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LogMS: a multi-stage log anomaly
detection method based on
multi-source information fusion
and probability label estimation

Zhongjiang Yu, Shaoping Yang*, Zhongtai Li, Ligang Li, Hui Luo
and Fan Yang

China Tobacco Yunnan Industrial Co., Ltd., Kunming, Yunnan, China

Introduction: Log anomaly detection is essential for monitoring and maintaining
the normal operation of systems. With the rapid development and maturation of
deep learning technologies, deep learning-based log anomaly detection has
become a prominent research area. However, existing methods primarily
concentrate on directly detecting log data in a single stage using specific
anomaly information, such as log sequential information or log semantic
information. This leads to a limited understanding of log data, resulting in low
detection accuracy and poor model robustness.

Methods: To tackle this challenge, we propose LogMS, a multi-stage log anomaly
detection method based on multi-source information fusion and probability label
estimation. Before anomaly detection, the logs undergo parsing and
vectorization to capture semantic information. Subsequently, we propose a
multi-source information fusion-based long short-term memory (MSIF-LSTM)
network for the initial stage of anomaly log detection. By fusing semantic
information, sequential information, and quantitative information, MSIF-LSTM
enhances the anomaly detection capability. Furthermore, we introduce a
probability label estimation-based gate recurrent unit (PLE-GRU) network,
which leverages easily obtainable normal log labels to construct pseudo-
labeled data and train a GRU for further detection. PLE-GRU enhances the
detection capability from the perspective of label information. To ensure the
overall efficiency of the LogMS, the second-stage will only be activated when
anomalies are not detected in the first stage.

Results and Discussion: Experimental results demonstrate that LogMS
outperforms baseline models across various log anomaly detection datasets,
exhibiting superior performance in robustness testing.

log anomaly detection, multi-source information fusion, probability label estimation,
long short-term memory, gate recurrent unit

1 Introduction

Logs are vital for the upkeep of large-scale software systems as they capture crucial data
produced during system operation, documenting essential details regarding server and
application software activities [1-3]. With the rapid development of the information age,
software systems have become increasingly intricate, resulting in a significant surge in log
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data volume [4, 5]. Analyzing log data allows developers to
meticulously assess system status, identify anomalies, and
understand their root causes [6]. Timely detection and resolution
of anomalies serve as a proactive measure to prevent system crashes
and mitigate potential economic losses [7].

In the early stages of log anomaly detection, developers typically
relied on manual methods such as keyword searches or simple alert
rules set by log investigation tools [8, 9]. However, with the prevalence
of large-scale systems today, traditional manual detection methods are
no longer adequate [10]. To meet the demands of modern anomaly
detection in large-scale systems, extensive research has been conducted
on automatic log analysis technology utilizing deep learning [11, 12].
These technologies automate the learning of log patterns and analyze
connections to identify potential anomalies effectively. Examples
include LogRobust [13], DeepLog [14], and LogAnomaly [15].
Nevertheless, most existing methods focus on direct detection of log
data using specific anomaly information in a single stage. This limited
perspective results in lower detection accuracy and model robustness.

To overcome this limitation, we introduce LogMS, a multi-stage log
anomaly detection method based on multi-source information fusion
and probability label estimation. Prior to anomaly detection, logs are
parsed by Drain [16] and vectorized based on TF-IDF to capture
semantic information. A multi-source information fusion-based long
short-term memory (MSIF-LSTM) network is proposed for the first-
stage anomaly log detection, enhancing anomaly detection by fusing
semantic information, sequential information, and quantitative
a probability label
estimation-based gate recurrent unit (PLE-GRU) network, which

information. Subsequently, we introduce
leverages easily obtainable normal log labels to construct pseudo-
labeled data and train a GRU for further detection. PLE-GRU
enhances the detection capability from the perspective of label
information. To ensure the overall efficiency of the LogMS, the
second-stage will only be activated when anomalies are not detected
in the first stage. By modeling the correlation between log data from two
stages and three perspectives, LogMS effectively mines log data to detect

anomalies. The key contributions of this paper include:

1) Introducing LogMS, a multi-stage log anomaly detection
method employing multi-source information fusion and
probability label estimation to capture deeper relationships
among log sequences, thereby enhancing anomaly detection
performance.

2) Conducting systematic experiments on the HDFS [17] and
BGL [18] dataset to evaluate the LogMS model. The results
demonstrate the method’s effectiveness in detecting various
anomalous logs, showing significant improvements in
accuracy and robustness compared to baseline models.

2 Related work

Anomaly detection techniques based on automated log analysis
can be broadly classified into two categories: supervised methods
and unsupervised methods.

The supervised approach [13] involves training the model with
labeled training data and then applying anomaly detection on log
data. However, in practical scenarios, researchers have noted that
many existing log anomaly detection studies have not met
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[19]. Most models closed-world

assumption, which includes the stability of log data over time

expectations assume a
and a known set of log events for training and testing [20]. Yet,
due to the evolving nature of log data, unforeseen log events or
sequences often arise. To tackle such log instability issues, Zhang
et al. [13] introduced a novel log-based anomaly detection method
named LogRobust. This method extracts semantic information from
log events, transforms it into semantic vectors, and employs an
attention-based Bi-LSTM model for anomaly detection. By
capturing contextual information and learning diverse log event
features, LogRobust effectively identifies and manages unstable log
events and sequences. In fact, semantic information is a vital
component in natural language understanding [21, 22], and logs
can be understood as a special form of natural language.
Furthermore, Lu et al. [23] pioneered a detection model based on
Convolutional Neural Network (CNN) [24] in log-based anomaly
detection, showcasing the potential of CNN in this domain. Their
CNN-based method incorporates logkey2vec embedding, three one-
dimensional convolutional layers, a dropout layer, and a max-
pooling layer. Initially, log content is numerically encoded, and
logkey2vec generates embeddings, which are then passed through
convolutional layers with varying filters. The max-pooling layer
selects the maximum feature value, and a fully connected softmax
layer produces probability distribution results. In experiments on
anomaly detection in Hadoop Distributed File System (HDES) logs,
the CNN-based approach outperformed Long Short-Term Memory
(LSTM) and Multilayer Perceptron (MLP) methods in accuracy.

Supervised methods rely on annotated training data, which
requires high data quality. However, in real-world scenarios, log
data is very extensive, making data annotation impractical.
Furthermore, log data also suffers from class imbalance issues,
where abnormal events are usually of relatively small scale, while
normal events dominate the vast majority, leading to uneven data
distribution. When dealing with such imbalanced data situations,
supervised learning algorithms may tend to predict normal events
while ignoring abnormal events.

In contrast to supervised methods, unsupervised methods offer
the advantage of not requiring annotated data [25]. This
characteristic = makes them  well-suited for real-world
environments with abundant unlabeled log data. Essentially,
unsupervised methods aim to establish a baseline of normal log
data by analyzing internal data correlations such as sequential
relationships and quantitative associations. Any data that deviates
from this established baseline is classified as anomalous. For
instance, Du et al. [14] introduced the DeepLog model, which
treats system logs as natural language sequences and employs
Long Short-Term Memory (LSTM) networks for unsupervised
log anomaly detection. The model initially learns log patterns by
examining sequential relationships between log events and then uses
these patterns for log prediction. This pioneering approach to
anomaly detection has since been widely embraced in subsequent
research. Another noteworthy model, LogAnomaly developed by
Ma et al. [15], also represents log streams as natural language
sequences and introduces a simple yet effective semantic
information extraction method called template2vec. This method
can simultaneously identify sequential and quantitative log
anomalies. LogAnomaly comprises offline learning and online
detection components. In the offline learning phase, templates

frontiersin.org
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The overall architecture of LogMS.

are extracted from historical logs using FT-Tree, and the logs are
matched with these templates. Subsequently, log sequences are
converted into template vector sequences through template2vec.
LSTM models are then used to extract sequential and quantitative
features from log sequences to determine anomalies based on
these features. Periodic offline learning, such as weekly updates,
ensures the integration of newly emerged log templates into the
updated offline models. In the online detection component of
LogAnomaly, real-time logs are matched with existing templates.
If a match is found, the log is converted into a template vector.
Otherwise, based on template vector similarities, the real-time
log’s “temporary” template vector is approximated to an existing
template vector. Consequently, each real-time log is associated
with a template vector, and real-time logs are converted into
template vector sequences. By leveraging the LSTM model
trained in the offline learning phase, LogAnomaly can identify
anomalous log sequences. Additionally, Farzad et al. [26]
proposed a novel unsupervised log anomaly detection model
that integrates Isolation Forests with two deep autoencoder
networks. Autoencoders facilitate feature learning for
subsequent anomaly detection, while Isolation Forests are
employed for positive sample prediction.

Unsupervised methods struggle to determine the threshold
range of abnormal logs, and log data typically exhibit complex
data distributions, containing multiple categories and patterns, some
of which may represent normal behavior while others may indicate
anomalous behavior. Therefore, in unsupervised learning, without
explicit labels to guide the learning process, models find it difficult to

accurately discern whether logs are abnormal.

3 Proposed method

To address the above issues, this paper introduces a multi-stage
log anomaly detection method named LogMS, which relies on
multi-source information fusion and probability label estimation.
The architecture of LogMS is depicted in Figure 1, which comprises
the following components: Log Parsing and Semantic Vectorization,
MSIF-LSTM, and PLE-GRU.

Frontiers in Physics

3.1 Log parsing and semantic vectorization

3.1.1 Log parsing

Raw log messages are commonly unstructured as developers
have the flexibility to create free-text log messages within the source
code. Hence, the initial phase in log anomaly detection involves log
parsing, which aims to convert unstructured log messages into
structured events. With the deepening of research on log
anomaly detection, there have been many ready-to-use parsing
tools that have emerged, such as Spell [27], Drain [16], Brain
[28], and DivLog [29]. In this study, we have selected Drain as
our log parsing tool due to its proven effectiveness and accuracy.
Upon receiving a new raw log message, Drain initiates preprocessing
using basic regular expressions guided by domain expertise.
Subsequently, the tool searches for a log group (referred to as a
leaf node of the tree) by following the specific rules embedded in the
internal nodes of the tree. If an appropriate log group is identified,
the incoming log message is compared with the stored log event in
that group. If no suitable log group is found, a new log group is
created based on the incoming log message. An illustration of log
message parsing using Drain is provided in Figure 2. For instance, in
the case of the initial line of the raw unstructured log message
“Receiving block blk_579248908079 sc:/10.251.215.16:33145 dest:/
10.251.30.6 . ..,” Drain extracts the data block name, source address,
and destination address by replacing them with wildcards, resulting
in the structured log event “Receiving * src: * dest:*.”

3.1.2 Preprocessing and semantic vectorization

In this section, we will preprocess and vectorize the parsed log
events following a structured workflow as depicted in Figure 3. This
process encompasses preprocessing, word vectorization, and TF-
IDF-based semantic vectorization.

Preprocessing: The parsed log events often contain non-
character tokens (such as separators, operators, and punctuation),

« »

stop words (like “a” and “the”), and compound words (e.g.,

“TypeDeclaration” composed of “type” and “declaration,” or
“isCommitable” composed of “is” and “Commitable”). These
elements can impede subsequent processes such as vectorization

and anomaly detection, necessitating further preprocessing of log
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events. Specifically, all non-character tokens and stop words willbe ~ word importance within a sentence, promoting high

eliminated, and compound words will be segmented into
individual words.

Word Vectorization: Following the preprocessing steps, each
word in the log events will be vectorized with the objectives of
ensuring high discriminability among different log events and
identifying log events with similar semantics. To achieve this, we
will utilize FastText [30] to convert words in log events into semantic
vectors. FastText, pretrained on the Common Crawl corpus dataset,
effectively captures intrinsic word relationships in English sentences,
including semantic similarities. Implementation involves invoking
the

vectors. The vector representation of the j-th word in the i-th log

“get_word_vectors” function of FastText to acquire word

event is denoted as v’]
TF-IDF-based Semantic Vectorization: The word vectors will be
combined using TF-IDF to derive the semantic vector for each log

event. In TF-IDF, the Term Frequency (TF) component gauges

Frontiers in Physics 7

discriminability. For instance, a frequently occurring word like
“Block” indicates its significance. The TF calculation is defined as:

. #,
TE(v)) = #totjzl"

Here, #vz denotes the count of the j-th word in the i-th log event,

(1)

while #total’ represents the total word count in the log event.

Conversely, if a term like “Receiving” is prevalent across all
log events, its ubiquity may reduce event distinctiveness. To
address this, the Inverse Document Frequency (IDF) in TE-
IDF decreases the weight of frequently occurring terms,
enhancing the weighting scheme’s discriminative power. IDF
calculation is as follows:

)
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Here, N denotes the total log event count and N ; is the count of
. ] .
log events containing the word v’. The TF-IDF weight of word v} is
calculated by:

w), = TF(V,) x IDF(V,) (3)

Finally, the semantic vector v' of the i-th log event is
determined as:

1 X i
i- 4
v Nj:zlw, ! (4)

3.2 MSIF-LSTM for the first-stage dection

As mentioned above, existing methods mainly focus on directly
detecting log data in a single stage using specific anomaly
information, such as log sequential information or log semantic
information. Therefore, we propose a multi-source information
fusion-based long short-term memory (MSIF-LSTM) network for
the initial stage of anomaly log detection. This method can integrate
multiple information such as semantic information, sequential
information, and quantitative information through multi-source
information fusion. Specifically, we utilize semantic vectors
representing semantic information and train the model using
both sequential information and quantized information to
achieve the fusion of information. We will first introduce the
structure of MSIF-LSTM, and then discuss how to obtain the two
information to train MSIF-LSTM. During the training process, we
update the model parameters using backpropagation.

3.2.1 The structure and training of MSIF-LSTM
MSIF-LSTM extends the traditional LSTM architecture to

handle The key

components include the cell state (C,), the hidden state (h,), and

multiple  information  simultaneously.

multiple sets of gates - forget gates (f ];), input gates (i¥), and output

gates (oF) for each information k. The formulas for computing these

components at time step ¢ for each information k are as follows:
(1) Forget Gate:

fi=o(Wh - [hey,x,] + b)) (5)

(2) Input Gate:

if = U(Wf B, %] + bf) (©)

(3) Candidate Cell State:

Cf = tanh(Wé - B, X + blé) )

(4) Update Cell State:

g~k
Cf = fixCy +igeC, ®)

(5) Output Gate:

Of = U(WI; < [heers %] + bl;) )
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(6) Hidden State:

(10)

h, = Z(of*tanh(Cf))

k

where x,; denotes the input log event at time step ¢, /,_; represents the
previous time step’s hidden state, W, W¥, W, and W¥ stand for
the weight matrices for each information gate k, and b’;, bf, bE, and
b¥ are the bias vectors associated with information k. The symbol &
denotes the sigmoid activation function, and * signifies element-
wise multiplication. The training of MSIF-LSTM involves leveraging
both sequential and quantitative information. This training process
not only effectively integrates multiple sources of information but
also preserves the specific characteristics of each information source.
This contributes to enhancing the representation capability of
the model [31].

3.2.2 Sequential information

Logging procedures are typically executed in accordance with
well-defined processes, resulting in the natural emergence of
sequential patterns within normal logs. In essence, when
observing a sequence of log events, it becomes possible to
forecast the subsequent log event in the absence of anomalies.
Therefore, we utilize the sequential information to train LSTM.
The input of LSTM is a log event sequence (e.g., {v'*, v %, v'"'}), the
output is the probability of the next log event.

3.2.3 Quantitative information
In addition to sequential information, log event sequences
(i.e., sequences formed by multiple log events occurring in order)
also contain quantitative information. Typically, during normal
program  execution, certain invariants and quantitative
relationships persist within the logs, regardless of varying inputs
and workloads. For example, it is an invariant fact that every opened
file will eventually undergo closure at some point. Therefore, in
normal scenarios, the frequency of logs indicating“open file” should
be equivalent to the frequency of logs denoting “closed file.” These
quantitative relationships embedded within the logs serve as
valuable indicators of standard program execution behavior.
Deviation from these established invariants by a new log event
signals an exception within the system’s execution. Therefore, we
utilize the quantitative information to train LSTM. First, the we need

to calculate the count vector Ay of k-th log event sequence as:
Ap = (ar (V') a (V7).

Sap (V") (11)

where 1 denotes the total count of unique log event vectors, a; (V)
signifies the occurrence of v in the k-th log event sequence.
Subsequently, A;, A,, ..., A, ... are fed into LSTM for the
acquisition of quantitative insights.

3.3 PLE-GRU for the second-stage dection

In the first stage, the focus is on modeling some characteristics of
the log data itself. The MSIF-LSTM method construct in this stage is
unsupervised, lacking the utilization of label information, especially
readily available normal log labels, thereby limiting the detection
capability. To tackle this problem, we design a semi-supervised
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learning method called PLE-GRU, which will only be activated when
anomalies are not detected in the first stage, aiming to ensure the
overall efficiency of the LogMS algorithm. PLE-GRU consists of
three parts: log sequence clustering, label probability evaluation, and
the structure and training of PLE-GRU. The first two steps entail
creating pseudo-labels by utilizing annotated labels from a portion
of normal log sequences within the training dataset.

3.3.1 Log sequence clustering

Based on the idea that log sequences that have similar meanings
are expected to be assigned identical labels, PLE-GRU utilizes
advanced clustering techniques to group log sequences with
comparable meanings. In this study, we utilize HDBSCAN [32]
to cluster both labeled and unlabeled log sequences within the
training set. The reason for this choice is that HDBSCAN is a
data clustering technique that does not necessitate predefining the
cluster count, unlike approaches such as K-means, and it has fewer
parameters and is robust to parameter settings. The implementation
of log sequence clustering is achieved through the hdbscan (https://
hdbscan.readthedocs.io/en/latest/) package.

3.3.2 Label probability estimation

Given the complexity of achieving perfect clustering results,
PLE-GRU adopts a strategy of assigning probabilistic labels to
unlabeled log sequences instead of deterministic ones. This
method involves evaluating the probability that an unlabeled
log sequence corresponds to each label, thereby reducing the
impact of noise introduced during clustering. Specifically, we
compute the probability of an unlabeled log sequence belonging
to each label based on clustering outcomes. Using HDBSCAN,
each log sequence in a cluster receives a score indicating the
uncertainty of its cluster membership. This score, ranging from
0 to 1, serves as a measure of confidence in clustering the log
sequence with its respective group; a lower score indicates higher
confidence. Despite potential uncertainty, assigning a
probabilistic label is crucial to align with the initial label
estimation framework. By leveraging these principles and the
scores from HDBSCAN clustering, each preliminary label is
converted into a probabilistic label where P (anomalous) = 1 —

score/2 and P (normal) = score/2.

3.3.3 The structure and training of PLE-GRU

The pseudo-labels derived from the training dataset by
estimating label probabilities will be utilized for training a Gated
Recurrent Unit (GRU) neural network, establishing a robust and
efficient anomaly detection model. GRU is a type of recurrent neural
network (RNN) architecture devised to combat the vanishing
gradient problem encountered in traditional RNNs. It bears
resemblance to LSTM but boasts a simpler structure featuring
two primary gates: the update gate and the reset gate. GRU is
renowned for its ability to capture long-term dependencies in

sequential data effectively, requiring fewer parameters
compared to LSTM.
For alog sequence represented as S = {v', v, .., v'h, where v (1 <

t < T) denotes the t-th log event, and T signifies the total log events in
S, the input to the GRU at time step ¢ is the semantic vector of v'
designated as x,. The GRU cell computation involves two key
elements: the hidden state (h,) and the update gate (z,) along
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TABLE 1 Statistics of HDFS and BGL.

Dataset HDFS BGL
Event Collection/day 2 215
Size/GB 1.490 0.708
Number of Logs 1,175,629 4,747,963

Number of Anomalies 16838 (blocks) 348460 (logs)

Total Number of Templates 30 378
Number of Training Sequences 5,000 7,500
Number of Training Templates 15 185

with the reset gate (r;). The computations for these components
at time step t are expressed by the following formulas:

(1) Update Gate:

zi =0 (W, [h_1,x]) (12)
(2) Reset Gate:
re =0 (W, - [hey, X)) (13)
(3) Candidate Hidden State:
h, = tanh (W), - [r%he 1, x,]) (14)
(4) Update Hidden State:
he = (1= z)%h,_y +z.%h, (15)

At each time step £, x, denotes the input log event, h,_; stands for
the hidden state from the preceding time step, and W,, W,, W,
represent weight matrices. The function o signifies the sigmoid
activation, with * indicating element-wise multiplication. The
ultimate hidden state is leveraged to predict whether the input
log sequence is anomalous.

4 Experimental results and analysis

4.1 Dataset

To evaluate the performance of LogMS, experiments were
carried out on the Hadoop Distributed File System (HDEFS)
dataset and the Blue Gene/L supercomputer (BGL) dataset,
followed by a comprehensive analysis of the outcomes. These
datasets are commonly utilized in log anomaly detection, with
their characteristics outlined in Table 1. The HDFS dataset,
generated by over 200 Amazon EC2 nodes, comprises a total of
11,175,629 log messages. These log entries are segmented into
distinct log windows based on their corresponding block_id,
representing the program execution status within the HDEFS
system. Among the log entries, 16,838 log blocks (2.93%) indicate
system anomalies. On the other hand, the BGL dataset encompasses
4,747,963 log messages from the “Blue Gene/L” supercomputer,
which houses 128 K processors at Lawrence Livermore National
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TABLE 2 Comparison of the model structures of the baseline methods and LogMS.

Backbone Label information Semantic information Sequential information Quantitative information
DeepLog LSTM X X v x
LogAnomaly = LSTM X X v v
LogRobust Bi-LSTM v v X X
Lu et al. CNN v X X X
LogMS$ LSTM + GRU v v v v

TABLE 3 The results of comparative experiments on HDFS and BGL.

Models HDFS BGL

Precision Recall Precision Recall
DeepLog 0.945 0.899 0.922 0.900 0.960 0.929
LogAnomaly 0.860 0.897 0.877 0.970 0.940 0.960
LogRobust 0.961 0.999 0.980 0.994 0.942 0.967
Lu et al. 0.966 0.998 0.982 0.994 0.963 0.978
LogMS$ 0.997 0.998 0.998 0.994 0.987 0.984

TABLE 4 The results of ablation experiments on HDFS and BGL.

Models Metrics HDFS BGL
MSIE-LSTM Precision 0.865 0.970
Recall 0.903 0.940
F1 0.882 0.960
PLE-GRU Precision 0.950 0.965
Recall 0.963 0.999
F1 0.957 0.982
LogMS Precision 0.997 0.994
Recall 0.998 0.987
F1 0.998 0.984

Laboratory. This dataset spans over 7 months, with experts in the
BGL domain manually categorizing each log entry as abnormal or
normal. Notably, there are 348,460 abnormal log messages in the
BGL dataset. Unlike HDES, the BGL dataset lacks explicit labels like
block_id, making it challenging to extract log sequences effectively.

After log parsing, a total of 30 HDFS log templates and 378 BGL
log templates are obtained. For HDFS, the logs are divided into
sequences based on block_id. For BGL, as the logs do not record
identifiers for each sequence, a fixed window size of 150 is used to
segment the logs into sequences.

4.2 Evaluation metrics

In this study, precision, recall, and Fl-score are employed as
evaluation metrics, commonly utilized in log anomaly detection
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research [13-15]. Precision measures the proportion of accurately
identified abnormal log sequences among all sequences flagged as
anomalies by the model, calculated as:

TP

Precision = ———
TP + FP

(16)
Recall gauges the proportion of correctly identified abnormal log
sequences among all actual anomalies, expressed as:

TP

Recall = ———
= TP EN

(17)

Fl-score, the harmonic mean of precision and recall, is
calculated as:

_ 2 x Precision x Recall

F1 (18)

Precision + Recall

Here, TP (True Positive) indicates the count of abnormal

log sequences correctly identified by the model, FP (False

Positive) represents the number of normal log sequences

inaccurately classified as anomalies, and FN (False Negative)

denotes the count of abnormal log sequences overlooked by
the model.

4.3 Experimental setting

We implement LogMS based on Python 3.8.3 and PyTorch 1.5.1.
All experiments are conducted on a single RTX 3090Ti 24 GB GPU.
In MSIF-LSTM, we set the weight decay to 0.0001, momentum to
0.9, initial learning rate to 0.01, use cross-entropy as the loss
function, set the mini-batch size to 128, and train for 10 epochs.
In PLE-GRU, we set the min_cluster_size parameter in HDBSCAN
to 100, min_samples to 100, and train for 20 epochs.
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The results of class imbalance experiments in different methods.
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The results of class imbalance experiments in different component of LogMS.

4.4 Comparative experiments

We compare LogMS with the following four widely used
methods, and the comparison of the model structures are shown
in Table 2.

DeepLog [14]: This method treats system logs as natural
language sequences and uses LSTM to model the sequential
information of the logs.
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LogAnomaly [15]: This method also treats system logs as natural
language sequences, but uses LSTM to model sequential and
quantitative information of the logs.

LogRobust [13]: This method is able to identify and handle
unstable log events and sequences and uses Bi-LSTM to model label
and sematic information.

Lu et al. [23]: This method can automatically learn event
relationships in system logs and uses CNN to model label information.
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Table 3 displays the results of comparative experiments. In
HDFS, LogRobust achieves the highest F1 score, mainly due to
its higher recall rate. LogMS performs second best, with a F1 score
only 0.001 lower than LogRobust, but it has a higher precision by
0.17 compared to LogRobust. The worst performing models are
DeepLog and LogAnomaly, mainly because they both not utilize
label information and belong to unsupervised methods. Although
LogRobust achieves the best results in HDFS, its performance in
BGL is even worse than that of LogAnomaly, which does not utilize
label information. Meanwhile, LogMS obtained the highest F1 score
in BGL. Overall, LogMS performs well in both datasets and exhibited
stable results. Compared to other methods, the key feature of LogM$
lies in its effective fusion of multiple sources of information,
demonstrating that the of semantic, sequential,
quantitative, and label information is an effective way to enhance

fusion

the performance of log anomaly detection.

4.5 Ablation experiments

To assess the effectiveness of each improvement in LogMS, we
conduct ablation experiments in HDFS and BGL. We divide LogMS
into two parts: MSIF-LSTM, which integrates semantic, sequential,
and quantitative information; PLE-GRU, which incorporates label
information. LogMS fuses all four types of information. Table 4
presents the results of the ablation experiments.

Based on the experimental results, it is evident that MSIF-LSTM
performs better in terms of precision, while PLE-GRU exhibits
higher recall. LogMS combines the strengths of both, achieving
the best precision and recall simultaneously. It is noteworthy that in
the two-stage process of LogMS, MSIE-LSTM serves as the first
stage, and only when MSIF-LSTM fails to detect anomalies, it
proceeds to the second stage, PLE-GRU. The high precision of
MSIF-LSTM in the first stage ensures a low false negative rate, while
the high recall of PLE-GRU in the second stage minimizes missing
anomalies, thus LogMS effectively integrates the strengths of both
approaches.

4.6 Class imbalance experiments

A significant feature of log data is the substantial class
distribution imbalance between normal logs and anomaly logs, as
observed in datasets like HDFS where anomalies represent only
about 2.9% of the data. Therefore, the ability of a model to deal with
such situation is crucial [33]. In order to systematically assess our
approach, we introduce various imbalanced scenarios by randomly
excluding normal or abnormal log sequences from the HDFS and
BGL dataset. We vary the imbalance ratio from 1% to 15%,
indicating the percentage of anomalies present in the dataset.
This process results in the creation of four synthetic datasets
with imbalance ratios set at 0.1%, 0.5%, 1%, 5%, and 10%. To
comprehensively evaluate our model, we conduct class imbalance
experiments not only across different methods but also on the
various components of LogMS. The experimental results are
illustrated in Figures 4, 5.

From Figure 4, we can observe that as the proportion of
abnormal labels increases, both precision and F1 improve, while
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recall remains stable. The reason for this phenomenon is as follows:
due to the scarcity of positive samples, an increase in the number of
positive samples results in an increase in true positives without a
significant rise in false positives, leading to an enhancement in
precision. However, recall is influenced by the imbalance in samples;
when the number of positive samples is low, even with an increase in
true positives, the number of false negatives may also rise, causing
recall to be unstable and unable to consistently improve with an
increase in positive samples. Despite the unstable recall, the
improvement in precision leads to an overall increase in the
F1 score. Overall, LogMS demonstrates robustness to severe class
imbalance, particularly achieving optimal performance at the
anomaly ratio of 0.1%.

We can see a similar phenomenon in Figure 5 as in Figure 4.
However, the two-stage strategy of LogMS enables the effective
integration of both components, thus maintaining the stability of log
anomaly detection performance even under class imbalance
conditions.

5 Conclusion

Deep learning-based log anomaly detection models primarily
adopt a single-stage detection method and mainly focus on a
specific aspect of log information. However, logs contain multiple
sources of information (such as semantic information, sequential
information, quantitative information, and label information).
By focusing solely on a single aspect, the detection models are
limited in their understanding of logs, resulting in compromised
detection performance and suboptimal robustness. To address
this issue, the paper introduces a multi-stage log anomaly
detection method named LogMS. This method is based on the
fusion of multiple sources of information (i.e., MSIF-LSTM) and
probability label estimation (i.e., PLE-GRU), allowing for
hidden
information embedded in log data from multiple perspectives.

comprehensive utilization and fusion of various

Experimental results demonstrate that LogMS outperforms
baseline models on various log anomaly detection datasets,
demonstrating superior performance in robustness testing. In
future research, we will consider integrating more sources of
information such as system metrics, network traffic, or user
behavior patterns to provide more comprehensive insights into
log anomalies. By integrating these contextual factors into the
detection process, it is possible to improve the accuracy and
robustness of log anomaly detection models.
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A regular calligraphy script of each calligrapher has unique strokes, and a script's
authenticity can be identified by comparing them. Hence, this study introduces a
method for identifying the authenticity of regular script calligraphy works based on
the improved YOLOV7 algorithm. The proposed method evaluates the authenticity of
calligraphy works by detecting and comparing the number of single-character
features in each regular script calligraphy work. Specifically, first, we collected
regular script calligraphy works from a well-known domestic calligrapher and
divided each work into a single-character dataset. Then, we introduced the
PConv module in FasterNet, the DyHead dynamic detection header network, and
the MPDiou bounding box loss function to optimize the accuracy of the
YOLOv7 algorithm. Thus, we constructed an improved algorithm named
YOLOV7-PDM, which is used for regular script calligraphy identification. The
proposed YOLOV7-PDM model was trained and tested using a prepared regular
script single-character dataset. Through experimental results, we confirmed the
practicality and feasibility of the proposed method and demonstrated that the
YOLOv7-PDM algorithm model achieves 94.19% accuracy (mAP50) in detecting
regular script font features, with a single-image detection time of 3.1 m and 31.67M
parameters. The improved YOLOV7 algorithm model offers greater advantages in
detection speed, accuracy, and model complexity compared to current mainstream
detection algorithms. This demonstrates that the developed approach effectively
extracts stroke features of regular script calligraphy and provides guidance for future
studies on authenticity identification.

calligraphy works identification, YOLOvV7 algorithm, PConv module, DyHead dynamic
detection head network, MPDiou loss function

1 Introduction

Calligraphy, as a unique form of artistic expression, has a long history in China and
stands out in the progression of human civilization [1]. Due to their significant collection
value and potential for appreciation, calligraphy works are highly sought after by collectors
both domestically and internationally, particularly those created by renowned ancient
calligraphers [2]. However, genuine works by master calligraphers are becoming
increasingly scarce, leading to abundant forgeries in the market. Consequently, there is
an urgent need for calligraphy authenticity identification.
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Traditional methods of calligraphy identification mainly involve
three approaches [3]. One relies on experienced calligraphy experts
with solid skills and substantial experience for empirical
identification [4]. However, subjective factors often influence this
method, biasing the identification results. An alternative approach
utilizes physical techniques to determine authenticity by examining
the presence of seals and analyzing the composition of paper used in
the calligraphy work. Nevertheless, as technology advances, forgery
techniques have become increasingly sophisticated, with the ability
to replicate seals and paper, resulting in identification biases [5]. The
third method uses computer-assisted techniques to detect the
authenticity of calligraphic works. With the further development
of computer science and technology in recent years, many
researchers have employed computer-assisted methods to detect
the authenticity of calligraphic works. However, computer-assisted
methods can be further categorized into two types: one is based on
traditional image processing algorithms, such as the calligraphic
work authentication method proposed by Zeng [6] based on image
recognition and the computer-assisted calligraphy authenticity
identification proposed by Pang [7]. The other type employs
novel image processing methods based on deep learning, such as
Li’s [8] evaluation and detection of calligraphic copying based on
deep learning.

To address the challenge of the identification bias, this study
develops an authenticity identification method for calligraphy
regular script based on an improved YOLOv7 algorithm.
Specifically, first, we manually annotate the features of individual
characters in authentic calligraphy regular script works, followed by
feature extraction using deep learning networks. The authenticity of
calligraphy works is determined by comparing the number of
extracted features from genuine works with the forged ones. This
method aims to enhance the accuracy and reliability of calligraphy
regular script authenticity identification by combining manual
annotation and deep learning techniques.

The traditional algorithmic approach involves image processing,
and after conducting feature extraction on the works of a single
calligrapher, this approach exhibits relatively high detection
accuracy. However, the detection algorithm cannot be directly
applied to the works of another calligrapher, thus posing
Unlike processing
schemes, deep learning can automatically learn features and

significant limitations. simplistic image
exhibits strong robustness and adaptability, enabling accurate
environments.

high
generalization and are suitable for detecting the works of most

detection and  recognition in  complex

Furthermore, deep learning approaches demonstrate
calligraphers using the same font style [9]. Deep learning has
experienced extensive application and has recently advanced
significantly in diverse domains. For instance, Wang [10]
employed an improved EfficientNet algorithm to authenticate
calligraphic works, efficiently categorizing genuine from fake
calligraphic pieces using the two-class classification property of
the EfficientNet algorithm. The corresponding experimental
results demonstrated significant effectiveness. Xu [11] proposed
an improved YOLOv4-Tiny algorithm that effectively detects
boats on rivers and lakes, ensuring waterway safety. Hu [12]
applied the improved YOLOX algorithm to rapidly detect surface
hole defects on aluminum castings, enhancing casting efficiency.

Mai made a breakthrough in calligraphy font recognition using
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DenseNet networks [13]. The advantages of deep learning methods
lie in their ability to learn features automatically and possess strong
robustness and adaptability in accurate detection and recognition in
complex environments. Therefore, utilizing deep learning methods
for calligraphy regular script authenticity identification holds great
potential and feasibility. Hence, building upon these successful
research achievements, we leverage deep learning methods to
Indeed, by
suitable for

authenticate calligraphy regular script works.

constructing a deep learning model regular
calligraphy script works, we extract and analyze the features of
each character and compare these features with those of authentic
works to determine the degree of authenticity. However, additional
datasets and annotations may be required for training and validating
the algorithm model. The proposed authenticity identification
method is based on the improved YOLOv7 algorithm evaluating
the authenticity of regular calligraphy scripts by detecting and

comparing the features in each character.

2 Calligraphy regular script stroke
feature detection algorithm based on
YOLOv7-PDM

2.1 YOLOv7 algorithm

The YOLOv7 algorithm [14], introduced by the YOLOv4 [15]
team, is another significant breakthrough in the YOLO series. Since its
proposal at the end of 2022, the YOLOv7 algorithm has received
considerable attention from the academic community, as it
demonstrates excellent performance with a detection speed ranging
from 5 to 160 FPS and exhibits higher detection accuracy and speed
levels than current mainstream object detection algorithms. Figure 1
illustrates the structure of the YOLOv7 model [16].

The YOLOv7 algorithm comprises four main components:
Input, the feature extraction network known as Backbone, the
feature fusion network identified as Neck, and the detection head
network referred to as YOLO-Head. Compared to prior YOLO
algorithms, YOLOV7 presents innovative improvements in its
Backbone, Neck, and YOLO head. The feature extraction
network comprises CBS, ELAN, and MP1 convolution modules.
The CBS module is a conventional convolution module consisting of
regularization and activation functions, whereas the ELAN module
is a layer aggregation network that improves efficiency. Additionally,
dilation and transformation methods are used to enhance the
learning performance of the algorithm model, boosting the
model’s computational capability while maintaining the original
gradient path intact. The MP1 convolution module is formed by
adding a Maxpool layer after the CBS module, which forms two
branches combined with a Concat module to integrate the
characteristics of both branches and enhance the network’s
ability to extract features. YOLOv7 has modified the SPP module
in the Neck to the SPPCSPC module, a revised adaptation of Spatial
Pyramid Pooling, to accommodate inputs of varying sizes. This
modification reduces the image distortion caused by image
processing and overcomes the feature re-extraction problem
during convolution. In 2021, Megvii Technology published the
PAFPN model, which incorporates the same feature pyramid
network structure as YOLOX. Feature fusion between layers is
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Structure of the YOLOV7 algorithm model.
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Structure of the PConv module.

achieved by passing deep features from bottom to top. Additionally,
the Neck network includes the ELAN-H and MP2 modules, where
the ELAN-H module aggregates more layers than the ELAN
module. The only variation between the MP1 and MP2 modules
is the number of channels. In the YOLO-Head, YOLOv7 combines
the RepConv module’s re-parameterized convolutions with the
network structure, balancing speed and accuracy during training.

2.2 PConv module

To enhance the detection accuracy of the YOLOv7 algorithm, we
replace the Conv layer in the CBS module with the PConv module from
FasterNet [17]. The modified module has been renamed the PBS
module. The PConv module plays a vital role in FasterNet, a novel
image classification algorithm introduced in CVPR2023, which attains
an exceptional TOP-1 accuracy of 83.5% on ImageNet-1k. The
structure of the PConv module is illustrated in Figure 2.

PConv addresses higher memory access and reduces the overall
computational complexity caused by depthwise separable convolution
(DWConv), particularly on I/O-bound devices. DWConv can reduce
the computational complexity of Conv by a factor of (number of
channels), but the detection accuracy decreases as a result of the cost
incurred. To mitigate the accuracy loss, the channel width must be
increased to compensate for the decrease in parameter quantity.
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However, when DWConv is applied with an increased channel
width, it introduces higher memory access and generates more
computational redundancy. Considering these limitations, PConv
performs regular Convolution on a specific group of input channels
to extract spatial features while keeping the rest unaltered. The first or
last consecutive channels represent the entire feature map for
computation with consecutive or regular memory access. Without
any loss of generality, it is assumed that the input and output
feature maps have the same number of channels. Therefore, Eq. 1
defines the FLOPs of PConv, while Eq. 2 depicts the memory access.

FLOPs = h x w x k? xc;, (1)

)

hxwx2c,+k*xc:=~hxwx2c,,
P P P

In this case, the width and height of the feature map are
represented by h and w, respectively. The size of the convolution
kernel is denoted by k, and ¢, indicates the number of channels
affected by regular convolution. This cp value is equivalent to the
change from ¢, to ¢, in conventional convolution. However, in
practical scenarios, PConv uses only one-fourth of the channels
present in ¢, which leads to a reduction of FLOPs by 1/16 and
memory access by 1/4 compared to conventional convolution.

2.3 DyHead dynamic detection head

The DyHead dynamic detection head network proposed by
Microsoft [18] aims to enhance the detection accuracy of the
YOLOV7 algorithm. DyHead is a dynamic detection network that
introduces attention mechanisms to consolidate different object
detection heads innovatively. The core idea of this method is to
leverage attention mechanisms to enable interaction among scales
(referred to as 1), spatial (referred to as 7s), and task (referred to as
mc) awareness based on a given feature tensor, denoted as
F € RSXC Specifically, the m attention mechanism facilitates
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FIGURE 4
Model structure diagram of YOLOv7-PDM.

scale awareness between different feature levels, the mg attention
mechanism enables spatial awareness between spatial positions and
the ¢ attention mechanism promotes task awareness within the
output channels. These my, s, and ¢ attention mechanisms are
combined to form the DyHead dynamic detection head module, as
illustrated in Figure 3. By introducing the DyHead dynamic
detection head module, we effectively utilize attention
mechanisms to improve the performance and accuracy of object
detection. The novelty of this method lies in applying attention
mechanisms to different levels of perception and achieving a unified
object detection head network through modular design.

The general form of self-attention is presented by Eq. 3.
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W (F) = n(F) - F, (3)

This form has many parameters and directly learns the attention
function through fully connected layers across all dimensions. In order
to enhance efficiency and reduce the number of parameters, we
transformed this attention function into three separate attentions,

each concentrating on a specific dimension, as presented in Eq. 4.
W (F) = nc (ns(n.(F) - F) - F) - F, (4)

where m; combines the characteristics from various scales while
considering their semantic significance, mg focuses on the
discriminative capacity between different spatial positions and ¢
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promotes joint learning and generalizability of target representation
by dynamically switching feature channels to assist different tasks.
Stacking the DyHead dynamic detection head module multiple
times yields better performance improvement, which peaks after
stacking more than six modules. By introducing the DyHead
dynamic detection head module, the expressiveness of the
YOLOv7 algorithm’s YOLO-Head is significantly enhanced
without substantially increasing the computational complexity.

2.4 MPDioU bounding box loss function

As an improvement, we introduce the MPDIoU bounding box
loss function [19] to address the instability in expressing the aspect
ratio penalty of the CIoU loss function when the aspect ratio of the
predicted bounding box matches that of the ground truth bounding
box in the original YOLOv7 algorithm. The latter bounding box
initially utilizes the CIoU loss function for bounding box regression.
The proposed MPDioU bounding box loss function, which relies on
the minimum point distance, assesses the similarity between
predicted and ground truth bounding boxes, acting as a criterion
for comparison. It should be noted that the YOLOv7 algorithm’s
convergence speed and detection accuracy are constrained because
the CIoU and EIoU lose their effectiveness when the predicted and
ground truth bounding boxes have varying width and height values
but the same aspect ratio. This issue is overcome by combining the
benefits of CIoU and EIoU. Besides, MPDIoU takes inspiration from
the geometric characteristics of bounding boxes by directly
minimizing the distances between the top left and bottom right
points of the predicted and ground truth bounding boxes. The
specific implementation is presented in Eq. 5.

ANB d? d2

MPDioU = — - 3
10 AUB w?+h w?+h?

(5)

where A and B are two bounding boxes, d; is the distance between
their top left points, d, is the distance between their bottom right
points, and w and h represent the width and height of the input
image. This design simplifies the similarity comparison between two
bounding boxes and applies to overlapping and non-overlapping
bounding box regression. Consequently, by leveraging the benefits
of the MPDIoU bounding box loss function, the accuracy of the
YOLOV7 algorithm in detecting objects is enhanced.

2.5 YOLOv7-PDM algorithm model

Figure 4 overviews the structure diagram of the YOLOv7-PDM
algorithm, which has been optimized by incorporating the PConv
module, DyHead dynamic detection head, and MPDioU bounding
box loss function.

3 Experiment
3.1 Dataset creation

Due to a shortage of publicly accessible datasets for regular script
characters in calligraphy, this research meticulously compiled an
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exclusive dataset by utilizing genuine works from Shen, a renowned
calligrapher and member of the China Calligraphers Association,
provided by the Sanpin Art Gallery in Shenzhen City. Regular script
characters in calligraphic works typically exhibit single color and
high contrast characteristics, with most presenting a consistent and
neat writing style. Therefore, the works were first scanned using a
line-scan camera in the data preprocessing stage. Subsequently,
traditional binarization techniques effectively separated the
acquired images into foreground and background. Additionally,
we obtained individual regular script characters by batch
cropping, utilizing fixed spacing between the characters. As a
result, 2,782 black-and-white image samples of regular script
characters were obtained, as depicted in Figure 5.

Following the research on Chinese digital calligraphy
retrieval and authenticity identification by Zhang et al. [20],
the stroke
categorized into three basic features: start (qi), turn (zhuan),

features of regular script characters were
and end (shou). The start and end features were further divided
into horizontal start (hengqi), vertical start (shuqi), horizontal
end (hengshou), and vertical end (shushou). The turning feature
was classified into a right-angle turn (zhijiaoze) and an acute-
angle turn (ruijiaoze). Therefore, six-stroke features were
extracted from regular script characters. After obtaining the
images of regular script characters, we annotated them using
the DLtools (MVTec Deep Learning Tool) annotation software.
The annotation process requires careful alignment with every
feature of regular script calligraphy characters. Besides, the
selection of feature boxes should be neither too large nor too
small, and it is necessary to conduct repeated inspections to
ensure the absence of missed annotations, as omitting a single
feature could potentially impact the accuracy of subsequent
model training. The specific annotation quality is illustrated in
Figure 6, representing a favorable annotation standard. Among
them are 5,343 characters with a horizontal starting stroke,
4,545 with a horizontal ending stroke, 7,542 with a vertical
starting stroke, 3,991 with a vertical ending stroke, 1,658 with
right-angle turns, and 3,074 with acute-angle turns. The number
of characters with right-angle and acute-angle turns is small, as
not every character contains these types of turns.

Each calligrapher’s characters exhibit a unique style, with the
most distinctive characteristics being evident in the three
turn,” and “end,” Where “start”

refers to the starting point of the stroke, signifying the moment the

» «

fundamental aspects of “start,

brush touches the paper. The pressure and angle of initiation vary
among calligraphers. Additionally, “turn” involves the rotation of
the brush, with some characters requiring a subtle adjustment while
others may demand a more pronounced rotation. Finally, “end”
marks the stroke’s conclusion, representing the character’s
completion. Some calligraphers execute the termination process,
while others incorporate personal stylistic elements to showcase
individuality. Therefore, using these six brushstroke features can
effectively encapsulate the unique stylistic characteristics of a
calligrapher’s regular script.

In order to effectively mitigate the overfitting phenomenon
during the algorithm model training process, this study employed
data augmentation techniques on the 2,782 black-and-white images
script spatial
transformation methods and noise addition methods, to expand

of individual regular characters, including
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FIGURE 5
Segmented grayscale images of regular script characters.

the dataset. Through these methods, the original images of
individual regular script characters were augmented to a total of
5,687 images, significantly enlarging the dataset. Data augmentation
not only significantly enhanced the generalization capability of the
algorithm model but also optimized the training performance of the
model. Concurrently, following the format required by the
YOLOvV7 algorithm for training datasets, this study meticulously
constructed the dataset of individual regular script characters for
calligraphy. In order to ensure the scientific and practical validity of
the dataset, we rigorously divided the dataset into training,
validation, and testing sets in a 7:2:1 ratio to guarantee the
reliability and effectiveness of model evaluation. Through the
comprehensive implementation of the steps mentioned above, the
construction of the dataset of individual regular script characters for
calligraphy has been completed, providing a solid data foundation
for the subsequent training and evaluation of algorithm models.

3.2 Experimental setup

The experimental setup for this research involved an Intel i9-
13900K CPU, 128 GB of RAM, and two NVIDIA RTX4090 GPU
cards with 24 GB of VRAM each. We set up the appropriate
operating system (Ubuntu 20.04), Python 3.9, CUDA 1138,
PyTorch 2.0.0, and related dependencies on the training machine
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to conduct training and simulation experiments. By utilizing such
hardware configuration and software environment, we ensured the
smooth progress of the experiments and obtained accurate and
reliable results. Furthermore, these configurations provided
sufficient computational resources and performance to support

the training and evaluation.

3.3 Training parameters and
evaluation metrics

Before training the model, it is necessary to set the evaluation
metrics and initialize the training parameters. This study employed four
metrics to evaluate the model’s performance: Mean Average Precision
(mAP) with an ToU of 0.5, detection speed per image, parameter
quantity, and computational complexity (FLOPs). The evaluation
metrics were selected based on a comprehensive algorithm
performance and efficiency consideration. Specifically, evaluating the
accuracy and precision of the object detection algorithm relies on using
mAP with an IoU of 0.5, while the detection speed per image measures
the algorithm’s efficiency in processing. Additionally, the complexity
and computational requirements of the model are indicated by the
parameter quantity and computational complexity (FLOPs). The
selection of these four evaluation metrics is based on the fact that

the authenticity detection of regular script characters only pursues
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FIGURE 6

Six calligraphic character stroke types with their characteristic classification diagram highlighted: (A) horizontal start (yellow); (B) horizontal end (light
blue); (C) vertical start (purple); (D) vertical end (red); (E) right angle turn (green); (F) acute angle turn (blue).

detection accuracy. Thus, the choice of these four evaluation metrics
already satisfies the requirements.

Table 1 reports the precise configurations used to initialize the
training parameters. Setting the hyperparameters is an important
task impacting the model’s performance and effectiveness.

Frontiers in Physics

Moreover, ensuring hyperparameter setting consistency is crucial
for enhancing the YOLOv7 algorithm model. On the one hand,
preserving consistency in hyperparameter settings ensures effective

algorithmic ~ improvements while maintaining consistent

hyperparameters, allowing for accurate evaluation of the
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TABLE 1 Training parameters for the algorithm model.

Parameter Value

Initial Learning Rate(Init_Lr) 0.02
Minimum Learning Rate(Min_Lr) 0.0002
Total Training Epochs (Total_Epochs) 1,000

Learning Rate Decay Type (Lr_Decay_Type) cos

Batch Size of Each Training (Batch_Size) 48
Optimizer Type of Network Architecture (Optimzer_Type) SGD
Momentum of Optimization Function (Momentum) 0.937
Weight Decay Coefficient (Weight_Decay) 0.0002

enhancements’ effectiveness by comparing the algorithm’s
performance before and after the improvements. However, it is
challenging to differentiate between the improvement effect of the
algorithm itself and the performance changes caused by
modifications to the hyperparameters when adjustments are
made to the hyperparameters during the improvement process.
Hence, the proposed method adopts the hyperparameters
of YOLOV7.

In order to prevent overfitting of the regular script character
dataset during the YOLOv7 algorithm training process, we
measured the loss values of both the validation and training sets.
After analysis, we found that the training set had a loss value (Loss)
of 0.03, while the validation set had a loss value of 0.026, resulting in
a minimal difference of only 0.004. This small difference suggests the

absence of overfitting.

4 Experimental results

4.1 YOLOvV7 algorithm with PConv module

We enhanced the Backbone and Neck sections of the
YOLOvV7 algorithm while considering the attributes of PConv.
Specifically, the convolutions with a kernel size of 3 x 3 in the
three feature output layers were replaced with PBS modules. The
modified algorithm models in the SPPCSPC module, ELAN-H
module, and the improved MP2 module in the Neck were labeled
as YOLOV7-P, respectively. In order to guarantee the reliability of
the experiments, this study conducted no less than 10 repeated
experimental verifications on the YOLOv7 algorithm and
YOLOV7-P algorithm on the proposed dataset. Table 2 reports
the experimental results obtained by calculating the average of
values and

the experimental when excluding the best

worst outcomes.

TABLE 2 Experimental verification of PConv module.

10.3389/fphy.2024.1404448

The experimental results in Table 2 highlight that the YOLOv7-
P algorithm demonstrated a performance increase of almost 2.5% in
mAPO.5 compared to the YOLOv7 algorithm. Additionally, the
YOLOV7-P algorithm reduced the parameter quantity by 4.5M
and FLOPs by one-fifth. Moreover, the single detection time
remained almost unchanged between the two algorithms. By
incorporating the PConv module into the YOLOv7 algorithm,
the experimental results present enhanced detection accuracy and
reduce the model’s parameter quantity and computational
complexity. This demonstrates the positive impact of the PConv
module in the YOLOv7 algorithm without affecting the single
detection time.

4.2 YOLOV7 algorithm with DyHead dynamic
detection head

In order to evaluate the performance of integrating the DyHead
dynamic detection head into the YOLOv7 algorithm (referred to as
YOLO-Head) and to determine the optimal number of layers to
embed the DyHead module, this study conducted no less than
10 repeated experimental verifications on the YOLOv7 algorithm
and YOLOv7-D algorithm. To guarantee the reliability of the
experiments, the experimental results were obtained by excluding
the best and worst outcomes and averaging the remaining values.
The detailed experimental results are presented in Table 3.

