& frontiers | Research Topics

Deep learning for medical
Imaging applications

Edited by
Monica Bianchini, Simone Bonechi, Paolo Andreini
and Sandeep Kumar Mishra

Published in
Frontiers in Oncology
Frontiers in Imaging



https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/research-topics/63086/deep-learning-for-medical-imaging-applications
https://www.frontiersin.org/research-topics/63086/deep-learning-for-medical-imaging-applications
https://www.frontiersin.org/journals/imaging

& frontiers | Research Topics

FRONTIERS EBOOK COPYRIGHT STATEMENT

The copyright in the text of individual
articles in this ebook is the property
of their respective authors or their
respective institutions or funders.
The copyright in graphics and images
within each article may be subject

to copyright of other parties. In both
cases this is subject to a license
granted to Frontiers.

The compilation of articles constituting
this ebook is the property of Frontiers.

Each article within this ebook, and the
ebook itself, are published under the
most recent version of the Creative
Commons CC-BY licence. The version
current at the date of publication of
this ebook is CC-BY 4.0. If the CC-BY
licence is updated, the licence granted
by Frontiers is automatically updated
to the new version.

When exercising any right under

the CC-BY licence, Frontiers must be
attributed as the original publisher
of the article or ebook, as applicable.

Authors have the responsibility of
ensuring that any graphics or other
materials which are the property of
others may be included in the CC-BY
licence, but this should be checked
before relying on the CC-BY licence
to reproduce those materials. Any
copyright notices relating to those
materials must be complied with.

Copyright and source
acknowledgement notices may not
be removed and must be displayed
in any copy, derivative work or partial
copy which includes the elements

in question.

All copyright, and all rights therein,
are protected by national and
international copyright laws. The
above represents a summary only.
For further information please read
Frontiers” Conditions for Website Use
and Copyright Statement, and the
applicable CC-BY licence.

ISSN 1664-8714
ISBN 978-2-8325-7374-7
DOI10.3389/978-2-8325-7374-7

Generative Al statement

Any alternative text (Alt text) provided
alongside figures in the articles in
this ebook has been generated by
Frontiers with the support of artificial
intelligence and reasonable efforts
have been made to ensure accuracy,
including review by the authors
wherever possible. If you identify any
issues, please contact us.

Frontiers in Oncology

January 2026

About Frontiers

Frontiers is more than just an open access publisher of scholarly articles: it is
a pioneering approach to the world of academia, radically improving the way
scholarly research is managed. The grand vision of Frontiers is a world where
all people have an equal opportunity to seek, share and generate knowledge.
Frontiers provides immediate and permanent online open access to all its
publications, but this alone is not enough to realize our grand goals.

Frontiers journal series

The Frontiers journal series is a multi-tier and interdisciplinary set of open-
access, online journals, promising a paradigm shift from the current review,
selection and dissemination processes in academic publishing. All Frontiers
journals are driven by researchers for researchers; therefore, they constitute
a service to the scholarly community. At the same time, the Frontiers journal
series operates on a revolutionary invention, the tiered publishing system,
initially addressing specific communities of scholars, and gradually climbing
up to broader public understanding, thus serving the interests of the lay
society, too.

Dedication to quality

Each Frontiers article is a landmark of the highest quality, thanks to genuinely
collaborative interactions between authors and review editors, who include
some of the world's best academicians. Research must be certified by peers
before entering a stream of knowledge that may eventually reach the public -
and shape society; therefore, Frontiers only applies the most rigorous and
unbiased reviews. Frontiers revolutionizes research publishing by freely
delivering the most outstanding research, evaluated with no bias from both
the academic and social point of view. By applying the most advanced
information technologies, Frontiers is catapulting scholarly publishing into

a new generation.

What are Frontiers Research Topics?

Frontiers Research Topics are very popular trademarks of the Frontiers
Jjournals series: they are collections of at least ten articles, all centered

on a particular subject. With their unique mix of varied contributions from
Original Research to Review Articles, Frontiers Research Topics unify the
most influential researchers, the latest key findings and historical advances
in a hot research area.

Find out more on how to host your own Frontiers Research Topic or
contribute to one as an author by contacting the Frontiers editorial office:
frontiersin.org/about/contact

1 frontiersin.org


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
https://www.frontiersin.org/about/contact
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

& frontiers | Research Topics January 2026

Deep learning for medical
imaging applications

Topic editors

Monica Bianchini — University of Siena, Italy

Simone Bonechi — University of Siena, Italy

Paolo Andreini — University of Siena, Italy

Sandeep Kumar Mishra — Yale University, United States

Citation

Bianchini, M., Bonechi, S., Andreini, P., Mishra, S. K., eds. (2026). Deep learning
for medical imaging applications. Lausanne: Frontiers Media SA.

