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Editorial on the Research Topic

Immunological precision therapeutics: integratingmulti-omics technologies
and comprehensive approaches for personalized immune intervention
The integration of multi-omics technologies in immunology heralds a transformative

era in the development of personalized therapeutic strategies. As immunotherapy

continues to emerge as a cornerstone of precision medicine, this Research Topic brings

together a rich collection of studies that explore how comprehensive multi-omics

approaches—ranging from genomics and transcriptomics to proteomics, metabolomics,

and single-cell profiling—can be harnessed to optimize immune interventions tailored to

individual patients.

One of the key themes across the contributions is the application of single-cell

sequencing to unravel the complexities of the immune landscape (Yu et al.). For

example, the study on gliomas highlights how single-cell RNA sequencing (scRNA-seq)

data can be leveraged to identify potential biomarkers like DAPK1, which may serve as a

prognostic marker for glioma progression and therapeutic efficacy. Such insights are

crucial, as gliomas remain one of the most difficult malignancies to treat due to their

aggressive nature and the barriers posed by the blood-brain barrier (BBB). By utilizing

multi-omics data, including scRNA-seq, the authors have demonstrated how specific

immune subpopulations, such as DAPK1-expressing cells, could be used to predict

patient outcomes, offering a new approach for precision therapy in glioma.

Similarly, the study on cancer stemness in ovarian cancer illustrates how multi-omics

data can reveal the role of cancer stem cells (CSCs) in mediating resistance to immune

checkpoint inhibitors (ICIs) (Liu et al.). Through the integration of RNA sequencing and

CRISPR-based screens, the authors have identified critical genes involved in regulating
frontiersin.org016
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cancer stemness, such as SNRPE, which negatively affects ICI

response. This approach exemplifies the power of combining

machine learning and genomics to predict immune responses and

guide treatment decisions in cancer immunotherapy (Sun et al.).

A consistent thread running through many of the contributions

is the focus on immune microenvironment characterization.

(Li et al.). The work on cuproptosis-related genes in ovarian

cancer investigates how the deregulation of copper-dependent cell

death pathways impacts the immune landscape, with the

development of a robust risk score model for predicting prognosis

and immunotherapy response (Xiaorong et al.). This study adds to

the growing body of literature emphasizing the importance of not

only tumor-intrinsic factors but also the immune environment in

determining the success of immunotherapy. Similarly, the research

on thyroid carcinoma highlights the role of the epithelial-

mesenchymal transition (EMT) and immune cell infiltration in

cancer progression, demonstrating how these pathways can be used

to refine prognostic models (Wu et al.).

The studies on lung cancer immunotherapy (Yan et al.) and the

gastric cancer microbiome (Qian et al.) offer further proof of the

power of multi-omics in uncovering complex disease mechanisms.

In the case of lung cancer, combining genomic, transcriptomic, and

proteomic data provides insights into immune-related pathways,

paving the way for more personalized and effective treatment

options (Li et al.). The study on the gastric microbiome goes a

step further by integrating microbiota data with immune-activated

transcripts, suggesting that specific bacterial species may influence

immune response and tumor progression, thus offering potential

targets for therapeutic modulation (Qian et al.).

Across all studies, the integration of multi-omics data with

machine learning algorithms is repeatedly showcased as a tool for

predicting therapeutic efficacy and patient outcomes (Sun et al.).

Whether through the development of prognostic risk scores

or by uncovering previously unrecognized molecular interactions,

machine learning serves as a bridge between vast amounts

of complex biological data and actionable insights for

personalized medicine.

One of the most compelling aspects of this Research Topic is its

emphasis on synergistic approaches (Amiri et al). The review on

CAR-T cell therapy and CRISPR/Cas9 exemplifies how combining

cutting-edge gene-editing technologies with immunotherapy can

enhance treatment specificity and efficacy (Amiri et al). As CAR-T

cells are increasingly used in the treatment of hematologic

malignancies, the integration of CRISPR/Cas9 holds the promise

of overcoming some of the limitations, such as the tumor’s ability to

evade immune detection. By boosting CAR-T cell persistence and

engineering them to overcome immune suppression, CRISPR-

edited CAR-T therapies could expand the applicability of

immunotherapy to solid tumors, offering new hope for patients

with refractory cancers.
Frontiers in Immunology 027
Together, these articles underscore the potential of personalized

immune interventions (Wen et al.) and demonstrate the vast promise

of multi-omics technologies in immunology (Sennikov et al.). They

not only contribute to a deeper understanding of immune responses

but also provide critical insights that will shape the future of

immune-related disease treatments (Zhang et al.). As this

Research Topic shows, the ability to integrate diverse types of

data, from single-cell sequencing to machine learning models,

allows us to build a more comprehensive and nuanced view of

the immune system, its dysregulation in disease, and how best to

tailor therapies to individual patients.

In conclusion, this Research Topic contributes to the growing

momentum towards precision immunotherapy (Chen et al.). It

reinforces the need for interdisciplinary approaches that combine

the power of genomics, transcriptomics, proteomics, metabolomics,

and computational techniques to drive the development of highly

personalized therapies. As we move forward, these strategies will

not only enhance the efficacy of existing therapies but also open the

door to entirely new modalities of immune modulation that could

transform the treatment of cancers, autoimmune diseases,

and beyond.
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Background: Monocytes play a critical role in tumor initiation and progression,

with their impact on prostate adenocarcinoma (PRAD) not yet fully understood.

This study aimed to identify key monocyte-related genes and elucidate their

mechanisms in PRAD.

Method: Utilizing the TCGA-PRAD dataset, immune cell infiltration levels were

assessed using CIBERSORT, and their correlation with patient prognosis was

analyzed. The WGCNAmethod pinpointed 14 crucial monocyte-related genes. A

diagnostic model focused on monocytes was developed using a combination of

machine learning algorithms, while a prognostic model was created using the

LASSO algorithm, both of which were validated. Random forest and gradient

boosting machine singled out CCNA2 as the most significant gene related to

prognosis in monocytes, with its function further investigated through gene

enrichment analysis. Mendelian randomization analysis of the association of

HLA-DR high-expressing monocytes with PRAD. Molecular docking was

employed to assess the binding affinity of CCNA2 with targeted drugs for

PRAD, and experimental validation confirmed the expression and prognostic

value of CCNA2 in PRAD.

Result: Based on the identification of 14monocyte-related genes byWGCNA, we

developed a diagnostic model for PRAD using a combination ofmultiple machine

learning algorithms. Additionally, we constructed a prognostic model using the

LASSO algorithm, both of which demonstrated excellent predictive capabilities.

Analysis with random forest and gradient boosting machine algorithms further

supported the potential prognostic value of CCNA2 in PRAD. Gene enrichment

analysis revealed the association of CCNA2 with the regulation of cell cycle and

cellular senescence in PRAD. Mendelian randomization analysis confirmed that

monocytes expressing high levels of HLA-DR may promote PRAD. Molecular

docking results suggested a strong affinity of CCNA2 for drugs targeting PRAD.

Furthermore, immunohistochemistry experiments validated the upregulation of

CCNA2 expression in PRAD and its correlation with patient prognosis.
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Conclusion:Our findings offer new insights into monocyte heterogeneity and its

role in PRAD. Furthermore, CCNA2 holds potential as a novel targeted drug

for PRAD.
KEYWORDS

prognosis, monocyte, machine learning, PRAD, multi-omics analysis
1 Introduction

Based on 2024 U.S. cancer statistics, prostate adenocarcinoma

(PRAD) now surpasses lung cancer as the most common cancer

among men (1). In China, recent data from the China National

Cancer Center in 2022 revealed that PRAD incidence rates have

exceeded those of kidney and bladder tumors based on 2016 data

from 487 tumor registries nationwide (2). The incidence of PRAD

has been on the rise in recent years due to economic and social

development and increased life expectancy. Options for treating

PRAD currently consist of radical radiotherapy, radical

prostatectomy, chemotherapy, and androgen deprivation

therapy, customized based on the progression of the individual

patient’s illness (3). Despite advancements in PRAD treatment,

the 5-year survival rate for patients remains relatively low (4).

Therefore, it is crucial to identify potential prognostic markers

and assess therapeutic targets to improve the prognosis of

PRAD patients.

Monocytes are vital components of the innate immune system

and are indispensable for defending against foreign invaders (5).

There are three primary subpopulations of monocytes: classical,

nonclassical, and intermediate monocytes (6). Monocytes first

mature into classical monocytes in the bone marrow, followed by

differentiation into nonclassical monocytes in the bloodstream,

with an intermediate monocyte phase in between. Numerous

studies have shown that monocytes play a direct role in immune

responses by initiating cell death and phagocytosis (7).

Additionally, monocytes can engage with T cells and natural

killer cells, impacting tumor progression by producing

chemokines (8). Moreover, monocytes have the capability to

transform into various immune cells such as tumor-associated

macrophages and dendritic cells, critical components of the

immune system that actively promote tumor growth and spread

(9). Tumor-infiltrating immune cells play a crucial role in the

pathogenesis of PRAD. Recent research indicates that prognostic

markers linked to M2 macrophages can forecast biochemical

recurrence in patients with PRAD (10). Furthermore, elevated

levels of macrophages in prostate biopsies have been correlated

with disease progression following hormone therapy (11).

Moreover, there is evidence to suggest that circulating monocyte

levels could serve as a biomarker for metastatic PRAD, indicating

a notably unfavorable prognosis (12). Integrated multi-omics,
029
machine learning, and artificial intelligence are being more

frequently utilized in the field of medicine (13–17). It is

essential to conduct further analysis on levels of tumor-

infiltrating immune cells and identify genes related to immune

cell infiltration using multi-omics and machine learning

techniques to enhance the accuracy of diagnosis and treatment

for PRAD. The objective of our study is to enhance researchers’

comprehension of the mechanisms underlying tumor immune

infiltration, progress in immunotherapy for PRAD patients, and

offer novel insights for clinical immunotherapy.

The significance of immune cell infiltration in tumors and the

exploration of its potential regulatory genes have been

acknowledged based on existing research. The CIBERSORT

algorithm provides a convenient method for evaluating immune

cell infiltration levels in PRAD. By utilizing this algorithm, we

calculated the infiltration levels of immune cells in TCGA-PRAD

samples and grouped the samples accordingly. Our analysis

revealed that only the infiltration level of monocytes significantly

correlated with the prognosis of PRAD patients. Using the weighted

correlation network analysis (WGCNA) method, we have

discovered prognostic differential genes associated with

monocytes in the PRAD dataset samples from the cancer genome

atlas (TCGA) database. These genes exhibit correlations with

patient stage, Gleason score, and PSA score. Subsequently, we

developed diagnostic and prognostic models using various

machine learning techniques, yielding positive results. By

analyzing the TCGA-PRAD and GSE16560 datasets, CCNA2

emerged as the most promising prognostic gene related to

monocytes in PRAD. Furthermore, we delved into the function of

CCNA2 and its potential interactions with therapeutic drugs for

PRAD. In conclusion, our study lays the groundwork for

understanding the impact of monocytes on the prognosis of

PRAD patients and identifies a novel drug target for

PRAD treatment.
2 Materials and methods

2.1 Data acquisition

The TCGA database provided data on 52 normal prostate

samples and 498 PRAD samples. The monocyte-related gene
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diagnostic model was validated using the GSE62872 and GSE32571

datasets, while the GSE16560 dataset was used for the prognostic

model of monocyte-related genes. In addition, 60 cases of prostate

cancer tissue and paired para-cancerous tissue were obtained from

Shanghai Outdo Biotech Company. The patients included in the

tissue chip study underwent surgery between January 2011 and

December 2014, with a follow-up period extending from November

2021, covering a span of 6 to 10 years.
2.2 Constructing diagnostic and
prognostic models

Use multiple machine learning algorithms to combine into

more than one hundred algorithm combinations to develop the

best PRAD diagnostic model (18). The training set comprised the

TCGA-PRAD data set, with validation sets GSE62872 and

GSE32571. Area under curve (AUC) values were calculated for

each algorithm combination, and the combination with the

highest average AUC was selected as the best. The prognostic

model was based on the least absolute shrinkage and selection

operator (LASSO) regression algorithm and evaluated using 10-

fold cross-validation in R software with the glmnet package

(19, 20).
2.3 Functional analysis of candidate genes

The gene set cancer analysis (GSCA) and CancerSEA

databases were used to analyze the functions of monocyte-

related genes (21, 22). To better understand the oncogenic role

of target genes, the ClusterProfiler package in R was used to

analyze the potential functions of CCNA2 and enrich the Kyoto

encyclopedia of genes and genomes (KEGG) pathway. The R

packages “clusterProfiler” was utilized for the GSEA enrichment

analysis of genes (23).
2.4 Analysis of the correlation between
CCNA2 and immune cell infiltration

The GSCA database was utilized to examine the relationship

between CCNA2 and monocytes. Furthermore, we investigated the

correlation between CCNA2 and markers of monocytes using the

TCGA-PRAD dataset. Additionally, the TISCH2 database was

employed to analyze the association between CCNA2 and

immune cell infiltration (24).
2.5 Immunohistochemical staining analysis
of CCNA2 expression in PRAD tissues

The prostate cancer tissue chip was initially placed in an 85°

C oven for 20 minutes, followed by soaking in xylene solution for

20 minutes for dewaxing. Subsequently, the tissue chips
Frontiers in Immunology 0310
underwent a series of hydration steps involving immersion in

100%, 95%, 80%, and 70% ethanol for 2 minutes each. The tissue

chip was then treated with citric acid solution and subjected to

boiling in a pressure cooker for antigen retrieval, followed by

cooling in ice water to reach room temperature. The chip was

then rinsed with PBS, circled with a histochemistry pen, sealed

with hydrogen peroxide solution, and cleaned with PBS. Next,

CCNA2 antibody (BOSTER, PB9424) was applied dropwise to

cover the tissue chip, which was left at room temperature for 2

hours. Post-reaction, the chip was rinsed with PBS and the

immunohistochemistry secondary antibody was added

dropwise, left for 20 minutes, and then cleaned with PBS.

Finally, the tissue chip underwent DAB color development,

dehydration in a series of ethanol solutions, sealing, and

microscopic examination to conclude the experiment. The

immunostaining intensity score ranges from 0 to 3, where 0, 1,

2, and 3 represent no reaction, weak reaction, moderate reaction,

and strong reaction, respectively. Following this, a scale based on

the proportion of positive staining is applied, with scores of 1, 2,

3, and 4 corresponding to 0%-25%, 26%-50%, 51%-75%, and

76%-100%, respectively. The final expression score is determined

by multiplying the staining intensity score and the staining

proportion score. This calculation results in a score ranging

from 0 to 5, indicating low expression, and a score from 6 to 12,

indicating high expression.
2.6 Mendelian randomization analysis

The Mendelian randomization analysis in this study

investigated the impact of monocytes on prostate cancer patients

using the MRBASE website (25). The exposure factor selected was

HLA DR++ monocyte %monocyte (ebi-a-GCST90001475) from

the MR Base GWAS catalog, with prostate cancer (EBI-A-

GCST006085) as the outcome. The analysis criteria included a

minimum LD Rsq value of 0.8, a MAF threshold of 0.01, and the

exclusion of palindromic SNPs. Various methods such as MR Egger,

Weighted median, Weighted mode, Simple mode, and Inverse

variance weighted were employed for the analysis.
2.7 Statistical analyses

The level of immune cell infiltration and prognosis of TCGA-

PRAD patients, along with the prognostic analysis of CCNA2 in

prostate cancer tissue chips used in our experiments, were

statistically analyzed using the Log-rank test. The prognostic

analysis of ACSM3 and CCNA2 in TCGA-PRAD and GSE16560

datasets was conducted through COX regression. All correlation

analyses in this study were performed using the Spearman

method. Furthermore, the expression of monocyte-related genes

at different stages, Gleason scores, and PSA scores in the TCGA-

PRAD dataset, as well as the expression differences of CCNA2 in

prostate cancer tissue chips, were analyzed using the Wilcoxon

rank sum test.
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3 Results

3.1 Analysis of the correlation between the
level of immune cell infiltration and the
prognosis of PRAD patients

The tumor immune microenvironment consists of tumor cells,

immune cells, signaling molecules, extracellular matrix, and unique

physical and chemical characteristics (26). This microenvironment

significantly impacts tumor diagnosis, survival rates, and treatment

responses. Immune cell infiltration in tumors is crucial as it can either

help eliminate tumor cells or be manipulated by tumors to promote

growth and metastasis (27, 28). The role of immune cells in cancer

treatment and prevention, as well as their regulatorymechanisms, has

garnered significant attention. An accurate understanding of the

distribution and function of immune cells in tumor tissues is

essential for effective treatment and prognosis assessment (29, 30).

The CIBERSORT algorithm was used to calculate the proportion of

22 immune cells for each sample in the TCGA-PRAD dataset (31,

32). While the infiltration level of 8 types of immune cells in most

samples was 0, our study focused on analyzing the relationship

between the infiltration levels of the remaining 14 types of immune
Frontiers in Immunology 0411
cells and the prognosis of PRAD patients. Our findings suggest that

the infiltration level of monocytes is a significant factor in

determining the prognosis of patients with PRAD. Specifically, a

higher infiltration level of monocytes is associated with a poorer

prognosis for PRAD patients (Figures 1A–N). Furthermore, based on

monocyte infiltration levels, PRAD patient samples were classified

into high and low monocyte groups. We then examined the

percentage abundance of tumor-infiltrating immune cells in each

sample (Figure 1O).
3.2 Screening of monocyte-associated
differential genes based on the
WGCNA method

WGCNA is an algorithm utilized for extracting module

information from high-throughput expression data. Our objective

was to identify genes highly correlated with monocytes in the

TCGA-PRAD dataset using this algorithm. To achieve a scale-free

network distribution, we carefully selected the value of the

adjacency matrix weight parameter power. In our analysis, we

determined the power value to be 20 (Figures 2A–D).
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FIGURE 1

Monocyte infiltration correlates with prognosis in PRAD patients. (A–N) Analyzing the correlation between different immune cell infiltrations and
prognosis in PRAD patients. (O) Percentage frequency of different tumor infiltrating immune cells in PRAD samples.
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Subsequently, a weighted co-expression network model was

constructed based on this power value, leading to the division of

the gene set into 5 modules. Notably, the gray module represents

genes that do not align with any specific module and lack reference

significance (Figure 2E). Using the Pearson correlation algorithm,

we found that the turquoise module has the strongest correlation

with monocytes (Figure 2F). We conducted differential analysis on

TCGA-PRAD samples with a significance level of P < 0.05 and Log2

(Fold Change) >1.3 or Log2 (Fold Change) < -1.3 as the selection
Frontiers in Immunology 0512
criteria. Subsequently, we generated a volcano plot to visualize the

analysis outcomes (Figure 2G). Our findings indicated a link

between high levels of mononuclear cell infiltration and poor

prognosis in PRAD patients. Through the intersection of genes in

the turquoise module with prognostic risk factors in the TCGA-

PRAD dataset and genes highly expressed in PRAD, we identified a

total of 14 monocyte-related prognostic differential genes

(Figure 2H). Importantly, these 14 genes were found to be

positively correlated with each other (Figure 2I).
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FIGURE 2

Fourteen monocyte-associated differential prognostic genes were identified. (A–D) WGCNA Network Construction Parameters. (E) Weighted co-
expression network modeling based on selected power values. (F) Heatmap of trait module associations. (G) Analysis of differences in TCGA-PRAD
dataset. (H) Venn diagram based on the intersection of TCGA-PRAD differential genes, prognostic genes and monocyte-associated genes. (I)
Correlation network diagram of monocyte-associated prognostic differential genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1426474
3.3 Functional analysis of monocyte-
related prognostic differential genes

The study initially examined the relationship between 14 genes and

clinicopathological characteristics of PRAD patients, illustrating this

correlation through a heatmap (Figure 3A). Additionally, expression

heatmaps were generated for the 14 genes in TCGA-PRAD samples

and normal prostate tissue (Figure 3B). Friends analysis aimed to

develop a gene interaction network, leveraging network topology to

assess gene importance and identify key genes. Notably, TACC3

emerged as the central gene within this network (Figure 3C). A co-

expression network diagram was constructed with TACC3 at its core,

revealing that ACSM3 exhibited no correlation with TACC3, while the

remaining 13 genes showed significant correlations with TACC3

(Figure 3D). The expression levels of CCNA2, CDK1, CKS2, EZH2,

HMGB3, KHDC4, KIF2C, PKMYT1, and PLK1 were found to vary
Frontiers in Immunology 0613
significantly across different T stages, N stages, Gleason scores, and

PSA scores in TCGA-PRAD samples (Figures 3E–H). Utilizing the

CancerSEA database, which is tailored to decode the diverse functional

states of cancer cells at a single-cell level, we investigated the functions

of these 14 genes in PRAD. Our analysis revealed that these genes play

roles in DNA repair, cell cycle regulation, proliferation, inflammation,

and stemness (Figure 3I). Furthermore, through enrichment analysis,

we discovered that these genes are primarily associated with cell cycle

processes (Figure 3J).
3.4 Multiple machine learning
combinations to build PRAD
diagnostic models

In order to develop a PRAD-related diagnosis model, we utilized

three PRAD datasets: the TCGA-PRAD dataset for training, and the
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A

FIGURE 3

Monocyte-associated prognostic differential genes play an important role in PRAD. (A) Heatmap of monocyte-associated prognostic differential
gene expression in different pathologic parameters. (B) Heatmap of monocyte-associated prognostic differential gene expression in PRAD and
normal tissues. (C) Friends analysis explores key genes in monocyte-associated genes. (D) Heatmap of co-expression in monocyte-associated
genes. (E–H) Histogram of monocyte-related gene expression in different clinicopathologic parameters. (I, J) Functional analysis of monocyte-
related genes. *p< 0.05, **p< 0.01, ***p< 0.001.
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GSE62872 and GSE32571 datasets for validation. Out of 94 algorithm

combinations, the Enet[alpha=0.4] algorithm was identified as the

most effective for constructing the diagnostic model (Figure 4A). The

AUC value for the TCGA-PRAD training set was 0.9, while the AUC
Frontiers in Immunology 0714
values for the validation sets GSE62872 and GSE32571 were 0.674

and 0.945. The diagnostic model built by the Enet[alpha=0.4]

algorithm featured six genes: ACSM3, EZH2, HMGB3, KHDC4,

MAZ, and TK1 (Figure 4B). Additionally, ROC curves for these six
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FIGURE 4

The model constructed by Enet [alpha=0.4] algorithm is the best PRAD diagnostic model. (A) AUC values of diagnostic models constructed with
different combinations of algorithms. (B) Number of genes incorporated in diagnostic models constructed with different combinations of algorithms.
(C–H) Diagnostic value of genes in diagnostic models in different datasets.
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genes in the TCGA-PRAD, GSE62872, and GSE32571 datasets were

presented (Figures 4C–H). The AUC values of ACSM3, EZH2,

HMGB3, KHDC4, MAZ, and TK1 in the TCGA-PRAD dataset are

0.606, 0.894, 0.787, 0.734, 0.805, and 0.815, respectively. Similarly, in

the GSE62872 dataset, these values are 0.618, 0.621, 0.570, 0.624,

0.624, and 0.475. While the diagnostic potential of these genes for

PRAD in the initial dataset is significant, it lacks precision. To address

this, we conducted further analysis using the GSE32571 dataset as a

validation set, where the AUC values for the six genes were 0.791,

0.863, 0.777, 0.580, 0.824, and 0.834.
3.5 Constructing prognostic model

To enhance the prediction accuracy of PRAD patient prognosis,

we developed a prognostic model utilizing monocyte-related genes

through the LASSO algorithm. This model incorporated 9 genes,

with corresponding risk scores calculated as follows: ACSM3*

(-0.17156) +CCNA2*(0.11148) +CDK1*(0.05883) +CKS2*

(0.09723) +EZH2*(0.20259) +KHDC4*(0.10915) +PLK1*

(0.02555) +TACC3*(0.14386) +TK1*(0.08982) (Figures 5A, B).

Initial validation in the GSE16560 dataset indicated a notably

poorer prognosis for patients classified in the high-risk group

compared to those in the low-risk group. Additionally, our

prognostic model exhibited predictive abilities for 1-year, 5-year,

and 7-year prognoses of PRAD patients, with corresponding AUC

values of 0.667, 0.650, and 0.668, respectively (Figures 5C–E).

Subsequent validation in the TCGA-PRAD dataset confirmed the

accuracy of our prognostic model in predicting patient outcomes,

particularly for 1-year and 7-year prognoses. However, the

predictive ability for the 5-year prognosis of PRAD patients was

found to be moderate (Figures 5F–H).
3.6 Multiple machine learning approaches
to identify monocyte-associated
prognostic genes

The key genes incorporated into the prognostic model were

further analyzed. These genes were primarily associated with the

cell cycle and activation of the hormone AR (Figure 6A). Validation

from the CancerSEA database confirmed that these prognostic

genes were linked to DNA repair, cell cycle, proliferation,

angiogenesis, and inflammation (Figure 6B). Utilizing the GBM

and Random Forest algorithms, we identified the top 5 genes most

relevant to the prognosis of PRAD for display. CCNA2 and ACSM3

were found to have significant prognostic value in both the TCGA-

PRAD and GSE16560 datasets (Figures 6C–F). Subsequently,

prognostic KM curves for CCNA2 and ACSM3 were presented,

revealing an opposite prognostic difference for ACSM3 in the two

datasets, possibly due to insufficient sample size. However, the

prognostic difference for CCNA2 in the two datasets remained

consistent (Figures 6G–J). Thus, among monocyte-related genes,

CCNA2 was identified as the gene with the highest prognostic

correlation with PRAD.
Frontiers in Immunology 0815
3.7 CCNA2 is associated with monocyte
infiltration in PRAD

In order to further investigate the relationship between the

genes screened in PRAD and immune cell infiltration, we

conducted an analysis on the correlation between CCNA2

expression in PRAD and monocytes using the GSCA database.

Our results revealed a positive correlation between CCNA2

expression and the level of monocyte infiltration, with a

correlation coefficient of 0.23 (Figure 7A). Furthermore, we

conducted a correlation analysis on the TCGA-PRAD dataset to

explore the relationship between CCNA2 expression and monocyte

markers. Our findings indicated a significant association between

CCNA2 and the monocyte markers CD14 and HLA-DRA

(Figures 7B, C). In light of our research, we observed a strong

correlation between CCNA2 and the monocyte marker HLA-DRA.

Subsequently, we conducted further analysis to investigate the

connection between monocytes expressing high levels of HLA-DR

and prostate cancer using Mendelian randomization. Our results

indicate that monocytes with elevated HLA-DR expression

contribute to the progression of prostate cancer (Figure 7D). The

correlation between CCNA2 and immune cell infiltration in PRAD

was investigated using single cell analysis from the TISCH2

database. Our findings revealed that CCNA2 was linked to the

levels of monocytes and macrophages infiltration in the

GSE137829, GSE141445, GSE172301, and GSE176031 datasets

(Figures 7E–I).
3.8 Gene enrichment analysis of CCNA2

KEGG analysis revealed that CCNA2 is associated with various

pathways in PRAD, including the cell cycle, Human T-cell leukemia

virus 1 infection, Proteoglycans in cancer, and Regulation of actin

cytoskeleton. Additionally, it is linked to pathways like p53

signaling, TGF-beta signaling, and AGE-RAGE signaling in

diabetic complications (Figure 8A). GSEA analysis further

highlighted the role of CCNA2 in the immune microenvironment

of PRAD, potentially influencing immunotherapy through the PD1

signaling pathway. The association of CCNA2 with transcription

factors such as P53, HSF1, and MYC was noted, although

experimental validation is needed. Furthermore, CCNA2 was

found to regulate PRAD cell senescence, apoptosis, and

ferroptosis (Figures 8B–J).
3.9 Analysis of CCNA2 and drug affinity in
metastatic PRAD

In order to assess the binding affinity of the key gene CCNA2

with PRAD-targeted drugs, we utilized molecular docking methods

for analysis. The CB-Dock2 website, known for its molecular docking

analysis capabilities, facilitated our research. The Vina score was

employed to measure the binding affinity between genes and drugs. A

Vina score below -5 indicates strong binding activity, with lower
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scores indicating higher binding activity. The results of our GSEA

analysis revealed a close relationship between CCNA2 and the PD1

signaling pathway. We further investigated the molecular binding

affinity of CCNA2 with PD1 inhibitors and found a strong affinity in

their molecular structures. With a vina score of -8.7, indicating high

binding ability (Figure 9A). Additionally, we examined the binding
Frontiers in Immunology 0916
ability of targeted drugs for metastatic PRAD - Bicalutamide,

enzalutamide, and abiraterone - to CCNA2. Our findings

demonstrated a strong binding ability of CCNA2 to these drugs at

a molecular level (Figures 9B–D). These results not only suggest that

CCNA2 may enhance the anti-cancer effects of these drugs but also

support the potential of CCNA2 as a drug target.
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FIGURE 5

Prognostic model constructed based on monocyte-related genes has strong predictive value for the prognosis of PRAD patients. (A, B) Prognostic
modeling based on the LASSO algorithm. (C) Heatmap of expression of prognostic model genes included in the GSE16560 dataset. (D) Prognostic
differences between patients in the high- and low-risk groups in the GSE16560 dataset. (E) Predictive value of the GSE16560 dataset risk score for
prognosis in patients with PRAD. (F) Heatmap of expression of prognostic model genes included in TCGA-PRAD dataset. (G) Prognostic differences
between patients in the high- and low-risk groups in TCGA-PRAD dataset. (H) Predictive value of the TCGA-PRAD dataset risk score for prognosis in
patients with PRAD.
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3.10 Expression and prognostic value of
CCNA2 in PRAD

In this study, we investigated the role of CCNA2 as a monocyte-

related gene in PRAD. A total of 60 paired PRAD samples and

corresponding paracancerous samples were collected for analysis of

CCNA2 expression differences using immunohistochemical
Frontiers in Immunology 1017
staining. Our results showed a significantly higher expression of

CCNA2 in PRAD compared to normal tissues (Figure 10A). Violin

plots were also utilized to visually represent the expression

variances of CCNA2 in PRAD and normal tissues (Figure 10B).

Furthermore, we assessed the diagnostic potential of CCNA2 for

PRAD and found promising results, although further validation

with larger sample sizes and clinical experiments is necessary
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FIGURE 6

CCNA2 identified as the best prognostic gene among monocyte-associated genes. (A, B) Functional analysis of monocyte-related prognostic genes.
(C, D) GBM and RandomForest algorithms to screen key prognostic genes in the TCGA-PRAD dataset. (E, F) GBM and RandomForest algorithms to
screen key prognostic genes in the GSE16560 dataset. (G, H) KM curves of CCNA2 and ACSM3 in the TCGA-PRAD dataset. (I, J) KM curves of
CCNA2 and ACSM3 in the GSE16560 dataset.
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(Figure 10C). Additionally, our analysis revealed a correlation

between CCNA2 expression and the prognosis of PRAD patients,

indicating a poorer prognosis for those with high CCNA2

expression levels (Figure 10D). Notably, CCNA2 showed strong

predictive value for the prognosis of PRAD patients (Figure 10E). In

conclusion, our experimental findings confirm the differential

expression and prognostic implications of CCNA2 in PRAD.
Frontiers in Immunology 1118
4 Discussion

PRAD is a highly aggressive tumor with a poor prognosis, often

being detected in advanced stages with metastasis (33). Biomarkers

are essential in evaluating the therapeutic efficacy and prognosis of

tumors and can be an essential component of precision medicine

(34). Identifying PRAD and exploring new immune-related
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FIGURE 7

CCNA2 positively correlates with monocyte infiltration levels. (A) Correlation analysis of CCNA2 and monocyte infiltration levels. (B, C) Analysis of
CCNA2 correlation with monocyte markers. (D) Mendelian randomization analysis of high HLA-DR expressing monocytes in relation to prostate
cancer. (E–I) Single-cell analysis of the correlation between CCNA2 and immune cell infiltration.
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FIGURE 8

Functional analysis of CCNA2 in PRAD. (A) KEGG analysis of CCNA2 in PRAD. (B–J) GSEA analysis of CCNA2 in PRAD.
Frontiers in Immunology frontiersin.org1219

https://doi.org/10.3389/fimmu.2024.1426474
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1426474
prognostic markers can significantly improve the efficacy of

immunotherapy for individuals with this condition. The

progression of tumors is closely connected to changes in the

tumor microenvironment, where tumor cells impact their

surroundings by releasing various chemokines and cytokines (35).

Delving into the PRAD tumor microenvironment and discovering

novel immune-related markers are essential for developing targeted

therapeutic drugs and enhancing patient prognosis.
Frontiers in Immunology 1320
Research on monocytes in PRAD is increasing, with studies

demonstrating their ability to stimulate PRAD cell invasion through

pro-inflammatory cytokines (36). Circulating monocytes in metastatic

PRAD patients have been found to secrete CHI3L1, promoting tumor

growth (37). Our study revealed a correlation between higher levels of

monocyte immune infiltration and poorer patient prognosis, aligning

with previous findings on the carcinogenic role of monocytes. Through

WGCNA analysis, we identified 14 monocyte-related genes. Among
B

C

D

A

FIGURE 9

CCNA2 has a high binding capacity to PRAD-targeted drugs. (A) Analysis of the binding capacity of CCNA2 to PD1 inhibitors. (B) Analysis of the
binding capacity of CCNA2 to bicalutamide. (C) Analysis of the binding capacity of CCNA2 to enzalutamide. (D) Analysis of the binding capacity of
CCNA2 to abiraterone.
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these genes, CCNA2, CDK1, CKS2, EZH2, HMGB3, KHDC4, KIF2C,

PKMYT1, and PLK1 were found to be associated with various PRAD

stages, Gleason scores, and PSA scores, further highlighting their

significance in PRAD. Previous studies have also highlighted the

importance of CCNA2 in PRAD using WGCNA analysis, but its

prognostic value and correlation with monocytes have not been

confirmed with clinical samples (38). CDK1 has been identified as a

key player in promoting tumor metastasis in prostate cancer cells

through its influence on the epithelial-mesenchymal transition process.

This is achieved by regulating the phosphorylation of the ERK/GSK3b/
SNAIL pathway (39). Additionally, CDK1 has been found to modulate

the phosphorylation of the androgen receptor, with its inhibitors

demonstrating the ability to enhance the effectiveness of

enzalutamide in targeting prostate cancer cells (40, 41). Aberrant

expression of CKS2 promotes prostate tumorigenesis by promoting

proliferation and inhibiting programmed cell death (42). EZH2,

HMGB3, KIF2C, PKMYT1 and PLK1 have also been confirmed to

be related to PRAD progression (43–47). Subsequently, we developed a

diagnostic model for monocyte-related genes using machine learning
Frontiers in Immunology 1421
techniques. The Enet[alpha=0.4] method was the most recent

approach employed to construct a diagnostic model for PRAD. Our

analysis revealed that the diagnostic models built on the training set

TCGA-PRAD and validation set GSE32571 demonstrated strong

predictive value. However, in the validation set GSE62872, the AUC

value was only 0.674, potentially influenced by the expression of TK1.

Due to the imbalanced distribution of samples in the TCGA-PRAD

data set, with only 10 patients deceased out of 498 samples, we opted to

develop a prognostic model using the GSE16560 data set and validate it

with the TCGA-PRAD data set. Our findings indicate that the

prognostic model we created demonstrated robust predictive

capabilities for the prognosis of PRAD patients, particularly at the 1-

year and 7-year. GBM and RF algorithms were utilized to identify the

genes most pertinent to PRAD prognosis within the monocyte-related

genes. CCNA2 and ACSM3 were initially identified as the most

relevant genes, but due to inconsistencies with prognostic correlation

results in the TCGA-PRAD and GSE16560 datasets, ACSM3 was

subsequently excluded. Ultimately, CCNA2 was identified as the gene

most relevant to PRAD prognosis among the monocyte-related genes.
B C D E

A

FIGURE 10

CCNA2 is highly expressed in PRAD and is associated with poor patient prognosis. (A, B) Differential expression of CCNA2 in PRAD. (C) Diagnostic
predictive value of CCNA2 in PRAD. (D) KM curve of overall survival of CCNA2 in PRAD. (E) Prognostic predictive value of CCNA2 in PRAD.
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Single-cell genomics offers anovel approach to investigate the tumor

immune microenvironment by conducting genomic analysis at the

single-cell level. An increasing number of studies are utilizing this

method to gain valuable insights (48–50). The correlation between

CCNA2 and monocytes was examined using data from the TISCH2

websites. Our analysis showed a positive relationship between CCNA2

andmonocyte infiltration levels. Additionally, CCNA2 was found to be

positively associatedwith the expressionofmonocytemarkers inPRAD.

ThroughKEGGandGSEAanalysis, weuncovered the significant role of

CCNA2 in PRAD, potentially regulating cell senescence, apoptosis, and

ferroptosis. Investigation into the correlation between CCNA2 and

therapeutic drugs for PRAD revealed a strong binding affinity between

CCNA2 and three specific drugs targeting PRAD. Moreover, CCNA2

exhibited strong binding capabilities with PD1 inhibitors, suggesting its

potential as a drug targeting PRAD. However, our study is limited by a

small sample size, which may have impacted our findings. It is essential

to expand the sample size and validate these conclusions through

further experimentation.
5 Conclusion

Our study highlighted the significant roles of monocyte-related

genes in PRAD. Furthermore, we created and tested models utilizing

different machine learning techniques to forecast the diagnosis and

prognosis of PRAD patients. These results enhance our comprehension

of monocyte infiltration patterns and underscore the significance of the

monocyte-related gene CCNA2 as a valuable prognostic and diagnostic

indicator for PRAD. These insights pave the way for personalized

treatment strategies for patients with PRAD.
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Anoikis resistance regulates
immune infiltration and drug
sensitivity in clear-cell renal cell
carcinoma: insights from multi
omics, single cell analysis and in
vitro experiment
Xiangyang Wen1†, Jian Hou2†, Tiantian Qi3†, Xiaobao Cheng2†,
Guoqiang Liao1, Shaohong Fang1, Song Xiao1,
Longlong Qiu1 and Wanqing Wei4*

1The Department of Surgery, Shenzhen Longgang Second People’s Hospital, Shenzhen, China, 2Department
of Urology, The University of Hongkong-Shenzhen Hospital, Shenzhen, China, 3Department of Bone & Joint
Surgery, Peking University Shenzhen Hospital, Shenzhen, China, 4Department of Urology, Lianshui People’s
Hospital of Kangda College Affiliated to Nanjing Medical University, Huaian, China
Background: Anoikis is a form of programmed cell death essential for preventing

cancer metastasis. In some solid cancer, anoikis resistance can facilitate tumor

progression. However, this phenomenon is underexplored in clear-cell renal cell

carcinoma (ccRCC).

Methods: Using SVM machine learning, we identified core anoikis-related genes

(ARGs) from ccRCC patient transcriptomic data. A LASSO Cox regression model

stratified patients into risk groups, informing a prognostic model. GSVA and

ssGSEA assessed immune infiltration, and single-cell analysis examined ARG

expression across immune cells. Quantitative PCR and immunohistochemistry

validated ARG expression differences between immune therapy responders and

non-responders in ccRCC.

Results: ARGs such as CCND1, CDKN3, PLK1, and BID were key in predicting

ccRCC outcomes, linking higher risk with increased Treg infiltration and reduced

M1 macrophage presence, indicating an immunosuppressive environment

facilitated by anoikis resistance. Single-cell insights showed ARG enrichment in

Tregs and dendritic cells, affecting immune checkpoints. Immunohistochemical

analysis reveals that ARGs protein expression is markedly elevated in ccRCC

tissues responsive to immunotherapy.

Conclusion: This study establishes a novel anoikis resistance gene signature that

predicts survival and immunotherapy response in ccRCC, suggesting that

manipulating the immune environment through these ARGs could improve

therapeutic strategies and prognostication in ccRCC.
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1 Introduction

Clear-cell renal cell carcinoma (ccRCC) represents the most

prevalent subtype of renal carcinoma, accounting for approximately

75% of all kidney cancer cases (1). Surgical intervention and

chemotherapy currently dominate the therapeutic landscape for this

malignancy. Despite a relatively high overall survival rate associated

with ccRCC, the occurrence of metastasis in advanced stages

drastically reduces the five-year survival rate to below 8% (2). Due

to the high recurrence rate and poor prognosis of kidney cancer, it is

crucial to inhibit the distant metastasis of renal tumor cells. Whereas

tumorigenesis and metastasis are closely related to changes in the

tumor microenvironment and the migration ability of tumor cells (3).

Anoikis, a programmed cell death, is triggered by the loss of

interactions between cells and the extracellular matrix (ECM) (4).

In normal cells, these interactions are disrupted by molecules that

initiate anoikis on the cell surface and by glycosylated ECM

proteins, leading to apoptosis and cell death. The ECM confines

tumor cells to a fixed site within the tissue. Tumor cells that acquire

migratory capabilities and move to vascular sites develop resistance

to anoikis, allowing them to metastasize to distant locations via the

bloodstream, thus forming metastatic foci (5–7). Recent studies

have uncovered molecular pathways and mechanisms that regulate

resistance to anoikis, including cell adhesion molecules, growth

factors, and signaling pathways that induce epithelial-to-

mesenchymal transition (8). Downstream molecules in these

pathways, such as PI3K/AKT (9) and ERK1/2 (10), play

significant roles in apoptosis resistance and survival promotion.

The latest research indicates that the Hippo pathway and collagen

XIII are linked to anoikis resistance in breast cancer (11, 12).

T cells in the body perform surveillance functions, identifying

and eliminating abnormal cells, thereby restricting the survival of

tumor cells. The role of immune cell infiltration in shaping the

tumor microenvironment and influencing tumor progression has

been well recognized (13, 14). Numerous studies have highlighted

the impact of immune cell apoptosis on the development and

progression of various malignancies, including lung, breast, and

endometrial cancers. For instance, research by K. Planells et al.

suggested that silencing FAIM2 can inhibit the survival and drug

resistance by regulating T cells (15). Additionally, the influence of

L1CAM on the prognosis of endometrial cancer has been associated

with its role in promoting Treg infiltration, thus impairing

resistance to apoptosis (16). While existing research has

elucidated the link between immune cell apoptosis and the

prognosis of various cancers (17, 18), tumor cells can evade

immune detection by acquiring resistance to anoikis (19).

Although clinical treatments for kidney cancer include radical

surgical interventions, chemotherapy and immunotherapy, there

is still a lack of recognized and reliable standard predictors for the

diagnosis and prognosis of early-stage kidney cancer. The

relationship between immune cells and anoikis, as well as the

impact of anoikis on the survival of ccRCC patients, has been

minimally explored. Exploring the abnormal performance of

immune cells and anoikis within renal cancer tissues holds the
Frontiers in Immunology 0225
potential to uncover new molecular biomarkers that could enhance

the accuracy of renal cancer diagnosis and prognosis assessment.

In this study, we developed a prognostic model related to

anoikis that stratifies ccRCC patients into different risk categories.

Through multi-omics and single-cell analyses, we elucidated the

relationship between anoikis and immune cell infiltration across

various risk groups. To gain insight into the role of anoikis in cancer

immunotherapy, we further explored its relevance to the tumor

microenvironment. We investigated its relationship with various

immune processes and factors, including immune cell infiltration,

immunosuppressive factors, and immunostimulatory factors.

Moreover, using quantitative real-time PCR (qRT-PCR) and

immunohistochemistry (IHC), we validated the expression

patterns of four anoikis-related genes in ccRCC patients

responding to immunotherapy. This reveals the potential role of

anoikis in influencing the efficacy of immunotherapy and provides

novel targets for immunotherapeutic strategies.
2 Materials and methods

2.1 Data collection process

The Figure 1 shows the flowchart of this study. The

“TCGAbiolinks” R package was utilized to retrieve transcriptional

data for clear cell renal carcinoma from the TCGA database

(TCGA-KIRC; http://cancergenome.nih.gov). We downloaded the

data of 542 ccRCC tumor tissues and 72 adjacent non-tumoral

tissues. While the chi-square test was applied to compare the

clinical characteristics of the two data sets to ensure that random

matching did not bias the distribution of clinical characteristics.

Anoikis-related genes (ARGs) were sourced from the GeneCards

database (https://www.genecards.org/), resulting in the acquisition

of 358 ARGs. Single-cell data and a validation cohort for ccRCC

transcriptomes were procured from the GEO database.
2.2 Differential ARGs identification

We performed differential gene expression analysis on the

TCGA-KIRC dataset (including tumor and adjacent non-tumor

RNA transcriptomes) using the limma software package to identify

differentially expressed genes (DEGs) (P < 0.05) (20). An

intersection with the 358 ARGs yielded a subset of differential

ARGs for subsequent analyses.
2.3 Anoikis functional enrichment

The R packages “GSVA” (21) and “GSEABase” (22) were

employed to perform enrichment analysis on the DEGs. The

focus of the analysis was to identify the enrichment levels of the

anoikis-DEGs on KEGG (Kyoto Encyclopedia of Genes and

Genomes) and GO (Gene Ontology) (23). In addition, we have
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applied Cytoscape software (24) and the STRING database (https://

cn.string-db.org/) to explore the protein-protein interactions (25).
2.4 Construction of anoikis-related
prognostic risk model

First, we selected core prognostic anoikis-related genes (ARGs)

using the SVM-RFE algorithm (26). Then, we evaluated the

relationship between ARG expression levels and survival in

ccRCC patients with univariate Cox regression analysis. Further,

we constructed a prognostic model using LASSO Cox regression,

utilizing the R packages “survival” and “forestplot”. Subsequently,

multivariate Cox proportional hazards regression analysis was

conducted to identify critical clinical phenotypes.

The risk score was calculated as the sum of the products of the

coefficients and the expression levels of core ARGs (27). We

categorized patients into high-risk and low-risk groups based on

ARGs-Riskscore median value. In addition, we performed principal

component analysis (PCA) mix with Kaplan-Meier analysis to

investigate the relationship between the anoikis-based risk scoring

and overall survival of ccRCC patients (28). The accuracy of the

predictive model was further evaluated using ROC curves. At last,

we applied univariate-multivariate Cox regression to validate the

predictive power of this risk score model.
2.5 Construction and validation
of nomogram

Using multivariate Cox and stepwise regression, we

incorporated age, TMN staging, and risk scores to construct a

prognostic Nomogram to predict overall survival in patients with

ccRCC (27, 29). Calibration plots and decision curve analysis

(DCA) were constructed to confirm the model’s efficacy and

clinical relevance (30). We evaluated the prognostic utility of this
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model sequentially in the training and test cohorts and in the entire

TCGA dataset. This evaluation employed receiver operating

characteristic (ROC) curves to assess 1, 3, and 5-year survival

predictions (31). Independent prognostic determinants were

delineated through sequential univariate and multivariate Cox

regression analyses (32), which considered risk scores derived

from patient age, gender, and comprehensive TNM staging. The

development and assessment of the nomogram were facilitated by

the “rms” package in R, ensuring robust discrimination and

calibration capabilities within the training dataset.
2.6 Immune profile of ccRCC patients
based on anoikis resistance

On the basis of the expression of the anoikis-related genes

(ARGs), we divided ccRCC patients into two groups: high-risk and

low-risk. Then we used the ssGSEA approach to profile the cellular

composition of the tumor microenvironment (TME) in the two risk

groups (33), while matrix scores and immune scores were assessed

to identify differences between these categories. Spearman’s analysis

was employed to correlate immune cell characteristics with risk

scores. And we examined the immune profiles of all patients

through various computational techniques (including cibsort,

timer, abs, quantitative, XCELL, and EPIC) (34, 35). Finally, we

employed the ssGSEA methodology to assess the immune

landscape and scrutinized checkpoint molecules to highlight

differences between two groups.
2.7 Single-cell analysis of ccRCC based
on ARGs

We processed single-cell RNA sequence data using the protocol

of the “Seurat” software package (version 4.0.5), while gene

expression levels were normalized using the LogNormalize method.
FIGURE 1

The workflow of this study.
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Subsequent analysis involved clustering cells and applying t-

distributed Stochastic Neighbor Embedding (t-SNE) to identify

cellular subpopulations. Our next studies focused on the expression

of four anoikis-related genes (ARGs) in ccRCC immune cell

subpopulations, while we used a “CellChat” to study intercellular

communication between macrophages and dendritic cells.
Frontiers in Immunology 0427
2.8 Clinical ccRCC samples collection

Tissue specimens from ccRCC patients who underwent

immunotherapy were acquired from the Department of Urology

at the University of Hong Kong Shenzhen Hospital during the

period from January 2022 to January 2024. Identifiable details
B
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A

FIGURE 2

ARGs expression patterns in ccRCC. (A) Heat map of ARGs expression. (B) Volcano plot of ARGs differential genes. (C) Enrichment analysis. (D) KEGG
analysis based on ARGs. (E) DEGs of ARGs. (F) Univariate Cox analysis on ARGs.
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concerning the origins of these tissues were excluded, and the Ethics

Committee of the hospital granted approval for this research.
2.9 cDNA production and PCR analysis

All cells were acquired from Procell Life Science & Technology

Co., Ltd., and maintained in Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 10% fetal bovine serum (FBS) and 1%

Penicillin-Streptomycin. The culture conditions were set at 37°C

with 5% CO2 (36, 37). Cells at a density of 5×10^5 were plated in

six-well plates and incubated for 48 hours. Subsequently, cellular

lysis was performed using TRIzol (Invitrogen). RNA was then
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extracted using a Total RNA Kit. A spectrophotometer was

employed to assess the concentration and purity of the RNA.

Following this, cDNA synthesis was conducted using an mRNA

Reverse Transcription Kit (Roche). Finally, the quantification of

target gene expression was achieved by employing a SYBR Green

RNA Kit as per the manufacturer’s instructions (38).
2.10 Immunohistochemistry

Immunohistochemistry (IHC) was used to validate differential

expression levels of anoikis-related genes (ARGs) in ccRCC clinical

samples. First, the ccRCC tissue sections were deparaffinized with
B
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FIGURE 3

Core anoikis genes screening. (A, B) SVM–RFE screens the important anoikis ARGs. (C) Top 20 important ARGs. (D) Venn diagram. (E) ARGs
interactions and correlations. (F) CNV frequency. (G) ARGs’ location in chromosome.
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xylene and washed stepwise with ethanol to rehydrate them. These

sections were then treated with 3% hydrogen peroxide for 15 minutes

to inhibit endogenous peroxidase activity, followed by antigen

retrieval using 1 mM EDTA. Subsequently, the sections underwent

overnight incubation at 4°C with antibodies against the model genes,

diluted at a ratio of 1:200 (SANTACRUZ). Following this, we applied

PolyHRP Anti-Mouse/Rabbit IgG Detection System (Solarbio,

China) and visualized the proteins using diaminobenzidine.

Hematoxylin was used for counterstaining before the sections were

dehydrated. The prepared slides were examined under a Zeiss
Frontiers in Immunology 0629
microscope. For quantitative analysis, the staining intensity was

measured and analyzed using ImageJ and GraphPad Prism version

7 software. Statistical significance was established at P-value < 0.05.
2.11 Statistical analysis

Statistical analyses in this study got executed utilizing the R

software (release 4.0.2, https://www.r-project.org). Student’s t-test

was applied to calculate the DEGs. Comparisons of overall survival
B
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FIGURE 4

Cluster analysis for ccRCC patients. (A, B) cRCC patients were classified into two clusters based on ARGs profiles. (C, D) UAMP and tSNE analyses.
(E) Survival analysis. (F) Heatmap based on ARGs and clinical characteristics of ccRCC patients. (G) ARGs expression between different clusters.
(***P < 0.001).
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(OS) was performed using Kaplan–Meier analysis coupled with log-

rank testing. P < 0.05 was established for statistical significance.
3 Results

3.1 Molecular insights into ARGs regulation
and prognostic significance in ccRCC

The workflow of this study is depicted in Figure 1, with a

comprehensive methodology described in the Methods section.

Initially, transcriptome data and clinical information of 161 ARGs

were extracted from the TCGA-KIRC cohort. Analysis revealed that

118 ARGs were upregulated, whereas 43 genes showed

downregulation. Expression patterns of these differentially

expressed genes are visualized in heatmaps and volcano plots

(Figures 2A, B). Functional enrichment analysis indicated that the

majority of ARGs are involved in processes such as the extracellular

matrix, positive regulation of the MAPK cascade, regulation of the

apoptotic signaling pathway, and the ERK1 and ERK2 cascade

(Figure 2C), aligning with current insights into the mechanisms of

anoikis resistance. Additionally, the HIF-1 signaling pathway and
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the PI3K-Akt signaling pathway were implicated in this context

(Figure 2D). A protein interaction network further identified EGFR

as a key upstream signaling molecule (Figure 2E). Finally,

significant correlations between 81 ARGs and the prognosis of

ccRCC were identified, with 23 ARGs serving as potential

biomarkers for favorable prognosis (Figure 2F).
3.2 Anoikis genetic epigenetics and
prognostic biomarkers in ccRCC

To elucidate the genetic underpinnings of ccRCC, a variety of

machine learning techniques were employed for gene screening.

Initially, the SVM-RFE algorithm was utilized to validate the

screening of candidate genes following a 5-fold cross-validation

process (Figures 3A, B). Subsequently, an ensemble RF algorithm

pinpointed feature genes with a significance threshold exceeding 2,

with CDKN2A exhibiting the highest importance (Figure 3C). An

intersection of candidate genes identified by both SVM-RFE and RF

algorithms highlighted 19 ARGs significantly impacting the

prognosis of ccRCC patients (Figure 3D). In pursuit of

understanding the relationships among these pivotal genes,
B

C D E

F G H

I J K

A

FIGURE 5

Development and validation of a risk prognostic model for ccRCC patients. (A, B) Lasso Cox regression analysis. (C-E) K-M curves of ccRCC patients
under high and low risk. (F-H) ROC curves of ccRCC patients under high and low risk. (I) Heatmaps exhibit 4 core ARGs expression patterns. (J) The
riskscore levels in two ARGclusters. (K) Alluvial plots.
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correlation analyses were conducted. The results indicated that BID

and PLK1 are markers of poor prognosis in ccRCC patients, and

most ARGs demonstrated synergistic interactions (Figure 3E). The

role of mutations in tumorigenesis was also investigated,

particularly focusing on CNV mutation frequencies. Interestingly,

a significant gain was only observed in CDC25C, suggesting that

mutations might not be the primary mechanism influencing anoikis

resistance (Figures 3F, G).
3.3 ARGs unsupervised cluster analysis

Clustering of ccRCC patients was performed based on the

expression levels of 19 ARGs. When k equals 2, the patients were

effectively stratified into two distinct groups (Figures 4A, B).

Validation of clustering efficacy was provided by UMAP and tSNE

scores (Figures 4C, D). Survival analysis indicated significant

prognostic differences between these two subgroups of ccRCC

(Figure 4E), with Group A exhibiting superior overall survival (OS)

compared to Group B. An examination of clinical data revealed

distinct ARG expression patterns and staging characteristics between

the subgroups, where higher ARG expression was associated with

advanced pathological stages (Figures 4F, G).
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3.4 Development and validation of a risk
prognostic model for ccRCC patients

Utilizing LASSO Cox regression and multivariate analysis, four

core ARGs were identified from the 19 ARGs, and a prognostic

model termed ARGs-Riskscore was established (Figures 5A, B).

This model assigns a specific risk coefficient to each anoikis-related

gene to calculate the riskscore, categorizing patients into high-risk

and low-risk groups (Figure 5C). Kaplan-Meier curves

demonstrated poorer survival outcomes for the high-risk group

compared to the low-risk group (Figures 5D, E). ROC curve analysis

revealed that the model’s AUC value exceeded 0.6, indicating

substantial accuracy (Figures 5F–H). Furthermore, in the high-

risk group, the expression levels of CDKN3, PLK1, and BID were

elevated, whereas CCND1 showed higher expression in the low-risk

group (Figure 5I). A higher ARG expression level corresponded to

an increased riskscore (Figures 5J, K).

Further, we integrated the risk associated with ARGs and

clinical data from patients with ccRCC to develop a nomogram

that estimates survival probabilities based on age, stage, and risk

scores (Supplementary Figure S1A). Calibration plots confirmed the

nomogram’s accuracy in predicting 1-year, 3-year, and 5-year

overall survival (OS) rates (Supplementary Figure S1B). Analysis
B
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A

FIGURE 6

Immune landscape of two ARGcluster. (A) Immune cell infiltration levels at two ARGcluster patients. (B) GSEA analysis of the enrichment of ARGs.
(C) GSVA enrichment analysis. (*P < 0.05; **P < 0.01; ***P < 0.001).
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of hazard ratios indicated a strong correlation between age, cancer

grade, risk scores, and tumor stage with OS (Supplementary Figure

S1C). Furthermore, analysis of cumulative hazards revealed that

patients with ccRCC who had higher nomorisk scores exhibited

increased mortality risks (Supplementary Figure S1D).
3.5 Anoikis affects tumor
immune microenvironment

The tumor immune microenvironment plays a pivotal role in the

immune evasion processes of cancer. The onset of anoikis resistance is

predicated on achieving immune escape. Consequently, we divided

ccRCC patients into two subgroups based on the expression patterns

of anoikis genes. The findings revealed that patients with high

expression of anoikis genes exhibited significantly higher levels of

immune infiltration, particularly with MDSC cells (Figure 6A),

underscoring a close association between the anoikis process and

the immunosuppressive microenvironment. Enrichment analyses

indicated that, compared to cluster A, the tight junction and PPAR

signaling pathways were significantly enriched in cluster B

(Figures 6B, C), suggesting their major roles in shaping the

immunosuppressive microenvironment. Patients with ccRCC of

different risk levels demonstrated markedly distinct survival

outcomes. Therefore, we further examined the levels of immune cell
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infiltration in patients classified into high-risk and low-risk groups. It

was observed that the proportions of immune cell infiltration varied

between different risk groups of ccRCC patients (Figure 7A). Notably,

Tregs and macrophages M0 were significantly more prevalent in

patients at higher risk (Figure 7B). Interestingly, there was a significant

negative correlation between the infiltration of macrophages M0 and

CD8 T cells, and between Tregs and memory CD4 T cells (Figure 7C),

highlighting the crucial impact of the immunosuppressive

microenvironment on anoikis resistance (Figure 7D).

Furthermore, as risk scores increased, changes were noted in the

patterns of immune cell infiltration (Figure 8J). For example, the

infiltration levels of macrophages M0 and Tregs gradually increased

with rising risk scores (Figures 8A, F, H, I). In contrast, other cell

types, such as macrophages M1 and NK cells, showed a decrease in

infiltration as risk scores increased (Figures 8B–E, G).
3.6 Single-cell analysis reveals anoikis
expression pattern in ccRCC

The advent of single-cell technologies has provided a crucial

avenue for exploring cellular subtypes. Utilizing single-cell analysis

and annotation, we categorized cell suspensions from patients

treated with anti-PD-L1 into 24 immune cell subtypes and nine

principal cell types (Figures 9A, C). Importantly, the proportions of
B

C

D

A

FIGURE 7

Immune infiltration in under different risk ccRCC patients (A, B) Immune cells infiltration analysis. (C) Correlation of 23 immune cells. (D) TME score.
(Wilcox test, ***P < 0.001).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2024.1427475
cellular components from samples of different patients

demonstrated notable disparities. For instance, the Tumor 1

sample predominantly consisted of mono/macrophages, whereas

CD8 T cells predominated in Blood4 (Figure 9D). We further

elucidated the expression and distribution of four core ARGs
Frontiers in Immunology 1033
constituting a prognostic model across various cell subtypes

(Figure 9E). Our findings reveal that BID exhibits the highest

expression in DC and T proliferation cells, with subsequent

analyses revealing enhanced communication between DC,

proliferative T cells, and other cell subtypes (Figures 9B, F).
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FIGURE 8

Correlation analysis of riskscore and immune cells. (A-I) Correlation of riskscore and immune cells. (J) Correlation of four ARGs and immune cells.
(*P < 0.05; **P < 0.01; ***P < 0.001).
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3.7 Evaluation of anoikis gene expression
by realtime PCR and IHC

To investigate the expression of anoikis genes, primary renal

carcinoma cell lines and normal renal cell lines were cultured, and

the expression levels of four central anoikis resistance genes (ARGs)
Frontiers in Immunology 1134
were compared between these two cell types. The primary cell lines

were assessed to ensure the reliability of the results (Figure 10A).

Furthermore, upon culturing the cells up to the tenth passage,

mRNA levels were re-evaluated (Figure 10B). Intriguingly, despite

the expressions of BID, CDKN3, and PLK1 being consistently

higher in the renal carcinoma cell lines than in the normal renal
B

C D

E

F

A

FIGURE 9

Single cell analysis reveals anoikis genes expression. (A, C) Umap of single cell clusters. (B) Cell communications of DCs and T proliferation cells.
(D) Cell types distribution in each ccRCC sample. (E, F) 4 core ARGs expression patterns in immune cells.
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cells across both the primary and tenth passages, shifts in the gene

expression levels among the carcinoma lines were noted. Notably,

the expression pattern of CCND1 demonstrated an inverse trend.

Subsequent analyses involved examining the expression levels of

these four core ARGs in cDNA extracted from normal renal tissues

and renal carcinoma tissues. The results indicated a higher

expression of all four ARGs in the carcinoma tissues

(Figure 10C). Immunohistochemistry confirmed that the protein

levels of ARGs corresponded with the trends observed at the gene

expression level (Figure 11).
3.8 Potency of the anoikis signature in
modulating drug resistance

In order to elucidate the association between the anoikis-related

signature and drug responsiveness, the IC50 indices for various

medications in ccRCC were evaluated (Supplementary Figure S2).

This analysis implies that individuals with renal carcinoma who are

categorized within the high-risk group could exhibit resistance to

both chemotherapy and immunotherapeutic approaches.

Conversely, this suggests opportunities for modulating drug

efficacy through targeted interventions.
Frontiers in Immunology 1235
4 Discussion

As the complexity and diversity of clear cell renal cell carcinoma

(ccRCC) become increasingly apparent (39), numerous therapeutic

strategies have been introduced into clinical settings to address this

condition. Cellular molecular-targeted therapy is the most effective

method of treating metastatic ccRCC as patients suffering from

kidney cancer do not respond to radiotherapy and chemotherapy.

The European Urology Association (EUA) and the United States

National Comprehensive Cancer Network (NCCN) recommended

the molecular-targeted drugs as the first and second-line medicine

for metastatic ccRCC. At present, there are no universally accepted

and reliable predictors for the diagnosis and prognosis of ccRCC.

The challenge of accurately predicting outcomes persists,

highlighting the critical need for the discovery of new biomarkers.

These biomarkers are crucial for enhancing the prognosis of ccRCC

(40). The exploration of abnormally expressed genes in ccRCC

tissues can potentially help identify new molecular biomarkers for

the diagnosis and prognosis of ccRCC. Central to this endeavor is

anoikis, a cellular process essential for controlling tumor

proliferation, spread, and future outcomes (41, 42). Research has

linked the development, advancement, and prognosis of ccRCC to

specific genes involved in anoikis (43). The goal of this discussion is
B

C

A

FIGURE 10

Anoikis genes’ expression levels in ccRCC cells and tissues. (A) ARGs mRNA expression levels in primary ccRCC cells. (B) ARGs mRNA expression
levels in ccRCC cells after culturing for 5 weeks (C) The mRNA levels of ARGs in ccRCC and normal kidney tissues. (*P < 0.05; ***P < 0.001).
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to integrate findings on the connection between genes related to

anoikis and the prognosis of ccRCC, examining their potential

relevance in clinical practice and providing a novel theoretical and

practical framework for tailored therapeutic approaches.

In this study, we identified critical roles of anoikis-associated

genes in ccRCC and developed a predictive model. Herein, we

described the differential expression of anoikis-associated genes in

tumor tissues relative to normal samples and investigate the

potential regulatory role of anoikis-associated genes in controlling

the ccRCC immune microenvironment. In addition, we investigated

the relationship between anoikis-associated genes expression levels

and immunotherapy. An analysis of 161 anoikis-associated genes

revealed four that were conclusively linked to the prognosis of

ccRCC. Our study confirmed that BID, CCND1, CDKN3, and

PLK1 showed upregulation in ccrCC tissues, with significantly

higher expression compared to normal cells. It is reasonable to

speculated that these four genes play critical roles in ccRCC

tumorigenesis and progression. This study aimed to gain insights

into the underlying mechanisms associated with the anoikis-
Frontiers in Immunology 1336
associated gene that was associated with immune-related factors.

BID, a pro-apoptotic protein in the Bcl-2 family, functions

collaboratively with BAX to facilitate cellular apoptosis (44).

Research by Ji Miao and colleagues showed that the expression

levels of Bid correlate with the susceptibility of liver cancer cells to

chemotherapeutic agents (45). Another key protein, Cyclin D1

(CCND1), a crucial component of the D-type cyclin group,

regulates the progression of the cell cycle (46). Recent studies

suggested the USP10/CCND1 pathway as a potential therapeutic

target for glioblastoma (GBM) patients (47). Investigations by

Hongying Zhang and team found that CCND1 suppression,

achieved by gene silencing, impedes the differentiation of hepatic

cancer stem cells by inhibiting autophagy (48). Furthermore, the

expression patterns of CCND1 are strongly correlated with the

initiation and progression of multiple cancer types (49–51).

CDKN3, a cyclin-dependent kinase inhibitor, is identified as a

crucial therapeutic target for cervical cancer (52) and plays a role in

the malignant advancement of pancreatic cancer by interacting with

PSMD12 (53). Its expression in various cancers modulates
FIGURE 11

Immunohistochemical results of ARGs proteins.
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resistance to treatment. Aolin Li and colleagues demonstrated that

ZNF677 represses the malignant evolution of renal cell carcinoma

through the reduction of CDKN3 expression (54). Furthermore, the

circular RNA circSDHC binds to miR-127–3p competitively,

thereby diminishing CDKN3 expression in renal cell carcinoma

and curbing its malignant advancement (55). These observations

corroborate our analysis, thereby confirming the precision of

our findings.

Polo-like kinase 1 (PLK1), an eminent serine/threonine kinase

within the protein kinase superfamily, promotes the advancement

of mitosis (56). Elevated levels of PLK1 are commonly observed in

cancerous tissues, highlighting its potential as a target for

therapeutic intervention (57). Suppression of PLK1 enhances the

response of pancreatic cancer cells to immunotherapeutic strategies

(58). Likewise, a reduction in PLK1 activity increases the sensitivity

of breast cancer to radiation therapy (59), whereas enhanced

expression of PLK1 contributes to the development and

advancement of liver tumors (60).

Infiltration of Treg cells is frequently associated with poorer

prognoses across various cancers, and a reduction in Treg cells has

been observed to initiate and enhance antitumor immune responses.

In this study, the risk score exhibited a significant positive correlation

with the level of Treg cell infiltration, whereas an inverse trend was

noted for NK cells, suggesting a critical role for the

immunosuppressive microenvironment in anoikis resistance,

subsequently impacting the overall survival of patients with ccRCC.

The signaling cascade mediated by PPAR, documented to enhance

angiogenesis within tumor matrices (61), is associated with the

pathogenesis of both inflammatory and neoplastic conditions (62).

Furthermore, this pathway has been shown to trigger anoikis in

certain cell types under in vitro conditions (63). Our findings suggest

that the PPAR pathway may serve as a primary mechanism by which

Tregs orchestrate an immunosuppressive microenvironment, thereby

facilitating anoikis resistance, which in turn supports distant

metastasis and immune evasion in ccRCC. Conventional surgical

treatment and radiotherapy and chemotherapy cannot be effective to

treat patients suffering from late-stage ccRCC. Maybe more research

should be conducted on the gene targets and immune checkpoint

inhibitors associated with ccRCC as the results can potentially help

predict the prognosis of antitumor immunotherapy. It is worth

noting that the results of our research reflected the association of

anoikis-associated genes with a substantial prognosis of ccRCC and

confirmed the reliability of the analytical results obtained. We may

infer that the modulation of the Anoikis-associated genes activity

associated with ccRCC could potentially help obtain results that can

help improve the therapeutic techniques.

As we know, there is a minor number of relevant researches

currently available to explain the functions of anoikis in ccRCC.

Our work provided valuable information on how the anoikis-

associated gene participated in cancer immunotherapy, which

may potentially help improve the processes of ccRCC targeting

therapy. In our next step, we need to extend the existing database

and mutually authenticate to larger database. Experiments should

be performed at the molecular, cytological, and animal levels to

investigate the relationship between the prognosis of the patients
Frontiers in Immunology 1437
and the properties of the clinical tumor tissue samples. We believe

that our results can potentially help for improving the efficiency of

diagnosis, treatment methods, and survival prognosis of

ccRCC patients.
5 Conclusion

In this study, we established the association between anoikis,

immune cell infiltration, and the prognosis of clear cell renal cell

carcinoma (ccRCC) patients through multi-omics and single-cell

analyses. Furthermore, we elucidated their impact on the efficacy of

immune therapy. These findings not only provide novel insights

into the role of apoptosis in cancer progression but also highlight

new research directions for immunotherapeutic strategies

in ccRCC.
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SUPPLEMENTARY FIGURE 1

Nomogram establishment based on risk and clinical information. (A) A
monogram graph to predict ccRCC patients’ prognosis. (B) Calibration

plots. (C) Multivariate analysis. (D) Cumulative risk values analysis.
(*P < 0.05; ***P < 0.001).

SUPPLEMENTARY FIGURE 2

Drug sensitivity analysis.
References
1. Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 2016 WHO
classification of tumours of the urinary system and male genital organs-part B: prostate
and bladder tumours. Eur Urol. (2016) 70:106–19. doi: 10.1016/j.eururo.2016.02.028

2. Choueiri TK, Motzer RJ. Systemic therapy for metastatic renal-cell carcinoma. N
Engl J Med. (2017) 376:354–66. doi: 10.1056/NEJMra1601333

3. Wang J, Zuo Z, Yu Z, Chen Z, Meng X, Ma Z, et al. et al: Single-cell transcriptome
analysis revealing the intratumoral heterogeneity of ccRCC and validation of MT2A in
pathogenesis. Funct Integr Genomics. (2023) 23:300. doi: 10.1007/s10142-023-01225-7

4. Cancer Genome Atlas Research N, Linehan WM, Spellman PT, Ricketts CJ,
Creighton CJ, Fei SS, et al. et al: comprehensive molecular characterization of papillary
renal-cell carcinoma. N Engl J Med. (2016) 374:135–45. doi: 10.1056/NEJMoa1505917

5. Jin L, Chun J, Pan C, Kumar A, Zhang G, Ha Y, et al. et al: The PLAG1-GDH1
Axis Promotes Anoikis Resistance and Tumor Metastasis through CamKK2-AMPK
Signaling in LKB1-Deficient Lung Cancer.Mol Cell. (2018) 69:87–99 e87. doi: 10.1016/
j.molcel.2017.11.025
6. Buchheit CL, Angarola BL, Steiner A, Weigel KJ, Schafer ZT. Anoikis evasion in

inflammatory breast cancer cells is mediated by Bim-EL sequestration. Cell Death
Differ. (2015) 22:1275–86. doi: 10.1038/cdd.2014.209

7. Chen J, Gao F, Liu N. L1CAM promotes epithelial to mesenchymal transition and
formation of cancer initiating cells in human endometrial cancer. Exp Ther Med. (2018)
15:2792–7. doi: 10.3892/etm

8. She K, Yang W, Li M, Xiong W, Zhou M. FAIM2 promotes non-small cell lung
cancer cell growth and bone metastasis by activating the wnt/beta-catenin pathway.
Front Oncol. (2021) 11:690142. doi: 10.3389/fonc.2021.690142

9. Manogaran P, Beeraka NM, Paulraj RS, Sathiyachandran P, Thammaiappa M.
Impediment of cancer by dietary plant-derived alkaloids through oxidative stress:
implications of PI3K/AKT pathway in apoptosis, autophagy, and ferroptosis. Curr Top
Med Chem. (2023) 23:860–77. doi: 10.2174/1568026623666230111154537
10. Sugiura R, Satoh R, Takasaki T. ERK: A double-edged sword in cancer. ERK-

dependent apoptosis as a potential therapeutic strategy for cancer. Cells. (2021) 10
(10):2509. doi: 10.3390/cells10102509
11. Liu X, Fu Y, Zhang G, Zhang D, Liang N, Li F, et al. et al: miR-424-5p Promotes

Anoikis Resistance and Lung Metastasis by Inactivating Hippo Signaling in Thyroid
Cancer. Mol Ther Oncolytics. (2019) 15:248–60. doi: 10.1016/j.omto.2019.10.008

12. Zhang H, Fredericks T, Xiong G, Qi Y, Rychahou PG, Li JD, et al. Membrane
associated collagen XIII promotes cancer metastasis and enhances anoikis resistance.
Breast Cancer Res. (2018) 20:116. doi: 10.1186/s13058-018-1030-y

13. Xia Z, Chen S, He M, Li B, Deng Y, Yi L, et al. Editorial: Targeting metabolism to
activate T cells and enhance the efficacy of checkpoint blockade immunotherapy in
solid tumors. Front Immunol. (2023) 14:1247178. doi: 10.3389/fimmu.2023.1247178

14. Gong X, Chi H, Xia Z, Yang G, Tian G. Advances in HPV-associated tumor
management: Therapeutic strategies and emerging insights. J Med Virol. (2023) 95:
e28950. doi: 10.1002/jmv.28950

15. Planells-Ferrer L, Urresti J, Soriano A, Reix S, Murphy DM, Ferreres JC, et al. et
al: MYCN repression of Lifeguard/FAIM2 enhances neuroblastoma aggressiveness. Cell
Death Dis. (2014) 5:e1401. doi: 10.1038/cddis.2014.356
16. Grage-Griebenow E, Jerg E, Gorys A, Wicklein D,Wesch D, Freitag-Wolf S, et al.
et al: L1CAM promotes enrichment of immunosuppressive T cells in human pancreatic
cancer correlating with Malignant progression. Mol Oncol. (2014) 8:982–97.
doi: 10.1016/j.molonc.2014.03.001

17. Zhang X, Zhang P, Cong A, Feng Y, Chi H, Xia Z, et al. Unraveling molecular
networks in thymic epithelial tumors: deciphering the unique signatures. Front
Immunol. (2023) 14:1264325. doi: 10.3389/fimmu.2023.1264325

18. Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, et al. Apoptosis: a
Janus bifrons in T-cell immunotherapy. J Immunother Cancer. (2023) 11(4):e005967.
doi: 10.1136/jitc-2022-005967

19. Chaojun L, Pengping L, Yanjun L, Fangyuan Z, Yaning H, Yingbo S, et al. TJP3
promotes T cell immunity escape and chemoresistance in breast cancer: a
comprehensive analysis of anoikis-based prognosis prediction and drug sensitivity
stratification. Aging (Albany NY). (2023) 15:12890–906. doi: 10.18632/aging.v15i22

20. Li C, Liu T, Liu Y, Zhang J, Zuo D. Prognostic value of tumour
microenvironment-related genes by TCGA database in rectal cancer. J Cell Mol Med.
(2021) 25:5811–22. doi: 10.1111/jcmm.16547

21. Yuan Q, Lu X, Guo H, Sun J, Yang M, Liu Q, et al. Low-density lipoprotein
receptor promotes crosstalk between cell stemness and tumor immune
microenvironment in breast cancer: a large data-based multi-omics study. J Transl
Med. (2023) 21:871. doi: 10.1186/s12967-023-04699-y

22. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J,
et al. et al: STRING v10: protein-protein interaction networks, integrated over the tree
of life. Nucleic Acids Res. (2015) 43:D447–452. doi: 10.1093/nar/gku1003

23. Zhang J, Xiao J, Wang Y, Zheng X, Cui J, Wang C. A universal co-expression
gene network and prognostic model for hepatic-biliary-pancreatic cancers identified
by integrative analyses. FEBS Open Bio. (2022) 12:2006–24. doi: 10.1002/2211-
5463.13478

24. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape:
a software environment for integrated models of biomolecular interaction networks.
Genome Res. (2003) 13:2498–504. doi: 10.1101/gr.1239303

25. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. OMICS. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

26. Song G, Peng G, Zhang J, Song B, Yang J, Xie X, et al. Uncovering the potential
role of oxidative stress in the development of periodontitis and establishing a stable
diagnostic model via combining single-cell and machine learning analysis. Front
Immunol. (2023) 14:1181467. doi: 10.3389/fimmu.2023.1181467

27. Wu Z, Zeng J, WuM, Liang Q, Li B, Hou G, et al. Identification and validation of
the pyroptosis-related long noncoding rna signature to predict the prognosis of patients
with bladder cancer. Med (Baltimore). (2023) 102:e33075. doi: 10.1097/
MD.0000000000033075

28. Zhang B, Huang B, Zhang X, Li S, Zhu J, Chen X, et al. PANoptosis-related
molecular subtype and prognostic model associated with the immune
microenvironment and individualized therapy in pancreatic cancer. Front Oncol.
(2023) 13:1217654. doi: 10.3389/fonc.2023.1217654
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427475/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427475/full#supplementary-material
https://doi.org/10.1016/j.eururo.2016.02.028
https://doi.org/10.1056/NEJMra1601333
https://doi.org/10.1007/s10142-023-01225-7
https://doi.org/10.1056/NEJMoa1505917
https://doi.org/10.1016/j.molcel.2017.11.025
https://doi.org/10.1016/j.molcel.2017.11.025
https://doi.org/10.1038/cdd.2014.209
https://doi.org/10.3892/etm
https://doi.org/10.3389/fonc.2021.690142
https://doi.org/10.2174/1568026623666230111154537
https://doi.org/10.3390/cells10102509
https://doi.org/10.1016/j.omto.2019.10.008
https://doi.org/10.1186/s13058-018-1030-y
https://doi.org/10.3389/fimmu.2023.1247178
https://doi.org/10.1002/jmv.28950
https://doi.org/10.1038/cddis.2014.356
https://doi.org/10.1016/j.molonc.2014.03.001
https://doi.org/10.3389/fimmu.2023.1264325
https://doi.org/10.1136/jitc-2022-005967
https://doi.org/10.18632/aging.v15i22
https://doi.org/10.1111/jcmm.16547
https://doi.org/10.1186/s12967-023-04699-y
https://doi.org/10.1093/nar/gku1003
https://doi.org/10.1002/2211-5463.13478
https://doi.org/10.1002/2211-5463.13478
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.3389/fimmu.2023.1181467
https://doi.org/10.1097/MD.0000000000033075
https://doi.org/10.1097/MD.0000000000033075
https://doi.org/10.3389/fonc.2023.1217654
https://doi.org/10.3389/fimmu.2024.1427475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wen et al. 10.3389/fimmu.2024.1427475
29. Zhang S, Jiang C, Jiang L, Chen H, Huang J, Gao X, et al. et al: Construction of a
diagnostic model for hepatitis B-related hepatocellular carcinoma using machine
learning and artificial neural networks and revealing the correlation by
immunoassay. Tumour Virus Res. (2023) 16:200271. doi: 10.1016/j.tvr.2023.200271

30. Liu Y, Wu Z, Feng Y, Gao J, Wang B, Lian C, et al. Integration analysis of single-
cell and spatial transcriptomics reveal the cellular heterogeneity landscape in
glioblastoma and establish a polygenic risk model. Front Oncol. (2023) 13:1109037.
doi: 10.3389/fonc.2023.1109037

31. Li C, Wirth U, Schardey J, Ehrlich-Treuenstatt VV, Bazhin AV, Werner J, et al.
An immune-related gene prognostic index for predicting prognosis in patients with
colorectal cancer. Front Immunol . (2023) 14:1156488. doi : 10.3389/
fimmu.2023.1156488

32. Zhang B, Sun J, Guan H, Guo H, Huang B, Chen X, et al. Integrated single-cell
and bulk RNA sequencing revealed the molecular characteristics and prognostic roles
of neutrophils in pancreatic cancer. Aging (Albany NY). (2023) 15:9718–42.
doi: 10.18632/aging.v15i18

33. Sun Z, Wang J, Zhang Q, Meng X, Ma Z, Niu J, et al. et al: Coordinating single-
cell and bulk RNA-seq in deciphering the intratumoral immune landscape and
prognostic stratification of prostate cancer patients. Environ Toxicol. (2024) 39:657–
68. doi: 10.1002/tox.23928

34. Guan H, Chen X, Liu J, Sun J, Guo H, Jiang Y, et al. Molecular characteristics and
therapeutic implications of Toll-like receptor signaling pathway in melanoma. Sci Rep.
(2023) 13:13788. doi: 10.1038/s41598-023-38850-y

35. Liu T, Li C, Zhang J, Hu H, Li C. Unveiling efferocytosis-related signatures
through the integration of single-cell analysis and machine learning: a predictive
framework for prognosis and immunotherapy response in hepatocellular carcinoma.
Front Immunol. (2023) 14:1237350. doi: 10.3389/fimmu.2023.1237350

36. Zhang B, Liu J, Li H, Huang B, Zhang B, Song B, et al. Integrated multi-omics
identified the novel intratumor microbiome-derived subtypes and signature to predict
the outcome, tumor microenvironment heterogeneity, and immunotherapy response
for pancreatic cancer patients. Front Pharmacol. (2023) 14:1244752. doi: 10.3389/
fphar.2023.1244752

37. Zhang H, Ni M, Wang H, Zhang J, Jin D, Busuttil RW, et al. Gsk3beta regulates
the resolution of liver ischemia/reperfusion injury via MerTK. JCI Insight. (2023) 8(1):
e151819. doi: 10.1172/jci.insight.151819

38. Ling B, Wei P, Xiao J, Cen B, Wei H, Feng X, et al. et al: Nucleolar and spindle
−associated protein 1 promotes non−small cell lung cancer progression and serves as
an effector of myocyte enhancer factor 2D. Oncol Rep. (2021) 45:1044–58. doi: 10.3892/
or.2020.7918

39. Li X, Guan H, Ma C, Dai Y, Su J, Chen X, et al. Combination of bulk RNA
sequencing and scRNA sequencing uncover the molecular characteristics of MAPK
signaling in kidney renal clear cell carcinoma. Aging (Albany NY). (2024) 16:1414–39.
doi: 10.18632/aging.v16i2

40. Motzer RJ, Jonasch E, Boyle S, Carlo MI, Manley B, Agarwal N, et al. et al: NCCN
guidelines insights: kidney cancer, version 1.2021. J Natl Compr Canc Netw. (2020)
18:1160–70. doi: 10.6004/jnccn.2020.0043

41. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in
cancer progression. Biochim Biophys Acta. (2013) 1833:3481–98. doi: 10.1016/
j.bbamcr.2013.06.026

42. Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in
cancer: The role of lipid signaling. Cell Biol Int. (2022) 46:1717–28. doi: 10.1002/cbin.11896

43. Wang J, Qi X, Wang Q, Wu G. The role and therapeutic significance of the
anoikis pathway in renal clear cell carcinoma. Front Oncol. (2022) 12:1009984.
doi: 10.3389/fonc.2022.1009984

44. Billen LP, Shamas-Din A, Andrews DW. Bid: a bax-like BH3 protein. Oncogene.
(2008) 27 Suppl 1:S93–104. doi: 10.1038/onc.2009.47
Frontiers in Immunology 1639
45. Miao J, Chen GG, Chun SY, Chak EC, Lai PB. Bid sensitizes apoptosis induced
by chemotherapeutic drugs in hepatocellular carcinoma. Int J Oncol. (2004) 25:651–9.
doi: 10.3892/ijo

46. Diakos CI, Charles KA, McMillan DC, Clarke SJ. Cancer-related inflammation
and treatment effectiveness. Lancet Oncol. (2014) 15:e493–503. doi: 10.1016/S1470-
2045(14)70263-3

47. Sun T, Xu YJ, Jiang SY, Xu Z, Cao BY, Sethi G, et al. Suppression of the USP10/
CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacol Sin. (2021) 42:1338–
46. doi: 10.1038/s41401-020-00551-x

48. Zhang H. CCND1 silencing suppresses liver cancer stem cell differentiation
through inhibiting autophagy. Hum Cell. (2020) 33:140–7. doi: 10.1007/s13577-019-
00295-9

49. Hussen BM, Hidayat HJ, Ghafouri-Fard S. Identification of expression of
CCND1-related lncRNAs in breast cancer. Pathol Res Pract. (2022) 236:154009.
doi: 10.1016/j.prp.2022.154009

50. Xie M, Zhao F, Zou X, Jin S, Xiong S. The association between CCND1 G870A
polymorphism and colorectal cancer risk: A meta-analysis.Med (Baltimore). (2017) 96:
e8269. doi: 10.1097/MD.0000000000008269

51. Su Y, Zhou H, Ma Z, Liu J, Li C. CCND1-induced autophagy contributes to
lymph node metastasis in endometrial cancer. Horm Metab Res. (2023) 55:413–9.
doi: 10.1055/a-2044-9227

52. Berumen J, Espinosa AM, Medina I. Targeting CDKN3 in cervical cancer. Expert
Opin Ther Targets. (2014) 18:1149–62. doi: 10.1517/14728222.2014.941808

53. Ma J, Zhou W, Yuan Y, Wang B, Meng X. PSMD12 interacts with CDKN3 and
facilitates pancreatic cancer progression. Cancer Gene Ther. (2023) 30:1072–83.
doi: 10.1038/s41417-023-00609-y

54. Li A, Cao C, Gan Y, Wang X, Wu T, Zhang Q, et al. ZNF677 suppresses renal cell
carcinoma progression through N6-methyladenosine and transcriptional repression of
CDKN3. Clin Transl Med. (2022) 12:e906. doi: 10.1002/ctm2.906

55. Cen J, Liang Y, Huang Y, Pan Y, Shu G, Zheng Z, et al. et al: Circular RNA
circSDHC serves as a sponge for miR-127-3p to promote the proliferation and
metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Mol Cancer. (2021)
20:19. doi: 10.1186/s12943-021-01314-w

56. Kalous J, Aleshkina D. Multiple roles of PLK1 in mitosis and meiosis. Cells.
(2023) 12(1):187. doi: 10.3390/cells12010187

57. Liu Z, Sun Q, Wang X. PLK1, A potential target for cancer therapy. Transl Oncol.
(2017) 10:22–32. doi: 10.1016/j.tranon.2016.10.003

58. Zhang Z, Cheng L, Li J, Qiao Q, Karki A, Allison DB, et al. et al: targeting plk1
sensitizes pancreatic cancer to immune checkpoint therapy. Cancer Res. (2022)
82:3532–48. doi: 10.1158/0008-5472.CAN-22-0018

59. Wang B, Huang X, Liang H, Yang H, Guo Z, Ai M, et al. et al: PLK1 Inhibition
Sensitizes Breast Cancer Cells to Radiation via Suppressing Autophagy. Int J Radiat
Oncol Biol Phys. (2021) 110:1234–47. doi: 10.1016/j.ijrobp.2021.02.025

60. Lin XT, Yu HQ, Fang L, Tan Y, Liu ZY, Wu D, et al. Elevated FBXO45 promotes
liver tumorigenesis through enhancing IGF2BP1 ubiquitination and subsequent PLK1
upregulation. Elife. (2021) 10:e70715. doi: 10.7554/eLife.70715

61. Wagner KD, Du S, Martin L, Leccia N, Michiels JF, Wagner N. Vascular
PPARbeta/delta promotes tumor angiogenesis and progression. Cells. (2019) 8
(12):1623. doi: 10.3390/cells8121623

62. Wagner N, Wagner KD. The role of PPARs in disease. Cells. (2020) 9(11):2367.
doi: 10.3390/cells9112367

63. Choy JC, Hung VH, Hunter AL, Cheung PK, Motyka B, Goping IS, et al.
Granzyme B induces smooth muscle cell apoptosis in the absence of perforin:
involvement of extracellular matrix degradation. Arterioscler Thromb Vasc Biol.
(2004) 24(11):2245–50. doi: 10.1161/01.ATV.0000147162.51930.b7
frontiersin.org

https://doi.org/10.1016/j.tvr.2023.200271
https://doi.org/10.3389/fonc.2023.1109037
https://doi.org/10.3389/fimmu.2023.1156488
https://doi.org/10.3389/fimmu.2023.1156488
https://doi.org/10.18632/aging.v15i18
https://doi.org/10.1002/tox.23928
https://doi.org/10.1038/s41598-023-38850-y
https://doi.org/10.3389/fimmu.2023.1237350
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.3389/fphar.2023.1244752
https://doi.org/10.1172/jci.insight.151819
https://doi.org/10.3892/or.2020.7918
https://doi.org/10.3892/or.2020.7918
https://doi.org/10.18632/aging.v16i2
https://doi.org/10.6004/jnccn.2020.0043
https://doi.org/10.1016/j.bbamcr.2013.06.026
https://doi.org/10.1016/j.bbamcr.2013.06.026
https://doi.org/10.1002/cbin.11896
https://doi.org/10.3389/fonc.2022.1009984
https://doi.org/10.1038/onc.2009.47
https://doi.org/10.3892/ijo
https://doi.org/10.1016/S1470-2045(14)70263-3
https://doi.org/10.1016/S1470-2045(14)70263-3
https://doi.org/10.1038/s41401-020-00551-x
https://doi.org/10.1007/s13577-019-00295-9
https://doi.org/10.1007/s13577-019-00295-9
https://doi.org/10.1016/j.prp.2022.154009
https://doi.org/10.1097/MD.0000000000008269
https://doi.org/10.1055/a-2044-9227
https://doi.org/10.1517/14728222.2014.941808
https://doi.org/10.1038/s41417-023-00609-y
https://doi.org/10.1002/ctm2.906
https://doi.org/10.1186/s12943-021-01314-w
https://doi.org/10.3390/cells12010187
https://doi.org/10.1016/j.tranon.2016.10.003
https://doi.org/10.1158/0008-5472.CAN-22-0018
https://doi.org/10.1016/j.ijrobp.2021.02.025
https://doi.org/10.7554/eLife.70715
https://doi.org/10.3390/cells8121623
https://doi.org/10.3390/cells9112367
https://doi.org/10.1161/01.ATV.0000147162.51930.b7
https://doi.org/10.3389/fimmu.2024.1427475
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Raquel Alarcon Rodriguez,
University of Almeria, Spain

REVIEWED BY

Liang-min Fu,
The First Affiliated Hospital of Sun Yat-sen
University, China
Yuquan Chen,
Monash University, Australia
Aimin Jiang,
Fudan University, China
Zhifei Che,
First Affiliated Hospital of Hainan Medical
University, China

*CORRESPONDENCE

Guanhu Yang

guanhuyang@gmail.com

Hao Chi

chihao7511@163.com

Jianhua Qin

2582536740@qq.com

†These authors have contributed equally to
this work

RECEIVED 13 March 2024

ACCEPTED 14 June 2024
PUBLISHED 27 June 2024

CITATION

Jiang L, Ren X, Yang J, Chen H, Zhang S,
Zhou X, Huang J, Jiang C, Gu Y, Tang J,
Yang G, Chi H and Qin J (2024) Mitophagy
and clear cell renal cell carcinoma:
insights from single-cell and spatial
transcriptomics analysis.
Front. Immunol. 15:1400431.
doi: 10.3389/fimmu.2024.1400431

COPYRIGHT

© 2024 Jiang, Ren, Yang, Chen, Zhang, Zhou,
Huang, Jiang, Gu, Tang, Yang, Chi and Qin.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Original Research

PUBLISHED 27 June 2024

DOI 10.3389/fimmu.2024.1400431
Mitophagy and clear cell renal
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OH, United States, 5Department of Nephrology, Affiliated Hospital of Southwest Medical University,
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Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type

of kidney cancer, characterized by high heterogeneity and complexity. Recent

studies have identified mitochondrial defects and autophagy as key players in the

development of ccRCC. This study aims to delve into the changes in mitophagic

activity within ccRCC and its impact on the tumor microenvironment, revealing

its role in tumor cell metabolism, development, and survival strategies.

Methods: Comprehensive analysis of ccRCC tumor tissues using single cell

sequencing and spatial transcriptomics to reveal the role of mitophagy in

ccRCC. Mitophagy was determined to be altered among renal clear cells by

gene set scoring. Key mitophagy cell populations and key prognostic genes were

identified using NMF analysis and survival analysis approaches. The role of UBB in

ccRCC was also demonstrated by in vitro experiments.

Results: Compared to normal kidney tissue, various cell types within ccRCC

tumor tissues exhibited significantly increased levels of mitophagy, especially

renal clear cells. Key genes associated with increased mitophagy levels, such as

UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their

high expression closely linked to poor patient prognosis. Particularly, the

ubiquitination process involving the UBB gene was found to be crucial for

mitophagy and its quality control.

Conclusion: This study highlights the central role of mitophagy and its regulatory

factors in the development of ccRCC, revealing the significance of the UBB gene

and its associated ubiquitination process in disease progression.
KEYWORDS

clear cell renal cell carcinoma, mitophagy, mitochondrial gene defects, multi-omics

analysis, metabolic reprogramming, prognostic analysis , non-negative
matrix factorization
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1 Introduction

Renal cancer is a common malignant tumor, with its incidence

continuously increasing worldwide (1). Despite some progress in

treatment, many mysteries still remain regarding the pathogenesis of

renal cancer (2). Clear Cell Renal Cell Carcinoma (ccRCC) is one of the

most common types of renal cancer, occupying a major proportion of

malignant kidney tumors (3, 4). This cancer typically originates from

the epithelial cells of renal tubules and is characterized by high

heterogeneity and complexity (5, 6). Compared to other tumor types,

the treatment options for ccRCC are relatively limited, making it crucial

to deepen our understanding of its pathogenesis for developing more

effective treatment plans (7, 8).

Mitochondrial defects refer to structural or functional

abnormalities in mitochondria, which can be caused by various

factors, including genetic mutations, damage induced by

environmental factors, increased oxidative stress, or damage to

mitochondrial DNA (mtDNA) (9, 10). These defects often lead to

an increased frequency of mitophagy. This is because mitochondrial

defects, such as DNA damage, improper protein folding, increased

oxidative stress, or insufficient energy production, can impair the

normal function of mitochondria (11, 12).

In recent years, increasing evidence has suggested that

mitophagy plays a key role in tumors (13, 14). Mitophagy is an

intracellular self-degradation process through which cells can

remove damaged mitochondria , thereby maintaining

mitochondrial health (15). However, when mitophagy is

dysregulated, it can lead to mitochondrial dysfunction, abnormal

cell metabolism, and cell death (16). The anomalies in mitophagy

associated with ccRCC suggest a close link between the two. In

ccRCC, abnormalities in mitophagy may be caused by various

factors, including changes in the intracellular and extracellular

environment, genetic mutations, and dysregulation of regulatory

pathways (17). These abnormalities not only affect the survival and

proliferation of tumor cells but may also impact tumor

development, invasion, and drug resistance (18).

This study aims to explore the connection between ccRCC and

mitophagy genes through multi-omics analyses such as single-cell

sequencing and spatial transcriptomics, revealing the importance of

potential molecular aspects in the progression of renal

cancer disease.
2 Materials and methods

2.1 Source of raw data

The single cell sequencing data of ccRCC used in this study were

sourced from the Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/) dataset GSE210038, which includes

tumor samples from three patients with ccRCC (GSM6415686,

GSM6415687, and GSM6415689) and one sample of normal

adjacent tissue (GSM6415694). Through the analysis of these

single-cell data, the study delves into the heterogeneity differences

at the cellular level between renal cell carcinoma and adjacent
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normal tissues. The spatial transcriptomics data were also obtained

from the GEO database (GSE210041), covering sequencing data for

two formalin-fixed paraffin-embedded (FFPE) ccRCC tumor

samples. This dataset provides a unique perspective for studying

the spatial distribution heterogeneity of ccRCC and its surrounding

environment. Additionally, RNA sequencing data for ccRCC were

downloaded from the UCSC Xena platform (https :/ /

xena.ucsc.edu/), originating from the TCGA (The Cancer

Genome Atlas) cohort, including sequencing information for 607

samples along with corresponding survival data for survival

analysis, thereby enhancing our understanding of prognostic

factors for ccRCC. Furthermore, genes related to mitophagy were

sourced from the GSEA website (https://www.gsea-msigdb.org/

gsea/index.jsp).
2.2 Processing of single-cell
sequencing data

In this study, we analyzed the single-cell RNA-seq data of

ccRCC using the Seurat package (version 4.3.0) in R (19).

Through strict quality control, cells with a gene expression range

of 200–4000 and mitochondrial gene expression ratio below 20%

were selected. After standardization and normalization of the data,

important principal components were determined using RunPCA

and JackStraw analysis, followed by clustering and visualization

with t-SNE to display the similarities and differences among cells.

Differential expression analysis was conducted using the

FindAllMarkers function, and cell types were annotated in

conjunction with the CellMarker database (http://xteam.xbio.top/

CellMarker/index.jsp), providing a data foundation for revealing

the molecular mechanisms and potential therapeutic targets

of ccRCC.

Five gene set scoring methods (AddModuleScore, ssGSEA,

AUCell, UCell, singscore) were employed to score mitophagy-

related genes in single-cell data. The mitophagy-related genes

were obtained from the GSEA website and include 29 genes. The

proteins encoded by these genes are involved in various processes

including autophagosome formation, the composition of protein

kinase CK2, mitochondrial fusion, mitochondrial fission, and

ubiquitination processes. The use of multiple algorithms enhances

the comprehensiveness, robustness, and biological interpretability

of the assessments, allowing for more accurate determination of

mitophagy in ccRCC. Additionally, clusterProfiler (4.6.2) and fgsea

(1.24.0) were applied for enrichment analysis of single-cell

transcriptomic data of ccRCC, precisely assessing gene set

enrichment for cell types such as clear cells, supporting queries to

various biological databases including GO, KEGG, and Reactome

(20, 21). CellChat R package (version 1.6.1) was utilized to analyze

cell communication patterns (22). CellChat simulates cell

communication based on interactions between signaling ligands,

receptors, and auxiliary factors, revealing how cells collaborate. To

compare metabolic state differences between normal and tumor

tissues, this study used the scMetabolism package (version 0.2.1) for

quantitative analysis of single-cell metabolic pathway activity. We
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also used the scFEA package to carry out flux studies to infer

intracellular metabolites.

In this research, unsupervised non-negative matrix factorization

(NMF) analysis of single-cell RNA sequencing data was applied using

the NMF package (version 0.27) in R, aiming to explore the mitophagy

characteristics of clear cell clusters (23). The component number was

set to 10 to balance the granularity of different cell state distinctions and

clustering interpretability. NMF results were integrated into the Seurat

framework for dimensionality reduction clustering to identify different

cell clusters. Key genetic markers were screened using the

FindAllMarkers function, and each NMF cell cluster was categorized

based on scores related to mitophagy-related genes and set thresholds.

This method enhanced understanding of cell heterogeneity and tumor

complexity, especially regarding mitophagy. Importantly, the ggplot2

package (version 3.4.2) served as our core tool for result visualization,

offering a powerful and flexible way to create complex graphics based

on the grammar of graphics.
2.3 Processing of spatial transcriptome
sequencing data

In our study, the Seurat package (version 4.3.0) was used for the

processing and analysis of spatial transcriptomics data, including

normalization and feature selection of UMI counts with

“SCTransform”, and dimensionality reduction with “RunPCA”.

Additionally, the scMetabolism package was employed to assess

metabolic features, while the “Monocle” package revealed cellular

development and differentiation processes. In the Python

environment , the Scanpy package processed spat ia l

transcriptomics data through data preprocessing and

dimensionality reduction with “SCTransform” and “RunPCA”

(24). We also introduced the stLearn package, integrating gene

expression, tissue morphology, and spatial location information to

parse cell types, infer evolutionary paths, and identify cell

interaction areas, providing a comprehensive spatial and

functional perspective to understand tumor complexity (25).
2.4 Integrative analysis of spatial
transcriptomics and single-cell sequencing
data through deconvolution

Through deconvolution analysis, we inferred the proportions of

cell types from mixed samples by combining single-cell and spatial

transcriptomics data, revealing cellular and spatial heterogeneity

within tissues. The “spacerxr” R package was used to perform

RCTD analysis, constructing a reference model based on single-

cell data and loading spatial data to form SpatialRNA objects.

RCTD objects estimated the proportions of cell types in mixed

samples through specific gene expression patterns, providing the

distribution of cell types for each spot in the spatial data. Moreover,

the “mistyR” package was employed to analyze cell interactions,

revealing cellular interactions within tissues, inferring cell

communication networks, and deepening the understanding of

cell communication patterns in the tumor microenvironment (26).
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2.5 Prognostic analysis of mitophagy-
related clear cell subpopulations combined
with bulk data

We explored the potential clinical prognostic value of newly

identified mitophagy-related subpopulations of clear cells. For this

purpose, we conducted an in-depth analysis using bulk sequencing

data. Single-cell sequencing data were processed with the Seurat

package, initially categorizing the identified mitophagy-related clear

cells from patient tumor tissues into high and low expression

subgroups based on their key gene expression levels. Next, the

FindAllMarkers function was utilized to identify marker genes for

these two subgroups. After obtaining the marker genes of key cell

populations, we quantified these genes in bulk sequencing data, thus

constructing high and low-risk groups. Lasso analysis was employed

to filter out key prognostic genes for ccRCC, establishing a

prognostic model based on mitophagy-related genes.
2.6 Cell culture and transient transfection

In our experimental studies, we utilized several cell lines,

including the 786-O and 769-P renal clear cell carcinoma cells.

These cell lines were obtained from the cell bank of the Central

Laboratory at the Southwest Medical University Affiliated Hospital.

To ensure the normal growth and maintenance of these cells, we

cultured them in DMEM (HyClone) medium supplemented with

10% fetal bovine serum (HyClone), 100 U/L penicillin, and 100mg/

L streptomycin (Thermo Fisher Scientific). We maintained

standard culture conditions, including a 5% CO2 atmosphere, to

provide an optimal environment for cell viability and experimental

consistency. For the transient transfection experiments, we used

Lipofectamine 3000 (Invitrogen, Carlsbad, CA, United States) as the

transfection reagent. Negative control (NC) and UBB siRNA

(RiboBio, Guangzhou, China) were transfected into the renal

clear cell carcinoma cells according to the manufacturer’s

instructions. This involved preparing a transfection mixture

containing the siRNA and transfection reagent and then adding it

to the cells. The transfection process was generally conducted

within the recommended time frame according to the

manufacturer’s protocol. By using Lipofectamine 3000 as the

transfection reagent, our aim was to efficiently introduce the

negative control or UBB siRNA into the renal clear cell

carcinoma cells for subsequent analysis and research on the

effects of gene knockdown or control on cellular processes and

molecular pathways.
2.7 CCK-8 assay

We evaluated cell viability using the Cell Counting Kit-8 (CCK-8)

assay. Twenty-four hours post-transfection, renal clear cell carcinoma

cells were seeded into 96-well plates at a density of 1500 cells per well,

and 200 mL of complete culture medium was added. The cells were

then incubated at 37°C. For the CCK-8 assay, 10 mL of CCK-8
frontiersin.org
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solution (Beyotime, Shanghai, China) was added to each well

containing cells. After incubating for another 4 hours at 37°C,

allowing the reagent to react with the cells, a colorimetric reaction

related to cell viability occurs. At the end of the incubation period, the

optical density (OD450) was measured using a microplate reader.

The OD450 value reflects the absorbance of the formazan product

generated by CCK-8, which is directly proportional to the metabolic

activity and viability of the cells. By quantifying the OD450 values, we

can assess the relative survival rate of the cells and compare them

across different experimental conditions or treatment groups.
2.8 EdU-DAPI double staining assay

After 48 hours of transfection, 10 mM EdU was added and

incubated for 4 hours, followed by fixation of cells with 4%

paraformaldehyde for 10 minutes and permeabilization with 0.5%

Triton X-100 for 5 minutes. EdU staining was performed using the

Click-iT EdU Alexa Fluor 594 Imaging Kit according to the

manufacturer’s instructions, followed by staining of cell nuclei

with 1 mg/mL DAPI for 10 min. Finally, the cells were observed

and images were acquired using fluorescence microscopy. Merge

images were used to analyze cell proliferation.
2.9 Wound healing experiment

To evaluate the migration ability of renal clear cell carcinoma

cells, we employed a wound healing assay. The transfected cells

were cultured in six-well plates and maintained at 37°C until they

reached approximately 80% confluence. A uniform wound was

introduced into the cell monolayer using a 200 ml sterile pipette tip.
After wound formation, the cells were washed twice with PBS to

remove any debris, and then the medium was supplemented with

serum-free culture medium. The process of cell migration into the

damaged area was recorded at 0 hours and 24 hours using an

Olympus inverted microscope.
2.10 Transwell assay

The invasive ability of renal clear cell carcinoma cells was

assessed using a well-established technique in cell biology

research—the Transwell assay. In this assay, a specific number of

renal clear cell carcinoma cells (approximately 1 × 10^5) were

seeded into specialized chambers. To evaluate invasion potential,

chambers coated with Matrigel were used. The upper chamber

contained serum-free culture medium to create a chemotactic

gradient, while the lower chamber was filled with complete

DMEM culture medium, providing a favorable environment for

cell movement. After 24 hours of culture, cells that had successfully

invaded through the membrane were fixed with a 4%

paraformaldehyde solution. To observe and quantify the invaded

cells, they were stained with 0.1% crystal violet. The stained cells
Frontiers in Immunology 0443
were then observed and counted under an optical microscope,

allowing for the assessment of cell numbers and invasion capability.
2.11 Statistical analysis

The statistical analyses were conducted using R version 4.2.2,

64-bit, along with its support packages. The pycharm integrated

development environment for Python was also utilized. The non-

parametric Wilcoxon rank sum test was employed to assess the

relationship between two groups for continuous variables.

Spearman correlation analysis was conducted to examine

correlation coefficients. A significance level of P<0.05 was

considered statistically significant for all statistical investigations.
3 Results

3.1 Single-cell transcriptome atlas of clear
cell renal cell carcinoma

In this study, we delved into the cellular heterogeneity and

composition of ccRCC and its adjacent normal kidney tissue

through scRNA-seq. To ensure the quality of data and rigor of

analysis, we first performed meticulous quality control, quantifying

multiple quality metrics including the assessment of the number of

feature genes per cell, UMI counts, and the percentage of

mitochondrial and hemoglobin gene expression, thereby

eliminating the interference of senescent cells and erythrocytes

(Figure 1A). Subsequently, we utilized the Harmony package for

batch effect correction based on PCA analysis, which ensured the

reliability of the analysis results while maximally preserving the

original gene expression information of the cells (Figure 1B). By

using the t-SNE algorithm, we performed a visualization of the cell

clustering results, showing 22 cell clusters (Figure 1C). Based on the

cell marker genes, we plotted bubble plots and feature plots to help

us identify cell types by the expression and expression distribution

of these genes (Figures 1D, E). After completing the cell type

identification, we compared the cell distribution and number in

ccRCC samples and normal kidney tissue samples, and observed

that there was a significant increase in the proportion of T cells in

ccRCC tissues (Figures 1F, G). The expression of cell marker genes

in various cell types of cells is demonstrated by gene expression

heatmap to check the accuracy of cell type identification

(Figure 1H). To gain a preliminary understanding of the

metabolic functionality of various cell types in tumor and normal

tissues, we performed flux estimation analysis to infer intracellular

fluxes of metabolites (Figure 1I).
3.2 Exploring mitophagy levels in ccRCC by
gene scoring

To delve into the regulatory mechanisms of mitophagy in ccRCC

and its role in the pathological process, this study quantitatively
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evaluated the activity of mitophagy genes in ccRCC from multiple

perspectives using various scoring algorithms, including AUCell,

UCell, singcore, ssgsea, and AddModuleScore, revealing their

potential role in tumor development. The analysis vividly presented
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the scores of mitophagy gene sets across various cell types through

violin plots and bubble charts (Figures 2A, B). Heatmaps displayed

the final scores for different cell types (Figure 2C). Comparing the

scores of cells from different groups and performingWilcox statistical
B

C D

E

F G

H

I

A

FIGURE 1

Single-cell transcriptomic atlas analysis of renal clear cell carcinoma. (A) Data quality control. Violin plots depict the number of genes per cell
(nFeature_RNA), total transcript counts (nCount_RNA), percentage of mitochondrial genes (percent.mt), and percentage of hemoglobin genes
(percent.HB) to evaluate sample quality. (B) PCA dimensionality reduction of patient samples. Principal component analysis (PCA) results based on
expression profiles show the distribution of cell populations from different patients (ccRCC for tumor tissues of renal clear cell carcinoma patients,
Normal for normal adjacent tissue samples). (C) t-SNE clustering visualization. The t-SNE dimensionality reduction technique reveals 22 distinct cell
populations, each identified by a different color. (D) Marker genes of cell populations. Bubble charts display selected marker genes expressed in
different cell populations. (E) Spatial expression patterns of cell marker genes. The t-SNE plot shows the expression patterns of selected marker
genes. (F) Comparison of cell types between tumor and normal groups. The t-SNE plot shows the distribution of cell populations from the tumor
and normal groups. (G) Stacked bar charts display the proportion of cell type distribution across different patient samples. (H) Heatmap of marker
gene expression. Displays the expression levels of specific marker genes in different cell types. (I) Heatmap of metabolic levels. Shows how active
various cell types are in different metabolic pathways in different samples.
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analysis revealed that the scores of clear cells in the tumor group were

significantly higher than those in the normal group, with statistically

significant differences (p-value < 0.05) (Figure 2D). To further reveal

which mitophagy genes play a key role in the pathogenesis of ccRCC,

differential analysis was conducted between the tumor group and its

normal counterpart, intersecting the resultant differential genes with
Frontiers in Immunology 0645
mitophagy-related genes, and obtaining 9 key mitophagy-related

genes with a logFC threshold of 0.5. The results showed that

TOMM20, UBC, UBA52, RPS27A, and other genes were

significantly upregulated in ccRCC cells (Figure 2E). Notably, these

genes were not only universally upregulated in ccRCC cells but also

widely distributed across various cell subpopulations (Figure 2F).
B

C
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A

FIGURE 2

Analysis of cellular metabolic levels. (A) Violin plots of mitochondrial autophagy gene set scores through five gene set scoring methods and an
integrated score. (B) Bubble chart of mitochondrial autophagy gene set expression scores in different cell types, based on the expression level of
specific gene sets. (C) t-SNE plot showing the distribution of metabolic scores among cells, where the depth of color represents the level of scoring,
revealing the metabolic heterogeneity of different cell types. (D) Violin plots comparing mitochondrial autophagy scores differences between tumor
tissues and adjacent normal tissues for each cell type, showing changes in mitochondrial autophagy states in the tumor microenvironment. (E) Violin
plots of differentially expressed mitochondrial autophagy genes between tumor and normal groups. (F) t-SNE plot showing the heatmap of
differentially expressed mitochondrial autophagy genes expression levels in different cell types. "*" represents p-value less than 0.05, "**" represents
p-value less than 0.01, "***" represents p-value less than 0.001. "****" represents p-value less than 0.0001. "ns" represents not statistically significant
(p ≥ 0.05).
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3.3 Characteristics of renal clear cells in
the high and low mitophagy level group

We first analyzed the metabolic pathway activity in three ccRCC

samples to determine the metabolic characteristics of ccRCC

(Figure 3A). In these three tumor sample data, we divided renal

clear cells into high and low groups according to the median value of

his mitochondrial autophagy score to explore the effect of mitophagy

levels on renal clear cell function and activity. Enrichment analyses

showed a very significant difference in the functional activity of renal

hyalinocytes between the high and low groups (Figure 3B). There

were also differences in cellular communication between the high and

low groups of renal hyalocytes, with the high mitophagy level group

having a higher level of cellular communication than the low level

group, both in terms of signaling efference and signaling reception, as

well as differences in the structure of the communication patterns

between the two groups (Figures 3C–E). The signaling pathways

ligand receptors they involve also differ markedly in type and strength

(Figure 3F). Differences between the two groups of cells were more

clearly demonstrated by GSVA enrichment analyses, with renal

hyalinocytes generally functioning more actively in the high-level

group than in the low-level group (Figure 3G).
3.4 Application of non-negative matrix
factorization (NMF) in revealing
heterogeneity of mitophagy in renal
clear cells

Non-negative matrix factorization (NMF) is a matrix

decomposition method performed under the constraint that all

elements of the output matrices are non-negative. Compared to

principal component analysis (PCA), NMF has a natural advantage

in analyzing tumor cell heterogeneity. By applying NMF technology

and clustering ccRCC cells based on mitochondrial autophagy-

related genes, we successfully identified five distinct subgroups

(C0–4). To elucidate the potential link between the subgroups

obtained by NMF analysis and mitochondrial autophagy, we

performed differential expression analyses of cells in these

subgroups. We obtained the differentially expressed genes for each

subgroup and developed a series of rules to identify cell types:

1.differentially expressed genes were ranked according to logFC

values. 2.If the first gene was a mitochondrial autophagy-related

gene with a logFC value greater than 1 and a P value of less than 0.05,

then the cell population was defined as a cell population marked by

this gene. 3. If the first gene is a mitochondrial autophagy-related

gene but its logFC value is less than 1 or its P value is greater than

0.05, then the cell population cannot be defined. 4. if the first gene is

not a mitochondrial autophagy-related gene, then the cell population

is defined as a non-mitochondrial autophagy cell population (Non-

Mitophagy). With this approach, we were able to identify and

categorize cell populations more clearly. The results yielded four

subgroups: Unclear-ccRCC-C3, Non-Mitophagy-ccRCC-C4,

CSNK2B+ccRCC-C1, MAP1LC3B+ccRCC-C2 (Figure 4A). Among

them, Unclear-ccRCC-C3 was named due to the most significant
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gene logFC not meeting the selection criteria, and the Non-

Mitophagy-ccRCC-C4 subgroup’s most significant gene was not a

mitochondrial autophagy gene. We performed a series of analyses on

the four cell subpopulations of renal clear cells obtained to investigate

differences in functional activity and biological heterogeneity. The

results of the Hallmark enrichment analysis showed that the Non-

Mitophagy cell population (C4) was significantly different from the

remaining three populations, which happen to be the ones that are or

may be related to mitophagy (Figure 4B). GSVA enrichment analysis

also demonstrated concordant results, which further demonstrated

the accuracy of the NMF analysis in identifying the mitophagy renal

hyalinocyte subpopulation (Figure 4E). For the two identified

populations of mitophagy -associated renal clear cells (CSNK2B

+ccRCC-C1 and MAP1LC3B+ccRCC-C2), we performed separate

GO enrichment analyses for further exploration of these two key cell

types (Figures 4C, D). In the transcription factor analysis, opposite

results were presented, with a stronger relationship between the Non-

Mitophagy cell population and the transcription factors (Figure 4F).

The cellular metabolic profiles in the four cell subpopulations

demonstrated very clear differences between Non-Mitophagy

and mitophagy -associated renal hyalinocytes, with mitophagy

-associated renal hyalinocytes being much more advanced than the

Non-Mitophagy cell population in a variety of metabolic

pathways (Figure 4G).
3.5 Analysis of metabolic features in spatial
transcriptomics data

Spatial transcriptomics data provided HE stained slice images of

two ccRCC tumor tissue samples (Figures 5A, F). After

dimensionality reduction clustering of spatial transcriptomics data,

we mapped the clustering information onto the HE stained slices,

obtaining dimensionality reduction clustering maps on the slices

(Figures 5B, G). The differential expression of mitochondrial

autophagy genes between tumor and normal groups in single-cell

data was displayed on spatial transcriptomics data through bubble

charts (Figures 5C, H). By using the scMetabolism package for

metabolic analysis of spatial transcriptomics data, we showed the

specific metabolic levels of each cell cluster in the two tumor samples

(Figures 5D, I) and also mapped certain key metabolisms onto the

slices. The heatmap colors allowed us to clearly see the high and low

states of metabolism at different locations on the slices (Figures 5E, J).
3.6 Pseudotime analysis of
spatial transcriptomics

In Figures 5E, J, we observed high metabolic areas on the slices

of two tumor samples, with clusters 2 and 1 being the main high

metabolic areas on the first slice, and clusters 10 and 4 on the

second slice. Therefore, we selected the high metabolic areas and

their surrounding cells for pseudotime analysis using the Monocle

package. For the first slice, we conducted pseudotime analysis on

cell clusters 2, 1, and 12 (Figure 6A). The heatmap showed the

expression changes of mitochondrial autophagy-related genes over
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pseudotime (Figure 6B). Cluster 1 occupied the earliest branch in

the pseudotime analysis, while cluster 2 was on a later branch,

which might indicate the developmental sequence of tumor cells

(Figure 6C). The cell density map also hinted at the timing of cell

appearances (Figure 6D). For the second slice, we analyzed cell
Frontiers in Immunology 0847
clusters 10, 4, and 2, with the heatmap showing the expression

changes of mitochondrial autophagy-related genes over pseudotime

(Figures 6E, F). Cell clusters 10 and 4 were primarily in the early

stages of the pseudotime sequence, while cluster 2 was mainly in the

later stages (Figures 6G, H).
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FIGURE 3

Multidimensional analysis of renal clear cells. (A) Heatmap of metabolic activity in renal clear cells from different sample sources, analyzed using the
scMetabolism package, showing their expression patterns across different metabolic pathways. (B) HALLMARK gene set enrichment analysis.
Individual cell types (including high and low group ccRCC) are shown to be up- and down-regulated in various pathways. (C) String diagram of
cellular communication networks. Demonstrates the strength of cellular communication in tumor tissues. (D) Scatter plot demonstrating the average
strength of signals received and sent by cells in each cell type. (E) Structural diagram demonstrating the communication patterns of various cell
types in the cellular communication network, comparing the high and low groups of ccRCC. (F) Ligand receptor activation involved in cellular
communication between high and low groups of ccRCC and other cell types. (G) GSVA enrichment analysis of evanescent bar graphs. Pathways
with significant differences between the high-level group ccRCC and the low-level group are demonstrated.
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3.7 Developmental trajectories revealed by
spatial transcriptomics data

Spatial transcriptomics data provide transcriptional

information on the precise location of cells within tissues. Using

the stLearn toolkit, we conducted an in-depth analysis of spatial
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transcriptomics data to explore the developmental processes of

tumors, including invasion and metastasis issues. By combining

data quality control and dimensionality reduction with NumPy, and

clustering with stLearn’s Louvain method, we identified different

cell clusters in ccRCC samples (Figures 7A, D). For cell clusters

identified in the early stages of pseudotime sequence in the
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FIGURE 4

Non-negative matrix factorization (NMF) analysis of renal clear cells. (A) UMAP plot annotating renal clear cell types post-NMF, identifying two
subtypes closely related to mitochondrial autophagy. (B) HALLMARK gene set enrichment analysis. The up- and down-regulation of the four ccRCC
subgroups obtained from NMF analysis in various pathways is shown. (C) GO enrichment analysis of cell population C1. results of GO enrichment
analysis of CSNK2B+ccRCC-C1 cell population demonstrating properties in BP, CC, and MF. (D) GO enrichment analysis of cell population C2.
results of GO enrichment analysis of MAP1LC3B+ccRCC-C2 cell population, demonstrating the properties in three aspects: BP, CC, and MF.
(E) GSVA enrichment analysis. The heatmap demonstrates the differences between the four ccRCC subpopulations in various pathways. (F) Heatmap
of the transcription factor regulatory network in mitochondrial autophagy-related subtypes of renal clear cells. (G) Bubble chart analyzing the activity
levels of renal clear cell subgroups in different metabolic pathways, where bubble size and color depth reflect the relative levels of metabolic activity.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1400431
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1400431
B

C

D

E

F G

H

I

J

A

FIGURE 5

Spatial transcriptomics analysis revealing changes in metabolic activity. (A) H&E-stained section of renal clear cell carcinoma tumor tissue. (B) Spatial
transcriptomics data of a renal clear cell carcinoma tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering
analysis using the Seurat package. (C) Expression of differentially expressed mitochondrial autophagy-related genes in the section data. (D) Bubble
chart showing metabolic activity levels of different cell clusters in the renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism
package, highlighting each cluster’s performance in various metabolic pathways. (E) Display of various metabolic levels on the section, including
glycolysis, oxidative phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
(F) Second H&E-stained section of renal clear cell carcinoma tumor tissue. (G) Spatial transcriptomics data of a second renal clear cell carcinoma
tumor tissue section, with cell clustering results obtained by dimensionality reduction clustering analysis using the Seurat package. (H) Expression of
differentially expressed mitochondrial autophagy-related genes in the second section data. (I) Bubble chart showing metabolic activity levels of
different cell clusters in the second renal clear cell carcinoma tumor tissue section analyzed with the scMetabolism package, highlighting each
cluster’s performance in various metabolic pathways. (J) Display of various metabolic levels on the second section, including glycolysis, oxidative
phosphorylation, purine metabolism, pyrimidine metabolism, and the metabolism of amino sugar and nucleotide sugar.
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pseudotime analysis, we reconstructed the developmental

trajectories using the Diffusion Pseudotime (DPT) algorithm,

combined with spatial coordinates information, revealing the

gradual invasion and metastasis process of tumor cells in the

pseudotime sequence, consistent with Monocle pseudotime

analysis (Figures 7B, E). The diverging bar charts of

developmental trajectory analysis revealed gene expression

changes based on trajectory differences, showing genes that were

upregulated and downregulated throughout the tumor

development process from start to end (Figures 7C, F).
Frontiers in Immunology 1150
3.8 Deconvolution and cell interaction
analysis combining spatial transcriptomics
with single-cell data

Due to the limitations of spatial transcriptomics sequencing

technology, current spatial transcriptomics data do not achieve the

same single-cell resolution as single-cell sequencing data. To address

the limitations of spatial transcriptomics sequencing data, we employed

deconvolution analysis methods to compensate for its lack of

resolution. This analysis inferred the possible cell types and their
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FIGURE 6

Pseudotime analysis of cells in local areas of tumor tissue sections. (A) Display of local cell populations on the section. (B) Expression of
mitochondrial autophagy-related genes in pseudotime order. (C) Developmental trajectory map, showing the dynamic changes and differentiation
paths of 3 cell populations in pseudotime development. (D) Density map explaining the distribution characteristics of each group of cells on the
pseudotime axis. (E) Display of local cell populations on the section in a second renal clear cell carcinoma tumor slice. (F) Expression of
mitochondrial autophagy-related genes in pseudotime order on the second slice. (G) Developmental trajectory map for the second slice data,
showing the dynamic changes and differentiation paths of 3 cell populations in pseudotime development. (H) Density map explaining the distribution
characteristics of each group of cells on the pseudotime axis for the second slice.
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proportions at each location in the spatial transcriptomics data based

on the gene expression patterns of various cell types in ccRCC single

cell sequencing data. This step allowed us to gain deeper insights into

the spatial structure and function of tissues or cells, revealing

interactions and communications between different cell types, and

discovering spatial heterogeneity and state changes of cells. Through

this method, we were able to provide more detailed information about

cell types and proportions in ccRCC tumor samples, offering new

perspectives and depth to the study (Figures 8A, G). Based on the

deconvolution analysis of two tumor samples, we further applied the

MISTy (Multiview Intercellular SpaTial modeling framework)

framework for spatial transcriptomics cell interaction analysis. This

framework is an interpretable machine learning framework for

analyzing single-cell, highly multiplexed, spatially resolved data,

enabling an in-depth understanding of the internal and intercellular

relationships betweenmarkers.WithMISTy, we could handle a custom

number of views, each describing different spatial contexts such as

intracellular regulation or paracrine regulation, and relationships

between specific cell types. Our analysis results showed the
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contributions of three different views to cell interactions through bar

charts, finding that intraview and paraview15 made the largest

contributions in the two tumor samples (Figures 8B, H). This

revealed the importance of intracellular regulation and paracrine

regulation in tumor samples. Further heatmap and network graph

analyses revealed the specific patterns of these two views in tumor

samples, highlighting the significant interactions between two groups

of clear cells with high and low mitochondrial autophagy states and

other cell types (such as mast cells and fibroblasts) (Figures 8C–F, I–L).
3.9 Prognostic study of mitochondrial
autophagy-related genes

In our study, nine key mitochondrial autophagy-related genes

were significantly higher expressed in tumor tissues compared to

normal tissues. We analyzed data of ccRCC from the TCGA

database, first selecting positive cells with high expression of these

nine genes, and compared them with negative cells with low
B C
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A

FIGURE 7

Spatial developmental trajectory analysis of renal clear cell carcinoma tumor tissue. (A) Clustering of renal clear cell carcinoma tumor tissue section
sequencing data using the louvain method in the stLearn package, with the clustering map showing the spatial distribution of different cell populations.
(B) Spatial developmental trajectory map of high metabolic area cells in the tumor tissue section, drawn using the stLearn package. (C) Diverging bar
chart of developmental trajectory-related differentially expressed genes in the tumor tissue, performed statistical analysis using numpy, revealing key
regulatory genes associated with the developmental trajectory. (D) Clustering map of the second slice data. (E) Spatial developmental trajectory map of
high metabolic area cells. (F) Diverging bar chart of developmental trajectory-related differentially expressed genes in the tumor tissue.
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expression to identify unique marker genes of the positive cells.

Subsequently, based on the expression levels of these marker genes,

we divided patients into high and low expression groups and

performed survival analysis. The results showed that patients with
Frontiers in Immunology 1352
high expression of UBC, UBA52, TOMM7, UBB, MAP1LC3B, and

CSNK2B had a poorer prognosis, with statistical significance

(Figure 9A). Using LASSO regression model analysis, UBB and

TOMM7 were identified as important prognostic factors for ccRCC
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FIGURE 8

Deconvolution and cell interaction analysis based on spatial transcriptomics data. (A) Analysis of renal clear cell carcinoma tumor tissue section data
using the RCTD deconvolution method, showing the spatial distribution probabilities of various cell types, including cells with high and low levels of
mitochondrial autophagy. (B) Bar chart showing the contribution of different views to cell interactions assessed by the Mistyr package, demonstrating the
relative importance of different views in cell interactions. (C, D) Heatmap and network diagram of cell interactions within the same view (intraview),
revealing the interaction strength and patterns within the same cell type. (E, F) Heatmap and network diagram of cell interactions in the paraview15 view,
showing the interaction strength and communication networks across cell types. (G) RCTD deconvolution analysis results of the second slice data,
showing the probabilities and spatial distribution of different cell types, including cells with high and low levels of mitochondrial autophagy. (H) Bar chart
showing the contribution of different views to cell interactions in prostate adenocarcinoma with infiltrating carcinoma tissue, assessing the relative
contributions of each view. (I, J) Heatmap and network diagram of cell interactions (intraview) for the second slice data, showing the interaction
relationships among the same cell type in the tumor environment. (K, L) Heatmap and network diagram of cell interactions in the paraview15 view of the
same tissue, revealing the interaction strength and network structures across different cell types.
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FIGURE 9

Analysis of the association between mitochondrial autophagy-related subtypes of renal clear cells and the clinical prognosis of patients with renal
clear cell carcinoma. (A) Kaplan-Meier survival curve analysis showing the survival probability differences among renal clear cell subtypes with high
and low expression of key mitochondrial autophagy genes in patients with renal clear cell carcinoma. (B) LASSO coefficient path graph. It illustrates
how the LASSO coefficients of renal clear cell carcinoma prognosis-related genes change as the regularization strength (L1 norm) of the model
increases. Selected genes maintain non-zero coefficients at high regularization levels, indicating their importance to the model. (C) Deviance plot of
ten-fold cross-validation. Displays the performance of the LASSO model at different lambda values to determine the optimal lambda selection. The
red dot identifies the lambda value providing the optimal prognosis model, determined by minimizing the validation error. (D) Risk score and survival
status chart of patients with renal clear cell carcinoma based on the LASSO model. (E) Kaplan-Meier survival analysis curve of high and low-risk
patient groups with renal clear cell carcinoma. (F) Nomogram model for the prognosis of patients with renal clear cell carcinoma, combining clinical
variables such as age, gender, pathological staging, and the expression levels of UBB and TOMM7 genes. (G) Calibration curve of the nomogram
prognosis model, showing the consistency between the nomogram-predicted 1-year, 3-year, and 5-year survival probabilities (X-axis) and the actual
observed survival probabilities (Y-axis).
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(Figures 9B–D). Kaplan-Meier curves showed that the survival rate

of patients in the high-expression group was significantly lower

than that of the low-expression group (Figure 9E). We also

established a nomogram that includes these genes and clinical

parameters to predict the survival probabilities of patients at 1, 3,

and 5 years, and calibration curves validated the accuracy and

reliability of this prognostic model (Figures 9F, G).
3.10 UBB promotes the proliferation and
migration of renal clear cell
carcinoma cells

To investigate the potential role of UBB in renal clear cell

carcinoma, we conducted in vitro experiments. Initially, the CCK-8

assay indicated that silencing UBB significantly inhibited cell

proliferation (Figure 10A). Silencing of the UBB gene resulted in a

significant reduction in DAPI staining (blue) and EdU staining (red)

signals in the 786 and 769 cell lines, indicating a decrease in both the

number of cells and the number of DNA-synthesizing cells. The

results showed that UBB gene knockdown significantly inhibited the

proliferation of tumor cells (Figure 10B). Furthermore, wound

healing assays, and transwell assays showed that knocking out UBB

significantly reduced the cells’ invasion and migration capabilities

(Figures 10C, D). Taken together, these results suggest that the

upregulation of UBB promotes the proliferation, invasion, and

migration of renal clear cell carcinoma cells.
4 Discussion

Mitochondrial defects, including structural or functional

abnormalities caused by genetic mutations, damage from

environmental factors , increased oxidat ive stress , or

mitochondrial DNA (mtDNA) damage, impact cellular

proliferation, death, and metabolism and are closely linked to the

development and progression of cancer (27, 28). These defects can

trigger mitophagy—a cellular adaptive mechanism that maintains

cell survival by removing dysfunctional mitochondria to prevent

further cellular damage. As a quality control mechanism,

mitophagy aids in the clearance of unhealthy or dysfunctional

mitochondria, averting potential cellular damage caused by

mitochondrial defects (12, 29). With an increase in mitochondrial

defects, autophagy activity correspondingly intensifies to address

these deficiencies. The process of mitophagy includes multiple

steps: recognition of mitochondrial damage, formation of

autophagosomes, fusion with lysosomes, degradation, and

recycling (12). In our research, we observed changes in the levels

of mitochondrial autophagy in various cell types within ccRCC

tumor tissues compared to normal kidney tissue, especially a

significant enhancement of mitochondrial autophagy levels in

clear cells within tumor groups.

The enhancement of mitochondrial autophagy in ccRCC tissues

can be understood from multiple perspectives: Firstly, tumor cells

undergo metabolic reprogramming to adapt to the tumor

microenvironment and promote survival and proliferation,
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activating more frequent mitochondrial autophagy to maintain

intracellular metabolic balance. Secondly, ccRCC cells may

experience increased oxidative stress, leading to mitochondrial

damage, and enhance mitochondrial autophagy to clear damaged

mitochondria, preventing the accumulation of oxidative damage

that could lead to cell death. Additionally, mitochondrial autophagy

may serve as a self-regulatory mechanism, helping tumor cells

optimize survival strategies to adapt to stress conditions in the

microenvironment (30, 31).

Through the analysis of multiple transcriptomic data, we

identified several key genes closely related to mitochondrial

autophagy, suggesting that these genes may be the main factors

driving the changes in mitochondrial autophagy function in clear

cells of renal cell carcinoma, especially in the prognostic analyses

the high expression of six mitochondrial autophagy-related genes,

namely, UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B

was closely associated with poor patient prognosis. Among these

genes, UBC (Ubiquitin C), UBA52 (Ubiquitin A-52 Residue

Ribosomal Protein Fusion Product 1), and UBB (Ubiquitin B) are

involved in the ubiquitination process—a critical protein

modification mechanism that tags proteins for degradation or

other fates (32). The ubiquitin-proteasome system plays a central

role in regulating protein levels, maintaining protein homeostasis,

and participating in cellular stress responses. TOMM7 (Translocase

Of Outer Mitochondrial Membrane 7) is part of the mitochondrial

protein import complex, responsible for transporting proteins from

the cytosol into the mitochondria (33). MAP1LC3B (Microtubule

Associated Protein 1 Light Chain 3 Beta) is a key protein in the

autophagy process, involved in the formation of autophagosomes

(34). CSNK2B (Casein Kinase 2 Beta), as part of the protein kinase

CK2, is involved in various cellular processes including cell cycle

regulation, cell survival, and DNA repair (35). Further analyses

identified UBB and TOMM7 as important prognostic factors

for ccRCC.

UBB is a protein-coding gene involved in the process of

ubiquitination and is also associated with mitochondrial

autophagy. The ubiquitination process plays a critical and

widespread regulatory role within the cell, maintaining the

stability of the intracellular environment and responding to

environmental changes by controlling the fate of proteins. In

mitochondrial autophagy, ubiquitination plays a central role,

primarily by covalently attaching ubiquitin proteins to specific

proteins on the surface of damaged or dysfunctional

mitochondria, thereby marking these mitochondria for

recognition and clearance by autophagosomes. The involvement

of specific receptor proteins such as p62/SQSTM1, OPTN, and

NBR1 allows these ubiquitinated mitochondria to interact with LC3

proteins on the autophagosome membrane, promoting the

formation and expansion of autophagosomes to encapsulate and

ultimately digest the damaged mitochondria (12, 29). Specifically,

the ubiquitin B protein encoded by the UBB gene plays a core role

in marking damaged or obsolete proteins for recognition and

degradation by the 26S proteasome. By regulating the selective

degradation of mitochondria, the UBB gene and its encoded

ubiquitin B protein are crucial for maintaining mitochondrial

quality control and intracellular environmental stability. High
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expression of the UBB gene may enhance the ubiquitination

marking and rapid clearance of damaged mitochondria, helping

tumor cells effectively remove damaged mitochondria to prevent

cellular stress and death, thereby increasing the tumor cells’

adaptability to adverse conditions. Furthermore, high expression

of the UBB gene may also strengthen the adaptive response of the

autophagy pathway under stress conditions such as nutrient

deprivation or hypoxia, providing a survival advantage for tumor

cells, especially in the challenging tumor microenvironment.

We have demonstrated through in vitro experiments that the

proliferation, invasion and migration of tumor cells can be inhibited

by decreasing the expression of the UBB gene in tumor cells. The

results based on transcriptome data analysis and in vitro experiments

demonstrated that UBB, a mitochondrial autophagy-related gene, has

a very important role in renal clear cell carcinoma, which provides a

new direction for potential clinical treatment. We can envisage the

development of siRNA drugs or small molecule inhibitors based on

the UBB gene, thereby reducing its expression level in tumor cells to

inhibit tumor adaptability and growth. In conclusion, through in-

depth research and clinical application of the UBB gene, we can

provide more precise and effective therapeutic options for ccRCC

patients and significantly improve their prognosis.
5 Conclusion

This study highlights the importance of increased

mitochondrial autophagy in ccRCC and its impact on tumor

behavior. By advanced analysis, key genes such as TOMM7 and
Frontiers in Immunology 1655
UBB were associated with autophagy and prognosis, with the role of

UBB in ubiquitination emphasizing its therapeutic potential. These

findings highlight the central role of mitochondrial autophagy in

ccRCC, suggesting new therapeutic targets and improving

personalized treatment for ccRCC patients.
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FIGURE 10

UBB has been demonstrated to promote the proliferation, invasion, and migration of renal clear cell carcinoma cells, as determined by a series of
analytical results: (A) CCK-8 assay. (B) EdU-DAPI Double Staining Assay. (C) wound healing assay. (D) Transwell assay. * Indicates p-value < 0.05.
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Background: Pathomics has emerged as a promising biomarker that could

facilitate personalized immunotherapy in lung cancer. It is essential to

elucidate the global research trends and emerging prospects in this domain.

Methods: The annual distribution, journals, authors, countries, institutions, and

keywords of articles published between 2018 and 2023 were visualized and

analyzed using CiteSpace and other bibliometric tools.

Results: A total of 109 relevant articles or reviews were included, demonstrating

an overall upward trend; The terms “deep learning”, “tumor microenvironment”,

“biomarkers”, “image analysis”, “immunotherapy”, and “survival prediction”, etc.

are hot keywords in this field.

Conclusion: In future research endeavors, advanced methodologies involving

artificial intelligence and pathomics will be deployed for the digital analysis of

tumor tissues and the tumor microenvironment in lung cancer patients,

leveraging histopathological tissue sections. Through the integration of

comprehensive multi-omics data, this strategy aims to enhance the depth of

assessment, characterization, and understanding of the tumor microenvironment,

thereby elucidating a broader spectrum of tumor features. Consequently, the

development of amultimodal fusionmodel will ensue, enabling precise evaluation

of personalized immunotherapy efficacy and prognosis for lung cancer patients,

potentially establishing a pivotal frontier in this domain of investigation.
KEYWORDS

lung cancer, pathomics, artificial intelligence, deep learning, tumor microenvironment,
immunotherapy
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1 Introduction

Lung cancer remains one of the most prevalent malignancies and

represents the foremost cause of cancer-related mortality worldwide

(1, 2), the majority of lung cancers (80–90%) manifest as non-small

cell lung cancer (NSCLC), often diagnosed at an advanced stage

(65%), potentially with concurrent local or distant metastasis (3).

Recent advances in immunotherapy, particularly the use of immune

checkpoint inhibitors (ICIs), have shown promising outcomes in

enhancing the prognosis of lung cancer patients (4). Nevertheless, not

all patients experience the benefits of immunotherapy, highlighting

the need for additional research into predictive biomarkers of

immune response. These biomarkers, which may include

substances, structures, or products of processes within the body,

have the potential to facilitate personalized immunotherapy by

enabling the monitoring of immune reactions.

Each lung cancer patient undergoes histopathological diagnosis,

involving the preparation of biopsy tissues into pathological slides

for examination. The traditional preservation method of using wax

embedding techniques for pathological slides can now be digitized

through computerization, archiving them as digital pathology

images. This technological advancement serves as a foundation

for applying big data analytics to digital pathology images.

Consequently, the field of pathomics has emerged (5). Pathomics

entails applying machine learning techniques to extract large-scale,

objectively quantifiable, and readily analyzable datasets from

digitally scanned pathological tissue images. Consistent with the

pathological diagnostic requirements of diseases, morphological

features, including size and shape of pathological images, along

with multi-dimensional subtle features reflecting potential

biological characteristics such as texture features and edge

gradient features, are extracted. These features can be utilized for

quantitative disease screening, diagnosis, prognosis prediction, and

other applications (6).

In this study, CiteSpace (7) was utilized for the inaugural

analysis of hotspots and trends in the application of pathomics in

lung cancer. The objective is to provide valuable insights for

scholars involved in research within this domain.
2 Materials and methods

2.1 Data collection

Web of Science Core Collection (WoSCC) database was chosen

as the literature retrieval platform. The retrieval period spanned

from 2018 to 2023, with the final search conducted on October 20,

2023. Subject terms were exclusively employed as the search

method, and the search formula was: TS= (“Pathomics” OR

“Pathomics” OR “Digital Pathology” OR “Whole-slide Imaging”

OR “Whole Slide Imaging” OR “Computational Pathology”) AND

TS=(“Lung Cancer” OR “Pulmonary Cancer” OR “Carcinoma of

Lung” OR “Pulmonary Carcinoma” OR “Cancer of Lung” OR

“Bronchogenic Carcinoma” OR “Bronchogenic” OR “Cancer of

the Lung” OR “NSCLC” OR “SLC”), document type: Articles or

Review Articles; a total of 109 documents were retrieved.
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2.2 Statistical methods

Export the complete records and referenced bibliographies of

the 109 documents retrieved from WoSCC in Text format,

comprising 85 articles and 24 reviews. Conduct a comprehensive

analysis of the literature using CiteSpace 6.2.R4 (64-bit) Basic,

focusing on the country, institution, authorship, keywords, and

cited references. The bibliometric online analysis platform,

developed by the National Science Library of the Chinese

Academy of Sciences, was employed to conduct a visual analysis

of historical keywords and national collaborations.
3 Results

3.1 Annual publication volume in WoSCC

A total of 109 matching documents were retrieved, and the

overall publication output exhibited a general upward trend,

especially reaching a contribution rate of 26.61% in 2021

(Figure 1). The annual average publication output is approximately

21.8 articles. The results indicate a gradual increase in the attention to

pathomics research in the context of lung cancer.
3.2 Distribution of source journals

The literature selected from the 109 studies on pathomics in the

management of lung cancer has been indexed by 146 journals. For

the top 10 journals in terms of publication output, detailed

information on Journal Citation Reports (JCR) category,

publication quantity, impact factor (IF), and their respective

contribution percentages is provided in Table 1.
3.3 Visualization of collaborations between
countries and institutions

Running the CiteSpace software for country analysis resulted in

a knowledge graph with 35 nodes and 80 edges (Figure 2). Each
FIGURE 1

Annual analysis of the number of articles issued.
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circular node represents a country, with the size indicating the

quantity of publications from that country. The connections

between nodes represent collaborative relationships between

countries, with the thickness of the connections reflecting the

degree of collaboration. Different colors of nodes represent

different time periods (8), the size of the purple circles reflects the

centrality values indicating the influence of each country.

Leveraging the bibliometric online analysis platform, Figure 3

depicts the contributions of different countries in the field.

Distinctly colored blocks represent the proportional contribution

of each country. Table 2 presents the top 5 institutions in terms of

publication output.
3.4 Visualization of author collaborations

Running the CiteSpace software, author analysis resulted in a

knowledge graph with 200 nodes and 383 edges (Figure 4). Each
Frontiers in Oncology 0360
circular node represents an author, and the connections between

nodes represent collaborative relationships between authors. The

thickness of the connections reflects the degree of collaboration.

Different colors of nodes represent different time periods.

Conducting a co-occurrence analysis on the author team

collaboration network based on the literature retrieved from

WoSCC, Table 3 is presented, listing the top 5 authors in terms

of publication output along with their affiliated institutions in this

research field.
3.5 Co-occurrence analysis of keywords

Keyword-related analysis, as manifested in the visualization of

co-occurrence patterns, is crucial for delineating the research

hotspots and frontiers within a given domain. Running the

CiteSpace software with author keywords as node types, a co-

occurrence network of keywords with 159 nodes and 334 edges
TABLE 1 Top 10 journals in terms of publication volume.

Journal Titles JCR Number IF Rate%

CANCERS Q1 11 5.2 10.092

MODERN PATHOLOGY Q1 6 7.5 5.505

EBIOMEDICINE Q1 3 11.1 2.752

FRONTIERS IN ONCOLOGY Q2 3 4.7 2.752

HISTOPATHOLOGY Q1 3 6.4 2.752

IEEE ACCESS Q2 3 3.9 2.752

MEDICAL IMAGE ANALYSIS Q1 3 10.9 2.752

BIOINFORMATICS Q1 2 5.8 1.835

COMPUTERS IN BIOLOGY
AND MEDICINE

Q1 2 7.7 1.835

IEEE TRANSACTIONS ON
MEDICAL IMAGING

Q1 2 10.6 1.835
FIGURE 2

Visual map of countries.
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was generated (Figure 5). After removing redundant terms that

overlap with the search strategy, an analysis of the co-occurrence

frequency and centrality values of keywords in this field (Table 4)

reveals that the prominent keywords include: deep learning,

artificial intelligence (AI), computer-aided diagnosis, tumor

microenvironment, feature extraction, image analysis, tumor

mutation burden, survival prediction, markov random field,

mixture model. Furthermore, Figure 6 illustrates the temporal

frequency changes of different keywords over time. It highlights

the research focal points in the past few years related to the

application of AI-based pathomics in the diagnosis and treatment

of lung cancer. These themes reflect the proactive role of pathomics

in aiding diagnosis, classification, predicting treatment efficacy, risk

assessment, exploring emerging biomarkers, and analyzing gene
Frontiers in Oncology 0461
expression levels in the context of lung cancer diagnosis

and treatment.
3.6 Keyword cluster analysis

Keyword cluster analysis involves utilizing the log-likelihood

rate (LLR) method to analyze the connection relationships among

significant keyword nodes. This method reflects the hot topics

within the research domain, with closely connected keywords in a

cluster indicating higher research intensity. Larger node values

within a cluster signify greater research interest. By examining

these clusters, it is possible to predict the developmental patterns

and emerging trends in the research field (9).

According to the keyword cluster analysis (Figure 7),

researchers’ studies are concentrated in the following 10 key

areas: #0 parameter auto-tuning; #1 concordance study; #2

prognostic and predictive; #3 mixture model; #4 lung cancer slide

cells; #5 non-small-cell lung cancer; #6 immunotherapy; #7 deep-

learning microscopy; #8 telepathology; #9 radiology. By employing

the clustering algorithm within CiteSpace software to organize title

terms and visualize them (Figure 8), a clear sequential pattern

emerges, encompassing: #0 spatial quantitative systems

pharmacology platform spqsp-io; #1 adaptive radiotherapy; #2

patient survival; #3 pd-11 expression; #4 digital analysis; #5

Bayesian hidden Potts mixture model; #6 bayesian collaborative

learning; #7 multi-stained feature matching; #8 oncology; #9

pathomics; Utilizing the clustering algorithm in CiteSpace to

group subject categories and create a visual representation

(Figure 9), a sequential progression of clusters is discernible,
TABLE 2 Top 5 institutions in terms of publication volume.

Rank Number Institution Country

1 8
CASE WESTERN
RESERVE UNIVERSITY

USA

2 8 UNIVERSITY OF TEXAS SYSTEM USA

3 6
LOUIS STOKES CLEVELAND
VETERANS AFFAIRS
MEDICAL CENTER

USA

4 6
UNIVERSITY OF TEXAS
SOUTHWESTERN MEDICAL
CENTER DALLAS

USA

5 6
US DEPARTMENT OF
VETERANS AFFAIRS

USA
FIGURE 3

Proportion of national contribution.
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including: #0 Pathology; #1 Mathematics; #2 Medicine, Research &

Experimental; #3 Computer Science, Theory & Methods; #4

Engineering, Multidisciplinary; #5 Statistics & Probability; #6

Imaging Science & Photographic Technology; #7 Biology; #8

Health Care Sciences Services; #9 Cell Biology. Employing the

clustering algorithm for keywords and generating a graphical

display (Figure 10), a sequential evolution of clusters is evident,

incorporating: #0 digital pathology; #1 machine learning; #2 deep

learning; #3 artificial intelligence; #4 lung cancer; # 5mixture model;

#6 computational pathology; #7 scale invariant feature transform;

#8 equity; #9 cancer immunopathology.

Each section is divided into 10 clustering modules, partial

clustering blocks overlap with each other, suggesting close

connections between these research areas. In addition to the

research retrieval terms, other clusters demonstrate that

pathomics in lung cancer research spans various fields, including

medical experimental research, computer science, cell biology,

statistics, and mathematics. Through advanced methods such as
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AI and machine learning, pathomics involves in-depth digital

analysis of tumor tissues and the tumor microenvironment based

on patients’ pathological tissue sections. It aims to construct hybrid

models, identify a multitude of pathological features, conduct

precise assessments, and predict tumor-related indicators,

including programmed death-ligand 1 Tumor cell Proportion

Score (PD-L1 TPS). The goal is to assist in personalized

diagnosis and treatment for patients and contribute to clinical

decision-making by leveraging the synergies between AI and

clinical medicine.
3.7 Cited references

A total of 426 relevant articles were retrieved from WoSCC,

accumulating a total of 10,174 citations. The average number of

citations per article is 24. The top 10 most cited articles are listed

in Table 5.
TABLE 3 Top 5 authors in terms of publication volume.