Table 3 infers that including four DyHead modules in the
YOLOvV7-D algorithm results in a performance enhancement of
around 3.1% in mAP0.5 compared to the YOLOV7 algorithm.
Additionally, the parameter quantity of the YOLOv7-D algorithm
increases by 13M, while the FLOPs computational load shows a
slight decrease. Furthermore, the detection time per image remains
almost unchanged between the two algorithms. These experimental
results demonstrate that although including the DyHead dynamic
detection head in the YOLO-Head of the YOLOV7 algorithm leads
to a relatively significant increase in parameter quantity, the FLOPs’
computational load and detection time per image experience have
insignificant changes. Moreover, the YOLOv7-D algorithm exhibits
certain improvements in detection accuracy compared to the
YOLOV7 algorithm. Thus, these findings substantiate the efficacy
of integrating the DyHead dynamic detection head with the
YOLOV7 algorithm.

4.3 YOLOvV7 algorithm with MPDioU
boundary box loss function

To assess the impact of replacing the CIoU bounding box loss
function with the MPDioU bounding box loss function on the
YOLOv7 algorithm’s performance, we compared the training

Algorithm mAPO.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)
YOLOV7 90.19 36.50 105.20 3.1
YOLOV7-P 92.53 32.00 82.96 32

Frontiers in Physics

frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1404448

Chen et al.

TABLE 3 Experimental verification of DyHead dynamic detection head.

10.3389/fphy.2024.1404448

Algorithm  Number of DyHead mAPO.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)
YOLOV7 \ 90.19 3650 105.20 3.1
YOLOv7-D 1 90.88 3927 84.73 3.1
2 91.72 4244 91.19 3.1
3 9253 46.03 97.65 32
4 93.21 4951 104.56 33
5 93.03 54.14 110.68 34
6 92.88 57.82 118.92 34

TABLE 4 Experimental verification of MPDioU boundary box loss function.

Algorithm mAPO.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)
YOLOV? 90.19 36.50 105.20 3.1
YOLOV7-M 92.85 37.22 105.20 3.4
losses of both the regular YOLOv7 and the modified YOLOv7-M  disparities between the YOLOv7 algorithm and the
algorithms. The results reveal that the training loss of the YOLOv7- ~ YOLOv7 algorithm equipped with one, two, and three

M algorithm is 0.02, while the training loss of the
YOLOv7 algorithm is 0.03. This indicates that the MPDioU
bounding box loss function is superior to the CIoU bounding
box loss function. Furthermore, to ensure the validity of the
experiments, we conducted no less than 10 repeated experiments
on the YOLOV7 algorithm and the YOLOv7-M algorithm using the
developed dataset. We calculated the average of the remaining
experimental values after excluding the best and worst results to
obtain the experimental results, with Table 4 presenting the
experimental results.

Table 4 reveals that the YOLOv7-M algorithm achieves a boost
of mAP0.5 the
YOLOv7 algorithm. Additionally, the parameter quantity of the

approximately 2.7% in compared  to
YOLOvV7-M algorithm increases by nearly 1M, but there is no
change in the FLOPs computational complexity, while the single
detection time slightly increased. Considering these results, the
YOLOv7-M algorithm model has higher detection accuracy
under almost unchanged FLOPs computational complexity and
single detection time. These results prove that the MPDioU
boundary box loss function significantly enhances the

performance of the YOLOv7 algorithm model.

4.4 Overall experiment analysis

4.4.1 Ablation experiment

This paper proposes three improvement methods, namely, the
PConv module (YOLOvV7-P), the DyHead dynamic detection head
(YOLOV7-D), and the MPDioU bounding box loss function
(YOLOV7-M). To ascertain the efficacy and enhancements of
these three methods, comparative experiments were carried out
under the same experimental settings to evaluate the performance
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enhancement methods. To guarantee the experiments’ validity,
we repeated each experiment 10 times and excluded the most
extreme results. The remaining values from the experiments were
averaged to obtain the experimental outcome, as presented
in Table 5.

Based on the findings in Table 5, the YOLOv7-PDM algorithm
exhibits a 4% enhancement in mAPO0.5 compared to the
YOLOv7 algorithm. Furthermore, the YOLOv7-PDM algorithm
has nearly 5M fewer parameters and approximately 27G FLOPs
while maintaining the same detection time for individual images.
These results suggest that the YOLOv7-PDM algorithm model
surpasses the YOLOv7 algorithm model, considering operational
and spatial complexity. Besides, the YOLOv7-PDM algorithm
model, which integrates three enhancement methods, exhibits the
highest accuracy
(mAPO.5 improvement) and significantly reduces the parameter

performance, as it enhances detection
count and computational workload without impacting the time

required for single-image detection.

4.4.2 Comparison with other mainstream object
detection models

In order to assess the effectiveness of the YOLOv7-PDM
algorithm, we carried out comparative experiments involving
eight popular detection models: YOLOv7, YOLOv6 [21],
YOLOvS [22], Deformable-DETR [23], RT-DETR [24], Faster-
RCNN [25], SSD [26], and DETR [27]
experimental configuration.

under the same
To ascertain the experiment’s
validity, a minimum of 10 repetitions of experimental training
and validation were conducted on all data results. The optimal
and worst outcomes were disregarded, and the remaining
experimental values were averaged to derive the final result. The
experimental results are reported in Table 6.
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TABLE 5 Ablation experiment comparison of three improvement methods.

10.3389/fphy.2024.1404448

Algorithm mAPO.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)
YOLOV? 90.19 36.50 105.20 3.1
YOLOV7-P 9253 32.00 82.96 32
YOLOV7-D 9321 4951 105.22 33
YOLOV7-M 92.85 3722 105.20 34
YOLOV7-PM 9278 32.00 82.96 24
YOLOV7-PD 93.62 3167 78.20 43
YOLOv7-DM 93.47 36.18 98.47 36
YOLOv7-PDM 94.19 31.67 78.20 3.1

TABLE 6 Performance comparison of nine detection models.

Algorithm mAPO.5 (%) Parameter quantity(M) FLOPs(G) Detection time per Image (ms)

YOLOv7 90.19 36.50 105.20 3.1
YOLOvV6 89.87 34.80 85.64 34
YOLOVS8 89.72 25.80 78.70 4.0
DETR 88.37 36.74 223.62 35.7
Deformable-DETR 87.98 39.83 157.35 36.2
RT-DETR 89.89 32.00 110.53 133
Faster-RCNN 8533 41.38 269.03 27.3
SSD 53.94 13.69 30.71 13
YOLOv7-PDM 94.19 31.67 78.20 3.1

According to the results in Table 6, the YOLOv7-PDM  improves detection accuracy, parameter quantity, and

algorithm  outperforms the other eight mainstream
algorithms in terms of mAPO0.5, achieving 94.19%. The
YOLOv7-PDM performs better
showing a nearly 41% improvement in mAPO0.5 while having

fewer parameters, computational FLOPs, and detection time

in detection accuracy,

per image than the SSD algorithm. This indicates a significant
advantage for YOLOv7-PDM. Compared with the Faster-
RCNN algorithm, the YOLOv7-PDM outperforms it in all
aspects, including mAPO0.5, the number of parameters,
computational FLOPs, and detection time per
Moreover, relative to other YOLO series models, the
YOLOvV7-PDM achieves the highest levels of performance in
mAPO.5, FLOPs, and detection time per image, with a slight

image.

disadvantage in the number of parameters compared to
YOLOVS8 but superior to YOLOv6. Compared with the DETR
series models, the YOLOv7-PDM performs better in mAPO0.5,
the number of parameters, computational FLOPs, and detection
time per image, validating the superiority of the proposed
YOLOv7-PDM. In the detection of regular script characters,
detection accuracy is more critical. Compared to the
YOLOv7 algorithm, the YOLOv7-PDM algorithm maintains
the same single-image detection time but substantially

Frontiers in Physics

computational FLOPs. This further validates the superiority
of the proposed YOLOvV7-PDM algorithm model in this study.
Figure 7 illustrates the detection results of the nine models.

Comparing the graphs in Figure 7 reveals that when the pen
stroke feature is small, the eight algorithm models fail to detect it
correctly. It should be noted that in this paper, the size of the target is
defined as follows, taking the commonly used dataset COCO object
definition in the field of object detection as an example: small targets
refer to objects smaller than 32 x 32 pixels, medium targets refer to
objects ranging from 32 x 32 to 96 x 96 pixels, and large targets refer
to objects larger than 96 x 96 pixels. When a single character has
many strokes, leading to smaller pen stroke features, the SSD
algorithm model fails to detect it. When there is a partial overlap
in the pen stroke features, the YOLOV6, Faster-RCNN, and DETR
algorithm models fail to detect it accurately. On the other hand, the
proposed YOLOv7-PDM algorithm model can accurately detect and
recognize most of the pen stroke features, demonstrating superior
performance in bounding box regression and higher confidence
levels compared to the YOLOv7 algorithm model. This further
proves that the YOLOv7-PDM algorithm model is the most
suitable for detecting calligraphy Kai-style characters’ pen
stroke features.
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FIGURE 7
(Continued)

4.4.3 Test of replica calligraphy regular calligrapher. The testing procedure involved extracting

script works individual characters from the two authentic copies and two

To further confirm the effectiveness of the proposed method,  imitations separately, following the method mentioned above of
tests were carried out using two genuine copies of regular script  creating the dataset. As a result, four sets of character datasets
characters and their corresponding imitations by the same  were obtained for detection. Subsequently, the regular script pen-
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FIGURE 7
(Continued)

pressure feature detection was performed on each of the four sets
of character datasets. Finally, the total number of pen-pressure
features for each category of regular script characters in the four
datasets was recorded, and the detection results are presented
in Table 7.

Frontiers in Physics 25

Table 7 highlights a significant difference in the total stroke
feature count of different categories of regular script characters
detected using the YOLOv7-PDM algorithm for the authentic and
imitation works of Shen in works one and 2. The total stroke feature
count for each category in the two authentic works is generally above
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crosswise front

FIGURE 7
(Continued). Comparison of the effects of nine algorithm models: (A) YOLOvV7; (B) YOLOV6; (C) YOLOVS; (D) DETR; (E) Deformable-DETR; (F) RT-
DETR; (G) Faster-RCNN; (H) SSD; (I) YOLOv7-PDM

200, while the total for each category in the two imitation works is ~ regular script characters. Moreover, this serves as additional
below 25. This demonstrates that the developed method efficiently  evidence supporting the efficacy of the identification method
differentiates between genuine and counterfeit works of Shen’s  introduced in this paper.
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TABLE 7 Test results of Shen’s regular script works identification.

10.3389/fphy.2024.1404448

Calligraphy Worktype Horizontalstart Horizontalend Verticalstart Vertical end Straight
angle
Works 1 Genuine 256 354 229 273 215 261
Replica 11 18 10 13 19 20
Works 2 Genuine 266 314 329 203 315 191
Replica 13 19 21 8 17 12

5 Conclusion

This paper presents an enhanced YOLOv7-PDM algorithm
model for verifying regular calligraphy script works built upon
the YOLOv7 algorithm. Specifically, to avoid the increased
complexity of the improved YOLOv7 algorithm, we replaced the
convolutional layers in the Backbone part with the PConv module.
Reducing the model’s parameter count and computational cost
(FLOPs) enhanced the algorithm’s mAPO0.5 and maintained the
same single-image detection time. Furthermore, the DyHead
dynamic detection head was introduced to enhance the detection
accuracy of the YOLOv7 algorithm as much as possible. This
improvement increased the algorithm’s recognition accuracy
without affecting the inference speed. Additionally, to improve
the regression capability of the bounding boxes in the
YOLOV7 algorithm, we incorporated the MPDioU bounding box
loss function. By further improving the overall mAP0.5 value, a
recognition accuracy of 94.19% was achieved. By comparing the
YOLOv7-PDM algorithm model with eight mainstream algorithms
including YOLOv7, YOLOv6, YOLOV8, Deformable-DETR, RT-
DETR, Faster-RCNN, SSD, and DETR, we demonstrated that the
YOLOv7-PDM algorithm achieved the best performance in terms of
mAPO0.5 and single-image detection time, accomplishing the
improvement goals of the algorithm.

When applying the YOLOv7-PDM algorithm to the authentication
of calligraphy regular script works, the genuine works and replicas can
be distinguished by comparing the detected feature quantities.
Nevertheless, there is scope for enhancing our algorithm as we
overlooked special cases like overlapping and intersecting characters
in the later stages of calligraphy cursive script works, which directly
impacted the accuracy of the model’s detection. In upcoming studies,
our main goal will be to refine the algorithm and enhance the model’s
resilience.
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The semantic segmentation of RGB-D images involves understanding objects
appearances and spatial relationships within a scene, which necessitates careful
consideration of multiple factors. In indoor scenes, the presence of diverse and
disorderly objects, coupled with illumination variations and the influence of
adjacent objects, can easily result in misclassifications of pixels, consequently
affecting the outcome of semantic segmentation. We propose a Multi-modal
Interaction and Pooling Attention Network (MIPANet) in response to these
challenges. This network is designed to exploit the interactive synergy
between RGB and depth modalities, aiming to enhance the utilization of
complementary information and improve segmentation accuracy. Specifically,
we incorporate a Multi-modal Interaction Module (MIM) into the deepest layers of
the network. This module is engineered to facilitate the fusion of RGB and depth
information, allowing for mutual enhancement and correction. Moreover, we
introduce a Pooling Attention Module (PAM) at various stages of the encoder to
enhance the features extracted by the network. The outputs of the PAMs at
different stages are selectively integrated into the decoder through a refinement
module to improve semantic segmentation performance. Experimental results
demonstrate that MIPANet outperforms existing methods on two indoor scene
datasets, NYU-Depth V2 and SUN-RGBD, by optimizing the insufficient
information interaction between different modalities in RGB-D semantic
segmentation. The source codes are available at https://github.com/
2295104718/MIPANet.

RGB-D semantic segmentation, attention mechanism, feature fusion, multi-modal
interaction, feature enhancement

1 Introduction

In recent years, Convolutional Neural Networks (CNN) have been widely used in image
semantic segmentation, and more and more high-performance models have gradually
replaced the traditional semantic segmentation methods. With the introduction of Fully
Convolutional Neural Networks (FCN) [1, 2], which has shown great potential in semantic
segmentation tasks, many researchers have proposed improved semantic segmentation
models based on this way.

The advent of depth sensors and cameras [3] has expanded image research from RGB
colour images to RGB-Depth (RGB-D) images, which include depth information. RGB
images provide details of object appearance, such as colour and texture, while depth images
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Overall architecture of the proposed network is outlined as follows: Each PAM-R or PAM-D across various levels of the network shares an \dent\cal

configuration but implements distinct operations on tvvo separate branches, yielding RGB and depth features. There are represented as FRGB and F,

Dep

After performing an element-wise sum, we obtain FCom where n md\catmg the network level. The MIM processes RGB and depth features
obtained from the ResNetlLayer4 and integrates the fusion result F, into the decoder.

contribute essential three-dimensional geometry information absent
in RGB images, which is particularly valuable for indoor scene
analysis. The fusion of these two modalities of image information
would contribute to enhancing the accuracy of indoor scene
semantic segmentations. [4, 5] directly concatenated RGB and
depth features to create a four-channel input, resulting in
improved semantic segmentation accuracy. [6] converted depth
images into three channels to an HHA image which consisted of
the horizontal disparity, height above ground, and angle of surface
normals. Subsequently, RGB features and HHA features are fed into
parallel CNNs to predict probability maps for two separate semantic
segmentation. These feature maps were then fused in the final layer
of the network to produce the ultimate segmentation result. Park
et al. [7] and Lee et al.[8] fused the RGB features and depth features
through a concatenation process. Eigen et al. [9] and Wangetal. [10]
merged the RGB and depth features through directly summation.
These methods fail to fully utilize the complementary information
between modalities by simply summing or concatenating RGB and
depth features. Shu, Li and Bai et al. [11-15] mapped text and image
data to a common hash space and facilitated the interaction of
information between text and images, which enhanced the
performance of cross-modal retrieval. Yang et al. [16] adopted
different enhancement mechanisms for RGB data and depth data,
including pixel difference convolution techniques, to more
effectively handle depth information. Zhao et al. [17] proposed to
coordinate attention and cross-modal attention mechanisms,
achieving efficient fusion of RGB and depth features and
enhancing cross-modal information exchange. Yang et al. [18]
In the
initial stage, the network focuses on rough localization and

developed a dual-stage refinement network (DRNet).
feature extraction, while in the advanced stage, it concentrates on

feature refinement and precise segmentation. This architecture
enables more effective object boundary recovery and definition in
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complex scenes, thereby improving the accuracy of semantic
segmentation. These methods are more effective. However, they
use similar or identical operations for extracting RGB and depth
features, which does not fully consider the modal differences
between RGB and depth images. Moreover, they overlook the
interaction between modalities, failing to maximize the
complementary nature of the information from different modalities.

To solve the above problems, we propose a Multi-modal
Interaction and Pooling Attention Network (MIPANet) for RGB-
D semantic segmentation of indoor scenes, as illustrated in Figure 1.
The proposed network adopts an encoder-decoder architecture,
including two innovative modules: the Multi-modal Interaction
Module (MIM) and the Pooling Attention Module (PAM). The
encoder is composed of two identical CNN branches, used for
extracting RGB features and depth features, respectively. In this
study, RGB and depth features are incrementally extracted and fused
across various network levels, utilizing spatial disparities and
semantic correlations between multimodal features to optimize
semantic segmentation results. In the PAM, we employ different
feature enhancement strategies for RGB features and depth features.
For RGB features, we use global average pooling to make the
network focus on the spatial location information of RGB
features. For depth features, we employ a two-step pooling
operation to replace the global average pooling, aiming to guide
the network during depth feature extraction to focus on the most
salient parts in each channel. This allows the network to emphasize
feature channels containing contours, edge information, and others,
thereby enhancing feature representation. Meanwhile, it enables
flexible adjustment of the output size and mitigates the impact of
large outliers on the results. In the MIM, through cross-modal
attention, we enable the RGB features and depth features to learn
different information from each other, thereby reducing the
disparity between the two modalities and enhancing their
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interaction. In the upsampling stage, we design a refinement module
(RM) to refine the output of the PAM. This operation enriches the
information of the fused features, thereby improving the accuracy of
segmentation. The main contributions of this work can be
summarized as follows:

(1) We propose an end-to-end multi-modal fusion network,
MIPANet,
pooling attention. This method significantly enhances the

incorporating multi-modal interaction and
feature representation of RGB and depth features, effectively
focusing on regions with adjacent objects and object overlap
regions in the image. Moreover, the proposed method
enhances the interaction between RGB and depth features,
reduces the feature disparity between modalities, enriches the
fused features, and improves semantic segmentation
performance.

We design the MIM and PAM. Within the MIM, a cross-

modal feature

—
58
~

interaction and fusion mechanism is
developed. RGB and depth features are collaboratively
optimized using attention maps to extract partially detailed
features. In addition, the PAM augments the extraction of
RGB and depth features through distinct operations, acting as
an essential supplement of information in the decoder. It
facilitates feature upsampling and restoration via the RM
module, ensuring a comprehensive enhancement and
integration of critical details for accurate segmentation.

€

~

Experimental results confirm the effectiveness of our
proposed RGB-D
accurately handling indoor images in complex scenarios.

semantic segmentation network in

The proposed model demonstrates superior semantic
segmentation performance compared to other methods on
the publicly available NYU-Depth V2 and SUN RGB-D
datasets. The visualization results demonstrate that our
method focuses more effectively on regions of the image
where neighbouring objects may be similar and overlap
between objects, resulting in more accurate segmentation
outcomes in these regions.

2 Related works
2.1 RGB-D semantic segmentation

With the widespread application of depth sensors and depth
cameras in the field of depth estimation [19-21], people can obtain
the depth information of the scene more conveniently, and the
research on the image is no longer limited to a single RGB image.
The RGB-D semantic segmentation task is to effectively integrate
RGB features and depth features to improve segmentation accuracy,
especially in some indoor scenes. He et al. [4] proposed an early
fusion approach, which simply concatenates an image’s RGB and
depth channels as a four-channel input to the convolutional neural
network. Gupta et al. [6] separately input RGB features and HHA
features into two CNNs for prediction and perform fusion in the
final stage of the network, and Hazirbas et al. [22] introduced an
encoding-decoding network, employing a dual-branch RGB encoder
to extract features separately from RGB images and depth images.
The studies mentioned above employed equal-weight concatenation
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or summation operations to fuse RGB and depth features without
fully leveraging the complementary information between different
modalities. In recent years, some research has proposed more
effective strategies for RGB-D feature fusion. Hu et al. [23]
utilized a three-branch encoder that includes RGB, Depth, and
Fusion branches, efficiently collecting features without breaking
the original RGB and deep inference branches. Seichter et al. [24]
have presented an efficient RGB-D segmentation approach,
characterised by two enhanced ResNet-based encoders utilising
an attention-based fusion for incorporating depth information.
Fu et al. [25] proposed a joint learning module that learns
simultaneously from RGB and depth maps through a shared
network, enhancing the model’s generalization ability. Fu et al.
[25] proposed a joint learning module that learns simultaneously
from RGB and depth maps through a shared network, enhancing the
model’s generalization ability. Zhang et al. [26] proposed a multi-
task shared tube structure that aggregates multi-task features into
the decoder, improving the learning results for each task. Chen et al.
[27] proposed the S-Conv operator, which introduces spatial
information to guide the weights of the convolution kernel,
thereby adjusting the receptive field, enhancing geometric
perception capabilities, and improving segmentation results. Our
MIPANet implements a dual-branch convolutional network that
performs distinct operations in the middle and final layers of the
network to fully utilize the complementary information of different
modalities.

2.2 Attention mechanism

In recent years, attention [28-34] has been widely used in
computer vision and other fields. Vaswani et al. [28] proposed
the self-attention mechanism, which has had a profound impact on
the design of the deep learning model. Fu et al. [30] proposed
DANet, which can adaptively integrate local features and their global
dependencies. Wang et al. [35] utilized spatial attention in an image
Through the backpropagation of a
convolutional neural network, they adaptively learned spatial

classification model.

attention masks, allowing the model to focus on the significant
regions of the image. Hu et al. [36] proposed channel attention,
which adaptively learns the importance of each feature channel
through a neural network. Woo et al. [33] incorporated two
attention modules that concurrently capture channel-wise and
spatial  relationships. Wang [37]
straightforward and efficient “local” channel attention mechanism

et al introduced a
to minimize computational overhead. Qiao et al. [38] introduced a
multi-frequency domain attention module to capture information
across different frequency domains. Similarly, Ding et al. [39]
proposed a contrastive attention module designed to amplify
local saliency. Building upon this foundation, Huang et al. [40]
proposed a cross-attention module that consolidates contextual
information both horizontally and vertically, which can gather
contextual information from all pixels. These methods have
demonstrated significant potential in single-modality feature
extraction. To effectively leverage the complementary information
between different modalities, this paper introduces a pooling
attention module that learns the differential information between

two distinct modalities and fully exploits the intermediate-level
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features in the convolutional network and the semantic

dependencies between modalities.

2.3 Cross-modal interaction

With the development of sensor technology, different types of
sensors can provide a variety of modal information for semantic
segmentation tasks. The information interaction between RGB and
other modalities can improve the performance of multimodal tasks
[21, 41-48]. Specifically, Li et al. [21, 41, 42], and Xiao et al. [44]
improved the quality of infrared and visible image fusion through
cross-modal interaction between RGB image and infrared image.
Xiang et al. [45] used a single-shot polarization sensor to build the
first RGB-P dataset, incorporated polarization sensing to obtain
supplementary information, and improved the accuracy of
those  with
polarization characteristics, such as glass. Shen et al. [46]

segmentation for many categories, especially
proposed a novel pyramid graph network targeting features,
which is closely connected behind the backbone network to
explore multi-scale spatial structural features. Shen et al. [47]
proposed a structure where graphs and transformers interact
constantly, enabling close collaboration between global and local
features for vehicle re-identification. Zhuang et al. [48] proposed a
network consisting of a two-streams (LiDAR stream and camera
stream), which extract features from two modes respectively to
realize information interaction between RGB and LIDAR modes.
In the task of brain tumor image segmentation, Zhu et al. [49]
proposed a new architecture that included an improved Swin
Transformer semantic segmentation module, an edge detection
module, and a feature fusion module. This design effectively
merged deep semantic and edge features, leveraging multi-modal
information to integrate global spatial data. Furthermore, Zhu et al.
[50] introduced the SDV-TUNet, a model that enriched the
network’s capacity to handle information by utilizing multi-
modal MRI data. They also introduced a multi-level edge feature
fusion (MEFF) module, emphasizing the importance of edge
information at different levels, which significantly enhanced the
precision and efficiency of 3D brain tumor segmentation. Liu et al.
[51, 52], fused multi-modal magnetic resonance imaging (MRI)
using an adversarial learning framework, treating image fusion as an
additional regularization method to aid feature learning, effectively
the model’s
segmentation performance. Therefore, to fully exploit the features

integrating multi-modal features to enhance
of RGB and Depth images, we advocate for information exchange
between these two modalities to leverage their complementary
information, thereby enhancing the performance of RGB-D

semantic segmentation models.

3 Methods
3.1 Overview

Figure 1 depicts the overall structure of the proposed network.
The architecture follows an encoder-decoder design, employing skip
connections to facilitate information flow between encoding and
decoding The encoder dual-branch

layers. comprises a
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convolutional network, which is used to extract RGB features
and  depth  features. =~ We  utilize two  pre-trained
ResNet50 networks as the backbone, which exclude the final
global average pooling layer
Subsequently, a decoder is employed to upsample the features
and integrate them, progressively restoring image resolution.

and fully connected layers.

3.2 Network structure

Given a RGB image Ipgp € R"®3 and a Depth image
Ipep € RP®x1 3 % 3 convolution is used to extract them shallow
features Fogp and FY, p» Which can be expressed as Eqs 1 and 2:

FORGB = Conviys (Irgn)» (1)

F‘l’)ep = Conv3X3(IDep), 2

where Convs , 3 denotes 3 x 3 convolution.

The network mainly consists of a four-layer encoder-decoder
and introduces two designed modules: MIM and PAM. PAM
implements different operations on RGB and depth branches,
named PAM-R and PAM-D, respectively. PAM-R refers to PAM
in the RGB branch, while PAM-D refers to the PAM in the depth
branch. Each layer of the encoder is a ResNetLayer. After F) passing
through the ResNetLayer, F! is obtained, the nth layer of the encoder
can be expressed as Eq. 3:

F} = H] (F™"), ®)

where H} (n =1, 2, 3, 4) represents the nth ResNetLayer, i € {RGB,
Dep} denotes the RGB feature or Depth feature. Specifically, the
RGB features and depth features of the first three layers in the
ResNet encoder are fed into the PAM. PAM enhances features by
performing different operations on RGB features and depth
2, 3.
Subsequently, the two features are combined by element-wise

features, resulting in Fps, and F"Dep, where n = 1,

addition to obtain F, containing rich spatial location
information. Furthermore, the final RGB and depth features
from the ResNetLayer4 encoder are fed into the MIM to
capture complementary information within these two
modalities. The output features of the MIM are then fed into
the decoder, where each upsampling layer consists of two 3 x 3
convolutional layers. These layers are followed by batch
normalization (BN) and ReLU activation, with each upsampling
layer doubling the feature spatial dimensions while halving the
number of channels.

3.3 Pooling attention module

Within the low-level features extracted by the convolutional
neural network, we capture the fundamental attributes of the input
image. These low-level features are critical in modelling the image’s
they lack
information from the deep-level neural network, such as object

foundational characteristics. However, semantic
shapes and categories. At the same time, during the upsampling
process in the decoding layer, there is a risk of losing certain
semantic information as the image resolution increases. To

address this issue, we introduce the Pooling Attention Module
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Structure of PAM in the RGB branch, referred to as PAM-R. Given an input feature Fj., it is first processed through an average pooling operation to
obtain P. Subsequently, P undergoes a sigmoid activation to produce P'. The activated feature P’ is then element-wise product with the original input
feature Figg to yield a preliminary result, which is further added to the initial feature Fjz to generate the final output F;GB.

Saa¥

® Element-wise product

\% ~
—_— -, @ 7
= lConQ—b@— ‘C () Sigmoid
) 1 1 @ Element-wise sum
C

FIGURE 3
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Dep

Structure of PAM in the depth branch, referred to as PAM-D. The input feature Fgep first passes through an adaptive pooling operation, resulting in A.
This is followed by a max pooling operation to produce A’. The output A’ then goes through a 1 x 1 convolution and a sigmoid activation to yield the

weight vector V (e.g., yellow) between 0 and 1. This V is element-wise product with the original feature F},

Fgep to produce the final output F'gep.

(PAM). For RGB features, we utilize average pooling to average the
information across all channels at each spatial location. This method
highlights the importance of each position, aiding in the better
capture of key spatial features such as edges and textures. For depth
features, we opt for max pooling, which accentuates the most
significant signals within each channel. This effectively enhances
the model’s response to crucial depth information while suppressing
less important channels. This approach allows us to more precisely
identify and emphasize important features in the depth map, thus
improving the overall segmentation accuracy. In the decoding layer,
the output from the PAM is first processed by the Refinement
Module (RM), effectively compensating for information loss during
the upsampling process, and increasing the network’s attention to
specific areas. This strategy improves the accuracy of segmentation
results and efficiently maintains the integrity of semantic
information. The structure of the PAM in RGB and depth
branches are shown in Figures 2, 3, respectively.

The input feature Fli;; € R denotes the RGB feature passes
through average pooling to reduce the number of channels in the
feature map, which can be expressed as Eq. 4:
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Dbep- @nd the product is subsequently added to

P =Hgy, (F;GB)’ (4)

where P € RPwx!

information across all channels at each position. H,,, denotes the

represents the feature map that has aggregated the

global average pooling operation. h, w represent the height and
width of the feature map. Then we get the weight vector P' € RP¥X!
by sigmoid activation, which can be expressed as Eq. 5:

P’ = Sigmoid (P), (5)

Then, we perform an Element-wise product for Fj . and P, and
the result Fy, can be expressed as Eq. 6:

Fres = Frgs + (Figs ® P'), (6)
where ® denotes the Element-wise product. Through the PAM in the
RGB branch, the original feature map, after being weighted by
spatial attention, is enhanced at important spatial locations, while
less important locations are relatively suppressed, thus enabling the
network to focus more on spatial regions that are useful for semantic
segmentation.
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FIGURE 4

Structure of the MIM. The RGB feature and the depth feature undergo linear transformations to generate two sets of Q, K, V (e.g., blue line) for multi-
head attention, where h denotes the number of attention heads set to 8. The weighted summation of input features Fa, and Féep yields Fpgg and Fp,,,

which are then element-wise added to obtain the output result Fg,,.

The input feature Fp,, € R™@*¢ denotes the Depth feature
passes through adaptive average pooling to reduce the feature
map to a smaller dimension, which can be expressed as Eq. 7:

A = Hoaa(Fp,, ), )

where A € RFxw¢ represents the feature map that has been resized
by adaptive averaging pooling, H,,, denotes the adaptive average
pooling operation. h', w' represent the height and width of the
output feature map, which we set i’ = 2 and w' = 2. Then, we get the
output features A’ by max pooling the features after dimensionality
reduction, which can be expressed as Eq. 8:

A' = Hppor (A), (8)

where A’ € R” represents the pooling result and then A’
undergoes a 1 x 1 convolution and then activation with the
sigmoid function, getting a weight vector V € RV value
between 0 and 1. H, denotes the max pooling operation.
Finally, we perform an Element-wise product for F},, and V,

~ Dep
and the result F},  can be expressed as Eqs 9, 10:

Dep
V = Sigmoid (©(A")), 9)
Fp,, = Fp, +(Fp, ® V), (10)

where ® denotes the Element-wise product, @ denotes 1 x 1
convolution. The PAM in the depth branch makes the network
pay more attention to local regions in the image, such as objects near
the background in the scene. Meanwhile, adaptive average pooling
can enhance the module’s flexibility, accommodating diverse input
feature map dimensions and fully retaining spatial position
information in depth features. I:“gon in Figure 1 can be expressed
as Eq. 11:

n

ﬁgon :ﬁRGB+ﬁDEp’ (11)

During the upsampling process, Fgon
the decoder.

(n =1, 2, 3) is fed into
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3.4 Multi-modal interaction module

When adjacent objects in an image share similar appearances,
distinguishing their categories becomes challenging. Factors such as
lighting variations and object overlap, especially in the corners, can lead
to their blending with the background. This complexity makes it
difficult to precisely identify object edges, leading to misclassification
of the object as part of the background. Depth information remains
unaffected by lighting conditions and can accurately differentiate
between objects and the background based on depth values.
Therefore, we design the MIM to supplement RGB information with
Depth features. Meanwhile, it utilizes RGB features to strengthen the
correlation between RGB and depth features. Depth features excel in
capturing object contours and edge information, compensating for the
spatial depth information that RGB features lack. Conversely, RGB
features play a crucial role in compensating for the deficiencies in depth
features, particularly in aspects such as color and texture, thereby
enriching the information content of depth features.

MIM achieves dual-mode feature fusion, as depicted in Figure 4.
Here, Fjg, € R™ and F},,, € R"“ correspond to the RGB
feature and depth feature from the ResNetLayer4. The feature

« »

channels are denoted as “c”, and their spatial dimensions are h x
w. First, the two feature maps are linearly mapped to generate multi-
head query(Q), key(K), and value(V) vectors. Here, “rgb” and “dep”
represent the RGB and depth features. These linear mappings are
accomplished via fully connected layers, where each attention head
possesses its unique weight matrix. For each attention head, we
calculate the dot product between two sets of Q and K and then
normalize the results to a range between 0 and 1 using the softmax
function to get the attention maps W,g, and Wy, which can be
expressed as Eqs 12, 13:

oK),
W = Softmax(%ﬁ) (12)
QdepKz: b)
W, = So ftmax| —=—2 (13)
dep f ( \/ak
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Design of the Refinement Module: following a 1 X 1 convolution, BatchNorm, and ReLU activation function, the feature map F’
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utilizing a self-attention operation, the weighted feature I:'Zm is derived, enhancing the module’s ability to focus on salient aspects of the input.

where dj. represents the dimensionality of the K vector. Then, we
calculate the RGB weighted feature Frgp and the depth weighted
feature Fp,p, and the final output features F}iGB and I~:4DZP
obtained through a residual connection, which can be expressed

as Eqs 14, 15:

are

ﬁRGB = Wrgb ® Vrgb (14)

Fres =FRGB+F4RGB (15)

where Frgp represents the RGB weighted feature, V,;, represents the
value vector from the RGB feature, multiplying with weight matrix
Wi IE;GB represents the RGB feature after the fusion with depth
feature. Likewise, we get the Eqs 16, 17:

ﬁDep = Wdep ® Vdep (16)
4 ~
FDep :FD€P+FZ£ep (17)

where Fp,, represents the depth weighted feature, V,,, represents
the value vector from the Depth feature, multiplying with weight
matrix W, l:"4Dep represents the depth feature after the fusion with
RGB feature, ® represents the Element-wise product. Finally, we can
obtain the MIM output through Element-wise sum, which can be
expressed as Eq. 18:

~4 ~4

~4
Fep = Frop + Fpyp (18)

Con

3.5 Refinement module

RGB features provide rich colour and texture information, while
depth features provide spatial and shape information. The fusion of
these two types of features can help the network to understand the
scene more comprehensively. However, due to the differences
between the two modalities, simple addition might introduce
some noise, affecting the segmentation results. To address this
issue, we propose a Refinement Module (RM) that, through a

Frontiers in Physics

CBR structure (Convolution; Batch Normalization; ReLU), allows
the network to adaptively re-extract and optimize the fused features,
filtering out unnecessary information and retaining features that are
more useful for semantic segmentation. Moreover, by utilizing self-
attention, the global information of the features is enhanced,
enabling a better understanding of the global structure of the
input features, thereby improving performance. The structure of
the RM is shown in Figure 5.

As shown in Figure 5, Fgon is processed by the CBR operation to
generate F'z,, which can be expressed as Eq. 19:

F'¢,, = CBR(F,,) (19)
where n = 1, 2, 3. CBR represents a 1 x 1 convolution followed by
Batch Normalization and ReLU activate function. Then, F’Zon is
linearly mapped to generate query(Q), key(K), and value(V) vectors.
Through a self-attention module, the final output result is generated,
which can be expressed as Eq. 20:

. K" ~n
F.,, = Softmax(?/a > ®V+F,,
k

(20)

RM further extracts and refines the fused features to enhance the
feature representation, and IEZM is fed into the decoder.

3.6 Loss function

In this paper, the network performs supervised learning on four
different levels of decoding features. We employ nearest-neighbor
interpolation to reduce the resolution of semantic labels.
Additionally, 1 x 1 convolutions and Softmax functions are
utilized to compute the classification probability for each pixel
within the output features from the four upsample layers,
respectively. The loss function £; of layer i is the pixel-level cross
entropy loss, which can be expressed as Eq. 21:

L= Y (pa)log(Y' () @

X
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where N; denotes the number of pixels in layer i. p, q represent the
coordinate positions of each pixel in the image. Specifically, p refers
to the row coordinate of the pixel, while q refers to the column
coordinate. Y is the classification probability of the output, and Y is
the label category. The final loss function £ of the network is
obtained by summing the pixel-level loss functions of the four
decoding layers, which can be expressed as Eq. 22:

L=)L (22)

i=1

By optimizing the above loss function, the network can get the
final segmentation result.

4 Experimental results and analysis
4.1 Experimental setup

NYU-Depth V2 dataset [53] and SUN RGB-D dataset [54] are
used to evaluate the proposed method. NYU-Depth V2 dataset is a
widely used indoor scene understanding dataset for computer vision
and deep learning research. It is an aggregation of video sequences
from various indoor scenes recorded by RGB-D cameras from the
Microsoft Kinect and is an updated version of the NYU-Depth
dataset published by Nathan Silberman and Rob Fergus in 2011. Tt
contains 1,449 RGB-D images, depth images, and semantic tags in
the indoor environment. The dataset includes different indoor
scenes, scene types, and unlabeled frames, and each object can be
represented by a class and an instance number. SUN RGB-D dataset
contains image samples from multiple scenes, covering various
indoor scenes such as offices, bedrooms, and living rooms. It has
37 categories and contains 10,335 RGB-D images with pixel-level
annotations, of which 5,285 are used as training images and
5,050 are used as test images. This special dataset is captured by
four different sensors: Intel RealSence, Asus Xtion, Kinect v1, and
v2. Besides, this densely annotated dataset includes 146,617 2D
polygons, 64,595 3D bounding boxes with accurate object
orientations, and a 3D room layout as well as an imaged-based
scene category.

We evaluate the results using two standard metrics, Pixel
Accuracy (Pix. Acc) and Mean Intersection Over Union (mIoU).
Pix. Acc refers to pixel accuracy, which is the simplest metric that
represents the proportion of correctly labelled pixels to the total
number of pixels, which can be expressed as Eq. 23:

Yropi .
Zf:o Z'}:oP ij

where p; means to predict the correct value, and p;; means to predict

Pix.Acc = (23)

ito j. k represents the number of categories. In addition, Intersection
over Union (IoU) is a measure of semantic segmentation, where the
IoU ratio of a class is the ratio of the ToU of its true labels and
predicted values, while mIoU is the average IoU ratio of each class in
the dataset, which can be expressed as Eq. 24:

R Dii
mloU = X (24)
k+1 ; YioPis + XyoPsi — Pi
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TABLE 1 MIPANet compared to the state-of-the-art methods on the NYU-
Depth V2 dataset.

Method Backbone mloU (%)  Pix.Acc (%)
ESANet ResNet18 48.2 —
IEMNet Res34NBt1D 51.3 76.8

SGACNet 2 x Res34NBt1D 494 75.6
Z-ACN ResNet50 50.0 —
DynMM ResNet50 51.0 —
RDFNet 2 x ResNet50 47.7 74.8
RAFNet 2 x ResNet50 47.5 73.8
SA-Gate 2 x ResNet50 50.4 —
ESANet 2 x ResNet50 50.5 —
RedNet 2 x ResNet50 47.2 —
ACNet 3 x ResNet50 48.3 —
SGNet ResNet101 49.6 75.6
RDFNet 2 x ResNet101 49.1 75.6

ShapeConv ResNet101 51.3 76.4
Baseline 2 x ResNet50 474 75.1

Ours (MIPANet) 2 x ResNet50 52.3 77.6

The bold values mean the highest results.

TABLE 2 MIPANet compared to the state-of-the-art methods on the SUN
RGB-D dataset.

Method Backbone mloU (%)  Pix.Acc (%)
IEMNet Res34NBt1D 48.3 81.9
EMSANet 2 x Res34NBt1D 48.5 —
RAFNet 2 x ResNet50 47.2 81.3
ESANet 2 x ResNet50 48.3 —
RedNet 2 x ResNet50 47.8 81.3
ACNet 3 x ResNet50 48.1 —
SGNet ResNet101 47.1 81.0
CANet ResNet101 48.3 82.0
RDFNet ResNet101 48.2 823
ShapeConv ResNet101 48.6 822
RDFNet 2 x ResNet152 47.7 81.5
Baseline 2 x ResNet50 45.5 81.1
Ours (MIPANet) 2 x ResNet50 49.1 82.5

The bold values mean the highest results.

where p;; represents the predict i as j, and pj; represents the predict j
as i, p;; means to predict the correct value, k represents the number of
categories.

We implement and train our proposed network using the
PyTorch framework. To enhance the diversity of the training
data, we apply random scaling and mirroring. Subsequently, all
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Depth

Baseline

FIGURE 6
Visual comparisons on the NYU-Depth V2 dataset.

RGB and depth images are resized to 480 x 480 for network inputs,
and semantic labels are adjusted to sizes of 480 x 480, 240 x 240,
120 x 120, and 60 x 60 for deep supervision training. As the
backbone for our encoder, we utilize the ResNet50 pre-trained
[55] on the ImageNet dataset [56]. Our baseline model uses two
branches as encoders to extract RGB and depth features,
respectively, while excluding the PAM during the extraction
process. Each branch is composed of four ResNet50 layers. In the
final layer of the network, RGB and depth features are merged by
element-wise addition, without employing the MIM. The output of
element-wise addition is then used as input to the encoder for
upsampling operations, resulting in the final segmentation result. To
refine the network structure, following [57-59], we adjust it by
replacing the 7 x 7 convolution in the input stem with three
consecutive 3 x 3 convolutions. The training is conducted on an
NVIDIA GeForce GTX 3090 GPU using stochastic gradient descent
optimization. Parameters are set with a batch size of 6, an initial
learning rate of 0.003, 500 epochs, and momentum and weight decay
values of 0.9 and 0.0005, respectively.

4.2 Quantitative experimental results on
NYU-Depth V2 and SUN RGB-D datasets

To validate the effectiveness of the proposed model in this paper,
we compare the proposed method with state-of-the-arts methods

Frontiers in Physics

ESANet Ground Truth

(ESANet [24], IEMNet [60], SGACNet [61], Z-ACN [62], DynMM
[63], RDFNet [7], RAFNet [64], SA-Gate [65], RedNet [8], ACNet
[23], SGNet [27], ShapeConv [66]) on the NYU-Depth V2 dataset.
For a fair comparison, we compare our method with others using the
ResNet architecture, which employ ResNet with varying depths and
quantities.

Table 1 illustrates our superior performance regarding mloU
and Acc metrics compared to other methods. Specifically, with
ResNet50 serving as the encoder in our network, the Pix. Acc
and mloU for semantic segmentation on the NYU-Depth V2 test
set reached 77.6% and 52.3%. For example, our method improved
the mIoU by 4.9% compared to the baseline method. Compared to
the runner-up method DynMMXue and Marculescu (2023), which
also employs ResNet50, our method achieved a 1.3% improvement.
Similarly, compared to the suboptimal method ShapeConvCao et al.
(2021), which uses the deeper ResNet101, our method achieved a
1.0% improvement. Our method achieves better results on networks
with ResNet50 as the backbone than some methods with
ResNet101 as the backbone, showcasing the effectiveness of our
carefully designed network structure.

Then, we compare the proposed method with state-of-the-
arts methods (IEMNet [60], EMSANet [67], RAFNet [64],
ESANet [24], RedNet [8], ACNet [23], SGNet [27], CANet
[68], RDENet [7], ShapeConv [66]) on the SUN RGB-D
dataset. As depicted in Table 2, our approach consistently
achieves a higher mIoU score on the SUN RGB-D dataset
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FIGURE 7
Visual comparisons on the SUN RGB-D dataset.

Baseline Result Baseline CAM MIPA Result MIPA CAM

FIGURE 8
Images from left to right represent (A) the RGB image, (B) the segmentation result of Baseline, (C) CAM of Baseline, (D) the segmentation results of
MIPANet (Ours) and (E) CAM of MIPANet. The red box indicates the prominent areas of effect.
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TABLE 3 Ablation studies on NYU-Depth V2 dataset for PAM, MIM and RM.

Method mloU (%)  Pix.Acc (%)
ResNet50 (Baseline) 474 75.1
ResNet50 + PAM 48.9 76.0
ResNet50 + PAM + RM 49.5 76.0
ResNet50 + MIM 51.1 77.0
ResNet50 + PAM + MIM 51.9 77.2
ResNet50 + PAM + MIM + RM (Ours) 52.3 77.6

TABLE 4 Ablation studies on SUN RGB-D dataset for PAM, MIM and RM.

Method mloU (%)  Pix.Acc (%)
ResNet50 (Baseline) 455 81.1
ResNet50 + PAM 47.9 81.3
ResNet50 + PAM + RM 48.1 81.3
ResNet50 + MIM 48.3 81.5
ResNet50 + PAM + MIM 48.8 82.3
ResNet50 + PAM + MIM + RM (Ours) 49.1 82.5

TABLE 5 Performance comparison of the different methods on the number
of model parameters, FLOPs and testing time.

Models Parameter(M) FLOPs(G) Time (ms)
ACNet 116.6 126.3 45.0
RedNet 82.0 101.8 34.7
RDFNet 443.8 648.7 71.9
SA-Gate 110.6 176.5 53.1

MIPANet 360.0 634.2 624

than all other methods. For example, our method improved the
mloU by 3.6% compared to the baseline method. Compared to
the suboptimal method ESANet [24], which also employs
ResNet50, our method achieved a 0.8%
Similarly, compared to the suboptimal method ShapeConv
[66], which uses the deeper ResNet101, our method achieved
a 0.5% This observation underscores our
module’s ability to maintain superior segmentation accuracy,
even when dealing with the extensive SUN RGB-D dataset.

improvement.

improvement.

4.3 Visualization results on NYU-Depth
V2 and SUN RGB-D datasets

To visually highlight the advancements made by our method, we
provide visualization results of the network on the NYU-Depth
V2 dataset and SUN RGB-D datasets, as shown in Figures 6, 7. From
left to right, the RGB image, the Depth image, the baseline model
results with ResNet50 backbone, ACNet, ESANet, MIPANet (Ours),
and Ground Truth.
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As shown in Figure 6, compared to the baseline, our method
significantly improve segmentation results. Notably, the dashed box
in the figure showcases our network enrich with depth information
accurately distinguishes objects from the background. For instance,
in the visualization results of the fourth image, the baseline
erroneously categorizes the mirror on the wall as part of the
background, in the visualization results of the second image, the
ACNet and the ESANet mistook the carpet for a part of the floor. In
contrast, leveraging depth information, our network discerns the
distinct distance information of the mirror from the background,
leading to a correct classification of the mirror. The proposed
method has achieved precise segmentation outcomes in diverse
and intricate indoor scenes. Moreover, it excels in segmenting
challenging objects like “carpets” and “books” while delivering
finer-edge segmentation results.

As shown in Figure 7, our method also achieve better
experimental results on the SUN RGB-D dataset. For example, in
the second row of Figure 7, the toilet and wall share a similar white
color and partially overlap in position, making it difficult for the
network to distinguish between them accurately. Compared to other
methods, our MIPA approach demonstrates superior effectiveness
in segmenting toilet. In the third row of Figure 7, our method
accurately segments the power switch on the wall, further
demonstrating its effectiveness.

Furthermore, we verify the effectiveness of our method by providing
visualization results of class activation mapping (CAM). These
visualizations demonstrate that MIPANet effectively focuses on
regions containing adjacent or overlapping objects. As shown in
Figure 8, compared to the baseline cam Figure 8C, the more
prominent red areas in image Figure 8E indicate that our method
focuses more on specific regions. For example, in the first row, the
adjacent pillow and headboard are highlighted. In the second row, the
trash can overlaps with the wall and has a similar color, the computer is
close to the tabletop. In the third row, the paper is attached to the
refrigerator and cabinet. The network’s attention to these areas increased,
compared to the baseline segmentation result in Figure 8B, our method
achieves more accurate segmentation results, as shown in Figure 8D. The
visualization results indicate that our method better focuses on adjacent
and overlapping objects in the image.

4.4 Ablation study

To investigate the impact of different modules on segmentation
performance, we conduct ablation experiments on NYU-Depth V2 and
SUN-RGBD datasets, as depicted in Tables 3, 4. For instance, in NYU-
Depth V2, our PAM module exhibit a superiority of 1.5% and 0.9% over
the baseline concerning mIoU and Pix. Acc indicators. Similarly, our
MIM module demonstrate a superiority of 3.7% and 1.9% over the
baseline regarding mIoU and Pix. Acc. Additionally, the inclusion of the
RM has further improved the performance of the module. The result
suggests that each proposed module can independently enhance
segmentation accuracy. Our module surpasses the baseline in fusing
cross-modal features, yielding superior results on both datasets. Using
PAM, MIM and RM modules, we achieve the highest mIoU of 52.3% on
the NYU-Depth V2 dataset and the highest mIoU of 49.1% on the SUN
RGB-D dataset. The result highlights that our designed modules can be
collectively optimized to enhance segmentation accuracy.
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4.5 Computational complexity analysis

In this section, we analyze the computational complexity of the
different methods from three aspects: the number of model parameters,
FLOPs, the time required for testing. The results are listed in Table 5. For
the evaluation of computational complexity, the size of the input images
is standardized to 480 x 640 pixels. The test time is the time taken to
process one pair of RGB and depth images. As shown in Table 5, the
parameter quantity and FLOPs of our model are moderate. However,
compared to the comparison methods, our approach achieves the
highest mIoU and exhibits the most visually appealing results.

5 Conclusion

In this paper, we tackle a fundamental challenge in RGB-D
semantic segmentation—efficiently fusing features from two
modalities. We multi-modal
interaction and pooling attention network, which uses a small and
flexible PAM module in the shallow layer of the network to enhance

the feature extraction capability of the network and uses a MIM

distinct design an innovative

module in the last layer of the network to integrate RGB features and
depth features effectively and then we design a RM during the
upsampling stage for feature refinement. The network increases its
focus on areas with more potential adjacent objects and overlaps,
leading to improvement in the accuracy of RGB-D semantic
segmentation. However, due to the attention mechanism adopted
by our proposed network, the computational complexity of the
network is relatively high. In future research, we will further
optimize the network structure to reduce its computational
complexity. In addition, we expect to further improve the accuracy
of RGB-D segmentation by integrating multiple tasks such as depth
estimation and semantic segmentation into a unified framework.

References

1. Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic
segmentation. IEEE Trans Pattern Anal Machine Intelligence (2017) 39:640-51.
doi:10.1109/tpami.2016.2572683

2. Li M, Wei M, He X, Shen F. Enhancing part features via contrastive attention
module for vehicle re-identification. In: 2022 IEEE International Conference on Image
Processing (ICIP); October 16-19, 2022; Bordeaux, France (2022). p. 1816-20.

3. Zhang Z. Microsoft kinect sensor and its effect. IEEE MultiMedia (2012) 19:4-10.
doi:10.1109/mmul.2012.24

4. He Y, Chiu WC, Keuper M, Fritz M. Std2p: rgbd semantic segmentation using spatio-
temporal data-driven pooling. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); July 21 2017 to July 26 2017; Honolulu, HI, USA (2017). p. 7158-67.

