous lesions
(EPL) to esophageal squamous cell carcinoma, that dietary
inflammatory potential has been linked to both EPL and ESCC,
and that inflammatory imbalances promote tumorigenesis, and
that the consumption of anti-inflammatory foods may be helpful
in the prevention of EPL and ESCC (8-10). Difficulty swallowing
and swollen lymph nodes in the neck do not appear until the
cancer has progressed to an advanced stage (11), and the
treatment of EC patients faces major challenges due to the lack
of early symptoms, high malignancy, poor prognosis, and surgical
complexity of EC. Although we have made great progress in the
treatment of EC in recent years, especially through preoperative
radiotherapy combined with immunotherapy, which shows a
broad potential in the treatment of EC. However, due to the
high rate of post-treatment recurrence and the limitations of
drugs and treatment strategies after metastasis, only a small
proportion of EC patients can benefit from the available
treatments, while the majority of patients respond poorly to the
treatments, and therefore, the overall survival rate of EC is still
disappointing in China (3, 12).

In addition, due to the heterogeneity and complexity of
tumors, the mechanisms of tumor proliferation, metastasis, drug
resistance, and immunosuppression are unknown. Therefore,
elucidating the molecular mechanisms of tumorigenesis and
tumor progression is crucial for effective control and
management of tumor development. Notably, the presence of
non-tumor cells within the tumor tissue is also critical for tumor
development (13). Therefore, shifting the therapeutic focus to
other components of the tumor microenvironment (TME) may
become an important strategy for future tumor therapy. The
introduction of TME has played a very powerful role in
advancing oncology research. TME has had an incredibly
important role in the development and evolution of EC (14).
The TME consists of multiple cellular components (e.g.,
fibroblasts, endothelial cells, and immune cells) and extracellular
components (including cytokines, hormones, extracellular
matrices, and growth factors), which form a complex network
that encapsulates EC cells. These cells shape cancer biology and
influence the response to treatment (15-17). In TME, mast cells
(MCs) are tissue-resident immune cells that are important players
in diseases associated with chronic inflammation such as cancer.
Because MCs can infiltrate solid tumors and promote or limit
tumor growth, MCs may polarize to either pro- or anti-tumor
phenotypes and remain a challenging area of research (18).
Previous articles have also hypothesized that NRF2 in
combination with AC-MCs may be a predictive marker for
prognosis and may influence immunotherapy by modulating
PD-L1 in EC (19).
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High-throughput single-cell RNA sequencing (scRNA-seq),
developed in recent years, is an effective method that has been
shown to dissect heterogeneous tumors and decipher the
interactions between cancer cells and their microenvironmental
components, and to elucidate the transcriptomic profiles of both
the cancer cells and the microenvironmental components (20-
22), which is the basis and foundation for furthering the
understanding of cancers and the development of effective early
diagnostic and therapeutic strategies, previous studies have
dissected the esophageal squamous cell carcinoma ecosystem by
single-cell transcriptomic analysis (16), but its application in EC is
still limited. At the same time, there is still a long way to go for
early detection of esophageal cancer (23), and prognostic tools
lack the necessary accuracy to facilitate individualized patient
management strategies (24).

Therefore, in this study, scRNA-seq was used to sequence EC
samples in order to decipher the immune microenvironment of
EC, reveal the immune map of EC, and provide new insights for
the treatment of EC. The functional role of MCs subtypes in EC
and their association with tumor tissues are extensively discussed
and summarized in this paper, and a prognostic model is
established, which provides a valuable resource for deeper
understanding of the causes and progression of EC and helps to
improve its therapeutic strategies.

2 Materials and methods
2.1 Data source

The scRNA-seq data of EC were acquired from the GEO website
(https://www.ncbi.nlm.nih.gov/geo/) under the accession number
GSE196756. Patient clinical sample information can be found at
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Considering the
utilization of publicly accessible data derived from databases,
it was not required to secure an ethical endorsement for
this investigation.

2.2 Single-cell sequencing

The gene expression data were imported into the R software and
analyzed using the Seurat R package (25, 26). Cells of inferior
quality were excluded based on the following criteria (1): nFeature
between 300 and 7,500 (2); nCount between 500 and 100,000 (3);
mitochondrial gene expression occupying no more than 25% of the
total gene count within the cell (4); erythrocyte gene expression not
surpassing 5% of the total gene count within the cell.

Subsequently, all gene expression data underwent normalization
and scaling using the “NormalizeData” and “ScalData” functions
within the Seurat R package (27). For the purpose of principal
component analysis, the “FindVariableFeautres” function (28) was
implemented to identify the top 2,000 most variable genes. These cells
were then segregated into clusters based on the top 30 principal
components (PCs) using the “FindClusters” function at a resolution
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of 1.0. Finally, the top 30 significant PCs were selected to
dimensionality reduction and visualization of gene expression
through uniform manifold approximation and projection (UMAP)
(29, 30). The harmony R package (31, 32) was employed to alleviate
the influence of batch effects among the samples. The dim value was
set to 30, while the resolution parameter was configured to 1.2.

2.3 Identification of cell subtypes

Cell clusters were initially discerned utilizing the
“FindClusters” and “FindNeighbors” functions within Seurat
(33-35), employing a default resolution of 0.8. Afterwards,
these cell clusters were bestowed with annotations based on the
average gene expression of representative markers. In order to
evaluate differentially expressed genes (DEGs) across distinct cell
clusters, a Wilcoxon rank sum test was employed utilizing
Seurat’s “FindAllMarkers” function (36, 37). The parameters
min.pct and min.diff.pct were established at 0.25, while the
LogFc threshold was set to 0.25.

2.4 Cancer preferences analysis

In order to evaluate the predilection of MCs subtypes for
cancer, odds ratios were computed utilizing the calculation
methodology (38).

2.5 Trajectory analysis of MCs subtypes

The slingshot R package was employed to deduce cellular
lineages and pseudotimes. It delineated the structure of lineages
through clustering-based minimum spanning trees and employed
synchronized master curves to model branching trajectories for
these lineages. The “getCurves” function was utilized to acquire
refined trajectory curves. The association between gene expression
and pseudotime was characterized by modeling the noise
distribution of each gene through a generalized additive model
with negative binomials. This approach allowed for the simulation
of genes exhibiting a gradual alteration in expression throughout
the pseudotime continuum (39).