doi: 10.3389/978-2-8325-7374-7

Frontiers in Oncology 2 frontiersin.org


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/
http://doi.org/10.3389/978-2-8325-7374-7

& frontiers | Research Topics January 2026

05 Editorial: Deep learning for medical imaging applications
Table Of Simone Bonechi, Monica Bianchini, Paolo Andreini and
Contents Sandeep Kumar Mishra

09 Continuous patient monitoring with Al: real-time analysis of
video in hospital care settings
Paolo Gabriel, Peter Rehani, Tyler Troy, Tiffany Wyatt, Michael Choma
and Narinder Singh

23 The influence of menopause age on gynecologic cancer
risk: a comprehensive analysis using NHANES data
Yiliminuer Abulajiang, Tao Liu, Ming Wang, Abidan Abulai and
Yumei Wu

34 The prognostic value of growth pattern-based grading for
mucinous ovarian carcinoma (MOC): a systematic review and
meta-analysis
Mengmeng Chen, Ling Han, Yisi Wang, Qi Qiu, Yali Chen and
Ai Zheng

45 Ultrasonic radiomics-based nomogram for preoperative
prediction of residual tumor in advanced epithelial ovarian
cancer: a multicenter retrospective study
Shanshan Li, Qiuping Ding, Lijuan Li, Yuwei Liu, Hanyu Zou,
Yushuang Wang, Xiangyu Wang, Bingging Deng and Qingxiu Ai

55 Research progress on artificial intelligence
technology-assisted diagnosis of thyroid diseases
Lina Yang, XinYuan Wang, Shixia Zhang, Kun Cao and Jianjun Yang

66 EnSLDe: an enhanced short-range and long-range
dependent system for brain tumor classification
Wenna Chen, Jungiang Liu, Xinghua Tan, Jincan Zhang, Gangin Du,
Qizhi Fu and Hongwei Jiang

84 A CT-based deep learning model for preoperative prediction
of spread through air spaces in clinical stage | lung
adenocarcinoma
Xiaoling Ma, Weiheng He, Chong Chen, Fengmei Tan, Jun Chen,

Lili Yang, Dazhi Chen and Liming Xia

98 A nomogram model combining computed
tomography-based radiomics and Krebs von den Lungen-6
for identifying low-risk rheumatoid arthritis-associated
interstitial lung disease
Nie Han, Zhinan Guo, Diru Zhu, Yu Zhang, Yayi Qin, Guanheng Li,
Xiaoli Gu and Lin Jin

109 Intra-video positive pairs in self-supervised learning for
ultrasound

Blake VanBerlo, Alexander Wong, Jesse Hoey and Robert Arntfield

Frontiers in Oncology 3 frontiersin.org


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/

& frontiers | Research Topics

122

133

149

156

167

178

187

201

Frontiers in Oncology

January 2026

Automated segmentation and classification of supraspinatus
fatty infiltration in shoulder magnetic resonance image using
a convolutional neural network

Juan Pablo Saavedra, Guillermo Droppelmann, Carlos Jorquera and

Felipe Feijoo

UnetTransCNN: integrating transformers with convolutional
neural networks for enhanced medical image segmentation
Yi-Hang Xie, Bo-Song Huang and Fan Li

Vision transformers for automated detection of diabetic
peripheral neuropathy in corneal confocal microscopy
images

Chaima Ben Rabah, loannis N. Petropoulos, Rayaz A. Malik and
Ahmed Serag

Achieving enhanced diagnostic precision in endometrial
lesion analysis through a data enhancement framework

Yi Luo, Meiyi Yang, Xiaoying Liu, Liufeng Qin, Zhengjun Yu,

Yunxia Gao, Xia Xu, Guofen Zha, Xuehua Zhu, Gang Chen, Xue Wang,
Lulu Cao, Yuwang Zhou and Yun Fang

Artificial intelligence for instance segmentation of MRI:
advancing efficiency and safety in laparoscopic myomectomy
of broad ligament fibroids

Feiran Liu, Minghuang Chen, Haixia Pan, Bin Li and Wenpei Bai

6-gingerol promotes apoptosis of ovarian cancer cells
through miR-506/Gli3 signaling pathway activation
Jun Xiong, Hong-Hu Wu, Hui Jiang, Huan Li, Xiao-Qing Tan,
Xiao-Ju He and Xue-Xin Cheng

A review of psoriasis image analysis based on machine
learning

Huihui Li, Guangjie Chen, Li Zhang, Chunlin Xu and Ju Wen

High-intensity focused ultrasound as a combined approach
for the treatment of recurrent low-grade endometrial
stromal sarcoma: a case report and literature review

Huihui Chen, Xiaonan Shang, Yue Shen, Huajing Huang, Zhebo Jiang,
Qingyi Wang, Zhixing Cao, Peiyu Yan, Suying Xiao, Liangyu Chen,
Donghui Huang and Min Kang