5. Couprie C, Farabet C, Najman L, LeCun Y Indoor semantic segmentation using
depth information (2013). arXiv preprint arXiv:1301.3572.

6. Gupta S, Girshick R, Arbeldez P, Malik J. Learning rich features from rgb-d images
for object detection and segmentation. Computer Vision-ECCV 2014: 13th Eur Conf
Zurich, Switzerland, September 6-12, 2014, Proc Part VII (2014) 13:345-60. doi:10.1007/
978-3-319-10584-0_23

7. Park S], Hong KS, Lee S. Rdfnet: rgb-d multi-level residual feature fusion for indoor
semantic segmentation. In: Proceedings of the IEEE international conference on
computer vision; 22-29 October 2017; Venice, Italy (2017). p. 4990-9.

8. Lee S, Park SJ, Hong KS. Rdfnet: rgb-d multi-level residual feature fusion for indoor
semantic segmentation. In: 2017 IEEE International Conference on Computer Vision
(ICCV); 22-29 October 2017; Venice, Italy (2017). p. 4990-9.

9. Eigen D, Fergus R. Predicting depth, surface normals and semantic labels with a
common multi-scale convolutional architecture. In: 2015 IEEE International
Conference on Computer Vision (ICCV); 7-13 December 2015; Santiago, Chile
(2015). p. 2650-8.

Frontiers in Physics

10.3389/fphy.2024.1411559

Data availability statement

Publicly available datasets were analyzed in this study. This data can
be found here: https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html.

Author contributions

SZ: Conceptualization, Formal Analysis, Methodology, Resources,
Software, Validation, Visualization, Writing-original draft. MX: Data
curation, Investigation, Supervision, Writing-review and editing.

Funding

The authors declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

10. Wang A, Lu J, Wang G, Cai J, Cham TJ. Multi-modal unsupervised feature
learning for rgb-d scene labeling. In: Computer Vision-ECCV 2014: 13th European
Conference; September 6-12, 2014; Zurich, Switzerland (2014). p. 453-67.

11. Shu Z, Li L, Yu ], Zhang D, Yu Z, Wu X]J. Online supervised collective matrix
factorization hashing for cross-modal retrieval. Appl intelligence (2023) 53:14201-18.
doi:10.1007/s10489-022-04189-6

12.Bai Y, Shu Z, Yu ], Yu Z, Wu X]J. Proxy-based graph convolutional hashing for
cross-modal retrieval. IEEE Trans Big Data (2023) 1-15. doi:10.1109/tbdata.2023.
3338951

13. Shu Z, Li B, Mao C, Gao S, Yu Z. Structure-guided feature and cluster contrastive
learning for multi-view clustering. Neurocomputing (2024) 582:127555. doi:10.1016/j.
neucom.2024.127555

14. Li L, Shu Z, Yu Z, Wu XJ. Robust online hashing with label semantic enhancement for
cross-modal retrieval. Pattern Recognition (2024) 145:109972. doi:10.1016/j.patcog.2023.
109972

15. Shu Z, Yong K, Yu J, Gao S, Mao C, Yu Z. Discrete asymmetric zero-shot hashing
with application to cross-modal retrieval. Neurocomputing (2022) 511:366-79. doi:10.
1016/j.neucom.2022.09.037

16. Yang J, Bai L, Sun Y, Tian C, Mao M, Wang G. Pixel difference convolutional
network for rgb-d semantic segmentation. IEEE Trans Circuits Syst Video Tech (2024)
34:1481-92. doi:10.1109/tcsvt.2023.3296162

17. Zhao Q, Wan Y, Xu J, Fang L. Cross-modal attention fusion network for rgb-d
semantic segmentation. Neurocomputing (2023) 548:126389. doi:10.1016/j.neucom.
2023.126389

18. Yang E, Zhou W, Qian X, Lei J, Yu L. Drnet: dual-stage refinement network
with boundary inference for rgb-d semantic segmentation of indoor scenes. Eng
Appl Artif Intelligence (2023) 125:106729. doi:10.1016/j.engappai.2023.106729

frontiersin.org


https://cs.nyu.edu/%7Efergus/datasets/nyu_depth_v2.html
https://doi.org/10.1109/tpami.2016.2572683
https://doi.org/10.1109/mmul.2012.24
https://doi.org/10.1007/978-3-319-10584-0_23
https://doi.org/10.1007/978-3-319-10584-0_23
https://doi.org/10.1007/s10489-022-04189-6
https://doi.org/10.1109/tbdata.2023.3338951
https://doi.org/10.1109/tbdata.2023.3338951
https://doi.org/10.1016/j.neucom.2024.127555
https://doi.org/10.1016/j.neucom.2024.127555
https://doi.org/10.1016/j.patcog.2023.109972
https://doi.org/10.1016/j.patcog.2023.109972
https://doi.org/10.1016/j.neucom.2022.09.037
https://doi.org/10.1016/j.neucom.2022.09.037
https://doi.org/10.1109/tcsvt.2023.3296162
https://doi.org/10.1016/j.neucom.2023.126389
https://doi.org/10.1016/j.neucom.2023.126389
https://doi.org/10.1016/j.engappai.2023.106729
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1411559

Zhang and Xie

19. Liu F, Shen C, Lin G. Deep convolutional neural fields for depth estimation from a
single image. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR); June 7 2015 to June 12 2015; Boston, MA, USA (2015). p. 5162-70.

20. Hu J, Huang Z, Shen F, He D, Xian Q. A bag of tricks for fine-grained roof
extraction. IGARSS 2023 - 2023 IEEE Int Geosci Remote Sensing Symp (2023) 678-80.
doi:10.1109/igarss52108.2023.10283210

21. Hu J, Huang Z, Shen F, He D, Xian Q. A rubust method for roof extraction and
height estimation. In: IGARSS 2023 - 2023 IEEE International Geoscience and Remote
Sensing Symposium; 16 - 21 July, 2023; Pasadena, California, USA (2023). p. 770-1.

22. Hazirbas C, Ma L, Domokos C, Cremers D. Fusenet: incorporating depth into
semantic segmentation via fusion-based cnn architecture. Computer Vis - ACCV (2017)
2016:213-28. doi:10.1007/978-3-319-54181-5_14

23. Hu X, Yang K, Fei L, Wang K. Acnet: attention based network to exploit complementary
features for rgbd semantic segmentation. In: 2019 IEEE International Conference on Image
Processing (ICIP); 22-25 September 2019; Taipei, Taiwan (2019). p. 1440-4.

24. Seichter D, Kéhler M, Lewandowski B, Wengefeld T, Gross HM. Efficient rgb-d
semantic segmentation for indoor scene analysis. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA); 30 May - 5 June 2021; Xian,
China (2021). p. 13525-31.

25. Fu K, Fan DP, Ji GP, Zhao Q, Shen J, Zhu C. Siamese network for rgb-d salient
object detection and beyond. IEEE Trans Pattern Anal Machine Intelligence (2022) 44:
5541-59. doi:10.1109/tpami.2021.3073689

26. Zhang X, Zhang S, Cui Z, Li Z, Xie ], Yang J. Tube-embedded transformer for pixel
prediction. IEEE Trans Multimedia (2023) 25:2503-14. doi:10.1109/tmm.2022.3147664

27. Chen LZ, Lin Z, Wang Z, Yang YL, Cheng MM. Spatial information guided
convolution for real-time rgbd semantic segmentation. IEEE Trans Image Process
(2021) 30:2313-24. doi:10.1109/tip.2021.3049332

28. Vaswani A, Shazeer N, Parmar N, Uszkoreit ], Jones L, Gomez AN, et al. Attention
is all you need. Adv Neural Inf Process Syst (2017) 30. doi:10.48550/ ARXIV.1706.03762

29. Shen F, Wei M, Ren ] Hsgnet: object re-identification with hierarchical similarity
graph network (2022). arXiv preprint arXiv:2211.05486.

30. Fu J, Liu J, Tian H, Li Y, Bao Y, Fang Z, et al. Dual attention network for scene
segmentation. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR); June 18 2022 to June 24 2022; New Orleans, LA, USA (2019). p. 3141-9.

31. Shen F, Zhu J, Zhu X, Huang J, Zeng H, Lei Z, et al. An efficient multiresolution
network for vehicle reidentification. IEEE Internet Things J (2022) 9:9049-59. doi:10.
1109/ji0t.2021.3119525

32. Shen F, Peng X, Wang L, Hao X, Shu M, Wang Y. Hsgm: a hierarchical similarity
graph module for object re-identification. In: 2022 IEEE International Conference on
Multimedia and Expo (ICME); July 18 2022 to July 22 2022; Taipei, Taiwan
(2022). p. 1-6.

33. Woo S, Park ], Lee JY, Kweon IS. Cbam: convolutional block attention module. In:
Proceedings of the European conference on computer vision (ECCV); September 8-14,
2018; Munich, Germany (2018). p. 3-19.

34. Zhang Y, Wang Y, Li H, Li S. Cross-compatible embedding and semantic
consistent feature construction for sketch re-identification. In: Proceedings of the
30th ACM International Conference on Multimedia (MM’22); October 10-14, 2022;
Lisboa, Portugal (2022). p. 3347-55.

35. Wang F, Jiang M, Qian C, Yang S, Li C, Zhang H, et al. Residual attention network
for image classification. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR); July 21 2017 to July 26 2017; Honolulu, HI, USA (2017). p. 6450-8.

36. Hu J, Shen L, Sun G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition; June 18 2018 to June
23 2018; Salt Lake City, UT, USA (2018). p. 7132-41.

37.Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. Eca-net: efficient channel attention for
deep convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR); June 13 2020 to June 19 2020; Seattle, WA,
USA (2020). p. 11531-9.

38. Qiao C, Shen F, Wang X, Wang R, Cao F, Zhao S, et al. A novel multi-frequency
coordinated module for sar ship detection. In: 2022 IEEE 34th International Conference
on Tools with Artificial Intelligence (ICTAI); Oct. 31 2022 to Nov. 2 2022; Macao, China
(2022). p. 804-11.

39. Ding M, Wang Z, Sun J, Shi J, Luo P. Camnet: coarse-to-fine retrieval for camera
re-localization. In: 2019 IEEE/CVF International Conference on Computer Vision
(ICCV); Oct. 27 2019 to Nov. 2 2019; Seoul, Korea (2019). p. 2871-80.

40. Huang Z, Wang X, Wei Y, Huang L, Shi H, Liu W, et al. Ccnet: criss-cross
attention for semantic segmentation. IEEE Trans Pattern Anal Machine Intelligence
(2023) 45:6896-908. doi:10.1109/tpami.2020.3007032

41.LiH, CenY, Liu Y, Chen X, Yu Z. Different input resolutions and arbitrary output
resolution: a meta learning-based deep framework for infrared and visible image fusion.
IEEE Trans Image Process (2021) 30:4070-83. doi:10.1109/tip.2021.3069339

42.Li H, Liu J, Zhang Y, Liu Y. A deep learning framework for infrared and visible
image fusion without strict registration. Int ] Comp Vis (2023) 132:1625-44. doi:10.
1007/s11263-023-01948-x

Frontiers in Physics

10.3389/fphy.2024.1411559

43. Li H, Zhao J, Li ], Yu Z, Lu G. Feature dynamic alignment and refinement for
infrared-visible image fusion:translation robust fusion. Inf Fusion (2023) 95:26-41.
doi:10.1016/j.inffus.2023.02.011

44. Xiao W, Zhang Y, Wang H, Li F, Jin H. Heterogeneous knowledge distillation for
simultaneous infrared-visible image fusion and super-resolution. IEEE Trans
Instrumentation Meas (2022) 71:1-15. doi:10.1109/tim.2022.3149101

45. Xiang K, Yang K, Wang K. Polarization-driven semantic segmentation via efficient
attention-bridged fusion. Opt Express (2021) 29:4802-20. doi:10.1364/0e.416130

46. Shen F, Zhu J, Zhu X, Xie Y, Huang J. Exploring spatial significance via hybrid
pyramidal graph network for vehicle re-identification. IEEE Trans Intell Transportation
Syst (2022) 23:8793-804. doi:10.1109/tits.2021.3086142

47. Shen F, Xie Y, Zhu J, Zhu X, Zeng H. Git: graph interactive transformer for vehicle re-
identification. IEEE Trans Image Process (2023) 32:1039-51. doi:10.1109/tip.2023.3238642

48.Zhuang Z, LiR, Jia K, Wang Q, Li Y, Tan M. Perception-aware multi-sensor fusion
for 3d lidar semantic segmentation. In: 2021 TEEE/CVF International Conference on
Computer Vision (ICCV); Oct. 11 2021 to Oct. 17 2021; Montreal, BC, Canada (2021).
p. 16260-70.

49.ZhuZ,He X, Qi G, Li Y, Cong B, Liu Y. Brain tumor segmentation based on the
fusion of deep semantics and edge information in multimodal mri. Inf Fusion (2023) 91:
376-87. doi:10.1016/j.inffus.2022.10.022

50. Zhu Z, Sun M, Qi G, Li Y, Gao X, Liu Y. Sparse dynamic volume transunet with
multi-level edge fusion for brain tumor segmentation. Comput Biol Med (2024) 172:
108284. doi:10.1016/j.compbiomed.2024.108284

51.Liu Y, ShiY, Mu F, Cheng J, Chen X. Glioma segmentation-oriented multi-modal
mr image fusion with adversarial learning. IEEE/CAA ] Automatica Sinica (2022) 9:
1528-31. doi:10.1109/jas.2022.105770

52. Liu Y, Mu F, Shi Y, Chen X. Sf-net: a multi-task model for brain tumor
segmentation in multimodal mri via image fusion. IEEE Signal Process. Lett (2022)
29:1799-803. doi:10.1109/1sp.2022.3198594

53. Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support
inference from rgbd images. In: Computer Vision-ECCV 2012: 12th European
Conference on Computer Vision; October 7-13, 2012; Florence, Italy (2012). p. 746-60.

54. Song S, Lichtenberg SP, Xiao J. Sun rgb-d: a rgb-d scene understanding benchmark
suite. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR);
June 7 2015 to June 12 2015; Boston, MA, USA (2015). p. 567-76.

55. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR); June
27 2016 to June 30 2016; Las Vegas, NV, USA (2016). p. 770-8.

56. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual
recognition challenge. Int ] Comput Vis (2015) 115:211-52. doi:10.1007/s11263-015-0816-y

57. Fu X, Shen F, Du X, Li Z. Bag of tricks for “vision meet alage” object detection
challenge. In: 2022 6th International Conference on Universal Village (UV); October
19-22, 2024; Boston, USA (2022). p. 1-4.

58. Shen F, He X, Wei M, Xie Y A competitive method to vipriors object detection
challenge (2021). arXiv preprint arXiv:2104.09059.

59. Shen F, Wang Z, Wang Z, Fu X, Chen J, Du X, et al. A competitive method for dog
nose-print re-identification (2022). arXiv preprint arXiv:2205.15934.

60. Xu X, Liu J, Liu H. Interactive efficient multi-task network for rgb-d semantic
segmentation. Electronics (2023) 12:3943. doi:10.3390/electronics12183943

61. Zhang Y, Xiong C, Liu J, Ye X, Sun G. Spatial information-guided adaptive
context-aware network for efficient rgb-d semantic segmentation. IEEE Sensors J (2023)
23:23512-21. doi:10.1109/jsen.2023.3304637

62. Wu Z, Allibert G, Stolz C, Ma C, Demonceaux C Depth-adapted cnns for rgb-d
semantic segmentation (2022). arXiv preprint arXiv:2206.03939.

63. Xue Z, Marculescu R. Dynamic multimodal fusion. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition; June 18 2022 to June
24 2022; New Orleans, LA, USA (2023). p. 2575-84.

64. Yan X, Hou S, Karim A, Jia W. Rafnet: rgb-d attention feature fusion network for indoor
semantic segmentation. Displays (2021) 70:102082. doi:10.1016/j.displa.2021.102082

65. Chen X, Lin KY, Wang J, Wu W, Qian C, Li H, et al. Bi-directional cross-modality
feature propagation with separation-and-aggregation gate for rgb-d semantic
segmentation. In: European Conference on Computer Vision; 23-28 August;
Glasgow, United Kingdom (2020). p. 561-77.

66. Cao J, Leng H, Lischinski D, Cohen-Or D, Tu C, Li Y. Shapeconv: shape-aware
convolutional layer for indoor rgb-d semantic segmentation. In: Proceedings of the
IEEE/CVF international conference on computer vision; Oct. 11 2021 to Oct. 17 2021;
Montreal, BC, Canada (2021). p. 7068-77.

67. Seichter D, Fischedick SB, Kohler M, Groff HM. Efficient multi-task rgb-d scene
analysis for indoor environments. In: 2022 International Joint Conference on Neural
Networks (IJCNN); 18-23 July 2022; Padua, Italy (2022). p. 1-10.

68. Tang Q, Liu F, Zhang T, Jiang J, Zhang Y. Attention-guided chained context
aggregation for semantic segmentation. Irmage Vis Comput (2021) 115:104309. doi:10.
1016/j.imavis.2021.104309

frontiersin.org


https://doi.org/10.1109/igarss52108.2023.10283210
https://doi.org/10.1007/978-3-319-54181-5_14
https://doi.org/10.1109/tpami.2021.3073689
https://doi.org/10.1109/tmm.2022.3147664
https://doi.org/10.1109/tip.2021.3049332
https://doi.org/10.48550/ARXIV.1706.03762
https://doi.org/10.1109/jiot.2021.3119525
https://doi.org/10.1109/jiot.2021.3119525
https://doi.org/10.1109/tpami.2020.3007032
https://doi.org/10.1109/tip.2021.3069339
https://doi.org/10.1007/s11263-023-01948-x
https://doi.org/10.1007/s11263-023-01948-x
https://doi.org/10.1016/j.inffus.2023.02.011
https://doi.org/10.1109/tim.2022.3149101
https://doi.org/10.1364/oe.416130
https://doi.org/10.1109/tits.2021.3086142
https://doi.org/10.1109/tip.2023.3238642
https://doi.org/10.1016/j.inffus.2022.10.022
https://doi.org/10.1016/j.compbiomed.2024.108284
https://doi.org/10.1109/jas.2022.105770
https://doi.org/10.1109/lsp.2022.3198594
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.3390/electronics12183943
https://doi.org/10.1109/jsen.2023.3304637
https://doi.org/10.1016/j.displa.2021.102082
https://doi.org/10.1016/j.imavis.2021.104309
https://doi.org/10.1016/j.imavis.2021.104309
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1411559

& frontiers | Frontiers in Physics

’ @ Check for updates

OPEN ACCESS

Zhengiu Shu,
Kunming University of Science and Technology,
China

Huajin Li,

Chengdu University, China

Kang Liao,

Southwest Jiaotong University, China

Rubin Wang,
rbwang_hhua@foxmail.com

Yipeng Lei,
yipenglei@163.com

Yue Yang,
youngy0528@163.com

15 April 2024
14 May 2024
11 June 2024

Wang R, Lei Y, Yang Y, Xu W and Wang Y (2024),
Dynamic prediction model of landslide
displacement based on (SSA-VMD)-(CNN-
BiLSTM-attention): a case study.

Front. Phys. 12:1417536.

doi: 10.3389/fphy.2024.1417536

© 2024 Wang, Lei, Yang, Xu and Wang. Thisis an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics

Original Research
11 June 2024
10.3389/fphy.2024.1417536

Dynamic prediction model of
landslide displacement based on
(SSA-VMD)-(CNN-BIiLSTM-
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Accurately predicting landslide displacement is essential for reducing and
managing associated risks. To address the challenges of both under-
decomposition and over-decomposition in landslide displacement analysis, as
well as the low predictive accuracy of individual models, this paper proposes a
novel prediction model based on time series theory. This model integrates a
Convolutional Neural Network (CNN) with a Bidirectional Long-Short Term
Memory network (BiLSTM) and an attention mechanism to form a
comprehensive CNN-BiLSTM-Attention model. It harnesses the feature
extraction capabilities of CNN, the bidirectional data mining strength of
BiLSTM, and the focus-enhancing properties of the attention mechanism to
enhance landslide displacement predictions. Furthermore, this paper proposes
utilizing the Variational Mode Decomposition (VMD) method to decompose both
landslide displacement and its influencing factors. The VMD algorithm'’s
parameters are optimized through the Sparrow Search Algorithm (SSA), which
effectively minimizes the influence of subjective bias while maintaining the
integrity of the decomposition. A fusion of the Maximal Information
Coefficient (MIC) and Grey Relational Analysis (GRA) is then employed to
identify the critical influencing factors. The selected sequence of factors that
conforms to the criteria is used as the input variable for displacement prediction
via the CNN-BILSTM-Attention model. The cumulative displacement prediction is
derived by aggregating the results from each sequence. The study reveals that the
SSA-VMD-CNN-BILSTM-Attention model introduced herein achieves superior
predictive accuracy for both periodic and random term displacements than
individual models. This advancement provides a dependable benchmark for
forecasting displacement in similar landslide scenarios.

landslide displacement prediction model, variational mode decomposition, maximal
information coefficient, bidirectional long short term memory network,
attention mechanism

1 Introduction

Landslides are frequent and destructive geological disasters in China, posing constant
threats to the safety of nearby villagers. The deformation evolution of landslides is a
complex nonlinear system influenced by both intrinsic geological conditions and external
environmental factors. [1]. Displacement serves as a direct indicator of the progression
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trends and kinematic patterns of landslides. A thorough analysis of
landslide displacement is crucial for accurately identifying the
evolutionary stages of landslides, effectively mitigating disaster
risks, and minimizing losses. [2, 3].

Currently, scholars typically decompose landslide displacement
sequences using time series theory and construct prediction models
to forecast displacement component [4]. Commonly used
displacement decomposition methods include the moving average
method [5, 6], empirical mode decomposition (EMD) [7-9],
decomposition (EEMD) [10-12],
(WT) [13-15] and Variational Mode
(VMD) [16-20]. Although the methods

mentioned above have yielded positive outcomes in decomposing

ensemble empirical mode
wavelet transform

Decomposition

displacement sequences, they also have their limitations. For
instance, while the moving average method is clear physical
interpretation, it cannot decompose the random term
displacement. Although EMD, EEMD, and WT have addressed
the limitations of the moving average method, the number of
decomposed sequences is uncontrollable, and the physical
meaning of each component is unclear. Furthermore, it should
be noted that WT and Discrete Wavelet Transform (DWT) differ
in their approach to determining basis functions and wavelet orders.
VMD, on the other hand, addresses the issue of modal aliasing and
allows for the specification of the number of components after
decomposition, with each component having a clear physical
interpretation. However, the effectiveness of the decomposition
and the fidelity of the results depend heavily on the selection of
parameters. To fully utilize the benefits of the VMD algorithm,
which has high adaptability and clear physical meaning for each
component, this paper optimizes the penalty factor a and the rise
time step 7 in the VMD model using the Sparrow Search Algorithm
(SSA). The VMD decomposition effect and fidelity are measured
using the sample entropy of the periodic term displacement or the
low frequency of the influencing factor as the root mean square error
of the original displacement and the reconstructed displacement.
The construction of a prediction model plays a pivotal role in
determining the precision of landslide displacement forecasts.
Models for predicting landslide displacement can be categorized
into three types: historical experience models, statistical models, and
machine learning models. The empirical model based on historical
of data and
experimentation to verify its accuracy and has strict application

experience requires a significant amount
conditions. Although the statistical model is effective in monitoring
landslides influenced by a single factor, its ability to consider and
predict the impact of multiple factors is often limited. As computer
technology advances rapidly, machine learning models have become
increasingly prevalent for predicting landslide displacement. These
models, with their straightforward calculation procedures, accurate
prediction outcomes, and low computational requirements, are
adept at managing nonlinear relationships. Machine learning
predicting landslide

displacement. Due to their simple calculation processes, accurate

models are increasingly popular for
prediction results, low computational costs, and ability to handle
nonlinear relationships [21], machine learning models are widely
employed for landslide displacement prediction. For instance, Yang
et al. [22] employed support vector machines (SVM) to predict
landslide displacement. However, the prediction error for individual
points was significant. Du et al. [23] established a neural network
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model for predicting landslide displacement based on the analysis of
inducing factors. Wang et al. [24] developed a prediction model for
landslide displacement by combining the Extreme Learning
Machine (ELM) with Random Search Support Vector Regression
(RS-SVR) sub-models. Li et al. [25] proposed an ensemble-based
extreme learning approach to study landslide displacement
prediction. The results demonstrated that the integrated model
achieved higher prediction accuracy compared to a single model.
Wang et al. [26] studied and compared the predictive capabilities of
reservoir landslide displacement using various machine learning
approaches. Relying solely on individual prediction accuracy to
assess the superiority of machine learning methods may not be
reliable, whereas the combined model offers improved average
prediction accuracy and predictive stability. However, the model
does not fully consider the dynamic characteristics of landslide
evolution. This is because the evolution process of a landslide is
inherently a dynamic system, and treating it as a static regression
problem reduces the accuracy of displacement predictions [27, 28].
Accurate prediction of landslide displacement necessitates a
dynamic prediction model capable of simulating the changes in
landslide displacement. Li et al. [28] proposed a modeling and
prediction framework for landslide displacement based on a deep
belief network and the exponentially weighted moving average
(EWMA) control chart, obtaining excellent prediction results.
The Long Short-Term Memory (LSTM) model is a type of
dynamic neural network that integrates delay units and feedback
into the static network, enhancing its sensitivity to historical factors
and output. This trait renders it more suitable for predicting
landslide displacement influenced by multiple factors.

The LSTM model is a dynamic modelling method commonly
used to predict landslide displacement [29, 30]. Previous studies
have demonstrated that the prediction accuracy of LSTM is superior
to that of backpropagation neural network, ELM or SVM [31].
However, the LSTM model relies exclusively on past state
information, which qualifies it as a unidirectional network. The
bidirectional LSTM (BiLSTM) network is an enhancement and
expansion of the traditional LSTM. It can increase its predictive
accuracy by learning input time series data from both forward and
backward directions, as noted in references [32-34]. More recently,
the progression of deep neural networks has given rise to stable and
highly accurate models for data processing and industrial
predictions, such as the convolutional neural network (CNN) and
BiLSTM. The combined CNN-BiLSTM model merges CNN’s
feature learning capabilities with BiLSTM’s time series memory
function, resulting in further improvements in prediction
accuracy and operational efficiency [35,36]. Nava et al. [37] used
seven different machine learning models to predict four types of
landslide displacement, taking into account various geographic
locations, geological settings, time intervals, and measurement
instruments. The results indicated that deep learning ensemble
models surpassed others in performance, especially for the
seasonal Baishuihe landslide. Lin et al. [38] proposed a combined
model based on the CNN-BiLSTM framework. This model
demonstrated higher prediction accuracy when compared to both
the traditional LSTM model and the CNN-LSTM combined model.
Wang et al. [39] applied the CNN-LSTM model to dynamically
predict landslide displacement, finding that the CNN-BiLSTM
model’s prediction accuracy exceeded that of BP, LSTM, and
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GRU models. However, the deep learning methods mentioned
previously fall short when handling multi-dimensional feature
data, such as in predicting landslide displacement, due to the
absence of an effective weighted input feature mechanism. Not
all input features equally influence landslide deformation; certain
factors may contribute minimally to the prediction of landslide
displacement. An excessively large proportion of feature weights
could compromise the prediction model’s accuracy.

In recent years, attention mechanisms have become increasingly
prominent in image recognition and machine translation. These
mechanisms function as an effective resource allocation system by
assigning differential weights to input features in order to emphasize
the most significant information [40]. Tang et al. [41] applied a
BiLSTM model with an attention mechanism to predict landslide
displacement, and it was found that this combination yielded better
results than using the traditional LSTM model alone. Furthermore,
it's common for researchers to rely on correlation evaluation
methods to select input variables for prediction models. However,
this method may result in one-sided evaluations and the inclusion of
irrelevant data, which can increase computational complexity and
reduce prediction accuracy.

To summarize, this article uses the BaiShuihe landslide in the
Three Gorges Reservoir area as an example. It first applies the SSA-
VMD model to deconstruct the landslide displacement sequence
into trend term displacement, periodic term displacement, and
random term displacement, while simultaneously decomposing
the triggering factors into high-frequency and low-frequency
parts. Next, it employs a fusion technique that combines the
Maximal Information Coefficient and Grey Relation Analysis
(MIC-GRA) to filter the influencing factors of landslide
displacement from different angles. Finally, the CNN-BiLSTM-
Attention composite model is utilized to predict the various
displacement components. The predicted trend, periodic term,
and random term displacements are then aggregated and
reconstructed, with an evaluation and analysis of the results
following. The forecasting performance has been confirmed, and
the insights from this study establish a robust foundation for the
future development of landslide displacement prediction and early
warning systems.

2 Methodology
2.1 Displacement time series additive model

Predicting time series data presents a significant challenge in the
field of statistical analysis, especially when employing time series
analysis methods. Previous studies [5, 10, 17, 19, 30] have
documented that the cumulative displacement of landslides is a
complex, nonlinear sequence. Time series analysis facilitates the
decomposition of cumulative displacement into three distinct
segments. Predominantly, landslide deformation is influenced by
trend term displacement, which arises from internal geological
conditions such as the topography, geological structure, and
lithology. The
influenced by internal factors, can be represented as an

strata trend term displacement, which is

approximately monotonic increasing function over time [5, 11,
16]. This paper explores the impact of time on the trend term,
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along with the periodic and random term displacements. The
periodic term displacement arises through the collective effects of
external factors such as rainfall and reservoir water levels, resulting
in displacement that typically exhibits an approximate periodic
pattern, as identified in earlier studies [17, 19, 21]. Meanwhile,
the random term displacement is attributed to stochastic factors
including wind load, vehicular load, and seismic activity, as
literature [22, 29]. The
displacement of landslides, according to the findings from time

documented in the cumulative

series additive model research, can be expressed as Eq. 1:

X(@)=T()+P(t)+R(t) (1)

where X (t) is the displacement value of the time series, T'(¢) is a
trend term function, P (t) is a periodic term function, and R () is an
random term function with uncertainty.

2.2 Specific steps of variational mode
decomposition

In 2014, K. Dragomiretskiy and D. Zosso proposed the
variational mode decomposition (VMD) as an adaptive, non-
recursive method for signal processing based on the EMD model
[42]. The VMD decomposes a real input signal into multiple
Intrinsic Mode Function (IMF) components with specific sparse
characteristics. This approach determines the number of modal
components in advance, overcoming the endpoint effects and
of EMD methods.
Furthermore, it can decrease the non-stationary nature of time

modal component aliasing problems

series data with high complexity and strong nonlinearity, leading
to subsequences with distinct sparse features. The equation for
the IMF in VMD is a form of amplitude modulation frequency
modulation signal u(t), which is expressed as Eq. 2:

g (1) = Ax (t) cos (¢ (1)) ()

where ¢, (t) is the phase, A (¢) is the instantaneous amplitude, ¢, (£)
is the non decreasing function, and Ay (f) is consistent with the
mean positive number.

The sum of the input signal sequence and modes is used as the
constrained variational expression. The constrained variational
expression is written as Eqs 3 and 4:

fuh, (wi)

min {Z [o:L(8() + ji/mt)u (e‘f‘“"‘mli} 3)
k

Y e = % (4)

k

where K is the required number of modal components, which is an
integer between one and K. {ux} = {uy, -~ uc} is the modal
{wi} =
{wy, - wx} is the actual center frequency of each modal

component obtained from the final decomposition.

component. 0; is a partial derivative symbol. §(t) is the Dirac
function. * is a convolution operator.

To solve the equation above, we introduce the Lagrange operator
A to transform the constrained variational problem into an
unconstrained one. The extended Lagrange expression is obtained
as Eq. 5:
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L({fuih @b A) = €Y 3 [(8(¢) + j/mt)suse ()] |
k

2
+ (), x(8) = Y i (1))

2 k

+

x(t) =) u(t)
k

(5)

where ¢ is used to decompose and reduce the interference of
Gaussian noise. The optimal solution of the constrained model
can be obtained by using the alternating direction multiplier iterative
algorithm to optimize the modal components and center
frequencies, and searching for the saddle points of the
unconstrained model, thereby obtaining K modal components.
The aim of this study was to decompose landslide displacement
and influencing factors using VMD. The time series additive model
of landslide displacement was used to set the number of modal
components K = 3. The influence factor time series K = 2 modal
components. The low frequency component of the influence factor
mainly affected the periodic displacement of the landslide, while the
high-frequency component contributed to the random displacement
[19]. Utilizing the VMD algorithm to dissect landslide displacement
into three components, it is pivotal to recognize that the outcomes
might not carry practical or tangible physical relevance. The
parameters « and K have been determined, and they will affect
the decomposition effect and fidelity. Efficient and accurate selection
of parameters in the VMD algorithm will be crucial for the
decomposition of displacement time series. The SSA was chosen
to optimize the penalty function « and rise time step 7 in the VMD
This
subjective factors.

model. approach effectively avoids the influence of

2.3 Variational modal decomposition for the
sparrow optimization algorithm

2.3.1 Sample entropy

Sample entropy is a complexity metric for time series analysis,
proposed by Richman [43] in response to the limitations
encountered with approximate entropy. This measure effectively
mitigates deviations arising from template matching issues, by
considering the probability and complexity of emergent patterns
within a time series. Contrary to approximate entropy, Sample
entropy maintains independence from the length of the sequence,
yielding higher consistency across analyses. This attribute renders it
an essential tool for researchers and practitioners seeking to
accurately gauge the intricacies of time series data.

For a given time series {x (¢)},t = 1,2, -, N with length N, the
sample entropy calculation steps of the time series are as follows:

(1) The m-dimensional vector {x (t)},t = 1,2,--,N —m + 1 is
constructed at time ¢, where m is the embedding dimension of the
vector. The distance between the time series is defined as the
absolute value of the maximum difference between the elements
of the two sub-sequences is d:;‘, and the calculation formula is as
Eq. 6:

dr =d[x, x|
= max 1|x(i+k)—x(i—k)|, (,j,>N-m+1,Hi#j)

k=0,1---m-
(6)
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(2) Setting the similarity tolerance r (r > 0), and calculating the
number ratio of the distance between x!" and x;-” less than r, denoted
as B/ (r), and the calculation formula is as Eq. 7:

num{dj;‘ < r}

B" =
i (") N-m+1

(7)
where num{-} is the counting function. By calculating the number
of vectors whose distance between x" and x;” is less than r, the
formula for calculating the average template match probability
B"(r) is as Eq. 8:

1 N-m
B (r)=—— ) B'(") ®)

(3) The m + 1 dimensional sequence is constructed, and the
average template match probability B™*! (r) with a distance less
than r between x" and X" is calculated by repeating the Eqs 7
and 8, where B" (r) and B"!(r) are the probabilities of m and
m+1 points respectively under the condition of similar
tolerance r, respectively. The sampling entropy of {x(i)} is
defined as Eq. 9:

SampE”(m’ T) = Nli_m} . *{—ln[B;;:l(iT)’)] } (9)

When the length of the time series is finite, the sample entropy
can be calculated as Eq. 10:

(10)

11+1
SampEn(m,r,N) = —ln[B (r)]

B (1)

where m is the embedding dimension, generally taken as one or 2. r
is the similarity tolerance, generally taken as 0.1 ~ 0.250, and oy is
the standard deviation of the sequence. The sample entropy value
increases with the complexity of the time series and decreases with
its simplicity. This paper uses the sample entropy of the decomposed
periodic term displacement sequence as an indicator to evaluate the
decomposition effect of the VMD algorithm. A smaller entropy
value indicates a better

of periodic term displacement

decomposition effect.

2.3.2 Basic principles of sparrow
optimization algorithm

The Sparrow Search Algorithm (SSA) is a population-based
intelligent optimization algorithm introduced by Xue et al. [44].
The algorithm derives its optimization strategy from the
foraging and anti-predation behavior observed in sparrows.
As a swarm intelligence algorithm, it outperforms many
others in terms of search precision, convergence speed,
stability, and resilience. Its successful applications span a
range of problems in diverse domains, including workshop
scheduling, parameter optimization, image classification, and
graphical optimization tasks. Building on this success, the
present article employs SSA to autonomously determine the
optimal parameters for the penalty factor and the rise time step
within the VMD algorithm.

The SSA categorizes sparrows into three roles during the search
process: the discoverer, the follower, and the sentinel. Their
positional updates are as Eqs 11-13:
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e = [ Xty exp =i/ dier ] Ro < St .
> X:tj +QL,R, 2S¢

271 -
Xt~ { Qexp[(Xuorst - Xf,j)/z |.i>n/2 12)
U XX - XS AT L i<n)2
XZest +ﬂ'X§,j - XZest ’fi > fy
t+1 _
Xi’j - ' f,j - iuorst (13)

X:,j+K fi=fq

(fi—fu)te

where t is the current number of iterations, i.,,  is the
maximum number of iterations, a is a uniform random
number of (0,1], Q is a standard normal distribution random
number, X;; is the position information of i sparrow in j
dimension, L is a matrix with all elements one, R, € [0,1] is
the warning value, Sy € [0.5,1] is the warning threshold. X,orst
is the worst position in the global, X!

p
position occupied by the discoverer, A is a multidimensional

is the optimal

matrix of one or -1, n is the number of sparrows. X is the
current global best position,  is the control parameter for
the step size, K is a uniform random number between [-1,1],
K represents the direction of movement of the sparrow, f; is
the fitness of the current sparrow, f, is the best fitness
value of the global, f, is the worst fitness value, ¢ is a
small constant.

To optimize SSA, determining the fitness function is a crucial
step. The fidelity of the decomposed VMD algorithm is evaluated by
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accumulating and reconstructing the decomposed subsequences
into m. To measure the integrity of the decomposed sequence,
the root mean square error (RMSE) between the reconstructed
sequence and the original sequence M is calculated using the

following formula:
1 n
RMSE = |- Y (x, - %) (14)
nia

where x; is the value of the original sequence at time ¢, X; is the value
of the reconstructed sequence at time ¢, and #n is the length of
the sequence.

Eq 14 demonstrates that a smaller RMSE value implies a smaller
error between the reconstructed sequence m and the original
sequence M, indicating a reduced loss of the original sequence.
This paper combines sample entropy and root mean square error to
effectively reflect the completeness of the decomposed sequence and
the success of the decomposition. The function expression is as
Eq. 15:

fitness = RMSE (m, M) - SampEn (IMF,) (15)

where RMSE (m, M) is the root mean square error between the
reconstructed sequence and the original sequence. SampEn (IMF5)
is the sample entropy value of the low-frequency part of the periodic
term displacement sequence or influencing factor after
decomposition. The fitness value of the SSA algorithm is

determined using the calculated value of Equation 15. To find
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the optimal fitness, the penalty factor a and rise time step T are
optimized. The process is outlined in the following steps:

(1) Input displacement time series signal.

(2) Initialize the parameter input of the sparrow optimization
algorithm, and randomly generate a series of o and T as the
initial position of the sparrow population.

3

~

Perform VMD decomposition on the displacement sequence
of the current sparrow position. Calculate the sample entropy
of the decomposed periodic term sequence or low-frequency
part of the influencing factors with confidence.

(4) The acclimatization value for each sparrow was calculated
according to Eq 10, identify the optimal and worst fitness
individuals, and update the positions of discoverers, followers,
and early warning individuals according to Eqs 11-13.

—~
($)]
=

Repeat (3) and (4) until the maximum number of iterations is
reached, and output the sparrow position and fitness values at
this time as the optimal solution.

2.4 Maximal information coefficient

Mutual information (MI) [45] developed from Shannon entropy
theory, is a method for analyzing the statistical correlation between
two random variables. It is adept at detecting both linear and non-
linear relationships among variables. Despite its utility, mutual
information is not a normalized metric, which limits its capacity
to provide a quantitative assessment of correlation strength. To
address this limitation, this article introduces the Maximal
Information Coefficient (MIC). Proposed by Reshef et al. in
2011 in the journal Science [46], MIC builds upon MI to
evaluate the degree of dependency between variables
comprehensively. It is competent in quantifying not only linear
but also non-linear and  non-functional  correlations
among variables.

The principle of the MIC is for a given two random variables
X,Y and a finite ordered data set D (X,Y) = {(x;, y;),i = 1,2, ---,n},
the X and Y regions in D are divided respectively into grids x x y of

G. Then, the probability distribution of the data set D on the grid G

Frontiers in Physics

10.3389/fphy.2024.1417536

is D|g, and the mutual information value I(D|g) under this
segmentation mode is calculated. Finally, the maximum mutual
information value under all possible grid segmentations G is
obtained as Eq. 16:

I*(D, x, y) = maxI(D|g) (16)

By normalizing I* (D, x, y) function, the characteristic matrix
element I* (D, x, y) of the variable can be obtained by Eq. 17:

I*(D, x,y)

M(D)x,y = m

(17)

Different x x y values divide the grid to get different
M(D),,, values, and the maximum M (D)., is called the MIC
of variable Y, and the maximum M (D), is expressed as Eq. 18:

MIC(D) = max M(D),, (18)

xy<B(n)
where B () is the maximum number of meshes, 7 is the capacity of
the data sample and usually set to B = n®¢ [47, 48], This paper also
adopts this value.

2.5 Construction of CNN-BIiLSTM-attention
combination model

2.5.1 CNN principle structure

A Convolutional Neural Network (CNN) is the neural network
model most frequently employed in deep learning [49]. Its potent
feature-learning capability substantially diminishes the model’s
parameter count, which has led to its extensive application in
image recognition and computer vision domains. Over recent
years, a growing number of researchers have effectively utilized
CNN for time series analysis. The model’s distinct features, such as
weight-sharing and localized connections, can significantly diminish
the parameter quantity needed for training. These attributes
facilitate faster model training velocities and allow for the more
proficient extraction of features from the input data [50].

The CNN consists of a convolution layer, pooling layer, fully
connected layer, and output layer. The convolution layer applies the
activation function to perform non-linear operations on the input
time series data and extract local feature information. The pooling
layer uses a pooling function to decrease the dimensionality of the
convolution output, and improve the model’s robustness and
generalization ability. The fully connected layer then maps the
data output from the pooling layer to a fixed-length column
vector. This paper uses a two-layer one-dimensional CNN
convolution structure to extract feature information, as shown
in Figure 1.

2.5.2 BiLSTM model

In 1997, Sepp Hochreiter et al. proposed long short-term
memory networks (LSTM). The gate structure and internal
memory unit effectively solve the problem of gradient
disappearance and explosion in long sequence training of the
RNN model [51]. The model’s control unit consists of a forget
gate, an input gate, and an output gate. The respective calculation

formulas for these components are as Eqs 19-24:
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fi= U(Wf[ht—bxt] +bf)

(19)

i = o (W;[h_1, x:] + by) (20)

C: = tanh (W [h1, %] +be) 1)
C: =i, xC, + fixCiy (22)

O, = sigmoid (W, [h;-1, x¢] + b,) (23)
h; = O, xtanh (C;) (24

where f¢. i;. O denote the forgetting gate, the input gate and the
output gate, respectively, Wy, W.. W, denote the weights of the
corresponding gates, by, be. b, denote the corresponding bias, x;
denote the input time series data, t denote the sigmoid activation
function, and o is the hyperbolic tangent activation function, C; and
C; denote the cell state and temporary state of the cell, respectively.

The Bidirectional Long Short-Term Memory (BiLSTM) model
significantly enhances the traditional LSTM model. By leveraging
both forward and reverse LSTM processes, it effectively integrates

Frontiers in Physics 48

information from both past and future contexts, enabling it to make
more accurate predictions. Consequently, it outperforms the LSTM

model in prediction accuracy [33,34,52]. The structure of the
BiLSTM model is depicted in Figure 2.

2.5.3 Attention mechanism

The Attention mechanism allocates weights to different features,
assigning greater weights to key content and smaller weights to other
content. This allocation improves the efficiency of information
processing and the prediction accuracy of the model [54]. The

Attention unit structure is displayed in the Figure 3. The formula
of attention mechanism can be referred to [53].

2.5.4 Prediction process of CNN-BiLSTM-attention
combined model

This paper presents a dynamic displacement prediction method
based on the CNN-BiLSTM-Attention model. The model utilizes a
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establishment.

CNN framework comprising of a two-layer one-dimensional
convolutional layer and a pooling layer to automatically extract
The
convolutional layer efficiently performs nonlinear local feature

the internal features of the displacement sequence.
extraction of the time series, while the pooling layer condenses
the extracted features using the maximum pooling method to
generate crucial feature information.

The BiLSTM hidden layer model effectively learns the internal
dynamic changes of the local features extracted by CNN and iteratively
extracts intricate global features from the local features. The BiLSTM
hidden layer generates features that are adeptly harnessed by the
Attention mechanism, which discerns the significance of temporal
information. This facilitates the extraction of profound temporal
dependencies and enhances the utilization of the displacement time
series’ temporal characteristics. By preserving historical information
and emphasizing critical historical time points, the Attention
mechanism mitigates the impact of superfluous information on the
displacement prediction outcomes. The outputs from the Attention
layer serve as the input for the fully connected layer, which then
precisely yields the final prediction of displacement. In optimizing
the network parameters for this study, the Adam optimization
algorithm is adopted to meticulously adjust the parameters across
the layers, with the mean square error (MSE) serving as the loss
function. The architecture of the combined CNN-BiLSTM-Attention
model is depicted in Figure 4.

2.5.5 Displacement prediction processTo predict
landslide displacement using the model, follow
these steps with confidence
(1) The original landslide displacement time series is divided into
three sub-sequences by using the SSA-VMD model. The
landslide’s cumulative displacement can be broken down into
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three sub-sequences: trend term displacement T(¢), periodic term
displacement P(¢), and random term displacement R(?),
determined by the optimal fitness function value.

(2) The influence factor sequence is decomposed into two
sub-sequences using SSA-VMD. The low-frequency and
high-frequency parts of the influence factor sequence are

these the

optimal fitness function, we derived the optimal

represented by sub-sequences. Using

decomposition subsequence. We then calculated the

maximum MIC and GRA values for the decomposition

subsequence of each factor and displacement
subsequence. Our comprehensive analysis allowed us
to confidently assess the correlation between the
influencing factor subsequence and the displacement
subsequence.

(3) The input data is divided into a training dataset and a
verification dataset based on the predetermined sequence
of each displacement term and influencing factor. A single-
factor CNN-BiLSTM-Attention model was constructed and
trained for predicting trend term displacement, while a multi-
factor CNN-BiLSTM-Attention model was established and
trained for predicting periodic term displacement and
random term displacement.

(4) Ultimately, the predicted values of trend displacement,
periodic displacement, and random displacement are

accumulated to form the cumulative landslide displacement

prediction results, which are then compared with the
cumulative landslide displacement monitoring results, and
the predictive performance of the new model is evaluated. The
process of the combined landslide displacement prediction
model, involving SSA-VMD and CNN-BiLSTM-Attention, is

confidently illustrated in Figure 5.
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Displacement and environmental data variation in the Baishuihe landslide.

TABLE 1 SSA-VMD optimization results.

Monitoring point a T
ZG118 74.19 0.56
XDo01 90.13 0.17

3 Case study

3.1 Engineering geological survey and
displacement analysis of Baishuihe landslide

The Baishuihe landslide, located in Zigui County within the
Three Gorges Reservoir region, as illustrated in Figure 6 exhibits a
monoclinic bedding slope structure, This structure is characterized
by a gradient that is elevated in the south and decreases towards the
north, aligning in a stepwise fashion towards the Yangtze River. The
elevation measures approximately 410 m at the landslide’s trailing
edge and descends below the 135 m water level at its leading edge.
The overall inclination of the Baishuihe landslide is estimated at 30°,
with its topographical layout depicted in Figure 7. Since the
commencement of monitoring activities in 2003, the landslide has
experienced numerous significant deformation events. Geological
surveys of the Baishuihe region elucidate the landslide’s irregular ‘U-
shaped’ configuration, extending 500 m in length from north to south,
and 430 m across from east to west, covering an area of approximately
21.5 x 10" m*. The sliding mass maintains an average thickness of about
30 m, culminating in a volume of roughly 645 x 10*m’, with the
principal direction of slide oriented at 20".

Figure 8 demonstrates that every displacement change is linked to a
rise in rainfall and a substantial shift in reservoir water level. Rainfall has
an impact on the stability of the landslide by influencing the strength of
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rock and soil, physical and mechanical parameters, and pore water
pressure [55-57]. The landslide motion state is influenced by the
reservoir water level through hydrostatic pressure, hydrodynamic
pressure, pore water pressure, and other factors [58,59]. The reservoir
area experiences a flood season from May to September each year,
resulting in increased rainfall and a wider fluctuation and influence range
of the reservoir water level. Conversely, the non-flood season occurs
from October to April of the following year, during which rainfall is
scarce and the deformation of the landslide tends to be less severe. The
periodic influence of reservoir water levels and rainfall causes the
displacement of the landslide to exhibit a step-type characteristic.

3.2 Landslide displacement decomposition
of VMD

The SSA utilizes a population size of 50 and a maximum of
100 iterations. , The optimization ranges for the penalty factor a and
rise time step 7 are [0.1,1000] and [0,1], respectively. Table 1 displays
the optimization results, while Figures 9, 10 shows the

corresponding decomposition results.

3.3 Selection of landslide displacement
influencing factors

3.3.1 Analysis of landslide displacement
influence factors

Examining the progression traits of the Baishuihe landslide, and
building upon existing domestic and international research, many
scholars have traditionally narrowed down the influencing factors of
landslide displacement to rainfall and reservoir water level changes.
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Decomposition results of XDO1 cumulative displacement.

However, Figure 8 illustrates a discrepancy where the peak increase
in landslide displacement occurred in 2015, despite there being
neither the highest rainfall nor the most significant variation in
reservoir water levels that year. This suggests that rainfall and
reservoir water level changes do not singularly dictate landslide
displacement. Such a dynamic may be attributed to the
deformation evolution state of the landslide at the time, with
different states responding variably to external influences. For
instance, in phases where the landslide maintains relative
it likely
displacements, even when subjected to intense external forces.

stability, is  less to experience significant
Conversely, in a state of instability, even moderate external
influences can induce substantial movements [60,61]. Thus, it
becomes evident that a landslide’s deformation response hinges
not only on the magnitude of the external triggers but also
intimately connects with its current
this

considerations by incorporating the displacement evolution

evolutionary stage.

Accordingly, study advances beyond conventional
state of the landslide as an additional input characteristic for
the prediction model.

The analysis above identifies the indicators that have the most
influence on landslide displacement. These are 1-month cumulative
rainfall (P;) and 2-month cumulative rainfall (P,). Additionally, the
monthly average reservoir water level elevation (R)), the amplitude

of reservoir water level in the previous month (R;), and the
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amplitude of reservoir water level in the previous 2 months (Rs3)
are the influential factors for reservoir water level on landslide
displacement. This information is presented with confidence and
clarity to ensure a thorough understanding of the topic. To
characterize the evolution state of landslide displacement, we
choose the displacement (S;) from the previous month and the
displacement (S,) from the previous 2 months.

The VMD algorithm decomposes the influencing factor sequence
into high-frequency and low-frequency sequences. The high-frequency
factors, such as Pﬁj, Pg’,R?,Rg’,Rg,S&’ and Sg, are used as the
influencing factors of the random term displacement. The low-
frequency factors, such as P, PL, RE, RE RL SE and SE, are used as
the influencing factors of the periodic term displacement. The
correlation between the decomposition sequence of the impact factor
and the periodic displacement and random term displacement
sequence is comprehensively measured using the MIC and GRA.

3.3.2 Sequence decomposition of optimal VMD
displacement influencing factors

The SSA utilizes a population size of 50 and a maximum number
of iterations set to 100, with optimization ranges for the penalty
factor o and rise time step t being [0.01,1000] and [0,1], respectively.
The optimization results are presented in Table 2, while the
corresponding  decomposition  results in

are illustrated

Figures 11-14.
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TABLE 2 SSA-VMD optimization results.