Rank Author Institution Country Number

1 Xiao, Guanghua University of Texas Southwestern Medical Center USA 5

2 Xie, Yang
University of Texas Southwestern Medical Center
Clinic Science

USA 4

3 Bera, Kaustav CASE WESTERN RESERVE University USA 4

4 Baxi, Vipul BRISTOL MYERS SQUIBB USA 3

5 Lu, Cheng University of ALBERTA Canada 3
FIGURE 4

Visual map of author network.
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4 Discussion

Pathomics is an innovative interdisciplinary field that combines

digital pathology and AI. The rise of digital pathology has enabled

the scanning of whole tissue slides, based on the fundamental

principle of digitizing whole-slide images (WSI) using state-of-

the-art whole-slide scanners. This technology can convert standard

Hematoxylin-Eosin (H&E) staining glass slides into a digital format

(WSI) (20). This allows for detailed spatial exploration of the entire

tumor heterogeneity and its most invasive elements. It

automatically extracts and classifies histological features,

transforming this information into binary data. Finally, the
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extracted features are processed through sophisticated computer

algorithms to perform tasks such as cancer classification and

outcome prediction (21). Computational analysis of digitized

histological slides through pathomics can extract valuable

information. Some research primarily focuses on predicting the

prognosis of lung cancer (22), including improving clinical

decisions for cancer immunotherapy and exploring biomarkers

related to potential benefits from ICIs, such as microsatellite

instability (MSI), PD-L1 TPS, and inflammatory genes, among

others (23). Another significant research area involves the

integration of pathomics with multiple omics disciplines to

explore the classification of lung cancer and other related aspects.

Alvarez-Jimenez C et al. demonstrated the potential existence of

cross-scale correlations between pathomics and CT imaging, which

could be used to identify relevant imaging and histopathological

features (24).

The escalating demand for personalized cancer treatment

necessitates more precise biomarker assessments and quantitative

tissue pathology for accurate cancer diagnosis. Pathologists must be

equipped with new methodologies and tools to enhance diagnostic

sensitivity and specificity, ultimately contributing to more informed

and improved treatment decisions (13). Recently, significant success

has been achieved in the analysis of medical images using AI due to

the rapid advancement of “deep learning” algorithms (16).

Recent breakthroughs in AI hold the promise of significantly

changing the way we diagnose and stratify cancer in pathology.

Deep learning technology represents a milestone in this

transformation, with numerous deep learning architectures

applied to pathology-focused research. Various modeling

objectives have been pursued, and recent studies demonstrate the

application of deep learning in pathology aiming to predict
TABLE 4 High frequency and centrality keywords.

Rank Keywords Frequency Centrality

1 deep learning 27 0.33

2 artificial intelligence 14 0.29

3 machine learning 10 0.22

4
computer-
aided diagnosis

3 0.11

5 tumor microenvironment 4 0.07

6 feature extraction 3 0.04

7 image analysis 3 0.04

8 late fusion 2 0.02

9 tumor mutation burden 2 0.02

10 survival prediction 2 0.02
FIGURE 5

Visual map of author keywords.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1432212
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yuan et al. 10.3389/fonc.2024.1432212
conventional diagnostic features used in pathology practice (such as

distinguishing between diseases and normal tissues, defining tumor

grades, and differentiating cancer types), leading to new insights

into diseases (25, 26).

Deep learning encompasses various types of deep neural

networks, and its application has achieved several breakthroughs

in addressing current key challenges in pathology (27).

Convolutional Neural Networks (CNN) are the most commonly

used in the analysis of pathological images (28, 29). A standard

CNN consists of an input layer, task-specific output layer, and

multiple hidden layers. Each hidden layer is composed of numerous

convolutional filters (parameters), which apply the same local

transformation at different positions in their input images (30).

Due to the shared parameters when applied locally in the image,

effective parameterization of the CNN model is achieved. The

typical implementation of CNN models offers a degree of

translation invariance, allowing detected objects or patterns to
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appear at any position within the image. Pooling layers are often

included between convolutional layers to down-sample the

intermediate outputs (feature maps) of the convolution function.

Following the convolutional layers are fully connected layers, which

flatten the output of the convolutional layers and generate the final

representation for the input-output layers (30, 31). Each neuron in a

CNN calculates its output by applying a weight vector and bias

(parameters) to the input values from the previous layer.

The optimization (training) of the CNN model involves iteratively

adjusting these biases and weights to minimize the loss function.

One advantage of CNNs over other image classification algorithms

is their suitability for end-to-end learning (32). Another major

advantage of CNNs is their flexibility and efficiency in learning

patterns from image data. Currently, they represent state-of-the-art

technology in the field of image analysis and classification,

consistently outperforming earlier generations of image analysis

methods (29, 32). Kao Y-S et al. conducted a study on the
FIGURE 6

Variation in the number of keywords.
FIGURE 7

Visual map of author-generated keywords network.
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application of deep learning technology in histopathological tissue

slices (deep pathomics) with the aim of predicting the response of

stage III NSCLC to treatment (33). They assessed 35 digitalized

tissue slices (biopsy or surgical specimens) from patients with stage

IIIA or IIIB NSCLC. Based on the reduction in target volume

observed in weekly CT scans during chemoradiotherapy, patients

were categorized as responders (12/35, 34.7%) and non-responders

(23/35, 65.7%). Employing a leave-two-out cross-validation

method, they tested the digital tissue slices using 5 pre-trained

CNNs-AlexNet, VGG, MobileNet, GoogLeNet, and ResNet, and

evaluated the network performance. GoogLeNet was identified as

the most effective CNN, accurately classifying 8/12 responders and

10/11 non-responders. Furthermore, deep pathomics exhibited a

high level of specificity (True Negative Rate: 90.1) and considerable

sensitivity (True Positive Rate: 0.75). Their data suggests that AI can

surpass the capabilities of current diagnostic systems, providing

additional insights beyond what is currently attainable in

clinical practice.
Frontiers in Oncology 0865
Furthermore, there are studies attempting to apply AI to

histological images with the aim of discovering novel image-based

prognostic and predictive biomarkers. Cao R et al. proposed a deep

learning model based on histopathological images to predict

microsatellite status, achieving area under curve (AUC) of 0.88

and 0.85, respectively. It is noteworthy that this model can identify

five distinct pathological imaging features, which are associated

with the mutation burden in the genome, DNA damage repair-

related genotypes, and the anti-tumor immune activation pathway

in the transcriptome. The predictive model provides the potential

for multi-omics correlations through interpretability associated

with pathology, genomics, and transcriptomics phenotypes (34).

Wang X et al. developed a system capable of identifying high-risk

recurrence in early-stage NSCLC patients with an accuracy ranging

from 75% to 82% (22). In another study, Wang S et al. characterized

a group of high-risk NSCLC patients and identified image-based

tumor shape features as an independent prognostic factor (35).

Rakaee M et al. developed a machine learning-based scoring system
FIGURE 8

Visual map of title keywords network.
FIGURE 9

Visual map of subject categories keywords network.
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for tumor-infiltrating lymphocytes (TILs) to predict the response of

NSCLC to immune checkpoint inhibitor therapy (36). Additionally,

Coudray N, Ocampo PS et al. applied AI to digital pathology slides

to predict the presence of mutations in lung adenocarcinoma (37).

In summary, the development of these advanced deep learning

algorithms enhances the capability of analyzing lung cancer

pathology images, assisting pathologists in challenging diagnostic

tasks such as tumor identification, metastasis detection, and analysis

of the tumor microenvironment.

TME is primarily composed of tumor cells, lymphocytes,

stromal cells, macrophages, blood vessels, and other components.

The composition of the TME varies based on the relative
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proportions of its different constituents, and its presence plays a

crucial role in the growth and invasion of tumors.

Immune cells within the TME exhibit dual functions – on one

hand, they identify and destroy tumor cells, while on the other

hand, they also promote tumor growth and metastasis (38, 39). For

instance, immune cells, including T cells, B cells, macrophages, and

myeloid-derived suppressor cells, possess the ability to modulate the

TME, thereby influencing tumor metastasis and pathological

features (40, 41). Tumor Infiltrating Lymphocytes (TILs) in the

TME involves a complex network of multiple cell types and

cytokines and is a hallmark of immune recognition. Numerous

studies have shown that activated CD8+ T cells are the major players
FIGURE 10

Visual map of keywords network.
TABLE 5 The top 10 cited articles.

Rank Author Year
Total
Citations

Title

1
Pucci,
Carlotta;

2019 343 Innovative approaches for cancer treatment: current perspectives and new challenges (10)

2 Lu, Ming Y; 2021 278 Data-efficient and weakly supervised computational pathology on whole-slide images (11)

3
Khosravi,
Pegah;

2018 180 Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images (12)

4 Acs, B.; 2020 136 Artificial intelligence as the next step toward precision pathology (13)

5
Maibach,
Fabienne;

2020 118 Tumor-Infiltrating Lymphocytes and Their Prognostic Value in Cutaneous Melanoma (14)

6
Mezheyeuski,
Artur;

2018 114
Multispectral imaging for quantitative and compartment-specific immune infiltrates reveals distinct immune
profiles that classify lung cancer patients (15)

7 Wang, Shidan; 2019 103 Artificial Intelligence in Lung Cancer Pathology Image Analysis (16)

8
Johnson,
Douglas B.;

2018 91
Quantitative Spatial Profiling of PD-1/PD-L1 Interaction and HLA-DR/IDO-1 Predicts Improved Outcomes of
Anti-PD-1 Therapies in Metastatic Melanoma (17)

9 Baxi, Vipul; 2022 80 Digital pathology and artificial intelligence in translational medicine and clinical practice (18)

10
Saw,
Stephanie
P. L.;

2021 56 Revisiting neoadjuvant therapy in non-small-cell lung cancer (19)
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involved in anti-tumor immunity, and in a subset of tumors, cancer

cells inhibit the activation of CD8+ cytotoxic T cells through the

expression of ligands such as PD-L1 that bind to inhibitory

checkpoints, which has been suggested to be an important

mechanism of immune escape for cancer cells (42). The

expression of PD-L1 on TME immune cells, including myeloid

cells (macrophages, dendritic cells) and T cells, appears to correlate

more with the ICI response than expression on tumor cells.

However, in NSCLC clinical practice, a limitation in histologically

characterizing T lymphocyte infiltration is the scarcity of tumor

tissue, which has hampered insight into the role of T lymphocytes in

influencing the ICI response (43). Tumor-associated macrophages

can promote angiogenesis and invasion by secreting cytokines,

growth factors, and proteases (44). Cancer-associated fibroblasts

(CAF) are pivotal in the formation of organs and the maintenance

of tissue structure and function. They also play a significant role in

tumor initiation, progression, metastasis, and the development of

drug resistance through their potent immunosuppressive

capabilities. Activated CAF possess the capability to secrete

various substances, including extracellular matrix and vascular

endothelial growth factor (VEGF), contributing to the complexity

of the TME (45, 46). The markers associated with CAF are

predominantly linked to T cell immunosuppression, inhibiting

the functions of CD8+ T cells and natural killer cells, particularly

by secreting various chemokines and cytokines, notably interleukin-

6 (IL-6), which leads to suboptimal clinical treatment outcomes. As

research into the effects of CAF and the TME on immune cells and

the efficacy of cancer immunotherapy advances, scientists can

potentially develop novel compounds targeting these mechanisms,

thereby offering innovative strategies for immunotherapy (47). It is

noteworthy that research indicates a significant impact of the TME

on the survival benefits of immunotherapy (48). The presence of

immune cells in the TME, including the percentage of CD8+ T cells,

can serve as a predictive factor for the effectiveness of

immunotherapy (49). The extracellular matrix can influence the

mechanisms of tumorigenesis by affecting cell growth, metastasis,

and immune evasion through the activation of signaling pathways.

Additionally, tumor cells have the capability to release various

growth factors, such as tumor growth factor, endothelial growth

factor, and VEGF, contributing to the promotion of new blood

vessel development (50). Angiogenesis is crucial for providing

nutrients and oxygen to tumor cells, ultimately playing a critical

role in tumor growth.

Therefore, TME plays a crucial role in tumor growth and

metastasis. A comprehensive understanding of TME formation,

investigating the interplay between immune cells and tumors, and

exploring various genetic variations represent the future directions

of TME research (51, 52). Additionally, selecting targeted

therapeutic strategies based on TME subtypes can enhance the

effectiveness of cancer treatment. To further emphasize this point,

computer-assisted automatic detection of tumor cells in lymph

nodes can significantly reduce the false-negative rate, thereby

facilitating earlier detection and treatment of lung cancer,

improving the accuracy of TNM staging, accelerating the

examination process, and reducing the workload of pathologists.

Moreover, tumor spread through air spaces (STAS) has been
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identified as an important clinical factor associated with tumor

recurrence and poor prognosis in patient survival. The

identification and quantification of STAS require experienced

pathologists to perform detailed examinations of entire tissue

sections. Therefore, pathological image analysis tools that rapidly

and accurately identifies STAS would be useful for pathologists (16).

Quantitative characterization of TME and accurate prediction and

classification of important TME components are essential for

targeted tumor therapy and prognosis assessment (53),

necessitating advanced data processing and analysis approaches.

Quantitative characterization of TME involves a crucial step of

segmenting different types of tissue substructures and cells from

pathological images. This segmentation forms the foundation for

various image analysis tasks, including cellular composition, spatial

organization, and morphology specific to substructures. Previous

studies in oncology primarily focused on tumor cells, overlooking

the pivotal role of TME in the initiation and progression of cancer.

The TME of lung cancer is primarily composed of tumor cells,

lymphocytes, stromal cells, macrophages, blood vessels, and other

components. Studies in lung cancer have indicated that TILs are

positive prognostic factors, while angiogenesis is negatively

associated with survival outcomes. The role of stromal cells in

prognosis is complex. Traditional image processing methods

encompass feature definition, feature extraction or segmentation.

These techniques have been employed to segment lymphocytes and

analyze the spatial organization of TILs and stromal cells within the

TME (54). Research associated with the quantitat ive

characterization of TME has the potential to predict treatment

outcomes and provides insights for the development of targeted

therapeutic strategies. Innovative studies in immunotherapy, in

particular, heavily rely on understanding the interactions among

various components within the TME and the mechanisms of

immune evasion.

Accurate characterization of specific structures and features of

TME is crucial for evaluating tumor prognosis (55), enhancing

clinical decisions, and advancing precision medicine. Radiomics can

unveil the heterogeneity of tumor cells and TME, while genomics

and pathomics explore the biological significance of imaging

histological features. The integration of these three approaches

contributes to a comprehensive understanding and decoding of

TME characteristics in tumors, facilitating prognostic predictions

(56). The interconnection between radiomics, pathomics, and

genomics contributes to establishing and deepening our

understanding of cancer biology and imaging features.

Concurrently, powerful machine learning techniques can decipher

the complex interactions between tumors and cancer treatments.

The integration of machine learning technologies with digital

imaging and novel methods for assessing TME at the molecular

level significantly enhances our comprehension of TME and cancer

prognosis assessment. Vanguri RS et al. employed machine learning

to integrate multimodal features into a risk prediction model (57).

By combining radiological, histopathological, and genomic features,

they assessed the predictive capability of immunotherapy response

in NSCLC. Their study revealed that the AUC value of the

multimodal model was 0.80, surpassing any single variable.

These findings establish a quantitative foundation for enhancing
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the accuracy of predicting immunotherapy response in NSCLC

patients through the integration of multimodal features and

machine learning.

Simultaneously, the quantitative characterization of TME in

lung cancer poses certain challenges, including the following

aspects: (1) Complexity and heterogeneity of lung cancer TME

composition: In addition to the mentioned cell types, other

structures such as bronchi, cartilage, and pleura often appear in

pathological sections of the lung. This complexity and heterogeneity

make segmentation and traditional feature definition challenging.

(2) Cellular spatial organization (e.g., spatial distribution and

interactions of different cell types): While playing a crucial role in

TME, it is more challenging to capture than simply providing the

quantity or ratio of different cell types. Current research mainly

focuses on the proportion of different cell types, overlooking the

intricate cellular spatial organization, which may result in limited

and contradictory outcomes regarding the roles of different cell

types in the TME. (3) For H&E-stained glass slides, there can be

significant color variations based on staining conditions and the

time gap between slide preparation and scanning. Traditional image

processing methods based on manual feature extraction struggle to

overcome these obstacles. (4) Multi-omics studies face the high

dimensionality and heterogeneity of data, and integrating

quantitative measurements of multi-modal data for prognosis

prediction is a highly challenging task. In summary, pathomics, as

a nascent research methodology, is presently undergoing

preliminary investigation. Future studies utilizing extensive multi-

omics datasets have the potential to advance the formulation of

sophisticated integration strategies. These strategies would facilitate

a more exhaustive evaluation, characterization, and elucidation of

TME (58). Consequently, this advancement will yield profound

insights into the imaging characteristics and the pathophysiological

and biological underpinnings of tumor pathology.

In recent years, amidst the high incidence and mortality rates of

lung cancer, the selection and implementation of treatment plans for

advanced-stage lung cancer patients, as well as the creation of more

precise platforms for predicting treatment responses, continue to face

challenges. Pathomics not only synergizes with traditional

pathological semantic information and clinical data to discover

disease patterns but also interacts and integrates with various omics

information, leveraging the unique advantages of each omics

discipline. The development of these interdisciplinary approaches

not only aids in identifying subtle lesions that may escape the naked

eye and uncovering disease patterns beyond subjective judgment but

also facilitates relatively objective and accurate assistance in disease

screening, diagnosis, differential diagnosis, and prognosis assessment.

Furthermore, it contributes to saving human and material resources,

optimizing the utilization of limited medical resources to the

maximum extent, and, on a broader scale, promoting the

development of the personalized immune intervention.
5 Conclusion

In conclusion, this study systematically analyzed the literature

on pathomics in the management of lung cancer indexed within the
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WoSCC. It offers an initial overview of recent research trends and

forecasts potential hotspots and frontiers for future inquiry, aiming

to provide valuable insights and references for scholars and

researchers involved in personalized immunotherapy efficacy and

prognosis for lung cancer.
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role in pan-cancer
Zhiwen Luo1†, Jinguo Zhu2†, Rui Xu3†, Renwen Wan1,
Yanwei He1, Yisheng Chen1, Qing Wang4*,
Shuo Chen5* and Shiyi Chen1*

1Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China, 2Department
of Orthopaedics, Nantong Tongzhou Hospital of Traditional Chinese Medicine, Tongzhou,
Jiangsu, China, 3The First Clinical Medicine College, Nanjing Medical University, Nanjing, China,
4Department of Orthopaedics, Kunshan Hospital of Chinese Medicine, Kunshan, Jiangsu, China,
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Background: Breast cancer ranks as one of the most prevalent malignancies

among women globally, with increasing incidence rates. Physical activity,

particularly exercise, has emerged as a potentially significant modifier of

cancer prognosis, influencing tumor biology and patient outcomes.

Methods: Using a murine breast cancer model, we established a control and an

exercise group, where the latter was subjected to 21 days of voluntary running.

RNA Sequencing, bioinformatics analysis, pan-cancer analysis, and cell

experiments were performed to validate the underlying mechanisms.

Results: We observed that exercise significantly reduced tumor size and weight,

without notable changes in body weight, suggesting that physical activity can

modulate tumor dynamics. mRNA sequencing post-exercise revealed substantial

downregulation of CD300E in the exercise group, accompanied by alterations in

critical pathways such asMicroRNAs in cancers and the Calcium signaling pathway.

Expanding our analysis to a broader cancer spectrum, CD300E demonstrated

significant expression variability across multiple cancer types, with pronounced

upregulation in myeloma, ovarian, lung, and colorectal cancers. This upregulation

was correlated with poorer prognostic outcomes, emphasizing CD300E’s

potential role as a prognostic marker and therapeutic target. Moreover, CD300E

expression was associated with cancer cell proliferation and apoptosis.

Conclusion: The study highlights the dual role of exercise in modulating gene

expression relevant to tumor growth and the potential of CD300E as a target in

cancer therapeutics. Further research is encouraged to explore the mechanisms

by which exercise and CD300E influence cancer progression and to develop

targeted strategies that could enhance patient outcomes in clinical settings.
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1 Introduction

Breast cancer, a predominant malignancy among women, has

witnessed an increasing global incidence (1, 2). The World Health

Organization reports that it stands as one of the leading causes of

cancer-related deaths among women worldwide (3, 4). The impacts

of breast cancer extend beyond severe health threats; its cells invade

surrounding tissues and metastasize via lymphatic and circulatory

systems to distant organs such as bones, liver, lungs, and brain,

complicating and escalating the complexity of treatment protocols

(5, 6). Additionally, the socioeconomic repercussions are profound,

imposing substantial financial burdens during treatment and

straining familial and social relationships due to the psychological

toll of the disease (7, 8). Therefore, deepening our understanding of

the mechanisms underlying breast cancer pathogenesis and

developing innovative targeted therapies are imperative (9–11).

The beneficial impacts of physical activity on health and cancer

prevention are multifaceted (12). Exercise enhances cardiovascular

efficiency and muscle strength, augments bone density, and aids in

osteoporosis prevention (13). It also boosts metabolism, which

helps maintain a healthy weight and physique. Immunologically,

physical activity increases lymphocyte counts, thereby

strengthening the immune system’s defense against diseases,

including cancer (14). Exercise also alleviates psychological stress

and mitigates symptoms of anxiety and depression, enhancing

overall mood and well-being, thereby indirectly reducing cancer

risk (15–17). Persistently engaging in physical activities has been

shown to correlate with lower cancer incidence rates, likely due to

enhanced antioxidative capacity and expedited elimination of

carcinogens (18–20). Recent research further underscores the

therapeutic potentials of exercise in oncology. A study by Luo

et al. revealed that physical activity could transform the

immunological microenvironment of non-small cell lung cancer

from a “cold” to a “hot” state, indicating that exercise not only

increases the population of CD8+ T cells and M1 macrophages but

also reduces immunosuppressive cells, thereby sensitizing tumors to

immunotherapy (21). This transformative potential of exercise

offers a promising adjunct to conventional cancer treatments,

suggesting that integrating physical activity could significantly

enhance therapeutic outcomes.

The CD300E gene encodes a protein that interacts with the

TYRO protein tyrosine kinase binding protein, and is considered an

activating receptor (22). Within the immune system, CD300E is

posited to play a pivotal role in modulating the activity and

functionality of immune cells (23–25). Research indicates that

mCD300E can recognize sphingomyelin, thereby regulating the

functions of atypical and intermediate monocytes through FcRg
and DAP12 (26). In the realm of oncology, the study of CD300E is

garnering increasing attention due to its potential role in

modulating tumor immune responses and facilitating immune

escape (25, 27). Specifically, CD300E may promote tumor growth

and dissemination by influencing the interactions between tumor

cells and the immune system. In addition, one patent have reported

that CD300E siRNA delays or halts cancer progression by blocking

or knocking down cd300e to inhibit its activity or expression, and
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that the rate of tumor growth is significantly inhibited in mouse

tumors compared to controls. Understanding the precise

mechanisms of CD300E’s involvement in tumor immunity is

critical for the development of novel immunotherapeutic

strategies, which could include modulating its expression or

function to enhance the immune system’s capacity to target

tumors (28, 29).

This study has identified CD300E as a critical target through

gene sequencing of voluntary running wheel exercises in mice as an

anti-breast cancer initiative. By further analyzing CD300E through

bioinformatics and cellular biology experiments, we aim to explore

and demonstrate its role in tumor development and progression.

This research not only sheds light on the mechanistic

underpinnings of CD300E in cancer biology but also underscores

the potential of exercise-induced molecular responses as a strategic

approach in cancer prevention and treatment.
2 Materials and methods

2.1 Cell culture

The 4T1 mouse cancer cell line (catalog KGG2224-1) and

MDAMB231 (catalog KGG3220-1) were procured from KeyGEN

(Nanjing, China). MDA-MB-468 was procured from FengHui

ShengWu, China. 4T1 cells were cultured in RPMI-1640 medium

enriched with 10% fetal bovine serum (FBS) and sustained at 37°C

in either an ambient atmosphere or one containing 5% CO2.

MDAMB231 and MDAMB468 cells were cultured in the MEM

media with 1% non-essential amino acid and 1 mM sodium

pyruvate. All media were added with 10% FBS at 37°C with or

without 5% CO2.
2.2 Animal interventions

Female BALB/c mice, aged 5-6 weeks, were obtained from the

Shanghai Laboratory Animal Center (SLAC). To establish a triple-

negative breast cancer (TNBC) model, 4T1 cells (5 × 10^6) were

subcutaneously injected into the abdomen of BALB/c mice. The choice

of this specific strain and demographic was based on its relevance to

breast cancer research and its consistent response to exercise

interventions. All mice were in good health, verified by a veterinarian

prior to the commencement of the study. The mice were housed in a

controlled environment with a 12-hour light/dark cycle, and were given

free access to food and water. Tumor growth was monitored and

measured regularly every 2-3 days using calipers. Mice were randomly

divided into two groups: an exercise group (E) and a non-exercise

group (NE), each comprising five animals. The exercise group

underwent a 21-day regimen of voluntary running (no speed or

distance limitation), whereas the non-exercise group was maintained

under normal husbandry conditions without dietary restrictions. After

21 days, the mice were euthanized, and tumor tissues were collected for

mRNA sequencing analysis. Animal experiments were granted by

Ethics Committees at Nanjing Medical University.
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2.3 mRNA sequencing and
bioinformatics analysis

21 days subsequent to administering the treatments, tumor

samples from mice were carefully collected for mRNA sequencing

analysis (30). Following various treatments, cell samples were

diligently harvested. The extraction of total RNA from these

samples was performed using the highly regarded RNeasy Mini

Kit (Qiagen, Hilden, Germany). After RNA extraction, the

construction of paired-end libraries was carried out using the

TruSeq RNA Sample Preparation Kit (Illumina, USA), adhering

meticulously to the protocol provided by TruSeq RNA Sample

Preparation. The Shanghai Biotechnology Corporation was tasked

with the responsibility of constructing and sequencing the libraries.

For the precise mapping of clean reads to the Rnor 6.0 reference

genome, allowing up to two mismatches, the widely acclaimed

Hisat2 software (version 2.0) was utilized. Subsequent to genome

mapping, the esteemed Stringtie software (version 1.3.0) was

employed to generate and annotate Fragments per kilobase of

exon per million (FPKM) values. Gene expression data were

normalized using the trimmed mean of M-values (TMM) method

to correct for library size differences and compositional biases. Top-

10 genes were shown.

Statistical significance was determined with a P-value threshold

set according to the false discovery rate (FDR). mRNAs exhibiting a

fold change of ≥ 2 and an FDR ≤ 0.05 were identified as

differentially expressed. To further investigate the biological

pathways involved, meticulous KEGG pathway analysis was

performed using the revered KEGG database (http://

www.genome.ad.jp/kegg) within the R environment. Additionally,

Gene Set Enrichment Analysis (GSEA) was conducted using R

BiocManager to delve deeper into the molecular mechanisms

influenced by the treatments.
2.4 Pan-cancer analysis

2.4.1 Gene expression and datasets obtained
We utilized the Human Protein Atlas (HPA) to collate

comprehensive RNA and protein expression profiles of CD300E

in human samples. Furthermore, detailed data on CD300E

expression across various tissues and cell lines were sourced from

the Harmonizome database. We expanded our dataset by

incorporating CD300E mRNA expression data from cancerous,

paracancerous, and normal tissue samples provided by TCGA and

GTEx databases. Our study spanned a diverse set of 33 cancer types

including, Adrenocortical carcinoma (ACC), Bladder Urothelial

Carcinoma (BLCA), Breast invasive carcinoma (BRCA), Cervical

squamous cell carcinoma and endocervical adenocarcinoma

(CESC), Cholangiocarcinoma (CHOL), Colon adenocarcinoma

(COAD), Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

(DLBC), Esophageal carcinoma (ESCA), Glioblastoma multiforme

(GBM), Head and Neck squamous cell carcinoma (HNSC), Kidney

Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC),

Kidney renal papillary cell carcinoma (KIRP), Acute Myeloid
Frontiers in Immunology 0373
Leukemia (LAML), Brain Lower Grade Glioma (LGG), Liver

hepatocellular carcinoma (LIHC), Lung adenocarcinoma (LUAD),

Lung squamous cell carcinoma (LUSC), Mesothelioma (MESO),

Ovarian serous cystadenocarcinoma (OV), Pancreatic

ad enoca r c i noma (PAAD) , Pheoch romocy toma and

Paraganglioma (PCPG), Prostate adenocarcinoma (PRAD),

Rectum adenocarcinoma (READ), Sarcoma (SARC), Skin

Cutaneous Melanoma (SKCM), Stomach adenocarcinoma

(STAD), Testicular Germ Cell Tumors (TGCT), Thyroid

carcinoma (THCA), Thymoma (THYM), Uterine Corpus

Endometrial Carcinoma (UCEC), Uterine Carcinosarcoma (UCS),

Uveal Melanoma (UVM).

For statistical analysis, we utilized R software (version 4.2.2) and

employed the ggplot2 package to depict CD300E expression across

the cancer spectrum. We adopted the median expression level as the

threshold for differential expression analyses. Differences between

expression groups were assessed using the Wilcoxon rank-sum test.

2.4.2 Survival analysis of CD300E in the
33 cancers

We also conducted survival analyses to explore the prognostic

potential of CD300E expression in cancer (18). Using the survival

package in R, we performed Kaplan-Meier analyses and employed

Cox regression to compare survival outcomes between groups with

high and low expression of CD300E. The impact of CD300E

expression on survival was visually represented through forest

plots using the survminer and ggplot2 packages.

2.4.3 Genetic alteration analysis of CD300E
An investigation into the genetic alterations associated with

CD300E was conducted through the cBioPortal. This analysis

included an examination of somatic mutation frequencies and

detailed genomic information, helping to elucidate the mutation

landscape of CD300E in various cancers.

2.4.4 Immunogenomic analyses of CD300E in
the 33 cancers

In our immunogenomic analysis across 33 different cancers, we

utilized the “GSVA” package and the “ssGSEA” algorithm to assess

the relationship between CD300E expression and various immune

components, including tumor-infil trating lymphocytes,

immunostimulators, immunoinhibitors, MHC molecules,

chemokines, and chemokine receptors. The correlations were

determined using Spearman’s correlation coefficient, and p-values

less than 0.05 were deemed significant. To effectively display these

correlations, we generated heatmaps using the “ggplot2” package.

2.4.5 Functional enrichment analysis of CD300E
We carried out Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) pathway enrichment analyses to

examine the functions and pathways associated with genes

interacting closely with CD300E. These genes were identified

through STRING and analyzed using the “clusterProfiler” and

“org.Hs.eg.db” packages in R. We set a stringent cutoff threshold

of a p-value < 0.01 for both GO and KEGG enrichment analyses.
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The outcomes of these analyses were visually represented using

bubble charts created with the “ggplot2” package.
2.5 Cellular experiments

2.5.1 Knockdown of CD300E gene
To knock down CD300E gene expression in tumor cells, we

designed and synthesized small interfering RNAs (siRNAs)

targeting CD300E using In vivogen-based method (Detailed

sequencing can be found in the Supplementary Table 1). These

siRNA sequences were algorithmically predicted and selected as the

most likely to effectively target CD300E mRNA. The specific steps

are as follows: siRNA transfection: siRNA transfection was

performed using Lipofectamine 2000 (Invitrogen) according to

the manufacturer’s instructions. Briefly, cells were incubated with

a mixture of Lipofectamine 2000 and siRNA to form a complex 24

hours after inoculation and then added to the cells. Gene

knockdown efficiency assessment: 48 hours after transfection,

CD300E mRNA and protein levels were analyzed by real-time

quanti ta t ive PCR (qPCR) to veri fy the efficiency of

siRNA knockdown.

2.5.2 Overexpression of CD300E gene
cDNAs of mouse CD300e (GenBankTM accession number

NM_172050.3) were isolated by PCR from a cDNA library of

mouse BM cells. To overexpress CD300E, we constructed a

plasmid containing the complete CD300E coding region. This

plasmid drives the expression of CD300E under the control of

CMV promoter. The steps of the overexpression experiment are

as follows:

Plasmid construction: the cDNA of CD300E was cloned into

the expression vector pCMV, and the correctness of the insert

sequence was verified by gene sequencing. Plasmid transfection:

transfection of plasmid DNA was performed using Lipofectamine

2000. Cells were transfected 24 hours after inoculation, following

similar steps as described above for siRNA transfection. Expression

verification: 48 hours after transfection, mRNA and protein

expression of CD300E were detected by qPCR to confirm the

effect of gene overexpression.

2.5.3 Proliferation/apoptosis/migration/invision
To evaluate the proliferation of cancer cells, we cultured the

cells in suspension and then seeded them at a density of 5 × 10^3

cells/mL (100 mL per well) in a 96-well plate. The plate was

maintained at 37°C. Subsequently, we added 10 mL of CCK-8

reagent (catalog KGA9305, KeyGEN, Nanjing, China) to each

well and allowed the plate to incubate for two hours before

measuring the optical density at 450 nm using a microplate reader.

For the assessment of cell migration and invasion, we utilized

Transwell chambers, applying a Matrigel coating for invasion assays

and no coating for migration assays. We introduced cancer cells

(5×10^4) in 200 mL of serum-free medium into the upper chamber,
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while the lower chamber was filled with 600 mL of medium

supplemented with 10% FBS.

To determine levels of cell apoptosis, we analyzed the apoptosis

rate using an Annexin V-FITC/PI Kit (Cat. KGA1102, KeyGEN,

Nanjing, China), following the protocol provided by the

manufacturer. This method facilitated a precise evaluation of the

apoptotic stages within the cancer cell populations.

2.5.4 Real-time quantitative polymerase
chain reaction

To assess mRNA abundance at the cellular level, total RNA was

meticulously extracted from cells and muscle tissues using the Trizol

reagent (Invitrogen) and was precisely quantified with a Nanodrop

instrument (Thermo Scientific, USA). Following this, cDNA was

synthesized and served as a template for quantifying mRNA

expression levels in quantitative PCR (qPCR) assays. These assays

were performed using the TB Green™ Premix Ex Taq™ II kit (Takara;

RR820A), with GAPDH used as an internal control for normalization.

Specific qPCR primers, essential for the amplification of mRNA, were

synthesized by Bioengineering (Shanghai, China). The relative

expression levels of the mRNA in each sample were calculated using

the comparative Ct method (2^-DDCt), ensuring the accuracy of the

results through at least three independent experimental replicates. To

provide a consistent baseline for comparison, all values were

normalized against the control condition. Details of the primer

sequences used are available in Supplementary Table 1.
2.6 Statistical methods

Statistical analysis and figure generation were performed with R

language version 4.0.2 and Graphpad Prism 9.0. For the comparison of

continuousvariablesbetweentwogroups,thechoicebetweentheStudent

t-test and the Mann-Whitney test depended on specific conditions.

When comparing multiple groups, either one-way ANOVA or the

Kruskal-Wallis test with subsequent multiple comparisons was used,

depending on the circumstances. The prognostic significance of

categorical variables was determined using the log-rank test. Statistical

significance was set at a P value <0.05 across all analyses.
3 Results

3.1 Impact of voluntary running on tumor
growth and gene expression

Following the intervention of exercise, a significant reduction in

tumor size and weight was observed at day 21, with minimal

changes in the body weight of the mice (Supplementary

Figures 1A, B). We then conducted mRNA sequencing analysis

on five matched pairs (Figure 1A). The quality control results

confirmed normal parameters, with high intra-group consistency

and notable expression differences between groups (Supplementary
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Figures 2A–E). Volcano plots and heatmaps revealed differential

expression of 22 genes, among which CD300E expression was

significantly reduced in the exercise group (E), representing only

46% of that in the non-exercise group (NE), with a p-value of 0.008

(Figures 1B–D). Gene enrichment analysis highlighted significant

alterations in extracellular components, with the most pronounced

changes observed in the MicroRNAs in cancers and Calcium

signaling pathway (Figures 1E, F).
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3.2 Pan-cancer analysis

3.2.1 Expression variability of CD300E in
pan-cancer

To evaluate the expression of CD300EmRNA in normal human

tissues, we analyzed data from the GTEx, HAP, and Consensus

datasets. CD300E showed higher expression in tissues such as

blood, lung, bone marrow, appendix, and bladder (Supplementary
B C

D

E F

A

FIGURE 1

Voluntary wheel running exercise inhibits breast cancer growth. (A) Schematic diagram of the experiment. (B) Heatmap of Hierarchical clustering analysis of
changed mRNAs. (C, D) Volcano plot and column of mRNAs differentially expressed between NE and E group. n = 5. (E, F) Bubble plot showing GO and
KEGG enrichment by all the differentially expressed mRNAs expressed in tumors, including biological process, cellular component, and molecular function.
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Figure 1). Further in-depth evaluation using RNA-seq data from

TCGA and GTEx databases revealed significant expression

differences in CD300E across 33 types of cancer. In unmatched

samples (Figure 2A), CD300E was notably upregulated in cancers

like BRCA, COAD, ESCA, GBM, HNSC, KIRC, and STAD, and

downregulated in KICH, LIHC, LUAD, LUSC, and PAAD. In

matched samples (Figure 2B), upregulation was significant in
Frontiers in Immunology 0676
BRCA, COAD, ESCA, HNSC, KIRC, and STAD, while

downregulation was noted in COAD, KICH, LIHC, LUAD, and

LUSC. The Human Atlas database further assessed the protein

expression of CD300E across various cancers, showing upregulation

in Myeloma, Diffuse large B-cell lymphoma, Ovarian cancer, Lung

cancer, and Colorectal cancer without significant downregulation in

any cancer type (Figure 2C).
B

C

A

FIGURE 2

Differential expression pattern of CD300E. (A) Differential CD300E mRNA expression between paired samples in TCGA cancers. The red dot
represents cancer samples, and the blue dot represents paired normal samples. Radargrams visualize and compare CD300E expression in different
tumors. *p < 0.05, **p < 0.01, and ***p < 0.001. (B) Differential CD300E mRNA expression between TCGA cancers and GTEX normal tissues. The red
column represents cancer samples, and the blue column represents normal samples. The normal group was normal tissue in TCGA and GTEX
databases. *p < 0.05, **p < 0.01, and ***p < 0.001. (C) CD300E protein expression in different cancer types in Human Atlas.
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3.2.2 Prognostic impact of CD300E in
pan-cancer

For overall survival (OS) and disease-specific survival (DSS),

CD300E posed a risk factor in THCA, LUSC, LGG, LAML, KIRC,

and GBM, while it acted as a protective factor only in SKCM

(Figures 3A, B). For disease-free interval (DFI), progression-free

interval (PFI), and disease-free survival (DFS), CD300E was a risk
Frontiers in Immunology 0777
factor in KIRP, PAAD, and GBM, and a protective factor in LGG

and CHOL (Figure 3A).

3.2.3 Correlation analysis of CD300E in
pan-cancer

Copy number variations (CNVs), a common form of genomic

instability in cancer, can lead to altered gene expression affecting
B

A

FIGURE 3

High expression of CD300E reduced patient survival period. (A) Forest plot of hazard ratios (HR) for overall survival (OS), PFI, DSS, DFS, and DFI for
different cancer types associated with CD300E expression. Dots indicate log-transformed hazard ratios, red indicates significant risk, blue indicates
protective associations, and gray indicates non-significant associations. (B) Individual OS figures for each cancer type.
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cell proliferation, differentiation, and death. Bar graphs (Figure 4A)

showed changes in CD300E copy numbers across various cancers,

with significant variations in KICH and READ. Further correlation

analysis indicated a negative relationship between CD300E copy

numbers and cancer progression in KIRP and THCA, and a positive

correlation in KICH and STAD (Figure 4B). Promoter methylation,

a critical epigenetic regulatory mechanism affecting gene expression

without altering the DNA sequence, was analyzed to explore its

relationship with CD300E expression across multiple cancer types.

Both unmatched and matched tumor samples showed a negative

correlation between CD300E expression and methylation,

particularly in KIRC and THCA (Figures 4C, D). Additionally,

the relationship between tumor mutational burden (TMB) and
Frontiers in Immunology 0878
CD300E expression was investigated, revealing a positive

correlation in SARC, OV, COAD, BRCA, BLCA, and THYM, and

a negative correlation in LAML, LIHC, and PAAD (Figures 4E, F).

3.2.4 Analysis of CD300E on the immune
microenvironment across cancers

Heatmap analysis from Figure 5A intricately details the

correlations between CD300E expression and various immune

cell subtypes across different types of cancers. Notably, in cancers

such as BRCA (Breast Cancer) and COAD (Colorectal

Adenocarcinoma), a significant positive correlation exists between

CD300E expression and M2 macrophages, typically associated with

a tumor-promoting immunosuppressive environment. This
B

C D

E F

A

FIGURE 4

Correlation analysis of CD300E in pan-cancer. (A) Bar graphs illustrate CD300E copy number variation in different cancers. (B) CD300E copy
number and pan-cancer direct correlation analysis. (C, D) The correlation between the methylation status of gene promoter regions and CD300E in
multiple cancer types (E, F) The correlation between tumor mutational burden (TMB) and CD300E expression.
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suggests that elevated expression of CD300E may foster an

immunosuppressive state conducive to tumor growth and

metastasis. Conversely, in Lung Adenocarcinoma (LUAD),

CD300E exhibits a negative correlation with natural killer (NK)

cells, although this association generally lacks statistical
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significance. This trend implies that in certain cancer contexts,

CD300E expression may inversely affect the immunosurveillance

capabilities of NK cells, potentially contributing to mechanisms of

immune escape. Additionally, in certain cancer types like BRCA,

CD300E shows a positive correlation with regulatory T cells (Tregs),
B

C

A

FIGURE 5

Analysis of immune microenvironmental cellular regulation of pan-cancer by CD300E. (A) Heatmap of immune cell infiltration in pan-cancer
analyzed using the Cibersort method. Each cell represents the correlation between CD300E expression and the level of a specific immune cell type,
and the intensity and sign of the color correspond to the strength and direction of the correlation, respectively. Statistical significance is indicated by
the box around the cell. (B) CD300E pan-cancer immuno-infiltration analysis using Cibersort. (C) Gene Commons data analysis of correlations
between single genes and immune infiltration results, using heatmap format to present results.
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which play a critical role in modulating the immune system,

particularly in maintaining immune tolerance and suppressing

excessive immune responses. Increased CD300E expression might

enhance the functionality of Tregs, thereby fostering an immune-

suppressive tumor microenvironment favorable for tumor survival

and progression.

EPIC analysis , a vital tool in studying the tumor

microenvironment, enables researchers to understand the

dynamic variations of different cell types within tumors, which is

crucial for advancing tumor immunology and developing new

therapeutic strategies (Figure 5B). From the heatmap, it is evident

that CD300E’s correlations with various immune cells vary,

illustrating the heterogeneity of tumor microenvironments. For

instance, in breast and colorectal cancers, Cancer-associated

fibroblasts (CAFs) show a strong positive correlation with

CD300E expression, suggesting their significant role in supporting

or enhancing tumor growth and invasion, closely linked with the

expression of this gene. Moreover, in cancers like LUAD, the

activity of CD8+ T cells significantly correlates with CD300E
Frontiers in Immunology 1080
expression, reflecting their importance in the tumor immune

response and the potential regulatory role of this gene. Further

analysis using the TCGA database’s pan-cancer dataset revealed a

broadly positive correlation between CD300E and various immune

cells across different cancer types (Figure 5C).

3.2.5 Pathway enrichment and key gene mutation
analysis of CD300E across cancers

Our further evaluation of CD300E’s function in pan-cancer

contexts revealed significant findings via the GSEA methodology.

CD300E notably suppresses oxidative stress pathways, potentially

facilitating conditions favorable for tumor growth. Additionally,

CD300E significantly enhances pathways such as TNF-a signaling,

inflammatory response pathways, IL6-JAK signaling, and epithelial-

mesenchymal transition (EMT), all of which are documented to

potentially promote tumor growth and metastasis (Figure 6).

A heatmap depicting the frequency of key gene mutations

across various cancers highlights the high mutation rates of genes

such as TP53 in LUAD, APC in COAD, and PTEN in UCEC,
FIGURE 6

Pathway enrichment of CD300E in pan-cancer. Dot plots represent pan-cancer GSEA results using the official immunization gene set (GMT file) as a
reference. Functional pathways are from GM7 files and are shown on the y-axis, with different cancer types shown on the x-axis. Dot color indicates
correlation with CD300E expression; red indicates positive correlation and blue negative correlation. The size of the dots represents the -log10(FDR)
value, indicating the significance of the enrichment.
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indicating their common involvement in these cancers. Specific

cancer types like BRCA, LGG, and HNSC show frequent mutations

in genes like TP53, PIK3CA, and CDKN2A, providing insights that

may guide therapeutic strategies (Supplementary Figure 5A).
3.3 Impact of CD300E on breast
cancer cells

Finally, our study delves into the cellular functions of CD300E.

We validated the expression of the CD300E gene after siRNA or

plasmids intervention (Supplementary Figures 6A, B). Compared to

control cells, overexpression of CD300E in MDAMB468 and

MDAMB231 breast cancer cells leads to increased proliferation

and cell viability, while suppression of CD300E expression reduces

proliferation and cell viability (Figures 7A, B). Furthermore,

overexpression of CD300E significantly promotes the migratory

and invasive capabilities of these tumor cells, whereas its inhibition

reduces these properties (Figures 7C, D). Overall, targeting CD300E

could directly inhibit tumor cells, significantly impeding cancer

progression and presenting a novel therapeutic target (Figure 8).
4 Discussion

This research explored the impact of exercise on tumor growth

and gene expression within a murine model, focusing particularly

on the expression patterns, functions, and potential clinical

significance of the CD300E gene across various cancers. Our

findings indicate that CD300E may adversely affect prognosis and

promote tumor progression across a range of cancers. Additionally,

exercise appears to inhibit breast cancer progression potentially by

downregulating CD300E.

Exercise as well as widespread is believed to promote human

health and improve a wide range of diseases (31–33). The

phenomenon of exercise against cancer has been widely explored

in recent years, but there is still a large number of exercise-

responsive molecules whose roles need to be explored (34–38).

Our study confirmed the positive impact of physical activity on

inhibiting tumor growth. Exercise intervention significantly

reduced tumor size and weight in the murine model without

markedly affecting body weight. These outcomes suggest that

moderate physical activity might suppress tumor growth by

modifying the tumor microenvironment or regulating specific

signaling pathways. Analysis of differentially expressed genes

revealed significant downregulation of CD300E in the exercise

group, indicating its role in tumor growth regulation, particularly

within an active context. Furthermore, gene enrichment analysis

showed significant changes in extracellular components and

associated signaling pathways, such as MicroRNAs in cancers and

the Calcium signaling pathway, providing clues on how exercise

might influence tumor biology through molecular mechanisms.

In our pan-cancer analysis, CD300E exhibits significant

expression variability across multiple cancer types, underscoring

its potential role in various malignancies. Notably, CD300E is

upregulated in cancers such as Myeloma, Diffuse Large B-cell
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Lymphoma, Ovarian Cancer, Lung Cancer, and Colorectal

Cancer, suggesting its involvement in the progression of these

diseases. Prognostic analyses reveal that CD300E acts as a risk

factor in several cancers, providing valuable insights that may guide

clinical prognostic assessments and therapeutic decision-making.

Studies on the variability of CD300E copy numbers and their

correlation with tumor mutational burden offer critical

perspectives on its role in cancer progression. These findings

support the notion that CD300E may promote cancer

development by impacting genetic stability and the interactions

within the immune microenvironment.

Analysis of the relationships between CD300E and various

immune cell subpopulations indicates that CD300E may influence

tumor growth and immune escape by modulating immune

cells within the tumor microenvironment, particularly

immunosuppressive M2 macrophages and regulatory T cells. Past

studies have also shown that CD300E and T cells are associated with

the regulation of immune function in macrophages, and more

mechanistic studies are needed to explore this (22–24). But, the

results also illustrated that CD300E showed a significant positive

correlation with most other immune-promoting immune cells,

including CD8 T cells, neutrophils, NK cells, etc. The literature

reports that these cells more or less affect the heating and cooling of

the immune microenvironment. It has been reported in the

literature that these cells more or less affect the heat and cold of

the immune microenvironment (26). The increased expression of

CD300E re su l t ed in bo th Immunosuppre s s i v e and

immunopromoting cells, affecting the tumor microenvironment,

which could potentially affect the prognosis and the degree of

response to immunotherapy. These insights lay a theoretical

foundation for targeting CD300E in immunotherapeutic strategies.

Furthermore, our analysis elucidates the role of CD300E in

regulating key signaling pathways related to cancer progression,

especially in suppressing oxidative stress pathways and activating

several pathways that promote tumor progression. The inhibition of

oxidative stress pathways may provide cancer cells with

mechanisms to evade programmed cell death, thereby covertly

supporting tumor growth and survival (39–41). Concurrently,

CD300E significantly activates pathways such as the TNF-a
pathway, inflammatory response pathways, the IL6-JAK pathway,

and the epithelial-mesenchymal transition pathway, all closely

associated with the invasiveness and metastatic potential of

tumors (42–45). These pathways’ activation might facilitate the

dissemination of tumor cells within the host. Analysis of the

frequency of key gene mutations reveals frequent mutations in

genes such as TP53, APC, and PTEN across various cancers,

highlighting these genes as critical factors in tumor development

and progression (46). These mutations may affect cell cycle

regulation, DNA repair mechanisms, and pathways of cell death,

further substantiating the potential role of CD300E in pan-

cancer contexts.

Additionally, our cellular experiments clearly demonstrate that the

overexpression of CD300E in breast cancer cells is closely associated

with enhanced cellular proliferation, reduced apoptosis rates, and

increased migration and invasion capabilities. These findings not

only confirm the role of CD300E as a tumor-promoting factor but
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also highlight its potential as a therapeutic target. Experiments aimed at

inhibiting CD300E expression further validate its significant role in

tumor cell proliferation and survival, offering a potential therapeutic

strategy to curb the progression of breast cancer. Studies have reported

that CD300E can modulate apoptosis in monocytes by affecting

calcium channels, which is consistent with our biological predictions.

In addition, altered calcium signaling affects the behavior of immune
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cells (including T cells and macrophages), influencing their activation

and cytokine production, thereby altering the immune

microenvironment (47–49). Therefore, we hypothesize that the

ability of CD300E to promote tumor cell value-addition and

migration is reached by regulating calcium channels.

Mechanically, how exercise regulates CD300E lowering this

process was not explored in this study. However, a large body of
B
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FIGURE 7

CD300E promotes breast cancer tumor cell growth. (A) The viability of control, CD300E-inhibited, and CD300E-overexpressed tumor cells was
examined at 48h after transfection by CCK-8 assay. The statistical significance of the differences between various treatments is determined by one-way
ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01. (B) The proliferative capacity of control, CD300E-
inhibited, and CD300E-overexpressed tumor cells was examined at 24h after transfection by BRDU. The statistical significance of the differences
between various treatments is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01
***P < 0.001. (C, D). The migratory and invasive capacity of control, CD300E-inhibited, and CD300E-overexpressed tumor cells were examined at 24h
after transfection by Boyden chamber assay. Total original magnification, 200×. The statistical significance of the differences between various treatments
is determined by one-way ANOVA with Bonferroni post-test (n = 3). Data are presented as mean ± SD. *P < 0.05 **P < 0.01.
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literature has reported that exercise can bring about a series of

physiological changes, including changes in the metabolome,

proteins, and related molecules in the genome (12, 50, 51).

Specifically, we hypothesize that exercise-induced changes in

systemic factors, such as serum circulating exosome, muscle

derived cytokines, and hormones, could impact transcription

factors like NF-kB and STAT3, known regulators of gene

transcription (41, 52–54). Additionally, the role of epigenetic

modifications, including DNA methylation and histone acetylation,

in the regulation of gene expression in response to physical activity

could also influence the expression of CD300E (55). In addition, the

direct upstream transcription factor(s) by which exercise regulates

CD300E expression in tumor cells remains unknown. We proposed

that exercise activates AMP-activated protein kinase (AMPK) and

peroxisome proliferator-activated receptor gamma coactivator 1-

alpha (PGC-1alpha), which are central to tumor cell expression

(56, 57). These molecules may influence the transcription factors

and co-regulators that control CD300E expression. Furthermore,

exercise can also modulate the expression of cellular miRNA,

which may post-transcriptionally regulate CD300E (58, 59). For

example, miR-4270 has been reported to directly target CD300E

(60), but these are speculations based on the literature, and future

studies will need to further explore the mechanisms by which exercise

regulates CD300E.

As for the clinical translational perspective, we believe that

patients with high CD300E expression may benefit from more

intensive or specific types of exercise therapies that are particularly

effective in downregulating CD300E. Conversely, patients with low
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CD300E expression may require different exercise regimens or

adjunctive therapies to achieve optimal results. To test these

hypotheses, we recommend that future studies design clinical trials

that stratify patients according to CD300E expression levels. These

trials should include a variety of exercise regimens from moderate to

high intensity and monitor changes in CD300E expression, tumor

progression, and clinical prognosis. In addition, patient-reported

outcomes and quality-of-life measures should be included to assess

the broader impact of tailored exercise interventions. Moreover, we

recommend longitudinal studies to track CD300E expression and

tumor progression in response to sustained exercise therapy. These

studies will help determine the sustainability of exercise-induced

changes in gene expression and their long-term impact on cancer

prognosis (44, 61, 62).

Limitations and perspectives: Sample Size and Type

Limitations: This study is primarily based on animal models and

specific cancer cell lines, which may restrict the generalizability of

the findings and their direct applicability to human cancer patients

(63). While murine models provide valuable insights into tumor

biology, they cannot fully replicate the complexity and

heterogeneity of human tumors (64–66). Singular Focus of Study

Design: Although we observed the impact of exercise on tumor

growth and CD300E expression, there is a lack of exploration into

variables such as exercise intensity, frequency, and duration.

Moreover, the study focuses predominantly on the role of a single

gene, CD300E, while tumor development involves multiple genes

and signaling pathways interacting (67). Complexity in Data

Interpretation: While gene expression and pathway enrichment
FIGURE 8

Schematic graph of this study. Exercise decreased CD300E expression of cells in breast cancer through a circulatory effect, which promotes
immune cell infiltration, decreased tumor cell metastases/proliferation, warms the tumor microenvironment, and improves the prognosis of
tumor patients.
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analyses have unveiled potential biological mechanisms, the exact

causal relationships remain unclear. For instance, the direct link

between changes in CD300E expression and specific tumor

behaviors has not been fully established. Future experimental

designs should consider the effects of various types and intensities

of exercise on tumor growth and how these variables interact with

gene expression and immune responses within the tumor

microenvironment (68). Additionally, investigating the role of

CD300E across different cancers and immune backgrounds may

reveal its multifunctional potential as a therapeutic target. Further

mechanistic studies should delve into how CD300E activates or

inhibits cancer-related pathways, particularly how it influences key

tumor behaviors such as cell cycle progression, apoptosis,

migration, and invasion. While current research focuses on

exploring tumor therapy at the level of a single gene, future

studies could use single-cell sequencing and spatial transcriptome

analysis to identify a broader range of genes affected by exercise

(69–72). These studies could use integrated bioinformatics

approaches to elucidate gene-gene interactions and pathways co-

regulated by exercise.
5 Conclusions

In summary, CD300E not only plays a potentially crucial role in

the process of exercise-mediated tumor growth inhibition but also

exhibits viability as a therapeutic target based on its expression and

function across various cancers. Future research should further explore

the specific molecular mechanisms of CD300E and its role in different

cancers to advance the development of novel anti-cancer strategies.
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Efficacy of PD-1 or PD-L1
inhibitors for the therapy of
cervical cancer with varying
PD-L1 expression levels: a
single-arm meta-analysis
Jie Yang, Haizan Yu, Yilei Zhang, Mingli Zhu,
Mengyu Zhang and Qiming Wang*

Department of Gynaecology, III, Women’s and Children’s Hospital of Ningbo University, Ningbo,
Zhejiang, China
Objective: To assess the effectiveness and tolerability of both PD-1 and PD-L1

inhibitors in advanced cervical cancer (CC), focusing on varying PD-L1 levels.

Methods: A comprehensive exploration was carried out on EMBASE, PubMed,

Cochrane Library databases as well as Web of Science up to May 25, 2024, for

studies involving advanced CC patients receiving PD-1/PD-L1 inhibitors.

Inclusion criteria were studies reporting objective response rate (ORR), disease

control rate (DCR), median progression-free survival (PFS), as well as median

overall survival (OS). Data extraction and quality assessment were performed by

two reviewers using the JBI Case Series Critical Appraisal Checklist, followed by a

meta-analysis via STATA/MP 16.0.

Results: Five eligible studies comprising 223 patients were chosen. ORR and DCR

were 42% (95% CI: 17%-66%, P = 0.00) and 70% (95% CI: 22%-117%, P = 0.00),

respectively, in the PD-L1 positive patients and were 36% (95% CI: 17%-54%, P =

0.00) and 47% (95% CI: 30%-63%, P = 0.00), respectively, in patients with PD-L1

negativity. For patients exhibiting PD-L1 positivity, median PFS and median OS

were 3.98 months (95% CI: 0.80–7.16, P = 0.01) and 11.26 months (95% CI: 3.01–

12.58, P = 0.00), respectively.

Conclusion: With PD-1/PD-L1 inhibitors, PD-L1 positive CC patients

demonstrate superior ORR, DCR, median PFS, and median OS, underscoring

PD-L1 as one biomarker for immunotherapy response.
KEYWORDS

PD-1inhibitors, PD-L1 expression, cervical cancer, PD-L1 inhibitors, meta-analysis
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Introduction

Cervical cancer (CC) is still a significant contributor to cancer-

related mortality in women worldwide, particularly in middle- and

low-income countries (1). According to 2020 data, there were

approximately 604,127 new cases of cervical cancer worldwide,

and 341,831 deaths, with age-standardised incidence and mortality

rates of 13.3 and 7.2 per 100,000 women, respectively (2). Despite

great progress in both screening and vaccination, a majority of

patients still experience serious disease or recurrence and have

limited therapy options and unfavourable prognoses (3, 4).

Traditional therapies, including chemotherapy, radiation as well

as surgery, have presented limited efficacy in these stages of the

disease, entailing the exploration of innovative therapy (5).

With the advent of immunotherapy, cancer treatment has been

revolutionized bringing hope for patients suffering from advanced

tumours. Programmed cell death protein 1 (PD-1) and programmed

death-ligand 1 (PD-L1) inhibitors have presented encouraging results

in cancers as one class of immune checkpoint inhibitors, including

melanoma, bladder cancer as well as non-small cell lung cancer (6, 7).

These inhibitors lift the immune system’s capability of recognizing

and eliminating cancer cells by disrupting the binding between PD-1

on T cells and PD-L1 on tumour cells (7). The PD-L1 quantification

on tumour cells is commonly assessed using the Combined Positive

Score (CPS). It has emerged as one potential biomarker for

forecasting the reaction to PD-1/PD-L1 inhibitors (8). CPS is

determined by assessing the proportion of PD-L1-positive tumour

cells and immune ones relative to the total viable tumour ones (9).

Preliminary clinical studies indicate a possibility of exhibiting better

reactions to PD-1/PD-L1 inhibitors in patients having higher CPS,

which implies a potential stratified therapy (10, 11).

The meta-analysis is to assess the effectiveness and tolerability of

both PD-1 and PD-L1 inhibitors in treating advanced CC

systematically, with a particular focus on different PD-L1

expressions. Data were integrated from various high-quality studies

to comprehensively understand the potential of these immune

therapies in improving the outcomes of advanced CC patients.
Methods

Based on implementation under the recommendations of the

Cochrane Handbook for Systematic Reviews of Interventions, this

study was reported in accordance with the Preferred Reporting

Items for Systematic Reviews and Meta-Analyses (12). The current

study was formally registered on the International Platform of

Registered Systematic Review and Meta-analysis Protocols

(INPLASY) (ID: INPLASY202460062).
Search strategy

We performed an extensive search across various databases like

Web of Science, PubMed, EMBASE, as well as the Cochrane

Library, encompassing articles published before May 25, 2024.
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The search was restricted to studies published exclusively in the

English language with the following terms for search: “Uterine

Cervical Neoplasms” OR “CC” AND “Immune Checkpoint

Inhibitors” OR “PD-1 Inhibitor” OR “PD-L1 Inhibitor”. We

performed a manual review to the reference lists of the

encompassed articles for identifying additional related research.

The particular search process is detailed in Supplementary File 1.
Inclusion and exclusion criteria

Studies were encompassed if they met the
criteria below:
1. Patients were confirmed with advanced or recurrent CC,

regardless of subtype.

2. Patients received treatment by PD-1 or PD-L1 inhibitors

alone or in conjunction with other therapies.

3. Retrospective analyses or stage II clinical trials.

4. Included studies assessed relevant clinical outcomes, such

as PFS, ORR, OS, DCR, as well as AEs, using RECIST 1.1

criteria (13).

5. Tumour PD-L1 was assessed and quantified as one CPS,

which was calculated as the percentage of PD-L1-stained

cells divided by the sum of viable tumour cells multiplied by

100. The definition of positivity was established as having a

CPS of 1 or higher.
The exclusion criteria were:
1. Animal research, meta-analyses, reviews, duplicate reports,

letters or case reports.

2. Studies with fewer than 10 patients.
Two reviewers conducted a thorough screening of articles

independently, assessing their eligibility according to pre-

established criteria Disagreements/discrepan were resolved

through consensus between the two reviewers or with the

assessment of one-third reviewers if necessary.
Data extraction and quality evaluation

Through one predefined extraction form, two reviewers

extracted data. The extracted data encompassed baseline patient

characteristics, study characteristics, and predefined outcomes

(ORR, DCR, PFS, OS). The quality of clinical studies was

evaluated via the JBI Case Series Critical Appraisal Checklist (14).
Statistical analyses

Analyses were conducted via STATA/MP 16.0. Inter-study

heterogeneity was judged via the chi-square test as well as the I²

statistic. Random-effects models (REM) were adopted when I²≥50%
frontiersin.org
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(indicating high heterogeneity), and fixed-effects models (FEM)

were adopted when I²<50% (implying low heterogeneity) (15). The

robustness of the pooled results was judged via sensitivity analyses.

Egger’s test was conduc to evaluate the possible publication bias.

Results

Literature search

The initial search strategy yielded 2,998 relevant articles. After

removing 1,053 duplicate studies, we screened titles and abstracts,

causing the exclusion of 1,894 studies not fulfilling the inclusion

criteria. Subsequently, we performed a detailed review of the whole

texts of the left 51 potentially eligible papers, and ultimately selected

5 trials for the final analysis (16–19). The process of selecting studies

is depicted in Figure 1. All eligible research data were obtained from

published manuscripts.
Study characteristics

Totally, 5 studies were included in the final analysis Table 1

presents their detailed characteristics.
Quality assessment

On the basis of the JBI Critical Appraisal Checklist for Case

Series, five clinical studies were evaluated, comprising ten items that

examine the quality of case reports including case selection,
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evaluation of the disease or health problem, and case data

presentation. The assessment results are provided in Table 2.
Meta-analysis results

Comparison of ORR by PD-L1 CPS
Five studies (223 patients) analyzed ORR by PD-L1 CPS (16–

20). In patients exhibiting PD-L1 positivity, a REM was used

because of notable heterogeneity (I² = 89.53%, P = 0.00). The

ORR was 42% (95% CI: 17%-66%, P = 0.00, Figure 2). In patients

exhibiting PD-L1 negativity, a FEM was used because of low

heterogeneity (I² = 0.00%, P = 0.45). The ORR was 36% (95% CI:

17%-54%, P = 0.00, Figure 3).

Comparison of DCR by PD-L1 CPS
Three studies (176 patients) analyzed DCR by PD-L1 CPS (17,

19, 21). In PD-L1 positive patients, a REM was used because of

notable heterogeneity (I² = 98.15%, P = 0.00). The DCR was 70%

(95% CI: 22%-117%, P = 0.00), as shown in Figure 4. In PD-L1

negative patients, a FEM was used because of low heterogeneity

(I² = 10.25%, P = 0.33). The DCR was 47% (95% CI: 30%-63%,

P = 0.00), as shown in Figure 5.
Median PFS in patients exhibiting PD-
L1 positivity

Three studies (170 patients) analyzed PFS in Patients exhibiting

PD-L1 positivity (16, 17, 20). A REM was used because of notable

heterogeneity (I² = 78.54%, P = 0.01). The PFS was 3.98 months

(95% CI: 0.80–7.16, P = 0.01), as shown in Figure 6.
Median OS in patients exhibiting PD-
L1 positivity

Two studies (125 patients) analyzed OS in patients exhibiting

PD-L1 positivity (16, 20). A FEM was used due to low heterogeneity

(I² = 0.00%, P = 0.42). The OS was 11.26 months (95% CI: 3.01–

12.58, P = 0.00, Figure 7).
Sensitivity analysis

By sequentially excluding each study, a sensitivity analysis was

performed for assessing its impact on the summary results.

According to the analysis results, no individual study significantly

impacts the overall 95% CI of the summary results, indicating a

relatively robust of the meta-analysis results. The results are

presented in Supplementary File 2.
Publication bias

To ensure the validity of the meta-analysis, publication bias was

judged via Egger’s test. The p-value of 0.79 (> 0.05), indicates no

notable publication bias.
FIGURE 1

The flow diagram of studies is included in this meta-analysis.
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Discussion

This study comparatively analyzed ORR and DCR among

patients who had different PD-L1 CPS, focusing on assessing the

efficacy disparity between groups exhibiting PD-L1 positivity and

PD-L1 negativity. The results revealed an ORR of 42% (95% CI:

17%-66%) and 36% (95% CI: 17%-54%) in the group exhibiting PD-

L1 positivity and group exhibiting PD-L1 negativity, respectively.

This difference suggests a possibly larger response rate of PD-L1-

positive patients to immunotherapy. The underlying mechanism for

it can be explained by the interaction between PD-L1 with the
Frontiers in Oncology 0490
immune system. PD-L1, a cell surface protein frequently found on

tumour cells, binds to the PD-1 receptor on T cells, suppressing the

activity of T cells and helping tumour cells evade immune system

attacks (22, 23). In tumours expressing PD-L1, tumour cells can

more effectively utilize this mechanism to evade immune

surveillance. Thus, these patients possibly have a better response

to immune checkpoint inhibitors like PD-1/PD-L1 inhibitors, as

these drugs are able to disrupt the binding of PD-1/PD-L1 with

restore T cell-mediated tumour attack (24, 25). DCR was also

compared among patients who had different PD-L1 CPS. The

group exhibiting PD-L1 positivity and group exhibiting PD-L1
TABLE 2 The JBI Critical Appraisal Checklist for Case Series.

Query
Chunyan
Lan

Yin
Wang

Lingfang
Xia

Hyun
Cheol Chung

Kenji
Tamura

Were there clear criteria for inclusion in the case series? YES YES YES YES YES

Was the condition measured in a standard, reliable way for all participants
included in the case series?

YES YES YES YES YES

Were valid methods used for the identification of the condition for all
participants included in the case series?

YES YES YES YES YES

Did the case series have consecutive inclusion of participants? UNCLEAR YES YES YES UNCLEAR

Did the case series have a complete inclusion of participants? YES YES YES YES YES

Was there clear reporting of the demographics of the participants in the study? YES YES YES YES YES

Was there clear reporting of clinical information of the participants? YES YES YES YES YES

Were the outcomes or follow-up results of cases clearly reported? YES YES YES YES YES

Was there clear reporting of the presenting site(s)/clinic(s)
demographic information?

YES YES YES YES YES

Was statistical analysis appropriate? YES YES YES YES YES

Overall appraisal Include Include Include Include Include
TABLE 1 Characteristics of studies included in this meta-analysis.

Study Year Study
type

Stage Age Intervention
types

Number
of
patients

PD-L1
CPS≥1%

PD-L1
CPS<1%

PD-L1
CPS
unknown

Follow-
up (m),
median
(range)

Chunyan
Lan

2024 NRCT single-
arm, phase II

metastatic,
recurrent, or
persistent
cervical cancer

51
(33–67)

Camrelizumab 45 10 30 5 6
(0.97–37.4)

Yin
Wang

2023 NRCT single-
arm, phase II

recurrent or
metastatic
cervical cancer

50
(34–68)

Sintilimab 27 18 5 4 10.2
(3.0–24.5)

Lingfang
Xia

2022 NRCT single-
arm, phase II

recurrent or
metastatic
cervical cancer

50
(43–55)

Camrelizumab 33 10 9 14 13.6
(10.0–23.6)

Hyun
Cheol
Chung

2019 international,
open-
label,
multicohort

advanced
Cervical
Cancer

46
(24–75)

Pembrolizumab 98 82 15 1 10.2
(0.6–22.7)

Kenji
Tamura

2019 prospective,
multicenter,
open-label

advanced or
recurrent
uterine
cervical cancer

50
(32–68)

Nivolumab 20 5 15 / 5.4
(1.0–13.9)
fr
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negativity had a DCR of 70% (95% CI: 22%-117%) and 47% (95%

CI: 30%-63%), respectively. These findings imply the high value of

PD-L1 expression in immune therapy response further (26). for

more deeply probing into the survival outcomes of patients

exhibiting PD-L1 CPS positivity, we analyzed the PFS and OS

and found a PFS and OS of 3.98 months (95% CI: 0.80–7.16) and

7.80 months (95% CI: 3.01–12.58), respectively, in patients
Frontiers in Oncology 0591
exhibiting PD-L1 CPS positivity. The findings imply the

possibility of experiencing improved long-term survival rates

among PD-L1 CPS-positive patients receiving immune therapy

(27–29).

These results underscore the high value of PD-L1 in immune

therapy. Patients exhibiting PD-L1 positivity demonstrated better

efficacy in multiple key outcome measures in contrast to patients
FIGURE 3

Forest plot of ORR in PD-L1 negative.
FIGURE 4

Forest plot of DCR in PD-L1 positive.
FIGURE 2

Forest plot of ORR in PD-L1 positive.
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exhibiting PD-L1 negativity, indicating PD-L1 as an effective

biomarker for identifying patients with a larger likelihood of

favorable response to immune therapy in patients (30, 31).

Whereas, the current research also has certain limitations.

First, a noticeable heterogeneity in the analysis could affect the

stability of the results. Second, the included studies with relatively

small sample sizes mostly consisted of non-controlled trials,

limiting the generalizability and persuasiveness of the findings.
Frontiers in Oncology 0692
Additionally, because of lack of enough pathological data, we

could not further investigate the treatment response based on

different types of CC tissue. studies included in this analysis

predominantly involved Asian patients, raising uncertainty about

the generalizability of these findings to other populations.

Therefore, further validation of these findings is warranted

through the implementation of large-scale randomized

controlled trials (RCTs) in the future (32, 33).
FIGURE 5

Forest plot of DCR in PD-L1 negative.
FIGURE 6

Forest plot of PFS in PD-L1 positive.
FIGURE 7

Forest plot of OS in PD-L1 positive.
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In conclusion, PD-L1 expression is crucial in immune therapy,

with PD-L1 CPS-positive patients demonstrating better efficacy in

terms of ORR, DCR, median PFS, and median OS in contrast to

patients exhibiting PD-L1 negativity. While the initial findings are

encouraging, additional research is required to ascertain the wide

applicability as well as long-term implications of these findings (34).

Conclusion

The meta-analysis verifies that CC patients exhibiting PD-L1

positivity have superior efficacy regarding ORR, DCR, median PFS,

as well as median OS when receiving PD-1/PD-L1 inhibitor therapy

in contrast to patients exhibiting PD-L1 negativity. These findings

support the utilization of PD-L1 as one biomarker for forecasting

the advanced CC patients’ reaction to immunotherapy.
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Integrating single-cell
transcriptomics to reveal the
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tumor microenvironment that
contribute to bladder urothelial
carcinoma progression
and immunotherapy
Ziang Chen1,2†, Jia Hu3†, Yuxi Ou1,2, Fangdie Ye1,2, Weijian Li1,2,
Shenghua Liu1* and Haowen Jiang1,2,4*

1Department of Urology, Huashan Hospital, Fudan University, Shanghai, China, 2Fudan Institute of
Urology, Huashan Hospital, Fudan University, Shanghai, China, 3Department of Anesthesiology, The
Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui, China,
4National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University,
Shanghai, China
Background: Ferroptosis, as a novel form of programmed cell death, plays a

crucial role in the occurrence and development of bladder cancer (BCa).

However, the regulatory mechanisms of ferroptosis in the tumor

microenvironment (TME) of BCa remain to be elucidated.

Methods: Based on single-cell RNA (scRNA) transcriptomic data of BCa, we

employed non-negative matrix factorization (NMF) dimensionality reduction

clustering to identify novel ferroptosis-related cell subtypes within the BCa

TME, aiming to explore the biological characteristics of these TME cell

subtypes. Subsequently, we conducted survival analysis and univariate Cox

regression analysis to explore the prognostic significance of these cell

subtypes. We investigated the relationship between specific subtypes and

immune infiltration, as well as their implications for immunotherapy. Finally, we

discovered a valuable and novel biomarker for BCa, supported by a series of in

vitro experiments.

Results: We subdivided cancer-associated fibroblasts (CAFs), macrophages, and

T cells into 3-5 small subpopulations through NMF and further explored the

biological features. We found that ferroptosis played an important role in the BCa

TME. Through bulk RNA-seq analysis, we further verified that ferroptosis affected

the progression, prognosis, and immunotherapy response of BCa by regulating

the TME. Especially ACSL4+CAFs, we found that high-level infiltration of this CAF

subtype predicted worse prognosis, more complex immune infiltration, and less

response for immunotherapy. Additionally, we found that this type of CAF was

associated with cancer cells through the PTN-SDC1 axis, suggesting that SDC1

may be crucial in regulating CAFs in cancer cells. A series of in vitro experiments

confirmed these inferences: SDC1 promoted the progression of BCa.

Interestingly, we also discovered FTH1+ macrophages, which were closely
frontiersin.org0195

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1427124/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1427124&domain=pdf&date_stamp=2024-08-22
mailto:liushenghuafy@163.com
mailto:urology_hs@163.com
https://doi.org/10.3389/fimmu.2024.1427124
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1427124
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2024.1427124

Frontiers in Immunology
related to SPP1+ macrophages and may also be involved in the regulation of

BCa TME.

Conclusion: This study revealed the significant impact of ferroptosis on bladder

cancer TME and identified novel ferroptosis-related TME cell subpopulations,

ACSL4+CAFs, and important BCa biomarker SDC1.
KEYWORDS

single-cell, tumor microenvironment, bladder cancer, ferroptosis, immunotherapy,
prognosi
Introduction

Bladder cancer ranks among the most prevalent malignant

tumors affecting the urinary system. According to statistics, since

2023, there have been nearly 500,000 new cases of bladder cancer

and 200,000 deaths globally each year (1, 2). Approximately 75% of

the new cases occur in males. Smoking is the most common risk

factor for BCa (3). With the rapid increase in tobacco consumption,

the rising incidence of bladder cancer poses a significant burden on

global healthcare (4). The emergence of immunotherapy has

brought new hope for managing BCa patients, with immune

checkpoint inhibitors (ICI) being the main treatment modality.

They primarily work by inhibiting immune checkpoints to reduce

immune suppression and promote anti-tumor immunity.

Compared to traditional chemotherapy, ICI therapy offers higher

precision and specificity (5).

Ferroptosis is a novel form of programmed cell death,

characterized by iron-dependent lipid peroxidation and excessive

reactive oxygen species (ROS) accumulation, leading to cell death

(6). When intracellular glutathione (GSH) is depleted, glutathione

peroxidase 4 (GPX4) becomes inactivated, resulting in the

accumulation of lipid peroxides and subsequent cell death (7).

Ferroptosis has been associated with the development and

progression of multiple types of cancers (8). Some studies have

reported that ferroptosis influences cancer development and

progression by mediating cancer-associated fibroblasts (9).

However, the regulatory mechanisms and targets of ferroptosis in

the BCa tumor microenvironment remain unclear.

Single-cell RNA sequencing enables researchers to study tumors

with precise details. We can identify novel tumor microenvironment

cell subtypes based on single-cell RNA sequencing data and analyze

their biological characteristics and prognostic significance. Cell-cell

communication analysis reveals important signaling pathways

between these cell subtypes and cancer cells, and identifies

new targets.

By applying non-negative matrix factorization to single-cell RNA

sequencing data, we identify novel ferroptosis-related cell

subpopulations within the bladder cancer tumor microenvironment.

Combining with classic biological function signatures, we explore the
0296
biological characteristics of these cell subpopulations. Cell-cell

communication analysis reveals important signaling pathways

between these cell subpopulations and cancer cells. Based on bulk

RNA-seq data, we evaluate the prognostic significance of these cell

subpopulations’ infiltration. Finally, we identify a subtype of cancer-

associated fibroblasts (CAFs), ACSL4+CAFs, which impact patients’

overall survival (OS) and sensitivity to immunotherapy. Cell-cell

communication analysis reveals SDC1 as an important target on

cancer cells interacting with ACSL4+CAFs. Subsequent in vitro

experiments confirm that SDC1 promotes the proliferation,

migration, and invasion of BCa cells.
Materials and methods

Acquisition of data

To explore the microenvironment heterogeneity of bladder

cancer, single-cell RNA transcriptome data was obtained from the

Sequence Read Archive (SRA) (PRJNA662018) (https://

www.ncbi.nlm.nih.gov/sra), which contained 8 bladder cancer and

3 normal bladder mucosa tissues (10). To investigate the

relationship between ferroptosis and the TME of bladder cancer,

we obtained the most frequently studied ferroptosis marker genes

from the FerrDb database (http://www.zhounan.org/ferrdb/current/).

Besides, six bulk-RNA sequencing datasets were employed to

lucubrate the impact of specific ferroptosis subpopulations on

patients’ survival, which were obtained from The Cancer Genome

Altas (TCGA-BLCA) (https://portal.gdc.cancer.gov/) and the GEO

database (GSE48075, GSE32894, GSE31684, GSE160693, GSE13507)

(https://www.ncbi.nlm.nih.gov/geo/) (11–15). All the data upon

which this study is based are publicly available.
The processing and visualization of single-
cell sequencing data

The CellRanger (v.3.0.1) software was employed to filter and

read align the raw single-cell FASTQ data, and feature barcode
frontiersin.org
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unique molecular identifier (UMI) matrices were generated based

on the human reference genome GRCh38. The Seurat package

(v.4.30.1) was used to process the single-cell RNA sequencing

expression matrix, cells with gene expression counts less than 200

and cells where mitochondrial gene expression accounted for more

than 15% were filtered out. The NormalizeData function was

employed to normalize the expression matrix and the RunPCA

function was applied to compute the principal components. The

UMAP (Uniform Manifold Approximation and Projection)

algorithm was utilized to visualize the single-cell RNA sequencing

data. Finally, six cell types were identified.
Identification of the marker genes of
ferroptosis-related cell types in TME

The non-negative matrix factorization algorithm was conducted

to observe the effect of ferroptosis marker gene expression on TME

cell types based on the NMF package (v.0.26). Next, The following

criteria were used to determine representative markers for each

NMF cell subtype in the FindAllMarkers function: logFC > 0.8,

minimum proportion greater than 30%. The cell subpopulations

with logFC of ferroptosis marker genes less than 0.5 will be defined

as “Non-Ferr,” while those with logFC greater than 0.5 but less than

0.8 will be defined as “Unclear.”
Function enrichment analysis of
ferroptosis-related cell subpopulations

To investigate the biological characteristics of ferroptosis-

related cell subpopulations, we performed GO (Gene Ontology)

and KEGG (Kyoto Encyclopedia of Genes and Genomes)

enrichment analysis based on the clusterProfiler package (v.4.8.3)

(16). To explore the metabolic activity of macrophages, we

calculated the metabolism enrichment scores based on the

scMetabolism package (v.0.2.1). Besides, the AUCell package

(v.1.22.0) was utilized to quantify the biology activities.
SCENIC analysis for ferroptosis-related
cell subpopulations

To clarify the gene regulatory network of transcription factors

(TFs) in TME cell subpopulations, the SCENIC package (v.1.3.1)

was employed. Two gene-motif rankings (hg19-500bp-upstream-

7species.mc9nr.feather and hg19-tss-centered-10kb-7species.

mc9nr.feather) were downloaded from the RcisTarget database

(https://github.com/aertslab/RcisTarget) to identify the

transcription start site (TSS). Then, potential TF-target

relationships were recognized and a co-expression gene network

was constructed. Only TFs with False Discovery Rate (FDR) <0.05

were considered in this study.
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Cell-cell communication analysis for
ferroptosis-related cell subpopulations

The CellChat package (v.1.6.1) was utilized to construct the

intratumor communications networks. CellChatDB.human was

employed to evaluate the signaling pathway inputs and outputs

between TME cell subpopulations and cancer cells. Next, the

computeCommunProPathway and aggregateNet functions were

used to calculate the cell-cell communication network and

communication strength. Finally, the netVisual_bubble function

was performed to visualize ligand-receptor interactions based on

the human ligand-receptor pairs database.
Pseudotime trajectory analysis for
ferroptosis-related cell subpopulations

To explore the role of the ferroptosis marker genes in the trajectory

of cellular development and differentiation, we employed pseudotime

trajectory analysis for TME cell subpopulations based on the Monocle

package (v.2.22.0). Highly variable genes were filtered according to the

following criteria: mean_expression ≥ 0.1 and dispersion_empirical ≥

1*dispersion_fit. The method for dimensionality reduction was

DDRTree. Next, the plot_pseudotime_heatmap function was

employed to show the pseudotime heatmap, and the

plot_cell_trajectory function was used to illustrate the dynamic

expression of ferroptosis marker genes in TME.
Assessment of immune infiltration and
ICI therapy

Four algorithms were utilized to compare immune cell

infiltration across different groups, including CIBERSORT, XCell,

EPIC, and Quantiseq. Subsequently, the ESTIMATE package

(v.1.0.13) was utilized to calculate the abundance of TME

components. The Tracking Tumor Immunophenotype (TIP)

algorithm (http://biocc.hrbmu.edu.cn/TIP/) was employed to

assess the cancer immunity cycle. The online website Tumor

Immune Dysfunct ion and Exclusion (TIDE) (ht tp: / /

tide.dfci.harvard.edu/login/) was utilized to assess the ICI

response of bladder cancer patients, as well as the Subclass

Mapping (Submap) algorithm.
Survival analysis for specific TME
cell subpopulations

The ssgsea function was employed to calculate the infiltration

levels of specific cell subtypes in bladder cancer patients based on

the GSVA package (v.1.42.0). To investigate the prognostic

significance of specific TME cell subpopulations, the survival

(v.3.2.13) and survminer (v.0.4.9) package were employed to

conduct the survival analysis. Patients were divided into two
frontiersin.org
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groups according to the optimal cutoff. All survival analyses in this

study were subjected to log-rank tests.
Cell culture, transfection, and interference

The study utilized human bladder cancer cells (UM-UC-3 and

T24) from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). UM-UC-3 was cultured in high glucose DMEM

and T24 was cultured in RPMI-1640 with 10% fetal bovine serum

(Gibco, USA) and 1% streptomycin/penicillin (Thermo Fisher

Scientific, USA) in an incubator at 37°C and 5% CO2. The cells

were transferred upon reaching a cell density of 70-80%, and the

medium was changed daily.

The siRNA targeting SDC1 (siSDC1) lentivirus was purchased

from GeneChem (shanghai, China) to suppress the SDC1 gene of

T24 and UM-UC-3 cells. The siSDC1 was transfected into T24 and

UM-UC-3 cells with polyethylene, then the cells were screened

with puromycin. The siRNA sequences can be obtained in

Supplementary Table 1.
Colony formation assay

UM-UC-3 and T24 cells were seeded onto 6-well plates at a

density of 1000 cells per well and allowed to culture for 2 weeks

until the formation of cell colonies. Subsequently, the cells were

washed three times with phosphate-buffered solution (PBS)

(Yeasen, China), fixed with 4% methanol for 15 minutes, stained

with 0.5% crystal violet solution for 30 minutes, and analyzed using

ImageJ software.
Wound-healing assay

To analyze cell direct migration, a wound-healing assay was

conducted. UM-UC-3 and T24 cells were inoculated in a 6-well

plate and cultured until reaching 70%-80% density. The cell

monolayer was gently scratched using the tip of a sterile 200µL

pipette after removing the medium. Subsequently, the wells were

rinsed twice with PBS, and serum-free medium was added for

continued culture. Images were captured at 0-, 12-, and 24-hours

post-scratching and analyzed using ImageJ software.
Cell viability detection

A CCK-8 assay kit (Biosharp, China) was used to assess cell

viability. After the intervention, cells were seeded on 96-well plates

and incubated at 37°C with 5% CO2. UM-UC-3 and T24 cells were

treated with a diluted CCK-8 solution for 2h. The absorbance values

at 450nm were quantified using a microplate reader. (Thermo

Fisher Scientific, USA).
Frontiers in Immunology 0498
EdU assay

Following the manufacturer’s instructions, the EdU detection

assay (Beyotime, China) was used to detect different cell states after

a series of operations, DNA synthesis, and cell proliferation was

observed through fluorescence microscopy (Olympus, USA).
Flow cytometric analysis

The Annexin V-FITC/PI Apoptosis (Beyotime, China) kit was

used to detect the apoptosis rate of BCa cells, including early and

terminal apoptosis. BD flow cytometry (BD FACSLyric, USA) was

employed to analyze cell samples.
Transwell migration and invasion assay

The transwell assays were performed to observe the migration

and invasion ability. T24 and UM-UC-3 cells were seeded at a

density of 2×104 cells per well in the upper chambers, with 200µL

serum-free medium, while the lower chambers contained 800µL of

medium supplemented with 10% serum. To perform the invasion

assay, 50mg/L Matrigel glue was covered in the upper chambers.

After placing the transwell chambers (Corning, USA) in a 37°C, 5%

CO2 incubator for 48 hours, 4% methanol was used to fix cells for

30 minutes, and 0.5% crystal violet was employed to stain for 30

minutes. Finally, the results can be obtained by taking photographs

and counting.
Statistical analysis

All data processing and statistical analysis performed in this study

were based on R software (v.4.3.1). To verify the differences among

various groups, diverse tests (Wilcoxon rank-sum test, Fisher exact

test, Student’s t-test, Kruskal-Wallis test) were performed. In

correlation analysis, the Pearson test was used to verify the

statistical significance. All experiment data were presented as the

mean ± SD, and GraphPad Prism 8 software was employed to analyze

these experiment data. In this study, only a two-sided p-value below

0.05 was considered statistically significant.
Results

The landscape of ferroptosis-related genes
in TME of BCa

A total of 83,146 cells were mapped onto the cell atlas and

annotated into six major cell types (Figure 1A). Subsequently, the

classical cell markers were displayed in the cell atlas according to

their expression levels (Figure 1B). Additionally, the cell atlas

comprised tissue samples from a total of 11 patients, including

three normal tissues and eight cancer tissues, enabling observation
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and comparison of the cellular composition proportions across

different samples (Figure 1C). Furthermore, the differential

expression of ferroptosis-related genes across different cell types

can be observed through the heatmap (Figure 1D), as a ferroptosis

suppressor gene, GPX4 had higher expression in epithelial cells and

myeloid cells across major cell types, which meant these two cell

types had lower ferroptosis level.
Novel ferroptosis-related CAFs mediated
TME of BCa

According to classical marker genes, stromal cells were annotated

into 3 major cell types: endothelial cells, smooth muscle cells, and

CAFs (Figure 2A; Supplementary Figure 1A). In this section, we
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primarily focused on CAFs. After undergoing NMF dimensionality

reduction and clustering, CAFs were subdivided into 5 novel cell

subpopulations (Figure 2B). We found that ACSL4+CAFs interacted

with glucocorticoid activities and myeloid leukocyte activation

(Figure 2C). KEGG analysis yielded that ACSL4+CAFs were

associated with estrogen signaling pathways, and ATF+CAFs

exhibited active oxidative phosphorylation (Figure 2D). To explore

the relationship between CAF subpopulations and cancer cells, cell-

cell communication analysis yielded that ACSL4+CAFs had the

strongest communication with cancer cells among these novel

ferroptosis-related CAFs (Figure 2E). Furthermore, ligands-

receptors analysis uncovered that ACSL4+CAFs were strongly

associated with the EGF (Epidermal Growth Factor) and MIF

(Macrophage migration Inhibitory Factor) signaling pathway

(Supplementary Figures 1B, C).
FIGURE 1

Overview of ferroptosis-related marker genes in scRNA transcriptome data of BCa. (A) The landscape of main cell types was illustrated by UMAP.
(B) The heatmap showed the classical marker genes in the BCa landscape. (C) A bar chart illustrated the proportion of different cell types across
various samples. (D) The heatmap displayed the distribution of ferroptosis-related marker genes in main cell types.
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TFs of these novel ferroptosis-related CAFs were illustrated in

the gene regulatory network based on the SCENIC analysis, and

FOXJ3, TCF12, FOXP2, and PBX1 were upregulated in ACSL4

+CAFs (Figure 2F). Next, to further investigate the biology
Frontiers in Immunology 06100
characteristics, we assessed the correlation among Pan-CAF

signatures and found that ACSL4+CAFs were similar to

inflammatory CAF (pan-iCAF) (Figure 2G). Then, the heatmap

highlighted the same conclusion: ACSL4+CAFs were closely related
FIGURE 2

The landscape of ferroptosis-related marker genes in CAFs. (A) Presence of CAFs in stromal cells. (B) The ferroptosis-related CAF subpopulations
were illustrated by UMAP. (C) The heatmap displayed the differential genes and biological functions of each subpopulation. (D) Activation of the
KEGG pathway of each subpopulation. (E) The cell-cell communication strength between the ferroptosis-related CAF subpopulations and cancer
cells. (F) Transcriptional regulatory factors for each cell subpopulation. (G) Correlations between the ferroptosis-related CAF subpopulations and
classical CAF signatures (p < 0.05). (H) Heatmap illustrated the distinct average expression levels of prevalent signaling pathway genes among the
five subpopulations of CAFs associated with ferroptosis, encompassing Proinflammatory, RAS, Contractile, Neo-Angio, TGFb, MMPs, and ECM.
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to inflammation within BCa (Figure 2H). Pseudotime trajectory

analysis exhibited the development of CAFs and dynamic

expression of marker genes, the heatmap reflected ferroptosis-

related genes played important roles in CAFs within BCa

(Supplementary Figure 1D), we also found that ACSL4+CAFs

were at the beginning of trajectory and ATF+CAFs were at the

end of trajectory (Supplementary Figures 1E, F).
Ferroptosis-related macrophages exhibit
particular biological features

Macrophages played a crucial role in TME in the progress of BCa,

unique macrophage subpopulations exhibited distinct biological

features. Firstly, myeloid cells were annotated into three major cell

types based on classical marker genes (Supplementary Figures 2A, B).

We identified three novel macrophage subpopulations through NMF
Frontiers in Immunology 07101
dimensionality reduction (Figure 3A). By integrating specific

macrophages-related signatures reported in previous literature, we

gained a deeper understanding of the biological characteristics of

these macrophage subpopulations and their potential roles in BCa,

HMOX1+macrophages shared biological similarities with C1q+

macrophages and M2 macrophages, and FTH1+macrophages were

closely related to SPP1+macrophages (Figures 3B, C). Then,

pseudotime trajectory analysis yielded that these ferroptosis-related

marker genes, especially FTH1, played a crucial role in the

development of macrophages (Supplementary Figures 2C, D).

Subsequently, cell-cell communication analysis indicated that

HMOX1+macrophages had the most interactions with cancer cells,

while FTH1+macrophages had the fewest (Figure 3D, Supplementary

Figure 2E). Signaling pathway analysis uncovered that the SPP1

signaling pathway was upregulated in FTH1+macrophages, and

IL6 and IL10 were overexpressed in HMOX1+macrophages

(Supplementary Figures 2F, G). Next, the regulatory network
FIGURE 3

The landscape of ferroptosis-related marker genes in macrophages. (A) The ferroptosis-related macrophage subpopulations were illustrated by
UMAP. (B) The heatmap demonstrated the distinct biological features in macrophages. (C) Correlations between the ferroptosis-related macrophage
subpopulations and classical macrophage signatures. (D) The circular plot visualized the strength of cell-cell communications between macrophages
and cancer cells. (E) Transcriptional regulatory factors for each cell subpopulation. (F) The metabolism landscape of ferroptosis-related
macrophage subpopulations.
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illustrated some TFs, such as JUN, JUNB, and ATF3, were

upregulated in HMOX1+macrophages (Figure 3E).

To deeply understand the biology characteristics of these

macrophage subpopulations, we performed GO enrichment

analysis, and the results yielded that HMOX1+macrophages were

associated with protein refolding, those genes upregulated in FTH1

+macrophages were enriched in chemokine-mediated signaling

pathway and cellular response to chemokine (Supplementary

Figure 2H). Finally, the scMetabolism package showed that FTH1

+macrophages had active sulfur and pyruvate metabolism, and
Frontiers in Immunology 08102
HMOX1+macrophages exhibited vigorous steroid biosynthesis

and oxidative phosphorylation (Figure 3F).
The landscape of ferroptosis-related T cells
in TME

T cells were divided into four cell types according to their

distinct gene expression (Figure 4A), and the bar plot illustrated

their proportions in BCa patient samples (Figure 4B). These T cell
FIGURE 4

The biological features of the ferroptosis-related T cell subpopulations. (A) The landscape of T cells in BCa. (B) A bar chart illustrated the proportion
of different T cell types across various samples. (C) The heatmap depicted the markedly distinct characteristics across ferroptosis-related
subpopulations of T cells, encompassing CD8+T cells, NKTs, and Tregs. These features include T exhaustion score, T cytotoxic score, T effector
score, various immune co-stimulators, and co-inhibitors (Kruskal-Wallis test, p < 0.001). (D) The circular plot visualized the strength of cell-cell
communications between T cells and cancer cells. (E) Transcriptional regulatory factors for each cell subpopulation. (F) The heatmap displayed the
differential genes and immune pathways of each subpopulation.
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types were annotated into six cell subpopulations after undergoing

NMF dimensionality reduction. To deeply unravel the molecular

characteristics, we calculated some T cell-related signature scores in

these cell subpopulations. The result demonstrated that compared

to ATF3+CD8T cells, NonFerr_CD8T cells exhibited higher T cell

exhaustion scores, while ACSL4+Tregs had higher scores than

NonFerr_Tregs. Interestingly, compared to FTH1+NKT (Natural

Killer T cells), NonFerr_NKT were biologically analogous to

effector T cells and cytotoxic T cells (Figure 4C). Subsequently,

cell-cell communication analysis unraveled that ATF3+CD8T cells

and FTH1+NKT occupied most interactions with the cancer cells

(Figure 4D). Next, we observed that some TFs, such as IKZF1,

RUNX1, FOXO1, FOXP1, and FOXN3, were upregulated in ACSL4

+Tregs, and in ATF3+CD8T cells, JUN, FOS, JUND, JUNB, FOSB

were overexpressed (Figure 4E). Finally, enrichment analysis

yielded that ATF3+CD8T cells were associated with lymphocyte

differentiation, ACSL4+Tregs were associated with tumor necrosis

factor and cytokine regulation pathways, and FTH1+NKT were

associated with cell surface receptor signaling pathways (Figure 4F).
Prognostic significance of specific
ferroptosis-related TME
cell subpopulations

The FindAllMarkers function was employed to calculate

differential expression genes (DEGs) of those cell subpopulations,

and we extracted the top 50 for each subpopulation to obtain the

signatures of specific ferroptosis-related TME cell subpopulations.

The survival analysis was performed to validate the prognostic

significance of the signatures of those subpopulations, and we found

that a few TME cell subpopulations were closely associated with

overall survival (OS) in the TCGA cohort, including CAFs and

macrophages (Figures 5A–C). Then, the same results were validated

again in the GSE13507 cohort (Figures 5D–F). subsequently, the

survival analysis performed in the GSE32894 yielded that only

ACSL4+CAFs related to OS (Figure 5G).

To ensure the rigor of the results, Cox regression analysis was

implemented using six BCa cohorts. The results yielded a high

infiltration of ACSL4+CAFs was closely associated with adverse

effects on patients’ OS (Figure 5H).
ACSL4+CAFs impacted immune infiltration
and ICI therapy

To explore the impact of ACSL4+CAFs on immune infiltration

and response to ICI, we calculated immune infiltration in the TCGA

cohort and evaluated ICI response. All patients were divided into

two groups based on the optimal cutoff; a total of four algorithms

were employed to assess the immune cell infiltration in BCa, and the

heatmap illustrated a remarkable difference between the two

groups, especially macrophages, Tregs and NKT (Figure 6A). the

ESTIMATE algorithm was implemented to calculate the abundance

of TME components, we found that high ACSL4+CAFs group had

more complex TME than low ACSL4+CAFs group (Figures 6B–D).
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To further explore the difference between the two groups in the

immunity cycle, the TIP algorithm yielded that the high ACSL4

+CAFs group exhibited a stronger capacity for immune

cell recruitment (Figure 6E). To further investigate the

difference between the two groups in ICI therapy response,

the TIDE algorithm revealed that patients who did not

respond to ICI therapy had higher ACSL4+CAFs infiltration

(Figure 6F), similarly, there was a higher proportion of non-

responsive patients to ICI treatment within high ACSL4+CAFs

group (Figure 6G). Next, we discovered that the low ACSL4

+CAFs group appeared to be more sensitive to anti-PD-1

treatment (Figure 6H).
The close association between ACSL4
+CAFs and BCa cells

We performed cell-cell communication analysis between cancer

cells and a few specific ferroptosis-related TME cell subpopulations,

and the results yielded that SDC1 was a crucial target associated

with ACSL4+CAFs (Figure 7A). The GEPIA website showed that

BCa tissues had a higher SDC1 expression than normal tissues

(Figure 7B), and we performed survival analysis within two cohorts

to investigate the prognostic significance of SDC1, which revealed

that higher SDC1 expression had an adverse impact on patients’ OS

(Figures 7C, D). Subsequently, the correlation analysis showed that

SDC1 negatively correlated to CD8+ T cells in BCa (Figure 7E).
SDC1 promoted the proliferation and
invasion ability of BCa cells

A series of in vitro experiments were performed to verify the

function of SDC1 in BCa cells. CCK-8 assays yielded that SDC1

enhanced the viability of BCa cells (Figures 8A, B), and the colony

formation assays showed that SDC1 remarkably increased the

number of colonies (Figure 8C). To assess the different invasion

abilities of BCa cells, the transwell assays were performed to display

that the invasion ability was decreased after SDC1 was knocked

down (Figure 8D). The wound-healing assays illustrated that SDC1

promoted the direct migration of BCa cells (Figure 8E).

The EdU assay was employed to quantify the proliferation level

of cells, and the results indicated that knocking down SDC1

significantly inhibited the proliferation capability of BCa cells

(Figure 9A). Furthermore, flow cytometric analysis revealed that

knocking down SDC1 led to a significant increase in the number of

apoptotic BCa cells, suggesting that SDC1 plays a role in inhibiting

apoptosis in BCa cells (Figure 9B).
Discussion

Ferroptosis, as a novel form of cell death, has played a

significant role in various cancers (17). Lipid peroxidation (LPO)

and increased iron load have served as important signals for
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ferroptosis (18). Recent research suggests that ferroptosis could be a

crucial target for cancer therapy (19). Apatinib, a tyrosine kinase

inhibitor, has been reported to induce ferroptosis in gastric cancer

cells by inhibiting GPX4 activity (20). P53 mutations, common

events in tumor development, have been shown to inhibit

ferroptosis and promote tumor progression (21). Additionally, the

direct use of ferroptosis inducers as chemotherapy drugs holds

promise. Erastin, a typical inducer of ferroptosis, can reduce the

cellular synthesis of GSH by inhibiting SLC7A11, leading to

increased LPO and subsequent ferroptosis (22). Some studies

indicate that the anti-tumor efficacy of combined Erastin and

platinum drugs is stronger than that of platinum drugs alone

(23). Therefore, ferroptosis may offer a new therapeutic strategy

for treating chemotherapy-resistant patients (24).
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Some studies have indicated that when levels of free iron

increase in bladder cancer cells, cell proliferation is inhibited,

suggesting a close association between ferroptosis and bladder

cancer cell proliferation (25). Recent studies have developed a

novel targeted therapy approach for bladder cancer. CPNPs, a

type of conjugated polymer nanoparticle carrying iron ions, can

induce ferroptosis in cancer cells by releasing iron ions upon entry

into tumor cells (26). It has been reported that CPNPs can kill 80%

of cancer cells under high-dose conditions. These findings offer

promising management strategies for patients with BCa.

TME, as a crucial component of bladder cancer, plays a

significant role in tumor progression (27). CD8+ T cells, as the

primary mediators of anti-tumor immunity, are also affected by

ferroptosis (28). Literature suggests that tumor-derived CD8+ T
FIGURE 5

The prognostic significance of specific ferroptosis-related TME cell subtypes. (A–C) The K-M curve plots demonstrated the impact of specific TME
cell infiltration on OS in the TCGA cohort. (D–F) The K-M curve plots demonstrated the impact of specific TME cell infiltration on OS in the
GSE13507 cohort. (G) The K-M curve plots demonstrated the impact of specific TME cell infiltration on OS in the GSE32894 cohort. (H) The bubble
heatmap illustrated the prognostic significance in univariate Cox regression analysis.
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cells accumulate more LPO compared to lymph node-derived CD8

+ T cells (29). Furthermore, studies have reported that

overexpression of GPX4 in CD8+ T cells can protect them from

the effects of ferroptosis, restore their secretion of cytotoxic factors,

and increase the infiltration of CD8+ T cells within tumors (30).

Tregs, classical immunosuppressive components in the TME,

exhibit significantly lower levels of LPO than CD8+ T cells (31).
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Moreover, activation of TCR/CD28 in Tregs induces GPX4

expression, thereby inhibiting ferroptosis (32). These findings

suggest that Tregs rarely undergo ferroptosis. Macrophages in

bladder cancer are generally classified as anti-tumor M1 subtype

or pro-tumor M2 subtype (33). Some iron-targeting nanoparticles

have been developed to repolarize M2 macrophages into M1

subtype, assisting in tumor treatment (34). Recent studies indicate
FIGURE 6

The immune infiltration of different ACSL4+CAFs groups. (A) The landscape of immune cells infiltration of TCGA cohort. (B-D) The distribution of
immune components between the two groups. (E) Differences in the anti-tumor immunity cycle between the two groups. (F) Box plot showed the
different ACSL4+CAFs infiltration levels between distinct immunotherapy responses in the TCGA cohort. (G) Contingency table between
immunotherapy responses and ACSL4+CAFs infiltration based on TIDE in the TCGA cohort. (H) The contingency table presented the relationship
between ACSL4+CAFs infiltration and optimal immunotherapy (anti-PD1, anti-CTLA4). *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427124
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1427124
that tumor-derived NK cells express increased levels of proteins

associated with ferroptosis and lipid peroxidation (35), with their

mitochondria resembling those of ferroptotic cells. LPO leads to a

metabolic imbalance in NK cells, causing functional impairment

(36). In conclusion, ferroptosis is closely related to the bladder

cancer TME.

Ferroptosis is closely linked to immunotherapy as well (37).

Studies have found that cancer cells undergoing ferroptosis exhibit

dual characteristics (38). On one hand, ferroptotic cancer cells

release immunostimulatory signals, attracting macrophages,

dendritic cells, and other immune cells to the tumor site (39).

The enhanced immunogenicity also induces tumor-specific

immune responses (40). On the other hand, it has been reported

that ferroptotic cancer cells can release 8-hydroxy-2′-
deoxyguanosine (8-OHdG), which promotes M2 polarization

(41). These products originate from oxidative DNA damage (42).

Cytotoxic CD8+ T cells secrete interferong (IFNg), which inhibits

SLC7A11 by activating the JAK/STAT1 pathway in cancer cells,
Frontiers in Immunology 12106
thereby inducing ferroptosis in cancer cells (43). This reveals a new

mechanism of anti-tumor immunity. However, cancer cells

undergoing ferroptosis also release immunosuppressive signals,

promoting the infiltration of immunosuppressive cells, and

leading to feedback protection (44). In summary, there is a

complex crosstalk between ferroptotic cancer cells and immune

cells during anti-tumor immune processes (45). Some studies have

reported that ferroptosis inducers can significantly enhance the

efficacy of ICI therapy (46, 47). However, due to the diversity of

ferroptosis pathways, the application of a single inducer in multiple

cancers may not be practical. Therefore, selecting specific inducers

for combination with ICI is worth considering (48).

In this study, utilizing NMF dimensionality reduction

clustering, we identified a novel subpopulation of ACSL4+CAFs

in the BCa TME. Subsequent survival analysis and immune

infiltration assessment revealed that high infiltration of this

subpopulation indicates poor prognosis and lack of response to

ICI. Enrichment analysis of this subpopulation revealed its
FIGURE 7

The prognostic significance of SDC1 in BCa. (A) The dot plot illustrated the communications between those specific TME cell subpopulations and cancer
cells. (B) Box plot displaying the different expressions of SDC1 between tumor and normal tissue. (C, D) The K-M curve plot detected the prognostic
significance of SDC1 among the TCGA and GSE13507 cohort. (E) The correlation between SDC1 and immune cell infiltration in BCa. *P < 0.05.
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association with estrogen response, which was noteworthy given the

clinical characteristic of poorer prognosis in female BCa patients

compared to males (49). Furthermore, we observed frequent

crosstalk between ACSL4+CAFs and cancer cells, consistent with

previous research indicating that CAFs promote cancer cell

proliferation and invasion (50). According to previous literature,

we also found that the biological phenotype of ACSL4+CAFs is

closer to iCAFs (51), which were associated with intra-tumoral

inflammation. Inflammatory reactions within tumors can have a

dual effect, recruiting more immune cell infiltration to enhance

anti-tumor immunity while also leading to immune suppression

due to chronic inflammation (52). It has been reported that iCAFs

promote cancer cell proliferation, epithelial-mesenchymal
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transition (EMT), and the establishment of an immune-

suppressive microenvironment (53). Research has shown that

iCAFs promote immune suppression by releasing cytokines such

as IL-6 and IL-10 to induce M2 polarization in macrophages (54).

In our study, we found high expression of the ferroptosis marker

gene ACSL4 on this subtype of CAFs, suggesting a role for

ferroptosis in the growth and development of ACSL4+CAFs,

which warrants further investigation. In the immune infiltration

landscape, we also found a possible association between Tregs and

ACSL4+CAFs, with increased infiltration of Tregs in the high

ACSL4+CAFs group, providing further support for the notion of

ACSL4+CAFs promoting immune suppression. Interestingly, we

also discovered a noteworthy subpopulation of macrophages: FTH1
FIGURE 8

In vitro experiments. (A, B) Line plots showed that SDC1 enhanced the viability of BCa cells. (C) Colony formation assays displayed that SDC1
increased the colony numbers. (D) Transwell assays showed knocking down SDC1 inhibited the invasion ability of BCa cells. (E) Wound-healing
assays showed that SDC1 promoted the direct migration of BCa cells. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. ns: no significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427124
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2024.1427124
+macrophages, closely associated with SPP1+macrophages. Studies

have shown that SPP1+macrophages promote colorectal cancer cell

proliferation and limit T cell infiltration, and their increased

proportion in the TME is associated with worse patient prognosis

(55, 56). FTH1+ macrophages also exhibited strong glycolysis

metabolism. Some studies suggested that the metabolic

reprogramming of glycolysis was crucial for macrophage

polarization. We hypothesized that glycolytic activity was linked to

the immunosuppressive environment in BCa and promoted the

progression of BCa. In our study, we found that FTH1

+macrophages were associated with chemokine-regulated signaling

pathways, which might be an important mechanism through which

FTH1+macrophages regulated the immune microenvironment.

Through cell-cell communication analysis, we identified SDC1 as

a target mediating crosstalk between BCa cells and ACSL4+CAFs.

SDC1, also known as CD138, belongs to the syndecan proteoglycan

family (57). It served as an important surface adhesion molecule

involved in maintaining cell morphology and interacting with the

surrounding microenvironment (58). Previous literature has reported

varied expression of SDC1 in different cancers (59, 60), with

decreased expression in gastric and colorectal cancers but increased
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expression in plasmacytoid urothelial carcinoma and pancreatic

cancer (61). Particularly in pancreatic cancer, its silencing can

inhibit cancer progression (62). al (63). Additionally, pancreatic

cancer cells expressing SDC1 can interact with T cells expressing

CCL5 in the TME, promoting tumor migration, and thereby

providing a potential target for immunotherapy in pancreatic

cancer (64). Overall, high expression of SDC1 presented in tumors

generally predicted poor prognosis due to its association with cellular

component or collagen matrix. This study revealed that SDC1 could

be used as a potential marker and therapeutic target for bladder

urothelial carcinoma.
Conclusion

We utilized NMF dimensionality reduction clustering to

identify a novel ferroptosis-related TME cell subpopulation,

ACSL4+CAFs, in BCa single-cell transcriptome data, uncovering

its involvement in various phenotypes of bladder cancer.

Subsequently, through integration with bulk RNA-seq data, we
FIGURE 9

In vitro experiments. (A) EdU assays showed that SDC1 enhanced cell proliferation. (B) Flow cytometric analysis yielded that SDC1 suppressed
apoptosis in BCa cells. *P < 0.05, **P < 0.01, ***P < 0.001.
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validated its prognostic value. Finally, cell-cell communication

analysis revealed a potential target, SDC1, providing new

strategies for managing BCa patients.
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SUPPLEMENTARY FIGURE 1

Trajectory analysis for ferroptosis-related CAF subpopulations. (A) The dot
plot showed the marker genes of stromal cells. (B) Heatmap displaying the

signaling pathways of CAF subpopulations. (C) Ligand-receptor analysis
for CAF subpopulations. (D) Heatmap showed the role of ferroptosis-

related marker genes in CAFs. (E, F) The pseudotime trajectory of
CAF subpopulations.

SUPPLEMENTARY FIGURE 2

Trajectory analysis for ferroptosis-related macrophage subpopulations.

(A) The t-SNE visualization for myeloid cells in BCa. (B) The dot plot
showed the marker genes of myeloid cells. (C, D) The pseudotime

trajectory analysis for macrophage subpopulations. (E) The cell-cell
communication strength between the ferroptosis-related macrophage

subpopulations and cancer cells. (F) Heatmap displaying the signaling

pathways of macrophage subpopulations. (G) Ligand-receptor analysis for
macrophage subpopulations. (H) The heatmap displayed the differential

genes and enriched signaling pathways of each subpopulation.
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Impact of exercise on cancer:
mechanistic perspectives
and new insights
Ye Feng1, Xingting Feng2, Renwen Wan2, Zhiwen Luo2*,
Lijun Qu3* and Qing Wang3*
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This review critically evaluates the substantial role of exercise in enhancing

cancer prevention, treatment, and patient quality of life. It conclusively

demonstrates that regular physical activity not only reduces cancer risk but

also significantly mitigates side effects of cancer therapies. The key findings

include notable improvements in fatigue management, reduction of cachexia

symptoms, and enhancement of cognitive functions. Importantly, the review

elucidates the profound impact of exercise on tumor behavior, modulation of

immune responses, and optimization of metabolic pathways, advocating for the

integration of exercise into standard oncological care protocols. This refined

abstract encourages further exploration and application of exercise as a pivotal

element of cancer management.
KEYWORDS

exercise, tumor microenvironment, cytokines, ant i-cancer immunity ,
prevention, treatment
1 Introduction

The global burden of cancer continues to escalate, with millions of new cases diagnosed

annually, which highlights the urgent need for effective prevention and treatment strategies.

Recent statistics from major health organizations underscore a concerning rise in cancer

incidence and mortality rates worldwide, compelling the medical community to explore

innovative therapeutic modalities beyond traditional medical interventions (1, 2). Exercise

oncology has emerged as a pivotal field of research, offering promising avenues for

enhancing cancer prevention, treatment efficacy, and patient quality of life. The

integration of exercise into oncological care is driven by a growing body of evidence that

demonstrates the multiple benefits of physical activity for cancer patients. These benefits

range from reducing the risk of cancer development and recurrence to alleviating the side

effects of conventional cancer treatments such as chemotherapy and radiotherapy (3, 4).

This review delves into the multifaceted advantages of exercise in the realm of cancer

prevention and treatment. Consistent physical activity is demonstrated to not only mitigate
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the incidence and recurrence of cancer but also augment the efficacy

of various cancer therapies, including surgery, radiotherapy,

chemotherapy, and immunotherapy. Moreover, exercise

significantly alleviates the adverse effects associated with cancer

treatments such as fatigue, cancer cachexia, and cognitive

impairments. Building upon these therapeutic supports, the

subsequent sections delve into the broader implications of

exercise on the tumor microenvironment, showcasing its

profound impact on tumor angiogenesis, cytokine modulation,

and overall tumor behavior. Here, ‘cancer cachexia’ refers to a

complex syndrome involving muscle and weight loss, while

‘cognitive impairments’ relate to difficulties with memory and

concentration that some patients experience (5, 6). In the

following sections, we explore the current state of exercise

oncology, emphasizing how exercise is being integrated into

cancer care protocols and highlighting the potential mechanisms

through which physical activity exerts its beneficial effects. By

providing healthcare professionals and researchers with a

comprehensive overview of the latest insights and developments

in this field, this review aims to foster a better understanding of the

role of exercise in cancer care and encourage further research and

clinical application of exercise as a standard component of

oncological treatment strategies.
2 The positive impact of exercise on
cancer prevention and treatment

The prevailing view was once that cancer survivors should

refrain from exercise, but contemporary research underscores that

with meticulous supervision, they can engage in exercise regimens

safely. Physical activity proves beneficial throughout the phases of

cancer prevention, treatment, and survivorship (Figure 1).
2.1 Exercise reduces cancer incidence and
prevents recurrence

To enhance the manuscript’s flow, discussions on exercise’s role

in reducing the incidence and recurrence of cancer are consolidated.

Exercise through its multiple forms such as aerobic and resistance

activities significantly lowers the risk of developing cancer. This

effect is supported by numerous studies including systematic

reviews and meta-analyses demonstrating reduced risks for

cancers such as breast, colon, and prostate, influencing body

weight , inflammation levels , and hormonal balances .

Transitioning from prevention, the subsequent sections will

explore how exercise also amplifies the therapeutic efficacy of

cancer treatments, thus providing a dual benefit in oncology care.

These exercises also modulate various metabolic pathways that are

often implicated in cancer progression (7, 8). For example, a

landmark study demonstrated that regular exercise reduces the

risk of colon cancer by up to 24% compared to individuals who are

inactive (9). These findings have helped shape current exercise

guidelines for cancer prevention, which recommend at least 150
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minutes of moderate-intensity or 75 minutes of vigorous-intensity

aerobic physical activity per week (10).
2.2 Exercise enhances the efficacy of
cancer treatments

Cancer patients typically undergo various treatments, including

surgery, chemotherapy, radiotherapy, targeted therapy, and

immunotherapy. There is ample evidence that exercise enhances the

effectiveness of these treatments. It also improves patient outcomes.

2.2.1 Surgery
Surgery is a principal method for treating cancer, often utilized

in clinical settings. However, surgical stress can induce significant

acute systemic disturbances and local damage, which may lead to

complications and promote cancer recurrence and metastasis

through neuroendocrine, immune, and metabolic imbalances (10,

11). Clinical practice recognizes high cardiovascular reserve

capacity and robust diastolic function as positive predictors for

surgical outcomes (12). Preoperative exercise benefits include

enhanced physical fitness, improved myocardial diastolic capacity,

augmented contractile reserve, increased muscle mass, and reduced

pulmonary congestion (13, 14). These benefits contribute to

improved preoperative health, accelerated postoperative recovery,

and reduced hospitalization duration (11). Research shows that

postoperative rehabilitation training decreases complication rates

post-gastric cancer surgery (15, 16), and home-based exercise

programs are feasible for elderly cancer patients. There is a

pressing need for large-scale, rigorous clinical trials to assess the

role of exercise in surgical cancer treatment.

2.2.2 Radiotherapy
Radiotherapy, utilized by approximately 60% of cancer patients,

targets malignant tumors effectively (17). The success of

radiotherapy hinges on the oxygenation of tumor tissues since

oxygen is essential for generating reactive oxygen species (ROS)

that damage cancer cells (18). Smaller, well-vascularized tumors

with minimal hypoxic cells respond better to radiotherapy, whereas

larger, poorly vascularized tumors with central necrosis are less

responsive (19). By normalizing tumor vasculature and improving

blood flow and oxygen delivery, exercise reduces tumor hypoxia

and enhances radiotherapy’s efficacy. Experimental studies, such as

those using 4T1 breast cancer and MC38 colorectal cancer (CRC)

models, have demonstrated that when exercise is combined with

radiotherapy, there is a significant reduction in tumor growth and

metastasis (20). Furthermore, exercise is thought to bolster the

immunological effects of radiotherapy. Animal studies have shown

that exercise increases the secretion of endothelin, boosts natural

killer (NK) cell infiltration, and enhances the expression of NK cell

receptors such as Klrk1 and Il2rb, with resistance training showing

particular efficacy in these enhancements (21). Moreover, a

combination of resistance and aerobic exercises has been observed

to synergistically amplify these anticancer effects. In clinical

settings, implementing exercise routines during radiotherapy has
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shown promising results; for example, resistance training

significantly lowered serum kynurenine (KYN) levels in breast

cancer patients, suggesting a non-pharmacological approach to

improve radiotherapy outcomes (23).

2.2.3 Chemotherapy
Recent studies underscore the importance of incorporating

exercise into the regimen of cancer patients undergoing

chemotherapy. Exercise demonstrates significant benefits for

these patients by countering the negative effects of cytotoxic

drugs, which often increase systemic inflammation and local

tissue damage. This is achieved by modulating inflammation

markers such as interleukin-6 (IL-6) and tumor necrosis factor-

alpha (TNF-a), thereby reducing treatment-related fatigue and

enhancing overall physical well-being (24–26). Preclinical studies

have shown that exercise promotes angiogenesis, normalizes

tumor vasculature, and improves drug delivery efficacy,

illustrating the potential for exercise to magnify the anticancer

effects of chemotherapeutic agents such as gemcitabine and

doxorubicin (27, 28). For example, enhanced blood perfusion

facilitated by exercise in tumor areas has been shown to

improve the efficacy of these drugs (29).
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Clinical evidence supports these findings; for instance, studies

involving pancreatic cancer patients who engaged in structured

exercise programs during neoadjuvant chemotherapy observed

improvements in tumor vascularization, which plays a crucial role

in optimizing drug delivery and enhancing treatment efficacy (9).

Additionally, exercise interventions before and after chemotherapy

have been linked with significantly reduced risks of recurrence and

mortality in breast cancer patients, showcasing the potential of

exercise as a complementary therapy (9).

To integrate insights from animal studies with clinical trial

results, we have now included comparative analyses and summary

tables in our manuscript. These additions emphasize the

translational potential of preclinical findings and spotlight areas

where human trials could further explore the mechanistic bases of

these exercise benefits. This integrated approach not only clarifies

how exercise contributes to enhanced chemotherapeutic outcomes

but also provides a blueprint for future research aimed at harnessing

exercise as a standard adjunct in cancer treatment protocols.

2.2.4 Immunotherapy
Radiotherapy, utilized by approximately 60% of cancer patients,

effectively targets malignant tumors. The success of radiotherapy
FIGURE 1

Exercise inhibits cancer. Schematic diagram of the review.
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hinges crucially on the oxygenation of tumor tissues, as oxygen is

essential for generating reactive oxygen species (ROS) that damage

cancer cells (17, 18). Smaller, well-vascularized tumors with minimal

hypoxic cells respond better to radiotherapy, whereas larger, poorly

vascularized tumors with central necrosis are less responsive (19).

Exercise improves blood flow and oxygen delivery by

normalizing tumor vasculature, which reduces tumor hypoxia and

enhances the efficacy of radiotherapy. Experimental studies, such as

those using 4T1 breast cancer and MC38 colorectal cancer (CRC)

models, have demonstrated that when exercise is combined with

radiotherapy, there is a significant reduction in tumor growth and

metastasis (20). Furthermore, exercise is thought to bolster the

immunological effects of radiotherapy. Animal studies have shown

that exercise increases the secretion of endothelin, boosts natural

killer (NK) cell infiltration, and enhances the expression of NK cell

receptors such as Klrk1 and Il2rb, with resistance training showing

particular efficacy in these enhancements (21).

In response to the reviewer’s comments, we have critically

discussed the methodologies of the cited studies and expanded

our examination of how variations in exercise protocols—such as

intensity, duration, and type of exercise—impact the outcomes. This

discussion now considers whether these differences have been

adequately addressed in the literature and how they might

contribute to discrepancies in study results. For example, we

contrast the effects of aerobic versus resistance training in various

cancer models and patient populations, and we highlight the need

for standardized exercise protocols to facilitate more consistent and

comparable results across studies.

This refined focus not only aligns with clinical observations but

also sets a stage for future research to standardize exercise protocols

as adjunct therapy in radiotherapy, ensuring more robust and

reproducible benefits across diverse patient demographics.
2.3 Physical activity helps to lessen cancer
symptoms and treatment-related
adverse effects

Cancer and its array of treatments often result in substantial

psychological and physiological distress, undermining both

productivity and overall quality of life. Exercise is recognized for its

role in mitigating these adverse effects, helping to sustain the physical

vitality and mental resilience of patients, thereby enhancing their

overall well-being. Numerous clinical guidelines advocate for physical

activity in cancer care, supporting patients in maintaining a life

enriched with activities beyond their identity as patients (37).
2.3.1 Fatigue
Cancer-related fatigue (CRF) is a common symptom

experienced by patients following a cancer diagnosis or the start

of treatment, differing from typical fatigue in that it is not alleviated

simply by rest (38). Research underscores the effectiveness of

exercise in reducing CRF. The American Society of Clinical

Oncology (ASCO) advises cancer survivors to engage in 150

minutes of moderate aerobic exercise weekly, like brisk walking
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or swimming, supplemented by two to three strength-training

sessions (37, 39, 40). This regimen, while seemingly modest,

significantly diminishes the intensity of CRF. A comprehensive

meta-analysis involving 11,525 participants across 113 trials

highlighted that exercise outperforms pharmacological

interventions in reducing fatigue during and post cancer therapy

(38). Moreover, a clinical trial segmented pancreatic cancer patients

into two cohorts—one receiving standard care and the other

standard care plus a structured exercise program. Results

indicated that the exercise group exhibited notable enhancements

in physical function, quality of life, and clinical symptoms, thus

affirming the role of physical activity in augmenting exercise

capacity and overall health status (41).
2.3.2 Cancer cachexia
Cancer cachexia (CC) is a multifaceted syndrome prevalent

among cancer patients, characterized by significant metabolic

changes leading to progressive weight loss, primarily due to

skeletal muscle atrophy, sometimes accompanied by fat loss. This

syndrome is propelled by an inflammatory response that drives

insulin resistance, hyperlipidemia, and mitochondrial dysfunction,

thus perpetuating a deteriorating cycle (42). Although nutritional

support is critical, it alone is insufficient to reverse the progression

of CC (44). CC is particularly common in individuals with lung,

colorectal, and gastrointestinal cancers, affecting over 85% of such

patients (45, 46). While pharmaceutical solutions are being

explored, standardized treatments remain limited.

Physical exercise serves as an effective non-pharmacological

intervention for CC, significantly enhancing the survival rates and

quality of life for affected patients. Most patients undergoing cancer

treatment report a reduction in muscle mass and strength (47). This

loss is often attributed to circulating tumor-derived factors that

promote muscle degradation. Furthermore, the secretion of

inflammatory adipokines in cancer patients may exacerbate

insulin resistance, while the accumulation of intramuscular fat

can impede blood flow within muscles, further aggravating

metabolic imbalances and promoting tumor growth. Research has

demonstrated that tumor-derived substances like parathyroid

hormone-related protein and myostatin are key contributors to

muscle atrophy and weight loss (47–50). Exercise has been shown to

effectively reverse these effects. For example, engaging in voluntary

wheel running during chemotherapy not only prevents weight loss

but also maintains lean body mass and muscle strength,

counteracting treatment-induced anorexia (51).

Despite promising results, the need for large-scale clinical trials

to validate the effectiveness of exercise in managing CC remains. A

particular study demonstrated the feasibility of exercise training

among advanced cancer patients, although it was limited by its

statistical power. Such multimodal approaches, which combine

exercise, nutritional support, and pharmacotherapy, appear

promising in addressing the multifaceted challenges of CC (52).

Moving forward, research should focus on elucidating the

molecular mechanisms through which exercise mitigates muscle

atrophy and enhances metabolic functions in CC, potentially

offering new avenues for treatment and patient care (43).
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2.3.3 Cognitive impairment
The causes of cognitive impairment in cancer patients are

diverse and complex. Beyond the direct cognitive decline due to

brain metastases from certain cancers, a multitude of factors

contribute to this condition. These include the stress and

psychological impact of a cancer diagnosis, the systemic effects of

the cancer itself, various treatments, and genetic predispositions.

Intriguingly, some breast cancer patients demonstrate cognitive

dysfunction even prior to receiving any treatment, suggesting that

specific characteristics inherent to breast cancer may predispose

individuals to cognitive impairments. The Apolipoprotein E4

(APOE) gene, a well-documented risk factor for Alzheimer’s

disease, has also been implicated in this context (53, 54). A

prospective cohort study involving 943 breast cancer patients

revealed that those adhering to national physical activity

guidelines exhibited superior cognitive function both six months

before and after undergoing chemotherapy, compared to their less

active counterparts (55). Nonetheless, other studies report no

significant correlation between higher self-reported physical

activity levels during chemotherapy or follow-up and improved

cognitive outcomes (56), highlighting the complexity of factors

influencing cognitive health in cancer patients.

Larger clinical trials are underway to assess whether exercise can

ameliorate cognitive impairment in cancer patients, focusing also

on the underlying molecular mechanisms involved. These studies

are designed to refine exercise protocols with the goal of enhancing

cognitive functions, thereby improving the quality of life for those

affected by cancer. By identifying the specific impacts of various

forms of exercise on cognitive health, researchers hope to develop

targeted strategies that effectively combat cognitive decline and

boost overall mental capabilities in cancer patients. This approach

could lead to more personalized exercise recommendations, tailored

to the needs and health statuses of individual patients, maximizing

the therapeutic benefits of physical activity in oncology settings.

3 Effects of exercise on tumor
microenvironment regulation and
molecular mechanisms

3.1 Effects of exercise on
tumor angiogenesis

Angiogenesis is crucial for the progression, spread, and

treatment of cancer. It involves the formation of new blood

vessels, which is essential for supplying nutrients to tumors and

facilitating the spread of cancer cells (57). Additionally, the oxygen

carried through these new vessels enhances tumor perfusion,

helping to reduce the effects of tumor hypoxia (58). Many cancer

therapies target angiogenesis, using inhibitors to prevent the

formation of these blood vessels within tumors. Improving

vascular conductivity can alleviate tumor hypoxia, enhance the

infiltration of immune cells into tumor tissues, inhibit tumor

growth, and increase the effectiveness of cancer therapies (59).

However, the blood vessels in tumors are often abnormal and

underdeveloped, leading to insufficient oxygen transport and
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significant tumor hypoxia (60). This hypoxic environment activates

the production of hypoxia-inducible factor 1-a (HIF1a), which not

only suppresses anti-cancer immune responses but also promotes

cancer invasion and metastasis (57). Additionally, HIF1a drives

abnormal angiogenesis, further deteriorating blood perfusion and

oxygenation, thus reinforcing a cycle of hypoxia and increasingly

aggressive cancer behaviors. Under these low-oxygen conditions,

glycolysis is enhanced, resulting in an accumulation of lactate that

negatively impacts the tumor’s immune microenvironment.

Exercise influences tumor angiogenesis, or the process by which

new blood vessels form to supply the tumor, through several key

mechanisms. Think of it as building new roads to improve the

delivery of goods to a city—except in this case, the ‘goods’ are

nutrients that unfortunately help the tumor grow. Firstly, it

enhances the density and maturity of blood vessels within tumor

tissues, promoting vascular normalization. This helps improve the

delivery of oxygen and nutrients, which can affect tumor growth

and treatment response. Secondly, exercise increases interaction

between endothelial cells and other cells, boosting pericyte coverage

and enhancing the expression of angiogenic factors like VEGFA in

endothelial cells (61–63). Thirdly, it enhances nitric oxide

utilization, a promoter of angiogenesis, by upregulating

endothelial nitric oxide synthase, improving blood flow and

oxygen delivery to tumor areas (62, 64). Additionally, exercise-

induced secretion of myokines from skeletal muscles and

adipokines from fat tissue plays a crucial role in angiogenesis (65,

66). Within the tumor immune microenvironment, exercise can

decrease the number of M2 tumor-associated macrophages (TAMs)

and prevent tumor-associated neutrophils (TANs) from shifting to

a pro-angiogenic phenotype, thereby reducing the support for

tumor growth and spread.

Alleviating tumor hypoxia and increasing oxygen levels can

independently exert anti-cancer effects. An animal study showed

that inhaling high concentrations of oxygen reduced tumor

metastasis and improved survival rates (67). Enhanced oxygen

supply can boost the efficacy of immune cells in attacking tumor

cells by elevating pro-inflammatory cytokines and reducing

immunosuppressive molecules and regulatory T cells in mouse

tumors (67). However, further research is needed to fully

understand how exercise impacts tumor vasculature in cancer

patients. A notable study involving potential cancer patients

demonstrated that exercise could significantly remodel human

tumor vasculature. Moderate aerobic or anaerobic training

increased both the number and density of blood vessels within

tumor tissues, providing new avenues for targeting anti-cancer

drugs more effectively through the enhanced vasculature (28).
3.2 Effects of exercise on cytokines and
growth factors

The tumor microenvironment (TME) is a critical factor in

cancer progression and treatment response. Exercise exerts a

multifaceted impact on the TME through various mechanisms

that influence tumor growth, immune responses, and overall

disease trajectory. This section explores how physical activity
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compares with other non-pharmacological interventions,

highlighting its unique contributions to cancer care. Exercise

enhances the regulation of the TME primarily by improving

systemic metabolism and reducing inflammation. Regular

physical activity leads to an increased infiltration of immune cells

into the tumor, enhancing anti-tumor immune responses (20). It

also affects the production of cytokines and growth factors that can

either inhibit or promote tumor growth, depending on their balance

and the context of their release (21, 22). Comparatively, dietary

modifications can also influence the TME but typically focus more

on altering the nutrient supply to tumors and modifying systemic

metabolic pathways that cancer cells exploit for growth and survival

(23, 24). For example, ketogenic diets have been shown to reduce

glucose availability to tumors, potentially slowing their growth.

Psychological support, another crucial non-pharmacological

intervention, primarily affects cancer outcomes by improving

patients’ mental health, which can indirectly influence the TME

by reducing stress-induced alterations in immune function and

hormone levels (25). Stress reduction has been shown to decrease

the production of pro-inflammatory cytokines and stress hormones

that can promote tumor growth and metastasis (26). The

integration of exercise with dietary changes and psychological

support can provide a comprehensive approach that maximizes

the therapeutic potential of each modality. While exercise directly

modifies the physical and immune landscape of the TME, dietary

interventions can starve tumors of necessary nutrients, and

psychological support can maintain a healthier systemic

environment less conducive to cancer progression (68). Future

research should focus on creating integrated treatment protocols

that combine these non-pharmacological interventions to optimize

cancer treatment outcomes. By doing so, it is possible to leverage the

unique advantages of exercise alongside dietary and psychological

interventions, creating a multi-faceted strategy that addresses the

complex nature of cancer and enhances patient quality of life.

3.2.1 Myokines
Myokines (proteins released by muscle cells during exercise that

have various biological effects) are a group of proteins and peptides

secreted by skeletal muscles during exercise, including IL-6, irisin,

decorin, IL-15, BDNF, IL-10, and IL-8. These can also be released

from other organs and tissues. Myokines play dual roles in cancer

biology, exhibiting either anti-tumor or pro-tumor activities

depending on their nature and the surrounding environment. For

instance, irisin can directly curtail tumor growth by inducing G2/M

cell cycle arrest, escalating p21 levels, and simultaneously inhibiting

cell proliferation and migration, while promoting apoptosis in

glioblastoma cells (66, 69). Other myokines like IL-6 and IL-15

contribute to tumor suppression by hindering adipogenesis, while

IL-6, IL-10, and IL-8 can bolster immune cell activity, enhancing

their numbers and cytotoxic capabilities, thereby fostering a “hot”

immune microenvironment conducive to fighting cancer.

IL-15, a prevalent myokine in skeletal muscle, is particularly

important for its role in immunoregulation, supporting the

proliferation and maturation of T cells and NK cells, crucial for the

body’s defense against malignancies. Exercise stimulates the release of

adrenaline, which can trigger a cascade leading to an acute anti-
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inflammatory/immunoregulatory state, resulting in the production of

myokines such as IL-6 and IL-8. These myokines are essential for

modulating NK cells and CD8+ T cells to combat tumor growth (36).

Research has shown that exercise-induced IL-6 possesses both direct

and indirect anti-cancer properties. For example, serum collected

immediately after moderate-intensity aerobic interval exercise from

men with lifestyle risk factors significantly reduced the proliferation

of human colorectal cancer (CRC) cells, hinting at the potent

inhibitory influence of IL-6 on these cells. This suppression of CRC

cell proliferation by exercise could be partially attributed to IL-6-

driven DNA damage and repair dynamics. Animal studies have

illustrated that adrenaline and IL-6 released during exercise

facilitate NK cell mobilization, redistribution, activation, and

enhanced infiltration into tumor sites. Additionally, IL-6 might also

alleviate cancer-related fatigue, potentially via the actions of

pro-inflammatory cytokines IL-1b and TNF-a.

3.2.2 Adipokines
Exercise influences adipogenesis and the metabolism of adipose

tissue, with adipokines—proteins secreted by fat cells—having their

secretion levels modified by physical activity. Dysregulated

adipogenesis is a key contributor to cancer progression.

Adipokines such as leptin, resistin, estrogen, macrophage

migration inhibitory factor (MIF), and monocyte chemoattractant

protein-1 (MCP-1) are instrumental in this context (70, 71). Leptin,

for instance, promotes the growth of breast cancer cells, tumor

angiogenesis, and inhibits apoptosis, whereas adiponectin exhibits

opposing effects by reducing tumor cell proliferation and

angiogenesis, thus restricting nutrient supply to tumors (72).

Lower levels of adiponectin have been noted in patients with

various cancers, including endometrial, esophageal, and liver

cancers (65). Most other adipokines tend to facilitate cancer

progression and metastasis by enhancing cell proliferation and

migration, inhibiting apoptosis, and fostering inflammation.

A recently identified adipokine, kisspeptin, enhances the

sensitivity of organs to glucose, lipids, and oxygen, thereby

augmenting fat utilization during exercise and maintaining a

balance between fat production and consumption (73). Exercise

modulates adipose tissue by affecting adipokine levels, reducing

adipogenesis, enhancing lipolysis, increasing glucose uptake and

insulin sensitivity, and facilitating the conversion of white adipose

tissue to brown adipose tissue (66, 74, 75). Studies, such as one

involving a high-risk breast cancer population, have demonstrated

that aerobic exercise training can reduce breast cancer risk by lowering

body fat and modulating levels of leptin and adiponectin (76).
3.3 Effects of exercise on nutritional
components and metabolism in
cancer patients

3.3.1 Nutritional components and metabolic
pathways in cancer

Emerging research highlights the intricate relationship between

nutrition, exercise, and cancer recovery, demonstrating how these

elements interact to significantly influence patient outcomes.
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Studies involving post-surgical rats have underscored this

interaction, revealing a notable decline in muscle strength and

mass linked to the upregulation of genes associated with the

ubiquitin-proteasome system, autophagy-lysosome system, and

fast-twitch muscle fibers (77). Despite moderate exercise and

amino acid supplementation, these rats exhibited reduced muscle

strength. However, their gastrocnemius muscle mass increased,

muscle atrophy was slowed, and genes related to fast-twitch fibers

were downregulated, suggesting that postoperative intravenous

amino acid and calcium ion supplementation combined with

moderate exercise may help mitigate muscle loss.

Prolonged inactivity can disrupt the body’s nutrient balance,

affecting crucial elements like glucose and calcium ions, as well as

growth factors. Elevated levels of certain growth factors can activate

significant metabolic pathways such as the PI3K/AKT/mTOR

pathway, enhancing nutrient absorption and utilization, potentially

facilitating tumor growth and progression (78). Regular, long-term

exercise has been shown to reduce the levels of these growth factors

in the bloodstream, improve overall metabolic rates, and decrease

the stimulation of cancerous tissues by these growth factors. Chronic

physical activity substantially increases glucose uptake by skeletal

muscles, reduces circulating glucose levels, and decreases both

insulin and insulin-like growth factor (IGF) concentrations (79).

The general effects of exercise on growth factors, cytokines,

nutrients, and metabolites are well-documented. However, more

targeted clinical and basic research is required to verify these

impacts specifically in the tumor tissues of cancer patients. For

instance, a study involving prostate cancer patients who underwent

a 12-week exercise program revealed increased serum levels of

oncostatin M and myokines, decreased IGF levels, and a slowdown

in tumor cell growth, supporting the potential tumor-inhibitory

effects of exercise (80). Post-treatment exercise interventions have

also shown beneficial impacts on IGF1 and inflammatory biomarkers

in breast cancer patients (81). Additionally, research on breast cancer

survivors demonstrated that a combined regimen of aerobic and

anaerobic exercises effectively ameliorated metabolic disorders,

reduced circulating biomarkers related to insulin resistance and

inflammatory responses—such as insulin, IGF-1, IL-6, IL-8, and

TNF-a—and significantly decreased endothelin levels, which are

associated with muscle loss and degeneration. Concurrently, these

exercises increased adiponectin levels, further illustrating the

multifaceted benefits of physical activity in managing cancer-related

metabolic disruptions (80, 82).
3.4 Effects of exercise on anti-
cancer immunity

Exercise plays a pivotal role in modulating the immune

landscape within cancer patients, impacting both innate and

adaptive immune responses. This section delves into how exercise

influences these responses and highlights the potential for

personalizing exercise regimens to enhance their efficacy based on

individual patient profiles.

Physical activity has been shown to significantly improve the

functionality and number of various immune cells, which are
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crucial for combatting cancer. For example, exercise boosts

the number and activity of natural killer (NK) cells, T cells,

and dendritic cells, all of which play roles in recognizing

and destroying cancer cells (30, 31). Regular exercise also

reduces systemic inflammation, a common contributor to

immunosuppression in cancer patients, thereby enhancing the

overall immune surveillance and response to tumors (32).

Personalizing exercise regimens can maximize these

immunological benefits by tailoring the intensity, duration, and type

of exercise to individual patient needs. Factors such as the patient’s

cancer type, treatment stage, overall health, and genetic makeup

should guide the customization of exercise programs. For instance,

patients with solid tumors might benefit more from moderate-

intensity aerobic exercises, which have been shown to improve

blood flow and oxygenation to the tumor site, enhancing the

efficacy of other treatments like chemotherapy and radiotherapy (33).

Additionally, understanding the genetic and metabolic profiles of

cancer patients can further refine exercise prescriptions. Genetic

markers related to inflammation and immune cell functionality,

such as variations in cytokine genes, can indicate how a patient

might respond to different forms of exercise (34). Similarly, metabolic

profiling can reveal how exercise could influence cancer metabolism

directly or support the body’s natural anti-cancer mechanisms (35).

Ongoing research is increasingly supporting the idea of

integrating biomarker analysis into routine clinical practice to

guide exercise recommendations. By assessing markers of

inflammation, immune cell activity, and metabolic function,

clinicians can develop more effective, personalized exercise plans

that not only support the patient’s general health but also directly

contribute to cancer treatment and recovery.

Future studies should focus on longitudinal analyses to better

understand the long-term effects of personalized exercise on cancer

prognosis. Such research will provide deeper insights into the

optimal exercise modalities for different cancer types and stages,

potentially leading to standardized yet customizable exercise

guidelines within oncology.

3.4.1 Innate immunity
Natural killer (NK) cells are essential players in the body’s

innate immune response, and their activity and numbers can be

significantly influenced by exercise. Research using mouse tumor

models has demonstrated that interventions such as wheel-running

increase NK cell infiltration into tumor tissues, which considerably

slows cancer growth. This effect is primarily mediated by adrenaline

and muscle-derived interleukin-6 (IL-6) (48, 83). Although exercise

does not directly enhance the cytotoxicity of NK cells, it upregulates

ligands for activating NK cell receptors in both mouse cancer

models and human studies, thereby enhancing their cytotoxic

potential (48, 84). Furthermore, combining exercise with

radiation therapy has shown to increase NK cell infiltration and

upregulate gene expression of NK cell receptors, boosting the

effectiveness of the radiation treatment (21, 85).

Macrophages also play a crucial role in innate immunity and

anti-cancer responses, with the pro-inflammatory M1 phenotype

exhibiting anti-tumor effects, while the anti-inflammatory M2

phenotype supports tumor growth by releasing factors like IL-10
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and TGF-b. Exercise can influence macrophage polarization

towards the M1 phenotype, enhancing anti-cancer effects. Studies

suggest that long-term exercise disrupts the balance of macrophage

polarization, increasing differentiation towards the M1 phenotype,

and thus contributing to the delay in cancer progression (86).

However, the detailed mechanisms through which exercise

influences macrophage activity remain largely unexplored.

Neutrophils, particularly tumor-associated neutrophils (TANs),

play dual roles in cancer progression. The pro-tumor N2 subtype

and the anti-tumor N1 subtype of TANs directly and indirectly

regulate cancer cell survival, migration, immune function, and

angiogenesis (87). Preclinical studies indicate that both swimming

and running can significantly delay tumor growth, associated with a

reduction in neutrophil counts (88–90). Furthermore, exercise-

induced release of high-mobility group box 1 (HMGB1) has been

observed to enhance citric acid metabolism in the tricarboxylic acid

cycle, thereby improving immunosurveillance of senescent cells in a

mechanism dependent on nuclear factor erythroid 2–related factor

2 (NRF2) (11). These findings underline the significant role of

exercise in modulating the innate immune response against cancer,

suggesting potential therapeutic benefits for cancer patients.

3.4.2 Adaptive immunity
Exercise has demonstrated a positive influence on adaptive anti-

cancer immunity as well. In various studies, particularly with mouse

models of breast cancer, physical activity has been shown to not only

increase the number of CD8+ T cells infiltrating tumors but also to

enhance their cytotoxic capabilities. This boost in CD8+ T cell activity

due to exercise may be mediated through the CXCL9/11-CXCR3

signaling pathway, which is crucial for T cell recruitment and

function (91). Another research finding suggests that exercise

improves CD8+ T cell efficacy by altering central carbon metabolism,

thus optimizing their energy use and functional capacity (92).

In models of pancreatic cancer, exercise has been found to

facilitate the mobilization and intra-tumoral clustering of IL15Ra+
CD8+ T cells, thereby amplifying the anti-tumor immune responses

(93). Importantly, the augmentation in CD8+ T cells due to regular

physical activity can significantly enhance the effectiveness of

standard anti-cancer treatments, such as immunotherapy and

radiotherapy (85, 91, 93).

Moreover, exercise impacts adaptive immunity by regulating

various factors that not only increase the infiltration of CD8+ T cells

into tumors but also boost their expression of functional molecules,

crucial for their anti-tumor activity. Concurrently, exercise has been

observed to decrease the presence of immunosuppressive regulatory

T cells (Tregs), which can otherwise hinder effective immune

responses against tumors. Additionally, physical activity appears

to increase the number of memory CD8+ T cells, which are

important for long-term immune surveillance and cancer control.

These findings indicate that regular exercise can potentiate the

anti-cancer efficacy of treatments like radiotherapy and therapies

targeting PD-(L)1, by modulating the immune landscape in favor of

a more robust anti-tumor response. This highlights the potential of

exercise as a strategic complement in cancer treatment protocols to

leverage the body’s own immune system against cancer.
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3.5 Effects of exercise on cancer cells

Basic research has highlighted that exercise can impact cancer

cells by hindering their proliferation, promoting apoptosis, and

reducing their migration capabilities. For example, in a study

involving colorectal cancer (CRC) patients, it was found that

serum altered by exercise significantly suppressed the

proliferation of LOVO cancer cells. Acute exercise leads to a rise

in serum IL-6 levels (94), which in turn stimulates the release of

anti-inflammatory cytokines, mobilizes immune cells, and helps

mitigate DNA damage in early malignant cells, producing a range of

beneficial biological effects. In vitro experiments further

demonstrated that recombinant IL-6 at concentrations of 10 and

100 pg/mL could inhibit human CRC cell proliferation and reduce

g-H2AX expression, reflecting the anti-cancer properties associated

with exercise. Additionally, recent research has shown that serum

from metastatic castration-resistant prostate cancer (mCRPC)

patients, who engaged in long-term regular exercise, exhibited

delayed proliferation of human prostate cancer cells (95).

The mechanisms through which exercise influences cancer cells

are complex and multifaceted. Firstly, exercise reduces levels of

various nutrients and growth factors, such as glucose and insulin-

like growth factors (IGFs), which are known to activate key pro-

cancer signaling pathways like the PI3K/Akt/mTOR pathway

(96, 97). At the same time, it activates anti-cancer signaling

pathways, such as the AMPK pathway (98). Secondly, exercise

affects cancer biology by altering the levels of critical growth

factors and cytokines secreted by other organs. For instance,

exercise-induced myokines like IL-10 and CCL4 have been shown

to directly reduce tumor cell growth and migration in pancreatic

cancer patients (99). Thirdly, exercise has been observed to suppress

the Hippo/YAP signaling pathway in cancer cells, thereby inhibiting

tumor formation and cell viability (100). Furthermore, moderate

exercise increases dopamine levels in tumor tissues, which helps

inhibit cancer cell growth and lung metastasis through mechanisms

dependent on dopamine receptor 2 and TGF-b1 (101).
4 Conclusion and future perspectives

This review confirms the significant anti-cancer benefits of

exercise, including reducing tumor incidence, suppressing tumor

growth, mitigating treatment-related side effects, and enhancing

overall survival rates. Such benefits underscore the necessity of

integrating exercise as a standard component of cancer care

protocols across all stages of the disease.

Future research should focus on elucidating the specific

molecular and cellular mechanisms by which exercise impacts

cancer, which will aid in developing targeted therapeutic

strategies that leverage exercise’s full potential (102). A deeper

understanding of these mechanisms is essential for optimizing the

design of exercise programs that can be tailored to individual needs

based on cancer type, stage, and patient-specific characteristics such

as genetic, metabolic, and immunological profiles.
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There is a compelling need for personalized exercise

prescriptions to maximize the therapeutic potential of exercise in

oncology (103, 104). These prescriptions should be crafted by

interdisciplinary teams, including oncologists, exercise

physiologists, and data scientists, to ensure that exercise

interventions are safe, effective, and specifically tailored to

individual patient demographics. Additionally, it is crucial to

address potential risks associated with exercise, particularly for

patients with advanced cancer or significant comorbidities, by

developing comprehensive guidelines that ensure exercise

programs are implemented safely.

Enhancing cooperation among various healthcare professionals

is vital for developing more effective exercise programs tailored to

the specific needs of cancer patients (105). This collaborative

approach can help overcome barriers to the implementation of

exercise as a therapeutic strategy and pave the way for more

inclusive, holistic cancer treatment plans.

Moreover, longitudinal studies are needed to better understand

the long-term effects of exercise on cancer recurrence and survival.

These studies will help establish robust, evidence-based guidelines

for incorporating physical activity into cancer recovery and long-

term survivorship plans (106, 107). Such research is essential for

substantiating the benefits of exercise in the oncology setting and

for encouraging its broader adoption in routine clinical practice.

Ultimately, these efforts will better harness the potential of exercise

to complement traditional cancer therapies, potentially transforming

the standard of care in oncology and markedly improving patient

outcomes. By advancing our understanding and integration of exercise

in cancer treatment, we can hope to significantly enhance the quality of

life and survival rates for cancer patients worldwide.
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University, Shanghai, China
Tumor microenvironment (TME) immune cells and gastric mucosal microbiome

constitute two vital elements of tumor tissue. Increasing evidence has elucidated

their clinicopathological significance in predicting outcomes and therapeutic

efficacy. However, comprehensive characterization of immune cell-associated

microbiome signatures in the TME is still in the early stages of development.