2.6 Assessment of cell stemness

AUCell (40) represents a novel approach to discerning cells
harboring active genes within single-cell RNA-seq datasets. Given a
gene set as input, it provides an evaluation of the “activity” exhibited
by that particular gene set in each individual cell. In the context of
this study, AUCell was employed to quantitatively assess the level of
stemness exhibited by various subtypes of MCs. To hypothesize the
temporal trajectory of cell differentiation, the CytoTRACE R
package was utilized (41).

Frontiers in Immunology

10.3389/fimmu.2024.1470449

2.7 Enrichment analysis of cellular subtypes

By leveraging the Gene Ontology (GO), Kyoto Encyclopedia of
Genes and Genomes (KEGG), and Genome Enrichment Analysis
(GSEA) tools, available at http://software.broadinstitute.org/gsea/
msigdb, within the Cluster Profiler R package (42-44), we carried
out enrichment analysis on the DEGs. To discern the disparities
among various risk groups within the bulk data, the DESeq2 R
package was applied, employing a threshold of [logFC| > 2 and a p-
value threshold below 0.05.

2.8 Cell communication analysis

The CellChat R package (45) was used to analyze complex cell-to-
cell interactions and develop regulatory networks based on ligand-
receptor expression. The “netVisual DiffInteraction” function was
applied to depict differences in communication strength among cells,
and the “IdentifyCommunicationPatterns” function was utilized to
estimate the number of communication patterns. A significance
threshold of 0.05 was set. Various visualizations, including circle
plots, bubble plots, and violin plots, were used to represent the
incoming and outgoing signals of all cells

2.9 Scenic analysis

In evaluating the transcriptional activity within diverse subtypes
of tumor cells, we employed the SCENIC analysis with Python.

2.10 Cell culture

Cell lines TE-10 and KYSE-30 were acquired from the
American Type Culture Collection. The TE-10 cell line was
grown under standard conditions (37°C, 5% CO,, 95% humidity)
in RPMI1640 media with 10% fetal bovine serum (FBS) and 1%
penicillin-streptomycin. KYSE-30 cell line was grown under
standard conditions (37°C, 5% CO,, 95% humidity) in RPMI1640
media with 10% FBS, 1% penicillin-streptomycin, and 1%
sodium pyruvate.

2.11 Cell transfection

EGFR knockdown was accomplished through the use of
GenePharma (Suzhou, China) small interfering RNA (siRNA)
constructs. According to Lipofectamine 3000 RNAiMAX
(Invitrogen, USA) manufacturer’s instructions, transfection was
carried out. Two knockdown constructs (Si-EGFR-1 and Si-
EGFR-2) and a negative control (si-NC) were transfected into
cells that had been plated at 50% confluency in six-well plates.
Every transfection was carried out using Lipofectamine 3000
RNAIMAX (Invitrogen, USA).
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2.12 Cell viability assay

Using the CCK-8 assay, the cell viability of transfected AGS and
SGC-7901 cells was evaluated. After being cultivated for 24 hours,
cells were planted at a density of 5x10* cells per well in 96-well
plates. Following the addition of 10uL of CCK-8 reagent (A311-01,
Vazyme) to each well, the plates were incubated for two hours at
37°C in the dark. On days 1, 2, 3, and 4 post-transfections,
absorbance at 450 nm was measured using a microplate reader
(A33978, Thermo). Plotting of the mean OD values was done.

2.13 5-Ethynyl-2'-deoxyuridine
proliferation assay

In 6-well plates, 5x10° cells were planted per well with
transfected CNE2 and HNE2 cells, and they were grown for an
entire night. A 2x EdU working solution was then created by
combining serum-free medium with 10 mM EdU. Following two
hours of incubation at 37°C, the cells were rinsed with PBS, fixed for
thirty minutes with 4% paraformaldehyde, permeabilized for fifteen
minutes with a solution of 2 mg/mL glycine and 0.5% Triton X-100,
then stained for thirty minutes at room temperature using a
solution of 1X Apollo and 1X Hoechst 33342. The measurement
of cell proliferation was done by fluorescence microscopy.

2.14 Wound-healing assay

In 6-well plates, stabilized transfected cells were plated and
allowed to grow to confluence. Each well was scratched with a sterile
200uL pipette tip, and then it was cleaned with PBS to get rid of any
remaining cell debris before being incubated in a medium without
serum. Using Image-] software, the breadth of the scratches was
measured after they were photographed at 0 and 48 hours.

2.15 Transwell assay

Before the experiment, cells were fasted for 24 hours in a serum-
free medium. The upper chamber of Costar plates was filled with
cell suspension after being treated with Matrigel (BD Biosciences,
USA), while the lower chamber was filled with media containing
serum. In a cell culture incubator, the cells were incubated for 48
hours. To evaluate the cells” ability to invade, they were fixed with
4% paraformaldehyde after incubation and stained with
crystal violet.

2.16 Construction and validation of the
prognostic model

We determined the most important predictive genes using
LASSO regression analysis and univariate Cox analysis (46-48).
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The risk coefficients for each prognostic gene were then determined
using multivariate Cox regression analysis, allowing for the creation
of a risk score model:

Risk score =>''Xi x Yi

X stands for the coefficient and Y represents the gene expression
level. Using the “surv-cutpoint” function to compute the best cutoff
value, patients were divided into two groups: low-risk and high-risk.
We also used the Survival R package for survival analysis of the
created risk score model and the “ggsurvplot” function (27) to
depict survival curves in order to observe the prognostic outcomes
in various patient cohorts. ROC curves were plotted using the
timeROC R package to assess the predictive model’s accuracy and
calibration (49, 50).

2.17 Kaplan-Meier survival curve of
selected genes

We performed a survival analysis utilizing the R packages
survminer and survival. The area under the ROC curve (AUC)
was calculated after generating ROC curves for 1-year, 3-year, and
5-year survival rates using the Survive and Time ROC R packages.
Model validation was conducted through survival analysis and
time-dependent ROC analysis. To evaluate the model, we
employed a heatmap, a scatter plot of survival status, and a
distribution of risk scores.