Influencing
factors

Precipitation

P2

Reservoir water level

10.3389/fphy.2024.1417536

The landslide
state of ZG118

The landslide
state of XDO1

T 0.57 0.57 0.27 0.46 0.21 0.11 0.26
—_~ 300 T T T T T T T 240 —
E — Low rroqucncy of mmfall in one month g
= — High frequency of rainfall in one month __f
€ 200} 120 €
‘= Ny s
g \ . . - = &
g " it .. i ',“A /'/",' v " Lue g
5] ° oy |e [ \ b}
2 100 -."\#‘ o0 -},-f\ ./'\3\/"5" T /".-.'qu & !r;’,‘ -&\.’? 1{.\.,'.4-\ i '/ -Fo :
= Jod 4|y FI°E S AL W R TN [Py =
3 o s L s \ J LW . J L. L W ® s =
= 0 T | = ] lv e | IH ] - 1 120 T

N N N N N N ~ S N N
2 S & 2 ) & = A o 2
{\9@ N S '\90, "9\"’ N & N N N ’19\‘"
Time/(year-month)
— 480 T T T T T T T T T 240 ..,
E — Low frequency of rainfall in two months g
e I—e— High [requency of rainfall in two months| =
= 360 | . = =
£ s ® Jd120
E . AR A ~
ot b TR
g / , ! hi . g
1 () _.\/ I} r * e r-/ . LY Al 3
é'lzo-“’\/ \'“L.‘ 2 A P R \:\N' N \/. -’i/ o g
& PR S '3 ' 5 L+ =
. . =
AR IR R
0 1 1 1 1 1 1 1 1 1 |:U
N N N N N N N
’ & - : > > ¢ A o S
'19@ N N '\9\' ,\9\“’ N "9\" '\9\‘c ~ & S

Time/(year-month)

FIGURE 11
Decomposition results of cumulative rainfall.

3.3.3 Correlation analysis between displacement
and influence factors

In the quest to elucidate the correlation between landslide
displacement and its influencing factors, it is imperative to conduct a
detailed analysis and decomposition of these factors. Selecting highly
correlated factors is crucial for enhancing the predictive accuracy and
efficacy of the model. Nonetheless, the availability of sufficiently high-
quality data for model training is paramount. The inclusion of factors
with minimal correlation risks incorporating extraneous data, potentially
diminishing the precision and effectiveness of the landslide displacement
prediction model. Optimally selected influencing factors can markedly
elevate both the performance and accuracy of the model. In existing
research, most scholars predominantly utilize a single method to assess
the correlation between displacement components and influencing
factors. However, a sole evaluation method can only provide
perspective from a singular angle, resulting in a one-sided assessment
and the loss of significant data portions. To address this, This study
incorporates the MIC-GRA fusion method for a more comprehensive
selection. Table 3 present the computation outcomes of both methods
and, through comparative analysis in the subsequent prediction, the
supremacy of this method is affirmed.
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3.4 Displacement prediction results
and analysis

3.4.1 Trend displacement prediction

The displacement of a landslide is influenced by topography,
geological structure, soil properties. The
displacement trend exhibits a monotonically increasing curve
over time. While polynomial functions are frequently used in

and rock and

existing research to fit the trend displacement sequence, it may
be necessary to perform piecewise fitting due to differences in
deformation characteristics across different stages. This is because
a single function often fails to fit the entire trend displacement
This paper presents a single-factor CNN-BiLSTM-
Attention model for predicting trend item displacement. The

curve.

model takes the displacement values of the previous month, the
first 2 months, the first 3 months, the displacement change value of
the previous month and the change value of the previous 2 months
as input. The prediction results are presented in Figure 15 which
show that monitoring points ZG118 and XDO01 have R values of
0.995 and 0.999, respectively, with corresponding RMSE values of
3.195 and 6.573.
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FIGURE 13
Decomposition results of displacement variation of XD0O1.

3.4.2 Period displacement prediction

In this paper, the factor sequence was selected based on a MIC
value greater than 0.25 and a GRA value greater than 0.60. We
conducted multiple selections and trial calculations to ensure
complete in our final selection. The periodic term displacement
sequence and the low-frequency influencing factor sequence were

Frontiers in Physics

chosen and will be used as input for the prediction model. A multi-
factor CNN-BiLSTM-Attention model was constructed for training
and prediction. The predictive outputs for this model are showcased
in Figure 16, which show that monitoring points ZG118 and
XDO01 have R® values of 0.994 and 0.995, respectively, with
corresponding RMSE values of 1.670 and 1.798.
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Decomposition results of reservoir level.

TABLE 3 Correlation coefficient between periodic term displacement and influencing factors.

Influencing factors Periodic displacement Random displacement
XDO01 yACHNE:] XDO01 G118
MIC GRA MIC GRA
rainfall pL 0.255 0.67 0.403 0.63 0.252 0.66 0.175 0.78
P} 0.308 0.68 0.347 0.65 0.316 0.64 0.322 0.75
Reservoir water level R{' 0.234 0.63 0.307 0.66 0.260 0.69 0.290 0.71
RL 0.287 0.69 0.220 0.73 0.253 0.67 0.204 0.77
R} 0.373 0.67 0.303 0.72 0.192 0.66 0.253 0.75
State of landslide sk 0.289 0.66 0.299 0.65 0.563 0.65 0.421 0.87
Sk 0.393 0.70 0.369 0.68 0.386 0.60 0.574 0.85
3.4.3 Random term displacement prediction sequence and the high-frequency influencing factor sequence. These

In this study, factors with a MIC value exceeding 0.25 and a GRA  factors served as inputs for the multi-factor CNN-BiLSTM-Attention
value above 0.60 were chosen from the random term displacement  model, which was utilized for training and forecasting. The predictive
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FIGURE 17
Displacement prediction results of random terms.

outputs for this model are showcased in Figure 17; they demonstrate an
R? value of 0.723 and an RMSE value of 4.296 at monitoring point
ZG118, alongside an R* value of 0.612 and an RMSE value of 5.472 at
monitoring point XDO01.

3.4.4 Cumulative displacement prediction

By summing the prediction outcomes of trend term displacement,
periodic term displacement, and random term displacement in
accordance with time series summation principles, cumulative
predictions for landslide displacement are derived. These results are
illustrated in Figure 18, exhibiting R* values of 0.975 for monitoring
point ZG118 and 0.988 for XDO01. Correspondingly, the RMSE values
are reported as 12.458 mm for ZG118 and 9.579 mm for XDO01. Such
high R* values alongside low RMSE values attest to the model’s robust
prediction accuracy, thereby reaffirming its efficacy in forecasting
landslide events.

3.5 Comparative analysis

3.5.1 Selection of impact factors
To enhance the predictive performance, this research adopts
several models CNN-BiLSTM-Attention, GRA-CNN-BiLSTM-

Attention, MIC-CNN-BIiLSTM-Attention, and (MIC- GRA)-
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Time/(year-month)

CNN-BiLSTM-Attention for the prediction and comparative
analysis of the two components of landslide displacement under
uniform conditions. The prediction results of various influencing
factor selection methods are shown in Table 4.

From Table 4, it can be deduced that using the GRA algorithm or
MIC algorithm effectively selects influencing factors. The predictive
results indicate that the models combined with these two algorithms
exhibit higher precision, which reflects the role of both algorithms in
selecting influencing factors. Moreover, the model that utilizes the
MIC- GRA evaluation method to select related influencing factors
achieves the highest precision in prediction results, indirectly
showcasing the superiority of the MIC- GRA algorithm. This is
because when the MIC- GRA algorithm is integrated with the model,
it can select influencing factors from two different perspectives,
eliminating data with low relevance and retaining high-relevance
influencing factors. Due to the input of effective influencing factors,
the predictive accuracy of the model combined with the MIC- GRA
algorithm is enhanced.

3.5.2 Comparative analysis of periodic
displacement prediction

The predictive results of the CNN-BIiLSTM-Attention model
were compared with the static machine learning models such as the
BP Neural Network and SVM models, and the deep learning models’
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Cumulative displacement prediction results.

TABLE 4 Comparison of prediction performances of the CNN-BiLSTM-Attention model under different inputs.

Models Periodic term displacement Random term displacement

ZG118 XDO01 ZG118 XDO01

RMSE/mm R? RMSE/mm R? RMSE/mm R? RMSE/mm

CNN-BiLSTM-Attention 6.517 0.901 7.024 0.911 7.015 0.483 9.561 0.323
GRA-CNN-BiLSTM-Attention 5.646 0.928 6.854 0.930 5.258 0.585 8.404 0.332
MIC-CNN-BiLSTM-Attention 5.036 0.943 6.854 0.930 4.478 0.699 8.063 0.385

(MIC-GRA)-CNN-BiLSTM-Attention 1.670 0.994 1.798 0.995 4.296 0.723 5.472 0.612

predictions such as LSTM, BiLSTM, CNN-BiLSTM, all of which are ~ information, simplifying data complexity and thus enhancing

widely used in landslide displacement prediction. The predictive  accuracy for periodic terms. This conclusion is further reinforced

results of each model are presented in Table 5. through the comparative analysis with the LSTM, BiLSTM, and
Table 5 details the predictive outcomes, illustrating that the =~ CNN-BiLSTM models. Collectively, the evidence indicates that the

CNN-BiLSTM-Attention model achieves superior accuracy in  prediction accuracy of deep learning models eclipses that of

forecasting periodic displacement when contrasted with the  traditional machine learning models, and that combined models

standalone BP and SVM models, which are inherently static.  deliver improved results over singular models.

This improvement is attributed to the dynamic features of the

BiLSTM model, which is adept at processing the dynamic nature ~ 3.5.3 Random term displacement prediction model

of landslide displacement sequences via its bidirectional training ~comparative analysis

capability. Concurrently, the convolutional neural networks and The predictive efficacy of the CNN-BiLSTM-Attention model in

attention mechanisms facilitate the distillation of pertinent  forecasting landslide displacement is assessed by comparing it with
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TABLE 5 Comparison of periodic term displacement prediction models.

10.3389/fphy.2024.1417536

RMSE/mm RMSE/mm
(MIC-GRA)-BP 11.476 0.796 10.932 0.848
(MIC-GRA)-SVM 12.170 0.695 11910 0.786
(MIC-GRA)-LSTM 5341 0.931 6.862 0915
(MIC-GRA)-BiLSTM 3913 0.961 3717 0.967
(MIC-GRA)-CNN-BiLSTM 3.003 0.972 2912 0975
(MIC-GRA)-CNN-BiLSTM-Attention 1.670 0.994 1.798 0.995

TABLE 6 Comparison of random item displacement prediction models.

ZG118

RMSE/mm

XDO1

RMSE/mm

(MIC-GRA)-LSTM 8.506 0309 13.587 0252
(MIC-GRA)-BiLSTM 8.331 0357 12.835 0267
(MIC-GRA)-CNN-BiLSTM 8.054 0.448 10212 0312
(MIC-GRA)-CNN-BiLSTM-Attention 4296 0.723 5.472 0.612

the LSTM, BiLSTM, and CNN-BiLSTM models. Results of this ~ BiLSTM-attention ensemble model to anticipate reservoir

comparative analysis are delineated in Table 6.

Table 6 illustrates the superior prediction accuracy of the CNN-
BiLSTM-Attention model compared to its LSTM, BiLSTM, and
CNN-BiLSTM counterparts for random item displacement. This
heightened accuracy is ascribed to the model’s robust handling of the
random item displacement sequence, characterized by its high
frequency and considerable volatility. The CNN-BiLSTM-
Attention model excels beyond traditional LSTM and BiLSTM
models, particularly in capturing nonlinear information
embedded within time series data. This model adeptly retains
vital information by employing the bidirectional training
capabilities of BILSTM. In addition, the attention mechanism’s
capacity to assign differentiated weights to disparate data points
streamlines the process, culminating in the effective and precise

training of random item displacement sequences.

4 Discussion

Accurately assessing reservoir landslide deformation is vital for
averting landslide calamities, given the considerable nonlinearity
and intricacy inherent in landslide displacement and its causative
factors. This study introduces a data-driven framework comprising a
deep learning ensemble model twinned with an optimal variational
mode decomposition, designed to forecast future landslide
movements. This framework’s benefits are twofold. First, it
applies the SSA-VMD algorithm to decompose the landslide
displacement sequence and its influencing factors, thereby
improving the time series displacement prediction model’s
efficacy. Second, this trailblazing research harnesses a CNN-
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landslide shifts. This deep learning ensemble model synergizes
the strengths of individual models, providing enhanced capability
in feature extraction from datasets marked by nonlinearity and
complexity.

While various displacement decomposition methods offer
substantial decomposition effects, it is essential to highlight that
the SSA-VMD model introduced in this study distinguishes itself by
its ability to accurately capture random term displacement.
Nevertheless, the current limitation in making more precise
predictions stems from the inadequate availability of monitoring
data on relevant influencing factors.

Moreover, existing landslide displacement monitoring data are
exclusively sourced from slopes already exhibiting deformation. The
inherent nonlinearity of slope characteristics complicates the task of
forecasting landslide deformation accurately using historical, static
data. Future research endeavors must focus on incorporating real-
time monitoring data into predictive models. Such integration
would not only enhance the precision and promptness of the
models’ predictions but also render them more effective for early
warning systems.

Prediction methods based on single-point displacement remain
central within the domain of landslide deformation research.
However, the inherent uncertainty in landslide systems makes
some degree of error in traditional point prediction methods
inevitable. To address this, our study applies prediction intervals
to improve the accuracy of landslide displacement forecasts [62].
Although the current focus is primarily on reservoir landslides
influenced by hydrological factors, the scope of the predictive
model should be expanded. Future developments could include
additional influencing factors such as soil mechanics and seismic
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activity, paving the way for a more generalized displacement
prediction model.

5 Conclusion

In this study, we introduce the (SSA-VMD)-(CNN-BiLSTM-
Attention) model for predicting landslide displacement, which
synergizes the SSA-VMD technique with the CNN-BiLSTM-
Attention model applied to landslide displacement sequences and
their influencing factors. Employed in the study of Baishuihe
landslide’s displacement prediction, the research leads to the
following conclusion:

(1) In the VMD model, the SSA algorithm is utilized to
dynamically optimize parameters, reducing the influence of
subjective assumptions and avoiding the laborious process of
manual parameter tuning. When designing the innovative
fitness functions, the reliability and decomposition efficiency
of the VMD model are enhanced by adopting sample entropy
and root mean square error.

(2) The SSA-VMD algorithm allows for the extraction of
subsequences of landslide displacement and subsequences of
influencing factors, enabling an in-depth analysis of the

between landslide rainfall,

reservoir water levels, and the state of landslide displacement.

relationships displacement,

The correlations between the displacement subsequences and

influencing factors are calculated using the MIC and GRA

methods. Furthermore, the integration of MIC-GRA as a

fusion technique is utilized for selecting significant influencing

factors for landslide displacement. The results indicate that using

influencing factors selected by the MIC-GRA method as input

data can significantly enhance prediction accuracy,
demonstrating that this method can improve the effectiveness
and efficiency of the input data. By eliminating less relevant data,
the predictive accuracy of the model is increased.

(3) The study introduces a novel integrated model, CNN-BiLSTM-
Attention, designed for training and predicting landslide
displacement. This composite model combines the strengths
of CNN, BiLSTM, and the Attention mechanism to adeptly
extract essential information from landslide displacement data.
The CNN component handles feature extraction, while BiILSTM
processes both past and future data, and the Attention
mechanism assigns variable weights to the data, thereby
optimizing the prediction process for landslide displacement.
Empirical results suggest that the proposed model surpasses both
single and dual combined models in prediction accuracy. The
pronounced accuracy of this model better captures the step
process of landslides and serves as a foundational study for the

prediction and early warning of similar landslide events.

References

1. Peng L, Niu RQ, Wu T. Time series analysis and support vector machine for
landslide displacement prediction. J Zhejiang University(Engineering Science) (2013)
47(09):1672-9. doi:10.3785/j.issn.1008-973X.2013.09.024

Frontiers in Physics

10.3389/fphy.2024.1417536

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

RW: Conceptualization, Data curation, Formal Analysis,

Investigation, Methodology, Project administration,
Writing-original draft, Writing-review and editing. YL: Data
curation, Formal  Analysis, Investigation, Methodology,

Supervision, Writing-review and editing. YY: Data curation,
Formal Analysis, Methodology, Writing-review and editing. WX:
Methodology,
Writing-review and editing. YW: Data curation, Methodology,

Conceptualization, Funding acquisition,

Writing-review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work is
supported by the National Natural Science Foundation of China
(No. 51939004).

Acknowledgments

We thank the National Field Observation and Research Station
of Landslides in the TGRA of Yangtze River for their help in
providing monitoring data for this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

2. Xu Q, Huang RQ, Li XZ. Research progress in time forecast and prediction on of
landslides. Adv Earth Sci (2004) 19(03):478-83. doi:10.11867/j.issn.1001-8166.2004.03.
0478

frontiersin.org


https://doi.org/10.3785/j.issn.1008-973X.2013.09.024
https://doi.org/10.11867/j.issn.1001-8166.2004.03.0478
https://doi.org/10.11867/j.issn.1001-8166.2004.03.0478
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1417536

Wang et al.

3. Li Hj., He YS, Xu Q, Deng JH, Li WL, Wei Y, et al. Sematic segmentation of loess
landslides with STAPLE mask and fully connected conditional random field. Landslides
(2023) 20(2):367-80. doi:10.1007/s10346-022-01983-8

4. Xu F, Wang Y, Du J, Ye J. Study of displacement prediction model of landslide
based on time series analysis. Chin J Rock Mech Eng (2011) 30(04):746-51.

5. Zhang J, Yin KL, Wang JJ, Huang MF. Displacement prediction of Baishuihe
landslide based on time series and PSO-SVR model. Chin J Rock Mech Eng (2015)
34(02):382-91. doi:10.13722/j.cnki.jrme.2015.02.017

6. Zhou C, Yin KL, Cao Y, Ahmed B. Application of time series analysis and PSO-
SVM model in predicting the Bazimen landslide in the Three Gorges Reservoir. Eng
Geology (2016) 204:108-20. doi:10.1016/j.enggeo.2016.02.009

7.Liu YL, Yin KL, Wang Y, Wang W. Study of landslide deformation prediction based
on EMD and neural network. Saf Environ Eng (2013) 20(04):14-7.

8. Xu SL, Niu RQ. Displacement prediction of Baijiabao landslide based on
empirical mode decomposition and long short term memory neural network in
Three Gorges area, China. Comput Geosci (2018) 111:87-96. doi:10.1016/j.cageo.
2017.10.013

9. Zhang K, Zhang K, Bao R, Liu XH, Qi FF. Intelligent prediction of landslide
displacements based on optimized empirical mode decomposition and K-Mean
clustering. Rock Soil Mech (2021) 42(01):211-23. doi:10.16285/j.rsm.2020.1300

10. Deng DM, Liang Y. Displacement prediction method based on ensemble empirical
mode decomposition and support vector machine regression— a case of landslides in
Three Gorges Reservoir area. Rock Soil Mech (2017) 38(12):3660-9. doi:10.16285/j.rsm.
2017.12.034

11. Wang ZH, Nie W, Xu HH, Jian WB. Prediction of landslide displacement based on
EEMD-Prophet-LSTM. J Univ Chin Acad Sci (2023) 40(04):514-22. doi:10.7523/j.ucas.
2022.002

12. Du H, Song DQ, Chen Z, Shu HP, Guo ZZ. Prediction model oriented for
landslide displacement with step-like curve by applying ensemble empirical mode
decomposition and the PSO-ELM method. ] Clean Prod (2020) 270:122248. doi:10.
1016/j.jclepro.2020.122248

13. Zhang KX, Niu RQ, Hu YJ, Wu XL. Landslide displacement prediction based on
wavelet transform and external cause. ] China Univ Mininge> Tech (2017) 46(04):
924-31. doi:10.13247/j.cnki.jcumt.000716

14. Zhou C, Yin K, Cao Y, Intrieri E, Ahmed B, Catani F. Displacement prediction of
step-like landslide by applying a novel kernel extreme learning machine method.
Landslides (2018) 15:2211-25. doi:10.1007/s10346-018-1022-0

15. Zhou C, Yin KL, Huang FM. Application of the chaotic sequence WA-ELM coupling
model in landslide displacement prediction. Rock Soil Mech (2015) 36(09):2674-80. doi:10.
16285/j.rsm.2015.09.030

16. Luo HY, Jang YN, Xu Q, Tang B. Displacement prediction of reservoir bank
landslide based on optimal decomposition mode and GRU model. Geomatics Inf Sci
Wuhan Univ (2023) 48(05):702-9. doi:10.13203/j.whugis20200610

17. Jiang YH, Wang W, Zhou LF, Wang RB, Liu SP. Research on dynamic prediction
model of landslide displacement based on particle swarm optimization-variational
mode decomposition, nonlinear autoregressive neural network with exogenous inputs
and gated recurrent unit. Rock Soil Mech (2022) 43(S1):601-12. doi:10.16285/j.rsm.
2021.0247

18. Xing Y, Yue JP, Chen C, Qin YL, Hu J. A hybrid prediction model of landslide
displacement with risk-averse adaptation. Comput Geosci (2020) 141:104527. doi:10.
1016/j.cageo.2020.104527

19. Li LW, Wu YP, Miao FS, Liao K, Zhang LF. Displacement prediction of
landslides based on variational mode decomposition and GWO-MIC-SVR model.
Chin ] Rock Mech Eng (2018) 37(06):1395-406. doi:10.13722/j.cnki.jrme.2017.
1508

20. Xu F, Fan CJ, Xu XJ, Li L, Ni JJ. Displacement prediction of landslide based
on variational mode decomposition and AMPSO-SVM coupling model.
J Shanghai Jiaotong Univ (2018) 52(10):1388-95+1416. doi:10.16183/j.cnki.
jjtu.2018.10.030

21. Zhou C, Yin KL, Cao Y, Huang FM. Displacement Prediction of step-like
Landslide Based on the response of inducing factors and support vector machine.
Chin J Rock Mech Eng (2015) 34(S2):4132-9. doi:10.13722/j.cnki.jrme.2014.0290

22. Yang F, Xu Q, Fan XM, Ye W. Prediction of landslide displacement time series
based on support vector regression machine with artificial bee colony algorithm. J Eng
Geology (2019) 27(04):880-9. doi:10.13544/j.cnki jeg.2017-256

23. Du J, Yin KL, Chai B. Study of displacement prediction model of landslide
based on response analysis of inducing factors. Chin ] Rock Mech Eng (2009)
28(09):1783-9.

24. Wang RB, Zhang K, Wang W, Meng YD, Yang LL, Huan HF, Hydrodynamic
landslide displacement prediction using combined extreme learning machine and
random search support vector regression model. Eur J Environ Civ Eng, 27, 2020,
2345-57. doi:10.1080/19648189.2020.1754298

25. Li Hj., Xu Q, He YS, Deng JH. Prediction of landslide displacement with an
ensemble-based extreme learning machine and copula models. Landslides (2018) 15:
2047-59. doi:10.1007/s10346-018-1020-2

Frontiers in Physics

61

10.3389/fphy.2024.1417536

26. Wang Yk., Tang HM, Huang JS, Wen T, Ma JW, Zhang JR. A comparative study of
different machine learning methods for reservoir landslide displacement prediction.
Eng Geology (2022) 298:106544. doi:10.1016/j.enggeo.2022.106544

27. Yao W, Lian C, Cheng L. A dynamic probabilistic model for landslide
displacement prediction. Hydrogeology Eng Geology (2015) 42(05):134-9+148.
doi:10.16030/j.cnki.issn.1000-3665.2015.05.22

28. Yao W, Lian C. Prediction of landslide displacement based on reservoir
computing and fractal interpolation. J Yangtze River Scientific Res Inst (2014)
31(12):43-8. doi:10.3969/j.issn.1001-5485.2014.12.009

29. Yang BB, Yin KL, Du J. A model for predicting landslide displacement based on
time series and long and short term memory neural network. Chin J Rock Mech Eng
(2018) 37(10):2334-43. doi:10.13722/j.cnki.jrme.2018.0468

30. Xing Y, Yue JP, Chen C. Interval estimation of landslide displacement prediction
based on time series decomposition and long short-term memory network. IEEE Access
(2020) 8:3187-96. doi:10.1109/access.2019.2961295

31. Yang BB, Yin KL, Lacasse S, Liu ZQ. Time series analysis and long short-term
memory neural network to predict landslide displacement. Landslides (2019) 16:
677-94. doi:10.1007/s10346-018-01127-x

32. Graves A, Jaitly N. Towards end-to-end speech recognition with recurrent neural
networks. In: 31st international conference on machine learning. Beijing, China: W&CP
(2014). p. 1764-72.

33. Lin Z, Ji Y, Liang W, Sun X. Landslide displacement prediction based on time-
frequency analysis and LMD-BiLSTM model. Mathematics (2022) 10(13):2203. doi:10.
3390/math10132203

34. Zhang K, Zhang K, Cai C, Liu W, Xie J. Displacement prediction of step-like
landslides based on feature optimization and VMD-Bi-LSTM: a case study of the
Bazimen and Baishuihe landslides in the Three Gorges, China. Bull Eng Geology Environ
(2021) 80:8481-502. doi:10.1007/s10064-021-02454-5

35. Niu Q, Cao AM, Chen XY, Zhou D. Short-term load forecasting based on flower
pollination algorithm and BP neural network. Power Syst Clean Energ (2020) 36(10):
28-32.

36. Liu D, Wei X, Wang WQ, Ye JH, Reng J. Short-term wind power prediction based
on SSA-ELM. Smart Power (2021) 49(06):53-9+123.

37.Nava L, Carraro E, Reyes-Carmona C, Puliero S, Bhuyan K, Rosi A, et al. Landslide
displacement forecasting using deep learning and monitoring data across selected sites.
Landslides (2023) 20(10):2111-29. doi:10.1007/s10346-023-02104-9

38. Lin Z, Ji Y, Sun X. Landslide displacement prediction based on CEEMDAN
method and CNN-BiLSTM model. Sustainability (2023) 15(13):10071. doi:10.3390/
sul51310071

39. Wang CY, Li LM, Wen ZZ, Zhang MY, Wei XW. Dynamic prediction of landslide
displacement based on time series and CNN-LSTM. Foreign Electron Meas Tech (2022)
41(03):1-8. doi:10.19652/j.cnki.femt.2103321

40. Zhu ZL, Rao Y, Wu Y, Qi JN, Zhang Y. Research progress of attention mechanism
in deep learning. J Chin Inf Process (2019) 33(06):1-11.

41. Tang FF, Tang TJ, Zhu HZ, Hu C, Ma Y, Li X. Rainfall landslide deformation
prediction based on attention mechanism and Bi-LSTM. Bull Surv Mapp (2022)(09)
74-9+104. doi:10.13474/j.cnki.11-2246.2022.0267

42. Dragomiretskiy K, Zosso D. Variational mode decomposition. IEEE Transactions
Signal Processing (2013) 62(3):531-44. doi:10.1109/tsp.2013.2288675

43. Richman JS, Moorman JR. Physiological time-series analysis using approximate
entropy and sample entropy. Am J Physiology-Heart Circulatory Physiol (2000) 278(6):
H2039-49. doi:10.1152/ajpheart.2000.278.6.h2039

44. Xue JX Research and application of A novel swarm intelligence optimization
technique: sparrow search algorithm. China: Donghua University (2021).

45. Kraskov A, Stogbauer H, Grassberger P. Estimating mutual information. Phys Rev
E (2004) 69(6):066138. doi:10.1103/physreve.69.066138

46. Reshef DN, Reshef YA, Finucane HK, Grossman SR, Mcvean G, Turnbaugh PJ,
et al. Detecting novel associations in large data sets. Science (2011) 334(6062):1518-24.
doi:10.1126/science.1205438

47. Guo Z, Yu B, Hao M, Wang W, Jiang Y, Zong F. A novel hybrid method for
flight departure delay prediction using Random Forest Regression and Maximal
Information Coefficient. Aerospace Sci Tech (2021) 116:106822. doi:10.1016/j.ast.
2021.106822

48. Huang X, Luo YP, Xia L. An efficient wavelength selection method based on the
maximal information coefficient for multivariate spectral calibration. Chemom Intell
Lab Syst (2019) 194:103872. doi:10.1016/j.chemolab.2019.103872

49. Zhou FY, Jin LP, Dong J. Review of convolutional neural network. Chin ] Comput
(2017) 40(06):1229-51.

50. Khan S, Rahmani H, Shah SAA, Bennamoun M A guide to convolutional
neural networks for computer vision. San Rafael. USA: Morgan and Claypool
Publishers (2018).

51. Graves A, Mohamed A, Hinton G. Speech recognition with deep recurrent neural
networks. In: Proceedings of International Conference on Acoustics, Speech and Signal

frontiersin.org


https://doi.org/10.1007/s10346-022-01983-8
https://doi.org/10.13722/j.cnki.jrme.2015.02.017
https://doi.org/10.1016/j.enggeo.2016.02.009
https://doi.org/10.1016/j.cageo.2017.10.013
https://doi.org/10.1016/j.cageo.2017.10.013
https://doi.org/10.16285/j.rsm.2020.1300
https://doi.org/10.16285/j.rsm.2017.12.034
https://doi.org/10.16285/j.rsm.2017.12.034
https://doi.org/10.7523/j.ucas.2022.002
https://doi.org/10.7523/j.ucas.2022.002
https://doi.org/10.1016/j.jclepro.2020.122248
https://doi.org/10.1016/j.jclepro.2020.122248
https://doi.org/10.13247/j.cnki.jcumt.000716
https://doi.org/10.1007/s10346-018-1022-0
https://doi.org/10.16285/j.rsm.2015.09.030
https://doi.org/10.16285/j.rsm.2015.09.030
https://doi.org/10.13203/j.whugis20200610
https://doi.org/10.16285/j.rsm.2021.0247
https://doi.org/10.16285/j.rsm.2021.0247
https://doi.org/10.1016/j.cageo.2020.104527
https://doi.org/10.1016/j.cageo.2020.104527
https://doi.org/10.13722/j.cnki.jrme.2017.1508
https://doi.org/10.13722/j.cnki.jrme.2017.1508
https://doi.org/10.16183/j.cnki.jsjtu.2018.10.030
https://doi.org/10.16183/j.cnki.jsjtu.2018.10.030
https://doi.org/10.13722/j.cnki.jrme.2014.0290
https://doi.org/10.13544/j.cnki.jeg.2017-256
https://doi.org/10.1080/19648189.2020.1754298
https://doi.org/10.1007/s10346-018-1020-2
https://doi.org/10.1016/j.enggeo.2022.106544
https://doi.org/10.16030/j.cnki.issn.1000-3665.2015.05.22
https://doi.org/10.3969/j.issn.1001-5485.2014.12.009
https://doi.org/10.13722/j.cnki.jrme.2018.0468
https://doi.org/10.1109/access.2019.2961295
https://doi.org/10.1007/s10346-018-01127-x
https://doi.org/10.3390/math10132203
https://doi.org/10.3390/math10132203
https://doi.org/10.1007/s10064-021-02454-5
https://doi.org/10.1007/s10346-023-02104-9
https://doi.org/10.3390/su151310071
https://doi.org/10.3390/su151310071
https://doi.org/10.19652/j.cnki.femt.2103321
https://doi.org/10.13474/j.cnki.11-2246.2022.0267
https://doi.org/10.1109/tsp.2013.2288675
https://doi.org/10.1152/ajpheart.2000.278.6.h2039
https://doi.org/10.1103/physreve.69.066138
https://doi.org/10.1126/science.1205438
https://doi.org/10.1016/j.ast.2021.106822
https://doi.org/10.1016/j.ast.2021.106822
https://doi.org/10.1016/j.chemolab.2019.103872
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1417536

Wang et al.

Processing Acoustics; 4-10, June 2023; Vancouver, Canada, 6. IEEE (2013).

p. 645-6 649.

52. Khan S, Fazil M, Sejwal VK, Alshara MA, Alotaibi RM, Kamal A, et al. BICHAT:
BiLSTM with deep CNN and hierarchical attention for hate speech detection. J King
Saud University-Computer Inf Sci (2022) 34(7):4335-44. doi:10.1016/j.jksuci.2022.
05.006

53. Ren JJ, Wei HH, Zou ZL, Hou TT, Yuan YL, Shen JQ, et al. Ultra-short-term
power load forecasting based on CNN-BiLSTM-Attention. Power Syst Prot Control
(2022) 50(08):108-16. doi:10.19783/j.cnki.pspc.211187

54. Knudsen EI. Fundamental components of attention. Annu Rev Neurosci (2007) 30:
57-78. doi:10.1146/annurev.neuro.30.051606.094256

55. Zhu YJ, He N, Zhong W, Kong JM. Physical simulation study of deformation and
failure accumulation layer slope caused by intermittent rainfall. Rock Soil Mech (2020)
41(12):4035-44. doi:10.16285/j.rsm.2020.0318

56. He KQ, Guo L, Chen WG. Research on displacement dynamic evaluation and
forecast model of colluvial landslide induced by rainfall. Chin ] Rock Mech Eng (2015)
34(S2):4204-15. doi:10.13722/j.cnki.jrme.2014.1010

Frontiers in Physics

62

10.3389/fphy.2024.1417536

57. Wang RB, Xia R, Xu WY, Wang HL, Qi J. Study on physical simulation of rainfall
infiltration process of landslide accumulation body. Adv Eng Sci (2019) 51(04):47-54.
doi:10.15961/j.jsuese.201900295

58. Liu XX, Xia YY, Zhang XS, Guo RQ. Effects of drawdown of reservoir water level
on landslide stability. Chin J Rock Mech Eng (2005) 24(8):1439-44.

59. Tan LY, Huang RQ, Pei XJ. Deformation characteristics and inducing mechanisms of a
super-large bedding rock landslide triggered by reservoir water level decline in Three Gorges
Reservoir area. Chin ] Rock Mech Eng (2021) 40(02):302-14. doi:10.13722/j.cnki,jrme.2020.0728

60. Liu Z, Guo D, Lacasse S, Li ], Yang B, Choi J. Algorithms for intelligent prediction
of landslide displacements. J Zhejiang University-SCIENCE A (2020) 21(6):412-29.
doi:10.1631/jzus.a2000005

61.LiuY, Xu C, Huang B, Ren X, Liu C, Chen BHandZ, et al. Landslide displacement
prediction based on multi-source data fusion and sensitivity states. Eng Geology (2020)
271:105608. doi:10.1016/j.enggeo.2020.105608

62. Wang YK, Tang HM, Wen T, Ma JW. A hybrid intelligent approach for
constructing landslide displacement prediction intervals. Appl Soft Comput (2019)
81:105506. doi:10.1016/j.as0¢.2019.105506

frontiersin.org


https://doi.org/10.1016/j.jksuci.2022.05.006
https://doi.org/10.1016/j.jksuci.2022.05.006
https://doi.org/10.19783/j.cnki.pspc.211187
https://doi.org/10.1146/annurev.neuro.30.051606.094256
https://doi.org/10.16285/j.rsm.2020.0318
https://doi.org/10.13722/j.cnki.jrme.2014.1010
https://doi.org/10.15961/j.jsuese.201900295
https://doi.org/10.13722/j.cnki.jrme.2020.0728
https://doi.org/10.1631/jzus.a2000005
https://doi.org/10.1016/j.enggeo.2020.105608
https://doi.org/10.1016/j.asoc.2019.105506
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1417536

& frontiers | Frontiers in Physics

’ @ Check for updates

OPEN ACCESS

EDITED BY
Zhengiu Shu,

Kunming University of Science and Technology,
China

REVIEWED BY
Lei Yang,

Zhengzhou University, China

Teng Sun,

Kunming University of Science and Technology,
China

*CORRESPONDENCE

Weijun Wang,
wj.wang@giat.ac.cn

Zucheng Huang,
zc.huang@giat.ac.cn

RECEIVED 19 April 2024
ACCEPTED 31 May 2024
PUBLISHED 24 June 2024

CITATION

Wang L, Zhang G, Wang W, Chen J, Jiang X,
Yuan H and Huang Z (2024), A defect detection
method for industrial aluminum sheet surface
based on improved YOLOV8 algorithm.

Front. Phys. 12:1419998.

doi: 10.3389/fphy.2024.1419998

COPYRIGHT

© 2024 Wang, Zhang, Wang, Chen, Jiang, Yuan
and Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics

TvpPE Original Research
PUBLISHED 24 June 2024
Dol 10.3389/fphy.2024.1419998

A defect detection method for
industrial aluminum sheet surface
based on improved

YOLOv8 algorithm

Luyang Wang'?, Gongxue Zhang!, Weijun Wang?*,
Jinyuan Chen?, Xuyao Jiang?, Hai Yuan? and Zucheng Huang?*

'College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an,
China, 2Guangzhou Institute of Advanced Technology, Guangzhou, China

In industrial aluminum sheet surface defect detection, false detection, missed
detection, and low efficiency are prevalent challenges. Therefore, this paper
introduces an improved YOLOVS8 algorithm to address these issues. Specifically,
the C2f-DSConv module incorporated enhances the network’s feature extraction
capabilities, and a small target detection layer (160 X 160) improves the
recognition of small targets. Besides, the DyHead dynamic detection head
augments target representation, and MPDIoU replaces the regression loss
function to refine detection accuracy. The improved algorithm is named
YOLOv8n-DSDM, with experimental evaluations on an industrial aluminum
sheet surface defect dataset demonstrating its effectiveness. YOLOv8n-DSDM
achieves an average mean average precision (mMAP50%) of 94.7%, demonstrating
a 3.5% improvement over the original YOLOv8n. With a single-frame detection
time of 2.5 ms and a parameter count of 3.77 M, YOLOv8n-DSDM meets the real-
time detection requirements for industrial applications.

KEYWORDS

defect detection, YOLOVS8 algorithm, C2f-DSConv module, DyHead dynamic detection
head network, small target detection layer

1 Introduction

The extensive development of technology has led to the widespread use of aluminum
and its alloys in diverse industries, including aerospace, transportation, construction, and
power generation. However, during the manufacturing process of industrial aluminum
sheets, various surface defects, e.g., scratches, pinholes, black spots, and creases, may arise
due to the quality of raw materials, production techniques, and equipment conditions.
These imperfections compromise the aluminum sheets’ aesthetic appeal and, more
importantly, diminish their mechanical strength and resistance to corrosion.
Consequently, industrial aluminum sheets’ usability and service life are adversely
affected. Therefore, effectively detecting and controlling surface defects in industrial
aluminum sheets is paramount in guaranteeing their quality and reliability.

The surface defect detection of industrial aluminum sheets in production workshops
primarily relies on manual visual inspection and tactile methods. However, these
approaches are inefficient and heavily influenced by human factors, hindering the detection
results” accuracy and consistency. The traditional image detection method consists of three steps:
image processing, feature extraction and target recognition. In recent years, with the
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advancements in computer vision, image processing, machine learning,
and other technologies, deep learning-based surface defect detection
methods have gained significant research attention. However, there are
still many challenges, such as the slow detection speed of the model,
which cannot meet the requirements of real-time detection, the
detection environment that affects the detection effect of the model
due to factors such as lighting, the low frequency of some defects low,
and the small number of available samples. Current deep learning-based
object detection algorithms are divided into one-stage and two-stage.
The one-stage object detection algorithms, such as the YOLO (You
Only Look Once) [1] series and the SSD (Single Shot MultiBox
Detector) [2] algorithm, simultaneously locate and classify objects.
Accordingly, the two-stage object detection algorithms, such as
RCNN [3], Fast R-CNN [4], Faster R-CNN [5], and R-FCN [6],
first generate candidate regions and then classify them.
Consequently, two-stage object detection algorithms offer higher
accuracy but slower detection speed than one-stage algorithms.

For surface defect detection in industrial settings, sacrificing a small
portion of detection accuracy and employing a one-stage object
detection algorithm is a more practical choice. Currently, several
industrial surface defect detection solutions have been proposed. For
instance, Sun et al. [7] developed an object detection network based on
the R-FCN algorithm for detecting pin-like defects in unmanned aerial
vehicle inspection images. They achieved a detection accuracy of
83.45%. Huang et al. [8] proposed an improved aluminum profile
surface defect detection algorithm based on Faster R-CNN, which
enhanced detection accuracy by incorporating feature pyramids and
deformable convolution. However, the detection speed of that method
did not meet the industrial requirements, and it consumed a large
amount of computing resources. Wei et al. [9] introduced an improved
YOLOV3 method for detecting surface defects in steel rolling, utilizing
the PSA feature pyramid attention module for multi-scale feature
fusion. Their method achieved a detection accuracy of 80.01%. LI
et al. [10] developed a lightweight network, M2-BL-YOLOV4, for
detecting surface defects in aluminum based on the enhanced
YOLOv4. By modifying the backbone network to an inverted
residual structure, they significantly reduced the model’s parameters
and improved its detection speed. Xu et al. [11] proposed an industrial
aluminum sheet defect detection method based on YOLOv4, which
employed GhostNet [12] as the backbone network to enhance feature
extraction capability while reducing network parameters. This approach
achieved a detection accuracy of 90.98%. Besides, Tang et al. [13]
presented an improved YOLOvV5 method for cylinder head forging
defect detection, which replaced the SPP-YOLO structure in the original
YOLOVS5 head with the Decoupled Head structure. This modification
enabled the model to utilize multiple feature maps of varying sizes for
object detection, adapting to targets with diverse scales. Dou et al. [14]
applied an improved YOLOv7 for insulator detection tasks and
achieved significant accuracy improvement by incorporating a small
target detection layer. Zhou et al. [15] innovatively integrated a context
aggregation module (CAM) between the backbone and feature fusion
networks based on the YOLOVS architecture. This approach enhanced
feature utilization and yielded a detection accuracy of 89.90% on the
photovoltaic cell EL dataset. However, there is still much room for
developing surface defect detection technology based on deep learning.
For example, defect detection can be fused with cross-modal retrieval
technology [16-20], and deep learning models can be used to fuse data
from different modalities (images and sensor data) to improve detection
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accuracy. At the same time, there are still many problems in the surface
defect detection of industrial aluminum sheets, such as improving the
detection accuracy of the network for small targets, balancing real-time
and accuracy, and enhancing the generalization of algorithms.
YOLOVS, a novel algorithm in the YOLO series, introduced by
Ultralytics in January 2023, leverages the advancements made
throughout the development of the YOLO series to achieve high
detection accuracy and speed. Thus, YOLOV8 is well-suited for
targeted improvements in surface defect detection of industrial
aluminum sheets. Therefore, this paper proposes an industrial
aluminum sheet surface defect detection algorithm based on an
improved YOLOvVS8
Experimental results demonstrate that the improved YOLOv8n

to enhance defect detection accuracy.
algorithm achieves high accuracy on the industrial aluminum
sheet dataset while meeting the detection speed requirements for
industrial scenarios.

2 Introduction to YOLOvV8 algorithm

The YOLOVS algorithm is an advanced object detection model
refined and improved upon its predecessors, establishing it as a
powerful and highly accurate model. YOLOV8 encompasses five
models categorized by size: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOV8I, and YOLOv8x. The YOLOv8n model was selected as
the baseline model due to its compact size and computational
efficiency, making it an appealing solution for surface defect
detection in industrial aluminum sheets. The structural details of
the YOLOV8n algorithm model are illustrated in Figure 1.

The YOLOVS algorithm comprises three primary components:
Backbone, Neck, and Head. The Backbone extracts the features, the
Neck performs feature fusion, and the Head is utilized for object
classification and localization prediction. YOLOV8 introduces
significant innovations and improvements in each component
compared to its predecessors. Firstly, YOLOv8 introduces the
ELAN concept from YOLOv7 [21] and replaces the previous
C3 module with a new C2f module. This modification makes the
model more lightweight while obtaining more diverse gradient flow
information. Secondly, the Head part adopts a decoupled head
structure, using two parallel branches to handle the localization
and classification tasks separately, allowing the model to be
optimized for different tasks. Thirdly, YOLOv8 replaces the
anchor-based approach with an anchor-free one. It also employs
the Task-Aligned Assigner sample allocation strategy. Furthermore,
YOLOV8 uses the Varifocal Loss for classification and incorporates
the Distribution Focal Loss into the original Complete IoU Loss for
regression. These modifications enhance the model’s generalization
capability. Consequently, YOLOv8 emerges as a superior algorithm
within the YOLO series, surpassing the performance of most
detection algorithms, including YOLOv6 [22] and YOLOR [23].

3 Improving the YOLOVS8 algorithm
3.1 C2f-DSConv module

In order to further enhance the algorithm’s detection accuracy,
this paper incorporates the DSConv (Dynamic Snake Convolution)
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Architecture of the YOLOv8n Algorithm model.

[24] module proposed by Southeast University into the C2f module
of the YOLOVS8 backbone and replaces the two Conv modules in the
original C2f module with the DSConv module. Traditional
convolutional operations have a fixed receptive field, which can
hinder capturing detailed features, particularly locally curved and
elongated features, which are challenging to detect due to their
limited presence in the image.

Inspired by deformable convolutions, DSConv introduces
deformable offsets to traditional convolutions. To prevent the
model from learning deformable offsets freely, which could lead
to deviations in the receptive field, DSConv employs an iterative
strategy. The position of each convolutional operation is determined
by using all deformable offsets concerning the central grid as a
reference, ensuring the continuity of attention. Figure 2 depicts the
DSConv coordinate calculation and the diagram of the
receptive field.

Regarding the DSConv coordinate calculation, first, assuming a
coordinate K with a size of 3 x 3 for the standard 2D convolution,
where the central coordinate is Ki = (xi, yi) and the dilation factor is
1, K can be represented as Eq. (1):

Frontiers in Physics

K={(x-1y-1),(x=-Ly),.... (x+Ly+ 1)}, (1)

Next, deformable offsets are introduced to enhance the
flexibility of the convolutional kernel in capturing the target’s
complex geometric features. These offsets allow the receptive
field to better align with the actual shape of the target. However,
to prevent the receptive field from deviating excessively from the
target due to unconstrained learning by the model, DSConv
applies constraints to the deformable offsets in the x-axis and
y-axis directions. Taking the x-axis direction as an example,
each grid in K is represented as Ki*c= (xi+cyi+0),
c=1{0,1,2,3,4}. Starting from the center grid Ki, each
subsequent grid is incremented by a deformable offset
A =1{8]6 € [-1,1]}. Since deformable offsets are typically
fractional, bilinear interpolation is used. As depicted in
Figure 2A, the grid coordinates in the x-axis direction are
expressed as Eq. (2):

K. = { (Xiro Vied) = Xi + Gy, + Z§+CAY)) 2
(XioVid) =X—Gy, + Z;-CAY)
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(A) Coordinate calculation diagram of DSConv, (B) DSConv receptive field.

In the y-axis direction, the grid coordinates are shown in Eq. (3):
K. = (XJ+C’YJ+C) =X+ Z;+CAX’ Y; + C) (3)
" (Xj’c’ ijc) = Xj + Z;—CAX’ YJ - C)

As illustrated in Figure 2B, the dynamic adjustment of
DSConv in the x and y directions allows its receptive field to
cover a range of 9 x 9. Furthermore, DSConv can better adapt to
elongated and curved structures from a structural perspective,
allowing it to capture more important fine-grained features.

3.2 Addition of small object detection layer

Due to uncontrollable factors in industrial environments,
aluminum plates often exhibit surface defects, including
numerous small objects like holes and tiny scratches. In
convolutional neural networks (CNNs), lower-level feature
maps have larger dimensions and smaller receptive fields,
providing abundant location information and fine-grained
features. Conversely, higher-level feature maps have smaller
dimensions and larger receptive fields, capturing semantic
information [25].

In the original YOLOV8 architecture, the Neck module
combines features extracted from the backbone and generates
three distinct scales of feature maps to detect objects of varying
sizes: 20 x 20, 40 x 40, and 80 x 80. Specifically, the 20 x 20 detects
large target objects exceeding 32 x 32, the 40 x 40 medium-sized
objects larger than 16 x 16, and the 80 x 80 smaller objects exceeding
8 x 8. When the downsampling factor of the neck is large, the deeper
feature map will lose detailed information about the small target,
which makes the small target sample difficult to predict.

However, the original YOLOV8 detection layers prove ineffective
for detecting minute defects on industrial aluminum plates, often
leading to missed detections. Therefore, an additional 160 x 160
detection layer is added at the end of the model to detect tiny
objects smaller than 8 x 8. Figure 3 illustrates an upsampling
operation added to the neck module after the second upsampling,
resulting in a 160 x 160 feature map. This feature map is concatenated
with the 160 x 160 feature map from the backbone module, creating a
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new prediction scale. The modified YOLOv8 model now comprises
four detection layers, enhancing its capability to detect small objects.

3.3 DyHead

YOLOV8 incorporates the decoupled head structure introduced
in YOLOX [26] for classification and localization tasks. However,
challenges arise in the industrial aluminum plate inspection process
due to variations in defect scales, random changes in angles, and
random distributions of defect positions, which the decoupled head
struggles to address effectively.

Researchers have investigated how to enhance the detection
performance of the Head, with improvements concentrated in three
primary areas. 1) Scale perception capability by addressing the
presence of targets or defects with vastly different scales within a
single image. 2) Spatial perception capability enhances the head’s
ability to handle targets with varying shapes and positions under
different viewpoints. 3) Task perception capability enables the Head
to adopt more suitable representation methods for diverse objects.

However, current research focuses on a single aspect of these
capabilities. For instance, DyHead (Dynamic Head) [27], proposed
by Microsoft, presents a novel dynamic detection Head that
simultaneously addresses all three capabilities. Its structure illustrated
in Figure 4 reveals that it leverages attention mechanisms in
hierarchical, spatial, and channel dimensions, unifying the attention
mechanisms of the detection Head, thereby improving detection
accuracy and providing a unified analytical perspective for
subsequent studies.

DyHead applies the following attention formula (Eq. 4) to the
given feature tensor F ¢ RIXS¥C,

W (F) = nc (ns (my (F) - F) - F) - F, (4)

where L, S, and C denote the dimensions of hierarchy, spatial extent,
and channel, respectively, m, 7, and 7 represent the attention
functions for these three dimensions 7 —signifies scale-aware
attention, by assigning weights to features of different hierarchical
levels based on their semantic relevance for fusion. This is
important for detecting objects of different sizes and distances. mg

denotes spatial-aware attention, focusing on discriminative regions
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FIGURE 3
Architecture of the YOLOv8 mode with detection layer.
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FIGURE 4
Structure of DyHead.

where spatial positions and feature hierarchies align consistentlyand e~ 3.4 MPDIloU

represents task-aware attention, it can dynamically control the ON and

OFF of the feature channel to support different tasks, and focus more on YOLOVS’s loss comprises two components: classification loss
the key features of the current task. By unifying different attention  and regression loss. The classification loss evaluates the accuracy of
perspectives, DyHead significantly enhances the target representation  the predicted class, while the regression loss assesses the precision of
capability of the model with minimal computational overhead. the predicted bounding box position. Besides, this paper introduces
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an improved regression loss function to enhance further the model’s
detection accuracy. The original YOLOv8 model employs the
Complete IoU Loss (CIoU) bounding box loss function [28],
which incorporates the impact of aspect ratio based on DIoU.
CIoU is formulated as Eqs 5-7:

2(b, b¥
CloU = IoU - % - av, (5)
a=— ' (6)
1-ToU+v
4 wet w\’
v = = arctanh—gt - arctanﬁ , (7)

where ToU denotes the intersection over union, p? (b, b®") is the
Euclidean distance between the center points of the predicted
and ground truth boxes, and c is the diagonal length of the
minimum enclosing rectangle that contains both the ground
truth and the predicted boxes. a denotes a weight coefficient, v
measures the similarity of aspect ratios, w and h are the width
and height of the ground truth box, and w' and h® represent the
width and height of the predicted box. The CIoU loss is
formulated as Eq. (8):

2(b, b®
LOSSeiy = 1 — ToU + % +av, (8)

However, the aspect ratio defined in CIoU is a relative value and
does not reflect the actual relationship between the width and height
of the ground truth and the predicted bounding boxes. This may
hinder the model’s effective optimization of similarity. Moreover,
the bounding box loss function loses effectiveness when the
predicted and ground truth bounding boxes have the same aspect
ratio but different widths and heights.