Here, we characterized the gastric mucosa microbiome and its associations with

immune-activated related transcripts (IATs) in 170 GC tumor tissues andmatched

non-tumor tissues using 16s rRNA gene sequencing and quantitative reverse

transcription-PCR. Microbial diversity and richness were significantly higher in

GC tumor tissues than in non-tumor tissues. Differences in microbial

composit ion between the groups were evident, with Firmicutes,

Proteobacter ia , Bacteroidota, Campi lobacterota , Act inobacter ia ,

Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and Cyanobacteria being

the dominant phyla in the gastric mucosal microbiota. Microbial interaction

network analysis revealed distinctive centralities of oral bacteria (such as

Fusobacterium, Porphyromonas, Prevotella, etc.) in both tumor and normal

mucosae networks, suggesting their significant influence on GC microbial

ecology. Furthermore, we analyzed the expression of IATs (CXCL9, CXCL10,

GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, and TNF) and characterized IAT-relevant

gastric microbiome signatures in GC patients. Our results showed that the

expression of CXCL9, CXCL10, GZMA, GZMB, PRF1 and IFNG was significantly

higher in tumor tissues than in adjacent normal tissues in GC patients. Notably,

high expression of IATs in tumor tissues was associated with improved survival in

GC patients and could serve as a powerful predictor for disease-free survival.

Additionally, analysis of IAT levels and mucosal microbiota diversity revealed a

correlation between higher IAT expression and increased microbiota richness

and evenness in the IATs high group, suggesting potential interactions between

mucosal microbiota and tumor immunopathology. Spearman correlation

analysis showed positive associations between IAT expression and specific

mucosal bacterial species. Notably, Akkermansia muciniphila demonstrated

potential involvement in modulating GZMB expression in the GC mucosal
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microenvironment. These findings underscore the importance of mucosal

microbiota alterations in GC and suggest potential therapeutic targets focusing

on modulating the tumor microbiota for improved clinical outcomes. The

detailed characterization of these elements has profound implications for both

treatment and survival prediction in GC. We observed that microbial diversity and

richness were significantly higher in GC tumor tissues compared to non-tumor

tissues. These differences highlight the unique microbial landscape of GC tumors

and suggest that the microbiome could influence tumor development and

progression. Importantly, our study demonstrated that high expression levels

of IATs in GC tumor tissues were associated with improved patient survival. This

suggests that IATs not only reflect immune activation but also serve as valuable

biomarkers for predicting disease-free survival. The potential of IATs as predictive

markers underscores their utility in guiding therapeutic strategies and

personalizing treatment approaches. Moreover, the correlation between higher

IAT expression and increased microbiota richness and evenness suggests that a

diverse and balanced microbiome may enhance immune responses and

contribute to better clinical outcomes. These findings highlight the critical

need to consider mucosal microbiota alterations in GC management.

Targeting the tumor microbiota could emerge as a promising therapeutic

strategy, potentially leading to more effective treatments and improved patient

outcomes. Understanding and modulating the microbiome’s role in GC opens

new avenues for innovative therapeutic interventions and personalizedmedicine.
KEYWORDS

mucosal microbiota, gastric cancer, immune-activated, transcripts, gastric
microbiome signatures
Introduction

Gastric cancer (GC) is the fifth most common cancer worldwide

and over 1 million new cases were diagnosed in 2020 (1). In China,

GC was responsible for more than 509,421 new cases and 400,415

deaths in 2022 (2), making it the third most frequently diagnosed

cancer and the third leading cause of cancer-related deaths. One of

the primary risk factors for GC is infection with Helicobacter pylori,

as the majority of GC cases are associated with this pathogen (3).

Advances in sequencing technology have revealed that the stomach

hosts a diverse microbiota beyond H. pylori. Notably, studies have

found that the microbiota in GC patients was associated with

decreased diversity and richness compared with intestinal

metaplasia (4). Understanding how the microbiota composition

in H. pylori-positive GC patients affects the local tumor

microenvironment (TME) warrants further investigation.

To assess the immune contexture within the TME, numerous

models (5–7) utilizing immunoscoring have been developed. These

models provide robust statistical parameters for prognostic

evaluation and therapeutic efficacy across various solid tumors,

including GC (8). Traditionally, immunohistochemistry has been

the predominant method for investigating cellular heterogeneity.

However, immunohistochemistry has limitations, including a
02125
restricted set of phenotypic markers and the requirement for

sizable biopsy specimens. Technical constraints in turn resulted in

studies marked by small sample sizes, a scarcity of cell types, or

both. Additionally, achieving standardized and reproducible

staining intensity measurement, crucial for accurate protein

expression quantification, remains inherently challenging in

immunohistochemistry.

Recent innovations in prognostic tools aim to improve survival

predictions post-GC diagnosis. These tools employ a novel

computational algorithm to enumerate immune cell subsets from

RNA specimens sourced from various tissue types, encompassing

solid tumors (9–11). Furthermore, contemporary immune profiling

studies have delved into the cytokine and chemokine milieu

characterizing each gene cluster predictive of survival in patient

cohorts sharing identical TNM stages. Analysis of the expression

patterns of selected cytokine and chemokine mRNAs in 299 GC

samples unveiled CXCL9, CXCL10, GZMA, GZMB, PRF1, CD8A,

IFNG, TBX2, and TNF as immune activation-related transcripts

(IATs), serving as robust statistical parameters for prognostic

assessments in GC patients (10). Notably, CXCL9 and CXCL10

have been shown to cooperate in recruiting effector T cells into

tumors. Newly strategies including plasmid-borne CXCL9 (12),

intratumor injection of CXCL9 (13), recombinant CXCL10
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protein with adoptive cell therapy (ACT) (14), intra-tumor

injection of CXCL10 (15), retroviral transduction tumor cells with

CXCL10 (16, 17) were effective in increasing T cell infiltration and

reducing tumor growth in animal models (18). Despite their

potential, these strategies have yet to be explored in clinical trials,

partly due to challenges such as the limited bioavailability of

injected proteins. Additionally, research has indicated that

commensal bacteria colonizing could trigger activation of

immune cells to express the chemokine CXCL10 which leaded to

the formation of CXCL10–bacterial DNA complexes (19). The

gastrointestinal mucosa is a well-studied interface for microbiota-

IAT interactions. However, profiling of mucosal microbiota and

IATs associated microbiome in the GC patients were lack.

Therefore, further studies analyzing these interactions in gastric

mucosa from cancer patients are urgently needed.

Recent advances in high-throughput sequencing based on

conserved 16S ribosomal RNA and newly developed

computational methods have uncovered a complex and distinct

bacterial community that inhabits in the tumor mucosa compared

with non-tumor mucosa, in addition to H. pylori. Species such as

Prevotella melaninogenica, Streptococcus anginosus and

Propionibacterium acnes have been identified (20, 21). It remains

unclear whether the presence of H. pylori shapes the microbiota

composition in gastric mucosa compared with non-tumor mucosa.

Some studies suggest that H. pylori infection induces inflammation

in the gastric mucosa, with changes in gastric acid and gastrin

secretion, resulting in the gastric mucosa bacterial shifting (22, 23).

However, the microbial profiling of GC mucosa with H. pylori

infection and its association with IATs remain scarce.

To address this gap, we conducted this study employing 16s

rRNA gene sequencing on tumor tissues and matched non-tumor

tissues from 85 GC patients with H. pylori infection. This approach

allowed us to characterize the mucosa-associated microbiota

comprehensively. We also performed quantitative reverse

transcription-PCR analysis of the paired GC tissue samples to

quantify key IATs, including CXCL9, CXCL10, GZMA, GZMB,

PRF1, CD8A, IFNG, TBX2, and TNF. By combining these analyses,

we aimed to identify IATs relevant gastric microbiome signatures.
Results

Altered gastric mucosal microbiota in GC
tumor tissues compared with matched
non-tumor tissues

In this study, we investigated the microbial composition of gastric

tumor tissues and compared it with matched non-tumor tissues from

GC patients (Table 1), focusing on alterations in gastric mucosal

microbiota. 16s rRNA gene sequencing yielded a median of 73,634

clean reads for 170 paired tumor and non-tumor tissues. To assess

differences in microbial diversity, we analyzed alpha diversity

measures. The observed OTUs, which reflects species richness,

were significantly higher in tumor tissues than in non-tumor

tissues (623.68 vs. 493.00; P = 0.01; Supplementary Figure S1).

Additional alpha diversity indices, such as the Shannon, Simpson,
Frontiers in Immunology 03126
and Pielou indices, also showed higher values in tumor tissues (P =

0.009; P = 0.033; P = 0.019; Figure 1A). Similarly, indices measuring

species evenness, including ACE, Chao1, and Faith_PD, were

significantly higher in tumor tissues (P = 0.004; P = 0.004; P =

0.006; Figure 1A). However, due to significant inter-individual

variation, principal coordinate analysis (PCoA) could not separate

the tumor and non-tumor mucosa microbiomes into distinct clusters

(Supplementary Figure S1).

Given the observed differences in gastric microbiota between

non-tumor and tumor tissues, which were dominated by Firmicutes,

Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria,

Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and

Cyanobacteria (Figures 1B, 2A), we hypothesized that there is a
TABLE 1 Characteristics of Patients.

Characteristics Patients (n = 85)

Age (means ± SD) 65.44± 21.56

Gender (Female/Male) 30/55

Weight (Kg, means ± SD) 66.1 ± 25.9

Height (cm, means ± SD) 166.5± 16.5

BMI (means ± SD) 23.73± 5.67

Complications, no

Hypertension 35

Diabetes mellitus 10

Tumor localization, no

Proximal stomach 21

Body/Fundus 25

Antrum 39

Tumor differentiation, no

High differentiated 2

Moderately/poor differentiated 83

Lauren typing, no

Intestinal type 16

Diffuse type 8

Mixed type 61

Tumor stage, no

I (Ia, Ib) 12

II (IIa, IIb) 19

III (IIIa, IIIb, IIIc) 46

IV 8

HP infection,

Positive 85

Negative 0

Antibiotics use, no 0

Pre-operative chemotherapy, no 0
BMI, Body mass index; HP, Helicobacter pylori; no, number; SD, standard deviation.
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shift in mucosal microbiome profiles in GC patients. The top 10

genera showed in Figure 1C included Lactobacillus, Helicobacter,

Enterococcus, Prevotella, Bacteroides, Escherichia-Shigella,

Turicibacter, Streptococcus, and Bifidobacterium. Notably, the

Proteobacteria/Campylobacterales ratio was significantly higher in

the tumor mucosa group (p = .000; Figures 1D, E).
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ANOVA was used to assess mean differences in species

abundance at various taxonomic levels. Significant differences were

observed at the phylum and genus levels (Figures 2A, B). At the

phylum level, differences were noted inFirmicutes, Proteobacteria,

Campilobacterota, Bacteroidota, Acidobacteriota, Actinobacteriota,

Chloroflexi, Cyanobacteria, Fusobacteriota, and Verrucomicrobiota.
FIGURE 1

Overall structure and composition map of the gastric microbiota in the tumor and matched normal mucosae tissues. The a-diversity indices
(Shannon, Simpson, Pielou, ACE, Choa and Faith_PD) were used to evaluate the overall structure of mucosae microbiota in GC patients (A). The
two-sided Wilcoxon signed rank test was utilized to analyze variations between tumor and adjacent normal mucosae. The microbiota structures at
phylum (B) and genus (C) levels in both tumor and normal mucosae tissues are depicted, along with Krona species composition plots for normal
(D) and tumor (E) tissues.
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At the genus level, differences were observed in Lactobacillus,

Helicobacter, Enterococcus, Prevotella, Bacteroides, Escherichia-

Shigella, Turicibacter, Streptococcus, and Bifidobacterium.

Discriminant analyses using LEfSe identified 18 bacterial

phylotypes that were significantly different between GC tumor and

normal mucosa microbiota (Figures 2C, D). The tumor microbiomes,

present in over 90% of the patients, () exhibited increased abundances
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of several taxa, including Lactobacillus, Prevotella, Clostridiales,

Oscillospira, Turicibacter, Fusobacterium, Corynebacterium,

Leptotrichia, Stenotrophomonas, Allobaculum, Treponema and the

family S24-7 (Figure 2E). Of note, taxa enriched in the normal

mucosa microbiomes included Helicobacter pylori and Streptococcus

genera, consistent with previous reports (19). A heatmap depicting

the most abundant genera identified in GC mucosa microbiota
FIGURE 2

Different bacterial taxa between tumor and matched normal mucosae microbiomes. Relative abundance comparisons at the bacterial phylum
(A) and genus (B) levels are presented; *P<0.05. The LEfSe analysis identifies taxa with significant differences in abundance between tumor and
adjacent tissues (C), with only those exceeding a significant LDA threshold value of >2 displayed (D). Fourteen differentially abundant bacterial
species were identified (E), and representative dot plots illustrate their relative abundances, showing significant differences between tumor and
adjacent tissues.
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showed correlations between the mucosal microbiome and the

abundance of selected genera (Supplementary Figure S2).
Significant centralities of oral bacteria in
GC mucosae ecological network

SparCC algorithm-generated correlation-based microbial

interaction networks identified co-occurrence and co-excluding

interactions, highlighting the roles of oral bacteria such as

Fusobacterium , Porphyromonas, Prevotella, Leptotrichia ,

Aggregatibacter, Oribacterium, Parvimonas, Atopobium, Treponema,

and Selenomonas in both tumor and adjacent normal mucosae

networks (Figures 3A, B; Supplementary Figures S4A, B).
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To identify potential biomarkers, we focused on operational

taxonomic units (OTUs) with significant weighted node

connectivity (WNC) scores. This analysis identified Prevotella,

Porphyromonas, Fusobacterium, Aggregatibacter, Parvimonas,

Oribacterium, Leptotrichia, Catonella, Atopobium, Allobaculum,

Oscillospira, Lachnoanaerobaculum , and Selenomonas as

significant in the tumor mucosea network (Figure 3B).

Furthermore, it highlighted differential microbial enrichment

patterns between normal and tumor mucosae (Supplementary

Figure S4B). OTU identification in the normal mucosea network

included Prevotella pallens, Eubacterium biforme and Helicobacter

pylori, which formed the backbone of the normal mucosae-specific

network and likely exerted significant influence on normal

microbial ecology (Supplementary Figure S4A). Given this, our
FIGURE 3

Co-occurrence network analysis of gastric bacterial genera with correlation coefficient >0.4 or < –0.4 in normal mucosae (A), matched tumor
mucosae (B). SparCC algorithm was used for correlation coefficient calculation, and Cytoscape version 3.7.0 facilitated network construction. Red
and blue lines represent positive and negative correlations, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1435334
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qian et al. 10.3389/fimmu.2024.1435334
results could suggest potential cooperation interactions among

these species in the microenvironment of GC-associated

gastric mucosae.
Mucosal microbiota richness and diversity
is significantly higher in IATshigh group in
GC tissues

Given the intrinsic gene expression signature closely linked to

stromal activation and immune activation processes, we aimed to

determine whether the IATs could accurately predict outcomes.

This study focused on mainly IATs, namely CXCL9, CXCL10,

GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, and TNF.

Quantitative PCR was performed to analyze the mRNA

expression of these IATs in tumor and adjacent normal tissues

from 85 GC patients. The levels of CXCL9, CXCL10, GZMA,

GZMB, PRF1, CD8A, IFNG and TNF were significantly higher in

tumor tissues compared to adjacent normal tissues whereas the

TBX2 level was significantly lower in tumor tissues (Figure 4A).

Relevance analyses revealed that several IATs were significantly

associated with each other, indicating that different IATs might be

co-regulated during tumor progression (Figure 4B). Moreover,

Kaplan-Meier survival curves were plotted to investigate

associations with survival. Positive correlations were observed

between the expression levels of CXCL9, CXCL10, GZMA,

GZMB, PRF1, CD8A, TNF and IATsand overall survival (OS) in

tumor tissues (Figure 4C P = 0.0021; P = 0.0264; P = 0.0132; P =

0.0185; P = 0.026; P = 0.002; P = 0.0182; P = 0.0245; P < 0.0001).

However, no significant correlation was found for IFNG in tumors

or for these chemokines and cytokines in adjacent normal tissues

(Figure 4C, data not showed). Multivariate Cox proportional

hazards analysis was performed, and variables that were

associated with survival by univariate analysis were adopted as

covariates. In multivariate analysis, the expression level of TNF and

IATs in tumor could emerge as an independent prognostic factor of

either OS (HR, 0. 217; 95%CI, 0. 088-0. 536; P = 0.001; Table 2) or

DFS (HR, 0.254; 95%CI, 0.105-0.618; P = 0.003; Table 2). These

results suggested that IATs were significantly associated with GC

progression and could serve as a powerful predictor of GC patient

disease-free survival.

To identify mucosal microbiota signatures associated with IATs

expressing patterns, we grouped patients into IATs high group/IATs
low group. Stratification revealed that the high IATs group had greater

mucosal microbiota richness and diversity, as indicated by alpha

diversity measures (Figure 5A). Discriminant analyses using LEfSe

identified 46 bacterial phylotypes significantly different between

IATshigh group and IATslow group (Figures 5B, C), with specific

enrichment of Akkermansia_muciniphila, Lactobacillus_intestinalis,

Bacteroides_coprocola, MBNT15, uncultured_prokaryote, and other

bacteria in the IATshigh group. We further uncovered an enrichment

of specific taxa, including Proteobacteria, Bacteroides_stercoris,

uncultured_gamma, Gammaproteobacteria, Oceanospirillales,
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Alcanivorax, and Alcanivoracaceae within IATslow group. This

suggests a potential link between mucosal microbiota composition

and IATs expression, with implicat ions for targeted

therapeutic interventions.
The association between discriminative
species and distinctive selected IATs in GC
mucosal tissues

To evaluate the effects of mucosal bacterial species on antitumor

immune cell infiltration and the antitumor immune response, we

used Spearman’s correlation analysis to assess the association

between 1483 discriminative species and four distinctive IATs

(CXCL9, CXCL10, GZMB and IFNG) in the GC tissues. This

analysis showed that the expression of these chemokines and

cytokines was significantly correlated with the abundance of several

OTUs (Figures 6A–D). Notably, all corelated OTUs were positively

corelated with these four chemokines. Specifically, for the chemokine

CXCL9, the mucosal bacterial species showing significant positive

correlations included Burkholderiales_bacterium, Desulfomicrobium_

orale, Prevotella_genomosp, Treponema_vincentii, Verrucomicrobia_

bacterium, Novosphingobium_rosa, Odoribacter_splanchnicus,

Pyramidobacter_piscolens, Sulfuricaulis_limicola, bacterium_

enrichment , Chlorobi_bacterium , Treponema_porcinum ,

Lactobacillus_mucosae, and Ileibacterium_valen. For the chemokine

CXCL10, the significantly positively correlated mucosal bacterial

species encompassed Firmicutes_bacterium, Lactobacillus_

intestinalis, Spirochaeta_sp, Mesomycoplasma_moatsii, Nitrospira_

japonica, Clostridium:spiroforme, Bacteroides_stercoris, Helicobacter

_rodentium, Slackia_exigua, Prevotella_oris, bacterium_ROME

215Asa, Lactobacillus_aviarius, Streptococcus_anginosus, and

Dialister_pneumosintes. Regarding the cytokine GZMB, the

significantly positively correlated mucosal bacterial species included

Alloprevotella_tannerae, Bacteroides_plebeius, Treponema_socranskii,

Prevotella_salivae, Akkermansia_muciniphila, Bacteroides_

coprocola, Prevotella_stercorea, Acidobacteria_bacterium,

Treponema_medium, Prevotella_melaninogenica, Prevotella_

nanceiensis, Prevotella_pallens, Prevotella_histicola, Prevotella_

baroniae , Alloprevotella_rava , Actinomyces_graevenitzii ,

Helicobacter_typhlonius, Mucispirillum_schaedleri, Clostridiales_

bacterium, Prevotella_shahii, Capnocytophaga_granulosa, and

Prevotella_jejuni. Furthermore, with the cytokine IFNG, the

significantly positively correlated mucosal bacterial species

comprised Nakamurella_multipartita , Lachnospiraceae ,

Lactobacillus_ingluviei , Campylobacter_canadensis , and

bacterium_Ellin6543. Finally, the bacterium Akkermansia_

muciniphila may play a role in GZMB regulation, potentially

influencing the tumor immune microenvironment. Its association

with specific chemokine expression suggests its potential involvement

in shaping the immune response with in the tumor

microenvironment, highlighting its significance in modulating the

tumor’s immune landscape.
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Inferred functional changes in GC-
associated gastric mucosal microbiota

The functional content of the gastric microbiota was predicted

by PiCRUSt based on closed-reference OTU picking. In our present

study, 25 Clusters of Orthologous Groups (COG) functional

categories were tested, identifying 7 differentially abundant COGs

with a QFDR < 0.05 between the GC tumor and normal mucosae
Frontiers in Immunology 08131
microbiota (Figure 7A). These 7 COG categories, including cell

motility, cell wall/membrane/envelope biogenesis, intracellular

trafficking, secretion, and vesicular transport, extracellular

structures, coenzyme transport and metabolism, transcription and

general function prediction only, exhibited the most significant

differences between the GC tumor and normal mucosae microbiota.

Among these differential COGs, extracellular structures,

transcription and general function prediction only were
FIGURE 4

IATs were selectively regulated in tumor and the prognostic significance of IATs in GC patients. (A) Quantitative real-time polymeras chain reaction
(qRT-PCR) was employed to detect the mRNA expression of each IATs in tumor and adjacent normal tissues (n=85). (B) Values denote the Pearson
correlation coefficients; values closer to 1 indicate a better correlation. *P<0.05; **P<0.001; ***P<0.0001; ****P<0.00001; ns, no significant
difference. (C) Cumulative OS times were calculated by the Kaplan-Meier method and analyzed by the log-rank test. The patients were divided into
two groups according to the median value of CXCL9, CXCL10, GZMA, GZMB, PRF1, CD8A, IFNG, TBX2, TNF and IATs in tumor tissues.
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significantly enriched in the tumoral microbiota. Additionally, we

compared 40 Kyoto Encyclopedia of Genes and Genome (KEGG)

pathways at level 2. At an FDR of 0.05, we identified 17 differentially

abundant pathways between the GC tumor and normal mucosae

microbiota (Figure 7B; Supplementary Figure S5). Consistent with

the significant alterations in IATs-associated gastric microbiota, the

KEGG pathways were changed between IATshigh group and IATslow

group in gastric mucosal tissues (Supplementary Figure S6).

Together, these functional changes in the gastric microbiota may

contribute to cytotoxic T cells infiltration and functional regulation.
Discussion

In this study, our analysis of 16S rRNA gene sequencing data

reveals a noteworthy increase in richness and evenness within GC

tumor tissues compared to their non-tumor counterparts. The

elevated alpha diversity metrics emphasize heightened microbial

diversity in tumor tissues, aligning with findings from a previous

study (24). This may be due to the decreased diversity caused by the

dominance of Helicobacter pylori in non-tumor counterparts. The

other way, diverse microbial communities in tumor tissues may

include bacteria that produce metabolites capable of influencing

tumor growth. Moreover, diverse microbial populations could
Frontiers in Immunology 09132
influence the local immune microenvironment by modulating the

immune-subsets which could support tumor growth by creating an

immunosuppressive environment. However, Liu et al. observed

decreased diversity and richness in peritumoral and tumoral tissues

compared to non-tumor tissues (6). The inconsistent findings

underscore the lack of consensus regarding the relationship

between microbial diversity and gastric mucosal tissues.

The dominant phyla in the gastric microbiota include Firmicutes,

Proteobacteria, Bacteroidota, Campilobacterota, Actinobacteria,

Fusobacteriota, Verrucomicrobiota, Acidobacteriota, and

Cyanobacteria. Remarkably, the relative abundance of Helicobacter

is reduced in GC tumor tissues compared to non-tumor tissues,

consistent with previous studies (20, 24). This decrease may be

attributed to the loss of specialized glandular tissues and decreased

acid secretion (25). Discriminant analyses reveal significant shifts in

microbial taxa between tumor and non-tumor mucosae, exemplified

by an increased Proteobacteria/Campylobacterales ratio in tumor

mucosae, indicating altered microbial profiles associated with GC.

Additionally, network analysis highlights the central role of oral

bacteria (Fusobacterium, Porphyromonas, Prevotella, etc.) in both

tumor and normal mucosae networks, emphasizing their profound

influence on GC microbial ecology. Notably, the top 10 genera of the

gastric microbiota, including Lactobacillus and Streptococcus, are

identified. Lactobacillus may produce metabolites serving as an
TABLE 2 Univariate and Multivariate Analyses of Factors Associated with Survival and Recurrence.

Variables

OS DFS

Univariate P
Multivariate

Univariate P
Multivariate

HR 95% CI P HR 95% CI P

Age, years (>64/≤64) .241 NA .348 NA

Gender (female/male) .995 NA . 230 NA

Tumor stage (pT4/pTis+pT1
+pT2+pT3)

.0019 NA .0034 NA

Nodal status (pN1+pN2/pN0) .0017 17.681
3.753-
83.292

.000 .0008 5.790
2.158-
15.534

<.0001

Distant metastases (Pos/Neg) .0019 3.429
1.118-
10.516

.031 .0005 3.415 1.410-8.269 .006

Differentiation(H+M/L) .199 NA .198 NA

CXCL9high/CXCL9low tumor 0.0021 NA 0.004 NA

CXCL10high/CXCL10low tumor 0.0264 NA .123 NA

GZMAhigh/GZMAlow tumor 0.0132 NA .106 NA

GZMBhigh/GZMBlow tumor 0.0185 NA .0034 NA

PRF1high/PRF1low tumor 0.026 . NA .0017 NA

CD8Ahigh/CD8Alow tumor 0.002 NA < 0.0001 NA

IFNGhigh/IFNGlow tumor 0.243 NA .523 NA

TBX2high/TBX2low tumor 0.0182 NA .092 NA

TNFhigh/TNFlow tumor 0.0245 .217 .088-.536 .001 .089 NA

IATshigh/IATslow tumor < 0.0001 NA < 0.0001 .254 .105-.618 .003
fro
Cox proportional hazards regression model; Variables associated with survival by univariate analysis were adopted as covariates in multivariate analyses.
OS, overall survival; DFS, disease-free survival; HR, hazard ratio; CI, confidence interval. NA, not applicable. Pos, positive. Neg, negative. The bold values indicate that the P < 0.05.
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energy source for tumor growth and angiogenesis (26), while the

abundance of Streptococcus is increased in GC tumor tissues (24, 27).

Our assessment of IATs in GC tumor tissues and matched non-

tumor tissues revealed a correlation between heightened chemokine

expression and increased microbiota richness and evenness in the

IATshigh group. Consistent with previous studies (10, 28, 29), the

majority of IATs are upregulated in tumor tissues, mirroring the

trend of mucosal microbiota diversity. Microbial enrichments

within IATs high expression tissues suggest potential therapeutic
Frontiers in Immunology 10133
interventions targeting the tumor microbiota for improved clinical

outcomes. Moreover, Spearman’s correlation analysis reveals

significant associations between discriminative species and

distinctive chemokines in GC tissues. Notably, the positive

correlation of Akkermansia_muciniphila with specific chemokine

expression underscores its potential role in modulating the GC

tumor immune microenvironment. Recently studies have shown

significant improvement in the pathological complete response rate

among GC patients participating a randomized trial using
FIGURE 5

The diversity and richness of the gastric microbiota, and different bacterial taxa between the IATshigh group and IATslow group. (A) The a-diversity
indices (Shannon, Simpson, Pielou, ACE, Choa, and Faith_PD) evaluate the overall structure between the two groups, and (B, C) LEfSe identifies taxa
with significant differences in abundance, shown if exceeding an LDA threshold value of >2.
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perioperative PD-1 inhibitor plus chemotherapy for locally

advanced GC (30). Studies have also demonstrated that intestinal

microbiota composition significantly influences the effectiveness of

anticancer immunosurveillance, impacting the therapeutic activity

of immune-checkpoint inhibitors (ICIs) and immunogenic

chemotherapies (31–33). Consistently, fecal microbiota

transplantation (FMT) of microbiota from therapy-responding

patients restored sensitivity to immunotherapy in germ-free

environments or in mice treated with antibiotics and made

insensitive to immunotherapy (34). Importantly, recent studies

have further shown that response to ICIs therapy correlated with

the percentage of Akkermansia_muciniphila in the intestinal

microbiome of patients (35).

COG functional category tests showed that extracellular

structures, transcription and general function prediction only were

significantly enriched in the tumoral microbiota. Besides, KEGG

enrichment analysis showed that pathways related to Amino acid

metabolism including Isoflavonoid biosynthesis, Retinol metabolism,

Lipoic acid metabolism, Adipocytokine signaling pathway, Fatty acid

metabolism, and PPAR signaling pathway had significantly increased

relative abundance in the tumoral microbiota. Liu et al. also reported
Frontiers in Immunology 11134
that amino acid transport and metabolism exhibited the most

significant differences among GC microhabitats (6). Studies have

also shown that the PPAR signaling pathway is a crucial regulator in

autocrine and paracrine signaling in the tumor microenvironment,

modulating cancer-associated fibroblasts and tumor-associated

macrophages/immune cells (36). Our observation of PPAR

signaling pathway enrichment in GC tumor mucosal suggests

pathway activation by the GC microbiome. Interestingly, we

observed the enrichments of superpathway of L-lysine, L-threonine

and L-methionine biosynthesis I, superpathway of arginine and

polyamine biosynthesis, anhydromuropeptides recycling,

superpathway of polyamine biosynthesis I, superpathway of L-

methionine biosynthesis, reductive TCA cycle I, superpathway of S-

adenosyl-L-methionine biosynthesis and tRNA processing in the

IATshigh group mucosae microbiome. Increases in these pathways

are predictive of bacterial involvement in amino acid metabolism by

the gut microbiome, which has been linked to hyperproliferation of

cells in the tumor microenvironment (37, 38). The enrichment of

these pathway in IATshigh group mucosae microbiome highlights

their potential contribution to the immune response. Furthermore,

pathways involved in polyamine biosynthesis have been reported to
FIGURE 6

Network plots of operational taxonomic units (OTUs) based on mucosal abundance associated with each cytokine in the mucosal tissues of 85 GC
patients. Nodes represent bacterial OTUs, and their abundance is significantly correlated with the expression of CXCL9 (A), CXCL10 (B), GZMB (C), or
IFNG (D). The size of each node corresponds to the correlation coefficient.
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remodel the tumor immune microenvironment by altering the

activation and proliferation of CD4+ and CD8+ T lymphocytes (39,

40). The association of polyamine biosynthesis with IATs in this

study supports the role that this pathway may play in CD8+ T

lymphocytes remodeling and supports previous observations in GC

(41). Further investigations into the implications of microbiome

functional dysbiosis in IATshigh and IATslow groups are needed for

a deeper understanding of the gastric immune microenvironment.

Our study had several limitations. First, the sample size is

relatively small, resulting in the lack of significant correlation

between clinical features and microbiome, and between clinical

features and metabolome. Second, we did not perform longitudinal
Frontiers in Immunology 12135
studies since we could not obtain serial tissue samples from the

recruited patients. Third, we did not include gastric cancer patients

from different regions, so our patient heterogeneity is insufficient.

Fourth, the diet could heavily influence both the gastric microbiota

and metabolites, but we could not obtain the diet information of

patients to analyze the effect of diet on gastric microbiome

and metabolome.

In conclusion, our study provides insights into the microbiome

of GC tumor tissues and matched non-tumor tissues, unveiling

IATs-associated bacteria and highlighting the pivotal role of

mucosal microbiota alterations in GC. The identification of

potential biomarkers and therapeutic targets, such as IATs-
FIGURE 7

Representative COG functional category and KEGG functional pathways enriched in the tumor and adjacent normal mucosae microbiome. PiCRUSt-
based analysis using Welch’s t-test reveals differences between the two groups, and multiple testing correction by the Benjamini-Hochberg method
is applied based on the false discovery rate (FDR) by STAMP. Comparisons for each COG functional category (A) and KEGG functional pathway
(B) are shown as percentages.
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associated bacteria, offers prospects for improving clinical outcomes

in GC. Further research is warranted to delve into the functional

implications of microbiome dysbiosis in IATshigh and IATslow

group mucosae, advancing our understanding of the gastric

immune microenvironment.
Materials and methods

Patients and database

A total of 85 individuals, scheduled for primary tumor resection

at the Affiliated Hospital of Jiangnan University between 2016 and

2019, were enrolled in the study. Exclusion criteria included prior

chemo-radiotherapy. Patients received no antibiotics within a

month before surgery but were administered intravenous

antibiotics shortly before resection. Post-surgery, 85 paired fresh

tissues, including gastric tumor and matched non-tumor tissues,

were collected. Biopsies were snap-frozen in cryovial immediately

with liquid nitrogen and then stored at -80°C until DNA extraction.

Histopathological and clinical findings were scored according to the

International Union Against Cancer (UICC)-TNM staging system.
DNA extraction and16S rRNA
gene sequencing

A total of 170 tissue samples (one tumor and one adjacent

normal sample per individual) were processed for DNA

purification. The DNA extraction was carried out according to

the AllPrep DNA/RNA extraction kit and total RNA were extracted

using the Ultrapure RNA Kit (CWBIO, China). Total DNA was

purified from tumor and paired normal adjacent mucosal tissue

samples. Mucosa-associated microbiota was analyzed through 16S

rRNA sequencing. 16S rRNA gene amplicon sequencing was

carried out employing the 16S Meta-genomic Sequencing Library

Preparation protocol developed by Illumina (San Diego, California,

USA. Briefly, 200 ng of mucosal DNA was amplified from each

sample using the primers 515F (5′ GTGCCAGCMGCCGCGGTAA

3′) with Titanium Adaptor B and 806R (5′ GGACTAC

HVGGGTWTCTAAT 3′) with Titanium Adaptor A and a

sample‐specific barcode sequence consisting of twelve nucleotides

targeting the V4 hypervariable region of the 16S rRNA gene using

FastStart Taq DNA Polymerase (Roche). The resulting sequences

were processed for bioinformatics analysis.
RNA isolation, chemokine mRNA
expression and quantitative PCR

Total RNA from GC tumor and paired normal adjacent tissues

was isolated using Trizol (Invitrogen, USA). cDNA was synthesized

using Superscript III Reverse Transcriptase (Promega, USA). Real-

time PCR reactions were conducted with SYBR Green (TaKaRa,

Japan) and analyzed on the Step One Plus Real-time PCR System

(Applied Biosystems, USA) with the following conditions: 95°C for
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5 min, 95°C for 5 s, 60°C for 30 s, for 40 cycles. The relative mRNA

expression value was calculated by 2 -△△T method. GAPDH was

utilized as the internal control. The primers used were as follows:

CXCL9, forward primer F(5′ AAGCAGCCAAGTCGGTTAGT 3′)
and reverse primer R(5′ CAGCAGTGTGAGCAGTGATTC 3′);
CXCL10, forward primer F(5′ AGCAGAGGAACCTCCAGTCT

3′) and reverse primer R(5′ AGGTACTCCTTGAATGCCACT

3′); GZMA, forward primer F(5′ GAAGAGACTCGTGCAAT

GGAGA 3′) and reverse primer R(5′ AAGGCCAAAGGA

AGTGACCC 3′); GZMB, F(5′ CCAGGGCAGATGCAGACTTT

3′) and reverse primer R(5′ CTCGTATCAGGAAGCCACCG 3′);
PRF1, F(5′ GGGGCTGATGCCACCATT 3′) and reverse primer R

(5′ GGCACTTGGGCTCTGGAAT 3′); CD8A, F(5′ CGGTTTCCT
GGGGTAACAGT 3′) and reverse primer R(5′ TGCCTGAATCAG
CCTTTCTGT 3′); IFNG, F(5′ GAGTGTGGAGACCATCAAGGA
3′) and reverse primer R(5′ TGGACATTCAAGTCAGTTA

CCGAA 3′); TBX2, F(5′ TACGAGGAGCACTGCAAACC 3′)
and reverse primer R(5′ CACGACTTCTCCTCAGCTCG 3′);
TNF, F(5′ AGCCCATGTTGTAGCAAACC 3′) and reverse

primer R(5′ ATGAGGTACAGGCCCTCTGA 3′); GAPDH,

forward primer F(5′ TGACTTCAACAGCGACACCCA 3′) and

reverse primer R(5′ CACCCTGTTGCTGTAGCCAAA 3′).
Experiments were performed in triplicate.
Bioinformatics analysis

Microbiome bioinformatics were performed using QIIME 2

(2023.9) with slight modification according to the official tutorials.

Briefly, raw sequence data were demultiplexed using the demux

plugin following by primers cutting with cutadapt plugin (Martin,

M., 2011). Sequences were then quality filtered, denoised, merged

and chimera removed using the DADA2 plugin. Species annotation

was performed using QIIME2 software. The annotation database is

Silva Database. Alpha and beta diversity analyses were calculated

with QIIME2 and displayed with R software (Version 3.6.2).

Principal Coordinate Analysis (PCoA) was carried out to obtain

principal coordinates and visualize differences of samples in

complex multi-dimensional data. A matrix of weighted or

unweighted unifrac distances among samples obtained previously

was transformed into a new set of orthogonal axes, where the

maximum variation factor was demonstrated by the first principal

coordinate, and the second maximum variation factor was

demonstrated by the second principal coordinate, and so on. The

three-dimensional PCoA results were displayed using QIIME2

package, while the two-dimensional PCoA results were displayed

using ade package and ggplot2 package in R software

(Version 3.6.2).
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Lung cancer is one of the most commonmalignant tumours worldwide and its high

mortality rate makes it a leading cause of cancer-related deaths. To address this

daunting challenge, we need a comprehensive understanding of the pathogenesis

and progression of lung cancer in order to adopt more effective therapeutic

strategies. In this regard, integrating multi-omics data of the lung provides a highly

promising avenue. Multi-omics approaches such as genomics, transcriptomics,

proteomics, and metabolomics have become key tools in the study of lung

cancer. The application of these methods not only helps to resolve the

immunotherapeutic mechanisms of lung cancer, but also provides a theoretical

basis for the development of personalised treatment plans. By integrating multi-

omics, we have gained amore comprehensive understanding of the process of lung

cancer development and progression, and discovered potential immunotherapy

targets. This review summarises the studies onmulti-omics and immunology in lung

cancer, and explores the application of these studies in early diagnosis, treatment

selection and prognostic assessment of lung cancer, with the aim of providing more

personalised and effective treatment options for lung cancer patients.
KEYWORDS

lung cancer, immunotherapy, precision medicine, multi-omics, individualised therapy,
immune checkpoints
1 Introduction

Lung cancer has been one of the most common malignant tumours globally over the

past decades. Despite the widespread use of conventional treatments such as surgery,

radiotherapy, chemotherapy and targeted drug therapy, the five-year survival rate for lung

cancer is usually less than 20% (1). Additionally, at all stages, less than 7% of patients
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survive more than ten years after diagnosis (2). In recent years, the

emergence of immunotherapy has marked a revolution in cancer

treatments, which not only has an acceptable safety profile, but also

produces durable therapeutic responses in a wide range of patient

populations (3). Nonetheless, lung cancer exhibits significant

histological heterogeneity, diverse genomic profiles, and

differential responses to therapy (4), and still poses significant

challenges for immunotherapy and prevention.

With the rapid development of multi-omics technology,

cover ing genomics , t ranscr iptomics , proteomics and

metabolomics, our understanding of lung cancer is deepening (5,

6). Multi-omics technology has constructed a progressive analysis

framework from the genetic basis to the effect of environmental

exposure (7), and has deeply analysed the pathogenesis,

pa thophys io log i ca l proces s and molecu la r bas i s o f

immunotherapy of lung cancer, which has provided a strong

support for the scientific formulation of precise treatment strategies.

The aim of this review is to explore recent advances in multi-

omics studies of lung cancer and their potential applications in early

diagnosis, treatment selection and prognostic assessment. By

integrating immunotherapy and multi-omics data in order to

better understand the complex molecular network of lung cancer,

it provides new ideas and methods for individualised treatment and

precision medicine of lung cancer.
2 Lung cancer immunotherapy
and genomics

Lung cancer, as a highly heterogeneous disease, has been

profoundly influenced by molecular biology in its pathogenesis

and therapeutic strategies. In non-small cell lung cancer (NSCLC)

and small cell lung cancer (SCLC), unique molecular features of

different histological subtypes have been revealed through the

identification of specific genetic variants and epigenetic

modifications, thus providing new directions for individualised

treatment of lung cancer.

In NSCLC, histological subtypes frequently dominated by lung

adenocarcinoma (LUAD) and squamous cell carcinoma are

common (8). The complexity of NSCLC is reflected in its variable

genetic variants. Common target gene driver mutations include

genes such as epidermal growth factor receptor (EGFR), KRAS,

MET, BRAF, ALK, ROS proto-oncogene 1 (ROS1) and RET (9)

(Figure 1A). Through combined whole exome sequencing (WES)

technology, it was found that common mutations in LUAD include

tumour suppressor genes TP53 (46%), STK11 (17%), KEAP1 (17%),

NF1 (11%), RB1 (4%) and CDKN2A (4%), as well as chromatin

modification genes SETD2 (9%), ARID1A (7%), SMARCA4 (6%)

and RNA splicing genes RBM10 (8%) and U2AF1 (3%) (10).

Mutations in the genes FGFR1, NRF2, AKT1 and DDR2 are

particularly prominent in lung squamous cell carcinoma (10).

For SCLC, deep sequencing of key oncogenes by advanced

integrated mutational profiling (MSK-IMPACT) technology (11)

revealed inactivating mutations or deletion of tumour suppressor

genes such as TP53, RB1, KMT2D, PTEN, NOTCH1, CREBBP,
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FAT1, NF1 and APC, and inactivating mutations in PIK3A, EGFR

and KRAS activating mutations in oncogenes (12). Unlike NSCLC,

SCLC is often accompanied by the expression of MYC oncogenes,

which contribute to rapid cell proliferation and lead to DNA

replication stress (13). In addition, epigenetic modifications play a

key role in lung carcinogenesis, and heritable chromatin

modifications such as DNA methylation, histone modifications,

and non-coding RNA regulation regulate gene expression without

altering the DNA sequence (9, 10, 14–16) (Figure 1A). Epigenetic

mutations and disruptions are strongly associated with multiple

tumour types, providing new ideas for targeted lung cancer therapy

based on molecular subtype differences.

Genomics plays an important role in the classification,

treatment and prognostic assessment of lung cancer.

Traditionally, lung cancer classification was based on histological

patterns, whereas advances in genomics have allowed lung cancer to

be characterised also by tumour biomarkers and genetic alterations.

For example, Stephen J Murphy et al. defined a common origin or

lineage of lung cancer by analysing genomic rearrangements and

somatic DNA linkages, and used these specific DNA linkages as

precise tumour markers to differentiate between primary and

metastatic lung cancer (17).

Genome sequencing technology has revealed key genetic

variants in lung cancer, facilitating the development of

personalised treatment strategies. The study noted that in non-

small cell lung cancer (NSCLC), aberrant activation of the PI3K-

AKT-mTOR pathway is closely associated with resistance to EGFR

tyrosine kinase inhibitors (EGFR-TKIs), and that its activation is

mainly caused by PIK3CA, AKT1 mutations and PTEN deletion.

This discovery led to the development of drugs targeting mTOR

(e.g., everolimus and temsirolimus) and EGFR-TKIs targeting

EGFR and ALK (e.g., ositinib, gefitinib, ceritinib, and loratinib),

which have demonstrated clinical efficacy in the treatment of lung

cancer (18) (Table 1).

Immune checkpoint inhibitors (ICIs) have become key agents

in tumour immunotherapy, especially in the treatment of lung

cancer. However, their potential to cause immune-related adverse

effects makes the search for biomarkers that predict response to ICI

therapy crucial (9). Investigators assessed early predictors of anti-

PD-L1 therapy by analysing circulating tumour DNA (ctDNA), and

their study showed that a reduction in the frequency of the variant

allele was associated with tumour shrinkage after 6 weeks of

treatment, providing a valuable non-invasive method for

predicting the effectiveness of treatment (44).
3 Lung cancer immunotherapy
and transcriptomics

In the field of tumour immunotherapy, targeting the tumour

microenvironment (TME) for precision medicine is one of the latest

research directions. In this process, immune cells play a key role

(45). Immune cell interactions are regulated by transcription factors

and further contribute to the immune response. Wu et al. identified

interactions between cancer cells and endothelial cells, fibroblasts,
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and macrophages by single-cell RNA sequencing analysis of NSCLC

patient samples, revealing multiple signalling pathways (e.g., EGFR,

NOTCH, WNT, and PDGF, etc.) that are associated with

carcinogenesis (Figure 1B). These findings shed more light on the

molecular interactions and immunoregulatory mechanisms of

NSCLC and provide a new perspective on the treatment of lung

cancer (46).

In TME, individual cells are precisely regulated by transcription

factors. Through the regulation of transcription factors, the killing of

cells can be modulated. ONECUT2 and ETV4 were found to be likely

potential regulators of CD8 T cell depletion in the blood of NSCLC

patients, whereas the transcription factors BACH1 and RUNX3 were

up-regulated in CD8 T cytotoxic subpopulations. Thus, regulation of

these transcription factors may drive cytotoxic immune responses in

NSCLC (47). Immune cell macrophages (TAM) in TME are among

the most common immunosuppressive cells. Increased TAM in TME
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has been associated with immunotherapy resistance by

transcriptomic analysis, and its expression is regulated by genes

such as CD27, ITGAM and CCL5 (48). Recent studies have shown

that TAM interacts with carnitine palmitoyltransferase 1A (CPT1A),

increasing resistance to iron death and inactivation of CD8 T cells in

lung cancer. Therefore, the use of CPT1 inhibitors enhances the

killing of tumour cells by chemotherapy or immunotherapy

(49) (Figure 1B).

In the field of lung cancer treatment, transcriptomics is often

combined with other histological approaches to extend its

application. By combining transcriptomics and metabolomics, the

researchers analysed the effects of AZD-6482 (a PI3Kb-targeted
inhibitor) on 28 metabolite-related genes in LUAD. They found

that the expression of three genes, LDHA, PPAT, and SMS, was

increased in untreated LUAD samples; whereas after treatment with

AZD-6482, the expression of these genes was significantly
FIGURE 1

Lung cancer multidimensional histologic analysis map. (A) Exploratory mapping of changes in metabolomic profiles in lung cancer pathogenesis.
(B) Immune cell profiles revealed by transcriptomics in the tumour microenvironment. (C) Critical mapping of proteomic changes during lung cancer
progression. (D) Resolution of metabolic profiles in lung cancer.
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decreased, suggesting that the inhibitor may improve the prognosis

of LUAD patients (50). By joining forces with proteomics, Qing

et al. used Cancer Cell Line Encyclopaedia (CCLE) RNA sequencing

and proteomics profiles in human NSCLC cell lines to identify

genes that are pan-sensitive and pan-resistant to drugs used in the

treatment of NSCLC with systemic or targeted therapies (51).
4 Lung cancer immunotherapy
and proteomics

With the rapid development of mass spectrometry (MS)

technology, large-scale protein analysis has become a hotspot in

scientific research, in which proteomics has achieved remarkable

results in the study of protein phosphorylation, interaction,

structure and function (52–55). In particular, proteomics has

shown great potential for the discovery of new therapies and
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biomarkers. These biomarkers come from a wide range of

sources, including body fluids and specific samples from lung

cancer studies, such as breath condensate (56–59).

In the study of lung cancer proteomics, proteins in receptor

tyrosine kinases such as EGFR and ALK and their downstream

signalling pathways play a key role in the pathological process of

lung cancer (60–62). EGFR, as a member of the ErbB family,

promotes malignant cell survival, proliferation, etc. through a

series of biochemical processes, making EGFR and its

downstream signalling pathway an important target for lung

cancer therapy.

In addition, the discovery of immune checkpoints (ICP) has led

to a major breakthrough in the field of immunotherapy (63). In

normal physiology, ICP maintains immune system homeostasis,

but tumour cells evade immune attack by expressing ICP proteins

(3). Among them, the interaction of programmed death receptor 1

(PD-1) with programmed cell death ligand-1 (PD-L1), cytotoxic T-

lymphocyte-associated protein-4 (CTLA-4) and CD80/86 is the

main mechanism of tumour cell escape (Figure 1C). Significant

progress has been made in the development of targeted therapeutic

agents for lung cancer against these immune checkpoint proteins

(64). By blocking the function of these proteins, the immune system

in the patient’s body is activated to recognize and attack tumour

cells more effectively, bringing new therapeutic hope to lung cancer

patients. Over the past decade, tyrosine kinase inhibitors (TKIs)

have made significant advances in the treatment of cancer,

especially NSCLC.EGFR-TKI, as a potent agent for the treatment

of over-activation of EGFR signalling, has been developed for

multiple generations with remarkable efficacy (54, 65).

In the development of the field of immunotherapy, it is

particularly important to achieve selective destruction of tumours

by activating the immune response of T cells (64, 65). PD-1/PD-L1

inhibitors in combination with chemotherapy have become the

standard of care in advanced NSCLC (62, 66). In clinical study

finds,PD-1 antibodies such as Nivolumab and Pembrolizumab

demonstrate durable efficacy in a variety of cancers (67, 68)

(Figure 1C). In addition, anti-CTLA-4 antibodies such as

Lpilimumab and Tremelimumab play an important role

in immunotherapy.

Immunotherapy has great potential in the field of cancer

treatment, including checkpoint inhibitors, monoclonal

antibodies, and over-the-counter cell transplantation (69).

Scholars such as Wang and Chiu emphasized that the

combination of multiple therapies is the key to enhancing the

effectiveness of cancer treatment and is expected to significantly

improve patient survival rates (70, 71).
5 Lung cancer immunotherapy
and metabolomics

Metabolomics delves into metabolite changes in organisms,

providing new insights into the pathology and drug mechanisms

of lung cancer. By analysing lung cancer samples and identifying

metabolic markers closely related to lung cancer, it brings new
TABLE 1 Targeted therapeutics drugs and targets in a
genomic perspective.

Modifiable targets Therapeutic drug Reference

EGFR

Osimertinib (19)

Gefitinib (20)

Dacomitinib (21)

Erlotinib (22)

Afatinib (23)

Amivantamab (24)

ALK

Crizotinib (25)

Ceritinib (26)

Alectinib (27)

Brigatinib (28)

Lorlatinib (29)

RET

Cabozantinib (30)

Selpercatinib (31)

Pralsetinib (32)

ROS1

Crizotinib (33)

Entrectinib (34)

Lorlatinib (35)

MET Glesatinib (36)

BRAF V600E

Dabrafenib (37)

Trametinib (38)

Vemurafenib (39)

KRAS
Adagrasib (40)

Sotorasib (AMG 510) (41)

VEGFR
Bevacizumab (42)

Ramucirumab (43)
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perspectives for early diagnosis, treatment planning and prognosis

assessment (72–74).

In the oncogenic transformation of lung cancer cells, there are

significant metabolic changes that are particularly dependent on

energy sources such as ATP. Among these, the Warburg effect is

particularly pronounced in lung cancer cells, where their metabolic

needs are met by increased glucose uptake and support nucleotide

and amino acid biosynthesis (75). SCLC is significantly dependent

on exogenous arginine, which is associated with the deficiency or

low expression of arginine succinyl synthase 1 (ASS1) (76, 77). The

study found that up to 45% of SCLC samples and 50% of cell lines

exhibited ASS1-negativity, highlighting the importance of arginine

biosynthesis downregulation in the progression of lung

carcinogenesis (78, 79).

The interaction between signalling and metabolism is critical in

lung cancer research. mTOR kinases in the PI3K/Akt/mTOR

pathway form the mTORC1 and mTORC2 complex, which

influences protein, nucleotide, and lipid metabolism (80)

(Figure 1D). MYC gene changes affect bioenergetic processes (81).

Changes in metabolic state can also inversely regulate signalling

pathway activity, e.g., mTORC1 activity is reduced during energy

shortage (82).

Developing more effective lung cancer treatment regimens by

modulating metabolic pathways or monitoring the disease using

metabolic markers. In particular, lung cancer immunotherapy is

closely linked to metabolomics, an important cornerstone of lung

cancer treatment (83). The markers provided bymetabolomics support

personalized strategies for immunotherapy and improve treatment

efficiency. In addition, the study by Ma et al. revealed the relationship

between the regulation of amino acid metabolism, hypoxia-inducible

factor-1 (HIF-1) and PI3K-Akt pathways and ositinib resistance,

providing new perspectives for understanding the mechanism of

drug resistance (84). These studies emphasize the critical role of

metabolomics in monitoring marker changes after treatment (85).

For SCLC, polyethylene glycolated arginine deiminase (ADI-

PEG20) and human recombinant polyethylene glycolated arginase

(e.g., rhArgPEG, BCT-100, etc.) have been regarded as potential

therapeutic targets due to arginine nutritional deficiency. And the

combination of arginine with PD-1/PD-L1 inhibitors has also

demonstrated efficacy in the clinic (76).

The combination of immunotherapy and metabolomics in lung

cancer provides patients with more effective and personalized

treatment options that are expected to improve their quality of life.
6 Discussion

In recent years, immunotherapies, particularly targeted

therapies, have transformed the management and prognosis of

lung cancer by providing personalized treatment options for lung

cancer patients (86). And the integration of multi-omics data offers

the unique advantage of aiming for a comprehensive assessment of

each patient through extracted features, which promises a more

complete picture of this complex immune ecosystem.

However, although ICI has been widely used in the treatment of

lung cancer, there is still a lack of adequate understanding of
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prognostic biomarkers. We still need to increase research efforts

on prognostic biomarkers for lung cancer at the multi-omics level

such as proteomics and genomics. For example, genetic mutations

in EGFR and KRAS have a key role in individualized therapy, but

their specific impact and mechanisms in prognostic assessment

need to be further explored (87, 88). In addition, proteomic markers

such as CEA and CYFRA 21-1 show potential in disease

surveillance, and their correlation with disease progression could

provide additional information for disease management (89, 90).

Immune tolerance and therapeutic resistance are also current

challenges in the combination of immunology and proteomics for

the treatment of lung cancer. In particular, the EGFR T790M

mutation leads to resistance to early drug (91–93). Specifically,

although the third-generation EGFR-TKI ositinib has successfully

treated patients with T790Mmutations, new resistance mechanisms

such as the EGFR T790M/C797S mutation are still emerging.

Currently, there are investigators evaluating fourth-generation

EGFR-TKIs clinically for new resistance issues (94, 95).

By integrating these multi-omics data, we can develop a more

comprehensive understanding of the biological complexity of lung

cancer, leading to the development of more effective therapeutic

strategies and improved patient survival (96). Therefore, future

research should focus on how to use these biomarkers to optimize

treatment pathways, improve the accuracy of prognostic prediction,

and ultimately achieve true precision medicine.
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Background: Glioma is the predominant malignant brain tumor that lacks

effective treatment options due to its shielding by the blood-brain barrier

(BBB). Astrocytes play a role in the development of glioma, yet the diverse

cellular composition of astrocytoma has not been thoroughly researched.

Methods: We examined the internal diversity of seven distinct astrocytoma

subgroups through single-cell RNA sequencing (scRNA-seq), pinpointed

crucial subgroups using CytoTRACE, monocle2 pseudotime analysis, and

slingshot pseudotime analysis, employed various techniques to identify critical

subgroups, and delved into cellular communication analysis. Then, we combined

the clinical information of GBM patients and used bulk RNA sequencing (bulk

RNA-seq) to analyze the prognostic impact of the relevant molecules on GBM

patients, and we performed in vitro experiments for validation.

Results: The analysis of the current study revealed that C0 IGFBP7+ Glioma cells

were a noteworthy subpopulation of astrocytoma, influencing the differentiation

and progression of astrocytoma. A predictivemodel was developed to categorize

patients into high- and low-scoring groups based on the IGFBP7 Risk Score

(IGRS), with survival analysis revealing a poorer prognosis for the high-IGRS

group. Analysis of immune cell infiltration, identification of genes with differential

expression, various enrichment analyses, assessment of copy number variations,

and evaluation of drug susceptibility were conducted, all of which highlighted

their significant influence on the prognosis of astrocytoma.

Conclusion: This research enhances comprehension of the diverse cell

composition of astrocytoma, delves into the various factors impacting the

prognosis of astrocytoma, and offers fresh perspectives on treating glioma.
KEYWORDS

astrocytoma, scRNA-seq, bulk RNA-seq, C0 IGFBP7+ glioma cells, prognosis
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Introduction

Glioma is a tumor caused by glial cells or precursor cells (1).

Gliomas are the predominant histological form of primary cancer in

the central nervous system, including high-grade gliomas and low-

grade gliomas (2, 3). As for the classification, WHO advocates

dividing gliomas into I–IV grades (4). Glioblastoma multiforme

(GBM) is the predominant malignant brain tumor, making up

60%–70% of malignant gliomas (2), and is classified as a highly

invasive grade IV glioma (5). Glioblastoma, also known as

malignant glioma, is the deadliest type of brain tumor, typically

resulting in a median survival time of 15 months (6), glioblastoma is

the most aggressive form of astrocytoma. Prior research has

indicated that there are gender disparities in the occurrence of

GBM in adults, with a higher prevalence among males (1).

Treating a brain tumor can be challenging due to the presence

of the blood-brain barrier (BBB), which protects it (6). At present,

surgery, radiotherapy, and chemotherapy are still the main

treatment methods for glioma (4). GBM cannot be removed

surgically because of its invasive nature and ability to infiltrate

normal surrounding brain tissue (7). At present, the main drugs for

GBM chemotherapy are temozolomide, or TMZ. TMZ slightly

improved the survival rate of patients but caused many side

effects (6). The GBM tumor has strong resistance to radiotherapy

and cytotoxic chemotherapy (7). Hence, there is no superior

remedy for GBM, necessitating a more profound comprehension

of the illness and investigation into novel treatment approaches.

Recent literature has indicated that the combination of

temozolomide therapy and tumor-treating fields (TTFields) can

enhance both progression-free survival and overall survival in

patients with glioblastoma (8). TTFields represents a therapeutic

modality that combats mitosis, although further investigation is

needed to fully elucidate its experimental findings. Moreover, this

treatment necessitates the utilization of a device, which entails head

hair shaving and may impose an additional burden on patients. The

adoption of a multimodal standard therapy still entails an inevitable

recurrence rate, with a median survival exceedingly merely one year

(9), so other therapeutic modalities still need to be explored.

Single-cell analysis has become an important tool for dissecting

cellular heterogeneity (10, 11). This method has been extensively

utilized for examining the internal diversity of different types of

cancer, including non-small cell lung cancer (12), melanoma (13),

cervical cancer (14), bladder cancer (15), prostate cancer (16) and

clear cell renal cell carcinomas (ccRCCs) (17–20), among others.

The characteristics and makeup of the tumor immune

microenvironment (TIME) play a crucial role in the treatment

and outlook of tumors. Research has shown that astrocytes play a

role in the development of glioma, indicating that this relationship

could be a potential focus for novel treatments (21). Research has

extensively shown that astrocytes have the ability to control the

attraction of tumor-associated macrophages (TAMs) to the tumor

microenvironment (TME) through CCL2, leading to the

progression of glioblastoma by encouraging a pro-tumor

phenotype in TAMs (22). However, the tumor immune

microenvironment of astrocytoma has not been fully explored
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For this research, we utilized scRNA-seq to analyze single-cell

data from GBM patients. We conducted dimensionality reduction

clustering analysis on astrocyte subpopulations, followed by

inferCNV analysis to identify astrocytoma. Our goal was to

investigate the diverse heterogeneity of astrocytoma subpopulations

and identify key subpopulations with the potential for high

differentiation. Additionally, we explored the transcription factors

associated with these subpopulations. Furthermore, a risk assessment

model was developed, and the infiltration of immune cells in tumors

was investigated along with clinical data from patients with glioma.

Finally, we performed in vitro experimental validation. These studies

could offer fresh insights for treating GBM.
Materials and methods

Get glioma data

The Glioma single-cell RNA-seq data utilized in this study were

obtained from the NCBI Gene Expression Omnibus (GEO)

database at https://www.ncbi.nlm.nih.gov/geo/. The identification

code for logging in was GSE182109.

Data pertaining to bulk RNA-seq was acquired from the Cancer

Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/),

which included clinical details (age, gender, ethnicity) and

somatic mutation information for glioma patients.
Raw data processing

The raw single-cell RNA data was analyzed using the “Seurat”

package (version 4.3.0) (23, 24). To enhance data quality, the

“DoubletFinder” R package (version 2.0.3) (17, 25) was utilized

for eliminating doublet cells based on genetic data, followed by

applying the “PercentageFeatureSet” function to filter out low-

quality cells. High-quality cells meeting the criteria of (1) having

300 < nFeature < 7,500 genes detected in a single cell, (2) having 500

< nCount < 100,000 total transcriptomic count in a single cell, and

(3) having the number of recognized genes in a single cell < 100,000

were retained. A single cell contains between 500 and 6,000

identifiable genes. Less than 20% of genes in a single cell were

actively expressed by mitochondria.
Data clustering analysis with
reduced dimensions

High-quality glioma cells were acquired and then normalized

using the “NormalizeData”function, followed by the identification of

the top 2000 variable genes using the “FindVariableFeatures”

function. All genes were centered using “ScaleData” (26–29). To

remove batch effects across various samples, the samples were

processed and analyzed using the “harmony” R package (version

0.1.1) (14, 30).
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The initial 30 primary components (PCs) were reduced in size

with the “RunPCA” function, then the glioma cells were grouped

and examined using “FindClusters” and “FindNeighbors”

categorized based on the marker genes of cell subgroups

mentioned in previous studies, and displayed through Uniform

Manifold Approximation and Projection (UMAP) (31).
Detect astrocytoma utilizing InferCNV

By utilizing InferCNV (https://github.com/broadinstitute/

inferCNV/wiki) (13), we were able to assess the astrocytes within

the glioma cell subset and identify the differences in copy number

within this subset. Taking EC (epithelial cell) as a control, the

astrocytes with high-level copy number variation (CNV) were

defined as astrocytoma.
Subgroup identification of astrocytoma

By clustering astrocytoma, we were able to identify various

subgroups, revealing its internal heterogeneity. First of all, the

top 2,000 highly mutated genes in astrocytoma were identified,

then normalized, and the “harmony” R package was applied to

reduce batch effects. Finally, the first 30 principal components

(PC) were projected onto the two-dimensional map by using the

UMAP map, and the different subsets of astrocytoma were

marked according to the marker genes in previous literature

(32, 33).

Furthermore, we investigated the origin of tissues and the cell cycle

of various cell subgroups, computed staging scores like G2M.Score and

S.Score, and compared the variations in G2M.Score, S.Score, nFeature,

and nCount across different cell subgroups.
Identification and enrichment analysis of
differentially expressed genes in
astrocytoma subtypes

DEGs were identified for each astrocytoma subpopulation by

screening with the “FindAllMarkers” function, detecting genes in a

minimum of 25% of the cells with a false discovery rate (FDR) of

less than 0.05 and an absolute log fold change (| logFCfilter |)

greater than 1.

The “clusterProfiler” R package (version 0.1.1) (34, 35) was

utilized for the analysis and enhancement of particular marker

genes, with access to the Gene Ontology-Biological Processes

(GOBP) database provided at http://www.geneontology.org (36,

37). During GO enrichment analysis, genes with p-values bel ow

0.05 were deemed to be statistically significant. Enriched entries

were subjected to Gene Set Enrichment Analysis (GSEA) using gene

sets obtained from the database (c2.cp.kegg.v7.5.1.symbols.gmt).

Pathways that were significantly enriched were chosen using a false

discovery rate (FDR) less than 0.05.
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Trajectory analysis of astrocytoma

Stemness and developmental trajectories of astrocytoma

subpopulations were comprehensively inferred using a variety of

analytical methods, including CytoTRACE analysis, monocle2

analysis, and the Slingshot method.

CytoTRACE can re-establish the relative differentiation status

of astrocytoma subpopulations based on gene expression profiles

(38) and assess the stemness of different cellular subpopulations.

A proposed time-series analysis of astrocytoma subpopulations

was performed using the Monocle R package (version 2.24.0).

Monocle identified cellular alterations during astrocytoma

differentiation as a means of inferring the developmental

trajectory of the subpopulation.

Slingshot analysis (version 2.6.0) was used to detect and

generate multiple differentiation trajectories for the astrocytoma

subpopulation. The “getlineage” and “getCurves” functions were

used to infer subpopulation differentiation trajectories and to assess

changes in cell expression levels over time, respectively.
SCENIC analysis

To investigate the transcription factors (TFs) in themain subgroup,

we utilized the pySCENIC algorithm to build a gene regulatory

network, assessed the transcription factors’ expression, and unveiled

the general distribution of the main subgroup transcription factors.
Cell communication analysis

Astrocytoma subpopulations were analyzed for cellular

communication using the ‘CellChat’ R package (version 1.6.1)

(39), to examine and interpret inter-cellular communication

networks derived from scRNA-seq data. The analysis was

performed by integrating gene expression data from cells to

establish the probability of communication through interactions

between gene expression and signaling pathways, ligand-receptors,

and their cofactors, which provided insights into the coordinated

roles of signaling pathways in different cell types.
Construction of risk score and
establishment of nomogram

Prognosis-related genes and corresponding risk scores for each

sample were obtained through univariate COX risk regression

analysis using the “survival” R package (40, 41), as well as Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

regression analysis (42–44) and multivariate COX risk regression.

The risk score calculation formula: Risk score =on
i Xi� Yi (x:

coefficient, y: gene expression level). According to the median risk

score, the samples were divided into a high-risk group and a low-

risk group. The prognostic features of various risk score categories
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were assessed using Kaplan-Meier survival analysis and the

“timeROC” R package (45–47).

We assessed the predictive precision of risk scores by merging

patient clinical data with risk scores for multivariate COX risk

regression analysis. We developed a nomogram model to predict 1-,

3-, and 5-year overall survival (OS) in glioma patients, visualized it

using the “rms” R package, assessed the model’s accuracy with c-

index and ROC curves (48), and explored the relationship between

model genes, risk scores, and OS.
Immune microenvironment analysis

In order to evaluate the correlation between risk characteristics and

the immune microenvironment, we used a combination of the

ESTIMATE, CIBERSORT, and Xcell algorithms to comprehensively

evaluate the immune microenvironment of astrocytoma patients.

Furthermore, the CIBERSORT algorithm (http://cibersort.stanford.edu/

). was utilized to examine the distribution of 22 various immune cell

types. We computed the ImmuneScore, StromalScore,

ESTIMATEScore, and TumorPurity values, along with the TIDE

(TumorImmune Dysfunction and Exclusion) scores. In addition,

the relationship between model genes, risk score, and OS was

explored to illustrate the important role of genes in immune-

related functions.
Examining and enhancing the analysis of
genes with varying expression levels in
groups with high and low scores

The “DESeq2” was utilized to identify differentially expressed

genes (DEGs) in groups with high and low risk scores, followed by

enrichment analyses using the “clusterProfiler” R package (version

4.6.2) (49) for GO, Kyoto Encyclopedia of Genes and Genomes

(KEGG) (50), and GSEA enrichment analyses.
Tumor mutation analysis

Glioma patient somatic mutation information was obtained from

the TCGA database, and the Tumor Mutation Burden (TMB) was

assessed in various scoring categories using the “maftools” R package

(51), and the subjects were classified into high TMB and low TMB

according to the median TMB. Participants were divided into high

TMB and low TMB groups using the median TMB value, and survival

differences were compared between the two groups using Kaplan-

Meier curves. Pearson correlation coefficients were used to analyze the

relationship between score and TMB. Furthermore, we analyzed the

genetic variation in gene copies (CNV) of the modeled genes.
Drug sensitivity analysis

In order to better align with the clinical use of the drugs, we

evaluated the sensitivity of the different drugs. The “pRRophetic”
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package (version 0.5) (52) was utilized to determine the IC50 value

for each sample and assess the responsiveness of the groups with

high and low risk scores.
Cell culture

The U87 MG and U251 MG cell lines were acquired from the

American Type Culture Collection (ATCC). The two cell types were

grown in DMEM medium with 10% fetal bovine serum and 1%

streptomycin/penicillin (Gibco BRL, USA) at 37°C, 5% CO2, and

95% humidity as per usual conditions.
Cell transfection

Two small interfering RNAs (siRNAs) (GenePharma, Suzhou,

China) were used to achieve FOSL2 knockdown, followed by

inoculating cells in 6-well plates at 50% density. Transfection was

performed with a negative control group (si-NC) and FOSL2

knockdown (si-FOSL2-1 and si-FOSL2-2). The transfection was

carried out following the specific instructions provided by

Lipofectamine 3000RNAiMAX (Invitrogen, USA).
Cell viability assay

The viability of U87 MG and U251 MG cells that were transfected

was measured by utilizing the Cell Counting Kit-8 (CCK-8, A311-01,

Vazyme). Cell suspensions were added to 96-well plates (5 × 103 cells

per well) and left to incubate for 2 hours. The absorbance was then

recorded at 450 nm on days 1, 2, 3, and 4. Mean optical density (OD)

values were recorded, and the corresponding line graphs were plotted.
Quantitative real-time PCR

Cell lines were used to extract total RNA with TRIzol reagent

(15596018, Thermo), followed by cDNA synthesis using

PrimeScript™ RT Reagent Kit (R232-01, Vazyme). cDNA was

isolated using the SYBR Green Real-Time PCR Kit from TaKaRa

Biotechnology in Dalian, China, through real-time quantitative

PCR (qRT-PCR). The primers and siRNAs utilized in this

research are displayed in Supplementary Table 1.
Transwell

Cells (corning, USA) were either coated with or without matrix

glue (BD Biosciences, USA) in a 24-well plate chamber. The cell

suspension was then placed in the upper chamber with Costar

and serum medium, while serum culture medium was added

to the lower chamber. Put the cells in a cell incubator for

48 hours. Following incubation, the cells were treated with 4%

paraformaldehyde and then stained with 0.1% crystal violet

(Solarbio, China) to assess migration and invasion.
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Plate-cloning experiment

Transfected cells were seeded in a 6-well plate at a density of

1×103 cells per well and incubated for 14 days. Next, the cells were

rinsed with PBS and then treated with 4% paraformaldehyde (PFA)

for a duration of 15 minutes. Finally, the cells were stained with

0.1% crystal violet (Solarbio, China) for 20 minutes and quantified.
Wound healing

After transfection, the cells were grown in 6-well dishes until

they reached 95% confluence, then a 200-mL sterile pipette was

used to wash away debris with PBS in a straight line through the cell

layer. Next, the serum-free solution was exchanged to sustain cell

culture, and images of the wounds at the identical spot at 0 hours

and 48 hours were captured for assessing the breadth of the wounds.
5-Ethyl-2’-deoxyuridine proliferation assay

U87MG and U251MG cell lines that were transfected were plated

in 6-well cell culture plates with 5×103 cells per well and left at room

temperature for 24 hours. After that, a solution made by EdU was

added to serum-free medium and incubated for 2 hours at 37°. Next,

the cells were rinsed with PBS and then treated with 4%

paraformaldehyde for a duration of 30 minutes. Afterward, the cells

were exposed to glycine (2 mg/mL) and 0.5% Triton X-100 for 15

minutes, followed by incubation with 1 mL of 1× Apollo and 1 mL of

1× Hoechst 33342 for 30 minutes. The quantification of cell

proliferation was ultimately determined using fluorescencemicroscopy.
Statistical analysis

The analysis of all the research was conducted using R software

(version 4.3.0) and Python software (version 4.2.0). The Wilcoxon

test, Pearson correlation coefficients, etc. Statistical tests were

employed to evaluate the importance of variances among the

groups (*P<0.05, **P<0.01, ***P<0.001).
Results

Main cell types of glioma

To comprehend the tumor microenvironment of glioma, we

collected glioma cells from 18 patients following quality control of

234,148 high-quality cells. According to the marker genes, these high-

quality cells were divided into 13 main cell types: microglia(49030),

Myeloidcells (50565), Oligodendrocytes (29536), Astrocytes (46377),

T_NK (28697), Excitatory_neuronal_cells (10997), Proliferating_cells

(11346), Fibroblasts (1978), EndothelialCells(ECs)(1820),

Muller_glia_cells (1580), B_Plasma(1245), Inhibitory_Neuronal _

Cells (814), Pericytes (163), and drawn into a 2D scatter plot by
Frontiers in Immunology 05151
using Uniform Manifold Approximation and Projection (UMAP)

technology (Supplementary Figure 1A). Additionally, we examined

the tissue categories, cellular phases, and seurat groupings of each cell

category, presenting them through UMAP visualizations paired with

pie graphs (Supplementary Figures 1B–D). Bubble plots

(Supplementary Figure 1E) displayed the top 5 marker genes for 13

cell types and 3 tissue types.
Subtype identification of astrocytoma

In order to distinguish malignant cells, we used the InferCNV

algorithm to analyze the copy number variation (CNV) level of

astrocytes, and the result was shown in Supplementary Figure 2.

Based on the inferred CNV results, astrocytes with high levels of

CNV were defined as tumor cells as astrocytoma. We classified

the 40,650 astrocytomas obtained by Seurat and named the seven

subclusters according to the marker genes as C0 IGFBP7+ Glioma

cells, C1 OLIG2+ Glioma cells, C2 LINC02283+ Glioma cells, C3

LINC00632+ Glioma cells, C4 MX1+ Glioma cells, C5 FOSB+

Glioma cells, and C6 DLL3+ Glioma cells. The 2D map of UMAP

dimensionality reduction combined with pie charts showed the

distribution of subgroups and their proportion in different cell

phases (G1, G2M, and S) and in different groups (II and IV)

(Figure 1A). The results showed that most of the astrocytoma

subclusters had a higher percentage of G1 cell cycle, in addition,

C0 IGFBP7+ Glioma cells and C4 MX1+ Glioma cells had a

higher percentage of Group IV, suggesting that the malignant

degree of cells in these two subclusters might be higher. Figure 1B

of the of the UMAP diagram showed the distribution of each

subgroup and the proportion of cell cycle and group. Figure 1C

UMAP faceted plots depicting the distribution of each

subpopulation in detail.

Next, to dig deeper into the relevant features of astrocytoma, we

calculated the Cell Stemness AUC (Area Under the Curve), nCount

_RNA, nFeature _RNA, G2M.Calculated the Score, S. Score, and

CNV Score for each subgroup and displayed them using UMAP

plots (Figure 1D). The relevant features of different cellular phases

and different groups were demonstrated with violin plots

(Figures 1E–G). The results showed that C0 IGFBP7+ Glioma

cells had the highest cell stemness among the seven subclusters,

and C2 LINC02283+ Glioma cells had the highest G2M.Score

(Figure 1E). In addition, compared with subgroup II, subgroup

IV had higher cell stemness and had higher G2M.Score and CNV

Score (Figure 1G).
Correlation enrichment analysis

To comprehend the biological mechanisms linked to each

subgroup of astrocytoma, we conducted various enrichment

analyses on the distinct genes within the seven subclusters of

astrocytoma. Figure 2A violin plots demonstrated the expression

levels of the named genes of the subclusters in each subcluster, and

interestingly, IGFBP7, the named gene of the C0 subcluster, was
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also expressed in the C4 subcluster. We visualized the DEGs

(differential expressed genes) in each subcluster of astrocytoma

using volcano plots (Figure 2B).

Then, we plotted the gene cloud diagrams for each subgroup of

astrocytoma and the cloud diagrams for enrichment analysis
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according to the number of gene occurrences and the level of

enrichment scores of each subgroup, as shown in Figures 2C, D.

Furthermore, GSEA was conducted for every subgroup,

revealing the pathways with the highest NES values displayed in

Figure 2E. The top GSEA pathways for these seven subpopulations
FIGURE 1

Subcluster identification of astrocytoma. (A) The UMAP plot revealed 7 subclusters of 40,650 astrocytoma (top). UMAP visualizations, along with pie
graphs, illustrated the breakdown of individual subgroups based on Phases (G1, S, and G2M) (center) and Groups (II and IV) (lower section). (B) An
integrated visualization demonstrated the distribution of astrocytoma subclusters, phases, and groups. (C) UMAP facet map exhibited the distribution
of each astrocytoma subcluster. (D) UMAP plots individually showcased the Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S Score,
and CNV Score of astrocytoma. (E-G) Violin plots respectively, displayed the levels of Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S
Score, and CNV Score for each astrocytoma subcluster (E), each cell phase (F), and each group (G). Significance levels were denoted as follows: ***P
< 0.001, and ****P < 0.0001; NS was used to represent lack of significance.
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FIGURE 2

Enrichment analysis of astrocytoma subclusters. (A) Violin plots illustrated the distribution of named genes in each subcluster of the 7 astrocytoma
subclusters. (B) Volcanic plots illustrated the genes with differential expression in the C0-C6 subgroups. (C) Cloud diagrams presented the
expression patterns of highly-enriched genes in each astrocytoma subcluster. The font size indicated the quantity of genes, while the color indicated
the enrichment score for each gene. (D) Cloud diagrams displayed the specific enriched pathways of highly-enriched genes in each astrocytoma
subcluster. The font size indicated the quantity of genes, while the color indicated the enrichment score of genes within that pathway. (E) GSEA
enrichment analysis results for each astrocytoma subcluster, showing only the pathway with the highest NES value. (F) Heatmap showed the gene
expression and top 5 GO-BP enrichment analysis results for each astrocytoma subpopulation.
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included negative regulation of hydrolase activity, regulation of

mRNA splicing via the spliceosome, cytoplasmic translation, gene

silencing by RNA, defense response to viruses, response to unfolded

proteins, and metaphase/anaphase transition of the mitotic cell

cycle based on the highest NES values.

In addition, in order to visualize the GOBP (Gene Ontology

Biological Processes) enrichment analysis of each subpopulation of

astrocytoma, we generated a heatmap to show the top 5 enriched

terms of each subpopulation (Figure 2F).

The findings indicated that the enhanced pathways in C0 IGFBP7

+ Glioma cells included inhibiting hydrolase activity, promoting cell-

substrate adhesion, aiding in wound healing, inhibiting peptidase

activity, and regulating cell-substrate adhesion. This result suggests

that the C0 subpopulation may be associated with the adhesion

movement of glioma cells. The enrichment pathways of C1 OLIG2+

Glioma cells for axis development, synapse organization,

axionogenesis, glial cell differentiation, and regeneration of nervous

system development suggest that this subpopulation may be involved

in nervous system development and related tissue differentiation.

Glioma cells with C2 LINC02283+ Glioma cells were found to have

high levels of cytoplasmic translation, oxidative phosphorylation,

aerobic respiration, cellular respiration, and ATP synthesis-linked

electron transport, indicating a strong connection to cellular

respiration and energy metabolism. On the other hand, glioma cells

with C3 LINC00632+ Glioma cells showed enrichment in mRNA

processing, RNA splicing, regulation of RNA splicing, regulation of

mRNA processing, RNA splicing, and via transesterification reactions

with bulged adenosine as a nucleophile, suggesting that this

subpopulation may play a role in regulating RNA processing.

C4 MX1+ Glioma cells showed enrichment in immune

responses to viruses and symbionts, as well as in regulating viral

processes and negative regulation. On the other hand, C5 FOSB+

Glioma cells were enriched in responses to protein misfolding,

temperature changes, and topologically incorrect proteins.

Additionally, these cells also showed enrichment in responses to

viruses, symbionts, viral processes, and negative regulation.

Response to temperature stimulus, protein refolding, and

resistance to heat pathways suggest that the C5 subpopulation

may be involved in protein response-related biological processes.

C6 DLL3+ Glioma cells are involved in RNA splicing, mRNA

processing, and ribonucleoprotein complexes. Ribonucleoprotein

complex formation occurs through RNA splicing, involving

transesterification reactions and bulged adenosine. The C6

subpopulation may be involved in RNA splicing and other related

biological processes through transesterification reactions involving

bulged adenosine as a nucleophile.
Trajectory analysis of the
astrocytoma subcluster

To investigate the differentiation status and developmental

trajectory of seven subgroups of astrocytoma, we performed

CytoTRACE analysis and monocle 2 pseudotime analysis on

these subgroups. The related results of the CytoTRACE analysis

were shown in Figures 3A, B. The CytoTRACE results showed that
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the CytoTRACE scores of subcluster C1, subcluster C4, and

subcluster C0 were higher, indicating that the stemness was

higher in these three subclusters. The gene correlations involved

in the CytoTRACE analysis can be observed in the bar graph

(Figure 3C). The findings from the pseudotime analysis of the

astrocytoma subgroup were displayed in Figure 3D. The findings

indicated that the pseudotime path deviated from the top right to

the bottom left, encompassing six stages and three points of

divergence. The pseudotime facets of the along-trajectory

distribution of each subgroup of astrocytoma were shown in

Figure 3E. In addition, we further demonstrated the pseudotime

results of astrocytoma subgroups with Violin plots and ridge plots

(Figures 3F–H). These results indicated that C0 IGFBP7+ Glioma

cells might be at the end of differentiation and have high

differentiation ability, and C6 DLL3+ Glioma cells might be at the

initial stage of differentiation.
Transcription factors related to the C0
IGFBP7+ glioma cells subgroup

We analyzed the TOP1 transcription factor FOSL2 of the C0

IGFBP7+ Glioma cells subgroup, which may be at the end of

differentiation. Initially, a UMAP visualization was created to

display the distribution of the transcription factor FOSL2

(Figure 3I), revealing its limited presence in various subgroups.

The specific differences in the distribution of transcription factor

FOSL2 in each subgroup were shown in Figure 3J. The transcription

factor FOSL2 was most distributed in the C0 IGFBP7+ Glioma cells

subgroup, and the distribution in other subgroups was different,

with statistical differences. In addition, the transcription factor

FOSL2 was more distributed in highly differentiated tissues

(Group IV) than in Group II, and the results were statistically

different (Figure 3K).
Slingshot pseudotime analysis of the
astrocytoma subcluster

In order to further confirm the differentiation relationship

between different subgroups of astrocytoma, we conducted a

slingshot pseudotime analysis on the astrocytoma subgroup. The

findings indicated the presence of two lineages in the slingshot

pseudotime assessment of seven subtypes of astrocytoma

(Figure 4A). Lineage 1 originated from C2 and ends at CO.

Lineage 2 originated from C2, passed through CO/C4→C1/

C5→C3, and ended with C6. However, there was only one

lineage in the slingshot pseudotime analysis of two Groups (II

and IV) (Figure 4B). The expression of named genes with

subpopulation slingshot pseudotime analysis lineage 1 was shown

in Figure 4C scatter plots, and the expression of named genes with

subpopulation slingshot pseudotime analysis lineage 2 was shown

in Figure 4D. In addition, we also analyzed the trajectories of the

slingshot pseudotime analysis of different groups (IV and II), and

the slingshot pseudotime analysis of different groups only had

lineage 1. The expression of string hot pseudotime analysis
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FIGURE 3

CytoTRACE and Monocle2 pseudotime analysis of astrocytoma subpopulations and related transcription factors. (A) CytoTRACE analysis and visualization
of the differentiation degree for each astrocytoma subpopulation. In the left figure, dark-green indicated higher differences (low stemness), while dark-
red indicated lower differences (high stemness). In the right figure, different colors represent different astrocytoma subpopulations. (B) Boxplot displayed
the CytoTRACE analysis results, revealing that C1 OLIG2+ Glioma cells, C4 MX1+ Glioma cells, and C0 IGFBP7+ Glioma cells exhibited higher
differentiation potential, while C3 LINC00632+ Glioma cells had the lowest differentiation potential. (C) Bar graph showed the gene correlations in the
CytoTRACE analysis. (D) Trajectory analysis using Monocle2, with 3 branch points and 6 states. (E) Monocle2 pseudotime analysis facet map depicted
the trajectories of the 7 astrocytoma subclusters. (F) Violin plots showed the distribution of the 7 astrocytoma subgroups along the pseudotime
trajectory. (G, H) Ridge plots and their facet maps displayed the density distribution of the 7 astrocytoma subgroups along the pseudotime trajectory.
(I) UMAP plot visualized the distribution of the top transcription factor (TF) FOSL2 in C0 IGFBP7+ Glioma cells. (J) Violin plot presented the distribution of
FOSL2 in astrocytoma for each subcluster. (K) Violin plot illustrated the distribution of FOSL2 in different groups (II and IV). Significance levels were
denoted as follows: **P < 0.01, ***P < 0.001, and ****P < 0.0001; NS was used to represent lack of significance.
Frontiers in Immunology frontiersin.org09155

https://doi.org/10.3389/fimmu.2024.1434300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1434300
lineage 1 with different groups of named genes was shown in

Figure 4E. The findings indicated that the gene IGFBP7,

belonging to the C0 subgroup, exhibited the highest expression

levels in Group IV following the slingshot pseudotime analysis. This

was consistent with the previous results of CytoTRACE analysis and
Frontiers in Immunology 10156
monocle 2 pseudotime analysis that C0 IGFBP7+ Glioma cells were

at the end of differentiation and had high cell stemness, with most of

the C0 subclusters distributed in subgroup IV. We also analyzed the

expression of two lineages of DEGs with the subgroup’s slingshot

pseudotime analysis, and the result was as shown in Figure 4F. We
FIGURE 4

Slingshot pseudotime analysis of astrocytoma. (A) Slingshot pseudotime analysis results for the 7 subclusters of astrocytoma reveal 2 lineages.
(B) Slingshot pseudotime analysis results for different Groups (II and IV) of astrocytoma, showing 1 lineage. (C) Scatter plots demonstrated the
expression changes of lineage 1-associated genes in the astrocytoma subclusters. (D) Scatter plots illustrated the expression changes of lineage
2-associated genes in the astrocytoma subclusters. (E) Scatter plots displayed the expression changes of lineage 1-associated genes in the
astrocytoma subclusters across the Groups. (F) Heatmaps exhibited the expression changes of differentially expressed genes along the trajectories of
the 2 lineages of the astrocytoma subclusters, along with their GOBP enrichment analysis results.
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also analyzed the enrichment of DEGs by GOBP and found that

lineage 1 was mainly enriched with mesodem nervous, smooth ion

muscle, DEGs of interleukin production, and mediated, while

lineage 2 was enriched with osleoblast, nucleotide biosynthetic,

smooth apoptotic, and other pathways.
Cellular communication network

In order to systematically explore the interaction of the tumor

microenvironment in astrocytoma, we used Cellchat analysis to

draw a cell communication network to show the intensity

(Figure 5A) and quantity (Figure 5B) of ligand-receptor

interaction between different cell groups. Then, we analyzed the

signal patterns between astrocytoma and other cells and the

interaction between cells and pathways. Three outgoing signal

patterns and three incoming signal patterns were identified, and

the results were shown in Figures 5C, D. Figures 5E, F displayed the

communication patterns received by target cells and sent by

secreting cells, respectively. The results showed that both C0-C6

subgroups were involved in the PTN signal network pathway.

The results of Sankey diagrams revealed that the cell groups in

outgoing patterns were astrocytoma, Oligodendrocytes, Excitatory

neuronal cells, Proliferating cells, Muller glia cells, Inhibitory

neuronal cells and Pericytes send out signals in coordination with

the signal paths PTN,MK and SPP1 belonging to pattern1 (Figure 5G).

The heatmap specifically showed (Figure 5H) the signal

intensity of outgoing signaling patterns and incoming signaling

patterns interacting with other cell types.
PTN signaling network pathway

Because the seven subpopulations of astrocytoma involved the

PTN signaling network pathway in both Incoming communication

and Outgoing communication, we initiated further studies on the

PTN pathway. When glioma cells were used as receiver cells in PTN

signaling network pathway, the interaction of various cell-like cells

was shown in Figure 6A, and the expression levels of signal genes

involved in this pathway (PTPRZ1, SDC2, SDC3, NCL) were shown

in Figure 6B. The results showed that NCL has a certain expression

level in various cell-like cells. We further explored the cellular

communication networks involved in PTN signaling network. We

further explored the PTN signaling network involved in the

intercellular communication network, PTPRZ1 Glioma cells,

SDC2 Glioma cells, SDC3 Glioma cells, NCL Glioma cells were

used as receivers in the respective hierarchical plots shown in

Figure 6C (PTPRZ1), Figure 6D (SDC2), Figure 6E (SDC3), and

Figure 6F (NCL), respectively. The specific interaction between

PTN signaling network cells was comprehensively demonstrated by

the heatmap (Figure 6G). The heatmap (Figure 6H) displayed the

varying significance of different cell types in the PTN signaling

pathway network, acting as senders, receivers, mediators, and

influencers. The results showed that in the PTN pathway, six

subgroups of malignant asteroids (C0-C5) had high relative

importance as sender, receiver, mediator and influencer.
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Establishment and verification of a
prognostic model

In order to better serve the clinic, we evaluated the prognostic

characteristics of the C0 IGFBP7+ Glioma cell subgroup identified

in this study.

Initially, we analyzed the leading 100 potential genes in this

specific group through univariate Cox regression analysis, revealing

that 29 genes were linked to patient prognosis (Figure 7A). In order

to avoid the multiple contributions of the screened genes, we

conducted LASSO regression analysis on these 29 genes

(Figure 7B), and a total of 4 genes were determined to be

significantly related to the prognosis of patients. After screening

four genes (FAM20C, TIMP1, PMP22, and ID1), we performed a

multivariate Cox regression analysis and identified three genes

(FAM20C, TIMP1, and PMP22) as risk factors, with gene ID1

being a protective factor (Figure 7C). Using the Cox regression

coefficient for each gene, we developed an IGFBP7 Risk Score

(IGRS) and determined the IGRS for each sample based on gene

expression and the associated coefficient. The specific formula was:

IGFBP7 Risk Score (IGRS) = ID1 expression level * (-0.206) +

TIMP1 expression level* 0.130 + FAM20C level* 0.192 + PMP22

level* 0.052. According to the score, we divided the C0 IGFBP7+

Glioma cell subgroup into High IGRS Group and Low IGRS Group,

and further analyzed the high and low IGRS Groups. The IGFBP7

Risk Score of high and low IGRS Groups and the changes of their

living state with time were shown on the left of Figure 7D. The

expression of four construction model genes in High IGRS Group

and Low IGRS Group was shown on the right of Figure 7D. The

findings indicated that the genes FAM20C, TIMP1, and PMP22

exhibited high expression levels in the High IGRS Group, while the

gene ID1 displayed high expression in the Low IGRS Group.

Survival analysis comparing high and low IGRS groups indicated

that the survival rate was lower in the high IGRS group compared to

the low IGRS group (Figure 7E). AUC scores for 1 year and 3 years

were shown in Figure 7F. We analyzed the survival of four modeling

genes (FAM20C, TIMP1, PMP22, and ID1) (Figure 7G), and the

results showed that three genes (FAM20C, PMP22, and ID1) had

statistical differences. Among them, the high expression of

FAM20C and PMP22 genes has a worse prognosis, while the high

expression of gene ID1 has a better survival outcome. Further prove

the previous conclusion: genes FAM20C and PMP22 were

associated with adverse outcomes.
Nomogram creation

In order to further analyze whether IGFBP7 Risk Score can be

an independent risk factor, we conducted multivariate Cox

regression analysis on clinical factors (gender, age, and race) and

IGFBP7 Risk Score (Figure 8A). The results of forest plot showed

that IGRS Group and IGRS score can be independent

prognostic factors.

In order to determine if the IGFBP7 Risk Score could act as a

standalone risk factor, we conducted a multivariate Cox regression

analysis that included clinical factors such as gender, age, and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1434300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1434300
ethnicity along with the IGFBP7 Risk Score (Figure 8B). The forest

plot results suggested that both the IGRS Group and IGRS score

may act as separate prognostic factors. Figure 8C displayed the

AUCs for survival at 1-year and 3-year intervals, while Figures 8D,

E illustrated the calibration curves for the nomograms at the same
Frontiers in Immunology 12158
intervals, indicating that the nomograms accurately predicted the

OS of the training group. Figure 8F displayed the pairwise

correlation between the four modeling genes, OS, and IGFBP7

Risk Score. The two-by-two correlations between the four modeling

genes, OS and IGFBP7 Risk Score were shown in Figure 9F. The
FIGURE 5

Overview of Cell Communication. (A) Weighted interaction network diagram of cellular interactions for all cell types. Thicker lines represented stronger
interactions between the cell types. (B) Interaction count network diagram of cellular interactions for all cell types. Thicker lines indicated a higher count
of interactions between the cell types. (C, D) Heatmaps respectively displayed the patterns identified in the incoming communication (C) and outgoing
communication (D). (E, F) Dot plots compared the communication patterns received by target cells (E) with the communication patterns sent out by
secreting cells (F). (G) Sankey charts illustrated the projected communication flow patterns of recipient cells, revealing the coordination between cells
receiving signals and their interaction with specific signaling pathways in response (top). In addition, the secretion behaviors of cells were illustrated
(bottom), demonstrating how cells interact as message transmitters and how they interact with specific signaling pathways to facilitate communication.
(H) The heatmap displayed the communication patterns of all cells, showing both outgoing and incoming signals.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1434300
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1434300
correlations between the four modeling genes and IGFBP7 Risk

Score were visualized with scatter plots (Figure 8G), and the results

showed that genes FAM20C, TIMP1, and PMP22 were positively

correlated with Risk and gene ID1 was negatively correlated with

Risk. The correlation analysis of the 4 modeled genes with OS was

shown in Figure 8H, the results showed that FAM20C, TIMP1, and
Frontiers in Immunology 13159
PMP22 were negatively correlated with OS, while gene ID1 was

positively correlated with OS. Then, we further analyzed the specific

expression of the four modeled genes in High IGRS Group and Low

IGRS Group, and the results were demonstrated by ridge plots

combined with box plots (Figure 8I). In the High IGRS Group, the

genes FAM20C, TIMP1, and PMP22 exhibited increased expression
FIGURE 6

PTN signaling network. (A) Circle plot illustrated the interactions of astrocytoma in the PTN signaling network as receiver cells. (B) Violin plots displayed
the levels of expression of signaling genes related to the PTN signaling network in astrocytoma subgroups and various cell types. (C-F) Hierarchical plots
depicted the communication networks involving PTPRZ1 (C), SDC2 (D), SDC3 (E), and NCL (F) in the inferred PTN signaling network. Source cells were
represented by filled circles, while target cell types were represented by open circles. (G) The heatmap displayed the calculated four centrality metrics of
the PTN signaling network, highlighting the significance of each cell type in terms of sending, receiving, mediating, and influencing.
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FIGURE 7

Construction and validation of a prognostic risk model. (A) Forest plot presented the results of the univariate Cox analysis (P < 0.05). A HR value less
than 1 represented protective genes, whereas a HR value greater than 1 represented risk genes. The color depth represents the magnitude of the p-
value. (B) The results of the LASSO regression analysis indicated that the optimum lambda value was 0.138, yielding the most favorable outcome.
Four genes, namely FAM20C, TIMP1, PMP22, and ID1, had been incorporated into the construction of the risk model. (C) Bar graph displaying the
Coef values and corresponding p-values for the 4 genes. (D) C0 subcluster was divided into High IGRS Group and Low IGRS Group based on the
IGFBP7 Risk Score (IGRS). The scoring distribution of the C0 subcluster was displayed in the curve plot (top left), while the survival status of the High
IGRS and Low IGRS Groups was shown in the scatter plot (bottom left), and the gene expression patterns contributing to the IGRS were visualized in
the heatmap. The color green indicated the Low IGRS Group, while the color red indicated the High IGRS Group. (E) Kaplan-Meier analysis findings
for the High IGRS Group and Low IGRS Group were presented. (F) ROC curves showed the AUC of the risk model for predicting survival at 1 and 3
years. (G) Survival plots for the four genes associated with prognosis that make up the IGFBP7 Risk Score.
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FIGURE 8

Construction of the Nomogram. (A) The forest plot displayed the findings from the multivariate Cox regression analysis, showing that age and IGRS
score were identified as separate risk factors. (B) Nomogram constructed based on clinical factors (gender, race, age) and the IGFBP7 Risk Score.
(C) The AUC values for 1-year and 3-year predictions were shown on the ROC curve for the nomogram. (D, E) Calibration curves were utilized to
evaluate the predictive accuracy of the nomogram for both 1-year and 3-year overall survival (OS). (F) Scatter plots combined with a heatmap
illustrating the correlations between OS, the four modeling genes, and the IGFBP7 Risk Score. (G) Scatter plots demonstrated the correlations
between the four modeling genes and the IGFBP7 Risk Score. (H) Scatter plots showed the correlations between the four modeling genes and OS.
(I) Ridge plots combined with box plots displaying the expression levels of the four modeling genes in the High IGRS Group and Low IGRS Group,
with both groups sharing the same coordinate system. (J) Box plots compared the expression levels of the four modeling genes in the High IGRS
Group and Low IGRS Group across different genders. Significance levels were denoted as follows: *P < 0.05; NS was used to represent lack
of significance.
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compared to the gene ID1, which was positively correlated with OS.

The expression of the four modeled genes was higher in High IGRS

Group and Low IGRS Group in different sexes (female and male), as

shown in Figure 8J.
Immunoinfiltration analysis of high IGRS
group and low IGRS group

To delve deeper into the tumor microenvironment of glioma,

we examined the presence of immune cells infiltrating the tumor in

both the High IGRS Group and Low IGRS Group of the training

cohort, with the findings displayed in a heatmap (Figure 9A). The

statistically different tumor-immune infiltrating cells were further

visualized by box plot (Figure 9B), and the evaluation results

showed that T cell regulatory (Tregs), Neutrophils, NK cells

resting, and Macroghages M1 had higher expression in High

IGRS Group, while NK cells activated had higher expression in

Low IGRS Group than in High IGRS Group.

To validate the connection between immune cells and IGFBP7

Risk Score in the glioma tumor microenvironment, we assessed the

correlation between immune cells and IGRS, presenting the

findings through Lollipop plots depicted in Figure 9C. We

thoroughly analyzed the relationship between immune cells and

the four genes that make up IGRS, IGFBP7 Risk Score, and OS and

displayed the findings using a heatmap (Figure 9D). The findings

indicated an inverse relationship between IGRS Score and B cells

naive, Eosinophils, Master cells Resting, and NK cells activated,

while showing a positive correlation with Dendritic cells activated,

Monocytes, NK cells Resting, and T cells CD4 memory Resting. It

was worth noting that gene TIMP1 and gene FAM20C were

negatively correlated with Eosinophils, Master Cells Resting and

NK Cells Activated.

Next, we delved deeper into the variations in Stromal Score,

Immune Score, Estmate Score, and Tumour Purity between the

High IGRS Group and Low IGRS Group, finding statistically

significant differences (Figures 9E, F). The Stromal Score,

Immune Score, and Estmate Score were elevated in the High

IGRS Group, whereas the Tumor Purity was increased in the Low

IGRS Group. Nonetheless, there was no statistically significant

difference in Tumor Immune Dysfunction and Exclusion (TIDE)

between the two groups, suggesting that tumor immune

dysfunction and exclusion were similar in both groups

(Figure 9G). In the study, it was found that the gene TIMP1

exhibited a strong positive correlation with the majority of

immune checkpoint-related genes, while the gene ID1 did not

show any significant correlation with most immune checkpoint-

related genes (Figure 9H).

Furthermore, we analyzed the variations in expression of

immune checkpoint-associated genes between the High IGRS

Group and Low IGRS Group, creating box plots to illustrate the

genes exhibiting significant differences (Figure 9I). The results of

the analysis indicated that the majority of genes associated with

immune checkpoints exhibited increased levels of expression in the

High IGRS Group, whereas VTCN1 and CD200 displayed higher

expression levels in the Low IGRS Group. We used ESTIMATE,
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CIBERSORT, EPIC, and Xcell algorithms to analyze and display the

variations in immune infiltrating cells, Stromal Score, Immune

Score, and Tumor Purity between the High IGRS Group and Low

IGRS Group in a heatmap. (Figure 9J)
Differentially expressed genes and their
enrichment analysis in high and low
IGRS groups

To compare the High IGRS Group and Low IGRS Group, we

computed and studied the DEGs in both groups, presenting them

using a volcano plot (Figure 10A) and showcasing the specific

expression of these DEGs in the groups through a heatmap

(Figure 10B). Immediately after that, we performed multiple

enrichment analyses on these differentially expressed genes.

Enrichment analyses were conducted on them, which included

examining GOBP (Gene Ontology Biological Processes), GOCC

(Gene Ontology Cellular Components), and GOMF (Gene

Ontology Molecular Functions). The findings indicated that

differentially expressed genes (DEGs) were highly concentrated in

functions related to binding between receptors and ligands,

signaling pathways mediated by cytokines, and activities involving

chemokines (Figure 10C). The related genes of the enriched entries

are shown in the chord plot (Figure 10D). The analysis of enriched

pathways using KEGG for the identified DEGs (Figure 10E)

indicated a significant enrichment in pathways related to viral

protein interaction with cytokines and cytokine receptors,

interactions between cytokines and cytokine receptors, signaling

pathways for chemokines, the IL-17 signaling pathway, and more.

According to the findings of GSEA (Gene Set Enrichment Analysis)

(Figure 10F), the High IGRS Group exhibited increased activity in

pathways related to Neutrophil Chemotaxis, Neutrophil Migration,

Granulocyte Chemotaxis, and Granulocyte Migration, while

showing decreased activity in pathways associated with Spinal

Cord Development, Neurotransmitter Transport, Neuron Fate

Specification, Neuron Migration, and Neuron Fate Commitment.

PCA was utilized to examine the diversity of gene expression

patterns in the High IGRS Group and the Low IGRS Group, with

PCA 1 and PCA 2 visualized through scatter plots. PCA 1 and PCA

2 exhibited variances of 13.2% and 8.1%, respectively, as shown in

Figure 10G. Furthermore, we investigated the somatic gene

mutations in both cohorts and highlighted the distinctions among

the top 30 genes exhibiting the greatest mutation rates in each

group. Variations among 12 genes across various groups indicated

that the PTEN gene had the highest mutation frequency, as depicted

in Figure 10H. Next, we assessed the gene model’s chromosome

copy number variation (CNV) and presented the findings using a

bar graph (Figure 10I). The findings indicated that genes ID1 and

TIMP1 did not exhibit any CNV loss or CNV gain, while gene

FAM20C experienced both CNV loss and CNV gain events.

A comparison analysis was performed on the two groups’ tumor

mutation burden (TMB). The results revealed no statistically

significant difference in TMB between the two groups (Figure 10J).

The correlation analysis between TMB and Risk Score was shown in

Figure 10K, with an R value of -0.12 and a corresponding p-value of
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FIGURE 9

Immune infiltration analysis. (A) A heatmap was used to analyze the distribution of 22 immune infiltrating cells between the High IGRS Group and
Low IGRS Group. Red represented the High IGRS Group, and green represented the Low IGRS Group. (B) Box plot illustrated the distribution of
immune infiltrating cells with statistically significant differences between the High IGRS Group and Low IGRS Group. (C) Lollipop charts illustrated the
relationship between immune infiltrating cells and IGRS. (D) The heatmap offered a comprehensive perspective on the relationships among immune
infiltrating cells, the four modeling genes, IGRS, and overall survival. (E) The box plot illustrated variations in StromalScore, ImmuneScore, and
ESTMATEScore between the High IGRS Group and Low IGRS Group. (F) Violin plot demonstrated the variations in Tumor Purity levels between the
High IGRS Group and Low IGRS Group. (G) Violin plots compared the TIDE values and the differences between the ctla4-negative-pd1-negative and
ctla4-positive-pd1-positive subgroups in the High IGRS Group and Low IGRS Group. (H) The dot plot illustrated the correlations between OS, the
four modeling genes, IGFBP7 Risk Score, and immune checkpoint-associated genes. (I) Box plot displayed the expression levels of immune
checkpoint-associated genes in the High IGRS Group and Low IGRS Group. (J) Heatmap provided a comprehensive display of the results from
the ESTIMATE, CIBERSORT, EPIC, and Xcell algorithms. Significance levels were denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001; NS was used to represent lack of significance.
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FIGURE 10

Differentially expressed genes and enrichment analysis in High and Low IGRS Groups. (A) The volcano plot displayed the genes that were expressed
differently between the High IGRS Group and Low IGRS Group. (B) Heatmap depicted the distribution of DEGs in the High IGRS Group and Low
IGRS Group. (C) Bar graph presented the results of the GOBP, GOCC, and GOMF enrichment analyses for the DEGs. (D) Chord plot displayed the
relevant genes involved in the GO enrichment analysis items. (E) The bar graph displayed the findings of the KEGG examination for the differentially
expressed genes. (F) GSEA enrichment analysis results for the DEGs, displaying the enrichment scores of genes on different pathways. (G) Principal
Component Analysis (PCA) plot showing the gene expression clustering distribution differences between the High IGRS Group and Low IGRS Group.
(H) A waterfall chart displayed the 30 most mutated genes in the High IGRS Group and Low IGRS Group. (I) Bar graph displayed the copy number
variation status of the four modeling genes, with blue indicating chromosomal copy number increase, red indicating chromosomal copy number
decrease, and green indicating no change in chromosomal copy number. (J) A box plot displayed the Tumor Mutation Burden (TMB) for both the
High IGRS Group and Low IGRS Group. (K) The scatter plot displayed the relationship between Tumor Mutation Burden and IGFBP7 Risk Score.
(L) Kaplan-Meier analysis demonstrated variations in prognosis between High TMB and Low TMB groups. (M) Kaplan-Meier survival analysis findings
for the High Risk-High TMB, High Risk-Low TMB, Low Risk-High TMB, and Low Risk-Low TMB groups. (N) Box plots showed the findings of drug
response analysis for the High IGRS Group and Low IGRS Group. Significance levels were denoted as follows: *P < 0.05, **P < 0.01, and NS was
used to represent lack of significance.
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0.16. Using the TMB as a basis, the participants were separated into

two groups, High TMB and Low TMB, for examination of survival

rates (Figure 10L). Furthermore, the participants were divided into

four groups based on their risk level and tumor mutational burden

(TMB): High Risk-High TMB, High Risk-Low TMB, Low Risk-High

TMB, and Low Risk-Low TMB, which was then followed by an

analysis of survival rates. Nevertheless, the findings indicated that

there was no notable variation between the groups in terms of

statistical significance (Figure 10M).
Drug sensitivity analysis

Analysis of drug sensitivity was performed on the High IGRS

Group and Low IGRS Group, showing that Docetaxel had a lower

IC50(semi-inhibitory concentration) in the High IGRS Group, as

illustrated in Figure 10N.Conversely, PLX4720 demonstrated a

lower IC50 value in the Low IGRS Group.
In vitro experimental validation

For further elucidation of the functionality of FOSL2, we

conducted in vitro functional assessments. Two cell lines, U87

MG and U251 MG, were chosen for comparison with FOSL2

knockdown by establishing a negative control group. The cell

activity test (Figures 11A, B) showed a notable reduction in cell

viability after FOSL2 knockdown, as revealed by the results of the

CCK-8 assay. For accuracy, we quantified the levels of FOSL2

mRNA expression in the U87 MG and U251 MG cell lines in

both the control and FOSL2 knockdown groups (Figure 11C). The

transwell test findings showed a significant decrease in the

movement and infiltration of U87 MG and U251 MG cells

following the suppression of FOSL2 in comparison to the control

group (Figures 11D, E). Furthermore, the plate cloning results

revealed a significant suppression in colony formation quantity

after FOSL2 knockdown in both cell line models (Figure 11F).

A healing experiment was performed, revealing a notable

increase in the width of the 48-hour scratch in both cell lines

after FOSL2 knockdown compared to the negative control group.

This suggests a reduction in cell migration rate, supported by

statistically significant findings (Figures 12A, B). Additionally,

EdU staining once again confirmed the decreased proliferative

capacity of tumor cells after FOSL2 knockdown (Figures 12C, D).

Thus, from the above tests, it was noted that reducing FOSL2 results

in lower cell proliferation, migration, and invasion in U87 MG and

U251 MG cell lines, indicating that FOSL2 could enhance

glioma advancement.
Discussion

Astrocytoma tumors start in the glial cells called astrocytes. The

most aggressive astrocytoma is a glioblastoma. Glioblastomas are the

most aggressive and lethal brain tumors (53), being the most

aggressive and deadly brain tumor with a high likelihood of
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recurrence and spreading to other areas of the brain (54). To

further investigate the internal heterogeneity of glioma, we

analyzed glioma single-cell RNA sequencing (scRNA-seq) data to

identify the various cell types present, including microglia,

oligodendrocytes, astrocytes, inhibitory neuronal cells, and

pericytes, among others. Astrocytoma tumors originate in

astrocytes. The most aggressive form of astrocytoma is

glioblastoma. Additionally, astrocytes encompass the most

abundant cellular entities within the central nervous system (55),so

we used astrocytes as the main subpopulation of the study. By

inferCNV analysis, we defined high levels of astrocytes as

astrocytoma, analyzed them by dimensionality reduction clustering,

and finally divided them into seven different cell subpopulations: C0

IGFBP7+ Glioma cells, C1 OLIG2+ Glioma cells, C2 LINC02283+

Glioma cells, C3 LINC00632+ Glioma cells, C4 MX1+ Glioma cells,

C5 FOSB+ Glioma cells, and C6 DLL3+ Glioma cells. CytoTRACE

andMonocle 2 analyses suggested that C0 IGFBP7+ glioma cells were

likely at advanced stages of differentiation with high differentiation

potential. Since astrocytomas often showed that higher malignancy

could correlate with greater differentiation, identifying these cells

might have been crucial. They could provide important insights into

tumor progression and resistance, potentially guiding more

effective treatments.

In order to delve deeper into the connections between the

astrocytoma subcluster and various cell types, we employed

CellChat analysis. This tool can deduce and examine intercellular

communication networks based on single-cell sequencing data,

forecasting the primary signals exchanged between cells and how

they work together to carry out their functions (56). By analyzing

afferent and efferent signals between subclusters of astrocytoma and

other cells, it was found that all 7 subclusters of astrocytoma were

involved in the PTN signaling network pathway in both Incoming

communication and Outgoing communication. Previous research

data has indicated that blocking the PTN pathway may serve as a

means to combat glioblastoma (57). Disrupting the PTN receptor

PTPRZ1 has been shown to inhibit the growth of glioblastoma stem

cells (GSCs) (58). Therefore, we conducted further analysis of the

PTN pathway and discovered that PTPRZ1 exhibits high expression

in various subclusters of astrocytoma. When PTPRZ1 Glioma cells

acted as receivers, the subclusters of astrocytoma showed a strong

association with other cell types. Furthermore, in the PTN signaling

pathway network, the C0 IGFBP7+ Glioma cells subcluster showed

greater importance as a sender, receiver, mediator, and influencer

when compared to other types of cells. Therefore, we hypothesized

that the C0 subgroup was essential in the PTN pathway and

impacted the advancement of glioblastoma via this pathway.

To assess the role of the C0 IGFBP7+ glioma cell subgroup in

neuroglioma progression, we performed univariate Cox and LASSO

regression analyses on candidate genes, identifying four genes

strongly linked to prognosis. We developed a prognosis model

based on these genes and established the IGFBP7 Risk Score (IGRS).

This score classified the training cohort into High IGRS and Low

IGRS groups, with survival analysis showing poorer outcomes for

the High IGRS group. A nomogram incorporating clinical data and

multivariate Cox regression confirmed the IGRS as a standalone

predictor of patient outcomes. Analysis of the four genes revealed
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their distribution and correlation with Risk Score and overall

survival. In summary, the IGFBP7 Risk Score (IGRS) provided a

robust prognostic tool for astrocytomas by categorizing patients

into High and Low IGRS groups, with High IGRS correlating with
Frontiers in Immunology 20166
worse outcomes. It integrated gene expression data to offer

improved predictions of patient survival and highlighted key

genes like FAM20C and PMP22 associated with poor prognosis.

FAM20C has been proven to be a marker of glioma invasion and
FIGURE 11

In vitro experimental validation. (A, B) The CCK-8 assay results showed a notable reduction in cell viability in the U87 MG and U251 MG cell lines
following the knockdown of FOSL2. (C) The qPCR findings showed the initial levels of FOSL2 mRNA expression in the U87 MG and U251 MG cell
lines, as well as the changes in FOSL2 mRNA expression following FOSL2 knockdown. (D, E) The transwell test showed that reducing FOSL2
expression greatly hinders the movement and infiltration capabilities of the U87 MG and U251 MG cell lines. (F) The plate cloning experiment
showed a notable reduction in colony formation capacity in the U87 MG and U251 MG cell lines following the suppression of FOSL2. Significance
levels were set at **P < 0.01, and ***P < 0.001.
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can be used as a new therapeutic target for GBM (59). However,

there are few studies on the relationship between PMP22 and

glioma, which need to be further explored.

GBM is a highly immunosuppressive tumor. At present, there is

no FDA-approved immunotherapy for glioblastoma (60). We

further discussed the relationship between IGFBP7 Risk Score

(IGRS) and the immune microenvironment of glioma and

analyzed the tumor immune infiltration of the two groups based

on High IGRS Group and Low IGRS Group. Compared with Low

IGRS Group, T cell regulation (tregs), neutrophils, NK cells resting,

and macroghages M1 in High IGRS Group have higher expression,

while NK cells activated have higher expression in Low IGRS
Frontiers in Immunology 21167
Group, which was related to the relationship between TME and

immune cells in tumors (61).

ESTIMATEScore is calculated by adding ImmuneScore and

StromalScore, which indicate the presence of immune or matrix

components in the TME (62). The Stromal Score, Immune Score, and

EstmateScore were higher in the High IGRS Group, which is

intriguing. Furthermore, an examination of somatic cell mutation

frequency revealed that the PTEN gene exhibited the highest

mutation rate, and PTEN could suppress the activation of the

PI3K/AKT/mTOR signaling pathway (63). When the functionality

of PTEN is disrupted, such as through mutations in the PTEN gene, it

leads to the loss of PTEN’s tumor suppressor capabilities.
FIGURE 12

Scratch assay and EdU staining results. (A, B) The scratch assay showed that FOSL2 knockdown significantly decreased the movement and infiltration
of the U87 MG and U251MG cells. (C, D) EdU staining demonstrated that FOSL2 knockdown was shown to inhibit the growth of U87 MG and
U251MG cells. Significance levels were set at *P < 0.05, **P < 0.01, and ***P < 0.001.
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Finally, the IC50 (semi-inhibitory concentration) of PLX4720,

Docetaxel, and Erlotinib in different groups was analyzed.

Docetaxel, an FDA-approved medication, is now the primary

therapy for various cancer forms, such as prostate cancer (64)

and non-small cell lung cancer (NSCLC) (65). while Erlotinib, a

tyrosine kinase inhibitor, is effective against lung cancer, head and

neck squamous cell carcinoma (66, 67), and various other types of

cancer. The analysis revealed that Docetaxel and Erlotinib had

reduced IC50 values in the High IGRS Group, indicating improved

efficacy of these drugs for this patient cohort. Consequently,

Docetaxel and Erlotinib demonstrate greater therapeutic potential

for patients in the High IGRS Group.

Analysis of the transcription factors in the C0 subgroup

revealed that the distribution of the transcription factor FOSL2 of

TOP1 in Group IV was greater than in Group II. Hence, we

performed in vitro tests to support the role of crucial

transcription regulators. The findings indicated that suppressing

FOSL2 can decrease the growth, movement, and infiltration of U87

MG and U251 MG cells, aligning with the findings of Yiyun Chen

and Ranhuo et al. (68). Thus, FOSL2 has the ability to enhance the

invasion and advancement of gliomas.

However, there are some limitations to this study. First of all,

the sample size is small, and the number of patients with glioma

obtained in this study is limited. Secondly, we have only done scrna-

seq and bulk RNA-seq analyses and in vitro experiments, and we

need large sample and multi-center research to further explore the

relationship between IGFBP7, FOSL2, the IGFBP7 Risk Score

(IGRS), and glioma. Therefore, we plan to carry out various

analytical methods, such as metabonomics and ATAC-seq, to

demonstrate in many aspects.

Nevertheless, there are certain constraints to this research. First

of all, the sample size is small, and the number of patients with

glioma obtained in this study is limited. Additionally, our research

has been limited to scRNA-Seq and bulk RNA-seq analyses along

with in vitro experiments. To delve deeper into the connection

between IGFBP7, FOSL2, the IGFBP7 Risk Score (IGRS), and

glioma, we require extensive sample sizes and collaboration with

multiple research centers. Therefore, we plan to carry out various

analytical methods, such as metabonomics and ATAC-seq, to

demonstrate this in many aspects.
Conclusion

Our exploration of the astrocyte tumor microenvironment

highlighted the critical role of the C0 IGFBP7+ glioma

subpopulation in astrocytoma progression. We developed the

IGFBP7 Risk Score (IGRS) as an independent prognostic tool that

effectively separates High and Low IGRS groups, with High IGRS

indicating worse outcomes. The IGRS not only predicts patient

survival but also identifies key genes like FAM20C and PMP22

linked to poor prognosis. Our study also pinpointed new

therapeutic targets, showing that Docetaxel and Erlotinib are

more effective in the High IGRS group. Additionally, in vitro tests

confirmed that transcription regulators like FOSL2 enhance glioma
Frontiers in Immunology 22168
invasion and progression. These insights improve our

understanding of astrocytoma and offer promising avenues for

future treatments.
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SUPPLEMENTARY FIGURE 1

Visualization of large groups of Glioma. (A) The UMAP visualization
displayed how the different cell types were distributed among 234,148

high-quality glioma cells. (B-D) UMAP visualizations, along with pie graphs,
Frontiers in Immunology 23169
illustrated how 234,148 high-grade glioma cells were spread out among
Categories (II, III, and IV) (B), Phases (G1, S, and G2M) (C), and 45 seurat

clusters (D). (E) The bubble chart displayed the top five genes for the 13

types of cells and illustrated how these genes were distributed among the
various groups.

SUPPLEMENTARY FIGURE 2

Analysis of astrocytes through inferCNV. (A) The inferCNV analysis of
astrocytes was visualized in a heatmap. Astrocytes with high levels of

inferCNV were defined as astrocytoma. The red color represented high

copy number variation (astrocytoma), while the blue color represented low
copy number variation.
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Introduction: FAS has been implicated in the development of various cancers,

but its involvement in lung cancer has not been systematically characterized. In

this study, we performed datamining in online tumor databases to investigate the

expression, methylation, alterations, protein interactions, co-expression and

prognostic significance of FAS in lung cancer.

Method: The expression, prognostic significance and molecular interactions of

FAS in lung cancer was mined and analyzed using GENT2, GEPIA2, UALCAN,

cBioPortal, STRING, GeneMANIA, UCSC Xena, Enrichr, and OSluca databases.

FAS expression was subsequently investigated at the protein level in samples

from 578 lung cancer patients to understand its protein-level expression. In vitro

validation of FAS gene expression was performed on H1299, H1993, A549 and

HBE cell lines.

Result: We found that the expression of FAS was significantly downregulated in

both lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC)

compared to normal lung tissue. In addition, we observed a higher level of FAS

promoter methylation in LUSC tissue than in normal tissue. FAS alterations were

rare (1.9%) in lung cancer samples, with deep deletions beingmore common than

missense mutations, which occurred mainly in the TNFR-like cysteine-rich

domain and the death domain. We also identified a list of proteins interacting

with FAS and genes co-expressed with FAS, with LUAD having 11 co-expressed

genes and LUSC having 90 co-expressed genes. Our results also showed that

FAS expression has limited prognostic significance (HR=1.302, 95% CI=0.935-

1.139, P=0.530). Protein level investigation revealed that FAS expression varied

among individuals, with nTPM values ranging from 5.2 to 67.2.

Conclusion: This study provides valuable insights into the involvements and

characteristics of FAS in lung cancer. Further studies are needed to investigate

the clinical significance of FAS alterations in lung cancer and to explore the

potential of targeting FAS for therapeutic intervention.
KEYWORDS

apoptosis, bioinformatics, data mining, FAS, in silico, lung carcinoma
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1 Introduction

Lung cancer is the leading cause of cancer deaths worldwide. In

2020 alone, lung cancer was responsible for about 2.2 million new

cases and nearly 1.8 million deaths (1). The cancer is more common

in men than in women, accounting for 14.3% and 11.4% of all new

cancer cases, respectively. Lung cancer also has a low 5-year survival

rate of about 10-20%, due in part to the fact that the disease is often

detected at an advanced stage, and accounts for nearly one-fifth of

all cancer deaths (1, 2). The number of new lung cancer cases and

deaths is expected to continue to increase over the next 15 years,

continuing the upward trend in lung cancer incidence and mortality

(3). An aging population and continued tobacco use in many

regions of the world are predicted to be the main causes of this

increase (4).

There are two main histologic types of lung cancer, namely small

cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) (5).

SCLC is a rare but aggressive form of lung cancer. On the other hand,

NSCLC is the most common form of lung cancer, accounting for

about 80-85% of all cases (5). NSCLC includes more subtypes than

SCLC, including lung adenocarcinoma (LUAD) and squamous cell

carcinoma (LUSC), which arises in glandular and squamous cells,

respectively. However, the role of FAS in lung cancer subtypes,

particularly LUAD and LUSC, remains poorly understood

concerning its gene expression, mutational landscape, and

clinical relevance.

Like other cancers, lung cancer exhibits several hallmarks that

are commonly associated with the disease (6, 7). One of these

hallmarks is the evasion of apoptosis, a mechanism in which the Fas

receptor plays an important role. The transmembrane receptor

belongs to the TNF receptor (TNFR) superfamily, consists of 319

amino acids and has a size of about 48 kDa. The protein consists of a

TNFR-like domain at its N-terminus, which is rich in cysteines and

necessary for interaction with Fas ligand (FasL) (8). It also contains

a death domain near the carboxyl terminus that is essential for

interaction with FasL. When FasL binds to Fas receptor

homotrimers, the receptor is activated and recruits the adaptor

protein, Fas-associated death domain (FADD), which in turn

recruits procaspase-8 to form the death-inducing signaling

complex (DISC) (9). Procaspase-8 is cleaved in the DISC into the

active caspase-8, which then triggers activation of the caspase

cascade, leading to cellular apoptosis.

In addition to apoptosis, the Fas/FasL pathway is also involved

in the initiation of other cellular responses. These include

maintenance of immune homeostasis, cell migration, and control

of cancer cell invasiveness through regulation of mitogen-activated

protein kinase and nuclear factor kappa B activation (10, 11). Apart

from that, the Fas signaling pathway has been shown to drive cancer

stemness through various mechanisms, such as activation of the

ERK-JAG1 axis and the type I interferon/STAT1 axis (12, 13).

While these studies have implicated FAS in cancer progression and

response to therapy, studies exploring FAS gene expression and its

potential role as a prognostic biomarker in lung cancer, particularly

in NSCLC, are limited.

Given the important role of the Fas receptor in various aspects

of oncogenesis, variations in the FAS gene have been shown to
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influence the risk and prognosis of many cancers (14–19). These

effects are thought to be due to differential expression of FAS and its

co-expressed genes in tumor cells compared with normal cells.

However, the expression, prognostic significance and molecular

interactions of FAS in lung cancer have not been systematically

studied. We hypothesize that FAS gene expression is significantly

altered in lung cancer compared to normal tissue and that genetic

alterations, such as promoter methylation and mutations, could

influence disease progression. However, the exact alterations are

often not well-understood. For example, while FAS downregulation

has been reported in lung cancer, there are also studies that show

that can promote lung cancer growth in vivo (20, 21). The

availability of genetic data in online tumor databases could

provide useful information on the characteristics and potential

role of FAS gene expression as a prognostic biomarker in cancers.

Further, the potential modulation of FAS expression by patient

characteristics such as age and smoking status in lung cancer

context requires more detailed investigation. The clinical

implications of understanding FAS expression in lung cancer are

significant. If FAS expression and alterations are shown to have a

prognostic impact, this could inform the development of new

therapeutic approaches targeting the FAS pathway. Therefore, in

this study, we performed data mining in online tumor databases to

better understand the expression, prognostic significance and

molecular interactions of FAS in lung cancer. This study aims to

better understand the expression patterns, promoter methylation,

genomic alterations, and potential protein-protein interactions of

FAS in lung cancer, which could provide new insights into its role as

a prognostic biomarker.
2 Materials and methods

2.1 Sample selection and preprocessing

All data used in this study were taken directly from publicly

available databases and no additional pre-processing steps were

performed. Sample selection criteria (i.e., inclusion of cancerous or

normal tissue) were provided by the respective databases (e.g.,

TCGA, GEO, and Human Protein Atlas) and included data that

passed the quality controls provided by the curators of the

databases. We did not apply any specific inclusion or exclusion

criteria beyond those specified in the databases. As all samples

analyzed were from human subjects, biological replicates were not

included in the analysis.
2.2 Gene expression analysis

The mRNA expression of FAS in human cancers was studied

using GENT2 (http://gent2.appex.kr/gent2/), which extracts

microarray data from the NCBI GEO database (22). GENT2

compiles gene expression profiles across a wide range of cancer

types, allowing for the exploration of differential expression patterns

in large datasets. Its strengths lie in its large sample size and robust

statistical processing, but it is limited by the dependency on
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microarray data, which can be subject to batch effects and platform-

specific biases. Subsequently, differential expression of FAS between

lung cancer and normal lung tissue was examined using GEPIA2

(http://gepia2.cancer-pku.cn/), which extracts data from The

Cancer Genome Atlas (TCGA) (23). GEPIA2 is a web-based tool

specifically designed for cancer gene expression profiling and

survival analysis based on RNA-Seq data from TCGA and GTEx,

offering statistical significance testing through analysis of variance

(ANOVA) and t-tests with FDR correction to control for multiple

comparisons. Subgroup analysis of the TCGA expression data in

different clinicopathological features was performed using

UALCAN (http://ualcan.path.uab.edu) (24). UALCAN is a

comprehensive, user-friendly platform for investigating cancer

omics data with a focus on subgroup analysis based on

clinicopathological parameters, using data from TCGA. The

Human Protein Atlas database (https://www.proteinatlas.org/)

was used to examine gene expression at the protein level through

immunohistochemistry images (25).
2.3 Promoter methylation analysis

To determine whether the differential gene expression was

driven by promoter methylation, the methylation level of FAS in

lung cancers and paired normal tissues were compared using the

UALCAN database. Methylation analysis in UALCAN used TCGA

level-3 data processed through beta-values ranging from 0 to 1,

where values closer to 0 indicate unmethylated CpG sites and values

closer to 1 indicate fully methylated sites. Statistical comparisons

between tumor and normal tissues were performed using a two-

sample t-test, with correction for multiple comparisons using FDR.
2.4 Mutation and copy number
alteration analysis

The presence and characteristics of FAS gene alterations,

including mutations and copy number alterations, were analyzed

using cBioPortal (https://www.cbioportal.org/), which contains

information on various types of cancer genomics data (26).

cBioPortal aggregates data from multiple sources, including

TCGA and other cancer genomics projects. Mutational data are

derived from whole-exome and whole-genome sequencing, and

copy number alterations (CNAs) are identified using GISTIC 2.0

algorithms. Statistical analysis was performed using Fisher’s exact

tests for comparing mutations.
2.5 Protein-protein interaction analysis

The protein-protein interaction networks of FAS were then

reconstructed using the STRING (http://string.embl.de/) (27) and

GeneMANIA (https://genemania.org/) (28) databases. STRING

integrates known and predicted protein-protein interactions from

multiple sources, including experimental data, computational

prediction methods, and text mining, with interaction confidence
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scores based on the strength of evidence. GeneMANIA provides

predictions using functional genomics data, including co-

expression, colocalization, and physical interaction data. Both

platforms employ machine-learning algorithms to predict novel

interactions, but predictions can sometimes be prone to false

positives or depend on incomplete datasets. STRING compiles

data on protein-protein interactions from multiple sources and

makes computational predictions to obtain a comprehensive global

network of the interactions, whereas GeneMANIA uses extensive

genomic and proteomic data to predict protein-protein

interactions.
2.6 Co-expression analysis

Genes co-expressed with FAS are identified using GeneMANIA

and UALCAN. GeneMANIA uses a combination of Pearson

correlation coefficients and other statistical methods to identify

genes that show similar expression patterns, which are then

displayed in a network. UCSC Xena (https://xenabrowser.net/

heatmap/) was then used to generate a correlation heat map with

TCGA datasets to visualize the data (29). UCSC Xena applies

Pearson correlation to measure the strength of co-expression

between FAS and its associated genes, with statistical significance

provided directly by the database.
2.7 Pathway analysis

Pathways involving FAS and the most frequently coexpressed

genes were analyzed using Enrichr (https://maayanlab.cloud/

Enrichr/), a gene set enrichment analysis tool, with default

parameters (30). A Fisher’s exact test was used to evaluate the

enrichment of gene sets within biological pathways, adjusting for

multiple testing using the Benjamini-Hochberg method. GO terms

are categorized into biological processes, molecular functions, and

cellular components, and significance is determined through odds

ratios and combined scores, which take into account both the

magnitude of enrichment and significance. Potential limitations

include reliance on existing annotations, which may not fully

capture the complexity of gene interactions. Based on the GO

terms, the input genes were categorized into biological processes,

molecular functions, and cellular components.
2.8 Survival analysis

The prognostic significance of FAS in lung cancer was assessed

using the OSluca web server (http://bioinfo.henu.edu.cn/LUCA/

LUCAList.jsp), which performs hazard ratio (HR) analysis of data

from various datasets, such as TCGA and GEO (31). Kaplan-Meier

survival analysis was performed, along with log-rank tests, to

determine the statistical significance of survival differences

between groups based on FAS expression levels. The HR and 95%

confidence intervals are provided for each dataset, and multiple

comparisons are controlled using FDR correction. Results are
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pooled across datasets when appropriate to improve the statistical

power of the analysis. HRs from the eligible datasets were then

combined to estimate the impact of FAS gene expression on overall

survival of lung cancer patients.
2.9 Protein expression

Data on FAS gene expression were retrieved from the Human

Protein Atlas. This dataset comprised 578 samples from various tissues,

with associated metadata including age, sex, and specific tissue type

for each sample. The normalized transcripts per million (nTPM) values

for FAS gene expression were extracted from the dataset.

Immunohistochemistry images from the Human Protein Atlas were

reviewed to confirm FAS protein expression across various tissues.
2.10 In vitro validation

Expression of FAS in lung cancer cell lines was examined using

qRT-PCR. H1299, H1993, A549 and the normal bronchial epithelial

cell line HBE were purchased from Shanghai Zhongqiao Xinzou

Biotechnology Co., Ltd. and cultured in DMEM medium (Solarbio,

Beijing, China) with 10% FBS and 1% penicillin-streptomycin.

TRIzol reagent (from Invitrogen, Carlsbad, CA, USA) was used

for total RNA extraction and RNA was transcribed into cDNA

using ReverTra Ace qPCR RTMaster Mix with gDNA Remover Kit.

The qRT-PCR was performed using SYBR Premix Ex Taq II on the

Mx3005P quantitative real-time fluorescence PCR system (from

Stratagene, San Diego, CA, USA), and GAPDH was selected as the

endogenous control for mRNA. The primer sequences are FAS,

forward 5’-TCT GGT TCT TACGTC TGT TGC-3’, reverse 5’-CTG

TGCAGT CCC TAG CTT TCC-3’;GAPDH, forward 5’-GGAGCG

AGA TCC CTC CAA AAT-3’, reverse 5’-GGC TGT TGT CAT

ACT TCT CAT GG-3’. The reaction conditions were as follows:

pre-denaturation at 95°C for 10 minutes, denaturation at 95°C for 5

seconds, annealing at 60°C for 30 seconds, for a total of 45 cycles.

The target genes and the internal reference gene were amplified for

each sample. Each sample group included three replicate wells. Data

analysis was performed using the 2(-DDCt) method.
3 Results

3.1 Gene expression analysis

Using GENT2, data on FAS gene expression were available for

the GPL570 and GPL96 platforms. For both platforms, gene

expression of FAS was found to be significantly altered in several

cancer types (see Supplementary Table 1). In lung cancer, the

expression of FAS was found to be significantly downregulated (P

< 0.001 and log2FC = -0.569 for GPL570; P < 0.001 and -0.263 for

GPL96). Expression data in GEPIA also showed that the expression

of FAS was lower in tumor tissues compared with normal lung

tissues in both LUAD (TPM =12.17 in tumor tissues and 28.41 in

normal tissues) and LUSC (TPM =10.16 in tumor tissues and 29.52
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in normal tissues) (Figure 1A). A similar observation was also found

in the UALCAN database (P=5.61×10-8 for LUAD, P=5.75×10-12

for LUSC; Figure 1B). At the protein level, data from The Human

Protein Atlas showed that in a sample of 578 lung cancer samples,

the average nTPM of FAS was 21.7 (range: 5.2-67.2, median: 19.1).

We also performed a subgroup analysis of the expression of FAS

in TCGA samples using UALCAN. In all stages of LUAD, the

expression of FAS was lower than in normal tissues (Figure 1C).

However, no significant difference was found between the different

stages of cancer (P < 0.01). Similarly, no significant difference in

FAS expression was observed between men and women

(Figure 1D), different nodal metastasis status (Figure 1E), and

different TP53 mutants (Figure 1F). Interestingly, when stratified

by patient age, it was found that the older the patients, the higher

the expression of FAS in general, although the difference between

the different age groups was not statistically significant (Figure 1G).

Similarly, there was no significant difference in FAS gene expression

between nonsmokers and smokers, but former smokers (who had

quit smoking for less than 15 years) had higher FAS gene expression

than current smokers (Figure 1H, P = 0.019).

In LUSC, a similar observation was found for different cancer

stages (Figure 1I), sex (Figure 1J), nodal metastasis status (Figure 1K),

and TP53 mutation (Figure 1L). There was also no difference in the

expression of FAS among different age groups, but the expression was

more constant (i.e., showing no trend of increasing expression with

increasing age) (Figure 1M). Regarding smoking status, there was also

no significant difference in FAS gene expression between nonsmokers

and smokers (Figure 1N). However, former smokers who had quit

smoking for less than 15 years had significantly higher FAS

expression than those who had quit smoking for more than 15

years (P < 0.01).
3.2 Promoter methylation analysis

The extent of FAS promoter methylation in TGCA samples was

observed using UALCAN. In LUAD, the median beta-value of FAS

promoter methylation in normal tissue is 0.152 (range: 0.135-0.178),

whereas the value in tumor tissue is 0.148 (range: 0.103-0.195). There

was no statistically significant difference between normal and LUAD

tissue (P=0.149; Figure 2A). For LUSC, the median beta-value in

normal and tumor tissues was 0.112 (range: 0.093-0.134) and 0.118

(range: 0.064-0.197), respectively. Beta-value was significantly higher

in LUSC tissues than in normal tissues (P < 0.001; Figure 2B).
3.3 Mutation and copy number
alteration analysis

We used cBioportal to investigate the prevalence and types of

genomic alterations of the FAS gene in lung cancer patients.

Information was available from a total of six TCGA datasets

(Firehose Legacy, Nature 2014 and PanCancer Atlas for LUAD;

Firehose Legacy, Nature 2012 and PanCancer Atlas for LUSC).

Overall, FAS alterations were found in 46 (1.9%) of the 2478

samples (Figure 2C). Specifically, 36 (1.45%) of the samples had
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deep deletions and 10 (0.40%) had missense mutations (Table 1;

Figure 2D). In LUAD, the missense mutations included p.E114V

(N=3) and p.C143F (N=1) in the TNFR-like cysteine-rich domain,

p.E261K (N=1) and p.K300E (N=1) in the death domain. In

contrast, for LUSC, mutations included p.I262M (N=1) in the

death domain and p.S20F (N=2) and p.T219A (N=1) in the non-

domain region of the protein product.
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3.4 Protein-protein interaction analysis

STRING analysis scored the protein-protein interaction using a

score from 0 to 1, where 1 represents the highest probability that the

interaction is true based on current evidence. Several proteins were

shown to interact with FAS, namely FASLG (score = 0.999), CASP8

(score = 0.999), FADD (score = 0.999), CASP10 (score = 0.997),
FIGURE 1

Expression of FAS in lung cancer and normal tissues. (A) Expression data from GEPIA. (B) Expression data from UALCAN. (C) Expression of FAS in
different stages of LUAD. (D) Expression of FAS in men and women with LUAD. (E) Expression of FAS in LUAD patients with different nodal metastasis
status. (F) Expression of FAS in LUAD patients with different TP53 mutations. (G) Expression of FAS in LUAD patients with different ages. (H) Expression of
FAS in LUAD patients of different smoking status. (I) Expression of FAS in different stages of LUSC. (J) Expression of FAS in men and women with LUSC.
(K) Expression of FAS in LUSC patients with different nodal metastasis status. (L) Expression of FAS in LUSC patients with different TP53 mutations.
(M) Expression of FAS in LUSC patients with different ages. (N) Expression of FAS in LUSC patients of different smoking status. * Statistically
significant (P<0.05).
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CFLAR (score = 0.996), DAXX (score = 0.995), PTPN13 (score =

0.995), FAF1 (score = 0.992), RIPK1 (score = 0.985), TRADD (score

= 0.983) (Figure 3A). GeneMANIA, on the other hand, categorizes

related genes into several categories, namely (1) physical interaction

(protein-protein interaction), (2) shared protein domains, (3)

colocalization (when genes are expressed in the same tissue or

proteins are found in the same location), (4) pathway (two proteins

are related when they are involved in the same signaling pathway),

and (5) predicted protein interactions. For physical interaction, FAS

has been shown to interact with BID, CASP10, CASP8, CFLAR,

DAXX, FADD, FAF1, FAIM2, FASLG, MAP3K5, NOL3, PLEC,

PRKCA, RAP1A, RIPK1, TNFRSF10B, TNFSF10, TP63, and

TRADD. In addition, FADD, CASP8, CFLAR, CASP10, NOL3,

TNFRSF10B, RIPK1, and TRADD shared protein domains with

FAS. Proteins colocalizing with FAS include FASLG, CASP8, TP63,

FADD, PRKCA, BID, DAXX, MAP3K5, and RAP1A. Besides,

proteins that participate in the same signaling pathway as FAS

include FADD, FASLG, CASP8, CFLAR, CASP10, BID, DAXX,
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RIPK1, TRADD, FAF1, MAP3K5, FCMR, and FAIM2. Finally,

FAIM2, NOL3, TNFRSF10B, TNFSF10, FADD, CASP8, DAXX,

and FAF1 are predicted to interact with FAS. The overall

interaction network of FAS, as generated by GeneMANIA, is

shown in Figure 3B.
3.5 Co-expression analysis

Analysis with GeneMANIA showed that CASP10, CFLAR,

PRKCA, TNFRSF10B, TNFSF10, and TRADD are frequently co-

expressed with FAS. Specifically for LUAD, UALCAN revealed 11

genes whose expression correlates with that of FAS, namely ARL6IP5

(Pearson’s coefficient, r = 0.61), RALB (r = 0.56), ELK3 (r = 0.53),

CD44 (r = 0.52), DPYD (r = 0.52), GLIPR1 (r = 0.52), DAPP1 (r =

0.51), AIM1 (r = 0.51), LHFPL2 (r = 0.5), CFLAR (r = 0.5), and

MDFIC (r = 0.5). On the other hand, in LUSC, 90 co-expressed genes

were found, with the top 10 being VCAM1 (r = 0.72), TNFRSF9 (r =

0.69), RELB (r = 0.69), NFKB2 (r = 0.68), BTN2A2 (r = 0.67), BIRC3 (r

= 0.67), SH2B3 (r = 0.67), PKDCC (r = 0.67), ZBTB46 (r = 0.66), and

JAK2 (r = 0.66) (for the full list, please see Supplementary Table 2).

Correlation heat maps generated by UCSC Xena showed for the top

five co-expressed genes in LUAD and LUSC are shown in Figure 3C.
3.6 Pathway analysis

Gene set enrichment analysis confirmed that FAS and its most

frequently co-expressed genes are involved in apoptosis-related

pathways. Specifically, in the biological processes category, FAS and

its co-expressed genes were found to be involved most predominantly

in negative regulation of extrinsic apoptotic signaling pathway via

death domain receptors (GO:1902042, P=2.53×10-18, adjusted

P=7.15×10-16, OR=1725.2, combined score=69899.68). In terms of
FIGURE 2

Promoter methylation, mutations and copy number status of FAS in lung cancer. (A) Promoter methylation level in LUAD. (B) Promoter methylation
level in LUSC. (C) Prevalence of FAS alterations in different TCGA lung cancer datasets. (D) Lollipop diagram showing the location of FAS mutations
in lung cancer. * Statistically significant (P<0.05).
TABLE 1 Prevalence of FAS alterations in lung cancer.

Dataset

Prevalence

Missense
mutations

Deep deletion

LUSC PanCancer Atlas 2/487 (0.41%) 13/487 (2.67%)

LUSC Firehose Legacy 1/501 (0.20%) 13/501 (2.59%)

LUSC Nature 2012 1/178 (0.56%) 3/178 (1.69%)

LUAD Nature 2014 1/230 (0.43%) 2/230 (0.87%)

LUAD PanCancer Atlas 4/566 (0.71%) 2/566 (0.35%)

LUAD Firehose Legacy 1/516 (0.19%) 3/516 (0.58%)

Combined 10/2478 (0.40%) 36/2478 (1.45%)
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molecular functions, the genes were found to participate mainly in

ubiquitin protein ligase binding (GO:0031625, P=5.937×10-6, adjusted

P=1.049×10-4, odds ratio=50.39, combined score=606.4). The genes

are also implicated in death-inducing signaling complex (GO:0031264,

P=3.78×10-24, adjusted P=5.29×10-23, odds ratio=46641, combined

score=2515479.09) in terms of cellular components.
3.7 Survival analysis

The OSluca web server contains survival data from 26 datasets.

Eleven of the datasets had a hazard ratio (HR) value greater than 1.0

(indicating poor prognosis), although 10 of these were without

statistical significance. Only the GSE68465 dataset showed borderline

statistical significance at P=0.042 (HR =1.348, 95% CI=1.012-1.797).

The remaining 15 datasets, which had an HR value of < 1.0, also did

not reach statistical significance. Pooled results from all these datasets

suggest that FAS expression has an HR of 1.302 (95% CI=0.935-1.139)

(P=0.530), indicating a lack of prognostic significance.
3.8 Protein expression

The expression levels of the FAS protein across various lung

cancer samples were investigated. From the dataset that comprised

578 samples, nTPM values of FAS protein in lung cancer samples

ranged from 5.2 to 67.2. The average nTPM value across all samples

was 21.7, with a median nTPM of 19.1. The standard deviation of

the nTPM values was 9.5, indicating variability in FAS expression

among the samples (Supplementary Table 3).
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3.9 In vitro validation

The expression levels of the FAS were investigated in three lung

cancer cell lines and a normal cell line. The relative expression of

FAS in lung cancer cell lines (H1299, H1993, A549) was

significantly lower than the normal bronchial epithelial cell line

(HBE), with GAPDH serving as the internal control. The difference

was statistically significant (p < 0.001 for H1299 and H1993, p <

0.0001 for A549; Figure 4; Supplementary Table 4).
4 Discussion

Apoptosis, a tightly regulated process of programmed cell death,

plays a crucial role in the pathogenesis of lung cancer. However, the

specific characteristics (in terms of expression, mutational and

epigenetic profiles, and protein and gene interactions) of apoptosis-

related genes such as FAS and their prognostic significance are not

well understood. In this study, we sought to clarify these unknowns

through an extensive search of online databases. As interpretation of

the impact of a genetic variant may vary depending on the specific

databases, it is important to consider multiple sources of information

when investigating the clinical and biological characteristics of a gene.

We therefore searched multiple databases (e.g., GENT2, GEPIA2,

and UALCAN for gene expression; STRING and GeneMANIA for

protein-protein interaction; etc.) to obtain a conclusive result about

the role of FAS in lung cancer. These databases were chosen due to

their extensive and curated datasets, wide adoption in cancer

research, and their ability to provide different layers of information.

For instance, GENT2 and GEPIA2 integrate data from large consortia
FIGURE 3

Protein-protein and genetic interactions of FAS. (A) Protein-protein interaction as predicted using STRING. (B) Overall protein-protein interaction
network of FAS. (C) Correlation heat maps for top three co-expressed genes.
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like TCGA and provide a detailed breakdown of gene expression

across cancers, whereas STRING and GeneMANIA focus on

elucidating protein and gene interaction networks, helping to

contextualize gene function in a broader biological network.

However, GENT2 and GEPIA2 are limited by their reliance on

bulk RNA sequencing and microarray data, which may obscure

cell-type-specific expression patterns, and they may not capture

transcript variants or post-transcriptional modifications. UALCAN

was selected because of its user-friendly interface and comprehensive

analysis of clinicopathological features, which allows for meaningful

subgroup analysis based on patient characteristics such as smoking

status, age, and tumor stage. A limitation of UALCAN is its

dependence on TCGA data, which, although extensive, may not be

representative of all population demographics, and batch effects or

data inconsistencies across studies can influence the outcomes.

STRING and GeneMANIA focus on interaction networks, but

STRING relies heavily on computational predictions and text

mining, which can introduce false positives, while GeneMANIA’s

predictions are not always experimentally validated, and both tools

may omit less well-characterized interactions. Nevertheless, the use of

multiple databases allowed us to ensure robustness of our findings

and reduce potential biases inherent in any single database (32).

Nonetheless, it is important to note that the use of in silico data

mining limits direct biological validation of our findings, and

experimental confirmation is needed in future studies. Nevertheless,

the findings of this study may provide valuable insight into the role of

FAS in the pathogenesis of lung cancer.
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One of the most important findings of this work is that FAS was

significantly downregulated in lung cancer, both in LUAD and

LUSC. The downregulation of FAS was also validated in our in vitro

analysis in three lung cancer cell lines, when compared against the

normal bronchial epithelial cell line HBE. However, it is important

to clarify that while this downregulation was statistically significant,

its clinical implications remain unclear, as no strong association

with patient prognosis was observed. In LUAD, we also observed

that former smokers (who had quit smoking for less than 15 years)

had higher FAS gene expression than current smokers. This

observation is not surprising, because smoking cessation is known

to reverse smoking-induced DNA methylation changes (33). Thus,

smoking cessation can restore the expression of FAS to levels that

are close to those of nonsmokers. However, this finding should be

interpreted with caution as it does not account for confounding

variables such as the extent and duration of smoking exposure

before quitting, which can significantly influence gene expression

patterns. Future studies should aim to collect more detailed

smoking history data to better understand these interactions. An

interesting finding was noted in LUSC, where former smokers who

had quit smoking for less than 15 years had significantly higher FAS

expression than those who had quit smoking for more than 15

years. This observation is counterintuitive because, according to the

logic above, the longer a person has quit smoking, the higher the

FAS gene expression should be. However, this observation did not

take into account the intensity and duration of smoking before

quitting, which may also affect gene expression (34). In addition,

gene expression may also be influenced by other factors such as age,

sex, and other genetic and nongenetic factors that may interact with

smoking status and affect the expression of FAS. Future studies are

needed to clarify the underlying mechanisms and potential clinical

implications of these findings.

At the protein level, we observed variability in the nTPM levels of

FAS protein in the lung cancer samples, ranging from 5.2 to 67.2,

suggesting considerable heterogeneity in FAS protein expression

across tumor samples. While many samples have moderate FAS

expression, some tumors have either significantly elevated or reduced

levels of the protein. High FAS expression could indicate an increased

capacity for apoptosis in some tumors, possibly serving as a

mechanism for tumor suppression, while lower levels of FAS

contribute to apoptosis evasion, facilitating tumor progression and

resistance to cell death. This differential expression could also reflect

differences in the molecular subtype of lung cancer, the tumor

microenvironment or the influence of external factors such as

smoking or previous treatments. Understanding the causes and

consequences of this variability is critical as it may provide insight

into tumor behavior, prognosis and therapeutic response, particularly

in relation to therapies targeting apoptotic pathways. Further studies

are needed to determine how FAS protein levels correlate with clinical

outcomes and treatment efficacy in lung cancer.