3 Result

3.1 ScCRNA sequencing revealed the main
cell types in the EC

To identify the major cell types during the progression of EC,
we collected pericarcinoma and tumor tissue samples from three
EC patients for single-cell RNA sequencing (scRNA-seq). We also
checked the quality and completeness of the raw data. This
included checking for missing values, outliers, or any anomalies
that might affect the analysis. We excluded genes in the sample
that did not meet the minimum expression threshold. For
example, genes with low counts or low variability were excluded
as they may not provide meaningful insights. After performing
initial quality control and removing batch effects, we retained a
total of 29,719 cells. We categorized these 29,719 cells into 30 cell
clusters by dimensionality reduction (Figure 1A). According to
the cell gene map and typical markers, 30 cell clusters were finally
identified into 11 cell types, including B-Plasma cells (IGKC), T-
NK cells (IL32), mast cells (MCs, TPSB2), neutrophils (S100A8),
fibroblasts (DCN), myeloid cells (LYZ), epithelial cells (EPCs,
KRTS5), proliferating-cells (MKI67), endothelial cell (ECs,
AQP1), smooth muscle cell (SMCs, MYHI11), and neurons
(NRXNTI). From the pie charts and bar graphs, we could learn
that for tissues, T-NK cells accounted for the largest proportion in
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FIGURE 1

A single-cell profiling of EC, comprising 30 clusters and 11 cell types. (A) UMAP plot showed the 30 clusters of cells in EC patients and the number of
cells in each cluster (left); UMAP plot showed the distribution of sample sources in the 11 cell types (middle); UMAP plot showed the 11 major cell types
obtained by dimensionality reduction clustering of cells in EC (right). Each point corresponded to a single cell colored according to cell cluster or cell
type. (B) The pie charts showed the proportion of different patient sources (left) and cell phases (right) in each cell type. (C) The bar graphs showed the
proportion of different cell types in sample sources (top) and cell phase(bottom) respectively. (D) Bubble plot showed differential expression of top5
maker genes in EC cells across 11 cell types. Bubble colors were based on normalized data and sizes indicated the percentage of genes expressed in
each cell type. (E-G) UMAP and violin plots revealed the expression levels of nCount-RNA, nFeature-RNA, G2M.Score, and S.Score in different cell types
and sample sources. ****, p < 0.0001 indicated a significant difference. (H) UMAP plots visualized the differential genes of 11 cell types.
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tumor tissues, followed by B-Plasma cells, while MCs were the
most predominant cell type in pericarcinoma tissues; for phases,
T-NK accounted for the largest proportion in both the G2M and
the S phases, while on the contrary, most of MCs accounted for the
largest proportion in the G1 phase (Figures 1B, C). Figure 1D
showed the top 5 marker genes for 11 cell types. UMAP and violin
plots were utilized to visualize nCount-RNA, nFeature-RNA,
G2M.Score, and S.Score across all cells, demonstrating that
proliferating cells exhibited the highest proliferative activity and
vigorous division (Figures 1E-G). At the same time, the
distribution of marker genes on UMAP for each cell type was
presented (Figure 1H).

Among all cell types, MCs drew our attention. MCs play a
crucial role in allergic reactions, pathogen immune responses
during infections, angiogenesis, and the regulation of both
innate and adaptive immunity. In addition to all these roles,
MCs were increasingly recognized as regulators of the tumor
microenvironment. Despite the accumulating evidence for MCs
in tumors, their exact role in the tumor microenvironment
remained incompletely understood (51). Therefore, we next
performed a further analysis of mast cells.

3.2 Visualization of MCs subtypes in EC

Next, we analyzed the scRNA-seq data from tumor and
pericarcinoma tissues, identified MCs, and performed further sub-
clustering. This analysis resulted in eight distinct cell subtypes from a
total of 5,001 mast cells: CO EGRI+ MCs, C1 SRSF7+ MCs, C2
TXNIP+ MCs, C3 DUSPI+ MCs, C4 S100A8+ MCs, C5 HSPAG+
MCs, C6 IL32+ MCs, C7 RPL35A+ MCs (Figure 2A), and showed the
distribution of phases and sample sources in the subtypes, while
faceting gived a clearer picture of the distribution of MCs from
different sample sources (Figures 2B-D). The bar graphs illustrated
that the C1 SRSF7+ MCs had the highest proportion of tumor tissues
of P1 and P3 origin and was enhanced over the pericarcinoma tissues
share, and similarly, the Ro/e preference graph corroborated this,
suggesting that the C1 SRSF7+ MCs was more preferred to tumor
tissues (Figures 2E, F). In order to better explore the characteristics of
different MCs subtypes, we visualized their typical genes. As shown in
Figure 2G, C1 SRSF7+ MC highly express DDX5, which had been
shown to be associated with a variety of key tumor promoting
molecular interactions and was involved in tumorigenesis and
tumor progression signaling pathways (52). This suggested that Cl1
SRSF7+ MCs in EC might be involved in tumor promoting effect.
Several related features (CNVscore, ncount-RNA, S.Score and
G2M.Score) of eight MCs subtypes were visualized (Figures 2H, I).
From the Figures, we could learn that C7 RPL35A+ MCs had the
highest expression level of CNVscore and G2M.Score, while C1
SRSF7+ MCs and C6 IL32+ MCs had the highest nCount-RNA
expression level, and all subtypes had basically the same expression
level of S.Score. In the end, bar plots showed the expression level of
gene makers in each MCs subtype, validating the basis for delineating
subtypes (Figure 2J).
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3.3 Slingshot analysis of proposed
temporal trajectories of MCs subtypes

To infer the lineage trajectory and pseudotime sequence of MCs,
we employed slingshot analysis to assess the distribution of MCs
differentiation trajectories across all MCs, visually represented
through UMAP plots (Figure 3A). Then, we found 3 cell lineage
trajectories of the MCs subtypes (Figures 3B-E). Including: lineage 1:
C4 — C2 — C3 — C0; lineage 2: C4 — C2 — C3 — Cl; lineage 3: C4
— C2 — C3 — Ceé. Slingshot analysis revealed that the differences
among the three trajectories mainly reside in the late stages.
Combined with Figures 3C-E to determine, lineage 1’s endpoint
was located in CO, which showed no preference for tumor tissue,
lineage 3’s endpoint was located in C6, which had a very small
number of cells and a low percentage of tumor tissue, while lineage 2’s
endpoint was located in C1, which not only showed a preference
for tumor tissue, but also had a high percentage of tumor tissue.
Therefore, we concluded that lineage 2 represented the differentiation
line of MCs associated with the tumor. In addition, we also noted that
MCs are influenced by some cytokines or tumor cell-secreted
proteins during development in TME, resulting in a possible
transformation of the MCs phenotype to a tumor-associated or
pro-tumorigenic phenotype (18), whereas C1 belonged to the
terminal end and consisted predominantly of MCs originating
from tumor tissues, and based on this observation, we
hypothesized that C1 may play a crucial role in the differentiation
of tumor-associated MCs(TAMCs) process. Subsequently, we
confirmed the biological processes corresponding to the three cell
lineage trajectories of MCs subtypes using GO-BP enrichment
analysis (Figure 3F). It was found that Cl in lineage 2 was
associated with biological processes such as endopeptidase and
cysteinetype, C2 was linked to processes such as protein folding,
C3 was related to leukocyte functions, and C4 was involved in
processes such as lamellipodium formation, contraction, and
production. Finally, the dynamic trends plot demonstrated
the expression variation and distribution of marker genes for
MCs subtypes along the three differentiation trajectories in
pseudotime (Figure 3G).