Therefore, this paper proposes a new bounding box loss function
called MPDIoU (Minimum Point Distance Intersection over Union)
[29], which measures the bounding box similarity based on the
minimum point distance. Specifically, it directly minimizes the
distances between the top-left and top-right points of the
predicted and ground truth bounding boxes, thereby simplifying
the computation process while considering the non-overlapping
area, distance between center points, and width and height
deviations. Therefore, MPDIoU can effectively replace CIoU as
the bounding box loss function and improve the algorithm’s
detection accuracy. The MPDIoU and MPDIoU LOSS are
formulated as Eqs 9, 10:

MPDIoU =1 d? di
oU = OU_h2 +wr R +w?
d 4

Prw Rtw

)

LOSSyppiow = 1 — IoU + (10)
where d; represents the distance between the top-left points of the
predicted and ground truth boxes, d, is the distance between the
bottom-right points of the predicted and ground truth boxes, and w
and h represent the width and height of the input image,
respectively.

The improved network incorporates DSConv into the C2f
module of the backbone to enhance the network’s feature
extraction capability. Additionally, a small object detection layer
is added to enhance the network’s ability to detect low-resolution
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small objects, and DyHead is introduced to improve the
performance of the detection Head. Finally, the original
bounding box loss function is replaced with MPDIoU to improve
the algorithm’s accuracy. Figure 5 depicts the structure of the

improved YOLOv8-DSDM network.

4 Experimental setup and
results analysis

4.1 Dataset

The effectiveness of the YOLOv8n-DSDM algorithm is validated
on an industrial aluminum sheet surface defect dataset obtained
from the Paddle AI Studio Galaxy Community. All defect images are
captured using Hikvision industrial cameras. The dataset comprises
400 images in jpg format, with a resolution of 640 x 480, and
involves four types of defects: fold, crake, black, and hole. Each
image can contain one or more types of defects, and the total
number of defects in the dataset exceeds 1,000. As shown in
Figure 6, the dataset sample images illustrate the various types
of defects.

This study uses the MVTec Deep Learning Tool annotation
software to annotate the four types of defects. The annotated defects
are depicted in Figure 7, where yellow, blue, purple, and red
represent a fold, crake, black, and hole, respectively.

Furthermore, this study expands the original dataset through
data augmentation techniques to overcome the limited sample
size of the industrial aluminum sheet dataset and mitigate the risk
of overfitting. These techniques include random brightness
variation, scaling, Gaussian blur, Gaussian noise, horizontal
flipping, flipping. The
augmented effects are illustrated in Figure 8. By applying

random rotation, and vertical
these data augmentation techniques, the total sample size
increases from 400 to 3,200, thereby enhancing data diversity
and improving the robustness of the deep learning model. To
ensure unbiased evaluation, the dataset is divided into training,
validation, and testing sets based on a ratio of 7:1:2. Thus, the
number of training, validation, and test sets is 2,240, 320, and
640, respectively.

After data augmentation, the specific defect data statistics are

presented in Table 1.

4.2 Experimental environment and training
parameters

The experimental environment and hardware configuration are
reported in Table 2, and the training parameters are presented in
Table 3. All experiments are conducted under the same experimental
environment and parameter settings to ensure validity.

4.3 Evaluation metrics
This study uses four evaluation metrics, including mAP@0.5,

single-image detection time T, FLOPs, and the number of
parameters Params, which are defined as follows:
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FIGURE 6

Industrial aluminum sheet surface defect Dataset. (A) Fold, (B) Crake, (C) Black, (D) Hole.

Frontiers in Physics

69

frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1419998

Wang et al. 10.3389/fphy.2024.1419998

FIGURE 7
Annotated defects. (A) Fold and Black, (B) Black, Crake and Hole

A B C D
E F G H

FIGURE 8
Visualization of the augmented data. (A) Original (B) Random brightness variation (C) Scaling (D) Gaussian blur (E) Gaussian noise (F) Horizontal

flipping (G) Random rotation (H) Vertical flipping

TABLE 1 Statistical analysis of defective industrial aluminum sheets.

Defect type Quantity of each type
Before augmentation After augmentation Before augmentation After augmentation
Fold 195 1,365 1,429 10,003
Crake 475 3,325
Black 523 3,661
Hole 236 1,652
(1) mAP is the mean average precision, as shown in Eq. (11): where class is the total number of categories and AP; is the mean
average precision of the ith category, and mAP@0.5 is the mean of the
AP = 1 §odass AP. (11) mean average precision of all categories when IoU is 0.5. The higher the
class4~i=1 v value of mAP@0.5, the better the detection performance of the model.
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TABLE 2 Experimental environment parameters.

Parameter Value

CPU Intel i9-13900K
Memory 128 GB
GPU NVIDIA RTX4090 *2

Operating System Ubuntu 20.04

Programming Language Python3.8

Libraries/Frameworks PyTorch2.0.1+CUDA11.8

Development Environment PyCharm

TABLE 3 Training parameters.

Parameter Value

Learning Rate 0.001
Learning Rate Decay Type cos_Ir
Total Training Iterations 500

Batch Size 32
Optimizer Adam
Optimizer Momentum 0.937
Weight Decay Coefficient 0.0005

(2) The inference speed of the model is measured based on the
single-image detection time T in milliseconds (ms).

(3) FLOPs, or floating-point operations per second, measure
computational complexity, reflecting the model’s complexity.

(4) Params, or the number of parameters, refers to the total
number of trainable parameters in the model, which indicates
the model’s size.

4.4 Ablation experiments of integrating the
C2f-DSConv module

Ablation experiments are also conducted on the divided test set
to demonstrate the effectiveness of the proposed algorithm and the
effectiveness of the C2f-DSConv module in detecting elongated and
curved defects on the surface of industrial aluminum plates. In order
to ensure the validity of the experiments, the experimental
environment and parameter settings were the ones described in
the previous section. Table 4 reports the corresponding results.

According to the experimental results presented in Table 4,
incorporating the C2f-DSConv module significantly improves the
detection accuracy for various defect types. Compared to the
baseline model, the accuracy for wrinkles, scratches, dirt, and holes
increases by 0.6%, 3.1%, 0.5%, and 1.3%, respectively. Notably, the
improvement in scratch detection is the most pronounced, which is
important, as scratches on industrial aluminum sheets often exhibit
irregular, elongated, and curved shapes, with slender structures
occupying a relatively small portion of the image and having
limited pixel representation. Moreover, these structures are
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TABLE 4 Ablation experiments of the C2f-DSConv module.

A IGLORS

Crake Black Hole
YOLOv8n 94.2% | 84.8% 97.3%  88.2% 91.2%
YOLOv8n + 948%  87.9% 97.8%  89.5% 92.5%
DSConv

susceptible to interference from complex backgrounds. Therefore,
the experimental results demonstrate that integrating DSConv into
the C2f module effectively enhances the model’s ability to detect
slender and subtle defects. In order to more intuitively demonstrate
the effectiveness of adding the C2{-DSConv module to Crake defects,
this paper visualizes the feature map in the form of a heat map, which
can help us intuitively understand which regions are most important
for the model’s decision-making. The heat map detection effect is
shown in Figure 9. As can be seen from the figure, the model with the
C2f-DSConv module pays more attention to the defective part and
gives it more weight.

4.5 Ablation experiments of adding small
target detection layer

The following ablation experiments assess the efficacy of the
YOLOVS algorithm enhanced with a small target detection layer.
The experimental setup and parameter configurations are the ones
previously described. The corresponding findings are reported
in Table 5.

In this study, a 160 x 160 small target detection layer is
incorporated into the original set of detection layers (20 x 20,
40 x 40, and 80 x 80) in YOLOV8 to identify targets smaller
than 8 x 8. The experimental results presented in Table 5
indicate that compared to the original model, the average
accuracy for detecting wrinkles increased by 0.4%, scratches by
1.3%, dirt by 0.4%, and holes by 7.4%, with the most notable
enhancement observed in hole detection. This outcome can be
attributed to the predominance of hole sizes smaller than 8 x
8 on the surface of industrial aluminum sheets, which the
original three detection layers struggle to identify effectively.
Consequently, these results demonstrate that adding a small
target detection layer can significantly enhance the model’s
detection capability for small targets. At the same time, to more
intuitively verify the effectiveness of the hole after adding a small
target detection layer, the feature map is displayed in the form of a
heat map, as illustrated in Figure 10. As seen in the figure, the model
gives more weight to the background before adding the small object
detection layer, and after adding the detection layer, the red part of
the heat map is mostly concentrated in the defect part to be detected.

4.6 Ablation experiments

The proposed model introduces four enhancements to the
YOLOv8 model. Hence, six ablation experiments evaluate the
effect of these enhancements, including the original model
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FIGURE 9
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Comparison of the heat map effect of the C2F-DSConv module, (A) YOLOVS, (B) YOLOvV8n + C2f-DSConv.

TABLE 5 Ablation experiments of small target detection layer.

A GLOR)

" e T T T

YOLOv8n 94.2%

YOLOvV8n + Detection Layer 94.6%

84.8%

86.1%

97.3% 88.2% 91.2%

97.7% 95.6% 93.5%

A-'-

Comparison of the heat map effect after adding the detection layer, (A) YOLOVS, (B) YOLOv8n + detection layer.

FIGURE 10

experiment, individual implementations of the four enhancements,
and their simultaneous integration. The experimental environment
and parameter configurations remained constant throughout the
trials, and the corresponding findings are summarized in Table 6.

M1 represents the experimental result of the original YOLOv8n
model, serving as the benchmark for comparing with other models.
It achieves a mAP@0.5 of 91.2%. M2 incorporates the C2f-DSConv
module, yielding a 1.3% increase in mAP@0.5 with a marginal rise in
the number of parameters, single-frame detection time, and
computational load. M3 introduces a small target detection layer,
reducing 0.09 M parameters, a 0.3 ms increase in single-frame
detection time, and a 4.1G rise in computational load while
enhancing mAP@0.5 by 2.3%. M4 integrates the DyHead

Frontiers in Physics

detection head, leading to a parameter increase of 0.48 M, a
single-frame detection time increase of 0.3 ms, and a 1.5G boost
in computational load, resulting in a mAP@0.5 increase of 2%.
M5 substitutes the boundary box loss function with MPDIoU,
maintaining the parameter count and computational load,
shortening the single-frame detection time by 0.2ms, and
elevating mAP@0.5 by 0.4%. M6 combines all four improvement
methods simultaneously, resulting in a parameter increase of
0.76 M, a 1.2 ms single-frame detection time increase, an 11.6G
computational load increase, and the highest mAP@0.5 value of
94.7%. The improved M6 model sacrifices several parameters,
single-frame detection time, and computation to provide the
highest mAP@0.5 of 94.7%.
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TABLE 6 Ablation Experiments of the Proposed Improvement Methods. (/ denotes the use of a specific method and x its non-utilization).

C2f-DSConv Detection layer DyHead MPDIoU Params (M) T (ms) FLOPs (G) mAP@O0.5
M1 X X X 3.01 1.3 8.1 91.2%
M2 v X X 3.27 1.5 8.2 92.5%
M3 X vV X 2.92 1.6 12.2 93.5%
M4 X X v 3.49 1.6 9.6 93.2%
M5 X X X 3.01 1.1 8.1 91.6%
M6 v v N 3.77 25 19.7 94.7%

TABLE 7 Ablation experiments of the improved model.

AP@0.5
Fold Crake Black
YOLOvSn 94.2% 84.8% 97.3% 88.2% 91.2%
YOLOv8n-DSDM | 95.7% 87.7% 99.2% 96.2% 94.7%

4.7 Comparison of detection effects

In order to visually demonstrate the detection performance of
the enhanced YOLOv8-DSDM model, a comparative analysis is
conducted between the original model and the upgraded model
using the test environment and parameter settings reported in
Table 7. The corresponding results highlight that the improved
YOLOV8-DSDM exhibits enhanced detection accuracy across four
types of defects. Specifically, crease, scratch, dirt, and hole detection
accuracy increased by 1.5%, 2.9%, 1.9%, and 8%, respectively.
Consequently,  the average ~mean  accuracy mAP®@
0.5 increases by 3.5%.

The YOLOvV8 and YOLOv8n-DSDM models are challenged on
the test set, with the comparative results illustrated in Figure 11. The
visual display indicates that the original YOLOv8 model experiences
missed detections and imprecise bounding box localization. In
defects
overlooked by the original model, leading to closely aligned
detection boxes with the targets. Consequently, the YOLOv8n-
DSDM  model demonstrates

performance.

contrast, the enhanced model effectively identifies

an overall superior detection

4.8 Comparison with other mainstream
object detection algorithms

To assess further the effectiveness of the proposed YOLOvS-
DSDM algorithm, comparative experiments are conducted under
consistent conditions using an industrial aluminum sheet surface
defect dataset. The evaluated algorithms are SSD, Faster R-CNN,
DETR [30], RT-DETR [31], YOLOv5 [32], YOLOv6 [22],
YOLOv7 [33], YOLOv7-tiny [34], and YOLOvVS, with the
corresponding results presented in Table 8.

The mAP@0.5 of the SSD algorithm is 67.4%, with a parameter
size of 13.69 M. The single image detection time is 1.5 ms, and the
computational complexity is 78.20G. The detection accuracy of SSD
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is relatively subpar, leaving room for optimizing its computational
complexity. Comparatively, while the Faster R-CNN algorithm
enhances the mAP@0.5 by 52%, unlike SSD, it has a
considerable increase in parameter size to 27.69 M, accompanied
by a surge in single image detection time to 23.9 ms and a substantial
rise in computational complexity to 190.83 G. The DETR algorithm,
on the other hand, yields a noteworthy 20.8% improvement in
mAP@0.5 relative to SSD, with an increase in parameter size of
27.59 M, an increase in single image detection time of 32.8 ms, and
an increase in computational complexity of 7.80G. RT-DETR has
been optimized based on DETR to achieve real-time object
detection, and its mAP@50% can reach 90.4%, and the single
detection time is 5 ms. However, the parameters and calculations
are still large, which are 28.45 M and 100.6G, respectively. These
algorithms have large computational and parameter sizes, making
them unsuitable for industrial applications.

Among the YOLO series algorithms, YOLOV5 has the optimal
parameter size, single image detection time, and computational
complexity, with values of 2.50 M, 1.0 ms, and 7.1G, respectively.
YOLOVS has the highest mAP@0.5, reaching 91.2%. Compared to
YOLOvV5, YOLOV8 slightly increases mAP@0.5, parameter size,
single image detection time, and computational complexity of
1.2%, 0.51M, 0.3ms, and 1.0G, respectively. The improved
YOLOvV8-DSDM  algorithm, compared to the original
YOLOvV8 algorithm, achieves a 3.5% increase in mAP@0.5,
reaching 94.7%, at the cost of a parameter size of 0.76 M, single
image detection time of 1.2 ms, and computational complexity of
11.6G. In order to see the performance of the proposed model
YOLOvV8-DSDM more intuitively, the PR curves of each comparison
model are given in this paper, as shown in Figure 12. In summary,
the proposed YOLOvV8-DSDM algorithm outperforms current
mainstream algorithms in terms of comprehensive performance.

5 Conclusion

This study proposes an enhanced algorithm model, YOLOvVS-
DSDM, specifically designed to detect defects on industrial
aluminum surfaces. This novel model aims to overcome the
challenges of low detection accuracy and slow processing speeds
associated with conventional methods. Indeed, incorporating
DSConv into the C2f module improves the network’s feature
extraction capacity. Additionally, introducing a 160 x 160 small
object detection layer significantly enhances the network’s capability
to identify small-scale targets. Substituting the original detection
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TABLE 8 Comparative experiments with other algorithm models.

Params T (ms) FOLPs (G) mAP@

(M) 0.5
SSD 13.69 1.5 78.20 67.4%
Faster-RCNN 41.38 25.4 269.03 72.6%
DETR 41.28 343 86.0 88.2%
RT-DETR 28.45 5.0 100.6 90.4%
YOLOV5 2.50 1.0 7.1 90.0%
YOLOvV6 423 12 11.8 89.8%
YOLOv7 36.50 4.6 103.2 87.5%
YOLOvV7-tiny 6.02 2.1 13.0 89.5%
YOLOVS 3.01 13 8.1 91.2%
YOLOVS- 3.77 2.5 19.7 94.7%
DSDM

= SSD
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= RT-DETR
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FIGURE 12
PR curve comparison diagram.

enhancing detection speed. Our experimental findings
unequivocally illustrate the substantial advancements in the
detection performance of the proposed model. Subsequent efforts
will refine the network structure to elevate detection accuracy and
streamline model complexity.

Data availability statement

FIGURE 11

Detection performance. (A) Test image, (B) YOLOv8n, (C) The original contributions presented in the study are included in
YOLOv8-DSDM. the article/Supplementary Material, further inquiries can be directed
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Introduction: Chemical special steels are widely used in chemical equipment
manufacturing and other fields, and small defects on its surface (such as cracks
and punches) are easy to cause serious accidents in harsh environments.

Methods: In order to solve this problem, this paper proposes an improved defect
detection algorithm for chemical special steel based on YOLOVS. Firstly, in order
to effectively capture local and global information, a ParC2Net (Parallel-C2f)
structure is proposed for feature extraction, which can accurately capture the
subtle features of steel defects. Secondly, the loss function is adjusted to MPD-
IOU, and its dynamic non-monotonic focusing characteristics are used to
effectively solve the overfitting problem of the bounding box of low-quality
targets. In addition, RepGFPN is used to fuse multi-scale features, deepen the
interaction between semantics and spatial information, and significantly improve
the efficiency of cross-layer information transmission. Finally, the RexSE-Head
(ResNeXt-Squeeze-Excitation) design is adopted to enhance the positioning
accuracy of small defect targets.

Results and discussion: The experimental results show that the mAP@0.5 of the
improved model reaches 93.5%, and the number of parameters is only 3.29M,
which realizes the high precision and high response performance of the
detection of small defects in chemical special steels, and highlights the
practical application value of the model. The code is available at https://
github.com/improvment/prs-yolo.

KEYWORDS

object detection algorithmsl, steel defects 2, YOLOV83, ParC2Net4, small targets5

1 Introduction

As a key element of the stable operation and safety guarantee of chemical equipment,
chemical special steel [1] has excellent corrosion resistance and high temperature and high
pressure resistance, and its application value under extreme conditions is incomparable.
Whether it’s a delicate chemical reactor or a transport line in a harsh environment [2], these
steels are essential for efficient and safe industrial production [3]. However, it is precisely
this high-intensity application environment that makes even the smallest surface defects,
such as small cracks or hidden holes [4], enough to become a potential danger to major
safety accidents, directly threatening human safety and environmental protection.
Therefore, the development of efficient and accurate defect detection technology has
become an urgent problem to be solved, and its urgency and importance are self-evident.
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In recent years, the vigorous development of deep learning
technology has brought innovation to traditional industries,
among which the combination of image recognition technology
and deep neural networks is gradually penetrating and reshaping the
detection standards of the chemical industry [5]. Given the special
complexity of the application scenarios of chemical special steel and the
strict requirements for safe production, it is particularly critical to
achieve high accuracy in the detection of various minor defects [6]. In
practical applications, we have evaluated the existing detection methods
(infrared detection method, magnetic flux leakage detection method,
etc.), especially in the complex and drastically changing working
environment, the missed detection rate of small size defects by
traditional means is as high as 30%, and even for small defects less
than 1 mm, the missed detection rate rises to nearly 50%. In addition,
the traditional method cannot meet the inspection needs of more than
10 workpieces per second in the high-speed production line due to the
limitation of reaction speed, which increases the risk of missed detection
[7]. This situation cannot meet the needs of high-precision detection, a
high recall rate, or accurate positioning for all types of defects in
chemical special steel. Therefore, given the limitations and challenges
mentioned above, we designed a detection algorithm that can accurately
identify a variety of small defects in chemical special steels. This
algorithm has high detection accuracy, achieves real-time response
and fully meets the comprehensive performance requirements of high
identification accuracy, high recall rate, and accurate positioning
proposed for defect detection in the field of chemical special steels [8].

In summary, this paper proposes the YOLOv8-based steel defect
detection algorithm PRS-YOLO (ParC2Net-RepGFPN-RexSE-
Head-YOLO). The contributions of this paper are listed as follows.

o A novel ParC2Net parallel substructure is proposed, which can
effectively enhance the capture of local detail features and
global information of the target by the backbone network, and
improve the detection ability of the model on dense targets on
chemical special steels.

o The efficient feature fusion network RepGFPN is adopted, which
not only promotes the full interaction between high-level semantic
information and low-level spatial information, but also greatly
optimizes the transmission efficiency of defect information
between various layers and reduces the inference time of the model.

o The MPD-IoU loss function is fused, which optimizes the
processing of targets with significant size variation and
complex attitude in chemical special steels, effectively
enhances the generalization ability of the algorithm, and
ensures the high-precision recognition and evaluation
performance of the model in complex scenarios.

o A RexSE-Head detection head mechanism is designed, which
weights the channel information while improving the parallel
processing capability of the detection head, which effectively
enhances the sensitivity of the network to small target detection.

2 Related
2.1 Target detection method

At present, defect identification methods can be summarized
into two main categories according to the characteristics of object
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detection models: one-stage detection and two-stage detection
algorithms [9]. The one-stage method, represented by YOLO [10]
and SSD [11], has been widely used in industrial defect detection due
to its efficient real-time processing speed and practicability. YOLO is
particularly suitable for rapid production line monitoring [12]
because of its limitations in the identification of small defects
and the fact that the positioning accuracy of the bounding box is
slightly inferior to that of Faster R-CNN [13]. SSDs improve the
detection ability of defects of different sizes by fusing multi-scale
feature maps, but their positioning accuracy still faces challenges in
the face of extremely small or complex defects, especially in low-
contrast backgrounds. On the other hand, the two-stage algorithms,
including the R-CNN series and the Mask R-CNN [14], have
excellent performance in the accuracy and recall of defect
identification due to their step-by-step processing strategies,
especially the Faster R-CNN effectively enhances the detection
ability of multi-scale defects through RPN [15]. Mask R-CNN
introduces instance segmentation on this basis, which greatly
improves the depiction accuracy of complex and unknown defect
contours, but this improvement in fineness is accompanied by a
significant increase in computational cost, which limits its
application in scenarios with strict real-time requirements.

In recent years, innovative detection methods have emerged one
after another to solve the problem of small target detection,
surpassing the traditional two-stage framework, and emerging
anchor-free deep models such as PP-YOLOE [16] and Gold
YOLO [17], as DETR [18] wusing Transformer
architecture. PP-YOLOE optimizes the YOLO design to improve
the detection performance of small targets. Gold YOLO’s

well as

distribution mechanism strengthens the real-time detection
accuracy and refreshes the perspective of industrial defect
identification. DETR abandons sliding windows and anchor
frames to achieve efficient object detection in an end-to-end
manner, especially in dense target and long-distance correlation
analysis, opening up a new path for small object detection. These
cutting-edge technologies not only enrich the inspection methods of
chemical specialty steels, but also clarify the future research trend: on
the basis of ensuring accuracy, accelerate inspection and save
computing resources, and meet the high standards of industrial-
grade applications.

In view of the fact that this study focuses on practical application
requirements, especially in environments that require fast response
and limited hardware resources, the one-stage model is preferred
due to its high efficiency. Therefore, the follow-up discussion will
deepen the exploration of the optimization path of these models,
reveal their potential performance improvement in small object
detection through empirical analysis, and integrate the cutting-edge
methods mentioned above, such as the anchor-free mechanism
based model and high-performance variants, in order to bring
more comprehensive and in-depth insights to defect detection
technology.

2.2 Improved target detection method

In practical application scenarios, in order to achieve efficient,
accurate and rapid response detection of small defects (such as
cracks, punching, etc.) in chemical special steels, Therefore, to
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achieve good results with high detection accuracy and a fast response
for small defects such as cracks and punching, it is necessary to carry
out targeted optimization of existing defect detection algorithms.
Wang et al. [19] adopted the fully convolutional YOLO detection
network to conduct an in-depth study of strip surface defects and
with the
deepening of the network hierarchy and the application of down

achieved efficient end-to-end detection. However,
sampling operations such as pooling layers, a fully convolutional
network may lose some of its spatial position details, resulting in a
decrease in the accuracy of fine segmentation of small objects or
boundaries. Akhyar et al. [20] optimized the SSD model to identify
possible defects on steel surfaces and introduced the RetinaNet
method for defect classification. Nevertheless, the SSD model is not
ideal for detecting small defects. The default anchor boxes often have
difficulty accurately covering and identifying such small targets after
multistage down sampling. Xia et al. [21] innovatively improved the
YOLO algorithm by adding a coordinate attention mechanism and
constructing a feature fusion structure using a multipath spatial
pyramid pooling module. Although this improvement enhances the
sensitivity of the model to the target position and the detection
performance of small targets, it still has the problem of insufficient
detection accuracy when facing targets of different scales, complex
backgrounds, and sizes.

Kou et al. [22] improved the YOLOV3 algorithm and improved
the detection accuracy by introducing a frameless mechanism to
improve the detection speed and designing a dense convolutional
module to enrich the feature information. Although dense
convolutional blocks improve the depth and breadth of feature
learning by the model, they also increase the computational
complexity and the number of model parameters, which not only
consume more storage resources but also may prolong the inference
time, especially in the deployment environment of embedded
systems with limited resources. In addition, Jiang et al. [23]
carefully optimized the YOLOV5 algorithm by using a K-means
clustering algorithm to reconfigure the preset anchor parameter to
fit the features of actual data samples and added an MA attention
mechanism to enhance feature extraction. In addition, the BiFPN
module was used to replace the PANet structure in the neck part to
achieve comprehensive multiscale feature fusion. These changes
improved the detection accuracy by 2.9% while maintaining the
lightweight model. However, poor matching between the preset
frame and the real target shape can cause defects that cannot be
effectively located and identified.

Recent studies, such as the comparative study of automatic
image detection and transfer learning [24] and image learning
algorithms for small datasets [25], provide valuable references,
especially in extracting key features from images and processing
small datasets and complex image features.

In view of the existing challenges in the field of defect detection
in chemical special steels, especially the limitations of small defect
identification, this study innovatively constructs a high-precision
multi-category defect detection model, focusing on the accurate
detection of subtle defects. By innovating feature extraction,
optimizing feature fusion and detection architecture, the model’s
ability to capture micro-defects and interact with deep features is
greatly improved, ensuring excellent positioning and identification
performance when dealing with complex defects such as
microcracks and fine holes, and fully meeting the high-precision
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standards for micro-defect detection of special steel in actual
production.

3 Methodology

While maintaining the advantages of YOLOv5, YOLOVS is
committed to model lightweight and accurate upgrades to adapt
to various real-time applications. In this design, the C3 module is
abandoned, the C2f module is adopted to strengthen feature
extraction and target positioning, and the performance is
significantly improved by optimizing the internal integration
mechanism [26]. The “head” of the model adopts a decoupled-
head design to separate classification and boundary box regression
tasks. In the regressive head part, the number of 4*reg_max channels
is set by the DFL strategy to enhance the accuracy of position and
size  prediction and effectively promote the overall
prediction efficiency.

Although YOLOv8 has demonstrated powerful real-time
detection capabilities in many scenarios, it faces limitations in
detecting microscopic defects (such as cracks and punching) in
chemical specialty steels. The inherent hierarchical feature
extraction mechanism has limited ability to capture small
features in low-resolution images, insufficient mining of defect
fine morphology and texture information, coupled with the risk
of overfitting in cases of strong variability and data scarcity, and the
low attention of loss function and optimization strategy to such
defects, resulting in limited detection sensitivity and accuracy in this
application [27].

To this end, this paper proposes a defect detection model for
chemical special steel based on YOLOVS8 architecture: PRS-YOLOVS.
In response to the complexity of chemical specialty steel defect
detection, we adopted histogram equalization, ParC2Net feature
extractor, efficient RepGFPN to fuse multi-scale features, and
innovative RexSE-Head inspection head design, a series of
strategies to ensure that the model can still show excellent real-
time inspection accuracy and efficiency in harsh industrial sites.
Figure 1 illustrates the comprehensive network architecture design
of the PRS-YOLOV8 model.

3.1 Data preprocessing

In order to enhance the generalization performance and
robustness of the model in complex scenes, we adopted a series
of image preprocessing strategies. Firstly, the representation of
defects under different viewing angles and sizes is simulated by
random scaling, combined with image flipping to reveal the
anisotropic characteristics of defects, which effectively alleviates
the problem of overfitting and promotes the extensive
identification ability of the model. Secondly, the adaptive
applied to
dynamically optimize the brightness and contrast of the image,

histogram equalization technology [28] was
especially for the uneven illumination, and effectively suppress the
background noise. Unlike the global approach, adaptive equalization
processes image areas separately to improve overall image quality
while maintaining local contrast, making detailed features more

prominent, which is essential for defect detection.
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PRS-YOLO network structure. The structures of ParC2Net, RexSE-Head, and CSPStage in the neck are explained in detail in 3.2-3.4.

Figure 2 below shows an example of an image after adaptive
histogram equalization in the algorithm, which intuitively reflects
the role of the technology in enhancing the visual effect of the image
and improving the visibility of key details.

3.2 Backbone

In the YOLOv8 framework, the backbone component is
responsible for extracting key features from the image data, a
process that is critical for subsequent defect detection [29].
Although the classical C2f architecture effectively promotes the
deep expression of features through the bottleneck building
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blocks, which integrates the double-layer 3 x 3 convolution and
activation function, and enhances the learning potential of the
model through residual connection, its understanding of global
semantics may inadvertently weaken the focus on subtle local
features, which poses an obstacle to the accurate identification of
fine defects such as microcracks and punching in chemical special
steels, and affects the accuracy of positioning accuracy [30]. In
response to this limitation, we innovatively designed the ParC2Net
parallel substructure, which is designed to capture multi-scale image
details while maintaining the real-time performance of the system.

Specifically, by replacing the bottleneck convolution in the
original C2f module with the ParNet architecture, we use its
unique parallel flow design to dynamically adjust the size of the
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FIGURE 2
Illustration of the effect of adaptive histogram equalization: (A)
raw image and (B) image after adaptive histogram equalization.

receptive field, so as to delicately grasp the local characteristics and
global structure information of the defect without sacrificing
speed. This dynamic adaptation mechanism of ParNet enables
the model to accurately focus on the key regions containing
complex details and macrostructure information, which is
particularly important for identifying cracks and punching
defects with fine local and macrostructure
associations. ParNet’s the
integrated SSE (Channel Squeeze and Spatial Excitation)

morphology
core innovation also includes
attention mechanism [31], which is an advanced feature
recalibration strategy. By adaptively learning the weights of
different feature channels, the SSE mechanism can enhance the
feature expression that is crucial to the detection task, while
suppressing irrelevant information, ensuring that the model can
clearly distinguish and highlight the decisive features of
microscopic defects even in a visually complex background,
which greatly improves the feature expression ability and the
accuracy of defect detection of the model [32].

10.3389/fphy.2024.1451165

As shown in Figure 3, the integration of ParNet not only
optimizes the feature extraction process, but also promotes the
efficient fusion of feature maps at different levels, realizes cross-
scale and multi-dimensional feature capture, and significantly
enhances the comprehensiveness and depth of feature extraction.
What’s more noteworthy is that ParC2Net’s simplified architecture
design not only ensures high detection accuracy, but also effectively
reduces the computing burden and memory occupation, accelerates
the inference speed, and ensures that the model can still run
efficiently in a resource-limited environment. This feature enables
ParC2Net to demonstrate excellent performance stability and
adaptability in practical applications dealing with large-scale
datasets or hardware resource constraints.

3.3 Neck

The neck is the feature pyramid network (FPN), which is
responsible for fusing multiscale features from the backbone [33].
By constructing a multiscale feature representation structure, the
FPN effectively improves the algorithm’s detection performance for
objects of different sizes and the model’s ability to understand
semantic information in complex scenes. However, there are
some limitations in the transmission of the one-way information
flow of the FPN. To improve the chemical detection ability for dense
small target defects in steel, such as cracks and punching, we used
RepGFPN [34] to fuse and transmit defect information.

Compared with the traditional FPN structure, the multiscale features
of RepGFPN are fused in the two levels of the previous layer and the
current layer, which can fully exchange high-level semantic information
and low-level spatial information. More importantly, the jump
connection of the residual layer provides more efficient information
transmission, which can transfer shallow information to deeper structural
layers, The architectural details of this process can be clearly seen in
Figure 4, which illustrates how RepGFPN optimizes information flow

ParC2Net

Rk

FIGURE 3

ParC2Net network structure. The deep network is built by stacking ParNet Bottleneck modules, and the key features are strengthened with the SSE

attention mechanism.
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RepGFPN structure diagram. The feature information extracted from the backbone network is input to CSPStage, which includes branch, fusion and
convolution operations. The Rep module implements the basic RepBlock in the RepVGG and includes training and deployment states.

and feature fusion. In the feature fusion process of the neck, the number
of channels in different dimensions corresponding to the feature maps of
different sizes is set. By flexibly controlling the number of channels at
different scales, higher precision can be achieved by sharing the same
channel of all sizes. In the feature fusion module, the CSP stage is used to
replace the original feature fusion based on 3x3 convolution. Next, the
CSP stage is connected by integrating the heavy parameterization
mechanism and the efficient layer aggregation network (ELAN),
which achieves higher accuracy without imposing a large additional
computational burden. Because small steel targets are usually small in
size, subtle in detail, and susceptible to background interference,
RepGFPN improves the capture and differentiation of small target
features through better feature aggregation capabilities, improving the
accuracy of small target detection. Because RepConv uses structural
reparameterization, three branches are used for training, and three
branches are fused for inference, greatly reducing the inference time.
In real-time scenarios, RepGFPN not only achieves efficient frame rates
but also improves detection performance, which is particularly important
in industrial inspection environments, especially when it is necessary to
accurately detect small, fast-moving targets on the production line.

3.4 Head

The head is responsible for generating target detection results based
on the fused feature map. The head of YOLOV8 consists of multiple
output layers, each of which is responsible for detecting objects of
different sizes. Due to the low accuracy of defect recognition with
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small and inconspicuous features, it is necessary to replace the
detection head with a more suitable head on a dataset rich in small
defects. The RexSE-Head head proposed in this paper improves the
detection ability of the model for dense and small targets, especially in
scenes where precise capture of microdefects, such as the surface of
chemical special steel, is needed.

The core of the RexSE-Head detection head architecture is that the
head structure incorporates the ResNeXt [35] and squeeze-and-
excitation (SE) attention mechanisms [36]. The specific structure is
shown in Figure 5. First, ResNeXt increases the number and width of
parallel paths in the network through packet convolution, which
improves the parallel processing capability of the detection head and
reduces the consumption of computing resources while maintaining
high precision. Second, the SE module weights the channel features after
each residual block, generates the attention weights of each channel by
global average pooling of the feature map, and then learns and adjusts
these weights using a two-layer fully connected network. In this way, the
model can dynamically adjust the channel contribution degree of the
feature graph according to the importance of different parts of the input
data, which is conducive to strengthening the attention given to the
subtle characteristics of chemical special steel defects and improving the
detection performance.

3.5 Loss function

The loss function is the core of model training, which quantifies
the difference between the predicted output of the model and the
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FIGURE 5

RexSE-Head network structure. RexSE-Head is a detection head that is specially designed for chemical special steel defect detection models.
RexSE-Head integrates the above ResNeXt bottleneck layer structure with the SE module to improve the network’s ability to learn the interactive

information between channels to improve the model performance.

actual label, and guides the optimization direction of the model
parameters. Specifically, we use a loss function that takes into
account a number of key aspects, and its overall framework is
defined by Equation 1:

Lall = Aulobj + Aﬁlcls + Aﬁllmx (1)

Among them, L,y represents the total loss, which is composed of
the confidence loss lo;, the categorical loss s, and the regression
loss Ipox Which are constituted by the weighted summation of the
balance coefficients A, Ag s to ensure the balanced contribution
of each component of the loss.

Confidence loss (lopj) Binary cross-entropy is used to
measure the degree to which the confidence of each
and the
expression is shown in Equation 2, where p; represents the

prediction box matches the true existence,
true confidence level and p; is the confidence probability

predicted by the model.
N _
Loy = - i=1pilog(pi) +(1-p;)log(1-p,) )

ification loss (Is) also uses the form of binary cross-entropy to
evaluate the fit between the predicted class probability distribution
and the real class label, as shown in Equation 3, where y; refers to the
actual class label and ; is the class probability distribution predicted
by the model.
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L=y Flog(y,) + (1-7)log(1-y,) 3)

In the regression loss (ly,x) design, we adopted MPDIOU s,
[37] to adjust  the
errType equation here.or of the predicted bounding box and the
actual labeling box. The mathematical formulation of MPDIOU s,
is detailed in Equations 4-7|. By introducing the concept of
MPDIOU (Equation 5), the traditional IoU index is creatively
extended to include two distance terms (Equations 6, 7)| based

precisely position and  shape

on the normalized bounding box size, i.e., diagonal distance squared
d? and d3, so as to quantify the deviation between the prediction box
and the actual box in terms of spatial layout, and significantly
enhance the performance of the model in precise positioning.

MPDIOU s = 1 - MPDIOU (4)

& d
MPDIOU =I0U - 11— -2 5
R+w? K +w? )
df _ (xtlzrd _xft)z +(y11)rd _y{t)Z 6)
d; _ (xlzzrd _xgt)z +(y12>rd _ygt)z )

Among them, (x? “ 4 rd)and(xg “, ¥y ")are the diagonal vertex
coordinates of the prediction box, while(x?', y¥)and(xJ', yJ")
correspond to the corresponding coordinates of the actual box, as

shown in Figure 6.
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Border box crossover ratio -MPDlou.

Compared to the standard IoU, MPDIOU is unique in its
mathematical form of non-monotonic focusing, which not only
takes into account the measurement of overlapping regions, but also
dynamically emphasizes the importance of differences between
bounding boxes of different sizes and shapes through the
introduction of distance terms. This design allows the loss
function to pay more attention to the difficult-to-classify
bounding boxes (especially the low-quality target boxes, such as
extreme tilt or partial occlusion) during the training process, and
effectively alleviates the overfitting problem through a non-uniform
loss allocation strategy. Specifically, when the prediction box
deviates greatly from the actual box, the MPDIOUp,, will
increase significantly due to the increase of the distance term,
which forces the model to focus more on the optimization of
these difficult cases, and ultimately improves the positioning
accuracy and stability of the model on the target boundary in
complex scenarios.

4 Experimental results and analysis
4.1 Experimental dataset

In order to ensure the rigor and reliability of the experimental
results, the public dataset GC-DET10 was selected as the benchmark
for defect detection of chemical special steels. The dataset contains
more than 6,500 images, covering a wide range of defect sizes and
balanced number of categories, from tiny defects of less than 1 mm
to more obvious damages, while also considering the orientation and
orientation of different defects to ensure the diversity of the dataset.
The images cover ten common micro-defect types, including
Punching (Pu), Weld Line (WI), Crescent-shaped Gap (Cg),
Water Spot (Ws), Oil Stain (Os), Striae (Ss), Inclusions (In),
Rolling Pits (Rp), Crease (Cr), and Waist Fold (Wf). It is worth
noting that the shape, size and distribution location of defects in the
dataset are different, which puts forward high requirements for
defect detection algorithms, which need to have excellent
generalization ability and robustness to effectively cope with the
complex changes of defects under actual working conditions.

In addition, considering the complex lighting conditions that
may be encountered in the actual production environment and to
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further enhance the robustness of the model, we used a variety of
data augmentation techniques during the training process. These
techniques include, but are not limited to, random rotation, flipping,
color dithering, brightness adjustment, and scale shifts to simulate
the changes that may be encountered in a real-world production
environment. These measures help the model better understand the
nature of defect features and maintain high detection accuracy even
on unseen samples.

The dataset is scientifically divided into a training set, a
validation set, and a test set, with a ratio of 8:1:1, which ensures
the rationality of model training, adjustment, and evaluation.
Figure 7 visualizes example images of the multiple defect types in
the dataset.

4.2 Experimental setup

This study relies on a deep learning environment based on a
cloud server, with Linux operating system, RTX A6000 GPU, and
51 GB of video memory. The deep learning framework used is
Pytorch 2.0, the coding environment runs on Ubuntu 18.04, uses
Python 3.10, and uses CUDA version 11.3.

Refer to the official guide of YOLOVS for the experimental setup,
and adopt the free anchor strategy. Table 1 shows the specific
parameters.

For the training strategy, we set the initial learning rate to be
0.01, the weight attenuation coefficient to be 0.05, the maximum
number of iterations to be 32, and the intersection and union
threshold (IoU) to be 0.7. The training process is extended to
200 iterations, and the system automatically performs
performance evaluation on the validation set for each epoch
learned, so as to continuously monitor the progress of the model
and guide the optimization path.

At the same time, in order to ensure the reliability of the training
results and effectively reduce the potential bias caused by the
randomness of a single experiment, we adopted the following
strategies: firstly, the dataset was randomly divided multiple
times to generate multiple independent training/validation set
combinations; Subsequently, for each division, a complete
experimental process and evaluation are rigorously implemented.
Finally, the evaluation indicators obtained from each experiment
were summarized, and the average value was calculated to obtain a
more robust and representative final evaluation result, so as to
significantly improve the credibility of data evaluation.

4.3 Evaluation metrics

In this article, two key metrics are used to measure model
performance: detection accuracy and model size. A number of
criteria are used to evaluate detection accuracy, including Recall
(R), Precision (P), Average Precision (AP), and mean Average
Precision (mAP). Among them, the recall rate reflects the ratio
of the identified target to the actual total, The specific mathematical
expression is shown in Equation 8:

TP

R=Ip+FN

x 100% (8)
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Partial types of defects in the dataset: (A) half-moon defect, (B) inclusions, (C) wear defect, (D) scratch defect, and (E) pitting defect.

TABLE 1 Experimental parameter settings.

Experimental parameters Specific values

Learning rate 0.01
Weight decay factor 0.05
Batch Size 32
Epoch 200

ToU threshold 0.7

Here, TP refers to the number of positive samples that are
correctly identified (true positives), while FN means the number of
positive samples that are not detected (false negatives).

Precision measures the accuracy of a positive sample in a test
result and is calculated as shown in Equation 9:

TP

P=—
TP + FP

x 100% ©)
TP is still a true positive, while FP is a negative sample that has
been incorrectly classified as a positive sample (false positive).
Average precision (AP) is a comprehensive measure of accuracy
at different recall levels, which is obtained by integrating the
accuracy within the recall interval, as shown in Equation 10:
1
AP = J P(R)dR (10)
0
where P(R) represents the precision of a particular recall level R and dR
represents the increment of the recall rate. The process involves
determining precision and recall one by one at multiple confidence
thresholds, then plotting an accuracy-recall curve and comprehensively
evaluating model performance by integrating the region below
the curve.
mAP further expands the concept of AP by calculating the
arithmetic average of AP values across all classes, ensuring
consistency of performance across classes and the validity of the
overall evaluation, It is calculated as shown in Equation 11:

N
Zt:lAPf
N

mAP = (11)
Here, N stands for the number of categories, emphasizing
consistency and overall effectiveness of performance across categories.
F-Score is a commonly used performance metric for detection
models, which is designed to combine precision and recall metrics.
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Provide a score that balances the performance of both. It is
calculated as shown in Equation 12:

Precision x Recall

F — Score = 2 x (12)

Here, Precision and Recall represent the accuracy of predicting
as positive examples and the ability of the model to capture all
positive examples, respectively. The F-Score is placed between 0 and
1, and the closer the value is to 1, the better the overall performance
of the model.

In addition to evaluating detection accuracy, this paper
examines a number of key performance and efficiency metrics
such as model size, computational requirements (as measured by
Flops), and frame processing speed (Fps). These multiple evaluation
dimensions provide valuable insight into the complexity of the
model, its computational burden, and its ability to make real-
time inferences. In the experimental section of this paper, the
methods adopted and the results obtained are described, and the
indicators of the model are analyzed and verified.

4.4 Test results analysis

4.4.1 Model training

During model training, the convergence speed of the loss
function slightly represents the performance of the model. We
compare the loss function fitting between PRS-YOLOvV8 and
YOLOV8, and the comparison curves of the two models are
shown in Figure 8. With an increase in the number of training
iterations, the training curve of the PRS-YOLOv8n model is
relatively smooth and can converge to a lower loss level at a
faster rate with the same number of iterations. When the loss
function value does not change, the training ends, and the loss
value of the PRSYOLOv8n model is lower than that of the
YOLOvV8 model. This finding indicates that the improved model
in this paper has better performance than the original model and can
more accurately locate and identify target defects.

In order to compare the performance of the model before and
after the improvement more clearly, we observed the change trend of
Precision, mAP@0.5, Recall, and mAP@0.95 performance indicators
with the progress of the training epoch in real time. As shown in
Figure 9, the PRS-YOLOv8n has increased accuracy and recall,
meaning that it is both accurate and broadly covered when
identifying targets, avoiding missed detections. In addition, the
significant improvement of the model on mAP, whether it is
within the IoU threshold of 0.5 or the range of 0.5-0.95,
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Line chart of training loss of PRS-YOLOv8n and YOLOv8n models.

confirms that the model can still maintain excellent detection effect
under the diverse matching rigor, highlighting the strong
adaptability of the model to scenarios with different accuracy
requirements, especially in the early and middle stages of the
training cycle, and the superiority of PRS-YOLOv8n is
more prominent.

In general, the improved YOLOv8n detection model in this
paper has high accuracy and good detection performance, which can
better meet the application requirements of chemical special steel
defect detection.

4.4.2 Detection effect of different defects

To verify the ability of the model to detect ten common minor
defects in chemical special steel, the performances of the
YOLOV8 model and PRSYOLOv8 model were evaluated in
terms of the mAP@0.5, precision, mAP@0.95, and recall. A
comparison of the performances of the two models is shown
in Figure 10.

Experiments show that compared with the YOLOv8 model,
PRS-YOLOVS can significantly improve the precision and recall
of punching, crescent-shaped gap, water spot, waist fold, and
other small target defects. This finding indicates that the PRS-
YOLOvV8 model has greater localization and recognition ability
for small target defects in chemical special steel. When dealing
with defect categories with high texture similarity, such as Oil
Stain and Striae, the model shows a significant improvement in
detection accuracy, which strongly proves that it has stronger
resolution and accuracy in the recognition and classification of
defects of the same nature. This improvement not only improves
the accuracy of the detection algorithm, but also demonstrates the
excellent performance of the model in complex texture
recognition and fine classification.
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4.4.3 Ablation experiment

To verify the validity of each component of the proposed
method, corresponding ablation experiments are performed on
each branch in this paper. The experimental results are shown in
Table 1, among which ParC2Net represents the designed parallel
architecture, RepGFPN represents the feature pyramid network
used by the neck, and RexSE-Head represents the designed
detection head mechanism. The baseline network model that was
adopted is the YOLOv8n network.

Table 2 shows that the proposed method significantly improves
the detection performance when it gradually introduces the
ParC2Net, RepGFPN, and RexSE-Head structures. Compared
with that of YOLOvS8n, the precision of ParC2Net increases by
3.7%, indicating that the parallel flow design of this structure can
improve the backbone network’s ability to extract minor defect
information by 1.2% mAP@0.5% and 2.1% mAP@0.95. This finding
indicates that the average precision of the model increased under
different IoU thresholds, especially the high threshold, confirming
that ParC2Net can improve the model’s ability to identify and locate
small targets by increasing attention to important features. Second,
when the RepGFPN module is introduced, the recall rate is increased
by 3.1%, and the precision is increased by 1.9%, which indicate that
the deep fusion of semantic information can effectively reduce the
probability of missing small and medium defects of chemical special
steel and has a positive effect on improving the identification
accuracy of the detection model. The application of the RexSE-
Head detection head achieved a performance improvement with an
accuracy of 1.2% and a recall rate of 2.3%, which highlighted the
ability of the algorithm to efficiently capture targets of different
scales, especially small defects, and confirmed that by widening the
parallel path and adjusting the weight of the output feature channel,
the algorithm can effectively improve the accuracy of locating and
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Comparison chart of the real-time performance of YOLOv8n and PRS-YOLOV8 training. (A) Precision comparison chart. (B) mAP@0.5 Comparison

chart. (C) Recall comparison chart. (D) Comparative chart mAP@0.95.

classifying defects. Combining the two indices mAP@0.5 and mAP@
0.95, the three modules increase mAP@0.5 by 1.2%, 1.7%, and 0.9%
and mAP@0.95 by 2.1%, 2.2%, and 1.1%, which proves the
effectiveness of these components once again.

To further understand how these components affect model
performance, we used Grad-CAM technology to visualize the key
areas of focus of the model. Figure 11 shows the Grad-CAM heat
map, where the red areas indicate the parts of the model that are of
focus when performing small defect detection. From these heat
maps, we can observe how ParC2Net, RepGFPN, and RexSE-Head
work together to guide the model to focus on those feature regions
that are critical for small object detection.

From these heat maps, it can be seen that the ParC2Net structure
can effectively capture the subtle features around the defect, the
RepGFPN module helps the model understand the global context of
the defect, and the RexSE-Head strengthens the model’s ability to
identify the key features of the defect. These heat maps provide
visual evidence of the important role these three components play in
improving small defect detection performance.

4.4.4 Comparative test

To evaluate the defect detection performance, the PRS-YOLOV8
algorithm is compared with five target detection algorithms: SSD,
YOLOv5, YOLOXs, DETR, and Faster R-CNN. To verify the
superiority of the model from multiple angles, the experiment
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adopts three model sizes of n, s, and m for comparison. Standard
evaluation indices such as parameter number, average accuracy
(mAP), recall, and FPS were selected to comprehensively evaluate
the performance of different algorithms in chemical steel defect
detection. The hardware facilities and datasets used were consistent.
The final experimental results are shown in Table 3.

The experimental data show that compared with common target
detection algorithms, the PRS-YOLOv8 model has distinct
advantages in defect detection for chemical special steel. First,
compared with that of YOLOv8n, the parameter number of PRS-
YOLOV8n increased by only approximately 0.14 M, but the index of
mAP@0.5 increased by 2.1%. Notably, when the IoU threshold is
0.95, the mAP increases by 3.4%. This finding indicates that the
improved model not only achieves higher detection accuracy with a
small number of parameters but also greatly improves the detection
and positioning accuracy of small objects.

Secondly, as shown in Figure 12, in the horizontal comparison of
various size models, the PRS-YOLOV8 series designed by us
surpasses the basic YOLOv8 model in the n, s, m, and | versions,
demonstrating better mAP performance. Although PRS-YOLOv8
has made some concessions in terms of operating speed (FPS), it still
has a significant advantage in competition with traditional
algorithms such as Faster R-CNN, and has achieved significant
growth in the high-precision standards, namely, mAP@0.5 and
mAP@0.95, which highlights the deep optimization of detection
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FIGURE 10

Comparison of the detection results for different types of defects between YOLOv8 and PRS-YOLOV8: (A) comparison chart of mAP@O0.5, (B)
precision comparison chart, (C) mAP@0.95 precision chart, and (D) recall comparison chart.

TABLE 2 Results of the ablation experiment.

Model Precision Recall mAP@O0.5 mAP@0.95
YOLOv8n 84.1% 81.1% 87.5% 53.8%
YOLOVS8n + ParC2Net 87.8% (+3.7) 81.7% 88.7% 55.9%
YOLOV8n + RepGFPN 86.0% 84.2% 89.2% 56.0%
YOLOv8n + RexSE-Head 85.3% 83.4% 88.4% 54.9%
PRS-YOLOv8n 87.9% 84.7% (+3.6) 89.6% (+2.1) 57.2% (+3.4)

The best experimental results are marked in bold, and the values in parentheses reflect the gain of the comparison base model.