Given the significantly different expression levels between lung

tumor tissues and their normal counterparts, we next sought to

determine whether there was a significant difference in the

methylation levels of cancerous and noncancerous tissues of the

lung. We did not find a statistically significant difference between
FIGURE 4

Relative expression of FAS in lung cancer cell lines and normal
bronchial epithelial cells. The bar graph shows the relative
expression levels of FAS in normal bronchial epithelial cell line
(HBE) and lung cancer cell lines (H1299, H1993, A549). Data are
presented as mean ± SD. Statistical significance is indicated by
asterisks: ***p < 0.001, ****p < 0.0001 compared to HBE.
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normal and LUAD tissues. However, beta-value was significantly

higher in LUSC than in normal lung tissues, indicating greater

methylation in cancerous tissues. Nevertheless, both normal and

LUSC tissues have low levels of DNA methylation (beta-value <

0.3), suggesting that methylation is unlikely to play a dominant role

in affecting the expression of FAS. Other factors, such as noncoding

RNAs, silencers, enhancers, and transcription factors, might also

affect FAS expression (35–37). Indeed, FAS is known to be

transcriptionally regulated by members of the p53 family (38),

and several silencer and enhancer sequences in the FAS gene have

also been identified since the 1990s (39). More recently, antisense

RNA of FAS, FAS-AS1 or Saf, has been identified, and is thought to

affect the expression of FAS and shown to have functional effects

(40, 41). Thus, further studies are needed to investigate the role of

these factors in affecting FAS expression. It will also be important to

examine whether the methylation status of FAS is tissue-specific

and whether certain lung cancer subtypes exhibit unique epigenetic

signatures that could provide therapeutic targets.

We have also shown that alterations in FAS are a rare event in lung

cancer, occurring in 1.9% of all samples. Deep deletions represent the

predominant form of FAS alterations. FAS deletions have been

observed in many cancers, including prostate, colorectal, and gastric

cancers, but the exact prevalence is not well known because previous

studies have typically used small sample sizes (42–44). FAS deletions

have been associated with impaired apoptosis, which may serve as an

important mechanism of carcinogenesis (44). In addition to small

sample sizes, discrepancies in the reported frequency of FAS deletions

may also arise from differences in methodologies, such as the use of

different sequencing platforms or variant calling algorithms, which can

affect the detection of deletions. Furthermore, variations in patient

populations, including differences in tumor stage, histological subtype,

or demographic factors like age and smoking status, could contribute to

variability in FAS deletion prevalence across studies. In vivo studies

found that deletion of FAS can increase the size and number of

intestinal adenomas in mice (45). Another study showed that

deletion of FAS, when accompanied by deletion of PTEN, is

associated with poor prognosis in hormone-refractory prostate

cancer (43). However, deletion of FAS has been shown not to affect

its expression (42). It is also difficult to determine whether these

genomic changes have a significant clinical impact in lung cancer, as

the frequency of these FAS alterations was low. Therefore, the

significance of FAS deletion in carcinogenesis requires further research.

We also identified missense mutations in 0.40% of lung cancer

samples. The mutations present in LUAD are different from those

in LUSC. However, the small number of affected samples does not

allow us to reliably determine whether the findings can be

interpreted as different mechanisms of carcinogenesis in the two

lung cancer subtypes. The functional consequences of these variants

have not been thoroughly studied, so it is not known whether they

play a driving role in lung cancer. Nevertheless, the p.E261K

mutation found in LUAD and the p.I262M mutation found in

LUSC, both of which result in amino acid changes in the death

domain of the Fas protein, have been linked to autoimmune

lymphoproliferative syndrome (46–48). In vitro studies revealed

that the p.E261K mutation can impair the process of reorganization

of Fas into large protein islands and also has a dominant-negative
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property that adversely affects the normal wild-type Fas during the

formation of the Fas-FADD signaling complex (47, 48). While these

findings suggest potential functional effects of these mutations, the

lack of statistical significance and the small number of cases prevent

us from making broad generalizations. Additional functional

studies are needed to determine whether these mutations have

oncogenic or tumor-suppressive roles in lung cancer.

Genes and proteins often engage in various forms of molecular

interactions, such as gene-gene and protein-protein interactions, to

perform their biological functions (49, 50). Therefore, it is important to

understand these interactions to decipher the complexity of biological

systems. We have performed protein-protein interactions and genetic

co-expression analyses to identify proteins and genes that may interact

with FAS. Perhaps not surprisingly, many of the identified genes/

proteins, such as FASLG, CASP8, FADD, CASP10, BID, TRADD, and

CFLAR, are involved in the apoptotic process. This finding supports

the hypothesis that FAS and its associated genes and proteins play a key

role in regulating apoptosis in lung cancer. However, the lack of

mechanistic studies in lung cancer cells limits our ability to

determine the functional importance of these interactions.

Investigating these interactions in vitro or in vivo could provide

deeper insights into their relevance in lung cancer progression (51).

It is interesting to note that 90 genes were significantly co-expressed in

LUSC, whereas only 11 genes were significantly co-expressed in LUAD,

which may reflect the differences in molecular and cellular processes

involved in the two lung cancer subtypes. The higher number of co-

expressed genes in LUSC suggests that the molecular networks and

signaling pathways in LUSC are more complex and interconnected

than those in LUAD. Indeed, a recent study also demonstrated that

many cancer-related signaling pathways, including Notch, Hedgehog,

Wnt, and ErbB pathways, were significantly overrepresented in LUSC

compared to LUAD (52). Another possible explanation for this

observation is that compared to LUAD, LUSC is more frequently

associated with tobacco smoking, which can cause extensive genomic

damage and activate many cellular signaling pathways, including

inflammation and oxidative stress, that can further drive cancer

development (52, 53). The involvement (or lack thereof) of these

signaling pathways in oncogenesis may also contribute to the observed

differences in co-expression between the two types of lung cancer. The

clinical significance of these differences in co-expressed genes between

LUAD and LUSC is not well understood and represents a future

research direction. Further exploration into the functional

consequences of these differences could reveal important subtype-

specific therapeutic targets and guide personalized treatment

strategies (54).

The lack of significant prognostic value for FAS in this study,

despite it being downregulated in lung cancer, highlights an

important aspect of cancer research — the importance of negative

findings. While FAS plays a role in several types of cancer, its role in

lung cancer may be more context-dependent or its prognostic

significance may be overshadowed by other factors. This negative

result is valuable because it prompts future research to consider more

complex, multifactorial prognostic models that include additional

markers or signaling pathways. It also suggests that the role of FAS in

lung cancer may not be clear, so its interactions with other apoptotic

or non-apoptotic metabolic pathways and its behavior under different
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conditions of the tumor microenvironment need to be further

investigated (55). Negative results such as these help to refine

research questions and focus on promising targets or combinations

of biomarkers that could provide clinically meaningful

prognostic information.

Despite successfully demonstrating the reduced expression of the

FAS gene in lung cancer, survival analysis revealed no prognostic

significance of the gene in lung cancer. This suggests that although

downregulation of FAS is a common feature of lung cancer, it may

not be a reliable predictor of disease outcome. This result was not

consistent with previous findings in lung and other cancers, which

showed a significant association between expression of FAS and

cancer prognosis (56–60). However, it should be noted that previous

studies on the prognostic significance of the FAS gene used small

sample sizes, which may lead to inaccurate conclusions (61). Our in

silico data mining combined survival data from 26 datasets, which

greatly improved the statistical power required for accurate analysis.

The lack of prognostic significance in our study may indicate that

while FAS plays a role in tumor initiation, its downregulation may

not be critical for disease progression or metastasis in lung cancer.

One possible explanation for the limited prognostic significance of

FAS is that although the gene plays a role in the early stages of lung

cancer development, its expression may not be critical for tumor

progression or metastasis. However, this postulation is not supported

by several studies that showed that FAS can promote progression and

metastasis in various cancers (10, 13, 62, 63). Nevertheless, none of

these studies were conducted in lung cancer cells, and it remains

unclear whether FAS plays a role in lung cancer cell progression and

metastasis. Further in vitro and in vivo studies are needed to explore

the role of FAS in lung cancer metastasis, particularly to assess

whether its downregulation affects the invasive potential of lung

cancer cells. It is also possible that there are other confounding factors

or co-occurring genes that affect lung cancer progression and patient

survival, which could limit the prognostic significance of FAS

expression in the cancer. The role of FAS and other factors in

influencing lung cancer progression and metastasis deserves further

investigation. Future studies should aim to investigate whether FAS

expression in combination with other apoptotic markers could

provide a more accurate prognostic model for lung cancer.
5 Conclusions

In conclusion, we have successfully characterized the role of FAS

in lung cancer. Specifically, we have shown that FAS is significantly

downregulated in lung cancer and characterized its mutational and

methylation profiles. We also identified its protein-protein

interactions and co-expressed genes and reconfirmed the important

role of FAS and its co-expressed genes in apoptosis-related pathways.

Finally, we have shown that despite the above observations, the

prognostic significance of FAS in lung cancer is limited. The clinical

implications of FAS downregulation, alterations, and molecular

interactions, as well as the differences between LUAD and LUSC in

these features, remain to be investigated. Thus, there is a need for

more comprehensive and integrative approaches to understand the

molecular and cellular mechanisms of FAS that drive lung cancer
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progression. Future studies should focus on functional analyses of

FAS and its mutations in lung cancer cells to better understand how

downregulation of FAS contributes to apoptosis evasion. In addition,

it will be important to investigate the role of non-coding RNAs,

transcription factors and other regulatory elements that may

influence FAS expression. Further research should also investigate

the potential of FAS as part of a biomarker panel in combination with

other apoptotic genes for a more accurate prognosis. Finally, in vivo

studies are needed to assess whether modulation of FAS expression

could have therapeutic potential in lung cancer, either as a direct

target or in combination with existing treatments.
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10. Guégan JP, Ginestier C, Charafe-Jauffret E, Ducret T, Quignard J-F, Vacher P,
et al. CD95/Fas and metastatic disease: What does not kill you makes you stronger.
Semin Cancer Biol. (2020) 60:121–31. doi: 10.1016/j.semcancer.2019.06.004

11. Williams JW, Ferreira CM, Blaine KM, Rayon C, Velázquez F, Tong J, et al. Non-
apoptotic fas (CD95) signaling on T cells regulates the resolution of th2-mediated
inflammation. Front Immunol. (2018) 9:2521. doi: 10.3389/fimmu.2018.02521

12. Qadir AS, Stults AM, Murmann AE, Peter ME. The mechanism of how CD95/
Fas activates the Type I IFN/STAT1 axis, driving cancer stemness in breast cancer. Sci
Rep. (2020) 10:1310. doi: 10.1038/s41598-020-58211-3

13. Li L-J, Chang PM-H, Li C-H, Chang Y-C, Lai T-C, Su C-Y, et al. FAS receptor
regulates NOTCH activity through ERK-JAG1 axis activation and controls oral cancer
stemness ability and pulmonary metastasis. Cell Death Discov. (2022) 8:101.
doi: 10.1038/s41420-022-00899-5

14. Tan SC. Low penetrance genetic polymorphisms as potential biomarkers for
colorectal cancer predisposition. J Gene Med. (2018) 20:e3010. doi: 10.1002/jgm.3010

15. Tan SC, Ankathil R. Genetic susceptibility to cervical cancer: role of common
polymorphisms in apoptosis-related genes. Tumour biology: J Int Soc
Oncodevelopmental Biol Med. (2015) 36:6633–44. doi: 10.1007/s13277-015-3868-2

16. Tan SC, Ismail MP, Duski DR, Othman NH, Ankathil R. FAS c.-671A>G
polymorphism and cervical cancer risk: a case-control study and meta-analysis. Cancer
Genet. (2017) 211:18–25. doi: 10.1016/j.cancergen.2017.01.004

17. Daripally S, Peddi K. 5-year cumulative survival of oral cancer patients with FAS
and FASL SNPs. Meta Gene. (2021) 27:100826. doi: 10.1016/j.mgene.2020.100826

18. Hoxhaj I, Vukovic V, Boccia S, Pastorino R. Single nucleotide polymorphisms
and the risk of developing a second primary cancer among head and neck cancer
patients: a systematic literature review and meta-analysis. BMC Cancer. (2021) 21:660.
doi: 10.1186/s12885-021-08335-0

19. Chen Y, Wang H, Yan Y, Ren M, Yan C, Wang B. Correlation between FAS
single nucleotide polymorphisms and breast carcinoma susceptibility in Asia. Med
(Baltimore). (2019) 98:e18240. doi: 10.1097/md.0000000000018240

20. Zhang Y, Liu Q, Zhang M, Yu Y, Liu X, Cao X. Fas signal promotes lung cancer
growth by recruiting myeloid-derived suppressor cells via cancer cell-derived PGE21.
J Immunol. (2009) 182:3801–8. doi: 10.4049/jimmunol.0801548

21. Huang X, Xiao S, Zhu X, Yu Y, Cao M, Zhang X, et al. miR-196b-5p-mediated
downregulation of FAS promotes NSCLC progression by activating IL6-STAT3
signaling. Cell Death Dis. (2020) 11:785. doi: 10.1038/s41419-020-02997-7

22. Park S-J, Yoon B-H, Kim S-K, Kim S-Y. GENT2: an updated gene expression
database for normal and tumor tissues. BMC Med Genomics. (2019) 12:101.
doi: 10.1186/s12920-019-0514-7

23. Tang Z, Kang B, Li C, Chen T, Zhang Z. GEPIA2: an enhanced web server for
large-scale expression profiling and interactive analysis. Nucleic Acids Res. (2019) 47:
W556–W60. doi: 10.1093/nar/gkz430

24. Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M,
et al. UALCAN: An update to the integrated cancer data analysis platform. Neoplasia.
(2022) 25:18–27. doi: 10.1016/j.neo.2022.01.001
Frontiers in Oncology 11181
25. Sjöstedt E, ZhongW, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas
of the protein-coding genes in the human, pig, and mouse brain. Science. (2020) 367:
eaay5947. doi: 10.1126/science.aay5947

26. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio
cancer genomics portal: an open platform for exploring multidimensional cancer
genomics data. Cancer Discov. (2012) 2:401–4. doi: 10.1158/2159-8290.cd-12-0095

27. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The
STRING database in 2021: customizable protein–protein networks, and functional
characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. (2020) 49:
D605–D12. doi: 10.1093/nar/gkab835

28. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al.
GeneMANIA update 2018. Nucleic Acids Res. (2018) 46:W60–w4. doi: 10.1093/nar/
gky311

29. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al.
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landscape of mast cells in
esophageal cancer through
single-cell RNA sequencing
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Luzhou, China, 3China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
Background: Esophageal cancer (EC) is a major health issue, ranking seventh in

incidence and sixth in mortality worldwide. Despite advancements in

multidisciplinary treatment approaches, the 5-year survival rate for EC remains

low at 21%. Challenges in EC treatment arise from late-stage diagnosis, high

malignancy, and poor prognosis. Understanding the tumor microenvironment is

critical, as it includes various cellular and extracellular components that influence

tumor behavior and treatment response. Mast cells (MCs), as tissue-resident

immune cells, play dual roles in tumor dynamics. High-throughput single-cell

RNA sequencing offers a powerful tool for analyzing tumor heterogeneity and

immune interactions, although its application in EC is limited.

Methods: In this study, we investigated the immune microenvironment of EC

using single-cell RNA sequencing and established a comprehensive immune

profile. We also performed analysis of upstream transcription factors and

downstream pathway enrichment to further comprehensively decipher MCs in

EC. Besides, we performed knockdown experiments to explore the role of

epidermal growth factor receptor (EGFR) signaling pathway in MCs-tumor cell

interactions, highlighting its potential as a prognostic marker. Finally, we

constructed a prognostic model for EC, which provided valuable suggestions

for the diagnosis and prognosis of EC.

Results: Our analysis identified 11 major cell types, of which MCs were

particularly present in pericarcinoma tissues. Further grouping of the 5,001

MCs identified 8 distinct subtypes, including SRSF7-highly expressed MCs,

which showed strong tumor preference and potential tumor-promoting

properties. Moreover, we identified the key signaling receptor EGFR and

validated it by in vitro knockdown experiments, demonstrating its cancer-

promoting effects. In addition, we established an independent prognostic

indicator, SRSF7+ MCs risk score (SMRS), which showed a correlation between

high SMRS group and poor prognosis.
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Conclusion: These findings illuminate the complex interactions within the tumor

microenvironment of EC and suggest that targeting specific MCs subtypes,

particularly via the EGFR signaling pathway, may present novel therapeutic

strategies. This study establishes a comprehensive immune map of EC, offering

insights for improved treatment approaches.
KEYWORDS

single-cell RNA sequencing, mast cells, EGFR signaling pathway, prognostic model,
esophageal cancer
GRAPHICAL ABSTRACT

Article research flow chart. First, we downloaded the clinical data of three esophageal cancer patients from TCGA, and after a series of data proces-
sing, we obtained the UMAP map of esophageal cancer. After that, we focused on MCs to get its UMAP map and performed trajectory analysis, en-
richment analysis, cellular communication analysis and transcription factor analysis sequentially. Finally, we performed in vitro experiments on the
pathway derived from communication analysis, verified the effect of the pathway on esophageal cancer progression through a series of experiments,
and analyzed the related prognosis, and the results obtained were consistent with our study.
1 Introduction

Esophageal cancer (EC) is a common malignant tumor of the

gastrointestinal system, with the seventh highest incidence and

sixth highest mortality rate in the world (1). In China, the
t cells; TME, tumor

ing.

02184
incidence and mortality rates of EC rank third and fourth,

respectively, among all malignant tumors (2). Despite the

development of a multidisciplinary treatment approach, the

prognosis remains unfavorable (3). The 5-year survival rate for

EC is only 21%, after pancreatic and liver cancers (4). Therefore,

EC has been a major malignant tumor threatening the

health of Chinese residents. EC consists of two main subtypes,

esophageal squamous cell carcinoma (ESCC) and esophageal

adenocarcinoma, with ESCC accounting for about 90% of all EC
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cases worldwide (5). EC is an aggressive cancer with rapid growth

and a high rate of lymph node metastasis, usually involving the

upper two thirds of the esophagus (6). In retrospective studies in

EC, smoking, hot tea consumption, red meat consumption, poor

oral health, low intake of fresh fruits and vegetables, and low

socioeconomic status were associated with a higher risk of EC (7).

Previous studies have shown that chronic inflammation plays a

central role in progression from esophageal precancerous lesions

(EPL) to esophageal squamous cell carcinoma, that dietary

inflammatory potential has been linked to both EPL and ESCC,

and that inflammatory imbalances promote tumorigenesis, and

that the consumption of anti-inflammatory foods may be helpful

in the prevention of EPL and ESCC (8–10). Difficulty swallowing

and swollen lymph nodes in the neck do not appear until the

cancer has progressed to an advanced stage (11), and the

treatment of EC patients faces major challenges due to the lack

of early symptoms, high malignancy, poor prognosis, and surgical

complexity of EC. Although we have made great progress in the

treatment of EC in recent years, especially through preoperative

radiotherapy combined with immunotherapy, which shows a

broad potential in the treatment of EC. However, due to the

high rate of post-treatment recurrence and the limitations of

drugs and treatment strategies after metastasis, only a small

proportion of EC patients can benefit from the available

treatments, while the majority of patients respond poorly to the

treatments, and therefore, the overall survival rate of EC is still

disappointing in China (3, 12).

In addition, due to the heterogeneity and complexity of

tumors, the mechanisms of tumor proliferation, metastasis, drug

resistance, and immunosuppression are unknown. Therefore,

elucidating the molecular mechanisms of tumorigenesis and

tumor progression is crucial for effective control and

management of tumor development. Notably, the presence of

non-tumor cells within the tumor tissue is also critical for tumor

development (13). Therefore, shifting the therapeutic focus to

other components of the tumor microenvironment (TME) may

become an important strategy for future tumor therapy. The

introduction of TME has played a very powerful role in

advancing oncology research. TME has had an incredibly

important role in the development and evolution of EC (14).

The TME consists of multiple cellular components (e.g.,

fibroblasts, endothelial cells, and immune cells) and extracellular

components (including cytokines, hormones, extracellular

matrices, and growth factors), which form a complex network

that encapsulates EC cells. These cells shape cancer biology and

influence the response to treatment (15–17). In TME, mast cells

(MCs) are tissue-resident immune cells that are important players

in diseases associated with chronic inflammation such as cancer.

Because MCs can infiltrate solid tumors and promote or limit

tumor growth, MCs may polarize to either pro- or anti-tumor

phenotypes and remain a challenging area of research (18).

Previous articles have also hypothesized that NRF2 in

combination with AC-MCs may be a predictive marker for

prognosis and may influence immunotherapy by modulating

PD-L1 in EC (19).
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High-throughput single-cell RNA sequencing (scRNA-seq),

developed in recent years, is an effective method that has been

shown to dissect heterogeneous tumors and decipher the

interactions between cancer cells and their microenvironmental

components, and to elucidate the transcriptomic profiles of both

the cancer cells and the microenvironmental components (20–

22), which is the basis and foundation for furthering the

understanding of cancers and the development of effective early

diagnostic and therapeutic strategies, previous studies have

dissected the esophageal squamous cell carcinoma ecosystem by

single-cell transcriptomic analysis (16), but its application in EC is

still limited. At the same time, there is still a long way to go for

early detection of esophageal cancer (23), and prognostic tools

lack the necessary accuracy to facilitate individualized patient

management strategies (24).

Therefore, in this study, scRNA-seq was used to sequence EC

samples in order to decipher the immune microenvironment of

EC, reveal the immune map of EC, and provide new insights for

the treatment of EC. The functional role of MCs subtypes in EC

and their association with tumor tissues are extensively discussed

and summarized in this paper, and a prognostic model is

established, which provides a valuable resource for deeper

understanding of the causes and progression of EC and helps to

improve its therapeutic strategies.
2 Materials and methods

2.1 Data source

The scRNA-seq data of EC were acquired from the GEO website

(https://www.ncbi.nlm.nih.gov/geo/) under the accession number

GSE196756. Patient clinical sample information can be found at

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi. Considering the

utilization of publicly accessible data derived from databases,

it was not required to secure an ethical endorsement for

this investigation.
2.2 Single‐cell sequencing

The gene expression data were imported into the R software and

analyzed using the Seurat R package (25, 26). Cells of inferior

quality were excluded based on the following criteria (1): nFeature

between 300 and 7,500 (2); nCount between 500 and 100,000 (3);

mitochondrial gene expression occupying no more than 25% of the

total gene count within the cell (4); erythrocyte gene expression not

surpassing 5% of the total gene count within the cell.

Subsequently, all gene expression data underwent normalization

and scaling using the “NormalizeData” and “ScalData” functions

within the Seurat R package (27). For the purpose of principal

component analysis, the “FindVariableFeautres” function (28) was

implemented to identify the top 2,000 most variable genes. These cells

were then segregated into clusters based on the top 30 principal

components (PCs) using the “FindClusters” function at a resolution
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of 1.0. Finally, the top 30 significant PCs were selected to

dimensionality reduction and visualization of gene expression

through uniform manifold approximation and projection (UMAP)

(29, 30). The harmony R package (31, 32) was employed to alleviate

the influence of batch effects among the samples. The dim value was

set to 30, while the resolution parameter was configured to 1.2.
2.3 Identification of cell subtypes

Cell clusters were init ial ly discerned uti l izing the

“FindClusters” and “FindNeighbors” functions within Seurat

(33–35), employing a default resolution of 0.8. Afterwards,

these cell clusters were bestowed with annotations based on the

average gene expression of representative markers. In order to

evaluate differentially expressed genes (DEGs) across distinct cell

clusters, a Wilcoxon rank sum test was employed utilizing

Seurat’s “FindAllMarkers” function (36, 37). The parameters

min.pct and min.diff.pct were established at 0.25, while the

LogFc threshold was set to 0.25.
2.4 Cancer preferences analysis

In order to evaluate the predilection of MCs subtypes for

cancer, odds ratios were computed utilizing the calculation

methodology (38).
2.5 Trajectory analysis of MCs subtypes

The slingshot R package was employed to deduce cellular

lineages and pseudotimes. It delineated the structure of lineages

through clustering-based minimum spanning trees and employed

synchronized master curves to model branching trajectories for

these lineages. The “getCurves” function was utilized to acquire

refined trajectory curves. The association between gene expression

and pseudotime was characterized by modeling the noise

distribution of each gene through a generalized additive model

with negative binomials. This approach allowed for the simulation

of genes exhibiting a gradual alteration in expression throughout

the pseudotime continuum (39).
2.6 Assessment of cell stemness

AUCell (40) represents a novel approach to discerning cells

harboring active genes within single-cell RNA-seq datasets. Given a

gene set as input, it provides an evaluation of the “activity” exhibited

by that particular gene set in each individual cell. In the context of

this study, AUCell was employed to quantitatively assess the level of

stemness exhibited by various subtypes of MCs. To hypothesize the

temporal trajectory of cell differentiation, the CytoTRACE R

package was utilized (41).
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2.7 Enrichment analysis of cellular subtypes

By leveraging the Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), and Genome Enrichment Analysis

(GSEA) tools, available at http://software.broadinstitute.org/gsea/

msigdb, within the Cluster Profiler R package (42–44), we carried

out enrichment analysis on the DEGs. To discern the disparities

among various risk groups within the bulk data, the DESeq2 R

package was applied, employing a threshold of |logFC| > 2 and a p-

value threshold below 0.05.
2.8 Cell communication analysis

The CellChat R package (45) was used to analyze complex cell-to-

cell interactions and develop regulatory networks based on ligand-

receptor expression. The “netVisual DiffInteraction” function was

applied to depict differences in communication strength among cells,

and the “IdentifyCommunicationPatterns” function was utilized to

estimate the number of communication patterns. A significance

threshold of 0.05 was set. Various visualizations, including circle

plots, bubble plots, and violin plots, were used to represent the

incoming and outgoing signals of all cells
2.9 Scenic analysis

In evaluating the transcriptional activity within diverse subtypes

of tumor cells, we employed the SCENIC analysis with Python.
2.10 Cell culture

Cell lines TE-10 and KYSE-30 were acquired from the

American Type Culture Collection. The TE-10 cell line was

grown under standard conditions (37°C, 5% CO2, 95% humidity)

in RPMI1640 media with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin. KYSE-30 cell line was grown under

standard conditions (37°C, 5% CO2, 95% humidity) in RPMI1640

media with 10% FBS, 1% penicillin-streptomycin, and 1%

sodium pyruvate.
2.11 Cell transfection

EGFR knockdown was accomplished through the use of

GenePharma (Suzhou, China) small interfering RNA (siRNA)

constructs. According to Lipofectamine 3000 RNAiMAX

(Invitrogen, USA) manufacturer’s instructions, transfection was

carried out. Two knockdown constructs (Si-EGFR-1 and Si-

EGFR-2) and a negative control (si-NC) were transfected into

cells that had been plated at 50% confluency in six-well plates.

Every transfection was carried out using Lipofectamine 3000

RNAiMAX (Invitrogen, USA).
frontiersin.org

http://software.broadinstitute.org/gsea/msigdb
http://software.broadinstitute.org/gsea/msigdb
https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
2.12 Cell viability assay

Using the CCK-8 assay, the cell viability of transfected AGS and

SGC-7901 cells was evaluated. After being cultivated for 24 hours,

cells were planted at a density of 5×10³ cells per well in 96-well

plates. Following the addition of 10mL of CCK-8 reagent (A311-01,

Vazyme) to each well, the plates were incubated for two hours at

37°C in the dark. On days 1, 2, 3, and 4 post-transfections,

absorbance at 450 nm was measured using a microplate reader

(A33978, Thermo). Plotting of the mean OD values was done.
2.13 5-Ethynyl-2’-deoxyuridine
proliferation assay

In 6-well plates, 5×10³ cells were planted per well with

transfected CNE2 and HNE2 cells, and they were grown for an

entire night. A 2x EdU working solution was then created by

combining serum-free medium with 10 mM EdU. Following two

hours of incubation at 37°C, the cells were rinsed with PBS, fixed for

thirty minutes with 4% paraformaldehyde, permeabilized for fifteen

minutes with a solution of 2 mg/mL glycine and 0.5% Triton X-100,

then stained for thirty minutes at room temperature using a

solution of 1X Apollo and 1X Hoechst 33342. The measurement

of cell proliferation was done by fluorescence microscopy.
2.14 Wound-healing assay

In 6-well plates, stabilized transfected cells were plated and

allowed to grow to confluence. Each well was scratched with a sterile

200mL pipette tip, and then it was cleaned with PBS to get rid of any

remaining cell debris before being incubated in a medium without

serum. Using Image-J software, the breadth of the scratches was

measured after they were photographed at 0 and 48 hours.
2.15 Transwell assay

Before the experiment, cells were fasted for 24 hours in a serum-

free medium. The upper chamber of Costar plates was filled with

cell suspension after being treated with Matrigel (BD Biosciences,

USA), while the lower chamber was filled with media containing

serum. In a cell culture incubator, the cells were incubated for 48

hours. To evaluate the cells’ ability to invade, they were fixed with

4% paraformaldehyde after incubation and stained with

crystal violet.
2.16 Construction and validation of the
prognostic model

We determined the most important predictive genes using

LASSO regression analysis and univariate Cox analysis (46–48).
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The risk coefficients for each prognostic gene were then determined

using multivariate Cox regression analysis, allowing for the creation

of a risk score model:

Risk score ¼on
i Xi� Yi

X stands for the coefficient and Y represents the gene expression

level. Using the “surv-cutpoint” function to compute the best cutoff

value, patients were divided into two groups: low-risk and high-risk.

We also used the Survival R package for survival analysis of the

created risk score model and the “ggsurvplot” function (27) to

depict survival curves in order to observe the prognostic outcomes

in various patient cohorts. ROC curves were plotted using the

timeROC R package to assess the predictive model’s accuracy and

calibration (49, 50).
2.17 Kaplan-Meier survival curve of
selected genes

We performed a survival analysis utilizing the R packages

survminer and survival. The area under the ROC curve (AUC)

was calculated after generating ROC curves for 1-year, 3-year, and

5-year survival rates using the Survive and Time ROC R packages.

Model validation was conducted through survival analysis and

time-dependent ROC analysis. To evaluate the model, we

employed a heatmap, a scatter plot of survival status, and a

distribution of risk scores.
3 Result

3.1 ScRNA sequencing revealed the main
cell types in the EC

To identify the major cell types during the progression of EC,

we collected pericarcinoma and tumor tissue samples from three

EC patients for single-cell RNA sequencing (scRNA-seq). We also

checked the quality and completeness of the raw data. This

included checking for missing values, outliers, or any anomalies

that might affect the analysis. We excluded genes in the sample

that did not meet the minimum expression threshold. For

example, genes with low counts or low variability were excluded

as they may not provide meaningful insights. After performing

initial quality control and removing batch effects, we retained a

total of 29,719 cells. We categorized these 29,719 cells into 30 cell

clusters by dimensionality reduction (Figure 1A). According to

the cell gene map and typical markers, 30 cell clusters were finally

identified into 11 cell types, including B-Plasma cells (IGKC), T-

NK cells (IL32), mast cells (MCs, TPSB2), neutrophils (S100A8),

fibroblasts (DCN), myeloid cells (LYZ), epithelial cells (EPCs,

KRT5), proliferating-cells (MKI67), endothelial cell (ECs,

AQP1), smooth muscle cell (SMCs, MYH11), and neurons

(NRXN1). From the pie charts and bar graphs, we could learn

that for tissues, T-NK cells accounted for the largest proportion in
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FIGURE 1

A single-cell profiling of EC, comprising 30 clusters and 11 cell types. (A) UMAP plot showed the 30 clusters of cells in EC patients and the number of
cells in each cluster (left); UMAP plot showed the distribution of sample sources in the 11 cell types (middle); UMAP plot showed the 11 major cell types
obtained by dimensionality reduction clustering of cells in EC (right). Each point corresponded to a single cell colored according to cell cluster or cell
type. (B) The pie charts showed the proportion of different patient sources (left) and cell phases (right) in each cell type. (C) The bar graphs showed the
proportion of different cell types in sample sources (top) and cell phase(bottom) respectively. (D) Bubble plot showed differential expression of top5
maker genes in EC cells across 11 cell types. Bubble colors were based on normalized data and sizes indicated the percentage of genes expressed in
each cell type. (E-G) UMAP and violin plots revealed the expression levels of nCount-RNA, nFeature-RNA, G2M.Score, and S.Score in different cell types
and sample sources. ****, p < 0.0001 indicated a significant difference. (H) UMAP plots visualized the differential genes of 11 cell types.
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FIGURE 2

8 subtypes of MCs were identified with different markers. (A-C) UMAP plot demonstrated the 8 cell subtypes of MCs in EC patients and the number
of cells in each cell subtype (A); UMAP plot demonstrated the distribution of cell phases and sample sources in the 8 MCs subtypes respectively
(B, C). Each point corresponded to a single cell colored according to cell different groups. (D) UMAP plots showed the distribution of MCs in each
patient source respectively. (E) The bar graphs showed the proportion of different MCs subtypes in each patient source. (F) Cell phases and sample
sources preference of each MCs subtype estimated by Ro/e score. (G) Bubble plot showed differential expression of top 5 maker genes in 8 MCs
subtypes. Bubble colors were based on normalized data and sizes indicated the percentage of genes expressed in each subtype. (H, I) UMAP and
violin plots revealed the expression levels of CNVscore, nCount-RNA, S.Score and G2M.Score in different MCs subtypes. (J) Bar plots showed the
expression levels of gene markers in each MCs subtype.
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tumor tissues, followed by B-Plasma cells, while MCs were the

most predominant cell type in pericarcinoma tissues; for phases,

T-NK accounted for the largest proportion in both the G2M and

the S phases, while on the contrary, most of MCs accounted for the

largest proportion in the G1 phase (Figures 1B, C). Figure 1D

showed the top 5 marker genes for 11 cell types. UMAP and violin

plots were utilized to visualize nCount-RNA, nFeature-RNA,

G2M.Score, and S.Score across all cells, demonstrating that

proliferating cells exhibited the highest proliferative activity and

vigorous division (Figures 1E-G). At the same time, the

distribution of marker genes on UMAP for each cell type was

presented (Figure 1H).

Among all cell types, MCs drew our attention. MCs play a

crucial role in allergic reactions, pathogen immune responses

during infections, angiogenesis, and the regulation of both

innate and adaptive immunity. In addition to all these roles,

MCs were increasingly recognized as regulators of the tumor

microenvironment. Despite the accumulating evidence for MCs

in tumors, their exact role in the tumor microenvironment

remained incompletely understood (51). Therefore, we next

performed a further analysis of mast cells.
3.2 Visualization of MCs subtypes in EC

Next, we analyzed the scRNA-seq data from tumor and

pericarcinoma tissues, identified MCs, and performed further sub-

clustering. This analysis resulted in eight distinct cell subtypes from a

total of 5,001 mast cells: C0 EGR1+ MCs, C1 SRSF7+ MCs, C2

TXNIP+ MCs, C3 DUSP1+ MCs, C4 S100A8+ MCs, C5 HSPA6+

MCs, C6 IL32+MCs, C7 RPL35A+MCs (Figure 2A), and showed the

distribution of phases and sample sources in the subtypes, while

faceting gived a clearer picture of the distribution of MCs from

different sample sources (Figures 2B-D). The bar graphs illustrated

that the C1 SRSF7+ MCs had the highest proportion of tumor tissues

of P1 and P3 origin and was enhanced over the pericarcinoma tissues

share, and similarly, the Ro/e preference graph corroborated this,

suggesting that the C1 SRSF7+ MCs was more preferred to tumor

tissues (Figures 2E, F). In order to better explore the characteristics of

differentMCs subtypes, we visualized their typical genes. As shown in

Figure 2G, C1 SRSF7+ MC highly express DDX5, which had been

shown to be associated with a variety of key tumor promoting

molecular interactions and was involved in tumorigenesis and

tumor progression signaling pathways (52). This suggested that C1

SRSF7+ MCs in EC might be involved in tumor promoting effect.

Several related features (CNVscore, ncount-RNA, S.Score and

G2M.Score) of eight MCs subtypes were visualized (Figures 2H, I).

From the Figures, we could learn that C7 RPL35A+ MCs had the

highest expression level of CNVscore and G2M.Score, while C1

SRSF7+ MCs and C6 IL32+ MCs had the highest nCount-RNA

expression level, and all subtypes had basically the same expression

level of S.Score. In the end, bar plots showed the expression level of

gene makers in each MCs subtype, validating the basis for delineating

subtypes (Figure 2J).
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3.3 Slingshot analysis of proposed
temporal trajectories of MCs subtypes

To infer the lineage trajectory and pseudotime sequence of MCs,

we employed slingshot analysis to assess the distribution of MCs

differentiation trajectories across all MCs, visually represented

through UMAP plots (Figure 3A). Then, we found 3 cell lineage

trajectories of the MCs subtypes (Figures 3B-E). Including: lineage 1:

C4→ C2→C3→C0; lineage 2: C4→ C2→C3→C1; lineage 3: C4

→ C2 → C3 → C6. Slingshot analysis revealed that the differences

among the three trajectories mainly reside in the late stages.

Combined with Figures 3C-E to determine, lineage 1’s endpoint

was located in C0, which showed no preference for tumor tissue,

lineage 3’s endpoint was located in C6, which had a very small

number of cells and a low percentage of tumor tissue, while lineage 2’s

endpoint was located in C1, which not only showed a preference

for tumor tissue, but also had a high percentage of tumor tissue.

Therefore, we concluded that lineage 2 represented the differentiation

line of MCs associated with the tumor. In addition, we also noted that

MCs are influenced by some cytokines or tumor cell-secreted

proteins during development in TME, resulting in a possible

transformation of the MCs phenotype to a tumor-associated or

pro-tumorigenic phenotype (18), whereas C1 belonged to the

terminal end and consisted predominantly of MCs originating

from tumor tissues, and based on this observation, we

hypothesized that C1 may play a crucial role in the differentiation

of tumor-associated MCs(TAMCs) process. Subsequently, we

confirmed the biological processes corresponding to the three cell

lineage trajectories of MCs subtypes using GO-BP enrichment

analysis (Figure 3F). It was found that C1 in lineage 2 was

associated with biological processes such as endopeptidase and

cysteinetype, C2 was linked to processes such as protein folding,

C3 was related to leukocyte functions, and C4 was involved in

processes such as lamellipodium formation, contraction, and

production. Finally, the dynamic trends plot demonstrated

the expression variation and distribution of marker genes for

MCs subtypes along the three differentiation trajectories in

pseudotime (Figure 3G).
3.4 Expression of stemness gene sets in
subtypes of MCs

To investigate the expression of stem cell genes in MCs

subtypes and to understand their differentiation potential, we

used bubble plots to illustrate the different expression of stem

cell genes in MCs subtypes. The results showed the corresponding

expression of stem cell genes KDM5B, EPAS1, CTNNB1, EZH2,

KLF4, CD44, BMI1, and HIF1A in MCs subtypes and different

tissue types (Figure 4A). Subsequently, we visualized the cell

stemness AUC scores of different MCs subtypes using a UMAP

plot (Figure 4B). We then combined this with other analyses to

assess the expression levels of stemness-related genes in different

subtypes of MCs, and violin plots showed the different expression
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levels of stemness genes in different sample sources, tissues,

subtypes of MCs, and phases, respectively (Figures 4C-F). The

results showed that C1 SRSF7+ MCs exhibited a higher level of cell

stemness, indicating a lower degree of differentiation and higher

differentiated potential; and it also showed that pericarcinoma

tissues had the higher level of cell stemness. In addition, there was

no significant difference in the expression levels of stemness genes
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in different cell phases. By CytoTRACE analysis, C1 SRSF7+ MCs

showed the lowest degree of differentiation and the highest cell

stemness among all subtypes, which we hypothesized might be

related to the transformation of MCs to TAMCs (Figures 4G, H).

Afterwards, the expression profiles of stemness genes with

relatively elevated expression levels in Figure 4A were

demonstrated in all MCs by UMAP plots (Figure 4I).
FIGURE 3

Slingshot analysis reveals three differentiation trajectories of MCs. (A) Demonstration of the distribution of slingshot-predicted MCs differentiation
trajectories among all MCs by UMAP plot. Plotting each spectrum according to the pseudotime value to infer the result, the color from blue to red
indicates the pseudotime from naïve to mature, and the grey part of the cells represent not belonging to the lineage. (B-E) The distribution of three
differentiation trajectories of 8 MCs subtypes fitted by the pseudotime order in all mast cells (B). Each trajectory was displayed respectively in UMAP
(C-E). (F) Heatmap demonstrated the related characteristics of 3 pseudotime trajectory lineages of MCs. The value of pseudotime correlated with
differentiation, where 0 indicates the start point and 20 is the end point. (G) Scatter plots demonstrated the trajectories of named genes of 8 cell
subtypes of mast cells changing on three lineages obtained after slingshot visualization.
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FIGURE 4

Analysis of cell stemness in mast cell subtypes. (A) Bubble plot showed expression of stemness genes in 8 MCs subtypes. Bubble colors were
based on normalized data and sizes indicated the percentage of genes expressed in each subtype. (B) UMAP plot visualized the AUC values of cell
stemness. (C-F) Violin plots revealed the expression levels of AUC values of MCs cell stemness in different patient sources (C), sample sources
(D), subtypes (E) and phases (F). ****,p < 0.0001 indicated a significant difference, ns indicated a non-significant difference. (G) The left panel
demonstrated the distribution of MCs CytoTRACE scores. The color represented high or low cell stemness. The right panel indicated the distribution
of MCs subtypes. The color represented different MCs subtypes. (H) Box line plot ranked the stemness of MCs subtypes according to CytoTRACE.
(I) UMAP plots visualized the 8 stemness genes expressed in MCs subtypes.
Frontiers in Immunology frontiersin.org10192

https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
3.5 Enrichment analysis of MCs subtypes
in EC

First, we utilized volcano plots to represent the DEGs profiles

between subtypes of MCs (Figure 5A). The results showed that the
Frontiers in Immunology 11193
up-regulated DEGs in C1 SRSF7+ MCs were mainly DDX5,

EEF1A1, TPSB2, TPSAB1, and CPA3. In addition, we performed

GO-BP enrichment analysis of the DEGs in the subtypes of MCs

to reveal their enrichment in biological processes. The heatmap

showed the results of the top four enrichment entries in the MCs
FIGURE 5

Results of functional enrichment analysis of differentially expressed genes in 8 MCs subtypes. (A) Volcano plots showed differentially expressed genes
in 8 subtypes. (B) Heatmap showed the enrichment items of GO_BP scored. zscore > 0 was positive enrichment and < 0 was negative enrichment.
(C) Word cloud diagrams demonstrated the activity of different pathways in MCs subtypes. (D) GSEA analysis diagram of different pathways in each
MCs subtype. NES > 0 was positive enrichment and < 0 was negative enrichment. NES, N stands for standardization, and ES for enrichment scores.
(E) GSEA enrichment analysis among C1 SRSF7+ MCs.
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subtypes (Figure 5B). The C0 EGR1+ MCs subtype was mainly

associated with pathways such as response to unfolded protein,

response to topologically incorrect protein and regulation of

neuron death; The C1 SRSF7+ MCs subtype was enriched in

pathways such as protein folding, protein refolding, chaperone-

mediated protein folding and ‘de novo’ protein folding; The C2

TXNIP+ MCs subtype revealed their close association with

cytoplasmic translation, oxidative phosphorylation, ribosome

biogenesis and rRNA processing; The C3 DUSP1+ MCs subtype

showed enrichment in pathways such as negative regulation of

transferase activity, response to muscle stretch, response to

mechanical stimulus and negative regulation of phosphorylation;

The C4 S100A8+ MCs subtype was enriched in pathways related

to leukocyte migration, myeloid leukocyte migration, response to

molecule of bacterial origin and leukocyte chemotaxis; The C5

HSPA6+ MCs subtype mainly exhibited enrichment in pathways

such as protein refolding, response to temperature stimulus,

myeloid cell differentiation and regulation of hemopoiesis; The

C6 IL32+ MCs subtype revealed pathways related to leukocyte

mediated cytotoxicity, lymphocyte mediated immunity, natural

killer cell mediated immunity and positive regulation of leukocyte

cell-cell adhesion; The enrichment analysis conducted on the C7

RPL35A+ MCs subtype revealed their association with

cytoplasmic translation, ribosomal small subunit biogenesis,

rRNA processing and rRNA metabolic process. The word cloud

plots illustrated the enrichment results of DEGs across various

pathways in the eight MC subtypes (Figure 5C). The results

showed that the C1 SRSF7+ MCs subtype was mainly enriched

in leukocyte, immune and activation, and it was hypothesized that

C1 SRSF7+ MCs subtype might be related to MCs activation and

participation in immune regulation.

In addition, the results of GSEA enrichment analysis were also

shown in the form of bubble plots (Figure 5D). It showed that C1

SRSF7+ MCs subtype was significantly expressed in regulation of

immune system process, cell motility and migration, protein

folding, response to immune and external stimulus pathways. All

of the above pathways would suggest that MCs in the C1 SRSF7+

MCs subtype had likely transformed into TAMCs. Finally, we

performed GSEA on the DEGs of the C1 SRSF7+ MCs subtype

according to GO-BP terminology. The results were shown in

Figure 5E. We observed that pathways associated with protein

refolding, skeletal muscle cell differentiation, chaperone cofactor-

dependent protein refolding and ‘de novo’ protein folding were

upregulated in the C1 subtype. In contrast, pathways associated

with ATP synthesis coupled electron transport, mitochondrial ATP

synthesis coupled electron transport, aerobic electron transport

chain and cytoplasmic translation were downregulated in the C1

subtype. Combining the above up-regulated genes and enriched

pathways with previous studies, we believed that the C1 subtype was

affected by the endoplasmic reticulum stress state, which disrupts

the homeostasis of the original proteins and generates aberrant

protein folding, and that this stress state could control a variety of

pro-tumorigenic attributes of cancer cells, dynamically re-

programming the function of immune cells, transforming MCs

into TAMCs, thus exerting pro-tumorigenic effects, and conferring
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a greater tumorigenic, metastatic, and drug-resistant capacity to the

malignant cells (53).
3.6 Transcription factors regulate the
carcinogenic mechanism of C1
SRSF7+ MCs

Transcription factors can directly act on the genome and

regulate gene transcription and affect the biological function of

cells by combining specific nucleotide sequences in the upstream

of the gene. Therefore, we used scenic to analyze the gene

regulatory network of C1 SRSF7+ MCs. First of all, we carried

out cluster analysis of MCs according to regulator activity

(Figure 6A). It was obvious that the discretization of UMAP

diagram based on regulator activity was smaller, the interference

factors were better excluded, and all MCs were clustered and

distributed. Among them, C1 SRSF7+ MCs were mainly

distributed on the right side of UMAP plot without significant

discretization. By further analyzing the key regulators of different

MCs subtypes, the five major regulators of C1 SRSF7+MCs, ATF4,

JUNB, NFkB2, MAFK and JUN, were identified (Figures 6B, C).

After analyzing these five key regulators in depth in conjunction

with previous studies and Figure 6D, ATF4 and JUNB caught our

attention. ATF4, which was expressed at higher levels in C1 SRSF7

+ MCs than in other subtypes, was a major transcriptional

regulator of the unfolded protein response to hypoxia, activated

genes that promoted recovery of normal endoplasmic reticulum

function and hypoxic survival (54), regulated mast cells through

endoplasmic reticulum stress (55), and had been associated with

programmed cell death in a variety of tumors, particularly ER

stress-induced iron death (56, 57, 86). As for JUNB, its expression

level was high in C1 SRSF7+ MCs, C4 S100A8+ MCs and C5

HSPA6+ MCs subtypes, and it is a potent inhibitor of endoplasmic

reticulum stress and apoptosis, and, in particular, its modulation

of endoplasmic reticulum stress is associated with ATF4

alterations (58).
3.7 CellChat analysis among all cells

In order to systematically elucidate complex cellular

responses, we aimed to investigate cell-to-cell relationships and

ligand-receptor communication networks to better understand

interactions between cells. Using CellChat analysis, we initially

established intercellular communication networks involving

various cells such as tumor cells, fibroblasts, T-NK cells, and

different subtypes of MCs, etc (Figure 7A). After establishing the

intercellular communication networks using CellChat analysis, we

calculated both the number of interactions (represented by the

thickness of the connecting lines between two cell types) and the

strength of interactions (indicated by the weight of the lines,

where thicker lines denote stronger interaction strengths). This

approach helped quantify the complexity and intensity of

communication pathways between different cell types in the
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network. We utilized gene expression pattern analysis methods

available through CellChat to investigate how cells and signaling

pathways interact. Initially, we assessed the relationship between

inferred potential communication patterns and groups of cells

that secrete signaling molecules to decipher outgoing

communication patterns. Three distinct signaling patterns were

identified through our analysis: pattern 1 (subtypes of MCs),
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pattern 2 (Neurons cells, fibroblasts, SMCs, tumor-cells and

ECs) and pattern 3 (myeloid-cells, B-Plasma cells, neutrophils,

proliferating-cells and T-NK cells) (Figure 7B). To identify the key

incoming and outgoing signals associated with the eight MCs

subtypes, we quantitatively analyzed the ligand-receptor network

using CellChat. This approach allowed us to predict the primary

incoming signals from secreting cells (signal senders) releasing
FIGURE 6

Identification of C1 SRSF7+ MCs Gene Regulatory Network. (A) UMAP visualized all MCs based on regulon activity score. Colored according to cell
subtypes. (B) Different MCs subtypes were highlighted in the UMAP plots (red) (left); rank for regulators in different MCs subtypes based on regulon
specificity score (RSS) (green) (right). (C, D) Expression of transcription factors ATF4, JUNB, NFKB2, MAFK and JUN of C1 SRSF7+ MCs in different
MCs subtypes.
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FIGURE 7

CellChat analysis among all cells. (A) Circle plots showed the number (left) and strength (right) of interactions between all cells. (B) Heatmap showed
pattern recognition of outgoing cells (left), and incoming cells (right) among all cells. (C) Outgoing contribution bubble plot and incoming
contribution bubble plot demonstrated the communication patterns between the secreting cells and target cells of EC, the color of the dots
indicated different cells and the size of the dots indicated the contribution of cells. (D) Sankey diagrams showed inferred outgoing communication
patterns of secreting cells and incoming communication patterns of target cells, as well as correspondence between inferred potential patterns, cell
groups, and signaling pathways. The color and width of the branches represented the type and strength of the communication. (E) Heatmap showed
ligands and receptors related to the incoming and outgoing signals of cell interactions.
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various cytokines or ligands. Additionally, we assessed which cell

types acted as targeting cells (signal receivers), and how ligand-

receptor-mediated communications between different cell types

contributed to the progression of EC. This analysis helped

illustrate how receptors on these cells were targeted by ligands
Frontiers in Immunology 15197
released either from the same type of cell or from other cell

types (Figure 7C).

In addition to examining detailed communication within

individual pathways, an important aspect was understanding

how multiple cell populations and signaling pathways
FIGURE 8

Visual analysis of AREG-EGFR/AREG-(EGFR+ERBB2) signaling pathway. (A, B) The number (left) and strength (right) of cellular interactions circled
plots with C1 SRSF7+ MCs as source (A) and tumor as target (B). (C) Heatmap demonstrated the centrality score of the EGF signaling pathway
network, showing the relative importance of each cell group. (D) Heatmap showed the cell interactions of the EGF signaling pathway. (E, F) Violin
and bubble plots demonstrated cellular interactions in the EGF signaling pathways. (G–H) Circle plot and hierarchical plots showed the inferred
intercellular communication network for EGF signaling. Solid and hollow circles indicated source and target cell types in hierarchical plots,
respectively. The edge color of the middle circle in hierarchical plots was consistent with the signal source.
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coordinate their functions. To address this, CellChat employed a

pattern recognition method based on nonnegative matrix

decomposition. This method identified global communication

patterns and key signals across different cell groups, shedding

light on how various cells and pathways collaborate in their

functions. The application of this analysis revealed three distinct

incoming signaling patterns and three outgoing signaling patterns.

For instance, this output indicated that the majority of outgoing

MCs signaling was characterized by pattern 1, which represented

multiple pathways, including but not limited to CD99, ANNFXIN,

EGF, PARs, ICAM, CSF, etc. All output tumor-cells, fibroblasts,

ECs, SMCs, neurons signalings were characterized by pattern 2,

which represented pathways such as COLLAGEN, LAMININ,

FN1, APP, PTN and so on. On the other hand, the analysis of

communication patterns in target cells indicated that incoming

signalings to tumor-cells, SMCs, and neurons were predominantly

characterized by pattern 1. This pattern included signaling

pathways such as EGF, TENASCIN, JAM, MPZ, CADM, and

TWEAK. In contrast, the majority of incoming signalings

to subtypes of MCs, B-plasma cells, T-NK cells, proliferating-

cells, myeloid-cells, and neutrophils were characterized by

pattern 2, which was driven by pathways such as CXCL and

ANNEXIN (Figure 7D).

Combining the above analysis and the demonstration of all

incoming and outgoing signal intensities in Figure 7E, the

signaling molecule EGF caught our attention. EGF was present

in the incoming pathway of tumor-cells, i.e., tumor-cells were the

target cells, and EGF is again present in the outgoing pathway of

C1 SRSF7+ MCs subtype, i.e. C1 SRSF7+ MCs subtype was the

secreting cell, which links C1 SRSF7+ MCs subtype and tumor-

cells, we speculated that this signaling pathway might be related to

tumor progression, so we next focused on EGF.
3.8 Analysis of AREG-EGFR/AREG-(EGFR
+ERBB2) signal pathway

The circular displayed the inferred cell-cell communication

network between MCs and other cells (Figures 8A, B). The results

showed that there was a strong crosstalk between C1 SRSF7+ MCs

and tumor cells. We considered all identified cell types in ECEC as

source cells for the EGF signaling pathway, and the results indicated

that all subtypes of MCs could target tumor cells with released EGF.

In addition to the senders and receivers of EGF signaling, based on

the relative importance of each cell type in EGF signaling-mediated

intercellular communication, we identified the cell types that act as

mediators and influencers in this process, which is referred to as the

“centrality measurement” algorithm. As can be seen from the Figure,

C1 SRSF7+ MCs subtype had higher expression as a ‘sender’ in the

EGF signaling pathway, whereas tumor-cells were acting as ‘receiver’,

‘mediator’ and ‘influencer’ in this signaling pathway (Figure 8C).

Similarly, the heatmap corroborated this conclusion (Figure 8D). The

violin plot showed the cell-cell interactions while giving the different

ligands and receptors in the EGF signaling pathway, and the results

showed that C1 SRSF7+ MCs subtype and tumor-cells were mainly

contacted with AREG as a ligand and EGFR or ERBB2 as receptors
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(Figure 8E). Bubble and circle plot as well as hierarchical plots

likewise corroborated this conclusion (Figures 8F–H). Combined

with the results of previous results in this paper, it can be

concluded that the C1 SRSF7+ MCs and tumor cells crosstalk

through the AREG-EGFR/AREG-(EGFR+ERBB2) signal pathway,

thereby exerting a tumor-promoting effect.
3.9 In vitro experimental validation of EGFR

To further investigate the role of EGFR in EC, we conducted in

vitro experiments using the TE-10 and KYSE-30 cell lines. Initially,

we knocked down EGFR and measured the mRNA and protein

expression levels before and after knockdown. We observed a

significant reduction in both mRNA and protein expression levels

in both cell lines compared to the control group (Figure 9A).

Subsequently, the CCK-8 assay revealed a marked decrease in EC

cell viability post-EGFR knockdown (Figure 9B). Colony formation

assays and EDU experiments confirmed that EGFR knockdown

inhibited EC cell proliferation (Figures 9C, E, F). Additionally,

scratch and transwell assays were employed to assess the migration

and invasion capabilities of EC cells post-EGFR knockdown,

demonstrating a significant reduction in migration and invasion

levels (Figures 9D, F-H). These results collectively indicate that

EGFR knockdown suppresses the activity, proliferation, migration,

and invasion of EC cells, thereby inhibiting tumor growth.
3.10 Enrichment analysis and construction
of predictive models

To further investigate the impact of MCs with high SRSF7

expression on EC patients, we divided the TCGA cohort patients

into high and low SMRS (SMRS: SRSF7+MCs risk score) groups

according to the gene expression levels of the SRSF7+ MCs subtype.

A heatmap illustrated the expression profiles of the top 30 DEGs

(Figure 10A), and a volcano plot depicted the up-regulation and

down-regulation of DEGs (Figure 10B). Subsequently, we employed

various enrichment methods to gain insights into the associated

biological processes. KEGG enrichment analysis revealed that DEGs

were primarily enriched in pathways such as cholesterol

metabolism, PPAR signaling pathway, and Fat digestion and

absorption (Figure 10C). In GO-BP analysis, enrichment was

observed in the triglyceride metabolic process, acylglycerol

metabolic process, and neutral lipid metabolic process

(Figure 10D). In GO-CC analysis, enrichment included

chylomicron and high- and low-density lipoproteins, and in GO-

MF analysis, glycosaminoglycan binding and lipoprotein particle

receptor binding were highlighted (Figures 10E, F). We then

visualized the primary enrichment terms for each gene set and

used t-SNE plots to graphically represent the risk score distribution

of these enrichment terms (Figure 10G). GSEA results showed that

the up-regulated genes were mainly enriched in processes such as

intestinal absorption, peptidyl methionine modification, intestinal

lipid absorption, and protein lipid complex assembly, while down-

regulated genes were enriched in processes like regulation of release
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of sequestered calcium on into cytosol, external encapsulating

structure organization, B cell receptor signaling pathway, and

collagen fibril organization (Figure 10H). Additionally, we

constructed a prognostic model to explore the clinical significance

of MCs with high SRSF7 expression. Univariate Cox regression
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analysis identified 11 genes significantly associated with prognosis

(Figure 10I), with AHR as a protective factor (HR < 1) and the

others as risk factors. To address the issue of multicollinearity

among these genes, we further screened them using LASSO

regression analysis, ultimately identifying eight prognostic-related
FIGURE 9

In vitro experiments confirmed the effects of EGFR knockdown. (A) Following EGFR knockdown, both mRNA and protein expression levels were
significantly reduced. (B) The CCK-8 assay demonstrated a marked decrease in EC cell viability post-EGFR knockdown compared to the control
group. (C) Colony formation assays revealed a significant reduction in colony numbers after EGFR knockdown. (D) The scratch assay indicated that
EGFR knockdown inhibited EC cell migration. (E) The EDU staining assay confirmed that EGFR knockdown exerted an inhibitory effect on EC cell
proliferation. (F) Bar graphs showed a significant reduction in both EC cell migration and proliferation capabilities post-EGFR knockdown (P < 0.01).
(G, H) Transwell experiments indicated that EGFR knockdown inhibited the migration and invasion capabilities of tumor cells in the TE-10 and KYSE-
30 cell lines. ***, p < 0.001; ****, p < 0.0001 indicates significant difference.
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genes (Figure 10J). Cox regression analysis was then used to

calculate the coefficient values of these genes (Figures 10K, L).

Curve and scatter plots demonstrated the differences in risk scores

and survival outcomes between the two groups, indicating that the

high SMRS group was associated with poorer prognosis
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(Figure 10M). Moreover, a heatmap displayed the differential

expression patterns of genes used in model construction

(Figure 10N). Kaplan-Meier survival curves further confirmed the

conclusion that the high SMRS group had a worse survival outcome

(Figure 10O). ROC curves and AUC values for 1-year, 3-year, and
FIGURE 10

Enrichment analysis of differential genes and construction of the prognostic model. (A) Heatmap illustrated the expression profiles of differential
genes in high and low SMRS groups. (B) Volcano plot depicted the distribution of differential genes in high and low SMRS groups. (C-F) Bar charts
separately presented the enrichment analysis results of differential genes in KEGG, GO-BP, GO-CC, and GO-MF pathways for high and low SMRS
groups. (G) t-SNE plot visualized the risk score distribution of the top-ranked GSVA enrichment term in high and low SMRS groups. (H) Detailed
exposition of GSEA pathway enrichment results for differential genes across various pathways was provided. (I) Forest plot from univariate Cox
regression analysis showcased statistically significant genes (P<0.05) with HR<1 indicating protective factors and HR>1 indicating risk factors.
(J) Selection of eight prognostic-related genes (non-zero regression coefficients) was made via LASSO regression analysis, with optimal parameter
(lambda) determined through cross-validation (top), and LASSO coefficient curve determined by optimal lambda (bottom). (K) Forest plot of eight
prognosis-related genes. (L) Bar chart showed the Coef values of genes utilized for model construction. (M) Curve chart illustrated the risk scores of
high and low SMRS groups, and scatter plot depicted survival/death events over time for both groups. (N) Heatmap displayed differential expression
of model genes, with color scale based on normalized data. (O) Kaplan-Meier curves demonstrated survival disparities between high and low SMRS
groups. (P) ROC curve and AUC value were used to evaluate the sensitivity and specificity of the prognostic model in predicting 1-year, 3-year and
5-year prognosis.
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5-year outcomes indicated that the model had good predictive

value (Figure 10P).
4 Discussion

In recent years, the rapid development and application of

scRNA-seq in cancer research has revolutionized our

understanding of the biological features and dynamics within

cancer lesions, greatly facilitating the diagnosis, treatment, and

prognosis prediction of a range of tumors (59–61). Overall, the

present study focused on mast cells in esophageal cancer, and we

validated the pro-carcinogenic role of this pathway by launching a

comprehensive profiling of mast cell subtypes with an eye on the C1

SRSF7+ MCs and obtaining its reciprocal receptor, EGFR, using

cellular communication analysis, and subsequently verifying the

pro-carcinogenic role of this pathway through cellular knockdown

experiments. In this study, we comprehensively characterized the

cellular heterogeneity of EC using scRNA-seq technology. We

identified immune cells including T-NK cells, MCs, and myeloid

cells and so on, as well as non-immune cells such as smooth muscle

cells and neuronal cells. In addition, we carefully analyzed the

sample origin of these cell types and the distribution characteristics

during the phase. Among them, MCs caught our attention. Until

more than a hundred years ago, MCs were regarded as effectors of

allergy, and it is only in the last two decades that MCs have gained

recognition for their involvement in other physiological and

pathological processes. MCs maturation, phenotype and function

as a direct result of the local microenvironment (62), and by

releasing a range of bioactive mediators has a significant effect on

their ability to specifically recognize and respond to a variety of

strategies (63–65). Therefore, depicting and analyzing the TME is

important for MCs. And in previous studies, MCs have been shown

to correlate with pro-tumorigenic effects (66–68). Despite the

accumulating evidence for MCs in tumors, their exact role in the

TME remains incompletely understood (51). We therefore focused

our attention on the study of MCs. By further dimensionality

reduction clustering, we obtained eight MCs subtypes, i.e., C0

EGR1+ MCs, C1 SRSF7+ MCs, C3 TXNIP+ MCs, C4 S100A8+

MCs, C5 HSPA6+ MCs, C6 IL32+ MCs, and C7 RPL35A+ MCs.

By integrating the proportions of MCs subtypes in sample

sources and cell phases, Ro/e preference analyses, cell stemness

analyses, and slingshot proposed pseudotime analyses, we identified

the target subtype in this study: the C1 SRSF7+ MCs. C1 SRSF7+

MCs were significantly more abundant in tumor tissues than in

pericancer tissues in P1 and P3 samples, and this was confirmed by

Ro/e preference analysis. In slingshot proposed pseudotime

analysis, Lineage 2 was considered to be representative of the

differentiation trajectory of MCs associated with tumors. And the

endpoint of Lineage 2 was a subtype of C1 SRSF7+ MCs, this result

may prove that MCs are affected by some cytokines or tumor cell-

secreted proteins during their development in the TME, leading to

the transformation of MCs into a tumor-associated or pro-tumor
Frontiers in Immunology 19201
phenotype, which is in line with the previous study (69).

Meanwhile, cell stemness analysis by AUC value and CytoTRACE

showed that the C1 SRSF7+ MCs subtype had the strongest cell

stemness among all subtypes, with high differentiation potential,

which did not contradict slingshot’s results, and it is understandable

that the transformation from normal phenotype to TAMCs

phenotype would result in an increase in cell stemness. It can be

seen that the C1 SRSF7+ MCs subtype is intricately linked to

tumor progression.

To further investigate the tumor-promoting related roles of the

C1 SRSF7+ MCs subtype, we performed enrichment analysis and

obtained the upregulated genes DDX5, TPSB2, and CPA3, of which

DDX5 interacts with a variety of key pro-tumorigenic molecules

and participates in tumorigenic and tumor progression signaling

pathways, and when DDX5 is expressed or its post-translational

modifications are deregulated, the normal cellular signaling

network collapses, leading to many pathological states, including

tumorigenesis and tumor progression (52, 70). Moreover, the

enriched pathways obtained by GO-BP and GSEA on the C1

SRSF7+ MCs subtype showed that the C1 SRSF7+ MCs subtype

was extensively involved in protein folding and refolding, regulation

of immune system processes, and response to external stimuli. All

these pathways suggest that the C1 SRSF7+ MCs subtype has

probably been transformed into TAMCs. Finally, combining the

above up-regulated genes and enriched pathways, we suggest that

the C1 SRSF7+ MCs subtype is affected by the endoplasmic

reticulum stress state (71), which disrupts the original protein

equilibrium (72) and produces aberrant protein folding (73, 74),

and this stress state dynamically reprograms the function of MCs,

transforming MCs into TAMCs, which exerts pro-tumorigenic

effects (75) and confers cancer cells with enhanced tumorigenic,

metastatic, and drug-resistant capabilities. In this regard, we can

treat patients with esophageal cancer by targeting the abnormal

protein folding to prevent MCs from entering the endoplasmic

reticulum stress state in patients, thus preventing the conversion of

MCs into TAMCs, and thus controlling the progression of

the cancer.

In addition, gene regulatory network of C1 SRSF7+ MCs was

revealed by scenic analysis, in which the most valuable key

regulators were ATF4 and JUNB. ATF4 showed a dual role in

iron death and cancer under endoplasmic reticulum stress (75), and

under sustained stress conditions, ATF4 promotes apoptotic cell

death induction. Characterizing the mechanisms that regulate

ATF4-mediated transcription and its effects on cellular

metabolism may identify novel targets for cancer therapy (56). As

for JUNB, more and more studies have shown that it is involved in

tumorigenesis by regulating cell proliferation, differentiation,

senescence, and metastasis, and in particular, it affects the TME

by transcriptionally promoting or repressing oncogenes in tumor

cells or immune cells (76). Furthermore, previous mechanistic

studies have shown that JUNB overexpression regulates the

mitochondrial apoptosis pathway, mediating resistance to FasL

and TRAIL-induced cell death, and thus tumor resistance to
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immunotherapy (77). This study of ours provides a theoretical basis

for subsequent analysis of drug sensitivity and provides new

insights into the development of innovative targeted therapeutics.

To explore the interactions involving the C1 SRSF7+ mast cell

subtype and other cell types, we employed CellChat communication

pattern analysis. This approach helped reveal coordinated responses

and interactions between different cell types in the context of their

communication pathways. Different cell types can simultaneously

activate common cell type-independent signaling pathways or

different cell type-specific signaling transduction transduction

pathways (77). Through CellChat analysis, we established the

intercellular communication network between most cells,

including tumor cells, fibroblasts, T-NK cells, and various

subtypes of MCs, etc., as a way to characterize the relationship

between the subtype of C1 SRSF7+ MCs and other cell types, and at

the same time, we identified the three modes of outgoing, incoming

and their corresponding signaling pathway expression. The C1

SRSF7+ MCs subtype belongs to mode 1 in the outgoing

pathway, and its communication molecules, i.e., ligands, include

ANNEXIN, PARs, CSF, ICAM, etc.; and it belongs to mode 2 in the

incoming pathway, and its communication molecules, i.e.,

receptors, include BAFF, CLEC, ALCAM, SELPG, etc. It is also

worth noting that tumor cells, which can be learned after our careful

observation, belong to mode 2 on the outgoing and mode 1 on the

incoming, echoing the subtype of C1 SRSF7+ MCs, which drew

our attention.

By targeting tumor cells and the C1 SRSF7+ MCs subtype for

interactions analysis, we have identified the secretion of AREG

ligands by a subtype of C1 SRSF7+ MCs in the EGF signaling

pathway that act on the protein receptor EGFR on the membrane of

the tumor cells. In previous studies, the EGFR family has been

validated to play a key role in EGFR signaling through the activation

of many important cellular processes, including cell division,

growth, and differentiation. Playing a key role in mediating cell

growth factor signaling (78), overexpression of EGFR signaling

widely promotes tumor progression and leads to promotion of

proliferation and inhibition of apoptosis (79). And cancer

immunotherapies, particularly immune checkpoint blockade

(ICB), have transformed oncology care over the past decade and

significantly improved survival in a wide range of metastatic

tumors. Based on significant treatment benefits, ICB therapy is

approved by the FDA as monotherapy or in combination with other

cancer therapies for cancers such as melanoma, breast cancer, renal

cell carcinoma, head and neck squamous cell carcinoma, and lung

cancer (80–84). However, the MCs-mediated pro-tumor axis

AREG-EGFR in EC has not yet been mentioned. Therefore, our

study provides new EC target therapeutic approaches and provides

a scientific basis for the treatment and prognosis of EC. Meanwhile,

to further investigate the role of EGFR in EC, we performed in vitro

experiments using TE-10 and KYSE-30 cell lines. We observed that

EGFR knockdown inhibited tumor cell activity, migration and

proliferation, thereby suppressing tumor growth. However,

previous studies have shown that epidermal growth factor

receptor inhibitors (EGFRIs) produce a variety of dermatologic
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side effects in the majority of patients, and this targeted therapeutic

regimen needs to be further refined (85).

Given their role in promoting tumor growth and immune

evasion, mast cells are considered potential therapeutic targets.

Contemporary therapeutic strategies may include the use of mast

cell stabilizers, mast cell mediator inhibitors, or blocking mast cell

recruitment to tumor tissues and organs.

Finally, we constructed a prognostic model to indicate that the

higher the SMRS score, the worse the prognosis.

Our study will direct attention to MCs in the progression of

esophageal cancer, trigger attention to them, and promote

researchers’ understanding of the tumor microenvironment in

esophageal cancer. At the same time, we discovered the

communication pathway between the tumor and our target MCs

subtype. Although EFGR antagonists are still proved to have certain

side effects, we believe that the development of targeted therapy will

be further advanced in the future. However, this study still has some

limitations. The relatively small sample size chosen is one aspect,

and secondly, we only performed transcriptomics studies and in

vitro experiments. The analysis of mast cell in EC using SCENIC

and AUCell in our article is well-founded though and provides a

detailed understanding of the regulatory networks that drive mast

cell behavior. However, to draw more reliable conclusions, these

findings must be validated by further experiments and compared

across different cancer types. Next, we will integrate in vivo and in

vitro experiments to provide a more comprehensive validation.

In conclusion, the innovative features of our study lie in the use of

high-resolution single-cell analysis technology, the construction of cell-

cell interaction networks, the analysis of dynamic evolutionary

trajectories, the identification of regulatory networks, and experimental

verification, which provide new ideas for the targeted treatment of MCs

in EC and new cell carriers for the development of EGFR targeted drugs.

These will help to promote the in-depth development of the research on

EC and provide new strategies for the disease.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

SYZ: Conceptualization, Data curation, Methodology, Software,

Visualization, Writing – original draft, Writing – review & editing.

XZ: Conceptualization, Data curation, Methodology, Software,

Visualization, Writing – original draft, Writing – review &

editing. ZX: Data curation, Software, Validation, Visualization,

Writing – review & editing. SQZ: Methodology, Software,

Validation, Visualization, Writing – review & editing. JX:

Software, Validation, Visualization, Writing – review & editing.

YZ: Conceptualization, Data curation, Methodology, Software,
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
Supervision, Visualization, Writing – original draft, Writing –

review & editing.
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

Our Graphical Abstract was drawn using Figdraw. Image ID:

WWRRY06006. We would like to thank Figdraw for its

contribution to this article.
Frontiers in Immunology 21203
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global

cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/caac.21660

2. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in
China, 2015. CA Cancer J Clin. (2016) 66:115–32. doi: 10.3322/caac.21338

3. Baba Y, Nomoto D, Okadome K, Ishimoto T, Iwatsuki M, Miyamoto Y, et al.
Tumor immune microenvironment and immune checkpoint inhibitors in esophageal
squamous cell carcinoma. Cancer Sci. (2020) 111:3132–41. doi: 10.1111/cas.14541

4. Siegel RL, Wagle NS, Cercek A, Smith RA, Jemal A. Colorectal cancer statistics,
2023. CA Cancer J Clin. (2023) 73:233–54. doi: 10.3322/caac.21772

5. Smyth EC, Lagergren J, Fitzgerald RC, Lordick F, Shah MA, Lagergren P, et al.
Oesophageal cancer. Nat Rev Dis Primers. (2017) 3:17048. doi: 10.1038/nrdp.2017.48

6. Morgan E, Soerjomataram I, Rumgay H, Coleman HG, Thrift AP, Vignat J, et al.
The global landscape of esophageal squamous cell carcinoma and esophageal
adenocarcinoma incidence and mortality in 2020 and projections to 2040: new
estimates from GLOBOCAN 2020. Gastroenterology. (2022) 163:649–58.
doi: 10.1053/j.gastro.2022.05.054

7. Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol. (2013)
19:5598–606. doi: 10.3748/wjg.v19.i34.5598

8. Dong J, Gao M, Li L, Pan X, Chen SY, Li J, et al. Associations of dietary
inflammatory potential with esophageal precancerous lesions and esophageal
squamous-cell cancer: A cross-sectional study. Nutrients. (2023) 15(8):4078.
doi: 10.3390/nu15184078

9. You Y, Chen Y, Wei M, Tang M, Lu Y, Zhang Q, et al. Mediation role of
recreational physical activity in the relationship between the dietary intake of live
microbes and the systemic immune-inflammation index: A real-world cross-sectional
study. Nutrients. (2024) 16(6):777. doi: 10.3390/nu16060777

10. Dowling GP, Daly GR, Hegarty A, Hembrecht S, Bracken A, Toomey S, et al.
Comment on: Predictive value of pretreatment circulating inflammatory response
markers in the neoadjuvant treatment of breast cancer: meta-analysis. Br J Surg. (2024)
111(5):znae132. doi: 10.1093/bjs/znae187

11. Zhang R, Lau L, Wu P, Yip HC, Wong SH. Endoscopic diagnosis and treatment
of esophageal squamous cell carcinoma. Methods Mol Biol. (2020) 2129:47–62.
doi: 10.1007/978-1-0716-0377-2_5

12. Tang H, Wang H, Fang Y, Zhu JY, Yin J, Shen YX, et al. Neoadjuvant
chemoradiotherapy versus neoadjuvant chemotherapy followed by minimally
invasive esophagectomy for locally advanced esophageal squamous cell carcinoma: a
prospective multicenter randomized clinical trial. Ann Oncol. (2023) 34:163–72.
doi: 10.1016/j.annonc.2022.10.508

13. Davern M, Donlon NE, Power R, Hayes C, King R, Dunne MR, et al. The tumour
immune microenvironment in oesophageal cancer. Br J Cancer. (2021) 125:479–94.
doi: 10.1038/s41416-021-01331-y

14. Nallasamy P, Nimmakayala RK, Parte S, Are AC, Batra SK, PonnusamyMP. Tumor
microenvironment enriches the stemness features: the architectural event of therapy
resistance and metastasis. Mol Cancer. (2022) 21:225. doi: 10.1186/s12943-022-01682-x

15. Dinh HQ, Pan F, Wang G, Huang QF, Olingy CE, Wu ZY, et al. Integrated single-
cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma
microenvironment. Nat Commun. (2021) 12:7335. doi: 10.1038/s41467-021-27599-5

16. Zhang X, Peng L, Luo Y, Zhang S, Pu Y, Chen Y, et al. Dissecting esophageal
squamous-cell carcinoma ecosystem by single-cell transcriptomic analysis. Nat
Commun. (2021) 12:5291. doi: 10.1038/s41467-021-25539-x
17. Zheng Y, Chen Z, Han Y, Han L, Zou X, Zhou B, et al. Immune suppressive
landscape in the human esophageal squamous cell carcinoma microenvironment. Nat
Commun. (2020) 11:6268. doi: 10.1038/s41467-020-20019-0

18. Segura-Villalobos D, Ramirez-Moreno IG, Martinez-Aguilar M, Ibarra-Sanchez
A, Munoz-Bello JO, Anaya-Rubio I, et al. Mast cell-tumor interactions: molecular
mechanisms of recruitment, intratumoral communication and potential therapeutic
targets for tumor growth. Cells. (2022) 11(3):349. doi: 10.3390/cells11030349

19. Guo X, Shen W, Sun M, Lv J, Liu R. Activated mast cells combined with NRF2
predict prognosis for esophageal cancer. J Oncol. (2023) 2023:4211885. doi: 10.1155/
2023/4211885

20. Puram SV, Tirosh I, Parikh AS, Patel AP, Yizhak K, Gillespie S, et al. Single-cell
transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck
cancer. Cell. (2017) 171:1611–24. doi: 10.1016/j.cell.2017.10.044

21. Wagner J, Rapsomaniki MA, Chevrier S, Anzeneder T, Langwieder C, Dykgers
A, et al. A single-cell atlas of the tumor and immune ecosystem of human breast cancer.
Cell. (2019) 177:1330–45. doi: 10.1016/j.cell.2019.03.005

22. van Galen P, Hovestadt V, Wadsworth IM, Hughes TK, Griffin GK, Battaglia S,
et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression and
immunity. Cell. (2019) 176:1265–81. doi: 10.1016/j.cell.2019.01.031

23. Liu S, Chen LX, Ye LS, Hu B. Challenges in early detection and endoscopic
resection of esophageal cancer: There is a long way to go. World J Gastrointest Oncol.
(2024) 16:3364–67. doi: 10.4251/wjgo.v16.i7.3364

24. Zhang K, Ye B, Wu L, Ni S, Li Y, Wang Q, et al. Machine learning−based
prediction of survival prognosis in esophageal squamous cell carcinoma. Sci Rep. (2023)
13:13532. doi: 10.1038/s41598-023-40780-8

25. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol. (2018) 36:411–20. doi: 10.1038/nbt.4096

26. Xing J, Cai H, Lin Z, Zhao L, Xu H, Song Y, et al. Examining the function of
macrophage oxidative stress response and immune system in glioblastoma multiforme
through analysis of single-cell transcriptomics. Front Immunol. (2023) 14:1288137.
doi: 10.3389/fimmu.2023.1288137

27. Jiang H, Yu D, Yang P, Guo R, Kong M, Gao Y, et al. Revealing the
transcriptional heterogeneity of organ-specific metastasis in human gastric cancer
using single-cell RNA Sequencing. Clin Transl Med. (2022) 12:e730. doi: 10.1002/
ctm2.730

28. Wu F, Fan J, He Y, Xiong A, Yu J, Li Y, et al. Single-cell profiling of tumor
heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat
Commun. (2021) 12:2540. doi: 10.1038/s41467-021-22801-0

29. Ding Y, Zhao Z, Cai H, Zhou Y, Chen H, Bai Y, et al. Single-cell sequencing
analysis related to sphingolipid metabolism guides immunotherapy and prognosis of
skin cutaneous melanoma. Front Immunol. (2023) 14:1304466. doi: 10.3389/
fimmu.2023.1304466

30. Ge Q, Zhao Z, Li X, Yang F, Zhang M, Hao Z, et al. Deciphering the suppressive
immune microenvironment of prostate cancer based on CD4+ regulatory T cells:
Implications for prognosis and therapy prediction. Clin Transl Med. (2024) 14:e1552.
doi: 10.1002/ctm2.1552

31. Zhou Y, Yang D, Yang Q, Lv X, Huang W, Zhou Z, et al. Single-cell RNA
landscape of intratumoral heterogeneity and immunosuppressive microenvironment in
advanced osteosarcoma. Nat Commun. (2020) 11:6322. doi: 10.1038/s41467-020-
20059-6
frontiersin.org

https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21338
https://doi.org/10.1111/cas.14541
https://doi.org/10.3322/caac.21772
https://doi.org/10.1038/nrdp.2017.48
https://doi.org/10.1053/j.gastro.2022.05.054
https://doi.org/10.3748/wjg.v19.i34.5598
https://doi.org/10.3390/nu15184078
https://doi.org/10.3390/nu16060777
https://doi.org/10.1093/bjs/znae187
https://doi.org/10.1007/978-1-0716-0377-2_5
https://doi.org/10.1016/j.annonc.2022.10.508
https://doi.org/10.1038/s41416-021-01331-y
https://doi.org/10.1186/s12943-022-01682-x
https://doi.org/10.1038/s41467-021-27599-5
https://doi.org/10.1038/s41467-021-25539-x
https://doi.org/10.1038/s41467-020-20019-0
https://doi.org/10.3390/cells11030349
https://doi.org/10.1155/2023/4211885
https://doi.org/10.1155/2023/4211885
https://doi.org/10.1016/j.cell.2017.10.044
https://doi.org/10.1016/j.cell.2019.03.005
https://doi.org/10.1016/j.cell.2019.01.031
https://doi.org/10.4251/wjgo.v16.i7.3364
https://doi.org/10.1038/s41598-023-40780-8
https://doi.org/10.1038/nbt.4096
https://doi.org/10.3389/fimmu.2023.1288137
https://doi.org/10.1002/ctm2.730
https://doi.org/10.1002/ctm2.730
https://doi.org/10.1038/s41467-021-22801-0
https://doi.org/10.3389/fimmu.2023.1304466
https://doi.org/10.3389/fimmu.2023.1304466
https://doi.org/10.1002/ctm2.1552
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.1038/s41467-020-20059-6
https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
32. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast,
sensitive and accurate integration of single-cell data with Harmony. Nat Methods.
(2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0

33. Liu P, Xing N, Xiahou Z, Yan J, Lin Z, Zhang J. Unraveling the intricacies of
glioblastoma progression and recurrence: insights into the role of NFYB and oxidative
phosphorylation at the single-cell level. Front Immunol. (2024) 15:1368685.
doi: 10.3389/fimmu.2024.1368685

34. ZhouW, Lin Z, TanW. Deciphering the molecular landscape: integrating single-
cell transcriptomics to unravel myofibroblast dynamics and therapeutic targets in clear
cell renal cell carcinomas. Front Immunol. (2024) 15:1374931. doi: 10.3389/
fimmu.2024.1374931

35. Shao W, Lin Z, Xiahou Z, Zhao F, Xu J, Liu X, et al. Single-cell RNA sequencing
reveals that MYBL2 in Malignant epithelial cells is involved in the development and
progression of ovarian cancer. Front Immunol. (2024) 15:1438198. doi: 10.3389/
fimmu.2024.1438198

36. Lin Z, Sui X, Jiao W, Chen C, Zhang X, Zhao J. Mechanism investigation and
experiment validation of capsaicin on uterine corpus endometrial carcinoma. Front
Pharmacol. (2022) 13:953874. doi: 10.3389/fphar.2022.953874

37. Lin Z, Li X, Shi H, Cao R, Zhu L, Dang C, et al. Decoding the tumor
microenvironment and molecular mechanism: unraveling cervical cancer
subpopulations and prognostic signatures through scRNA-Seq and bulk RNA-seq
analyses. Front Immunol. (2024) 15:1351287. doi: 10.3389/fimmu.2024.1351287

38. Zheng L, Qin S, Si W, Wang A, Xing B, Gao R, et al. Pan-cancer single-cell
landscape of tumor-infiltrating T cells. Science. (2021) 374:abe6474. doi: 10.1126/
science.abe6474

39. Van den Berge K, Roux DBH, Street K, Saelens W, Cannoodt R, Saeys Y, et al.
Trajectory-based differential expression analysis for single-cell sequencing data. Nat
Commun. (2020) 11:1201. doi: 10.1038/s41467-020-14766-3

40. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single-cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083–86. doi: 10.1038/nmeth.4463

41. Gulati GS, Sikandar SS, Wesche DJ, Manjunath A, Bharadwaj A, Berger MJ, et al.
Single-cell transcriptional diversity is a hallmark of developmental potential. Science.
(2020) 367:405–11. doi: 10.1126/science.aax0249

42. Alexa A, Rahnenfuhrer J, Lengauer T. Improved scoring of functional groups
from gene expression data by decorrelating GO graph structure. Bioinformatics. (2006)
22:1600–07. doi: 10.1093/bioinformatics/btl140

43. Lin Z, Fan W, Yu X, Liu J, Liu P. Research into the mechanism of intervention
of SanQi in endometriosis based on network pharmacology and molecular docking
technology . Med (Balt imore) . (2022) 101 :e30021. doi : 10 .1097/MD.
0000000000030021

44. Zhao J, Jiao W, Sui X, Zou J, Wang J, Lin Z. Construction of a prognostic model
of luteolin for endometrial carcinoma. Am J Transl Res. (2023) 15:2122–39.

45. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

46. Lin Z, Zou J, Sui X, Yao S, Lin L, Wang J, et al. Necroptosis-related lncRNA
signature predicts prognosis and immune response for cervical squamous cell
carcinoma and endocervical adenocarcinomas. Sci Rep. (2022) 12:16285.
doi: 10.1038/s41598-022-20858-5

47. Zou J, Lin Z, Jiao W, Chen J, Lin L, Zhang F, et al. A multi-omics-based
investigation of the prognostic and immunological impact of necroptosis-related
mRNA in patients with cervical squamous carcinoma and adenocarcinoma. Sci Rep.
(2022) 12:16773. doi: 10.1038/s41598-022-20566-0

48. Zhao J, Zou J, Jiao W, Lin L, Wang J, Lin Z. Construction of N-7 methylguanine-
related mRNA prognostic model in uterine corpus endometrial carcinoma based on
multi-omics data and immune-related analysis. Sci Rep. (2022) 12:18813. doi: 10.1038/
s41598-022-22879-6

49. Lin Z, Sui X, Jiao W, Wang Y, Zhao J. Exploring the mechanism and
experimental verification of puerarin in the treatment of endometrial carcinoma
based on network pharmacology and bioinformatics analysis. BMC Complement
Med Ther. (2022) 22:150. doi: 10.1186/s12906-022-03623-z

50. Lin Z, Fan W, Sui X, Wang J, Zhao J. Necroptosis-related lncRNA signatures for
prognostic prediction in uterine corpora endometrial cancer. Reprod Sci. (2023)
30:576–89. doi: 10.1007/s43032-022-01023-9

51. Liu J, Zhang Y, Zhao J, Yang Z, Li D, Katirai F, et al. Mast cell: insight into
remodeling a tumor microenvironment. Cancer Metastasis Rev. (2011) 30:177–84.
doi: 10.1007/s10555-011-9276-1

52. Xu K, Sun S, Yan M, Cui J, Yang Y, Li W, et al. DDX5 and DDX17-multifaceted
proteins in the regulation of tumorigenesis and tumor progression. Front Oncol. (2022)
12:943032. doi: 10.3389/fonc.2022.943032

53. Cubillos-Ruiz JR, Bettigole SE, Glimcher LH. Tumorigenic and
immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell. (2017)
168:692–706. doi: 10.1016/j.cell.2016.12.004

54. Mukherjee D, Bercz LS, Torok MA, Mace TA. Regulation of cellular immunity
by activating transcription factor 4. Immunol Lett. (2020) 228:24–34. doi: 10.1016/
j.imlet.2020.09.006
Frontiers in Immunology 22204
55. Wang HC, Zhou Y, Huang SK. SHP-2 phosphatase controls aryl hydrocarbon
receptor-mediated ER stress response in mast cells. Arch Toxicol. (2017) 91:1739–48.
doi: 10.1007/s00204-016-1861-1

56. Wortel I, van der Meer LT, Kilberg MS, van Leeuwen FN. Surviving stress:
modulation of ATF4-mediated stress responses in normal and Malignant cells. Trends
Endocrinol Metab. (2017) 28:794–806. doi: 10.1016/j.tem.2017.07.003

57. Han S, Zhu L, Zhu Y, Meng Y, Li J, Song P, et al. Targeting ATF4-dependent pro-
survival autophagy to synergize glutaminolysis inhibition. Theranostics. (2021)
11:8464–79. doi: 10.7150/thno.60028

58. Beck A, Shatz-Azoulay H, Vinik Y, Isaac R, Boura-Halfon S, Zick Y. Nedd4
family interacting protein 1 (Ndfip1) promotes death of pancreatic beta cells. Biochem
Biophys Res Commun. (2015) 465:851–56. doi: 10.1016/j.bbrc.2015.08.099

59. Gu X, Cai L, Luo Z, Shi L, Peng Z, Sun Y, et al. Identification and validation of a
muscle failure index to predict prognosis and immunotherapy in lung adenocarcinoma
through integrated analysis of bulk and single-cell RNA sequencing data. Front
Immunol. (2022) 13:1057088. doi: 10.3389/fimmu.2022.1057088

60. Luo Z, He Z, Qin H, Chen Y, Qi B, Lin J, et al. Exercise-induced IL-15 acted as a
positive prognostic implication and tumor-suppressed role in pan-cancer. Front
Pharmacol. (2022) 13:1053137. doi: 10.3389/fphar.2022.1053137

61. Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, et al. Applications of single-cell
sequencing in cancer research: progress and perspectives. J Hematol Oncol. (2021)
14:91. doi: 10.1186/s13045-021-01105-2

62. Da SE, Jamur MC, Oliver C. Mast cell function: a new vision of an old cell.
J Histochem Cytochem. (2014) 62:698–738. doi: 10.1369/0022155414545334

63. Dery RE, Lin TJ, Befus AD, Milne CD, Moqbel R, Menard G, et al. Redundancy
or cell-type-specific regulation? Tumour necrosis factor in alveolar macrophages and
mast cells. Immunology. (2000) 99:427–34. doi: 10.1046/j.1365-2567.2000.00982.x

64. Blair RJ, Meng H, Marchese MJ, Ren S, Schwartz LB, Tonnesen MG, et al.
Human mast cells stimulate vascular tube formation. Tryptase is a novel, potent
angiogenic factor. J Clin Invest. (1997) 99:2691–700. doi: 10.1172/JCI119458

65. Marech I, Ammendola M, Sacco R, Capriuolo GS, Patruno R, Rubini R, et al.
Serum tryptase, mast cells positive to tryptase and microvascular density evaluation in
early breast cancer patients: possible translational significance. BMC Cancer. (2014)
14:534. doi: 10.1186/1471-2407-14-534

66. Aller MA, Arias A, Arias JI, Arias J. Carcinogenesis: the cancer cell-mast cell
connection. Inflammation Res. (2019) 68:103–16. doi: 10.1007/s00011-018-1201-4

67. Gorzalczany Y, Sagi-Eisenberg R. Role of mast cell-derived adenosine in cancer.
Int J Mol Sci. (2019) (10):2603. doi: 10.3390/ijms20102603

68. Alda S, Ceausu RA, Gaje PN, Raica M, Cosoroaba RM. Mast cell: A mysterious
character in skin cancer. In Vivo. (2024) 38:58–68. doi: 10.21873/invivo.13410

69. Lichterman JN, Reddy SM. Mast cells: A new frontier for cancer
immunotherapy. Cells. (2021) 10(6):1270. doi: 10.3390/cells10061270

70. Nyamao RM, Wu J, Yu L, Xiao X, Zhang FM. Roles of DDX5 in the
tumorigenesis, proliferation, differentiation, metastasis and pathway regulation of
human Malignancies. Biochim Biophys Acta Rev Cancer. (2019) 1871:85–98.
doi: 10.1016/j.bbcan.2018.11.003

71. Oakes SA, Papa FR. The role of endoplasmic reticulum stress in human
pathology. Annu Rev Pathol. (2015) 10:173–94. doi: 10.1146/annurev-pathol-012513-
104649

72. Mercier R, LaPointe P. The role of cellular proteostasis in antitumor immunity.
J Biol Chem. (2022) 298:101930. doi: 10.1016/j.jbc.2022.101930

73. Van Drie JH. Protein folding, protein homeostasis, and cancer. Chin J Cancer.
(2011) 30:124–37. doi: 10.5732/cjc.010.10162

74. Scott MD, Frydman J. Aberrant protein folding as the molecular basis of cancer.
Methods Mol Biol. (2003) 232:67–76. doi: 10.1385/1-59259-394-1:67

75. Visciano C, Prevete N, Liotti F, Marone G. Tumor-associated mast cells in
thyroid cancer. Int J Endocrinol. (2015) 2015:705169. doi: 10.1155/2015/705169

76. Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune
response and cancer. Front Cell Infect Microbiol. (2023) 13:1222265. doi: 10.3389/
fcimb.2023.1222265

77. Joung J, Kirchgatterer PC, Singh A, Cho JH, Nety SP, Larson RC, et al. CRISPR
activation screen identifies BCL-2 proteins and B3GNT2 as drivers of cancer resistance to T
cell-mediated cytotoxicity.Nat Commun. (2022) 13:1606. doi: 10.1038/s41467-022-29205-8

78. Kyriakopoulou K, Kefali E, Piperigkou Z, Bassiony H, Karamanos NK. Advances
in targeting epidermal growth factor receptor signaling pathway in mammary cancer.
Cell Signal. (2018) 51:99–109. doi: 10.1016/j.cellsig.2018.07.010

79. Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, Foroumadi A. A
review on progression of epidermal growth factor receptor (EGFR) inhibitors as an
efficient approach in cancer targeted therapy. Bioorg Chem. (2020) 99:103811.
doi: 10.1016/j.bioorg.2020.103811

80. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, et al.
Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl
J Med. (2015) 373:23–34. doi: 10.1056/NEJMoa1504030

81. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H, et al.
Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J
Med. (2018) 379:2108–21. doi: 10.1056/NEJMoa1809615
frontiersin.org

https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.3389/fimmu.2024.1368685
https://doi.org/10.3389/fimmu.2024.1374931
https://doi.org/10.3389/fimmu.2024.1374931
https://doi.org/10.3389/fimmu.2024.1438198
https://doi.org/10.3389/fimmu.2024.1438198
https://doi.org/10.3389/fphar.2022.953874
https://doi.org/10.3389/fimmu.2024.1351287
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1126/science.abe6474
https://doi.org/10.1038/s41467-020-14766-3
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1126/science.aax0249
https://doi.org/10.1093/bioinformatics/btl140
https://doi.org/10.1097/MD.0000000000030021
https://doi.org/10.1097/MD.0000000000030021
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41598-022-20858-5
https://doi.org/10.1038/s41598-022-20566-0
https://doi.org/10.1038/s41598-022-22879-6
https://doi.org/10.1038/s41598-022-22879-6
https://doi.org/10.1186/s12906-022-03623-z
https://doi.org/10.1007/s43032-022-01023-9
https://doi.org/10.1007/s10555-011-9276-1
https://doi.org/10.3389/fonc.2022.943032
https://doi.org/10.1016/j.cell.2016.12.004
https://doi.org/10.1016/j.imlet.2020.09.006
https://doi.org/10.1016/j.imlet.2020.09.006
https://doi.org/10.1007/s00204-016-1861-1
https://doi.org/10.1016/j.tem.2017.07.003
https://doi.org/10.7150/thno.60028
https://doi.org/10.1016/j.bbrc.2015.08.099
https://doi.org/10.3389/fimmu.2022.1057088
https://doi.org/10.3389/fphar.2022.1053137
https://doi.org/10.1186/s13045-021-01105-2
https://doi.org/10.1369/0022155414545334
https://doi.org/10.1046/j.1365-2567.2000.00982.x
https://doi.org/10.1172/JCI119458
https://doi.org/10.1186/1471-2407-14-534
https://doi.org/10.1007/s00011-018-1201-4
https://doi.org/10.3390/ijms20102603
https://doi.org/10.21873/invivo.13410
https://doi.org/10.3390/cells10061270
https://doi.org/10.1016/j.bbcan.2018.11.003
https://doi.org/10.1146/annurev-pathol-012513-104649
https://doi.org/10.1146/annurev-pathol-012513-104649
https://doi.org/10.1016/j.jbc.2022.101930
https://doi.org/10.5732/cjc.010.10162
https://doi.org/10.1385/1-59259-394-1:67
https://doi.org/10.1155/2015/705169
https://doi.org/10.3389/fcimb.2023.1222265
https://doi.org/10.3389/fcimb.2023.1222265
https://doi.org/10.1038/s41467-022-29205-8
https://doi.org/10.1016/j.cellsig.2018.07.010
https://doi.org/10.1016/j.bioorg.2020.103811
https://doi.org/10.1056/NEJMoa1504030
https://doi.org/10.1056/NEJMoa1809615
https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2024.1470449
82. Motzer RJ, Rini BI, McDermott DF, Aren FO, Hammers HJ, Carducci MA, et al.
Nivolumab plus ipilimumab versus sunitinib in first-line treatment for advanced renal cell
carcinoma: extended follow-up of efficacy and safety results from a randomised, controlled,
phase 3 trial. Lancet Oncol. (2019) 20:1370–85. doi: 10.1016/S1470-2045(19)30413-9

83. Burtness B, Harrington KJ, Greil R, Soulieres D, Tahara M, de Castro GJ, et al.
Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for
recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-
048): a randomised, open-label, phase 3 study. Lancet. (2019) 394:1915–28.
doi: 10.1016/S0140-6736(19)32591-7
Frontiers in Immunology 23205
84. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al.
Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N Engl J
Med. (2018) 378:2078–92. doi: 10.1056/NEJMoa1801005

85. Lacouture ME, Anadkat MJ, Bensadoun RJ, Bryce J, Chan A, Epstein JB, et al.
Clinical practice guidelines for the prevention and treatment of EGFR inhibitor-
associated dermatologic toxicities. Support Care Cancer. (2011) 19:1079–95.
doi: 10.1007/s00520-011-1197-6

86. Tang H, Kang R, Liu J, Tang D. ATF4 in cellular stress, ferroptosis, and cancer.
Arch Toxicol. (2024) 98:1025–41. doi: 10.1007/s00204-024-03681-x
frontiersin.org

https://doi.org/10.1016/S1470-2045(19)30413-9
https://doi.org/10.1016/S0140-6736(19)32591-7
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1007/s00520-011-1197-6
https://doi.org/10.1007/s00204-024-03681-x
https://doi.org/10.3389/fimmu.2024.1470449
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Frontiers in Immunology

OPEN ACCESS

EDITED BY

Raquel Alarcon Rodriguez,
University of Almeria, Spain

REVIEWED BY

Yuquan Chen,
Monash University, Australia
Zhijia Xia,
Ludwig Maximilian University of Munich,
Germany
Lanqian Su,
Southwest Medical University, China

*CORRESPONDENCE

Xiaofei Liu

drliuxf@126.com

†These authors have contributed equally to
this work

RECEIVED 20 August 2024
ACCEPTED 23 September 2024

PUBLISHED 08 October 2024

CITATION

Zhang Y, Gong S and Liu X (2024) Spatial
transcriptomics: a new frontier in accurate
localization of breast cancer
diagnosis and treatment.
Front. Immunol. 15:1483595.
doi: 10.3389/fimmu.2024.1483595

COPYRIGHT

© 2024 Zhang, Gong and Liu. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 October 2024

DOI 10.3389/fimmu.2024.1483595
Spatial transcriptomics: a new
frontier in accurate localization
of breast cancer diagnosis
and treatment
Yang Zhang1†, Shuhua Gong2† and Xiaofei Liu1*

1Breast and Thyroid Surgery, Shandong University of Traditional Chinese Medicine Affiliated Hospital,
Jinan, China, 2Department of Student Affair, Shandong College of Traditional Chinese Medicine,
Yantai, China
Breast cancer is one of the most prevalent cancers in women globally. Its

treatment and prognosis are significantly influenced by the tumor

microenvironment and tumor heterogeneity. Precision therapy enhances

treatment efficacy, reduces unwanted side effects, and maximizes patients’

survival duration while improving their quality of life. Spatial transcriptomics is

of significant importance for the precise treatment of breast cancer, playing a

critical role in revealing the internal structural differences of tumors and the

composition of the tumor microenvironment. It offers a novel perspective in

studying the spatial structure and cell interactions within tumors, facilitating

more effective personalized treatments for breast cancer. This article will

summarize the latest findings in the diagnosis and treatment of breast cancer

from the perspective of spatial transcriptomics, focusing on the revelation of the

tumor microenvironment, identification of new therapeutic targets,

enhancement of disease diagnostic accuracy, comprehension of tumor

progression and metastasis, assessment of drug responses, creation of high-

resolution maps of tumor cells, representation of tumor heterogeneity, and

support for clinical decision-making, particularly in elucidating the tumor

microenvironment, tumor heterogeneity, immunotherapy and their correlation

with clinical outcomes.
KEYWORDS

breast cancer, spatial transcriptomics, tumor heterogeneity, tumor microenvironment,
immunotherapy
1 Introduction

The therapeutic approach to breast cancer necessitates a personalized strategy that

accounts for the patient’s unique profile, encompassing the tumor’s biological attributes,

genomic expression signatures, estrogen and progesterone receptor status, HER2

amplification, tumor microenvironmental dynamics, the patient’s genetic predispositions,
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and lifestyle factors (1). Breast cancer is stratified into distinct

molecular subtypes, including Luminal A, Luminal B, HER2-

positive, and triple-negative breast cancer (TNBC), each exhibiting

divergent responses to therapeutic interventions, thereby

underscoring the imperative for tailored treatment modalities such

as chemotherapy, hormonal therapies, targeted therapies, and

immunotherapies (Figure 1). Molecular subtyping also serves as a

prognostic indicator, providing insights into the survival outcomes

of breast cancer patients (2). Accurate molecular subtyping is pivotal

for the formulation of effective treatment regimens. However, the

intrinsic heterogeneity of breast cancer, characterized by variable

gene expression and mutational landscapes among patients with

ostensibly similar disease, may lead to therapeutic resistance, disease

progression, prognostic variability, and clonal evolution, thereby

advocating for individualized therapeutic approaches (3).

Precision oncology in breast cancer is witnessing a transformative

evolution, propelled by the remarkable advancements in genomics,

biomarker identification, and tailored therapeutic approaches. The

meticulous genomic profiling of neoplastic tissues has facilitated the

elucidation of pivotal molecular targets, thereby enabling the

formulation of more precise and efficacious treatment regimens for

affected individuals. Notably, immunotherapeutic interventions,

particularly the utilization of immune checkpoint inhibitors (4),

have emerged as a potent therapeutic modality for select breast

cancer subtypes. Furthermore, the application of mitochondrial

inhibitors (5) has demonstrated the potential to enhance the

therapeutic efficacy by modulating the metabolic reprogramming of

breast cancer cells. The incorporation of artificial intelligence (AI)

and machine learning (ML) algorithms has revolutionized the

analysis of extensive datasets, thereby unveiling novel predictive

models that forecast treatment responsiveness and disease

progression (6–8). Concurrently, the integration of lifestyle

modifications and pharmacological interventions as preventive
Frontiers in Immunology 02207
strategies (9) underscores the multifaceted and individualized

nature of breast cancer management. Collectively, these

developments herald an era of expanded therapeutic horizons and

renewed optimism for breast cancer patients.

Advancements in oncology research have been significantly

propelled by the advent of Spatial Transcriptomics (ST), a cutting-

edge technology that enables the concurrent assessment of gene

expression profiles in the context of cellular spatial architecture

(10). ST has emerged as a valuable tool for dissecting tumor

heterogeneity, thereby facilitating a more precise understanding of

tumor progression and therapeutic responses. Its utility extends to the

elucidation of tumor microenvironment (TME) intricacies, offering

insights into the spatial distribution and reciprocal interactions

between neoplastic and surrounding cells (11). ST has been

instrumental in revealing the complex interplay between tumor

cells and the immune milieu, as well as in delineating the gene

expression patterns within the immune microenvironment, thereby

enhancing our comprehension of immune function. For instance, ST

has delineated five distinct immune microenvironmental subtypes in

hepatocellular carcinoma, uncovering the heterogeneity of tumor-

associated neutrophils (TAN) and identifying key subpopulations,

such as CCL4+ and PD-L1+ TAN, which are implicated in tumor

promotion, thus suggesting novel therapeutic targets for liver cancer

(12). Utilizing ST, Ye et al. have delineated the tumor boundary

region, which serves as a critical interface between malignant and

non-malignant tissues, identifying specific cell subtypes, cellular

interactions, and potential therapeutic targets enriched at this

boundary, and have observed significant infiltration of FAP+

fibroblasts and SPP1+ macrophages in colorectal cancer, which

correlates with adverse prognosis and resistance to immunotherapy

(13, 14).

In the field of breast cancer research, the application of ST is

gradually demonstrating its unique value and potential. Although
FIGURE 1

Molecular subtyping of breast cancer and therapeutic strategies.
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the current research articles exhibit a certain degree of dispersion,

each contains valuable information and insights that urgently await

systematic organization and integration. This review aims to

synthesize these research findings into a comprehensive

knowledge map through meticulous literature review and in-

depth analysis, with the expectation of revealing the integrated

application and development trends of ST in breast cancer research.

Furthermore, this study is dedicated to exploring the potential

application prospects of ST in breast cancer research, as well as the

innovative and transformative impacts it may bring. Through this

process, we anticipate providing new perspectives and ideas for

understanding the biological mechanisms of breast cancer,

improving diagnostic methods, and optimizing treatment strategies.
2 ST and the molecular characteristics
of breast cancer

Breast cancer is marked by pronounced tumor heterogeneity,

with neoplastic cells from disparate regions potentially manifesting

divergent gene expression profiles and biological behaviors. A

research consortium from the Australian Institute for Medical

Research has harnessed ST in conjunction with single-cell RNA

sequencing to delineate the most exhaustive cellular cartography of

breast cancer to date. This investigation has not only unveiled the

heterogeneity of neoplastic cells but also delineated nine tumor

ecotypes correlated with the overall patient survival, with certain

ecotypes being predictive of an adverse prognosis (15).

Invasive micropapillary carcinoma (IMPC), a distinctive

histological variant of breast cancer, is distinguished by its high

propensity for lymphovascular invasion and lymph node

metastasis. A team led by Lv, J. has postulated the “IMPC tumor

cell clump metastasis” hypothesis, pioneering the transcriptional

profiling of IMPC and uncovering its profound heterogeneity,

which is intricately linked to metabolic reprogramming.

Metabolically aberrant IMPC subpopulations are spatially

segregated and exhibit heightened lipid metabolism across all

IMPC stratified clusters. Concurrently, elevated expression of the

sterol regulatory element-binding transcription factor 1 (SREBF1)

protein has been correlated with increased lymph node metastasis

and diminished survival rates in IMPC patients, underscoring its

potential as a diagnostic and therapeutic biomarker (16).

Yoshitake, R. and colleagues have elucidated that estrogen

receptor-positive (ER+) breast cancer encompasses four spatially

discrete populations with functional heterogeneity, including

estrogen responsiveness, proliferation, hypoxia induction, and

inflammation association. The “proliferative” subset is pivotal for

estrogen-driven tumorigenesis, conferring a phenotype reminiscent

of the luminal B subtype. Gene signatures emanating from

proliferative, hypoxia-induced, and inflammation-associated

populations are significantly associated with inferior clinical

outcomes, whereas patients with estrogen-responsive signatures

demonstrate a more favorable prognosis (17).

Sun H (18) associates have stratified the MDA-MB-231 tumor

mass into necrotic, peripheral necrotic, hypoxic tumor, adaptive

survival tumor, and invasive tumor compartments based on
Frontiers in Immunology 03208
hypoxic status and transcriptomic profiling. Each compartment

possesses a unique expression signature, with diverse gene

networks activated under the influence of distinct hypoxic

microenvironments, thereby dictating the fate of tumor cells across

different regions. The spatial transcriptional distribution of 35

hypoxia-associated genes was mapped, revealing that disparate

tumor regions with distinct hypoxia-related gene signatures exhibit

unique characteristics. B lymphocytoma-2 gene-homology 3

(BINP3), implicated in the regulation of apoptosis, exhibits

heightened expression in hypoxic regions, whereas prolyl-4-

hydroxylase alpha polypeptide I (P4HA1), though broadly

expressed, displays significant variation at the periphery of necrotic

areas. Lactate dehydrogenase (LDHA), a marker of tumor

metabolism, is ubiquitously upregulated across the tumor tissue,

with the most pronounced differences in the invasive regions.

Beyond hypoxia-inducible factor-1a (HIF-1a), alternative pathways
are implicated in the modulation of these gene networks. These

hypoxia-associated genes not only interact among themselves but

also serve as key regulators within the gene regulatory networks of

each compartment. The elucidation of these spatial heterogeneities is

instrumental for advancing our understanding of breast cancer

biology and for the development of novel therapeutic strategies

targeting breast malignancies.

The architecture and functionality of mammary tissue exhibit

intricate spatial complexity, with cellular constituents and states

across regions potentially exerting distinct influences on the health

of the breast and the evolution of pathologies. Precise stratification

is paramount for the determination of appropriate therapeutic

interventions. Research has posited that the heterogeneity of

cellular populations within neoplastic tissue, encompassing both

malignant and non-malignant entities, are organized into tumor

regions or “niches” with distinct cellular compositions. These zones

may reflect the recruitment of specific cellular subpopulations or the

differentiation processes of cells (3). Kumar, T.’s investigative

research has elucidated the molecular disparities between the

ductal and alveolar compartments of the breast, as well as the

ecosystem of resident immune cells within these tissues. Specifically,

certain subtypes of immune and basal cells exhibit a higher

prevalence in the ductal and alveolar regions, in contrast to their

sparse distribution in the connective tissue areas. The ductal region

has been correlated with an enhanced expression of genes

associated with secretory luminal epithelial cells (LumSec),

whereas the alveolar region is characterized by an upregulation of

genes specific to hormone-responsive luminal epithelial cells

(LumHR). Lymphocytes were predominantly detected in the

connective tissue areas, whereas vascular cells showed a higher

prevalence in the ductal and alveolar regions (19).

An additional study employing single-cell RNA sequencing

(scRNA-seq) and ST has identified a cluster of disseminating

cancer cells characterized by heightened oxidative phosphorylation

(OXPHOS) activity. This investigation has discerned a metabolic shift

between glycolysis and OXPHOS as the process of dissemination

commences. Moreover, this distinctive cellular cluster is observed to

be distributed along the tumor’s leading edge (20). The heterogeneity

of cellular positions at the tumor ductal periphery or core

underscores the necessity of incorporating the spatial architecture
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of the tumor in therapeutic strategies. Spatially resolved

transcriptomics, genomics, and single-cell analyses have unveiled

the intrinsic subtype heterogeneity within mixed infiltrating ductal

and lobular carcinoma (MDLC). Compared to TNBC or basal ductal

and estrogen receptor-positive (ER+) phenotypes, MDLC exhibits a

pronounced enrichment of luminal lobular region cells characterized

by cell cycle arrest/senescence and oncogenic (ER andMYC) features,

along with inactivation of E-cadherin 1 (CDH1) specific to the

lobular rather than ductal regions. Furthermore, the identification

of a unique oncogenic single-cell ductal and lobular subset

accentuates the heterogeneity within the region. It has been

substantiated that the tumor morphology and histological

heterogeneity within MDLC are governed by intrinsic subtype and

oncogenic heterogeneity, which may engender prognostic ambiguity

and therapeutic challenges (21).

ST has been instrumental in elucidating the inter-regional

interactions within human breast cancer tumors, as well as the

regulatory mechanisms from receptor-ligand (LR) interactions to

target gene expression. This approach has unveiled the intricate

crosstalk between disparate cell types, which may exert substantial

influence on the functional attributes of mammary tissue and the

trajectory of disease progression. In a study conducted by Wang H

et al., it was determined that multi-tiered signaling networks exist

between any two tumor regions, with the affinity of LR interactions

within these networks varying significantly between different

regions (22). Certain LR pairs, such as Tumor Necrosis Factor

(TNF)-Tumor Necrosis Factor Receptor Superfamily Member 21

(TNFRSF21), Retinol Binding Protein 4(RBP4)- Stimulated by

Retinoic Acid Gene 6 (STRA6), Platelet-derived Growth Factor A

(PDGFA)-Platelet Derived Growth Factor Receptor Beta

(PDGFRB), Tenascin C (TNC)-Contactin 1 (CNTN1), and ALK

and LTK ligand 2 (ALKAL2)-Anaplastic Lymphoma Kinase (ALK),

have demonstrated enhanced interaction profiles. Prior research has

underscored the significance of ALKAL2-ALK signaling (23, 24)

and PDGFA-PDGFRB signaling (25) in the oncogenic processes of

breast cancer, particularly in tumor growth and metastasis.

Employing ST analysis, investigators have discerned

subpopulations of cells and molecular signatures that correlate

with clinical outcomes, thereby introducing novel biomarkers

pivotal for the stratification, treatment response prediction, and

personalized therapeutics in breast cancer. Ductal carcinoma in situ

(DCIS) represents an incipient phase of breast cancer with the

potential to evolve into invasive ductal carcinoma. Dr. Satoi

Nagasawa from the University of Tokyo performed ST analysis

on DCIS, revealing that mutations in GATA Binding Protein 3

(GATA3) and Phosphoinositide-3-Kinase, Catalytic, Alpha

Polypeptide (PIK3CA) are the most prevalent within this cohort.

DCIS cells harboring GATA3 mutations have been observed to

occasionally evolve into invasive cancers, implicating their role in

epithelial-mesenchymal transition (EMT) and angiogenesis. In

contrast, DCIS cells with PIK3CA mutations do not progress to

malignancy (26), highlighting the cellular heterogeneity intrinsic to

breast cancer tumors. ST sequencing data corroborate that DNA

Damage-Inducible Transcript 3 (DDIT3) co-localizes with

biomarkers of malignant epithelia (KRT19), myofibroblasts

(ACTA2), and monocytic/macrophage populations (CD68),
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exhibiting heightened expression within cellular clusters. DDIT3’s

role in modulating the TME and intercellular communication is

multifaceted, with positive correlations observed with pathways

implicated in apoptosis, cell cycle regulation, DNA damage

response, and the epithelial-mesenchymal transition (EMT) in

breast cancer (27).
3 ST and the breast cancer TME

TME is a complex ecosystem comprising a diverse array of

immune and stromal cells, vascular structures, extracellular matrix

(ECM) components, and an array of soluble mediators (28). This

multifaceted milieu is instrumental in modulating tumorigenesis and

dictating the trajectory of cancer evolution. The cellular constituents

of the TME exhibit significant heterogeneity, and their spatial

architecture varies across distinct genomic subtypes of breast

cancer. These variations are manifested in the interactions and

topographical arrangements among cellular subsets, which in turn

can significantly influence the neoplastic process and the tumor’s

responsiveness to therapeutic interventions. ST has elucidated the

intricate distribution of these cellular elements within the TME and

delineated the nuanced interactions between diverse cellular

populations and malignant cells, thereby enhancing our

comprehension of the molecular underpinnings of breast cancer

and the intricacies of the TME, including its therapeutic resistance.

Investigators have meticulously mapped the spatial organization

and context-specific landscape of breast cancer and its attendant

microenvironment, profiling the expression of 37 proteins across a

cohort of 483 tumor samples, these data helped the investigators to

distinguish between different cellular phenotypes such as tumor cells,

stromal cells and immune cells. For example, they were able to

distinguish between different phenotypes of epithelial cells,

fibroblasts, myofibroblasts, endothelial cells, T cells, B cells, and

macrophages, among others, thereby unmasking the spatial

heterogeneity of cellular constituents within the TME (29).

Research endeavors have further characterized the spatial co-

occurrence and interplay of various cellular phenotypes within

breast cancer. Croizer H (30) has expounded on the malleability of

FAP+ cancer-associated fibroblasts (CAFs) and their intricate

crosstalk with immune cells, identifying a spectrum of 10 spatially

orchestrated FAP+ CAF clusters associated with cellular modules,

designated as EcoCellTypes (ECTs). These ECTs, which include

immunosuppressive and immuno-permissive variants, encompass

specific FAP+ CAF clusters and immune cell populations that are

situated at discrete distances from tumor conglomerates and vascular

structures. Certain FAP+ CAF clusters have been correlated with the

invasive properties of breast cancer, suggesting that the heterogeneity

among FAP+ CAFs may play a pivotal role in the progression of

DCIS. Another study focusing on CAFs has delineated the spatial

organization of disparate CAF populations within breast cancer.

Some specific CAF populations were found to coincide with

heightened transforming growth factor-b (TGF-b) signaling, with

elastin microfibril interface-derived protein 1 (EMILIN1) emerging

as a paramount regulatory gene. Elevated EMILIN1 expression at the

tumor periphery is associated with robust CD8 T-cell infiltration, and
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such increased EMILIN1 expression correlates with an improved

prognosis in breast cancer patients, underscoring its functional

relevance in the recruitment of cytotoxic T cells to the TME (31).
3.1 ST and the tumor-
immune microenvironment

The immunological components of the TME are under intense

scrutiny due to their significant roles in oncological processes.

Immune infiltration within tumor tissues surpasses that observed

in normal tissues (32), with the potential to either combat or

propagate tumorigenesis. For instance, TAN can stimulate the

proliferation and invasiveness of malignant cells, yet they are also

capable of exerting cytotoxic effects against tumor cells (33).

Macrophages within the TME demonstrate diverse polarization

states; the classically activated M1 macrophages are associated with

anti-tumor activities, while the alternatively activated M2

macrophages are more inclined to support tumorigenesis (34). ST

has delineated the distribution patterns of these cellular elements

across tumor tissues, thereby providing a more refined representation

of the spatial tumor-specificity inherent to each cell population. The

composition of the TME is subject to variation predicated on spatial

positioning, which corresponds to the distinct functionalities of

immune cells. Research team reclustered immune cells to identify T

cells and innate lymphoid cells, myeloid cells, B cells and

plasmablasts. They identified 18 T-cell and innate lymphoid

clusters, 13 clusters myeloid cells, three major cell types in the

stromal compartment across patients, these cell clusters are

mutually exclusive in their spatial arrangement, and the “ecotypes”

composed of different cell clusters differ significantly from the tumor

subtypes and prognosis (15). Research (19) has disclosed that

immune cells are predominantly localized to the parenchymal

compartments of mammary tissue, distinct from the intravascular

locales, indicative of their tissue-residency. Furthermore, extensive

ligand-receptor interactions between immune cells and other cellular

constituents of the mammary tissue, such as epithelial and stromal

fibroblasts, suggest an influential role for immune cells in the steady-

state and pathological mechanisms of mammary tissue. In a cohort of

152 HER2+ ductal breast carcinomas, cellular constituents of the

TME displayed well-defined three-dimensional localization patterns;

for instance, T lymphocytes exhibit a propensity to aggregate

perivascularly and along vascular networks, whereas macrophage

accumulations manifest distinct distributional configurations,

ranging from uniform dispersion to localized aggregation (35).

Within TNBC, there exists a pronounced variability in the spatial

distribution of immune cell subpopulations. Intraepithelial T and B

lymphocytes consistently exhibit a more clonal and less diverse

immune repertoire compared to their stromal counterparts.

Overamplification of T cell clones within the intraepithelial

compartment is more pronounced than within the stromal T cells,

indicative of an enriched accumulation of antigen-specific T cells at

the tumor core (36).

Utilizing spatial information, we can more adeptly investigate

the intricate interplay between immune cells and neoplastic cells. By

amalgamating single-nucleus RNA sequencing (snRNA-seq) with
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ST datasets to elucidate the spatial heterogeneity of immune cells

within the breast cancer TME, the ST datasets have been stratified

into six principal zones: the luminal region, basal region, the

interfacing area between the luminal region and basal region,

stroma and infiltrating lymphocyte areas based on the principal

component scores across all ST spots (37). Neutrophils were found

to be enriched in the luminal region, whereas B cells were observed

to be primarily infiltrating the basal region. Activated CD8+ T cells

display an enhanced tumor spatial specificity relative to their

quiescent counterparts, aligning with their purported anti-tumor

capabilities. Certain immunosuppressive cell populations, such as

Regulatory T cells (Tregs) and Cancer-associated Fibroblasts

(CAFs), exhibit diminished tumor spatial specificity. Furthermore,

macrophage clusters expressing both M1 and M2 phenotypic

markers, notably Mac.FABP5+ cells, demonstrate heightened

tumor spatial specificity in comparison to pro-inflammatory

macrophages, implying a potential direct induction by neoplastic

cells (32). Among HER2 positive patient cohorts, a shared spatial

expression signature has been identified, with reciprocal

interactions between Mø and T cell subsets evident within the

context of type I interferon responses (38). Collectively, these

insights underscore the qualitative disparities among immune cell

clusters across distinct clinical subtypes, augmenting our

comprehension of the intricate interactions between tumor cells

and the TME’s architectural intricacies, thereby highlighting the

imperative for subtype-specific targeted therapeutic strategies in

clinical practice.
3.2 ST and the tumor immune evasion

Recent research in the realm of tumor immune evasion has

made significant strides. It is now understood that the intricate

interplay among immune cells within TME, encompassing T

lymphocytes, macrophages, and regulatory Treg, is crucially

linked to the occurrence of immune evasion. Treg are known for

their role in curbing the activity of immune effector cells, thus

preventing unwarranted tissue damage and quelling inflammatory

responses. However, within the inflammatory milieu of a tumor,

Treg can undergo reprogramming that augments their suppressive

capabilities, leading to a state that either facilitates tumor immune

evasion or fosters tumor progression. Strategies that aim to

diminish the Treg cell population or attenuate their activity

within the tumor’s inflammatory TME, while simultaneously

impeding their reprogramming, have been shown to bolster the

body ’s anti-tumor immune response (39). Notably, the

identification of novel PD-L1+/PD-L2+ macrophage populations

that correlate with clinical outcomes suggests that these

macrophages might modulate immune responses in the TME

through interactions with the T cell surface, playing a significant

role in tumor progression and immune evasion (15). Furthermore,

in basal-like tumors, epithelial cells under hypoxic conditions have

been linked to the upregulation of CD274 and the downregulation

of B2M, establishing a connection between hypoxia and the

mechanisms underlying immune evasion (29). These findings

underscore the complexity of the TME and highlight potential
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targets for therapeutic intervention to counteract tumor

immune evasion.

ST technology facilitates a sophisticated delineation of the

genotype and phenotype of diverse immune cell populations and

their states of activation or suppression, unveiling novel therapeutic

targets for breast cancer intervention. Claudin-low breast cancer is

characterized by a pronounced immune cell infiltration, with

heightened presence of B cells, T cells, NK cells, macrophages, and

neutrophils relative to other breast cancer subtypes. However, clinical

investigations have demonstrated that despite abundant lymphocytic

infiltration, a significant number of patients exhibit resistance

to immune checkpoint therapies. Beyond CD274, a repertoire

of additional immune checkpoint genes, including CD276

and Neuropilin-1 (NPR1), contribute to immunosuppressive

mechanisms, thereby circumscribing the efficacy of PD-L1

inhibitory agents (40). In the context of metaplastic breast cancer

(MBC), there is evidence of intratumoral permeation by Treg cells,

M2-macrophages, and myeloid-derived suppressor cells (MDSCs),

which orchestrate an immunosuppressive milieu replete with EMT

and hypoxic elements. The interplay with Treg cells is shown to be

mediated through signaling pathways involving fibroblast growth

factor 2 (FGF2), fibroblast growth factor receptor 1 (FGFR1), and

CD44, underscoring the potential therapeutic efficacy of

interventions directed at Treg cells in MBC (41). Li CJ et al. (42),

employing ST technology, identified an elevated expression of the

mitochondrial calcium uniporter (MCU) within tumorigenic regions.

Subsequent analyses revealed a positive correlation between MCU

expression and the upregulation of pivotal T cell regulatory factors.

Within the BRCA invasion cohort, a significant positive association

was observed between T cell infiltration and MCU expression,

suggesting that MCU not only offers prognostic insights into

disease progression but also serves as an indicator of immune status.
4 ST in relation to breast cancer
treatment response and guidance of
clinical strategies

ST has elucidated subpopulations of cells correlated with tumor

metastasis and chemotherapy resistance, enhancing our

understanding of the molecular underpinnings of these intricate

biological processes. By examining the TME-modulated

pharmacological responses, it is possible to predict which patients

are poised to garner clinical benefit from immunotherapeutic

interventions. Employing single-cell transcriptomics in conjunction

with spatial proteomics, the therapeutic efficacy of pembrolizumab in

TNBC has been assessed. Tumors that were refractory to treatment

demonstrated a dearth of immune cell infiltration both prior to and

subsequent to therapy, alongside minimal alterations in immune

profiles induced by treatment. In contrast, tumors that responded to

therapy could be segregated into two distinct cohorts based on pre-

treatment characteristics; one cohort was characterized by elevated

expression of major histocompatibility complex molecules and the

presence of tertiary lymphoid structures, indicative of pre-existing
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anti-tumor immune activity. The other cohort, akin to non-

responders at baseline, exhibited a pronounced immune response

following combined therapeutic intervention, marked by the

interactive engagement of cytotoxic T lymphocytes and antigen-

presenting myeloid cells (43). Following neoadjuvant therapy in

patients with HER2-positive tumors, significant changes occur

within the immunological landscape of the tumor. These changes

are characterized by a substantial decrease in HER2 expression and its

downstream Akt signaling, along with an increased expression of

CD45 and CD8, which corresponds to the infiltration of leukocytes

and cytotoxic T cells, respectively. Conversely, cases that did not

achieve pathological complete response (pCR) are marked by an

increase in CD56 expression, which may suggest the lysis of

chemotherapy-stressed tumor cells by natural killer (NK) cells (44).

ST has been harnessed to investigate the contribution of TNBC

tumor cells to the response to neoadjuvant chemotherapy (45),

revealing in pCR cases a spatial intermingling of tumor and

lymphocytic infiltrates, underpinned by robust activation of

interferon (IFN) signaling pathways. Conversely, non-responsive or

progressive (pNR) lesions were typified by heightened angiogenic

signaling and oxidative metabolism, likely ensuring the requisite

energy provision to facilitate the proliferation and architectural

reconfiguration necessary for tumor progression. ST offers

multidimensional insights into the complexity of TNBC and

enables the prognostication of tumor behavior with precision.

Collectively, these findings substantiate the utility of ST in affording

novel perspectives for the refinement and personalization of

therapeutic strategies.

ST is instrumental in crafting therapeutic strategies that

are precisely targeted to distinct TME and specific cellular

subpopulations, thereby optimizing therapeutic outcomes and

curtailing superfluous adverse effects. Trastuzumab serves as an

efficacious therapeutic for HER2-positive breast cancer; however, the

development of resistance within a year is a common clinical challenge.

A novel bispecific antibody, IMM2902, directed against CD47 and

HER2, has been engineered to address trastuzumab-resistant breast

cancer. Utilizing ST analysis in conjunction with multiplex

immunofluorescence (mIFC) and in vitro assays, it was determined

that IMM2902 is capable of robustly inducing macrophages to secrete

C-X-C motif chemokine ligands 9 and 10 (CXCL9 and CXCL10),

which are pivotal for the recruitment of T lymphocytes and NK cells to

the TME. The integration of IMM2902 into the current therapeutic

regimens holds the potential to markedly alter the clinical management

of HER2-positive breast cancer, offering a novel avenue of hope for

patients, particularly those with limited therapeutic options due to

acquired resistance to existing treatments (46). An additional study,

employing both single-cell and whole-tissue analytical approaches, has

demonstrated a correlation between high levels of inner mitochondrial

membrane protein (IMMT) and the immunosuppressive tumor

immune microenvironment (TIME). This research substantiates the

role of IMMT in the immunosuppressive phenotype of TIME, the

proliferation of cancer cells, and mitochondrial adaptive mechanisms,

thereby nominating pyridostatin as a promising candidate for targeted

therapeutic development in precision medicine (47).
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5 ST and prognosis assessment in
breast cancer

ST analysis is a cutting-edge technique that plays a pivotal role in

discerning cell subpopulations and molecular signatures linked to

patient prognostication. This technology affords novel biomarkers

that are instrumental for the categorical stratification of breast

cancer, the prognostication of therapeutic responses, and the

tailoring of individualized treatment paradigms. ST sequencing of

disparate regions within clinical breast cancer tissue specimens has

unveiled a higher prevalence of follicular helper T cells, quiescent

dendritic cells, and plasmacytes within regions abundant in tumor cells,

in contrast to areas rich in immune cells where there is a diminished

presence of resting CD4+ memory T cells and T regulatory cells. The

investigation has pinpointed activated leukocyte cell adhesion molecule

(ALCAM), ADP-ribosylation factor-like protein 6-interacting protein 1

(ARL6IP1), and cyclin G2 (CCNG2) as potential immunoprotective

agents in breast cancer pathology, while antizyme Inhibitor 1 (AZIN1),

myoferlin (MYOF), and transforming acidic coiled-coil containing

protein 2 (TACC2) are implicated as potential oncogenes. In locales

of elevated tumor cell density, surfeit locus protein 4 (SURF4) and the

lipid metabolic gene lysophospholipase I (LYPLA1) have been

corroborated as biomarkers inversely related to favorable outcomes.

Additionally, diacylglycerol o-acyltransferase 1 (DGAT1), LYPLA1,

polymerase (RNA) II (DNA-directed) polypeptide K (POLR2K), and

recombinant sphingomyelin phosphodiesterase 4 (SMPD4) are

identified as influential factors that modulate patient survival

outcomes (48). In the realm of TNBC, which lacks established

biomarkers for outcome prediction, spatial profiling has uncovered

that caspase 3 and cleaved poly (ADP-ribose) polymerase (cPARP),

both indicators of cellular demise, are associated with inferior overall

survival when in interaction with the epidermal growth factor receptor

(EGFR). The absence of interplay between cells manifesting

myoepithelial markers such as smooth muscle actin (SMA) and

those indicative of cell cycle progression (mitotic figures) marked by

phosphorylated histone H3 (pHH3) is correlated with diminished

overall survival. Conversely, the interaction between stromal cells

positive for vimentin and those exhibiting active receptor tyrosine

kinase (RTK) signaling is associated with enhanced overall survival.

These findings underscore the complexity and heterogeneity of the

tumor microenvironment and highlight the potential of ST analysis in

uncovering new therapeutic targets and prognostic biomarkers in

breast cancer (49).
6 Potential challenges and future
prospects for the clinical application
of ST

These investigations underscore the transformative impact of ST

on our apprehension of tumor heterogeneity, offering novel insights

and methodological approaches for the molecular profiling of breast

cancer, delineation of the TME, assessment of treatment

responsiveness, and prognostic stratification, thereby holding the

potential to catalyze the evolution of precision oncology in breast
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cancer. As technological advancements persist and applications are

further explored, the anticipation is ripe for a cascade of transformative

discoveries that are poised to innovate the diagnostic and therapeutic

paradigms in breast cancer management.

Despite the progress made by ST profiling in discovering and

identifying disease-specific and spatially specific factors, ST also has

its limitations (Table 1). The spatial distribution within ST is subject

to the positional integrity of tissue sections relative to the three-

dimensional architecture of the organ or tissue and the fluctuating

phases of disease progression. Given the considerable variability that

can exist between tissue sections of different depths and orientations,

there exists a legitimate query as to whether the spatial distribution

captured by ST is comprehensively representative of the complete

landscape and spectrum of variations within the multi-dimensional

organmilieu (50, 51). The precision of pathological identification and

selection is equally pivotal to the fidelity and congruence of ST maps

and the inferred intercellular dynamics (52). The corpus of human

specimens is constrained by the complexities surrounding sample

acquisition, preservation, and transit, underscoring an urgent

requirement for systematic, rigorously architected clinical research

to elucidate the pathophysiological nuances of the disease (53).

The translational journey of ST maps into clinical relevance is

replete with challenges, stemming from discrepancies in molecular

profiling and phenotypic manifestations between animal models

and human subjects, as well as among various disease models (51).

To encapsulate, the assembly and cartography of spatial profiles

necessitate enhanced standardization and automation protocols. The
TABLE 1 Advantages, limitations, and application potential of
spatial transcriptomics.

Feature Description

Advantages

Limitations

Application
Potential

1. Cellular Spatial Localization: Retains spatial information of
cells, providing gene expression characteristics in situ (10).
2. In Situ Tissue Research: Advances the study of genuine gene
expression of cells in tissue sites (10).
3. Broad Application Potential: Demonstrates potential in various
fields such as tumor, embryonic development, and pathology
(51).
4. Biological Interactions: Clarifies interactions between cells and
the influence of the microenvironment (11).
1. ST Distribution Positional Influence: The representativeness
of ST distribution is influenced by the position of tissue
sections and differences in disease stages (50, 51).
2. Pathological Identification Accuracy: The accuracy of
pathological identification is crucial for the reliability of ST
atlases (52).
3. Human Sample Availability Limitation: The limited
availability of human samples restricts the conclusiveness of
disease research (53).
4. Animal Model-Human Disease Discrepancy: Differences
between animal models and human diseases pose challenges
for the clinical application of ST atlases (51).
5. Cost Issue: Higher cost compared to traditional RNA
sequencing methods (54).
1. Revealing Cellular Heterogeneity: Identifying and locating
different cell populations within tissues (10).
2. Drug Development: Identifying new biomarkers and drug
targets (26, 27).
3. Spatiotemporal Dynamics Analysis: Revealing spatiotemporal
dynamics within tissues (11).
4. Multi-Omics Integration: Combining with other omics data to
provide a comprehensive perspective (57, 58).
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clinical utility of ST is inextricably linked to the precision,

reproducibility, and consistency of ST profiling, contingent upon

the intricacies, severity, staging, pathological fidelity, and

morphological exactitude of the disease context (54).

With the rapid development of new ST technology, data

acquisition is continuously improving, and challenges in ST

resolution, sensitivity, throughput, and accessibility are being

overcome (55). ST is compatible with paraffin-embedded tissues,

providing the possibility for retrospective analysis of samples

collected in biobanks. This will potentially allow for the systematic

detection of various tissues and the reconstruction of the three-

dimensional spatial structure of gene expression in organisms (51).

ST has emerged as a transformative approach in breast cancer

research, offering innovative vistas and analytical tools that have

propelled our comprehension of the TME and the intricacies of

tumor heterogeneity. It has also been instrumental in fostering

substantial advancements in the realm of breast cancer immunotherapy.
7 Conclusions

The present review synthesizes the burgeoning role of spatial

transcriptomics in elucidating the intricate landscapes of breast

cancer. It underscores the technology’s capacity to delineate the

TME and identify cell subpopulations with unprecedented clarity.

Despite its promise, spatial transcriptomics is still nascent and

confronts hurdles such as cost-efficiency, data intricacy, and the

need for analytical standardization.

Ongoing research must refine spatial transcriptomics to augment

its resolution and scalability, while concurrently advancing

bioinformatics methodologies to adeptly manage and interpret the

voluminous datasets. Interdisciplinary cooperation, space multiple

omics technology combines genomics, transcriptomics, proteomics

and metabolomics, provides tissue space system in all or most of the

gene expression level, has been used in neuroscience, development,

cancer, plant biology and other fields, improve the biological insights

on disease pathogenesis (56–58).
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The burgeoning potential of spatial transcriptomics in breast

cancer research is palpable, with the anticipation that it will

engender transformative diagnostics and therapeutics. As the field

matures, we anticipate its pivotal role in the realm of precision

medicine, significantly impacting patient prognostication and

treatment paradigms.
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Modified Dendritic cell-based T-
cell expansion protocol and
single-cell multi-omics allow for
the selection of the most
expanded and in vitro-effective
clonotype via profiling of
thousands of MAGE-A3-specific
T-cells
Sergey Sennikov*, Marina Volynets, Saleh Alrhmoun,
Roman Perik-Zavodskii , Olga Perik-Zavodskaia, Marina Fisher,
Julia Lopatnikova, Julia Shevchenko, Kirill Nazarov,
Julia Philippova, Alaa Alsalloum, Vasily Kurilin
and Alexander Silkov

Laboratory of Molecular Immunology, Research Institute of Fundamental and Clinical Immunology,
Novosibirsk, Russia
Introduction: Adoptive cell therapy using TCR-engineered T-cells is one of the

most effective strategies against tumor cells. The TCR T-cell approach has been

well tested against a variety of blood neoplasms but is yet to be deeply tested

against solid tumors. Among solid tumors, cancer-testis antigens are the most

prominent targets for tumor-specific therapy, as they are usually found on cells

that lie behind blood-tissue barriers.

Methods:We have employed a novel efficient protocol for MAGE-A3-specific T-

cell clonal expansion, performed single-cell multi-omic analysis of the expanded

T-cells via BD Rhapsody, engineered a selected T-cell receptor into a lentiviral

construct, and tested it in an in vitro LDH-cytotoxicity test.

Results and discussion: We have observed a 191-fold increase in the MAGE-A3-

specific T-cell abundance, obtained a dominant T-cell receptor via single-cell

multi-omic BD Rhapsody data analysis in the TCRscape bioinformatics tool, and

observed potent cytotoxicity of the dominant-clonotype transduced TCR T-cells

against a MAGE-A3-positive tumor. We have demonstrated the efficiency of our T-

cell enrichment protocol in obtaining potent anti-tumor T-cells and their T-cell

receptors, especially when paired with the modern single-cell analysis methods.
KEYWORDS

MAGE-A3, ScRNA-seq, scTCR-seq, TCR, T-cell receptor repertoire, TCR T-cells,
adoptive cell therapy, naturally-occurring T-cells
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1 Introduction

Melanoma-associated gene (MAGE) protein family were the first

proteins identified from the class of cancer-testis antigens whose

expression pattern was restricted to germline cells and immune-

privileged testes and placenta cells (1). In tumor cells, expression of

cancer-testis antigens is associated with apoptosis avoidance,

increased viability, migration with subsequent metastasis, and

angiogenesis (2). More than sixty proteins belong to the MAGE

family, but only type I proteins whose expression is restricted to the X

chromosome belong to the class of cancer-testicular antigens (3). The

first type includes the MAGE-A, -B, and -C subfamilies. MAGE

family proteins have a MAGE homology domain (MHD) consisting

of approximately one hundred and seventy amino acid residues (4).

The MHD is 46% conserved in the human population.

Expression of MAGE-A subfamily proteins in patients with cancer

correlates with poor clinical prognosis as well as increased recurrence

after therapy (5). MAGE-A subfamily proteins are widely used as

target epitopes for immunotherapy because they are present in a large

number of tumor types (6). In 2009, the National Cancer Institute

(NCI) ranked seventy-five tumor-associated antigens according to

characteristics important for selecting an antigen as a target for

immunotherapy (e.g. immunogenicity and oncogenicity). MAGE-

A3 was ranked eighth (7).

One of the possible approaches to the treatment of MAGE-A3-

positive tumors is TCR T-cells. Several clinical trials on the use of

high-affinity TCR-T-cells with genetically modified antigen-

recognition receptors specific to MAGE-A3 epitopes were

prematurely terminated due to lethal outcomes, as the increase in

T-cell receptor affinity may lead to off-target activity (8, 9). In the

first case, some patients developed severe neurological toxicity due

to possible cross-reactivity of the T-cell receptor with a highly

homologous epitope of the MAGE-A12 protein (KMAELVHFL),

which can be normally expressed in brain cells (8). In the second

case, severe cardiac toxicity was observed due to additional

recognition of the Titin protein epitope (ESDPIVAQY), which is

specific for transverse striated muscles and is found in the

myocardium (10).

T-cells during their natural encounters with antigen-presenting

Dendritic cells (DCs) can undergo clonal expansion if they

recognize the presented peptide (11). Clonal expansion is the

process of selection of the most affine T-cell receptor (TCR), i.e.

the best TCR clonotype (12). T-cell receptor is composed of two

chains: alpha and beta, each of which is, in turn, composed of 4

framework (FR) and 3 complementarity-determining regions

(CDR), among which beta-chain CDR3 is the most important as

it is mostly responsible for the recognition of the antigen the TCR is

specific to.

Previously TCR genomics were facilitated by bulk RNA-seq that

had intrinsic inability to properly pair TCR alpha- and beta-chains

(13). This insufficiency was later solved by the single-cell multi-

omics that currently allow for either targeted or full transcriptome

and surface proteome analysis (14), as well as full-length TCR

sequencing, proper TCR chain pairing, along with the profiling of

transcriptome and proteome of the studied T-cells (15–17).
Frontiers in Immunology 02216
In this work, we implemented a novel T-cell enrichment

protocol (based on the peptide-loaded dendritic cell T-cell

induction) to enrich for the MAGE-A3 antigen-specific T-cells

(using KVAELVHFL peptide), performed scRNA-seq of the

enriched MAGE-A3-specific T-cells, found the Dominant MAGE-

A3-specific clonotype, and assessed its effectiveness in an in vitro

LDH-based cytotoxicity test.
2 Materials and methods

2.1 Study population

The study population consisted of conditionally healthy adult

donors (n = 7) who were preselected for the presence of the HLA-

A02 allele via flow cytometry using PE antibodies against human

HLA-A02 (343306, Biolegend, United States) and the Attune Nxt

flow cytometer (A24858, Thermo Fisher Scientific, Waltham,

Massachusetts, United States). The average age of the donors was

27.33 ± 6.34 years (mean ± SE) (male donors n = 3, female donors

n = 4). All donors signed written informed consent to participate in

the study.
2.2 PBMC isolation

We collected peripheral blood (n = 7) in vacuum tubes with

EDTA and isolated PBMCs using the Ficoll™ (PanEco, Russia)

density gradient centrifugation method. We performed the

centrifugation at 400 g at room temperature for 40 min and then

collected the buffy-coat cells.
2.3 T-cell clonal expansion protocol

We used peptide-loaded dendritic cell (DCs)-based T-cell

clonal expansion protocol to induce the single-cell capture-

compatible cell number of antigen-specific cytotoxic T

lymphocytes in vitro. We utilized DCs as they have a unique

ability to capture and present antigens in combination with MHC

class I and class II molecules for the activation of naïve T-cells,

which, in turn, leads to the clonal expansion and differentiation of

the naïve T-cells into the effector T-cells (11, 18). In this paper, we

developed a multi-stage, maximally optimized, and efficient

protocol, based on a previous well-established in-lab protocol that

has proven its effectiveness (19–21).

2.3.1 Obtaining DCs
The PBMCs (n = 7) were cultivated in RPMI-1640 medium,

which was enriched with 10% fetal calf serum (FCS) (Biowest,

Nuaillé, France), 2 mM L-glutamine (Biolot, Saint Petersburg,

Russia), 5 × 10-4 M 2-mercaptoethanol (Sigma-Aldrich, St. Louis,

MO, USA), 25 mMHEPES (Biolot, Saint Petersburg, Russia), 80 mg/
mL gentamicin (KRKA, Novomesto, Slovenia), and 100 mg/mL

benzylpenicillin (Biolot, Saint Petersburg, Russia). This
frontiersin.org
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combination is referred to as the culture medium. The obtained

PBMCs (80-100 million) were incubated in a culture vial with a

surface area of 150 cm² (TPP, Switzerland) at a concentration of 1-2

million cells/mL for 30 minutes in a CO2 incubator. The non-

adherent cells were then used to isolate CD8+ cells, while the

adherent cells were detached from the plastic surface using a cell

scraper (TPP, Switzerland). The adherent fraction of PBMCs (20-25

million cells) was cultured in a 150 cm² culture vial (TPP,

Switzerland) in the presence of recombinant human granulocyte-

macrophage colony-stimulating factor (100 ng/mL, BioLegend,

United States) and interleukin-4 (50 ng/mL, BioLegend, United

States) for 4 days to generate immature dendritic cells (DCs). Partial

media replacement was performed on the 3rd day of culture. On the

5th day, the cells were harvested using a cell scraper, counted, and

transferred to 12-well plates (2 mL/well, 1 mL/well). The MAGE-A3

HLA-A02-binding peptide KVAELVHFL peptide (p112-120,

Immunotex, Stavropol, Russia) was added to the cell culture at a

concentration of 30 mg/mL, followed by the induction of DC

maturation on the 6th day using TNF-alpha (25 ng/mL,

BioLegend, United States). The HLA-A02 was chosen since it is

the most frequent class I HLA genotype among almost all human

populations (22).

2.3.2 Obtaining CD8+ T-cells
We used the non-adhesive fraction of cells (n = 7) from the

previous paragraph for the isolation of CD8+ T-cells via

MojoSort™ Human CD8 T-Cell Isolation Kit (480012,

BioLegend, United States) according to the manufacturer’s

instructions. Immediately after the isolation of CD8+ T-cells, we

added IL-7 (581906, BioLegend, United States), IL-15 (570306,

BioLegend, United States), and IL-2 (589106, BioLegend, United

States) each at a concentration of 10 ng/ml and cultivated the CD8+

cells, at a concentration of 2 million cells/mL, for 6 days. We

performed total media replacement on the 3rd day of cultivation

and the addition of another dose of IL-2/7/15, alongside anti-CD3

antibody (0.5 mg/ml) (830301, BioLegend, United States) and anti-

CD28 antibody (1 mg/ml) (302902, BioLegend, United States). We

saved the 6-day-cultivation conditioned media for later use.

2.3.3 DCs and CD8+ T-cells co-culture
Antigen-loaded mature DCs and T-cells were collected from the

culture vessel surfaces using a cell scraper and subsequently co-

cultured in a new 75 cm² vial (TPP, Switzerland) at a ratio of 1:10

(DCs: CD8+). The first 3 days of co-cultivation were carried out

without additional stimulation to selectively eliminate cells that are

not receiving stimulation through their T-cell receptor from the

mature DCs. On the 4th day of the protocol we added anti-CD3

antibody (0.5 mg/ml) (830301, BioLegend, United States), anti-

CD28 antibody (1 mg/ml) (302902, BioLegend, United States), IL-

7 (581906, BioLegend, United States), IL-15 (570306, BioLegend,

United States), and IL-2 (589106, BioLegend, United States) each at

a concentration of 10 ng/ml the co-culture media to maintain

cellular viability and promote proliferation of the obtained CD8+

T-cells.
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2.3.4 Antigen-specific CD8+ T-cell isolation
On the 8th day of DCs and CD8+ T-cells co-culturing (n = 7), we

isolated antigen-specific T-cells from the cell co-culture using a two-

step isolation process. First, the DCs were eliminated using the

MojoSort negative magnetic selection Human CD8 T-cell Isolation

Kit (480012, BioLegend, United States). Second, the antigen-specific

T-cells were sorted using Flex-T tetramers: we loadedMHC tetramers

(HLA-A*02:01) with the MAGE-A3 HLA-A2-binding peptide

KVAELVHFL (p112-120) (Immunotex, Stavropol, Russia) and

labeled the Flex-T MHC tetramers (BioLegend, United States) with

either phycoerythrin (PE) or allophycocyanin (APC) according to the

manufacturer’s instructions, and sorted the double-positive (APC-

tetramer and PE-tetramer) lymphocytes on a BD FACS Aria I sorter

(pressure: 20 psi, mode: “Purity”, speed: 2500 events/sec) (BD

Biosciences, Franklin Lakes, New Jersey, United States). The purity

of the sorted cell populations ranged from 67% to 88%, yielding

between 25,000 to 170,000 antigen-specific cells in total. Additional

details can be found in the Supplementary Materials and Methods

and in Supplementary Figure 1.

2.3.5 Stimulation of cell proliferation
Following the CD8 T-cell sorting, we transferred the antigen-

specific T-cells (n = 7) to a flat-bottomed culture plate at a

concentration of 2-4 million cells/mL, where we cultured them for

14 days in the presence of the followingT-cell stimulating agents: anti-

CD3 antibody (0.5 mg/ml) (830301, BioLegend, United States), anti-

CD28 antibody (1 mg/ml) (302902, BioLegend, United States), IL-7

(581906, BioLegend,United States), IL-15 (570306, BioLegend,United

States), and IL-2 (589106, BioLegend, United States) each at a

concentration of 10 ng/ml. The culture media consisted of equal

parts of RPMI-1640 culture media (Biolot, Russia) and the pre-saved

CD8+ T-cell conditioned media. The total duration of cultivation of

antigen-specific T-cells was 21 days. We visualized the enrichment

results in GraphPad Prism 10.2.3 using bar plots.
2.4 Sample tag sample barcoding and
cell counting for BD Rhapsody
single-cell analysis

We incubated cells from different individuals (n = 3, other 4

donors were discarded due to the low number of antigen-specific T-

cells enriched) with Sample Tag antibodies (BD Biosciences,

Franklin Lakes, New Jersey, United States) for 20 minutes at

room temperature according to the BD Rhapsody Single-Cell

Analysis System User Guide Revision 5.0 (BD Biosciences,

Franklin Lakes, New Jersey, United States). After three washing

cycles, we stained the cells with Calcein, counted them using the

Attune NxT flow cytometer (Thermo Fisher, United States), pooled

the samples together, and resuspended them in a cold sample buffer

to a final concentration of 60 cells/μl and a volume of 620 μl for

loading onto a BD Rhapsody Cartridge. The quality of cell loading

into the cartridge was assessed using the InCell Analyzer 6000 with

the help of Calcein AM (GE Healthcare, United States).
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2.5 cDNA library preparation
and sequencing

We utilized the BD Rhapsody Express Single-Cell Analysis

System (BD Biosciences, Franklin Lakes, New Jersey, United

States) for single-cell capture and cDNA library preparation,

following the manufacturer’s “TCR/BCR Full Length, Targeted

mRNA, and Sample Tag Library Preparation” Protocol. In

summary, single cells were captured in the BD Rhapsody

cartridge, and magnetic beads were introduced for poly-A mRNA

capture. Cells were lysed, and reverse transcription was carried out

on the magnetic beads with the captured poly-A mRNA. A template

switch oligo was then added, followed by another round of reverse

transcription. The Sample Tag cDNA was then denatured, Sample

Tag PCR 1 was performed, and bead cDNA was extended using

Klenow DNA polymerase fragment. Beads were treated with

Exonuclease I, and the cDNA was amplified using TCR primers.