3.4 Expression of stemness gene sets in
subtypes of MCs

To investigate the expression of stem cell genes in MCs
subtypes and to understand their differentiation potential, we
used bubble plots to illustrate the different expression of stem
cell genes in MCs subtypes. The results showed the corresponding
expression of stem cell genes KDM5B, EPASI, CTNNBI, EZH2,
KLF4, CD44, BMI1, and HIFIA in MCs subtypes and different
tissue types (Figure 4A). Subsequently, we visualized the cell
stemness AUC scores of different MCs subtypes using a UMAP
plot (Figure 4B). We then combined this with other analyses to
assess the expression levels of stemness-related genes in different
subtypes of MCs, and violin plots showed the different expression
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levels of stemness genes in different sample sources, tissues,
subtypes of MCs, and phases, respectively (Figures 4C-F). The
results showed that C1 SRSF7+ MCs exhibited a higher level of cell
stemness, indicating a lower degree of differentiation and higher
differentiated potential; and it also showed that pericarcinoma
tissues had the higher level of cell stemness. In addition, there was
no significant difference in the expression levels of stemness genes

Frontiers in Immunology

in different cell phases. By CytoTRACE analysis, C1 SRSF7+ MCs
showed the lowest degree of differentiation and the highest cell
stemness among all subtypes, which we hypothesized might be
related to the transformation of MCs to TAMCs (Figures 4G, H).
Afterwards, the expression profiles of stemness genes with

relatively elevated expression levels in Figure 4A were
demonstrated in all MCs by UMAP plots (Figure 4I).
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(I) UMAP plots visualized the 8 stemness genes expressed in MCs subtypes.
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Results of functional enrichment analysis of differentially expressed genes in 8 MCs subtypes. (A) Volcano plots showed differentially expressed genes
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(C) Word cloud diagrams demonstrated the activity of different pathways in MCs subtypes. (D) GSEA analysis diagram of different pathways in each
MCs subtype. NES > 0 was positive enrichment and < 0 was negative enrichment. NES, N stands for standardization, and ES for enrichment scores.
(E) GSEA enrichment analysis among C1 SRSF7+ MCs.

3.5 Enrichment analysis of MCs subtypes

in EC

First, we utilized volcano plots to represent the DEGs profiles
between subtypes of MCs (Figure 5A). The results showed that the
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up-regulated DEGs in C1 SRSF7+ MCs were mainly DDXS5,
EEF1A1, TPSB2, TPSABI, and CPA3. In addition, we performed
GO-BP enrichment analysis of the DEGs in the subtypes of MCs
to reveal their enrichment in biological processes. The heatmap
showed the results of the top four enrichment entries in the MCs
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subtypes (Figure 5B). The CO EGRI+ MCs subtype was mainly
associated with pathways such as response to unfolded protein,
response to topologically incorrect protein and regulation of
neuron death; The C1 SRSF7+ MCs subtype was enriched in
pathways such as protein folding, protein refolding, chaperone-
mediated protein folding and ‘de novo’ protein folding; The C2
TXNIP+ MCs subtype revealed their close association with
cytoplasmic translation, oxidative phosphorylation, ribosome
biogenesis and rRNA processing; The C3 DUSPI+ MCs subtype
showed enrichment in pathways such as negative regulation of
transferase activity, response to muscle stretch, response to
mechanical stimulus and negative regulation of phosphorylation;
The C4 SI00A8+ MCs subtype was enriched in pathways related
to leukocyte migration, myeloid leukocyte migration, response to
molecule of bacterial origin and leukocyte chemotaxis; The C5
HSPA6+ MCs subtype mainly exhibited enrichment in pathways
such as protein refolding, response to temperature stimulus,
myeloid cell differentiation and regulation of hemopoiesis; The
C6 IL32+ MCs subtype revealed pathways related to leukocyte
mediated cytotoxicity, lymphocyte mediated immunity, natural
killer cell mediated immunity and positive regulation of leukocyte
cell-cell adhesion; The enrichment analysis conducted on the C7
RPL35A+ MCs subtype revealed their association with
cytoplasmic translation, ribosomal small subunit biogenesis,
rRNA processing and rRNA metabolic process. The word cloud
plots illustrated the enrichment results of DEGs across various
pathways in the eight MC subtypes (Figure 5C). The results
showed that the C1 SRSF7+ MCs subtype was mainly enriched
in leukocyte, immune and activation, and it was hypothesized that
C1 SRSF7+ MCs subtype might be related to MCs activation and
participation in immune regulation.

In addition, the results of GSEA enrichment analysis were also
shown in the form of bubble plots (Figure 5D). It showed that C1
SRSF7+ MCs subtype was significantly expressed in regulation of
immune system process, cell motility and migration, protein
folding, response to immune and external stimulus pathways. All
of the above pathways would suggest that MCs in the C1 SRSF7+
MCs subtype had likely transformed into TAMCs. Finally, we
performed GSEA on the DEGs of the C1 SRSF7+ MCs subtype
according to GO-BP terminology. The results were shown in
Figure 5E. We observed that pathways associated with protein
refolding, skeletal muscle cell differentiation, chaperone cofactor-
dependent protein refolding and ‘de novo’ protein folding were
upregulated in the C1 subtype. In contrast, pathways associated
with ATP synthesis coupled electron transport, mitochondrial ATP
synthesis coupled electron transport, aerobic electron transport
chain and cytoplasmic translation were downregulated in the Cl
subtype. Combining the above up-regulated genes and enriched
pathways with previous studies, we believed that the C1 subtype was
affected by the endoplasmic reticulum stress state, which disrupts
the homeostasis of the original proteins and generates aberrant
protein folding, and that this stress state could control a variety of
pro-tumorigenic attributes of cancer cells, dynamically re-
programming the function of immune cells, transforming MCs
into TAMCs, thus exerting pro-tumorigenic effects, and conferring
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a greater tumorigenic, metastatic, and drug-resistant capacity to the
malignant cells (53).