FIGURE 11
The area of focus for each component when detecting small defects. (A) Original image of steel Striae. (B) Feature heat map using ParC2Net. (C)

Characteristic heat map using RepGFPN. (D) Feature heat map using RexSE-Head.

accuracy by PRS-YOLOv8 while maintaining efficient inference
rates. In order to further verify the advantages of the PRS-
YOLOvV8 model over other advanced object detection algorithms,
we compare it with recent algorithms designed for small object

Frontiers in Physics

detection, including Gold YOLO [17], EfficientDet-DO [40], and the
latest DAMO-YOLO-L [34] and PP-YOLOE-L [16] models. A
relatively low computational complexity (measured in GFLOPs)
is maintained. This means that PRS-YOLOv8 can achieve better
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TABLE 3 Comparative experimental results.

10.3389/fphy.2024.1451165

Model Backbone Params (M) GFLOPs FPS mAP@O0.5 mAP@0.95
YOLOV5-n [38] — 25 72 1216 84.8% 51.1%
YOLOVS5-s — 9.15 24.2 122.0 90.6% 64.4%
YOLOV5-m — 25.1 64.6 102.8 93.7% 72.4%
YOLOv5-1 — 465 119.6 96.5 94.2% 73.6%
YOLOVS-n — 3.15 8.7 1112 87.5% 53.8%
YOLOVS-s — 1116 28.6 133.1 91.9% 65.2%
YOLOV8-m — 259 78.9 107.2 95.6% 74.4%
YOLOVS-1 — 437 165.2 923 96.2% 75.6%
YOLOX-s [39] — 9.0 26.8 137.5 78.9% 44.7%
YOLOX-m — 253 73.8 1503 90.5% 56.8%
YOLOX-1 — 54.2 155.6 112.0 92.1% 62.0%
YOLOX-x — 99.1 281.9 982 93.8% 67.5%
Gold YOLO-n [17] — 5.6 12.1 — 82.5% 54.9%
Gold YOLO-s — 215 46.0 — 90.1% 57.5%
Gold YOLO-m — 413 87.5 — 93.5% 63.4%
Gold YOLO-1 —_ 75.1 151.7 —_ 95.7% 70.5%
PRS-YOLOvS8-n — 329 9.2 574 89.6% (+2.1) 57.2% (+3.4)
PRS-YOLOVS-s — 122 29.7 77.9 94.9% (+3.0) 67.7% (+2.5)
PRS-YOLOV8-m — 295 82.6 78.9 96.9% (+1.3) 75.0% (+0.6)
PRS-YOLOVS-1 — 374 1435 652 97.3% (+1.1) 78.2% (+2.6)
SSD [11] — 24 59.6 98.7 76.4% 39.1%
Faster RCNN [13] R50-FPN 420 930.7 185 85.2% 48.7%
DETR [18] R50 41.0 187 - 83.2% 43.3%
DAMO-YOLO-L [34] — 421 97.3 126 87.5% 65.5%
PP-YOLOE-L [16] — 52 110 94 88.9% 67.6%
EfficientDet-D0 [40] — 3.9 7.8 — 83.0% 52.1%

The results of the multi-size (n, s, m, 1,) experiments of the design model in this paper are highlighted in bold, and the values in parentheses show the performance improvement compared to the

base model.

detection results with lower resource overhead in actual deployment
scenarios, which undoubtedly lays a solid foundation for its
application in resource-constrained environments, and fully
reflects the excellent design of the model in terms of balance
between efficiency and accuracy.

In summary, the PRS-YOLO model has shown strong
competitiveness and wide application potential in defect
detection of chemical special steel products from the perspective
of detection accuracy, computational complexity, and real-time

performance.

4.4.5 Visual result analysis

In this study, a heat map was utilized to visualize the results of
defect detection. By observing the highlighted areas in the heat map,
you can visually assess the detection capability of the model and the
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accuracy of target positioning. The experimental results are shown
in Figure 13.

According to a comparison of the defect heatmaps of the
YOLOvV8 model and the PRSYOLOV8 model in Figure 13, the
PRS-YOLOV8 model shows more obvious attention to the defect
target. In addition, the comparison results demonstrate the accurate
location and identification of the defect object. This finding shows
that the PRS-YOLOV8 model effectively captures the key features of
the special steel defect detection task, thus achieving accurate
boundary box prediction.

4.4.6 Test results

The purpose of this experiment is to comprehensively evaluate
the performance of the PRS-YOLOvV8 model on the test dataset, with
special attention to its ability to identify different defect categories,
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This article compares the model with the most advanced real-time object detectors.
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FIGURE 13

Thermal maps of some defect types in the dataset: (A) raw image of a steel oil spot,(B) heatmap of steel oil spot in YOLOVS, (C) heatmap of steel oil
spots in PRS-YOLOVS, (D)original image of pitting defects, (E) thermal map of the pitted defect of the YOLOv8 model, (F) thermal map of pitted defects in
PRS-YOLO, (G) raw image of steel inclusions, (H) thermal map of steel inclusions in YOLOV8, and () thermal map of steel inclusions in PRS-YOLOVS8.
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including but not limited to punching, scratching, half-moon
defects, etc. (see Figure 14). In order to ensure the fairness and
comprehensiveness of the evaluation, the test dataset used in this
paper is consistent, and the test dataset covers a variety of defect
types, different sizes, complexities, and diverse background
environments, aiming to simulate real industrial application
scenarios and ensure the diversity and representativeness of the
dataset. In this way, we validated the model’s ability to detect not
only pervasive defects, but also its accuracy in distinguishing highly
similar defects (e.g., the missed detection problem of Inclusions, and
the high false detection rate between Crescent-shaped Gap
and Striae).

YOLOV8 encounters several challenges in the defect detection
task of chemical special steels, especially when it comes to
identifying defects containing inclusions, and it is easy to be
confused in distinguishing defects with similar shapes (such as
crescent-shaped gaps and stripes), revealing its limitations in
dealing with defect categories with similar features. In contrast,
the PRS-YOLOv8 model has significantly improved these problems
through a series of innovative designs, not only greatly reducing the
occurrence of missed and false detection events, but also showing
excellent recognition accuracy when dealing with defect types that
are difficult to accurately identify by YOLOvS. In addition, the PRS-
YOLOVS exhibits higher precision and positioning accuracy in the
detection of all defect types, which greatly enhances the reliability
and efficiency of the inspection results.

Overall, PRS-YOLOVS has achieved significant progress in the
field of defect detection compared to YOLOVS, showing stronger
performance and accuracy both in small defect identification
problems and in conventional defect detection.

4.4.7 Application deployment

In order to ensure the robustness and reliability of the PRS-
YOLOv8 model in an actual industrial inspection system,
we discuss several key factors in the model integration
process, including hardware compatibility and strategies for
handling changes in production line image acquisition
conditions.
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In real-world deployments, the hardware compatibility of the
model is critical. Given the small number of parameters (only
3.29M) of the PRS-YOLOv8 model, this makes it easy to deploy on
embedded devices such as industrial cameras and edge computing
units. We chose a computing platform that supports the ARM
architecture, ensuring that the model can run on a low-cost, low-
power device while maintaining real-time processing power.

On the production line, changes in lighting conditions, camera
position, and other factors can have an impact on inspection results. In
order to alleviate the influence of these factors, we use adaptive
histogram equalization technology to dynamically optimize the
image contrast in image preprocessing, so as to improve the model’s
perception of the target defect area. This strategy effectively enhances
the robustness of the model in complex environments, ensuring stable
detection performance even under changing conditions.

5 Conclusion

In order to solve the problem that it is difficult to detect multi-
category micro defects in chemical special steels, an enhanced
YOLOvV8 network architecture is proposed: PRS-YOLOVS. By
introducing the adaptive histogram equalization technology, the
algorithm dynamically optimizes the image contrast and improves
the model’s perception of the target defect area. The application of
MPD-IOU loss function solves the problem of overfitting low-quality
bounding boxes and improves the robustness of the model in complex
scenarios. In addition, the addition of the ParC2Net module, the
RepGFPN structure, and the RexSE-Head detection head effectively
enhance the situational understanding and detection accuracy of the
model, especially the capture of subtle features.

The experimental results show that compared with the most
advanced small target detection algorithms Gold YOLO and
EfficientDet-D0O, PRS-YOLOvV8 has excellent performance in
small defect detection, with a score of mAP@0.5 as high as
93.5%, which significantly reduces the rate of missed detection
and false alarm. In addition, the number of parameters of the
model is only 3.29 MB, which is very suitable for resource-
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constrained real-time application scenarios. However, the proposed
method still has some limitations. Specifically, there is room for
improvement in narrow defect detection, and the model’s ability to
generalize on unseen data or under different lighting conditions may
be limited. Future work will focus on enhancing the detection ability
of narrow defects by introducing strategies such as attention
mechanism and serpentine convolution, and improving the
adaptability of the model to diverse scenarios through transfer
learning and increasing training data.

In summary, PRS-YOLOVS has several key advantages over
existing methods, including enhanced small target detection
capabilities, good robustness to complex scenarios, and high
efficiency and scalability. These advantages make it a promising
solution for practical applications, while its limitations point the way
for subsequent research and development.
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Estimation of skin surface
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Provincial Engineering Technology Research Center of Photoelectric Sensing Application, College of
Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, Fujian, China

The texture of human skin is influenced by both external and internal factors, and
changes in wrinkles can most directly reflect the state of the skin. Skin roughness
is primarily used to quantify the wrinkle features of the skin. Therefore, effective
and accurate quantification of skin roughness is essential in skincare, medical
treatment, and product development. This study proposes a method for estimating
the skin surface roughness using optical coherence tomography (OCT) combined
with a convolutional neural network (CNN). The proposed algorithm is validated
through a roughness standard plate. Then, the experimental results revealed
that skin surface roughness including arithmetic mean roughness and depth of
roughness depends on age and gender. The advantage of the proposed method
based on OCT is that it can reduce the effect of the skin surface’s natural curvature
on roughness. In addition, the method is combined with the epidermal thickness
and dermal attenuation coefficient for multi-parameter characterization of skin
features. It could be seen as a potential tool for understanding the aging process
and developing strategies to maintain and enhance skin health and appearance.

KEYWORDS

skin roughness, optical coherence tomography, convolutional neural network,
epidermal thickness, attenuation coefficient

1 Introduction

With the global increase in the aging population, research on age-related alterations of
skin is receiving growing interest (1). The passage of time and repeated exposure to UV
radiation are the two main factors for aged skin. As age advances, there is a gradual loss of
collagen in the skin, resulting in the development of wrinkles (2). Simultaneously, exposure to
UV radiation can cause skin dryness, abnormal pigmentation, and other issues, ultimately
leading to the formation of wrinkles on the skin (3). Quantifying skin wrinkles is of significant
importance in the fields of skincare, medical treatment, and product development (4, 5).

The quantification of skin wrinkles allows for objective assessment of wrinkle severity,
enabling accurate evaluation of treatment efficacy and product performance. Various methods

94 frontiersin.org


https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1453405&domain=pdf&date_stamp=2024-10-11
https://www.frontiersin.org/articles/10.3389/fmed.2024.1453405/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1453405/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1453405/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1453405/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1453405/full
mailto:gy@fjpit.edu.cn
mailto:lizhifang@fjnu.edu.cn
https://doi.org/10.3389/fmed.2024.1453405
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1453405

Zhang et al.

are used to quantify wrinkles, including both subjective and objective
approaches. Subjective methods involve visual assessments by trained
professionals or self-assessments by individuals themselves. These
methods rely on scoring systems (five grades and nine grades) to
evaluate the depth, length, and overall appearance of wrinkles (6, 7).
However, subjective scoring relies more on individuals’ subjective
judgments and perceptions and often fails to capture minor changes.

In addition, objective methods utilize advanced imaging
technologies and computer analysis to provide precise and quantitative
measurements of wrinkle parameters. These methods can be divided
into two-dimensional (2D) camera approaches and three-dimensional
(3D) scanning techniques. Two-dimensional approaches for assessing
skin include the use of mobile phone cameras with natural light
sources (8), charge-coupled device (CCD) cameras utilizing UVA light
sources (9), and speckles with laser light sources (10). However,
two-dimensional photograph-based analyses by observers are
vulnerable to noise, variable magnifications, and surrounding
illumination. Furthermore, speckle contrast does not directly measure
the height fluctuation of the skin surface. Three-dimensional scanning
techniques contain 3D stereophotogrammetry (5) and phaseshift rapid
in vivo measurement of the skin (PRIMOS) (11-13). However, motion
artifacts during the image capture process in 3D stereophotogrammetry
and PRIMOS can introduce errors, making it difficult to provide
accurate and reliable measurements of skin roughness (14).

Optical coherence tomography (OCT) can overcome the above
problems by providing non-invasive, real-time, and high-resolution
imaging of the skin (15, 16). Surface roughness measurement based on
OCT was proposed to assess the arithmetic mean roughness and average
depth of roughness (17, 18). The roughness estimation was calculated
based on the height relative to the central line of best fit through the
dermal-epidermal junction (DE]) (17). However, the central line of the
skin surface differs from that defined by the International Organization
for Standardization (ISO), which is based on the mean of height
fluctuations (19). Additionally, image processing techniques such as the
Gaussian filter, median filter, and differential filter were used to extract
the ideal skin surface boundary (18). However, it is difficult for all skin
since some empirical parameters in these image processing algorithms.

In this study, the method of OCT combined with the U-Net
architecture of a convolutional neural network (CNN) is proposed for
the evaluation of skin surface roughness using the advantages of 3D
imaging and accurate boundary location. This choice is driven by the
advantages of U-Net, namely, its ability to provide effective
segmentation results and its limited requirement for training data. In
this study, Section 2 introduces the OCT system, the accurate location
of skin surface based on CNN, and the definition of arithmetic mean
roughness and the depth of roughness. Section 3 first validates the
algorithm using a roughness standard plate and explores the function
of skin surface roughness in terms of age and gender. Section 4 offers
a discussion of the findings and analyzes the strengths of the
proposed methodology.

2 Materials and methods
2.1 Optical coherence tomography (OCT)

A schematic of our spectral domain optical coherence
tomography (SD-OCT) system is illustrated in Figure 1A. The light
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source is a 12-mW superluminescent diode (SLD) with an FWHM
bandwidth of 85nm centered at 1310nm (S5FC1021P, Thorlabs,
Newton, NC, United States). Light is transmitted into a fiber coupler
(FC) and then split into reference (50%) and sample (50%) arms,
where collimators are used to obtain collimated light. A galvo
scanning mirror (SM) and an achromatic lens (AL) with a focal length
of 50mm make up the scanning structure. The axial and lateral
resolutions of the system in air are approximately 8.9 pm and 18.2 um,
respectively. The detection arm consists of a spectrometer with a
single line-scan camera (C-1235-1385, Wasatch Photonics, Logan,
UT, United States) to construct a 3D image, resulting in the acquisition
of 400 cross-sectional OCT images with a beam position increment
of 25 pm.

A total of 16 volunteers were recruited for the experiment,
including nine male individuals and seven female individuals. At the
time of enrollment, subjects’ ages ranged between 15 and 45 years, and
all volunteers had no smoking history. Prior to the experiment, all
volunteers signed an informed consent form, indicating their
understanding and agreement to participate in the study. Before the
imaging procedure, the region of interest of the skin was marked,
washed using a cleansing cream, and exposed to a constant
temperature and humidity in order to stabilize the experimental
conditions. Subsequently, the volunteer was asked to place the back of
the left hand on the designated area of the collection platform, as
shown in Figure 1B, maintaining a fixed and comfortable posture. The
collection platform was designed to support the hand and minimize
any possible movement or vibration, ensuring the accuracy of data
collection. Figures 1C,D show the typical cross-sectional and 3D OCT
image of the back of the left hand. The texture of skin wrinkles is
shown in Figure 1D. All the research procedures using human
participants were carried out at Fujian Normal University with
approval from the Institutional Review Board for the Protection of
Human Subjects in Research (IRB).

2.2 Detecting boundary of skin surface
using CNN

Figure 2 illustrates a flowchart of a CNN-based algorithm for
detecting the boundary of the skin surface including boundary
segmentation, curvature fitting, flattening, and boundary extraction,
which will be described in detail in the following paragraph.

Before measuring skin roughness, it is necessary to segment the
boundaries of the skin surface and flatten the skin surface. Figure 2
shows a CNN-based algorithm for detecting the real boundary of the
skin surface. The skin surface was segmented and detected using a
CNN (Figure 2B), specifically employing the U-Net architecture
proposed by Ronneberger et al. (20), which has been widely used for
biological image segmentation (21, 22). Meanwhile, ResNet50 was
used as the backbone feature extraction network (23). The Adam
optimizer was used to update the model, allowing the network to
automatically adjust the learning rate for each parameter based on its
update history (24). The learning rate (LR) for this experiment was set
at 0.0001, which directly affected the speed and performance of the
training process (25). A loss function of 0.01 quantified the error
between actual values and predicted values (26). Mean Intersection
over Union (MIoU) was used to evaluate the accuracy of the image
segmentation model (27).
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FIGURE 1

(A) Experimental setup of OCT, where SLD is the light source of the superluminescent diode, FC is fiber coupler, C is collimator, AL is achromatic lens,
M is mirror, and SM is scanning mirror. (B) The back of the left hand for imaging, (C) typical cross-sectional OCT image, and (D) three-dimensional (3D)
OCT image of the back of the left hand.

FIGURE 2
CNN-based algorithm for detecting boundary of skin surface, (A) original cross-sectional OCT images, (B) real boundary segmentation based on

U-Net, (C) curvature fitting of real boundary height, (D) the flattening fitting boundary, (E) real boundary extraction on the flattening fitting boundary
correction, (F) 3D real boundary.
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In the experiment, a total of 16 sets of data were collected,
amounting to 6,400 samples. Among these samples, 1,600 were
annotated using Labelme for the boundaries of the skin. Afterward,
the annotated dataset was typically divided into a training set and a
test set in a 9:1 ratio. The training batch size was set at 8, and the
number of iterations was set at 100. An MIoU score of 98.36 indicated
a high degree of similarity between the model’s predictions and the
manual annotations, indicating a strong segmentation performance.
In addition, Figure 3D shows that the noise in Figure 3A can
be effectively reduced. It suggests that the model has successfully
learned to extract the boundaries of the skin accurately, as shown in
Figure 3, which lays a solid foundation for subsequent operations
or tasks.

The boundary of the skin surface can be recorded based on the
segmented image. However, the skin surface exhibits natural
curvature, which can affect the assessment of roughness. Therefore,
when calculating roughness, it is necessary to eliminate the influence
of natural curvature. In this algorithm, the influence of natural
curvature can be addressed by using the method of second-order
polynomial fitting based on the least square method to find the
curvature of the natural curvature in that region, as shown in
Figure 2C. The flattening fitting boundary is shown in
Figure 2D. Figure 4A demonstrates the fitting result of the skin.
Subsequently, the curvature of the skin was flattened, as shown in
Figure 4B, in which the fitting height of the boundary was set to the
same height.

Once the acquisition of a cross-sectional skin boundary image was
complete, the algorithm for 3D images of the skin surface was repeated
to establish a three-dimensional (3D) topographic map of the skin, as
shown in Figure 2F and calculate 3D roughness data. Observations of
the human skin surface under a stereomicroscope and OCT are shown

10.3389/fmed.2024.1453405

in Figures 5A,B, respectively. Figure 5C shows a set of 400 B-scan
images after segmenting the boundaries of the skin surface and
flattening the skin surface. Figure 5D reveals the 3D reconstruction of
Figure 5C, and the parameters of roughness were calculated based on
Figure 5D. Figure 5A shows the skin roughness based on image
texture, and Figure 5D shows the skin roughness according to the
height, which is clearer than Figure 5A.

2.3 Quantification of surface roughness

According to the ISO 25178 standard established by the
International Organization for Standardization (ISO), which is used
for surface texture measurement, a series of surface texture parameters
were defined to describe the morphology characteristics of a surface.
Based on roughness standards and specific requirements, the
arithmetic mean roughness (R,;) and the depth of roughness (R,) were
used for skin roughness. Their definitions are the arithmetic average
of the absolute values of the surface height (z) and the maximum
height between the highest peak and the lowest valley from the mean
line within the measured region, respectively. The specific expressions
of R, and R; are given as follows (19):

LSS () M

XMy =1 j=1

R, =
Ny

)

R, = max(z) - min(z),

FIGURE 3

with (A).

(A) Original cross-sectional OCT image of the skin, in which there is noise in the position of arrows, (B) masked image of skin segmentation based on
CNN, (C) masked image superimposed with the original image, and (D) segmented image of the skin, in which the noise has been reduced comparing
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FIGURE 4

g W

(A) Skin boundary curvature fitting, in which the red curve is the fitting boundary of skin; (B) Flattening boundary according to the fitting curve.

|
400
FIGURE 5

(D) three-dimensional skin boundary.

(A) Skin image of the back of the left hand under a stereomicroscope; (B) three-dimensional OCT image reconstruction results; (C) rear skin boundary;

where x; and y; are two-dimensional spatial coordinates,
respectively. Base on Equation 1, the arithmetic mean roughness (R,)
provides an overall measure of the surface roughness. Moreover, using
Equation 2, the depth of roughness (R;) indicates the maximum height
variation on the surface. Both parameters including arithmetic mean
roughness (R,) and the depth of roughness (R;) are related to the height
fluctuation of the skin surface; thus, they depend on the axial
resolution of OCT.

2.4 Statistical analysis
Correlation analysis was performed using Pearson’s correlation

coeflicients. To test validity, the roughness parameters of R, and R,
were compared to the age (Pearson’s correlation). A Pearson

Frontiers in Medicine

correlation coefficient greater than 0.6 was considered a strong
positive correlation.

3 Results

3.1 Validating the algorithm using a
roughness standard plate

First, the proposed algorithm for skin roughness was validated
using a roughness standard plate, which was purchased from
Dongguan Tangxia Aiceyi Electronic Instrument Trading Company,
as shown in Figure 6A. Figure 6A shows the roughness standard plate
with an arithmetic mean roughness R, of 6.3 pm, which complies with
the GB.T6060.2-2006 standard. Figure 6B indicates 3D OCT images
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A
FIGURE 6
(A) Roughness standard plate; (B) 3D OCT image reconstruction of roughness standard plate.

TABLE 1 Calculated arithmetic mean roughness of the three positions
based on the proposed method is consistent with the standard value in
GB.T6060.2—-2006.

\[o} Proposed Standard value Error
method (um) (pm)

1 6.47 2.7%

2 6.17 6.3 —2.1%

3 639 1.4%

of the corresponding roughness standard plate, as shown in
Figure 6A. Table 1 shows the arithmetic mean roughness R, on three
positions of the roughness standard plate and demonstrates that the
calculated value based on OCT is consistent with the standard defined
in GB.T6060.2-2006. Thus, the proposed methods for roughness
based on 3D OCT images provided an accurate and reliable
measurement of roughness.

3.2 Skin surface roughness dependent on age

Figures 7A-C show the three-dimensional OCT images of the
back of the hand’s skin, illustrating how the skin surface flattens with
age. The texture of the skin surface, as observed in these OCT images,
depends on age. To quantify the texture, we utilized R, and R, to
explore the function of the age based on the three-dimensional skin
boundary images, as shown in Figures 7D-F. Higher R, values, shown
in Figure 8A, indicate increased roughness, while higher values of R,
in Figure 8B indicate deeper depths of roughness.

Figure 8A shows a significant positive correlation between age and
the arithmetic mean roughness in which Pearson’s correlation coefficients
of men and women are 0.717 and 0.821, respectively. Meanwhile, there
is a positive correlation between depth of roughness and age in Figure 8B,
with Pearson’s correlation coefficients of 0.626 and 0.833, respectively, for
men and women. This can be attributed to the gradual loss of collagen,
which leads to a decrease in elasticity and firmness in the skin. In
addition, the slowing down of epidermal cell turnover is also a significant
contributing factor to increased skin roughness (28, 29).

Frontiers in Medicine

Figure 8 also demonstrates that the overall roughness levels, as
indicated by the two parameters of arithmetic mean roughness R, and
depth of roughness R,, were higher in men than in women over the
age of 25 years old because women generally place more emphasis on
skincare compared to men (30, 31).

4 Discussion

The advantage of the proposed method in this study for
estimating the roughness of skin surface is combined with other
parameters such as epidermal thickness (32, 33) and dermal
attenuation coefficient (17) based on OCT. Epidermal thickness was
estimated based on the interval between the first peak and valley of
the average OCT signal in terms of depth, and the attenuation
coeflicient was calculated based on the fitting line of the OC signal
(Figure 9). Figure 10A reveals that the epidermal thickness is not
correlated with age, which is consistent with the results found in the
previous study (34).

In addition, as shown in Figure 10B, the attenuation coefficient
of skin was found to be significantly decreased with increased age,
which is consistent with a previous study (17). This is because of a
gradual loss of collagen in the skin, resulting in an increase in
roughness (2). The phenomenon was also observed in PS-SD-OCT,
revealing depth-dependent correlations between the averaged dermal
birefringence induced by collagen and the skin roughness parameters
of the photoaged skin (35). The skin collagen would be determined
using a two-photon confocal imaging for the skin surface (36).
However, the image depth of a two-photon confocal image is lower
than that of OCT.

Some studies employed traditional image processing techniques,
including Gaussian filter, median filter, and differential filter, to
emphasize the ideal surface boundary (18). However, these algorithms
rely heavily on empirical values for different images. The proposed
method in this study is accurate in extracting the surface boundary of
skin to overcome the above problem since the CNN can effectively
segment the skin surface (16, 22) through large-scale datasets and
diverse data augmentation techniques for enhancing the generalization
ability of models.
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FIGURE 7
Three-dimensional OCT images at the ages of (A) 17, (B) 29, (C) 42 years, and (D—F) are the corresponding three-dimensional boundary images of
(A-C).
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FIGURE 8

Relationship between skin roughness parameters and age of volunteers: (A) arithmetic mean roughness R,; (B) depth of roughness R,.

OCT directly measured the height fluctuation of the skin
boundary for skin surface roughness, which was quantified by the
arithmetic mean roughness and the depth of roughness. Thus, the
development of OCT technology can improve the resolution of OCT,
which, in turn, improves the accuracy of OCT image segmentation.
In addition, the continuous progress in CNN algorithms further
enhances the efficiency of the segmentation of skin boundaries.

5 Conclusion

In summary, the skin surface roughness is estimated using
optical coherence tomography combined with CNN. The
experimental results first demonstrated the effectiveness of the
proposed algorithm by showing that the calculated value of the
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arithmetic mean roughness is consistent with the standard value for
a roughness standard plate. In addition, the experimental results
revealed that the skin surface roughness including the arithmetic
mean roughness and depth of roughness depends on age
and gender.

The advantage of the proposed method based on OCT is that it
can reduce the effect of the skin surface’s natural curvature on
roughness and is combined with the epidermal thickness and dermal
attenuation coeflicient for multi-parameter characterization of skin
features. Quantitative assessment of skin features including roughness,
epidermal thickness, and attenuation coefficient enables researchers,
clinicians, and cosmetic companies to monitor changes in skin
condition over time, evaluate the effectiveness of interventions or
treatments, and develop targeted products for anti-aging prevention.
It serves as a valuable tool in understanding the aging process and
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FIGURE 9

(A) Cross-sectional OCT image of skin and (B) average OCT signal dependent on depth; the two dot lines are the first peak and valley of average OCT
signal, which denotes epidermal thickness, and the red line is the fitting line for estimating attenuation coefficient.
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(A) Epidermal thickness and (B) attenuation coefficient of skin dependent on age.
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developing strategies to maintain and enhance skin health
and appearance.
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With the rapid advancement of information technology and intelligent systems,
autonomous driving has garnered significant attention and research in recent
years. Key technologies, such as Simultaneous Localization and Mapping (SLAM),
Perception and Localization, and Scene Segmentation, have proven to be
essential in this field. These technologies not only evolve independently, each
with its own research focus and application paths, but also complement and rely
on one another in various complex autonomous driving scenarios. This paper
provides a comprehensive review of the development and current state of these
technologies, along with a forecast of their future trends.

KEYWORDS

autonomous driving, simultaneous localization and mapping, perception and
localization, scene segmentation, deep learning

1 Introduction

Autonomous driving has developed rapidly in the past 2 decades and is now gradually
evolving towards full automation. The premise for autonomous vehicles to achieve high-
level tasks such as decision-making and planning is to obtain accurate self-state and
environmental perception information in various complex scenarios, among which
technologies such as Simultaneous Localization and Mapping (SLAM), Perception and
Localization, Point Cloud Completion and Scene Segmentation are crucial, as shown in
Figure 1. Specifically, SLAM is the basic framework for information association between
agents and the environment, which provides agents with the ability to construct and locate
real-time environment maps. Agents need to interact with the environment with a high
degree of autonomy, and the Perception and Localization technology of autonomous
driving systems is particularly critical. It covers a series of advanced functions from
environmental perception to precise autonomous positioning. Scene Segmentation
greatly enhances the agent’s understanding and adaptability to complex scenes by
performing detailed semantic analysis of the environment.

This paper will detail the development history, current implementation mechanisms
and their practical roles in autonomous driving and broader computer vision and 3D data
processing of these key technologies. Through in-depth analysis of the current situation and
challenges of these technologies, this paper aims to explore their development trends and
forecast how to improve the efficiency and intelligence level of the overall system through
technology integration. In addition, it will also predict the future development direction of
these technologies and their potential role in promoting the Frontier of automation and
intelligent technologies.
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The overall framework of the paper.

2 Simultaneous Localization and
Mapping (SLAM)

2.1 Definition, basic principles and
development history of SLAM

(SLAM) is a
technology in which a robot estimates its own state (position,

Simultaneous Localization and Mapping
speed, direction, sensor bias, etc.) in an unknown environment,
and simultaneously constructs its motion environment based on
sensor perception information. Over the past 30 years, there were
many significant progress made in SLAM field which has been
widely used in many industries. The basic principles and
development of visual SLAM, laser SLAM and multi-sensor
fusion SLAM in the order of different main sensors will be
introduced in this section. The specific development route is
shown in Figure 2. Due to the widespread application of the
fusion of Inertial Measurement Unit (IMU) and SLAM, the
development of such applications is also described in 2.1.1 and 2.1.2.

2.1.1 Visual SLAM

In the early stage of visual SLAM research, most of them belong
to filtering-based methods, such as EKF-based MonoSLAM [1], tight
coupling system composed of IMU and monocular camera [2]
which realize real-time operation for the first time. Mourikis
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MSCKF based on the

et al. [3]
conventional EKF (Extended Kalman Filter). The state vector of

proposed the famous

MSCKEF contains multiple camera states, and the measurement of
the same feature point is used to define constraints between two or
more camera poses. When some specific conditions are met, these
constraints are used for filter updates. Compared with the
conventional EKF method, the advantage of the MSCKF method
is to maintain only one state variable with low dimension, and no
longer store the coordinate information of map points, so as to
reduce the amount of storage and calculation. MSCKEF algorithm has
become one of the classic algorithms of VIO, but it does not optimize
the location of map points in the scene, therefore it is difficult to
ensure the overall positioning accuracy for a long time.
Optimization-based SLAM method is
solution, which optimizes the robot pose to be solved and the
position of spatial waymark points through Bundle Adjustment
(BA)
optimization-based methods usually achieve stronger robustness

another mainstream

technology. Compared with filtering-based methods,

and higher accuracy, and their framework is more flexible. But it
is more computational and time-consuming because its multiple
iterative optimization process requires more computing resources.
In 2007, Klein et al. [4] proposed the famous PTAM (Parallel
Tracking and Mapping) which
optimization theory to solve SLAM problems for the first time,

algorithm, applied graph

meanwhile, this algorithm pioneered the parallel implementation of
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locating and mapping on two independently running threads. Mur-
Artalet [5] continued and improved the basic idea of PTAM, and the
famous ORB-SLAM algorithm was proposed. ORB-SLAM is a more
complete monocular SLAM system, which includes three threads:
tracking, partial mapping and loopback detection. In each thread,
ORB (Oriented FAST and Rotated BRIEF) operator [6] is used to
extract and describe image features. In 2017, Mur-Artal [7] further
proposed ORB-SLAM?2, which supports both monocular camera
input and binocular cameras and RGB-D cameras input. Similar to
the filtering-based method, the combination of visual inertial
sensors is often used to build visual inertial SLAM system in the
optimization-based framework. Leutenegger [8] proposed
keyframe-based OKVIS (Open Keyframe-based Visual-Inertial
Syetem). In 2021, Campos et al. [9] proposed ORB-SLAM3,
which can support monocular, binocular, and RGB-D image
input of pinhole or fisheye lens models, and can perform visual,
visual inertial, and multi-map SLAM processes. VINS-Mono
(Monocular Visual-Inertial Navigation System) proposed by Qin
et al. [10] is another representative work of optimization methods.
VINS-Mono uses a sparse direct method similar to SVO [11] as its
front end, simple corner points are extracted on the image, and the
corner points are tracked by KLT (Kanade-Lucas-Tomasi) optical
flow method. In constructing the BA, a quaternion-based IMU pre-
integration model [12], a sliding window, and a two-step
marginalization technique are used. Depending on the type of
visual front end, all of the above visual SLAM methods can be
referred to as feature point methods. Feature point method has long
been regarded as the mainstream method of SLAM, but the
disadvantage of this method is that it easily leads to poor feature
extraction or feature tracking effect when encountering weak texture
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environment, fast robot movement speed or blurred visual imaging,
which affects the performance of the algorithm, and the key point
extraction and descriptor calculation are also time-consuming.
Therefore, some researchers have also studied another kind of
direct SLAM method, which directly estimates camera motion
according to pixel gray information. Concha [13] proposed a
monocular visual inertial odometer VIDS (Visual-Inertial Direct
SLAM) based on the direct method. Forster proposed a SVO (Semi-
Direct Monocular Visual Odometry), which combines feature point
method with direct method. SVO executes motion estimation thread
and map construction thread in parallel, and can obtain fast and
accurate positioning effect when the observation scene is
approximately plane. Engel et al. [14] proposed a monocular
SLAM method LSD-SLAM (Large-Scale Direct
SLAM) based on direct method, which can obtain more accurate

Monocular

motion estimation in large-scale scenarios and construct large-scale
environmental maps. On this basis, Engel et al. [15] incorporated the
photometric calibration strategy and further exploited sparsity, and
proposed the DSO (Direct Sparse Odometry) algorithm. Stumberg
[16] proposed the VI-DSO method with further fusion of IMU
measurement information.

In addition, thanks to the
segmentation technology and object detection technology based

development of semantic

on deep learning, the integration of higher-level semantic
information into the design and implementation of SLAM
algorithm has become a new direction for researchers. Bowman
et al. [17] used probabilistic representation to theoretically analyze
the solution of semantic SLAM problems, and proposed a theoretical
framework for semantic data association and iterative solution in
SLAM by using Expectation-Maximum algorithm (EM). On this
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basis, Lianos et al. [18] proposed a semantic SLAM algorithm VSO
(Visual Semantic Odometry) that uses semantic information to
assist visual feature tracking. Yang et al. [19] proposed a
monocular SLAM algorithm that fuses indoor plane features
(walls, floors, etc.) with object-level road signs. Frost et al. [20]
solved the problem of missing scale in monocular SLAM by
constructing 2D projection constraints of vehicle targets with
known scales in BA. Nicholson et al. [21] proposed a three-
dimensional modeling method of object-level road marks, i.e., an
ellipsoid is used to represent three-dimensional object road marks,
and a semantic constraint residual term with geometric significance
is added to the optimization function of BA to improve positioning
accuracy. Li et al. [22] proposed that the closed-loop detection
function in complex situations such as large viewing angle changes
and occlusion can be enhanced by constructing object-level
semantic mapping.

2.1.2 Radar SLAM

The measurement data of LiDAR is a point cloud, and each
point cloud contains the spatial coordinates of many spatial points
in the Ontology coordinate system at the time of LiDAR
measurement. LiIDAR SLAM uses point cloud registration,
i.e, pose estimation is realized by finding the matching item
between the source frame and the target frame and inferring the
pose transformation from the source frame to the target frame.

Early LiDAR SLAM studies have mainly focused on 2D LiDAR,
and several 2D laser SLAM based on filtering and optimization
frameworks have been proposed, including EKF-based frameworks,
Unscented Kalman Filter (UKF)-based frameworks [23], and classic
framework GMapping [24] based on Particle Filter (PF) [25]. A
representative work of graph optimization-based methods is
GraphSLAM [26].

With the development of technology, SLAM based on 3D
LiDAR has gradually become a research hotspot. The research
focus of SLAM method based on 3D LiDAR is mainly on point
cloud registration because the basic theory of SLAM has gradually
matured when 3D LiDAR began to be studied. Iterative Closest
Points (ICP) [27] is the most classic point cloud registration method,
which correlates points in a source frame with points in a target
frame according to the nearest neighbor criterion, and then solves
the optimal transformation between two point clouds. Based on ICP,
Mendes et al. [28] proposed to achieve positioning by ICP
registration between the current frame and key frames, and then
detect loopbacks by ICP registration between different key frames.
In order to overcome the defects that the original ICP is sensitive to
initial values and measurement noise, many variants of ICP were
proposed and applied to LIDAR SLAM. According to the curvature,
LOAM [29] extracts surface feature points and corner feature points
from the point cloud, and these feature points are registered with
adjacent frames and world maps through point-surface and point-
line ICP to realize low drift pose estimation. Based on LOAM,
LeGO-LOAM [30] introduces ground point constraints in inter-
frame registration to suppress height drift, and the pitch angle, roll
angle and vertical axis coordinates related to height are first
optimized, and then other pose components are optimized,
which improves the solution efficiency of inter-frame registration.
Also based on point-surface ICP, IMLS-SLAM [31] and SuMa [32]
represent planes in maps in the form of hidden planes and patches,
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respectively. ICP based on normal distribution describes the local
geometry of the point cloud through the local covariance matrix of
the point cloud, so that the registration takes into account the local
orientation of the point cloud. Among them, the representative
methods are Normal Distribution Transformation (NDT) [33] and
Generalized ICP (GICP) [34].

In addition to ICP, researchers are also actively exploring the
application of other point cloud registration schemes in LiIDAR
SLAM. S4-SLAM [35] uses Super4PCSI [36], a method for point
cloud registration based on affine invariance of line segment
GP-SLAM+ [37]
regression to predict “test points” evenly distributed in space on

crossover  ratio. uses Gaussian process
the current point cloud, and then registers them with the results
predicted from the map. SegMap [38] uses machine learning to
extract feature points and calculate descriptors from the point cloud,
adds semantic information to the point cloud, which can achieve
more robust registration, and can reach a pose output frequency of
1 Hz, so as to lay a foundation for the introduction of subsequent

machine learning methods.

2.1.3 Multi-sensor fusion SLAM

Generally, multi-sensor fusion positioning methods can be
divided into loose coupling method and tight coupling method.
The former fuses the independent positioning results of single
while the latter
information of various sensors.

Sensors, fuses the original measurement

As the cost of sensors decreases, SLAM methods that integrate
three or more sensors have attracted more and more attention from
academia and industry in order to obtain higher precision and
robust performance and further extend the applicable scenarios of
SLAM systems. In 2018, Zhang et al. [39] proposed a sequential
multi-sensor fusion SLAM-VLOAM. In this method, IMU firstly
provides pose prediction for a loosely coupled VIO, and then the
localization results of the VIO are further loosely coupled with
LiDAR data to realize a pose estimation from coarse to fine. LVI-
SAM [40] combines the VIO system and the LIO system to construct
a tightly coupled LVIO. Among them, VIO provides the initial value
for the point cloud registration of LIO, and the output of LIO system
helps the VIO system to initialize and obtain the depth of visual
feature points. Moreover, LVI-SAM also detects the working
conditions of these two subsystems respectively. When one
subsystem fails, the other system can run independently to
ensure the robustness of the system. At the back end, LVI-SAM
uses a factor map to receive the inter-frame pose constraints
provided by the two subsystems to smooth the trajectory and
improve the overall estimation accuracy. Based on FAST-LIO
and VINS-Mono, R2LIVE [41] uses ESIKF to tightly couple IMU
data with camera data and LiDAR data respectively, and uses a local
factor map to adjust key frame pose and visual feature point
position. LIC-Fusion [42] is based on the architecture of tightly
coupled VIO method MSCKEF, LiDAR frames are introduced on the
basis of visual frames, and the constraints of LIDAR common view
features are added between LiDAR frames. Meanwhile, the external
parameters and time differences between sensors are estimated as
filtering parameters, which achieves tight coupling well. LIC-
Fusion2.0 [43] proposes a more robust plane tracking method
between LIDAR frames on the basis of LIC-Fusion, which further
improves the system performance.
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2.2 Application cases of SLAM in
different fields

Since SLAM is essentially autonomous positioning and
environmental ~ information  correlation  in  unknown
environments, and involves a variety of sensors, direct needs
exist in many fields. Therefore, the application of SLAM
technology in various industries has been fully studied after
decades of development, covering robotics, industrial automation,
autonomous driving, augmented reality, medical care, aerospace,
geology and environmental science, military security, etc.

Robotics is the hottest field of SLAM technology application.
In indoor environments, service robots use SLAM for localization
mapping to autonomously navigate and perform tasks in hotel,
hospital and home environments [44]; SLAM is used for
autonomous navigation and intelligent obstacle avoidance of
material delivery trolleys on the factory floor to improve
logistics efficiency and automation levels [45]; Unmanned
aerial vehicles can use SLAM to carry out autonomous flight
[46], and realize surveying and mapping, express delivery and
other tasks. Autonomous driving vehicles rely on SLAM to build
high-precision maps and assist vehicles in path planning,
obstacle avoidance and positioning to ensure driving safety
[47]. On AR and VR, SLAM enables such devices to build and
update virtual environment maps in real time [48], and can be
further used for highly immersive gaming experiences, create
dynamic and interactive learning environments or help designers
create virtual prototypes and simulations in the field of industrial
design; In the medical field, SLAM can also be used for surgical
navigation, assisting the safe movement of instruments by
building a high-precision model of the surgical area. In the
military field, SLAM helps reconnaissance drones navigate and
position under the denial condition of no external available
signals, and realize tasks such as reconnaissance, surveillance,
and target tracking [49].

2.3 Key issues and challenges of SLAM
technology

2.3.1 Front-end data association

The SLAM front-end module is responsible for feature
extraction, description and tracking on the raw measurement
data of the sensor, so as to establish data association on
continuous time frames. The state of the carrier can be
preliminarily estimated and optimized based on the correctly
associated image or point cloud frame. The results of front-end
estimation are crucial in the accuracy of the whole SLAM system,
but modern SLAM systems generally require the front-end to have
high real-time and robustness, which puts forward high
requirements for the selection and matching of correlation
features. Meanwhile, it is also challenging to correctly correlate
the sensor data of different modes in time and space because the
front end directly manipulates the sensor data. In addition, various
degradation scenarios for vision and LiDAR (lack of features, low
feature discrimination, and tracking loss caused by fast motion)
require the front end to have accurate, reliable, and stable data
processing performance.
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2.3.2 Back-end state estimation

With the idea of minimizing errors, the back-end state
estimation optimizes and modifies the initial estimation provided
by the front-end globally or locally, so as to obtain more accurate
and robust trajectory and three-dimensional environment map. In
addition, when the system detects a loop, the back-end module will
cooperate with the loop detection module to introduce new
constraints to correct the accumulated error, so as to improve
the accuracy and robustness of the whole SLAM system. It is
necessary to develop more efficient optimization algorithms and
data structures to cope with it because the complexity of back-end
optimization may increase with the expansion of state and map
scales. Meanwhile, nonlinear optimization is easy to fall into local
minimum, so it is necessary to set appropriate initial values,
optimization strategies and constraints to solve it. In real-time
applications, the back-end module needs to complete the
optimization process in a limited time, and it is also a challenge
how to achieve better optimization results in the shortest time.

2.3.3 Loopback detection

Loopback detection is a key component of SLAM, especially in
navigation and mapping tasks over long distances or large ranges.
However, there is the possibility of misjudgment: one is to identify
different scenes as the same scene, and the other is to detect the same
scene as different scenes. The main reasons for misjudgment are as
follows: (1) The scale inconsistency caused by the change of distance
ratio between camera and scene at different time points in visual
SLAM. (2) The judgment error caused by the change of viewing
angle when observing the same scene at different time points. (3)
Dynamic objects may be incorrectly identified as cyclic features, and
may also cause changes in the location and appearance of the visited
scene. The front-end module of the system may also generate
erroneous guidance when tracking dynamic targets. (4) Weather,
time, season and other factors may change the characteristics of the
same scene. All the above items are all challenges in SLAM
loopback detection.

2.4 Future development direction of SLAM
technology

2.4.1 Deep learning-based SLAM

At present, deep learning has shown its potential in the field of
SLAM, and there are studies on the introduction and replacement of
deep learning methods in each module, including image matching
[50, 51], point cloud registration [52], semantic segmentation [53],
closed-loop detection [54] and pose estimation [55], etc. In addition,
SLAM systems directly based on end-to-end networks [56] also
appeared. All the above studies have injected new vitality into the
field of SLAM, but so far SLAM methods based on deep learning
have not been able to reach the accuracy and reliability of
conventional methods. The future development trends of
learning-based SLAM (1) Deep
networks are needed for online learning on long-term SALM

systems include: learning
systems in open environments to cope with new scenes and
objects independent of training data. (2) Deep learning networks
are inseparable from training data. Learning-based SLAM is highly

dependent on the richness of training data, requires a lot of labeling
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work, and needs to explore low-sample learning techniques. (3) At
present, many large models have emerged in the field of deep
learning. They have the advantages of powerful data processing
capabilities, complex problem solving capabilities, high precision
and high performance. Large models are expected to be deployed in
SLAM systems to achieve all-round improvement in the future.

2.4.2 Multi-agent collaborative SLAM

Multi-agent refers to the overall system in which various forms
of intelligent robots cooperate to complete complex tasks according
to task division in a certain time and space [57]. Due to the
limitation of the endurance time of a single robot, the efficiency
of obtaining 3D information is low with small range; Moreover, it is
difficult to comprehensively analyze the complex structure and
scene information in real time due to the limitation of working
mode. Meanwhile, SLAM has error accumulation characteristics,
which makes it difficult to ensure the accuracy of long-term and
large-scale mapping. These problems can be solved through the
collaborative SLAM of multiple agents. The realization of multi-
agent SLAM requires multiple agents to cooperate in a single-
machine or cross-machine collaboration manner. Meanwhile,
multiple agents share scene maps and perform information
interaction and fusion, so as to significantly improve the
efficiency, accuracy and robustness of single SLAM.

2.4.3 New type sensors

A variety of new sensors are expected to be introduced into
SLAM system with the development of sensor technology. For
example, the Event Camera, which is designed to imitate the
animal vision system to record the time and location of the event
stream. Compared with conventional cameras, it has the advantages
of no motion blur, sub-millisecond time delay and ultra-high
dynamic range, which has been applied to feature tracking [58],
optical flow [59], 3D reconstruction [60], and SLAM [61]. However,
due to the uniqueness of event cameras, the processing of noise and
spatiotemporal information is different from that of traditional
vision, and all task-level algorithms need to be redesigned [62].

3 Perception and positioning
technology for autonomous driving

3.1 The importance of perception and
positioning technology in autonomous
driving system

In the autonomous driving system, the main task of perception
and positioning is to obtain the environmental information around
the vehicle through relevant sensors, and determine the position and
attitude of the vehicle in the environment, so that the vehicle can
achieve safe driving under complex traffic road conditions.
Perception technology identifies road conditions, obstacles, traffic
signs, and other vehicles based on vehicle sensor data. This kind of
understanding of the environment is crucial for the vehicle, because
it must be able to dynamically respond to rapid changes on the road,
such as avoiding sudden obstacles and adapting to different
environmental conditions such as weather and light. Positioning
technology can estimate the motion state quantities of the vehicle,
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including position, pose and speed, in real time and accurately based
on the vehicle sensor information, so as to meet the demand of other
functional modules of the autonomous driving system for motion
state information. Perception and positioning technology provides
key underlying information and support for the autonomous driving
system, and provides the foundation for the advanced functions of
the system such as decision-making and planning, which directly
affects the safety, efficiency and reliability of autonomous vehicles.
Autonomous driving perception and localization technologies are
explained from two aspects: perception and localization. Perception
technologies include visual perception, LiDAR perception, and
millimeter wave radar sensing, while localization technologies
include inertial odometer, satellite navigation and positioning,
wheel speed odometer,

and map matching. The specific

technology is shown in Figure 3.

3.2 Autonomous driving perception
technology

Real-time, accurate and robust perception of road traffic
basic but
autonomous driving. By equipped with multi-modal sensors, the

environment is the most challenging task in
autonomous driving system needs to accurately identify information
such as the type, location, trajectory and motion status of targets in
road traffic. Autonomous driving perception technology can be
mainly divided into visual perception, LIDAR perception and

millimeter wave radar perception according to sensor principles.

3.2.1 Visual perception

Vision sensors can obtain images with rich color, texture and
semantic information with low cost, so they are widely used in
perception tasks of autonomous driving, including traffic target
detection, drivable area segmentation and lane line recognition
[63]. Object detection ensures the safety of autonomous driving
by identifying and locating traffic targets such as vehicles,
pedestrians, cyclists, and traffic signs. Object detection methods
can be divided into two categories: two-stage networks and single-
stage networks. Two-stage networks (such as the R-CNN series,
including Fast R-CNN [64] and Faster R-CNN [65]) achieve high
accuracy through regional proposal method, but with slower
inference. On the other hand, single-stage networks (such as SSD
[66] and YOLO [67]) sacrifice partial accuracy in exchange for faster
inference speed by simultaneously handling bounding box
regression and target classification. Such networks divide input
images into meshes or use anchor boxes of various sizes to
extract multi-scale features. For autonomous driving scenarios, D.
Gragnaniello [68] proposed a 2D multi-object detection and
tracking algorithm to solve the problem of multi-class object
detection and tracking. OVTrack proposed by Li et al. [69]
handles the detection and tracking of arbitrary object classes
through visual language models. Huang et al. [70] proposed a
multi-object  tracking algorithm based on
appearance model.

self-supervised

Drivable area segmentation enables autonomous vehicles to
effectively plan safe trajectories by identifying drivable areas on
the road. CNN-based deep learning models perform well in
semantic segmentation, which are widely used for pixel-level
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segmentation of drivable regions. Xia and Kim [71] proposed a
semantic segmentation architecture that combines multiscale
contextual features and low-level features, using hybrid spatial
pyramid pooling and global attention fusion. Zhang et al. [72]
proposed a GPNet for traffic scene segmentation, combining
multi-scale features of gating and pairwise techniques. SegFormer
[73] provides sufficient segmentation efficiency and performance
through a position-independent hierarchical Transformer encoder
and lightweight decoder network. Real-time semantic segmentation
is a prerequisite for autonomous driving which needs to achieve
competitive segmentation accuracy at low computational costs.
DSANet [74] is a computationally efficient network consisting of
channel segmentation and shuffling modules and dual attention
modules using expanded spatial attention and channel attention to
achieve accuracy  and  lower
computational cost.

Accurate lane marker detection and segmentation enable

higher

segmentation

autonomous vehicles to remain within the appropriate lane for
precise trajectory control. Conventionally, lane lines are detected
using a Canny edge detector [75] and then located in the scene using
either a Hough transform [76] or RANSAC [77]. However, these
methods are susceptible to illumination and occlusion [78]. CNN-
based deep learning models overcome these limitations by
annotating lane segments at the pixel level [79]. Zou et al. [80]
adopted a segmentation method based on multimodal fusion
network for lane detection. Qin et al. [81] proposed an anchor
frame-driven sequential classification method for lane detection,
computational  cost.

which can significantly reduce the

LaneScanNET [82] assists autonomous driving systems in lane
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change or lane keeping decisions by combining obstacle detection
networks (ODN) and lane detection networks (LDN). The proposed
architecture combines the results of obstacle detection and lane line
segmentation to predict the obstacle lane state in the field of view of
autonomous vehicles. DSUNet [83] is a UNet-based architecture
designed for lane detection and path prediction in autonomous
driving, using deep separable convolution for faster inference in
real-time autonomous driving.