4 frontiersin.org


https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/

& frontiers | Frontiers in Imaging

‘ @ Check for updates

OPEN ACCESS

EDITED AND REVIEWED BY
Alessandro Piva,
University of Florence, Italy

*CORRESPONDENCE

Simone Bonechi
bonechi@diism.unisi.it

Sandeep Kumar Mishra
sandeep.kumar@yale.edu

RECEIVED 05 December 2025
ACCEPTED 09 December 2025
PUBLISHED 06 January 2026

CITATION

Bonechi S, Bianchini M, Andreini P and
Mishra SK (2026) Editorial: Deep learning for
medical imaging applications.

Front. Imaging 4:1761718.

doi: 10.3389/fimag.2025.1761718

COPYRIGHT

© 2026 Bonechi, Bianchini, Andreini and
Mishra. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

FrontiersinImaging

TYPE Editorial
PUBLISHED 06 January 2026
pol 10.3389/fimag.2025.1761718

Editorial: Deep learning for
medical imaging applications

Simone Bonechi'*, Monica Bianchini!, Paolo Andreini' and
Sandeep Kumar Mishra?34*

tDepartment of Information Engineering and Mathematics, University of Siena, Siena, Italy,
?Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States,

3Yale Biomedical Imaging Institute, Yale University, New Haven, CT, United States, “Magnetic
Resonance Research Center, Yale University, New Haven, CT, United States

KEYWORDS

artificial intelligence, cancer diagnosis, computed tomography (CT), deep learning,
machine learning, magnetic resonance imaging (MRI), medical imaging, ultrasound (US)

Editorial on the Research Topic
Deep learning for medical imaging applications

There is substantial scientific interest in leveraging artificial intelligence (AI),
particularly deep learning (DL), for radiological imaging, as these methods are driving
significant advancements in disease detection, diagnostic accuracy, and treatment
planning (Rubin, 2019). Over the past decade, annual publications on AI in radiology
have surged seven-fold, with MRI and CT dominating the field of data acquisition
techniques and neuroradiology leading in contributions, followed by musculoskeletal,
cardiovascular, breast, urogenital, thoracic, and abdominal subspecialties (Pesapane et al.,
2018). AI has evolved into numerous practical tools with significant clinical impact.
Modern systems largely depend on artificial neural networks (ANNSs) inspired by brain
circuitry, including Convolutional Neural Networks (CNNs), recurrent models, and
newer transformer architectures. These approaches achieve high performance across MRI,
CT, PET, and ultrasound data, uncovering subtle diagnostic features beyond human
perception and supporting earlier disease detection and more efficient clinical workflows
(Perez-Lopez et al.,, 2024). As datasets grow and computational frameworks mature,
DL continues to reshape the future of precision medicine. Ongoing challenges include
model interpretability, generalizability, and unbiased clinical deployment, but the field is
rapidly progressing toward robust, trustworthy, and clinically integrated AI systems (Yang
et al., 2024). Despite strong research potential on Al, its real-world clinical deployment
remains limited, as effective integration into healthcare requires coordinated efforts among
stakeholders and careful resolution of ethical challenges (Yang et al., 2024; Saw and Ng,
2022).

Gabriel et al. explored the critical challenge of integrating Al into patient monitoring
to support continuous, real-time clinical assessment. Developed by LookDeep Health, the
system showed strong performance in object detection and patient-role classification. Their
study demonstrated the feasibility of computer vision as a core technology for passive,
uninterrupted patient monitoring within operational hospital environments. Performance
evaluation showed high accuracy in both object detection and patient-role classification.
Using this platform, the investigators compiled a substantial dataset comprising computer-
vision, derived predictions from more than 300 high-risk fall patients, totaling over 1,000
monitored patient-days.
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Abulajiang et al. explored important insights into the
association between age at menopause and the risk of major
gynecologic malignancies, including cervical, ovarian, and uterine
cancers. Using restricted cubic spline (RCS) regression models,
the study rigorously characterized non-linear relationships between
menopausal age and subsequent cancer risk. The findings
suggest that menopausal age may serve as a meaningful clinical
indicator, with potential value in refining individualized cancer risk
assessment and informing personalized screening strategies.

Chen, Han et al. conducted a systematic review and meta-
analysis evaluating the prognostic significance of growth pattern-
based grading in mucinous ovarian carcinoma (MOC). The analysis
indicates that expansile MOC is associated with more favorable
outcomes, whereas infiltrative MOC correlates with advanced
disease and poorer prognosis. The findings further underscore the
importance of complete surgical staging for infiltrative MOC, while
suggesting that comprehensive staging may be optional in patients
with early stage expansile MOC.