3.6 Transcription factors regulate the
carcinogenic mechanism of C1
SRSF7+ MCs

Transcription factors can directly act on the genome and
regulate gene transcription and affect the biological function of
cells by combining specific nucleotide sequences in the upstream
of the gene. Therefore, we used scenic to analyze the gene
regulatory network of Cl1 SRSF7+ MCs. First of all, we carried
out cluster analysis of MCs according to regulator activity
(Figure 6A). It was obvious that the discretization of UMAP
diagram based on regulator activity was smaller, the interference
factors were better excluded, and all MCs were clustered and
distributed. Among them, C1 SRSF7+ MCs were mainly
distributed on the right side of UMAP plot without significant
discretization. By further analyzing the key regulators of different
MCs subtypes, the five major regulators of C1 SRSF7+ MCs, ATF4,
JUNB, NF«kB2, MAFK and JUN, were identified (Figures 6B, C).
After analyzing these five key regulators in depth in conjunction
with previous studies and Figure 6D, ATF4 and JUNB caught our
attention. ATF4, which was expressed at higher levels in C1 SRSF7
+ MCs than in other subtypes, was a major transcriptional
regulator of the unfolded protein response to hypoxia, activated
genes that promoted recovery of normal endoplasmic reticulum
function and hypoxic survival (54), regulated mast cells through
endoplasmic reticulum stress (55), and had been associated with
programmed cell death in a variety of tumors, particularly ER
stress-induced iron death (56, 57, 86). As for JUNB, its expression
level was high in C1 SRSF7+ MCs, C4 S100A8+ MCs and C5
HSPA6+ MCs subtypes, and it is a potent inhibitor of endoplasmic
reticulum stress and apoptosis, and, in particular, its modulation
of endoplasmic reticulum stress is associated with ATF4
alterations (58).

3.7 CellChat analysis among all cells

In order to systematically elucidate complex cellular
responses, we aimed to investigate cell-to-cell relationships and
ligand-receptor communication networks to better understand
interactions between cells. Using CellChat analysis, we initially
established intercellular communication networks involving
various cells such as tumor cells, fibroblasts, T-NK cells, and
different subtypes of MCs, etc (Figure 7A). After establishing the
intercellular communication networks using CellChat analysis, we
calculated both the number of interactions (represented by the
thickness of the connecting lines between two cell types) and the
strength of interactions (indicated by the weight of the lines,
where thicker lines denote stronger interaction strengths). This
approach helped quantify the complexity and intensity of
communication pathways between different cell types in the
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FIGURE 6

Identification of C1 SRSF7+ MCs Gene Regulatory Network. (A) UMAP visualized all MCs based on regulon activity score. Colored according to cell
subtypes. (B) Different MCs subtypes were highlighted in the UMAP plots (red) (left); rank for regulators in different MCs subtypes based on regulon
specificity score (RSS) (green) (right). (C, D) Expression of transcription factors ATF4, JUNB, NFKB2, MAFK and JUN of C1 SRSF7+ MCs in different

MCs subtypes.

network. We utilized gene expression pattern analysis methods
available through CellChat to investigate how cells and signaling
pathways interact. Initially, we assessed the relationship between
inferred potential communication patterns and groups of cells
that secrete signaling molecules to decipher outgoing
communication patterns. Three distinct signaling patterns were
identified through our analysis: pattern 1 (subtypes of MCs),

Frontiers in Immunology

pattern 2 (Neurons cells, fibroblasts, SMCs, tumor-cells and
ECs) and pattern 3 (myeloid-cells, B-Plasma cells, neutrophils,
proliferating-cells and T-NK cells) (Figure 7B). To identify the key
incoming and outgoing signals associated with the eight MCs
subtypes, we quantitatively analyzed the ligand-receptor network
using CellChat. This approach allowed us to predict the primary
incoming signals from secreting cells (signal senders) releasing
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Visual analysis of AREG-EGFR/AREG-(EGFR+ERBB?2) signaling pathway. (A, B) The number (left) and strength (right) of cellular interactions circled
plots with C1 SRSF7+ MCs as source (A) and tumor as target (B). (C) Heatmap demonstrated the centrality score of the EGF signaling pathway
network, showing the relative importance of each cell group. (D) Heatmap showed the cell interactions of the EGF signaling pathway. (E, F) Violin
and bubble plots demonstrated cellular interactions in the EGF signaling pathways. (G—H) Circle plot and hierarchical plots showed the inferred
intercellular communication network for EGF signaling. Solid and hollow circles indicated source and target cell types in hierarchical plots,
respectively. The edge color of the middle circle in hierarchical plots was consistent with the signal source.

various cytokines or ligands. Additionally, we assessed which cell
types acted as targeting cells (signal receivers), and how ligand-
receptor-mediated communications between different cell types
contributed to the progression of EC. This analysis helped
illustrate how receptors on these cells were targeted by ligands
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released either from the same type of cell or from other cell
types (Figure 7C).

In addition to examining detailed communication within
individual pathways, an important aspect was understanding
how multiple cell populations and signaling pathways
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coordinate their functions. To address this, CellChat employed a
pattern recognition method based on nonnegative matrix
decomposition. This method identified global communication
patterns and key signals across different cell groups, shedding
light on how various cells and pathways collaborate in their
functions. The application of this analysis revealed three distinct
incoming signaling patterns and three outgoing signaling patterns.
For instance, this output indicated that the majority of outgoing
MCs signaling was characterized by pattern 1, which represented
multiple pathways, including but not limited to CD99, ANNFXIN,
EGF, PARs, ICAM, CSF, etc. All output tumor-cells, fibroblasts,
ECs, SMCs, neurons signalings were characterized by pattern 2,
which represented pathways such as COLLAGEN, LAMININ,
FNI1, APP, PTN and so on. On the other hand, the analysis of
communication patterns in target cells indicated that incoming
signalings to tumor-cells, SMCs, and neurons were predominantly
characterized by pattern 1. This pattern included signaling
pathways such as EGF, TENASCIN, JAM, MPZ, CADM, and
TWEAK. In contrast, the majority of incoming signalings
to subtypes of MCs, B-plasma cells, T-NK cells, proliferating-
cells, myeloid-cells, and neutrophils were characterized by
pattern 2, which was driven by pathways such as CXCL and
ANNEXIN (Figure 7D).