In addition, the visual perception system can obtain different
types of information through multiple configurations such as
monocular, binocular, and multi-ocular cameras. Such multi-
modal data helps to improve the robustness and accuracy of
through
binocular vision, and achieve panoramic perception through

perception, such as obtaining depth information
multi-eye vision. However, visual perception technology relies
heavily on ambient lighting conditions. The effect of visual
perception will be greatly reduced under low light, strong light,
backlight and night conditions, requiring additional processing and
compensation technology; The visual perception system is easily
affected by obstructions, resulting in part of the visual field being
blocked. In open environment, visual perception system can provide
comprehensive environmental information, but it needs to be used
in combination with other sensors in complex environment to make

up for the deficiency of visual perception [84].

3.2.2 LiDAR perception

LiDAR directly measures the distance of traffic scenes by
transmitting and receiving laser beams to obtain high-precision
point cloud data. There are different processing methods for point
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cloud data. The projection method tries to project the point cloud
data into a two-dimensional plane, and then uses a two-dimensional
method to process it. Another part of the research voxelizes 3D point
cloud data (Voxelization), i.e., the space is divided into small cubes
(called voxels). However, a large amount of original information is
lost in the process of preprocessing data whether it is the projection
method or the voxelization method, and the full performance of
high-precision LIDAR cannot be exerted. In order to make full use of
the collected information, the mainstream method perception tasks
in recent years directly use point cloud data [85]. LIDAR is also used
for a variety of perception tasks on autonomous vehicles, such as 3D
target detection, 3D target tracking, 3D semantic segmentation, and
instance segmentation [86].

LiDAR operates independently of natural light, providing
reliable environmental awareness day and night and in various
weather conditions. Direct ranging is more accurate and reliable
than visual inference of depth information, especially in long-
distance and complex scenes. However, the relatively high cost of
LiDAR limits its large-scale commercial application, but the cost is
expected to decrease with technological progress and expansion of
mass production. Due to the large amount of three-dimensional
point cloud data generated by LiDAR, it requires powerful data
processing capabilities and efficient algorithms for real-time
processing and analysis. Therefore, higher requirements are put
forward for the computing platform of autonomous driving systems,
and data processing pipelines and algorithms need to be optimized
to meet real-time needs. And although it can work in a variety of
weather conditions, the attenuation and scattering of laser signals
may affect the measurement accuracy in extreme environments such
as dense fog and heavy rain and snow.

3.2.3 Millimeter wave radar sensing

Millimeter-wave radar was mainly used in automotive assisted
driving systems in the past. In recent years, with the improvement
of semiconductor radio frequency technology, millimeter-wave
radar has shown huge advantages in bandwidth, size and cost,
and has also shown great application potential in advanced
perception tasks of autonomous driving. Scholars have studied
the problem of target recognition based on millimeter wave radar
point cloud. These methods are divided into two categories: one is
to extract information through hand-designed feature extractors,
such as Schumann et al. [87] obtain the target area through
clustering, and classify pedestrians, vehicles and other targets
based on hand-designed multi-dimensional features; The other
is to directly extract features through deep neural networks.
Danzer et al. used PointNet [88] and PointNet++ [89] methods
for pedestrian and vehicle target recognition respectively, and
Lombacher et al. [90, 91] converted radar point cloud into
rasterized data, and then proposed a series of CNN methods for
feature extraction and target recognition.

3.3 Autonomous driving positioning
technology

Autonomous driving positioning technology can accurately
estimate the motion state quantities of the vehicle in real time
based on the vehicle sensor information to meet the functional
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requirements of other autonomous driving modules. The following
is an introduction based on the main sensing equipment [92].

3.3.1 Inertial odometer

Inertial odometers use the measurement values of inertial
devices such as gyroscopes and accelerometers to estimate the
carrier’s running trajectory. The calculation accuracy depends on
the measurement accuracy and stability of inertial devices. For cost
considerations, autonomous vehicle platforms usually deploy
consumer-grade inertial devices based on Micro Electro
Mechanical System (MEMS) structure. MEMS inertial devices
often have large measurement noise and complex error
characteristics. In order to improve navigation and positioning
accuracy, they need to be compensated for their errors in use.
The errors of MEMS inertial devices can be roughly divided into
static errors, dynamic errors and random errors. Among them, static
error and dynamic error are generally considered to be deterministic
error related to the motion state of the carrier, and static error can be
compensated by offline calibration method [93], or online
estimation through other sensor information, while dynamic
error is difficult to calibrate or estimate. For random error, it
cannot be eliminated by calibration or estimation method, but
only an identification model can be established to estimate the
parameters of random error. In addition, researchers have explored
the application of Gauss-Markov processes [94], wavelet transform
methods [95], generalized wavelet moment methods [96] in random
error identification and denoising. Due to the complexity of
dynamic error and random error models, researchers have begun
to try to model inertial odometer errors in a data-driven way in
recent years. Martin Brossard et al. [97] employed CNN to predict
the bias error of gyroscopes online based on time series window data.
Another solution is to directly use neural network to model the
calculation process of inertial odometer in an end-to-end way. Joao
Paulo et al. [98] encoded the original angular velocity measurement
and acceleration measurement input into a discrete CNN channel,
and then used a bidirectional Long Short-Term Memory (LSTM)
network to encode the time series inertial information to predict the
pose increment in an end-to-end manner.

3.3.2 Satellite navigation and positioning

The Global Navigation Satellite System (GNSS) uses navigation
satellite wireless signals to perform pseudo-range or carrier ranging,
calculates the geometric intersection of spatial straight lines based on
the ranging information, and estimates the position of the signal
receiver in the global coordinate system. GNSS is widely used in
location services for autonomous driving due to its simplicity, speed
and wide coverage. Standard Point Positioning (SPP), also known as
pseudo-range single point positioning, is the most common GNSS
positioning method. Influenced by clock error, ionospheric
interference, tropospheric interference and other factors, the
positioning accuracy of SPP is low. Differential GNSS technology
eliminates the temporal and spatial correlation factors such as
orbit
tropospheric error by differentiating satellite signals with similar

satellite error, clock error, ionospheric error and
geographical locations, and improves the stability of satellite
positioning. In order to improve satellite positioning accuracy,
carrier phase ranging technology was born, which can provide

centimeter-level ranging accuracy. Combining carrier ranging and
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difference principles gave birth to real-time dynamic carrier phase
difference technology (Real time Kinematic, RTK) [99], RTK can
complete the solution of the ambiguity of the whole circle in a short
time and provide position measurement up to centimeter level. At
this stage, the RTK technology of reference station network with
wide coverage is formed mainly by establishing multiple RTK
reference stations for networking and using wireless networks to
transmit differential signals.

Satellite signals are easily affected by clock error, clock drift,
clock jump, etc. during transmission, which will result in data
failure. Therefore, it is necessary to enhance the reliability of
self-localization through fault detection. Traffic accidents
caused by positioning deviation can be effectively avoided by
analyzing the validity of observation data, identifying and
eliminating fault data. At present, localization fault detection
is usually divided into three categories: snapshot detection,
sequence detection, and density anomaly detection [100].
Snapshot detection mode focuses on the consistency test of
current observations, which can identify step faults more
accurately. The sequence detection method comprehensively
uses historical data and current data for consistency test,
which can effectively improve the detection effect of slope
faults. Furthermore, the distribution uncertainty of observed
data and the dependence on prior knowledge can be overcome
through identifying anomaly localization data based on the
density difference between current data and neighboring data.
In the actual operation scenarios of autonomous vehicles, GNSS
positioning faces the risk of signal interference; In scenes such as
tree-lined road sections, high-rise streets, and under viaducts,
blocked by environmental obstacles, the multi-path effect
caused by multiple reflections and propagation of satellite
signals will greatly interfere with the signal calculation ability
of the receiver, resulting in deviations in position and speed
measurements. In scenarios such as tunnels and underground
garages, satellite signals are completely blocked, and GNSS will
completely lose its positioning capabilities [101].

3.3.3 Wheel speed odometer

The wheel speed odometer recovers the motion state of the
vehicle from the wheel speed information measured by the wheel
speed meter. Wheel speed information is essentially the
speed.
Compared with inertial navigation, the number of integrations

observation information of the vehicle moving
involved in recovering the vehicle position state through wheel
speed is fewer, so the wheel speed odometer is generally more
accurate than the inertial odometer. Wheel speed odometers also
face the problem of error accumulation, and researchers are also
trying to use data-driven methods to improve the accuracy of
wheel speed odometers. Uche Onyekpe et al. [102] used the
position error between the speed difference model and the
GNSS measurement as a neural network supervised signal to
train the LSTM network, and the output of the network was used
to compensate the position output of the speed difference model;
After that, the team further proposed a structurally optimized
wheel speed odometry network WhONet [103], using Recurrent
Neural Network (RNN) to improve the real-time performance of
prediction. Experiments show that the accuracy of this method
exceeds the conventional speed differential motion model.
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Martin Brossard et al. [104] used Gaussian Processes (GP) to
model the wheel speed model and its uncertainty, and combined
variational inference to train the neural network as the kernel
function of GP to reduce the computational complexity of GP.

3.3.4 Map matching

Map matching technology matches the positioning features
provided by high-precision maps with sensor signals to estimate
the position and pose of the vehicle in the map. Different from the
SLAM system, high-precision map features are collected through
professional mapping equipment, and converted into the global
coordinate system through offline optimization and other steps,
with excellent position accuracy. Therefore, map matching based on
high-precision maps can achieve high-precision global positioning.
According to the feature form of map positioning and the type of
different
implementation ideas. In the early autonomous driving, map

vehicle sensor, map matching technology has
matching technologies with LiDAR as the main body have been
widely studied, such as ICP [29] and NDT [35]. In the grid
positioning method proposed by Jesse Levinson et al. [105], the
high-precision map records the environmental reflection intensity
and elevation information in a plane two-dimensional raster, and
the map matching process uses histogram filtering to calculate the
likelihood probability corresponding to pose sampling points.
Compared with dense point cloud map scheme, vector semantic
map models road objects in the environment with parametric
geometric vector shapes, and records its geometric attributes and
semantic category attributes. Its lightweight characteristics are
beneficial to real-time transmission applications of autonomous
addition,
descriptors, semantic tags, as higher-level abstract information,

driving. In compared with conventional visual
are less affected by changes in light conditions, seasonal weather
changes, and dynamic obstacle occlusion [106]. Therefore, high-
precision vector semantic maps have the potential for large-scale

application deployment.

3.4 Challenges and future development
directions of autonomous driving
perception and positioning technology

Although the perception and positioning technology of
autonomous driving system has made great progress, with
the continuous

improvement of the intelligence of

autonomous  driving vehicles, the requirements for
corresponding technologies are also constantly increasing,
and the current technology still faces some challenges. For
example, how does the system maintain the accuracy and
robustness of perception in complex scenes and
environments such as severe weather like rain and fog, low-
recognition scenes with insufficient lighting conditions, and
urban congested road sections; Ensure the accuracy and
reliability of positioning in GNSS occlusion or denial
environments such as tunnels and urban canyons; Strike a
balance between real-time performance and computing
resource cost when a large number of sensors and computing
tasks are involved. In view of these challenging problems, there

are the following future development directions.
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3.4.1 Multi-source fusion sensing and localization

The data of a single sensor will fail in some environments. The
current practical solution is to combine multiple complementary
sensors to compensate for their respective shortcomings. Different
environments rely on different sensor combinations for effective
sensing [107]. In the future, multi-sensor fusion will further develop
in the direction of multi-modality, scalability and low computing
requirements, thereby achieving robust and reliable real-time
perception and positioning.

3.4.2 Collaborative perception

There are blind spots and limited perception range in the sensor
perception of a vehicle. With the continuous development of
intelligent network connection technology composed of wireless
communication V2X [108] (Vehicle to Everything, including V2V:
Vehicle to Infrastructure and V2P: Vehicle to Persons), a new
generation of autonomous driving perception technology will
further develop to the level of high-dimensional network
connection collaborative perception. The information of vehicles,
roads, traffic facilities and pedestrians can be shared and interacted
through V2X to achieve integrated, global and high-performance
traffic status collaborative perception.

3.4.3 Unified perspective perception

In recent years, the Bird’s Eye View (BEV) [109] unified
perception large model based on surround-view camera has
attracted a lot of attention from academia and industry, and has
become a hot spot in autonomous driving perception research. The
BEV perception paradigm converts the information of the vehicle-
mounted surround-view sensor into the BEV space through a series
of operations, and represents it in the vehicle body coordinate
system in the form of a two-dimensional spatial grid.
Accordingly, a series of perceptual tasks share the same BEV
spatial features, and perform neural network decoding for their
respective task objectives. The BEV awareness model is expected to
be constructed as a large-parameter neural network model that
supports multi-modal, long-time series data input and is oriented to

multi-task applications.

4 Scene segmentation technology

4.1 Application of the definition of scene
segmentation technology in 3D data
processing

Scene segmentation aims to divide the whole three-dimensional
scene into several regions with different semantics, which refers to
the category information of real objects observed by scene data.
Scene segmentation is the foundation of scene understanding and
plays an important role in various fields involving 3D data
processing. In autonomous driving, scene segmentation is used to
identify roads, vehicles, pedestrians and other obstacles, and
generate semantic maps of the surrounding environment of
vehicles in real time, providing a basis for decision-making of
autonomous driving system; In robotics, scene segmentation
helps robots understand their working environment, correctly
identify work areas and paths, and enable them to navigate
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autonomously and interact with the environment; In medical
image processing, for three-dimensional CT or MRI data, scene
segmentation technology can be used to identify and label different
organs and diseased areas, thereby improving the accuracy of
diagnosis; In the field of remote sensing mapping, scene
segmentation can be used for environmental monitoring, urban
modeling and so on.

4.2 Classification of scene segmentation
techniques

In various applications, most of the objects processed by scene
segmentation are represented in the form of point clouds, i.e., the
three-dimensional data obtained by scanning and reconstructing the
real scene with depth sensors. Since point cloud data is usually
disordered, unorganized, and unstructured, and point clouds are
huge in open scenarios, it is extremely challenging to segment it and
semantically label each point. From the method point of view,
semantic segmentation can be divided into: (1) semantic
(2) voxel-based
segmentation method; (3) semantic segmentation based on graph

segmentation based on 2D-3D mapping;

convolution; (4) semantic segmentation based on sparse

convolution; (5) semantic segmentation based on point
convolution. The development route of scene segmentation

technology is shown in Figure 4.

4.2.1 2D-3D mapping-based method

Compared with three-dimensional computer vision, two-
dimensional vision has a longer development history, so in some
methods, the semantic segmentation problem of three-dimensional
point clouds is tried to be solved by using technologies in the field of
two-dimensional vision. V-MVFusion [110] proposes a two-
dimensional projection [111] from multiple perspectives to
represent a three-dimensional point cloud, and then uses a two-
dimensional semantic segmentation network framework [112-114]
to process the two-dimensional projection. Based on one-way
feature mapping, a bidirectional fusion between two-dimensional
features and three-dimensional features is proposed, ie., two-
dimensional image segmentation and three-dimensional point
cloud segmentation are performed simultaneously on the scene,
and two-way feature mapping is performed in the decoder network,
and the experimental results show that bidirectional mapping can
improve the performance of semantic segmentation of 3D point
clouds better than unidirectional mapping. Because the mapping
between point cloud and image often involves preprocessing
operations of depth map and occlusion information estimation,
the early semantic segmentation methods of point cloud are difficult
to be applied in practice. In order to solve this problem,
DeepViewAgg [115]
preprocessing operations, which can estimate the pixel depth in

proposes a mapping method without

real time to obtain the correspondence between points and pixels.
For the point cloud semantic segmentation method based on 2D-3D
mapping, its advantages are that on the one hand, it can make full
use of the mature segmentation technology in the field of image, and
on the other hand, the 2D image features from multiple perspectives
can provide rich context information for 3D semantic segmentation.
However, such methods require additional 2D image data and
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Development roadmap of scene segmentation technology.

involve complex multi-view projections, so they rely too much on
the choice of camera viewing angle.

4.2.2 Voxel-based method

In order to reduce the reliance on redundant image and
perspective information, some methods [116, 117] choose to
convert point clouds into three-dimensional voxels, i.e., spatially
small-volume elements, and then use sparse convolution for
semantic segmentation. Sparse convolution concentrates the
computation on a non-empty voxel grid, which can effectively
reduce the computational overhead. However, since the
convolution operation may pass the features of one non-empty
voxel to multiple voxels, the number of non-empty voxels will
always be high as the multi-layer network is convolved. To solve
this problem, SparseConvNet [118] proposes a submanifold sparse
convolution operation. This operation requires that for a certain
voxel grid point, its non-empty condition is that the central grid
point of the receptive field is also non-empty. This method can
effectively reduce the number of non-empty voxel grid points,
improve the segmentation performance and reduce the
computational overhead. After that, more work has been done to
try to improve the efficiency and performance of sparse convolution.
MinkowskiNet [119] proposes a 4D sparse convolution network,
which can process the time series data of three-dimensional point
clouds through sparse convolution, and has achieved good results on
both indoor and outdoor scene data sets. Haotian et al. [120] further
proposed that TorchSparse should be used to improve problems
such as computational irregularity and high video memory
occupancy in sparse convolution processes. The main advantage
of voxel-based method is that it has high efficiency in processing
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point clouds and is easy to be applied to large-scale point cloud scene
data; The disadvantage is that the point cloud needs to be voxelized
first. Some key details may be lost when the voxel resolution is low.

4.2.3 Point convolution-based method

Also due to the success of convolutional neural networks
(CNNs) in the field of images, a lot of work has been done to try
to migrate convolutional operations to point clouds. Point cloud
segmentation is a technique in computer vision and 3D graphics
used to divide point cloud data into different regions or categories. A
point cloud is a set of discrete points representing objects or scenes
in three-dimensional space, obtained through scanning devices such
as LiDAR or 3D cameras. These points typically contain coordinate
information (X, Y, Z), and sometimes include additional attributes
such as color or intensity. The purpose of point cloud segmentation
is to divide these points into meaningful subsets, such as separating
buildings, roads, vehicles, and pedestrians from a complex point
cloud. PointNet [121] and PointNet++ [122] are representative
works in this regard, which aggregate global or local features
through max-pooling operations to avoid the negative effects of
point cloud disorder. PointNet++ proposes hierarchical local feature
aggregation based on PointNet, which is used to improve the
network’s ability to recognize local features, and lays the
foundation for more semantic segmentation methods based on
point convolution in the future. KPConv [123] used kernel
points to
convolution operations. The features of input points in the

replace the convolution kernel of conventional
convolution process are obtained by the weighted sum of features

of adjacent kernel points. Because the kernel points are continuously
distributed in the geometric space, their positions can be learned
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through the network, and this variable convolution operation can
effectively adapt to the problem of uneven local point distribution in
the point cloud. On this basis, PAConv [124] used the ScoreNet
network to estimate the weighting coefficients of kernel points in the
convolution process, and further improved the performance of point
convolution through the learnability of the network. The advantage
of this method is that it directly processes the point cloud without
additional image data or data conversion operations, so it can retain
the detailed information of the point cloud to the maximum extent.

4.2.4 Graph convolution-based method
Graph convolutional neural network (GNN) is a kind of neural
network that specializes in dealing with graph structure. The spatial
interaction between three-dimensional points in a point cloud can
be represented by a graph, and each point is used as a node of the
graph. Therefore, it tries to apply graph convolutional network to
point cloud semantic segmentation in some work. L Jiang et al. [125]
proposed to enhance point cloud semantic segmentation by an edge
feature branch that uses graph convolution techniques to explicitly
establish the semantic relationship of each point with its
neighborhood points and extract contextual information within
the local neighborhood. Similarly, SPH3D-GCN [126] proposes a
spherical kernel-based graph convolution operation for point cloud
processing, which also directly establishes local graph relations
Another
semantic

through point coordinates. way to use graph

convolution to point cloud segmentation is to
additionally use the grid model corresponding to the point cloud.
Since the grid model has its own coordinate and edge information,
graph convolution network can be well applied. DCM-Net [127]
proposes to extract geodesic information on the grid model through
graph convolution operation, and uses two convolution operations
to extract Euclidean distance and geodesic distance respectively, and
fuses the two kinds of information through feature stitching. VMNet
[128] uses a dual-branch network structure to process point clouds
and grid models separately, and proposes a feature fusion module
based on attention mechanism to selectively perform fusion, thereby
semantic

improving the performance of this method in

segmentation.

4.2.5 Attention mechanism-based method

As attention mechanism shows powerful feature representation
capabilities in the fields of natural language processing and
computer vision, and it also tried to apply it to semantic
3D  point
PointTransformer [129] is one of the representative works.

segmentation  of clouds in many works.

Different from previous scalar attention mechanisms, this
method proposes a vector attention mechanism for point clouds
and uses learnable position coding to improve the network’s ability
to capture spatial geometric information. However, this method uses
a local attention mechanism to reduce the computational overhead.
When dealing with complex scenes, it is necessary to superimpose
multiple layers of attention modules to expand the receptive field of
features. To solve this problem, StratifiedFormer [130] proposes a
hierarchical attention mechanism to establish long-distance
relationships between features. For each point, this method will
simultaneously sample adjacent points in its nearer and farther
distances to calculate attention. The sampling is denser in the nearer
distance and sparser in the far distance, which can directly expand
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the receptive field. In addition, some efforts have been made to
improve the attention mechanism in point cloud semantic
segmentation in terms of efficiency and performance. Fast Point
Transformer [131] utilizes a voxel hash architecture to speed up
attention modules. Point Transformer V2 [132] groups vector
attention on the basis of Point Transformer, further strengthens
position coding information, and improves the robustness of
network processing point clouds.

4.3 Advantages, disadvantages and
development trends of existing scene
segmentation technologies

Existing scene segmentation technologies are outstanding in
high precision and detail capture, which can achieve high-
precision segmentation in three-dimensional space, capture
subtle geometric details, and provide richer information for the
understanding and processing of complex scenes. However, the
technology also has some shortcomings. First of all, processing 3D
point cloud and voxel data requires a lot of computing resources
and high-performance hardware, especially in high-resolution and
large-scale scenarios, where computing costs and storage
requirements are high. Secondly, it is expensive to obtain high-
quality 3D data and perform accurate annotation, and the
complexity of data annotation increases the difficulty of
preparing training data. Meanwhile, 3D scene segmentation
algorithms are usually complex with weak real-time processing
capabilities, and are difficult to run efficiently on resource-
constrained devices, which is a significant bottleneck in
applications that require rapid response. In addition, the
existing 3D scene segmentation models lack robustness and
generalization ability when they meet complex environments
and different scenes, and may require additional tuning and
training for specific scenes.

Future development trends mainly focus on the following
aspects. First, with the continuous advancement of deep learning
technology, especially the application of Transformer and GNN, the
accuracy and efficiency of 3D scene segmentation will be further
improved. These advanced models are better able to handle large-
scale and complex 3D data. Secondly, future research will focus more
on multi-task learning and self-supervised learning to reduce the
dependence on large-scale labeled data, thereby reducing the cost of
data labeling and improving the generalization ability and
robustness of the model. Third, with the improvement of
hardware performance and the optimization of algorithms, it will
be possible to achieve efficient real-time 3D scene segmentation on
mobile devices and edge devices, which will promote the practical
application of 3D scene segmentation technology in autonomous
driving, intelligent robots and other fields. Fourthly, the accuracy
and reliability of scene segmentation can be improved by fusing
different types of 3D sensor data. Multi-sensor fusion technology
will become an important direction of future 3D scene segmentation
research. In addition, combining 3D scene information with other
modalities (such as text, audio, etc.) can enhance the performance of
scene segmentation, and cross-modal fusion technology will provide
more comprehensive and accurate information support for 3D scene
segmentation.
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5 Summary and outlook

In this paper, the research status of SLAM, perception and
positioning of autonomous driving, scene segmentation and other
technologies are introduced respectively. These technologies are
interdependent and work together, which constitute the core of
modern autonomous driving system. SLAM provides basic
positioning and map  construction capabilities,  scene
segmentation provides advanced semantic understanding of the
autonomous

environment, and driving  perception and

positioning  technology  integrates this information for
autonomous navigation and decision-making. They are actually
closely related and interacted with each other although these
technologies belong to different fields on the surface. For
example, in the field of autonomous driving, the acquisition of
high-precision maps relies on high-precision mapping of SLAM,
while higher-level environmental awareness requires scene
segmentation and target detection, and real-time positioning also
requires SLAM.The future development direction and trend of each
technology are prospected when summarizing it. On this basis,
development directions applicable to all mentioned technologies will
be summarized in the paper, aiming at the common characteristics

of all reviewed technologies.
(1) Continuous Application of Deep Learning

Since all the above technologies involve feature extraction and
calculation, deep learning has unparalleled advantages in this
respect. In the future, deep learning will continue to play a role
in various technical fields, integrating more deep learning
such as 3D 3D target
detection, and point cloud completion, which are even expected

technologies scene reconstruction,

to completely replace conventional methods in some fields.
(2) Fusion of multi-source and multi-modal information

When the above calculations for three-dimensional data
processing or scene perception are applied, multi-source and
multi-modal data can provide a more comprehensive and
integrated description and understanding of real scenes and
objects than single type of data.

(3) High Real-time Performance and Low Computing Load

All data processing technologies will further pursue real-time
performance and low computing load to improve processing
efficiency and reduce processing costs, so as to promote the real
implementation of these technologies in various fields.

The future development of autonomous driving will not only
transform transportation technology but will also have profound
impacts on law, ethics, and society. In terms of law, the division of
responsibility for autonomous vehicle accidents will become a core
issue. On the ethical front, the decision-making challenges brought
by autonomous driving technology are also a major concern. For
example, how should a vehicle make moral judgments when faced
with unavoidable accidents (such as the “trolley problem”)? The
social impacts are equally important. Autonomous driving could
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significantly reduce traffic accidents and improve road safety, but it
will also disrupt the job market, particularly in the transportation
industry. Moreover, as private vehicle ownership declines and
shared autonomous vehicle fleets rise, urban planning could be
reshaped, changing the way people travel. However, the
widespread application of this technology will also raise privacy
issues, and how to protect user data will spark ongoing debates in
social and policy realms. Overall, the future of autonomous driving
is not just about technological breakthroughs but also about
comprehensive transformations in law, ethics, and social
structures, with the key challenge being how to find a balance
in these areas.
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Incorporating medical text annotations compensates for the quality deficiencies
of image data, effectively overcoming the limitations of medical image
segmentation. Many existing approaches achieve high-quality segmentation
results by integrating text into the image modality. However, these
approaches require matched image-text pairs during inference to maintain
their performance, and the absence of corresponding text annotations results
in degraded model performance. Additionally, these methods often assume that
the input text annotations are ideal, overlooking the impact of poor-quality text
on model performance in practical scenarios. To address these issues, we
propose a novel generative medical image segmentation model, Cap2Seg
(Leveraging Caption Generation for Enhanced Segmentation of COVID-19
Medical Images). Cap2Seg not only segments lesion areas but also generates
related medical text descriptions, guiding the segmentation process. This design
enables the model to perform optimal segmentation without requiring text input
during inference. To mitigate the impact of inaccurate text on model
performance, we consider the consistency between generated textual
features and visual features and introduce the Scale-aware Textual Attention
Module (SATaM), which reduces the model's dependency on irrelevant or
misleading text information. Subsequently, we design a word-pixel fusion
decoding mechanism that effectively integrates textual features into visual
features, ensuring that the text information effectively supplements and
enhances the image segmentation task. Extensive experiments on two public
datasets, MosMedData+ and QaTa-COV19, demonstrate that our method
outperforms the current state-of-the-art models under the same conditions.
Additionally, ablation studies have been conducted to demonstrate the
effectiveness of each proposed module. The code is available at https://
github.com/AllenZzzzzzzz/Cap2Seg.

COVID-19, vision-language, multi-task learning, medical image segmentation, medical
image captioning
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Zhao et al.

1 Introduction

COVID-19 has rapidly become a global epidemic since the early
2020s Benvenuto et al. [1]. Within 6 months of the outbreak, over
1.5 million cases of COVID-19 had been reported worldwide, with
more than 92,000 deaths Organization et al. [2]. Clinically, reverse
transcription polymerase chain reaction (RT-PCR) is the standard
method for diagnosing COVID-19. Still, it has drawbacks, such as a
high false-negative rate Chan et al. [3] and an inability to provide
information about the patient’s condition. Computed tomography
(CT), due to its convenience and ability to display the three-
dimensional structure of the lungs, has been considered an
essential complement to RT-PCR testing for the early diagnosis
of COVID-19, especially in the follow-up assessment and evaluation
of disease progression Raoof and Volpi [4]. Consequently, the
automatic segmentation of lung infections in CT scans using
computer vision techniques has garnered widespread attention
from clinical researchers Shi et al. [5].

With the advent of deep learning, medical image segmentation
has become a hot topic in computer vision researchZhu et al. [6].
This task focuses on identifying pixel features of anatomical or
pathological regions from the background of medical images and
applying these features to the image segmentation process Liu et al.
[7]; Zhu et al. [8]. Consequently, many deep learning systems have
been proposed for COVID-19 infection detection Ronneberger et al.
[9]; Zhou et al. [10], achieving state-of-the-art performance Wang
et al. [11]; Fan et al. [12]. Figure 1A illustrates that the encoder-
decoder architecture is a more commonly used approach. In this
architecture, the encoder is responsible for extracting image features,

10.3389/fphy.2024.1439122

while the decoder restores these features to the original image size
and produces the final segmentation results.

However, the aforementioned traditional pixel-wise supervised
automatic segmentation methods based on deep learning neglect the
semantic information in medical reports. Medical reports often
contain information about the lesion areas, such as size and
quantity, which can complement image data and provide
additional supervisory signals for diagnosis Monajatipoor et al.
[13]. Vision-language models have been extensively researched
recently and achieved remarkable results in cross-modal tasks.
Consequently, many studies have begun exploring combining
textual information from medical reports with the segmentation
process to improve segmentation accuracy Li et al. [14]; Chen et al.
[15]; Huemann et al. [16]; Tomar et al. [17]. As shown in Figure 1B,
a typical multimodal medical image segmentation research
workflow first relies on two specially designed encoders to extract
visual and language features separately. These extracted features are
then integrated using a specific fusion strategy and processed
through a network decoder intended explicitly for multimodality
to obtain the segmentation results.

Although vision-language models have shown promising
performance in the segmentation field, they face two significant
challenges in practical applications within the medical domain.
Firstly, these methods Li et al. [14]; Huemann et al. [16]; Wen
et al. [18], trained using image-text pairs, often experience
performance degradation during if the text is
unavailable. This creates a dependency on image-text pairs. In

inference

real-world scenarios, this form of inference frequently contradicts
the process of the model independently assisting clinical diagnosis: it

(a)

Vision Encoder

Vision Decoder

Vision Encoder

Language Encoder

Multimodal
Decoder

)

Output

Multimodal

Multimodal i
Decoder !

Encoder

Caption generator

FIGURE 1

Current medical image segmentation models. (A) Traditional medical image segmentation. (B) Vision-Language multimodal medical image

segmentation. (C) Our proposed model in this paper.
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is usually challenging to obtain textual information from medical
reports before the doctor completes the diagnosis Li et al. [19]; Yu
et al. [20]. This means that if the model relies on these finalized
reports to enhance its performance, it is essentially duplicating the
diagnosis already made by the doctor rather than providing an
independent auxiliary diagnosis. This dependency significantly
diminishes the model’s auxiliary value and deviates from its
original purpose of independently aiding medical diagnosis.
Secondly, existing vision-language models Wen et al. [21] often
focus solely on effectively combining text and visual modalities,
neglecting text accuracy’s impact on model performance. Inaccurate
text can mislead the model and negatively affect its performance. In
practical applications, medical reports may contain errors due to
factors.

various Effectively handling this imperfect textual

information and preventing it from impairing model
performance is also a significant challenge.

In summary, there are two main challenges: 1. How to address
the model’s dependency on image-text pairs during the inference
stage; 2. How to mitigate the impact of text accuracy on model
performance. To solve the first challenge, we propose the Cap2Seg
model, as shown in Figure 1C. This model combines the image
captioning task and requires only a lesion image as input to
simultaneously output segmentation results and corresponding
text descriptions, successfully eliminating the model’s dependency
on image-text pair data. Considering that some generated texts may
sometimes deviate from actual medical reports and potentially affect
segmentation performance, we designed a Scale-aware Textual
Attention Module (SATaM) and a semantic consistency loss
(SCloss) function to address the second challenge. These two
mechanisms work together to ensure that the attention of the
generated language features is focused on the lesion areas,
effectively avoiding misleading the model with biased generated
texts. Additionally, we introduced a Language-Aware Visual
(LAVD), which
language features with visual features and decodes them,

Decoder effectively integrates multi-scale
significantly improving the overall quality of the segmentation

results. Our contributions are summarized as follows.

(1) The proposed Cap2Seg combines caption generation with
lesion area segmentation, generating related medical text
descriptions simultaneously. Leveraging the generated

textual information to supplement the segmentation task

effectively improves the accuracy of medical image
segmentation. This eliminates the model’s dependency on
image-text pairs and provides additional references for
clinical diagnosis.

(2) The SATaM optimizes the quality of language features and
enhances the model’s ability to handle textual biases, thereby
improving overall robustness. Concurrently, the Language-
Aware Visual Decoder (LAVD) effectively integrates visual
and  linguistic  features,
segmentation quality.

(3) Experiments conducted on two publicly available COVID-19

significantly ~ improving

datasets demonstrate that our proposed method outperforms
most state-of-the-art models in segmentation performance.
The remainder of this paper is organized as follows: Section 2

provides a comprehensive review and summary of previous research
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related to our work. Section 3 describes the architecture of the
proposed network. In Section 4, we present and analyze the
experimental results. Finally, in Section 5, we conclude our work.

2 Related works

This section reviews and summarizes previous relevant studies
related to our work, focusing on Visual-Language image
segmentation, image captioning, and multi-task learning.

2.1 Visual-language image segmentation

In recent years, multimodal segmentation techniques that
combine visual and language modalities have garnered extensive
attention. Hu et al. Hu et al. [22] pioneered using textual
descriptions to assist image segmentation, sparking further
research into effectively integrating visual and textual information
to enhance segmentation results. Broadly, this task can be
categorized into two types: referring image segmentation in
natural scenes and image segmentation in medical contexts.

2.1.1 Referring image segmentation

In applications within natural settings, early studies Liu et al.
[23]; Li et al. [24]; Shi et al. [25]; Ye et al. [26] focused on developing
more effective techniques for extracting and merging visual and
linguistic features. Liu et al. Liu et al. [23] introduced a multimodal
Long Short-Term Memory network specifically designed to process
and fuse multimodal features of each word. Shi et al. Shi et al. [27]
proposed a keyword-aware network that, while extracting text
features, assigns higher weights to keywords, thereby improving
the model’s ability to recognize text-indicated objects. The
introduction of attention mechanisms paved new ways for
effective cross-modal feature fusion. Ye et al. Ye et al. [26]
employed non-local blocks Wang et al. [28] to design a cross-
modal self-attention module for integrating features across
modalities. Similarly, other studies Chen et al. [29]; Hu et al.
[30]; Shi et al. [27]; Chen et al. [31] utilized various attention
mechanisms to process and integrate cross-modal features.
Unlike these later fusion approaches, LAVT Yang et al. [32]
achieved an early fusion of linguistic and visual features at the
intermediate layers of a Transformer network, enhancing cross-
modal alignment and the model’s integration of visual and linguistic
information. With the significant rise of CLIP Radford et al. [33] in
the multimodal field, some research began to explore using
contrastive learning to represent cross-modal data, such as LSeg
Lietal. [34] and GroupViT Xu et al. [35]. These studies leveraged the
advanced representational capabilities of CLIP in multimodal
scenarios, effectively enhancing image segmentation efficiency
and accuracy and demonstrating exceptional capabilities in zero-
shot inference scenarios. Further research has focused on the role of
text structure in enhancing multimodal information processing. Yu
et al. Yu et al. [36] and Huang et al. Huang et al. [37] utilized
sentence structure knowledge to within

capture concepts

multimodal features, such as categories, attributes, and

relationships. Hui et al. Hui et al. [38] used syntactic structures
between words to guide multimodal context aggregation. Ding et al.
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Ding et al. [39] introduced a dynamic query generation module
capable of dynamically producing multiple queries based on the
input text to accommodate diverse linguistic scenarios, making
multimodal information fusion more targeted and specific.

2.1.2 Medical image segmentation

In the medical field, Li et al. Li et al. [14] proposed the LViT
model, a hybrid of CNNs and Transformers, which incrementally
integrates medical text annotations into the image segmentation
process to compensate for the quality deficiencies of image data.
Unlike LViT, Bi-VLGM Chen et al. [15] emphasizes maintaining
consistency within modal features and uses a visual-language graph
matching module to handle the category-severity relationships
between visual and text features, enabling the segmentation
model to learn valuable representations selectively. Other studies
Huang et al. [40]; Zhang et al. [41]; Huemann et al. [16]; Dai et al.
[42] have used more flexible medical reports for segmentation.
ConTEXTualNet
mechanisms to decode image features based on text in medical

Huemann et al. [16] employs attention
reports, guiding the model to focus on text-related image pixels.
Some methods Tomar et al. [17], even without available medical
reports or texts, utilize auxiliary classification tasks to embed textual
attributes (size and number) during encoding. This approach
enables the network to adapt to various sizes and numbers of
polyp cases,
However, existing state-of-the-art methods Li et al. [14]; Chen

thereby enhancing segmentation performance.

et al. [15] still rely on matched medical text and image data
during the inference stage to achieve optimal performance. Their
performance may suffer when only image input is available without
corresponding text. In contrast, the Cap2Seg model proposed in this
study requires only one image to achieve optimal performance
during inference.

2.2 Image captioning

Image captioning, which aims to produce natural language
descriptions based on static visual content Vinyals et al. [43];
Ghandi et al. [44], represents a challenging cross-modal
translation task Zhang et al. [45]; Yu et al. [46]. This task
demonstrates particular application value in the medical field Li
etal. [47]; Hou et al. [48]; Wang et al. [49]. For instance, Li et al. Li
et al. [47] developed a Knowledge-driven Encoding, Retrieval, and
Paraphrasing (KERP) model to improve medical image descriptions.
Our research focuses not on designing a new captioning model per se
but on employing image caption generation as an auxiliary module.
To the best of our knowledge, this study is the first attempt to
explore caption generation in medical image segmentation.

2.3 Multi-task learning

Multi-task learning aims to enhance the performance of
individual or multiple tasks by jointly training related tasks,
utilizing the correlations and shared information between them
for mutual benefit. For example, Wu et al. Wu et al. [50] introduced
the CGG framework, which combines image caption generation and
referring image segmentation tasks. This framework employs
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caption generation loss to supervise the model, improving image
segmentation quality. Similarly, Sun et al.'s PFOS model Sun et al.
[51], which the tasks
Comprehension and Generation, leverages cross-attention and

integrates of Referring Expression

multimodal fusion mechanisms to boost overall model
performance significantly. Moreover, Zhang et al. Zhang et al.
[52] demonstrated significant performance improvements in
medical image analysis by combining gastric cancer segmentation
with lymph node classification tasks, effectively managing the inter-
task relationships and heterogeneity through multi-scale features
and refined attention mechanisms. Following this concept, Cap2Seg
merges the functions of image caption generation and medical image
segmentation. The goal is to utilize the generated textual annotations
as supplementary information to the image modality, thereby

enhancing the performance of the segmentation task.

3 Proposed method

This section elaborates on the proposed method, encompassing
four components: the Multimodal Synergistic Dual-Flow Encoder
(MSDFE) module, the Multimodal Semantic Enhancement and
Captioning Module (MSECM), the Scale-aware Textual Attention
Module  (SATaM), and the
Decoder (LAVD).

Language-Aware  Visual

3.1 Overview

The caption-driven multimodal COVID-19 segmentation
framework proposed in this paper is illustrated in Figure 2A.
This framework addresses two primary tasks: medical image
captioning and medical image lesion segmentation. The MSDFE
module initially processes the input image, mapping it into a
multimodal space that combines visual and textual data, thereby
providing a comprehensive set of features for both tasks. The
MSECM then refines these features to enhance their relevance to
each task. Concurrently, the SATaM and Semantic Consistency Loss
(SCloss) are employed to apply focused attention to the textual
features, thereby minimizing the model’s reliance on non-relevant
or potentially misleading information and concentrating efforts on
lesion areas. Finally, the LAVD integrates and upsamples the textual
and visual features to produce the final segmentation results. In
summary, our proposed framework leverages the synergistic effects
of multitask learning to exploit the rich complementary information
contained in generated text annotations, thereby enhancing the
segmentation quality of COVID-19 and providing additional
textual diagnostic support.

3.2 Multimodal synergistic dual-
flow encoder

Given the high variability in the shape, size, and location of
COVID-19 infection-related issues, and the requirement for the
Cap2Seg model to perform both image segmentation and image
captioning tasks, extracting richer features from the input images is
crucial. Convolutional Neural Networks (CNN) can accumulate
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FIGURE 2
Overall framework of the proposed method. (A) The leading network comprises the following components: (B) The multimodal synergistic Dual-

Flow Encoder (MSDFE) module, (C) the Multimodal Semantic Enhancement and Captioning Module (MSECM), the Scale-aware Textual Attention Module
(SATaM), and (D) the Language-Aware Visual Decoder (LAVD).

spatial information of images, focusing on capturing local
information such as the texture and contours of lesion areas. At
the same time, the self-attention mechanism can explore long-range
dependencies in images, focusing on capturing global information.
To fully extract diverse features, this paper proposes a Multimodal
Synergistic Dual-Flow Encoder (MSDFE), which combines the
strengths of CNN and Transformer. As shown in Figure 2B,
MSDEE consists of two parallel feature extraction branches: the
first branch is the “trans flow” processed by TransBlock (indicated
by dashed lines in the figure), and the second branch is the “conv
flow” processed by ResBlock (indicated by solid lines in the figure).
MSDFE can extract local, global, and long-range dependency
features from images through this combination, thus providing a
more expressive feature set for both tasks.

The a pair of 3x3
convolutional blocks, each succeeded by batch normalization
TIoffe and Szegedy [53] and the ReLU activation function Nair
and Hinton [54]. The architecture is finalized with a residual

Specifically, ResBlock comprises

connection featuring 1 x 1 convolution that synergistically
integrates the input with the convolutional layers’ outputs, as
specified in the following Equations 1, 2:
Xout = 0 (BN (Convsys (xin)))
Xout = 0 (BN (Convs,s (Xou ) + 0 (BN (Convyg (xin)))

(1)
)
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In this context, o denotes the ReLU activation function, BN stands
for Batch Normalization, Convsy; and Convyy; are the convolutions
of size 3 x 3 and 1 x 1, respectively.

As for TransBlock, it initially processes the input image
x € REWO into flattened uniform non-overlapping patches
Xp € RE*CN ), where (H,W,C) are the input image’s resolution
and channels, (P,P) is the resolution per image patch, and N =
HW/P? is the number of patches. These patches are then mapped
onto a k-dimensional embedding space z, by a trainable linear layer
E e RP¥CK) . The definition of zq is provided as follows in
Equation 3:

Zo = [x;E; x;E; A xPNE] (3)

Subsequently, the embedded feature z, € R serves as the input
for TransBlock, comprising a Multi-Head Self Attention module
followed by a 2-layer MLP with interposed with a GELU activation
function. A LayerNorm layer is applied before each MAS module
and each MLP, and a residual connection is applied after each
module Dosovitskiy et al. [55]; Vaswani et al. [56]. Which can be
expressed as Equations 4, 5:

z{ = MSA(LN (z;.1)) + zi1,
zi = MLP(LN(z})) + 2/,

i=1...M
i=1...M

(4)
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Herein, MSA signifies multi-head self-attention, LN (-) denotes
layer normalization, and MLP comprises two linear layers with
GELU activation functions. 7 is the intermediate block identifier, and
M is the number of transformer layers.

Throughout the encoding process, the MSDFE module is
configured with four instances. Initially, in the first two MSDFE
modules, each branch functions independently, extracting features
without interacting with each other. In the latter two modules, the
outputs of these branches are amalgamated and then transferred to
the next “conv flow” stage, facilitating collaborative learning.
Specifically, in these later stages, the output from the “trans flow”
z; € RMK) undergoes dimensional transformation and up-

sampling to yield z € RHEWxE3e

, aligning with the dimensions of
the “conv flow,” followed by merging the outputs from both
branches through a concatenation operation. This integrated

process is mathematically represented in Equation 6:

FZ = [Ecomv (FVD(,-_I))> Eirans (zi—l)] i=1...4 (6)

In this equation, F VD( i1y symbolizes the down-sampling output from
the previous (i — D" encoder layer, with Econy and Eyps signifying
the ResBlock and TransBlock, respectively, and [-] represents the
concatenation of the two features. In our model configuration, the
input image dimensions are set to H =W =224, and the
TransBlock’s layer configuration M is designated as 4, 3, 3, 2,
with a patch size of P =16 x 16, P =768, resulting in a total
patch count of N =196. This approach to MSDFE effectively
maps visual information to multimodal spaces, significantly
improving the model’s performance in subsequent tasks such as
medical image segmentation and image captioning. It lays a robust
foundation for addressing complex cross-modal challenges.

3.3 Multimodal semantic enhancement and
captioning module

To leverage the multimodal features FB, € R"%C) extracted
during the encoding phase for image segmentation and captioning
tasks, we devised a Multimodal Semantic Enhancement and
Captioning Module (MSECM). As depicted in Figure 2D, the
MSECM consists of two main components: Visual Semantic
Enhancement (VSE) and Textual Semantic Enhancement (TSE).
VSE adjusts FD, to generate visual features F; € R tailored for
segmentation tasks. In contrast, TSE refines features F g € RNK) for
the image captioning task and produces the associated medical text
descriptions. The MSECM precisely fine-tunes these features to
cater to the specific requirements of each task, ensuring that the
extracted features are highly task-specific.

We utilize atrous Chen et al. [57] convolution in the VSE to
refine the multimodal features. Atrous convolution extends the
receptive field by adjusting the dilation rate, allowing it to
capture broader contextual information. Specifically, we use
different dilation rates (1, 3, 6, 9) to ensure effective information
acquisition across various scales. This multi-scale information
capture enhances the specificity of visual features for
segmentation tasks, providing a solid foundation for achieving
accurate results.

segmentation Furthermore, due to the

Transformer’s strong ability to model the two modalities, we
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integrate the output of TSE into VSE, forming a comprehensive
feature set F' € R/ for the image segmentation task. This
feature set will be employed in the subsequent upsampling decoding
process, represented by the following Equations 7-10:

F,q, = o(BN(Convi} (FL))) i=1,3,6,9 7)
Fs = 0(BN(COHV3X3 [Fva1>Fva3>Fva6>Fvag])) (8)
F, = Transformer (F%,) 9)

F' = [F, Convs.s(Re(F, )] (10)

In these equations, Conv?. symbolizes atrous convolution, d = i

indicates the dilation rate, Transformer(:) is shorthand for
Transformer operation, and Re () represents the reshape operation.

In the TSE, as illustrated in Equation 9, the Transformer module
is utilized to optimize the multimodal features, with its self-attention
mechanism enabling extensive context capture from within the
image. This enhances feature coherence and provides a solid
foundation for generating text closely related to the image. We
employ a lightweight Long Short-Term Memory (LSTM) network
Hochreiter and Schmidhuber [58] as the caption generator for the
subsequent generation of medical image captions. This network
comprises several interconnected LSTM units, enabling it to
effectively process sequential data, which is crucial for generating
coherent and informative medical texts. To quantitatively assess the
accuracy of the generated texts, we use the cross-entropy loss
function Lge, to guide the LSTM network’s training. The loss
function is defined in Equation 11:

Nt
Lgen:_zlog(Pt()’t |J’1>}’2;--~>}’t—1§0)) (1)

t=1

In this formula, p; (y¢ | ¥1, ¥2, . .., ¥e-1; 0) signifies the probability
that the model predicts the current word y;, contingent upon the
antecedent words and the model parameters 6. This approach
ensures a high degree of alignment between the accuracy of the
generated text and actual texts. Subsequently, the generated texts are
tokenized and converted into embeddings via a trainable embedding
layer, resulting in the linguistic feature L € RTC1), This feature is
further refined by subsequent modules, specifically tailored for

applications in the decoding and analysis processes.

3.4 Scale-aware textual attention module

To mitigate the impact of variances between model-generated texts
and labeled descriptions in a minority of samples, which may
compromise the model’s segmentation performance, this research
has integrated a Scale-aware Textual Attention Module (SATaM).
This module exploits multimodal features F € R* Wi extracted
at different stages of encoding to enhance the quality of linguistic
features L. Multimodal features FD(i=1,2,3,4) from varying
encoding layers encapsulate distinct information: superficial layers
provide comprehensive, sentence-level insights, while deeper layers
detalils,

levels are

deliver ~ granular such as word-level

Both in guiding the
development of linguistic features. Furthermore, SATaM additionally

lesion-specific

information. instrumental

incorporates a semantic consistency loss function (SCloss) to enhance
further the attention of linguistic features on key lesion areas. SATaM is

frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1439122

10.3389/fphy.2024.1439122

Z,,i (r+1.c,)

Zhao et al.
—> Linear |
FP (u,.m.c,) )
=
=
(]
=t
=
ey N e
L(r.c,)
FIGURE 3

Architectures of the scale-aware textual attention module.

designed to allocate higher attention weights to lexical or sentence
features while minimizing focus on irrelevant or misleading
information. This approach ensures the emphasized features
maintain a solid semantic correlation with the visual content.
Figure 3 illustrates the architecture of the SATaM. Initially, F? and
L are mapped through a fully connected layer to a unified subspace,
where a cross-modal attention mechanism is applied. This generates an
attention map A; € RHEWXT delineating the correlations between T
words and every pixel in the image. Subsequently, the map A;
undergoes summation across the HW dimensions and is
normalized, resulting in the attention matrix &; € R”. This process

is graphically represented in the following Equations 12-14:

A= (vaw') (wlL) (12)

HW
a; = z At] (13)

=
t g
it P (ai/ |Laz||2) (14)
Y exp (af/llaill,)

Herein, w, and w; are projection parameters, || - ||, denotes the L2-

norm, A] € R the feature relevance between T words and the jth
pixel. The term @ € R” indicates the significance of the ¢-th word
about the current visual features. Hence, we employ a; to linearly
recombine L across the word dimension, deriving an adaptive, scale-
aware sentence features Ly € R, This feature dynamically adjusts
its representation in response to visual content of varying scales,
enhancing its ability to encompass and articulate overall visual
information. Expanding upon this, Ly is concatenated with L to
forge a novel T + 1 dimensional linguistic feature L] € RT+1C0),
This improved feature is then processed through a self-attention
mechanism, and subsequently, it is combined with L to produce
L,; € RT*LC) This operation aims to enrich the original linguistic
features of L with visual context provided by L; while preserving the
integrity of L’s textual structure. The steps of this procedure are
detailed in the following Equations 15, 16:
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Lz, = [Conlel (Ls)>L] (15)
L,; = Convy (Self (L) + L) (16)

Here, Self () refers to the self-attention mechanism. Finally, we
remove the token that represents Ly from L, resulting in
L,; e R which retains the contextual understanding of the
structure and scale-level visual

original text incorporates

information. Thus, L, is utilized as the input for textual
information in the decoding phase.

Furthermore, before each skip connection within the model, the
SATaM produces four adaptively scale-aware sentence features,
Li(i=1,2,3,4). These features are designed to concentrate on
lesion areas consistently. To ensure this consistent focus, this
study further introduces a SC (Semantic Consistency) Loss
comprising three Mean Squared Error (MSE) loss functions: £,
L, and L;. These functions are designed to minimize differences
between the sentence-level features Ly at various stages, enhancing
their focus consistency. The implementation includes the following
Equations 17-20:

L=~ iuLﬂ - Laf? (7)
1 N
Lr= Z ILa = Las |’ (18)
1 N
L= Z ILa = Lal? (19)
Leon=L1+Ly+ L5 (20)

The introduction of SCloss ensures that each SATaM can effectively
share insights and impose constraints on one another. This
mechanism enables the linguistic features L,;, guided by L, to
target lesion areas that critically affect the segmentation more
precisely. Consequently, the interaction of these two mechanisms
provides linguistic features relevant to the visual content,
complementing the segmentation process during the decoding
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stage and significantly enhancing the overall quality of the
segmentation results.