The TCR amplicons were denatured and collected, followed by the

Human Immune Response Primer Panel on the cDNA (targeting

397 genes with 399 primer pairs) to collect the mRNA panel

amplicons. PCR1 products were purified using AMPure XP

magnetic beads (A63880, Beckman Coulter, Brea, California,

United States) and separated by amplicon size into TCR, mRNA

panel, and Sample Tag products. Further amplification and size

selection clean-up was carried out on the mRNA and Sample Tag

PCR1 products yielding PCR2 mRNA and Sample Tag products.

TCR amplicons were normalized to 1.5 ng/mL, followed by random

primer extension (TCR RPE) with Klenow DNA polymerase

fragment and TCR RPE library clean-up by double-sided

selection. Concentrations of PCR2 of mRNA and Sample Tag

products and TCR RPE products were measured using Qubit

High-Sensitivity dsDNA Kit (Q33231, Thermo Fisher, Waltham,

Massachusetts, United States). The final products were then

normalized to 4.5 ng/mL for the mRNA panel library and 1.0 ng/

mL for the Sample Tag library and the RPE TCR products were used

undiluted for the TCR library, and final amplification was

performed with Illumina indexes to prepare the libraries. The

final libraries were quantified with Qubit 4 and Agilent

BioAnalyzer 2100 (Agilent, Santa Clara, California, United

States), then pooled (~83/11/5% TCR/mRNA/Sample Tag ratio,

estimating 15000 (TCR), 2000 (mRNA), and 1000 (Sample Tag)

reads per cell) to a final concentration of 2 nM. Sequencing was

performed on a NovaSeq 6000 sequencer (Illumina, San Diego,

California, United States) using an SP flow cell with (R1 = 85, R2 =

225, 600 million clusters).
2.6 Sequencing data processing

We processed the FASTQ files using the BD Rhapsody pipeline

v1.12 (BD Biosciences, Franklin Lakes, New Jersey, United States).

The pipeline first filtered out low-quality read pairs based on criteria

such as read length, highest single-nucleotide frequency, and mean

base quality score. It then analyzed the remaining high-quality R1

reads to identify cell label and unique molecular identifier (UMI)
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sequences. High-quality R2 reads were aligned to the reference

panel sequences (mRNA) using Bowtie2. Reads with the same cell

label, UMI sequence, and gene were collapsed into single molecules.

UMI counts were adjusted using error correction algorithms —

recursive substitution error correction (RSEC) and distribution-

based error correction (DBEC) — to mitigate errors from both

sequencing and PCR. Cell counts were estimated using second

derivative analysis to filter out noise cell labels; only cell labels

beyond a single observed inflection point were considered valid.

The pipeline then used the sample tags (single-cell multiplexing kit;

BD Biosciences) for sample demultiplexing and to exclude

multiplets, identifying a total of 5.491 single cells. Following this,

the pipeline aligned TCR RPE library reads on a per-cell basis to

create TCR contigs, annotated these contigs, and generated gene

expression (gene/cell) matrices (GEX matrices) for each biological

sample. Additionally, a cumulative Adaptive Immune Receptor

Repertoire (AIRR) matrix was created for the TCR contigs.
2.7 ERGO-II TCR-peptide-MHC
affinity prediction

We downloaded the ERGO-II neural network repository (23)

and initiated the tool from the terminal with the selection of the

input file and database (McPAS-TCR) (24). McPAS-TCR is a

manually curated database based on published literature

containing information on over twenty thousand T-cell receptor

sequences, the antigens they bind to, T-cell type (CD4+/CD8+), and

MHC type (MHC-I/MHC-II). McPAS-TCR includes information

about T lymphocytes that expand in various human or mouse

pathological conditions (including viral infections, cancer, and

autoimmune reactions). The CSV input file for ERGO-II (a pre-

ERGO-II-generated input file, (25, pre ERGO-II.ipynb) contains

information about TCR CDR3a and CDR3b sequence, peptide

sequence, MHC type (MHC-I/MHC-II class), V and J genes, and T-

cell type (CD4+/CD8+), the pre-ERGO-II-generated input file also

contained single cell indices for later data frame merging. The

output file contains a prediction value for the score of T-cell

receptor binding to the peptide/MHC complex, which ranges

from 0 to 1, where 0 is the minimum or no affinity and 1 is the

maximum affinity.
2.8 TCRscape clonotype selection

We imported the GEX matrices of each biological sample, the

multi-sample AIRR matrix, and the ERGO-II output file into

TCRscape (25), merged the GEX matrices, performed “Counts Per

Million” data normalization, replaced the zeroes in the data frame

with the ones, log2-transformed the data, gated CD8+ T-cells,

counted dominant full-length T-cell receptor clonotypes of the

gated T-cells, created a merged data frame containing the gene

expression of the key T-cell markers (CD4, CD8, FOXP3),

clonotype information and ERGO-II-generated binding scores,

performed Principal Component Analysis (PCA) on the merged
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data frame, assessed the dimensionality of the merged data frame by

Scree plot, and performed Uniform Manifold Approximation and

Projection (UMAP) dimensionality reduction using the first 4

principal components.
2.9 Plasmid construction and
lentivirus preparation

We generated TCR-containing transfer plasmid, VSV-G

encoding plasmid, and two third generation lentivirus packaging

plasmids (containing Gag-Pol and Rev genes respectively) in E. coli

NEB Stable strain (C3040I, New England Biolabs, Ipswich,

Massachusetts, United States), and verified the resulting plasmids

using restriction enzymes and gel electrophoresis. We then

delivered the above plasmids using Lipofectamine 2000

(11668500, Thermo Fisher, Waltham, Massachusetts, United

States) into HEK-293T packaging cells generously provided by

Dr. Hiroshi Shiku (Mie University, Japan).
2.10 Lentivirus concentration and titration
using qPCR

We concentrated the produced lentiviruses using the commercial

TransLv™ Lentivirus Precipitation Solution (5×) (FV101-01,

TransGen, China) and titrated them using quantitative (with

dilution standards) PCR for proviral DNA (TransLv™ Lentivirus

qPCR Titration Kit) (FV201-01, TransGen, China) in HEK-293T.
2.11 TCR T-cell manufacturing

To obtain TCR T-cells specific for MAGE-A3, Retronectin (Sci

Store, Russia) at a concentration of 25 μg/mL and anti-CD3

antibodies (BioLegend) at 5 μg/mL in ACDA (citrate buffer with

glucose) were adsorbed one day prior to the experiment. This

solution was applied to the wells of a 12-well plate at 415 μL per

well. CD3+ T-cells were isolated from the PBMCs (n = 7) of HLA

A02-positive healthy donors using MojoSortTM Human CD3

negative magnetic Selection Kit (480134, Biolegend, United States).

The isolated cells (0.75 million/mL) were then incubated in the plate

with retronectin and anti-CD3 antibodies, supplemented with IL-2

(300 units/mL, Biotech LLC, Russia), for 48 hours.

The day before transduction, Retronectin (Sci Store, Russia) was

adsorbed at a concentration of 25 μg/mL in ACDA. This solution was

applied to the wells of a 24-well plate at 255 μL per well. On the day of

transduction, cells were harvested, centrifuged, resuspended in a

serum-free medium, and counted. Then, 200,000 cells were

transferred into Retronectin-coated wells at a volume of 500 μL/

well. After that, to each well we added lentivirus (200,000 particles/

well, i.e. at a multiplicity of infection (MOI) of 1) and protamine

sulfate (5-8 μg/mL) to enhance transduction (26). The plate was then

centrifuged for 2 hours at 600 x g and 32°C. After centrifugation, 500

μL of warm serum-free medium containing IL-2 (final concentration
Frontiers in Immunology 05219
300 units/mL) was added to the cells that were allowed to incubate

overnight. The following morning, cells were transferred into the

wells of a 12-well plate with an equal volume of complete medium

containing IL-2. Cell growth, conglomerate formation, and nutrient

medium condition were monitored visually, and growth factors were

refreshed every two days.
2.12 In vitro TCR T-cell assessment in a
cytotoxicity test

To assess cytotoxic activity against tumor cells, transduced or

vehicle-transduced (with a lentivirus without transfer plasmid) cells

were harvested, centrifuged at 350 g for 10 minutes, and counted.

Tumor cells, in the logarithmic phase of growth, were harvested using

a 1:3 mixture of trypsin (0.25%) (PanEco, Russia) and Versen

solution (Vector, Russia). Tumor cells were seeded into a 96-well

flat-bottom plate at a concentration of 5,000 cells/well. T-cells (50,000

cells/well) were added 2-3 hours later, resulting in an effector-to-

target ratio of 10:1. The co-culture was allowed to incubate for 16-18

hours in a medium containing 5% FCS. Forty-five minutes before the

end of the incubation period, 10 μL of 10X lysing solution was added

per 100 μL of cell suspension to control the maximum release of

lactate dehydrogenase (LDH) from the cells.

After completing the lysis, the cell plate was centrifuged at 250 ×

g for 4 minutes to gently pellet the cells. Aliquots of 50 μL from each

well were then transferred to a new 96-well flat-bottom plate for the

immunoassay. To each well of cell culture supernatants, 50 μL of

reconstituted lactate dehydrogenase (LDH) enzyme-substrate

mixture was added. The plate was covered with foil or an opaque

cover slip to protect it from light and was incubated for 30 minutes

at room temperature. After the incubation, the reaction was stopped

with 1M acetic acid solution. Optical density was measured at 490

or 492 nm immediately after stopping the reaction. Cytotoxic

activity was calculated in doubles using the following formula:

%  Cytotoxicity

=
OD   (T − cells   +   targets) − OD   (T − cells)

OD   (maximal   tumor   lysis) − OD   (spontaneous   tumor   lysis)
� 100

We then analyzed the per-sample-averaged cytotoxicity data in

GraphPad Prism 10.2.3 using one-way ANOVA with Tukey

correction for multiple testing.
3 Results

3.1 T-cell clonality expansion

We performed a Dendritic cell-based antigen-specific T-cell

induction protocol on PBMCs (n = 7) and observed an increase

(mean fold change = 191.0, SD = 87.9) in the presence of MAGE-

A3-specific T-cells after the protocol. The percentage of the MAGE-

A3-specific T-cells isolated from healthy donors (n = 7) was 0.02% ±

0.015 (average ± SD) of the total lymphocytes, after applying the
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protocol, this percentage increased to 3.33% ± 2.61 (average ± SD)

(Figure 1). We have selected donors with the enrichment of the

MAGE-A3-specific T-cells above 3% for single-cell multi-omics

analysis that we performed on a BD Rhapsody platform using the

“TCR/BCR Full Length, Targeted mRNA, and Sample Tag Library

Preparation” Protocol.
3.2 TCR clonotype selection

We imported the BD Rhapsody-generated T-cell multi-omic data

into TCRscape and identified 3000 T-cell receptor clonotypes, among

which 191 clonotypes were present in 2 or more cells (Figure 2A).We

were also able to performpost-sequencing quality control of the CD8+

T-cell sorting (99,9%of theT-cellswereCD8+T-cells) (Figure2B).We

used twomain criteria for theDominant clonotype selection: cell count

per clonotype (maincriterion) andpredictedbinding score towards the

target peptide (secondary criterion). We identified a single dominant

clonotype that was expressed by 14 cells (Figures 2A, E, F) and was

predominantly represented by CD8+ CD4−FOXP3− T-cells

(Figures 2B–D, G). We also observed that the dominant clonotype

had a medium predicted binding score (i.e. affinity) towards the

KVAELVHFL peptide, which is characteristic of the naturally

occurring cytotoxic T-cells (27–29).
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3.3 Plasmid construction

We then designed the insert for the lentiviral transfer plasmid.

The insert included the TCRa and TCRb sequences in a single

reading frame, separated by a signal to reset the polypeptide with

the P2A polypeptide (See Supplementary Figure 2), the insert was

then cloned into the pLenti hPGK GFP vector replacing the GFP

gene (See Supplementary Figure 3).
3.4 Cytotoxicity assay

To evaluate the efficiency of the candidate TCR in targeting and

eliminating MAGE-A3+ tumor cells, we engineered TCR T-cells via

transduction of the anti-CD3-treated PBMCs with a lentivirus

containing the aforementioned anti-MAGE-A3 construct (n=7),

with the vehicle-transduced cells serving as a control. We then co-

cultured the TCR T-cells and the non-transduced cells with the

MAGE-A3-high SK-MEL-5, the MAGE-A3-low HCT-116, and the

MAGE-A3-negative MDA-MB-231 cell lines. The LDH cytotoxicity

assay results revealed high cytotoxicity against the SK-MEL-5 cell line

(Figure 3, Table 1), indicating that the candidate TCR is effectively

recognizing and targeting cells that express the MAGE-A3 antigen.

Similar trendswere observed in response toHCT-116 cells,whichhave
FIGURE 1

MAGE-A3-specific T-cell flow cytometry analysis. (A) HLA-A02-positive donor screening for MAGE-A3-specific T-cells; (B) MAGE-A3-specific T-cell
enrichment after the cultivation protocol; (C) MAGE-A3-specific T-cell before and after the cultivation protocol.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1470130
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sennikov et al. 10.3389/fimmu.2024.1470130
lower levels of MAGE-A3 antigen expression, which aligns with the

findings reported by Xiang Zhao et al. (30).
4 Discussion

In this paper, we performed a complex pipeline for the induction

of MAGE-A3 antigen-specific T-cells: starting with the T-cell

enrichment using peptide-loaded DCs, followed by single-cell RNA

sequencing of the enriched T-cells on the BD Rhapsody platform, T-

cell clonotype analysis was then performed via TCRscape, a clonotype

discovery tool tailored to the BD Rhapsody data, which resulted in the

identification of the dominant clonotype followed by the assessment

of its effectiveness in vitro via an LDH cytotoxicity test.

We observed a successful T-cell clonality expansion after our

protocol (mean fold change = 191.0, SD = 87.9), with sufficient T-

cell numbers that allowed us to successfully perform scRNA-seq of

such cells. This validates the described protocol as a suitable
Frontiers in Immunology 07221
approach for the discovery of antigen-specific T-cells and their

TCRs using modern single-cell analysis methods.

By utilizing single-cell sequencing technology, we obtained

detailed information about the sequence of each TCR, enabling us

to accurately construct the obtained TCR clones, as well as,

information about the immune transcriptome of each T-cell,

allowing us to assess the functionality state of the cells and

enhance the selection process of candidate TCR clones. This

provides a significant advantage over currently used methods like

bulk RNA-seq, which do not provide any cell-of-origin information

for sequenced TCRs making it impossible to determine which alpha

and beta chains originated from the same T-cell, or multiplex PCR

and 5’-RACE approaches, which exhibit lower accuracy and

sensitivity (31).

Our analysis of the BD Rhapsody-generated single-cell multi-

omic data in TCRscape revealed 191 unique clonotypes that were

detected in 2 or more T-cells, thus also confirming the successful

enrichment of the T-cells using our T-cell enrichment protocol.
FIGURE 2

T-cell multi-omic analysis (n = 3, 5.491 single cells). (A) Distribution of complete T-cell receptor clonotype sequences. Each bar on the x-axis
represents a clonotype, the y-axis shows the number of cells per clonotype, all clonotypes with 2 or more cells per clonotype are shown;
(B) normalized CD8 gene expression; (C) normalized CD4 gene expression; (D) normalized FOXP3 gene expression; (E) the number of cells per
clonotype; (F) ERGO-II-predicted binding scores to the target peptide; (G) the Dominant clonotype (with 14 cells per clonotype) is shown in red.
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Cytotoxicity results also validated our approach for clonotype

selection, as TCR T-cells transduced with the dominant clonotype-

lentivirus show potent cytotoxicity. This shows that the observed

number of cells per clonotype could be a valid criterion for the in-

silico search for the effective clonotype.

However, the small sample size constitutes a limitation of this

study, as the data might not fully represent the overall population.

Nevertheless, the findings remain highly relevant for TCR T-cell
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therapy, given that we identified a strong dominant clonotype with

a 14-fold expansion compared with the baseline TCR occurrence,

highlighting the potential efficacy of our approach even within a

small cohort. Such results underscore the advantage of single-cell

multi-omics technologies, which enable significant data acquisition

and meaningful results even with limited sample sizes.

Previous efforts for the enrichment and isolation of antigen-

specific T-cells have been extensively explored across various fields,
FIGURE 3

Cytotoxicity percentage and specificity of the candidate TCR against different tumor cell lines (n = 7), LV – lentiviral transduction (TCR-encoding),
Veh– lentiviral transduction (Vehicle). **** - q-values < 0.00005.
TABLE 1 Cytotoxicity percentage and specificity of the candidate TCR against different tumor cell lines (n = 7), LV, lentiviral transduction (TCR-encoding);
Veh, lentiviral transduction (Vehicle).

Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Donor 6 Donor 7 Mean SD

Sk-Mel-5
MAGEA3-

pos LV 68,46 71,02 65,48 62,43 74,02 85,48 81,67 72,65 8,41

Sk-Mel-5
MAGEA3-
pos Veh 51,72 38,04 18,80 36,11 16,05 29,26 33,56 31,94 12,12

HCT-116
MAGEA3-

pos LV 33,75 44,16 44,52 29,52 29,92 57,69 50,50 41,44 10,78

HCT-116
MAGEA3-
pos Veh 33,75 44,52 29,92 50,50 18,93 33,62 39,55 35,83 10,28

MDA-MB-
231

MAGEA3-
neg LV 42,33 42,50 40,06 15,97 8,18 16,93 28,48 27,78 14,27

MDA-MB-
231

MAGEA3-
neg Veh 36,45 20,65 6,16 15,75 21,13 17,29 17,96 19,34 9,04
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including infectious diseases, autoimmunity, and cancer. For

example, Klinger et al. (32) pioneered a multiplex approach

combining immune assays with receptor sequencing to identify

antigen-specific TCRs, laying the groundwork for subsequent

research. Similarly, Sharma et al. (33, 34) demonstrated the utility

of TCR repertoire analysis monitoring transplant patients and

autoimmune diseases, underscoring the broader applicability of

such pipelines beyond oncology. Furthermore, Dziubianau et al.

(35) provided further evidence of the importance of precise TCR

selection processes through their work on enriching antigen-specific

T-cells in viral infections. Collectively, these methodologies

underscore the critical need to identify effective TCR candidates,

a goal that aligns directly with the objectives of our current study,

especially when integrated with single-cell sequencing.

In conclusion, we have modified a dendritic cell-bases protocol to

be efficient for T-cell clonal expansion, obtained a potent TCR via

single-cell sequencing, and successfully tested it in an in vitro

cytotoxicity test against a MAGE-A3-positive tumor. Nevertheless,

further investigation is required to determine the applicability of our

results in vivo.
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carcinoma and functional
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2Department of First Clinical Medical College, Guangdong Medical University, Zhanjiang,
Guangdong, China, 3Division of Clinical Epidemiology and Aging Research, German Cancer Research
Center (DKFZ), Heidelberg, Germany, 4Medical Faculty Heidelberg, Heidelberg University,
Heidelberg, Germany, 5Department of MR, Zhongshan City People’s Hospital, Zhongshan,
Guangdong, China
Background: Prostate cancer (PCa) is one of the most common malignancies of

the urinary system. Cuproptosis, a newly discovered form of cell death. The

relationship between cuproptosis-related long non-coding RNAs (ClncRNAs)

related to PCa and prognosis remains unclear. This study aimed to explore the

clinical significance of novel ClncRNAs in the prognostic assessment of PCa.

Methods: ClncRNAs and differentially expressed mRNAs linked to these

ClncRNAs were identified using Pearson’s correlation and differential

expression analyses. A prognostic signature (risk score) comprising three

ClncRNAs was established based on multivariable Cox regression analysis. The

predictive performance of this ClncRNAs signature was validated using receiver

operating characteristic curves and nomograms. Finally, further in vitro cell

experiments were conducted for validation, including quantitative polymerase

chain reaction (qPCR), western blot (WB), cell proliferation assays, cell migration

assays, cell invasion assays, apoptosis, and cell cycle analysis.

Results:We constructed a prognostic signature of ClncRNAs for PCa comprising

three key differentially expressed ClncRNAs(AC010896-1, AC016394-2, and

SNHG9). Multivariable Cox regression analysis indicated that clinical staging

and risk scores of the ClncRNAs signature were independent prognostic

factors for PCa. Compared to other clinical features, the ClncRNAs signature

exhibited higher diagnostic efficiency and performed well in predicting the 1-, 3-,

and 5-year progression-free intervals (PFIs) for PCa. Notably, in terms of immune

activity, PCa patients with high-risk scores exhibited higher tumor mutational

burden (TMB) levels, while their Tumor Immune Dysfunction and Exclusion

(TIDE) scores were lower than those of PCa patients with low-risk scores.

Additionally, in vitro cellular functional experiments, we knocked down SNHG9

that is the most significantly differentially expressed ClncRNA among the three

key ClncRNAs. SNHG9 knockdown resulted in a significant increase in G1 phase

cells and a decrease in S and G2 phases, indicating inhibition of DNA synthesis
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and cell cycle progression. Colony formation assays showed reduced clonogenic

ability, with fewer and smaller colonies. Western blot analysis revealed the

upregulation of the key cuproptosis-related mRNAs FDX1 and DLST. These

findings suggested that SNHG9 promotes PCa cell proliferation, migration,

and invasion.

Conclusion: Building on the three ClncRNAs, we identified a novel prognostic

signature of PCa. The ClncRNA SNHG9 can promote PCa cell proliferation,

migration, and invasion.
KEYWORDS

cuproptosis, lncRNAs, prognosis signature, prostate carcinoma, SNHG9
1 Introduction

Estimates suggest that globally, there are close to 1.5 million new

cases of prostate cancer (PCa), resulting in approximately 397,000 deaths.

In 2022, it was the second most prevalent cancer among men and the

fifth leading cause of cancer-related deaths among men (1). Although

surgery, hormonal therapy, and radiation therapy show significant

therapeutic efficacy in most PCa cases (2), the heterogeneity of PCa

often renders these treatments ineffective. Therefore, novel prognostic

methods and treatment strategies for PCa are urgently needed.

Biological features, primarily presented through gene expression and

genomic profiling, can enhance the predictive capacity of traditional

clinicopathological features (3). Understanding the genes associated with

PCa may improve treatment selection and precision. Cuproptosis is a

novel cell death mechanism that is distinct from other known

mechanisms such as apoptosis, autophagy, and ferroptosis. Copper

ions can induce cell death even when known cell death pathways are

blocked. During mitochondrial respiration, copper ions directly bind to

lipidated components of the tricarboxylic acid cycle, leading to protein

aggregation. Additionally, copper ions can decrease the protein levels of

Fe-S clusters, triggering proteinotoxic stress responses, and ultimately

leading to cell death (4). By leveraging this novel approach to cell death,

we are developing new strategies to advance the development of novel

therapeutic options for patients with late-stage PCa.

Within the human genome, only a minority of genes encode

proteins, with the majority encoding non-coding RNAs. Long non-

coding RNAs (lncRNAs) are single-stranded RNAs that are more

than 200 nucleotides long and lack protein-coding capabilities (5).

lncRNAs regulate various physiological and biochemical cellular

processes through chromatin modification, transcriptional

activation, and interference (6, 7). lncRNAs can serve as non-

invasive tumor markers for malignancies of the genitourinary

system. Further elucidation of the molecular mechanisms by which

lncRNAs function in normal and malignant cells will enhance our

understanding of tumor biology and provide new therapeutic targets

for genitourinary cancers (8). Recent studies have increasingly
02226
confirmed the crucial role of cuproptosis-related lncRNAs

(ClncRNAs) in the prognosis and immunity of various

genitourinary tumors. Zhang et al. (9) identified the ClncRNAs

LINC01711 as a potential biomarker for early diagnosis and

prognosis of clear cell renal carcinoma. Shen et al. (10) developed a

risk signature comprising eight ClncRNAs with potential clinical

applications in predicting outcomes and diagnosing and treating

bladder cancer. However, research on the relationship between

ClncRNAs and the prognosis of patients with PCa remains limited.

Therefore, this study aimed to construct a novel prognostic signature

related to ClncRNAs to predict the prognosis of PCa.
2 Materials and methods

2.1 Data download and pre−processing

Cuproptosis-related genes expression was standardized using the

“limma” R package. Subsequently, the Perl programming language was

used to distinguish between mRNAs and lncRNAs. Additionally, simple

nucleotide variation data and masked somatic mutation data were

downloaded from The Cancer Genome Atlas (TCGA) database and

employed to compute the mutation burden of PCa. Nineteen

cuproptosis-related mRNAs were sourced from previously published

studies including NFE2L2, NLRP3, ATP7A, ATP7B, SLC31A1, FDX1,

LIAS, LIPT1, LIPT2, DLD, DLAT, PDHA1, PDHB, MTF1, GLS,

CDKN2A, DBT, GCSH, and DLST (4).
2.2 Screening the differentially
expressed ClncRNAs

Pearson correlation analysis was employed to explore the

association between ClncRNAs and PCa-related lncRNAs, using a

screening criterion of |R²| >0.5 and p <0.05 to ensure the

significance and robustness of the discovered correlations.
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Subsequently, further analysis was conducted using the “limma” R

package, adjusting for p <0.05 and |log2 fold change (FC)| >1 as

criteria to screen for differentially expressed ClncRNAs. These

ClncRNAs then were visualized using Sankey plots and volcano

plots to illustrate the aforementioned results.
2.3 Establishment and evaluation of a novel
prognostic signature associated
with ClncRNAs

Six candidate ClncRNAs, including two protective and four risk

lncRNAs, were identified using univariate Cox regression analysis.

Subsequently, to prevent overfitting, LASSO regression analysis and

lambda spectra were employed to explore collinearity. Next, three key

ClncRNAs were identified by multivariable Cox regression analysis.

Finally, a prognostic ClncRNAs signature based on these three

ClncRNAs was constructed and 420 patients were divided into high-

and low-risk groups using the median score as the cutoff value. In this

study, the risk score calculation formula of ClncRNAs signature was as

follows: risk score = f (x) =on
i=1(Coef i*Expi), where Coefi represents

the corresponding coefficient for each ClncRNAs and Expi represents

the gene expression level of the selected ClncRNAs. Subsequently, the

Kaplan–Meier (K–M) method was used to plot the progression-free

interval (PFI) and disease-free interval (DFI) of patients with PCa using

the “survival” R package. Based on the risk score and clinical features,

time-dependent receiver operating characteristic (ROC) curves and C-

index curves were plotted using the “timeROC” R package to evaluate

the accuracy and stability of the signature. Additionally, based on the

results of multivariable Cox regression analysis, a nomogram was

developed using the “rms” package to predict the 1-, 3-, and 5-year

PFI and evaluate the long-term predictive accuracy of the signature.

Furthermore, the correlation between the ClncRNAs signature and

some clinical features was assessed, and their predictive ability in

subgroups with different clinical features was evaluated using KM

survival analysis.
2.4 Principal components analysis and
functional enrichments analysis

Following the identification of differentially expressed mRNAs

between the high-risk and low-risk groups, we conducted gene

ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analyses using the “clusterProfiler” and

“enrichment” packages to elucidate molecular functions and key

signaling pathways (11, 12). The components of graphene oxide

comprised biological process components, cellular component

components, and molecular function components.
2.5 Calculation of tumor mutation
burden score

The tumor mutational burden (TMB) reflects the number of

mutations in a tumor. Mutation data from PCa samples were
Frontiers in Immunology 03227
downloaded from TCGA, and analysis was conducted using the R

package “maftools” (13). The TMB is correlated with the clinical

efficacy of immunotherapy. Additionally, we explored the

differences in somatic mutation characteristics between the high-

risk and low-risk groups.
2.6 A comparative analysis of immune cell
infiltration and immune-related functions
in different risk groups

To evaluate the differences in immune infiltration between

high-risk and low-risk groups, we performed Gene Set Variation

Analysis (GSVA) using the “reshape2” and “GSEABase” packages

and generated heatmaps to illustrate the variations in immune

functions across different risk groups (14). Additionally, we

obtained Tumor Immune Dysfunction and Exclusion (TIDE)

scores from their website (http://tide.dfci.harvard.edu) and

analyzed the differences in TIDE scores between the low-risk and

high-risk groups. Subsequently, we examined other immune scores,

including T cell dysfunction, T cell exclusion, PD-L1, CD8, IFNG,

Merck18, CAF, TAM M2, and MDSC scores, to assess the

differences in immune infiltration between the high-risk and low-

risk groups. These scores are sourced from the TIDE website.
2.7 Cell lines, cell culture, and handling

The PCa cell lines RWPE-1, PC-3, U145, 22RV1, LNCaP, C4-

2PC3, and DU145 were purchased from the ATCC (Manassas, VA,

USA). PC-3 and DU145 cells were transfected using Lipofectamine™

RNAiMAX (Invitrogen, Cat. No. 13778075) using LncRNA-SNHG9-

targeting small interfering RNA (siRNA) designed and synthesized by

Beijing TsingKe Biological Technology Co., Ltd. The sequences for

siSNHG9-1, siSNHG9-2, and siSNHG9-3 were as follows: siSNHG9-

1 sequence: ACCCGAAGAGUGGCUAUAATT, siSNHG9-2

sequence: CCUCUUCACUUAGGACACUTT, and siSNHG9-3

sequence: CCACGUCUUUCAAAUAAAGTT. PC-3 and DU145

cells were cultured in the RPMI-1640 (Gibco, Cat. No.

C11875500BT) and MEM (Gibco, Cat. No. C11095500BT) media,

respectively, supplemented with 10% fetal bovine serum (FBS) and

1% dual antibiotics (penicillin-streptomycin) (HyClone, Cat. No.

SH30010). Cultures were maintained at 37°C in a humidified

atmosphere containing 5% CO2.
2.8 RNA Extraction, reverse transcription,
and quantitative real-time polymerase
chain reaction

Total RNA was extracted from RWPE-1, PC-3, U145, 22RV1,

LNCaP, C4-2PC3, and DU145 cells using the TRIzol reagent. The

concentration and quality of each RNA sample were evaluated by

measuring the OD values using a BioPhotometer Plus (Eppendorf

Nucleic Acid and Protein Analyzer). Subsequently, the extracted

RNA was reverse transcribed into complementary DNA (cDNA)
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using the EasyScript First-Strand cDNA Synthesis SuperMix Kit.

The resulting cDNA was subjected to quantitative real-time

polymerase chain reaction (qRT-PCR) using SYBR Green Master

Mix (Vazyme). Analysis was performed on the ABI PRISM® 7500

Sequence Detection System, with GAPDH serving as the internal

reference gene. Relative gene expression levels were calculated

using the 2-DDCt method. PCR primers for the target gene

(SNHG9) and the internal reference gene (GAPDH) are provided

in Supplementary Table 2.
2.9 Cell proliferation experiment

The proliferative capacity of PC-3 and DU145 cells transfected

with siRNA was assessed using the Cell Counting Kit-8 (CCK-8)

reagent according to the manufacturer’s instructions. PC-3 and

DU145 cells were seeded in 96-well plates, and CCK-8 solution

(Beyotime, Cat. No. C0039) was added at 0, 24, 48, and 72 h. After

incubation for 4 h, optical density (OD450) was measured using a

microplate reader (Thermo Fisher Scientific, Multiscan MK3) to

determine the absorbance values for CCK-8 detection.
2.10 Cell apoptosis assay

Apoptosis was examined using an Annexin V-FITC Apoptosis

Detection Kit (Keygen, Cat. No. KGA106) using flow cytometry. All

procedures were performed according to manufacturer’s instructions.

Briefly, cells pretreated with phosphate-buffered saline (PBS) were

washed twice to obtain a pellet. Subsequently, the cells at different

stages of apoptosis were identified using fluorescein isothiocyanate and

propidium iodide (PI) solutions. The cells were then incubated in the

dark at room temperature (18–24°C) for 15 min. Finally, the apoptosis

rate was measured using a BD FACS Calibur flow cytometer (Beckman

Coulter, CA, USA).
2.11 Flow cytometric cell cycle analysis

A KGA511 cell cycle assay kit was used to assess the cellular

proliferation status and cycle distribution under various conditions.

Following transfection for 48 h, 1 × 106 cells were collected per

sample, centrifuged to remove the supernatant, and washed twice

with pre-chilled PBS. Subsequently, cells were treated with pre-

chilled 70% ethanol and fixed overnight at 4°C or stored long-term

at -20°C. Fixed cells were then collected by centrifugation, washed

once with 1 mL of PBS, and resuspended in PBS solution containing

50 mg/mL PI, 100 mg/mL RNase A, and 0.2% Triton X-100.

Following 30 min of incubation at 4°C in the dark to stain the

cellular DNA, an appropriate volume of the stained cell suspension

was subjected to standard flow cytometry analysis. The results were

analyzed using the ModFit cell cycle analysis software, which

allocates cells to different cell cycle phases based on DNA content

and generates the corresponding cell cycle distribution plots.
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2.12 Transwell assay for assessing cell
migration and invasion capacity

Transwell cell culture inserts (BD, REF353097) were used for

the transwell migration assays. Approximately 1 × 105 cells were

seeded in 100 μL of serum-free culture medium in the upper

chamber, while 600 μL of complete culture medium was added to

the lower chamber. Following incubation at 37°C with 5% CO2 for

12–48 h, the inserts were retrieved. The cells on the upper surface of

the insert were gently removed using a cotton swab and fixed in 4%

paraformaldehyde for 20 min. After a single wash with PBS, the cells

were stained with crystal violet for 10 min, washed again with PBS,

and subjected to cell counting and image analysis using an inverted

microscope (OLYMPUS CKX41, U-CTR30-2) and Image J 1.44

software. For the transwell invasion assay, Matrigel (BD, 356234)

was dissolved overnight at 4°C and diluted to a 1:3 ratio with pre-

chilled serum-free culture medium. Forty microliters of diluted

Matrigel was added to the pre-chilled transwell inserts and allowed

to gel at 37°C for 2 h. Excess liquid was removed from the inserts,

and 100 μL of serum-free culture medium was added to the upper

chamber, while 600 μL was added to the lower chamber. After

overnight equilibration at 37°C, cells transfected with siRNA were

seeded at a density of 1 × 105 cells in 100 μL of serum-free DMEM-

F12 or MEM medium in the upper chamber. Complete culture

medium was added to the lower chamber, and the cells were

incubated at 37°C with 5% CO2 for 24 or 48 h. Following

incubation, the cells on the upper surface of the insert were

removed using a cotton swab and the remaining cells were fixed

with 4% paraformaldehyde for 15 min. After a single wash with

PBS, the cells were stained with crystal violet for 10 min, washed

again with PBS, and subjected to observation and statistical analysis.
2.13 Cloning formation experiment

Using pancreatic enzymes, cells from different groups were

initially digested and resuspended in 1 mL culture medium to

achieve an appropriate cell count range. The cells were subsequently

dissociated into single-cell suspensions and diluted to a

concentration of 1 × 104 cells/ml. The diluted cells were then

seeded into a 96-well plate, with 300 μL of suspension added to

each well. After seeding, culture medium was added to each well to a

final volume of 2000 μL to ensure sufficient growth medium for the

cells. The plate was gently rocked horizontally and vertically to

evenly distribute cells within each well. Cell growth was observed

daily. When individual cells formed clustered clones, the culture

medium was aspirated from each well. The wells were washed twice

with PBS or saline, and then 200 μL of crystal violet staining

solution was added to each well to ensure coverage of the well

bottom, followed by a 20-min incubation period. The 96-well plate

was rinsed with tap water, gently washed, and air-dried. Finally, the

number of colonies was calculated and the stained 96-well plates

were analyzed and scanned using an enzyme-linked immunospot

(ELISPOT) AID iSpot system.
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2.14 Protein extraction and
western blotting

After washing the cells with PBS, protein extraction was

performed using a radioimmunoprecipitation assay buffer

containing 1% PMSF. The samples were then centrifuged at

14,000 rpm for 5 min at 4°C in appropriate centrifuge tubes. The

protein concentration was determined using a BCA Protein Assay

Kit (Thermo Scientific, USA). Total protein samples were separated

on 15% or 10% SDS-PAGE gels and transferred onto polyvinylidene

fluoride (PVDF) membranes. Membranes were blocked with TBST

containing 5% skimmilk powder. Antibodies against FDX1 (1:1000,

12592-1-AP, Proteintech, China), DLAT (1:2000, 13426-1-AP,

Proteintech, China), and GAPDH (1:1000, KC-5G5, Shanghai

Kangcheng Biotech, China) were incubated at 4°C. After

overnight washing with TBST, the membranes were incubated

with secondary antibodies at 37°C for 50 min to 3 h. The PVDF

membranes were developed using ECL solution, followed by three

washes and imaging.
2.15 Statistical analysis

Statistical analyses for visualization were performed using R

software (version 4.2.0, https://www.r-project.org/). The Wilcoxon

test was used to assess the differential expression of ClncRNAs and

mRNAs, with significance set at p <0.05.
3 Results

3.1 Clinical data of patients and
identification of ClncRNAs

The flowchart in Figure 1 illustrates the process followed in this

study. Gene expression profiles and clinical data of 52 normal and

501 PCa samples were obtained from the TCGA database. Detailed

clinical characteristics of all the participants are presented in

Table 1. To identify ClncRNAs, Pearson and differential

expression analyses were performed, resulting in 47 differentially

expressed ClncRNAs meeting the criteria of |R²| >0.5 and p <0.05,

and | log fold change (FC) | >1, as shown in Supplementary Table 1.

The Sankey and volcano plots in Figures 2A, B depict these findings.

Subsequently, the TCGA cohort was divided into training and

validation cohorts in a 1:1 ratio. The clinical characteristics of

each cohort are listed in Table 1.
3.2 Construction and validation of a
prognostic ClncRNAs signature for patients
with PCa

Initially, univariate Cox regression analysis was used to

preliminarily screen prognosis-related ClncRNAs, which

identified six prognostic candidate ClncRNAs, including two
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protective lncRNAs (AC010896.1 and USP46-DT) and four high-

risk lncRNAs (MHENCR, SNHG9, ACO11477.1 , and

AC016394.2), as shown in Figure 2C. Subsequently, LASSO

regression analysis was conducted to refine and mitigate

overfitting risks, as illustrated by the cvfit and lambda curves in

Figures 2D, E. Multifactor Cox regression was employed to further

screen for prognosis-related genes, resulting in three ClncRNAs

(AC010896.1, AC016394.2 and SNHG9) with independent

prognostic risk for PCa (Table 2). Additionally, using a heatmap,

we demonstrated an association between these three ClncRNAs and

19 cuproptosis-related mRNAs (Figure 2F). Ultimately, based on

these three ClncRNAs, a prognostic risk signature was constructed

by dividing the 420 patients into high-risk and low-risk groups (1:1)

using the median score as a cutoff point. The risk score for each

patient was calculated with a multivariate Cox regression formula:

expression level of AC010896.1*(-0.8161961) + expression level of

AC016394.2*0.90231436 + expression level of SNHG9*0.44953283.

Through survival status risk score curves and scatter plots for the

total, training, and test cohorts, we observed a significant increase in

mortality rates with increasing risk scores of the ClncRNAs

signature, with the majority of deaths occurring in individuals

identified as high risk (Figures 3A–I). Furthermore, the K–M

survival curve analysis revealed a markedly poorer PFI in samples

with high-risk scores in the total cohort (Figure 3J, p <0.001),

training cohort (Figure 3K, p <0.001), and test cohort (Figure 3L,

p = 0.009). However, when using DFI as the outcome measure,

significant differences persisted between the total cohort

(Figure 3M, p = 0.002) and the training cohort (Figure 3N, p =

0.06), while there was no statistical difference in the test cohort.

Nonetheless, a trend of difference remained between the two groups

in the test cohort (Figure 3O, p = 0.154).
3.3 Evaluation of the predictive accuracy of
the ClncRNAs prognostic signature

Univariate and multivariate Cox regression analyses were

conducted to validate whether the ClncRNAs signature risk score

could independently predict PCa prognosis. Univariate analysis

revealed significant differences in age, stage, and ClncRNAs risk

score among the patients with PCa, whereas multivariate analysis

excluded age as a significant factor (Figures 4A, B). The

discriminative ability of the risk score was then evaluated against

other clinical features using PFI as the outcome measure. The

results showed that the ROC curve of ClncRNAs risk score had

the highest AUC compared to the ROC curves of age and clinical

stage, with AUCs of 0.730, 0.716, and 0.766 for the 1-, 3-, and 5-year

ROCs, respectively (Figures 4C–E). Additionally, the 10-year C-

index of the risk score was significantly higher than that of the other

clinical features (Figure 4F). In summary, the ROC curve confirmed

the significant prognostic predictive ability of the risk score of

ClncRNAs signature compared with other clinical features.

Furthermore, based on the results of the multivariable Cox

regression analysis, a nomogram was constructed to accurately

predict the 1-, 3-, and 5-year PFI (Figures 5A, B). To assess the
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accuracy of the prognostic prediction of the risk score in different

stratified cohorts, a K–M survival analysis was conducted for each

subgroup based on the clinicopathological characteristics including

aged ≤65 years, >65 years, pT2, pT3-4, pN0, and pN1

(Figures 5C–H).
3.4 Principal components analysis and
functional enrichments analysis

To elucidate the differences between the high-risk and low-risk

groups, we conducted GO (Figures 6A, B) and KEGG (Figures 6C,

D) enrichment analyses on the differentially expressed mRNAs

between the two groups. GO analysis revealed potential associations

of signaling receptor activation factor activity, contraction fibers,

and muscle system processes with PCa. KEGG analysis indicated

that enrichment was primarily in the adrenergic signaling pathway

in cardiomyocytes, the neuroactive ligand-receptor interaction

pathway, and the calcium signaling pathway.
TABLE 1 The clinical characteristics of patients in different cohorts.

Covariates Total
cohort

Training
cohort

Test
cohort

p value

Age

<=65 296 (70.48%) 149 (70.95%) 147 (70%) 0.9148

>65 124 (29.52%) 61 (29.05%) 63 (30%)

pN stage

N0 341 (81.19%) 165 (78.57%) 176 (83.81%) 0.2118

N1 79 (18.81%) 45 (21.43%) 34 (16.19%)

pT stage

T2 143 (34.05%) 66 (31.43%) 77 (36.67%) 0.2685

T3 267 (63.57%) 137 (65.24%) 130 (61.90%)

T4 10 (2.38%) 7 (3.33%) 3 (1.43%)
FIGURE 1

The schematic diagram of workflow.
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3.5 Tumor mutation burden analysis

TMB differences between the high-risk and low-risk groups

were also assessed, with the TMB of the low-risk group significantly

lower than that of the high-risk group (p <0.001, Figure 6E). This

indicates good consistency between the risk score and TMB for
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prognostic prediction. The waterfall plot depicted the top 15 genes

with the highest mutation frequencies, highlighting the differences

between the two groups. (Figures 6F, G). Among the top five genes

with the highest mutation rates, only SPOP had a higher mutation

rate in the low-risk group than in the high-risk group. The other

genes showed lower mutation rates in the low-risk group.
FIGURE 2

Identifying the ClncRNAs with prognostic significance in PCa. (A)The Sankey plot for the network of cuproptosis-related mRNAs and ClncRNAs.
(B) The volcano diagram showed differentially expressed 47 ClncRNAs in PCa. (C) The forest plot displays six differentially expressed ClncRNAs with
significant diagnostic value. (D) Lasso-Cox regression analysis is used to build a prognostic signature of ClncRNAs for PCa through 10-fold cross-
validation for variable selection. (E) The LASSO penalty lambda (l) of the six ClncRNAs. (F) The correlations of three prognostic ClncRNAs and
cuproptosis-related mRNAs. *p <0.05, **p <0.01, and ***p <0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1471198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lu et al. 10.3389/fimmu.2024.1471198
3.6 Comparison of immune functions and
TIDE scores in different risk groups

Through the analysis of immune-related functions, the immune

statuses of the low-risk and high-risk groups were investigated. The

results indicate significant differences in immune cell expression
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between the groups. Notably, expression levels of various immune

cells, including antigen-presenting cells (APCs), co-stimulatory

chemokine receptors (CCRs), pro-inflammatory markers, major

histocompatibility complex (MHC) class I, sub-inflammation, and

type II interferon (IFN) response, were notably lower in the high-

risk group than in the low-risk group. Conversely, immune function
FIGURE 3

Prognosis value of the risk score of ClncRNAs signature in different cohorts. (A-F) The distribution of risk scores and statuses of patients with PCa in the
total, training, and test cohorts, respectively. (G-I) Heatmaps of the three ClncRNAs expression in the total, training, and test cohorts, respectively. (J-L)
Kaplan–Meier survival curves of PFI and (M-O) DFI in the high- and low-risk groups of PCa in the total, training, and test cohorts respectively.
TABLE 2 Prognostic ClncRNAs signature via multivariate Cox regression analysis.

lncRNAs coef HR HR.95L HR.95H p value

AC010896.1 -0.8161961 0.44211019 0.20397572 0.95825825 0.03864042

AC016394.2 0.90231436 2.46530212 1.55148936 3.91734207 0.00013408

SNHG9 0.44953283 1.56757968 1.07461132 2.28669289 0.01962196
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appeared to be more robust in the low-risk group (Figure 7A). TIDE

scores obtained from the TIDE website further supported this

observation, with the low-risk group showing higher scores than the

high-risk group (Figure 7B). Additional investigations into scores for

T-cell dysfunction, T-cell exhaustion, PD-L1, CD8, IFNG, Merck18,

CAF, TAM M2, and MDSC also revealed significant differences

between the high-risk and low-risk groups (Figures 7C–K).
3.7 Knockdown of SNHN9 affects cell
viability, migration, and proliferation in
PCa cells

Considering that among the ClncRNAs, SNHG9 exhibited the

most significantly differential expression between tumor and

normal samples (Supplementary Table 1), it was selected for

further cellular experimental validation. The expression levels of
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SNHG9 were measured in human PCa cells, including RWPE-1,

PC-3, DU145, 22RV1, LNCAP, and C4-2 cells, using qRT-PCR

(Figure 8A). Subsequently, functional experiments targeting

SNHG9 were conducted in highly expressed PC-3 and DU145

cells. Initially, siRNA targeting SNHG9 were designed and

transfected into the cells and the transfection efficiency in DU145

cells was validated by qRT-PCR (Figure 8B). Cell viability was

assessed using a CCK-8 assay. The results indicated a significant

decrease in cell proliferation in PC3 and DU145 cells after SNHG9

knockdown compared to that in the control group (Figures 8C, D).

Colony formation assays demonstrated a marked decrease in the

cloning ability of PC3 and DU145 cells after SNHG9 knockdown,

with significantly fewer and smaller colonies formed, further

confirming the inhibitory effect of SNHG9 knockdown on cell

proliferation and growth (Figures 8E–H). Transwell assays

revealed a significant reduction in cell migration and invasion

after SNHG9 knockdown (Figures 8I–P).
FIGURE 4

Independent prognostic analysis of the prognostic risk score of ClncRNAs signature in PCa. (A, B) Conducted both univariate and multivariate Cox
regression analyses, taking into account the risk score and clinical characteristics. (C-E) TimeROC curve for 1-, 3-, and 5-year overall survival. (F) The
C-index curve indicates that the predictive accuracy of the ClncRNAs signature risk score surpasses that of other clinical characteristics.
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3.8 Knockdown of SNHN9 affects
apoptosis, cell cycle, and the expression of
key cuproptosis-related mRNAs in
PCa cells

Flow cytometry was used to assess apoptosis and cell cycle

distribution, showing increased apoptosis in PC3 and DU145 cells

after SNHG9 knockdown (Figures 9A–D). Additionally, cell cycle

analysis showed a significant increase in the proportion of PC3 and

DU145 cells in the G1 phase and a decrease in the proportion of cells

in the S and G2 phases after SNHG9 knockdown, suggesting inhibition

of DNA synthesis and cell cycle progression (Figures 9E–H).

Moreover, western blot analysis revealed upregulation of the key
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cuproptosis-related mRNAs (FDX1 and DLST) upon SNHG9

knockdown (Figure 9I). Collectively, these findings suggest that

SNHG9 activates the proliferation, migration, and invasion of

PCa cells.
Discussion

In the study, gene expression profiles and clinical data of

patients with PCa were obtained from TCGA database. Nineteen

cuproptosis-related mRNAs were identified from published

literature. Using Pearson’s correlation, differential expression,

LASSO regression, and Cox regression analyses, three lncRNAs
FIGURE 5

Construction the nomogram and subgroup analysis of the risk score of ClncRNAs signature. (A, B) The nomogram integrates the risk score and
clinicopathological features to predict 1-, 3-, and 5-year DFS in PCa. (C, D) Kaplan–Meier curves for high-risk and low-risk groups across different
age groups of patients with PCa. (E, F) Kaplan–Meier curves for high-risk and low-risk groups across different T stages of patients with PCa.
(G, H) Kaplan–Meier curves for high-risk and low-risk groups across different N stages of patients with PCa.
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(AC010896.1, AC016394.2, and SNHG9) associated with prognosis

were identified. These three lncRNAs are considered independent

prognostic risk factors for PCa.

Previous studies have utilized these three ClncRNAs to predict

the prognosis of other cancer types. For instance, the small

nucleolar RNA host gene (SNHG) family comprises a group of

lncRNAs that function as novel oncogenes in multiple cancers.

Recent studies have shown that SNHG1 promotes immune evasion
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in breast cancer cells by regulating miRNA (15, 16), while SNHG6

facilitates colorectal cancer and glioma progression by modulating

miR-101-3p expression (17, 18). Additionally, SNHG8 has been

identified as a potential biomarker and therapeutic target

for hepatocellular carcinoma and non-small cell lung cancer

(19, 20). Elevated SNHG9 expression is correlated with poor

prognosis, suggesting its involvement in PCa progression by

influencing ribosomal function and immune cell infiltration (21).
FIGURE 6

Enrichment and TMB analyses based on the prognostic ClncRNAs signature in high-risk and low-risk in patients with PCa. The GO (A, B) and KEGG
(C, D) analysis shows significantly enriched biological processes and pathway between two different risk groups. (E) The differences of TMB scores
between two different risk groups. (F, G) Waterfall plots showing the top 15 most frequently mutated genes in two different risk groups.
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Consistently, SNHG9 was found to be the most highly expressed

ClncRNAs observed in the PCa samples in our study. Functional

experiments conducted on PC-3 and DU145 cell lines with elevated

SNHG9 expression demonstrated significant inhibition of

proliferation, migration, and invasion after SNHG9 knockdown.

The expected outcomes were observed in cell cycle, clone formation,

and western blotting experiments, highlighting the pivotal role of

SNHG9 in PCa progression. Tu et al. (22) found that a cuproptosis-

related prognostic gene signature involving AC016394.2 served as

an independent risk indicator of gastric adenocarcinoma.

Additionally, Kuo et al. (23) found that AC016394.2 can also
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serve as a lncRNA associated with disulfidptosis, distinct from

other forms of cell death such as cuproptosis and ferroptosis, for

prognostic prediction in gastric cancer. Therefore it is evident that

these related lncRNAs play a crucial role in the regulation of tumor

programmed cell death and warrant further investigation. However,

the information about AC010896.1 in the published literature is

limited. Therefore, further experiments are warranted in future

studies to elucidate its role in PCa.

A prognostic signature was constructed based on the three

ClncRNAs. To validate the predictive accuracy of risk score of the

ClncRNAs signature, the survival analysis indicated the ability of
FIGURE 7

Immune function analysis in high-risk and low-risk groups. (A) Different proportions of immune function between the high-risk and the low-risk
groups as shown in the heatmap. (B-K) TIDE, T cells dysfunction, T cells exclusion, CD274, CD8, INFG, Merck18, CAF, TAM M2, and MDS scores
between the low-risk and high-risk groups of patients with PCa.
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ClncRNAs signature to effectively identify and differentiate between

high-risk and low-risk groups. Furthermore, the risk score of the

ClncRNAs signature demonstrated superior predictive efficacy for

predicting 1-, 3-, and 5-year PFI compared to other clinical

characteristics, with AUC values exceeding 0.70. Compared to
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previously published prognostic signature related to ClncRNAs,

Cheng et al. (24) constructed a signature based on differentially

expressed ClncRNAs, including AC005790.1, AC011472.4,

AC099791.2, AC144450.1, LIPE-AS1, and STPG3-AS1. This

signature demonstrated AUC values exceeding 0.70 for predicting
FIGURE 8

Proliferation, migration and invasion experiments after knockdown of ClncRNAs SNHG9 in vitro. (A) Expression levels of SNHG9 in human PCa cells.
(B) Relative expression levels of DU145 cells after SNHG9 transfection with the corresponding siRNA. (C, D) CCK-8 assay was used to detect the
effect of SNHG9 on PC3 and DU145 cells proliferation. (E-H) Evaluate the impact of SNHG9 on the proliferation and growth abilities of individual
PC3 and DU145 cells through flat cloning experiments. (I-L) Use the transwell method to assess the effect of SNHG9 on the migration of PC3 and
DU145 cells. (M-P) Use the transwell method to assess the effect of SNHG9 on the invasion of PC3 and DU145 cells. **p <0.01.
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1-year, 3-year, and 5-year DFS. Specifically, the AUC for 5-year DFS

was 0.703, while the AUC for 5-year PFI in our study reached 0.766.

Additionally, Jiang et al. (25) developed a signature based on seven

ClncRNAs (C1orf229, C9orf139, LIPE-AS1, MCPH1-AS1, PRR26,

SGMS1-AS1, and SNHG1), which yielded an AUC of only 0.676 for

5-year DFS prediction. Although their research focused on DFS

prediction, the ClncRNA signature validated through functional

experiments in our study offered greater accuracy and clinical
Frontiers in Immunology 14238
applicability. A novel nomogram was constructed to enhance the

clinical applicability of the signature by combining the risk score

with clinical characteristics, providing an intuitive and quantitative

assessment method for predicting the 1-, 3-, and 5-year PFI in

patients with PCa. Survival analysis in different subgroups revealed

that the risk score of the ClncRNAs signature still exhibited highly

accurate predictive capabilities for different subgroups while the

predictive ability for pN1 patients was not ideal, which may be
FIGURE 9

Apoptosis and cell cycle experiments, and key cuproptosis-related mRNAs validation after knockdown of ClncRNAs SNHG9 in vitro. (A-H) Examine
the effect of SNHG9 on apoptosis and the cell cycle of PC3 and DU145 cells through flow cytometry. (I) Western blot indicated that key
cuproptosis-related mRNAs (FDX1 and DLAT) were significantly upregulated in the two siSNHG9 groups relative to the control group. **p <0.01.
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attributed to the relatively small number of pN1 patients included.

Furthermore, the results of GO and KEGG analyses between high-

risk and low-risk groups indicated that the differentially expressed

mRNAs were mainly enriched in processes related to the muscular

system and the activation and transmission of signal receptors.

Previous studies have shown significant metabolic changes in

myocardial cells under an increased cardiac load, with

acceleration of the tricarboxylic acid cycle, leading to heightened

activity in shuttle systems and biosynthetic processes (26, 27). This

further confirms the intricate relationship between copper ions and

various aspects of mitochondrial respiration.

The accumulation of genetic mutations is widely recognized as a

primary driver of tumorigenesis (28). By analyzing the genetic

mutations between the two risk groups, we found that the high-

risk group exhibited a higher TMB than the low-risk group.

Previous studies have indicated that in various cancer types

treated with immune checkpoint inhibitors, a higher TMB

correlates with better survival rates, suggesting that a higher TMB

implies the presence of more mutations in tumor cells, potentially

leading to the generation of more neoantigens and indicating a

potentially better response to immunotherapy in high-risk patients

with PCa (29). Additionally, among the top 15 mutated genes in

patients with PCa, the mutation rate of TTN showed the most

significant difference between the high-risk and low-risk groups,

followed by SPOP and P53. Yan et al. (30) reported the prognostic

value of TTN in breast cancer. Many previous studies have

confirmed that SPOP and P53 mutations are among the most

common mutations in PCa, with TP53 mutations indicating a

poor prognosis, whereas SPOP mutations suggest the opposite.

This consistency with the genetic mutation profiles distinguished by

our risk scoring between the high-risk and low-risk groups further

validates the predictive accuracy of risk score of the ClncRNAs

signature (31, 32). The TIDE scores between high-risk and low-risk

patients were also evaluated. Consistent with the findings of Zhao

et al. (33), we observed that PCa patients with lower TMB and low-

risk scores tended to have higher TIDE scores. Higher TIDE scores

correlated with lower responsiveness to anti-PD-1 and anti-CTLA-4

therapies (34). This further supports the notion that patients with high-

risk scores may respond better to immunotherapy. However, TIDE

cannot predict patient survival outcomes, so this finding did not

contradict the prognostic results of risk score of the ClncRNAs signature.

Currently, immunotherapy has revolutionized treatment

strategies for many cancers (35); however, treatment selection for

castration-resistant prostate cancer (CRPC) remains a primary

challenge in PCa management. Previous study has suggested

immunotherapy as a promising treatment modality for CRPC

(36). However, the role of androgens in the regulation of immune

function and the effects of androgen deprivation on adaptive

immune responses remain unclear. Androgens are conventionally

believed to possess immunosuppressive effects, and androgen

deprivation has been shown to enhance T-cell function in

autoimmune disease models (37, 38). Additionally, research has

identified the mutation status of SPOP as an important independent
Frontiers in Immunology 15239
prognostic marker for metastatic PCa, with SPOP mutations

rendering tumor cells susceptible to androgen deprivation therapy

(39, 40). In the immunocellular infiltration analysis conducted in

this study, the high-risk group exhibited downregulated APC co-

stimulation, C-C CCR, pro-inflammatory markers, major MHC

class I, anti-inflammatory, and type II IFN response states. Previous

studies have indicated that APC co-stimulation can enhance T cell

activation and sustain anti-tumor immunity to improve

immunotherapeutic response rates in patients with PCa (41, 42).

Therefore, further investigation of the differential expression of

immune cells may hold significant promise for the future treatment

of PCa.

The current study had some limitations. First, our data source

was singular, relying solely on TCGA database for internal validation

without an external validation from additional databases. Second,

while the initial validation of the identified ClncRNA SNHG9 in PCa

was conducted through cell experiments, further experimental

confirmation in vivo is required. This will be our next plan for new

in-depth research projects.

In conclusion, a prognostic signature of PCa based on three

ClncRNAs was established, enabling accurate prognosis prediction

for PCa. SNHG9 knockdown inhibited DNA synthesis, cell cycle

progression, and clonogenic ability, while upregulating cancer-

related genes, suggesting its role in promoting PCa cell

proliferation, migration, and invasion. This study not only

deepens our understanding of the interplay between ClncRNAs

and PCa but also may provide fresh insights for devising advanced

therapeutic strategies aimed at enhancing the management of

PCa patients.
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Background: The Epithelial–Mesenchymal Transition (EMT) is a very important

process involved in cancer invasion and metastasis. Additionally, the Cathepsin K

(CTSK) gene is closely related to the degradation of the extracellular matrix,

which is a critical component of the EMT. The purpose of this study was to

determine the relationships between EMT-related genes and immune cell

infiltration and their prognostic value in Thyroid carcinoma (THCA). The effect

of the CTSK gene on the aggressive biological features of THCA was assessed.

Methods: Within the framework of the present study, the THCA cohort was

analyzed in detail based on data obtained from The TCGA database in the context

of the EMT. The TCGA-THCA cohort was then divided into two groups, namely,

high- and low-risk groups, based on the calculated EMT scores. Finally, based on

the findings from the Weighted Gene Co-Expression Network Analysis (WGCNA)

algorithm, LASSO regression analysis, and Kaplan−Meier plotter, we selected five

genes (CTSK, C3ORF80, FBLN2, PRELP and SRPX2) associated with patient

prognosis. Furthermore, this study examined the presence of various immune

cells within the THCA samples using three distinct algorithms, namely ssGSEA,

xCell, and MCPcounter. Additional studies have been conducted to establish the

roles of CTSK in THCA cell proliferation and migration using various assays, such

as CCK8, colony formation, EdU proliferation, Transwell migration and wound

healing assays. Additionally, the involvement of CTSK in the regulation of various

EMT-related markers was confirmed using Western blot analysis.

Results: Based on EMT scores, TCGA-THCA patients were further divided into

two groups, and the study revealed that patients in the high-risk group had a

worse prognosis than those in the low-risk group. Among the five genes linked to

the prognostic value of EMT (CTSK, C3ORF80, FBLN2, PRELP, and SRPX2), CTSK

exhibited notably elevated expression in the high-risk cohort. This group also

exhibited pronounced immune cell infiltration, with a marked correlation

observed between CTSK expression and the levels of macrophages, MDSCs,

and various T-cell subtypes. Furthermore, in vitro studies demonstrated that

reducing CTSK expression led to significant reductions in THCA cell viability;

clonogenic, proliferative, motility and migratory capacities; and the expression of

key EMT-related proteins, including N-cadherin, vimentin, slug, and snail.
frontiersin.org01242

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1463258/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1463258&domain=pdf&date_stamp=2024-11-04
mailto:thyroid2018@126.com
mailto:429146964@qq.com
https://doi.org/10.3389/fimmu.2024.1463258
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1463258
https://www.frontiersin.org/journals/immunology


Wu et al. 10.3389/fimmu.2024.1463258

Frontiers in Immunology
Conclusion: Our results suggest that the expression of CTSK, a gene associated

with the EMT, may be associated with THCA onset and progression and thus may

serve as a promising prognostic biomarker.
KEYWORDS

THCA, EMT, CTSK, immune infiltration, biomarker
1 Introduction

Thyroid cancer (THCA), which originates from either follicular

or parafollicular epithelial cells within the thyroid gland, is the

predominant malignant endocrine tumor, accounting for

approximately 90% of all malignancies within this system (1–3).

Despite the generally favorable prognostic outlook for most cases of

THCA, specific forms, such as anaplastic, medullary, and

treatment-resistant thyroid cancers, demonstrate a propensity for

recurrence and metastasis, ultimately leading to detrimental

outcomes (4, 5). In response to these challenges, recent

therapeutic advancements have included the adoption of

sorafenib, a multitargeted small-molecule tyrosine kinase

inhibitor that acts on VEGFR, BRAF, and RET. Although

beneficial for managing advanced or metastatic forms of THCA,

the application of sorafenib is frequently hampered by its potential

to trigger a spectrum of adverse effects within patients (6). The

limitations of current treatment options emphasize the pressing

necessity of identifying and validating novel genetic markers. These

markers not only gauge the aggressive nature of tumors but also

facilitate the development of targeted treatments, thereby

enhancing management strategies for patients suffering from

THCA with an otherwise poor prognosis.

The epithelial–mesenchymal transition (EMT) is a process in

which epithelial cells transform into mesenchymal cells, as

described previously (7). This process is indispensable for

embryonic development and wound healing and has a major

impact on tumor growth and metastasis. This dual role of EMT

in normal wound healing and pathophysiological processes such as

cancer portrays the significance of EMT in living organisms. These

interactions include promoting tumor cell motility and invasion,

increasing tumor cell stemness, and increasing tumor cell

chemoresistance and immunoresistance. The process known as

EMT is intricately governed by an extensive range of factors that

originate both internally within cells and externally from the

cellular environment. These regulatory elements include

numerous transcription factors, diverse mechanisms of

posttranslational modification, comprehensive epigenetic changes,

and various noncoding RNAs (8). Various studies have established

that the EMT does not operate as a straightforward binary

mechanism. In contrast, this process occurs in a step-by-step

manner through several well-coordinated cellular stages (9).
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The connection between EMT and MSCs in THCA is crucial, and

their interaction might be responsible for the poor outcome of

patients with certain THCA subtypes through the stimulation of

MSC-like cell proliferation for metastasis (10). Some papillary

tumors are associated with metastatic and invasive behaviors

despite the fact that most of the thyroid tumors are well

differentiated because of dedifferentiation. This finding can be

explained by the EMT, whereby thyroid epithelial cells undergo a

transition, assume a fibroblastic morphology, become less cohesive

and more motile and express mesenchymal markers (11). The

tumor microenvironment (TME) has been described as a complex

structure composed of both living and nonliving components.

Other cell types that constitute this environment include

endothelial cells, adipocytes, fibroblasts, epithelial cells and

immune cells in addition to primary tumor cells. Moreover, the

TME includes acellular components, including the extracellular

matrix (ECM), cytokines, chemokines, growth factors and

antibodies, which are involved in carcinogenesis and tumor

advancement (12, 13). Several works have emphasized a strong

correlation between a high level of immune cell infiltration in tumor

tissue and patient survival. The relationships between the elements

of an individual’s antitumor defense and the features of the tumor,

including the rates of tumor growth, invasion, and metastasis,

influence the response to therapy and the predicted course of

THCA (14). Cathepsin K (CTSK) is a ubiquitously expressed

protease that plays enzymatic and nonenzymatic roles in

numerous pathologies (15). Several recent studies have shown a

strong correlation between increased CTSK levels and the onset and

poor prognosis of pancreatic and hepatocellular carcinomas.

Additionally, higher CTSK levels promote disease progression to

the lymph nodes in patients with oral squamous cell carcinoma

(16–18). It should be noted that CTSK is reportedly involved in the

promotion of an M2-like macrophage phenotype in castration-

resistant prostate cancer (19). However, it remains unclear how

CTSK levels are associated with THCA patient prognosis or exactly

how CTSK is involved in the development of THCA.

In the present study, we applied the WGCNA technique to

systematically identify genes integral to the EMT and to formulate

related coexpression networks. Patients within the TCGA-THCA

dataset were stratified based on their EMT scores, yielding two

distinct groups—those with high EMT and those with low EMT.

Our analysis focused on exploring differences in prognosis and
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immune cell infiltration between these categorizations. Notably,

this study identified CTSK as a critical gene associated with the

EMT, emphasizing its substantial role in modulating both

tumor proliferation and the metastatic process in THCA. These

insights could improve our understanding of the influence of the

EMT on THCA pathophysiology and could significantly refine

approaches to develop personalized treatment modalities for

affected patients.
2 Methods

2.1 Data sources

Thus, the present study used an analytical dataset consisting of

501 THCA samples derived from the TCGA dataset. This cleaning

of the initial data was performed using Perl programming to remove

any duplicates or incomplete observations from the dataset. The

next procedures were the normalization and annotation of the data

to meet the requirements of the subsequent analysis. To determine

the genes that were significantly differentially expressed between

normal and THCA tissues, the ‘limma’ package within the R

environment was used. This analysis used a stringent threshold

for statistical analysis where only genes that had a log fold change of

±1 and a P value of less than 0.05 were considered significant. DEG

visualization was informative; the chromosomal positions of the

DEGs were presented in a circular form using the ‘RCircos’ package.

Furthermore, to increase the applicability of this study on the EMT,

genes connected to the EMT were selectively incorporated into the

analysis. These genes were obtained from the MSigDB and

complemented the study with a focused view on biological

processes that could underlie the development of THCA and its

metastatic spread.
2.2 Construction of WGCNA and
identification of modules related to
the EMT

In this comprehensive analysis, the ‘WGCNA’ package in R was

used to identify the gene modules related to the EMT using the

TCGA-THCA dataset. The flow of the study began with the

identification of the first 1000 genes that showed the highest

variability between samples split into two groups with low and

high EMT scores. To make the data more suitable for analysis, two

suspicious samples, which were determined using cluster analysis,

were removed. This was followed by the analysis of scale

independence as well as the mean connectivity across the

modules at different power levels. This step was necessary for

establishing the most appropriate soft threshold that would help

in providing a stable analysis of the network with a signed R² value

of 0. The 95% confidence interval is considered an adequate level of

scale independence. After fixing the soft threshold, the next step was

to examine the relationship between the gene expression modules

and the EMT parameters. To this end, only those modules that had
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detectable correlations with the EMT were chosen for further

assessment at the level of individual GO terms within the

modules. This approach was proposed to uncover not only genes

that are highly relevant to the EMT but also genes that are strongly

associated with the selected modules based on eigengenes. The GS

for each gene in these crucial modules was defined as the absolute

value of the correlation with the clinical phenotypes. Moreover,

MM was established by plotting the correlation of each gene’s

expression pattern to the module eigengene. To depict these

findings, scatter plots were created to show the relationship

between GS and MM for the genes in the highlighted modules

and highlight the complexity of the relationship between these

genes and their potential for clinical application.

In our WGCNA analysis, we meticulously selected genes for

inclusion in the network based on a series of rigorous criteria aimed

at enhancing the validity and interpretability of our findings.

Initially, we filtered out genes with low expression levels by

setting a threshold where only those genes exhibiting a mean

expression value greater than 1 Transcripts Per Million (TPM)

across all samples were retained. This step ensured that we focused

on genes with sufficient expression for meaningful analysis.

Subsequently, we calculated the coefficient of variation (CV) for

each gene, which is defined as the ratio of the standard deviation to

the mean expression. We included only the top 50% of genes

exhibiting the highest CV values, thereby prioritizing those genes

that demonstrated significant variability in expression across

samples, indicative of their potential biological relevance.

Furthermore, to align our analysis with existing biological

knowledge, we cross-referenced our gene list with cancer-related

genes obtained from well-established databases such as The Cancer

Genome Atlas (TCGA) and GeneCards. This additional filtering

step allowed us to focus specifically on genes that have documented

associations with cancer pathways and processes. After these

selection steps, the remaining genes were subjected to the

standard WGCNA procedures to construct the co-expression

network, wherein we employed a soft-thresholding power to

achieve scale-free topology, followed by hierarchical clustering to

identify modules of co-expressed genes. This comprehensive

approach facilitated the identification of biologically relevant gene

modules that may contribute to cancer pathology.
2.3 Enrichment analysis of key DEGs

Enrichment analysis of the 68 selected DEGs was performed

using the R program’s clusterProfiler package (20). This systematic

review included assessments based on both GO and KEGG

analyses. To ensure rigorous statistical evaluation, the study

adhered to stringent criteria. Therefore, the significance levels

were set at an adjusted P value and adjusted q value of less than

0.05. Genes or pathways for which the p value was less than 0.05

were considered to be significantly enriched; this defined the

biological relevance of the gene or pathway. In this analysis, the

FDR level was set at 0.05 or less to ensure the credibility of the

identified gene relationships and pathway impacts.
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2.4 Construction and validation of the
EMT signature

The DEGs were then analyzed using univariate Cox regression

analysis with the “tinyarray” package, and LASSO regression, which

is a machine learning method, was used. The proposed approach

facilitated improved evaluation of the probability effects of specific

genes. Of the 68 DEGs, five (CTSK, C3ORF80, FBLN2, PRELP, and

SRPX2) had clinical prognostic significance and were included in the

prognostic model. In selecting CTSK, C3ORF80, FBLN2, PRELP, and

SRPX2 for our EMT signature model, we based the decision on both

their statistical significance and biological relevance to EMT and

THCA. Each of these genes was identified through a rigorous

screening process using WGCNA and LASSO regression, followed

by functional enrichment analysis. These five genes stood out due to

their significant association with poor patient prognosis and strong

involvement in key EMT-related pathways. CTSK was selected

because of its well-established role in extracellular matrix

degradation, a critical component of EMT. C3ORF80 is involved in

cellular processes that contribute to immune regulation and cancer

progression. Its expression was correlated with immune infiltration,

particularly macrophages and T cells, which are crucial to the tumor

microenvironment in THCA. This made C3ORF80 a relevant marker

for both immune-related and EMT-driven tumor progression.

FBLN2 is part of the extracellular matrix, where it plays a role in

stabilizing the structural integrity of tissues. Thus, FBLN2 contributes

to our understanding of EMT by highlighting extracellular matrix

remodeling in THCA. PRELP is involved in cell-matrix interactions

and has been associated with the regulation of EMT through matrix

reorganization. SRPX2 was chosen due to its role in angiogenesis and

tumor cell invasion, two processes integral to EMT. These five genes

together form a robust model that captures both the epithelial and

mesenchymal aspects of EMT.

Additionally, to categorize the patients into low-risk and high-

risk groups, a median risk score was used. This method highlighted

the differences in prognosis between these groups. Risk score: CTSK *

0. 286 + C3ORF80 * 0. 478 - FBLN2 * 0. 636 - PRELP * (-0. 166) +

SRPX2 * 0. 310. Subsequently, the TCGA-THCA cohort was split

into training and validation sets based on a 2:1 ratio and an 8:1 ratio,

respectively. The EMT prognostic model was developed using

multiple regression analysis of the coefficients of five critical genes.

This robust model facilitated the stratification of the TCGA-THCA

cohort into two distinct groups, namely, the high-risk group and the

low-risk group, depending on the likelihood of disease progression.

To determine DEGs between these risk groups, the Wilcoxon rank-

sum test was applied, which demonstrated the genetic differences that

led to the different prognoses. To compare the discriminative ability

of the EMT model for predicting the 1-, 2-, and 3-year PFIs, ROC

curves were constructed. The AUC was calculated using the

‘survivalROC’ package to determine the efficiency of the model in

predicting patient prognosis. Furthermore, a Kaplan–Meier estimator

was used to compare PFIs among the various risk categories of

patients. Statistical analysis of the differences in survival rates was

performed using the log rank test at a significance level of p < 0.05,

hence validating the model’s ability to identify patients with higher

and lower risks of disease progression.
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2.5 Genomic mutation analysis

The step-by-step approach for obtaining CNV data for the

THCA cohort was performed using the R-based ‘TCGAbiolinks’

package through which the GDC portal was accessed. All these

analyses were performed using the Genome Reference Consortium

Human Build 38 (GRCh38) to avoid variation in genomic

alignment. CNV analysis was subsequently performed using the

advanced GISTIC2.0 algorithm hosted on the GenePattern platform

(21). Genetic analysis was performed on the website http://

cloud.genepattern.org/gp/pages/index.jsf using default parameters,

including a confidence level of 0.9 to provide statistically accurate

results. To display the CNV data that were obtained in the study, the

‘Maftools’ package (22) in R was used to generate a clear map of

genomic alterations within the patient population. Furthermore, to

better visualize the distribution of highly mutated genes among the

clinical subtypes within the THCA samples, waterfall plots were

created. These plots were created with the most current version of

‘maftools’ (version 2.12). This process allowed for the compilation

and depiction of precise mutation information alongside clinical

categorizations, thus improving the understanding of the genomic

environment in patients with this type of cancer.
2.6 Analysis of immune infiltration

We used three computational algorithms, namely, ssGSEA,

xCell, and MCPcounter, to calculate immune infiltration scores,

which were visualized using boxplots, stacked plots, correlation

scatter plots, and heatmaps. xCell (https://xcell.ucsf.edu/) was used

to quantify the infiltration abundance of 67 immune cell types

based on transcriptomic data. xCell employs advanced machine

learning techniques to derive gene signatures from thousands of

diverse cell types, significantly reducing correlations among similar

cell types. This approach has been validated using detailed

computer simulations that analyze both features and cellular

immunophenotyping, demonstrating the effectiveness of xCell in

precisely delineating cellular heterogeneity across tissue expression

profiles. Next, the ssGSEA method was applied to compute

enrichment scores for individual samples and pairs of gene sets,

enabling the assessment of the extent of immune infiltration within

these samples. Furthermore, the MCPcounter tool was utilized to

measure the presence of ten different immune cells within the

transcriptomic data, providing a quantitative analysis of immune

cell abundance.
2.7 Prognostic analysis using CTSK

Using transcriptome data from 513 patients with THCA

obtained from the TCGA database, patients were categorized into

groups based on high or low CTSK expression, with an established

optimal threshold of 3.7326 for gene expression levels. Kaplan–

Meier survival curves were then constructed to depict the survival

outcomes for both the high-expression and low-expression groups,

enabling a comparative analysis of their survival durations.
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2.8 Cell culture and cell transfection

In this study, the THCA cancer cell lines CAL-62 and KTC-1

were acquired from the American Type Culture Collection (ATCC)

and cultured under controlled conditions at 37°C in an atmosphere

containing 5% CO2. This study employed negative control(NC) and

siRNAs specifically targeting CTSK, which were produced by the

Tsingke Company (Beijing, China), and the sequences of siRNAs

were as follows: siNC(5’-UUCUCCGAACGUGUCACGUTT-3’);

siCTSK-1(5’-CAGCAAAGGTGTGTATTATGATGAA-3’); and

siCTSK-2(5’-GGUUCAGAAGAUGACUGGA(dT)(dT)-3’). For

gene silencing experiments, cells were transiently transfected with

either the negative control or CTSK-targeted siRNAs utilizing

Lipofectamine 2000 reagent following the protocols provided

by Invitrogen.
2.9 Quantitative real-time PCR

RNA was isolated from THCA cells with TRIzol reagent

(AC0101-B; SparkJade, China). Subsequently, 1 mg of extracted

RNA was converted to cDNA utilizing a High-Capacity cDNA

Reverse Transcription Kit (Vazyme, R223-01). This cDNA served

as the template for subsequent exponential amplification, which was

performed using 2 × HQ SYBR qPCR Mix (ZF501; ZOMANBIO;

Beijing, China). ACTB served as the internal control for

normalization. The forward sequence and reverse sequence of the

primers for CTSK were 5’-ACACCCACTGGGAGCTATG-3’ and

5’-GACAGGGGTACTTTGAGTCCA-3’, respectively, and the

forward sequence and reverse sequence of the primers for ACTB

were 5 ’ -CATGTACGTTGCTATCCAGGC-3 ’ and 5 ’ -

CTCCTTAATGTCACGCACGAT-3’, respectively.
2.10 Western blotting

For protein analysis, the collected cell samples were disrupted

using RIPA lysis buffer (Catalog No. R0020; Solarbio, Shanghai,

China), ensuring thorough cellular breakdown for protein

extraction. After cell lysis, protein concentrations were accurately

determined with a BCA protein assay kit, allowing for the

quantification necessary for further analysis. The proteins were

then resolved on SDS−PAGE gels to achieve separation based on

molecular weight. After electrophoretic separation, the proteins

were carefully transferred onto PVDF membranes obtained from

Millipore. The membranes were then incubated with a 5% solution

of nonfat milk from Solarbio to block nonspecific binding sites.

Primary antibodies directed against CTSK(rabbit polyclonal,

1:1000, A1782, ABclonal), GAPDH(rabbit polyclonal, 1:4000,

A19056, ABclonal), N-cadherin (rabbit polyclonal, 1:1000,

A21308, ABclonal), vimentin(rabbit polyclonal, 1:4000, A19607,

ABclonal), slug(rabbit polyclonal, 1:1000, 9585T, CST) and snail

(rabbit polyclonal, 1:1000, 3879T, CST) were applied to the

membranes, which were then incubated overnight at a steady
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temperature of 4°C. Following primary antibody binding, the

membranes were exposed to appropriate secondary antibodies,

and the appropriate settings were established for detection. The

detection phase employed the chemiluminescent method using the

Western blotting Detection Kit (ECL; Catalog No. ED0015-A,

Sparkjade), ensuring sensitive visualization of the protein bands.
2.11 Cell proliferation assay

After transfection, the cells were allowed to adapt for 48 hours

before cell activities were assessed. Assessment was conducted using

the CCK-8 Cell Proliferation Assay Kit (catalog no. C6005M; US

Everbright; Silicon Valley, CA, USA), which strictly adhered to the

manufacturer’s instructions. Simultaneously, to evaluate the

proliferative responses, the EdU Cell Proliferation Assay Kit

(Catalog No. C6015M; US Everbright) was used, which provides a

parallel quantitative measure of cell division and growth. For the

colony formation assays, an initial seeding density of 1000 cells per

well was maintained in six-well plates, and the cultures were

incubated for a period ranging between one and two weeks to

allow for sufficient colony development. At the conclusion of the

incubation period, the colonies were fixed in 4% paraformaldehyde

solution for 20 minutes to ensure optimal preservation. Then,

colonies were stained with a 0.5% crystal violet solution for 20

minutes to enhance visual contrast for subsequent analysis.
2.12 Transwell assay

This study employed Transwell migration assays using 24-well

plates with polycarbonate membranes that had an 8-μm pore size

(Corning, USA). In these experiments, we filled each lower chamber

with 500 μl of RPMI 1640 medium enriched with 10% fetal bovine

serum to facilitate cellular growth and migration. In parallel, 200 μl of

a serum-free cell suspension, prepared at a density of 1 × 106 cells/ml,

was gently pipetted into the upper chamber of the setup. This

configuration was maintained in an incubator set at the optimal

growth conditions of 37°C and an atmosphere containing 5% CO₂ for

a 24-hour period to allow for effective cell migration. After incubation,

the cells within the Transwell chambers were fixed in a 5%

glutaraldehyde solution to preserve their structure and morphology.

Staining was then performed using 0.1% crystal violet dye, allowing

the visualization and subsequent analysis of cell migration patterns.
2.13 Wound healing

In the described experiment, six-well plates were seeded at a

density of 1 × 106 cells per well. Following an overnight incubation

period, a deliberate wound was introduced into the confluent cell

monolayer utilizing the tip of a 10-μl pipette. Subsequently, the

induced scratch was visualized using a high-resolution microscope

equipped with options for 10× magnification.
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2.14 Statistical analysis

Statistical evaluations in this study were conducted utilizing R

software, version 4.1.1. Data analysis was performed by using

GraphPad Prism 9.0 (San Diego, CA, USA). The two-sided

Student’s t-test was used to compare unpaired data. The Cox

hazard regression model was used for univariate analysis, P value

< 0.05 was considered statistically significant.

The analyses included one-way and multifactorial Cox regression

using ‘survival’ and ‘survminer’ packages available within R,

respectively. The criterion for statistical significance was set such

that a p value less than 0.05 indicated statistical significance.
3 Results

3.1 Construction of the coexpression
network in THCA

In this detailed study, we harnessed the EMT gene set from the

MSigDB website to conduct gene pathway assessments for 501

patients diagnosed with THCA using the ssGSEA algorithm.

Patients were divided into two groups according to a median EMT

score of 0.67. The group with scores above this median, termed the

EMT-High group, demonstrated significantly elevated EMT scores

that were greater than those in the EMT-Low group, with statistical

analyses confirming a significant difference (p < 2.2e-16), as detailed

in Figure 1A. Furthermore, to explore the gene expression profiles

across these patients, WGCNA was employed to scrutinize the

expression data of 14,564 genes collected from the 501 THCA

samples. Through meticulous determination, a soft-thresholding

power of 15 was established based on achieving a scale-free

topology criterion with an R² value of 0.9, as depicted in Figure 1B.

The analytical process led to the identification of ten distinct gene

modules after setting the dissolution threshold (DissThres) to 0.2 to

merge dynamic modules. Notably, cluster dendrogram analysis

revealed that the pink module had the most substantial correlation

with the EMT scores, with a Pearson correlation coefficient of 0.58

and a statistically significant p value of 0, as illustrated in Figure 1C.

Given the focus of our research on the EMT phenomenon within the

TCGA-THCA dataset, the green module was identified as a hub

module. This module’s pivotal role is highlighted in Figure 1D,

underscoring its relevance in our ongoing analysis. To further

refine our study, thresholds for GS and MM were set at greater

than 0.5 and 0.7, respectively. This stringent criterion facilitated the

identification and selection of 68 key genes that exhibited strong

associations with EMT characteristics, paving the way for subsequent

detailed investigations. These pivotal genes are shown in Figure 1E,

setting the stage for future exploratory and confirmatory studies.
3.2 Functional analyses of EMT-
related genes

The functional enrichment analysis conducted in this study

revealed a significant concentration of GO terms associated with
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components of the extracellular matrix. Notably, these included

terms related to collagen-enriched extracellular matrices, the

structural constituents of such matrices, and the organization of

encapsulating structures external to cells. The analysis also

highlighted significant enrichment in terms related to the broader

organization of extracellular structures and matrices themselves

(Figure 1F). KEGG pathway analysis revealed the enrichment of

specific pathways that play pivotal roles in cellular interactions and

signaling mechanisms. The identified pathways included the PI3K-

Akt signaling pathway, protein digestion and absorption, ECM-

receptor interactions, and focal adhesion, which are all essential for

cellular communication and adhesion processes (Figure 1G). The

enrichment of these pathways suggested that genes associated with

EMT may actively contribute to the malignant progression of

THCA by enhancing the activation of these critical signaling

pathways. This activation potentially facilitates the invasive and

metastatic behavior of cancer cells, underlining the importance of

these pathways in the context of cancer progression and the

potential for targeted therapeutic interventions.
3.3 Construction of the EMT-
based signature

In this analysis, a LASSO regression approach was utilized to

scrutinize the prognostic potential of 68 genes, and a critical

minimum value of 5 was determined (Figure 2A). This analysis

identified five genes with significant characteristics related to EMT:

C3ORF80, CTSK, FBLN2, PRELP, and SRPX2. These genes were

then used to construct a robust EMT risk score model. The model

was formulated as follows: EMT risk score = (CTSK * 0.286) +

(C3ORF80 * 0.478) + (FBLN2 * -0.636) + (PRELP * -0.166) + (SRPX2

* 0.310). Using this predictive model, patients with THCA were

stratified into two distinct risk categories based on the median risk

score of the cohort. The categorization placed 84 patients in the high-

risk group, which corresponded with a markedly increased mortality

rate. In contrast, the classification identified 83 patients as belonging

to the low-risk group, which was associated with significantly

enhanced survival rates, as depicted in Figures 2C, D. The disparity

in survival probabilities between these groups was starkly illustrated

in the Kaplan−Meier survival plots (Figure 2B), indicating a

significantly shorter survival duration for patients in the high-risk

group than for those in the low-risk group. Furthermore, the

reliability of the EMT risk score was evaluated using receiver

operating characteristic (ROC) curve analysis, yielding areas under

the curve (AUCs) for 1-year, 2-year, and 3-year survival predictions

of 0.87, 0.87, and 0.81, respectively, for the TCGA-THCA cohort

(Figure 2E). This analysis underscores the prognostic accuracy of the

EMT risk score model in predicting patient outcomes. Additionally, a

comparative analysis of gene expression within these risk groups

revealed that CTSK and SRPX2 were expressed at higher levels in the

high-risk group, whereas FBLN2 and PRELP showed reduced

expression levels in the same group compared to the low-risk

group (Figure 2F). This differential expression pattern further

corroborates the link between these genes and the aggressive

clinical behavior associated with higher EMT risk scores.
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3.4 Validation of the training set and
validation set

The dataset was divided into two comprehensive sections:

approximately 80% were assigned to the training set, and the
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remaining 20% formed the validation set. Subsequent analyses of

the training data indicated that the prognosis for patients identified

as belonging to the high-risk group was significantly less favorable

than that for those assigned to the low-risk group. This disparity

was particularly evident in the elevated mortality rates observed
FIGURE 1

Elucidating EMT dynamics and key genetic players in THCA using TCGA data. (A) Classification of TCGA-THCA samples into EMT-High and EMT-
Low groups using the ssGSEA algorithm. (B) Determination of the optimal soft-thresholding power at 3, illustrated using graphs depicting scale
independence and mean connectivity for assessing scale-free network topology. (C) Correlation analysis between gene modules and EMT scores to
identify relevant genetic interactions. (D) Construction of a coexpression network using WGCNA based on RNA-seq profiles from the TCGA-THCA
dataset. (E) Scatter plot highlighting the pink module, where key genes with a GS greater than 0.5 and MM above 0.7 were identified, indicating
significant topological overlap. (F, G) Functional enrichment analyses using GO and KEGG pathway analyses to explore the biological implications of
genes within the EMT-based signature.
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among individuals in the high-risk category (as detailed in

Figure 3A). Similarly, evaluation of the validation set

demonstrated consistent results with both the training set and the

entire dataset, confirming the reproducibility and robustness of the

findings across different subsets of data (Figure 3B). Based on the

previously described LASSO linear regression, after removing

redundant genes and constructing a risk model, we ultimately

screened five DEGs (SRPX2, PRELP, FBLN2, CTSK, and

C3ORF80). Of these, C3ORF80 expression showed a significant

positive correlation with prognosis, whereas the expression of the

other four genes exhibited no significant correlation with prognosis

(Figure 3C). In addition, the chromosome circle plot illustrated the
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chromosomal locations of SRPX2, PRELP, FBLN2, CTSK and

C3ORF80 (Figure 3D). Additionally, Spearman correlation

analysis revealed significant negative correlations between the risk

score and EDRNB and VEGFA, whereas positive correlations were

observed with VTCN1, CD276, and TNFRSF4 (Figure 3E).
3.5 Construction of the nomogram and
mutation analysis

Among the five DEGs screened, only FBLN2 exhibited a

significant association with the hazard ratio (p=0.001), which was
FIGURE 2

Development of a 68-gene prognostic signature based on differential expression analysis in two subtypes. (A) LASSO regression was applied to refine the
gene selection for the prognostic model. (B) Kaplan−Meier survival curves delineating the outcomes of 509 patients stratified into high-risk and low-risk
groups according to their EMT scores. (C, D) Presentation of risk curves illustrating the distribution of prognostic scores along with patient survival time
and status. (E) Time-dependent ROC curves evaluating the predictive accuracy of survival probabilities based on DEGs. (F) Comparative analysis of the
expression levels of five critical DEGs between patients in the low-risk and high-risk groups. Significance levels are denoted as ***P<0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1463258
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1463258
lower in patients in whom FBLN2 was highly expressed (Figure 4A).

The interrelationships among these 5 genes are depicted in

Figure 4B, where FBLN2 displayed the strongest correlation with

PRELP. To evaluate the recurrence risk of individual THCA

patients, a nomogram incorporating four predictive factors,

namely, gender, age, risk score, and cancer stage, was developed.

This tool indicates that for THCA patients with a high genetic risk

score (GRS) and N0 stage disease, the probabilities of recurrence at

12, 36, and 60 months are estimated to be 0.127, 0.403, and 0.426,

respectively (Figure 4C). Additionally, analysis of single nucleotide

variants revealed that missense mutations were the predominant

type of DNA mutation found within the five DEGs. Among these,

single nucleotide polymorphisms (SNPs) are the most frequently
Frontiers in Immunology 09250
occurring mutations, with transitions from cytosine to thymine

representing the most common type of base substitution observed.

In addition, BRAF, NRAS and HRAS were the most commonly

mutated genes in THCA, and most of their mutations were

missense mutations (Figure 4D).
3.6 Evaluation of the
immune microenvironment

Using the ssGSEA algorithm to analyze the composition of

tumor-infiltrating immune cells, we observed distinct profiles in

different risk groups of tumor patients. This study revealed
FIGURE 3

Prognostic evaluation in training and validation sets with examination of key genes. (A) Visualization of the risk curves showing the distribution of
prognostic scores and survival statuses within the training cohort. (B) Risk curves depicting the prognostic scores and survival statuses across the
validation cohort. (C) Analysis of the correlation between key genes and patient prognosis. (D) A circular chromosome plot illustrating the genomic
positions of key genes relevant to the study. (E) Evaluation of the associations between the risk score model and 43 immune checkpoint genes
conducted using Spearman’s correlation coefficient. Significance levels are denoted as *P<0.05, **P<0.01, and ***P<0.001.
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increased levels of various immune cells, including CD56dim

natural killer cells, gamma delta T cells, CD56bright natural killer

cells, immature dendritic cells, macrophages, MDSCs, activated

dendritic cells, regulatory T cells, and type 17 T helper cells, in

the high-risk group, all of which demonstrated statistically

significant differences (p < 0.05). Conversely, the low-risk group

exhibited significantly greater numbers of activated B cells,

eosinophils, and type 2 T helper cells (p < 0.05), as shown in

Figure 5A. Higher levels of macrophage infiltration, MDSC

infiltration, and regulatory T-cells (Tregs) in the high-risk group

suggest that the high-risk group may have more significant signs of

immune evasion. The correlation scatter plot illustrates that the

EMT risk score is positively associated with the infiltration of
Frontiers in Immunology 10251
certain immune cells, including macrophages, activated dendritic

cells, and gamma delta T cells. Conversely, this score showed a

negative correlation with plasmacytoid dendritic cells, activated B

cells, and monocytes, as depicted in Figure 5B. This analysis

highlights the differential relationships between the EMT risk

score and specific immune cell types, suggesting varying

influences of these cells on EMT progression. In this analysis, we

also selected 23 immune cells expressed in the TCGA cohort for

analysis and calculated the correlation coefficients between the

expression levels of the five genes and their infiltration levels. The

results of the thermographic analysis are shown in Figure 5C.

Among them, CTSK showed a significant positive correlation

with regulatory T cells, macrophages, type I T helper cells, and
FIGURE 4

Development of a nomogram and analysis of genetic mutations. (A) Multivariate analysis was conducted to confirm the independent prognostic
factors influencing patient outcomes. (B) Pie chart illustrating the interrelationships among the genes included in the model. (C) A nomogram was
constructed that incorporates sex, age, risk score, and cancer stage to predict the risk of recurrence at 12, 36, and 60 months. (D) Waterfall plot
displaying the spectrum of single nucleotide variant (SNV) mutations in the genes modeled, highlighting the genetic alterations within the study
cohort. **P<0.01, ***P<0.001.
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natural killer cell (all R>0.6 and all p<0.001). SRPX2 also showed a

positive correlation with regulatory T cells (R>0.6 and all p<0.001).

Using the xCell algorithm, our research investigated the

correlation between tumor-infiltrating immune cells and the EMT

risk score in THCA patients. This study revealed a robust positive

correlation between the risk score and NK T cells, with a correlation
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coefficient exceeding 0.3 and a p value less than 0.001, confirming

statistical significance (Figure 6A). Conversely, the most substantial

negative correlation was observed with HSCs, where the correlation

coefficient was less than -0.4, and the p value was less than 0.001.

Moreover, boxplot analyses highlighted that immune infiltration

levels varied significantly between risk groups. Individuals categorized
FIGURE 5

Analysis of tumor immune microenvironment variations in the high-risk and low-risk groups of the TCGA-THCA cohort. (A) Box plots reveal the
variation in the levels of 23 different immune cell types between groups classified as high- and low-risk, as established by ssGSEA. (B) A scatterplot
illustrates the correlation between the risk score and the distribution of different immune cell types within the tumor microenvironment. (C) The
heatmap visualizes correlation coefficients linking crucial genes with immune cells, where red dots represent positive correlations, blue dots signify
negative correlations, and the star symbol (*) highlights statistically significant findings. *P<0.05, **P<0.01, ***P<0.001.
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within the low-risk group displayed elevated levels of MSCs,

microvascular endothelial cells, myocytes, and HSCs relative to their

counterparts in the high-risk group. Conversely, the high-risk group

was characterized by increased quantities of monocytes, NK T cells,

sebocytes, Tregs, immature dendritic cells (iDCs), and macrophages.

Additionally, high-risk patients had a greater overall immune score,

whereas low-risk patients had an elevated stromal score, indicating a
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differential stromal contribution to the tumor microenvironment

(Figure 6B). The stacked diagrams provided a detailed view of the

immune cell infiltration landscape across individual patients, revealing

notable differences in the proportions of infiltrating immune cell

subsets among them (Figure 6C).

In the extended analysis of the THCA, we applied the

MCPcounter algorithm to determine the associations between the
FIGURE 6

The correlation between risk score and immune cells types in THCA using the xCell algorithm and the TCGA dataset. (A) Bar graph of the risk score
based on the xCell immune infiltration algorithm, (B) correlation boxplots of the risk score and 23 xCell immune cells, and (C) immune cell stacking
plots of xCells from 501 thyroid cancer patients. ns = non-significant, *P<0.05, **P<0.01, ***P<0.001.
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concentrations of immune cells infiltrating tumors and risk scores.

Detailed boxplot assessments demonstrated significantly greater

numbers of B lineage cells, endothelial cells, neutrophils, and NK

cells in the high-risk group than in the low-risk group. These

findings suggest a pronounced immunological signature that

correlates with an increased risk of tumor development

(Figure 7A). Additionally, using stacked diagrams, we observed

that the proportions of infiltrated immune cell subsets varied

significantly across patients, highlighting the diverse immune

landscape present within the patient cohort (Figure 7B). The

heatmap showed that all five EMT-related genes were positively

associated with fibroblasts, whereas SRPX2 and CTSK were

negatively associated with endothelial cells and neutrophils, as

shown in Figures 7C, D.
3.7 CTSK potentially play an important
oncogenic role in THCA

Further investigations have been conducted to explore the

correlation between CTSK expression levels in overall THCA

patient and individual patient outcomes. According to previously
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published data, the CTSK scores in the group at high risk were

much greater than those in the group at low risk (Figure 2F). Our

recent analysis builds on these findings, demonstrating that

increased CTSK expression is significantly correlated with a

decrease in patient prognosis (p=0.015, Figure 8A).

To investigate the impact of CTSK suppression on cellular

dynamics, functional experiments were conducted using the

KTC-1 and Cal-62 thyroid carcinoma cell lines. Initially, the

effectiveness of CTSK knockdown was validated using RT−qPCR

and Western blot analyses, demonstrating a significant reduction in

CTSK expression (p < 0.001, Figures 8B, C). Subsequently, a series

of assays were performed to assess cellular functions after

knockdown. After CTSK elimination, the CCK-8 assay, colony

formation assay, and EdU assay all revealed significant reductions

in cell activity, colony development, and proliferation. This

reduction was statistically significant (p < 0.01, p < 0.001;

Figures 8D–F). Furthermore, Transwell and wound healing

experiments demonstrated that cell motility and migration were

substantially impaired in response to CTSK knockdown (p < 0.01, p

< 0.001; Figures 9A, B). Following CTSK knockdown, Western blot

analysis revealed a significant decrease in the expression of N-

cadherin, Vimentin, Slug, and Snail (Figure 9C).
FIGURE 7

Analysis of the association between the risk score and immune cell types in the THCA using the MCPcounter approach. (A) A boxplot illustrates the
variation in immune cell infiltration among the high-risk and low-risk categories as determined using the MCPcounter algorithm within the TCGA
dataset. (B) Stacked bar chart illustrating the distribution of immune cells across 501 thyroid cancer patients as analyzed using MCPcounter.
(C) Heatmap displaying the correlations between five key genes and the levels of various immune cell types, as quantified using MCPcounter.
(D) LINKET map showing the relationships between the abundances of immune cells linked to ten specific immune cell genes and model genes
within the immune microenvironment. ns = non-significant, *P<0.05, ***P<0.001.
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4 Discussion

The majority of differentiated thyroid cancers exhibit a

favorable prognosis. For these patients, the primary treatment

modality is surgery, followed by subsequent radioactive iodine

ablation (iodine-131) or thyroxine therapy. However, given that
Frontiers in Immunology 14255
some patients with THCA are prone to tumor metastasis and

recurrence or even progression to fatal THCA, systemic treatment

is needed, and targeted therapies are preferred (23). The EMT is

strongly associated with poor prognosis in THCA patients, and the

EMT properties of THCA make therapy targeting EMT-related

genes an attractive therapeutic option (24). Remarkably, the
FIGURE 8

CTSK knockdown inhibits cell proliferation and metastasis. (A) Correlation between the CTSK expression level and overall survival of THCA patients.
(B, C) The knockdown efficiency of CTSK at the gene level was verified using RT−qPCR and western blotting. (D) CCK-8 assays revealed that KTC-1
and cal-62 cells with CTSK knockdown exhibited significantly weaker cell activity than siNC cells. (E) The colony formation assay demonstrated that
the colony formation ability of KTC-1 and cal-62 cells in which CTSK was knocked down was substantially lower than that of cells from the siNC
control group. (F) The results of the EdU incorporation assay showed that the proliferation of CTSK-knockdown KTC-1 and CTSK-knockdown cal-62
cells was significantly lower than that of siNC-transfected cells. **P<0.01, ***P<0.001. Scale bar =100 mm.
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potential and functions of EMT-related genes in THCA remain

largely unexplored.

In recent years, precision medicine has revolutionized cancer

treatment by aiming to personalize disease prevention and

treatment strategies through the analysis of individual variations

in genomics, the external environment, and lifestyle. An increasing

number of researchers have already established subgroups based on

the molecular profiles of patients, representing different

phenotypes, prognoses and treatment responses. In the context of

precision medicine, recent studies have illustrated the importance of

gene expression profiling in various cancers. For example, in acute

myeloid leukemia (AML), profiling based on the expression of

genes linked to ferroptosis can identify a subset of patients with a

poorer prognosis who may benefit from ferroptosis-inducing

treatments (25). Patients with colorectal cancer (CRC) are

stratified into high-risk and low-risk groups using patterns of

autophagy-related gene expression, and this information

facilitates decision making regarding more aggressive treatments
Frontiers in Immunology 15256
(26). Moreover, in gastric cancer (GC), categorizing patients into

subtypes based on RNA n6-methyladenosine-related regulator

expression revealed that those patients in certain high-risk

subtypes demonstrate significant resistance to immunotherapy (27).

During this investigation, we identified two distinct expression

profiles linked to the EMT, designated as the EMT-high and EMT-

low categories. These groups exhibited significant differences in terms

of prognosis, with the EMT-high group demonstrating a poorer

prognosis than the EMT-low group. ssGSEA showed more

macrophage infiltration, MDSC infiltration and regulatory T cell

(Treg) expression in the EMT-high group compared to the EMT-low

group, all three of which modulate the immune response by

inhibiting the activity of effector T cells and other immune cells,

thereby suppressing the anti-tumor immune response and promoting

tumor growth. The xCell algorithm revealed that Treg levels were

generally greater in patients in the high-risk subgroup than in those in

the low-risk subgroup, indicating a potential association between the

EMT-high subgroup and immune evasion through Treg activation.
FIGURE 9

CTSK knockdown inhibits cell motility and migration. (A) A Transwell assay revealed reduced cellular mobility in CTSK-knockdown KTC-1 and cal-62
cells compared to control cells, demonstrating a significant reduction in the ability of these cells to traverse membrane pores. (B) Wound healing
assays at 24 hours postwound creation revealed decreased motility in CTSK-knockdown KTC-1 and CTSK-knockdown cal-62 cells compared with
that in the siNC group, as indicated by decreased closure rates. (C) Western blot analysis showing decreased levels of EMT markers, including
Vimentin, N-cadherin, Snail, and Slug, in KTC-1 and CAL-62 cells following CTSK knockdown, with GAPDH serving as the loading control. The
reduction in these proteins underscores significant suppression of EMT progression. ***P<0.001. Scale bar =100 mm.
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Numerous studies have reported that oncogenes induce malignant

progression of tumors by activating both Treg cells and the EMT and

that Treg cells can also induce the EMT in tumor cells (27, 28). The

findings from this study indicate that Treg cells significantly influence

THCA progression.

Based on the DEGs from the two groups, we identified five

genes (SRPX2, PRELP, FBLN2, CTSK and C3ORF80) for the

construction of prognostic models using one-way and LASSO

Cox analyses. The five EMT-related genes identified here offer

significant potential for clinical application, particularly in

personalized medicine for THCA. These EMT biomarkers can

categorize patients into distinct risk groups based on their EMT

signatures. Patients with higher EMT scores, associated with

elevated CTSK and SRPX2 expression, tend to have a worse

prognosis. This stratification provides clinicians with valuable

information on disease progression risk, enabling more intensive

monitoring for high-risk individuals. For example, such patients

could be prioritized for frequent imaging and biomarker

assessments to ensure early detection of recurrence or metastasis.

Integrating EMT-related biomarkers into clinical practice could

significantly enhance precision medicine approaches. By

considering the EMT signature in treatment planning, oncologists

can customize therapies based on the tumor’s molecular

characteristics. Additionally, the EMT signature could identify

patients who may be less responsive to conventional treatments

like radioactive iodine, guiding them toward alternative

therapies.Moreover, these EMT-related genes could be developed

into a biomarker panel for early detection and regular screening of

THCA patients. Detecting elevated levels of these genes in blood

samples or biopsy tissues could help identify patients at higher risk

of disease progression or recurrence before clinical symptoms arise.

This early detection could improve survival outcomes by enabling

prompt interventions.

Research has indicated an association between CTSK

expression and the malignant advancement of various tumors. In

prostate cancer, molecules downstream of CTSK act as control

elements that regulate the expression of EMT-related genes and

promote PC cell metastasis and hyperproliferation (19). CTSK has

emerged as a crucial mediator linking gut microbiota dysbiosis to

CRC metastasis, thereby contributing significantly to the invasive

phenotype of CRC cells both in vitro and in vivo (29). Research on

hepatocellular carcinoma (HCC) revealed that CTSK significantly

influences cell proliferation. This action is accomplished through its

interaction with the SIAH1/protein kinase B (AKT) signaling

pathway, where CTSK enhances SIAH1 protein ubiquitination,

thereby promoting HCC cell growth and proliferation (17).

Although extensive research has been conducted on the biological

functions of CTSK in various tumors, limited knowledge exists

regarding its involvement in the biological processes of THCA. This

study demonstrates that CTSK is linked to poor prognosis in

thyroid cancer (THCA) and actively promotes the proliferation

and migration of THCA cells. Additionally, it increases the

expression of key epithelial-mesenchymal transition (EMT)

markers, including N-cadherin, vimentin, slug, and snail, as

shown by in vitro experiments. CTSK, a critical factor in

extracellular matrix degradation and immune modulation,
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emerges as a promising therapeutic target in THCA. Targeting

CTSK, especially in patients with high CTSK expression, may

improve outcomes for those in the high-risk EMT group.

Additionally, the relationship between EMT signatures and

immune cell infiltration, particularly macrophages, myeloid-

derived suppressor cells (MDSCs), and regulatory T cells, opens

pathways for combining these biomarkers with immunotherapy.

High-risk patients with increased immunosuppressive cell

infiltration might benefit from treatments that reactivate the

immune system, such as immune checkpoint inhibitors.

Furthermore, EMT profiles could serve as predictive biomarkers

for selecting suitable candidates for immunotherapy. We can also

explore whether the combination of CTSK-targeted therapy with

immunotherapy or chemotherapy can further improve the

therapeutic efficacy of THCA, which can provide a basis for

clinical personalized treatment.

Although we obtained the above analyses in this study and some

of the results have been validated by in vitro experiments, there are

still some shortcomings in this study. Firstly, there are inherent

limitations of the data in the TCGA database, for example, the

number of samples in the TCGA-THCA dataset is relatively small,

which may lead to insufficient efficacy of statistical analyses to detect

biomarkers or gene variants with small effect sizes. In addition,

although the TCGA database provides a wealth of transcriptomic

data, these data originate from multiple technology platforms, and

technical differences between these platforms may also lead to

inconsistencies in the data, as well as increasing the complexity of

data integration and data analysis. Finally, we have only validated

our analyses by in vitro cytological experiments and have not yet

completed in vivo experiments; in the future, further refinement of

the in vivo experiments as well as exploring the role of CTSK in

immune cell infiltration will be the main focus of our research.
5 Conclusions

In conclusion, we identified and validated the key gene CTSK,

which is closely related to the EMT in THCA, and we concluded

that CTSK could serve as an important biomarker to assist in the

diagnosis of THCA.
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Optimizing cancer treatment has become a pivotal goal in modern oncology,

with advancements in immunotherapy and genetic engineering offering

promising avenues. CAR-T cell therapy, a revolutionary approach that

harnesses the body’s own immune cells to target and destroy cancer cells, has

shown remarkable success, particularly in treating acute lymphoblastic leukemia

(ALL), and in treating other hematologic malignancies. While CAR-T cell therapy

has shown promise, challenges such as high cost and manufacturing complexity

remain. However, its efficacy in solid tumors remains limited. The integration of

CRISPR/Cas9 technology, a powerful and precise genome-editing tool, also

raises safety concerns regarding unintended edits and off-target effects, offers a

synergistic potential to overcome these limitations. CRISPR/Cas9 can enhance

CAR-T cell therapy by improving the specificity and persistence of CAR-T cells,

reducing off-target effects, and engineering resistance to tumor-induced

immunosuppression. This combination can also facilitate the knockout of

immune checkpoint inhibitors, boosting the anti-tumor activity of CAR-T cells.

Recent studies have demonstrated that CRISPR/Cas9-edited CAR-T cells can

target previously untreatable cancer types, offering new hope for patients with

refractory cancers. This synergistic approach not only enhances the efficacy of

cancer treatment but also paves the way for personalized therapies tailored to

individual genetic profiles. This review highlights the ongoing research efforts to

refine this approach and explores its potential to revolutionize cancer treatment

across a broader range of malignancies. As research progresses, the integration

of CAR-T cell therapy and CRISPR/Cas9 holds the promise of transforming

cancer treatment, making it more effective and accessible. This review

explores the current advancements, challenges, and future prospects of this

innovative therapeutic strategy.
KEYWORDS

CAR-T cell therapy, CRISPR/Cas9 technology, immunotherapy, genetic engineering,
personalized cancer treatment
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1 Introduction

Cancer continues to be a major health challenge inmodern times,

with its burden increasing globally. The complexity of this disease and

its high levels of genetic diversity have prompted scientists to consider

more tailored approaches to treatment. Typical approaches in cancer

treatment include surgery, radiation, and systemic drugs, which are

usually used alone or in combination. Cytotoxic therapies for most

people bring about significant suffering and do not provide long-term

immunity against the disease (1).

Alongside the growing demand for cancer treatment, the cost

per patient has consistently risen. Consequently, healthcare

spending on cancer care has increased at a rate that surpasses the

rise in cancer incidence (2). The pursuit of optimizing cancer

treatment stands at the forefront of modern oncology, driven by

the critical need to enhance patient outcomes and overcome the

limitations of existing therapies. In response, advancements in

immunotherapy and genetic engineering have emerged as

promising avenues, offering more targeted and effective solutions.

What has been envisioned over the past decade is that

immunotherapy has quickly transformed from a fancy concept to a

practical and revolutionary method for treating cancer. One of the

most promising and innovative approaches among these strategies is

chimeric antigen receptor T (CAR-T) cell therapy. This marks a

significant milestone in cancer treatment, departing from traditional

methods that aimed to harness the body’s immune system. More

specifically, CAR T-cell therapy has shown tremendous potential for

targeting and combating cancer cells in ways previously unattainable

through conventional treatment methods (3). To achieve this, the

patient’s immune cells are genetically engineered to express chimeric

receptors that specifically bind to antigens and activate cytotoxic T

lymphocytes. This enhancement boosts the immune cells’ efficiency in

targeting and destroying cancer cells (4). In 2008, Malcolm Brenner

and colleagues in Houston reached a pivotal achievement in the clinical

application of CAR T cells (5). This method has demonstrated notable

efficacy in managing blood cancers such as leukemia and lymphoma,

resulting in substantial remission rates for patients with few prior

treatment options (6). Although the potential of CAR T-cell therapy is

promising, it still poses several challenges that researchers must

overcome. The treatment has been noted for its success, although

some patients are subject to severe side effects, toxicity of treatment, or

inefficacy, in which case they face a recurrence of cancer (7–9).

Scientists are thus probing different strategies to tackle these, such as

optimization of the CAR structure, combination therapies with

radiotherapy and chemotherapy, immune checkpoint inhibitors, and

oncolytic viruses (10–13). In this regard, although these strategies have

achieved improvement with respect to their efficacy and safety, they

have not been able to completely alleviate all the concerns. Besides,

such high treatment costs have also prevented the large-scale clinical

application of CAR-T cell therapy. So, there is a continued need to

further refine this technology for better effectiveness and safety,

together with a lower manufacturing cost (14). These efforts would

further make CAR-T cell therapy more feasible and accessible to a

larger population of cancer patients.

The clustered regularly interspaced short palindromic repeat

(CRISPR)/Cas9 technology is a widely recognized genome editing
Frontiers in Immunology 02261
tool that utilizes guide RNA (sgRNA) to target specific DNA

sequences. It has garnered significant interest due to its ability to

target multiple genes simultaneously, its ease of implementation,

and its cost-effectiveness (15). A significant breakthrough was made

by Zhang Feng and et al. (16) to demonstrate the effectiveness of

CRISPR/Cas9 technology in human and mammalian cells. This

advancement has expanded the capabilities of CAR-T cell therapy.

Currently, researchers are utilizing the CRISPR/Cas9 system to edit

and engineer CAR-T cells, enhancing their ability to target cancer.

Specifically, these scientists are modifying the cells to improve

specificity, target a greater range of antigens, prolong persistence,

broaden the scope of action against cancer, and enhance safety. Of

particular interest is the application of CRISPR/Cas9 in engineering

CAR-T cells (17). This powerful gene-editing tool allows for precise

genetic changes, thereby improving the specificity and efficacy of

CAR-T cells. Furthermore, it enables the development of CAR-T

cells that can overcome immunosuppression in the tumor

microenvironment and potentially target a wider array of cancer

types. CRISPR/Cas9 technologies will unlock these possibilities and

more, presenting a flexible and highly promising option for CAR-T

cell therapy for most cancer patients, thus mitigating current

limitations. This review explores the synergistic potential of

combining CAR-T cell therapy with CRISPR/Cas9 technology. By

delving into the latest advancements, current challenges, and future

prospects, we aim to shed light on how this innovative therapeutic

strategy can transform cancer treatment, making it more effective,

accessible, and personalized for patients worldwide.
2 CAR-T cell therapy

CAR-T cell therapy is a revolutionary approach in cancer

treatment that leverages genetically engineered T cells to target and

eliminate cancer cells. By introducing chimeric antigen receptors

(CARs) into T cells, CAR-T therapy equips them with the ability to

recognize and destroy specific cancer cells. CARs are artificial

proteins composed of an extracellular antigen-binding domain, a

hinge region, a transmembrane domain, and an intracellular

signaling domain. The antigen-binding domain, typically derived

from a single-chain variable fragment (scFv) of a monoclonal

antibody, recognizes and binds to specific antigens on the surface

of cancer cells. Upon binding to the target antigen, the CAR triggers a

cascade of signaling pathways within the T cell, leading to its

activation, proliferation, and release of cytotoxic molecules that

destroy the cancer cell (6). However, CAR-T cell therapy also faces

challenges, such as potential for severe side effects, high

manufacturing costs, and limited efficacy in solid tumors.
2.1 Mechanism of action

CAR-T therapy is the culmination of extensive research across

basic and clinical disciplines. CARs are artificial molecules

displayed on cell surfaces, enabling T cells or other effector cells

like natural killer (NK) cells to focus their cytotoxic activity on

tumor cells expressing the CAR target antigen. These CAR
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transgenes are introduced into T cells either temporarily or

permanently (18, 19). Specifically , using CAR mRNA

electroporation leads to temporary CAR expression, whereas

employing lentiviral or gammaretroviral gene delivery methods

results in the integration of CAR transgenes into T cell genomes,

ensuring their stable expression (18, 19). CARs can target either

tumor-specific antigens (TSAs) or tumor-associated antigens

(TAAs) (20) (Figure 1). The capability of CARs to recognize and

engage with these target antigens primarily relies on their

extracellular domain, comprising a targeting domain and a hinge

(or spacer) (21). CARs commonly utilize the scFv from a

monoclonal antibody (mAb) as their targeting domain (22).

Nevertheless, nanobodies (VHH) and toxins have also been

employed for this purpose (23). The hinge serves as the bridge

between the extracellular domain and the transmembrane domain

of CARs (24). CARs also feature an intracellular domain comprising

an activation domain, typically CD3z derived from the T-cell

receptor (TCR) CD3 complex, and one or two co-stimulatory

domains such as CD28, 4-1BB (CD137), ICOS, or OX40 (CD134)

(24). The transmembrane domain connects the extracellular and

intracellular domains of CARs, serving as an anchor to stabilize

CAR molecules within the cell membrane. Upon encountering their

target antigen, CAR molecules initiate downstream signaling

pathways that activate T cells. This mechanism operates

independently of the major histocompatibility complex (MHC)
Frontiers in Immunology 03262
for activation (24). CARs possess the capability to identify target

antigens directly, bypassing the need for antigen processing and

presentation by MHC molecules on antigen-presenting cells. As a

result, any surface antigen primarily expressed on malignant cells,

not normal ones, and accessible to targeting with monoclonal

antibodies (mAbs), is considered a viable candidate for CAR-T

therapy (20, 21).

It hasn’t been long since the first CAR-T product, named

tisagenlecleucel, received approval from the US Food and Drug

Administration (FDA) in 2017 for clinical use (25, 26). Today,

CAR-T therapy stands as an effective treatment option available for

patients with certain relapsed or refractory (R/R) hematologic

malignancies, including B-cell acute lymphoblastic leukemia (B-

ALL), diffuse large B-cell lymphoma (DLBCL), follicular lymphoma

(FL), mantle cell lymphoma (MCL), and multiple myeloma

(MM) (27).
2.2 Success in hematologic malignancies

The development of CAR T-cell therapy for select hematological

malignancies represents one of the most remarkable therapeutic

advances in the past decade. Currently, CD19-targeted CAR T-cell

therapy is approved for relapsed/refractory diffuse large B-cell

lymphoma and acute lymphoblastic leukemia (28). However, there
FIGURE 1

CAR T-Cell Therapy Process. This figure illustrates the step-by-step process of CAR T-cell therapy, a personalized treatment for cancer patients. The
process begins at the hospital, where blood is drawn from a cancer patient. The collected blood undergoes a separation process to isolate T cells, a
type of white blood cell critical for immune response. The remaining components of the blood are returned to the patient’s body. The isolated T
cells are then taken to a laboratory for genetic modification. Here, scientists introduce specific genetic changes to the T cells. These genetic
modifications equip the T cells with chimeric antigen receptors (CARs) on their surface. CARs are specialized receptors that enhance the T cells’
ability to recognize and target cancer cells accurately. The genetically modified T cells, now known as CAR T cells, are cultured in the laboratory to
increase their number, ensuring there are sufficient cells for effective treatment. Finally, the expanded population of CAR T cells is administered back
to the patient through an intravenous injection. These modified cells circulate in the patient’s body, seeking out and destroying cancer cells.
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is significant interest in the application of CAR T-cell therapy to other

hematological malignancies, including multiple myeloma, where the

current focus is on the development of B-cell maturation antigen-

directed CAR T-cell therapy. Despite the successes achieved to date,

there remain significant challenges associated with CAR T-cell

therapy and substantial research efforts are underway to develop

new targets and approaches.

Presently, CD19 and BCMA represent the predominant targets

in CAR-T cell therapy. Despite remarkable success in treating B cell

malignancies, relapse following anti-CD19 CAR-T cell therapy and

anti-BCMA CAR-T cell therapy is common. Moreover, due to

antigenic diversity in acute myeloid leukemia (AML) and the

absence of CD19 expression in T cell malignancies, ongoing

research is exploring various potential targets. CD19 is a crucial

target antigen in B cell malignancies such as B-ALL and NHL.

Recent advancements in anti-CD19 CAR-T cell therapy have led to

rapid and long-lasting responses in patients with relapsed or

refractory (R/R) B-ALL and NHL, fundamentally changing

treatment approaches for these conditions. Currently, four anti-

CD19 CAR-T cell products have received FDA approval for treating

R/R B-ALL and NHL (29). Despite its clinical success, CD19

antigen loss is a common issue (30). To address this, combined

therapy using anti-CD19 and anti-CD20 CAR-T cells has been

explored for R/R DLBCL, demonstrating safety and feasibility (31).

CD22 is prominently expressed on many B cell malignancies,

including B-ALL and DLBCL (32, 33). Clinical trials have shown

that anti-CD22 CAR-T cell therapy is highly effective in patients

with R/R B-ALL and R/R DLBCL who have not responded to

previous anti-CD19 CAR-T cell therapy (34–36). Moreover,

humanized anti-CD22 CAR-T cells have exhibited potent activity

against leukemia cells even with low CD22 expression (37).

Emerging strategies in CAR T-cell therapy for B-cell malignancies

are focusing on addressing challenges associated with autologous T-

cell production, particularly for patients with insufficient healthy T

cells. A promising approach involves the use of gene-editing

technologies to create universal CAR T cells (UCART19) by

modifying donor T cells to introduce a chimeric antigen receptor

(CAR) and disrupt T-cell receptor (TCR) and CD52 genes. This

process produces “off-the-shelf” CAR T cells capable of evading

host immune responses, enabling their use in unmatched recipients.

Qasim et al. successfully applied this strategy in two infants with

relapsed refractory acute lymphocytic leukemia, achieving

molecular remission and bridging them to successful allogeneic

stem cell transplantation (38). This groundbreaking application of

TALEN-mediated gene editing highlights the potential of universal

CAR T cells in treating aggressive B-cell leukemias, offering a

scalable and feasible alternative to patient-specific therapies.

Patients diagnosed with relapsed or refractory (R/R) T-cell

acute lymphoblastic leukemia (T-ALL) and T-cell lymphomas

typically face a grim prognosis. Unlike the notable clinical success

of anti-CD19 CAR-T cell therapy in B cell malignancies, the

effectiveness and safety of CAR-T cell therapy in T cell

malignancies are largely under investigation. A general problem

to consider in the production of CAR-T cells is on-target-off-tumor

toxicity. This problem is associated with antigens of target

expression on normal, non-malignant cells, leading to their
Frontiers in Immunology 04263
destruction by CAR-Ts. Fratricide, i.e. killing of CAR-T cells by

each other, is also a problem because the targets of this kind of T cell

tumor antigen therapy, antigens expressed on T cells (such as CD5,

CD7, etc.), lead to it (39). Other problems are T-cell aplasia and

contamination of the CAR T-cell product with tumor cells (39).

CD7 is highly expressed in 95% of T-ALL patients, making it an

attractive target for treating T-ALL (40). Two R/R T-ALL patients

received allogeneic anti-CD7 CAR-T cell therapy in an open-label,

single-arm clinical trial. One patient achieved remission lasting over

a year, while the other relapsed 48 days after CAR-T cell infusion

(40). Another phase I clinical trial involved 20 R/R T-ALL patients

who received donor-derived anti-CD7 CAR-T cell therapy, with

90% achieving complete remission (CR) (41). Additionally, a case

study reported the successful treatment of an 11-year-old T-ALL

patient, who had not responded to initial treatment, with

autologous anti-CD7 CAR-T cell therapy resulting in remission

by day 17 and subsequent hematopoietic stem cell transplantation

(HSCT) (42). CD5 is expressed in approximately 85% of T-cell

malignancies, including T-cell lymphoblastic lymphoma (T-LBL)

and peripheral T-cell lymphoma (PTCL). Recent studies have

demonstrated the efficacy of anti-CD5 CAR-T cells in eliminating

malignant T cells (43). In a phase I clinical trial, a refractory T-LBL

patient with central nervous system (CNS) involvement achieved

CR within four weeks of receiving anti-CD5 CAR-T cell therapy

(44). Moreover, preclinical studies have shown promising activity of

anti-CD4 CAR-T cells against T cell malignancies (45). However,

targeting CD4, CD5, and CD7 may lead to depletion of normal T

cells and fratricide of CAR-T cells, as these antigens are also

expressed in normal T cells (46). The chemokine receptor CCR9

is expressed in over 70% of T-ALL patients but in less than 5% of

normal T cells. It is associated with multidrug resistance and poor

prognosis, making it an ideal target for CCR9-positive T-ALL.

Preclinical studies have demonstrated the potent anti-leukemic

activity of anti-CCR9 CAR-T cells, which are also resistant to

fratricide (47). In addition, several recent clinical trials have

shown excellent results for CAR-T cell therapy. In this regard,

genome-editing technology can help overcome these problems (39).

AML is the most prevalent acute leukemia in adults. CAR T-cell

therapy for AML has been elusive so far, mainly because of the lack

of truly AML-specific surface antigens that make targeting AML

very challenging. AML cells express various cell surface antigens

such as CD123, CD34, and CD33. However, expression of these

same antigens is also shared by healthy HSPCs and their myeloid

and/or lymphoid progenitors. Besides, production of CAR T cells

per se may also present difficulties in patients with active AML,

possibly because of the inhibition of T-cell expansion by AML

blasts, or previous exposure to chemotherapy damaging T cells (48).

However, progress has been made toward the use of CAR T-cell

therapy in this disease.

Recently, CLL-1, LILRB4, and Siglec-6 have emerged as

potential targets. In preclinical studies, CLL-1, a myeloid cell

surface marker overexpressed on leukemic stem cells, has shown

specificity in eliminating CLL-1-positive leukemia (49–51).

Notably, CLL-1 is absent in hematopoietic stem cells, enhancing

its therapeutic potential. NPM1 mutations are present in 30%-35%

of AML cases and are considered pivotal in leukemic cell initiation.
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CAR-T cells targeting a nucleophosmin neoepitope, presented by

HLA-A2, demonstrated potent anti-leukemia effects in preclinical

models (52). CD70, expressed on AML blasts but not normal

myeloid cells, is also being investigated as a promising CAR-T

cell therapy target (53, 54). LILRB4, highly expressed in monocytic

AML cells, presents another attractive target for monocytic AML

(55). Siglec-6, found in approximately 60% of AML patients and

absent on normal hematopoietic stem and progenitor cells, has

effectively eliminated AML blasts in preclinical xenotransplantation

models. These findings support Siglec-6 as a validated target for

CAR-T cell therapy in AML (56). A novel approach to CAR T-cell

therapy for AML aims to overcome the challenge of prolonged

myeloablation while ensuring long-term persistence of therapeutic

cells. This strategy involves gene editing to remove the CAR target

antigen, such as CD33, from donor hematopoietic stem and

progenitor cells (HSPCs). After these CD33−/− HSPCs are

transplanted into the patient and engrafted, CD33-specific CAR T

cells from the same donor can be administered, allowing normal

hematopoiesis to continue without being targeted by the CAR T

cells (48). Early studies using CRISPR/Cas9 technology have shown

that CD33−/− HSPCs can resist CD33-directed CAR T cells while

maintaining normal hematopoietic and immune functions (57). A

clinical trial at the University of Pennsylvania is being developed to

test this approach in patients with relapsed/refractory AML. This

strategy not only highlights the potential of gene editing in

improving CAR T-cell therapies but also opens new avenues for

targeting other antigens, such as CD123, with careful consideration

of their biological roles and potential impact on healthy tissues.
2.3 Challenges in treating solid tumors

CAR-T cell therapy, while highly effective in treating certain

cancers, is associated with a range of adverse effects that can

significantly impact patient outcomes. These include immune-

related toxicities such as Cytokine Release Syndrome (CRS) and

Immune-Effector-Cell-Associated Neurotoxicity Syndrome

(ICANS), both of which can cause severe inflammatory and

neurological complications. Metabolic toxicities like Tumor Lysis

Syndrome (TLS) are also common, arising from the rapid

destruction of cancer cells, which can lead to life-threatening

metabolic imbalances. Additionally, on-target/off-tumor toxicity

occurs when CAR-T cells attack healthy tissues that express the

same antigen as the cancer cells, leading to potential organ damage.

These toxicities are influenced by various factors, including the

patient’s health status, tumor burden, the dose of CAR-T cells, and

the rate of infusion, necessitating careful monitoring and tailored

management strategies to mitigate risks and enhance the safety and

efficacy of CAR-T cell therapy.

2.3.1 Immune-related toxicities
The most serious and prevalent toxicity associated with CAR-T

cell therapy is a systemic inflammatory reaction known as cytokine

release syndrome (CRS) (58). Activation of CAR-T cells upon

recognition of tumor antigens triggers CRS, characterized by

severe systemic inflammation. Following CAR-T cell infusion,
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there is a significant increase in serum levels of cytokines such as

interferon-gamma (IFN-g), interleukin-6 (IL-6), tumor necrosis

factor-alpha (TNF-a), granulocyte-macrophage colony-

stimulating factor (GM-CSF), IL-2, IL-8, and IL-10, leading to a

cytokine storm. This initial response is followed by a secondary

inflammatory phase involving antigen-presenting cells (APCs) like

dendritic cells (DCs), B cells, macrophages, and monocytes, which

express the cell surface protein CD40. Activated CAR-T cells also

express high levels of the CD40 ligand (CD40L) (59).

Patients should be closely monitored from the emergence of

early symptoms of CRS and treated symptomatically with

antipyretics and analgesics, although it is contraindicated for

NSAIDs because they can alter kidney function. If a diagnosis of

an infection is made, particularly in patients who are febrile and

neutropenic, they should be ruled out and started on empiric

antibiotics, taking into consideration the raised incidence of

infection post a regimen that deploys lymphocytes to such a great

extent. Studies show that almost one-quarter of patients under

CD19-targeted CAR T-cell therapy experience infections, mostly

bacteremias and respiratory viral infections, in the first four weeks

post-infusion. The use of prophylactic antibiotics is not universally

established but is done in some centers (60). Other supportive

measures for CRS include antiemetics, oxygen, intravenous fluids,

and low-dose vasopressors if needed; it generally avoids

corticosteroids (60). Prompt recognition and treatment of severe

CRS (sCRS) is important as it may lead to multiorgan failure akin to

septic shock. First-line therapy of sCRS is tocilizumab, an IL-6

receptor antagonist, with a high response rate. Next steps in failure

cases include the use of corticosteroids, whereas other inflammatory

cytokine-targeted therapies, such as anti-TNFa or IL-1R inhibitors,

should be offered in rare, resistant cases (60).

Immune-effector-cell-associated neurotoxicity Syndrome

(ICANS), formerly known as CAR-T-cell-related encephalopathy

syndrome, represents the second most common adverse effect of

CAR-T cell therapy. ICANS is characterized by cytokine-mediated

neurotoxicity rather than direct cytotoxic effects, although its exact

pathophysiology remains unclear. Research suggests that

endothelial activation plays a role in the development of ICANS

(61). Endothelial activation associated with CRS can disrupt the

blood-brain barrier (BBB), allowing inflammatory cytokines and

immune cells to infiltrate the cerebrospinal fluid and reach the

central nervous system (CNS). Once in the brain parenchyma, these

cytokines and immune cells can cause inflammation, leading to

neuronal impairment or damage. CAR-T cells, along with

monocytes and macrophages, are attracted to the CNS and

contribute to the release of cytokines, which are central to the

development of ICANS (59). Pericytes, a type of mural cell

surrounding capillary endothelium and expressing CD19, are

crucial for maintaining the integrity of the BBB. In treatments

targeting CD19, increased BBB permeability due to pericyte

activation has been implicated in ICANS development (62).

ICANS manifests with various neurological symptoms that often

progress in a characteristic pattern. Symptoms can appear as early

as the fourth or fifth day after CAR-T cell infusion and as late as the

third or fourth week (63, 64). ICANS rarely occurs without

preceding CRS, and when it does, it tends to be mild (65).
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Common symptoms include headache, tremors, speech difficulties,

confusion, delirium, impaired consciousness (such as obtundation,

lethargy, and stupor), and occasionally, focal neurological

deficits (66).

Prompt recognition and management of CNS toxicity in CAR

T-cell therapy are crucial, similar to the approach for CRS. Patients

experiencing neurotoxicity require close monitoring, with ICU

transfer recommended for those with grade ≥3 toxicity and

considered for those with grade 2 toxicity, depending on the

center’s policy. In severe cases, neurologic toxicity may necessitate

intubation and mechanical ventilation for airway protection, even

without respiratory failure. Notably, fever within the first 36 hours

post-infusion has been associated with a high sensitivity for

subsequent severe neurotoxicity. Management typically involves

corticosteroids, tailored to the severity and specific CAR T-cell

product used. Importantly, unlike CRS, neurotoxicity generally does

not respond to tocilizumab, and in some cases, the drug may even

exacerbate the condition. Additionally, neurotoxicity often resolves

more slowly than CRS (60).

2.3.2 Metabolic toxicities
When cancer treatment effectively kills cells, it can release

significant amounts of phosphate, potassium, and nucleic acids

into the bloodstream, potentially leading to tumor lysis syndrome

(TLS) (67). While TLS has traditionally been associated with

chemotherapy, CAR-T cell therapy has also been linked to acute

anaphylaxis and TLS, sometimes occurring even without prior

conditioning chemotherapy (68, 69). The rapid death of

lymphoma cells following CAR-T cell treatment can pose

challenges if the kidneys are unable to process the byproducts of

cell lysis quickly enough, resulting in conditions such as

hyperuricemia, hyperkalemia, hyperphosphatemia, and

hypocalcemia. Accumulation of uric acid, calcium phosphates,

and ferritin can further exacerbate acute kidney injury, leading to

systemic inflammation and iron overload.

Unlike other novel therapies for hematologic malignancies that

have heightened the risk of TLS, TLS is relatively uncommon

following CAR T-cell therapy, even in high-risk scenarios.

Nevertheless, precautionary measures, such as intravenous

hydration and prophylactic administration of allopurinol or

febuxostat, should be implemented prior to starting conditioning

lymphodepleting chemotherapy, particularly in patients with

elevated uric acid levels or high tumor burden. It is essential to

closely monitor for signs and symptoms of TLS and manage them

according to established guidelines to prevent complications (60).

2.3.3 On-target/off-tumor toxicity
Ideally, CAR-T cell therapy targets antigens expressed

exclusively on malignant cells, sparing healthy tissues. However,

solid tumors have seen limited success with this approach. Many

tumor antigens are tumor-associated antigens (TAAs), present on

both healthy and tumor cells. Consequently, CAR-T cells often

struggle to differentiate normal cells from cancerous ones, resulting

in “on-target, off-tumor” toxicity (59). This phenomenon is more

common in solid tumors, underscoring the need for extensive
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research into identifying tumor-specific antigens (TSAs). Several

cases illustrate the challenges posed by TAAs expressed on normal

tissues. For instance, the first patient treated with CAR-T cells

targeting HER2 experienced respiratory distress and significant

lung infiltrates within 15 minutes of infusion, leading to lung

damage and death (70). Similar lung toxicity was observed in

clinical trials testing CAR-T cells targeting CEA (71). It’s

important to recognize that the occurrence of adverse effects in

CAR-T cell therapy can vary significantly depending on the specific

CAR-T product (Figure 2), cancer type, and individual

patient factors.

Thus, it is important to prevent “on-target/off-tumor” effects,

which would result in collateral damage to normal tissues with CAR

T-cell therapy. This can be achieved by targeting antigens that are

more selective, such as k and l light chains of immunoglobulins to

preserve humoral immunity, potentially maintaining antitumor

activity in some B-cell malignancies (72, 73). Another approach is

the extinction of the target antigen on the normal population of

hematopoietic stem cells. This has been demonstrated in a study

where CD33-deficient stem cells were genetically modified and co-

infused with CD33+ CAR T cells. The infused T cells engrafted,

allowing for normal myeloid function with no evidence of off-target

effects. Furthermore, optimization of the CAR design, ranging from

engineering dual CARs for multi-antigen recognition of tumor-

specific antigens to the use of affinity-tuned CARs, may increase the

precision of target recognition and minimize the risk of relapse

from antigen deletion (74, 75). Lastly, the capacity for a targeted

reduction of CAR activity in the event of severe toxicity is an active

research area, which may be achieved using techniques such as

inducible suicide genes, monoclonal antibodies, small molecule

modulators, or CRISPR/Cas9 technology to remotely control or

transiently turn off CAR T cells (61).
2.3.4 Other factors influencing toxicity
In vivo, the expansion of CAR-T cells and associated toxicity may

be exacerbated by factors such as tumor burden, intensity of

conditioning therapy, higher infusion doses, and CAR design. For

example, pediatric patients with high baseline tumor burdens in B-ALL

tend to experience more pronounced CAR-T cell proliferation and

more severe cytokine release syndrome (CRS) (59). Clinical studies

have consistently shown that patients with larger tumor burdens

experience more severe and frequent CRS, likely due to heightened T

cell activation levels (76, 77). Moreover, patients with higher initial

burdens of ALL and those receiving higher doses of CD19 CAR-T cells

have been found to have increased incidence rates of CRS (78, 79).

Improving CAR-T cell efficacy and durability of response is the central

goal of conditioning therapy aimed at enhancing clinical outcomes in

cancer patients. Even without chemotherapy conditioning, adverse

effects such as thrombocytopenia, anemia, and neutropenia have

been documented (59). Effective strategies for prevention and

mitigation of these toxicities include preemptive treatments, careful

patient monitoring, and adjustments in CAR-T cell administration

protocols. Understanding and managing these adverse effects is crucial

for maximizing the therapeutic benefits of CAR-T cell therapy while

minimizing its risks.
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Recently, CAR-Natural Killer (CAR-NK) and CAR-

macrophages (CAR-M) were introduced as a complement/

alternative to CAR-T cell therapy for solid tumors. CAR Natural

Killer (NK) cells have several advantages over CAR T cells as the

NK cells can be manufactured from pre-existing cell lines or

allogeneic NK cells with unmatched major histocompatibility

complex (MHC); can kill cancer cells through both CAR-

dependent and CAR-independent pathways; and have less

toxicity, especially cytokine-release syndrome and neurotoxicity.

At least one clinical trial showed the efficacy and tolerability of CAR

NK cell therapy. Additionally, CAR-NK cells might be generated in

large scale from several sources which would suggest them as

promising off-the-shelf product. CAR-M immunotherapy with its

capabilities of phagocytosis, tumor-antigen presentation, and broad

tumor infiltration, is currently being investigated (80, 81).

In contrast, CAR-Natural Killer (CAR-NK) and CAR-

Macrophages (CAR-M) have recently been introduced as

alternatives or complements to CAR-T cell therapy for solid

tumors. There are several advantages of CAR NK cells over CAR T

cells: NK cells can be manufactured from pre-existing cell lines or

allogeneic NK cells with unmatched major histocompatibility

complex. They can kill cancer cells through both CAR-dependent

and CAR-independent pathways, and have less toxicity, particularly

when it comes to cytokine-release syndrome and neurotoxicity. At

least one clinical trial has shown the effectiveness and safety of CAR
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NK-cell therapy. Furthermore, CAR-NK cells can be derived on a

large scale from various sources, making them a potential off-the-

shelf product. Currently, CAR-M immunotherapy, which involves

phagocytosis, tumor antigen presentation, and extensive tumor

infiltration, is under investigation. In this study, we designed an

adenovirus-induced CAR-M using an anti-HER2 CAR and the CD3z
intracellular domain. This CAR-M demonstrated in vitro specificity

in terms of antigen-specific phagocytosis against HER2-positive

tumor cells. A single injection of anti-HER2 CAR-M reduced

tumor load and prolonged survival in mice. It also shifted M2

macrophages into M1 macrophages, stimulated an inflammatory

tumor microenvironment (TME), and exhibited anti-tumor

cytotoxicity. Importantly, HER2 CAR-M had the capability of

inducing epitope spread, which could be an additional approach to

prevent tumor immune escape. Another study combined anti-HER2

CAR with transduced primary human CD14+ peripheral blood

monocyte-derived macrophages. These CAR-Ms stimulated

phagocytosis of the HER2+ ovarian cancer cell line SKOV3 in a

dose-dependent manner. The authors also demonstrated that the

transduction of macrophages was not impaired by the antitumor

activity, as their transduction with a control CAR did not exhibit any

antitumor activity. In vivo, the SKOV3 tumor burden in NOD-SCID

mice was significantly reduced in those cohorts that had been treated

with primary human anti-HER2 CAR-Ms. The authors further

showed that the CAR-Ms persisted and remained resistant to the
FIGURE 2

Evolution of CAR-T Cells. This figure illustrates the development of CAR-T cells through three generations, each incorporating advancements to
improve their effectiveness against cancer. First Generation CAR-T Cells: These are composed of a single-chain variable fragment (scFv) derived
from an antibody, which is responsible for targeting cancer cells, and the CD3 immunoglobulin, which is part of the T-cell receptor complex
essential for initiating T-cell activation. Second Generation CAR-T Cells: Building on the first generation, these cells include additional co-stimulatory
molecules, such as CD28. This enhancement provides stronger and more sustained activation signals to the CAR-T cells, improving their persistence
and effectiveness in targeting and destroying cancer cells. Third Generation CAR-T Cells: These cells incorporate multiple co-stimulatory molecules,
such as CD28, CD134 (OX40), and CD137 (4-1BB). The inclusion of multiple stimulatory signals further enhances the CAR-T cells’ ability to
proliferate, survive, and eliminate cancer cells, offering an even more robust therapeutic effect.
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immunosuppressive cytokines secreted by the TME. In contrast, the

CAR-Ms secreted pro-inflammatory cytokines, leading to the

conversion of macrophages from the M2 to the M1 phenotype and

subsequently transforming the TME into a proinflammatory

environment. Additionally, the combination of donor-derived T

cells with CAR-Ms enhanced the antitumor response in vivo.

When murine-derived anti-HER2 CAR-Ms were infused, Pierini

et al. reported inhibition of tumor growth, extended overall

survival, increased levels of CD4+ and CD8+ T cells, NK cells, and

dendritic cells in the TME. These researchers also found that CAR-

Ms play a crucial role in regulating the TME through the

upregulation of MHC I/II expression on cancer cells.
3 CRISPR/Cas9 technology

3.1 CRISPR/Cas9: advantages of CRISPR/
Cas9 over traditional methods

Genome editing involves modifying genomic DNA to

artificially alter genetic information, resulting in permanent

changes to the function of the targeted gene (82). Several tools

have been developed for precisely modifying specific regions of the

genome. Genome editing nucleases, such as zinc finger nucleases

(ZFNs), meganucleases, and transcription activator-like effector

nucleases (TALENs), induce double-strand breaks at specific

genomic sites (83). These nucleases facilitate targeted

modifications by initiating endogenous DNA repair mechanisms,

primarily non-homologous end joining (NHEJ), which repairs

double-strand breaks without requiring a template (84). This

approach can effectively replace or delete target genes, although

designing and engineering these nucleases to target new sequences

remains a significant challenge (83, 85).

The CRISPR/Cas9 system has emerged as a leading gene editing

tool in recent years (Figure 3). Initially discovered in bacteria as a

defense mechanism against viruses, this system consists of an

endonuclease (Cas9) and a single-guide RNA (sgRNA) that

directs Cas9 to specific locations in the genome through base

pairing. Cas9 then cleaves the target DNA, prompting the host

cell to repair the break. If a donor template with homologous arms

is present, homology-directed repair (HDR) can occur, resulting in

precise editing of the genome. Alternatively, non-homologous end

joining (NHEJ) can resolve the break by inserting or deleting

nucleotides (indels), often disrupting the gene’s reading frame.

This system is highly effective, simple to use, and widely

applicable, making it a powerful tool for genome editing (86).

Compared to previous genome editing tools like TALEN and

ZFN, CRISPR/Cas9 offers advantages such as rapid, cost-effective

sgRNA production, in contrast to the synthesis of custom guide

proteins for TALEN or ZFN. Additionally, CRISPR/Cas9 can

simultaneously modify multiple genes by utilizing multiple

sgRNAs targeting different genomic sites, surpassing the

capabilities of ZFN and TALEN (87, 88). This system also excels

in its ability to alter the epigenome, transcriptome, and genome of

immune-related cells and cancer cells (89). The application of

CRISPR/Cas in cancer treatment hinges on the careful selection
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of target genes (90), offering innovative solutions for clinical

applications in cancer immunotherapy and gene therapy.

Nonetheless, ongoing research is essential to further refine and

optimize the CRISPR/Cas method for genome editing.
3.2 Applications in cancer research

In cancer research, the applications of CRISPR-Cas9 mainly

involve the screening of oncogenic mutations and tumor

suppressors, the construction of in vivo and in vitro cancer

models, and cancer gene therapy (91). With a relatively high

editing efficiency and few off-target effects, the CRISPR-Cas gene-

editing system is able to change the biological behavior of tumor

cells from the level of the genome, reduce the destruction of normal

human tissue cells, and increase the survival time of patients.

Genome-wide CRISPR-Cas9 screening has produced numerous

high-quality data (92, 93). Sidi Chen et al. obtained specific

functionally defective mutations essential for tumor growth and

metastasis using genome-wide CRISPR screening, such as Cdkn2a,

Fga, and Cryba4 (94). Similarly, Ryan d. Chow et al. identified

several functional suppressors and the cooccurrence and correlation

of specific mutations in glioblastoma through in vivo CRISPR

screening. They identified cooccurring driver combinations

including B2m-Nf1, Mll3-Nf1 and Zc3h13-Rb1 by commutation

analysis (95).

It is essential to develop models that accurately reflect the

disease to better study cancer evolution and pathogenesis. For this

reason, CRISPR-Cas9, with its precise gene-editing technology, is

considered one of the game-changers employed to develop relevant

models of cancer that best imitate human tumors. These models can

be broadly divided into two categories: in vitro and in vivo. In vitro

methods include organoid technology, which recapitulates tumor

behavior via the introduction of loss-of-function mutations by

knocking out or knocking down selected genes. Additionally, in

vivo models would likely be established by introducing CRISPR-

Cas9 specifically to edit oncogenic mutations or chromosomal

rearrangements in tissues to further explain cancer biology

thoroughly (96).

To effectively deliver CRISPR components into target cells,

various systems have been developed, primarily categorized into

viral-based and nonviral methods. In cancer research, viral-based

delivery systems such as adeno-associated virus (AAV), lentivirus,

and adenovirus are commonly used for the plasmid-based CRISPR-

Cas9 system. AAV, in particular, stands out due to its small, non-

enveloped single-stranded DNA structure derived from the non-

pathogenic parvovirus family. It has gained attention for its

minimal immunogenicity and ability to maintain gene expression

in non-dividing cells, making it a promising tool for gene delivery.

Additionally, AAV can serve as a donor template in homologous

recombination, facilitating DNA strand exchange between similar

sequences (97, 98). Although AAV vectors are not yet in clinical

trials, they hold significant potential for future therapeutic

applications. On the other hand, nonviral delivery systems,

including hydrodynamic injection, electroporation, nanoparticles,

and transposon carriers, offer greater safety despite being generally
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less efficient than viral vectors (96). A major challenge with nonviral

methods is their lack of tissue specificity, an issue that may be

mitigated by modifying the Cas9 protein accordingly.

CRISPR-based genetic and epigenetic manipulation of immune

responses has emerged as a promising strategy in immunotherapy

for combating cancer initiation and progression. This approach

involves enhancing host immunity at specific genetic loci, boosting

tumor immunogenicity, and overcoming tumor immune evasion

mechanisms. Thus far, modifying immune cells ex vivo to suppress
Frontiers in Immunology 09268
immune checkpoint expression or to introduce synthetic immune

receptors, such as chimeric antigen receptors (CARs), has

demonstrated efficacy in treating certain cancers like melanoma,

lymphoma, liver, and lung cancer (99).Besides the success of the

CRISPR-Cas9 system, the development of a nuclease-deactivated

Cas9 (dCas9) variant has expanded CRISPR technologies to include

epigenome engineering. By introducing two mutations—D10A and

H840A—into Cas9, the wild-type system is converted into an

inactivated cleavage capacity but retains RNA-guided DNA-
FIGURE 3

Function of CRISPR/Cas and Variants. (A) Double-Strand Break (DSB) Repair Mechanisms Using CRISPR/Cas: The CRISPR/Cas system can induce
DSBs, which are repaired by two primary pathways: Non-Homologous End Joining (NHEJ) and Homology-Directed Repair (HDR). NHEJ often
results in small insertions or deletions, leading to disruptive frameshift mutations and premature stop codons, making it ideal for gene knockouts or
generating point mutants. In contrast, HDR enables precise mutations. (B) Cas9-VP64 Fusion: Cas9 can be fused with the VP64 transcriptional
activator (yellow) to activate gene transcription by binding upstream of the transcription start site. (C) Cas9-KRAB Fusion: Cas9 can also be fused
with the KRAB repressor (red) to downregulate gene transcription by binding to the transcription start site. (D) Cas9-Epigenetic Modifier Fusion: Cas9
can be linked with epigenetic modifiers (black) to alter local methylation patterns, thereby modifying gene expression epigenetically. (E) Cas9-Base
Editors: By fusing Cas9 with base editors (purple), precise single nucleotide exchanges can be achieved without causing DSBs. (F) Fluorescent Cas9:
If the cutting function of Cas9 is deactivated and it is equipped with a fluorescent marker, it can bind to specific DNA sequences, creating a green
fluorescent signal. This enables the identification and visualization of specific sequences.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1462697
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Amiri et al. 10.3389/fimmu.2024.1462697
binding specificity (100). As was first shown with the engineered

zinc finger proteins, dCas9 can be fused to a variety of effector

domains that enable highly targeted and tunable transcriptional

activation or repression, editing of epigenetic marks, or fluorescent

tagging of endogenous genes without direct genomic

modification (99).