Combining the above analysis and the demonstration of all
incoming and outgoing signal intensities in Figure 7E, the
signaling molecule EGF caught our attention. EGF was present
in the incoming pathway of tumor-cells, i.e., tumor-cells were the
target cells, and EGF is again present in the outgoing pathway of
C1 SRSF7+ MCs subtype, i.e. C1 SRSF7+ MCs subtype was the
secreting cell, which links C1 SRSF7+ MCs subtype and tumor-
cells, we speculated that this signaling pathway might be related to
tumor progression, so we next focused on EGF.

3.8 Analysis of AREG-EGFR/AREG-(EGFR
+ERBB2) signal pathway

The circular displayed the inferred cell-cell communication
network between MCs and other cells (Figures 8A, B). The results
showed that there was a strong crosstalk between C1 SRSF7+ MCs
and tumor cells. We considered all identified cell types in ECEC as
source cells for the EGF signaling pathway, and the results indicated
that all subtypes of MCs could target tumor cells with released EGF.
In addition to the senders and receivers of EGF signaling, based on
the relative importance of each cell type in EGF signaling-mediated
intercellular communication, we identified the cell types that act as
mediators and influencers in this process, which is referred to as the
“centrality measurement” algorithm. As can be seen from the Figure,
C1 SRSF7+ MCs subtype had higher expression as a ‘sender’ in the
EGF signaling pathway, whereas tumor-cells were acting as ‘receiver’,
‘mediator’ and ‘influencer’ in this signaling pathway (Figure 8C).
Similarly, the heatmap corroborated this conclusion (Figure 8D). The
violin plot showed the cell-cell interactions while giving the different
ligands and receptors in the EGF signaling pathway, and the results
showed that C1 SRSF7+ MCs subtype and tumor-cells were mainly
contacted with AREG as a ligand and EGFR or ERBB2 as receptors
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(Figure 8E). Bubble and circle plot as well as hierarchical plots
likewise corroborated this conclusion (Figures 8F-H). Combined
with the results of previous results in this paper, it can be
concluded that the Cl1 SRSF7+ MCs and tumor cells crosstalk
through the AREG-EGFR/AREG-(EGFR+ERBB2) signal pathway,
thereby exerting a tumor-promoting effect.

3.9 In vitro experimental validation of EGFR

To further investigate the role of EGFR in EC, we conducted in
vitro experiments using the TE-10 and KYSE-30 cell lines. Initially,
we knocked down EGFR and measured the mRNA and protein
expression levels before and after knockdown. We observed a
significant reduction in both mRNA and protein expression levels
in both cell lines compared to the control group (Figure 9A).
Subsequently, the CCK-8 assay revealed a marked decrease in EC
cell viability post-EGFR knockdown (Figure 9B). Colony formation
assays and EDU experiments confirmed that EGFR knockdown
inhibited EC cell proliferation (Figures 9C, E, F). Additionally,
scratch and transwell assays were employed to assess the migration
and invasion capabilities of EC cells post-EGFR knockdown,
demonstrating a significant reduction in migration and invasion
levels (Figures 9D, F-H). These results collectively indicate that
EGFR knockdown suppresses the activity, proliferation, migration,
and invasion of EC cells, thereby inhibiting tumor growth.

3.10 Enrichment analysis and construction
of predictive models

To further investigate the impact of MCs with high SRSF7
expression on EC patients, we divided the TCGA cohort patients
into high and low SMRS (SMRS: SRSF7+MCs risk score) groups
according to the gene expression levels of the SRSF7+ MCs subtype.
A heatmap illustrated the expression profiles of the top 30 DEGs
(Figure 10A), and a volcano plot depicted the up-regulation and
down-regulation of DEGs (Figure 10B). Subsequently, we employed
various enrichment methods to gain insights into the associated
biological processes. KEGG enrichment analysis revealed that DEGs
were primarily enriched in pathways such as cholesterol
metabolism, PPAR signaling pathway, and Fat digestion and
absorption (Figure 10C). In GO-BP analysis, enrichment was
observed in the triglyceride metabolic process, acylglycerol
metabolic process, and neutral lipid metabolic process
(Figure 10D). In GO-CC analysis, enrichment included
chylomicron and high- and low-density lipoproteins, and in GO-
MF analysis, glycosaminoglycan binding and lipoprotein particle
receptor binding were highlighted (Figures 10E, F). We then
visualized the primary enrichment terms for each gene set and
used t-SNE plots to graphically represent the risk score distribution
of these enrichment terms (Figure 10G). GSEA results showed that
the up-regulated genes were mainly enriched in processes such as
intestinal absorption, peptidyl methionine modification, intestinal
lipid absorption, and protein lipid complex assembly, while down-
regulated genes were enriched in processes like regulation of release
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In vitro experiments confirmed the effects of EGFR knockdown. (A) Following EGFR knockdown, both mRNA and protein expression levels were
significantly reduced. (B) The CCK-8 assay demonstrated a marked decrease in EC cell viability post-EGFR knockdown compared to the control
group. (C) Colony formation assays revealed a significant reduction in colony numbers after EGFR knockdown. (D) The scratch assay indicated that

EGFR knockdown inhibited EC cell migration. (E) The EDU staining assay co

nfirmed that EGFR knockdown exerted an inhibitory effect on EC cell

proliferation. (F) Bar graphs showed a significant reduction in both EC cell migration and proliferation capabilities post-EGFR knockdown (P < 0.01).
(G, H) Transwell experiments indicated that EGFR knockdown inhibited the migration and invasion capabilities of tumor cells in the TE-10 and KYSE-

30 cell lines. ***, p < 0.001; **** p < 0.0001 indicates significant difference.

of sequestered calcium on into cytosol, external encapsulating
structure organization, B cell receptor signaling pathway, and
collagen fibril organization (Figure 10H). Additionally, we
constructed a prognostic model to explore the clinical significance
of MCs with high SRSF7 expression. Univariate Cox regression

analysis identified 11 genes significantly associated with prognosis
(Figure 10I), with AHR as a protective factor (HR < 1) and the
others as risk factors. To address the issue of multicollinearity
among these genes, we further screened them using LASSO
regression analysis, ultimately identifying eight prognostic-related
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Enrichment analysis of differential genes and construction of the prognostic model. (A) Heatmap illustrated the expression profiles of differential
genes in high and low SMRS groups. (B) Volcano plot depicted the distribution of differential genes in high and low SMRS groups. (C-F) Bar charts
separately presented the enrichment analysis results of differential genes in KEGG, GO-BP, GO-CC, and GO-MF pathways for high and low SMRS
groups. (G) t-SNE plot visualized the risk score distribution of the top-ranked GSVA enrichment term in high and low SMRS groups. (H) Detailed
exposition of GSEA pathway enrichment results for differential genes across various pathways was provided. () Forest plot from univariate Cox
regression analysis showcased statistically significant genes (P<0.05) with HR<1 indicating protective factors and HR>1 indicating risk factors.