3.5 Language-aware visual decoder

To optimize the decoding phase of segmentation, we have
implemented a Language-Aware Visual Decoder (LAVD). This
enable effective

module is specifically designed to

integration of features, thereby facilitating the subsequent up-

more

sampling steps. As shown in Figure 2C, the designated input
features consist of the decoding features FU € R(F*WoC) from the
preceding stage, the linguistic features L,;, and the features FL from
the encoding phase, which serve as skip connections. The decoder
aggregates L,; along the pixel dimension, creating feature vectors
specific to the image pixel positions, which gather the language
information most relevant to the current local area. This culminates
in spatial attention maps F 4; € RMWiC)_ Concretely, we obtain F 4;
from the following Equations 21-24:

Vo = UP(ay(F,)) ey
Ly = wy (iw) (22)

Ly = wy (iw‘) (23)

Fyi = softmax(V\Q/'g_Ki>Lv,- (24)

Within this framework, wg;, wi; and w,; denote the mappings from
linear layers, with UP(-) denoting up-sampling. Using the visual
feature FU; as query and linguistic features L,; as both keys and value,
the module accomplishes scaled dot-product attention Vaswani
et al. [56]. Finally, the acquired F,; is concatenated with the
multimodal features from the encoding phase FL and then
inputted into the for further learning, as detailed in the following

Equation 25:
FY =Res(Res[F4, FO]) i=1,2,3,4 (25)

In our approach, the LAVD is set to 4, and after four iterations of up-
sampling, FY, yields the final segmentation mask of the lesion area.

3.6 Overall loss functions

The overall training loss is divided into two main components:
segmentation loss L., and caption generation loss L. For the
segmentation part, we have chosen two commonly used losses in
medical image segmentation, L., and L., as well as the semantic
consistency loss L, introduced in this study. These are defined in
the following Equations 26-28:

1 N
Le = N Y yilog(pi) (26)
i=1
2213 piyi
Lgee =1 - o—=5— (27)
PR DI
1 1
Loy = Eﬁce + Eﬁd’“ + A Lcon (28)

The overall loss function is formulated in Equation 29:
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['totle = a‘cseg +ﬂ£gen (29)

Within this construct, p; and y; respectively represent the binary
segmentation prediction probability for the i-th pixel of each input
image and the corresponding label classification. N represents the
number of pixels. A, « and f3 signify the hyperparameters applied for
weighting various losses. Through the incorporation of Lg,; and
L gens Cap2Seg effectively narrows the gap between segmentation
maps and labels while generating high-quality medical text
annotations, thereby enabling the model to utilize linguistic
insights to enhance the segmentation process.

4 Experimental

This section comprehensively evaluates our Cap2Seg network
using the QaTa-COV19 and MosMedData + datasets. Each
experiment is meticulously described, and the results are
rigorously analyzed.

4.1 Implementation details

This study’s methodology was executed on an NVIDIA RTX
4080 using PyTorch. The optimization of model parameters was
carried out with an AdamW optimizer that includes a weight decay
of 0.0001. Following Li et al. [14], the initial learning rates were
configured at 3e-4 for the QaTa-COV19 dataset and le-3 for the
MosMedData + dataset; due to the differing data sizes of the
datasets, batch sizes were specifically configured at 4 for the
QaTa-COV19 dataset and 8 for the MosMedData + dataset. The
hyperparameters «, f3, and A. were established at 5.0, 2.0, and
0.5 values, respectively. For performance evaluation, we utilized
the Dice Thomas et al. [59] coefficient and Mean Intersection over
Union (mIoU) Ouyang et al. [60] to assess our model’s effectiveness
relative to other state-of-the-art methods. These evaluations are
computed using the following Equations 30, 31:

2 x|A () B|
DSC(A,B) = Ai_}_r; (30)
1 & AN B
mIoU(A,B) = — (31)
N & JAUB|

Here, A and B denote the labels and segmentation predictions,
respectively.

4.2 Datasets

The study utilized two primary public datasets: QaTa-COV19
Degerli et al. [61] and MosMedData + Morozov et al. [62]. The
QaTa-COV19 dataset comprises 9,258 chest X-ray images of
COVID-19, each with a 224 x 224 pixels resolution. Of these,
5,716 were designated for training, 1,429 for validation, and 2,113 for
testing. The MosMedData + dataset contains 2,729 " scans depicting
lung infections, with each image having a resolution of 512 x 512 pixels.
It includes 2,183 images for training, 273 for validation, and another
273 for testing purposes. Notably, the original datasets did not include
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TABLE 1 Compares the state-of-the-art segmentation methods on the MOSMEDDATA + dataset. GRAY-SHADED methods exclude text input, while others
include text input.

Method w/o Text Generated Text Ground Truth Text
mloU[%] Dice[%] mloU[%] Dice[%] mloU[%] Dice[%]
U-Net 50.73 64.60 = - - _
Att-Unet 52.82 66.34 = - - _
UNet++ 58.39 7175 = - - _
TransUNet 58.44 71.24 - = — _
Swin-Unet 50.19 63.29 = - - _
SCOAT-Net 56.87 7051 = - - _
COPLE-Net 60.93 74.08 = - - _
ConTEXTualNet 56.81 70.60 56.03 70.08 58.19 71.66
LAVT 56.52 70.23 55.43 69.86 60.41 73.29
TGANet 60.18 73.30 59.28 71.81 59.28 71.81
LViT-T 60.40 72.58 59.86 73.41 61.33 74.57
Cap2Seg(Ours) 63.02 75.87 63.02 75.87 - -

Bold values represent the best performance.

medical text annotations; these were added subsequently by the LVIT Li
et al. [14], which provided detailed descriptions of the lesions in terms of
their areas, quantities, and locations. Such as “bilateral lung infection,
two infection zones, upper left lung and upper right lung.” indicating
bilateral lung infections with two infection zones in the upper left and
upper right lungs, and “unilateral lung infection, one infection zone,
lower left lung.” indicating a single-sided lung infection with the
infection zone in the lower left lung. Each lesion image corresponds
to a medical text annotation, with more detailed textual annotation
information available in Li et al. [14].

4.3 Results and analysis

We first validated the effectiveness of our method on the
MosMedData + dataset and compared it with existing methods
under three different conditions. The first condition is that no text
modality is used as auxiliary input during inference, corresponding
to the “w/o Text” column in the table. The second condition involves
using generated medical text annotations to assist segmentation
during inference, as shown in the “Generated Text” column in the
table. These annotations are generated by Cap2Seg at its optimal
performance and are used as inputs for other models. A detailed
qualitative evaluation of these generated texts is provided in Section
4.4. The third condition is that real labeled medical text annotations
assist segmentation during inference, corresponding to the “Ground
Truth Text” column in the table. Since our model does not use any
text input during inference and the model generates the auxiliary
text, our method falls under the first two conditions. Therefore, we
perform inference only under these two conditions and compare it
with existing methods. We compared our method with mainstream
text-guided image segmentation methods Yang et al. [32]; Li et al.
[14]; Huemann et al. [16]; Tomar et al. [17] and some state-of-the-
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art segmentation methods Ronneberger et al. [9]; Zhou et al. [10];
Oktay et al. [63]; Katore and Thanekar [64]; Chen et al. [65]; Cao
et al. [66]; Zhao et al. [67]. The corresponding comparison results
are listed in Table 1, with the best results highlighted in bold.

Our findings reveal that Cap2Seg substantially exceeded the
performance of existing approaches in the three conditions outlined
above. It is important to note that when using generated annotations
with discrepancies from real text annotations for segmentation
assistance, Li et al. [14]; Huemann et al. [16]; Tomar et al. [17]
that did not account for this issue generally saw reduced
performance. Nevertheless, Cap2Seg effectively addressed and
mitigated this issue. Specifically, using generated medical text
annotations, Cap2Seg increased the mlIoU score by 3.66% and
the Dice score by 2.71% compared to the suboptimal LViT. Even
against LViT utilizing real medical text annotations, Cap2Seg still
improved the mIoU score by 1.69% and the Dice score by 1.3%.
These results suggest that Cap2Seg adeptly learned lesion-related
visual cues, minimized its dependency on potentially misleading
information, and underscored its superior capability.

In further evaluations conducted on the QaTa-COV19 dataset,
the quantitative comparisons of our Cap2Seg are detailed in Table 2.
Specifically, Cap2Seg achieved a mean Intersection over Union
(mlIoU) of 71.61% and a Dice coefficient of 81.32%. Cap2Seg
achieved the best or near-best results in all three evaluated
scenarios, demonstrating its significant superiority over the
previously discussed state-of-the-art methods.

4.4 Visual comparison of
segmentation results

We have conducted visual qualitative assessments of our Cap2Seg
method on the MosMedData+ and QaTa-COV19 datasets,
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TABLE 2 Compares the state-of-the-art segmentation methods on the QaTa-COV19 dataset. GRAY-SHADED methods exclude text input, while others
include text input.

Method w/o Text Generated Text Ground Truth Text
mloU[%] Dice[%] mloU[%] Dice[%] mloU[%] Dice[%]
U-Net 69.46 79.02 = - - _
Att-Unet 70.04 79.31 = - - _
UNet++ 70.25 79.62 = - - _
TransUNet 69.13 78.63 - = — _
Swin-Unet 68.34 78.07 = - - _
SCOAT-Net 69.85 79.59 = - - _
COPLE-Net 70.81 80.12 = - - _
ConTEXTualNet 68.67 78.15 68.74 78.49 70.16 79.60
LAVT 61.21 72.61 68.10 78.04 69.89 79.28
TGANet 69.09 78.46 70.75 79.87 70.75 79.87
LViT-T 71.37 81.12 69.19 78.17 75.11 83.66
Cap2Seg(Ours) 71.61 81.32 71.61 81.32 - -

Bold values represent the best performance.

benchmarking it against current methodologies. As illustrated in
Figure 4, segmentation inaccuracies are noticeable in the outputs
from CopleNet Katore and Thanekar [64], ConTEXTualNet
Huemann et al. [16], TGANet Tomar et al. [17], and LViT Li et al.
[14] across the first, third and fourth rows, where these methods exhibit
erroneous segmentation zones. In contrast, our approach effectively
delineates the primary regions of lesions. Moreover, the sixth row
demonstrates that while existing methods struggle with identifying
lesion peripheries and finer details, Cap2Seg excels in recognizing these
critical features, showcasing our network’s enhanced capability to
capture lesion-specific areas accurately. The visual evidence indicates
that our method achieves comparable or superior segmentation results
relative to other models.

4.5 Ablation study

The proposed method is structured around three principal
MSDFE, MSECM, and SATaM, with SATaM
integrating SCloss, a feature proven effective in our analysis. The

components:

following ablation experiments were conducted to evaluate the
efficacy of each component individually. MSDFE, MSECM, and
SATaM were initially removed from our model to create a baseline.
These components were then incrementally reintroduced to assess
their contributions. This methodology was validated using the
results from the MosMedData + dataset, summarized in Table 3,
which indicated that the gradual reintroduction of these modules
allowed our complete model to achieve an optimal mIoU score of
63.02% and a Dice score of 75.87%. The segmentation results for
different configurations, illustrated in Figure 5, reveal that our full
model achieves exceptional segmentation precision, especially in the
location and border areas of lesions.
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4.5.1 Effectiveness of MSDFE

In this study, the MSDFE module extracts a comprehensive
set of multimodal features, effectively tackling complex cross-
modal challenges. To ascertain the efficacy of this approach, we
analyzed the segmentation performance differences between the
“Baseline” and “Baseline*“. According to the results in Table 3,
“Baseline*” reached mIoU and Dice scores of 60.96% and 74.18%
respectively, showing improvements of 1.72% and 1.35% over
“Baseline. “The visual segmentation outcomes depicted in
Figure 5 these findings, showing that
incorporating the MSDFE module notably decreases
segmentation errors, particularly within lesion regions.

Furthermore, the study delved into the effects of interactions
between two designated sub-modules, ResBlock and TransBlock,

corroborate

within various MSDFE modules during the encoding stage. Table 4
reveals that initiating these interactions from the third MSDFE
module optimizes model performance. This evidence collectively
emphasizes the MSDFE module’s pivotal role in enhancing feature
recognition capabilities in lesion areas and elevating overall
segmentation accuracy.

4.5.2 Effectiveness of MSECM

The proposed MSECM module finely tunes the encoded
multimodal features to enhance their task specificity. This
adjustment results in two more features aligned with the
intended tasks. To evaluate the effectiveness of MSECM, we
analyzed the data presented in Table 3. The introduction of
MSECM improved the mloU and Dice scores of “Baseline* +
MSECM” by 0.74% and 0.68%, respectively, compared to
“Baseline*.” These findings demonstrate that integrating MSECM
into our network markedly improves mIoU and Dice scores,
confirming its beneficial impact on the model’s performance.
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Visual comparison of the proposed method with different segmentation methods.

TABLE 3 Ablation study on the MOSMEDDATA + dataset. “Baseline”
represents the utilization OF CNN as the encoder. “Baseline*” indicates the
employment of the MSDFE introduced in this paper as the encoder.
“SATaM\SCloss" indicates the removal of SCloss from SATaM.

Baseline 59.24 72.83
Baseline* 60.96 74.18
Baseline* + MSECM 61.70 74.86
Baseline* + SATaM 61.56 74.59
Baseline* + MSECM + SATaM\SCloss 62.23 74.92
Baseline* + MSECM + SATaM 63.02 75.87

Frontiers in Physics

4.5.3 Effectiveness of SATaM

SATaM assigns attention weights related to visual information to
linguistic features, thus enhancing their focus on crucial lesion areas and
ensuring a tight linkage between linguistic characteristics and these
areas. Consequently, this reduces the model’s attention to irrelevant or
misleading textual features, enhancing its segmentation capabilities. The
significant improvements in segmentation performance with the
inclusion of SATaM are evident in Figure 5, validating its utility.
Table 3 shows that “Baseline* + MSECM + SATaM” achieved
increases of 1.32% and 1.01%
respectively, compared to “Baseline* + MSECM.” The impact of

in mloU and Dice scores,
Semantic Consistency Loss (SCloss) within SATaM was also

assessed. The removal of SCloss led to diminished performance in
the “Baseline* + MSECM + SATaM\SCloss” configuration, highlighting
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TABLE 4 Impact of interaction between two submodules in different MSDFE modules during the encoding stage. '/’ indicates interaction within the current

MSDFE.

v v v
v v
v

Bold values represent the best performance.

SCloss’s pivotal role within the SATaM framework. These findings
confirm that SATaM substantially boosts the model’s segmentation
accuracy, resulting in more precise and consistent predictions.

5 Conclusion

This paper proposes Cap2Seg, a network that combines image
segmentation and caption generation tasks. The introduction of the
MSECM effectively coordinates both tasks, enhancing multi-task
learning efficiency. The SATaM reduces the model’s reliance on
irrelevant or misleading textual information, while the LAVD
effectively fuses textual features with visual features. By generating
text to guide the segmentation task, Cap2Seg fully leverages the
potential of textual annotations, thereby improving the quality and
accuracy of COVID-19 image segmentation. It eliminates the
dependency on image-text pairs and provides additional textual
references for clinical diagnosis. Extensive experimental results
confirm the proposed method’s effectiveness and superiority over
existing approaches. Ablation experiments also validate the efficacy of
each core component of the proposed model. However, it is essential
to acknowledge that although our method has achieved satisfactory
results in image segmentation, we still face challenges in accurately
generating specific keywords in a few samples, affecting the
segmentation performance when dealing with complex lesion
images. Additionally, due to the scarcity of paired medical image
and text datasets, our method has only been validated on two COVID-
19 datasets. Currently, we have not fully resolved the challenge. In
future research, we will expand our study to more types of disease
datasets. Meanwhile, we plan to optimize the caption generation
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4 61.89 74.78
v 61.43 74.54
4 63.02 75.87
v 61.02 74.06

module to improve the model’s ability to capture key lesion areas
and explore more effective feature interaction and fusion strategies.
These improvements and extensions will help further enhance the
practicality and accuracy of our method in segmentation tasks.
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Crowd density is an important metric for preventing excessive crowding in
a particular area, but it still faces challenges such as perspective distortion,
scale variation, and pedestrian occlusion. Existing studies have attempted to
model the spatio-temporal dependencies in videos using LSTM and 3D CNNs.
However, these methods suffer from large computational costs, excessive
parameter redundancy, and loss of temporal information, leading to difficulties
in model convergence and limited recognition performance. To address these
issues, we propose a lightweight multi-stage temporal inference network
(LMSTIN) for video crowd counting. LMSTIN effectively models the spatio-
temporal dependencies in video sequences at a fine-grained level, enabling
real-time and accurate video crowd counting. Our proposed method achieves
significant performance improvements on three public crowd counting datasets.

KEYWORDS

crowd counting, crowd density, spatio-temporal dependencies, temporal inference,
deep learning

1 Introduction

Crowd counting technology has broad application prospects in fields such as video
surveillance, traffic control, and emergency management, and it has been widely applied
in urban public safety. In recent years, due to the great success of Convolutional Neural
Networks (CNNs) in image classification and object detection, many researchers have
introduced CNNis into the crowd counting task to learn the mapping from input images to
their corresponding density maps. CNNs are highly favored in the field of crowd counting
due to their strong feature learning capabilities, leading to the emergence of numerous
outstanding works. Although CNNs have significantly improved the performance of crowd
counting methods, most efforts focus on learning feature representations from a single
image. These image-based methods still face several challenges that need to be overcome.
This is mainly because crowd gatherings can occur in any scenario, such as indoors,
outdoors, or in the wild, and both individuals and crowds exhibit rich visual variations.
These complex variation factors pose challenges to crowd counting methods, such as
occlusion and scale variations, as illustrated in Figure 1.

Existing research has shown that the spatio-temporal information in video sequences
contains a wealth of valuable deep semantic information. Modeling the temporal sequence
of videos can significantly enhance the feature learning capabilities and discrimination

134 frontiersin.org


https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1489245
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1489245&domain=pdf&date_stamp=2024-11-26
mailto:frengrui@yzu.edu.cn
mailto:frengrui@yzu.edu.cn
https://doi.org/10.3389/fphy.2024.1489245
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphy.2024.1489245/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1489245/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1489245/full
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org

Gao et al.

10.3389/fphy.2024.1489245

(a) Occlusion

FIGURE 1

(b) Complx Background

Examples of existing challenges in crowd counting. (A) Occlusion. (B) Complex backround. (C) Scale change.

& . <
(c) Scale Change

performance of deep networks. Motion information not only
helps produce higher-quality density maps by combining feature
representations of adjacent frames, but also improves pedestrian
discrimination in occluded scenes. Even if pedestrians are occluded
in specific frames, the missing information can still be captured
from adjacent frames. Recently, some researchers have attempted
to use variants of Long Short-Term Memory (LSTM) networks and
3D Convolutional Neural Networks (3DCNNs) to model the spatio-
temporal dependencies in videos, implicitly combining spatial and
temporal features [1-6]. Although these methods have achieved
some promising results, they suffer from high computational
complexity, difficulty in training the related parameters, and
the inability to effectively extract long-range temporal context
information. These problems lead to low training efficiency
and excessive redundant parameters, which limit the model’s
performance. The Temporal Convolutional Network (TCN) is a
neural network model specifically designed for processing time
series data. Compared to traditional recurrent neural networks
(such as LSTM and GRU), TCN offers the advantages of parallel
computation, efficient long-term dependency capture, stable
gradients, and flexibility in handling time series of varying lengths.
Additionally, the crowd density maps produced by existing methods
only offer a rough estimate of crowd distribution and fail to
accurately capture individual pedestrian positions or detailed crowd
patterns. This limitation significantly hinders further crowd analysis
and reduces their practical applicability.

To address these problems, we propose a lightweight multi-stage
temporal inference network (LMSTIN) for video crowd counting,
which consists of three components: a density map generation
module, a lightweight feature extraction module, and a refined
temporal inference module. The input to LMSTIN is a sequence
of consecutive video frames, and the output is the corresponding
crowd density maps. The number of people in each frame is
obtained by integrating the density map. Specifically, the density
map generation module first uses a focal inverse distance transform
to convert the input video frames into crowd density maps with
accurate pedestrian positions, which are used as ground truth
labels for network training. Then, a lightweight feature extraction
module is designed to reduce computational cost while maintaining
effective spatial feature extraction, thereby improving the overall
efficiency of the network. Finally, a refined temporal inference
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module is constructed to focus on modeling the dependencies
along the temporal dimension. It repeatedly refines the important
temporal context information through multiple stages of refined
temporal inference to learn better video-level semantic features,
further improving crowd counting accuracy. Compared to existing
video-based crowd counting methods, LMSTIN achieves promising
results on three public video crowd counting datasets. Testing shows
that our proposed method demonstrates outstanding performance,
meeting the requirements of practical applications in terms of both
speed and accuracy.

2 Related work

In recent years, with the rapid development of deep learning,
there have been significant improvements in the performance
of crowd counting methods. Both the accuracy and speed of
counting in crowded scenes have notably increased. Fu etal. [7]
proposed the first crowd counting model based on Convolutional
Neural Networks (CNNs). This model removed some similar
network connections in the feature maps and cascaded two CNN
classifiers, effectively enhancing the speed and accuracy of crowd
counting. Wang etal. [8] introduced a deep network based on
the AlexNet structure [9] for extremely dense crowd counting.
This network added extra negative samples during training, setting
their true values to zero, to reduce the interference from complex
backgrounds. Zhang etal. [10] proposed a cross-scene counting
network called CrowdCNN based on the AlexNet structure. This
network alternately trains on two related tasks (crowd density
and crowd counting) to achieve locally optimal results and then
fine-tunes the model using pre-training. The multi-column CNN
network includes multiple columns of convolutions to extract multi-
scale features, thus generating high-quality crowd density maps.
Zhang etal. [11] were the first to use a multi-column structure
for crowd counting, addressing the problem of scale variation in
crowd counting. They proposed the Multi-Column Convolutional
Neural Network (MCNN), which consists of different columns,
each using filters with varying receptive fields to extract multi-
scale features adapted to scene changes. Zhang et al. [12] utilized
Local Self-attention (LSA) and Global Self-attention (GSA) to
capture short-term and long-term dependencies between pixels
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and introduced a relation module to fuse LSA and GSA for
richer feature representation. Compared to multi-column CNN
methods, single-column CNN methods use a deeper single network
structure for feature representation, resulting in a simpler network
architecture and easier training convergence. Hu et al. [13] proposed
a refinement distance compensation method based on a quantum
scale perception learning framework to address crowd counting
and localization tasks. This method uses a classic CNN architecture
and calculates crowd features through qubit rotation and Pauli
operators to generate the final density map. Liu et al. [14] proposed
a deformable convolutional network with attention, ADCrowdNet,
which consists of an Attention Map Generator (AMG) and a Density
Map Estimator (DME). AMG estimates the crowd region and
its density in the image, while DME uses multi-scale deformable
convolutional layers to generate the crowd density map. Given the
great success of Vision Transformers (ViT) in image processing,
methods based on ViT have also begun to appear in the field of crowd
counting. Liang et al. [15] proposed a crowd counting model called
TransCrowd, which was the first to introduce ViT into the crowd
counting task, redefining the weakly supervised crowd counting
problem from the perspective of image patch sequences based on
ViT. TransCrowd effectively utilizes ViT’s self-attention mechanism
to extract semantic information about crowds, achieving significant
crowd counting results. Li et al. [16] improved the ViT model by
proposing a new network called CCTrans. This network first uses
a pyramid vision transformer backbone to capture global crowd
information, then merges low-level and high-level features through
a pyramid feature aggregation module, and finally predicts the
crowd density map with an efficient multi-scale dilated convolution.
Bai etal. [17] proposed an end-to-end crowd counting method
called CounTr, which consists of a ViT-based hierarchical encoder-
decoder architecture. The encoder inputs image patch sequences
to obtain multi-scale features, while the decoder merges features
from different layers and aggregates both local and global contextual
feature representations.

Deep learning-based crowd counting methods have
demonstrated significant capabilities in feature learning for image-
level tasks due to the powerful feature learning capabilities of deep
neural networks. However, their performance still faces bottlenecks.
Recently, many researchers have suggested that modeling the spatio-
temporal information contained in video sequences could further
overcome these performance limitations. However, research on this
approach for crowd counting tasks remains relatively scarce.

3 Method

When addressing challenges such as significant scale variation
and frequent occlusions in crowd counting, a key issue is how to
extract contextual information across video frames and effectively
model spatio-temporal dependencies, all while maintaining real-
time algorithmic performance. To tackle this, we propose a novel
framework, LMSTIN, which achieves fast and accurate video
crowd counting by constructing finer-grained spatio-temporal
dependencies. Figure 2 presents the overall structure of LMSTIN.
LMSTIN consists of three components: a density map generation
module, a lightweight feature extraction module, and a refined
temporal inference module. Specifically, LMSTIN first employs
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a density map generation module (DMGM) to produce density
maps with precise pedestrian locations, which serve as ground
truth for network training. Following this, a lightweight feature
extraction module (LFEM) is designed to reduce computational
complexity and improve the network’s overall efficiency. Lastly, a
refined temporal inference module (RTIM) is developed to capture
video-level semantic features, ultimately delivering accurate crowd
counting results.

3.1 Density map generation module

Suppose the position of a person’s head annotation is x;, which
can be represented by a shock pulse function §(x — x;). If there are
N head annotations in a crowd image, it can be represented by the
following Formula 1:

N
H(x):ZS(x—x,-) (1)
i1

After annotating the crowd image, by performing convolution
with a two-dimensional Gaussian kernel function G,, the
corresponding crowd density map F(x) of the image can be
represented by the following Formula 2:

N
F(x) = Z(S(x—xi) -Gy(x) (2)
i=1

Due to the “size varies with distance” problem of head scales in
the image scene, which results in significant differences in head sizes
at different positions, Zhang et al. [11] proposed using a geometric
adaptive Gaussian kernel G,, instead of a fixed-size two-dimensional
Gaussian kernel function G, to generate the crowd density map. In
crowded scenes, the size of a head is often related to the distance
between it and the centers of adjacent heads. Therefore, in such
scenes, the standard deviation o; of the geometric adaptive Gaussian
kernel can be determined by the average distance Z between a given
head position x; and its neighboring k heads. The generated crowd
density map F(x) is defined as following Formula 3:

N
F(x) = ) 8(x—x;) - G, (x) 3)
i=1

Here, o0;= ﬁ-z and S represent weight coefficients.
Zhang et al. [11] demonstrated through extensive experiments that
the results are optimal when 8 = 0.3 is used.

In the crowd density maps using the two types of Gaussian kernel
functions described above, the spatial distribution information
is represented by a series of blurred Gaussian spots, which
cannot provide the precise locations of each person. This limits
subsequent crowd analysis and practical applications. Therefore,
we introduce the focal inverse distance transform (FIDT) to
generate crowd density maps with accurate pedestrian locations
[18]. Next, we first introduce the Euclidean Distance Transform
mapping, which generates density map annotations by calculating
the Euclidean distance between each pixel and its nearest annotation
point. The Formula 4 is defined as follows:

V=% +(y—y")? 4)
€S

D(x.y) min
x,y) =
(xl)yl
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Input Video

FIGURE 2
Overall structure of LMSTIN.

Here, S represents the set of all head annotations, and D(x,y)
denotes the Euclidean distance between the head annotation
position (x,y) and the nearest head annotation position (x,y").
Due to the significant variation in distances between different
heads, directly regressing the crowd density map can result in
it approaching zero overall. To address this issue, the Inverse
Distance Transform (IDT) can be applied to smooth out the distance
variation. The Formula 5 is defined as follows:

') =5 ! 5)

(xy)+C
Here, I'(x,y) represents the density map generated using IDT,
and C is a constant. To prevent the denominator from being zero,
C=1 is usually set. However, while the pixel values generated
by IDT decay rapidly at locations far from the head annotation
centers, the decay in the background is not sufficiently pronounced.
Building upon this, FIDT is further proposed to make the decay
near the heads slower while accelerating the decay to zero at farther
locations. The Formula 6 is defined as follows:

1

—_— 6
D(x,y)@ PP 1. C ©

I(x,y) =
Here, I(x,y) represents the density map generated using FIDT,
and « and f3 are set to 0.02 and 0.75, respectively.

3.2 Lightweight feature extraction module

The VGG-16 network, due to its excellent performance in
image feature extraction, has been favored by many researchers in
the field of crowd counting [19, 20]. This network consists of 13
convolutional layers with 3 x 3 kernels, 5 pooling layers with 2 x
2 kernels, and 3 fully connected layers. When applied to different
tasks, the fully connected layers are usually removed, retaining only
the convolutional and pooling layers to extract features from crowd
images. Unlike ResNet, VGG-16 has a relatively moderate number of
network layers and consumes fewer computational resources, which
allows it to improve convergence speed while ensuring effective
feature extraction. Nevertheless, VGG-16 still does not meet the high
real-time requirements of video crowd counting tasks effectively.
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Therefore, this section designs a Lightweight Feature Extraction
Module (LFEM) that replaces traditional convolutions with
depthwise separable convolutions to reduce network parameters,
thus improving operational efficiency while achieving feature
extraction results comparable to VGG-16. Depthwise separable
convolution, proposed by Chollet etal. [21], is an efficient
convolution operation that consists of two main steps: Depthwise
Convolution and Pointwise Convolution, as shown in Figure 3.
Specifically, Depthwise Convolution performs convolution
operations across channels, where each channel has its own kernel,
and the kernel size is the same as the traditional convolution kernel
being replaced. Thus, the number of input and output channels
remains consistent throughout the process. Pointwise Convolution,
composed of 1 x 1 kernels, is used to weight the output features
from the previous step and adjust the number of output feature
channels. The number of kernels depends on the required number
of output feature channels, so this process does not change the
feature map size. Figure 3 illustrates the specific operation process
of depthwise separable convolution. Finally, an additional fully
connected layer is added to LFEM to generate a feature vector that
meets the input dimensions of the next module. Experimental results
indicate that, despite having significantly fewer parameters than
VGG-16, LFEM can still achieve results comparable to VGG-16. This
provides a solid foundation for achieving real-time performance
with our method.

3.3 Refined temporal inference module

Modeling spatio-temporal information in video sequences has
shown good performance in addressing problems such as person
occlusion, background interference, and scale variation in crowd
counting problems. To address these problems, we construct
a refined temporal inference module (RTIM), which includes
multiple stages of temporal inference modules. The output of
the previous stage module serves as the input for the next stage
module. Each stage’s temporal inference module is composed
of multiple smooth dilated 1D convolutions stacked together,
with a loss layer at the end of each stage to adjust the output
features. The final stage outputs the counting results. Since smooth
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FIGURE 3
The operation process of depthwise separable convolution.

dilated 1D convolution can learn temporal information with a
larger receptive field using fewer parameters [22], RTIM can
maintain a low computational complexity while focusing on useful
temporal information to achieve efficient and reliable temporal
video modeling. The following will provide a detailed description
of smooth dilated 1D convolution and the loss function.

3.3.1 Smooth dilated 1D convolution

Dilated convolution can effectively expand the receptive field
of the filter without increasing the number of parameters and
computational load, allowing it to process information over a larger
area. In recent years, dilated convolution has gained widespread
attention in the field of deep learning. However, it also has some
drawbacks, such as the loss of local spatial information, as noted by
Chen et al. [22]. Additionally, there is no dependency between input
units or output units in dilated convolution, leading to ineffective
acquisition of contextual information during network training [23].
For fine recognition tasks such as image segmentation and crowd
counting, dilated convolution can result in the loss of local spatial
information and lack of contextual information during training,
severely impacting the final recognition results.Since RTIM mainly
consists of a set of dilated 1D convolution layers, it also suffers from
problems of local temporal information loss and lack of relevance
in long-range temporal information. To address this, we introduce
smooth dilated 1D convolution. Next, we will briefly introduce
dilated 1D convolution and then provide a detailed description of
smooth dilated 1D convolution.

For a dilated 1D convolution with a filter of size k and dilation
rate w, the output Z at position i is defined as following Formula 7:

k
Z[i] =) fli+rxslwli] ?)
s=1
Here, f represents the one-dimensional input, and r represents
the dilation rate. When r = 1, the dilated 1D convolution reduces
to a standard 1D convolution. To intuitively understand dilated 1D
convolution, it can be viewed as inserting r— 1 zeros between two
adjacent weights of w. Therefore, its receptive field becomes rx
(k—=1)+1.
To address the issues related to dilated convolutions, we propose
a smooth dilated 1D convolution method. This approach uses
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“separable” and “shared” operations to smooth the dilated 1D
convolution before applying the dilated 1D convolution operation.
This enables the network to enhance the dependencies between
local temporal features in advance, allowing it to capture a broader
range of temporal context without increasing computational
complexity, effectively reducing the loss of local temporal
information. “Separable” refers to the separable convolution
mentioned in existing literature [21], while “shared” means that
the convolution weights are shared across all channels [23].
Specifically, a separable and shared convolution with a kernel size
of (2r—1) is inserted before the dilated 1D convolution to capture
the temporal dependencies between feature maps generated by
periodic subsampling. During the smoothing operation (including
“separable” and “shared”), there is only one constant parameter that
is independent of the number of channels, with a size of (2r—1).
Therefore, the additional computational cost is negligible. Figure 4
shows a schematic of a smooth dilated 1D convolution. As illustrated
in the figure, it depicts a smooth dilated 1D convolution with a
kernel size of 3 and a dilation rate of 2. The gray circles represent the
feature maps after the smoothing operation, while the brown circles
represent the original feature maps. Smooth dilated 1D convolution
increases the dependencies between input units by adding separable
and shared convolutions before the dilated 1D convolution. In short,
when using smooth dilated 1D convolution, the features at non-zero
positions can incorporate local temporal information from their
adjacent zero-value positions. This effectively mitigates the loss
of local temporal information and enhances long-range temporal
dependencies.

3.3.2 Loss function

In crowd counting algorithms based on density maps, the
Euclidean distance (denoted as Lg) is primarily used to measure the
error between the actual and predicted crowd counts. The Formula
8 is defined as follows:

N

(¢ -y (®)

™M

1
Lp=—
ET N/

i=1

Here, N represents the number of frames in the video, C‘f
denotes the estimated count for the image in frame i, and Cft
denotes the actual count for the image in frame i. Although L,
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FIGURE 4
Schematic of smooth dilated 1D convolution.

loss has performed well in image crowd counting tasks, it does not
account for spatio-temporal consistency in video sequences. To
further improve the accuracy of video crowd counting, this section
introduces a smoothing loss (denoted as Lg) by incorporating
the similarity between video frames to reduce prediction errors
between consecutive video frames. The Formulas 9-11 is

defined as follows:
1 z 12
LS = N i Ai (9)

A A<

A=1" (10)
7:  otherwise

A; = |long—logC‘f_1| (11)

Here, 7 represents the hyperparameter Lg. Combining the
above loss functions, the final form of the loss function is as
following Formula 12:

L=Ly+ALg (12)

Here, A represents the hyperparameter that adjusts the weight
of Lg. The values of all hyperparameters will be provided in the
subsequent experimental section.

4 Experimental setup
4.1 Implementation details

The experiments are implemented using PyTorch for LMSTIN.
The RTIM consists of four stages, each with 10 smooth dilated
1D convolutional layers, where the dilation rate of each layer is
twice that of the previous layer. After each convolutional layer, a
dropout with a rate of 0.5 is applied, with a kernel size of 3 and 64
convolutional filters. Additionally, the loss function of LMSTIN is
a combination of Euclidean distance loss and smoothing loss, with
the parameters set to 7= 10 and A = 0.15. In all experiments, Adam
is used to optimize the network parameters, with a learning rate
of 0.0005 and no weight decay.
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4.2 Datasets

In this paper, we evaluate the performance of the proposed
LMSTIN on three public video crowd counting datasets: Mall [24],
UCSD [25], and WorldExpo'10 [10]. The Mall dataset was collected
using surveillance cameras installed in a shopping mall. It consists of
2000 frames of video with a resolution of 320 x 240 pixels per frame,
and a total of 62,325 pedestrians are labeled. The number of people
per frame ranges from a minimum of 11 to a maximum of 53, with
an average of approximately 31 people per frame. The Mall dataset
features high crowd density and diverse scenes, and it is divided into
a training set and a test set, with the first 800 frames used for training
and the remaining 1200 frames used for testing.The UCSD dataset
was collected using cameras installed in a pedestrian-only corridor
at the University of California, San Diego. The original videos were
collected at a resolution of 740 x 480 and a frame rate of 30 FPS,
then downsampled to 238 x 158 and 10 FPS. The UCSD dataset
contains 2000 frames with a total of 49,885 labeled pedestrians. To
exclude unnecessary objects (such as trees and cars), an interest
region is defined within which annotations are made manually
every 5 frames, with linear interpolation used for the remaining
frames. The UCSD dataset is collected from a fixed position, so
the scene perspective remains unchanged throughout the video.The
WorldExpo'10 dataset is a large-scale cross-scene crowd counting
dataset. It was collected from the 2010 Shanghai Expo, including
1132 video sequences with manual annotations captured by 108
surveillance cameras. The dataset consists of 3920 frames with a
resolution of 576 x 720 pixels, and a total of 199,923 people are
labeled, with an average of 50 people per frame.

4.3 Evaluation metrics

The experiments use two evaluation metrics, namely, Mean
Absolute Error (MAE) and Mean Squared Error (MSE), to assess the
accuracy and robustness of the method. The specific formulas are as
following Formulas 13, 14:

N
MAE:%Z|C€—C§'| (13)

i=1
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TABLE 1 Comparison of our method with existing methods on the
mall dataset.

10.3389/fphy.2024.1489245

TABLE 2 Comparison of our method with existing methods on the
UCSD dataset.

Methods MAE MSE ‘ Methods ‘ MAE ‘ MSE
Gaussian Process Regression [25] 3.72 20.10 Ridge Regression [24] 2.25 7.82
Ridge Regression [24] 3.59 19.00 Gaussian Process Regression [25] 2.24 7.97
Kernel Ridge Regression [26] 3,51 18.10 Kernel Ridge Regression [26] 2.16 7.45
Cumulative Attribute Regression [27] 3.43 17.70 Cumulative Attribute Regression [27] 2.07 6.86
Count Forest [28] 2.50 10.00 Switch-CNN [30] 1.62 2.10
ConvLSTM [1] 2.24 8.50 Cross-Scene [10] 1.60 3.31
Bidirectional ConvLSTM [1] 2.10 7.60 FCN-rLSTM [31] 1.54 3.02
LSTN [2] 2.00 2.50 ConvLSTM [1] 1.30 1.79
MLSTN [6] 1.80 242 Monet [29] 1.17 1.45
E3D [4] 1.64 2.13 Bidirectional ConvLSTM [1] 1.13 1.43
Monet [29] 1.54 2.02 LSTN [2] 1.07 1.39
STDNet [5] 1.47 1.88 MLSTN [6] 1.02 1.32
Ours 1.40 1.76 E3D [4] 0.93 1.17
STDNet [5] 0.76 1.01
Ours 0.71 0.94

MSE = (1 4) Bold font indicates the best value of the evaluation Metrics.

Here, N represents the number of frames in the video, and
C‘f and Cft denote the estimated count and the actual count for
the image in frame i, respectively. MAE measures the accuracy of
the counting method, while MSE evaluates the robustness of the
counting method. The smaller the values of MAE and MSE, the
better the accuracy and robustness of the method, and thus, the
better its performance.

5 Experimental results and analysis
5.1 Quantitative and qualitative analysis

We compared the crowd counting results of our proposed
method with several state-of-the-art video crowd counting methods
on the Mall, UCSD, and WorldExpo'10 datasets. The comparison
results are shown in Tables 1-3.

Comparing with 12 advanced video crowd counting methods,
our proposed LMSTIN achieved the best results across all metrics,
as detailed in Table 1. From Table 1, it can be observed that
LMSTIN shows a further improvement over the current state-of-
the-art method (STDNet), reducing the MAE by 0.07 and the
MSE by 0.12. Additionally, the Mall dataset presents more complex
scenarios compared to the UCSD dataset, such as higher levels of
perspective distortion and occlusion, which can lead to inaccuracies
or imprecisions in annotations. In this context, LMSTIN addresses
this problem by modeling spatio-temporal consistency between
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video frames. Experimental results demonstrate that LMSTIN
effectively models temporal dependencies between video frames,
thereby extracting more robust spatio-temporal features to enhance
the network’s capability for crowd counting tasks.

Table 2 presents a comparison of LMSTIN with 14 state-of-the-
art video crowd counting methods. The experimental results show
that LMSTIN outperforms all previous methods in both MAE and
MSE metrics, achieving reductions of 0.05 in MAE and 0.07 in
MSE compared to STDNet.Notably, the improvements on the UCSD
dataset have two important implications. First, with a frame rate of
10 FPS, the UCSD dataset allows the network to learn multi-scale
temporal features due to the high correlation between consecutive
frames. For instance, in a video segment with 20 frames, if a person
appears continuously from frame 1 to frame 20, LMSTIN can extract
both short-term information (e.g., from frame 1 to frame 2) and
long-term information (e.g., from frame 1 to frame 20) from the
video frames. Second, since individuals typically move at varying
speeds, multi-scale temporal information helps account for people
moving at different velocities, which is beneficial for density map
estimation in crowded scenes. The experimental results indicate
that effectively modeling both short-term and long-term temporal
information provides robust performance against crowd occlusion
and scale variations in complex environments, leading to improved
crowd counting results.

Table 3 summarizes the experimental results of LMSTIN
compared with 9 state-of-the-art video crowd counting methods.
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TABLE 3 Comparison of our method with existing methods on the WorldExpo'10 dataset.

Methods S1 ’ S2 S3 ’ S4 S5 Avg
Cross-Scene [10] 9.8 14.1 14.3 222 3.7 12.9
ConvLSTM-nt [1] 8.6 16.9 14.6 154 4.0 11.9
Switch-CNN [30] 4.4 15.7 10 11 59 9.4

ConvLSTM [1] 7.1 15.2 15.2 13.9 3.5 10.9
Bidirectional ConvLSTM [1] 6.8 14.5 14.9 13.5 3.1 10.6
ST-CNN [32] 52 16.5 9.9 8.4 6.2 9.3

E3D [4] 2.8 12.5 12.9 10.2 32 8.3

TAN [33] 2.8 18.1 9.6 7.5 3.6 8.3

STDNet [5] 1.8 12.8 10.3 7.9 25 7.1

Ours 1.6 14.3 8.2 7.0 2.8 6.8

Bold font indicates the best value of the evaluation Metrics.

In this experiment, 16 consecutive frames were used as input, and
MAE and average MAE (Avg) across 5 scenes (S1, S2, S3, S4, S5)
were used as evaluation metrics. The results show that, compared
to the current best method STDNet, LMSTIN has achieved an
overall improvement in accuracy, reducing the average MAE by
0.3. However, its performance varies across different scenes: it
decreased by 0.2, 2.1, and 0.9 in scenes S1, S3, and S4, respectively,
but increased by 1.5 and 0.3 in scenes S2 and S5. This discrepancy
is because the temporal correlation between consecutive frames
in scenes S2 and S5 is not strong, and these scenes are relatively
sparse, which conflicts with our design objectives. Nevertheless,
LMSTIN still achieved the best accuracy in 3 out of 5 scenes
and provided the lowest average MAE (Avg). This indicates
that LMSTIN not only effectively models both short-term and
long-term video temporal information but also demonstrates
good robustness across datasets with varying scales and
scene differences.

In order to facilitate observation and comparative analysis, the
final crowd density maps generated by LMSTIN and STDNet are
visualized respectively, because this method is one of the most
advanced methods in the field of video crowd counting. The
visualization results are shown in Figure 5. In Figure 5, the first
row is the visualization result of the Mall dataset, the second row
is the visualization result of the UCSD dataset, and the third row
is the visualization result of the WorldExpo'10 dataset. The first
column is the input original image, the second column is the FIDT
real density map, and the third and fourth columns represent the
corresponding output density maps of STDNet and the method in
this chapter, respectively. The numbers in the figure represent the
real annotation (GT) and the predicted number of people (Pred). As
can be seen from Figure 5, the density map generated by the method
in this chapter is closer to the real density map than the density
map generated by STDNet, so the counting results and pedestrian
locations are also more accurate. The visualization results intuitively
demonstrate the effectiveness and robustness of the method in this
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chapter on the video crowd counting task, and the output crowd
density map can provide accurate pedestrian location information,
which provides the necessary prerequisite for subsequent crowd
analysis tasks.

5.2 Structural analysis and efficiency
comparison

To validate the effectiveness of each module in LMSTIN, we first
analyze the impact of different structures on video crowd counting
results by examining LFEM and RTIM. Then, we compare LMSTIN
with current state-of-the-art video crowd counting methods from
multiple aspects to demonstrate LMSTIN’s real-time performance
and effectiveness.

First, we evaluate the performance of LFEM. The VGG-16
network, known for its excellent feature extraction capabilities,
has become a mainstream feature extraction method in the field
of crowd counting. Specifically, the VGG-16 network consists of
16 layers, including 13 convolutional layers with 3 x 3 kernels,
5 pooling layers with 2 x 2 kernels, and 3 fully connected
layers. In crowd counting tasks, the fully connected layers of
VGG-16 are typically discarded, retaining only the convolutional
and pooling layers to extract features from crowd images. Our
proposed LFEM is an improvement based on the VGG-16 network,
aiming to reduce the computational load of the network while
maintaining its feature extraction capabilities, thus enhancing
the overall operational efficiency of the network. Therefore, in
the ablation experiments evaluating LFEM’s performance, in
addition to using MAE, MSE, and Avg as evaluation metrics,
we also introduce the number of module parameters (Params)
as an important indicator of computational complexity. Table 4
presents the experimental results of LFEM and VGG-16 on the
three datasets.
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FIGURE 5
Quialitative results.
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TABLE 4 Comparison of Experimental Results between LFEM and VGG-16 on three Datasets.

e T S S S TR
1.38 1.72 —

Mall

VGG-16 UCSD

WorldExpo'10
Mall

LFEM UCSD

WorldExpo'10

To visually compare the performance differences between
LFEM and VGG-16, the experiment involved replacing only the
feature extraction module in the entire method while keeping the
other modules unchanged. From Table 4, it is evident that LFEM
performs similarly to VGG-16 across all datasets, achieving the
same accuracy on the UCSD dataset. However, LFEM’s parameter
count is only about one-fifth of that of VGG-16. The experimental
results demonstrate that LFEM is an effective feature extraction
module for video crowd counting tasks, significantly reducing the
network’s computational complexity and thereby enhancing the
overall efficiency of the method.

Next, we evaluate the performance of RTIM. In crowd
counting tasks, the current methods for modeling spatio-temporal
relationships between video frames mainly use LSTM, Bi-directional
LSTM (BI-LSTM), and 3DCNN as the foundational frameworks.
To intuitively compare the performance differences between
RTIM and other temporal modeling networks, we replace only
the temporal inference part in the entire method, keeping the
other modules unchanged. Since the ablation experiments yield
consistent conclusions across the three datasets, we present the
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0.71 0.93 — 0.16M
— — 6.6

1.40 1.76 —

0.71 0.93 — 0.03M
— — 6.8

results using the Mall dataset as an example. The results are
shown in Table 5.

Table 5 lists the MAE, MSE, and Params for different temporal
modeling networks tested on the Mall dataset. From Table 5, it is
evident that RTIM significantly improves accuracy compared to
LSTM, BI-LSTM, and 3DCNN, while also substantially reducing
the network parameter count. RTIM achieves the best results
in both MAE and MSE and has less than one-seventh of the
network parameters compared to 3DCNN. The experimental
results demonstrate that RTIM can effectively model the temporal
relationships between video frames with minimal parameters, thus
further enhancing the overall efficiency of the method. This is
critically important for the practical application of video crowd
counting methods.

Finally, the overall operating efficiency of LMSTIN is evaluated.
Taking the Mall dataset as an example, the differences in operating
efficiency of the method in this chapter are illustrated by comparing
it with four state-of-the-art video crowd counting methods,
STDNet, Monet, E3D, and MLSTN. Table 6 lists the parameter
amount (Params), computation amount (FLOPs), and training time
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TABLE 5 Comparison of RTIM with other temporal modeling networks on the Mall Dataset.

Methods MAE ’ MSE ‘ Params
LSTM [34] 2.25 6.50 2.31M
BI-LSTM [35] 2.02 4.65 4.65M
3DCNN [36] 1.68 2.20 5.70M
RTIM 1.40 1.76 0.82M

Bold font indicates the best value of the evaluation Metrics.

TABLE 6 Comparison of parameters, computation and training time of different methods on the Mall dataset.

Methods Params FLOPs ‘ Training time
MLSTN [6] 12.25M 56.50M 53Mins
Monet [29] 11.58M 41.65M 47Mins
E3D [4] 6.42M 23.20M 30Mins
STDNet [5] 2.80M 5.76M 18Mins
Ours 0.85M 2.74M 12Mins

Bold font indicates the best value of the evaluation Metrics.

(Training Time) of different networks. As can be seen from Table 6,
LMSTIN is significantly more efficient than networks such as
STDNet, Monet, E3D, and MLSTN. For example, in terms of
computation amount, the value of STDNet is about 2.5 times that
of the method in this chapter, the value of E3D is about 11 times
that of E3D, the value of Monet is about 20 times that of E3D, and
the value of MLSTN is about 23 times that of E3D. In terms of
parameter amount, the value of STDNet is about 3 times that of
the method in this chapter, the value of E3D is about 8 times that
of E3D, the value of Monet is about 13 times that of E3D, and the
value of MLSTN is about 14 times that of E3D. The training time
in Table 3.6 is the running time for training the Mall dataset for 50
cycles (Epoch) on a single GTX TitanXp GPU. It can be seen that the
training time of this chapter’s method is shorter than that of all other
networks. The experimental results show that this chapter’s method
is significantly better than the existing methods in terms of network
parameters, computational complexity and running time, and the
overall network operation efficiency has been significantly improved
compared with other methods. It is worth noting that for videos
with a resolution of 320 x 240 pixels, this chapter’s method only
occupies less than 500 MB of GPU memory on the Nvidia TitanXp
GPU to achieve a detection speed of 120FPS, and also achieves a real-
time crowd counting speed of 25FPS on the daily home Intel Core
i5-8400 CPU.

Overall, extensive experiments demonstrate that each module
within LMSTIN, performs exceptionally well, significantly
surpassing existing advanced methods in both speed and accuracy.
This advancement has substantial implications for the practical
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application of crowd counting methods in real-world monitoring
scenarios.

6 Conclusion

We propose a lightweight multi-stage temporal inference
network for video crowd counting, named LMSTIN. Specifically,
LMSTIN first utilizes the focal inverse distance transformation
to convert input video frames into crowd density maps with
accurate pedestrian locations, which serve as the ground truth labels
for network training. Secondly, we design a lightweight feature
extraction module to reduce the computational load of the model,
enhancing overall efficiency while maintaining effective spatial
feature extraction. Finally, we build a multi-stage temporal inference
module with minimal parameters that performs well, focusing
on modeling temporal relationships to efficiently extract spatio-
temporal information from video frames. Experimental results
demonstrate that our method achieves excellent performance across
various datasets and is capable of real-time crowd counting at 25
frames per second on an Intel Core i5-8400 CPU. LMSTIN have
great potential for future development, especially in handling more
complex video scenes, different crowd movement patterns, and
integrating other functionalities. By combining with features like
behavior recognition, they can achieve comprehensive monitoring
and analysis of crowd behavior, providing stronger technical
support for public safety, traffic management, and business
decision-making.
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