In the area of oncology, these dCas-based tools have shown strong

activation of tumor suppressor genes, such as PTEN, in breast cancer

and melanoma; MASPIN, in breast and lung cancers; REPRIMO, in

breast and gastric cancers; SARI, in colon cancer; and DKK3, in

prostate cancer. Successful suppression of oncogenes was also

attained using dCas9 in colon cancer, targeting BRAF, HER2, and

MYC; pancreatic cancer, targeting KRAS; and liver cancer, targeting

GRN (99). Also, several works describe that epigenome editing can be

very efficient, as it has attained almost complete gene repression or

robust (several-fold) gene activation with low off-target effects, which

mostly depend on the effector domains’ nature used (100, 101). Finally,

in contrast to genome engineering by Cas9, which unavoidably leads to

permanent changes, epigenetic approaches result in reversibility and

thereby bypass the risk of inducing sequence changes in the target

DNA—a most crucial factor when it comes to targeting tumors with

high degrees of genetic instability (99). In addition, the durability of

such epigenetic and transcriptional changes that are induced by dCas9

editing might depend on the specific combination of effectors or on

targeted loci. Therefore, current research in epigenome engineering will

have to focus on further fine-tuning the technology for the

manipulation of different loci within diverse cell types with differing

chromatin microenvironments.
4 Synergistic potential of CAR-T and
CRISPR/Cas9

CRISPR/Cas9 technology has been extensively tested across

various cell types and organisms. It has played a pivotal role in

advancing CAR-T cell development and enhancing other genome

editing tools (102). Notably, CRISPR/Cas9 modifications are

currently under investigation in clinical trials aimed at improving

CAR-T cell therapy (Table 1). Before the advent of CRISPR/Cas9,

other genome editing methods like zinc finger nucleases (ZFNs) or

TALENs were employed. However, CRISPR/Cas9 has surpassed

these methods in terms of cost-effectiveness and practicality (103,

104). Moreover, it enables multiplex gene editing, a significant

capability that facilitates the generation of universal CAR-T cells

by long-term silencing of endogenous TCR, HLA class I molecules,

and inhibitory checkpoints such as CTLA4 and PD1 (102–104).

Research has proved that employing CRISPR/Cas9 to delete PD-1

resulted in enhanced long-term persistence and activity of CAR-T

cells (preclinical study) (105), and similarly, the deletion of CTLA-4

using CRISPR/Cas9 improved the proliferation and activity of

CAR-T cells (preclinical study) (106). Additionally, CRISPR/Cas9

provides a robust alternative to conventional lentiviral insertion of

CARs by avoiding random genome integration and uncontrolled

construct expression (107).

Some researchers have proven that, in terms of effectiveness,

persistence, and reducing side effects, autologous CAR-T cells
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perform better than allogeneic CAR-T cells. This has prompted

researchers to further optimize allogeneic CAR-T cells. Li et al. used

CRISPR/Cas9 technology to knock out T-cell receptor (TCR) and

HLA-I/II genes in CAR-T cells, introducing exogenous HLA-E

expression to improve CAR-T cell persistence and prevent

rejection in preclinical studies. A more promising approach being

pursued is the development of a stable supply of universal allogeneic

CAR-T cells for cancer therapy by generating iPSCs, which have

virtually unlimited replicative potential and broad differentiation

abilities. Wang et al. demonstrated that using CRISPR/Cas9 to

integrate the CAR gene into the endogenous TCRa constant

(TRAC) locus in iPSCs results in CAR-T cells with lower

immunogenicity, enhanced tumor cytotoxicity, improved survival,

and reduced allogeneic response risk. Furthermore, Ueda et al.

enhanced these iPSC-derived CAR-T cells by editing genes with

CRISPR/Cas9 to delete the diacylglycerol kinase gene and introduce

IL-15 and its receptor subunit, leading to improved proliferation

and increased longevity in preclinical studies.

Despite its advantages, the CRISPR/Cas9 system is not without

limitations. Off-target effects can occur, potentially affecting cell

fitness. However, several strategies, such as precise sgRNA design,

truncated sgRNAs, chimeric DNA-RNA-based sgRNAs, and the

use of different Cas9 variants, have been developed to mitigate these

effects (108–111). Another limitation is the low frequency of

homology-directed repair (HDR), which limits the efficiency

of gene correction and addition. Enhancers of HDR and

inhibitors of non-homologous end joining (NHEJ) can be

employed to promote these processes (112–114). Despite these

challenges, overcoming these limitations is crucial for generating

effective CAR-T cells (Table 2).

To address issues such as targeting healthy cells and committing

fratricide—an on-target off-tumor effect—rational selection of

chimeric antigen receptors (CARs) is essential (121). In T-cell-

derived malignancies, identifying suitable tumor-associated

antigens (TAA) is particularly challenging, as many TAAs are

shared between malignant T cells and CAR-T cells (122). To

prevent self-destruction, researchers have disrupted the

expression of widely expressed T-cell antigens in CAR-T cells.

Specifically, clusters of differentiation 3, 5, and 7 (CD3, CD5, and

CD7) have been successfully targeted using gene-editing

technologies such as transcription activator-like effector nucleases

(TALENs) and CRISPR/Cas9. The resulting CAR-T cells

demonstrated significant antitumor efficacy while reducing the

risk of fratricide, offering a promising approach to improving

CAR-T cell therapies in T-cell malignancies (123–125). Pinz et al.

(45). developed CD4-CAR-T cells to treat peripheral T-cell

lymphomas but encountered significant fratricide, resulting in the

enrichment of CD4+ CD8+ CD4-CAR-T cells. To maintain a stable

CD4/CD8 CAR-T cell ratio, investigating the impact of a CD4

knockout could be beneficial. Similarly, to address the potential

fratricide of anti-CD319 CAR-T cells in multiple myeloma

treatment, Galetto et al. utilized TALENs technology to inactivate

CD319, which is broadly expressed in activated T cells. This

approach successfully prevented the loss of CD319-positive CAR-

T cells during T-cell expansion, highlighting a promising strategy to

mitigate fratricide in CAR-T cell therapies (126).
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CRISPR/Cas9 delivery into T cells can be achieved through

various methods, including plasmid DNA, messenger RNA

(mRNA), or delivery as ribonucleoproteins (RNPs). The efficiency

of gene editing varies significantly depending on the cell type and

donor, but both mRNA and RNP delivery methods have shown

promise in achieving high rates of insertion or deletion mutations

(indels) (127). This variability in efficiency underscores the

importance of choosing the appropriate delivery method to

ensure accurate editing of CAR-T cells.
Traditional CAR-T cell production relies on viral transduction

of CARs, but concerns over potential side effects from integrative

viruses have prompted the exploration of alternative methods. One

preferred approach by several research groups involves targeted

transgene integration into the TRAC gene using the CRISPR/Cas9

system. This method achieves high integration rates by delivering

the repair template through AAV6 transduction or long single-

stranded DNA (ssDNA) electroporation (128, 129). Another

delivery method utilizes integrase-defective lentiviruses (IDLVs),

known for their large genome capacity, low pathogenicity, and

ability to transduce both dividing and non-dividing cells (130, 131).

Despite these advantages, no preclinical trials utilizing IDLVs have

been conducted thus far.
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5 Integration of CAR-T and CRISPR/
Cas9 in clinical settings: analysis
of outcomes

CAR-T cell therapy stands out as a highly promising treatment

option for refractory hematologic malignancies. Over the years,

significant advancements have transformed the design of CARs

(132). These include incorporating features such as coexpression of

costimulatory molecules, cytokines, and suicide genes to enhance

both efficacy and safety (133). Furthermore, the repertoire of tumor

targets for CAR-T cells has expanded beyond CD19 to encompass a

wide array of new targets. These include CD20, CD22, CD30, CD33,

CD138, CD171, CEA, epidermal growth factor receptor (EGFR),

EGFRvIII, ErbB, FAP, GD2, Glypican 3, Her 2, Mesothelin, and

NKG2D, among others (134). However, current therapies face

limitations, including off-target effects, fratricide, and challenges

in identifying suitable TAA, especially in T-cell-derived cancers.

These issues can lead to the destruction of healthy cells and

diminished efficacy. CRISPR/Cas9 technology offers a solution by

enabling precise gene editing to disrupt the expression of

problematic antigens, such as CD3, CD5, and CD7, in CAR-T
TABLE 1 Clinical trials of engineering CAR-T cells based on CRISPR/Cas9 technology.

NCT ID Cancer Target antigen CART Cell Patients
(n)

Phase Advantages

NCT04637763 Non-Hodgkin Lymphoma CD19 CD19-CAR-T 72 1 Broaden applicability

NCT04502446 T cell malignancy,
Diffuse Large B-
Cell Lymphoma

TCR and MHC I KO via
CRISPR/Cas9

CD70-CAR-T 26 1 –

NCT04035434 B-cell Lymphoma,
B-cell ALL

CD19 CD19-CAR-T 227 1/2 Cost reduction

NCT04244656 Multiple Myeloma – BCMA-CAR-T 26 1 Enhance
effector function

NCT03166878 Leukemia, Lymphoma TCR and B2M
(knock out)

CD19-CAR-T 80 1/2 Broaden applicability

NCT03398967 Leukemia, Lymphoma TCR and B2M
(knock out)

CD19/CD20/CD22-
CAR-T

80 1/2 Cost reduction
Broaden applicability

NCT04037566 ALL, Lymphoma HPK1
(knock out)

CD19-CAR-T 40 1 Cost reduction
Enhance

effector function

NCT04438083 Renal Cell Carcinoma – CTX130 107 1 –

NCT03747965 Multiple Solid Tumors PD-1
(knock out)

Mesothelin CAR-T 10 1 Enhance
effector function

NCT05795595 Multiple Solid Tumors – CD70-CAR-T 250 1/2 –

NCT03545815 Solid Tumors PD-1 and TCR
(knock out)

Mesothelin CAR-T 10 1/2 Cost reduction
Broaden applicability

Enhance
effector function

NCT05812326 Breast Cancer PD-1
(knock out)

MUC1-CAR-T 15 1/2
Data extracted from https://clinicaltrials.gov/. B2M, b-beta 2-microglobulin; CD, cluster of differentiation; HPK1, hematopoietic progenitor kinase 1; PD-1, programmed cell death protein 1;
TCR, T- cell receptor.
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cells. This approach enhances antitumor efficacy while reducing

fratricide and off-target effects, paving the way for more effective

and safer CAR-T cell therapies.

Currently, only a limited number of clinical trials are employing

CRISPR/Cas9 technology in CAR-T cells. For instance,

NCT04037566 represents a pioneering trial evaluating CD19 CAR-

T cells with edited endogenous HPK1 in patients with relapsed/

refractory leukemia or lymphoma. Another trial, NCT04637763, is a

phase I study investigating the efficacy and safety of CRISPR-edited

allogeneic CD19 CAR-T cells in patients with relapsed/refractory B

cell non-Hodgkin lymphoma. Stadtmauer et al. recently reported on a

phase 1 clinical trial focusing on the safety and feasibility of CRISPR-

Cas9 gene editing in three patients with advanced cancer. In this trial,

T lymphocytes were extracted from patients and genetically modified

using CRISPR-Cas9 to disrupt three genes (TRAC, TRBC, and

PDCD1) to enhance antitumor immunity. Additionally, a cancer-

targeting transgene, NY-ESO-1, was introduced to specifically target

tumors. The engineered cells were administered to patients and

demonstrated good tolerance, with sustained engraftment observed

throughout the study period. These promising findings lay the

groundwork for future trials exploring CRISPR-engineered cancer

immunotherapies (135). Finally, NCT03545815 represents a phase I

clinical trial employing CRISPR/Cas9 to disable PD-1 and TCR in

CAR-T cells before administering them to patients with mesothelin-
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positive multiple solid tumors. Research has demonstrated that

CRISPR-Cas9 can effectively disrupt up to five genes

simultaneously in mouse embryonic stem cells with high efficiency

(136). In another study, protocols were developed to efficiently

generate CAR-T cells with edits in two genes (TRAC and B2M) or

three genes (TRAC, B2M, and PD-1), evaluating their antitumor

activities in vitro. Results indicated that CRISPR-Cas9-mediated

multiple gene editing is readily applicable to CAR-T cells (137).

However, CRISPR-edited CAR-T cells are still in early stages, and

further preclinical studies, potentially conducted under Good

Laboratory Practice (GLP), are necessary to pave the way for

clinical trials.

The translation of CRISPR/Cas9 technology beyond CAR-T

cells into clinical applications faces significant challenges that

currently hinder its successful therapeutic implementation

(Additional details are given in section 4). These challenges

include, but are not limited to, several key issues. One major

obstacle is the occurrence of off-target modifications, where the

sgRNA can sometimes match with regions similar to the target

sequence, leading Cas9 to cleave unintended off-target sites. Efforts

to enhance the specificity of CRISPR/Cas9 have been pursued

through improved gRNA design, the development of more

efficient delivery vehicles, and the creation of novel Cas9

nucleases (109, 138, 139). Notably, newly designed variants like
TABLE 2 Enhanced techniques and strategies for effective gene editing in CAR-T cells.

CAR-
T cell

Target
gene (s)

Cas9 delivery
system

Gene-editing
efficiency

Multiplex
Efficiency

Antitumor
Activity

Disadvantages Ref

CD19-CAR-T
cells

PSCA-CAR-
T cells

B2M
PD1
TRAC
TRBC

mRNA 50% NHEJ
(multiplex)

70–90% NHEJ
(single

gene disruption)

Enhanced in
vivo

antitumor
activity

Yes, in vitro and
animal models

Multiplex gene editing led to
reduced overall

editing efficiencies.

(115)

CD19-CAR-
T cells

LAG3 RNP 70% NHEJ (single
gene Disruption)

Not applicable Robust antigen-specific
antitumor activity in cell

culture and
murine model

The efficiency of gene editing
has room for

further optimization.

(116)

GPC3-CAR-
T cells

PD1 RNP 85% NHEJ (single
gene disruption)

Not applicable Enhanced in vivo
antitumor activity,

improved persistence
and infiltration

Not applicable (117)

139 CAR-
T cells

DGKa
DGKz

RNP 60–70% NHEJ
(single

gene disruption)

Not applicable Significant regression of
tumors in a xenograft

mouse model

The efficiency of gene editing
has room for

further optimization.

(118)

CD7-CAR-T
cells

CD19-CAR-
T cells

CD7
TRAC

DNA plasmid 70 NHEJ (multiplex)
90% NHEJ (single
gene disruption)

Not applicable Efficacy in vitro and in
vivo without induction of

xenogeneic GvHD

Not applicable (119)

CD19-CAR-T
cells

PSCA-CAR-
T cells

TCR, HLA
class I, Fas,
PD1, CTLA4

lentivirus -based
one-shot system/

mRNA/
RNP/mRNA

50% NHEJ
(multiplex)

and 90% NHEJ
(single gene
disruption)

82% NHEJ (single
gene disruption)
76% NHEJ (single
gene disruption)

Simultaneous
gene editing of

four
loci attempted

Enhanced antitumor
activity against multiple
inhibitory pathways

Multiplex gene editing led to
reduced overall editing

efficiencies.
The limited packaging

capacity of lentiviral vectors
led to reduced gene-
editing efficiency.

(120)
frontier
B2M, b-2-microglobulin; CTLA4, cytotoxic T-lymphocyte-associated protein 4; DGKa/z, diacylglycerol kinase a/z subunit; GPC3, glypican 3; LAG3, lymphocyte activation gene 3; NHEJ, non-homologous
end joining; PD1, programmed cell death protein 1; PSCA, prostate stem cell antigen; RNP, ribonucleoprotein; TRAC/TRBC, T-cell receptor a/b constant subunit.
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xCas9 and HypaCas9 appear to offer improved precision without

compromising target activity (138, 140). Another concern

associated with the use of CRISPR/Cas9 is its potential to

introduce unintended deletions and complex genomic

rearrangements into edited cells, which could pose irrecoverable

genotoxicity risks in clinical applications (141). Addressing this

challenge could involve strategies such as conducting whole-

genome sequence analysis, employing in silico off-target

prediction tools, assessing genotoxicity risks, and implementing

long-term patient follow-up protocols (142, 143).

Additionally, the immunogenicity of the Cas9 protein presents

another challenge that impedes the clinical adoption of the CRISPR/

Cas9 system. Some individuals develop specific antibodies against

the Cas9 protein, leading to T cell immune memory formation upon

subsequent encounters. This immune response against Cas9 can

diminish the editing efficiency and potentially lead to adverse

effects. Moreover, CRISPR/Cas9 requires a specific PAM sequence

(NGG) to exert its genome editing capability. The conventional

Cas9 protein recognizes only a limited set of PAM sequences,

restricting its versatility. However, the development of xCas9, an

advanced variant, expands the range of PAM sequences recognized,

thereby broadening the potential applications of the CRISPR/Cas9

system (138). Despite these advancements, the efficiency of HDR

pathways for genomic insertion occasionally remains low (144).

Strategies to address this issue include using single-stranded DNA

templates instead of double-stranded DNA, inhibiting the NHEJ

pathway, and employing advanced delivery methods like

nucleofection (145, 146). Advancements in CAR-T cell design

and the precision of CRISPR/Cas9 gene editing have paved the

way for more effective and targeted therapies (Table 3).
Frontiers in Immunology 13272
Merging CRISPR/Cas9 with other emerging technologies, like

mRNA vaccines and adoptive cell therapy, has the potential to

dramatically impact cancer treatment. For instance, this could

involve editing immune cells so they recognize and destroy

cancerous cells, while mRNA vaccines prime the immune system

against specific tumor-expressed antigens. Synergy in this direction

may lead to more personalized, effective cancer therapies. Key

findings suggest that CRISPR/Cas9 can greatly enhance the

specificity and efficacy of CAR-T cells by deleting inhibitory genes

or introducing new receptors that boost their function. However,

challenges include ensuring the safety and precision of gene editing,

preventing off-target effects, and optimizing delivery methods. Future

integration of CAR-T cells with CRISPR/Cas9 may revolutionize

cancer treatment by creating more potent, specific, and durable

therapies. As these technologies advance, we may see next-

generation CAR-T cells that are more effective against a broader

range of cancers, safer, and tailored to individual patients. The future

of cancer treatment may involve combining CRISPR-enhanced CAR-

T cells, mRNA vaccines, and other innovative approaches to pave the

way for breakthroughs in fighting cancer.
6 Personalized cancer therapies

The future of individualized therapy using combined approaches

of CAR-T and CRISPR/Cas9 holds tremendous potential to

revolutionize the treatment of cancer and genetic diseases. CAR-T

therapy, which involves engineering a patient’s T-cells to target

cancer cells, has shown remarkable success in treating certain blood

cancers. Meanwhile, CRISPR/Cas9 has transformed genetic research
TABLE 3 The integration of CAR-T and CRISPR/Cas9 in clinical settings.

Aspect Description Outcomes Challenges Ref

Advancements in CAR-
T Design

Incorporation of costimulatory molecules, cytokines,
and suicide genes to enhance efficacy and safety.

Expanded tumor target repertoire.

Enhanced efficacy and safety
in treating

hematologic malignancies.

N/A (132–134)

Clinical Trials of
CRISPR in CAR-T

Trials like NCT04037566 and NCT04637763 are
pioneering studies evaluating CRISPR-edited CAR-T
cells. Stadtmauer et al.’s trial on CRISPR-Cas9 gene

editing in advanced cancer patients.

Demonstrated feasibility and
safety, sustained engraftment,

and good tolerance.

Early stages of clinical trials;
further studies needed

for validation.

(135–137)

Off-target Modifications Occurrence of unintended off-target modifications
where sgRNA matches regions similar to the target
sequence. Efforts to enhance specificity through
improved gRNA design and novel Cas9 nucleases

like xCas9 and HypaCas9.

Improved precision with
xCas9 and HypaCas9 without
compromising target activity.

Persistent risk of off-target
effects; need for better

prediction and
assessment tools.

(109, 138–140)

Genotoxicity Risks Potential for unintended deletions and complex
genomic rearrangements posing genotoxicity risks.
Strategies involve whole-genome sequence analysis,
in silico off-target prediction, and long-term patient

follow-up.

Genotoxicity risks need
thorough assessment before

clinical application

High genotoxicity risks
require robust assessment and

monitoring strategies.

(141–143)

Immunogenicity and
HDR Efficiency

Cas9 protein immunogenicity leading to T cell
immune memory formation. Limited PAM sequence
recognition by conventional Cas9. xCas9 developed
to recognize a broader range of PAM sequences.

Efficiency of HDR pathways for genomic insertion is
occasionally low.

Broadened potential
applications with xCas9.
Improved HDR efficiency
with single-stranded DNA
templates, NHEJ pathway
inhibition, and advanced

delivery methods.

Immunogenicity of Cas9
protein; limited HDR

efficiency; strategies needed to
overcome these challenges.

(99, 144–146)
Ref, References. “N/A” stands for “not available”.
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by allowing precise modifications to DNA, making it a powerful tool

for correcting genetic defects. By merging these two cutting-edge

technologies, we can create more effective and personalized

treatments tailored to individual patients’ genetic profiles. One of

the most promising prospects of combining CAR-T and CRISPR/

Cas9 is the enhancement of CAR-T cell therapy. CRISPR can be used

to edit genes within T-cells to improve their ability to target and kill

cancer cells. For example, CRISPR can knock out genes that inhibit

T-cell activity or add genes that enhance their persistence and efficacy

in the tumor microenvironment (147). Immune checkpoints, such as

PD-1 and CTLA-4, are critical regulatory molecules in the immune

system that prevent autoimmune reactions by dampening immune

cell activity. However, this mechanism also allows cancer cells to

evade immune responses. Immune checkpoint inhibitors work by

blocking the interaction between these checkpoints and their ligands,

thereby restoring T cell function. To counteract immune checkpoint

inhibition in CAR-T cells, researchers have explored the combination

of PD-1 inhibitors with CAR-T cell therapy. For instance, a research

team engineered Mesothelin-CAR-T cells to treat pleural

mesothelioma in mice and administered them alongside a PD-1

inhibitor. This combined approach effectively prolonged CAR-T cell

activity, slowed tumor progression, and significantly extended

median survival time (148). The feasibility of this combination

therapy was further validated in a clinical trial, offering a promising

strategy for enhancing cancer treatment outcomes (149). This

synergy could potentially expand the success of CAR-T therapy

beyond blood cancers to solid tumors, which have been challenging

to treat with current CAR-T strategies. Moreover, the combined

approach allows for the development of “off-the-shelf” CAR-T cells,

which are derived from healthy donors rather than the patient.

CRISPR/Cas9 can be used to edit these donor cells to prevent

immune rejection and enhance their cancer-fighting properties (150).

This advancement would make CAR-T therapy more accessible,

reducing the time and cost associated with generating personalized

treatments from the patient’s own cells (151). Clinical applications

face limitations due to the high cost of CAR-T cell therapy, which is

mainly driven by complex manufacturing processes and expensive

raw materials (14). Cost reductions can be achieved by improving

the efficiency of production and using strict quality control systems

to ensure consistency and reduce waste. A typical production cycle

for CAR-T cells takes about two weeks, but new platforms are

emerging that significantly reduce this time. For example, the

Novartis T-Charge platform reduces in vitro culture time and

increases T-cell proliferation (152). Dickinson et al. (153)

developed CD19-CAR-T YTB323 autoimmune cell therapy using

this platform in just two days. This is different from tisagenlecleucel,

as YTB323 maintains T cell regulation and improves in vivo

expansion and anti-tumor efficacy at low doses. Similarly, Grasel

Biotechnologies’ FasTCAR platform has shortened the production

time for CAR-T to one day. Clinical trials to evaluate the efficacy

and safety of this process (NCT04638270, NCT05840107, and

NCT04935580) are currently underway. In addition, CRISPR/

Cas9 technology will accelerate more precise gene editing,

allowing for rapid changes within a short period of time.

CRISPR can precisely correct genetic mutations in stem cells, which

can then be differentiated into T-cells for CAR-T therapy. This approach
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not only targets cancer but also treats underlying genetic conditions,

offering a dual therapeutic benefit. For example, patients with genetic

immunodeficiencies could receive gene-corrected, cancer-targeting T-

cells, addressing both their genetic disorder and cancer simultaneously

(154). Despite these exciting prospects, challenges remain in ensuring the

safety, efficacy, and ethical deployment of these therapies. Potential off-

target effects of CRISPR and the long-term impacts of genetic

modifications need thorough investigation. Regulatory frameworks

must evolve to keep pace with technological advancements, ensuring

that therapies are safe and ethically sound. Nonetheless, the combined

use of CAR-T and CRISPR/Cas9 represents a promising frontier in

personalized medicine, offering hope for more effective, targeted, and

accessible treatments for cancer and genetic diseases.
7 Future directions

Editing CAR-T cells using CRISPR/Cas9 marks a pivotal

advancement in the field of immunotherapy, addressing several

critical challenges such as mitigating allogeneic reactions,

overcoming tonic signaling and exhaustion within the tumor

microenvironment (TME), and reducing potential toxicity. The

scalability of CRISPR/Cas9 enables large-scale genetic screens,

allowing researchers to efficiently and precisely investigate

thousands of genes in T cells. This has led to groundbreaking

preclinical studies that demonstrate the potential of CRISPR-edited

CAR-T cells to significantly improve cancer treatment outcomes. As

these technologies evolve, their integration into CAR-T cell therapy

could revolutionize the approach to treating various forms of cancer,

including those that have been resistant to conventional therapies.

Despite these promising advancements, there are still significant

challenges that need to be addressed to fully realize the potential of

CRISPR/Cas9 in CAR-T cell therapy. One of the primary concerns is

the risk of off-target effects, where unintended genetic modifications

could lead to adverse outcomes. Future research should focus on

improving the precision of CRISPR/Cas9 through advancements in

gRNA design, the development of novel Cas9 variants like xCas9 and

HypaCas9, and the implementation of robust off-target detection

methods. Additionally, optimizing the delivery systems for CRISPR/

Cas9 components is crucial to ensure that the gene-editing machinery

is accurately and efficiently introduced into target cells, minimizing the

risk of unintended consequences.

Translating CRISPR/Cas9-engineered CAR-T cells into clinical

practice also presents a set of challenges that must be carefully

navigated. The transition from laboratory research to clinical

application involves overcoming regulatory hurdles, designing

clinical trials that accurately assess the safety and efficacy of these

therapies, and scaling up production to meet the demands of a

broader patient population. Establishing standardized manufacturing

protocols and strict quality control measures will be essential to

ensure the consistency and safety of CRISPR-edited CAR-T cells as

they move toward widespread clinical use.

Looking forward, the future of CAR-T and CRISPR/Cas9

therapies could be further enhanced by integrating emerging

technologies such as synthetic biology and artificial intelligence.

Synthetic biology offers the potential to create programmable T cells
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that can be fine-tuned for specific therapeutic purposes, while

artificial intelligence could be used to optimize gene-editing

strategies and predict patient responses. These innovations,

combined with ongoing advancements in CRISPR/Cas9

technology, could lead to even more personalized and effective

cancer treatments, ultimately transforming the landscape of cancer

care and offering new hope for patients facing some of the most

challenging and refractory cancers.
8 Conclusion

The integration of CAR-T cell therapy with CRISPR/Cas9

technology has revolutionized cancer treatment by enhancing

efficacy and personalization. CAR-T has shown success in treating

hematologic cancers, but CRISPR/Cas9 offers precision and

versatility to address limitations. By engineering CAR-T cells,

researchers can enhance persistence, reduce off-target effects, and

even knockout immune checkpoint inhibitors. However, challenges

remain, such as off-target effects, optimizing gene-editing precision,

and developing robust clinical protocols. Scaling up production,

ensuring patient safety, and navigating regulatory landscapes are

crucial steps for translating these therapies from preclinical success

to widespread clinical use. Collaboration across academic, clinical,

and industry sectors is essential to overcome barriers and accelerate

the development of transformative therapies. The potential of

CRISPR-edited CAR-T cells to revolutionize cancer treatment

remains immense.
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Background: As a prevalent malignancy in women, ovarian cancer (OC) presents

a challenge in clinical practice because of its poor prognosis and poor

therapeutic efficacy. The mechanism by which cuproptosis activity is

accompanied by immune infiltration in OC remains unknown. Here, we

investigated cuproptosis-related OC subtypes and relevant immune landscapes

to develop a risk score (RS) model for survival prediction.

Methods: Cuproptosis-related genes (CRGs) were identified to construct

molecular subtypes via an unsupervised clustering algorithm based on the

expression profiles of survival-related CRGs in the GEO database. Single-cell

datasets were used to estimate immune infiltration among subtypes. The RS

oriented from molecular subtypes was developed via LASSO Cox regression in

the TCGA OC dataset and independently validated in the GEO and TCGA

datasets. Hub markers from RS were identified in tissues and cell lines. The

function of the key gene from RS was identified in vitro.

Results:We investigated cuproptosis activity and immune infiltration to establish

three clinical subtypes of OC based the differentially expressed genes (DEGs)

from CRGs to create an RS model validated for clinical efficacy and prognosis. Six

hub genes from the RS served as ongenic markers in OC tissues and cell lines.

The function of GAS1 in the RS model revealed that it exerts oncogenic effects.

Conclusions: Our study provides a novel RS model including 6 hub genes

associated with cuproptosis and immune infiltration to predict OC prognosis

as well as clinical efficacy.
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cuproptosis, RiskScore, ovarian cancer, single-cell sequencing, bulk RNA sequencing
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GRAPHICAL ABSTRACT
1 Introduction

As the leading cause of cancer death in the female reproductive

system, OC is defined as a “silent killer” because of its insidious

symptoms at an early stage and advanced disease at the time of

diagnosis. According to the World Health Organization, there were
Abbreviations: AUC, area under the curve; BP, biological process; CRGs,

cuproptosis-related genes; CMGrisk, cuproptosis marker gene risk score;

CIBERSORT, cell type identification by estimating relative subsets of RNA

transcripts; CC, cell composition; DEGs, differentially expressed genes; GSVA,

gene set variation analysis; GSEA, gene set enrichment analysis; GO, Gene

Ontology; GEO, Gene Expression Omnibus; ICI, immune checkpoint inhibitor;

IPS, immunophenoscore; IHC, immunohistochemistry; KM, Kaplan−Meier;

KEGG, Kyoto Encyclopedia of Genes and Genomes; LASSO, least absolute

shrinkage and selection operator; MT, metastasis tissue; MSigDB, Molecular

Signature Database; MF, molecular function; OS, overall survival; OC, ovarian

cancer; PCs, principal components; PCA, principal component analysis; qRT

−PCR, quantitative real-time polymerase chain reaction; RS, risk score; ROC

curve, receiver operating characteristic curve; ScRNA-seq, single-cell RNA

sequencing; SNVs, single nucleotide variants; TCGA, The Cancer Genome

Atlas; TIDE, tumor immune dysfunction and exclusion; UMAP, uniform

manifold approximation and projection.
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approximately 313,959 new cases worldwide and approximately

207,252 deaths due to OC in 2022 (1). Given the high morbidity and

mortality of OC, current diagnostic tools, such as the International

Federation of Gynecology and Obstetrics (FIGO) stage system (2)

and several common serum biomarkers, such as carbohydrate

antigen 125 (CA125) (3) and human epididymis protein 4 (HE4)

(4), are far from ideal models for precisely estimating the prognosis

and curative effect of each patient. A reliable prognostic model is

needed to accurately evaluate the prognosis of patients, which is

crucial for optimal individualized management and treatment.

The tumor microenvironment (TME) is a highly complex and

heterogeneous ecosystem consisting of tumor cells, infiltrating

immune cells, and stromal cells intertwined with noncellular

components, in which immune‐related genes and immune

infiltrating cells play indispensable roles (5). Despite its high

morbidity and mortality, OC is a recognized immunogenic

tumor, and immunotherapies have attracted substantial attention

because of their promising potential in OC therapy. However,

cancer immunotherapy is not effective for everyone, and distinct

immune cell infiltration patterns result in different responses to

cancer immunotherapies (6). In addition, the variability in therapy

response and the determinants underpinning these tumor immune

phenotypes remain elusive (7). Thus, there is an urgent need to

discover key molecular determinants involved in immune
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infiltration signatures and construct prognostic signatures based on

these signatures.

Recently, a novel form of cell death pathway triggered by

copper, named “cuproptosis”, which differs from apoptosis,

pyroptosis, necroptosis, and ferroptosis, was discovered by Peter

Tsvetkov and colleagues in 2022 (8). Copper is an extremely

essential element involved in all types of biological procedures in

the human body, especially in tumor growth and metastasis (9).

Additionally, cuproptosis-related genes (CRGs) have been reported

to be associated with immune cell infiltration in melanoma (10),

esophageal carcinoma (11), and hepatocellular carcinoma (12), with

an increase in protumor or antitumor immune components in

tumors; however, few CRGs have been reported in OC (9). Due to

the promising future of immunotherapy in the treatment of OC and

the crucial role of cuproptosis in immune cell infiltration, evaluating

cuproptosis may be an effective way to predict the prognosis and

therapeutic benefit for patients.

In this study, molecular subtypes and prognostic models of

CRGs in OC were established, and their relationships with the

characteristics of immune infiltrating cells in OC were elucidated at

the single-cell level. The results were further validated using four

cohorts from major public databases. In addition, we aimed to

illustrate the potential of the risk model to predict the efficacy of

immunotherapy and chemotherapy. Our study revealed a potential

association between cuproptosis, prognosis, and the TME in OC

patients. These findings may provide a new method to predict

outcomes in OC patients and ameliorate them.
2 Materials and methods

2.1 Data download and preprocessing

The FPKM expression profile data of OCs in the TCGA

database were downloaded via the R package (TCGAbiolinks),

and log2(FPKM+1) transformations were performed to calculate

their abundance. Corrected TCGA survival data (13) were used for

prognostic survival analysis without samples whose survival time

was less than 30 days. Mutation data were also downloaded for

genomic variation analysis. The clinical information of the

patients in the TCGA_OC cohort used for the analysis is

presented in Table 1. The expression and metadata files from

the GSE130000 dataset were downloaded from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) as the input files to construct

Seurat single-cell objects for the analysis of the dataset.

The expression and survival data of the GSE26712 dataset were

downloaded from the GEO database as the GEO external validation

set for the risk model. Moreover, the expression and clinical

annotation data of the uroepithelial carcinoma dataset

IMvigor210 were downloaded from http://research-pub.gene.com/

IMvigor210CoreBiologies as the immunotherapy dataset without

samples whose survival time was less than 30 days. Sample

information for each of the above external datasets is shown

in Table 2.
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2.2 Gene set acquisition

The HALLMARK and GO gene sets were obtained from the

MsigDB database (Table 3), as were the immune function-related

gene sets from a previous article (14) (Supplementary Table 1:

Immune_function_geneset). A total of 43 copper death-related

genes were a l so obta ined from prev ious work (15)

(Supplementary Table 1: cuproptosis_related_gene).
2.3 Differential expression analysis

Molecular subtypes of the TCGA_OC cohort were analyzed for

differential expression via the limma R package, and differentially

expressed genes (DEGs) were subsequently screened with Benjamini

−Hochberg (FDR)-corrected thresholds of p values<0.01 and |log2FC|> 0.5.
2.4 Single cell identification and profiling

The single-cell dataset was analyzed via the specialized single-

cell transcriptome analysis tool R package Seurat, which includes
TABLE 2 Sample information table for GEO dataset.

Cohort Subgroup Category Information Number

GSE26712 Status Alive 56

Dead 129

IMvigor210 Response CR/PR 68

SD/PD 227

Status Alive 108

Dead 187
fr
TABLE 1 TCGA OC cohort sample clinical information sheet.

TCGA cohort Information Number

Status Alive 131

Dead 211

Age Age>=55 221

Age<55 121

Grade G1/2 41

G3/4 292

Stage Stage I/II 19

Stage III/IV 320

venous_invasion YES 60

NO 32

lymphatic_invasion YES 92

NO 40
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the steps of constructing objects, data normalization, data

downscaling and clustering, identifying marker genes, and

visualizing the analysis results. First, the single-cell sequencing

results were selected for data merging, and the Seurat object was

then constructed via CreateSeuratObject() of Seurat. After

harmony, the data were further downscaled via uniform manifold

approximation and projection (UMAP) to classify the cell types in

the low-dimensional space. The cell subpopulations were identified

via FindClusters(), and all the marker genes of all the

subpopulations were identified via the FindAllMarkers() function.

The function DimPlot() was used to visualize the results of

dimensionality reduction of single-cell expression data and the

distribution of active cell populations. Moreover, the R package

plot1 cell was used for cell type proportion analysis and

visualization of marker gene expression.
2.5 Single cell annotation

The R package SingleR was used to annotate the subpopulation

results on the basis of Seurat 0.6 resolution, and BlueprintEncodeData

were selected as the cell type reference database.
2.6 Identification of cuproptosis-active
cell populations

The cuproptosis-associated marker genes of our malignancy cell

subpopulation were used to calculate the activity score of each

malignant cell via the R package AUCell and to determine the

threshold for delineating active cells in the current gene set via the

AUCell_exploreThresholds() function. The cell clustering UMAP

embedding was then colored based on the AUC score of each cell to

show which subpopulation-specific cuproptosis-associated factors

were active in which cell subpopulations.
2.7 Construction of the prognostic
risk model

One-way Cox analysis was first performed to screen the genes

related to prognosis for intersubtype differences, and a prognostic

risk score model for ovarian cancer was then constructed on the

basis of this gene via least absolute shrinkage and selection operator

(lasso). The Tibshirani (1996) method was used to screen the

variables to reduce the number of genes in the risk model. The

final multifactorial Cox regression model was established to

construct the OC risk score (Riskscore) model.
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2.8 Survival curves of gene expression

The TCGAOC tumor samples were divided into high- and low-

expression groups, with the median gene expression as the

threshold point. Survival curves for prognostic analysis were

generated via the Kaplan−Meier method, and the significance of

the differences was determined via the log-rank test.
2.9 Estimation of the proportion of
immune infiltrating cells and the
immune score

Based on the expression profile of the TCGA_OC dataset, four

algorithms, CIBERSORT, TIMER, ssGSEA, and ESTIMATE, of the

R package IOBR were applied to calculate the proportion of

infiltrating immune cells.
2.10 Gene set enrichment analysis

Gene set (immune function gene set/HALLMARK) enrichment

scores were calculated for each cancer sample on the basis of gene

expression in TCGA OC samples via the ssGSEA algorithm of the R

package GSVA, which first performs a kernel estimate of the

cumulative distribution density function for each gene in all

samples. The enrichment score differences between subgroups were

then calculated via statistical tests, and the enrichment score heatmap

was plotted via the R package pheatmap combined with the clinical

characteristics of the samples. The correlations among the expression

of model genes, risk scores and enrichment scores were also calculated

via the cor() function and visualized via the R package corrplot.

Gene set enrichment analysis (GSEA) uses a predefined set of

genes to rank genes according to their differential expression in two

types of samples and then tests whether the predefined set of genes

is enriched at the top or bottom of this ranking table. Enrichment

analysis was performed through the R package clusterProfiler on the

basis of GO functional gene sets and KEGG pathways, and the top 8

gene sets with significant enrichment results were then selected to

generate bubble plots showing the enrichment results.
2.11 Genomic SNV analysis

Based on the maf file of somatic mutation detection results of

the TCGA_OC cohort, the oncoplot() function of the R package

mafTools was used to draw waterfall plots to show the differences in

SNV mutations between different model groupings. Finally, the maf

data of the high- and low-risk groups were analyzed via the

mafCompare() function to obtain genes with significant

differences in mutations between the two groups.
2.12 Immunotherapy response prediction

The algorithm is based on expression profiles prior to tumor

treatment and scores multiple published transcriptomic biomarkers

to predict patients’ immunotherapeutic response. The TIDE score
TABLE 3 Table for immune infiltration.

Cohort Information

GSE130000 immune cell infiltration

MsigDB immune function
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(http://tide.dfci.harvard.edu) integrates T-cell dysfunction and

exclusion features, simulates tumor immune escape with different

levels of tumor-infiltrating cytotoxic T cells, and appears to be

highly advantageous compared with other biomarkers. The

immunophenoscore (IPS) can be used to identify immunogenicity

and predict the response to immunotherapy in multiple tumor

types. We obtained IPS scores for tumor samples in the TCGA_OC

dataset via an online website (https://tcia.at/home) and performed

between-group difference analysis via statistical tests.
2.13 Samples and cell collection

All tumor tissues were obtained from Jiangxi Cancer Hospital and

stored in liquid nitrogen at -80°C until use. This research was approved

by the ethics committee of Jiangxi Cancer Hospital (Approval number:

2022ky305). Every patient provided informed consent prior to the

collection and usage of these clinical materials. The OC cell lines used

in this study were obtained from the ATCC cell bank.
2.14 Quantitative real-time polymerase
chain reaction (qRT−PCR)

mRNAwas extracted from tissues with TRIzol reagent (Invitrogen,

Carlsbad, CA, USA) according to the manufacturer’s protocol. The

SYBRGreen PCRMaster One-Mix Kit (TransGen, Beijing, China) was

used for qPCR to determine mRNA expression. Detailed information

about all the primers used is listed in Supplementary Table 12.
2.15 Wound healing assay

Approximately 3×105 A2780 and SKOV3 OC cells were seeded in

a 6-well plate. After the cells filled the entire area, the culture inserts

were removed. The cells were treated with PB (1.0 or 2.0 µM) or DMSO

for 48 h. The cells were then rinsed twice with PBS to remove floating

cells. Images were obtained under an optical microscope (ix71,

Olympus, Japan) at 0 h, 24 h and 48 h after wound induction.
2.16 Western blot analysis

The details of the assay were as described in our previous study

(16). The antibodies used are listed in Supplementary Table 12.
2.17 Immunohistochemical analysis

The details of the assay were as described in our previous study

(17). The antibodies used are listed in Supplementary Table 12.

When tissue slices are observed under an optical microscope, they

are graded based on the degree of staining and the extent of

positivity. The degree of staining can range from 0 to 3,

representing varying depths of color (negative staining, pale

yellow, light brown, and dark brown). The extent of positivity can
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range from 1 to 4, representing different percentages of positive cells

(0-25%, 26-50%, 51-75%, 76-100%). By grading the intensity of

cellular staining and the percentage of positive cells, these two

scores are multiplied to obtain the final score.
2.18 Plasmid construction and transfection

Stably transfected small interfering RNAs (siRNAs) were obtained

from ElifeBio (Hangzhou, China) and transfected into cells via

Lipofectamine iMax(Invitrogen,AL,USA) following themanufacturer’s

instructions.ThetransfectionefficiencywasverifiedviaqRT−PCR.
2.19 Transwell assays

The premixed matrix gel was added to the Transwell chamber,

which was then placed in a 24-well deep-well plate and incubated in a

cell culture incubator for 2 hours. Adherent cells were digested with

trypsin solution, resuspended by pipetting, and counted via a cell

counter. OC cells transfected with GAS1 were digested and seeded in

the upper chamber, which was supplemented with 0.2 ml of serum-free

medium. Then, 700 µl of complete medium containing serum was

added to the 24-well deep-well plate housing the Transwell chamber.

After 24 hours, the Transwell chamber was removed, and the cells were

processed for subsequent fixation, staining, and counting.
2.20 Cell proliferation analysis

We evaluated the proliferation of OC cells transfected with GAS1

via colony formation and EdU assays. The specific experimental

procedures were performed as described previously (18).
2.21 Description of the statistical analysis

For statistical mapping, theWilcoxon test was used to compare the

differences between two groups of samples, and the Kruskal−Wallis test

wasused to compare thedifferencesbetweenmultiple groupsof samples.
3 Results

3.1 Single-cell landscape and cuproptosis
activity in OC

3.1.1 Expression of the TME and CRGs in OC
A total of 13,511 cells from OC tissue in GSE130000 (Table 3) were

obtained. For initial data dimensionality reduction analysis (PCA), we

selected the top 15 PCs for subsequent PCA and then drew a clusterree

(clustree.res.pdf) to annotate the cell subtypes with SingleR

(Supplementary Table 1: cell_info). We classified all epithelial cells,

including seven cell subtypes, in tumor tissue as a malignant cell group

(Figure 1A). To investigate the differences in the immune function of

different cell types in different tissues, we first plotted an expression
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bubble chart of antitumor response factors and antitumor immune

genes, which revealed low expression levels of these genes in malignant

cells, whereas the antitumor response factor in CD8+ T cells was active

in both metastatic and primary cancer tissues. Moreover, antitumor

immune factors from macrophages, fibroblasts, and endothelial cells

exhibitedmuch greater activity in primary andmetastatic tissues than in

recurrent tissue (Figure 1B). We also plotted an expression bubble chart

of the CRGs, which revealed that CP was expressed at higher levels in

themalignant cells of primary and recurrent tissues and thatMT2Awas

expressed at higher levels in the primary myocardial cells. However,

SOD1 preferred CD8+ T cells in metastatic tissue (Figure 1C). Next, we

explored the distribution of different cell types across different tissue

sources, revealing the diverse proportions of malignant cells, CD8+ T

cells, myofibroblasts and macrophages in different tissues (Figure 1D).

Finally, according to the expression of each gene in single cells, we

calculated the ssGSEA scores of the CRGs (Supplementary Table 1:

cuproptosis_ssGSEA), which revealed that the enrichment level of

CRGs in malignant cells was relatively high (Figure 1E). Moreover,

the enrichment score of CRGs in recurrent tissue was greater than that

in primary and metastatic tissue (Figure 1F).
Frontiers in Immunology 06283
3.1.2 CRGs associated with cellular immunity
in OC

We subdivided the 10,358 malignant cells into three malignant

subgroups (Figure 2A) and then generated an expression bubble

map of all the CRGs by identifying the marker genes of each

cluster, which revealed that the expression of CRGs was

significantly greater in subgroup 2 than in subgroups 1 and 0

(Figure 2B). Moreover, the enrichment scores of the CRGs were

highest in subgroup 2, followed by subgroups 1 and 0 (Figure 2C).

We also performed immune functional analysis of the three

malignant subtypes, which revealed that the enrichment scores

for tumor cell immune response ability and interferon-g response
genes were significantly greater in subgroup 2 than in subgroups 1

and 0 (Figures 2D, E).
3.1.3 Identification of cuproptosis activity in
malignant cells

To further investigate the expression and functional

characteristics of CRGs at the single-cell level, we identified 192
FIGURE 1

Differences in the tumor microenvironment at the single-cell level. (A) UMAP distribution map of cell clustering and annotation results, where the circles
represent cell annotation results. From outer to inner, they respectively indicate cell type, sample source, and tissue type; (B) Bubble plot of the expression of
anti-tumor immune and anti-tumor response genes combined with different cell types from various tissue sources, with the size of the dots representing the
number of cells expressing the genes and the color indicating the level of expression; (C) Bubble plot of the expression of ferroptosis-related marker genes
combined with different cell types from various tissue sources, with the size of the dots representing the number of cells expressing the genes and the color
indicating the level of expression; (D) Bar chart depicting the distribution of cell types in different tissues, with different colors representing different cell types;
(E) Violin plot showing the enrichment scores of ferroptosis-related genes in various cell clusters; (F) Violin plot illustrating the differences in ferroptosis
enrichment scores among primary tissue, metastatic tissue, and recurrent tissue. The blue color represents cells from metastatic tissue, red indicates cells
from primary cancer tissue, and green represents cells from recurrent tissue. ****p < 0.0001.
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cells as an active malignant population related to active cuproptosis

in malignancies (Figure 3A) and used the optimal threshold to

determine cell viability (Supplementary Table 2: cell_info). A

cumulative distribution histogram was subsequently plotted to

display the distribution of active and inactive cuproptotic

malignant cells in each tissue type, which revealed that the

number of active cuproptotic malignant cells was highest in the

recurrent tissue (Figure 3B). In addition, a bubble chart of CRGs in

three subtypes and different active types revealed that CRGs were

enriched in the active population of all malignant subtypes,

especially in subtype 2 (Figure 3C). To identify functional

differences between the active and inactive populations, we

compared their immune functions and identified the active

population with a significantly lower level of immune response to

tumor cells and interferon-g response gene enrichment scores

compared with the inactive population (Figures 3D, E). Finally,

differential expression analysis was conducted on the two cell

populations, with 157 DEGs identified (Supplementary Table 2:

Active_cells_DEGS), which were enriched mainly in response to

metal ions such as copper, zinc, and cadmium, as well as in the

detoxification of organic compounds, according to GOBP

enrichment analysis (Figure 3F).
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3.2 Role of the identification of molecular
subtypes associated with active
necroptosis DEGs

3.2.1 Immune infiltration between molecular
subtypes in OC

Based on the identification of DEGs between active and inactive

cuproptotic malignant cell populations via single-cell analysis, we

identified OC molecular subtypes with the best clustering

performance achieved via the PAM clustering algorithm,

Spearman distance, and K=3 (Figures 4A–D; Supplementary

Table 3). The consistency clustering cumulative distribution

function (CDF) with the KM curves revealed clear boundaries

between the three subtypes, indicating good clustering results,

and K=3 was the result of our molecular subtype identification

(Figures 4E–K; Supplementary Table 3: cc_group). We also

explored the different cuproptosis expression patterns of the three

subtypes (Supplementary Figure 1).

With the results of the immunoreactive cell proportion

analysis of the TCGA OC samples (Supplementary Table 4), we

analyzed the proportion of immunoreactive cells among the three

subtypes, which revealed that the stromal, immune, and
FIGURE 2

Characteristics of cuproptosis in malignant cells. (A) UMAP distribution map of the re-clustering results of malignant cells; (B) Bubble plot showing
the expression of all ferroptosis-related marker genes in malignant subtypes, where the size of the dots represents the number of cells expressing
the genes and the color represents the level of expression; (C) Violin plot displaying the differences in enrichment scores of ferroptosis-related gene
sets among malignant subtypes; (D, E) Violin plots illustrating the differences in enrichment scores of tumor cell immune response and interferon
response gene sets among malignant subtypes. ****p < 0.0001.
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ESTIMATE scores of the C3 subtype were significantly greater

than those of the other two subtypes, whereas the tumor purity

was lower (Figure 5A). Moreover, the B-cell infiltration level was

lower in the C3 subtype than in the other subtypes, whereas the

infiltration of T cells, macrophages, DCs, and neutrophils was

greater according to the TIMER algorithm (Figure 5B). Finally, we

explored the infiltration proportions of 28 immune cells among

the three subtypes via the ssGSEA algorithm and found that there

were significant differences in the infiltration proportions of 24

cell types and that the infiltration proportion of the C3 subtype

was significantly greater than those of the other two subtypes

(Figure 5C). Furthermore, we also detected differences in the

enrichment scores of the six immune-related gene sets among

the three MSs, from which we found that the immune factor

enrichment score in C3 was higher than that in C1 and C2 and

that C2 had a higher score than C1 (Figures 6A–F). Additionally,

the enrichment of four immune function gene sets among the

subtypes revealed that T-cell activation and innate immunity in

C3 were significantly stronger than those in C2 and C1

(Figures 6G–J).
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3.2.2 Differential expression of immune markers
across molecular subtypes

The expression levels of immune checkpoints from the TISIDB

database in the C3 subtype were generally significantly greater than

those in the C1 and C2 subtypes (Supplementary Figure 2A).

Second, to explore the differences in other biological functions

between molecular subtypes, we identified the upregulated genes in

each subtype relative to those in the other two subtypes and then

combined the three upregulated gene sets as the DEGs between

subtypes. A total of 1033 subtype-specific DEGs were obtained

(Supplementary Table 3: All_diff_gene). The KEGG pathway results

revealed that the subtype-specific DEGs were enriched mainly in

ECM−receptor interactions, proteoglycans in cancer, the PI3K−Akt

signaling pathway, protein digestion and absorption, complement

and coagulation cascades, phagosomes, and Staphylococcus aureus

infection (Supplementary Figure 2B). Moreover, the GO functional

enrichment results revealed that the DEGs were enriched mainly in

biological processes related to cell tissue, migration, adhesion,

regulation of vasculature development regulation, and wound

healing; molecular functions such as extracellular matrix
FIGURE 3

Identification of active cuproptosis malignant cell population. (A) Single-cell AUC scores for ferroptosis genes, with the optimal threshold being 0.45;
(B) Bar chart displaying the distribution of active populations in different tissue types, where red represents inactive populations and green represents
active populations; (C) Bubble plot depicting the expression of ferroptosis marker genes in various malignant cell subtypes and different activity
types, with a redder color indicating higher average expression values and the size of the dots representing the number of expressing cells; (D, E)
Violin plots showing differences in immune function between active and non-active malignant cell populations with respect to ferroptosis activity,
where green represents the active population and red represents the non-active population; (F) Line plot illustrating the enrichment results of
differentially expressed genes between the active and non-active ferroptosis groups based on GOBP-GSEA. ***p < 0.001, ****p < 0.0001.
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structural constituents, glycosaminoglycan binding, and growth

factor binding; and cellular component gene sets such as the

collagen-containing extracellular matrix, endoplasmic reticulum

lumen, and collagen triple helix complex (Supplementary

Figures 2C–E).
3.3 Construction and validation of a
prognostic risk model for OC

We identified 24 genes significantly associated with OC

prognosis from the DEGs associated with OC among the

cuproptosis subtypes (Figure 7A; Supplementary Table 5:

cox_res). We subsequently applied Lasso linear regression to

eliminate redundant genes according to these 24 genes, resulting

in six prognosis-related signatures (Figures 7B–D; Supplementary

Table 5: lasso_res). Then, we established Kaplan−Meier survival

curves for these genes in the overall TCGA cohort. We found that
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there were significant differences between the KM curves for four

genes: PRSS16 and CXCL11 had better prognostic values in the

high-expression group, whereas PI3 and GAS1 had better

prognostic values in the low-expression group (Figures 7E–J).

Furthermore, we calculated the RS for each sample via the

formula RiskScore = PRSS16*-0.223 + CXCL11*-0.166 +

PI3*0.127 + GALNT10*0.032 + GAS1*0.127 + AKAP12*0.036,

which led to high-risk and low-risk groups via the median risk

score of 0.4525444 as the threshold (Supplementary Table 5:

TCGA_Train). These six model genes were diverse in the high-

and low-risk groups of the training set and were related to prognosis

(Supplementary Figures 3A–D). The receiver operating

characteristic (ROC) curve of the prognostic signature, with area

under the ROC curve (AUC) values of 0.709, 0.711, and 0.773 at 3,

5, and 8 years, revealed good predictive performance of the model

score (Supplementary Figure 3E). Similar results were also validated

in the TCGA test set, TCGA_OC dataset, and GEO dataset

GSE26712 (Supplementary Figures 4–6).
FIGURE 4

Identification of TCGA molecular subtypes in OC. (A–D) Clustering results for different numbers of clusters, specifically k=2, k=3, k=4, and k=5; (E)
Distribution of the cumulative distribution function (CDF) curve for consensus clustering; (F) Distribution of the area under the cumulative
distribution function (CDF) curve for consensus clustering; (G) Scatter plot showing the results of clustering using PCA dimensionality reduction
algorithm, where green represents C1, orange represents C2, and purple represents C3; (H–K) Survival curves for different numbers of clusters (k=2,
k=3, k=4, k=5), where different colored curves represent different clusters.
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3.4 Association between RS and multiple
features in OC

3.4.1 Association between risk score and immune
microenvironment in OC

The RS was confirmed to be an independent prognostic factor for

age (>55), stage and venous invasion in OC patients (Figure 8A;

Supplementary Table 5: Clinical_stat). The RS is a clinical factor that

contributes to survival time and survival status in combination with the

clinical indicator age (Figure 8B). The risk score was significantly

different between both the age subgroups and the molecular subtypes

(Figures 8C, D), indicating that the age and molecular subtypes of the

ovarian cancer samples were significantly associated with the RS. To

investigate the differences in the tumor immune microenvironment

between the high- and low-risk groups in the RS, in light of the

estimation results of the proportion of infiltrating immune cells, we
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discovered that 5 of the 28 immune cells, including activated CD4+

T cells, activated CD8+ T cells, effector memory CD8+ T cells,

immature B cells, and type 2 T helper cells, were significantly greater

in the low-RS group than in the high-RS group according to the ssGSEA

algorithm (Figures 9A–E). We subsequently explored the expression of

23 immunosuppressive checkpoints (Supplementary Table 6:

check_model_data) in the high- and low-risk groups, 16 of which

were significantly more highly expressed in the low-risk group than in

the high-risk group (Figure 9F). In addition, the associations between

the expression of 6 genes from the RS and that of 23

immunosuppression checkpoint genes (Supplementary Table 6:

corrdata & corrp) revealed that the expression of CXCL11 was

significantly positively correlated with that of multiple immune

checkpoint genes; however, the expression of the RS was generally

negatively correlated with that of other genes (Figure 9G). Finally, the

stromal score (Figure 9H) from the ESTIMATE algorithmwas higher in
FIGURE 5

Differences in proportion of immune-infiltrating cells among TCGA molecular subtypes. (A) Box plot showing the differences in ESTIMATE scores
between molecular subtypes of ovarian cancer, where green represents C1, orange represents C2, and purple represents C3; (B) Box plot illustrating
the differences in the proportions of immune infiltrating cells between molecular subtypes calculated using the TIMER algorithm; (C) Box plot
displaying the differences in the proportions of 28 types of immune infiltrating cells between molecular subtypes. *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001.
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FIGURE 7

(A) construction of the prognostic risk model. (A) Forest plot of the results of single-factor Cox analysis of differentially expressed genes between
subtypes; (B) Trajectory of changes in the independent variables of LASSO regression, where the x-axis represents the logarithm of the independent
variable Lambda and the y-axis represents the coefficient of the independent variable; (C) Confidence interval for each Lambda in LASSO regression;
(D) LASSO regression coefficients for 8 key prognostic factors; (E–J) KM curves for model genes, where red represents high expression group and
green represents low expression group.
FIGURE 6

Differences in immune enrichment among subtypes. (A–F) Box plots showing the differences in enrichment of immune factor gene sets between
subtypes, including immune checkpoints, chemokine gene ontology, chemokine receptor gene ontology, cytokine gene ontology, cytokine receptor
gene ontology, and T cell inflammatory genes; (G–J) Box plots illustrating the differences in immune functions between subtypes, including T cell
activation, immune response to tumor cells, effector T cells, and innate immunity.
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the high-RS group than in the low-RS group, and the immune score

(Figure 9I) results were the opposite.

Analysis of the differences in the expression of antitumor

immune and antitumor response genes in the RS groups revealed

that the expression of antitumor response-related genes was

significantly lower in the high-risk group than in the low-risk

group. We then selected 197 DEGs between the two groups

(Supplementary Table 7) to explore their functions via Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analyses, which revealed that the

DEGs were enriched mainly in antigen processing and

presentation, Epstein–Barr virus (EBV) infection, allograft

rejection, autoimmune thyroid disease and other Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways, as well

as in gene ontology (GO) functional gene sets related to antigen

processing, processing and presentation, response to viruses, and

major histocompatibility complex (MHC) protein complexes.

3.4.2 Correlation of the RS model with
the HALLMARK

Based on the HALLMARK enrichment score results of

the OC samples and the RS information, we aimed to explore
Frontiers in Immunology 12289
the pathway enrichment differences between the high- and low-

risk groups (Supplementary Table 8), and 28 of the pathways

presented significant differences in enrichment scores between

the high- and low-risk groups (Supplementary Figure 6A).

Moreover, the expression of CXCL11 and GALNT10 was

significantly positively correlated with multiple pathway

enrichment scores; however, the expression of RS was

significantly negatively correlated with the interferon a and g
response (Supplementary Figure 6B). RS was found to be

significantly negatively correlated with multiple immune

function gene sets, where we selected four functional gene sets

with strong correlations, including Co inhibition, interferon g
response, immune response to tumor cells and antigen processing

and presentation (Supplementary Figures 6C–F).

3.4.3 Association between RS and tumor
genome mutations

Waterfall plots of the top 20 genes with mutation frequencies

were generated separately for the high- and low-risk groups

combined with other clinical information, demonstrating the

distribution of gene mutations between the two groups and

samples with different clinical characteristics, with TP53, TTN,
FIGURE 8

The RiskScore as an independent prognostic factor. (A) Forest plot of the results of single- and multi-factor Cox analysis for clinical factors; (B)
Nomogram of the predictive model, where the square plus line segment represents the contribution of each clinical factor to the outcome event, Total
Points represents the total score obtained by adding up the scores for all variables, and the three lines at the bottom represent the 8/5/3-year survival
probabilities corresponding to each value point; (C, D) Box plots showing the differences in risk scores distribution between different Age and molecular
subtype groups, with different colors representing different groups, and the p-value indicating the significance of the difference. ***p < 0.001.
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and CSMD3 having the highest mutation frequencies in OC

(Figures 10A, B). Due to differences in gene mutation

frequenc ies between the high- and low-r i sk groups

(Supplementary Table 9: mafCompare_High_VS_Low), we

divided the samples into MT and WT groups to analyze the

difference in RS between them. We found that the risk scores of

the TICRR, CACNA1S and C7 gene groups were significantly

different from those of the wild-type group, and the mutation

frequency of these genes was greater (Figures 10C–E). Using the

same methodology, we also scrutinized the correlation between

tumor mutational burden (TMB) (Supplementary Table 9:

Riskscore_tmb_res) or RS and prognosis, revealing a more

favorable prognosis associated with high TMB (Figure 10F).
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3.5 RS model estimation for predicting
patient clinical efficacy

To investigate whether genes from the Riskscore model can

serve as markers for immunotherapy response, we explored the

ability of tumor risk scores to predict patient benefit from

immunotherapy. Initially, within the immunotherapy dataset, risk

scores were computed for each sample and then categorized into

high- and low-risk groups (Supplementary Table 10:

IMvigor210_res). The low-risk group had a better prognosis

(Figure 11A), with more pronounced benefits following

immunotherapy (Figures 11B, C). TIDE (Supplementary

Table 10: TIDE_res) was subsequently used to predict the
FIGURE 9

The correlation between RiskScore and immune checkpoints. (A–E) Box plots showing the differences in proportions of immune-infiltrating cells
between high and low-risk groups calculated using the ssGSEA algorithm, where red represents the high-risk group and green represents the low-
risk group; (F) Box plot illustrating the expression differences of 23 immune checkpoint inhibitors between high and low-risk groups, where red
represents the high-risk group and green represents the low-risk group; (G) Heatmap of the correlation coefficients between the expression of
model genes, risk scores, and the expression of immune checkpoint inhibitors, where the color of the dots represents the strength of the
correlation, and “*” denotes significance; (H, I) Box plots displaying the differences in stromal score and immune score between high and low-risk
groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 10

Differences of gene mutant enrichment in Riskscore model. (A) Waterfall plot of the top 20 genes’ SNV mutation frequencies in the high-risk group;
(B) Waterfall plot of the top 20 genes’ SNV mutation frequencies in the low-risk group; (C–E) Box plots illustrating the difference in Riskscore
between mutated and wild-type groups for genes with significantly different mutation frequencies between high and low-risk groups, where red
represents the mutated group and blue represents the wild-type group; (F) Survival curve comparison between high and low TMB groups, where red
represents the high TMB group and blue represents the low TMB group.
FIGURE 11

Predictive modeling of immunotherapy efficacy via risk stratification. (A) Kaplan-Meier curves for high-risk versus low-risk groups within the
IMvigor210 cohort; (B) Violin plots illustrating differences in risk scores between responder and non-responder groups within the IMvigor210 cohort,
with responders depicted in red and non-responders in blue; (C) Bar graphs showing the cumulative distribution differences between responder and
non-responder groups among high-risk and low-risk categories within the IMvigor210 cohort; (D) Violin plots of risk scores for responder versus
non-responder groups as predicted by TIDE; (E) Bar graphs depicting the cumulative distribution of responder versus non-responder groups among
model-based stratifications as forecasted by TIDE; (F–I) Violin plots representing the differences in IPS scores between high-risk and low-risk
groups, with high-risk groups colored in red and low-risk groups in green.
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immune response status of samples in the TCGA_OC dataset to

evaluate the model’s ability to predict the immune response. The

risk score of the responsive group was significantly lower than that

of the nonresponsive group (Figures 11D, E). Additionally, the

proportion of responders in the low-RS group was significantly

greater than that in the high-RS group. The analysis from TIDE

indicated a significant correlation between risk scores, RS grouping,

and immune response, suggesting a strong predictive ability of the

model for the immune response. Furthermore, we employed the

immunophenoscore (IPS) (Supplementary Table 10: IPS_res) to

explore clinical efficacy from the perspective of tumor

immunogenicity and found that all four IPS scores in the low-RS

group were significantly higher than those in the high-RS group, further
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revealing that patients in the low-RS group are more likely to benefit

from immunotherapy (Figures 11F–I). Furthermore, we analyzed the

relationships between the risk score model and the IC50 values of

targeted and chemotherapeutic drugs via the GDS and TCGA databases

(Supplementary Table 11: drug_res&sign_stat; Supplementary Table 11:

corr_IC50_ModelGene_corr). Our findings confirmed a significant

negative correlation between the expression of GALNT10, GAS1, and

AKAP12 and the risk score and IC50 values of the drugs (Figure 12A).

Additionally, we observed a strong positive correlation between the

expression of the genes CXCL11 and PRSS16 and the IC50 values of the

drugs. The different treatment responses to various targeted drugs’ IC50

values were also evident between the high- and low-RS groups

(Figures 12B–I).
FIGURE 12

Risk model predicts chemotherapy drug resistance. (A) Heatmap illustrating the correlation between IC50 values of drugs showing significant
differences in sensitivity between high-risk and low-risk groups, model gene expression, and RiskScore. The intensity of the color indicates the level
of correlation, with * denoting significance; (B–E) Box plots depicting differences in IC50 values for drugs to which high-risk groups are more
sensitive, with high-risk groups in red and low-risk groups in green; (F–I) Box plots showing differences in IC50 values for drugs to which low-risk
groups are more sensitive. *p < 0.05, **p < 0.001, ***p < 0.001.
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3.6 Validation of the expression levels of
hub genes in samples

In addition to PRSS16, we explored the protein expression of the

other hub genes in the HPA database (https://www.proteinatlas.org/).

Among them, GAS1 was significantly overexpressed in OC tissues,

whereas AKAP12 and GALNT10 were markedly upregulated in

normal tissues. PI3 exhibited low expression in both normal and

OC tissues. The remaining proteins were moderately expressed in

normal and OC tissues (Figure 13A). To further corroborate the

results obtained from the HPA database, we conducted validation in

OC cell lines and specimens at the protein and mRNA levels

through Western blotting and qPCR assays (Figures 13B–I), and

we discovered that the outcomes aligned with those derived from

the HPA database. Due to the coefficient scores, we identified GAS1

as a crucial oncogene from the RS model. Knocking down GAS1 in

A2780 and SKOV3 cells resulted in a notable decrease in the

proliferative and invasive capacities of OC cells (Figures 14A–D).

Most notably, diminished EDU fluorescence and weakened

reparative abilities were observed following GAS1 knockdown

(Figures 14E, F).
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4 Discussion

OC is the most aggressive reproductive system cancer in females

worldwide, with a low survival of less than 35% by five years after

diagnosis, despite various improved treatment strategies, such as

cytoreductive surgery, modified chemotherapy and hormonal

therapy (19). Thus, the discovery and development of

individualized diagnostic and therapeutic strategies are urgently

needed. Fortunately, as medicine has evolved from empirical to

evidence-based, personalized, precision medicine has become

increasingly achievable. Against the backdrop of the emerging era

of bioinformatics, many genetic signatures and corresponding risk

models have been mined from internationally available genomic

databases and increasingly accepted by the scientific community (20).

Due to the tumor complexity/heterogeneity of neoplasms and

their surrounding tumor microenvironment (TME) (5, 21), most

OC patients experience recurrence after first-line treatment. Several

cells involved in both innate and adaptive immunity, including

tumor-associated macrophages (TAMs), tumor-associated

neutrophils (TANs), myeloid-derived suppressor cells (MDSCs),

gd T cells, and natural killer (NK) cells, directly or indirectly shape
FIGURE 13

Validation of the expression levels of hub genes in samples. (A) IHC results of proteins in RS model from HPA database. (B) IHC results of proteins
from RS model in our clinical samples. (C) Western-blot assay results of proteins from RS model in cell lines. (D-I) qPCR results of markers from RS
model in cell lines. **p < 0.001.
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the OC TME (22, 23), which displays unique features leading to

immune suppression and tolerance and the impairment of immune

system components, including TAMs (24), TANs (25), gd T cells,

and NK cells (26). The immune context of OC acts as a crucial

orchestrator of OC progression, playing an indispensable role in

predicting patient prognosis.
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Cuproptosis, an unconventional cell death mechanism, is

involved in numerous pathological conditions, including cancers,

albeit mainly through undefined underlying mechanisms. The

process of cuproptosis has an unambiguous relationship with

mitochondrial respiration (27). Excess copper within cells can be

transported to the mitochondria by ionophores and directly bind to
FIGURE 14

GAS1 regulates OC cell progression. (A, B) Colony formation assay results of A2780 and SKOV3 cells transfected with GAS1 siRNA. C, D) EdU assay
results for A2780 and SKOV3 cells transfected with GAS1 siRNA. (E) Transwell assay results of A2780 and SKOV3 cells transfected with GAS1 siRNA..
(F) Wound healing assay for A2780 and SKOV3 cells transfected with GAS1 siRNA. **p < 0.001, ****p < 0.0001.
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lipoylated components of the tricarboxylic acid (TCA) cycle,

triggering an accumulation of lipoylated proteins and loss of

iron–sulfur cluster proteins, leading to proteotoxic stress and,

eventually, cell death (9). However, little work has been

performed on optimizing the prognostic model in OC utilizing

cuproptosis combined with immune infiltration.

Taken together, in this study, the differential expression of

CRGs and TME-related genes was analyzed at the single-cell

level, and the correlations between these two types of genes were

described, with the active cooperative death of malignant cells

further identified. We subsequently identified three molecular

subtypes on the basis of differential gene expression between

active and inactive cuproptosis cells and demonstrated differential

enrichment via multiple analyses. In particular, a prognostic risk

model integrating 6 genes was constructed, which was validated

with four datasets from major public databases. In addition, the

patients were divided into high- and low-risk groups based on the

risk model, and the associations between the risk score and multiple

features were depicted. Finally, the ability of the risk model to

predict the efficacy of immunotherapy and chemotherapy drug

resistance was delineated.

Six genes, including PRSS16, CXCL11, PI3, GALNT10, GAS1,

and AKAP12, constitute a prognostic risk model, and the RS was

calculated. The AUC value of the risk score in the diagnostic ROC

analysis using four datasets covering the TCGA and GEO datasets

further verified the experimental phenomenon. Among the core

genes, PRSS16, encoding a thymus-specific serine protease (TSSP),

which is involved in CD4+ T-cell maturation in the thymus, has

tumor suppressor activity (28). CXCL11, known as interferon-

inducible T-cell alpha chemoattractant (I-TAC), has been

reported to be the ligand of specific atypical chemokine receptors,

including CXCR7 (29) and GPR182 (30). PI3, encoding elafin,

which is a serine protease inhibitor critical for host defense, is

reportedly associated with an unfavorable OS and a better

immunotherapy response in OC (31). Moreover, GALNT10, an

enzyme that mediates protein and lipid modifications, was found to

be an independent predictor of prognosis in OC patients with

immunosuppression (32). AKAP12, a scaffolding protein, anchors

PKA to compartmentalize cycle AMP signaling and was found to be

a promoter in tumors (33). Intriguingly, GAS1, which has been

reported to play a role in growth suppression, blocks entry into the S

phase, prevents the cycling of normal and transformed cells, and

functions as a putative tumor suppressor, whereas it had the

opposite effect in our study (34). This interplay highlights the

complex gene profile heterogeneity of OC, which promotes

changes in the tumor microenvironment.

Notably, we investigated the relationship between the risk score

and tumor immunology and the differences in tumor immunology

among patients with different risk scores. We found that the risk

score acts as an independent prognostic factor and is associated with

the condition of the tumor microenvironment and the efficacy of

immunotherapy. With respect to immunotherapy, a lower risk score

was more likely to be beneficial, as it indicated a higher ESTIMATE

immune score, fewer mutations in tumor suppressor genes and a
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greater immune response. In addition, the half-maximal inhibitory

concentration (IC50) curves of 138 chemotherapy drugs in the

GDSC database were examined to determine their predicted

chemotherapeutic effectiveness. Among them, the IC50 values of

cyclopamine, ABT-888, and AKT inhibitor were determined. VIII,

and ATRA were relatively more common in the high-risk score

group, whereas axitinib, BMS.509744, Elesclomol and GNF.2 were

relatively more common in the high-risk score groups. Both results

were statistically significant after log-rank testing. Accordingly, our

prognostic risk model not only predicts the OS rate but is also

conducive to more precise therapy choices.

Despite these limitations, including the lack of real-world

clinical cohorts and IC50 data from benches, the present study

highlights the outstanding ability of the risk model to predict the

prognosis of OC and its association with tumor immunology. These

findings may contribute to the development of immunotherapy-

and chemotherapy-based interventions in the future.

Three studies have confirmed the role of cuproptosis-related

genes in OC from the perspectives of molecular subtyping and the

risk score. Compared with Li’s results (35), our research focusedmore

on the relationship between the risk score and evaluation indicators

such as chemoresistance, genomic mutations, and the efficacy of

immunotherapies. We focused primarily on cuproptosis without

incorporating ferroptosis, aiming for a more direct exploration of

the roles of CRGs in OC. Our study also focused on the role of key

genes within the risk score, delving into their oncogenic functions.

Unlike Wang’s study (36), our research closely examines the

relationships between the risk score and the tumor immune

microenvironment as well as immunotherapeutic responses.

Additionally, via single-cell analysis, we identified genes that were

differentially expressed between the active copper-depleted malignant

cell population and the inactive cell population to characterize the

molecular subtypes in the TCGA ovarian cancer cohort. Finally,

compared with Zhang’s research (8), our strength lies in uncovering

the oncogenic functions of key genes within the risk score and

validating these findings in samples. Furthermore, our molecular

subtyping method is more specific and precise.

In conclusion, our study provides a novel risk score model

including 6 hub genes associated with cuproptosis and immune

infiltration to predict OC prognosis as well as clinical efficacy.
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promotes hepatocellular
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and invasion through iron
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Background: Hepatocellular carcinoma (HCC) is a common malignancy

worldwide, and its development is closely related to abnormalities in iron

metabolism. This study aims to systematically analyze changes in iron

metabolism in the tumor microenvironment of HCC using single-cell

sequencing technology, and investigate the potential mechanisms by which

iron metabolism regulation affects the survival of liver cancer patients.

Materials and methods: Single-cell sequencing data from hepatocellular

carcinoma patients were obtained from the GEO database. By iron metabolism

genomic scoring, we assessed differences in iron metabolism levels in

hepatocellular carcinoma samples. By cell communication analysis as well as

GO and KEGG enrichment analysis, we determined the functional role of iron

metabolism in different cell types. We used survival analysis and Kaplan-Meier

curves to assess the impact of iron metabolism levels on patient prognosis. In

addition, we identified and analyzed the expression profile of the GLRX3 gene,

investigated its key regulatory role in iron metabolism, and validated its clinical

value as a prognostic marker. Finally, we explored the effect of GLRX3 on

hepatocellular carcinoma phenotype by in vitro experiments such as PCR,

transwell, CCK8, and wound healing assay.
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Results: Bioinformatics results and experimental validation confirmed the

dysregulation of iron metabolism in the development of hepatocellular

carcinoma, revealing iron’s regulatory influence across various cell types.

Additionally, GLRX3 was identified as a key regulatory factor in iron

metabolism, and the mechanism by which GLRX3 regulates tumor cell

proliferation and immune evasion was determined. Furthermore, experiments

verified GLRX3’s role in facilitating tumor cell proliferation and invasion.

Conclusion: This study highlights the critical role of iron metabolism in the

progression of hepatocellular carcinoma, particularly the regulatory mechanism

of the GLRX3 gene in tumor cell proliferation and immune evasion. Iron

metabolism abnormalities are not only drivers of liver cancer development but

also key indicators of patient prognosis.
KEYWORDS

iron metabolism, GLRX3, immunotherapy, precision medicine, multi-omics analysis,
immune signatures, personalized therapy
1 Introduction

Primary liver cancer (PLC) is the fifth most common cancer

globally and the second leading cause of cancer-related deaths (1–

4). Its incidence and mortality rates are rising rapidly, particularly

in Western countries. Hepatocellular carcinoma (HCC), the most

prevalent form of PLC, makes up 90% of all primary liver tumors

and around 5% of all cancers (5–8). The malignant transformation

of hepatocytes results in HCC (9), with known risk factors including

excessive alcohol consumption, hepatitis B virus (HBV) infection,

fat accumulation in the liver, and autoimmune liver diseases (10–

12). While liver transplantation, surgery, and local therapies can be

curative at early stages (13, 14), most liver cancer patients are

diagnosed late, where treatment options are extremely limited and

the prognosis is poor (15–17). Thus, understanding changes in the

tumor microenvironment during liver cancer progression and

gaining deeper insights into its pathogenesis are critical for

developing effective treatments (18).

Iron metabolism encompasses the comprehensive processes of

iron absorption, transport, storage, and utilization within a

biological system. Although the body’s requirement for iron is

relatively modest, it is an essential trace element that plays a

critical role in numerous physiological processes (19). The key

components involved in maintaining cellular iron homeostasis

include transferrin receptor 1 (TfR1), which internalizes

transferrin-bound iron; ferroportin (Fpn), the sole iron export

protein; and ferritin, which stores excess iron (20). Iron levels are

tightly regulated at both systemic and cellular levels to remain

within an optimal range. However, excessive iron can promote the

production of highly reactive and toxic oxidants via the Fenton

reaction, impairing immune function and disrupting various

physiological processes (21).
02299
Hepatocytes play a crucial role in maintaining stable plasma

glucose and lipoprotein levels in humans (22). Under normal

conditions, hepatocytes remain quiescent; however, when liver

tissue is excessively exposed to viruses, toxic substances, or

metabolites, significant physiological changes occur. Given that

the liver is a primary organ for excess iron accumulation, it plays

a crucial role in maintaining iron homeostasis (19, 23).

Dysregulation of iron metabolism significantly increases the risk

of liver cancer. Research has shown that iron overload is not only

associated with cancer development but also actively contributes to

carcinogenesis. Excess iron induces oxidative stress-mediated DNA

damage in hepatocytes and promotes the rapid proliferation of

tumor cells (24, 25). Thus, understanding the intrinsic link between

abnormal iron metabolism and changes in the tumor

microenvironment of liver cancer is critical for developing precise

treatment strategies and for uncovering the broader impact of metal

ions on cancer progression (22, 26).
2 Materials and methods

2.1 Cell culture

The human hepatocellular carcinoma cell lines, Hep3B and

Huh7, were cultured in RPMI/1640 medium (Gibco) supplemented

with 10% fetal bovine serum (FBS) (Hyclone), along with 100 U/L

of penicillin and 100 mg/L of streptomycin (Thermo Fisher). Cells

were maintained at 37°C in a humidified atmosphere of 5% CO2.

The culture medium was changed every 2-3 days to ensure optimal

growth conditions. When cells reached 80-90% confluence, they

were passaged using trypsin-EDTA for further experiments.
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2.2 shRNA knockdown

Plasmids expressing shRNA, specifically designed to target

GLRX3, were carefully constructed with the assistance of

GenePharma. During cultivation, the cells were treated with viral

supernatants and polybrene (Sigma Aldrich) in the culture medium.

After 24 hours of incubation, the cells were transferred to fresh

medium containing 2.0 mg/ml of puromycin. The efficiency of

GLRX3 knockdown was confirmed two days later using qRT-

PCR analysis.
2.3 qPCR assay

Total RNA extraction was carried out utilizing the RNA Eazy

Fast Tissue/Cell Kit (TIANGEN Biotech) in accordance with the

manufacturer’s guidelines. Subsequently, cDNA synthesis was

performed using the FastKing RT Kit (TIANGEN Biotech),

adhering to the provided protocol. Real-time PCR analysis was

conducted with the application of the SuperReal PreMix Plus

(TIANGEN Biotech) reagent, implemented on the StepOnePlus

Real-Time PCR System. The PCR reaction encompassed an initial

pre-denaturation phase at 95°C for 15 minutes, followed by 40

amplification cycles, comprising denaturation at 95°C for 10

seconds, annealing at 72°C for 20 seconds, and extension at 60°C

for 20 seconds. Primer sequences utilized were procured from

Sangon Biotech. (Species of Human Origin) GLRX3 Forward

Primer: GGGCGGCTGAGGCAGCT,reverse primer GCAGG

GGGCAGCATGAGTC;(Species of Human Origin) IL10 Forward

Primer: GACTTTAAGGGTTACCTG GGTTG,Reverse Primer:

TCACATGCGCCTTGATGTCTG; At last, PCR signals 2-44Ct

was used to calculate the expression of genes mRNA levels. The

following sequences were used: 5′-GTGGAAATTCTTCA

CAAACAT-3′ for human GLRX3 shRNA and 5′-GGAATC
TCATTCGATGCATAC-3′ for the control shRNA.
2.4 Transwell assay

A seeding density of 1×10^5 cells was allocated to either

Matrigel-coated chambers (BD Biosciences, San Jose, CA) for the

invasion assay or uncoated chambers designated for the migration

assay. The upper chamber was filled with serum-free medium, while

the lower chamber was supplied with complete RPMI/1640

medium. Following a 24-hour incubation period, cells that had

traversed the membrane were meticulously fixed with a 4%

paraformaldehyde solution and subsequently subjected to staining

with 0.1% crystal violet. Cell quantification was carried out using a

light microscope, specifically the Thermo Fisher instrument based

in Waltham, MA, USA.
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2.5 CCK-8 assay

Cell viability was ascertained via the Cell Counting Kit-8 (CCK-8)

assay. Cells were appropriately seeded at a density of 1500 cells

per well, and each well contained 200 µl of complete medium within

96-well plates. Subsequent to seeding, the cells were diligently

cultured under standard conditions at 37°C. Following each

experimental procedure, 20 µl of CCK-8 reagent (Beyotime) was

introduced into every well. A further incubation period of 2 hours

ensued, after which the optical density value (OD450nm) was

meticulously determined utilizing a microplate reader.
2.6 Wound healing assay

A wound healing assay was conducted to evaluate the migratory

capacity of hepatocellular carcinoma cells. Transfected cells in six-

well plates were incubated at 37°C until they reached around 80%

confluence. Then, a 200 mL sterile pipette tip was used to create

uniform wounds in the cell monolayer. Cells were washed twice

with phosphate-buffered saline to remove any debris, and the

medium was replaced with serum-free medium. Cell migration

into the wound area was carefully monitored under an Olympus

inverted microscope at 0 and 24 hours.
2.7 Protein expression
and immunohistochemistry

We used the CTPAC database to validate the difference in the

expression of GLRX3 protein in hepatocellular carcinoma tissues

and normal liver tissues. The expression levels of GLRX3 in

hepatocellular carcinoma tissues and normal tissues were verified

by immunohistochemical sections from the HPA database.
2.8 Data sources

The single-cell sequencing data used in this study was obtained from

the GEO database, specifically from dataset GSE149614, which includes

sequencing data from 10 HCC patients. We selected two types of

samples, primary tumors and non-tumorous liver tissues, for analysis.

Spatial transcriptomics sequencing data from one HCC tumor tissue

sample was sourced from GSM6177612, with tissue sections derived

from primary hepatocellular carcinoma regions. Additionally, RNA-seq

data for HCC was downloaded from the UCSC Xena platform (https://

xena.ucsc.edu/), originating from the TCGA (The Cancer Genome

Atlas) cohort. This dataset contains sequencing information from

424 samples along with corresponding survival data, which was

used for survival analysis. External validation sets utilized in this

study included GSE144269, GSE76427, and ICGC_LIRI.
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2.9 Single-cell sequencing data processing

After processing single-cell sequencing data from 10 tumor and 8

normal liver samples, we obtained a total of 63,101 cells. Preliminary data

analysis was conducted using the Seurat package, which included quality

control, dimensionality reduction, clustering, and visualization. To

ensure the reliability of the sequencing data, stringent quality control

measures were implemented. Specifically, cells with fewer than 500 or

more than 6,000 detected genes, as well as those with over 20%

mitochondrial gene content, were excluded. This step minimized the

presence of empty droplets, doublets, and senescent cells. Following data

normalization and scaling, PCA-based dimensionality reduction was

performed, and batch effects weremitigated using theHarmony package.

We then selected the top 20 principal components for clustering with a

resolution of 0.3, resulting in the identification of 17 cell clusters, which

were visualized using UMAP (27–29).
2.10 Cell type identification and
subpopulation segmentation

We employed common cell marker genes and the

“FindAllMarkers” function to conduct preliminary cell type

identification. Based on the expression patterns of marker genes in

each cluster and the upregulation of specific genes, we assigned cell type

labels. Subpopulations within larger groups, such as myeloid cells, B

cells, and T/NK cells, were further subdivided. Using a resolution of 0.1,

we identified distinct cell types, including plasma cells, cytotoxic T

lymphocytes (CTLs), epithelial-mesenchymal transition cells (EMTs),

regulatory T cells (Tregs), and macrophages (30, 31).
2.11 Tumor cell identification and
stemness assessment

To identify tumor cells, we utilized the “copykat” package for

copy number variation (CNV) analysis. CopyKAT (Copy-number

Karyotyping of Tumors) is a computational tool that employs an

integrative Bayesian approach to detect whole-genome aneuploidy

in single cells at a 5MB resolution, allowing us to distinguish tumor

cells from normal cells. Cells displaying extensive whole-genome

CNV (aneuploidy) were classified as tumor cells, while stromal and

immune cells typically exhibited 2N diploid or near-diploid CNV

profiles. To assess the differentiation status of tumor cells and

support pseudotime analysis of T cell subpopulations, we applied

the “cytotrace” package for cell stemness scoring. Cytotrace

provides a continuous measure of developmental potential,

ranging from 0 (fully differentiated) to 1 (pluripotent).

Pseudotime inference for T cell subpopulations was performed

using the “monocle” package (32).
2.12 Iron metabolism level assessment

To quantify iron metabolism levels across different cell types

using 73 iron metabolism-related genes, we applied several gene set
Frontiers in Immunology 04301
scoring methods, including AddModuleScore, ssGSEA, AUCell,

UCell, and singscore. Each method generated a score for each

cell, and after centering and standardizing these scores, the final

score for each cell was obtained by summing the five scores. The use

of multiple scoring methods helps reduce errors and biases in gene

set scoring, providing more comprehensive information, increased

robustness, and better biological interpretation. For cell types that

showed significant changes in iron metabolism levels between

groups, cells were classified into high- and low-score groups

based on the average score, representing different levels of iron

metabolism (27, 33, 34).
2.13 Enrichment and cell
communication analysis

To investigate the biological functional differences among cells with

varying iron metabolism levels, we conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses. Genes for enrichment analysis were identified using the

“FindMarkers” function, focusing on those upregulated in the high-

score group cells. The “clusterProfiler” package was employed to

retrieve gene sets from the GO, KEGG, and GSEA databases and to

visualize the results. Additionally, we utilized the “GSVA” package,

which employs the “HALLMARK” gene set to identify tumor-

associated biological processes. To compare differences in cell

communication between high- and low-score cells, we conducted cell

communication network analysis using the “CellChat” package.

CellChat simulates and analyzes intercellular communication by

integrating gene expression data with known interactions between

signaling ligands, receptors, and cofactors (35–37).
2.14 Infiltration and prognostic analysis of
high- and low-score cells

Using the marker genes of high- and low-score cells, we

performed ssGSEA scoring on TCGA data to classify patients into

high- and low-infiltration groups. Survival data from these groups

were then used to plot Kaplan-Meier (K-M) curves, allowing us to

compare prognostic differences. The “survival” and “survminer”

packages were employed to plot K-M curves for both overall

survival and progression-free survival (38).
2.15 Spatial transcriptomics data
deconvolution analysis

For the initial processing of spatial transcriptomics data, we utilized

the “Seurat” package. During quality control, only mitochondrial and

ribosomal genes were excluded, while data for each spot were retained.

After normalization and centering using the “SCTransform” function,

we performed PCA-based dimensionality reduction and clustering. We

clustered the data using the top 20 principal components, resulting in

the identification of 7 cell clusters. The “scMetabolism” package was

employed to infer metabolic activity in each cell cluster from the spatial
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transcriptomics data. This package includes human-specific metabolic

gene sets covering 85 KEGG pathways and 82 REACTOME entries,

employing the VISION algorithm to score each cell. To address the

resolution limitations of spatial transcriptomics and leverage spatial

location information, deconvolution analysis was performed using the

“spacexr” package, specifically the RCTD deconvolution analysis.

Annotated single-cell data were used to deconvolute spatial

transcriptomics data, inferring the probability of each cell type at

each sequencing spot. Cells from high- and low-score groups were also

included in the analysis to compare iron metabolism levels across

different locations.
2.16 Expression and prognostic analysis of
key iron metabolism genes in tumors

For key iron metabolism genes, we performed differential gene

expression analysis using TCGA data and validated the results with

GEO data. Six significantly differentially expressed iron metabolism

genes were then used to score bulk data, categorizing patients into

high and low groups for comparison of prognostic differences,

reflecting the impact of key iron metabolism genes on HCC

prognosis. The ssGSEA method was employed to score and plot

K-M curves using various survival datasets. Two additional datasets

from GEO and ICGC were used as external validation sets to assess

the impact of key iron metabolism genes on HCC patient prognosis.

Furthermore, we examined the expression of key iron metabolism

genes in spatial transcriptomics data, comparing gene expression in

normal cells, mixed cells, and malignant cells, and their correlation

with various cell types.
2.17 Prognostic and clinical analysis of
GLRX3, a key iron metabolism gene

For GLRX3, a key gene in iron metabolism, we conducted

subgroup differential expression analysis using clinical information

from TCGA. The prognostic value of GLRX3 was evaluated using

TCGA and multiple external validation sets. Enrichment analysis

and spatial transcriptomics data were also employed in the study

of GLRX3.
2.18 Statistical analysis

Statistical analyses were performed using R 4.2.2 64-bit version

and its supported packages. The non-parametric Wilcoxon rank-

sum test was used to assess relationships between groups for

continuous variables. Spearman correlation analysis was used to

test correlation coefficients. All statistical analyses were considered

significant at P<0.05.
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3 Results

3.1 Quality control of liver cancer samples

In this study, we obtained single-cell transcriptomic data from

the GEO database (dataset GSE149614), which includes 18 liver

cancer tumor tissue samples and adjacent normal liver tissue

samples from ten patients. To ensure high-quality single-cell data

analysis, we first performed quality control on all samples. To

minimize the impact of aging cells, red blood cells, and a high

percentage of mitochondrial reads, we evaluated key quality

metrics, such as UMI counts and the percentages of

mitochondrial and hemoglobin gene expression (Figure 1A).

Additionally, we employed the Harmony package to correct for

potential batch effects in sequencing, ensuring that observed

differences were due to biological variation between samples

(Figure 1B). After dimensionality reduction and clustering, we

visualized 61,776 cells that passed quality control, which were

grouped into 16 distinct clusters via UMAP (Figure 1C).

Furthermore, we analyzed differences in data distribution across

samples (Figure 1D), between tumor and normal groups

(Figure 1E), and in mRNA density (Figure 1F).

Next , us ing common ce l l marker genes and the

“FindAllMarkers” function, we performed preliminary cell type

identification. Based on the expression patterns of marker genes

and upregulated genes, we named the cell types (Figure 1G).

Figure 1H displays the distribution of different cell types across

the tumor and normal groups, while the heatmap in Figure 1I shows

the marker genes for each cell cluster. For the large groups of

myeloid cells, B cells, and T/NK cells, we further subdivided the

populations, using a resolution of 0.1, identifying plasma cells,

CTLs, EMTs, Tregs, macrophages, and more (Figures 1J–M).

Lastly, we displayed the distribution differences of all cell types

across the tumor and normal groups (Figure 1N).
3.2 Tumor cell identification

To identify tumor cells, we used the “copykat” package for copy

number variation (CNV) analysis, which distinguishes tumor from

normal cells by identifying aneuploidy. Cells exhibiting extensive

genome-wide CNV were classified as tumor cells. Figure 2A shows a

group of cells with high levels of CNV abnormalities detected by

copykat. Additionally, we performed stemness scoring using the

“cytotrace” package (Figure 2B). By combining these results with

those from copykat, we confirmed that hepatocytes constituted a

highly malignant tumor cell population. Next, we applied five

scoring methods (AddModuleScore, ssGSEA, AUCell, UCell, and

singscore) to assess the expression of iron metabolism genes across

different cell populations (Figures 2C, D). We also compared the

iron metabolism scores of each cell type between tumor and normal

groups (Figure 2E).
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FIGURE 1

Single-cell data processing and cell type identification. (A) Violin plot showing sample characteristics after single-cell data quality control. The upper
plot displays the number of detected genes, while the lower plot shows the proportion of mitochondrial genes. (B) PCA plot of cell distribution
across samples after batch effect removal. (C) UMAP of dimensionality-reduced clustered cell populations, with a total of 17 clusters. (D) UMAP
showing cell distribution across different samples. (E) UMAP showing cell distribution across different groups. (F) UMAP of cell counts. (G) Results of
cell type identification, displaying the distribution and number of each cell type in different groups. (H) Bar plot of cell proportions. (I) Heatmap of
cell marker gene expression. (J) UMAP of B cell subpopulations. (K) UMAP of T/NK cell subpopulations. (L) UMAP of myeloid cell subpopulations.
(M) UMAP of overall cell types. (N) Bar plot showing proportions of overall cell types.
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3.3 Plasma cell iron metabolism analysis

To investigate the characteristics of ironmetabolism in plasma cells

within the liver cancer tumor microenvironment, we categorized

plasma cells into high and low expression groups based on their iron

metabolism scores (Figure 3A). Notably, plasma cells in the tumor

group exhibited significantly higher iron metabolism scores compared

to those in the normal group (Figure 3B). To assess the heterogeneity

between the two groups, we performed Gene Set Variation Analysis

(GSVA), which revealed functional differences between plasma cells

with high and low iron metabolism scores (Figure 3C). Plasma cells

with elevated iron metabolism scores demonstrated enhanced

lipogenesis, metabolic activity, and oxidative phosphorylation.

Furthermore, we evaluated the expression of antibody secretion-

related genes and observed a reduction in antibody secretion

functionality in the high iron metabolism group (Figure 3D). Cell

communication analysis indicated that plasma cells with high iron
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metabolism scores exhibited stronger communication and signaling

output (Figures 3E, F). GO enrichment analysis indicated that plasma

cells with high iron metabolism scores exhibited increased iron ion

transport and oxidative response capabilities (Figure 3G). KEGG

pathway analysis suggested that these cells were more active in

ferroptosis and pyrimidine/nucleotide metabolism (Figure 3H).

Finally, survival curve analysis revealed that patients with high

iron metabolism had shorter overall survival (OS) and progression-

free survival (PFS) compared to those with low iron metabolism

(Figures 3I–K).
3.4 Cytotoxic T cell iron
metabolism analysis

To assess the impact of iron metabolism on immune

cytotoxicity, we categorized cytotoxic T cells (CTLs) into high
FIGURE 2

Tumor microenvironment analysis and iron metabolism level assessment. (A) UMAP showing copy number variation, where red indicates polyploid
cells (tumor cells). (B) Heatmap of stemness score, ranging from 0 (differentiated) to 1 (pluripotent). (C) Bubble plot of gene set scoring results.
(D) Heatmap of gene set scores. (E) Violin plot of score differences between tumor and normal groups. ** represents a p-value < 0.01,
**** represents a p-value < 0.0001.
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and low expression groups based on their iron metabolism scores

(Figure 4A). Notably, CTLs in the tumor group exhibited

significantly higher iron metabolism scores compared to those in

the normal group (Figure 4B). GSVA analysis of the functional

differences between these groups revealed a heightened oxidative

profile in the high iron metabolism group (Figure 4C). Evaluation of
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cytotoxicity-related genes showed reduced cytotoxic function in

CTLs with elevated iron metabolism (Figure 4D). Cell

communication analysis further demonstrated enhanced

intercellular communication and signal output in these cells

(Figures 4E, F). GO and KEGG enrichment analyses indicated

increased iron ion transport and oxidative responses in CTLs
FIGURE 3

Plasma cell analysis. (A) UMAP of high and low iron metabolism score cells, where pink indicates high iron metabolism score cells and blue indicates low
score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets, showing pathways enriched in low-
score and high-score cells. (D) Bubble plot of antibody secretion-related gene expression. (E) Circle plot showing cell communication frequency, where
line thickness represents the number of communications. (F) Scatter plot of signal transmission and reception strength between cells. (G) Bar plot of GO
enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of differential expression of iron metabolism-related genes in
plasma cells. (J) KM survival curve for high and low infiltration groups (overall survival). (K) KM survival curve for high and low infiltration groups
(progression-free survival).
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with high iron metabolism (Figures 4G, H). Additionally, analysis of

iron metabolism-related gene expression revealed a downregulation

of NDFIP1 and BOLA3 in tumor tissues (Figure 4I). Survival curve

analysis showed that patients with high iron metabolism had

shorter overall survival (OS) and progression-free survival (PFS)

compared to those with low iron metabolism (Figures 4J, K).
3.5 Effector memory T cell iron
metabolism analysis

Effector memory T cells (TEMs) can rapidly produce effector

cytokines to provide immune protection. We investigated the effects

of iron metabolism on their immune function. TEMs were divided into
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high and low iron metabolism score groups (Figure 5A), and TEMs in

the tumor group exhibited significantly higher iron metabolism scores

than those in the normal group (Figure 5B). GSVA analysis revealed

increased protein synthesis in high ironmetabolism TEMs (Figure 5C).

However, these cells also exhibited reduced cell proliferation and

migration capacities (Figure 5D). Cell communication analysis

showed enhanced intercellular communication and signal output in

TEMs with high iron metabolism (Figures 5E, F). GO and KEGG

analyses indicated elevated iron ion transport, protein localization, and

cell differentiation in high iron metabolism TEMs (Figures 5G, H).

Additionally, most iron metabolism-related genes were upregulated in

tumor tissues (Figure 5I). Survival analysis demonstrated shorter

overall survival (OS) and progression-free survival (PFS) in patients

with high iron metabolism (Figures 5J, K).
FIGURE 4

Cytotoxic T cell analysis. (A) UMAP of high and low iron metabolism score cells, where yellow indicates high-score cells and gray indicates low-
score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of cytotoxic-
related gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot
of GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in
CTLs. (J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low
infiltration groups.
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3.6 Regulatory T cell iron
metabolism analysis

Regulatory T cells (Tregs) are responsible for modulating

immune responses and maintaining self-tolerance. We explored

the impact of iron metabolism on their function. Tregs were divided
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into high and low expression groups based on their iron metabolism

scores (Figure 6A), and Tregs in the tumor group exhibited higher

iron metabolism scores compared to those in the normal group

(Figure 6B). GSVA analysis revealed that oxidative phosphorylation

was a dominant feature in high iron metabolism Tregs (Figure 6C).

Immune suppression-related genes displayed distinct expression
FIGURE 5

Effector memory T cell analysis. (A) UMAP of high and low iron metabolism score cells, with green indicating high-score cells and blue indicating
low-score cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of
proliferation and migration-related gene expression. (E) Circle plot showing cell communication frequency. (F) Scatter plot of signal transmission and
reception strength. (G) Bar plot of GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron
metabolism-related gene expression in EMTs. (J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for
progression-free survival in high and low infiltration groups.
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patterns in the high iron metabolism group (Figure 6D). Cell

communication analysis showed enhanced intercellular

communication and signal output in Tregs with high iron

metabolism scores (Figures 6E, F). GO and KEGG analyses

revealed increased iron ion transport and oxidative responses in
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these cells (Figures 6G, H). Interestingly, high iron metabolism was

associated with longer overall survival (OS) and progression-free

survival (PFS) (Figures 6I–K). Pseudotime analysis revealed that

CD56dim NK cells and Tregs appeared in the later stages of T cell

development (Figures 6L, M).
FIGURE 6

Regulatory T cell analysis. (A) UMAP of high and low iron metabolism score cells, with blue indicating high-score cells and yellow indicating low-score
cells. (B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of immunosuppressive-
related gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot of
GO enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in Tregs.
(J) KM survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration
groups. (L) Pseudotime trajectory plot of T cell subpopulations, with color representing pseudotime. (M) Left panel shows the distribution of T cell
subtypes on the trajectory plot, and the right panel shows the trajectory tree diagram.
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3.7 Endothelial cell iron
metabolism analysis

To explore iron metabolism in endothelial cells within the liver

cancer microenvironment, we divided endothelial cells into high and
Frontiers in Immunology 12309
low expression groups based on iron metabolism scores (Figure 7A).

Endothelial cells in the tumor group exhibited higher iron

metabolism scores compared to those in the normal group

(Figure 7B). Endothelial cells with high iron metabolism showed

upregulation of pro-angiogenic genes, such as VEGFA (Figure 7C).
FIGURE 7

Endothelial cell analysis. (A) UMAP of high and low iron metabolism score cells, with green indicating high-score cells and white indicating low-
score cells. (B) Bar plot of cell proportions. (C) Bubble plot of angiogenesis-related gene expression. (D) Diverging bar plot of GSVA enrichment
results for Hallmark gene sets. (E) Bar plot of GO enrichment analysis results. (F) Bar plot of KEGG enrichment analysis results. (G) Circle plot of cell
communication frequency. (H) Scatter plot of signal transmission and reception strength. (I) Bubble plot showing NOTCH signaling pathway
communication between high and low iron metabolism endothelial cells. (J) Contribution of ligand-receptor pairs to communication in the NOTCH
pathway. (K) Violin plot of iron metabolism-related gene expression in endothelial cells. (J) KM survival curve for overall survival in high and low
infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration groups.
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GSVA analysis indicated increased oxidative phosphorylation and

metabolic activity in high iron metabolism endothelial cells

(Figure 7D). GO and KEGG enrichment analyses revealed elevated

metabolic activity in these cells (Figures 7E, F). Cell communication

analysis showed enhanced intercellular communication and signal

output (Figures 7G, H). The JAG1-NOTCH1 pathway was identified

as a key mediator of active communication (Figures 7I, J). Survival

analysis revealed that patients with high iron metabolism had a

longer survival period (Figures 7L, M).
3.8 Characterization of iron metabolism
in fibroblasts

Fibroblasts are an important cellular component of the tumor

microenvironment. Tumor-associated fibroblasts play a key role at
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all stages of tumor development, promoting tumor proliferation

and migration, enhancing tumor angiogenesis, regulating tumor

immunity, and increasing tumor drug resistance. We divided

fibroblasts into high- and low-expression groups based on iron

metabolism scores (Figures 8A, B). To explore the heterogeneity

between the two groups, we analyzed the functional differences

between fibroblasts with high and low iron metabolism scores

through GSVA and found that the high iron metabolism score

group exhibited higher oxidative phosphorylation, reactive oxygen

species response, and fat generation-related characteristics

(Figure 8C). We constructed a bubble chart to visualize the

expression levels of tumor-associated fibroblast marker genes,

aiming to explore the impact of different metabolic scores on the

generation of tumor-associated fibroblasts (Figure 8D). The results

indicated that the expression of tumor-associated fibroblast marker

genes was elevated in fibroblasts with low iron metabolism scores.
FIGURE 8

Fibroblast analysis. (A) UMAP of high and low iron metabolism score cells, with yellow indicating high-score cells and gray indicating low-score cells.
(B) Bar plot of cell proportions. (C) Diverging bar plot of GSVA enrichment results for Hallmark gene sets. (D) Bubble plot of tumor-associated fibroblast
marker gene expression. (E) Circle plot of cell communication frequency. (F) Scatter plot of signal transmission and reception strength. (G) Bar plot of GO
enrichment analysis results. (H) Bar plot of KEGG enrichment analysis results. (I) Violin plot of iron metabolism-related gene expression in fibroblasts. (J) KM
survival curve for overall survival in high and low infiltration groups. (K) KM survival curve for progression-free survival in high and low infiltration groups.
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In a cell communication analysis, we discovered that fibroblasts

with high iron metabolism scores exhibited enhanced levels of cell

communication and stronger signal output characteristics

(Figures 8E, F). Gene Ontology (GO) enrichment analysis

revealed that fibroblasts with high iron metabolism scores

demonstrated increased iron ion transport characteristics and a

heightened oxidative response (Figure 8G).KEGG pathway analysis

found that fibroblasts with high iron metabolism scores displayed

more active metabolism (Figure 8H). We further analyzed the

expression levels of iron metabolism genes and found that most

of these genes were downregulated in liver cancer tissues

(Figure 8I). Survival curves indicated that patients with high iron

metabolism had a longer survival period compared to those with

low iron metabolism (Figures 8J, K).
3.9 Spatial distribution of iron metabolism

To further investigate the features of iron metabolism in liver

cancer, we conducted a deconvolution analysis of spatial

transcriptomic data. We obtained spatial transcriptomic sequencing

data from hepatocellular carcinoma (HCC) tumor tissue

(GSM6177612), specifically from the tumor region of primary

hepatocellular carcinoma. Following dimensionality reduction and

clustering of the spatial transcriptomic data, we visualized the results

using UMAP, which revealed seven distinct cell clusters (Figures 9A,

B). The spatial distribution of these cell clusters is illustrated in

Figure 9C. We assessed the iron metabolism-related gene scores for

each cell cluster (Figure 9D) and analyzed the metabolic differences

among the clusters, highlighting elevated metabolic activity in clusters

0, 1, and 2 (Figure 9E). Additionally, we examined the activity levels

of glycolytic and oxidative phosphorylation metabolic pathways

across different spatial regions (Figures 9F, G). High metabolic

activity generally indicates that these cells play a more active role in

tumor growth and progression, particularly in scenarios where energy

demands are elevated. The spatial differences in the glycolytic and

oxidative phosphorylation pathways suggest that cells in different

regions may employ unique metabolic strategies to adapt to changes

in the microenvironment. To further clarify the metabolic

characteristics of cells in each spot and reveal the spatial

distribution of their iron metabolism levels, we displayed the

single-cell annotation results at the spatial level through

deconvolution analysis (Figures 9H, I), showing the primary and

secondary probabilities of cells with different iron metabolism levels

in each spot (Figures 9J, K).
3.10 Survival analysis of iron metabolism-
related genes

We analyzed the differential expression of key iron metabolism

genes in tumor versus normal samples using TCGA and GEO data

(Figure 10A), and performed ssGSEA scoring of iron metabolism
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levels in both groups (Figures 10B, C). The results revealed that iron

metabolism levels were markedly elevated in the tumor group

compared to the normal group. To further investigate the role of

iron metabolism across different tumor stages, we examined and

illustrated the differences in iron metabolism scores among patients

at various clinical stages (Figures 10D, E). In the spatial

transcriptomics data, we identified malignant, mixed, and normal

cells, and depicted the iron metabolism score intensities for these

three cell types (Figures 10F–H). The elevated iron metabolism

scores in malignant cells compared to normal cells reflect the

heterogenei ty of i ron metabol i sm within the tumor

microenvironment. The correlation between AUC scores of key

iron metabolism genes and microenvironment components further

indicated that iron metabolism plays a significant role in regulating

the tumor microenvironment, potentially influencing intercellular

metabolic communication and tumor growth.

Through Spearman correlation analysis of AUC scores for key

iron metabolism genes and microenvironment components, we

further validated the pivotal role of iron metabolism in liver cancer

(Figure 10I). We extracted overall survival (OS), disease-free survival

(DFS), progression-free interval (PFI), and disease-free interval (DFI)

data from liver cancer samples and examined the survival durations

of patients with varying iron metabolism levels. The results indicated

that higher iron metabolism levels were associated with poorer

prognoses across these survival metrics (Figures 10J–M). This

suggests that elevated iron metabolism levels may serve as a

potential biomarker for increased tumor malignancy and adverse

prognosis. Additionally, we utilized ICGC-LIRI and GSE76427

datasets to generate prognostic curves, thereby corroborating our

findings (Figures 10N, O). Furthermore, conducting Gene Ontology

(GO) enrichment analysis on patients with high and low iron

metabolism scores revealed potential mechanisms through which

iron metabolism influences prognosis (Figure 10P). Overall, these

results suggest that iron metabolism represents a critical target for

diagnosis and treatment in liver cancer.
3.11 GLRX3 expression and
prognostic analysis

GLRX3, a key iron metabolism gene, was found to be highly

expressed in HCC. Glutaredoxin 3 (GLRX3) is a type II monothiol

glutaredoxin involved in iron balance, redox reactions, and

antioxidant responses. In the TCGA cohort, GLRX3 expression

was higher in advanced tumor grades (Figure 11A) and higher-stage

tumors (Figure 11B). M1-stage tumors also showed increased

GLRX3 expression compared to M0-stage tumors (Figure 11C).

These differences indicate that high GLRX3 expression correlates

with more advanced tumors and poorer prognosis (Figure 11D).

We validated these findings by analyzing OS and DSS in patients

with different GLRX3 expression levels (Figures 11E–H). Meta-

analysis confirmed our conclusions (Figure 11I). GO enrichment

analysis of high and low GLRX3 score patients revealed potential
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mechanisms influencing prognosis (Figure 11J). Spatial

transcriptomics data showed that GLRX3 was highly expressed in

malignant regions (Figure 11K). Spearman correlation analysis

further confirmed the role of GLRX3 in HCC (Figure 11L).
3.12 Knocking down the expression level of
GLRX3 significantly inhibited the
proliferation, invasion and migration of
hepatocellular carcinoma cells

Knocking down the expression level of GLRX3 significantly

inhibited the proliferation, invasion, and migration of

hepatocellular carcinoma cells. Considering the importance of

GLRX3, we validated its role in hepatocellular carcinoma through

a series of in vitro experiments. First, we reduced the expression of

GLRX3 and confirmed via PCR that its level was significantly

decreased compared to the control group (Figures 12A, B).

Subsequently, CCK8 assays demonstrated that the knockdown of

GLRX3 markedly inhibited the activity of hepatocellular carcinoma

cells (Figure 12C, D). To investigate the relationship between

GLRX3 and the invasive migration of hepatocellular carcinoma,

we conducted transwell and wound healing assays, revealing that

GLRX3 knockdown significantly inhibited the invasive migration of

these cells (Figures 12E, F). Immunohistochemistry experiments

indicated that GLRX3 was highly expressed in hepatocellular

carcinoma tissues (Figure 12G), and Western blot analysis

confirmed the elevated protein expression of GLRX3 in these

tissues (Figure 12H). In summary, GLRX3 enhances the invasive

migration of hepatocellular carcinoma cells, correlating with the

malignant characteristics of the disease.
4 Discussion

Iron serves dual roles in cancer biology: it acts as an initiator in

the early stages of tumor development and functions as a promoter

during malignancy, allowing transformed cells to maximize their

potential for uncontrolled proliferation. Concurrently, cancer cells

exhibit an increased demand for iron to support cellular growth,

leading to alterations in iron metabolism-related gene expression

that facilitate enhanced iron acquisition. Previous studies have

demonstrated that tumor cells often upregulate transferrin

receptor 1 (TFR1) while downregulating ferroportin (FNP),

thereby limiting iron release (4, 19, 21). In our study, by scoring

iron metabolism-related genes, we classified all cells into high and

low iron metabolism groups and found that iron metabolism

activity was consistently higher in tumor samples.

Disruption of the cellular iron homeostasis mechanism can lead

to abnormal iron accumulation or depletion within cells. Under

normal conditions, cells finely regulate iron levels to maintain a

balance between demand and supply (39, 40). Heightened iron

metabolism can disrupt homeostasis, resulting in abnormal iron
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levels that adversely impact cellular function and overall health.

This dysregulation may alter the cellular redox balance, potentially

inducing oxidative damage and ultimately resulting in iron-

dependent programmed cell death, known as ferroptosis. These

factors can significantly impact the prognosis of liver cancer

patients (41). In our study, we generated multiple prognostic

curves based on iron metabolism, showing that patients with

higher iron metabolism scores experienced worse outcomes to

varying degrees (42). Similarly, elevated iron metabolism was

correlated with advanced tumor grades and stages. These findings

underscore the potential of abnormal iron metabolism as a

predictive biomarker and therapeutic target in cancer. They

provide single-cell-level evidence to support the clinical

investigation of iron chelators in cancer therapy (43). For

example, oral iron chelators, such as deferasirox, have shown

efficacy in leukemia patients, while the thiosemicarbazone

Dp44mT has inhibited cancer cell proliferation in vitro by

inducing the expression of p21, a cyclin-dependent kinase

inhibitor involved in cell cycle arrest (44–46).

Our study also identified GLRX3 (Glutaredoxin 3) as a key iron

metabolism target gene that significantly influences liver cancer

progression (47). GLRX3 is a critical iron-sulfur cluster protein

primarily involved in regulating iron metabolism. As a member of

the oxidoreductase family, it performs multiple biological roles

within cells, particularly in maintaining iron homeostasis and

facilitating the assembly and transport of iron-sulfur clusters. In

our study, we observed that GLRX3 was abnormally expressed in

liver cancer patients (48). Iron-sulfur clusters serve as essential

cofactors for many enzymes and proteins. Overexpression of

GLRX3 can enhance the assembly and transport of these clusters

in the cytoplasm, leading to excessive production and distribution

(49). This overactivation may disrupt the metabolic balance in

certain cells by over activating iron-sulfur cluster-dependent

proteins. This finding is consistent with previous studies showing

that tumor cells increase their demand for iron to sustain

proliferation, with alterations in iron metabolism gene expression

facilitating iron acquisition (50). Consequently, the expression level

of GLRX3 may serve as a significant biomarker for liver cancer

prognosis and as a potential indicator for assessing the efficacy of

immunotherapy. Future research should prioritize elucidating the

specific mechanisms through which GLRX3 contributes to tumor

progression and developing targeted therapeutic strategies to

enhance prognosis and treatment outcomes for liver cancer

patients (51).

Although our study reveals the critical impact of iron

metabolism on liver cancer, several limitations should be noted.

First, the limited sample size may affect the generalizability of our

findings. We hope future studies will analyze larger datasets,

incorporating single-cell data from liver cancer patients across

different databases, to fully explore the effects of iron metabolism

dysregulation on the tumor microenvironment. Second, future

studies should integrate proteomics and metabolomics approaches

to provide multi-omics analyses that better elucidate the functional
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FIGURE 9

Spatial transcriptomics deconvolution analysis. (A) Heatmap of count values on spatial transcriptomic slices. (B) UMAP of dimensionality-reduced
clustering results. (C) Plot of reduced dimensional clustering on spatial transcriptomic slices. (D) Bubble plot showing expression of key iron
metabolism-related genes in spatial transcriptomics data. (E) Bubble plot of metabolic pathway activity scores. (F) Heatmap of glycolysis activity.
(G) Heatmap of oxidative phosphorylation activity. (H) Deconvolution analysis results, including tumor cells, macrophages, fibroblasts, etc. (I) Plot of
the most likely cell type for each spot. (J) Deconvolution analysis incorporating high and low iron metabolism levels, showing primary cell type
results. (K) Deconvolution analysis incorporating high and low iron metabolism levels, showing secondary cell type results.
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FIGURE 10

Expression of key iron metabolism-related genes and prognosis analysis. (A) Violin plot showing differential expression of key iron metabolism-related
genes in TCGA and GEO data. (B) Violin plot of ssGSEA score results. (C) Differential expression of ssGSEA scores in paired samples. (D) Violin plot of
score differences among patients at different clinical stages. (E) Line chart showing changes in scores across different clinical stages. (F) Identification of
malignant, mixed, and normal cells in spatial transcriptomics data. (G) Active landscape of key iron metabolism-related genes in microregions.
(H) Differences in the AUC scores of key iron metabolism-related genes between malignant, mixed malignant, and normal microregions at spatial
transcriptomics resolution. (I) Spearman correlation between the AUC scores of key iron metabolism genes and microenvironment components.
(J-M) Prognostic curves of patients with high and low iron metabolism scores. (N) Prognostic curve in ICGC-LIRI data. (O) Prognostic curve in GSE76427
data. (P) GO enrichment analysis of patients with high and low iron metabolism scores.
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FIGURE 11

Clinical subgroup expression and K-M curve of GLRX3. (A) Differential expression of GLRX3 in high/low tumor grades in the TCGA cohort. (B) Differential
expression of GLRX3 in high and low stages in the TCGA cohort. (C) Differential expression of GLRX3 in M1 and M0 stages in the TCGA cohort. (D) Bar chart
of chi-square test showing the number of survival and death samples with different expression levels. The X-axis represents patients with different GLRX3
expression levels, and the Y-axis represents the proportion of deaths (red) and survivors (blue). (E) Kaplan-Meier survival analysis of OS. (F) Kaplan-Meier
survival analysis of OS dividing patients into four groups (Q1, Q2, Q3, and Q4) based on GLRX3 expression levels. (G) Kaplan-Meier survival analysis of DSS.
(H) Kaplan-Meier survival analysis of DSS dividing patients into four groups (Q1, Q2, Q3, and Q4) based on GLRX3 expression levels. (I) Meta-analysis of
survival risk ratios. (J) GO enrichment analysis of high and low expression groups. (K) Each dot represents a microregion (spot) from spatial transcriptomics
sequencing. The darker the color (red), the higher the expression level of the gene in the spot. (L) Correlation between cell content and GLRX3 expression
levels in all spots, and correlation between cell content and GLRX3 gene expression.
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role of GLRX3. Third, due to technical and funding constraints,

while we investigated the impact of GLRX3 on liver cancer

prognosis, we did not conduct a comprehensive analysis of other

key iron metabolism genes. Future research should broaden the

scope of iron metabolism studies in liver cancer (4). Despite these

limitations, our understanding of many processes remains

incomplete, but growing recognition of the importance of iron

metabolism in cancer biology offers new opportunities to uncover

the mechanisms driving tumorigenesis. This, in turn, could lead to
Frontiers in Immunology 19316
the development of more effective iron-targeted therapies for

liver cancer.
5 Conclusion

This study revealed that iron metabolism plays a critical role in

the progression of liver cancer, focusing on the role of GLRX3

(Glutaredoxin 3) in modulating iron homeostasis and driving
FIGURE 12

In vitro experiments to validate the role of GLRX3 in hepatocellular carcinoma. (A, B) PCR assay to detect GLRX3 knockdown efficiency. (C, D) CCK8
assay to detect cell viability. (E) transwell assay. (F) Wound healing assay. (G) IHC assay. (H) CTPAC database to verify GLRX3 expression. **
represents a p-value < 0.01, *** represents a p-value < 0.001, **** represents a p-value < 0.0001.
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tumor progression. The study showed that disruptions in iron

metabolism lead to abnormal iron accumulation or deficiency

within liver cancer cells, inducing oxidative damage and ferroptosis.

GLRX3, a key regulatory protein for iron-sulfur clusters, is

abnormally overexpressed in liver cancer patients, and its

overexpression facilitates iron-sulfur cluster assembly and transport,

thereby disrupting metabolic balance and promoting tumor cell

growth and metastasis. Survival analysis and experimental

validation demonstrated that high GLRX3 expression correlates

with poor patient prognosis, highlighting its potential as a

prognostic biomarker and an indicator for assessing immune

therapy response.
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Background: Fibroblast Growth Factor Receptor (FGFR) signaling is linked with

tumor progression and tumor immunoevasion, yet the potential effect of FGFR

signature on the prognosis of patient with colorectal cancer (CRC) and response

to immune therapy remains elusive.

Methods: The fibroblast growth factor receptor risk signature (FRS) was identified

through single-cell RNA sequencing, bulk RNA sequencing, and machine learning

techniques. Signaling enrichment analyses were conducted using Gene Set

Enrichment Analysis (GSEA) and the Kyoto Encyclopedia of Genes and Genomes

(KEGG). Drugs targeting the FRS were predicted using the Cancer Therapeutics

Response Portal (CTRP) and PRISM databases. The analysis of T cell function and

the tumor microenvironment (TME) was performed using flow cytometry.

Results: In this study, we characterized the FRS in cancer patients with CRC. By

integrating advanced techniques, we identified the FRS and revealed the intricate

molecular landscape and diversity of the FRS within the TME. Notably, the FRS

effectively predicted unfavorable prognosis and resistance to immunotherapy in

CRC patients. Furthermore, PHA-793887, identified as a potential FRS inhibitor by

the CTRP and PRISM databases, significantly restructured the immunosuppressive

TME and enhanced the antitumor immune response, resulting in a reduced tumor

burden in the MC38 murine tumor model.

Conclusion: Together, these data support FRS positively correlates with poor

prognosis and therapy resistance. The PHA-793887 could be a potential FRS

inhibitor to improving the effectiveness of CRC management via bolstering

antitumor immunity.
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Introduction

Colorectal cancer (CRC) stands as a significant contributor to

cancer-related deaths globally, featuring an intricate interaction

between genetic and environmental elements that propel its onset

and advancement (1, 2). The disease’s diversity and inconsistent

reaction to therapies highlight the necessity for a more profound

comprehension of its molecular foundations. Despite advancements

in early detection and treatment, the precise mechanisms driving CRC

progression and the genes influencing patient prognosis remain

insufficiently understood. Elucidating these complexities is essential

for developing new prognostic indicators and treatment strategies.

Fibroblast growth factor receptor (FGFR) signaling plays a critical

role in multiple aspects of tumor biology, including cell proliferation,

survival, angiogenesis, and invasion. The activation of FGFR signaling

is observed in various cancers, contributing to aggressive disease

phenotypes and poor outcomes (3–5). Nevertheless, the correlation

between FGFR signaling and the tumor microenvironment (TME) in

CRC remains inadequately defined. With an increasing understanding

of the TME’s influence on cancer progression and response to

immunotherapy, clarifying the association between FGFR signaling

and the immunological landscape of CRC is highly relevant (6, 7).

Examining FGFR risk signature (FRS) holds promise for shedding light

on CRC pathogenesis and guiding prognostic assessments of patients.

The emergence of cancer immunotherapy has revolutionized the

management of various malignancies, including CRC. Despite its

potential, the clinical effectiveness of immunotherapy is frequently

impeded by the development of treatment resistance, benefiting only a

subset of patients (8, 9). The mechanisms driving this resistance are

complex, involving aberrant activation of specific intracellular

transcriptional pathways in tumor cells, among other factors (10, 11).

In the context of CRC, our investigation has revealed a significant

association between the FRS and immunotherapy resistance. Given the

established role of FRS in influencing cellular behavior and the TME,

targeting this signature presents a promising strategy to overcome

this resistance.

In this study, we utilized bioinformatic tools and experimental

models to identify and forecast the effectiveness of inhibitors targeting

the FRS. Our goal was to devise a therapeutic strategy capable of

selectively disrupting FRS, thereby enhancing the anti-tumor immune

response and impeding tumor progression. Our results indicate that

FRS-targeting inhibitors have the potential to reshape the TME,

enhance T cell function, and elicit antitumor responses. This

discovery carries substantial translational significance, suggesting that

the integration of FRS inhibitors with existing immunotherapies may

provide a novel approach to improving treatment efficacy and clinical

outcomes for CRC patients.
Materials and methods

Animal experiments

In the present investigation, male C57BL/6J mice, aged 6-8

weeks, were obtained from Ensiwer Corporation and utilized in the

ICB-resistant MC38 tumor model. The colorectal cancer MC38 cell
Frontiers in Immunology 02320
line, adjusted to a concentration of 1 × 10^5 cells, was

subcutaneously inoculated into these mice. On the seventh day

post-inoculation, the animals were administered either IgG or anti-

CTLA4 antibodies (Bio X cell, 9H10) at a dosage of 5 mg/kg for a

continuous period of five days. At the culmination of the designated

experimental timelines, the tumor tissues were meticulously excised

for further analysis. In a subsequent experimental paradigm, mice

bearing MC38 tumors were subjected to treatment with either a

control vehicle or PHA-793887 (MedChemExpress, HY-11001),

administered at a dosage of 10 mg/kg. Post-treatment, the excised

tumor tissues underwent flow cytometric analysis to elucidate the

impact of PHA-793887 on the TME. Concurrently, tumor

dimensions were meticulously monitored biweekly throughout

the experimental period.
Flow cytometry analysis

Live cells were assessed using the Fixable Viability Dye eFluor

450. To evaluate cytokine production, the cells were stimulated with

the Cell Stimulation Cocktail and subsequently labeled with anti-

IFN-g (BioLegend, XMG1.2) and anti-TNF-a (BioLegend, MP6-

XT22) antibodies. Other antibodies included an-CD45 (Biolegend,

2D1), anti-CD11b (BioLegend, M1/70), anti-CD8a (BioLegend, 53-

6.7), anti-CD4 (BioLegend, GK1.5), anti-FOXP3 (BioLegend, MF-

14), anti-F4/80 (BioLegend, BM8).

Analysis of stained cells was conducted using a BD FACSCanto

II Flow Cytometer in conjunction with BD FACSDiva software (BD

Biosciences), and the resulting data were processed using FlowJo

software (version 10.5.3).
RNA sequencing analysis

Total RNA was isolated from MC38 tumor tissues using the

Trizol reagent (Invitrogen, catalog number 15596026). RNA

samples were forwarded to ANNOROAD for construction of

sequencing libraries and subsequent sequencing on the NovaSeq

platform (Illumina). The resultant raw fastq files were processed to

quantify gene expression as transcripts per million (TPM) using the

htseq-count tool, facilitating the downstream analysis. Differential

expression analysis of genes (DEGs) was performed using the

“DESeq2” R package, applying stringent filtering criteria: a fold

change threshold greater than 2, an adjusted P-value of less than

0.05, and a mean log2-TPM in the high-expression cohort

exceeding 0.
Data acquisition

In the present investigation, we procured five distinct public

datasets from the NCBI Gene Expression Omnibus (GEO)

repository. Our approach entailed the application of scRNA-seq

datasets, namely GSE231559 and GSE166555, to dissect the

heterogeneity of fibroblast populations within both normal and

neoplastic colorectal tissues. Additionally, we leveraged the COAD
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cohort from the TCGA database and an aggregate of three bulk

RNA sequencing datasets, GSE17536, GSE29621, and GSE38832,

for the development and substantiation of our prognostic model. It

is important to note that for analyses based on publicly available

datasets, neither patient consent nor ethical board approval

is required.
scRNA-seq data analysis

The processing of scRNA-seq data was executed utilizing the

‘Seurat’ R package (version 5.0.2), following established protocols (12).

Initially, a stringent filtration criterion was applied, excluding cells

with gene expression levels below the 200-gene threshold or exceeding

the 6000-gene ceiling, as well as those with mitochondrial gene

expression surpassing the 5% mark. This exclusionary process was

pivotal for the retention of a substantial cell population representative

of the datasets in question. Subsequently, the SCTransform function

was utilized to standardize and normalize the raw count data, which

was then subjected to principal component analysis (PCA) to identify

the underlying patterns. To address and neutralize batch effects

inherent in the dissociated scRNA-seq datasets, the “Harmony” R

package, was strategically implemented. Clustering was conducted by

assessing the edge weights connecting pairs of cells, culminating in the

construction of a shared nearest-neighbor graph. This graph was

adeptly derived using the Louvain algorithm, facilitated by the

FindNeighbors and FindClusters functions. The outcome of this

process was a visual representation of the cells, rendered through

the UMAP algorithm, providing a comprehensive overview of cellular

distribution. The “FindMarkers” function was employed to pinpoint

genes that were preferentially expressed within specific clusters, in

addition to identifying DEGs. Each resultant cell cluster was annotated

with reference to established cell-type marker genes, enhancing the

interpretability of the data. To elucidate the distinct expression profiles

of the identified genes at the single-cell level, the “scRNAtoolVis”

package was utilized, providing a graphical interface that enabled

precise and clear visualization of gene expression patterns.
High dimensional weighted gene co-
expression network analysis

To explore genes associated with FGFRS-positive fibroblasts, we

conducted a hdWGCNA using the “hdWGCNA” package. We

created metacells for each sample and cell cluster, with 50 cells

per metacell, and applied a standard pipeline of functions to analyze

gene expression patterns and visualize module relationships in a

reduced-dimensional space.
Machine learning-based construction of an
FGFRS-fibroblast-related prognosis model

As previous published study (13, 14), we identified FGFRS-

fibroblast-related genes using hdWGCNA and validated their

predictive potential in tumor development with three
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transcriptome datasets, GSE17536 GSE29621, and GSE38832.

Using the “mlr3” package, we developed a predictive model

incorporating seven machine learning algorithms. Following

cross-validation, we selected the most accurate model and

assessed its predictive ability on an independent test set.
Trajectory and cell-cell
communication analysis

Employing an unsupervised approach, pseudotemporal analysis

was performed using the “Monocle” package, applying the DDR-Tree

algorithm with its default parameters to delineate the developmental

trajectory of fibroblasts. Following the pseudotemporal trajectory

mapping, the “plot_pseudotime_heatmap” function was engaged to

craft a heatmap. This visual tool effectively depicted the fluctuating

expression patterns of a cohort of genes, illustrating their dynamic

behavior along the pseudotime trajectories of fibroblasts.

Furthermore, to uncover potential cellular interactions, both

intracellular and extracellular, the “CellChat” package was deployed

using its default settings and recommended pipeline configurations.

This application facilitated the identification of communication

networks among fibroblasts and other cellular components within

the TME.
Enrichment analysis

The Seurat package’s “FindMarkers” function was deployed to

discern DEGs within each delineated cell subcluster. The selection

criteria for these genes were stringent, requiring a fold change

surpassing a threshold of 2 and an adjusted p-value below the

significance level of 0.05. Subsequently, leveraging the identified

DEGs, a comprehensive GSEA and KEGG enrichment analyses

were conducted to explore the functional profiles of the cell

subgroups. These analyses were executed utilizing the

“clusterProfiler” package, which provided a robust framework for

assessing the overrepresentation of specific gene sets and biological

processes. To visually represent the functional enrichment results,

the “GseaVis” package was employed. This tool facilitated the

creation of intuitive and informative visualizations that

encapsulated the enriched biological themes and pathways

associated with the cell subclusters under investigation.
Non–negative matrix factorization analysis

To explore the diversity of FGFRS subtypes, we applied the

NMF algorithm from the “NMF” package (15). The objective was to

identify distinct subtypes characterized by unique gene expression

patterns. To assess the prognostic value of these genes, we

conducted survival analysis using the “survival” package.

Additionally, we used the “ggrisk” package to analyze the survival

and risk profiles of cancer patients, categorizing them into high-

and low-risk groups. The analyses were considered statistically

significant for P values below 0.05.
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Statistical analysis

All computational analyses and graphical representations were

executed utilizing the R software (v4.3.2). The strength and

direction of the linear relationships between pairs of continuous

variables were evaluated through Pearson’s correlation coefficients.

In the case of quantitative datasets, statistical comparisons among

subgroups were made using either a two-tailed, unpaired Student’s

t-test for two-group comparisons or a one-way analysis of variance

(ANOVA) complemented with Tukey’s post hoc test for multiple

group analyses. The threshold for statistical significance was set at a

P-value of less than 0.05.
Results

Single-cell RNA sequencing analysis
reveals FGFRS-positive fibroblast subsets

To elucidate the role of the fibroblast growth factor receptor

(FGFR) signature in tumors, we analyzed single-cell RNA sequencing

(scRNA-seq) data from colorectal cancer contained in the Gene

Expression Omnibus (GEO) database (GSE231559, GSE166555) to

identify potential fibroblast subsets that are positive for FGFRS

(FGFRS+). In the GSE231559 dataset, we annotated cell types using

established markers, including T cells, malignant cells, neutrophils,

myeloid cells, fibroblasts, B cells, epithelial cells, and plasma cells, each

characterized by their unique gene expression profiles (Figure 1A).

Notably, the analysis highlights genes like GZMK, GZMM, CD3G,

which are expressed in T cells, and genes such as CD79A and CD19,

which are characteristic of B cells. The myeloid and plasma cells are

associated with genes like C1QC and IGHA1, respectively (Figure 1B).

In the GSE166555 dataset, we identified 22 clusters and further

annotated these clusters to 10 main clusters based classic markers,

including B cells, DC cells, endothelial cells, fibroblasts, malignant cells,

mast cells, monocyte/macrophage, plasma and T cells (Supplementary

Figure S1A). These established markers including of MZB1, MS4A1,

EPCAM, CD3D, CPA3, CD163, COL1A2, VWF, and IDO1

(Supplementary Figure S1C). Significantly, each cluster exhibited

different gene expression profiles (Supplementary Figure S1D).

Furthermore, to analyze the effect of FGFR signaling, we constructed

an FGFR signature (FGFRS) using 86 genes involved in the FGFR

signaling pathway from Molecular Signatures Database (MSigDB).

This signature was then applied to score the identified cell groups

using the “AddModuleScore” function in the Seurat package. Our

findings reveal that fibroblast cell groups exhibit the highest FGFRS

score, indicating a significant involvement of FGFR signaling in these

cells (Figures 1C, Supplementary Figure S1B). To further dissect the

role of FGFRS in fibroblast cell cluster, we isolated these cells and

identified nine main fibroblast subgroups. Notably, in tumor tissues, a

distinct fibroblast subgroup was found to have an increased proportion

relative to normal tissues and showed highest FGFRS score (here after

as “FGFRS+ fibroblast”) (Figures 1D, Supplementary Figure S1E). This

observation suggested a potential role of FGFRS in the transformation

and proliferation of fibroblasts in the TME. Furthermore, Gene Set

Enrichment Analysis (GSEA) was performed on the transcriptome of
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this specific fibroblast subsets. The enrichment analysis identified

several key cells signaling pathways that are potentially modulated by

FGFRS. In the GSE231559 dataset, these pathways include receptor-

mediated endocytosis, positive regulation of phagocytosis, and the

regulation of miRNA metabolic processes, among others. In the

FGFRS+ fibroblast, some signaling pathways were significantly

enriched, including epithelial tube morphogenesis and collagen fibril

organization (Figure 1E). In the GSE16655 dataset, FGFRS+ fibroblasts

exhibited upregulated signaling pathways, including cytokine-cytokine

receptor interactions, while downregulated pathways included theWnt

and Hippo signaling pathways (Supplementary Figure S1F). In

summary, the integration of scRNA-seq data analysis highlighted

that FGFRS is enriched in the fibroblast cluster within the TME, and

these relevant signaling pathways may be critical for the role of FGFRS+

fibroblasts in tumor progression.
Predictive model to identify core genes
correlated to FGFRS+ fibroblasts

To identify potential core genes associated with FGFRS+

fibroblasts, we conducted high-dimensional Weighted Gene Co-

expression Network Analysis (hdWGCNA), a comprehensive

methodology for analyzing co-expression networks in the scRNA-seq

data. This analysis aimed to detect co-expressed gene modules and

unravel their functional roles within FGFRS+ fibroblasts. Subsequently,

we constructed a scale-free co-expression network by applying an

optimal soft thresholding power of 12 (Supplementary Figure S2A).

From this analysis, we distinguished a total of 19 distinct gene co-

expression modules, identified the top 10 hub genes from these

modules, and constructed protein-protein interaction (PPI) networks

for the identified hub genes in each module (Supplementary Figure

S2B, C, Figure 2B). Additionally, we investigated the correlation

between each module (Supplementary Figure S2D), where modules

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 15, 18, and 19 displayed significant activation

primarily in FGFRS+ fibroblasts (Figure 2C, Supplementary Figure

S2E). Subsequently, 325 genes from these modules underwent

univariate Cox regression analysis in the TCGA COAD cohort,

leading to the identification of 13 genes significantly associated with

overall survival in CRC patients (Figure 2D). Additionally, by

integrating data from the TCGA COAD and GEO database cohorts,

we constructed robust models using 101 algorithmic combinations and

calculated the area under the curve (AUC) for each model across all

cohorts to assess their predictive capacity. (Figure 2A). Among the 101

models, the Step Cox (direction = both) algorithm in conjunction with

a Random Survival Forest (RSF) demonstrated the highest AUC,

serving as the basis for the final model creation. We further utilized

RSF analysis to assess the prognostic relevance of various genes in

predicting patient survival outcomes systematically. Notably, genes

such as JDP2, HEYL, NRG1, RPS17, and MANF exhibited substantial

predictive value, as indicated by their low Minimal Depth and high

Variable Importance scores, thus influencing the accuracy of the

survival model significantly (Figures 2E, F, Supplementary Figure

S2F). The gene signature, comprising JDP2, HEYL, NRG1, RPS17,

andMANF, known as the FRS, has demonstrated substantial predictive

capabilities for patient survival at the 1-year, 3-year, and 5-year
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FIGURE 1

The scRNA-seq analysis uncovers the diversity of fibroblast subsets within CRC. (A) UMAP plot representing 8 distinct groups. The color coding
corresponds to predominant cell types, with contours delineating cluster boundaries. The four corner insets provide a detailed view of myeloid, T
cells, fibroblasts, and neutrophils. The peripheral axis displays the log-transformed total cell counts per class. The concentric colored tracks (exterior
to interior) signify class identity (aligned with the central UMAP), cluster, group, and cell types. (B) Volcano plot showing the differential expression of
markers in the distinct cell types. (C) Violin plot showing the score of FGFRS in the distinct cell types. (D) UMAP plot showing the fibroblast subsets
in the normal or tumor tissues (left) and the score of FGFRS in the distinct fibroblast subsets (right). (E) The left panels illustrate the dynamic patterns
of DEGs specific to each subset, while the central heatmap compares the expression profiles of these DEGs across populations. The right panels
summarize the GO terms, providing insights into the biological functions associated with each cluster.
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intervals. This integrated genetic profile serves as a valuable prognostic

tool, providing insights into anticipated clinical outcomes for patients

over the specified time frames (Figure 2G). Based on the FRS, cancer

patients were categorized into high- and low-risk groups, with high-

FRS patients exhibiting a poor prognosis (Figure 2H). These results

were further validated using cohorts from the TCGA and GEO

databases. In the TCGA cohort, Kaplan-Meier survival curve analysis

revealed adverse outcomes for high-FRS patients, with an Area Under

the Receiver Operating Characteristic curve (AUROC) of 0.7334

serving as a critical metric for model evaluation. These

comprehensive results highlight the predictive capacity of the model

and align with the analysis of COAD cohorts from the GEO database

(Figures 2I-L).
FRS is correlated to the tumor immunity

To further analyze the correlation between the FRS and tumor

immunity, we employed Non-negative Matrix Factorization

(NMF), a robust technique for clustering analysis, to investigate

the FRS of cancer patients based on the FGFRS. Our analysis

specifically aimed to identify the optimal number of clusters (K)

that would best capture the heterogeneity within the patient cohort.

Following the NMF-based clustering, we observed that when K was

set to 2, the consensus matrix revealed a clear distinction between

two distinct patient groups. This finding suggests that dividing the

patients into two groups at K=2 provides the most meaningful

separation in terms of their FRS (Figure 3A, Supplementary Figure

S3A). Notably, patients in cluster 1 exhibited a poorer prognosis

compared to those in cluster 2 (Figure 3B). Upon TME score

analysis, cluster 1 displayed lower immune scores, including

stromal score, immune score, and ESTIMATE score, in contrast

to cluster 2 (Supplementary Figure S3B). Additionally, CIBERSORT

analysis was conducted for both clusters. Notably, tumors from

patients in cluster 1 demonstrated reduced CD8+ T cell infiltration

but increased M0-like macrophages compared to those in cluster 2

(Figure 3C). Moreover, tumors from patients in cluster 1 exhibited

decreased expression levels of immunostimulatory molecules

(Supplementary Figure S3C). These findings imply that tumors

from patients in cluster 2 might possess heightened antitumoral

immunity within an immune-stimulating TME. The cell-cell

interactions within the TME play a crucial role in tumor

progression. Therefore, to further understand the interactions

between FGFRS+ fibroblasts and T cells, we conducted CellChat

analysis. While the total interaction strength was notably increased

in tumor tissues compared to normal tissues, the number and

weight of interactions showed no significant differences

(Supplementary Figures S3D, E). Subsequently, we investigated

whether specific signaling interactions between FGFRS+

fibroblasts and T cells were altered. Utilizing signal flow analysis,

a quantitative method for assessing information transmission in

biological systems, revealed substantial changes in signaling

pathways between tumor and normal tissues. These results

highlight a significant divergence in the flow of information

within distinct tissue states (Figure 3D). In our subsequent

analysis, we delved into the ligand-receptor interactions within
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the TME, focusing on the FGFRS+ fibroblasts and their potential

binding partners. Utilizing a comprehensive approach, we identified

a significant interaction between collagen (COL)-related ligands

and the CD44 receptor on T cells. Notably, this interaction was

found to be markedly enhanced in the TME compared to normal

tissues (Figure 3E). Our findings underscore the complex interplay

between the extracellular matrix components and immune cells.

Specifically, the pairs COL4A2-CD44, COL6A1-CD44, and

COL1A2-CD44 demonstrated a pronounced increase in their

relative contribution to the signal transduction within the tumor

context (Figures 3F, Supplementary Figure S3F). Moreover, there

was a significant increase in COLLAGEN signaling between

FGFRS-positive fibroblasts and T cells in the tumor tissue

compared to normal tissues (Figures 3G, H). This heightened

interaction between collagen ligands and the CD44 receptor on T

cells implies a potential role in influencing the immune response

within the TME.
FRS were negatively correlated with
T cell function

In our investigation of the influence of the FRS on T cell dynamics,

we conducted a comprehensive analysis of scRNA-seq data from the

GEO database. Using unsupervised clustering techniques, we analyzed

T cell populations and identified seven primary clusters. By annotating

these clusters with characteristic markers, we delineated sixmajor T cell

subsets: naïve T cells, regulatory T cells (Tregs), effector T cells (Teffs),

central memory T cells (Tcms), natural killer T cells (NKTs), and

exhausted T cells (Tex). Each subset exhibited distinct expression

patterns of specific markers (Figures 4A, D, Supplementary Figure

S4A, B). Our results revealed a notable shift in the proportion of T cell

subsets between tumor tissues with high FRS scores and those with low

FRS scores. Specifically, there was a significant increase in the

proportion of Teff and NKT in tumors with low FRS scores, whereas

the proportion of Tex was markedly reduced in comparison to tissues

with high FRS scores (Figures 4B, C). Given the pivotal role of T cell

function in determining the success of tumor immunity, we further

analyzed the impact of FRS on the functionality of Teff cells. We

observed a significant upregulation of effector molecules in Teff cells

within tumors with low FRS scores, including PRF1, GZMH, GZMB,

and IFNG (Figure 4E). Additionally, we utilized pseudotime analysis to

elucidate the temporal evolution of T cell subset differentiation. Our

findings indicated that in the early stages of differentiation, the T cell

population was predominantly composed of Treg cells. As pseudotime

progressed, there was a transition towards a predominance of naive T

cells. In the late stages of differentiation, the population was

characterized by an increase in Tex cells and NKT cells (Figures 4F,

Supplementary Figure S4C). Importantly, the expression levels of CD8,

GZMB, and IFNG and other markers associated with T cell function

were significantly increased in the late stages of differentiation

(Supplementary Figures S4D, E).

Utilizing the transcriptomic sequencing data from the TCGA

COAD cohort, we embarked on a comparative analysis of gene

expression differences between tumor tissues with high and low

levels of FRS score. This analysis unveiled a spectrum of
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FIGURE 2

Construction and validation of the artificial intelligence-derived prognostic model. (A) Assessment of the area under the receiver operating
characteristic curve (AUC) for multiple models generated from diverse combinations of machine learning algorithms across four cohorts. (B)
Illustration of the interaction network among core prognostic genes, highlighting their interconnectivity. (C) Dot plot representation of the
expression levels of module genes across distinct fibroblast subpopulations. (D) Forest plot delineating the hazard ratios associated with prognostic
genes, quantifying their impact on patient outcomes. (E, F) RSF analysis, emphasizing the relative importance of prognostic genes in predicting
survival. (G) The AUC curve at various time points, demonstrating the predictive accuracy of the FGFRS for survival. (H) Kaplan-Meier survival curves
comparing the overall survival of cancer patients stratified by high and low FGFRS scores, FRS, FGFR risk score. (I-L) A comprehensive analysis was
conducted to evaluate the survival benefits and predictive efficacy of the FSR score in cancer patients using data from TCGA and the GEO. The
analysis was stratified according to high and low FRS expression.
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FIGURE 3

FGFRS-related molecule subtype correlates to tumor immunity. (A) Heatmap showing the clustering outcomes derived from NMF analysis, which has
been applied to categorize patients into two distinct molecular subtypes based on the FGFRS signature. (B) Survival analysis of cancer patients in the
cluster 1 and cluster 2. (C) Box plot showing the fractions of immune cells in the COAD tissues between cluster 1 and cluster 2. (D) The relative flow
among cell clusters in the TME of normal and COAD tumors. (E) The contribution of ligand-receptor pair in the TME of COAD tissues. (F) The dot plot
showing the interaction of ligand-receptor between FGFRS-positive fibroblasts and T cells. (G) Heatmap showing the changes of collagen signaling
among cell clusters between normal and tumor tissues. (H) A shell plot illustrating the interaction of collagen signaling between FGFR score (FGFRS)-
positive fibroblasts and T cells is presented. P values are from log-rank test (B) and two-way ANNOVA (C). *P < 0.05, *P < 0.01, ***P < 0.0001.
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FIGURE 4

FRS correlates to the T cell function in the TME. (A) The UMAP depicting the cell cluster of T cells within COAD tumors, with each distinct color
indicating a different cell type. (B) The UMAP visualizing the distribution of cell clusters in both FRS high and FAMS low COAD tumors, Treg, regulator
T cells, Teff, effector T cells, Tcm, central memory T cells, NKT, natural killer cells, Tex, exhausted T cells. (C) A bar plot illustrating the ratio of cell
clusters in the FRS high and FRS low COAD tumors. (D) Multiple volcano exhibiting the changes in markers across various cell types. (E) A violin plot
displaying the expression levels of cytotoxic molecules in T effector cells among specified groups. (F) Pseudotime analysis demonstrating the
differentiation trajectory of T cell subsets. (G) The network diagram illustrating the interactions of markers associated with T cell function. (H) KEGG
analysis revealing the enriched signaling pathways.
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differentially expressed genes (DEGs), which we subsequently

subjected to a co-expression network analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment

analysis. Notably, genes such as NRG1, SAMD13, MFAP3L,

SALL1, ZNF704, SEMA5A, and HLA-DQB1 were identified as

having altered expression patterns, potentially reflecting the

diverse roles of FGFRS in tumor biology. The presence of

immune-related genes such as CX3CL1, HLA-DQBY, and

KIR2DL4, along with cytotoxic markers like GZMH and GZMB,

suggests an intricate interplay between FRS signaling and immune

response modulation within the TME (Figure 4G). Furthermore,

the KEGG analysis elucidated the biological pathways and cellular

processes significantly enriched among the differentially expressed

genes (DEGs). Pathways such as the NF-kappa B signaling pathway,

the STAT signaling pathway, and the TNF signaling pathway were

prominently highlighted, indicating the roles of immune response

and cell signaling in tumors altered by the FRS. Additionally, the

identification of processes, including neutrophil extracellular trap

formation and natural killer cell-mediated cytotoxicity, underscores

the influence of the FRS on immune cell functions (Figure 4H).