(J) Selection of eight prognostic-related genes (non-zero regression coefficients) was made via LASSO regression analysis, with optimal parameter
(lambda) determined through cross-validation (top), and LASSO coefficient curve determined by optimal lambda (bottom). (K) Forest plot of eight
prognosis-related genes. (L) Bar chart showed the Coef values of genes utilized for model construction. (M) Curve chart illustrated the risk scores of
high and low SMRS groups, and scatter plot depicted survival/death events over time for both groups. (N) Heatmap displayed differential expression
of model genes, with color scale based on normalized data. (O) Kaplan-Meier curves demonstrated survival disparities between high and low SMRS
groups. (P) ROC curve and AUC value were used to evaluate the sensitivity and specificity of the prognostic model in predicting 1-year, 3-year and
5-year prognosis.

genes (Figure 10J). Cox regression analysis was then used to  (Figure 10M). Moreover, a heatmap displayed the differential
calculate the coefficient values of these genes (Figures 10K, L).  expression patterns of genes used in model construction
Curve and scatter plots demonstrated the differences in risk scores  (Figure 10N). Kaplan-Meier survival curves further confirmed the
and survival outcomes between the two groups, indicating that the  conclusion that the high SMRS group had a worse survival outcome
high SMRS group was associated with poorer prognosis  (Figure 100). ROC curves and AUC values for 1-year, 3-year, and

Frontiers in Immunology 200 frontiersin.org


https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhang et al.

5-year outcomes indicated that the model had good predictive
value (Figure 10P).

4 Discussion

In recent years, the rapid development and application of
scRNA-seq in cancer research has revolutionized our
understanding of the biological features and dynamics within
cancer lesions, greatly facilitating the diagnosis, treatment, and
prognosis prediction of a range of tumors (59-61). Overall, the
present study focused on mast cells in esophageal cancer, and we
validated the pro-carcinogenic role of this pathway by launching a
comprehensive profiling of mast cell subtypes with an eye on the C1
SRSF7+ MCs and obtaining its reciprocal receptor, EGFR, using
cellular communication analysis, and subsequently verifying the
pro-carcinogenic role of this pathway through cellular knockdown
experiments. In this study, we comprehensively characterized the
cellular heterogeneity of EC using scRNA-seq technology. We
identified immune cells including T-NK cells, MCs, and myeloid
cells and so on, as well as non-immune cells such as smooth muscle
cells and neuronal cells. In addition, we carefully analyzed the
sample origin of these cell types and the distribution characteristics
during the phase. Among them, MCs caught our attention. Until
more than a hundred years ago, MCs were regarded as effectors of
allergy, and it is only in the last two decades that MCs have gained
recognition for their involvement in other physiological and
pathological processes. MCs maturation, phenotype and function
as a direct result of the local microenvironment (62), and by
releasing a range of bioactive mediators has a significant effect on
their ability to specifically recognize and respond to a variety of
strategies (63-65). Therefore, depicting and analyzing the TME is
important for MCs. And in previous studies, MCs have been shown
to correlate with pro-tumorigenic effects (66-68). Despite the
accumulating evidence for MCs in tumors, their exact role in the
TME remains incompletely understood (51). We therefore focused
our attention on the study of MCs. By further dimensionality
reduction clustering, we obtained eight MCs subtypes, ie., CO
EGRI+ MGCs, C1 SRSF7+ MCs, C3 TXNIP+ MCs, C4 SI00A8+
MCs, C5 HSPA6+ MCs, C6 IL32+ MCs, and C7 RPL35A+ MCs.

By integrating the proportions of MCs subtypes in sample
sources and cell phases, Ro/e preference analyses, cell stemness
analyses, and slingshot proposed pseudotime analyses, we identified
the target subtype in this study: the C1 SRSF7+ MCs. C1 SRSF7+
MCs were significantly more abundant in tumor tissues than in
pericancer tissues in P1 and P3 samples, and this was confirmed by
Ro/e preference analysis. In slingshot proposed pseudotime
analysis, Lineage 2 was considered to be representative of the
differentiation trajectory of MCs associated with tumors. And the
endpoint of Lineage 2 was a subtype of C1 SRSF7+ MCs, this result
may prove that MCs are affected by some cytokines or tumor cell-
secreted proteins during their development in the TME, leading to
the transformation of MCs into a tumor-associated or pro-tumor
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phenotype, which is in line with the previous study (69).
Meanwhile, cell stemness analysis by AUC value and CytoTRACE
showed that the C1 SRSF7+ MCs subtype had the strongest cell
stemness among all subtypes, with high differentiation potential,
which did not contradict slingshot’s results, and it is understandable
that the transformation from normal phenotype to TAMCs
phenotype would result in an increase in cell stemness. It can be
seen that the C1 SRSF7+ MCs subtype is intricately linked to
tumor progression.

To further investigate the tumor-promoting related roles of the
C1 SRSF7+ MCs subtype, we performed enrichment analysis and
obtained the upregulated genes DDX5, TPSB2, and CPA3, of which
DDX5 interacts with a variety of key pro-tumorigenic molecules
and participates in tumorigenic and tumor progression signaling
pathways, and when DDX5 is expressed or its post-translational
modifications are deregulated, the normal cellular signaling
network collapses, leading to many pathological states, including
tumorigenesis and tumor progression (52, 70). Moreover, the
enriched pathways obtained by GO-BP and GSEA on the Cl
SRSF7+ MCs subtype showed that the C1 SRSF7+ MCs subtype
was extensively involved in protein folding and refolding, regulation
of immune system processes, and response to external stimuli. All
these pathways suggest that the C1 SRSF7+ MCs subtype has
probably been transformed into TAMCs. Finally, combining the
above up-regulated genes and enriched pathways, we suggest that
the C1 SRSF7+ MCs subtype is affected by the endoplasmic
reticulum stress state (71), which disrupts the original protein
equilibrium (72) and produces aberrant protein folding (73, 74),
and this stress state dynamically reprograms the function of MCs,
transforming MCs into TAMCs, which exerts pro-tumorigenic
effects (75) and confers cancer cells with enhanced tumorigenic,
metastatic, and drug-resistant capabilities. In this regard, we can
treat patients with esophageal cancer by targeting the abnormal
protein folding to prevent MCs from entering the endoplasmic
reticulum stress state in patients, thus preventing the conversion of
MCs into TAMCs, and thus controlling the progression of
the cancer.

In addition, gene regulatory network of C1 SRSF7+ MCs was
revealed by scenic analysis, in which the most valuable key
regulators were ATF4 and JUNB. ATF4 showed a dual role in
iron death and cancer under endoplasmic reticulum stress (75), and
under sustained stress conditions, ATF4 promotes apoptotic cell
death induction. Characterizing the mechanisms that regulate
ATF4-mediated transcription and its effects on cellular
metabolism may identify novel targets for cancer therapy (56). As
for JUNB, more and more studies have shown that it is involved in
tumorigenesis by regulating cell proliferation, differentiation,
senescence, and metastasis, and in particular, it affects the TME
by transcriptionally promoting or repressing oncogenes in tumor
cells or immune cells (76). Furthermore, previous mechanistic
studies have shown that JUNB overexpression regulates the
mitochondrial apoptosis pathway, mediating resistance to FasL
and TRAIL-induced cell death, and thus tumor resistance to
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immunotherapy (77). This study of ours provides a theoretical basis
for subsequent analysis of drug sensitivity and provides new
insights into the development of innovative targeted therapeutics.

To explore the interactions involving the C1 SRSF7+ mast cell
subtype and other cell types, we employed CellChat communication
pattern analysis. This approach helped reveal coordinated responses
and interactions between different cell types in the context of their
communication pathways. Different cell types can simultaneously
activate common cell type-independent signaling pathways or
different cell type-specific signaling transduction transduction
pathways (77). Through CellChat analysis, we established the
intercellular communication network between most cells,
including tumor cells, fibroblasts, T-NK cells, and various
subtypes of MCs, etc., as a way to characterize the relationship
between the subtype of C1 SRSF7+ MCs and other cell types, and at
the same time, we identified the three modes of outgoing, incoming
and their corresponding signaling pathway expression. The Cl
SRSF7+ MCs subtype belongs to mode 1 in the outgoing
pathway, and its communication molecules, i.e., ligands, include
ANNEXIN, PARs, CSF, ICAM, etc; and it belongs to mode 2 in the
incoming pathway, and its communication molecules, i.e.,
receptors, include BAFF, CLEC, ALCAM, SELPG, etc. It is also
worth noting that tumor cells, which can be learned after our careful
observation, belong to mode 2 on the outgoing and mode 1 on the
incoming, echoing the subtype of C1 SRSF7+ MCs, which drew
our attention.

By targeting tumor cells and the C1 SRSF7+ MCs subtype for
interactions analysis, we have identified the secretion of AREG
ligands by a subtype of C1 SRSF7+ MCs in the EGF signaling
pathway that act on the protein receptor EGFR on the membrane of
the tumor cells. In previous studies, the EGFR family has been
validated to play a key role in EGFR signaling through the activation
of many important cellular processes, including cell division,
growth, and differentiation. Playing a key role in mediating cell
growth factor signaling (78), overexpression of EGFR signaling
widely promotes tumor progression and leads to promotion of
proliferation and inhibition of apoptosis (79). And cancer
immunotherapies, particularly immune checkpoint blockade
(ICB), have transformed oncology care over the past decade and
significantly improved survival in a wide range of metastatic
tumors. Based on significant treatment benefits, ICB therapy is
approved by the FDA as monotherapy or in combination with other
cancer therapies for cancers such as melanoma, breast cancer, renal
cell carcinoma, head and neck squamous cell carcinoma, and lung
cancer (80-84). However, the MCs-mediated pro-tumor axis
AREG-EGFR in EC has not yet been mentioned. Therefore, our
study provides new EC target therapeutic approaches and provides
a scientific basis for the treatment and prognosis of EC. Meanwhile,
to further investigate the role of EGFR in EC, we performed in vitro
experiments using TE-10 and KYSE-30 cell lines. We observed that
EGFR knockdown inhibited tumor cell activity, migration and
proliferation, thereby suppressing tumor growth. However,
previous studies have shown that epidermal growth factor
receptor inhibitors (EGFRIs) produce a variety of dermatologic
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side effects in the majority of patients, and this targeted therapeutic
regimen needs to be further refined (85).

Given their role in promoting tumor growth and immune
evasion, mast cells are considered potential therapeutic targets.
Contemporary therapeutic strategies may include the use of mast
cell stabilizers, mast cell mediator inhibitors, or blocking mast cell
recruitment to tumor tissues and organs.

Finally, we constructed a prognostic model to indicate that the
higher the SMRS score, the worse the prognosis.

Our study will direct attention to MCs in the progression of
esophageal cancer, trigger attention to them, and promote
researchers’ understanding of the tumor microenvironment in
esophageal cancer. At the same time, we discovered the
communication pathway between the tumor and our target MCs
subtype. Although EFGR antagonists are still proved to have certain
side effects, we believe that the development of targeted therapy will
be further advanced in the future. However, this study still has some
limitations. The relatively small sample size chosen is one aspect,
and secondly, we only performed transcriptomics studies and in
vitro experiments. The analysis of mast cell in EC using SCENIC
and AUCell in our article is well-founded though and provides a
detailed understanding of the regulatory networks that drive mast
cell behavior. However, to draw more reliable conclusions, these
findings must be validated by further experiments and compared
across different cancer types. Next, we will integrate in vivo and in
vitro experiments to provide a more comprehensive validation.

In conclusion, the innovative features of our study lie in the use of
high-resolution single-cell analysis technology, the construction of cell-
cell interaction networks, the analysis of dynamic evolutionary
trajectories, the identification of regulatory networks, and experimental
verification, which provide new ideas for the targeted treatment of MCs
in EC and new cell carriers for the development of EGFR targeted drugs.
These will help to promote the in-depth development of the research on
EC and provide new strategies for the disease.
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Breast cancer is one of the most prevalent cancers in women globally. Its
treatment and prognosis are significantly influenced by the tumor
microenvironment and tumor heterogeneity. Precision therapy enhances
treatment efficacy, reduces unwanted side effects, and maximizes patients’
survival duration while improving their quality of life. Spatial transcriptomics is
of significant importance for the precise treatment of breast cancer, playing a
critical role in revealing the internal structural differences of tumors and the
composition of the tumor microenvironment. It offers a novel p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>