Collectively, FRS exhibited a negative correlation with T cell

function, thereby impairing antitumor immunity and facilitating

tumor progression.
FRS correlates to ICB resistance in murine
MC38 tumor model

The expression of FRS is inversely associated with T cell function,

but it is unclear whether this correlation contributes to

immunotherapy resistance. In order to elucidate the role of FRS in

colon tumors following immune checkpoint blockade (ICB) therapy,

we developed an ICB-resistant MC38 tumor model and conducted

RNA sequencing analysis. Within our experimental framework, mice

engrafted with MC38 tumors were treated with either IgG or anti-

CTLA4 antibodies, and we meticulously monitored changes in tumor

volume. Upon completion of the treatment, we classified tumors that

exhibited a significant reduction in volume following anti-CTLA4

treatment as “responder” phenotypes, in stark contrast to those that

showed minimal change with IgG treatment, which we labeled as

“nonresponder” phenotypes (Figure 5A). Of particular interest, the

expression levels of HEYL, RPS17, and JDP2 were significantly

elevated in tumors from nonresponders compared to those from

responders (Figure 5B). To investigate the potential correlation

between FRS expression and immune checkpoint blockade (ICB)

resistance, we stratified nonresponders into two groups based on the

gene set variation analysis (GSVA) score of the FRS and identified

differentially expressed genes (DEGs) between high and low FRS-

expressing tumors (Figures 5C, D). Utilizing these DEGs, we

performed GSEA, revealing that several signaling pathways were

significantly enriched in low FRS -expressing tumors, including those

involved in extracellular matrix organization, collagen formation, and

oxidative stress response. Notably, key genes associated with collagen

and oxidative stress were found to be significantly downregulated in
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low FRS -expressing tumors (Supplementary Figures S5A-F). Further

investigation into the impact of FRS on the TME of nonresponsive

MC38 tumors using MCPcounter analysis indicated elevated levels of

endothelial and fibroblast infiltration, alongside a diminished

presence of T cells in the TME of tumors with high FRS expression

(Figure 5E). Additionally, the expression of GZMA, a marker for

cytotoxic T lymphocytes, was significantly higher in tumors with low

FRS expression (Figure 5F). Our data suggest that reduced FRS may

enhance T cell function within the TME. To comprehensively assess

the influence of FRS expression on ICB-resistant tumor development,

we conducted pseudotime analysis on RNA sequencing data from

nonresponsive tumors. The findings revealed that the expression

patterns of three key genes closely mirrored one another and were

significantly elevated during the advanced stages of tumor

progression (Figures 5G, H). Collectively, these results suggest that

the FRS is positively associated with ICB resistance and may facilitate

tumor progression.
FRS inhibitor significantly rewires the TME
to promote tumor regression

As our analysis, the correlation between FRS expression and

tumor immunity has been established, yet the extent to which FRS

inhibitors can curtail tumor progression through the enhancement

of antitumor immunity is not fully understood. To address this, we

utilized the CTRP and PRISM databases to prognosticate potential

inhibitors that target the FRS and subsequently validated the

antitumoral efficacy of these inhibitors in murine tumor models.

Through the amalgamation of data from both databases, we

identified PHA-793887, recognized as a quintessential cyclin-

dependent kinase (CDK) inhibitor, as a promising candidate with

potential inhibitory effects on the FRS (Figures 6A, B). Then, we

developed a mouse xenograft model of colorectal cancer by

subcutaneously inoculating MC38 tumor cells and evaluated the

impact of PHA-793887 on tumor progression and the TME via oral

administration (Figure 6C). Notably, the treatment did not induce

any discernible harm to the vital organs of the mice, encompassing

the heart, liver, intestine, stomach, and lungs (Figure 6D).

Importantly, the PHA-793887 significantly suppressed tumor

growth and reduced the tumor burden relative to the control

cohort (Figure 6E). Further examination of the TME utilizing

flow cytometry disclosed that PHA-793887 markedly augmented

the secretion of cytotoxic T cell-associated cytokines, including

interferon-gamma (IFN-g), tumor necrosis factor-alpha (TNF-a),
and granzyme B (GZMB), within the tumor milieu (Figure 6F). This

suggests an enhancement of T cell functionality. Moreover, in

tumors treated with PHA-793887, there was a significant increase

in the infiltration of CD8+ T cells and effector CD4+ T cells, along

with a decrease in tumor-associated macrophages (TAMs) and

regulatory T cells (Tregs) (Figures 6G–J). These findings

underscore that PHA-793887, acting as an FRS inhibitor, can

profoundly rewire the immunosuppressive TME, bolster anti-

tumor immune responses, and reduce tumor growth.
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FIGURE 5

High FRS score correlates positively with ICB resistance in murine MC38 tumors. (A) The schematic representation of the experimental timeline for
the RNA-seq analysis of ICB resistant murine MC38 tumors. The image was illustrated by the Biorender.com. (B) Expression profiles of pivotal genes
within the FRS in responsive and nonresponsive MC38 tumors, highlighting variations in gene activity, R, responders, NR, non-responders. (C) Violin
plot depicting the distribution of scores for tumors with high and low expression of FRS, specifically within the nonresponsive MC38 tumor group.
(D) A volcano plot illustrating the differential gene expression between tumors exhibiting high versus low FRS score in the nonresponsive category.
(E) MCPcounter analysis revealing the enrichment of distinct cell clusters associated with high and low FRS score in nonresponsive tumors. (F) A
violin plot displaying the expression levels of GZMB in tumors with high and low FRS score among the nonresponsive group. (G) Heatmap
representing the expression patterns of key genes derived from pseudotime analysis of bulk RNA-seq data from nonresponsive tumors. (H) Line
graphs illustrating the trend of key gene expression changes within the FRS across the nonresponsive tumors. P values are from unpaired t-tests (B,
C, F) and two-way ANOVA (E).
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FIGURE 6

PHA-793887 enhances antitumor immunity in MC38 tumor model. (A, B) The prediction of drugs targeting FRS via CTRP (A) and PRISM (B) database.
(C) The schedule process of animal experiments. (D, E) Tumor growth (D) and tumor weight (E) of MC38 tumors bearing mice treated with Veh. or
PHA. (10 mg/kg). Veh., vehicle; PHA., PHA-793887. (F) Representative images of hematoxylin and eosin (HE) staining were obtained to evaluate
organ toxicity in mice treated with either vehicle or PHA-793887. (G) The expression levels of cytotoxic molecules in the CD8+ T cells within MC38
tumors treated with Veh. or PHA. (H) The expression of ki67 in the CD8+ T cells (top) and CD4 effector cells (bottom). (I) tSNE plot showing the
distribution of immune cell clusters. Distinct colors represent the different cell clusters. (J) The box plot showing the percentages of CD8+ T cells,
CD4 effector cells, Treg cells, and TAMs in the MC38 tumors treated with Veh. or PHA, Treg, regulator T cell, TAM, tumor-associated macrophage,
Veh., Vehicle, PHA., PHA-793887. P values are from a two-tailed unpaired Student’s t-test (A, B, E, G, H, J) and two-way ANOVA (D).
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FRS is positively correlated ICB therapy
resistance in cancer patients

To further elucidate the association between FRS and the

therapeutic efficacy of ICB in cancer patients, we conducted an

integrative analysis using TCGA and the Tumor Immune

Dysfunction and Exclusion (TIDE) database. Our analysis

revealed that patients with tumors exhibiting high FRS score had

a significantly lower survival rate compared to those with low FRS

score within their tumors (Figure 7A). Additionally, by examining

patients within the TIDE database who underwent ICB treatment,

we observed a notable increase FRS among patients with stable
Frontiers in Immunology 13331
disease (SD) or progressive disease (PD) compared to those with

partial response (PR) (Figure 7B). Utilizing the TIDE scoring

system, we identified a higher prevalence of responders among

patients with low FRS expression (Figure 7C). Furthermore, the

SubMap analysis revealed that the low FRS group exhibited a high

likelihood of response to anti-PD-1 in the immunotherapy cohorts

(IMvigor210) (Figure 7D). In the context of patients undergoing

ICB therapy, we conducted a detailed analysis of the prognostic

impact of key genes within the FRS. Our findings indicate that

tumors with elevated expression levels of HEYL, RPS17, and JDP2

are associated with a poorer prognosis for cancer patients

(Figures 7E-G). These results suggest that the FRS may serve as a
FIGURE 7

FRS is negatively correlated to the response of immune therapy in cancer patients. (A) Survival curve of cancer patients with high or low FRS score. (B)
The FRS score of cancer patients in the indicated groups, CR, complete response, PR, partial response, SD, stable disease, PD, progressive disease. (C)
TIDE analysis showing the immune therapy response of cancer patients. (D) Submap showing the correlation between FRS score and therapy response
of ICB in the cancer patients. (E-G) The survival analysis of cancer patients received ICB therapy in indicated groups, PFS, progression-free survival, OS,
overall survival. P values are from the log-rank test (A, E-G) and one-way ANOVA (B). Pearson’s correlation coefficient is calculated (D).
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prognostic indicator for ICB treatment outcomes, with a lower FRS

score potentially correlating with a more favorable response to

ICB therapy.
Discussion

Our comprehensive analysis leveraging scRNA-seq data from

CRC cohorts has unveiled the intricate relationship between FRS

and tumor biology, particularly within the TME. The identification

of FGFRS+ fibroblast subsets through scRNA-seq analysis provides

a foundation for understanding the heterogeneity of cancer and the

potential for targeted therapeutic intervention. The significant

association between FRS and fibroblasts suggests a pivotal role for

these cells in modulating the TME, which could be a critical factor

in tumor progression and response to therapy. The enrichment of

FRS in fibroblasts, as evidenced by the highest module scores,

indicates that these cells may be key players in the tumor’s

resistance to ICB therapy. This finding is supported by the

observation that FGFRS+ fibroblasts display distinct gene

expression profiles linked to pathways, including epithelial tube

morphogenesis and collagen fibril organization, which are known to

influence tumor growth and invasion.

Previous studies have reported the relevant signature of

immune cells, such as macrophages, predicted patient prognosis

and therapy resistance (16–19). The development of a predictive

model using machine learning algorithms has been instrumental in

identifying a gene signature that strongly predicts patient survival

outcomes (20, 21). The FRS, composed of genes like JDP2, HEYL,

NRG1, RPS17, and MANF, has demonstrated robust predictive

capabilities across various cohorts. This underscores the potential of

using FRS as a prognostic tool in clinical settings to stratify patients

into high and low-risk groups, thereby personalizing treatment

strategies. Furthermore, our analysis elucidates the correlation

between the FRS and tumor immunity. The identification of

distinct patient clusters based on FRS, along with the associated

differences in immune scores and cell infiltration patterns, suggests

a complex interplay between the FRS and immune cell dynamics

within the TME. Notably, the reduced infiltration of CD8+ T cells

and the increased presence of M0-like macrophages in tumors with

higher FRS scores indicate a possible mechanism through which

FRS enrichment may suppress antitumor immunity.

Many drugs harbor significant anti-tumor, whereas the

mechanism remains elusive (22). Previous research has established

PHA-793887 as a potent, ATP-competitive cyclin-dependent kinase

(CDK) inhibitor capable of inhibiting key cell cycle regulators such as

CDK2, CDK1, CDK4, AND CDK9 (23, 24). While its efficacy in

disrupting cell cycle progression is well-documented, the exploration

of additional potential targets and its impact on tumor immunity

remains less explored (25). Our study takes a significant step toward

addressing this gap by employing in silico drug prediction methods

to identify FRS as a potential target for PHA-793887. The application

of PHA-793887 in our murine model of colorectal cancer has yielded

promising results, demonstrating a significant inhibitory effect on

tumor growth without any detectable organ toxicity. In the TME,

various factors could contribute to T cell dysfunction, subsequently
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promoting immunotherapy resistance and tumor progression (26,

27). In this study, we found PHA-793887 treatment induced an

enhanced secretion of cytotoxic T cell-associated cytokines and

facilitated an increase in the infiltration of CD8+ T cells and

effector CD4+ T cells within the TME. These observations suggest

an improvement in T cell functionality, indicative of the compound’s

potential to bolster antitumor immunity. Together, these findings

underscore the PHA-793887 could be a potential inhibitor enhancing

antitumor immunotherapy for the cancer patients with CRC. Future

research should focus on clinical trials to evaluate the efficacy of FRS

inhibitors in combination with ICB therapies and on further

elucidating the mechanisms by which FRS modulates the TME and

immune responses in CRC patients.
Conclusion

Our study presents a multi-faceted perspective on the role of

FRS in colorectal cancer, highlighting its enrichment in fibroblasts,

its correlation with ICB resistance, and its impact on tumor

immunity. The findings have implications for the development of

novel therapeutic strategies targeting the FRS and for the

refinement of prognostic models to better predict patient

outcomes. Importantly, PHA-793887 could be a potential

inhibitor targeting the FRS in the immunotherapy of CRC patients.
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Introduction: Early detection of oral squamous cell carcinoma (OSCC) is

critical for improving clinical outcomes. Precision diagnostics integrating

metabolomics and machine learning offer promising non-invasive solutions

for identifying tumor-derived biomarkers.

Methods: We analyzed a multicenter public dataset comprising 61 OSCC

patients and 61 healthy controls. Plasma metabolomics data were processed

to extract 29 numerical and 47 ratio features. The Extra Trees (ET) algorithm was

applied for feature selection, and the TabPFN model was used for classification

and prediction.

Results: Themodel achieved an area under the curve (AUC) of 93% and an overall

accuracy of 76.6% when using top-ranked individual biomarkers. Key metabolic

features significantly differentiated OSCC patients from healthy controls,

providing a detailed metabolic fingerprint of the disease.

Discussion: Our findings demonstrate the utility of integrating omics data with

advanced machine learning techniques to develop accurate, non-invasive

diagnostic tools for OSCC. The study highlights actionable metabolic

signatures that have potential applications in personalized therapeutics and

early intervention strategies.
KEYWORDS

machine learning, oral squamous cell carcinoma, precision metabolomics, feature
selection, personalized therapy
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1 Introduction

Oral squamous cell carcinoma (OSCC) is the most common

malignancy affecting the oral cavity, with a mortality rate exceeding

50% (1). Postoperative OSCC can severely impact patients’ speech,

chewing, and swallowing functions, significantly affecting their

quality of life (2). Many OSCC patients are diagnosed at advanced

stages, missing the window for optimal treatment. Early diagnosis is

crucial, as it significantly improves survival rates and treatment

outcomes and reduces costs. This highlights the need for more

sensitive and specific diagnostic methods for early OSCC detection.

Currently, imaging combined with histopathology remains the

gold standard for OSCC screening (3). Detecting early asymptomatic

cases of OSCC is challenging despite straightforward oral imaging

and sampling. Incisional biopsies cause physical trauma and suffer

from sampling accuracy issues due to tumor heterogeneity. Molecular

diagnostics, which detect subtle phenotypic changes that occur prior

to malignancy or metastasis, have become crucial tools for early

detection. Therefore, developing effective multianalyte detection

methods for biofluids is urgently needed (4).

Tumors, including OSCC, are rich in blood vessels, facilitating

the shedding of tumor cells and molecules into the bloodstream,

making blood-based tests an effective screening tool for early

detection. Thus, plasma is an ideal diagnostic fluid for the

molecular diagnosis and early screening of OSCC (5). It can be

sampled alongside routine blood tests, making it convenient to

collect samples during outpatient visits or regular check-ups. Owing

to its diverse components, including the genome, transcriptome,

proteome, microbiome, and metabolome, plasma is a potential

source of biomarkers. Its diversity makes blood a promising

medium for OSCC metabolite marker screening, which can offer

insights into metabolic pathways (5). Previous studies have reported

various blood metabolites associated with early OSCC screening,

demonstrating its potential as a noninvasive diagnostic tool.

Research has shown that the lipid content in the plasma of

OSCC patients is significantly lower than that in the plasma of

healthy controls (HC), with certain types of lipids being reduced by

at least twofold (4). Disparities in sphingolipid levels between OSCC

patients and healthy individuals have led to diagnostic methods

with high accuracy, sensitivity, and specificity. Lower levels of

certain amino acids and phosphatidylcholines in OSCC patients

are associated with poorer survival rates, suggesting their roles in

tumor progression and potential as predictive biomarkers (6). An

integrated analysis of plasma metabolomics data revealed distinct

profiles indicative of disrupted metabolic pathways, particularly in

advanced disease stages, potentially fostering tumor growth and

suppressing immune responses (7).

While the genome consists of approximately 20,000 protein-

coding genes, the metabolome presents a smaller yet more dynamic

landscape with approximately 220,000 metabolites noted in the

HMDB (4). The metabolome’s precise nature and direct reflection

of the physiological state make metabolites ideal candidates for

prognostic, diagnostic, and therapeutic monitoring applications

(5, 8). However, the diversity among cancer patients requires a

deeper understanding of specific tumor metabolisms, including
Frontiers in Immunology 02335
those involved in OSCC, to tailor effective treatments and

screening strategies.

To be clinically applicable, molecular screening must consider

several factors: 1) the inclusion of highly specific and sensitive

measurable markers; 2) convenient sampling with high patient

acceptance; 3) affordable and accessible analytical technology

platforms; and 4) rapid feedback for clinical diagnostic decision-

making. Balancing these factors is essential for developing effective

analytical methods (9, 10).

Mass spectrometry (MS) is a widely utilized technology in

metabolomics that is capable of qualitative and quantitative

analysis of small molecules and is widely used in biomedical fields

(4, 11). The advantages of the MS platform include high specificity

and sensitivity for biomarker screening, mature detection

techniques, clear detection processes, and controlled costs.

Additionally, MS can provide rapid feedback, enabling quick

molecular screening. The combination of MS and machine

learning (ML) successfully translates metabolomics analysis into

clinical diagnostic decisions (12, 13). The application of MS/ML

methods can achieve routine blood diagnostics, enabling rapid,

accurate, cost-effective, and sustainable early screening and

intelligent diagnosis of OSCC, thereby offering new strategies for

early detection, diagnosis, and treatment (14).

In this study, we used a publicly available dataset with plasma

samples from OSCC patients and healthy controls. This dataset,

which was chosen for its comprehensive coverage and validated

data, forms a robust foundation for developing our diagnostic

model. By integrating metabolomic profiles with advanced ML

algorithms, we aimed to identify key metabolic biomarkers

associated with OSCC. This approach bridges the gap between

molecular data and clinical applicability, ensuring scientifically

rigorous and clinically relevant findings, ultimately contributing

to the development of reliable, noninvasive diagnostic tools for early

OSCC detection.
2 Methods

2.1 Chou’s 5-step rule

The methods section of this study is organized essentially by

following Chou’s 5-step rule (15), outlined as follows: 1) Build a

benchmark dataset: We utilized a publicly available metabolomics

dataset that includes plasma samples from 61 OSCC patients and 61

HC. The dataset comprises 131 numerical features and 104 ratio

features, ensuring a comprehensive foundation for training and

testing the predictor. 2) Dataset Representation: To effectively

represent the dataset, we employed the extra trees (ET) classifier

for feature selection. These selected features were then standardized

to ensure uniformity across the dataset. This step includes data

preprocessing such as cleaning, handling missing values, and

normalizing data to prepare it for feature selection. 3)

Introducing a powerful algorithm: We evaluate multiple machine

learning models, including support vector machines (SVMs),

random forests (RFs), neural networks (NNs), XGBoost, TabNet,
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logistic regression (LR), and TabPFN. Each model’s parameters

were initially tuned via Bayesian optimization to maximize

accuracy, except for the TabPFN model, which does not require

hyperparameter tuning and is straightforward to use. 4) Statistical

analysis: To evaluate the prediction accuracy, we performed

statistical analysis via cross-validation methods. For the ET

model, out-of-bag (OOB) estimates were used to observe the

accuracy of the top-ranked features. This step also incorporates

model evaluation, where metrics like accuracy, precision, recall, F1

score and the area under the ROC curve (AUC) are used to assess

the performance of the predictive models. 5) The development of a

user-friendly webserver for the predictor is left for future work. This

future development aims to provide a practical tool for clinicians

and researchers, enhancing the clinical applicability and impact of

our findings.
2.2 Public dataset collection

2.2.1 Data acquisition and preparation
We utilized a publicly available metabolomics dataset, initially

detailed in the study “Plasma metabolomics of oral squamous cell

carcinomas on the basis of NMR and MS approaches provides

biomarker identification and survival prediction” published in

Scientific Reports (4). Although the original dataset includes both

NMR and MS analyses, for this study, we focused solely on the MS

data for our analysis, as it aligns better with the objectives of our

research. This dataset includes plasma samples from 61 OSCC

patients and 61 healthy controls, which were meticulously collected

by four institutions: the Faculty of Medicine at the University of São

Paulo, Heliopolis Hospital, Arnaldo Vieira de Carvalho Cancer

Institute, and Barretos Cancer Hospital. These samples were

sourced from diverse demographics within São Paulo State, Brazil,

with the OSCC patients having not received any prior radiotherapy or

chemotherapy to ensure unaltered metabolic profiles. The dataset

specifics are cataloged in Supplementary Table S1.
2.3 Mass spectrometry analysis

The metabolic profiling of the dataset was conducted via the

AbsoluteIDQ® p180 Kit by BIOCRATES Life Sciences AG,

Innsbruck, Austria. This comprehensive platform facilitates the

quantification of up to 188 distinct metabolites spanning various

classes, such as 21 amino acids, 21 biogenic amines, one hexose (total

hexose), 40 acylcarnitines, 90 glycerophospholipids (including 76

phosphatidylcholines and 14 lysophosphatidylcholines), and 15

sphingolipids along with their derivatives. For detailed

categorization, metabolites are systematically labeled on the basis of

chain length and type of linkage—e.g., Cx:y, where ‘x’ denotes the

number of carbon atoms and ‘y’ denotes double bonds in the lipid

side chains (4).

To ensure high precision in metabolite quantification, sample

derivatization was performed using phenyl isothiocyanate (PITC)

with internal standards. Subsequent analyses employed flow
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injection analysis-tandem mass spectrometry (FIA-MS/MS) for

acylcarnitines, lipids, and hexoses and liquid chromatography-

mass spectrometry (LC-MS/MS) for amino acids and biogenic

amines. These procedures were executed via advanced mass

spectrometry equipment, namely, the SCIEX 4000 QTrap® and

Waters XEVO TQMS® systems with electrospray ionization. The

specific methodologies are detailed in the patent US 2007/0004044.

To increase data reliability, only metabolites above the detection

threshold and with identifiable peaks were considered (16), as

detailed in the analysis of samples in Supplementary Table S2.
2.4 Machine learning analysis

The machine learning analysis for this study followed a

structured approach encompassing data preprocessing, model

construction, model optimization, feature selection and model

evaluation. This comprehensive approach ensures the reliability

and accuracy of the models used to diagnose OSCC. The overall

process is illustrated in Figure 1.
2.4.1 Dataset preprocessing
Data preprocessing was a crucial step in preparing the dataset

for effective modeling. The preprocessing involved several steps.

Initially, irrelevant variables and extreme outliers, defined as values

beyond the mean ± 2 standard deviations, were removed (17).

Missing values were handled by imputing with median values or

removing features with substantial missing data (18). The features

were then standardized so that each had a mean of zero and a

standard deviation of one, ensuring consistency throughout the

dataset. After preprocessing, the dataset consisted of 253

characteristic values, including 131 numerical features and 104

ratio features. The labels were divided into two categories: OSCC

(61 samples) and HC (61 samples).
2.4.2 Model construction and optimization
To distinguish OSCC patients from HC via plasma metabolite

profiles, multiple machine learning algorithms have been evaluated.

The dataset was split into training (70%), validation (10%), and

testing (20%) sets. The models assessed included support vector

machines (SVMs), extra trees (ET), XGBoost, TabNet, logistic

regression (LR), TabPFN, multilayer perceptron (MLP) and

voting method. Bayesian optimization leverages Bayes’ theorem to

guide the search for optimal solutions by using prior knowledge

from previous iterations. It avoids poor-performing areas and

focuses on regions with better results, improving the efficiency of

finding the optimal solution. Thus Bayesian optimization was

employed to fine-tune the hyperparameters of most models,

focusing on optimizing validation accuracy (ACC) (19). Unlike

other models, the TabPFN does not require hyperparameter tuning,

offering a straightforward implementation (20). This optimization

method systematically explores the hyperparameter space, using a

probabilistic approach to identify the best configuration for

each model.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493377
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1493377
2.4.3 Feature selection
Feature selection was performed via the ET algorithm (21),

which was chosen for its effectiveness in handling high-dimensional

data and robustness in identifying the most informative features.

The ET algorithm constructs multiple decision trees with random

splits at each node, increasing the variance among trees and

reducing overfitting. This method offers several advantages: 1)

Handling high-dimensional data: ET is particularly effective in

datasets with a large number of features, reducing dimensionality

while retaining significant predictive power. 2) Robustness: By

averaging over many trees, ET reduces the variance of the model,

making it less sensitive to noise in the training data. 3) Feature

importance evaluation: The ET algorithm evaluates the importance

of each feature on the basis of the mean decrease in impurity, which

measures the effectiveness of a feature in reducing uncertainty in

predictions (22). The importance scores derived from the ET

algorithm were used to identify the most significant features.

The ET model parameters were fine-tuned via Bayesian

optimization, and the accuracy of the top-ranked features was

observed via out-of-bag (OOB) estimates (23). This combined

approach ensures that the most relevant features are selected and

that the model parameters are optimized for the best performance.

2.4.4 Model evaluation
Following feature selection, the identified significant features

were used to train and evaluate the previously selected best models,
Frontiers in Immunology 04337
ensuring that the models were built using the most informative and

relevant data. Model performance was assessed via metrics such as

accuracy, precision, recall, F1 score and ROC/AUC (24). The

specific formula is as follows:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2� Precision� Recall
Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

AUC  =  
Z 1

0
 TPR FPR−1(x)

� �
dx

where TP is the number of true positive cases, TN represents the

number of true negative cases, FP represents the number of false

positive cases, and FN represents the number of false negative cases.

where FPR−1(x) denotes the inverse function of FPRwith respect to x.

This integral essentially computes the area under the ROC curve,

which plots the TPR against the FPR as the discrimination threshold

varies. The ROC curve illustrates the diagnostic ability of the classifier
FIGURE 1

Workflow for dataset construction and model training. This figure outlines the workflow for constructing the dataset and training the machine
learning models. The process starts with dataset preparation, handling missing values, and performing 5-fold cross-validation with random splits of
the dataset. This cross-validation process is repeated 20 times, totaling 100 model training and validation iterations. For each iteration, models are
trained with the top n important features, and the change in accuracy (ACC) is monitored to identify the inflection point, representing the most
critical features for classification. The importance of each feature is determined by summing the feature importance scores calculated over 100
iterations using the Extra Trees (ET) model. The training set (70%) and validation set (10%) are used for parameter tuning and feature ranking, while
the test set (20%) is reserved for final performance evaluation. The process iteratively narrows down the feature set until the top-ranked features are
determined based on performance stabilization at the inflection point.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1493377
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2024.1493377
system by plotting the true positive rate against the false positive rate

at various thresholds. The AUC measures the overall performance,

with values closer to 1 indicating better model discrimination

capability. These metrics provide a comprehensive evaluation of

model performance, ensuring that the selected model not only

achieves high accuracy but also maintains a balance between

precision and recall, which is crucial for effective OSCC diagnosis.

In this study, we used Python 3.8 and several Python packages,

including sklearn, xgboost, pytorch, pytorch_tabnet, matplotlib,

and TabPFN, to implement and evaluate our machine learning

models. The entire process was run on a system with an AMD

Ryzen 7 5800H CPU and an NVIDIA GeForce RTX 3070 Laptop

GPU. These tools and hardware allowed for efficient training and

optimization of the models. The details and algorithms of the

machine learning models can be found in their respective

documentation and publications.

In all the statistical P value calculations, the significance levels

are indicated as follows: *P ≤ 0.05 (significant), **P ≤ 0.01 (highly

significant), and ***P ≤ 0.001 (extremely significant).
3 Results

The machine learning analysis for this study followed a

structured approach encompassing data preprocessing, model

construction, feature selection, model optimization, parameter
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tuning and evaluation. This comprehensive approach ensures the

reliability and accuracy of the models used to diagnose OSCC.
3.1 Modeling performance
and comparisons

Figure 2 illustrates the Bayesian optimization procedure used to

fine-tune the parameters of various machine learning models and

the before and afterwards accuracy of all models. The Bayesian

optimization procedure (Figure 2A) fine-tunes parameters such as

the number of estimators, and maximum depth (25) as detailed in

Supplementary Table S3. This process highlights the importance of

parameter optimization in improving model performance, as

evidenced by the notable differences in accuracy scores.

The comparative accuracy of different models after Bayesian

optimization is shown in Figures 2B, C, with the TabPFN model

outperforming others without optimization in terms of accuracy,

precision, recall, and the F1 score. The detailed performance metrics

and the differences before and after optimization are presented in

Supplementary Tables S4 and S5. Both before and after

hyperparameter tuning, the TabPFN and ET models consistently

performed well, indicating their effectiveness (20). Although

TabNet is highly dependent on hyperparameters, Bayesian

optimization has significantly improved its performance (26). The

results indicate that the TabPFN model achieved an accuracy of
FIGURE 2

Bayesian optimization procedure for model parameters. (A) The Bayesian optimization procedure for tuning parameters such as the number of
estimators, and maximum depth. The x-axis represents parameter values, and the y-axis represents accuracy changes. Blue dots indicate parameter
values attempted by Bayesian optimization, and the red dot indicates the optimal parameter value. This process highlighted the importance of
parameter optimization in improving model performance. (B, C) Box plots of model accuracy before and after Bayesian optimization. The box’s
central red line represents the median, the outer red lines represent the maximum and minimum values, and the box edges represent the first and
third quartiles. Outliers are shown as individual points around the box. (B) shows the accuracy before parameter tuning, while (C) shows the
accuracy after parameter tuning. The comparison demonstrates that TabPFN outperformed others in terms of accuracy.
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80% with a comparatively short running time in distinguishing

OSCC and premalignant lesions from healthy conditions on a

person-by-person basis. The selected plasma metabolites are

significantly dysregulated in OSCC patients, highlighting their

potential as biomarkers for early diagnosis (27). Unlike traditional

supervised learning methods, the TabPFN is a single transformer

model pretrained on a large amount of generated data, making it

particularly suitable for small-sample table classification (20). This

model can approximate the calculation of a posterior prediction

distribution (PPD) on the basis of the likelihood of given data and

prior probability, providing a generic model applicable to various

small tabular classification tasks without retraining or model

selection (20). The breakthrough of this method lies in its ability

to quickly and accurately solve small table classification

problems (20).

The results demonstrate that the integration of metabolomics

analysis with advanced machine learning techniques, particularly

the TabPFN model, provides a powerful tool for the early detection

and clinical management of OSCC. This combined approach offers

high accuracy and reliability, underscoring the potential for

practical implementation in clinical settings (20).
3.2 Important features

Feature selection via the ET algorithm identified 29 numerical

features and 47 ratio features as crucial for the model’s predictive

power. The importance of these features is depicted in Figure 3,

which shows the value of feature importance for each selected

feature. These features were identified using the ET algorithm’s

feature importance calculation, where the importance of a feature

increases each time it is used to effectively split the data and improve

purity. Subsequently, significance analysis was performed on the

selected important features to further validate their impact on the

model’s classification accuracy.

The trend of accuracy changes when models are built using

different numbers of top-ranked important features is illustrated in

Figure 3A. The figure shows the optimization process, highlighting

an inflection point where 76 features yielded the highest accuracy

(ACC = 0.8057). This inflection point, calculated using the kneed

algorithm (28), indicates the optimal number of features needed to

achieve the best model performance without overfitting.

The specific important features identified are detailed in

Tables 1 and 2, which shows a mix of individual metabolites and

metabolite ratios (Figure 3B), and the top 13 features are all ratios

(standard deviation, mean, and significance information for all the

features are detailed in Supplementary Tables S6, S7). These

features play critical roles in differentiating OSCC patients from

HC, underscoring their potential as biomarkers for early diagnosis

(29). The important features include various sphingomyelins (SMs),

phosphatidylcholines (PCs), and amino acid ratios, each

contributing uniquely to the model’s predictive ability (4).

A heatmap of the Pearson correlation coefficients for the top-

ranked features is shown in Figure 3C. This heatmap illustrates the
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correlation between each pair of selected features, highlighting the

relationships and dependencies among them. High correlation

coefficients indicate strong relationships, which can provide insights

into the underlying metabolic pathways affected in OSCC (14, 30). In

the analysis of all metabolite correlations, the top 10 feature pairs

exhibit strong positive correlations (0.89 to 0.9995), for example C2/

C0 and (C2+C3)/C0 (0.9995), indicating substantial redundancy

between these features (Supplementary Table S8). In practice, when

two features are highly correlated, detecting both may not add

significant value to the diagnostic model, as they convey similar

information about the underlying metabolic changes.

The significance of these selected features is further validated by

their impact on model performance metrics. As shown in Figure 4,

the evaluation of the TabPFN model with all features versus only

the important features demonstrated significant improvements in

accuracy (0.851 ± 0.066), precision (0.858 ± 0.065), recall (0.851 ±

0.066), and F1 score (0.85 ± 0.067) when the important features

were SMs such as used (Figure 4A). This evaluation underscores the

efficacy of the feature selection process in enhancing

model performance.

The ROC curve and AUC value for the TabPFN model,

depicted in Figure 4B, further confirmed the model’s high

diagnostic capability. The ROC curve shows a high true positive

rate against the false positive rate, with an AUC of 0.93, indicating

excellent model performance. The performance of the machine

learning model was further evaluated via a confusion matrix

(Figure 4C). The model correctly identified 83.6% of the HC and

86.6% of the OSCC patients. This finding indicates a high level of

accuracy in distinguishing between healthy individuals and those

with OSCC, with only a small percentage of misclassifications in

each group. This robust classification performance underscores the

model’s potential for reliable early screening and diagnosis of OSCC

on the basis of plasma metabolite profiles.

To assess the predictive power of individual features and the

feasibility of using single features for practical screening in clinical

settings, all important features were used independently to predict

OSCC status. The accuracy of these predictions is presented in

Figure 5. Each feature’s ability to distinguish between OSCC

patients and HC was evaluated, with the highest accuracy

observed for the top-ranked feature. These findings demonstrate

that even single features can provide substantial predictive power

for early OSCC screening (5, 31). These results indicate that the top-

ranked feature alone can achieve an accuracy of 76.6%, highlighting

its potential for use in rapid early screening of OSCC.

These results highlight the potential of using machine learning

models combined with plasma metabolite profiling for accurate and

automated diagnosis of OSCC. The integration of these techniques

offers a robust and reliable approach for early detection and

improved patient outcomes (32). Feature selection via Bayesian-

optimized ET classifier and model construction with TabPFN

yielded the highest accuracy, demonstrating the suitability of

these methods (20, 33). Notably, the top-ranked features,

primarily ratios, were found to be particularly useful for rapid

early screening.
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4 Discussion

Predicting clinical outcomes can significantly optimize

diagnostic and treatment strategies for OSCC. In this study, we

developed a prediction model using a combination of metabolomic

profiles and machine learning techniques. The data were processed

and analyzed to identify significant attributes, which were then

utilized in a TabPFN model to make predictions (20).

The important step in creating our prediction model involved

validating and collecting key metabolic biomarkers associated with
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OSCC. Through the application of the ET algorithm for feature

selection, we identified 29 numerical features and 47 ratio features

as crucial for the model’s predictive power (Figures 3A, B). These

biomarkers provide a detailed metabolic fingerprint of OSCC,

highlighting the significant metabolic alterations that occur in this

disease (4).

The results show that these selected features correlate strongly

with OSCC diagnosis, as validated by high accuracy, precision,

recall, and F1 scores across different ML models. The TabPFN

model, which leverages pretrained data for small-sample table
FIGURE 3

Feature selection and importance analysis. (A) The trend of accuracy changes when applying different features for modeling is illustrated,
highlighting an inflection point where 76 features yielded the highest accuracy (ACC = 0.8057) with the OOB method. The x-axis represents the
number of top important features used for modeling, and the y-axis represents the corresponding OOB accuracy. The red line is a Gaussian fit curve
indicating the trend. (B) The importance of features is depicted, showing the value of feature importance for each selected feature. The identified
important features include a mix of individual metabolites and metabolite ratios, which together capture key metabolic changes linked to OSCC. This
combination improves the model’s ability to distinguish between healthy and cancerous states The feature importance is calculated based on the
sum of importance scores from 100 random splits and model trainings. (C) The heatmap presents Pearson correlation coefficients for the top 30
features ranked by importance in the model, as listed in Supplementary Table S8. The color intensity indicates the strength of the correlation: red
represents a strong positive correlation, blue indicates a strong negative correlation, and white shows little to no correlation. This visualization helps
identify relationships and dependencies among the selected features, providing insights into potential interactions that could influence the
model’s performance.
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TABLE 1 List of important features (ratio).

Number Important Features (ratio) HC OSCC p-value Significant

1 SM C24:1/(Met/PC aa C40:3) 0.746 ± 0.348 1.352 ± 0.596 0.000 ***

2 C3/C4 2.034 ± 0.649 1.412 ± 0.659 0.000 ***

3 (Ala/Gln)/Orn 0.008 ± 0.004 0.006 ± 0.003 0.000 ***

4 Phe/PC aa C42:4 405.921 ± 131.665 300.782 ± 71.689 0.000 ***

5 (Ala/Gln)/(Tyr/Phe) 0.688 ± 0.256 0.48 ± 0.192 0.000 ***

6 Val/C5 1610.717 ± 561.589 1121.013 ± 832.575 0.000 ***

7 (Tyr/Phe)/(Met/PC aa C40:3) 0.018 ± 0.007 0.031 ± 0.017 0.000 ***

8 Ala/Gln 0.706 ± 0.241 0.517 ± 0.135 0.000 ***

9 Met/PC aa C40:3 67.062 ± 35.062 43.083 ± 15.703 0.000 ***

10 Ala/PC aa C40:2 1892.746 ± 910.595 1269.65 ± 382.683 0.000 ***

11 SM (OH) C24:1/SM C16:0 0.013 ± 0.002 0.011 ± 0.003 0.000 ***

12 Gln/Thr 5.248 ± 1.299 6.569 ± 1.791 0.000 ***

13 Total PC ae/Total SM 0.534 ± 0.089 0.476 ± 0.081 0.000 ***

14 Thr/Ser 1.276 ± 0.379 1.035 ± 0.321 0.000 ***

15 Phe/PC aa C40:3 170.475 ± 75.462 125.024 ± 34.121 0.000 ***

16 Met/PC aa C40:2 119.134 ± 55.558 78.964 ± 26.552 0.000 ***

17 C4/C0 0.006 ± 0.002 0.008 ± 0.005 0.001 ***

18 (Tyr/Phe)/Ala 0.003 ± 0.001 0.004 ± 0.002 0.000 ***

19 (Ala/Gln)/Tyr 0.01 ± 0.004 0.008 ± 0.004 0.000 ***

20 Asn/Gln 0.074 ± 0.025 0.063 ± 0.019 0.000 ***

21 Total SM/Total Lipids 0.135 ± 0.02 0.148 ± 0.019 0.000 ***

22 Total SMOH/Total SM nonOH 0.16 ± 0.022 0.142 ± 0.027 0.000 ***

23 C4/C5 1.339 ± 0.524 1.173 ± 1.101 0.005 **

24 (Tyr/Phe)/Met 0.042 ± 0.013 0.063 ± 0.04 0.001 **

25 Total acylcarnitines/C0 0.169 ± 0.046 0.225 ± 0.098 0.001 ***

26 Glutaminolysis: (Ala+Asp+Glu)/Gln 0.86 ± 0.307 0.716 ± 0.383 0.000 ***

27 PC_ae_C32:1/PC_ae_C34:1 0.297 ± 0.041 0.284 ± 0.049 0.125

28 Pro/Orn 2.68 ± 0.907 2.235 ± 0.753 0.017 *

29 PUFA(PC)/MUFA(PC) 5.621 ± 0.883 5.298 ± 1.193 0.211

30 Ala/lysoPC a C18:1 37.608 ± 22.76 26.298 ± 10.968 0.000 ***

31 PC_aa_C40:3/PC_aa_C42:5 1.451 ± 0.301 1.606 ± 0.288 0.005 **

32 Leu/Gln 0.259 ± 0.087 0.211 ± 0.063 0.004 **

33 PC ae C44:5/PC ae C42:5 0.798 ± 0.169 0.821 ± 0.132 0.074

34 CPT1: (C16+C18)/C0 0.003 ± 0.001 0.003 ± 0.001 0.041 *

35 Met/lysoPC a C18:1 2.41 ± 1.777 1.642 ± 0.816 0.000 ***

36 (Asn/Asp)/Glu 0.279 ± 0.379 0.176 ± 0.253 0.103

37 CPT2: (C16+C18.1)/C2 0.031 ± 0.008 0.031 ± 0.012 0.579

38 Met-SO/Met 0.025 ± 0.017 0.043 ± 0.048 0.000 ***

39 Asn/Orn 0.537 ± 0.164 0.462 ± 0.159 0.017 *

(Continued)
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TABLE 1 Continued

Number Important Features (ratio) HC OSCC p-value Significant

40 (Glnlysis)/(Asp/Gln) 180.706 ± 189.567 126.211 ± 154.392 0.090

41 lysoPC_a_C20:4/lysoPC_a_C20:3 2.856 ± 0.876 2.837 ± 1.38 0.214

42 SDMA/Arg 0.006 ± 0.004 0.008 ± 0.006 0.081

43 Total lyso(PC)/Total(PC) 0.107 ± 0.027 0.104 ± 0.031 0.558

44 (Ala/Gln)/Ile 0.008 ± 0.003 0.007 ± 0.004 0.004 **

45 MUFA/SFA 10.77 ± 1.646 11.309 ± 2.812 0.669

46 C2/C0 0.139 ± 0.044 0.182 ± 0.093 0.016 *

47 (C2+C3)/C0 0.149 ± 0.044 0.191 ± 0.092 0.022 *
F
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This table lists the important ratio features identified through feature selection, including their mean values in healthy controls (HC) and OSCC patients, and the significance of the difference
between the two groups. p-values are represented as follows: p < 0.05 *, p < 0.01 **, and p < 0.001 ***.
TABLE 2 List of important features (value).

Number Important Features (value) HC OSCC p-value Significant

1 SM C24:1 41.628 ± 7.955 51.259 ± 12.199 0.000 ***

2 C5 0.201 ± 0.18 0.499 ± 0.647 0.000 ***

3 PC aa C36:6 0.624 ± 0.225 0.471 ± 0.205 0.000 ***

4 SM C26:1 0.285 ± 0.079 0.361 ± 0.114 0.000 ***

5 PC aa C42:4 0.181 ± 0.045 0.215 ± 0.053 0.000 ***

6 SM C16:0 103.144 ± 18.64 121.256 ± 27.081 0.000 ***

7 PC aa C36:0 1.584 ± 0.474 1.336 ± 0.521 0.031 *

8 C4 0.228 ± 0.09 0.314 ± 0.211 0.008 **

9 C14:1 0.091 ± 0.021 0.116 ± 0.055 0.002 **

10 PC aa C36:5 16.314 ± 6.622 13.535 ± 6.794 0.006 **

11 C3 0.429 ± 0.137 0.358 ± 0.147 0.003 **

12 PC ae C44:3 0.093 ± 0.021 0.108 ± 0.03 0.010 **

13 PC ae C38:0 1.428 ± 0.394 1.234 ± 0.392 0.012 *

14 C14:2 0.025 ± 0.011 0.037 ± 0.025 0.000 ***

15 PC aa C34:4 1.644 ± 0.738 1.31 ± 0.554 0.007 **

16 PC aa C40:2 0.244 ± 0.057 0.283 ± 0.065 0.003 **

17 Ala 431.684 ± 125.636 347.628 ± 94.083 0.000 ***

18 SDMA 0.484 ± 0.353 0.549 ± 0.333 0.066

19 PC aa C32:2 3.13 ± 1.303 2.663 ± 1.183 0.034 *

20 Ser 101.627 ± 23.284 113.342 ± 40.304 0.191

21 Gln 632.779 ± 142.604 687.898 ± 165.148 0.031 *

22 C0 41.368 ± 9.438 39.007 ± 10.676 0.123

23 PC ae C38:6 5.379 ± 1.328 4.966 ± 1.4 0.121

24 PC aa C42:1 0.245 ± 0.088 0.285 ± 0.083 0.004 **

25 PC aa C40:3 0.44 ± 0.11 0.518 ± 0.122 0.001 ***

26 Lys 246.288 ± 63.078 212.745 ± 56.475 0.003 **

(Continued)
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classification, demonstrated superior performance in distinguishing

OSCC patients from HC (Figure 4). This approach underscores the

model’s ability to handle complex, high-dimensional and small

sample data efficiently (20).

Among the identified metabolites (Table 2), SMs such as SM

C24:1 and SM C16:0 play crucial roles in cell membrane integrity

and signaling pathways that regulate cell proliferation and apoptosis

(34). Altered levels of these sphingomyelins have been linked to

cancer cell survival and resistance to apoptosis, which are

characteristic of OSCC progression (31, 35). PCs, like PC aa

C36:6 and PC aa C42:4, are also central to membrane structure

and cellular signaling, with abnormal PC metabolism being a

common feature in many cancers (36). Both SMs and PCs are

primarily formed via the Kennedy pathway, which is significant for
Frontiers in Immunology 10343
OSCC progression and can be targeted for therapeutic interventions

(37). Elevated choline kinase activity, crucial for PC synthesis, has

been linked to poor prognosis and could play a similar role in OSCC

(38). The consistent detection of SM and PC features among the

top-ranked markers underscores their relevance as both potential

biomarkers and therapeutic targets in OSCC.

Within the candidate biomarkers identified in this study, short-

chain acylcarnitine (ACar) like C3/C4, C4, and C5, along with

medium-chain ACars such as C8 and C10, demonstrate significant

potential for OSCC diagnosis (39). These ACars are crucial

intermediates in fatty acid oxidation (FAO), a metabolic pathway

reprogrammed in OSCC cells to meet the high energy demands and

adapt to the harsh tumor microenvironment characterized by

hypoxia and acidosis (40). The observed upregulation of short-
TABLE 2 Continued

Number Important Features (value) HC OSCC p-value Significant

27 PC ae C44:4 0.273 ± 0.077 0.328 ± 0.104 0.002 **

28 Met 27.623 ± 10.139 21.974 ± 8.371 0.002 **

29 PC aa C38:6 51.035 ± 12.787 46.733 ± 14.33 0.110
This table lists the important metabolic value features identified through feature selection,including their mean values in healthy controls (HC) and OSCC patients, and the significance of the
difference between the two groups. p-values are represented as follows: p < 0.05 *, p < 0.01 **, and p < 0.001 ***.
FIGURE 4

Evaluation of model performance with all features and important features. (A) The evaluation of the TabPFN model with all features versus only the
important features demonstrates significant improvements in accuracy (0.851 ± 0.066), precision (0.858 ± 0.065), recall (0.851 ± 0.066), and F1
score (0.851 ± 0.067) when the important features are used. The figure presents violin plots with embedded box plots. The box plots’ central red line
represents the median, with the edges of the box denoting the first and third quartiles, and whiskers extending to the minimum and maximum
values. Outliers are shown as individual points. (B) The ROC curve and AUC value for the TabPFN model further confirm the model’s high diagnostic
capability, with an AUC of 0.93 indicating excellent performance. The violin plot, a variant of the box plot, shows the density of accuracy values,
highlighting the distribution of accuracy scores. (C) Confusion matrix analysis of model predictions: The confusion matrix compares real labels (HC
for HC and OSCC for oral squamous cell carcinoma patients) against predicted labels. The numbers represent the count and percentage of correctly
and incorrectly classified samples in each category. The model accurately classified 83.6% of HC and 86.6% of OSCC patients.
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chain ACars suggests an increased reliance on FAO for energy

production, while the downregulation of medium-chain ACars may

indicate selective consumption by OSCC cells. Such metabolic

alterations not only reflect the underlying pathophysiology of

OSCC but also highlight the value of ACars as biomarkers (41).

Their ease of detection in plasma makes them particularly suitable

for non-invasive early screening, offering a promising avenue for

early diagnosis and personalized intervention in OSCC.

The key biomarker ratios, (Ala/Gln)/Orn, Phe/PC aa C42:4, and

(Ala/Gln)/(Tyr/Phe), reflect significant metabolic reprogramming in

OSCC. The (Ala/Gln)/Orn ratio highlights disruptions in nitrogen

metabolism, as glutamine and alanine are crucial for tumor growth,

while ornithine links to altered urea cycle activity (42). The Phe/PC aa

C42:4 ratio connects amino acid metabolism with lipid synthesis,

underscoring the interplay between phenylalanine uptake and

phosphatidylcholine pathways, both critical in cancer progression

(43). Meanwhile, (Ala/Gln)/(Tyr/Phe) captures the balance of

nitrogen and aromatic amino acid metabolism, further emphasizing

OSCC’s reliance on reprogrammed amino acid pathways (43). These

ratios offer potential as diagnostic markers and therapeutic targets in

OSCC. These ratios are indicative of the extensive metabolic

reprogramming that occurs in cancer cells to support their rapid

growth and proliferation (15).

Furthermore, our analysis of the top-ranked individual features

demonstrated substantial predictive power even when used

independently, and the highest accuracy achieved with a single

feature (SM C24:1/(Met/PC aa C40:3)) was 76.6% (Figure 5). These

findings indicate the potential for the use of top-ranked features in

rapid screening protocols for OSCC. The ability of individual

biomarkers to predict disease status underscores their importance

and utility in clinical settings (44).
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The correlation analysis reinforces the feasibility of simplifying

OSCC diagnostic protocols by focusing on individual metabolites

(Figure 3C). The strong correlations observed among the top 10

feature pairs (Supplementary Table S8), ranging from 0.89 to

0.9995, suggest redundancy, where detecting a single feature in

each pair could be sufficient for accurate diagnosis. For instance, the

near-perfect correlation between C2/C0 and (C2+C3)/C0 (0.9995)

implies that either could be selected based on practical

considerations, such as ease of detection. Similarly, highly

correlated pairs like Total acylcarnitines/C0 with (C2+C3)/C0

(0.9834), and C4/C0 with C4 (0.9061), indicate that prioritizing

the more detectable metabolite is a viable strategy.

Despite the promising performance of our machine learning

model, which achieved an accuracy of 85% (Figure 4), several

factors may have contributed to it not reaching 100%. One

significant factor is the inherent biological variability among

patients (44, 45). Variations in age, sex, ethnicity, diet, and

lifestyle can influence metabolic profiles, potentially introducing

noise into the data and affecting the model’s ability to generalize

across diverse populations (44). Additionally, metabolic alterations

due to factors other than cancer, such as chronic diseases or

medication, can confound the data and reduce predictive

accuracy (44, 45). The list of biomarkers used in our model,

although comprehensive, may still be incomplete. The molecular

mechanisms underlying OSCC are complex and not fully

understood. There may be other relevant metabolites or metabolic

pathways that were not included in our analysis, potentially limiting

the model’s ability to capture all aspects of the disease (45).

Recognizing and accounting for these confounding factors can

increase the accuracy and reliability of metabolomic studies and

associated diagnostic models for OSCC.
FIGURE 5

Accuracy performance for individual features ranked by importance. This figure shows the accuracy results for individual feature predictions, with
the accuracy trend generally following the feature importance ranking. The shaded area represents the standard deviation of accuracy for each
feature. The top three features with the highest accuracy are labeled on the graph (ACC= 0.766, 0.698, 0.699, respectively). The red dashed line
represents the fit line with an R² value of 0.6273, indicating the overall trend.
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5 Limitations

Although our machine learning model demonstrated significant

predictive power via plasma metabolite profiles, several limitations

need to be addressed. First, the list of biomarkers identified and

used in this study may be incomplete because the molecular

mechanisms underlying OSCC are complex and not fully

understood. The biomarkers included in our model may not

encompass all relevant metabolic changes associated with OSCC,

potentially affecting the accuracy and generalizability of the model

(27). Additionally, the variability in drug dosage, treatment

regimens, and patient responses in clinical settings could

influence metabolic profiles and their diagnostic utility, which our

model does not account for (29).

Furthermore, our analysis was based on publicly available

datasets, which may not fully represent the diverse populations

affected by OSCC (29). Access to more extensive and diverse

datasets, including patient-level data, would likely enhance the

model’s predictive capability and robustness (29). The reliance on

a single dataset and the exclusion of patients who had undergone

radiotherapy or chemotherapy to ensure unaltered metabolic

profiles may limit the applicability of our findings to the broader

OSCC patient population (27). Future studies should aim to

validate these findings across multiple datasets and consider the

inclusion of treated patients to better understand the impact of

various treatments on metabolic profiles.
6 Conclusion

This study highlights the effectiveness of integrating advanced

machine learning techniques with plasma metabolomics for the

early diagnosis of OSCC. By leveraging biomarkers identified

through metabolomic profiling and applying sophisticated

algorithms such as TabPFN, we achieved high diagnostic

accuracy, underscoring the potential of this approach for

precision medicine. Additionally, we explored the potential of

using individual features for early screening, with the advantage

of avoiding accuracy inflation through multiple k-fold cross-

validations. The results demonstrate that combining multiple

disease features, including specific metabolite levels and ratios,

significantly enhances the predictive power of the models (27).

Future research should incorporate multi-omics data, such as

proteomics and transcriptomics, to enrich biomarker discovery and

explore the immune landscape associated with OSCC (29).

Integrating these multi-omics approaches with immunotherapy-

related biomarkers could offer novel insights into personalized

therapeutic strategies. Additionally, expanding patient-level data

across diverse cohorts and developing a publicly accessible web

platform for interactive biomarker analysis could enhance clinical

utility. Such a platform could enable personalized diagnostics and

immune-based treatment planning, ultimately improving patient

outcomes in OSCC.
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SUPPLEMENTARY TABLE 1

Clinicopathological data of OSCC patients and HC. Most patients are male,

over 40 years, current smokers and alcoholics, with large tumors from the
tongue (C02) and floor of mouth (C04) subsites, often with nodal metastases.

SUPPLEMENTARY TABLE 2

MS analysis of all samples. Concentration (uM) of 131 metabolites and 104

metabolite ratios/sums in plasma samples from61OSCCpatients and 61 controls.
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SUPPLEMENTARY TABLE 3

Bayesian optimization parameter list. This table lists the parameters used in
Bayesian optimization for various machine learning models, including their

start values, end values, and optimal values.

SUPPLEMENTARY TABLE 4

Performance metrics for all machine learning models before Bayesian
optimization. This table presents the accuracy, precision, recall, and F1

scores for various machine learning models, along with their running times,

measured over 100 runs (20 iterations of 5-fold cross-validation) before
Bayesian optimization.

SUPPLEMENTARY TABLE 5

Differences in model performance metrics before and after Bayesian

optimization. This table displays the differences in model performance
metrics before and after Bayesian optimization for various machine learning

models. Metrics include Accuracy, Precision, Recall, and F1 scores. Statistical
significance is denoted as follows: p ∗ ≤ 0.05, p ∗∗ ≤ 0.01, p ∗∗∗ ≤ 0.001.

SUPPLEMENTARY TABLE 6

Standard deviation, mean, and significance information for ratio features. This

table provides the standard deviation, mean values, and significance
information for the ratio features in HC and OSCC patients.

SUPPLEMENTARY TABLE 7

Standard deviation, mean, and significance information for value features.

This table provides the standard deviation, mean values, and significance
information for the numerical features in HC and OSCC patients.

SUPPLEMENTARY TABLE 8

Correlation matrix of important metabolic features used in classification. The

table presents the Pearson correlation coefficients among the important
features identified in the study.
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Introduction: Bladder cancer was recognized as one of the most common

malignant tumors in the urinary system, and treatment options remained largely

limited to conventional surgery, radiotherapy, and chemotherapy, which limited

patient benefits.

Methods: Researchers constructed an RNA transcriptomemap of bladder cancer

by integrating single-cell RNA sequencing and clinical data, identifying potential

molecular targets for diagnosis and treatment. We also verified the antitumor

activity of the target through in vitro experiment.

Results: A distinct tumor cell subpopulation characterized by elevated S100A8

expression exhibited high copy number variation, high stemness, and low

differentiation. It interacted with myeloid cells via the MIF-(CD74+CD44) and

MIF-(CD74+CXCR4) signaling pathways. This study underscored KDELR2’s role in

promoting cell proliferation, invasion, and migration, providing new therapeutic

insights. Prognostic analysis revealed that KDELR2 correlated with poor survival,

higher immune scores, and increased macrophage infiltration.

Discussion: The findings suggested that patients with high KDELR2 expression

might benefit from immune checkpoint therapy. KDELR2 was also shown to

enhance bladder cancer cell proliferation, invasion, and migration, highlighting it

as a promising target for macrophage-focused drug development.
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bladder cancer, S100A8, TCs, KDELR2, macrophage
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GRAPHICAL ABSTRACT

Workflow diagram of this study. Workflow showed bladder cancer single-cell RNA sequencing data were used to perform cell stemness, pseudo-
time, and cell communication analyses, leading to the identification of a cell subpopulation and the creation of a prognostic model. The KDELR2
gene was validated by in vitro experiments.
1 Introduction

On a global scale, bladder cancer holds the second position

among urological malignancies in terms of prevalence, while it

ranks ninth among all malignancies and stands as the 13th leading

contributor to cancer-related deaths worldwide (1). The main risk

factors include old age, smoking, pelvic radiation therapy, the use of

cyclophosphamide, and an enlarged prostate and urinary retention

in men, which may also increase the risk of cancer due to the

presence of carcinogens in the urine (2). Clinically recognized

bladder tumors typically present with symptoms such as

significant hemorrhage, urinary system irritative symptoms (e.g.,

urgency, frequency, and burning), and may or may not be

accompanied by massive hematuria. This is especially true for

patients with diffuse in situ carcinoma, muscle-invasive tumors,

or secondary infection-related lesions. While some bladder tumors

may be asymptomatic, they can be detected during the evaluation of

asymptomatic hematuria (3).

Current modalities for bladder cancer management encompass

surgery, chemotherapy, and radiation therapy (4). Immunotherapy

for bladder cancer had made strides in recent years, but the benefits

were limited, particularly in certain types of bladder cancer.

Therefore, researchers aimed to develop more precise targeted

therapies and combination strategies. The recently advanced

single-cell RNA sequencing(scRNA-seq) technology facilitates

precise profiling of diverse gene modules utilizing minimal cell

numbers, enabling high-resolution characterization.
Frontiers in Immunology 02349
KDELR2 is an ER-resident protein involved in the ER stress

response and proper protein folding. Its expression in cancer cells

could be associated with tumor proliferation, migration, and

invasion. For instance, in breast cancer, KDELR2 was identified as

a novel target of HDAC3, with aberrant expression predicting poor

outcomes in patients (5). Though KDELR2’s role in bladder cancer

had not yet been fully explored, its involvement in other cancers

suggested it could also be crucial in bladder cancer development.

Hence, KDELR2 was considered a promising therapeutic target,

and the development of drugs aimed at KDELR2 could provide new

treatment options for bladder cancer patients. With our endeavors,

it is anticipated that this research will offer personalized diagnostic

and treatment strategies as well as immunotherapy guidance for

bladder cancer patients for patients with bladder cancer to enhance

prognosis and diminish mortality rates.
2 Materials and methods

2.1 Data source

The scRNA-seq data for bladder cancer, sourced from Gene

Expression Omnibus (https://ww.ncbinlm.nih.gov/geo/)

(GSE135337), was utilized in this study. Data pertaining to bulk

RNA-seq was acquired from the Cancer Genome Atlas (TCGA)

website (https://portal.gdc.cancer.gov/), which included clinical

details (age, gender, ethnicity) and somatic mutation information
frontiersin.org
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for bladder cancer patients. By leveraging publicly accessible data,

the quirement for ethical approval was bypassed.
2.2 Single‐cell sequencing

The gene expression data was processed in R (v4.2.0) with the

Seurat package (v4.3.0). Low-quality cells were filtered out based on

stringent criteria, including nFeature range (300–5000), nCount

range (500–50,000), and limits on mitochondrial ≤(1) and

erythrocyte gene expression ≤(5 contributions to the total gene

count. A total of 40,167 cells were obtained after quality control.

Seurat’s NormalizeData prepared the gene expression data. The

FindVariableFeatures function pinpointed the 2,000 most variable

genes (6–10). ScaleData functions (v3.1.4) prepared the gene

expression data (11), guiding subsequent principal component

analysis. The harmony R package (v.0.1.1) (12, 13) mitigated batch

effects between sample.CellCycleScoring is used to calculate cell cycle

phases (14). Clusters were formed based on the top 30 principal

components (PCs). For UMAP visualization, the same 30 PCs were

selectively used to depict gene expression patterns (15–18). A

dimensionality reduction of 30 and a resolution of 1.2 were used.
2.3 Identification of cell subpopulations

Cell clusters were initially identified with Seurat’s FindClusters

and FindNeighbors functions (18–21). Clusters were annotated

based on marker genes expression averages.
2.4 Trajectory analysis of
TCs subpopulations

Slingshot (v2.6.0) inferred cell lineages and pseudotimes,

leveraging clustering-based MSTs to define lineage architecture.

Synchronized master curves and branching curve fittings were

applied, with getCurves used to derive smooth trajectory curves.
2.5 Assessment of cell stemness

The AUCell method (22) is utilized for the identification of cells

exhibiting active gene single-cell RNA-seq data underwent analysis to

assess gene expression profiles. It takes gene sets as input and

provides an assessment of the ‘activity’ of each gene set within

every individual cell. In this particular study, it was employed to

evaluate the stemness characteristics associated with different tumor

cell subpopulations.
2.6 Enrichment analysis of
cellular subpopulations

Differentially expressed genes (DEGs) were identified using

FindAllMarkers, applying a Wilcoxon test with thresholds of
Frontiers in Immunology 03350
min.pct and min.diff.pct at 0.25, and a logfc threshold of 0.25

(23). ClusterProfiler (v4.6.0) facilitated DEGs enrichment and

analysis using GO (24), KEGG, and GSEA (25–27). Significant

GO terms were identified with an adjusted P-value < 0.05.
2.7 Cell communication analysis

CellChat (v1.6.1) enables quantitative inference and analysis of

scRNA-seq data to decipher cellular interactions. CellChat’s

netVisual diffInteraction function assesses alterations in cell-cell

communication strength, while IdentifyCommunicationPatterns

determines the count of distinct communication patterns. Scatter

plots, heatmaps, and various visualization techniques are used to

visually analyze the signals entering and exiting each cell. The

CellChatDB database (http://www.cellchat.org/) is then used to

identify signaling pathways and receptor pairs associated with

specific types of TCs in cancer. A P-value threshold of 0.05 was

set to identify statistically significant cell-cell interactions across

various cell types.
2.8 Scenic analysis

Using pySCENIC (v0.10.0) in Python 3.7, we inferred single-cell

regulatory networks and clustered tumor cell subpopulations.

GRNBoost identified TF target genes, which were then refined by

DNA-motif analysis. AUCell scored regulon activities, revealing the

top 5 transcription factors (TFs) with most significant changes in

expression, based on human gene motif rankings from https://

resources.aertslab.org/cistarget/.
2.9 Development and Verification of a
Prognostic Prediction Model

The purpose of this research was to evaluate the prognostic

potential of specific prognostic genes associated with diverse

bladder cancer subpopulations in predicting patient survival

outcomes. Through a rigorous process involving univariate and

multivariate Cox proportional hazards analysis (28, 29), combined

with Least Absolute Shrinkage and Selection Operator (LASSO)

regression, we pinpointed the most influential prognostic genes as

key predictors for developing a robust prognostic model.

Subsequently, we formulated a risk scoring system, where the risk

score is calculated as the sum of the products between individual

gene expression levels and their respective coefficients.

Risk Score =on
i Xi� Yi

Employing an optimized cutoff threshold derived from the

“surv_cutpoint” function, patients were stratified into distinct low

risk and high STRS groups, allowing for a comparative analysis of

prognostic differences across patient subpopulations. To visualize

and statistically validate the predictive capabilities of our risk score

model, we leveraged the “Survival” package (v3.3.1) in R for survival

analysis and utilized the “ggsurvplot” function to generate survival
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curves (30–32). Moreover, we ensured the reliability of our model

by assessing its accuracy and calibration through the generation of

Receiver Operating Characteristic (ROC) curves (33–37) using the

“timeROC” package (v0.4.0), providing a comprehensive evaluation

of the model’s predictive performance.
2.10 Immune microenvironment analysis

We utilized the CIBERSORT R package (version 0.1.0) to

compute immune-related scores for immune cells, providing a

comprehensive evaluation of the patients’ immune milieu.

Furthermore, we scrutinized the levels of immune cell infiltration

and differential gene expression associated with immune

checkpoints, and conducted investigations into the correlation

between risk scores, immune cells, and model genes (38).

Concurrently, we employed the Tumorlmmune Dysfunction

program to appraise the response to tumor immunotherapy.
2.11 Identification of malignant cells
by inferCNV

To distinguish between cancerous and non-cancerous cellular

populations, we initially estimated the baseline copy number variation

(CNV) across various genomic regions by analyzing disruptions in

chromosome gene expression patterns. This was accomplished utilizing

the inferCNV R package (accessible at https://github.com/

broadinstitute/inferCNV/wiki), a tool specifically designed for CNV

inference. Using endothelial cells (ECs) as a benchmark, we

leveraged the inferCNV algorithm to characterize the CNV

landscape within distinct cellular subpopulations. Subsequently,

those EPCs subpopulations that exhibited marked alterations in

their CNV profiles, indicative of significant genomic instability,

were identified and classified as malignant cells, thereby facilitating

the differentiation between cancerous and non-cancerous cell types.
2.12 Cell culture

The UM-UC-1 tumor-derived cell line was propagated in MEM

medium under standardized conditions (37°C, 5% CO2

atmosphere, and 95% humidity) supplemented with 10% fetal

bovine serum (FBS) and 1% antibiotics. Similarly, the VM-CUB1

cell line was maintained in DMEM medium under identical

conditions, also enriched with 10% FBS and 1% antibiotics to

ensure optimal growth and health.
2.13 Cell transfection

RNA constructs sourced from GenePharma (Suzhou, China)

facilitated the downregulation of KDELR2 expression. The cells were

seeded onto a 6-well plate at a moderate density of 50%, subsequently

subjected to transfection procedures involving KDELR2-specific

knockdown constructs (si-KDELR2-1 and si-KDELR2-2), as well as a
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negative control construct (si-NC) for comparison. Lipofectamine

3000RNAiMAX (Invitrogen, USA) was used for transfection under

manufacturer directions. Every si-RNA (RIbbio, China) was transfected

into cells. siRNA sequences: si-1: GUAGUCCAGACCAUCCUAU; si-2:

UCGUGCUUUGUAUCUUGUC. qRT-PCR Primers : F:

TGGATCTGGCGCTTCTACTT; R: GCTGGCAAACTGAGCTTCTT.
2.14 Western blotting

After the transfected cells attained a 70% confluency level, they

were lysed in RIPA buffer. The resulting lysates were clarified through

centrifugation at 12,000 rpm for 15 minutes, preparing them for SDS-

PAGE separation. The separated proteins were then transferred onto

PVDF membranes, which were subsequently blocked with 5% BSA

for 1.5 hours at ambient temperature. Following an overnight

incubation with an Anti-KDELR2 antibody at 4°C, the membranes

were further incubated with a secondary antibody for an hour.

Ultimately, the presence of KDELR2 protein bands was detected

using an ECL Western Blot substrate for visualization.
2.15 Quantitative real-time polymerase
chain reaction

The RNA extraction process involved the utilization of Trizol

reagent, Trizol reagent was used to lyse cells and release RNA, with

chloroform and isopropanol employed to precipitate the RNA while

suppressing RNase activity. Throughout the extraction process, it

was essential to confirm that the workbench, tools, and water

utilized were RNase-free to avoid RNA degradation. Followed by

a reverse transcription step facilitated by the PrimeScript™ Kit.

Subsequently, the quantitative Real-time Polymerase Chain

Reaction was performed using SYBR Green premix as the

fluorescent dye for amplification detection.
2.16 Cell viability assay

To assess the viability of UM-UC-1 and VM-CUB1 cells post-

transfection, the Cell Counting Kit-8(CCK-8) assay was employed. Cells

were seeded in 96-well plates at a density of 5×10³ cells per well and

allowed to incubate for 24 hours. Subsequently, 10mL of CCK-8 labeling
reagent (A311-01, Vazyme) was added to each well, and the plates were

incubated in the dark at 37°C for two hours. From day one to day four,

cell viability was quantitatively determined bymeasuring the absorbance

at 450nm using an enzymatic marker (A33978, Thermo). The average

optical density values were computed and plotted on a line graph to

visually represent the cellular viability trends over time.
2.17 Transwell assay

Prior to the experiment, the cells underwent a 24-hour serum

starvation period in medium devoid of serum. Afterward, the cell

suspension was mixed with Matrigel (BD Biosciences, USA) and
frontiersin.org
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seeded into the upper chamber of Costar plates, while the lower

chamber was filled with serum-rich medium to create a

chemoattractant gradient. The cells were then incubated for 48

hours in a cell culture incubator to allow for migration and invasion.

Following incubation, the cells were fixed with 4% paraformaldehyde

and stained with crystal violet to visually assess their invasive potential.
2.18 Wound healing assay

The stably transfected cells were plated in 6-well dishes placed

in the incubator and cultured at 37°C with 5% CO₂ until the cells

reached confluence. Using a sterile 200mL pipette tip, uniform

scratches were generated across the cell monolayer in each well.

Subsequently, the wells were gently washed with PBS to remove any

dislodged cells or debris. The scratched areas were then subjected to

incubation in serum-free medium to monitor cell migration. Images

of the scratch wounds were documented at 0 hours and again after

48 hours of incubation, with the widths of the scratches measured

utilizing Image-J software for quantitative analysis.
2.19 5-Ethynyl-2’-deoxyuridine
proliferation experiments

The UM-UC-1 and VM-CUB1 cell lines, post-transfection, were

seeded at a concentration of 5×10³ cells per well in 6-well plates.

Following a 24-hour incubation period at ambient temperature, the

EdU working solution was introduced into the culture medium and

allowed to incubate for 2 hours. Subsequently, the cells underwent a

double wash with PBS and were fixed using a 4% paraformaldehyde

solution for 15 minutes to stabilize them. After fixation, the cells were

permeabilized and quenched with a mixture of 2 mg/ml glycine and

0.5% Triton X-100 for 15 minutes. Finally, the cells were stained with a

combination of 1X Apollo solution (1 ml) and Hoechst staining

reaction solution (1 ml), followed by a 30-minute incubation period.

Fluorescencemicroscopy was then employed to assess cell proliferation

by capturing images of the stained cells.
2.20 Statistical analysis

R and Python software packages are utilized for analyzing data

from databases, while GraphPad Prism, specifically version 8.0.1, serves

as the tool of choice for experimental data analysis. Throughout the

analyses, two-tailed p-values are employed, and statistical significance

is determined based on values falling below the threshold of 0.05.
3 Results

3.1 Single-cell sequencing analysis revealed
major transcriptomic features of the TME
in bladder cancer

Based on our research objectives and requirements, we

conducted a comprehensive review of the scRNA-seq data related
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to bladder cancer in public database. To explore the cellular

transcriptome characteristics of the bladder cancer TME, we

performed a systematic and comprehensive analysis of the

collected scRNA-seq data. The dataset was obtained from seven

primary tumor tissue samples and one paracancerous sample from

seven bladder cancer patients that included diverse demographic

backgrounds and clinical stages of bladder cancer. This diversity

enhanced the relevance of our findings to a broader patient

population. After removing batch effects and primary quality

control, we obtained 40,167 high-quality cells (Figure 1A).

Dimension reduction cluster analysis was performed on the

screened cells, and we found that they could be divided into 5 cell

types, including B plasma cells, ECs, epithelial cells (EPCs), myeloid

cells, and fibroblasts (Figure 1B). The bubble plot depicted the levels

of expression for the most significant genes in distinct cellular

subpopulations, categorized by cell types and tissue samples

(Figure 1C). The results found that ECs highly expressed PLVAP,

GNG11, SPARC, RGCC, IGFBP7; fibroblasts highly expressed CFD,

LUM, DCN, GSN, MT2A; EPCs showed high expression of SPINK1,

KRT19, LY6D, FXYD3 and S100A2; B plasma cells showed high

expression of IGHG1, IGLC3, IGHA1, IGKC, IGLC2; myeloid cells

showed high expression of HLA-DRA, CCL3, HLA-DPB1, C1QB

and SPP1; bladder cancer tissue cells showed high expression of

SPINK1, LY6D, KRT19, FXYD3, S100A2; paracancerous cells highly

expressed genes including CFD, LUM, DCN, GSN, MT2A,RGCC

and so on. In conclusion, we could find that EPCs marker genes had

high consistency with the highly expressed genes in cancer tissues.

At the same time, we could observe that the cell phases are different

in these 5 cell types, and most of the cells were in G1 phase

(Figure 1D). Moreover, most ECs and EPCs were mainly derived

from bladder cancer tissue, while fibroblasts were mainly derived

from paracancerous cells (Figure 1E). The above study were

consistent with Ro/e analysis, that EPCs tended to be derived

from bladder cancer tissues (Figure 1H). Through cell cycle

analysis of cell subpopulations, each cell subpopulation tended to

be distributed in different cycle phases (Figures 1C, D, F). In

addition, the proportion of EPCs in bladder cancer tissue cells

and paracancerous cells was much greater than that of other cells,

especially in bladder cancer tissue cells, as high as 97.7%

(Figures 1E, G).

Volcano plots results showed that the different genes among

ECs, fibroblasts, EPCs, B plasma cells, and myeloid cells (Figure 1I).

To investigate the biological processes of different cell types, by

using GO-BP enrichment analysis (Figure 1J), we identified that

EPCs were mainly enriched in ATP synthesis coupled electron

transport, mitochondrial ATP synthesis coupled electron transport,

cytoplasmic translation, proton motive force-driven mitochondrial

ATP synthesis and mitochondrial respiratory chain complex

assembly. Further GSEA (Figure 1K) of EPCs was performed

according to GO-BP terms. The results showed that pathways

such as mitochondrial electron transport, NADH to ubiquinone;

oxidative phosphorylation and ATP synthesis coupled electron

transport showed a positive enrichment trend, by comparison,

pathways such as adaptive immune response and extracellular

structure organization showed a trend of negative enrichment in

this genome.
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FIGURE 1

Single-cell profiling of bladder cancer identified 5 cell types. (A) The UMAP plot visualized the analysis encompassing all cells from eight bladder
cancer samples sourced from seven patients,by using single-cell RNA sequencing method(n=40,167). (B) UMAP plot showed clusters of five different
types of cells (ECs; EPCs; B plasma cells; myeloid cells; fibroblasts). (C) The bubble chart displayed the top 5 marker genes associated with each
individual cell cluster. The bar charts were color-coded by cell subpopulation, and the pie charts illustrated the proportion of each phase. The violin
plots visualized the expression levels of G2M.Score, S.Score, and nCount-RNA, with bubble size representing the percentage of gene expression and
color indicating z-score. (D) UMAP plot illustrated the cellular distribution at three different cell cycle phases (Phase: G1, G2M, S). (E) UMAP plot
showed the distribution of cell samples from bladder cancer tissue and paracancerous tissue. (F) The bar charts represented the proportions of three
cell phases in five different types of cells. (G) The bar charts represented the proportions of bladder cancer tissue and paracancerous tissue in 5
different types of cells. (H) The heatmap revealed the distribution preferences of different cell subpopulations in terms of sample origin and cell cycle
phase. (I) Volcano plots showed different expressed genes in 5 types of cells. (J) Enrichment analyses of DEGs across all cells unveiled their key
biological roles and functions. (K) GSEA identified both positively and negatively enriched biological pathways in EPCs, including mitochondrial
electron transport, NADH-ubiquinone reduction, oxidative phosphorylation coupled ATP synthesis, adaptive immune response, and extracellular
structure organization.
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3.2 Visualization analysis of bladder cancer
tissue cells

The findings of various studies have demonstrated that the

presence of TCs can trigger significant alterations at a molecular,

cellular, and physical level within the surrounding tissue, leading to

the formation of a specialized environment known as the TME.

During the initial stages of tumor development, there is an intricate

interplay between cancer cells and various components of this

microenvironment, facilitating tumor survival, local infiltration,

and metastatic dissemination (39). Therefore, TCs are the real

culprit of tumor development. We first used the infer CNV

algorithm to successfully separate 19,621 bladder cancer cells

from EPCs based on CNV (Supplementary Figure S1). Next, we

identified six subpopulations of bladder cancer cells based on the

level of marker genes expression. The circle diagram showed six cell

subpopulations. These were C0 FABP4+ TCs, C1 S100A8+ TCs, C2

TFF2+ TCs, C3 CRH+ TCs, C4 BIRC5+ TCs and C5 IL32+ TCs. In

addition, we used UMAP plots to show the nCount-RNA, nFeature-

RNA, G2M.Score and S.Score of each subpopulation (Figure 2A).

Subsequently, the bubble plots showed the marker genes of different

tissue cells and subpopulations (Figure 2B). According to the

comparison of named gene expression of each subpopulation of

tumor cell in bar charts, C0 was characterized by high expression of

FABP4. The high expression of S100A8 characterizes C1, while C2

was characterized by the elevated expression of TFF2. Similarly, C3

was distinguished by its heightened expression of CRH, and C4

exhibits a notable increase in BIRC5 expression. Lastly, the high

expression of IL32 served as a defining feature for C5. UMAP plots

showed the named gene expression of each subpopulation, which

was consistent with the results of bar charts (Figure 2C).

For further analysis of the subpopulations of TCs, we conducted

deeper visualization study. First, we performed sample sources and

cell cycle phases analysis of TCs, and combined the UMAP plots to

observe the main distribution of different TCs (Figure 2D). The

results showed that most of the C1 subpopulation of TCs in G2M

stage, compared to the other subpopulations, the highest

proportion, as high as 50.90%,at the same time, the tissue

classification results show that the C1 subpopulation is different

from other subpopulations, its mainly come from bladder cancer

tissue cells (Figures 2E, F), and the CNV score was relatively high

(Figure 2G). In addition, we conducted CNV score analysis of

bladder cancer tissue cells and paracancerous cells, the cancer tissue

cell expression level of CNV score was higher than the

paracancerous cells. There were significant differences between

them. UMAP plot showed the CNV score distribution

characteristics. Additional examination of the stemness

characteristics of specific subpopulations of cells in bladder cancer

demonstrated that the C1 subpopulation had the highest Area

Under the Curve (AUC) score for stemness. This meant that

C1 had the characteristics of low differentiation degree and

strong differentiation potential. The stemness score of bladder

cancer cells exhibited a slightly higher level compared to that of

paracancerous cells; however, the difference did not reach statistical

significance (Figure 2H).
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3.3 Heterogeneity of stemness and
development in bladder cancer
cell subpopulations

Subsequently, we conducted an analysis of gene expression

related to cell stemness in the subpopulations of TCs. And we

found that the stemness gene expression level was more significant

in the C1 subpopulation compared with the other cell

subpopulations (Figure 3A). The bar charts confirmed the above

conclusion that the C1 subpopulation is higher in CTNNB1, MYC,

HIF1A and BMI1 expression levels than other subpopulations cells

(Figure 3B). Research had indicated that the atypical activation of

CTNNB1 was linked to the development of various types of tumors,

including but not limited to colorectal cancer, ovarian cancer,

prostate cancer, hepatoblastoma, and hepatocellular carcinoma

(40). HIF1A, hypoxia-inducing factor, promotes angiogenesis and

is important for the vascular system in the embryo and for cancer

tumors (41, 42). As a proto-oncogene, BMI1 was an important

component of the polycomb gene family. High levels of BMI1

expression have been found to be significantly associated with the

onset, progression, and prognosis of diverse malignancies. BMI1

could participate in tumorigenesis by inhibiting multiple gene loci,

synergizing with other proto-oncogenes, and enhancing telomerase

activity (43). The synergistic effect of these genes precisely

demonstrateed the pro-tumor effect of C1 subpopulations. The

UMAP plots showed the expression distribution of CTNNB1, MYC,

HIF1A, BMI1 genes (Figure 3C).

Cell stemness was closely related to cell differentiation and

development. To explore the differentiation trajectory of tumor cell

subpopulations, we performed a pseudotime analysis and presented it

using UMAP plots. First, we showed the lineage trajectory of bladder

cancer tissue cells and paracancerous cells (Figure 3D), and the cell

cycle lineage trajectory (Figure 3E). The initial cell differentiation

trajectory began in the G1 phase and gradually transitioned to the S

and G2M phases according to the cell cycle sequence. We then

analyzed six different TCs subpopulations, and the UMAP plots

showed two main cell lineage tracks (Figure 3F), including lineage 1:

C0→C2→C5→C4→C3; lineage 2:C0→C2→C4→C1. The

difference between the two trajectories mainly existed in the later

stage. Combined with Figure 3D, we could find that the ended of

lineage 1 endedmainly C3 subpopulation, which contained cells from

both tumor tissues and cells from paracancerous cells. The end of

lineage 2 ended mainly C1 subpopulation, which was a tumor cell

subpopulation derived entirely from a bladder cancer tissue sample.

Combined with the evolution of TCs and based on the tissue origin,

CNV score and cell stemness of C1 subpopulation, the conclusion

that C1 subpopulation has a high degree of malignancy and is closely

related to the progression of bladder cancer was reaffirmed.

Furthermore, we conducted an analysis on the temporal

expression patterns of marker genes belonging to 6 distinct

subpopulations. The findings indicated that. different from other

cell subpopulations. The high expression of marker genes for the C1

subpopulation was predominantly observed during the later stage

(Figure 3G). To confirm the above findings, we also conducted a

temporal analysis of the expression of cell stemness genes. The
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1485109
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1485109
FIGURE 2

S100A8+ TCs specifically expressed in malignant EPCs and are associated with cell stemness. (A) The circle plot represented the clustering of the six
tumor cell subpopulations identified in bladder cancer. and the contour curve outlines the boundaries of each cell subpopulation. The outer axis of the
circle plot represents the logarithmic scale of the entire cell count in each cell category. The three-color tracks representative the ratio of each tumor
cell subpopulation in cell types, cell sample types, and cell phases, respectively, and are colored according to cell categories. The UMAP graphs in the
four corners start from the upper left corner and go clockwise to show the expression distribution of nCount-RNA, nFeature-RNA, S.score, and
G2M.score across all TCs was shown. (B) The bubble charts showed the manifestation of marker genes in two sample tissues (top) and in six tumor cell
clusters (bottom). (C) The bar charts and UMAP plots collectively presented the expression profiles of six marker genes FABP4, S100A8, TFF2, CRH,
BIRC5, and IL32 across six tumor cell clusters. (D) UMAP visualized the distribution of TCs in bladder cancer tissue, paracancerous tissue, and G1, G2M,
and S phases. (E) The bar charts showed the percentage of G1, G2M, and S phases in six tumor cell clusters. (F) The bar charts illustrated the percentage
of bladder cancer tissue and paracancerous tissue across six tumor cell clusters. (G) The bar plots illustrated the CNV score expression levels across six
tumor cell clusters, bladder cancer tissue, and paracancerous tissue. Meanwhile, the UMAP plot visualized the distribution pattern of CNV scores. ****P <
0.0001. (H) The bar plots showed the AUC score of cell stemness for six tumor cell clusters and bladder cancer tissue and paracancerous tissue. The
UMAP plot showed the distribution of cell stemness AUC score. "ns" was used to say that there was no significant difference.
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primary distinction between lineage1 and lineage2 was observed in

the later stage, with a notable increase in stemness gene expression

detected in lineage2 compared to lineage1 (Figure 3H). This was

consistent with previous conclusions. Subsequently, we analyzed
Frontiers in Immunology 09356
the subpopulations using GO-BP enrichment analysis to verify the

related biological processes of the two lineages (Figure 3I), and the

dynamic timing showed the expression changes of the different

genes of TCs along the two trajectories within the pseudotiming.
FIGURE 3

Analysis of tumor cell clusters for cell pluripotency and analysis of the developmental trajectory of cells. (A) The heatmap showed the z-scores of
the marker genes related to cellular stemness in six cell clusters. (B) The bar plots displayed the expression levels of four key genes associated with
cell stemness across six cellular clusters. (C) The UMAP plots showed the dispersion of the four genes related to cellular stemness within all TCs. (D)
The UMAP plot illustrated the tumor cellular trajectory changes inferred based on bladder cancer tissue and paracancerous tissue. (E) The UMAP plot
illustrated the temporal trajectories of tumor cellular differentiation, depicted based on three cell cycle phases: G1, G2M, and S. The lineage showed
the trajectory from G1 and S to G2M. (F) The UMAP plots showed the two lineages of cellular differentiation over time for the six tumor cell clusters
discussed. The lineage showed the trajectory from C0 FABP4+ TCs to C3 CRH+ TCs(left), another lineage showed the trajectory from C0 FABP4+
TCs to C1 S100A8+ TCs (right). (G) The dynamic trend graphs showed the expression of six marker genes over time at different differentiation stages.
(H) The dynamic trend graphs showed the expression of four stemness genes over time at different stages. (I) The heatmaps showed GO enrichment
pathways during the differentiation process of TCs. The top bar chart represents pseudo-time and six different types of cells. The faceted mountain
plot showed the distribution density of six tumor cell subpopulations spanning various pseudo-time stages. The trajectory plot showed the
expression of S.Score and G2M. Score (red represented S.Score, blue represented G2M. Score) as they changed with pseudotime.
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3.4 Heterogeneity of biological functions
of bladder cancer TCs

To explore the biological functions of TCs in bladder cancer, we

first analyzed the different expression genes of six tumor cell

subpopulations. The results showed that the main upregulated

genes in C1 S100A8+ TCs were RPL32, RPS8, BEST3, IGF2 and

NUPR1 (Figure 4A). Among them, RPL32 played a crucial role in

modulating cellular signaling pathways. It had found that RPL32

could participate in multiple signaling pathways during

tumorigenesis and significantly contribute to the initiation and

progression of neoplastic growth (44, 45). RPS8 was mainly

involved in protein folding and stability, and in tumor studies,

RPS8 has the potential to serve as a biomarker specific to tumors

due to its tendency for elevated expression levels in tumor tissues

and cells compared to normal tissues (46). BEST3 was a coding gene

that encoded proteins with good histocompatibility and low

expression levels. BEST3 had been observed to be present in

multiple types of cancerous tissues, and its expression level

appears to be linked with the tumor’s capacity for invasion.

Furthermore, the correlation between the expression level of

BEST3 and the efficacy of tumor therapy has prompted its

investigation as a potential therapeutic target or biomarker (47).

The role of IGF2 was pivotal in regulating cellular proliferation,

development, motility, differentiation, and viability. Furthermore,

IGF2 played a role in a variety of cancer development (48). NUPR1

had been linked to the onset and progression of cancer, and it was

commonly observed to be upregulated in different cancer forms.

Moreover, NUPR1 could act as a transcriptional regulator affecting

the expression of genes involved in cell cycle regulation, apoptosis,

and stress response. These genes had a significant correlation with

the onset and progression of neoplasms (49, 50).

Furthermore, we conducted enrichment analysis using GO-BP

and KEGG to identify enriched biological processes and pathways

associated with the DEGs in the subpopulations of TCs. And the

heatmap showed the results of the genes enrichment in the TCs

subpopulations (Figure 4B). C0 FABP4+ TCs was mainly associated

with cytoplasmic translation, translational initiation, intrinsic

apoptotic signaling pathway, ATP synthesis coupled electron

transport and mitochondrial ATP synthesis coupled electron

transport biological processes related in GO-BP, and was

associated with the ribosome, coronavirus disease-COVID-19,

chemical carcinogenesis-reactive oxygen species, oxidative

phosphorylation and parkinson disease pathways in KEGG.C1

S100A8+ TCs was mainly associated with cytoplasmic translation,

protein folding, chaperone-mediated protein folding, regulation of

apoptotic signaling pathway and the biological process of

ribonucleoprotein complex biogenesis in GO-BP, and was

associated with the fluid shear stress and atherosclerosis,

ribosome, protein processing in endoplasmic reticulum, prion

disease and parkinson disease pathways in KEGG. The

association of C2 TFF2+ TCs primarily pertained to the biological

processes related to hypoxia response, decreased oxygen levels

response, oxygen levels response, cellular response to decreased

oxygen levels, and cellular response to hypoxia in GO-BP, and was

associated with the estrogen signaling pathway, HIF-1signaling
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pathway, legionellosis, lipid and atherosclerosis and the glycolysis

pathways correlation in KEGG. The association of C3 CRH+ TCs

primarily pertained to the process of ATP production through

electron transport, mitochondrial ATP synthesis coupled with

electron transport, aerobic electron transport chain, and oxidative

phosphorylation in GO-BP, and was associated with the parkinson

disease, ribosome, huntington disease, oxidative phosphorylation

and the amyotrophic lateral sclerosis pathways correlation in

KEGG.C4 BIRC5+ TCs was mainly associated with chromosome

segregation, ATP synthesis coupled electron transport,

mitochondrial ATP synthesis coupled electron transport, nuclear

chromosome segregation, respiratory electron transport chain in

GO-BP, and was associated with the parkinson disease, huntington

disease, amyotrophic lateral sclerosis, prion disease and alzheimer

disease pathways correlation in KEGG. C5 IL32+ TCs was mainly

associated with leukocyte mediated cytotoxicity, leukocyte mediated

immunity, cell killing, lymphocyte mediated immunity and

regulation of T cell activation biological processes in GO-BP, and

was associated with the natural killer cell mediated cytotoxicity,

graft-versus-host disease, antigen processing and presentation,

primary immunodeficiency and the Epstein-Barr virus infection

pathways in KEGG.

In addition, we performed a further step GSEA of the six tumor

cell subpopulations, and we could observe that C1 S100A8+ TCs

were mainly enriched in intracellular zinc ion homeostasis

(Figure 4C). GSEA results (Figure 4D) also showed that the C1

subpopulation was positively enriched in the regulation of extent of

cell growth, regulation of axon extension, positive regulation of

mononuclear cell migration, the intracellular zinc ion homeostasis,

while it was negatively regulated in positive regulation of peptide

hormone secretion, antigen processing and presentation of

exogenous antigen, glycolytic process through glucose-6-

phosphate and glycolytic process through fructose-6-phosphate.

In summary, C1 subpopulation was mainly associated with

biological pathways such as protein folding and ribosomes, which

promoted and accelerated tumor cell migration and invasion. Cells

were very sensitive to physiological conditions, and when the

physiological conditions changed, the cells would change

accordingly. When the loaded proteins exceed the folding

capacity of the endoplasmic reticulum stress (ERS), ERS will be

caused. The core of ERS lied in the occurrence of protein

misfolding, which significantly influenced the growth and viability

of cancerous cells and may facilitate the progression of bladder

carcinoma (51, 52). Ribosomes, as a kind of nutrient, can escort the

smooth and rapid translation of viruses and provide conditions for

tumor proliferation, thus affecting the progression and development

of bladder cancer (53).
3.5 Analysis of the cell interactions in
the TME

To gain a thorough and organized comprehension of intricate

cellular reactions, our aim was to conduct an examination on

intercellular connections and networks involved in ligand-receptor

communication, with the intention of visualizing interactions between
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cells. By means of CellChat analysis, we successfully established a

network for cellular communication encompassing the majority of

cells, including ECs, fibroblasts, B plasma cells, myeloid cells and six

tumor cell subpopulations (Figure 5A). Then, we determined the

quantity of interactions through the ‘line’ connection linking two cell

types, with thicker lines indicating a higher number of interaction paths.

Additionally, we represented the strength of interactions using line

weight, where thicker lines indicated stronger interactions. Among
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different cell subpopulations. Next, we combined the CellChat maps

to explore how different cell subpopulations interact with each other

through these pathways. First, we categorized cell communication

patterns into three main types. In addition, the displayed heatmaps

illustrated the expression of cell interaction proteins in the three modes.

The two heatmaps on the left showed the outgoing signal patterns of

different cell subpopulations and the active interacting proteins in the

signal patterns, and the two heatmaps on the right showed the incoming
FIGURE 4

Perform gene and pathway enrichment analysis for each tumor cluster set. (A) The volcano plots showed the differential gene expression signatures
across the six clusters. (B) The heatmap displayed the top five enrichment pathways among the six clusters identified through GO-BP and KEGG
enrichment analysis. (C) The bubble plot showed the GSEA results of the six tumor cell clusters. (D) GSEA analyzed eight positively or negatively
enriched pathways in C1 S100A8+ TCs.
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signal patterns and interacting proteins of cell subpopulations

(Figure 5B). We could observe that in the outgoing signal pattern

diagrams, C1 S100A8+ TCs were mainly in pattern 3. Correspondingly,

ncWNT, CDH,MPZ,MK, andOCLN showed high expression levels in

pattern 3. Additionally, the incoming signal patterns of C1 S100A8+
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TCs exhibited pattern 1 including but not limited to the pathways

represented by such as EPHA, CDH, MPZ, IGF, and OCLN. The

Sankey diagrams and heatmaps (Figure 5C, D) showed the

communication pattern and target signal of each cell subpopulations,

which was consistent with the results in Figures 5B.
FIGURE 5

Bladder cancer cells was characterized by cell-to-cell signaling networks. (A) The circle charts summarized the quantity and intensity of interactions
between six tumor cell clusters and four distinct cell types, providing insights into their interconnectedness. (B) The heatmaps separately showed the
contributions of the six tumor cell clusters and four cell types in the outgoing (left) and incoming (right) signaling under three cell communication
patterns, as well as the contributions of various proteins in the three communication patterns. (C) The Sankey diagrams illuminated the outbound
communication pattern of secretory cells and the inbound communication pattern received by target cells. (D) The bar charts compared the relative
signaling strengths of six tumor cell clusters and four cell types in both incoming and outgoing patterns. Complementarily, the heatmaps visualized
the reception intensities of various proteins within these communication patterns across the same cell groups.
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3.6 Explored the cell signaling pathways in
C1S100A8+ TCs

Subsequently, we analyzed the number of cell interaction

strength between the C1 S100A8+ TCs and other cell subsets in

depth (Figures 6A, B). We could find that both in the incoming

signal or the outgoing signal, the number and intensity of the

interaction between myeloid cells and C1 S100A8+ TCs were more

significant than other cells, so we could infer that C1 S100A8+ TCs

cells and myeloid cells had a strong interaction. Subsequently, we

performed signaling network analysis and showed that C1 S100A8+

TCs and myeloid cells mainly communicate with MIF signals

pathway (Figure 6C). Then we analyzed the role of the two in the

signaling pathway (Figure 6D), which showed that C1 S100A8+ TCs

cells mainly played the role of signal sender, while myeloid cells

mainly played the role of signal sender and influencer.

By comparison, we could infer that the MIF ligand of C1

S100A8+ TCs cells acted on the CD74-CXCR4 and CD74-CD44

receptor of myeloid cells (Figures 6E, F). The cell interaction circle

diagrams (Figures 6G, H) showed the interaction relationship

between C1 S100A8+ TCs cells and myeloid cells in MIF-(CD74

+CXCR4) and MIF-(CD74+CD44) cell signaling pathway, verifying

the above statement. In order to make the results more visual, we

used the interaction hierarchy diagrams (Figures 6I, J) to show the

relationship between C1 S100A8+ TCs cells and myeloid cells (the

thickness of the line represents the interaction strength, the thicker

of the line, the relationship is more significant). The findings

indicated that the intercellular communication between C1

S100A8+ TCs and myeloid cells primarily took place through

paracrine, leading to signal crosstalk. This could disrupt normal

signal transduction, leading to alterations in the tumor immune

microenvironment, thereby facilitating the proliferation, metastasis,

and invasion of TCs (54).
3.7 TFs regulate the oncogenic mechanism
of C1 S100A8+ TCs

TFs act on genes to regulate gene transcription by binding

specific nucleotide sequences upstream of the gene, thereby

affecting cell biological functions. Firstly, we conducted cluster

analysis of bladder cancer tissue cells according to genes

expression (Figure 7A). In addition, the UMAP plots displayed

the expression of TFs in six tumor cell clusters (Figure 7B).

Subsequently, based on the heatmap of TFs correlation

(Figure 7C), we divided the TFs with similar functional and

expression into three main modules, namely M1, M2 and M3.

Next, we visualized the analysis of the divided modules, and

observed the expression levels of each TCs subpopulation in

different modules through the UMAP plots. The results showed

that C1 S100A8+ TCs cells had significant expression in the M1

module (Figure 7D). To further verify the above statement, we

performed transcription factor regulatory activity score analysis

(Figure 7E), and we can observe that in the M1 module, C5 IL32+

TCs cells have the highest transcription factor regulatory activity

score, followed by C1 S100A8+ TCs cell. The bar charts also verify
Frontiers in Immunology 13360
the above statement that C1 S100A8+ TCs cells have high

expression levels in the M1 module, second only to C5 IL32+

TCs cells (Figure 7F). Subsequently, we conducted an analysis on

the top 5 TFs in the subpopulations of TCs (Figure 7G). The

specificity score identified HES1, AHR, TBL1XR1, IRF4, and SPI1

as the top 5 TFs in C1 S100A8+ TCs. Finally, we used the UMAP

plots to show the TFs distribution characteristics of C1 S100A8+

TCs cells (Figure 7H).
3.8 Constructed the prognostic model of
bladder cancer

To investigate the prognostic factors in patients, we employed

univariate Cox regression analysis to discover 21 genes that exhibited

an association with prognosis (Figure 8A). We could observe HES1

HR<1, while HR values of other genes were>1. Therefore,HES1was a

protective factor that favors patient prognosis, while others were risk

factors and unfavorable to patient prognosis. To mitigate the issue of

multicollinearity among genes, we employed LASSO regression

analysis to identify 10 genes that were associated with prognosis

(Figure 8B). Multivariate Cox regression analysis was then performed

on the above genes and used to calculate the genes risk coefficient for

these genes (Figures 8C, D). The curve graph and scatter plot revealed

variability in risk scores and survival outcomes between low STRS

(S100A8+ tumor risk score) group and high STRS group, while high

STRS group was associated with worse outcome (Figure 8E). The

heatmap showcased the distinctive expression patterns of the

prognostic genes in both cohorts, setting them apart from the rest

of the gene pool (Figure 8F), HES1 was more significantly expressed

in low STRS group and HES1 favors the prognosis of the patient,

consistent with previous conclusions. The ROC curves and AUC

values (Figure 8G) for 1-year, 3-years, and 5-years periods exceeded

the threshold of 0.6, indicating that the prediction model was specific

and valuable. The Kaplan-Meier survival curve further confirmed the

low survival profile of high STRS group (Figure 8H). Combined with

Figure 8D, the KDELR2 risk score was the highest. Hence, we

conducted an analysis using the Kaplan-Meier survival curve

(Figure 8I) and observed a notable decline in survival rates among

patients exhibiting elevated KDELR2 gene expression.
3.9 Prognostic model enrichment analysis

To provide clarity on the distinction between the two scoring

cohorts, an analysis was conducted on the genes that exhibited

differential expression (Figure 9A). The volcano plot showed the

up-regulation and downregulation trends of DEGs (Figure 9B).

Subsequently, to understand the biological processes for the above

genes, we performed various enrichment analyses. The first was GO

enrichment analysis, which reveals the main biological process, cell

composition and molecular function (Figure 9C). In GO-BP, genes

were mainly enriched in biological processes like epidermis

development, keratinization, keratinocyte differentiation,

intermediate filament organization, skin development. In GO-CC,

its predominant enrichment were observed in the cornified envelope,
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intermediate filament, and cytoskeletal components of intermediate

filaments as well as keratin filament. In GO-MF, mainly enriched in

structural constituent of skin epidermis, serine-type endopeptidase

activity, serine hydrolase activity, endopeptidase activity and receptor
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ligand activity. In addition, we performed KEGG pathway

enrichment analysis of differential genes (Figure 9D), and showed

that the related pathways were staphylococcus aureus infection,

retinol metabolism, ECM-receptor interaction, steroid hormone
FIGURE 6

The MIF signaling network was the main communication method between S100A8+ TCs and Myeloid cells. (A) The circle diagrams showed TCs as
the signal emitter and other cells as signal receiver The left side represented the communication strength, while the right side represented the
number of communications. (B) The circle diagrams showed other cells as the signal emitter and TCs as signal receiver. The left side represented the
communication strength, while the right side represented the number of communications. (C) The heatmap showed the communication probability
of various cell clusters based on the MIF signaling pathway. There was a high probability of communication between C1 S100A8+ TCs and Myeloid
cells. (D) The heatmap showed that C1 S100A8+ TCs mainly acted as signal senders, while myeloid cells mainly played a signal receiver and
influencer in the MIF pathway. (E, F) The bubble chart and violin plots displayed that in the MIF pathway, the communication crosstalk between C1
S100A8+ TCs and myeloid cells through the MIF- (CD74+CD44) and MIF-(CD74+CXCR4) ligand receptor pair. (G, H) The circle diagrams showed
the interactions between C1 S100A8+ TCs and myeloid cells in the MIF- (CD74+CD44) and MIF- (CD74+ CXCR4) signaling pathways. (I, J) The
hierarchy diagrams illustrated the autocrine and paracrine interactions between the six tumor cell clusters and ECs, fibroblasts, B plasma cells, and
myeloid cells on the MIF- (CD74+CD44) and MIF- (CD74+ CXCR4) signaling pathway.
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biosynthesis and cytokine-cytokine receptor interaction. Finally, we

performed a GSEA of the enriched pathways (Figure 9E), the results

showed that keratinization, keratinocyte differentiation, skin

development and the epidermis development related pathways
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showed a positive enrichment trend, mitochondrial respiratory

chain complex assembly, uronic acid metabolic process, the

flavonoid metabolic process and ATP synthesis coupled electron

transport related pathways showed a negative enrichment trend.
FIGURE 7

Cluster analysis of TFs and the top five TFs in C1 S100A8+ TCs. (A) The UMAP plot displayed tumor cell clustering based on gene expression levels.
(B) The UMAP plots visualizations highlighted distinct clustering patterns among TCs, grouped according to the activation levels of various TFs.
(C) The heatmap displayed three modules M1, M2, and M3 of transcription factor hierarchical clustering. (D) The UMAP plots depicted the distinct
expression patterns of TFs across the three tumor cell modules. (E) The dot plots displayed the ranking of transcription factor regulatory activity
scores for different tumor cell clusters in three modules. (F) The bar charts showed the expression levels of six cell clusters in three modules.
(G) Ranking of the top 5 transcription factor activity scores of different cell types. (H) The UMAP plots displayed the expression of the top five TFs in
C1 S100A8+ TCs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1485109
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1485109
3.10 Disparities in immune infiltration
observed between high and low
STRS groups

We performed immune infiltration analysis on high STRS group

and low STRS group. The box plot revealed higher expression levels of
Frontiers in Immunology 16363
macrophages M0 and M1, and neutrophils in the high STRS group

(Figure 10A). Those cell types belong to myeloid cells. It was

noteworthy that macrophages exhibited a higher abundance of

immune infiltration and exerted a more pronounced effect on the

high STRS group. Subsequently, we further investigated the

correlation between risk score and immune infiltration (Figure 10B).
FIGURE 8

Constructing a risk prediction model through a combined approach of univariate Cox proportional hazards analysis and Lasso regression. (A) The forest
plot displayed the top 21 genes obtained from univariate Cox analysis that were associated with prognosis. (aHR > 1 indicated poor prognosis). (B) By
setting the lambda.min = 0.017 for LASSO regression curve, we obtained 10 prognostic-related genes(up). Each line depicted the coefficient assigned to
a distinct variable, selected for its significant prognostic value. (bottom). (C) The forest plot displayed the top 10 genes obtained from multivariate Cox
analysis that were associated with prognosis. (aHR > 1 indicated poor prognosis). (D) The bar plot showed gene coefficients about those 10 prognostic-
related genes. (E) A curve graph compared the risk scores between patients in the low and high STRS groups, while a scatter plot visualized survival
outcomes, with blue dots indicating survival events and red dots signifying death events. (F) The heatmap contrasted the expression levels of ten risk
genes between the high and low STRS groups, providing insights into their differential activation patterns. (G) The ROC curve analysis, along with its
corresponding AUC value, offered a quantitative assessment of the predictive performance of the model in estimating patient survival cycles. (H) A
Kaplan-Meier survival analysis was conducted to compare the survival outcomes between patients in the high STRS group and those in the low STRS
group. (I) A Kaplan-Meier survival analysis distinguished survival trends between patients stratified into high KDELR2 group and low KDELR2 group.
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In the correlation lollipop chart, macrophages also showed a close

positive correlation with risk score. In addition, the immune-score,

stromal-score, and ESTIMATE-score of the high STRS group were

significantly higher than those of the low STRS group, while the

tumor-purity was significantly lower than that of the low STRS group

(Figure 10C). Scatter plots demonstrated positive associations between
Frontiers in Immunology 17364
KDELR2 expression levels with immune-score, stromal-score, and

ESTIMATE-score as well as macrophages M0 (Figure 10D). Elevated

KDELR2 expression was linked to increased infiltration of

macrophages and a more prominent immunosuppressive

microenvironment. Therefore, target mining of macrophages might

be a potential strategy for bladder cancer immunotherapy. The
FIGURE 9

Differential gene expression and enrichment analysis. (A) The heatmap illustrated distinct patterns of gene expression between the high and low
STRS groups. (B) The volcano plot visually displayed the variation in expression levels among genes that exhibited differential expression. (C) The dot
plots sequentially displayed Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories from the GO enrichment
analysis. (D) KEGG enrichment bar plot showed top 20 enrichment pathways. (E) Eight GSEA pathways that were positively and negatively enriched.
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heatmap provided visual comparisons that supported our previous

findings (Figure 10E).

Furthermore, the bubble plot (Figure 10F) showed the correlation

between immune checkpoints and prognostic genes, OS, Risk.

Among them, CD274, CD276, CD80, CD86, HAVCR2, LAIR1,

NRP1, PDCD1LG2, TNFRSF8, TNFRSF9, TNFRSF4, and VTCN1

were significantly positively correlated with KDELR2. This suggested

that patients with high KDELR2 expression were potential candidates

for these immune checkpoint inhibitors (ICIs). In order to optimize

ICIs utilization and improve therapeutic efficacy further analysis was

conducted on gene expression levels of different immune checkpoints

between high STRS group and low STRS group using a box plot

(Figure 10G). The results indicated significantly higher expression

levels for most genes in the high STRS group compared to those in

the low STRS group. These findings suggested that application of

these ICIs to patients classified as high STRS group might result in

improved treatment outcomes.
3.11 KDELR2 inhibits the proliferation and
invasion of bladder cancer cells

In an effort to delve deeper into the impact of KDELR2 on the

patient outcome in cases of bladder cancer, we conducted in vitro

experiments. Firstly, we divided tumor cell lines of different sources

into three groups: si-NC, si-KDELR2-1 and si-KDELR2-2. The

findings indicated notable variances in the expression levels of

protein and mRNA for UM-UC-1 and VM-CUB1. Specifically,

the si-KDELR2 group exhibited lower expression levels compared to

the si-NC group (Figure 11A). In addition, we investigated the effect

of KDELR2 on tumor cell activity. First, tumor cell activity was

tested by CCK-8, and fluorescence staining showed that the tumor

cell activity in si-NC was higher than that in si-KDELR2-1 and si-

KDELR2-2. Subsequently, we used line plots to quantify indicators.

The OD values of si-KDELR2-1 and si-KDELR2-2 were found to be

significantly reduced compared to the si-NC group, aligning with

the outcomes obtained from CCK-8 staining (Figure 11B). Next, we

studied the proliferation ability of TCs. The colony formation assay

(Figure 11C) similarly corroborated the aforementioned statements.

Through EDU experiments, the microbiota density was lower after

KDELR2 was knocked out. Subsequent data analysis showed that si-

KDELR2 inhibited cell proliferation and cloning (Figures 11D, E).

In order to investigate the invasion and migration ability of the

cells, we conducted wound healing assay and transwell assay

(Figures 11F, G). After 48 hours of assay, si-KDELR2 TCs’

distance was greater than that of si-NC, while the density was

lower than that of si-NC, which proved that si-KDELR2 TCs had

low invasion and migration ability. The bar plots were consistent

with the experimental conclusion that UM-UC-1 and VM-CUB1

cells inhibited the invasion, migration and wound healing of TCs

after the knockout of si-KDELR2 (Figure 11H). In summary,

KDELR2 had obvious tumor promoting effect, which played a key

role in the development of TCs. In conclusion, our research

provided a more comprehensive understanding of the KDELR2

gene. Through a series of studies, we discovered that KDELR2

promoted tumor cell development. It could be inferred that
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KDELR2 played a key role in driving tumor cell proliferation,

migration, and other related processes. Accordingly, we could

achieve the purpose of improving prognostic survival by

inhibiting KDELR2, making it possible focus for therapeutic

intervention in cases of bladder cancer.
4 Discussion

In today’s society, bladder cancer is still a global problem,

posing a threat to human health, and its incidence has significant

population differences, the incidence of men is generally higher

than that of women, but most female patients with bladder cancer

are more serious and have a poor prognosis (55). In most cases, the

prognosis of bladder cancer is determined by the distinct attributes

and differences observed among individual patients (56). Hence, it

is imperative to conduct a thorough investigation into the diversity

of bladder cancer in order to improve patient prognosis and identify

possible targets for therapeutic interventions in this disease. Using

scRNA-seq, the cellular and molecular features of bladder cancer

tissues and identified five known cell types. For different cell

subpopulations, we performed temporal phase, sample source as

well as pathway enrichment analysis. We found that unlike other

cells, EPCs were mainly derived from bladder cancer tissue cells.

Enrichment analysis showed that ATP synthesisation-related

pathways were significantly expressed in EPCs, and Mitochondrial

electron transport and NADH to ubiquinone were positively enriched

in EPCs. ATP played a very important role in cells and was one of the

important links of energy information, which could control the life

activity of tumors (57)and make the adverse process, namely tumor

proliferation, possible, thus promoting the development of TCs (58).

Mitochondria could provide an energy source for cells, and in cells

they could influence signature functions, including avoiding cell death,

bioenergy dysregulation, genome mutation, and promoting tumor

inflammation and metastasis (59). Cancer cells would derive a kind of

tumor stem cells with the ability of self-renewal, metastasis and spread

and treatment resistance during their self-evolution, which played a

key role in tumor occurrence and development (60). Based on this, we

studied TCs of bladder cancer. First, tumor tissue was divided into six

subpopulations based on marker genes. Among them, we discovered

that TCs exhibiting elevated levels of S100A8 were exclusively derived

from tumor tissue specimens. Bubble chart showed the C1

subpopulation high expressed DMKN MT1X, S100A7, S100A9,

S100A8 genes, etc. Among them, S100A9 and S100A8 had strong

pro-inflammatory functions. According to their high expression in

cancer, they showed abundant expression in TCs and infiltrate

immune cells. The involvement of these factors was crucial in the

progression of cancer. Furthermore, it was observed that C1

subpopulation had higher expression levels of CNV score and Cell-

stemness. Therefore, we could conclude that C1 subpopulation cells

have higher malignant degree and higher differentiation potential.

Overall, C1 S100A8+ TCs had complex relationships with further

development of bladder cancer.

To clarify the relationship between C1 S100A8+ TCs

subpopulation and tumor, we performed various enrichment

analyses on cell subpopulations. C1 S100A8+ TCs were
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mainly involvedin the cytoplasmic translation, protein folding,

chaperone-mediated protein folding and signaling pathways like

ribonucleoprotein complex biogenesis. Studies had shown that

there was a special class of ribosomes in cancer cells, which could

change cell progression and metabolic reprogramming, accelerate

carcinogenic translation, and change cell function (61). In other

words, bladder cancer cells might develop more rapidly under the
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support of ribosomes, and correspondingly, their malignancy might

be higher. In addition, protein folding tends to have a relationship

with the endoplasmic reticulum. When the body’s ability to tolerate

ERS was improved, the survival ability of cancer cells will become

stronger. Similarly, the ability of immunosuppression, angiogenesis

and drug resistance would be improved accordingly (62). To further

enhanced our understanding of ribosome function and protein
FIGURE 10

Infiltration of immune cells in high STRS group and low STRS group. (A) The box plot showed estimated proportion of immune cells that were
statistically different between high STRS group and low STRS group. (B) Lollipop chart showed the correlation between different immune pathways and
risk scores, with bubble size representing the abs(correlation) and color indicating p-value. (C) Immune-score, stromal-score, ESTIMATE-score, tumor-
purity between high STRS group and low STRS group. (D) The scatter diagram showed the correlation among KDELR2 and immune-score,
macrophages-M0, stromal-score, ESTIMATE-score. (E) The heatmap showed risk scores for different immune cells in the high STRS group and the low
STRS group. (F) The bubble plot showed the degree of association between risk genes and immune checkpoints. (G) The box plot showed immune
checkpoints with statistical differences in the high STRS group and the low STRS group. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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folding, we focused on their critical roles in cancer drug resistance

and tumor evolution. Ribosomes played a vital role in maintaining

cellular proteostasis, and alterations in ribosomal biogenesis

enhanced protein synthesis capacity, allowing cancer cells to

adapt to therapeutic pressure (63). Additionally, the involvement
Frontiers in Immunology 20367
of chaperone proteins and the accumulation of misfolded proteins

triggered the unfolded protein response (64), activating autophagy

or heat shock protein-mediated survival pathways, thereby

promoting resistance to chemotherapy and targeted therapies.

Defects in protein folding also led to the accumulation of
FIGURE 11

In vitro experiments confirmed the effects of KDELR2 knockdown. (A) The bar charts depicted the altered patterns of gene-encoded protein (left) and
gene RNA (right) expression in UM-UC-1 and VM-CUB1 cell lines, comparing three groups: si-NC, siKDELR2-1, and siKDELR2-2. Following targeted
KDELR2 knockdown, notable reductions in both mRNA and protein abundance levels were evident. (B) The line plot showed the longitudinal growth of
three distinct groups across two cell lines. (C) Colony-formation assay revealed a significant reduction in cell viability subsequent to KDELR2 knockdown,
in contrast to the unaltered control group. (D) The EDU staining assay confirmed that KDELR2 knockdown exerted an inhibitory effect on cell proliferation.
(E) The bar plots showed the colony numbers and cell proliferation of three groups in two cell lines. (F) The transwell assay assessed the migratory and
invasive potential of three distinct groups across two cellular lines, offering quantitative insights into their motility and aggressiveness. (G) Post-treatment
migration capacity of TCs was quantitatively assessed using wound healing assays. (H) KDELR2 knockdown led to a statistically significant decrease in cell
migration, invasion, and wound healing capacities, as evident from bar graph analysed. **P < 0.01, ***P < 0.001.
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mutations, exacerbating tumor heterogeneity and evolution (65),

and affected tumor antigen presentation, potentially resulting in

immune evasion. Moreover, ribosomal alterations impacted

translational fidelity, increasing genetic and phenotypic diversity,

further driving tumor adaptation to the microenvironment and

therapeutic interventions (66). In summary, ribosome and protein

folding and other related biological processes played an important

role in tumor development, which can accelerate the proliferation

and metastasis of TCs. In simpler terms, the progression of bladder

cancer could be hindered by targeting specific factors like ribosomes

and the process of protein folding.

To further explore the interaction between C1 S100A8+ TCs

and other cells, CellChat found that C1 S100A8+ TCs acted on

myeloid cells through the MIF-(CD74+CXCR4) and MIF-(CD74

+CD44) signaling pathways. MIF was a representative pro-

inflammatory factor that played a role in regulating immune

responses. Studies had shown that MIF expression is significantly

increased in a variety of tumors (67). High expression of MIF had

been observed to promote tumor progression and metastasis,

stimulate angiogenesis, and create an immunosuppressive

microenvironment conducive to tumor development. C1 S100A8+

TCs acted on myeloid cells CD74-CXCR4 and CD74-CD44

receptors through MIF ligands, which might promote the

transformation of normal myeloid cells into cancer-related

myeloid cells and inhibit the body’s normal anti-tumor immune

effect. Therefore, targeting MIF in TCs could be used as a potential

strategy to treat tumors (67).

To further elucidate the mechanism of carcinogenesis in the

subpopulation of C1 S100A8+ TCs, we analyzed the TFs and selected

the top five TFs according to the expression active, namely HES1,

AHR, TBL1XR1, IRF4 and SPI1.We could find that HES1 and AHR

were significantly expressed in C1 subpopulation. HES1 had a

complex relationship with various pathways, which had the

potential to trigger cellular metamorphosis and enhance its invasive

capabilities, while also playing a significant role in the differentiation,

proliferation, and immune suppression of cancer cells (68).

Furthermore, research had indicated a strong correlation between

HES1 and the stem-like properties of TCs, as well as their ability to

spread and develop resistance against drugs (69). AHR activated a

specific gene, CYP1A1, which caused many oncogenic genes to

combine with DNA to form cancer-promoting combinations, thus

promoting the development of cancer (70). The over-expression or

abnormal activation of AHR or its endogenous agonists in the TME,

and these regulatory abnormalities promoted the immune escape of

tumors. In summary, the above studies provided innovative prospects

for future immunotherapeutic interventions in bladder cancer.

In addition, to enhance the chances of survival and extend the

lifespan of individuals and improve the quality of life of patients,

our research group constructed a bladder cancer prognostic risk

model based on the top 10 marker genes of C1 S100A8+ TCs, and

evaluated the prognosis of patients characterized by high expression

of S100A8 in the TCGA cohort. We observed that a higher high

STRS group risk score, often symbolizing higher mortality, had a

worse prognosis than low STRS group. According to research

findings, KDELR2 had been found to contribute to the

advancement of bladder cancer and was often associated with
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unfavorable outcomes in individuals who had been diagnosed

with cancer (71). In vitro experiments had also proved that when

KDELR2 was highly expressed, the proliferation, migration and

invasion ability of TCs were significantly improved, while when

KDELR2 was knocked down, it had the opposite effect. This was

consistent with previous studies (5, 72). Therefore, the potential of

targeting KDELR2 should be acknowledged as a viable strategy in

the management of patients diagnosed with bladder cancer.

Additionally, the results of immune cell infiltration analysis

showed that the high STRS group had higher macrophage

infiltration levels, and the immune-score and stromal-score were

significantly higher than those of the low STRS group. Macrophages

have two phenotypes: “anti-tumor M1” and “pro-tumor M2”, which

respectively performed two opposite biological effects (73, 74).

Therefore, reshaping the macrophage phenotype and promoting

the transformation of the M0 phenotype to the M1 direction was

crucial to resist tumor immunosuppression. The higher macrophage

infiltration level in the high STRS group was obviously beneficial for

macrophage-targeted therapy in bladder cancer patients to help

promote the normal anti-tumor effect of macrophages. In addition,

with the increase of KDELR2 expression level, the macrophage

M0 immune infiltration status became more obvious, and both

immune and stromal scores increased. KDELR2 could enhance

tumor immune infiltration, inhibit anti-tumor immune response,

and lead to low response to immunotherapy in patients (71).

KDELR2 was instrumental in promoting macrophage infiltration

into the TME of bladder cancer, where it influenced the

polarization of macrophages towards the M2 phenotype (75). This

M2 polarization was associated with immunosuppression, increased

angiogenesis, and enhanced tumor survival, creating a favorable

environment for tumor progression (76). By modulating cytokine

and chemokine production, KDELR2 helped recruit macrophages

that secreted factors supporting tumor growth. Additionally, the

presence of M2 macrophages facilitated immune evasion, allowing

cancer cells to escape detection by the immune system. Thus,

targeting KDELR2 presented a promising therapeutic strategy to

disrupt these pro-tumorigenic processes and improve treatment

outcomes in bladder cancer.

To further elucidate the modulation of macrophage

phenotypes for the purpose of anti-tumor therapy, particularly

focusing on the conversion of M2 macrophages to the pro-

inflammatory M1 phenotype, previous studies showed promise

in reprogramming macrophages toward an anti-tumor state using

Toll-Like Receptor agonists, such as MPLA (77), and CSF1R

inhibitors, such as pexidartinib (78, 79). Additionally, researchers

explored targeting the STAT3 (80) and PI3K/AKT signaling

pathways (81) to suppress M2 polarization while promoting M1

activity. Cytokine-based therapies, including IFN-g and IL-12 (82),

were also employed to enhance the M1 phenotype. Our findings on

the role of KDELR2 in macrophage polarization potentially

complemented these therapeutic strategies, as KDELR2 might

have represented a novel target for further enhancing

macrophage reprogramming. Future studies could have explored

combining KDELR2 targeting with these existing therapies to

improve the efficacy of macrophage-based immunotherapies in

bladder cancer.
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In our study, although wemade every effort to conduct a thorough

analysis and carefully selected the study cohort, we acknowledged

several limitations. First, the small sample size might have led to an

erroneous association between the investigated samples and the target

genes, potentially affecting the accuracy of our assessment. Second,

bladder cancer was composed of various subpopulations. Due to the

relative rarity of bladder squamous cell carcinoma and

adenocarcinoma, we focused primarily on urothelial carcinoma in

our study. This focus might have limited the generalizability of our

findings, as different subpopulations of bladder cancer might exhibit

distinct biological behaviors and treatment responses. Lastly, our

experimental investigation into the interactions between tumor cells

and macrophages was not sufficiently in-depth. The complexity of the

TME, especially the interactions between tumor cells and immune

cells, was a current research hotspot. In bladder cancer, the cellular

components of the TME, such as tumor-associated macrophages and

cancer-associated fibroblasts, co-evolve with tumor cells, contributing

to tumor heterogeneity and promoting tumor progression and drug

resistance. Therefore, future studies need to focus more on these

interactions and how they influence tumor progression and

treatment response.

In future research, we plan to start with KDELR2 and further

investigate macrophage-targeted therapeutic strategies for bladder

cancer. By exploring KDELR2’s mechanisms in bladder cancer, we

aim to develop novel therapeutic strategies to improve patient

prognosis. Additionally, we will explore combining different

TME-targeting strategies into a rational approach that offers

better efficacy with fewer side effects, providing more treatment

options for bladder cancer patients.
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Multi-omics analysis and
experiments uncover the
function of cancer stemness
in ovarian cancer and establish
a machine learning-based
model for predicting
immunotherapy responses
Zhibing Liu1,2†, Lei Han3†, Xiaoyu Ji4†, Xiaole Wang1, Jinbo Jian1,
Yujie Zhai1, Yingjiang Xu5, Feng Wang1, Xiuwen Wang2*

and Fangling Ning1*

1Department of Oncology, Binzhou Medical University Hospital, Binzhou, Shandong, China,
2Department of Oncology, Qilu Hospital of Shandong University, Jinan, Shandong, China,
3Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou,
Shandong, China, 4Department of Oncology, Huashan Hospital Fudan University, Shanghai, China,
5Department of Interventional Vascular Surgery, Binzhou Medical University Hospital, Binzhou,
Shandong, China
Background: The heterogeneity of cancer makes it challenging to predict its

response to immunotherapy, highlighting the need to find reliable biomarkers for

assessment. The sophisticated role of cancer stemness in mediating resistance to

immune checkpoint inhibitors (ICIs) is still inadequately comprehended.

Methods: Genome-scale CRISPR screening of RNA sequencing data from

Project Achilles was utilized to pinpoint crucial genes unique to Ovarian

Cancer (OV). Thirteen publicly accessible OV transcriptomic datasets, seven

pan-cancer ICI transcriptomic cohorts, and one single-cell RNA dataset from

melanoma patients treated with PD-1 were utilized to scale a novel cancer

stemness index (CSI). An OV single-cell RNA dataset was amassed and

scrutinized to uncover the role of Small Nuclear Ribonucleoprotein

Polypeptide E (SNRPE) in the tumor microenvironment (TME). Vitro

experiments were performed to validate the function of SNRPE in promoting

proliferation and migration of ovarian cancer.

Results: Through the analysis of extensive datasets on ovarian cancer, a specific

gene set that impacts the stemness characteristics of tumors has been identified

and we unveiled a negative correlation between cancer stemness, and benefits of

ICI treatment in single cell ICI cohorts. This identified gene set underpinned the

development of the CSI, a groundbreaking tool leveraging advanced machine

learning to predict prognosis and immunotherapy responses in ovarian cancer

patients. The accuracy of the CSI was further confirmed by applying PD1/PD-L1 ICI

transcriptomic cohorts, with a mean AUC exceeding 0.8 for predicting tumor

progression and immunotherapy benefits. Remarkably, when compared to existing
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immunotherapy and prognosis markers, CSI exhibited superior predictive

capabilities across various datasets. Interestingly, our research unveiled that the

amplification of SNRPE contribute to remodeling the TME and promoting the

evasion of malignant cells from immune system recognition and SNRPE can server

as a novel biomarker for predicting immunotherapy response.

Conclusions: A strong relationship between cancer stemness and the response

to immunotherapy has been identified in our study. This finding provides valuable

insights for devising efficient strategies to address immune evasion by targeting

the regulation of genes associated with cellular stemness.
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Introduction

Continuous progress in immuno-oncology, including the

creation of checkpoint inhibitors and CAR-T cell therapy, provide

hopeful approaches for fighting tumors through the stimulation of

the body’s natural defense system (1). However, a significant

number of patients do not experience the expected benefits from

immunotherapy, highlighting the urgent need to identify the the

population eligible for immunotherapy at this stage.

The efficacy of immunotherapy relies on a complex network

involving multiple modulators, including the tumor immune

microenvironment and genetic heterogeneity. Previous research

has primarily focused on analyzing these factors through RNA

sequencing of intact tumor tissue (2, 3). However, the variability in

the tumor immune microenvironment across different cancer types

and individuals, as well as the genetic heterogeneity of tumors,

present challenges in accurately predicting patient responses to

immunotherapy (4). While certain biomarkers like tumor mutation

burden (TMB) have been linked to immunotherapy responses,

they may not always accurately predict the effectiveness of

specific immunotherapy treatments (5). This underscores the

importance of developing robust markers and optimizing

combinations of biomarkers to better stratify patients for optimal

therapeutic outcomes.

Cancer stem cells contribute to the initiation, progression, and

spread of tumors (6). Recently, research has shown a strong link

between stem cell characteristics and the ability of cancer cells to

evade the immune system and resist treatment (7). Previous study

demonstrated a negative correlation between cancer stemness and

immune cell infiltration in 21 solid cancers and indicated that high

level of stemness have a negative impact on the effectiveness of ICI

treatment across various cancer types (8–11). Nevertheless, the

connection between tumor stemness and ICI response in ovarian

cancer has been disregarded.
02373
This study utilized integrative analyses of transcriptome and

CRISPR cell line datasets to identify specific cancer stemness-

related mRNAs of ovarian cancer. We also found a negative

relationship between cancer-intrinsic variability, cancer stemness,

and outcomes of ICI treatment in single-cell SKCM ICI cohorts

(12). Subsequently, a CSI was developed by analyzing 13 ovarian

cancer cohorts with 2407 patients. The accuracy of CSI in predicting

immunotherapy response was assessed using 7 independent anti-

PD-1/PD-L1 ICI cohorts with 929 patients and the submap

algorithm. We observed a significant inverse correlation between

CSI and intrinsic variations, including TMB, mutations, copy

number variations, and Homologous Recombination Defects

(HRD). Furthermore, combining CSI with TMB was found to

improve the predictive accuracy of immunotherapeutic efficacy.

Of note, a pivotal gene, SNRPE, was identified as having a

promoting effect on tumor growth. This finding suggests that

SNRPE could be a potential novel target for immunotherapy in

the future. Collectively, our detailed analysis offers valuable insights

into the role of cancer stemness in immunotherapy for

ovarian cancer.
Methods

Acquisition and preprocessing of extensive
ovarian cancer datasets

The Cancer Genome Atlas (TCGA) dataset on ovarian cancer

RNA sequencing and survival data was retrieved from the UCSC

Xena database (13). Additionally, 12 GEO cohorts focusing on

ovarian cancer (GSE13876, GSE138866, GSE140082, GSE14764,

GSE17260, GSE18520, GSE19829, GSE26712, GSE31245,

GSE49997, GSE63885, GSE9891) were acquired, each containing

detailed survival information.
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Collection of immunotherapy-
associated datasets

The research gathered various sets of data from groups of patients

treated with anti-PD-L1/PD-1 medications to investigate the

correlation between cancer stem cell characteristics and the

effectiveness of immunotherapy. The cohorts included the following:

Rose TL cohort (14) (GSE176307: ICB treated metastatic urothelial

cancer), Jung H cohort (15) (GSE135222: anti-PD-1/PD-L1 treated

non-small cell lung carcinoma), Riaz N cohort (16) (GSE91061: anti-

CTLA4 and PD-1 treated melanoma), Liu/VanAllen cohort

(phs000452.v3: anti-PD1/CTLA4-treated metastatic melanoma)

from the dbGaP database, Necchi cohort (17) (IMvigor210:

Atezolizumab treated advanced or metastatic urothelial carcinoma)

obtained using the “IMvigor210CoreBiologies” R package, Wang GY

cohort (anti-PD-1/PD-L1 treated melanoma), and Braun DA cohort

(anti-PD-1 treated advanced clear cell renal cell carcinoma). Gene

expression and clinical data were also gathered for these

immunotherapy-treated datasets. The details of all cohorts used in

this study can be found in Supplementary Table S1.
Collection of single cell datasets for OV
and ICI-treated SKCM

Gene expression profiles of single cell OV dataset were

preprocessed and retrieved from the GEO database with accession

number GSE184880 (18). The dataset consisted of five non-

malignant tissues and seven high-grade serous ovarian cancer

tissues. Moreover, an examination was conducted on a melanoma

cohort to explore the correlation between cancer cell stemness and

the efficacy of immunotherapy. This cohort comprised data on both

ICI response and single-cell RNA sequencing, sourced from GEO

under accession number GSE115978 (12).
Identifying essential genes for OV

The CRISPR screening of OV cells at a genome-wide level was

acquired through the DepMap portal (https://depmap.org/portal/

download). Utilizing the CERES algorithm, dependency scores were

computed for about 17,000 potential genes (19). Genes deemed

essential demonstrated a CERES score below -1 in 75% of the OV

cell lines (n = 73).
Development and validation of CSC
prediction model

An innovative pipeline was developed to construct a predictive

model for Cancer stem cells (CSC), illustrated in Figure 1A. Initially,

by utilizing the CERES algorithm with cell line data, we pinpointed

687 mRNAs that displayed an association with the survival and

progression of ovarian cancer cells. Subsequently, we computed

mRNA stemness indices (10) across 12 GEO datasets, the TCGA-

OV dataset and evaluated the relationship between total mRNA and
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mRNA expression-based stemness index (mRNAsi). We then

identified the mRNAs showing significantly positive correlations in

at least half of the cohorts (7 out of 13) as mRNAsi-associated

mRNAs (Cor>0.2 and P<0.01), resulting in the discovery of 60

mRNAsi-associated mRNAs (Supplementary Tables S2, S3).

Finally, 8 ovarian cancer (OV) cohorts were used in the creation

of a predictive model for CSCs. To accomplish this, a variety of

machine learning techniques were employed, including random

forest (RSF), elastic net (Enet), gradient boosting (GBM), ridge

regression, Stepcox, plsRcox, CoxBoost, and SuperPC.
Prediction of immunotherapy outcomes
using TIDE webserver

To evaluate the effectiveness of PD-1/CTLA4 immunotherapy,

our first step involved the calculation of scores for tumor immune

dysfunction and exclusion (TIDE). This analysis was performed

using the adjusted expression data collected from patients with

ovarian cancer. The resultant matrix of expression profiles

was then submitted to the TIDE database website (http://

tide.dfci.harvard.edu/) to assess the response of the patients (20).

Next, we employed the submap algorithm available on the

GenePattern website to determine the differences in response

likelihood between the low- and high-CSI groups.
Identification of optimal therapeutics for
low and high CSI groups and drug
sensitivity analysis

By analyzing gene expression profiles, drug sensitivity

prediction in cell lines was achieved using the ‘oncoPredict’ R

package and the calcPhenotype method. To estimate drug IC50, a

ridge regression model was developed utilizing gene expression

profiles of cell lines acquired from GDSC through the pRRophetic

algorithm (21).
Cell lines

Human ovarian cancer cell lines, specifically OVCAR-3, A2780,

and SK-OV-3, were supplied by the Cell Bank of the Committee for

Conservation of Typical Cultures, which is part of the Chinese

Academy of Sciences. These cell lines were cultured using

Dulbecco’s Modified Eagle Medium (DMEM) from Gibco (New

York, USA) and enriched with 10% fetal bovine serum.

Furthermore, the culture medium was supplemented with 100

IU/mL penicillin and streptomycin, both of which were also

procured from Gibco (New York, USA).
IHC

Following the removal of paraffin, the sections embedded in

paraffin were subjected to a treatment with 3% hydrogen peroxide at
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26°C for 10 minutes to suppress the activity of endogenous

peroxidase. Next, the sections were blocked using 10% goat serum

to avoid non-specific binding. Afterward, the sections were

incubated overnight at 4°C with primary antibodies .

Subsequently, rabbit secondary antibodies were applied to the

sections, which were then stained using DAB.
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Knockout and overexpression in ATC
cell lines

Lentiviral vectors designed for the overexpression of SNRPE were

sourced from Genechem in Shanghai, China. Stable transfection of

cells with these SNRPE-overexpressing lentiviruses, along with the
FIGURE 1

Exploration and validation of an inverse relationship between ovarian cancer stemness and ICI response. (A) Schematic representation of the process
for identifying mRNA markers associated with cancer’s intrinsic heterogeneity and stemness, and the development of predictive models using
various machine learning techniques. (B–D) Visualization of t-Distributed Stochastic Neighbor Embedding (tSNE) plots for malignant cells in the
SKCM dataset. (B) Malignant cells categorized by response phenotype in the tSNE plot. (C) tSNE plot depicting the AUCell scores of cancer stem cell
(CSC)-related gene sets in malignant cells, with red indicating higher scores (indicative of high stemness) and blue representing lower scores
(indicative of low stemness). (D) Box plot illustrating the distribution of AUCell scores across response phenotypes (non-responders vs. treatment-
naïve patients) in the SKCM cohort. The median values are marked at the center of the box plot, with the box boundaries representing the 25% and
75% quantiles (Wilcoxon test; *** P < 0.001). Abbreviations: NR, non-responders; TN, treatment-naïve patients. (E) KEGG enrichment of cancer
stemness associated mRNAs.
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corresponding control plasmids, was performed to induce puromycin

resistance. Following the instructions provided by the manufacturer,

selection of stable transfectants was carried out using 2 mg/mL

puromycin over a period of 7 days to establish stable SNRPE-

overexpressing cell lines. Biotend Co., Ltd. synthesized the siRNA

targeting SNRPE. The siRNA, at a concentration of 50 nM, was

transfected into cells using the Lipofectamine 3000 transfection kit

provided by Thermo Fisher Scientific in Waltham, Massachusetts,

USA, with a 24-hour incubation period.
Western blotting

To conduct western blot analysis, cells in culture were washed

with ice-cold PBS before extracting total cell protein lysates at 4°C

with RIPA lysis buffer (Beyotime, Shanghai, China) supplemented

with 1% protease inhibitor cocktail (MedChemExpress, New Jersey,

USA). Following centrifugation at 12,000 g for 20 minutes at 4°C,

the supernatant containing proteins was gathered and mixed with

loading buffer. The samples were then subjected to separation by

10% SDS-PAGE and transfer onto a PVDF membrane. The

membrane was then blocked for 2 hours at room temperature

with 5% skim milk before incubating overnight at 4°C with primary

antibodies. After rinsing with Tris Buffered Saline, the membrane

was exposed to secondary antibodies for detection of protein bands

using enhanced chemiluminescence reagents (Beyotime, Shanghai,

China). Antibodies used in the analysis included SNRPE (20407-1-

AP, Proteintech, Wuhan, China) and GAPDH (60004-1-Ig,

Proteintech, Wuhan, China).
Assessment of cell proliferation, colony
formation, and migration abilities

To evaluate cell proliferation, 2×10^3 cells were introduced into

each well of a 96-well plate and maintained for the required period.

Afterward, each well was treated with 10 ml of CCK-8 reagent

(Dojindo Molecular Technologies, Kumamoto, Japan) and left to

incubate for one hour. The absorbance was then recorded at a

wavelength of 450 nm (OD450) for further analysis.

To assess the ability of colonies to form, a range of 500 to 2000

cells were placed in each well of a 6-well plate and left to incubate

for around one week. Upon detection of colonies with over 50 cells,

they were treated with 0.2% crystal violet for a duration of 30

minutes. Following three rounds of washing with PBS, the colonies

were both captured in pictures and tallied for measurement.

To evaluate the migratory potential of cells, a total of 40,000

cells were suspended in 200 mL of culture medium and placed in the

upper compartment of Transwell plates from BD Biosciences. At

the same time, 600 mL of culture medium with 10% FBS was

introduced into the lower compartment. After an overnight

incubation at 37°C, the cells located beyond the Transwell

membrane were fixed using 4% paraformaldehyde for half an

hour and subsequently stained with 0.25% crystal violet for an

additional 30-minute period. Following the removal of cells from
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the interior of the chamber, the migrated cells outside the

membrane were visualized and quantified.
Statistical analysis

We utilized the Wilcoxon test to assess various attributes of the

high- SNRPE and low- SNRPE groups. The Chisq test was employed

to scrutinize the variability in immunotherapy response among the

high-CSI and low-CSI groups. The correlation between mRNA and

mRNAsi was investigated through the calculation of Pearson’s

correlation coefficient. Kaplan-Meier survival analysis was

performed to explore the connection between CSI, SNRPE, and

survival, utilizing the log-rank test to determine the significance of

observed distinctions. To assess the prognostic and immunotherapy

advantages of CSI, time-dependent receiver operating characteristic

(ROC) curves were generated with the assistance of the ‘pROC’ R

package (22) being utilized. Key factors influencing immunotherapy

efficacy were identified using xGboost, a scalable tree boosting system.

Patients were grouped based on the optimal threshold established by

the ‘survminer’ R package. Statistical significance was defined by a

significance level of P or adjP < 0.05.
Results

Revelation of the link between cancer
stemness and immunotherapy resistance
through scRNA ICI cohort

Considering the potential influence of cancer stemness on the

resistance to ICIs, a comprehensive analysis was conducted on 13

transcriptome datasets related to OV obtained from the GEO and

TCGA databases. The mRNAsi was calculated for each patient (10).

By utilizing the Pearson correlation coefficient, mRNAs that exhibited

a significant relationship with mRNAsi across multiple samples

(Cor>0.2 & P<0.01) were identified. Subsequently, 253 mRNAs that

detected in more than 50% of the datasets (7 out of 13) were

considered as tumor stemness-associated mRNAs. Moreover, to

pinpoint crucial candidate genes involved in OV malignancy, an

in-depth examination of CRISPR-based loss-of-function screens was

undertaken on a global scale based on DepMap database. As a result,

a total of 687 genes essential for the survival of 73 OV cell lines (CERE

score < -1 in 75% OV malignant cells) were identified. Of these, 60

mRNAs were selected through the overlap of OVmRNAsi-associated

mRNAs with the mRNAs highlighted by CRISP (Supplementary

Table S3). All these genes associated with cancer stemness were

chosen for further study. To validate the influence of cancer stemness

associated genes on immunotherapy effectiveness, a previously

published scRNA-seq dataset of PD1 ICI-treated patients with

melanoma (SKCM) was initially employed to investigate the

correlation between cancer stemness and ICI responses. After

excluding individuals lacking data on malignant cells, a total of 23

patients from this cohort were included, comprising 10 non-

responders (NR) and 13 treatment-naïve (TN) patients. Ideally, a
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comparison of cancer stemness between responders (R) and NR to

ICI treatment would have been preferred. However, the dataset

available did not contain specific data on responders. Given that

treatment-naïve patients may consist of both potential responders

and non-responders, our next step was to compare the stemness

levels between the NR group and the TN group, as previously

described. As depicted in Figures 1B, C, the NR subcategory

displayed a higher frequency of cancer cells with increased

stemness rankings. Further investigation revealed that individuals

from the NR subgroup had significantly higher levels of stemness (P <

0.001, Figure 1D), indicating an inverse relationship between cancer

intrinsic driver and stemness with immune checkpoint inhibitor

outcomes. Furthermore, we also found that these cancer stemness

related genes significantly enriched Cell proliferation-related

pathways, including Cell cycle and DNA replication (Figure 1E),

indicating that tumor stemness-related genes may stimulate tumor

cell proliferation.
Establishing the cancer stemness index
through machine learning methodologies

To further develop a prediction model for CSI, nine machine

learning algorithms were used with a combination of six GEO OV

datasets and the OV TCGA dataset. Subsequently, we calculated the
Frontiers in Immunology 06377
risk score for each sample in the eight cohorts, which included

survival data, using these predictors. The performance was

evaluated by determining the average C-index for each algorithm.

Interestingly, most of these predictors showed a considerably high

average C-index (Figure 2A). This finding can be partly attributed

to the exceptional quality of our cancer stemness markers. Among

all the models, random forest (RSF) demonstrated the highest level

of precision (average C-index = 0.922, Figure 2A) and was chosen as

the definitive CSI. Additionally, through univariate cox analysis, a

significant correlation between high CSI in the seven cohorts and

poor survival outcomes was established (P<0.05, Figure 2B).

The progress in next-generation sequencing and large-scale

data mining technologies has facilitated the thorough

investigation and advancement of gene expression-derived

markers that are able to forecast prognosis results. To thoroughly

assess the effectiveness of the CSI in comparison to alternative

markers, we methodically compiled previously published markers

from the past decade. A total of 79 markers were analyzed in this

research (Supplementary Table S4). Notably, the reliability of the

CSI in predicting survival outcomes exceeded that of all other

models across eight different OV cohorts, achieving an average

AUC > 0.9 in the mentioned cohorts (Figure 2C).

Given the importance of cancer stemness mRNAs in predicting

the success of tumor immunotherapy, we utilized the submap

algorithm available on GenePattern website to predict the
FIGURE 2

Development of a cancer stemness index utilizing extensive scRNA-seq and bulk RNA-seq datasets. (A) C-index of eight algorithms across eight
validation cohorts. (B) Univariate Cox regression analysis of the RSF score in eight OV cohorts. (C) Estimated response rates to immune checkpoint
inhibitors (PD-1/PD-L1) across different CSI groups (R: Response, NR: No Response). (D) ROC values comparing the predictive accuracy of the CSI
and 79 other models for clinical status in eight OV cohorts.
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probability of immune therapy response based on high- and low-

CSI groups. A noteworthy finding was revealed when individuals

from the low CSI group exhibited a significant reaction to PD-1

immunotherapy (P = 0.007, Bonferroni corrected P < 0.001,

Figure 2D), demonstrating the remarkable predictive power of the

CSI model in the context of PD-1 immunotherapy efficacy.

Collectively, these results suggest that CSI could function as

predictive markers for the prognosis of ovarian cancer, with higher

robust than other models. In addition, CSI can also be used as a

prognostic indicator of PD1 immunotherapy response.
Cancer stemness index demonstrates
predictive capabilities for
immunotherapy outcomes

To further verify the predictive performance of CSI on the

therapeutic effect of PD-1 ICIs, we collected different datasets

associated with PD-1/PD-L1 immune checkpoint inhibitors. Our

results consistently indicated that patients diagnosed with specific

cancers (such as SKCM, UC, KIRC, or metastatic urothelial

carcinoma) who had lower CSI scores experienced notably

enhanced overall survival (OS) or progression-free survival (PFS)

following immunotherapy compared to those with higher CSI

scores (Figures 3A, B). This suggests that higher CSI scores may

impede the benefits of PD-1 immunotherapy. Furthermore, the

response to PD-1/PD-L1 ICI therapy varied between patients with

high and low CSI scores. Individuals with higher CSI scores

exhibited suboptimal response to the treatment, whereas over half

of those with lower CSI scores responded positively (Figure 3C).

More specifically, the group with higher CSI scores predominantly

displayed no response (progressive disease or stable disease),

whereas the group with lower CSI scores mainly demonstrated a

response (complete response or partial response). Significantly, our

analysis indicated that CSI serves as a reliable predictor of PD-1/

PD-L1 ICI immunotherapy response, as demonstrated by the area

under the curve (AUC) values. The AUC curve portrayed

outstanding predictive performance, with an average AUC > 0.8

across the six cohorts examined (Figure 3D). Additionally, we

performed further analysis using the IMvigor210 dataset and

observed that even upon excluding samples with incomplete

clinical data, CSI remained a robust predictor of immunotherapy

outcomes. Intriguingly, it held greater significance compared to

parameters such as PD-L1 expression in tumor cells (TC), immune

phenotype, ECOG score, Stage, or tumor mutation burden (TMB),

as indicated by a multivariate Cox regression analysis (refer to

Figure 3E). To extend the clinical utility of our model, we explored

the potential benefits of combining CSI with other commonly

utilized markers of immunotherapy response. Specifically, we

investigated the synergistic effects of CSI and TMB, a well-known

indicator of immunotherapy effectiveness. Our findings revealed

that patients exhibiting low CSI scores and high TMB levels

experienced the most favorable outcomes with immunotherapy

treatment, whereas those with elevated CSI scores demonstrated

the least benefits from such therapies (Figure 3F). Additionally, we

conducted a comparative analysis of CSI with established signatures
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for predicting immunotherapy response. Notably, CSI

outperformed various signatures, including IFNG.Sig (23),

Immune.Sig (23), ImmuneCells.Sig (16), PDL1.Sig (24),

LRRC15.CAF.Sig (25), NLRP3.Sig (26), Stem.Sig (11), and

CYT.Sig (27) in six PD1/PD-L1 immunotherapy cohorts, while

the majority of these signatures exhibited optimal performance in

only one or two cohorts (Figure 3G).

In conclusion, our research offers important insights into the

predictive significance of CSI on immunotherapy results. Elevated

CSI levels could potentially hinder the advantages of

immunotherapy, whereas lower CSI levels have been linked to

better survival rates and treatment responses. Integrating CSI

with TMB could potentially improve the classification of patients

for immunotherapy.
Intrinsic somatic mutations and copy
number variation patterns of different CSI
group patients

Examining somatic mutations and copy number variations

(CNVs) as factors influencing both antitumor immunity and

tumor advancement (28), we analyzed the most commonly

mutated genes in various CSI categories (see Supplementary

Figure S1A). Among OV patients, TP53 exhibits the greatest

mutation rate, trailed by TTN and CSMD3. TMB stands for the

tally of somatic non-synonymous mutations in a specific genetic

area, usually expressed as mutations per megabase (mut/Mb). Prior

research has demonstrated a negative correlation between TMB and

the efficacy of immunotherapy (29). Notably, our investigation

revealed that the TMB levels were greater in patients from the

low-CSI category compared to those in the high-CSI group

(Supplementary Figure S1B, P<0.05). Consistent with this, the

SNV neoantigens and rate of nonsilent mutations were notably

elevated in the low-CSI group compared to the high-CSI cohort.

(Supplementary Figures S1C, D, P<0.05). In addition, Homologous

Recombination Repair (HRR), a key mechanism for repairing DNA

double strand breaks in cells, plays a critical role in maintaining the

stability and integrity of the genome. HRD refers to conditions that

occur when this repair mechanism is impaired, which may be due to

genetic mutations in key repair proteins (such as BRCA1 and

BRCA2) or dysfunction of other regulators. Prior research has

indicated that targeting HRD defects can be an effective strategy

for combating cancer. This includes not only conventional

treatments like chemotherapy and radiotherapy, which cause

DNA damage, but also newer approaches such as targeted

therapies and immunotherapies (30, 31). Consistently, our

research revealed that the Homologous Recombination Defects

rating was notably elevated in the low CSI group compared to the

high CSI group (Supplementary Figure S1E, P <0.001).

Furthermore, to assess the prevalence of CNV across various CSI

groups, we subsequently utilized the Genomic Identification of

Significant Targets in Cancer (GISTIC) algorithm. Notably, we

observed that the amplification GISTIC score was greater in

patients from the low CSI group than in those from the high CSI

group (Supplementary Figure S1F).
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FIGURE 3

Evaluating the cancer stemness index as a potent prognostic tool for immunotherapy outcomes across various cancer types. (A) Kaplan-Meier
survival curves depicting overall survival of patients undergoing immunotherapy in bladder cancer (UC, GSE176307), metastatic urothelial carcinoma
(IMvigor210), kidney renal clear cell carcinoma (KIRC, David (A) Braun et al., (26)), and melanoma (SKCM, GSE91061 and phs000452.v3.p1).
(B) Kaplan-Meier curves for progression-free survival of patients receiving immunotherapy in bladder cancer (UC, GSE176307), non-small cell lung
cancer (NSCLC, GSE135222), KIRC (David (A) Braun et al.), and melanoma (SKCM, Wang GY et al., 2022 and phs000452.v3.p1). (C) Immunotherapy
response rates in patients categorized by different CSI groups, with response defined as complete response (CR) or partial response (PR), and non-
response as progressive disease (PD) or stable disease (SD). (D) ROC curves of the CSI for predicting response status in various immune checkpoint
inhibitor (ICI) cohorts. (E) Multivariate Cox regression analysis of the CSI and clinical features in metastatic urothelial carcinoma (IMvigor210).
(F) Kaplan-Meier survival curves for overall survival in different patient groups within the IMvigor210, with log-rank P values comparing each pair of
groups displayed in the table. (G) Radar plot comparing the ROC values of eight ICI response prediction models and the CSI.
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Collectively, these findings further elucidate the rationale

behind the improved immunotherapeutic efficacy observed in

patients with lower tumor stemness and demonstrate that CSI

could serve as a prognostic indicator for predicting the

therapeutic benefits of ICIs in ovarian cancer.
The amplification of SNRPE promotes the
progress of ovarian cancer

To explore the clonal architecture and cell origins of ovarian

malignant cells, we initially obtained a single-cell RNA profile from

ovarian carcinoma. After filtering cells with a minimum expression

of 200 genes and excluded those with over 20% expression of
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mitochondrial genes, we grouped the residual cells into eight major

cell types based on traditional biomarkers. As described in

Figures 4A, B all cells divided into diverse cell populations

including B cells (MS4A1, and CD79A), Endothelial cells

(PLVAP, and VWF), Epithelial cells (KRT18, and EPCAM),

Fibroblasts (COL1A1, and ACTA2), Myeloid cells (LYZ, and

CD14), NK cells (KLRD1, and TRDC), Plasmablast cells

(JCHAIN, and MZB1), as well as T cells (CD3D, and IL7R).

Subsequently, the inferCNV algorithm was utilized to assess

copy number variations (CNV) and clonality in ovarian malignant

cells derived from epithelial cells (ECs). Among the 2807 ECs from

THCA tissues, 6230 displayed high CNV scores, indicating

malignancy (Figure 4C). Notably, amplifications in chromosomal

8q were identified as specific driving variations in ovarian cancer,
FIGURE 4

Single cell analysis uncovered the amplification of SNRPE promotes the progress of ovarian cancer. (A) UMAP plot showing the composition of 8 main
subtypes derived from OV malignant cells. (B) Heatmap showing expression of each cell markers in each cell type. (C) Heatmap showing copy number
variation of reference cells and epithelial cells. (D) Venn diagram showing the overlap between intratumoral heterogeneity (8q amplification) driven
genes, cancer cell develop associated genes and cancer stemness associated genes. (E) Kaplan-Meier curves for overall survival of ovarian patients
between SNRPE -high and -low groups (GSE31245 and GSE9891). (F) Box plots comparing SNRPE expression between early and advanced OV groups.
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with SNRPE amplification in chromosomal 8q being linked to

cancer stemness and essential for the survival of ovarian cell

(Figure 4D). Prior studies have indicated SNRPE’s role in

promoting cell growth and advancing high-grade prostate cancer

by controlling the expression of the androgen receptor [22740892].

Consistently, patients exhibiting high SNRPE expression

consistently demonstrated poorer prognoses compared to those

with low SNRPE expression (Figure 4E). Additionally, we observed

that elevated SNRPE expression was specifically linked to tumor

stage progression (Figure 4F).

Given that tumor heterogeneity and stemness play a crucial role

in immune evasion and response to immunotherapy, we analyzed

the TME among high and low SNRPE patients categorized based on

the optimal threshold established by the ‘survminer’ R package.

Tertiary lymphoid structures (TLS), which serve as germinal centers

for immune cells, were analyzed for the expression of various

interleukins associated with the formation of TLS and the

activation of immune responses. Our findings indicate that the

majority of these interleukins exhibited elevated expression levels in

the group with high SNRPE. Specifically, we found that patients

with low SNRPE expression showcased increased expression of

IL10RA, IL10RB, IL18, IL21R, IL2RA, IL2RB, IL2RG and IL9R

(Figure 5A). Additionally, numerous interferons along with their

receptors (for example, IFNE, IFNG, IFNAR2, IFNGR2) as well as

the majority of interleukins and their corresponding receptors were

linked to immune-activating transcripts. Our discovery revealed

that the levels of these interferons and receptors were elevated in the

low SNRPE group, a pattern that aligns with the inverse relationship

of interleukins within the tumor microenvironment (Figure 5B).

Furthermore, recognizing the importance of immune checkpoint

presence as a critical element in immunotherapy with ICIs, we

carried out an additional investigation into the levels of immune

checkpoints within two distinct groups. It is worth mentioning that

the expression levels of several checkpoints (such as HAVCR2/

TIM-3, ICOS, LAG3, LGALS9, PDCD1/PD-1, and PDCD1LG2/

PD-L2) were significantly higher in the low SNRPE group

compared to the high SNRPE group, indicating that higher

expression SNRPE patients may benefit from immunotherapy

benefit (Figure 5C). We also analyzed classical immune signatures

in each sample, and we found that the most immune signatures

were lower in high SNRPE group, suggesting that these immune cell

and immune function were suppressed (Figure 5D). These results

indicated that SNRPE might impact the effectiveness of

immunotherapy by regulating the expression of immune

checkpoints and immune microenvironment factors.

To further explore the mechanism of SNRPE on ovarian

malignant cells, we then divided malignant tumor cells into SNRPE

+ malignant cells and SNRPE- malignant cells according to whether

they expressed SNRPE. Through cell-cell interaction analysis, after

eliminating common cell communication pairs, we found that

SNRPE+ malignant cells had significantly higher specific cell

communication with endothelial cells and fibroblasts than SNRPE-

malignant cells (Figure 5E). Hence, we speculated that SNRPE+

malignant may promote tumor invasion and migration by

promoting endothelial mesenchymal transformation. Interestingly,
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we found that NOTCH signaling pathway (DLL1_NOTCH1,

JAG1_NOTCH2, NOTCH1_JAG1, and DLL4_NOTCH3), TGFb1
signaling pathway (TGFB1_TGFBR3, TGFB1_TGFbeta receptor1,

and TGFB2_TGFBR3) and VEGF signal ing pathway

(NRP1_VEGFA, and VEGFA_KDR) were significantly activated in

cell communication pairs between SNRPE+ malignant cells and

endothelial cells (Figure 5F). Then, we reclustered the tumor cells

and found high expression of SNRPE in the C3 and C4

subpopulations (Supplementary Figures S2A, B). Using the

HALLMARK pathway scoring, we identified that C3 can

be defined as the EMT subpopulation, characterized by high

activity in EMT signaling pathways. On the other hand, C4 can be

defined as the proliferative subpopulation, characterized by the

activation of proliferation-related pathways, including

E2F_TARGETS, G2M_CHECKPOINT, MYC_TARGETS_V1, and

MYC_TARGETS_V2 (Supplementary Figure S2C). Additionally,

through analysis of cell-cell communications, we further discovered

that the interaction intensity between SNRPE+ malignant cells and

endothelial cells was significantly higher than that between SNRPE-

malignant cells and endothelial cells (Supplementary Figure S2D).

These findings further demonstrate how SNRPE enhances tumor cell

proliferation and invasion. Furthermore, a univariate Cox regression

analysis of the pan-cancer cohorts revealed that SNRPE expression

was negatively correlated with prognosis across multiple cancer types,

including Adrenocortical Carcinoma (ACC), Head and Neck

squamous cell carcinoma (HNSC), Kidney Chromophobe (KICH),

Kidney renal clear cell carcinoma (KIRC), liver hepatocellular

carcinoma (LIHC), Brain Lower Grade Glioma (LGG), Lung

adenocarcinoma (LUAD), and Pheochromocytoma and

Paraganglioma (PCPG) (Supplementary Figure S3A).

Immunohistochemistry analysis revealed a marked increase in

CSE1L expression in tumor tissues relative to the adjacent non-

cancerous tissues (Figure 6A). To further validate SNRPE’s

oncogenic role in ovarian cancer, SNRPE was knocked down in

OVCAR-3 and A2780 cell lines, effectiveness confirmed at the

protein-level through western blot analyses (Figure 6B).

Significantly, SNRPE knockdown markedly suppressed cell

proliferation in both OVCAR-3 and A2780 cell lines (Figure 6C),

underscoring SNRPE’s contribution to promoting ovarian cancer

cell growth. This was further supported by reduced clonogenic

capacity in SNRPE knockdown cells compared to controls

(Figure 6D), highlighting SNRPE’s involvement in fostering

growth in ovarian cancer cells. Notably, transwell migration

assays revealed decreased cell migration upon SNRPE depletion

in OVCAR-3 and A2780 cell lines (Figure 6E).

Concurrently, SNRPE overexpression in SK-OV-3 cells was

val idated through western blot analyses (Figure 6F),

demonstrating its significant enhancement of proliferation

(Figure 6G). Furthermore, SNRPE overexpression notably boosted

clonogenic potential and significantly increased migration

capability in SK-OV-3 cells (Figures 6H, I).

In summary, the amplification of SNRPE can drive the

progression of ovarian malignant cells and it may serve as an

efficient b iomarker in foresee ing the prognos is and

immunotherapy response in ovarian cancer.
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Discussion

Tumor heterogeneity and stemness play key roles in influencing

tumor immune evasion and the efficacy of immunotherapy.

Numerous studies have explored the association between cancer

stemness and the ICI response against tumors (6, 7). However,

currently, there is no direct evidence linking tumor stemness to the

response to ICI in OV. Furthermore, previous research has failed to
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acknowledge the predictive ability of tumor stemness in

determining the response to ICI in OV (11).

In this research, we initially used a stemness index from a

previous publication to identify mRNAs linked to tumor stemness

by analyzing various omics data, such as transcriptome and CRISPR

cell line data (10). Subsequently, to investigate the correlation

between tumor stemness and immunotherapy, we examined a

single-cell dataset of PD1/PD-L1 ICI-treated cells (12). It should
FIGURE 5

Investigating immune landscapes related to SNRPE expression. (A, B) Box plots comparing expression of interleukins, interferons and their receptors
between low and high SNRPE groups. (C) Box plots for checkpoint expression comparison. (D) Normalized ssGSEA scores of classical immune
signatures in the two groups. (E) Bar plots showing cell communication numbers between SNRPE- or SNRPE+ malignant cells and other cell types.
(F) Dot plot depicting cell communication pairs of malignant cells (stratified by SNRPE status) with endothelial cells. Wilcoxon test; *P<0.05,
**P<0.01, ***P<0.001.
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be emphasized that we observed an inverse relationship between

cancer stemness and the responses to ICI. CSCs are specialized cells

that play a critical role in tumor initiation, progression, and

spreading (6). Additionally, our KEGG enrichment analysis of
Frontiers in Immunology 12383
genes associated with cancer stemness showed a significant

enrichment in pathways such as Cell cycle, DNA replication,

Mismatch repair, Nucleotide excision repair, and Base excision

repair. A previous investigation highlighted that the abnormal
FIGURE 6

SNRPE promotes proliferation and migration of ovarian cancer in vitro. (A) Immunohistochemistry analysis revealed a marked increase in CSE1L
expression in tumor tissues relative to the adjacent non-cancerous tissues. (B) Knockout of SNRPE in OVCAR-3 and A2780 cell lines validated by
Western Blotting analysis. (C) The proliferative abilities of SNRPE knockout ovarian cancer cells detected with CCK8 assay. (D) The clone formation
abilities of SNRPE knockout OVCAR-3 and A2780 cell lines. (E) The migrating abilities of SNRPE knockout OVCAR-3 and A2780 cell lines evaluated
with transwell assay. Scale bar, 100 mm. (F) Overexpression of SNRPE validated by Western Blotting analysis in SK-OV-3 cells. (G) The proliferative
abilities of SNRPE overexpressing SK-OV-3 cells detected with CCK8 assay. (H) The clone formation abilities assessed in SK-OV-3 cells upon SNRPE
overexpression. (I) The migrating abilities of SK-OV-3 cells detected by transwell assay upon SNRPE overexpression. Scale bar, 100 mm. T test; **P <
0.01; ***P < 0.001.
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activation of the cell cycle pathway can lead to an increase in the

expression of transcription factors like CDK, MKI67, and p53,

which may support the occurrence and sustenance of tumor

stemness (32). Besides, improved DNA repair ability readied

cancerous cells for harsh surroundings (33). Our findings aligned

with prior research and proposed that the gene set linked with

cancer stemness which we revealed could strongly and uniquely

correspond with cancer stemness.

Then, to assess the impact of tumor stemness genes on the

prognosis of ovarian cancer patients, we employed various machine

learning techniques to create a predictive model for CSI. This

model’s performance was then validated in eight separate datasets

using a variety of assessment measures. Ultimately, the RSF model

was chosen as the optimal CSI due to its increased stability and

accuracy compared to the 79 previously established models.

Notably, our research highlighted the CSI’s effectiveness in

predicting the response to PD-1 immune checkpoint inhibitors in

ovarian cancer (11). Prior investigations have indicated a

correlation between tumor stem cells and immune checkpoint

inhibitor effectiveness. Building on these findings, we

hypothesized that the CSI could be widely applicable for

forecasting immunotherapy responses in various cancer types. As

a result, we conducted an extensive analysis to evaluate the CSI’s

precision in predicting immunotherapy responses in other cancer

types. Impressively, the CSI displayed exceptional accuracy in

predicting ICI responses across diverse datasets utilizing bulk

RNA-Seq data, with an average AUC exceeding 0.8. Additionally,

our CSI demonstrated superior predictive capabilities compared to

eight existing ICI response prognostic models. Notably, leveraging

the IMvigor 210 dataset, we found that the CSI had better

prognostic accuracy for post-immunotherapy patients compared

to TMB. Our analysis also identified significantly different survival

rates between low and high TMB patients. These results highlight

the CSI’s impressive predictive ability for both prognosis and

immunotherapy outcomes in cases of ovarian cancer.

The quantity of neoantigens on tumor cells is determined by

intrinsic variations within the tumor, which in turn impacts the

immune system’s ability to recognize and combat the tumor (34, 35).

TMB serves as a crucial biomarker for predicting the effectiveness of

immune checkpoint inhibitors. Clinical research has consistently

shown that patients with high TMB tumors have a higher rate of

clinical benefit when treated with these inhibitors (34, 36). Our

research revealed a significant negative correlation between TMB

levels, SNV neoantigens, nonsilent mutation rates, and CSI. Previous

studies have indicated that HRD defects can be targeted by various

anti-cancer treatments, including chemotherapy, radiotherapy,

targeted therapies, and immunotherapies (30, 31). Notably, the

level of HRD was found to be higher in the low CSI group as

opposed to the high CSI group. Additionally, the GISTIC score was

also observed to be higher in patients from the low CSI group

compared to those in the high CSI group. Overall, CSI may

provide valuable insights into the immune resistance mechanisms

of high TMB tumors, underscoring its significance as a predictive

biomarker for immune checkpoint inhibitors.

The tumor microenvironment has been established as a vital

factor in the progression of various types of tumors. Tumor
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immune cell subpopulations vary among different tumor types

and even among patients with the same pathological type (37).

Through our selection process, we identified that SNRPE, correlated

with the amplification of the long arm of chromosome 8, is linked to

tumor stemness and encourages tumor cell proliferation. Previous

research has demonstrated that SNRPE facilitates HCC

tumorigenesis by regulating FGFR4 expression via alternative

splicing mechanisms (38). In addition, we observed that patients

with high SNRPE levels exhibited suppressed APC co-stimulation,

Cytolytic activity, and HLA signatures, indicating that SNRPE can

impede the activation and cytotoxic function of immune cells.

Tertiary lymphoid structures function as germinal centers for

immune cells within the tumor microenvironment. In our study, we

evaluated the expression levels of various interferons, interleukins,

and their corresponding receptors that play roles in the formation

of TLS (39). Our analysis demonstrated a considerable negative

correlation between SNRPE expression and the levels of

interleukins and interferons. Immune checkpoint inhibitors have

emerged as a promising treatment strategy for advanced cancer.

Higher levels of immune checkpoints facilitate tumor immune

evasion and indicate a greater likelihood of response to these

inhibitors. Additionally, we identified that several key immune

checkpoints, such as TIM-3/HAVCR2, LAG3, PD-1/PDCD1, and

PD-L2/PDCD1LG2, were significantly upregulated in the low

SNRPE group. High expression of PD-L1 on tumor cells can bind

to PD-L1 receptors on immune cells, initiating negative regulatory

signals that impair T cell recognition of cancer cells, thereby

allowing the tumor cells to evade the immune response (40).

These results imply that patients with low SNRPE expression

show an enhanced response to ICIs, likely due to the inhibition of

TME components that support tumor progression, including the

NOTCH1 signaling cascade, tumor necrosis factor (TGFB), and

VEGF pathways. Furthermore, our findings confirmed that the

overexpression of SNRPE notably boosted the proliferation and

invasion abilities of ovarian cancer cells, indicating its potential as a

therapeutic target for this type of cancer. In summary, these results

suggest that SNRPE could affect the efficacy of immunotherapy by

modifying the composition of the tumor microenvironment and

influencing the recruitment of immune cells through its effects on

chemokines and immune checkpoints.

While it is important to highlight the impressive accuracy of the

CSI in predicting the success of immunotherapy, it is essential to

acknowledge certain limitations in this study. The ability of the OV

model to forecast outcomes of immunotherapy for ovarian cancer is

based on projections generated by the submap algorithm, and the

reliability of the CSI requires validation using real OV ovarian

cancer immunotherapy groups.
Conclusion

In summary, we have developed a reliable and consistent

signature of CSCs by conducting an integrated analysis of

CRISPR OV cell lines, large-scale OV tissues, and single-cell

cohorts. This signature allows for the classification of OV patients

and the prediction of outcomes for immunotherapy. Our research
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1486652
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2024.1486652
represents a groundbreaking exploration into the association

between cancer stemness and immunotherapy in OV. It

establishes a solid framework for understanding the importance

of cancer stemness in immuno-oncology, clinical benefits, and

practical implications. Based on our discoveries, this study

enhances our comprehension of the link between cancer stemness

and immunotherapy in OV, presenting new possibilities for

treatment strategies.
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SUPPLEMENTARY FIGURE 1

Analysis of intrinsic somatic mutations and copy number variation patterns in

ovarian cancer (OV) patients with differing CSI levels. (A) Waterfall plot
depicting the mutation frequency of the top 15 genes in OV. (B-E) Box

plots comparing tumor mutation burden, single nucleotide variant
neoantigens, nonsilent mutation rate, and homologous recombination

defects between low- and high-CSI groups. (F) GISTIC scores for low- and
high-CSI groups in OV patients. (Wilcoxon test; * P < 0.05; ** P < 0.01; *** P

< 0.001).

SUPPLEMENTARY FIGURE 2

SNRPE is highly expressed in EMT and proliferative tumor cells. (A) TSNE plot
showing the composition of 5 main subtypes derived from OV malignant

cells. (B)Dotplot showing the expression of SNRPE inmalignant cell subtypes.
(C) Dotplot showing the score of HALLMARK pathways in malignant cell

subtypes. (D) There is a significant difference in cell-cell communication

strength between SNRPE+ malignant and SNRPE- malignant cells with
endothelial cells.

SUPPLEMENTARY FIGURE 3

Pan-cancer validation of the association between SNRPE and prognosis. (A)
Univariate Cox regression analysis reveals a significant association between

SNRPE and poor prognosis in various cancers.
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Single-cell transcriptomics
reveals heterogeneity and
prognostic markers of myeloid
precursor cells in acute
myeloid leukemia
Guangfeng He1†, Lai Jiang2†, Xuancheng Zhou2†, Yuheng Gu2†,
Jingyi Tang2, Qiang Zhang3, Qingwen Hu2, Gang Huang2,
Ziye Zhuang4, Xinrui Gao5*, Ke Xu6* and Yewei Xiao7*

1Department of Hematology, Affiliated Hospital of Southwest Medical University, Luzhou, China,
2Department of Clinical Medicine, Southwest Medical University, Luzhou, China, 3Department of
Laboratory Medicine, Southwest Medical University, Luzhou, China, 4First Clinical Medical College,
Guangdong Medical University, Zhanjiang, China, 5Department of Oncology, Affiliated Hospital of
Southwest Medical University, Luzhou, China, 6Department of Oncology, Chongqing General
Hospital, Chongqing University, Chongqing, China, 7Department of Physiology, School of Basic
Medical Sciences, Southwest Medical University, Luzhou, China
Background: Acute myeloid leukemia (AML) is a hematologic tumor with poor

prognosis and significant clinical heterogeneity. By integrating transcriptomic

data, single-cell RNA sequencing data and independently collected RNA

sequencing data this study aims to identify key genes in AML and establish a

prognostic assessment model to improve the accuracy of prognostic prediction.

Materials and methods: We analyzed RNA-seq data from AML patients and

combined it with single-cell RNA sequencing data to identify genes associated

with AML prognosis. Key genes were screened by bioinformatics methods, and a

prognostic assessment model was established based on these genes to validate

their accuracy.

Results: The study identified eight key genes significantly associated with AML

prognosis: SPATS2L, SPINK2, AREG, CLEC11A, HGF, IRF8, ARHGAP5, and CD34.

The prognostic model constructed on the basis of these genes effectively

differentiated between high-risk and low-risk patients and revealed differences

in immune function and metabolic pathways of AML cells.

Conclusion: This study provides a new approach to AML prognostic assessment

and reveals the role of key genes in AML. These genes may become new

biomarkers and therapeutic targets that can help improve prognostic

prediction and personalized treatment of AML.
KEYWORDS

acute myeloid leukemia, prognostic biomarkers, immune escape, personalized
treatment, immunotherapy
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1 Introduction

AML is a highly heterogeneous hematologic malignancy

characterized by clonal proliferation of myeloid precursor cells

leading to impaired differentiation and accumulation of immature

primitive cells in the bone marrow and peripheral blood (1–3). AML

accounts for approximately 80% of adult acute leukemia cases and

carries a poor prognosis, especially in elderly patients (4, 5). Despite

advances in therapeutic strategies, including chemotherapy,

hematopoietic stem cell transplantation, and targeted therapies,

overall survival in AML remains poor, with a 5-year survival rate

of only 25% to 30% (6). An important reason for this poor prognosis

is the high degree of heterogeneity in the biological and clinical

manifestations of AML, which highlights the importance of searching

for reliable prognostic biomarkers in order to predict the patient’s

prognosis and develop a personalized treatment plan (7, 8).

Over the past decade, many studies have been devoted to

unraveling the molecular features of AML in an attempt to improve

AML therapeutic approaches by identifying gene mutations,

chromosomal abnormalities, and gene expression profiles that are

associated with disease progression and prognosis (9). For example,

AMLwith NPM1 andCEBPAmutations usually has a better prognosis,

whereas AML with FLT3 mutations has a worse prognosis. These

differences are critical for the choice of treatment strategies. High-

throughput sequencing technologies, particularly RNA sequencing

(RNA-seq), have revealed a variety of genes and abnormal signaling

pathways that are frequently mutated in AML, providing valuable clues

for understanding the pathogenesis of the disease. However, despite

these advances, a comprehensive understanding of the molecular

mechanisms affecting AML prognosis is still lacking, and the search

for reliable prognostic biomarkers remains challenging (10, 11).

In this study, we adopted an integrated multi-omics approach to

systematically identify and screen for possible prognostic

biomarkers using transcriptomic and epigenetic data from public

AML datasets. We performed survival analysis, gene expression

analysis, and pathway enrichment analysis to mine genes that may

be associated with AML prognosis. In addition, to validate our

findings, we performed RNA-seq sequencing from bone marrow

samples of 10 AML patients and 10 healthy donors to assess the

expression levels of the screened candidate genes.

The main goal of this study was to provide a comprehensive

prognostic biomarker analysis of AML, providing insight into the

molecular mechanisms behind AML progression. By integrating

RNA-seq data from public databases and our own patient cohort, we

aim to identify gene signatures that are not only associated with clinical

prognosis, but also hope to provide potential targets for the development

of personalized treatment strategies. Ultimately, our findings are

expected to improve risk stratification in AML and provide a basis for

future therapeutic development targeting these prognostic genes.
2 Materials and methods

2.1 Sample source and collection

A total of 20 bone marrow samples were collected for this study,

consisting of 10 bone marrow samples from patients with acute
Frontiers in Immunology 02388
myeloid leukemia (AML) (AML group) and 10 bone marrow

samples from healthy individuals (control group). All AML

patients were diagnosed by bone marrow smear morphology and

cytogenetic testing, and individuals in the healthy control group

underwent a thorough physical examination to exclude any history

of blood disorders and tumors. The samples were collected from

2023 to 2024 at Zhongshan Campus of Southwest Medical

University Hospital and stored in liquid nitrogen for further

processing. All subjects signed an informed consent form, and the

study was approved by the Ethics Committee of the Affiliated

Hospital of Southwest Medical University (Ethics Approval

No. KY2024070).
2.2 RNA extraction and sequencing

Total RNA was extracted from frozen bone marrow samples

using TRIzol reagent (Thermo Fisher Scientific, USA) for RNA

extraction according to the manufacturer’s instructions. The quality

of extracted RNA was assessed by Agilent 2100 Bioanalyzer to

ensure that the RNA Integrity Index (RIN) was greater than 7.0, and

the RNA concentration was quantified using Qubit 2.0 (Thermo

Fisher Scientific) to ensure that it met the requirements for

sequencing. The RNA libraries were constructed using the

Illumina TruSeq RNA Library Prep Kit (Illumina, USA) and

library quality control was performed by Qubit and Bioanalyzer.

All samples were bipartite sequenced on the Illumina NovaSeq 6000

platform with a read length of 150 bp and a target sequencing depth

of 50M reads per sample.
2.3 Public data sources

The single cell sequencing data used in this study were obtained

from the dataset GSE116256 in the GEO database (12). This dataset

includes 16 patients at the time of AML diagnosis, 19 patients

during treatment, and 5 healthy control donors. Considering our

primary focus on the disease pathogenesis of AML, we selected

three high-quality samples from each of the patients at the time of

AML diagnosis and healthy control donors, excluding the

interference of drug treatment. The RNA-seq data for AML were

obtained from datasets GSE12417 and GSE71014 in the GEO

database, containing 405 and 104 samples, respectively (13). The

GSE12417 data was used as a training set during the construction of

the prognostic model, while the GSE71014 data was used as an

external validation set to evaluate the performance of the model.
2.4 Single-cell sequencing data processing
and cell type identification

After reading single-cell sequencing data from three AML

patients and three normal bone marrow samples, we used the

Seurat package to perform initial processing of the data, including

quality control, dimensionality reduction clustering, and

visualization (14). To ensure that subsequent analyses were based
frontiersin.org
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on high-quality sequencing data, we performed stringent quality

control criteria on the cells, removing those with fewer than 500 or

more than 5000 genes measured, as well as those with a proportion

of mitochondrial genes greater than 15%, and avoiding the

interference of empty droplets, doublets, and senescent cells. After

data standardization and normalization, we performed PCA

downscaling analysis. Based on the PCA downscaling results, a

batch effect correction was performed using the “harmony”

package. Next, we selected the top 20 principal components for

cluster analysis, and the cluster resolution was set to 0.3, resulting in

10 cell clusters, which were visualized by UMAP. We performed

preliminary cell type annotation for each population with the help

of common cell marker genes and “FindAllMarkers” function, and

finally identified myeloid precursor cells, monocytes, T cells,

erythrocytes, NK cells and B cells.
2.5 Cellular communication analysis and
pseudo-time analysis

In analyzing cell-cell interactions in the AML tumor

microenvironment, we used the “CellChat” package for cellular

communication network analysis, which simulates and analyzes

cell-cell communication patterns by combining gene expression

data with information on known signaling pathways, including

ligand, receptor, and cofactor interactions. communication patterns

(15). To further explore the developmental trajectories of different

cell types in the tumor microenvironment and their dynamics

during tumor progression, we used the Monocle R package to

perform pseudo-temporal analyses of single-cell RNA sequencing

data to reveal key transitions during cell development (16–18). We

also used the Slingshot package for pseudo-temporal analysis to

further explore the developmental trajectories of cells in single-cell

RNA sequencing data. Slingshot is a powerful tool that can

efficiently handle data with complex branching structures, helping

us to gain a deeper understanding of the changes in the cellular state

at the single-cell level (19). With these two analyses, we were able to

paint a comprehensive picture of cellular developmental pathways

and their dynamic behaviors in the AML tumor microenvironment.
2.6 Enrichment analysis

To explore the biological characteristics of myeloid precursor

cells, we performed GSEA (Gene Set Enrichment Analysis). The

gene sets used for enrichment analysis are differentially expressed

genes identified by the “FindAllMarkers” function. We performed

enrichment analysis of myeloid precursor cells using the KEGG

gene set to identify pathways related to their biological functions. In

addition, we performed GO and KEGG enrichment analyses on

patients in the high-risk and low-risk groups. The set of genes used

for enrichment analysis was derived from genes up regulated for

expression in the high-risk group. To facilitate the retrieval of gene

sets in the GO and KEGG databases, we used the “clusterProfiler”
Frontiers in Immunology 03389
package and visualized the results of the analyses using this package

(20). These analyses helped us to gain a deeper understanding of the

biology of myeloid precursor cells and patients in different

risk groups.
2.7 Construction of myeloid precursor cell
marker genes and prognostic models

We screened myeloid precursor cells for marker genes using the

“FindMarkers” function with a log2FC threshold of 0.25. Then,

univariate Cox regression analyses were performed to initially

screen out genes with prognostic value from the marker genes.

Subsequently, we built multiple prognostic models using the

GSE12417 and GSE71014 datasets in combination with 101

algorithm combinations and calculated the average C-index of

each model across all cohorts to assess its predictive power. The

analysis showed that the model combining the GBM (Gradient

Booster) and Lasso (Least Absolute Shrinkage and Selection

Operator) algorithms had the highest average C-index and was

selected as the final model. The Lasso algorithm was used to identify

the most prognostic genes while the GBM algorithm was used to

build the final prognostic model, which consisted of 8 genes (21,

22). Finally, we plotted the Kaplan-Meier (K-M) survival curves for

each gene as well as the K-M survival curves for the high- and low-

risk groups using the “survival” and “survminer” packages to assess

the model’s prognostic performance.
2.8 Analysis of immune infiltration in high
and low risk groups

To gain insight into the relationship between the prognostic impact

of myeloid precursor cells and the immune microenvironment, we

used the CIBERSORT tool to analyze samples for immune infiltration.

Specifically, we performed quantitative assessment of immune cell

composition for single gene grouped and risk grouped samples.

CIBERSORT utilizes transcriptomic data to make inferences about

the relative abundance of immune cell subpopulations, thereby

revealing the infiltration status and characterization of immune cells

in different risk groups. We also performed immune checkpoint

analysis to assess the expression levels of immune checkpoint

molecules and their differences in high and low risk groups. The

expression of immune checkpoint molecules plays a key role in the

suppression and activation of the immune system, and changes in them

may affect the immune escape mechanisms of tumors.We analyzed the

expression patterns of common immune checkpoints, including PD-1,

PD-L1, and CTLA-4, and explored their correlation with high and low

risk groups. In addition, we performed an immune function analysis to

further reveal the functional status of the immune system in different

risk groups by assessing the enrichment of immune-related pathways

and functions. This analysis helped us to understand the dynamics of

immune function in the tumor microenvironment and its potential

impact on disease progression.
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2.9 Statistical analysis

Statistical analyses were performed using R 4.2.2 64-bit version

and its supporting software packages. For continuous variables, the

nonparametric Wilcoxon rank sum test was used to assess the

relationship between the two groups. The Sperman correlation

analysis was used to test the correlation coefficients. All statistical

analyses were performed at a level of significance of P<0.05.
3 Results

3.1 Single-cell data dimensionality
reduction clustering and cell
type identification

We obtained bone marrow aspiration single cell sequencing

data from the GSE116256 dataset for three acute myeloid leukemia

patients and three healthy individuals, with samples in the AML

group coming from unmedicated patients. We processed the single-

cell data using the Seurat package. To remove senescent and low-

quality cells, we performed quality control on the cells (Figure 1A).

After going through a series of steps of normalization, finding

highly variable genes, and normalizing the expression matrix, a

dimensionality reduction clustering step was performed. After PCA

dimensionality reduction, we briefly observed the distribution of

sample cells and the contribution of dimensions (Figures 1B, C) and

selected the top 20 PCs for further dimensionality reduction

clustering, and we clustered the cells into a total of 10 cell clusters

(Figure 1D). We obtained relevant cell marker genes from the

CellMarker website (http://xteam.xbio.top/CellMarker/index.jsp)

and utilized the expression of these marker genes in the cell

clusters for cell type identification (Figures 1E, F). Eventually we

identified myeloid precursor cells, monocytes, erythrocytes, T cells,

NK cells, and B cells (Figure 1G). Based on cell types, we observed

the general spectrum of cells using the proposed temporal trajectory

analysis (Figures 1H, I), which verified the accuracy of the myeloid

precursor cells we identified. Meanwhile, we also utilized violin

plots and heat maps to demonstrate the expression of marker genes

in each cell type (Figures 1J, M). By comparing the number and

distribution of cells in the normal and AML groups, we found that

myeloid precursor cells were significantly increased in the AML

group (Figures 1K, L).
3.2 Analysis of cellular communication in
the AML tumor microenvironment

To understand the cellular communication between various cell

types in the AML tumor microenvironment, we performed cellular

communication inference using the CellChat package. Interaction

between myeloid precursor cells and NK cells was relatively

significant in the tumor microenvironment, and additionally,

communication between monocytes in immune cells was also

very active (Figures 2A, F, G). Because both myeloid precursor
Frontiers in Immunology 04390
cells and monocytes belong to the myeloid lineage, their patterns of

autocrine and paracrine communication were similar (Figure 2B).

However, myeloid precursor cells send signals with higher intensity

than monocytes and are the most active presence in the tumor

microenvironment. In contrast, myeloid precursor cells received

signals at a lower intensity, which may suggest their unregulated

presence in the context of AML disease (Figure 2C). In addition we

observed that the macrophage migration inhibitory factor (MIF)

signaling pathway played an important role in the cellular

communication process of myeloid precursor cells, which may be

related to the large proliferation of myeloid precursor cells

(Figures 2D, E) (23–25). We also resolved the communication

patterns in the tumor microenvironment by NMF analysis, which

also helped us to identify the specificity of myeloid precursor cells in

communication (Figures 2H, I).The MIF pathway played multiple

roles in the communication process of myeloid precursor cells,

through which myeloid cells mainly communicated with monocytes

and B-cells, and the cellular expression of MIF, CD74 and CD44

genes MIF, CD74 and CD44 genes were expressed at high levels in

the cells and were the main ligand receptors mediating the

communication through this pathway (Figures 2J–L).
3.3 Pseudo-time analysis and enrichment
of myeloid precursor cells

To further understand the developmental trajectories and

lineages in the tumor microenvironment, we performed a

proposed-time analysis using the monocle2 package, and the

trajectory results presented three distinct nodes and three

branches (Figures 3A–C). Among them, monocytes, a cell type

already present in the tumor microenvironment, underwent

extensive proliferative development of myeloid precursor cells on

the proposed temporal trajectory, and their peak numbers appeared

in the middle and late stages of the proposed time (Figures 3D, E).

We also observed a number of genes that were significantly

differentially expressed at the proposed time, including genes such

as AHSP and CA1 that functioned at a late stage, but also genes such

as THBS1, CD14, S100A9, and FCN1 that functioned at an early

stage of development (Figure 3F). By enrichment analysis of

myeloid precursor cells, we observed apical enrichment for acute

myeloid leukemia (Figures 3G–J).
3.4 Screening of myeloid precursor cell-
related prognostic genes

Abnormal proliferation and dysregulated differentiation of

myeloid precursor cells contribute to the onset and progression of

AML, and we wish to screen genes with prognostic value based on

myeloid precursor cells for AML patients (26, 27). We used the

marker genes of myeloid precursor cells from single-cell data and

modeled them by a combination of ten machine learning

algorithms, and the results showed that the combination of Lasso

and GBM was the most effective (Figure 4A). The Lasso and GBM
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FIGURE 1

Single-cell data processing and cell type identification. (A) Violin plots of sample characteristics after quality control of single-cell data, showing the
distribution of gene counts, total counts, mitochondrial ratio, and red blood cell ratio. (B) Visualization of cell distribution from different samples in
the principal component analysis (PCA) space. (C) Elbow plot for dimension selection, used to determine the optimal number of dimensions in the
dimensionality reduction process. (D) t-SNE dimensionality reduction clustering plot, showing the result of cells being divided into 10 clusters.
(E) Bubble chart of marker gene expression, displaying the expression levels of marker genes across different cell populations. (F) Feature plot of
marker gene expression, presenting the distribution of specific marker genes within cell populations. (G) t-SNE plot showing the results of cell type
identification, displaying the distribution of cell types in two-dimensional space. (H, I) Pseudo-time trajectory plots, respectively showing the
developmental trajectory of cells in pseudo-time analysis. (J) Violin plot of marker gene expression, describing the expression distribution of specific
marker genes across different cell populations. (K) Cell type identification result display, showing the distribution and quantity of cell types by
different groups. (L) Bar chart of cell proportions, displaying the proportion of different cell types within the total cell population. (M) Heatmap of cell
marker gene expression, showing the expression levels of marker genes within various cell populations.
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algorithms resulted in eight signature genes, SPATS2L, SPINK2,

AREG, CLEC11A, HGF, IRF8, ARHGAP5, CD34, and their

correlation was demonstrated by heatmap (Figure 4B). We

plotted the K-M curves for each characterized gene using the

corresponding overall survival data (Figure 4C).
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3.5 Construction of prognostic models

We screened the characterized genes with p-value less than 0.05

as myeloid precursor cell-associated prognostic genes, which were

SPATS2L, SPINK2, AREG,CLEC11A, HGF, IRF8, ARHGAP5. we
FIGURE 2

Analysis of cellular communication in the tumor microenvironment. (A) Cellular communication chord diagram, where the thickness of the lines
represents the frequency of communication between different cells, reflecting the strength of cell interactions. (B) Hierarchical diagram of cellular
communication, showing the communication relationships and hierarchical structure among cells. (C) Scatter plot of signal emission and reception
intensity, displaying the distribution of signal emission and reception strength among different cells. (D, E) Bubble charts of ligand-receptor
communication intensity, respectively showing the communication strength between ligands and receptors. The size and color of the bubbles
indicate the strength and frequency of communication. (F, G) Chord diagrams of signal emission and reception by myeloid precursor cells,
respectively showing the communication patterns of myeloid precursor cells when emitting and receiving signals. (H) Heatmap of cellular
communication patterns, displaying the communication patterns and intensities between different cell types. (I) Sankey diagram of cellular
communication patterns, showing the distribution of communication patterns across various cell types. (J) Heatmap of role preferences during
cellular communication via MIF communication family ligand receptors in different cell types. (K) Chordal plot of cellular communication via MIF
family ligand receptors. (L) Violin plot of MIF family ligand receptor gene expression in various cell types.
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demonstrated the p-value and HR value of each gene by forest plot

(Figure 5A). We categorized patients into high and low risk groups

based on the expression of myeloid precursor cells (Figure 5B). The

prognostic model demonstrated good discrimination and

prognostic value in both the training group data and the

validation group data (Figures 5C, D). We constructed prognostic

column-line plots by combining the risk score with age and gender,

thereby predicting the likelihood of patient survival at 1, 3, and 5

years from the composite score (Figure 5E). The calibration curves

demonstrated the accuracy of the model in predicting the likelihood

of survival at 1, 3, and 5 years (Figure 6A).The AUC scores of the

ROC demonstrated the reliability of our risk model and the

column-line diagrams (Figure 6B).
3.6 High and low risk group
enrichment analysis

To explore the characteristics of patients in the high- and low-risk

groups under the myeloid precursor cell prognostic model, we
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performed KEGG and GO enrichment analyses. the KEGG results

showed that immune-related pathways were less enriched in the

high-risk group, while metabolic and signaling pathways were higher

(Figure 6C). For example, Natural Killer Cell Mediated Cytotoxicity,

the pathway showed low enrichment in the high-risk group. Natural

killer cells are an important part of the innate immune system,

responsible for recognizing and destroying cancerous or virally

infected cells. reduced NK cell activity may imply that immune

surveillance is impaired in the high-risk group, making it easier for

leukemia cells to evade clearance by the immune system, further

exacerbating the disease (28–30). The T Cell Receptor Signaling

Pathway, a pathway that is also higher in the high-risk group, was

also found to be less active in the high-risk group (Figure 6C). T

cells are at the core of the adaptive immune response, recognizing

antigens and activating the immune response through the T cell

receptor (TCR), and the low enrichment of the T cell signaling

pathway suggests that patients in the high-risk group may be

immunosuppressed and unable to effectively initiate an immune

response against leukemia cells, which may be related to the

immune escape mechanism of the leukemia cells (31). The results
FIGURE 3

Pseudo-time analysis and enrichment analysis. (A) Display of cell clustering results, showing the distribution and quantity of cell types in different
groups. (B, C) Pseudo-time developmental trajectory plots. (D) Distribution of different cell types on the pseudo-time trajectory, with a
developmental trajectory dendrogram on the right. (E) Cell count peak plot. (F) Heatmap of differentially expressed genes in pseudo-time. (G–J)
Results of GSEA enrichment analysis for myeloid precursor cells.
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of the enrichment of GO function showed that patients in the high-

risk group had impaired immune surveillance function, making it

easier for leukemia cells to evade the immune system and further

exacerbate the disease. results showed that the high-risk group was

enriched for more functions related to transcriptional regulation and

metabolism, while the low-risk group exhibited more functions
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related to development and differentiation (Figures 6D, E). From

the results of these enrichment analyses, there were significant

differences in immune system function, cellular differentiation, and

metabolic regulation between patients in the AML high- and low-risk

groups. Patients in the high-risk group exhibited suppressed immune

function, activation of metabolic pathways (e.g., GPI-anchored
FIGURE 4

Prognostic gene selection. (A) Consensus model construction diagram. An illustration of the consensus model built using 101 different algorithm
combinations, showing the different algorithm combinations and their consistency assessment results during the model construction process.
(B) Heatmap of prognostic gene correlations. It displays the correlations between the selected prognostic genes. The color intensity in the heatmap
indicates the strength of gene correlations, helping to identify key prognostic genes and their interrelationships. (C) K-M survival curves for gene
expression high and low groups. Kaplan-Meier survival curves are plotted after grouping samples into high and low expression groups based on
gene expression levels. The curves show differences in survival rates between gene expression level groups to assess their role in prognosis.
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synthesis, proteasome pathway), and abnormalities in gene

transcriptional activation (e.g., increased activity of transcription

factors, increased activity of histone methylation), which may

contribute to the proliferation and survival of leukemic cells. In
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contrast, patients in the low-risk group were more enriched for

functions related to cell differentiation, immune regulation, and

developmental processes, suggesting that these patients may have

more normal hematopoietic functions and immune responses.
FIGURE 5

Construction of the prognostic model. (A) Meta-analysis diagram of univariate Cox survival analysis. It shows the results of meta-analysis of
univariate Cox regression analysis for different prognostic factors to assess the correlation of each factor with survival time. The diagram includes the
HR and 95% confidence interval for each factor. (B) PCA diagram of high-risk and low-risk groups. It compares the data distribution after dividing
samples into high-risk and low-risk groups based on risk scores. The PCA diagram shows the distribution difference of the two groups on the
principal components. (C, D) K-M survival curves. (C) shows the survival curves of high-risk and low-risk groups in the training set; (D) shows the
survival curves of the corresponding groups in the validation set. Both diagrams are used to compare survival differences between different risk
groups and to assess the prognostic predictive ability of the model. (E) Bar chart of comprehensive risk scores and clinical characteristics. It shows
the association between comprehensive risk scores and clinical features, with the bar chart indicating the weight of each clinical characteristic in the
comprehensive risk score and its predictive value for prognosis. *** indicates that the factor is statistically significant for disease prognosis with a p-
value of less than 0.001.
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3.7 Immune infiltration analysis

We first performed immune infiltration analyses on subgroups

of patients with the eight myeloid precursor cell signature genes,

thus observing the consistency and differences in their effects on the
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tumor microenvironment (Figures 7A–H). Immune infiltration

analyses were also performed on the high- and low-risk groups,

and the high-risk group had higher levels of monocyte and

macrophage M0-type infiltration. This may imply that

macrophage polarization in the tumor microenvironment is
FIGURE 6

Predictive efficacy and functional enrichment analysis of the prognostic model. (A) Calibration curve of the prognostic model’s predictive efficacy. It
shows the match between the model’s predicted risk scores and actual observed results, assessing the model’s predictive accuracy. (B) ROC curve
of the prognostic model’s efficacy. It displays the receiver operating characteristic (ROC) curve of the model and the AUC, used to assess the
model’s classification ability. (C) KEGG pathway enrichment analysis heatmap. It shows the enrichment of prognostic genes in KEGG pathways,
helping to identify key biological pathways. (D) GO enrichment analysis bubble chart. It shows the enrichment of prognostic genes in GO categories,
with the bubble chart displaying the relationships and enrichment levels of different GO terms. (E) GO enrichment analysis bar chart. It shows the
enrichment levels of prognostic genes in different GO categories, with the bar chart reflecting the significance of each GO category.
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associated with the progression of AML, and that M0-type

macrophages are in an unpolarized state, where they may not yet

have fully exerted their antitumor effects in the tumor

microenvironment, and may even contribute to the growth of

leukemic cells. The low-risk group showed a higher proportion of

activated natural killer cells and activated mast cells, which may
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suggest that anti-tumor immune surveillance mechanisms are still

more active in low-risk patients. Regulatory T cells were in higher

proportion in the high-risk group. By suppressing the immune

response, regulatory T cells may help leukemia cells to evade the

attack of the immune system and further promote disease

progression. The results of immune checkpoint analysis showed
FIGURE 7

Immune infiltration analysis. (A–H) Results of immune infiltration analysis based on the expression levels of prognostic marker genes, grouped into
different groups. Each subfigure shows the immune cell infiltration between different groups, comparing the immune infiltration levels between high
and low expression groups of prognostic marker genes. “*” represents a p-value less than 0.05, “**” represent a p-value less than 0.01, and “***”
represent a p-value less than 0.001.
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that the expression of classical immune checkpoint molecules, such

as PDCD1, CD274, and CTLA4, was significantly elevated in the

high-risk group. This suggests that leukemia cells in high-risk

patients may inhibit the activity of the immune system through

these checkpoint molecules, allowing tumor immune escape and

thus promoting disease progression. The expression of the novel

immune checkpoints, such as LAG3, TIM3, and TIGIT, was

likewise higher in the high-risk group, suggesting that these

molecules may play a key role in immunosuppression in high-risk

AML patients. LAG3 and TIM3, in particular, have been recognized

as potential therapeutic targets in recent years and may be closely

related to immune escape mechanisms. The lower expression levels

of these immune checkpoints in the low-risk group may reflect the

relatively more active immune system of these patients, which is

capable of recognizing and clearing leukemia cells more effectively.

The results of the immune function score analysis showed that APC

co-inhibition and Check-point scored higher in the high-risk group,

suggesting that the activity of antigen-presenting cells was

suppressed in high-risk patients and that the immune system may

have difficulty in effectively initiating an anti-leukemia response. In

addition, increased immune checkpoint activity implies activation

of immunosuppressive pathways, further suppressing T-cell

function. Inflammation-promoting scored higher in the high-risk

group, which may be related to the chronic inflammatory state in

the tumor microenvironment. Chronic inflammation may promote

cancer cell survival and proliferation in some cases. Type I IFN

response and Type II IFN response scored higher in the low-risk

group, suggesting that low-risk patients may have stronger antiviral

and antitumor immune responses. Together, these analyses reveal

that there are significant differences in the immune environments of

high- and low-risk AML patients, that immunosuppression is an

important mechanism of disease progression in the high-risk group,

and that immunotherapies (e.g., checkpoint inhibitors) may have a

positive therapeutic effect in these patients (Figures 8A–C).
3.8 Prognostic marker gene expression
validation and enrichment analysis

We validated the expression of prognostic marker genes using

the AML-BM RNA-seq Cohort with the aim of confirming the

differences in the expression of these genes between acute myeloid

leukemia (AML) patients and normal controls. By comparing the

data from the AML group with that of the normal group, we used an

independent samples t-test to statistically analyze the gene

expression. The results showed that seven prognostic marker

genes showed significant expression differences between the AML

and normal groups (Figure 9A). We performed gene differential

expression analysis using normal and disease samples from the

AML-BM RNA-seq cohort and demonstrated the top thirty and

bottom thirty differentially expressed genes by heatmap (Figure 9B).

Then based on the differentially expressed genes, we performed GO

enrichment analysis and demonstrated the enriched active

pathways by bar graph (Figure 9C).
Frontiers in Immunology 12398
4 Discussion

In this study, we comprehensively analyzed the tumor

microenvironment and prognosis-related genes in acute myeloid

leukemia (AML) and constructed a prognostic model for AML

patients based on single-cell RNA sequencing (scRNA-seq) and

RNA-seq data. Our study revealed the abnormal proliferation and

dysregulated differentiation of myeloid precursor cells in AML,

elucidating the important role of this cell type in the tumor

microenvironment and its potential as a potential therapeutic

target for AML. Through systematic cell communication analysis,

mimetic timing analysis and enrichment analysis, we not only

deeply explored the function and developmental trajectory of

myeloid precursor cells, but also screened out genes that are

closely related to patient prognosis.

Firstly, we successfully identified myeloid precursor cells and

other major cell types through dimensionality reduction clustering

and cell type identification of single-cell data. Myeloid precursor

cells are significantly more prevalent in AML patients, a finding that

suggests their critical role in the pathological process of AML.

Abnormal proliferation of these cells may be closely related to the

development of AML, especially their abnormal activity in the

tumor microenvironment (32, 33). Mimetic time-series analysis

further validated the developmental trajectory of myeloid precursor

cells, showing their extensive proliferation in AML and peaking in

the late stage of the disease. Combined with the results of

enrichment analysis, the gene expression profile of myeloid

precursor cells revealed their specific functions in AML, especially

the activation of the MIF signaling pathway, which may be related

to the proliferation and autocrine regulation of myeloid precursor

cells (34, 35).

Cell communication analysis also revealed for us the complex

interactions between myeloid precursor cells and other cell types in

the AML tumor microenvironment. We found that myeloid

precursor cells interacted with NK cells and monocytes

particularly in the AML microenvironment. the role of NK cells

was significantly reduced in the high-risk group, possibly suggesting

that the immune system of these patients was significantly

suppressed. This was further verified in our analysis of immune

infiltration in the high- and low-risk groups, which demonstrated

suppression of immune function with activation of immune escape

mechanisms in the high-risk group (36). These findings emphasize

the association between immune microenvironment characteristics

and disease progression in AML patients and provide a theoretical

basis for targeted immunotherapy (37).

Based on the marker gene screening of myeloid precursor cells,

we constructed a prognostic model for AML and selected a

combined model of Lasso and GBM by comparing multiple

machine learning algorithms. The final 8 characterized genes

(SPATS2L, SPINK2, AREG, CLEC11A, HGF, IRF8, ARHGAP5,

CD34) showed significant prognostic value in patients’ survival

analysis. These genes may not only help predict the prognosis of

AML patients but may also serve as potential targets for future

therapy (38–40). For example, high expression of SPINK2 and
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AREG is closely associated with malignant progression of AML,

suggesting their role in disease regulation. By K-M curves and Cox

regression analysis, we further validated the expression differences

of these genes in patients of high and low risk groups, and the good

performance of the prognostic model was further supported by the

data from the training and validation groups (41).

To further validate the expression patterns of these marker

genes and their actual roles in AML patients, we collected bone

marrow samples from 10 AML patients and 10 healthy individuals

and performed RNA-seq sequencing analysis. The results showed

that some of the prognosis-related genes screened in this paper were
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significantly highly expressed in bone marrow samples from AML

patients and were statistically significant compared with normal

individuals (42). This result is consistent with our findings obtained

from publicly available databases and bioinformatics analyses,

further enhancing the reliability of these genes as potential

prognostic markers for AML. In addition, the gene expression

data revealed that certain genes may play key regulatory roles in

the development of AML, providing direction for subsequent

mechanistic studies (43).

In addition, our immunoassays revealed significant features of

high-risk AML patients in terms of immune escape, especially the high
FIGURE 8

(A) Bar chart of immune infiltration analysis results for high-risk and low-risk patients, showing the infiltration levels of immune cells in different risk
groups. (B) Bar chart comparing the expression levels of immune checkpoint genes, showing differences in the expression of major immune
checkpoint genes between high-risk and low-risk groups. (C) Bar chart of immune function score results, comparing the immune function scores of
high-risk and low-risk patients. “*” represents a p-value less than 0.05, “**” represent a p-value less than 0.01, and “***” represent a p-value less than
0.001, indicating the statistical significance of differences between groups.
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expression of classical immune checkpoint molecules (e.g., PDCD1,

CTLA4), which further suggests that these patients may escape from

the attack of the immune system through immune checkpoint

inhibition mechanisms (44–46). Patients in the high-risk group had

higher levels of M0-type macrophage infiltration, whereas the low-risk

group showed greater immune surveillance. This suggests that the role

of the immune system in the progression of AML patients is crucial,

and future treatment in combination with immune checkpoint

inhibitors or other immunotherapies may be needed to improve the

prognosis of patients in the high-risk group (47, 48).

In summary, this study constructed a prognostic model of AML

by systematic single-cell analysis and machine learning modelling

and revealed the critical role of myeloid precursor cells in the

pathological process of AML. Future studies should further validate

the prognostic value of these genes in independent cohorts and
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explore myeloid precursor cell-based therapeutic interventions,

thus providing new ideas for individualized treatment of

AML patients.
5 Conclusion

In this study, the cellular heterogeneity and potential molecular

mechanisms in the tumor microenvironment of acute myeloid

leukemia (AML) were deeply resolved by integrating single-scRNA-

seq and bulk RNA-seq data. The aberrant proliferation of myeloid

precursor cells and their critical role in AML development were

revealed by cellular communication, mimetic time-series analysis,

and screening of prognosis-related genes. The AML prognostic

model constructed based on survival analysis identified a variety of
FIGURE 9

Expression of prognostic marker genes and GO enrichment analysis. (A) It shows the expression of 8 prognostic marker genes in the AML-BM RNA-
seq Cohort. The figure displays the expression levels of these genes in samples, revealing their expression characteristics in AML bone marrow
samples. (B) Heatmap of differentially expressed genes in the normal and disease groups, showing 30 genes each that are up- and down-regulated.
Red represents up-regulated expression and blue represents down-regulated expression. (C) Bar chart of GO enrichment analysis results.
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prognostic-related genes and demonstrated their potential

application value in survival prediction of AML patients. In

addition, this study revealed features related to immunosuppression

and tumor immune escape, which provided new ideas and potential

targets for personalized treatment of AML.
Data availability statement

The data presented in the study are deposited in the Dryad

repository, accession link: https://doi.org/10.5061/dryad.h9w0vt4t2.
Ethics statement

The studies involving humans were approved by Clinical Trial

Ethics Committee, Affiliated Hospital of Southwest Medical

University Affiliated Hospital of Southwest Medical University.

The studies were conducted in accordance with the local

legislation and institutional requirements. The participants

provided their written informed consent to participate in

this study.
Author contributions

GFH: Conceptualization, Formal analysis, Writing – original draft.

LJ: Conceptualization, Data curation, Visualization, Writing – original

draft. XZ: Conceptualization, Formal analysis, Visualization, Writing –

original draft. YG: Conceptualization, Formal analysis, Visualization,

Writing – original draft. JT: Data curation, Formal analysis,

Visualization, Writing – original draft. QZ: Formal analysis, Writing

– original draft. QH: Formal analysis, Visualization, Writing – original

draft. GH: Formal analysis, Visualization, Writing – original draft. ZZ:

Formal analysis, Writing – original draft. XG: Conceptualization,

Writing – review & editing. KX: Conceptualization, Writing – review

& editing. YX: Conceptualization, Writing – review & editing.
Frontiers in Immunology 15401
Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.
Acknowledgments

We gratefully acknowledge the Gene Expression Omnibus

(GEO) for their public datasets. We also appreciate the R

programming language community for the essential tools that

facilitated our research.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494106/

full#supplementary-material
References
1. Newell LF, Cook RJ. Advances in acute myeloid leukemia. Bmj. (2021) 375:n2026.
doi: 10.1136/bmj.n2026

2. Chopra M, Bohlander SK. The cell of origin and the leukemia stem cell in acute
myeloid leukemia. Genes Chromosomes Cancer. (2019) 58:850–8. doi: 10.1002/gcc.22805

3. Long NA, Golla U, Sharma A, Claxton DF. Acute myeloid leukemia stem cells:
origin, characteristics, and clinical implications. Stem Cell Rev Rep. (2022) 18:1211–26.
doi: 10.1007/s12015-021-10308-6

4. De Kouchkovsky I, Abdul-Hay M. Acute myeloid leukemia: a comprehensive
review and 2016 update. Blood Cancer J. (2016) 6:e441. doi: 10.1038/bcj.2016.50

5. Shimony S, Stahl M, Stone RM. Acute myeloid leukemia: 2023 update on
diagnosis, risk-stratification, and management. Am J Hematol. (2023) 98:502–26.
doi: 10.1002/ajh.26822

6. Hansrivijit P, Gale RP, Barrett J, Ciurea SO. Cellular therapy for acute myeloid
Leukemia - Current status and future prospects. Blood Rev. (2019) 37:100578.
doi: 10.1016/j.blre.2019.05.002

7. Yang X, Wang J. Precision therapy for acute myeloid leukemia. J Hematol Oncol.
(2018) 11:3. doi: 10.1186/s13045-017-0543-7
8. Wysota M, Konopleva M, Mitchell S. Novel therapeutic targets in acute myeloid
leukemia (AML). Curr Oncol Rep. (2024) 26:409–20. doi: 10.1007/s11912-024-01503-y

9. Jayavelu AK, Wolf S, Buettner F, Alexe G, Häupl B, Comoglio F, et al. The
proteogenomic subtypes of acute myeloid leukemia. Cancer Cell. (2022) 40:301–
317.e312. doi: 10.1016/j.ccell.2022.02.006

10. Prada-Arismendy J, Arroyave JC, Röthlisberger S. Molecular biomarkers in acute
myeloid leukemia. Blood Rev. (2017) 31:63–76. doi: 10.1016/j.blre.2016.08.005

11. Shahrajabian MH, Sun W. Survey on multi-omics, and multi-omics data
analysis, integration and application. Curr Pharm Anal. (2023) 19:267–81.
doi: 10.2174/1573412919666230406100948

12. van Galen P, Hovestadt V, Wadsworth Ii MH, Hughes TK, Griffin GK, Battaglia
S, et al. Single-cell RNA-seq reveals AML hierarchies relevant to disease progression
and immunity. Cell. (2019) 176:1265–1281.e1224. doi: 10.1016/j.cell.2019.01.031

13. Metzeler KH, Hummel M, Bloomfield CD, Spiekermann K, Braess J, Sauerland
MC, et al. An 86-probe-set gene-expression signature predicts survival in
cytogenetically normal acute myeloid leukemia. Blood. (2008) 112:4193–201.
doi: 10.1182/blood-2008-02-134411
frontiersin.org

https://doi.org/10.5061/dryad.h9w0vt4t2
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494106/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1494106/full#supplementary-material
https://doi.org/10.1136/bmj.n2026
https://doi.org/10.1002/gcc.22805
https://doi.org/10.1007/s12015-021-10308-6
https://doi.org/10.1038/bcj.2016.50
https://doi.org/10.1002/ajh.26822
https://doi.org/10.1016/j.blre.2019.05.002
https://doi.org/10.1186/s13045-017-0543-7
https://doi.org/10.1007/s11912-024-01503-y
https://doi.org/10.1016/j.ccell.2022.02.006
https://doi.org/10.1016/j.blre.2016.08.005
https://doi.org/10.2174/1573412919666230406100948
https://doi.org/10.1016/j.cell.2019.01.031
https://doi.org/10.1182/blood-2008-02-134411
https://doi.org/10.3389/fimmu.2024.1494106
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2024.1494106
14. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–3587.e3529.
doi: 10.1016/j.cell.2021.04.048

15. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

16. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, et al. The
dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering
of single cells. Nat Biotechnol. (2014) 32:381–6. doi: 10.1038/nbt.2859

17. Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C, et al. Single-cell mRNA
quantification and differential analysis with Census. Nat Methods. (2017) 14:309–15.
doi: 10.1038/nmeth.4150

18. Zulibiya A, Wen J, Yu H, Chen X, Xu L, Ma X, et al. Single-cell RNA sequencing
reveals potential for endothelial-to-mesenchymal transition in tetralogy of fallot.
Congenital Heart Dis. (2023) 18:611–25. doi: 10.32604/chd.2023.047689

19. Street K, Risso D, Fletcher RB, Das D, Ngai J, Yosef N, et al. Slingshot: cell lineage
and pseudotime inference for single-cell transcriptomics. BMC Genomics. (2018)
19:477. doi: 10.1186/s12864-018-4772-0

20. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics. (2012) 16:284–7. doi: 10.1089/
omi.2011.0118

21. Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized linear
models via coordinate descent. J Stat Software. (2010) 33:1–22. doi: 10.18637/jss.v033.i01

22. Song Z, Yu J, Wang M, Shen W, Wang C, Lu T, et al. CHDTEPDB:
transcriptome expression profile database and interactive analysis platform for
congenital heart disease. Congenital Heart Dis. (2023) 18:693–701. doi: 10.32604/
chd.2024.048081

23. Abdul-Aziz AM, Shafat MS, Mehta TK, Di Palma F, Lawes MJ, Rushworth SA,
et al. MIF-induced stromal PKCb/IL8 is essential in human acute myeloid leukemia.
Cancer Res. (2017) 77:303–11. doi: 10.1158/0008-5472.Can-16-1095
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Background: We conducted an investigation into the characteristics of single-

cell differentiation data in gliomas, with a focus on developing DAPK1-based

prognostic markers to predict patient outcomes. Dysregulated expression of

DAPK1 has been associated with the invasive behavior of various malignancies,

including gliomas. However, the precise role and underlying mechanisms of

DAPK1 in gliomas remain inadequately understood.

Methods:We performed analyses on RNA-seq andmicroarray datasets from The

Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), in addition

to single-cell RNA sequencing (scRNA-seq) data from glioma patients available in

GEO. Utilizing the Seurat R package, we identified gene clusters associated with

survival from the scRNA-seq data. Prognostic models were developed using

LASSO and stepwise regression algorithms. Furthermore, we assessed the

predictive potential of these genes within the immune microenvironment and

their relevance in immunotherapy contexts.

Results: Our scRNA-seq data analysis revealed 32 distinct cell clusters

corresponding to 10 cell types. Through dimensionality reduction and

clustering, we identified three glial cell subpopulations based on their

differentiation trajectories. DAPK1, serving as a marker gene for the terminal

subpopulation, exhibited an association with poor prognosis.

Conclusions: DAPK1-based prognostic models show promise for accurately

predicting outcomes in glioblastoma and glioma. An in-depth examination of

DAPK1’s specific mechanisms in glioblastoma could elucidate its role in

immunotherapy response. Targeting the DAPK1 gene may offer therapeutic

benefits for glioma patients.
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1 Introduction

Gliomas are among the most prevalent and lethal intracranial

tumors in adults, presenting a significant challenge to global public

health due to their high incidence and poor prognosis (1, 2). The

diagnosis and treatment of gliomas are particularly challenging

because of the complex etiology of neurological diseases (3, 4),

unclear pathophysiological processes, and limited advances in

pharmacological treatments and therapeutic interventions (5, 6).

Treatment options for glioma patients remain limited; while

emerging immunotherapies show promise in other tumors, their

efficacy in gliomas is hindered by the tumor’s immune-suppressive

environment (7, 8). Traditional approaches such as surgery,

radiotherapy, and chemotherapy also provide limited success

(9–11). Early diagnosis, effective intervention, and accurate

prognosis are critical for improving outcomes in glioma patients,

as those diagnosed early and treated with targeted therapies tend to

have better prognoses (12, 13). Thus, there is an urgent need for

research to discover new and more effective strategies to combat

glioma (14). Despite significant progress in understanding tumor

cell heterogeneity and the tumor microenvironment (TME) in

recent years (15, 16), translating these findings into enhanced

diagnostics and immunotherapy advancements for glioma

patients has been challenging due to the complex interactions

among various cells within the TME (17, 18). Therefore,

elucidating the interactions among diverse cells within the TME

related to glioma initiation and progression, and identifying

potential pathological mechanisms and therapeutic targets, is

essential for achieving significant clinical advancements (19, 20).

Macrophages play a crucial role in gliomas (21, 22). These

immune cells, primarily found in tissues including the brain, are

responsible for clearing foreign substances, dead cells, and debris

while participating in immune responses (23, 24). In gliomas,

macrophages can exhibit dual roles. They can identify and

destroy tumor cells, thereby inhibiting tumor growth and spread

through the release of cytotoxic factors such as oxidants and nitric

oxide (25, 26), and by promoting the activation of other immune

cells (27). However, macrophages can also be exploited by tumor

cells to facilitate tumor growth and metastasis (28). Tumor cells can

release signaling molecules that induce macrophages to polarize

into tumor-associated macrophages (TAMs) (29, 30), which

promote tumor cell proliferation, angiogenesis, and metastasis

through the release of growth factors, cytokines, and proteases

(31, 32). Thus, understanding the dual role of macrophages in

gliomas and exploring strategies to modulate macrophage activity is

crucial for enhancing therapeutic efficacy.

The protein encoded by the DAPK1 (Death-associated protein

kinase 1) gene is a serine/threonine kinase involved in various

biological processes, including apoptosis, cell cycle regulation, cell

motility, and cell adhesion (33, 34). DAPK1 is considered a

significant tumor suppressor gene, capable of inhibiting tumor

development by regulating apoptosis and the cell cycle (35).

Recently, DAPK1 has gained interest in research on neurological

disorders (36, 37). Elevated DAPK1 expression has been observed in
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Alzheimer’s disease (AD), where it may contribute to pathogenesis

by modulating apoptosis, inflammatory responses, and pathways

associated with neuronal synaptic damage (38, 39). In Parkinson’s

disease (PD) (40), DAPK1 hyperactivation is linked to neuronal

apoptosis and synaptic injury, exacerbating disease progression

(41). In stroke, DAPK1 may play a role in neuroprotection and

regeneration by regulating apoptosis, inflammation, and synaptic

reconstruction (42). Conversely, reduced DAPK1 expression is

reported in various cancers, such as lung, breast, colon, and

gastric cancers, highlighting its role in tumorigenesis and

progression (43). DAPK1 can regulate multiple apoptosis

pathways, including phosphorylation-mediated regulation of Bcl-2

family members, modulation of p53 activity, and activation of the

mitochondrial pathway. Dysregulation of these pathways can lead

to tumor cell evasion of apoptosis and tumor progression (44).

Additionally, DAPK1 influences cell cycle progression by

phosphorylating proteins such as p53, p21, and Cdc25, thereby

inhibiting tumor cell proliferation (45). DAPK1 also affects

signaling pathways involved in tumor initiation and progression,

such as Wnt/b-catenin, NF-kB, and MAPK pathways, impacting

tumor proliferation, invasion, metastasis, and drug resistance.

Although limited, some research suggests a relationship

between DAPK1 and macrophages. DAPK1 may modulate

macrophage function by influencing pathways related to

apoptosis, inflammatory responses, and autophagy, potentially

affecting macrophage roles in inflammation, infection, and the

TME. DAPK1 might also regulate macrophage polarization into

TAMs, which are associated with tumor growth, invasion, and

metastasis. Thus, investigating DAPK1’s specific mechanisms in

gliomas and its interaction with TAMs is crucial for advancing our

understanding and therapeutic approaches.
2 Methods

2.1 Data source

Single-nucleus RNA sequencing (snRNA-seq) data were

retrieved from the Gene Expression Omnibus (GEO) database

(accession number GSE141383), with a particular focus on

dataset GSE138794. The samples analyzed included GSM4119521

to GSM4119530. Furthermore, bulk RNA sequencing data were

obtained from The Cancer Genome Atlas (TCGA) via the

TCGA portal.
2.2 Data filtering and the standard process

The initial processing of the snRNA-seq data was carried out

using the Seurat package (version 4.3.0) in R (version 4.2.0). The

DoubletFinder package (version 2.0.3) was used to detect and

remove potential doublets according to its standard procedure.

Cells were filtered based on predefined quality control criteria:

300 < nFeature < 7,500, 500 < nCount < 100,000, mitochondrial
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gene expression < 20% of total cellular genes, and erythroid gene

expression < 5% of total cellular genes (46, 47). The data were

normalized, and the top 2,000 highly variable genes were identified

for subsequent analysis. To address batch effects, the Harmony R

package (version 0.1.1) was employed. Dimensionality reduction

was carried out using 30 principal components (PCs), followed by

clustering and visualization of cellular heterogeneity through the

UMAP method (48). Cell clusters were annotated using established

cell markers from the literature and the CellMarker database

(CellMarker database) (49–52), allowing for the determination of

cell type proportions within the dataset (53, 54).
2.3 Differentiation and enrichment analysis

Differential gene expression analysis within each cell cluster was

performed using the “FindAllMarkers” function in the Seurat

package, with the Wilcoxon rank sum test applied to identify

differentially expressed genes (DEGs). Genes with a log fold

change (logFC) > 0.25 and expression in more than 25% of the

cells within the cluster were considered significant. Functional

enrichment analysis of the DEGs was conducted using the

“clusterProfiler” R package (version 0.1.1), which enabled Gene

Ontology (GO) biological process (BP) and pathway enrichment

analysis. Enriched terms were visualized to interpret the biological

significance of the identified DEGs.
2.4 Subpopulation analysis of macrophage

To investigate macrophage heterogeneity, we isolated

macrophage cells and identified the top 2000 variable genes. Data

normalization and batch effect correction were carried out using the

Harmony method prior to principal component analysis (PCA).

The top 30 PCs were used for clustering and downsampling, and

macrophage subpopulations were visualized using the

UMAP method.
2.5 InferCNV identifies malignant cells

Copy number variation (CNV) analysis was conducted using

the inferCNV algorithm to identify malignant cells among non-

tumor cells. Vascular endothelial cells were used as a reference, and

subpopulations exhibiting significant CNV variability were

classified as glioma cells.
2.6 Difference analysis and enrichment
analysis of cell subpopulations

Differential expression analysis within each cell subpopulation

was performed using the “FindAllMarkers” function in conjunction

with the Wilcoxon rank sum test. Enrichment analysis of Gene

Ontology Biological Processes (GO-BP) was conducted using the

clusterProfiler package.
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2.7 Trajectory analysis

Cell differentiation trajectories in oligodendrocyte subpopulations

were analyzed using the cytoTRACE, Monocle R (version 2.24.0), and

Slingshot (version 2.6.0) software tools. Trajectories were

reconstructed using the DDRTree algorithm, and cell lineage was

inferred through minimum spanning trees (MSTs) to track

developmental progression along the identified paths.
2.8 Cell communication

In terce l lu lar communica t ion wi th in GBM tumor

subpopulations and microenvironmental cells was analyzed using

the CellChat R package (version 1.6.1) and the CellChatDB.human

database for ligand-receptor interactions. Signaling pathways and

receptor-ligand interactions were assessed to understand

coordinated signaling across different cell types.
2.9 Prognostic modeling of glioma-
associated cells

Prognostic gene signatures for glioma were identified using

univariate Cox analysis and Lasso regression (55–58). A

multivariate Cox model integrated key genes (59, 60) to compute

risk scores, which were validated using survival analysis and

receiver operating characteristic (ROC) curves at 1, 3, and 5

years (61).
2.10 Assessment of tumor-infiltrating
immune cells

Immune-related scores were calculated using the CIBERSORT,

ESTIMATE, and xCell algorithms to assess the immune

microenvironment. CIBERSORT analysis identified 22 immune

cell types across various groups, and correlated these with risk

scores, model genes, and overall survival (OS). Additionally, TIDE

scores and AODRA2A expression were evaluated.
2.11 Differential and enrichment analysis of
bulk data

Differential expression analysis in high- and low-risk groups

was performed using the DESeq2 R package, with enrichment

analysis conducted using GO, KEGG, and GSEA for identified

DEGs with |logFC| > 2 and p-value < 0.05 (62, 63).
2.12 Somatic mutation analysis

TCGA somatic mutation data were used to identify highly

mutated genes and compare mutational patterns with control

genes. TMB-based stratification and Kaplan-Meier analysis were
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employed to assess survival differences, while CNV patterns of

target genes were also evaluated (64, 65).
2.13 Drug sensitivity analysis

The pRRophetic R software was used to project IC50 values for

chemotherapeutic agents and evaluate sensitivity across categories.
2.14 Cell culture

The LN229 and U-251 cell lines were obtained from American

Type Culture Collection (ATCC, Manassas, VA, USA). Cells were

cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco,

Cat. No. 11965092), supplemented with 10% fetal bovine serum

(FBS, Gibco, Cat. No. 10099141) and 1% penicillin-streptomycin

(Gibco, Cat. No. 15140122). Cultures were maintained in a 37°C

incubator with 5% CO2. For passaging, cells were detached using

0.25% trypsin-EDTA (Gibco, Cat. No. 25200056), counted, and

reseeded at a density of 1 × 10^5 cells per flask. Cultures were

monitored regularly for mycoplasma contamination and

subcultured when they reached 80-90% confluency.
2.15 Cell transfection

For siRNA transfection targeting DAPK1, Lipofectamine 3000

was utilized. The siRNA sequences, synthesized by Ribobio, were

used for subsequent experimental procedures. Detailed sequences

targeting NUSAP1 are provided in Supplementary Table 1.
2.16 RT-qPCR analysis

RNA was isolated using TRIzol reagent, and cDNA synthesis

was conducted using the PrimeScript™ RT kit. Gene expression

was analyzed with SYBR qPCR Master Mix on a Roche LightCycler

480 system. GAPDH served as the internal control. Gene expression

levels were quantified using the 2−DDCt method. Primer sequences,

sourced from Tsingke Biotech (Beijing, China), are listed in

Supplementary Table 1.
2.17 The experiment of cell-cunting-kit-
8 assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8) assay (Dojindo Molecular Technologies, Cat. No. CK04)

following the manufacturer’s instructions. LN229 and U251 cells

were seeded in 96-well plates at a density of 5 × 10^3 cells per well

in 100 μL of complete culture medium and incubated at 37°C with

5% CO2 for 24, 48, 72, and 96 hours. At each time point, 10 μL of

CCK-8 solution was added to each well, and the plates were

incubated for 2 hours at 37°C. The absorbance at 450 nm was

measured using a microplate reader (BioTek, Synergy H1) to
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evaluate cell viability. The relative cell proliferation rate was

calculated as the absorbance value of the experimental group

divided by the absorbance value of the control group. All

experiments were performed in triplicate.
2.18 The experiment of colony formation

The colony formation assay was performed to evaluate the

proliferative capacity of LN229 and U251 cells. Cells were seeded in

6-well plates at a density of 500 cells per well in complete culture

medium and incubated at 37°C with 5% CO2 for 10–14 days to

allow colony formation. The culture medium was changed every 3

days. After the incubation period, the cells were fixed with 4%

paraformaldehyde (Sigma-Aldrich, Cat. No. P6148) for 15 minutes,

followed by staining with 0.1% crystal violet (Sigma-Aldrich, Cat.

No. C3886) for 30 minutes. Colonies were counted under a light

microscope (Leica, DM3000). Colonies consisting of more than 50

cells were considered positive. The colony formation efficiency was

calculated as the number of colonies formed divided by the number

of seeded cells, expressed as a percentage. All experiments were

conducted in triplicate.
2.19 The experiment of wound healing

To assess cell proliferation and migration capacity, a wound

healing assay was performed using LN229 and U251 cells. Cells

were seeded in 6-well plates (Corning, Cat. No. 353046) and

cultured in complete medium until 90% confluence. A uniform

“scratch” was made using a 200 μL pipette tip, creating a cell-free

gap. The medium was replaced with serum-free medium (Gibco,

Cat. No. 31603-029) to prevent cell proliferation during the

migration phase. The cells were then cultured in a 37°C incubator

with 5% CO2. Images were captured at 0 and 24 hours post-scratch

using a light microscope (Leica, DM3000). Migration ability was

quantified by measuring the gap distance using ImageJ software

(National Institutes of Health). The results were expressed as the

percentage of wound closure, calculated as:

Wound closure percentage

= Gap at 0 hours − Gap at 24 hours� 100

Experiments were performed in triplicate to ensure reproducibility.
2.20 The experiment of transwell

The migration and invasion abilities of LN229 and U251 cells

were assessed using a Transwell assay. For the migration assay, cells

were suspended in serum-free medium (Gibco, Cat. No. 31603-029)

at a density of 1×10^5 cells/mL and added to the upper chamber of

a Transwell insert (Corning, Cat. No. 3422) with a pore size of 8 μm.

The lower chamber was filled with complete medium containing

10% fetal bovine serum (FBS, Gibco, Cat. No. 10099-141) to serve as

a chemoattractant. After incubating for 24 hours at 37°C and 5%
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CO2, non-migrated cells were removed from the upper surface

using a cotton swab. Migrated cells were fixed with 4%

paraformaldehyde (Sigma-Aldrich, Cat. No. 158127) for 15

minutes and stained with 0.1% crystal violet (Sigma-Aldrich, Cat.

No. C3886) for 30 minutes. The number of migrated cells was

counted in five random fields per membrane using a light

microscope (Leica, DM3000).
2.21 Apoptotic rate assessed through flow
cytometric analysis

Apoptosis in LN229 and U251 cells was assessed using an

Annexin V-FITC Apoptosis Detection Kit (BD Biosciences, Cat.

No. 556547) and flow cytometry. Briefly, cells were cultured in 6-

well plates (Corning, Cat. No. 353046) and treated with the

appropriate experimental conditions. After treatment, cells were

harvested and washed twice with phosphate-buffered saline (PBS,

Gibco, Cat. No. 10010-023). The harvested cells were resuspended

in binding buffer (BD Biosciences, Cat. No. 556454), and 5 μL of

Annexin V-FITC reagent and 5 μL of propidium iodide (PI, BD

Biosciences, Cat. No. 556463) were added to each sample. The cells

were incubated at room temperature for 15 minutes in the dark.

After incubation, the cells were analyzed using a flow cytometer

(BD FACSCalibur, BD Biosciences). The Annexin V-positive/PI-

negative population was considered to be early apoptotic, while the

Annexin V-positive/PI-positive population was considered to be

late apoptotic. Data were analyzed using FlowJo software (FlowJo,

LLC, Version 10).

The experiment was performed in triplicate, and apoptosis rates

were calculated as the percentage of apoptotic cells (early and late

apoptosis) relative to the total cell population.
2.22 Statistical analysis

Statistical analysis was performed using SPSS software (version

26.0, IBM Corp., Armonk, NY) and R software (version 4.0.3, R

Foundation for Statistical Computing, Vienna, Austria). Data are

presented as mean ± standard deviation (SD) for normally

distributed variables and median with interquartile range (IQR)

for non-normally distributed variables. The normality of data was

assessed using the Shapiro-Wilk test. Comparisons between two

groups were made using the Student’s t-test for normally

distributed data or the Mann-Whitney U test for non-normally

distributed data. For comparisons among multiple groups, one-way

analysis of variance (ANOVA) followed by post hoc Tukey’s test was

used. The correlation between variables was assessed using

Pearson’s or Spearman’s correlation coefficient, as appropriate.

Survival analysis was performed using the Kaplan-Meier method,

and differences in survival rates were compared with the log-rank

test. Univariate and multivariate Cox regression analyses were used

to identify independent prognostic factors. A p-value < 0.05 was

considered statistically significant.
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3 Results

3.1 snRNA sequencing reveals major cell
types during GBM progression

Single-nucleus RNA sequencing (snRNA-seq) was performed

on tumor samples from ten glioma patients to profile cellular

populations. Following rigorous quality control and filtering,

22,392 cells were analyzed using dimensionality reduction

clustering, resulting in the identification of 32 distinct cell clusters

(Figure 1A, top left). These clusters were annotated into ten cell

types: T cells (1234 cells), neutrophils (8467 cells), microglia (54,289

cells), endothelial cells (5025 cells), B/plasma cells (1308 cells), glia/

neuroglia (903 cells), mural cells (1342 cells), macrophages (38,746

cells), proliferating macrophages (2442 cells), and microglial/

macrophages (12,833 cells) (Figure 1A, upper right). Cells were

further categorized based on their origin within the tumor core

(63,833 cells) versus the tumor periphery (62,756 cells) (Figure 1A,

bottom left). Analysis of cell cycle phases showed distribution ratios

of S phase (41,662 cells), G1 phase (46,150 cells), and G2M phase

(38,777 cells) (Figure 1A, bottom right). Marker gene analysis

identified the top ten markers for each cell type, which were

visualized through bubble plots (Figure 1B). Proportional

distributions of cell types between the tumor core and peripheral

tissues across four cases were illustrated using histograms,

highlighting inter-patient variability (Figure 1C). Differential

expression patterns across experimental groups were depicted

with box plots (Figure 1D). Uniform Manifold Approximation

and Projection (UMAP) plots were employed to visualize

distributions of key parameters (nCount_RNA, nFeature_RNA,

G2M score, and S score) across all cells (Figure 1E). Gene

Ontology Biological Process (GO-BP) enrichment analysis

highlighted specific biological processes associated with each cell

type, represented by heatmaps (Figure 1F). Volcano plots illustrated

differential gene expression among cell types (Figure 1G).
3.2 Displaying the intracellular
heterogeneity of macrophages

Dimensionality reduction clustering identified four distinct

macrophage subpopulations. Using the inferCNV algorithm, cells

with high genomic copy number variation (CNV) were classified as

GBM cells (Supplementary Figure 1). The macrophage

subpopulations were C0 RGS16+ Macrophages (15,867 cells), C1

DAPK1+ Macrophages (13,796 cells), C2 VCAN+ Macrophages

(6,258 cells), and C3 CXCL3+ Macrophages (2,825 cells)

(Figure 2A, upper left). UMAP plots visualized the distributions

and proportions of these subpopulations based on cell cycle staging,

subpopulation identity, and patient sample sources (Figure 2A).

Further UMAP plots detailed G2M scores, nCount_RNA, S scores,

and CNV scores across subpopulations (Figure 2B). Proportional

distributions of subpopulations between tumor core and peripheral

tissues were compared (Figure 2D). While a higher proportion of
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FIGURE 1

snRNA sequencing reveals major cell types in neuroblastic tumor. (A) UMAP plot showing the 32 clusters of cells in glioma patients and the number
of cells in each cluster (top left); UMAP plot showing the 10 major cell types (top right); UMAP plot showing the distribution of the tumor core and
tumor peripheral tissue for the 10 cell types (bottom left); and UMAP plot showing the distribution of different cell cycle phases (lower right).
(B) Bubble plot showing differential expression of Top10maker genes in glioma cells across cell types. The color of the bubbles is based on the
normalized data and the size indicates the percentage of genes expressed in the subpopulation. (C) Bar graph showing the percentage of the 10 cell
types in the tumor core group versus tumor peripheral tissue group. (D) Box line plot depicting the percentage of the 10 cell types in the tumor core
group versus tumor peripheral tissue group. (E) The UMAP plot showcases the distribution of the following relevant features: nCount_RNA,
nFeature_RNA,S.score, and G2M.score. (F) GO-BP enrichment analysis demonstrating biological processes associated with the 10 cell types.
(G) Volcano plot demonstrating differential gene expression in 10 cell types.
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FIGURE 2

Visualization of macrophage subpopulations. (A) UMAP diagram demonstrating the 4 cell subpopulations of tumor cells in glioma patients and the
number of cells in each subpopulation (top left); UMAP diagram demonstrating the percentage of different cell cycles in the 4 cell subpopulations
(top right); UMAP diagram demonstrating the distribution of the tumor core group versus tumor peripheral tissue group in the 4 cell subpopulations
(bottom left); and UMAP diagram demonstrating the patient origin of the 4 cell subpopulations (lower right). (B) Bubble plot showing differential
expression of Top10maker genes in 4 cell subpopulations. The color of the bubbles is based on the normalized data and the size indicates the
percentage of genes expressed in the subpopulation. (C) UMAP plot visualizing the relevant features of the 4 cell subpopulations: G2M.score,
nCount_RNA,S.score,CNVscore. (D) Bar graph demonstrating the percentage of the 4 cell subpopulations in the tumor core group versus tumor
peripheral tissue group. (E) Box line graph depicting the percentage of the 4 cell subpopulations in the tumor core group versus tumor peripheral
tissue group. (F) Volcano plot demonstrating the expression of differential genes in the 4 cellular subpopulations. (G) GO-BP enrichment analysis
demonstrating biological processes associated with the 4 cell subpopulations.
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C1 DAPK1+ Macrophages was observed in the tumor core,

statistical analysis did not reveal significant differences

(Figure 2E). Volcano plots depicted differential gene expression

patterns (Figure 2F). Bubble plots highlighted the top ten marker

genes distinguishing macrophages from GBM cells (Figure 2C).

GO-BP enrichment analysis of differentially expressed genes within

subpopulations was visualized using heatmaps (Figure 2G).
3.3 Visualization of macrophage and GBM
cell subpopulations for time-series analysis

Trajectory analysis using CytoTRACE revealed differentiation

relationships among macrophage and GBM cell subpopulations

(Figures 3A, B). Bar graphs compared proportions of

subpopulations between tumor core and peripheral tissues,

highlighting distinct distributions across cell cycle stages

(Figure 3C). Distribution percentages across trajectory

differentiation states were depicted in Figure 3D. Detailed cell

percentage distributions within cell cycle stages and trajectory

states were provided (Figure 3E). Trajectory analysis indicated

continuous differentiation among subpopulations, revealing

branching points and developmental stages (Figures 3F, G).

Scatter plots visualized pseudotime series of selected genes

specific to subpopulations (Figure 3H).
3.4 Pseudotemporal trajectories of
macrophage and GBM cell subpopulations

Slingshot analysis delineated pseudotemporal trajectories of

macrophage and GBM cell subpopulations, revealing continuous

distribution and differentiation into distinct lineages (Figure 4A).

Pseudotemporal sequences were estimated at the cellular level

(Figures 4B, C). GO-BP enrichment analysis highlighted

biological processes associated with pseudotemporal trajectories

(Figure 4D). Scatter plots visualized differentiation trajectories

across pseudotime series (Figure 4E).
3.5 Intercellular cell interactions and IL-10
signaling pathway visualization

Quantification of cellular interactions involved measuring

interaction frequency between different cell types (represented by

line thickness) and the strength of these interactions (indicated by

line weight) (Figure 5B). CellChat analysis elucidated intercellular

communication networks and signaling pathways, emphasizing IL-

10 signaling pathways mediated by C1 DAPK1+ Macrophages

(Figure 5A). Heatmaps depicted signal intensity of intercellular

interactions (Figure 5C). Pathway visualization revealed

mechanisms of IL-10 signaling (Figure 5D). Violin plots

illustrated cell-cell interactions, emphasizing IL-10 signaling in C1

DAPK1+ Macrophages (Figure 5E). The IL-10 signaling pathway’s

interactions were visualized, showing IL-10 release and reception by
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different cell types (Figure 5F left). Cell interaction plots detailed the

receptor-ligand profiles of the C1 DAPK1+ Macrophage

subpopulation with other intercellular receptors (Figure 5F right).

Scatter plots detailed cellular communication patterns in IL-10

signaling pathways (Figure 5G).
3.6 Prognostic modeling and validation

Univariate Cox analysis identified 19 genes associated with

patient prognosis, with 8 genes constituting the DAPK1+

Macrophage risk score through lasso regression (Figures 6A, B).

Survival analysis stratified patients based on DAPK1+ Macrophage

risk scores, revealing significant prognostic implications (Figure 6C,

D). TCGA-GBM dataset analysis validated negative prognostic

impacts associated with higher DAPK1+ Macrophage risk scores

(Figure 6E). Correlation analysis demonstrated a negative association

between overall survival (OS) and DAPK1+ Macrophage risk scores,

with TCF12 exhibiting significant negative correlation. Scatter plots

illustrated the relationship between the model genes, risk scores, and

OS (Figure 6F). ROC curves assessed predictive accuracy for survival

outcomes (Figure 6G). Scatter plots visualized the relationship

between model genes and risk scores (Figure 6H), while expression

levels of the 8 genes varied between high and low-risk groups

(Figure 6I). Multifactorial Cox regression confirmed the DAPK1+

Macrophage risk score as an independent prognostic factor

(Figure 6J). Nomogram diagrams predicted survival probability

integrating clinical and pathological factors (Figure 6K). Internal

validation via cross-validation demonstrated the nomogram’s

accuracy (Figure 6L).
3.7 Immune infiltration patterns between
high and low DAPK1+ macrophage risk
score groups

Heatmaps visualized distinct immune infiltration patterns

between high and low DAPK1+ Macrophage risk score groups

(Figure 7A). The CIBERSORT algorithm estimated proportions of

immune cell types, highlighting differences in immune cell

composition (Figure 7B). Bar graphs correlated immune

infiltrating cells with macrophage subpopulation scores

(Figure 7C). Heatmaps identified correlations between model

genes and immune cells (Figure 7D). Stromal scores, immune

scores, and ESTIMATE scores were elevated in high-risk groups

(Figure 7E). Tumor purity was lower in high DAPK1+ Macrophage

risk score groups (Figure 7F).
3.8 Analysis of variance and enrichment

Volcano plots depicted differentially expressed genes between

high and lowDAPK1+Macrophage risk score groups (Figures 8A, B).

GO and KEGG enrichment analyses highlighted biological processes

and pathways associated with these differentially expressed genes
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FIGURE 3

Visualization of proposed time series analysis of macrophage subpopulations by cytotrace and monocle. (A) The differentiation of macrophage
subpopulations is analyzed using cytotrace and displayed in a 2D graph. The color can represent the level of differentiation. The figure on the right
represents the cytotrace results displayed according to different macrophage subpopulations. The colors represent different cell subpopulations.
(B) Box line plot showing the visualization results of cytotrace analysis of macrophage subpopulations. (C) The occupancy of relevant features in
different pseudotime stages of 4 cell subpopulations was visualized: the occupancy of 4 cell subpopulations in the tumor core group versus tumor
peripheral tissue group(top); the occupancy of 4 cell subpopulations in different cell cycles (bottom). (D) Bar charts illustrating the proportions of
different pseudotime stages (state1-state6) within the four cell subgroups. (E) Bar graph demonstrating the expression of the 4 cell subpopulations in
different phases (top) vs. different states(bottom), respectively. (F) Demonstrating the derivation process of macrophage subpopulations. Left: UAMP
plot of the proposed temporal trajectory showing the 4 cell subpopulations; Middle: UMAP plot showing the pseudotime trajectory of macrophage
subpopulation, starting from the lower right, are divided into two branches, one of which differentiates upward to the right and the other to the left
followed by two branches, one of which differentiates upward to the left, and the other down and left;Right: UMAP plot showing the distribution of 5
states on the proposed temporal trajectory plot. (G) Split-plane plots of the proposed temporal trajectories of macrophage subpopulations showing
the distribution of different cell subpopulations on the proposed temporal trajectories, respectively. (H) Scatter plot showing the changes of 4 cell
subpopulations of macrophage subpopulations with the proposed chronological sequence; proposed chronological sequence UMAP plot showing
the changes of the cell subpopulations corresponding to the 4 named genes with the proposed chronological sequence; and the expression of the
4 named genes of cell subpopulations (RGS16, DAPK1, VCAN, CXCL3) on the pseudotime trajectory.
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FIGURE 4

Slingshot analysis of the pseudotime trajectories of macrophage subpopulations. (A) UMAP plot showing the distribution of two differentiation
trajectories of macrophage subpopulation fitted by the pseudotime order in all cells. (B) UMAP plot demonstrating the change of Lineage1 with the
fitted temporal order (left); UMAP plot demonstrating the differentiation trajectory of Lineage1 on the fitted temporal order (right). (C) UMAP plot
demonstrating the change of Lineage2 with the fitted temporal order (left); UMAP plot demonstrating the differentiation trajectory of Lineage2 on
the fitted temporal order (right). (D) GO-BP enrichment analysis demonstrating the biological processes corresponding to the two proposed
chronological trajectories of macrophage subpopulation. (E) Scatterplot demonstrating the trajectories of the named genes of the four cell
subpopulations of macrophage subpopulation obtained after slingshot visualization.
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FIGURE 5

Cellchat results presentation. (A) Outcoming contribution bubble plots and incoming contribution bubble plots showing the expression of cellular
communication patterns between each cell subpopulation and other cells in the macrophage subpopulation. (B) Circle plot showing the number
(left) and strength (right) of interactions between all cells. (C) Heatmap showing afferent and efferent signal intensities of all cell interactions.
(D) Interaction of cells in the IL-10 signaling pathway shown by heatmap. (E) Violin plot of cellular interactions in the IL-10 signaling. (F) Interactive
bubble diagram of IL-10 macrophage.The color of the dots indicates varying degrees of functional strength and the size of the dots indicates the
number of cells. p-value < 0.01, statistically different. (G) IL10 Macrophage as a receiver interaction ligand diagram.Hierarchical diagram of
macrophage subpopulations interacting with other cells in the IL-10 signaling pathway.IL10 Macrophage as a receiver interaction ligand diagram.
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FIGURE 6

Development of a prognostic model associated with DAPK1+ Macrophage scores. (A) Forest plot showing univariate cox analysis of genes constituting
C1 DAPK1+ Macrophage risk score. Null line HR=1, HR<1 protective factor, HR>1 risk factor. (B) 8 genes that constitute DAPK1+ Macrophage scores.
screened by lasso regression (top); Lambda plot of genes that constitute DAPK1+ Macrophage scores (right). (C) Survival analysis status of the screened 8
genes constituting DAPK1+ Macrophage scores. in both high and low DAPK1+ Macrophage scores. groups. (D) Survival analysis plot of the 8 genes
constituting the high and low DAPK1+ Macrophage scores. groups. (E) Curve plots showing hazard scores in the high and low DAPK1+GBM score
groups (top); scatter plot illustrates survival status variations between high and low DAPK1+ Macrophage scores. groups(middle);heatmaps showing gene
expression of genes constituting the high and low DAPK1+ Macrophage scores. groups, with color scales based on normalized data (bottom). Green
indicates the low DAPK1+ Macrophage scores. group and red indicates the high DAPK1+ Macrophage scores. group. (F) Correlation analysis between
DAPK1+ Macrophage scores.s, overall survival (OS), and genes used in model establishment. Red indicates positive correlation, blue indicates negative
correlation, and color shades indicate high or low correlation. (G) AUC scores for 1, 3, and 5 years are shown by ROC plot. AUC(1-year): 0.687, AUC(3-
year):0.703, AUC (5-year):0.599. (H) Scatter plot showing the correlation analysis of the genes constituting DAPK1+ Macrophage scores. with DAPK1+
Macrophage scores. (I) Peak and box plot showing the difference in expression of the eight genes constituting DAPK1+ Macrophage scores. in the high
and low DAPK1+GBM score groups. (J) Forest plot showing multivariable Cox regression analysis of DAPK1+ Macrophage scores. in conjunction with
other clinical factors. Null line HR=1, HR<1 protective factor, HR>1 risk factor. (K) Nomogram plots predicting OS (overall survival) at 1, 3, and 5 years
based on age, high and low DAPK1+ Macrophage scores. subgroups, and stage. (L) Box line plot for internal cross validation of AUC scores at 1, 3, and 5
years. **:p<0.01, ***:p<0.001.
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(Figures 8C, D). GSEA scoring visualized enrichment scores across

pathways (Figure 8E).
3.9 Mutation analysis

Comprehensive mutation analysis illustrated gene mutations

and their associations within the tumor microenvironment (TME),

revealing differences in mutation load and copy number variation

(CNV) between high and low DAPK1+ Macrophage risk score

groups (Figures 8F–H). Heatmaps displayed the correlation of

mutation profiles among the genes comprising the DAPK1+

Macrophage risk score (Figure 8I). Violin plots depicted mutation

loads and their correlation with DAPK1+ Macrophage risk scores
Frontiers in Immunology 13415
(Figure 8J). A scatter plot demonstrated the statistically significant

correlation (p < 0.05) between mutation load and DAPK1+

Macrophage risk score (Figure 8K). Survival analysis correlated

mutation load and DAPK1+ Macrophage risk scores with patient

outcomes (Figure 8L).
3.10 Drug sensitivity analysis

Violin plots compared drug sensitivity between high and low

DAPK1+ Macrophage risk score groups (Figure 8M), highlighting

potential differences in therapeutic responses.

To explore the functional implications of DAPK1 in glioma, we

conducted DAPK1 gene knockdown experiments, validating
FIGURE 7

Patterns and differences in immune infiltration between high and low DAPK1+ macrophage risk score groups in GBM patients. (A) Heatmap
visualization of distinct expression patterns of immune infiltration between patients with high and low DAPK1+ Macrophage risk scores.
(B) Estimation of immune cell proportions using the CIBERSORT algorithm in GBM patients from the TCGA database. Top: Predicted composition of
various immune cell subpopulations in the high and low DAPK1+ Macrophage risk score groups. Bottom: Differences in the predicted abundance of
five immune cell types between the two groups. (C) Bar graph illustrating the correlation between immune infiltrating cells and macrophage
subpopulation labeling scores, indicating positive correlations in red and negative correlations in blue. (D) Heatmap presentation of the relationship
between the eight model genes and immune cells, showing positive correlations in red and negative correlations in blue. (E) Evaluation of stromal
scores, immune scores, and ESTIMATE scores in the high versus low DAPK1+ Macrophage risk score groups, demonstrating elevated levels in the
high-risk group compared to the low-risk group. (F) Assessment of tumor purity in the high versus low DAPK1+ Macrophage risk score groups,
revealing lower tumor purity in the high-risk group compared to the low-risk group. ***:p<0.001.
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FIGURE 8

Analysis of variance, enrichment, mutation analysis, and drug sensitivity analysis in GBM patients stratified by DAPK1+ macrophage risk score. (A) Volcano
plot illustrating the expression of differentially expressed genes between the high and low DAPK1+ Macrophage risk score groups. (B) Heatmap visualization
of the expression patterns of differentially expressed genes between the high and low DAPK1+ Macrophage risk score groups. (C) Bar graphs depicting the
results of Gene Ontology (GO) enrichment analysis, highlighting associations with chemokine activity, chemokine receptor binding, chemokine-mediated
signaling pathway, and response to chemokine. (D) Bar graphs presenting the results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis, showing significant enrichment of pathways including Viral protein interaction with cytokine and cytokine receptor, Cytokine-cytokine receptor
interaction, Chemokine signaling pathway, and IL-17 signaling pathway. (E) GSEA scoring of GO-BP-enriched entries of differentially expressed genes,
demonstrating the enrichment scores of genes on different pathways. (F) Visualization of cellular mutation data depicting mutations in eight genes. (G)
Comparison of the top 30 genes with the highest mutation frequency in two cohorts of mesenchymal cells. (H) Bar graphs illustrating chromosomal copy
number variation (CNV) gain and loss. (I) Heatmaps displaying the correlation of mutation profiles among genes comprising the DAPK1+ Macrophage risk
score. (J) Violin plot showing the disparity in mutation load between the high and low DAPK1+ Macrophage risk score groups. (K) Scatter plot
demonstrating the statistically significant correlation between mutation load and DAPK1+ Macrophage risk score. (L) Survival analysis curves depicting
outcomes based on mutational load and DAPK1+ Macrophage risk score. (M) Violin plots depicting variations in drug sensitivity between the high and low
DAPK1+ Macrophage risk score groups, with distinct responses to specific drugs observed. *:p<0.05, **:p<0.01, ***:p<0.001.
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transfection efficiency through RT-qPCR (Supplementary Figure 2).

Knockdown of DAPK1 significantly inhibited glioma cell

proliferation, migration, and metastatic potential, as confirmed by

colony formation assays, migration assays, CCK-8 assays, and

apoptosis assays (Figure 9).
3.11 Knockdown of DAPK1 inhibits cell
proliferation, migration, and induces
apoptosis in glioma

To investigate the role of DAPK1 in glioma cell proliferation,

migration, and apoptosis, we performed a series of functional assays

following DAPK1 knockdown in U251 and LN229 glioma cell lines.

Colony formation assays revealed a significant reduction in colony

size in the si-DAPK1 groups compared to the negative control

(NC), suggesting that DAPK1 knockdown impairs the proliferative

capacity of glioma cells (Figures 9A, B). The CCK-8 assay further

confirmed these findings, showing a notable decrease in cell viability

in the DAPK1 knockdown groups (Figures 9F, G). Scratch and

transwell assays were conducted to assess the migratory potential of

glioma cells. Representative images from both assays indicated that

DAPK1 silencing resulted in impaired migration (Figure 9C).

Quantification of the migration assays revealed a significant

reduction in the migratory ability of both U251 and LN229

glioma cells upon DAPK1 knockdown, supporting the notion that

DAPK1 is essential for glioma cell migration (Figures 9D, E). To

examine the effect of DAPK1 knockdown on apoptosis, flow

cytometry was performed. The results demonstrated that DAPK1

silencing significantly enhanced apoptosis in both U251 and LN229

glioma cell lines, indicating that the loss of DAPK1 promotes cell

death in these tumor cells (Figures 9H, I). Together, these data

suggest that DAPK1 knockdown inhibits glioma cell proliferation,

migration, and enhances apoptosis, highlighting its potential role as

a modulator of glioma cell survival and progression.
4 Discussion

The treatment of glioma remains a significant challenge due to

its aggressive nature, high recurrence rate, and poor prognosis (66).

Despite advancements in surgical techniques, radiotherapy, and

chemotherapy, the therapeutic options for glioma patients are still

limited, underscoring the need for novel therapeutic strategies (67).

In recent years, immunotherapy has emerged as a promising avenue

for glioma treatment, with growing interest in understanding how

immune mechanisms contribute to glioma progression (68).

However, the pace of research in this area has been relatively slow,

particularly in elucidating the complex interactions between glioma

cells and the immune microenvironment (69). Studies have shown

that the tumor microenvironment, including immune cells, plays a

pivotal role in shaping glioma behavior, yet the precise immune-

modulatory mechanisms remain poorly understood (70). The role of

DAPK1 (Death-associated protein kinase 1) in glioma has garnered
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attention for its involvement in regulating apoptosis, cell migration,

and invasion. DAPK1’s function in glioma development is

increasingly recognized as being linked to its modulation of

immune responses (71). Recent studies suggest that DAPK1 can

influence glioma progression through immune mechanisms,

particularly by affecting immune cell infiltration and cytokine

production. However, there is still a gap in our understanding of

how DAPK1 interacts with the immune system to modulate glioma

growth and treatment responses. To accelerate progress in this area,

single-cell technologies offer a powerful tool to unravel the complex

cellular heterogeneity of glioma and its immune microenvironment.

Single-cell RNA sequencing (scRNA-seq) enables the high-

resolution analysis of individual cell types within tumors, allowing

for a more precise mapping of immune cell interactions and the

identification of novel therapeutic targets. By integrating single-cell

data with immune profiling, researchers can gain deeper insights

into the dynamic interplay between glioma cells and the immune

system, ultimately advancing the development of more effective

immunotherapies for glioma patients (72).

In this study, we employed single-nucleus RNA sequencing

(snRNA-seq) to comprehensively characterize the cellular

heterogeneity within the glioblastoma (GBM) microenvironment.

Our analysis revealed 32 distinct cellular clusters, categorized into 10

major cell types including T cells, neutrophils, microglia, endothelial

cells, B/plasma cells, astrocytes, pericytes, macrophages, proliferative

macrophages, and microglia/macrophages. We observed significant

variations in the distribution of these cell types between the tumor core

and peripheral tissues, as well as their differential representation across

the cell cycle. Marker gene analyses provided insights into the distinct

functional roles and heterogeneous distributions of these cell types

within GBM tumors. Notably, our findings underscored the dynamic

interplay and functional diversity among different cell populations in

the context of GBM pathogenesis. Furthermore, we conducted detailed

intratumoral heterogeneity analyses focusing on macrophages,

leveraging copy number variation (CNV) analysis to distinguish

between normal and cancerous cells within GBM tissues. This

approach identified four distinct macrophage subgroups, with one

subgroup exhibiting elevated DAPK1 gene expression levels. Utilizing

advanced computational methods including UMAP plots, we

visualized the distribution patterns of these macrophage subgroups

across various parameters such as cell cycle stages, cellular subtypes,

and patient samples. Our analysis further highlighted differential gene

expression profiles and enriched biological processes within these

macrophage subgroups, providing deeper insights into their

functional specialization and potential roles in GBM progression. To

elucidate the developmental trajectories and differentiation patterns of

macrophage and GBM cell subgroups, we employed pseudotime

analysis, revealing continuous differentiation trajectories and

developmental stages across pseudotime sequences. These findings

shed light on the temporal dynamics of cellular differentiation within

the GBM microenvironment, suggesting potential developmental

milestones and critical points in tumor evolution. Importantly, our

study investigated the clinical relevance of identified cell types,

particularly focusing on the high DAPK1+ macrophage subgroup,
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through comprehensive survival analysis and prognostic modeling.We

established a robust multivariable Cox regression model that identified

the DAPK1+ macrophage risk score as an independent prognostic

factor, correlating significantly with patient survival outcomes. Our
Frontiers in Immunology 16418
findings underscored the prognostic implications of high DAPK1+

macrophage risk scores in GBM, emphasizing their potential as

predictive biomarkers in clinical settings. Furthermore, we explored

immune infiltration patterns between high and low DAPK1+
FIGURE 9

Impact of DAPK1 knockdown on glioma cell proliferation, migration, and apoptosis. (A) Representative images of colony formation assays conducted
on U251 and LN229 glioma cells in the negative control (NC) and si-DAPK1 groups. (B) Quantification of colony size indicating the inhibitory effect
of DAPK1 knockdown on glioma cell proliferation. (C) Representative images of scratch and transwell assays performed to assess the migration
capability of U251 and LN229 glioma cells upon DAPK1 knockdown. (D, E) Quantification of scratch and transwell assay results demonstrating
reduced migration capability following DAPK1 knockdown. (F, G) Cell viability assessed by CCK-8 assay indicating the inhibitory effect of DAPK1
knockdown on glioma cell proliferation. (H, I) Apoptosis assay results showing enhanced apoptosis in U251 and LN229 glioma cell lines upon DAPK1
downregulation. **:p<0.01, ***:p<0.001.
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macrophage risk score groups, revealing distinct immune cell

compositions and interactions within the tumor microenvironment.

This analysis highlighted significant correlations between immune cell

subtypes and macrophage subgroup markers, implicating intricate

immune-modulatory roles of DAPK1+ macrophages in

GBM pathophysiology.

Finally, our drug sensitivity analysis demonstrated differential

responses to therapeutic agents between high and low DAPK1+

macrophage risk score groups, suggesting potential implications for

personalized treatment strategies targeting DAPK1-associated

pathways in GBM (73, 74). In conclusion, our study provides a

comprehensive characterization of cellular heterogeneity within the

GBM microenvironment, highlighting the critical roles of

macrophage subpopulations, particularly those with elevated

DAPK1 expression. These findings not only deepen our

understanding of GBM pathogenesis but also offer novel insights

into potential therapeutic targets and prognostic markers for

improved patient management. Future investigations should

further elucidate the mechanistic underpinnings of DAPK1-

mediated pathways in GBM and explore their clinical

implications in therapeutic interventions.

The findings from our functional assays underscore the critical

role of DAPK1 in regulating glioma cell proliferation, migration,

and apoptosis, consistent with previous studies implicating DAPK1

as a key modulator of cancer cell behavior. DAPK1, a pro-apoptotic

kinase, has been shown to influence various cellular processes,

including cell survival, motility, and death, through its

involvement in signaling pathways such as the MAPK and PI3K/

Akt pathways. In line with our results, a number of studies have

reported that the downregulation of DAPK1 leads to reduced cell

proliferation and migration, along with increased apoptosis, in

several cancer types, including glioma. For instance, loss of

DAPK1 expression in glioma cells has been associated with

enhanced tumorigenicity and resistance to apoptosis, further

supporting its role as a tumor suppressor. Additionally, DAPK1’s

influence on mitochondrial dynamics and autophagic processes has

been suggested to be a key mechanism underlying its ability to

regulate glioma progression. The impaired migratory capacity

observed in our study is also consistent with findings that DAPK1

promotes cell adhesion and migration, potentially through its effects

on actin cytoskeleton remodeling. Collectively, these results

reinforce the notion that DAPK1 serves as an important regulator

of glioma cell survival and migration, and its downregulation may

contribute to tumor aggressiveness. Therefore, targeting DAPK1 or

its downstream signaling pathways may offer promising therapeutic

strategies for glioma treatment.
5 Conclusions

In summary, models incorporating DAPK1-related parameters

offer robust patient stratification for prognostic evaluation and

immunological profiling in glioblastoma. Our findings contribute

significant insights into the diagnosis, therapeutic strategies, and

mechanistic investigations of gliomas.
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SUPPLEMENTARY FIGURE 1

Discrimination of glioblastoma (GBM) cells from normal cells based on

genomic copy number variation (CNV) analysis. The intercnv algorithm was
utilized to analyze single-cell data and identify cells with high CNV levels,

classifying them as GBM cells.

SUPPLEMENTARY FIGURE 2

DAPK1 gene transfection knock-down low efficiency verification. Compared

with untransfected cells, the mRNA level of DAPK1 gene was significantly

decreased in the transfected knockdown group.
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Purpose: Cystatin 2 (CST2) is a cysteine protease inhibitor, and recent research

suggests its potential involvement in cancer development. However, its role in

the occurrence, progression, and prognosis of pan-cancer has not been

systematically investigated.

Materials and methods: This study comprehensively analyzes the differential

expression of CST2 in pan-cancer. The expression distribution patterns of CST2

were examined using single-cell datasets. Furthermore, we conducted a

comprehensive evaluation of the correlation between CST2 expression and

various factors. These factors include prognosis, immune cell infiltration,

immune-related genes, mutations, methylation, tumor mutation burden (TMB),

andmicrosatellite instability (MSI). In addition, we analyzed the sensitivity of drugs

dependent on CST2 expression. We utilized gene set enrichment analysis (GSEA)

analysis to explore the biological functions of CST2 across different cancer types.

Finally, in gastric cancer cell lines, we will investigate the impact of CST2

knockout on expression levels, clonal proliferation, cell apoptosis, and

cell migration.

Results: CST2 exhibits abnormal overexpression in multiple tumors. Single-cell

analysis reveals high expression of CST2 in fibroblasts. CST2 is closely associated

with prognosis, immune cell infiltration, immune-related genes, mutations,

methylation, TMB, and MSI. Enrichment analysis demonstrated a significant

correlation between CST2 and immune-related pathways. In stomach

adenocarcinoma (STAD), CST2-related risk models are associated with prognosis

and demonstrate strong predictive capabilities, while also being closely linked to
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the immune microenvironment. Drug sensitivity analysis indicates the correlation

between CST2 and 21 chemotherapy drugs. Finally, experimental validation

revealed significantly elevated expression of CST2 in STAD, indicating its role as

a driver gene in regulating malignant cell proliferation and migration.

Conclusion: CST2 serves as a potential tumor immune biomarker, playing a

critical facilitating role in the proliferation and migration processes of STAD.
KEYWORDS

cystatin 2 (CST2), pan-cancer, stomach adenocarcinoma (STAD), the tumor
microenvironment (TME), immunotherapy, single-cell
Introduction

Cancer remains a leading cause of global human mortality (1).

Given its high incidence and mortality rates, the pursuit of more

valuable and targeted biomarkers for early diagnosis, treatment, and

prevention is of paramount importance and urgency. The

involvement of the tumor immune microenvironment in cancer

initiation and progression has been gradually elucidated. Currently,

molecular targeted therapies are progressively being applied in

clinical practice. The discovery of biomarkers has significantly

accelerated the development of anti-cancer drugs.

With the widespread adoption of high-throughput sequencing

technologies and the improvement of tumor data sharing platforms,

pan-cancer research is receiving increasing attention. By combining

and analyzing cancers originating from different organs, pan-cancer

studies can provide a deeper and broader understanding of

common oncogenic signaling pathway characteristics, allowing

researchers to focus on datasets with relatively larger sample sizes.

Larger sample sizes enhance the statistical power of the data and

make it easier to identify cancer-associated genomic alterations,

potentially leading to the discovery of previously unidentified drug

targets. Additionally, new tumor classification methods based on an

understanding of common signaling pathway features can help

certain cancer patients receive more personalized treatments,

increasing the likelihood of disease relief (2).

Cystatin 2 (CST2) is a gene encoding a protein that belongs to the

cysteine protease inhibitor superfamily (3). Previous studies have

indicated that CST2 can predict disease progression in certain non-

tumor conditions (4, 5). A recent study discovered that CST2 is

overexpressed in pancreatic cancer, functioning as an oncogene.

Knockdown of CST2 in pancreatic cancer inhibits tumor cell

proliferation, migration, and invasion, while also suppressing the

activation of the PI3K/AKT signaling pathway (6). Elevated levels of

CST2 in colorectal cancer are associated with shortened overall

survival in patients (7). The upregulation of CST2 has been linked

to breast cancer development (8). In gastric cancer samples, CST2 is

upregulated, enhancing tumor cell growth, migration, and invasion

by regulating epithelial-mesenchymal transition (EMT) and the TGF-
02423
b1 signaling pathway, leading to poor prognosis in patients (9). CST2

may participate in prostate cancer metastasis by modulating the EMT

signaling pathway (10). CST2 is associated with overall survival rate

(OS) in hepatocellular carcinoma (11). High expression of CST2

promotes bone metastasis occurrence (12), which is common in solid

tumors. Therefore, dysregulation of CST2 is implicated in human

cancer. Nevertheless, there remains a need for a comprehensive

understanding of CST2’s role in pan-cancer. Hence, further

exploration of the mechanisms underlying CST2’s involvement in

tumors holds significant importance in providing new directions and

strategies for clinical cancer treatment.

By integrating multiple databases, we conducted an analysis of

CST2 expression levels in pan-cancer and its relationship with

tumor-infiltrating immune cells, immune-related genes, mutations,

DNA methylation, tumor mutation burden (TMB), microsatellite

instability (MSI), and their impact on patient prognosis. The results

demonstrate that CST2 overexpression in pan-cancer contributes to

carcinogenesis and is closely associated with the tumor immune

microenvironment (TIM). Furthermore, we performed molecular

biology validation in gastric cancer to further confirm the oncogenic

role of CST2. In summary, CST2 represents a promising therapeutic

target in cancer treatment and serves as a potential biomarker for

predicting immunotherapy efficacy and prognosis.
Materials and methods

CST2 expression analysis in human
pan-cancer

CST2 expression data in 35 normal tissues were obtained and

downloaded from the Genotype-Tissue Expression (GTEx, https://

commonfund.nih.gov/GTEx) database. Additionally, CST2

expression data from 31 tumor cell lines were obtained from

the Cancer Cell Line Encyclopedia (CCLE, https://portals.

broadinstitute.org/ccle/) database. By combining the data from

normal tissues in the GTEx database and the cancer genomic

atlas from The Cancer Genome Atlas (TCGA, https://
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www.cancer.gov/about-nci/organization/ccg/research/structural-

genomics/tcga), the differential expression of CST2 between cancer

tissues and normal tissues was analyzed. Data from 15 different

types of cancer were retrieved from the TCGA database. We also

investigated the expression levels of CST2 in different clinical stages.
Single-cell analysis

To further analyze the single-cell expression distribution

pattern of CST2 in pan-cancer, we analyzed various single-cell

datasets, including BRCA, BTCC, CAC, CCRCC, CRPC, ESCC,

NNSC, ICC, NPC, NSCLC, OV, PDAC, STAD, UCEC. These data

single-cell data were obtained from the Single-cell and Spatially-

resolved Cancer Resources (SCAR) database (http://scaratlas.com).
Prognostic assessment in pan-cancer

Utilize the R package “survival” to establish a univariate Cox

regression model. Evaluate the prognostic value of CST2 in different

tumor types based on Overall Survival (OS), Progression Free Interval

(PFI), Disease Specific Survival (DSS), and Disease Free Interval (DFI).

Plot Kaplan-Meier survival analysis curves to depict the relationship

between CST2 expression and OS, DSS, disease-free interval (DFS),

and progression-free interval (PFS) specifically in STAD. The Gene

Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/)

database was used to validate the prognostic analysis of CST2 in

STAD. We also analyzed the prognostic significance of CST2 in the

immunotherapy cohort. Prognostic evaluation criteria include

Hazard Ratio (HR), 95% confidence intervals, and p-values

considered statistically significant when p<0.05.
Immunological analyses

The TIMER2.0 database (https://cistrome.shinyapps.io/timer/)

and Biomarker Exploration for Solid Tumors database (https://

rookieutopia.hiplot.com.cn/app_direct/BEST/) can be employed to

analyze tumor immune cell infiltration., which can be utilized for

correlation analysis between CST2 and various types of immune cells.

Visualization of the analysis results can be done using the “ggplot2” R

package. Furthermore, the ESTIMATE algorithm can be applied to

calculate the ESTIMATEScore, ImmuneScore, and StromalScore for

different tumor types. Spearman algorithm can be used to determine

the correlation coefficients between CST2 expression and these three

scoring systems.
Immunological correlation analysis

In each sample, the expression data for 130 immune-related genes

were extracted, including 38 chemokines, 43 immunostimulators, 18

receptors, 8 immune checkpoint genes, and 23 immunoinhibitors.

Subsequently, the Spearman algorithm was utilized to calculate the

correlations between CST2 and individual immune-related genes.
Frontiers in Immunology 03424
The evaluation of CST2 in pan-cancer
regarding mutations, methylation, TMB,
and MSI

The CBioPortal database (https://www.cbioportal.org/) was

used to explore the mutation characteristics and locations of

CST2 in tumors. To analyze the relationship between CST2

expression levels and the methylation status of its promoter

region, we utilized the TCGA database and visualized the results

using the “ggplot2” R package. We employed Spearman’s test in the

TCGA database to assess the correlation between CST2 expression

and TMB as well as MSI across different tumor types. The

correlation results were then visualized using the “fmsb” R package.
Enrichment analysis of CST2

To gain further insights into the biological functions and

molecular mechanisms of CST2, we conducted Gene Set

Enrichment Analysis (GSEA) using the R package ClusterProfiler.

In this analysis, we employed the hallmark gene set from the

Molecular Signatures Database (MSigDB), which consists of 50

gene sets associated with key cancer pathways. For each pathway,

we calculated the Normalized Enrichment Score (NES) and False

Discovery Rate (FDR) to assess the enrichment of CST2. Statistical

significance was determined at a p-value < 0.05.
Drug sensitivity analysis

To investigate the correlation between CST2 expression levels and

drugs, we employed two databases. Firstly, the CellMiner database

(https://ngdc.cncb.ac.cn/databasecommons/database/id/6092) allowed

us to analyze gene expression profiles and their association with

drug response. Furthermore, we explored the expression levels of

CST2 in gastric cancer and its correlation with drugs using the

Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org) database and Cancer Therapeutics

Response Portal (CTRP, https://portals.broadinstitute.org/

ctrp.v2.1/) database.
Cell culture and transfection

Human STAD cell lines MKN-45 and SGC-7901 were obtained

from X-Y Biotechnology and maintained in DMEM medium

supplemented with 10% fetal bovine serum at 37ru in a cell

incubator with 5% CO2. For transfection experiments, 3 × 10^5

thyroid cancer cells were seeded into 6-well dishes and cultured for

24 hours to allow for cell attachment. Transfections were performed

using Lipofectamine 3000 reagent (Thermo Fisher Scientific)

according to the manufacturer’s protocol. Biological experiments

were conducted following the appropriate transfection period. The

siRNA sequences used in this study are as follows: si-CST2-1: 5’-GC

UCCUCGAGACAUGUAAU-3’ (targeting 70-90bp downstream of

the start codon, the Antisense strand: 5’-AUUACAUGACU
frontiersin.org

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://scaratlas.com
https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
https://ngdc.cncb.ac.cn/databasecommons/database/id/6092
https://www.cancerrxgene.org
https://www.cancerrxgene.org
https://portals.broadinstitute.org/ctrp.v2.1/
https://portals.broadinstitute.org/ctrp.v2.1/
https://doi.org/10.3389/fimmu.2024.1466806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1466806
CGAGAAGC-3’), si-CST2-2: 5’-GGACGAGGUUCUUGUAAAU-

3’ (targeting 150-170bp downstream of the start codon, the

Antisense strand: 5’-AUUUCCAAGAACCACGUCC-3’).
Plate clone formation assay

Cells were collected and resuspended to obtain a single-cell

suspension. The cells were seeded in 35 mm cell culture dishes at a

density of 200 cells per dish. The medium was replaced every 2–3

days, with half of the medium being replaced each time. After

approximately 14 days, the colonies were analyzed. Clones with

more than 20 cells were counted under a microscope. Subsequently,

the colonies were fixed with methanol and stained using a 1%

crystal violet staining solution (G1063, Solarbio, China).
Cell migration assay

During the transwell invasion experiment, first add 150 µL of

DMEM culture medium with an additional 10% fetal bovine serum

(FBS) to the lower chamber. Then, seed a total of 2 × 10^4 MKN-45

and SGC-7901 cells in the upper chamber of the transwell device.

After 24 hours of incubation, carefully remove the non-invasive

cells on the membrane surface. Next, fix the cells that have

successfully penetrated the membrane and invaded the lower

surface, followed by staining with crystal violet dye (G1063,

Solarbio, China). Finally, use a microscope to capture images of

the stained invasive cells and quantify the number of invasive cells

by counting the cells in three randomly selected fields per well.
Flow-cytometric analysis

To evaluate cell apoptosis, first seed MKN-45 and SGC-7901 cells

into a 6-well plate. Then, transfect the cells with si-NC and si-CST2

separately for 24 hours. After transfection, digest the cells with trypsin

and wash them twice with pre-chilled PBS (4S-c to remove residual

culture medium and enzymes. The washed cells are resuspended in

binding buffer, and according to the instructions provided by Absin

company (China) using the Annexin V-FITC/PI Cell Apoptosis

Detection Kit (abs50001-25T), stain the cells with Annexin V-FITC

and propidium iodide (PI). The stained cells are transferred to tubes

specifically designed for flow cytometry analysis and cell apoptosis is

detected using a BD FACSCalibur flow cytometer. Data collection and

analysis are performed using FlowJo software. The percentage of

apoptotic cells is accurately calculated by distinguishing Annexin V-

positive and PI-negative cells (early apoptosis) from Annexin V-

positive and PI-positive cells (late apoptosis).
Western blot

The cells are first washed with ice-cold PBS, followed by lysis

using a protein extraction kit (20127ES60, Yeasen). The collected

cell samples are centrifuged at 700g for 10 minutes at 4°C. After
Frontiers in Immunology 04425
centrifugation, the supernatant is transferred to a new Eppendorf

tube to avoid particle contamination. Subsequently, at 4tbs the

supernatant is centrifuged again at 14,000g for 30 minutes to pellet

cell membrane debris. The cell pellet is then resuspended in 200 µL

of BCA protein assay kit B solution (containing PMSF), vortexed for

5 seconds, and placed on ice for 5 minutes. This step is repeated

twice. After the initial step, centrifugation is performed at 14,000g

for 5 minutes at 4tn to collect the supernatant containing the

membrane proteins. The protein concentration is determined

using the BCA protein assay kit (20201ES76, Yeasen) following

standard operating procedures. Subsequently, total protein is

separated by electrophoresis on a 4-20% Bis-Tris gel (Genscript

China) and transferred to a PVDF membrane (ISEQ00010,

Millipore). The membrane is initially incubated at room

temperature in TBST buffer (Tris-buffered saline with Tween)

containing 5% skim milk for 1 hour to block non-specific

binding. Following the blocking step, it is further incubated

overnight at 4te with primary antibodies (including Anti-CST2,

1:1000, abs115674, Absin; and Anti-GAPDH, 1:2000, ab8245,

Abcam) diluted in TBST with 0.5% skim milk. After the primary

antibody incubation, the membrane is washed three times with

TBST and subsequently incubated with HRP-conjugated secondary

antibodies (34201ES60, 34101ES60, Yeasen) diluted in TBST at

room temperature for 1 hour. Immunoreactive bands are detected

using an ECL Western blotting substrate (36208ES60, Yeasen).

Finally, the density of the bands is quantitatively analyzed using

ImageJ software.
Results

Aberrant expression of CST2 in human
pan-cancer

Initially, we analyzed the expression of CST2 across 35 normal

tissues utilizing the GTEx database. As depicted in Figure 1A, we

observed relatively high expression levels of CST2 in Fibroblast,

Skin, and Vagina tissues. Additionally, we accessed data from the

CCLE database to investigate CST2 expression in 31 tumor cell

lines. As shown in Figure 1B, CST2 was expressed in all 26 types of

tumor cells examined. To determine the differential expression of

CST2 between tumor and normal tissues, we conducted an analysis

using the TCGA database for 33 different cancer types. The results

revealed significantly higher expression levels of CST2 in BLCA,

BRCA, CHOL, COAD, ESCA, KIRC, KIRP, LIHC, LUAD, LUSC,

PRAD, READ, STAD, THCA, and UCEC tissues when compared to

normal tissues (Figure 1C). Considering the limited number of

normal samples available in TCGA, we integrated data from the

GTEx and TCGA databases to analyze CST2 expression differences

in 15 tumor types. We found that CST2 was significantly

upregulated in 13 tumor types, including BLCA, BRCA, COAD,

ESCA, KIRC, KIRP, LIHC, LUAD, LUSC, PRAD, STAD, THCA,

and UCEC, as compared to their respective normal tissues

(Figure 1D). These findings indicate the aberrant overexpression

of CST2 in human pan-cancer.
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Different clinical stages

Through comprehensive analysis and evaluation, we have

discovered distinct expression patterns of CST2 across different

clinical stages in several tumor types. Specifically, higher levels of

CST2 expression were observed in the advanced stages of STAD,

ACC, BRCA, OV, UCS, LUSC, KIRC, BLCA, THCA, and COAD

(Figure 1E). However, in the case of CESC, CST2 exhibited lower

expression levels in the advanced stages.
Frontiers in Immunology 05426
Single-cell analysis

As depicted in Figure 2 and Supplementary Figure S1, the single-cell

analysis results reveal distinct expression patterns of CST2 across various

cancer types. Specifically, in BRCA, STAD, BTCC, NSCLC, and PDAC,

CST2 exhibits predominantly high expression levels in the Fibroblast cell

population. In CRPC, CST2 is primarily highly expressed in the Luminal

cell population. On the other hand, inOV and ICC, CST2 shows elevated

expression levels mainly in the Malignant cell population.
FIGURE 1

Cystatin 2 (CST2) aberrant expression and its correlation with clinical stages in human pan-cancer (A) Expression of CST2 across 35 tissues in the
Genotype-Tissue Expression (GTEx) database. (B) Expression of CST2 in 31 tumor cell lines in the Cancer Cell Line Encyclopedia (CCLE) database. (C)
Differential expression of CST2 between cancerous and normal tissues in The Cancer Genome Atlas (TCGA) database. (D) Aberrant overexpression of
CST2 in 13 types of cancer based on analysis of the GTEx and TCGA databases. (E) Variations in CST2 expression levels among distinct clinical stages
in STAD, ACC, BRCA, OV, CESC, UCS, LUSC, KIRC, BLCA, THCA, and COAD. (*p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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Survival analysis

COX regression analysis revealed that high expression of CST2 is

a risk factor for OS in 10 tumor types, including STAD, SKCM,

READ, PAAD, LGG, KIRP, KIRC, HNSC, GBM, and COAD

(Figure 3A). Further investigations demonstrated a significant

correlation between CST2 expression and PFI in several cancer

categories, including STAD, SKCM, READ, PAAD, LGG, KIRC,

GBM, and COAD (Figure 3B). Moreover, elevated expression of

CST2 in STAD, SKCM, PAAD, LGG, KIRP, KIRC, GBM, and COAD

was associated with improved DSS (Figure 3C). Additionally, the

univariate Cox regression model established a link between CST2

expression and adverse prognosis in DFI for STAD and PAAD

(Figure 3D). The survival analysis of CST2 in OS, PFI, DSS, and

DFI highlighted its prognostic value across STAD (Figure 3E).

Furthermore, Kaplan-Meier survival analysis curves were employed

to explore the relationship between CST2 expression and OS, DSS,

DFS, and PFS specifically in STAD. It was observed that patients with

low CST2 expression had better outcomes compared to those with

high CST2 expression (Figure 3F). The GEO database validated the

relationship between CST2 and STAD prognosis in OS (Figure 4A),

RFS (Figure 4B) and PFS (Figure 4C).
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Immune cell infiltration

The correlation heatmap reveals that CST2 is closely associated

with various immune cells in pan-cancer, including cancer-

associated fibroblasts (CAF), endothelial cells, hematopoietic stem

cells, regulatory T cells (Tregs), B cells, macrophages, monocytes,

myeloid dendritic cells, and CD8+ T cells (Figures 5A, B).

According to the results obtained from the ESTIMATE algorithm,

CST2 exhibits a significant positive correlation with the

ESTIMATEScore, ImmuneScore, and StromalScore across

different tumor types such as GBM, UCEC, KIRP, LUSC, KIRC,

SARC, COAD, READ, BLCA, LIHC, HNSC, STAD, ESCA, THYM,

PAAD, PCPG, THCA, and LGG (Figure 6A).
Correlation analysis of CST2 and immune-
related genes

The study findings indicate that CST2 exhibits significant

positive correlations with several chemokines, such as CCL19,

CCL21, CCL11, CCL26, CXCL14, CX3CL1, and CXCL12, in most

tumors (Figure 6B). Furthermore, CST2 shows significant positive
FIGURE 2

Analysis of single-cell expression distribution patterns of CST2 in pan-cancer.
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correlations with immunostimulators, including CD48, LTA, CD27,

TNFRSF4, IL2RA, TNFRSF9, CD80, and CD86 (Figure 6C).

Additionally, CST2 demonstrates significant positive correlations

with receptors such as CXCR4, CCR7, CXCR3, XCR1, CCR2,

CCR4, CCR8, CXCR5, CCR3, CXCR6, CCR1, and CCR5

(Figure 6D). Moreover, CST2 exhibits significant positive

correlations with immune checkpoint genes, including CD274,

CTLA4, HAVCR2, LAG3, PDCD1, PDCD1LG2, SIGLEC15, and

TIGIT (Figure 6E). Lastly, CST2 shows significant positive

correlations with immunoinhibitors like CSF1R, HAVCR2,

PDCD1LG2, LAG3, CD96, PDCD1, CTLA4, TIGIT, BTLA, and

IL10 (Figure 6F).
The immunotherapeutic potential of CST2

Prognostic analysis within the immunotherapy cohorts reveals

that high expression of CST2 improves patient prognosis in the

Lauss cohort 2017 (CAR-T) (Figure 7A). Conversely, low
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expression of CST2 enhances patient prognosis in the Kim cohort

2019 (Anti-PD-1/PD-L1), Nathanson cohort 2017 (Anti-CTLA-4),

and IMvigor210 cohort 2018 (Anti-PD-L1) (Figure 7A). Low

expression of CST2 enhances prognosis in Anti-PD-1/PD-L1

treatment. Furthermore, drug sensitivity analysis demonstrates a

significant association between CST2 and 21 chemotherapy drugs.

Examples include Pyrazoloacridine, XL-147, Lificguat, Ethinyl

estrdiol, Curcumin, Vincristine, Floxuridine, Fenretinide,

Entinostat, RH1, Fluorouracil, (+)-JQ1, Axitinib, Temsirolimus,

Batracylin, Lapatinib, AT-13387, Cordycepin, Benzimate, 5-fluoro

deoxy uridine, and Triapine (Figure 7B). GDSC database

(Figure 7C) and CTRP database (Figure 7D) validate this result.
Correlation analysis of CST2 with
mutations, methylation, TMB, and MSI

The predominant mutation type observed is “Mutation,” with

the highest mutation frequency of CST2 found in Uterine corpus
FIGURE 3

Univariate COX regression analysis was performed to examine the association of CST2 with Overall Survival (OS), Progression Free Interval (PFI),
Disease Specific Survival (DSS), and Disease Free Interval (DFI) in pan-cancer. The correlation between CST2 expression and OS (A), PFI (B), DSS (C),
and DFI (D). (E) Cox regression analysis in STAD from TGCA and GEO database. (F) Survival analysis using Kaplan-Meier (KM) curves was conducted
to investigate the expression of CST2 and its relationship with OS, DSS, progression-free interval (PFS), and disease-free interval (DFS) in STAD.
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endometrioid carcinoma (Figure 8A). In pan-cancer analysis, a

significant correlation is observed between CST2 and methylation

(Figure 8B). The specific mutation sites of CST2 are illustrated in

Figure 8C. Furthermore, STAD patients were categorized into two

groups based on the median expression level of CST2, and a

comparison of gene mutations was conducted between these two

groups. The results indicate that patients with low CST2 expression

in STAD exhibit a higher frequency of gene mutations compared to

those with high CST2 expression (Figure 8D). Additionally,

Figure 8E depicts a significant positive correlation between CST2

and TMB in TGCT and THCA. However, in BRCA, LUAD, and

STAD, CST2 exhibits a significant negative correlation with TMB.

Regarding MSI, CST2 shows a significant positive correlation with

MSI in SKCM and TGCT. Conversely, in BRCA, KIRC, LGG,

LUAD, LUSC, MESO, PCPG, STAD, and UCEC, CST2

demonstrates a s ignificant negat ive corre lat ion with

MSI (Figure 8F).
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The results of GSEA

The GSEA results depicted in Figure 9A demonstrate that CST2

exhibits a significant positive correlation with various biological

processes and signaling pathways in the majority of tumors.

Specifically, CST2 shows significant positive correlations with

myogenesis, KRAS signaling up, interferon gamma response,

interferon alpha response, inflammatory response, IL6 JAK STAT3

signaling, IL2 STAT5 signaling, epithelial-mesenchymal transition,

complement, coagulation, apical junction, angiogenesis, allograft

rejection, and PI3K AKT mtor signaling (Figure 9A). In STAD, GO

analysis reveals that CST2 is significantly enriched in External

encapsulating structure organization, Collagen fibril organization,

Collagen metabolic process (Figure 9B). Furthermore, KEGG analysis

demonstrates significant enrichment of CST2 in Hedgehog signaling

pathway, Glycosphingolipid biosynthesis globo series, Gap junction,

and Wnt signaling pathway in STAD (Figure 9C).
FIGURE 4

Prognostic analysis of CST2 in the immunotherapy cohort, including OS (A), RFS (B) and PFS (C).
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Enrichment analysis of CST2 positively and
negatively co-expressed genes

Applying the Spearman algorithm, we identified the top 20

genes that showed positive and negative co-expression with CST2 in

STAD (Figure 10A). The heatmap (Figure 10B) depicts the

expression levels of these genes. Positive co-expressed genes with

CST2 were notably enriched in extracellular matrix organization

and extracellular structure organization (Figure 10C). Conversely,

negative co-expressed genes with CST2 were significantly enriched

in the regulation of mitotic cell cycle phase transition and regulation

of cell cycle phase transition (Figure 10D).
Validating the key role of CST2 in
STAD development

We selected two STAD cell lines, MKN-45 and SGC-7901, and

used gene knockdown techniques to decrease the expression level of

CST2. Western blot analysis confirmed a significant reduction in

CST2 expression (Figures 11A, B). Furthermore, to comprehensively
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evaluate the effect of CST2 in STAD, we performed transwell

migration assays to investigate its impact on cell migration ability.

Under conditions of CST2 silencing, cell migration was significantly

reduced, which was confirmed by crystal violet staining (Figure 11C).

To further explore the impact of CST2 on cancer cell proliferation, we

conducted colony formation assays. The results demonstrated a

significant decrease in the proliferation ability of both cell lines

following CST2 knockdown (Figures 11D–F), highlighting the

crucial role of CST2 in maintaining malignant cell proliferation.

Additionally, the levels of apoptosis were significantly increased in

both cell lines following CST2 knockdown (Figures 11G, H), further

supporting the influence of CST2 on cancer cell survival. These

findings underscore the central role of CST2 in STAD pathogenesis,

influencing disease progression by regulating cancer cell proliferation

and migration.
Discussion

In recent years, mounting evidence has shown the

overexpression of CST2 in gastric cancer, colorectal cancer,
FIGURE 5

The Relationship of CST2 expression with immune cell infiltration analysis. Immunoinfiltration analysis from Timer2.0 database (A) and best
database (B).
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prostate cancer, hepatocellular carcinoma, and breast cancer.

In these cancers, CST2 functions as an oncogene. However, its

role in other malignancies remains largely unknown.

Previous studies have demonstrated that overexpression of

CST2 contributes to the progression of pancreatic cancer.

Analysis of the TCGA and GTEx databases has confirmed

abnormally high expression of CST2 in 15 types of tumors. COX

regression analysis demonstrates significant correlations between

CST2 and OS in STAD, SKCM, READ, PAAD, LGG, KIRP, KIRC,

HNSC, GBM, and COAD. Particularly in STAD and PAAD, CST2

exhibits associations with OS, DSS, DFS, and PFS. Further analysis

using Kaplan-Meier survival curves demonstrates the prognostic

value of CST2 in STAD, where lower expression is associated with

better patient outcomes. CST2 shows potential as a reliable

biomarker, supported by COX regression analysis and KM

survival curves. Additionally, overexpression of CST2 at both

mRNA and protein levels is correlated with poor prognosis in

late-stage cancer across multiple types, emphasizing its significance

in cancer progression. These findings provide direct evidence of

CST2’s involvement in cancer initiation and development,
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solidifying its potential as a target for cancer diagnosis, treatment,

and prognosis. However, more research is still needed to confirm

the overexpression of CST2 and its oncogenic role in cancer.

Recently, a study has suggested that CST2 may promote the

malignant progression of pancreatic cancer through the activation

of the PI3K AKT signaling pathway (6). EMT is known to be one of

the major factors contributing to tumor cell proliferation, invasion,

and metastasis (13). Furthermore, EMT is a crucial factor in the

development of drug resistance in cancer treatment (14–16). In

gastric cancer, CST2 promotes tumor cell growth, migration, and

invasion by modulating EMT and the TGF-b1 signaling pathway

(17). Additionally, CST2 may be involved in prostate cancer cell

migration through the regulation of the EMT signaling pathway

(10). Approximately 1/5 of cancer patients have RAS mutations,

which play a significant role in tumorigenesis and progression (18).

KRAS is the most common subtype among RAS mutations and is

correlated with poor prognosis in cancer patients (19). Interferon

gamma levels significantly increase upon stimulation by CST2 (20).

In the tumor microenvironment, the IL2 STAT5 signaling pathway

can induce CD8+ T cell exhaustion (21).
FIGURE 6

CST2 correlates with immune-related genes. (A) Correlation of CST2 with three scores including ESTIMATEScore, ImmuneScore and StromalScore.
The Relationship of CST2 expression with (B) Chemokine, (C) Immunostimulator, (D) receptor, (E) immune checkpoint genes, and (F)
Immunoinhibitor (*p < 0.05 and **p < 0.01).
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The tumor microenvironment (TME) is a complex ecosystem

consisting of various immune cell types, CAFs, and endothelial cells

that surround cancer cells, all embedded within the extracellular

matrix (ECM) (22). These cells have been demonstrated to play

critical roles in cancer pathogenesis. In our study, we discovered that

CST2 is closely associated with multiple immune cells, including

CAFs, endothelial cells, hematopoietic stem cells, regulatory T cells

(Tregs), B cells, macrophages, monocytes, myeloid dendritic cells,

and CD8+ T cells, in pan-cancer. CAFs are an essential cell

population in the TME and have been demonstrated to promote

tumorigenesis and lead to poorer survival outcomes (23). TAMs are

another significant component of the TME, playing roles in

coordinating angiogenesis, ECM remodeling, cancer cell

proliferation, metastasis, immunosuppression, and resistance to
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chemotherapy and immune checkpoint blockade therapy (24). CD8

+ T cells are potent effector cells that play a crucial role in anti-tumor

immune responses, including ICB and adoptive T-cell therapy (25).

In cancer, CD4+ T cells exhibit a dual role. Th1 subtype CD4+ T cells

contribute to anti-tumor activity by assisting cytotoxic CD8+ T cells

and B cells and directly killing cancer cells through interferon and

tumor necrosis factor-alpha production. Conversely, Th2 subtype

CD4+ T cells secrete anti-inflammatory mediators, promoting tumor

growth (26). Tregs, on the other hand, are essential for regulating

immune homeostasis and can inhibit effective anti-tumor immunity

through various mechanisms (27). Additionally, B cells in cancer

exert anti-tumor effects through antibody-dependent cellular

cytotoxicity and complement activation (28). These observations

highlight the potential role of CST2 in tumor progression by
FIGURE 7

Immunotherapy analysis. (A) CST2 expression and prognostic analysis of chimeric antigen receptor-modified T (CAR-T), anti-programmed cell death
protein 1/programmed cell death ligand 1 (PD-1/PD-L1), anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and anti-PD-L1
immunotherapy cohorts. Drug sensitivity analysis of CST2 from cellMiner (B), Genomics of Drug Sensitivity in Cancer (GDSC) database (C) and
Cancer Therapeutics Response Portal (CTRP) database (D).
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modulating the functions of various immune cells mentioned earlier.

Therefore, CST2 represents an attractive therapeutic target in

cancer treatment.

Survival analysis demonstrated that high CST2 expression is

associated with improved PFS in patients undergoing chimeric

antigen receptor-modified T (CAR-T) cell therapy. These findings

suggest that patients exhibiting elevated CST2 levels may experience

enhanced survival rates following CAR-T treatment. In contrast, low

CST2 expression correlates with increased PFS in patients receiving

anti-programmed cell death protein 1/programmed cell death ligand 1

(PD-1/PD-L1) therapy, as well as improved OS in those treated with

anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) therapy.

CAR-T cell therapy represents a groundbreaking approach in adoptive

immunotherapy, significantly broadening the horizons for cancer

treatment (29). Immune checkpoint proteins, such as PD-1 and PD-

L1, are frequently overexpressed in cancer cells and tumor-associated

myeloid cells, leading to the suppression of immune surveillance by

adaptive immune cells within the TME. Consequently, targeting the

PD-1/PD-L1 axis through immune checkpoint blockade (ICB) has

emerged as a standard therapeutic strategy for various malignancies

(30). Additionally, CTLA-4, another inhibitory immune checkpoint
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expressed on activated T cells, serves as an effective target for cancer

therapy. Agents that inhibit both the PD-1/PD-L1 and CTLA-4

pathways have received approval for the treatment of multiple cancer

types. Our research further indicates that among tumor patients

receiving CAR-T cell therapy, those with CST2 overexpression are at

a lower risk of mortality and demonstrate a better prognosis.

Conversely, in patients undergoing anti-PD-1/PD-L1 and anti-

CTLA-4 treatments, those with low CST2 expression exhibit more

favorable prognoses.

Immunotherapy has become a crucial approach in human anti-

tumor treatment, but it has certain limitations (31). Due to the

heterogeneity of the TME, immunotherapy is not effective for all

cancer patients. The prediction of biomarkers enables more accurate

identification of individuals who are likely to benefit from

immunotherapy. This precise guidance for treatment helps in

determining the appropriate course of action. In tumors, CST2

primarily exhibits mutations at the DNA level. Methylation at the

DNA, RNA, and protein levels and their associated downstream

signaling pathways participate in various biological processes (32).

The use of methylation for cancer diagnosis and treatment is an

intriguing research direction. We have observed a significant
FIGURE 8

The correlation of CST2 expression with mutation, DNA methylation, tumor mutation burden (TMB), and microsatellite instability (MSI). (A) The
mutation frequency and corresponding mutation types of CST2 in different cancers. (B) The correlation between CST2 expression and DNA
methylation. (C) Mutation sites of CST2. (D) The R package “mafTools” was used to calculate the top 15 genes with the highest mutation frequencies
in the low-CST2 (left) and high-CST2 (right) groups of STAD, respectively. Radar plots represent the correlation of CST2 expression with TMB (E) and
MSI (F) in pan-cancer (*p < 0.05 and **p < 0.01).
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correlation between CST2 and methylation in pan-cancer. Therefore,

CST2 holds promise as a diagnostic marker for detecting mutations

and epigenetic alterations across various types of cancer. TMB and

MSI are two closely related biomarkers that play important roles in

tumor diagnosis, treatment, and prognosis assessment (33, 34). TMB

has been used as a predictive biomarker for the efficacy of various

immunotherapies, particularly PD-1/PD-L1 inhibitors. Currently, in

clinical practice, MSI and TMB are detected to determine if a tumor

patient is suitable for immunotherapy and to predict the response

and outcome of immunotherapy (35). MSI and TMB, as tumor

biomarkers, play significant roles in precision medicine, guiding

treatment decisions and improving treatment outcomes. Our study

found a significant correlation between CST2 and TMB/MSI in

various tumors such as TGCT, THCA, BRCA, LUAD, STAD,

SKCM, KIRC, LGG, LUSC, MESO, PCPG, STAD, and UCEC.

Thus, CST2 can serve as a predictive biomarker for

immunotherapy efficacy in these specific cancers.
Frontiers in Immunology 13434
In addition, we also analyzed the sensitivity of CST2-related

drugs. We identified 21 chemotherapy drugs, including

Pyrazoloacridine, XL-147, Lificguat, Ethinyl estradiol, Curcumin,

Vincristine, Floxuridine, Fenretinide, Entinostat, RH1, Fluorouracil,

(+)-JQ1, Axitinib, Temsirolimus, Batracylin, Lapatinib, AT-13387,

Cordycepin, Benzimate, 5-fluoro deoxy uridine, and Triapine, that

are associated with CST2 expression. CST2 has the potential to serve

as a predictive marker for the efficacy of chemotherapy drugs.

In summary, CST2 is upregulated in various tumor types and is

associated with unfavorable prognosis in stomach adenocarcinoma. It

is linked to gene mutations, methylation patterns, tumor mutational

burden (TMB), microsatellite instability (MSI), immune regulatory

genes, immune checkpoint genes, immune cell infiltration, and

sensitivity to chemotherapy drugs. While potential molecular

mechanisms and related signaling pathways of CST2 have been

identified, it is important to note that these findings are primarily

based on gastric cancer. Further investigation is necessary to establish
FIGURE 9

(A) gene set enrichment analysis (GSEA) of CST2 in hallmarks gene set. CST2 in STAD for (B) Gene Ontology (GO), and (C) Kyoto Encyclopedia of
Genes and Genomes (KEGG) analysis.
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FIGURE 10

Enrichment analysis of CST2. (A) positive and negative co-expression with CST2 in STAD. (B) Heatmap. Enrichment analysis of positive (C) and
negative (D) co-expression with CST2.
FIGURE 11

Experimental validation analysis of CST2 in STAD. (A) WB showing decreased CST2 expression after CST2 knockout. (B) Differential expression
analysis. (C) Cell migration. (D-F) Significant impact on cell cloning afterCST2 knockout. (G, H) Apoptosis analysis. Increased levels of apoptosis in
both cell lines after CST2 knockdown. *p < 0.05, **p < 0.01, ***p < 0.001.
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whether CST2 can serve as a novel target for cancer diagnosis,

treatment, and prognosis across different cancer types, as well as its

potential value in predicting the efficacy of anti-tumor immune

responses. These insights contribute to a better understanding of

the molecular mechanisms underlying CST2’s involvement in tumor

initiation and progression, laying the groundwork for future research

into targeted therapies and precision medicine.
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