Li, Ding et al. investigated radiomic features derived from
ultrasound imaging and developed an externally validated
predictive model integrating clinical variables with ultrasound-
based radiomics to assess residual tumor status in patients
with advanced epithelial ovarian cancer. The combined model
demonstrated superior performance in preoperatively identifying
patients likely to achieve complete resection of all visible disease
and exhibited stronger generalizability compared with models
based solely on clinical or radiomic features.

Yang et al. presented a comprehensive review of recent advances
in the application of Al for the early screening and diagnosis of
thyroid diseases. The authors summarized progress across multiple
domains, including thyroid pathology and ultrasound-based
assessment, and highlight emerging trends in Al-driven clinical
decision support. The review further emphasized the potential
of integrated AI frameworks that combine ultrasound imaging
with clinical data to improve diagnostic accuracy for thyroid
cancer and to enable more precise prediction of postoperative
survival outcomes.

Chen, Liu et al. introduced a novel multi-class brain tumor
classification model, EnSLDe, designed to capture both short-
range and long-range dependencies in neuroimaging data. The
architecture comprised three key components: a Feature Extraction
Module (FExM), a Feature Enhancement Module (FEnM), and a
Classification Module. Evaluation on two publicly available datasets
demonstrated excellent performance, underscoring the model’s
ability to effectively integrate multi-scale feature dependencies and
thereby enhance brain tumor classification accuracy.

Ma et al. validated a DL signature for non-invasive
prediction of spread through air spaces (STAS) in clinical
stage I lung adenocarcinoma and compared its performance with
a conventional clinical-semantic model. The Swin Transformer-
based signature demonstrated superior predictive accuracy,
outperforming traditional approaches. This end-to-end DL
framework shows strong potential as a reliable tool for estimating
STAS preoperatively, providing valuable guidance for surgical
planning and supporting more informed decisions regarding
adjuvant therapy selection in early-stage disease.
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Han et al. developed a radiomics nomogram integrating
chest CT features with the ILD-GAP index to improve clinical
management of rheumatoid arthritis-associated interstitial lung
disease (RA-ILD). CT scans were retrospectively analyzed and
staged using ILD-GAP. The model demonstrated strong accuracy
in identifying low-risk RA-ILD patients. These findings suggest that
this non-invasive, quantitative tool may enhance clinical decision-
making by enabling more precise risk stratification and supporting
individualized management strategies for RA-ILD. This integrated
approach offers added clinical value for patient care.

VanBerlo et al. investigated a self-supervised learning (SSL)
approach to address the scarcity of labeled data in medical imaging
by leveraging representations learned from unlabeled images. Their
findings showed that constructing positive pairs from nearby
frames within the same video improves performance compared
with pairs derived from the same image, although optimal IVPP
hyperparameters vary across downstream tasks. Notably, SimCLR
consistently achieved top performance for key B-mode and M-
mode lung ultrasound tasks, suggesting that contrastive learning
may be better suited than non-contrastive methods for ultrasound
imaging applications.

Saavedra et al. developed a novel two-step DL framework
to automate the assessment of supraspinatus fatty infiltration
in shoulder MRIs. Their method sequentially employs a U-Net
architecture to segment the muscle’s region of interest, followed
by a VGG-19 network to perform binary classification based on
Goutallier’s scale. Utilizing transfer learning on a dataset of 606 T2-
weighted images, the study reported robust performance, achieving
a segmentation Dice score of 0.94 and a classification AUROC of
0.99. This approach demonstrates the feasibility of fully automating
the diagnostic workflow, significantly reducing the reliance on
time-consuming manual segmentation by radiologists.

Li, Chen et al. proposed UnetTransCNN, a hybrid architecture
designed for 3D medical image segmentation that effectively
integrates CNNs with Transformers. Addressing the limitations of
prior sequential fusion models, UnetTransCNN employs a parallel
design where a CNN-based module captures local details while a
Transformer-based module, enhanced with an Adaptive Fourier
Neural Operator, captures global contextual dependencies. The
model utilizes adaptive global-local coupling units to dynamically
fuse features across multiple scales. Validated on the BTCV
and MSD datasets, UnetTransCNN demonstrated state-of-the-art
performance, significantly outperforming existing hybrid baselines
like TransUNet and CoTr in segmenting both large and small
anatomical structures.

Rabah et al. introduced a Vision Transformer (ViT) framework
for automated detection of diabetic peripheral neuropathy (DPN)
using corneal confocal microscopy (CCM) images. To address
the subjectivity and labor-intensive nature of manual assessment,
they developed a streamlined ViT model that classifies images
as healthy or DPN without requiring pixel-level segmentation.
Using a dataset of 692 images, the model achieved state-of-the-art
performance (AUC 0.99; F1-score 95%), outperforming CNNs such
as ResNet50. Grad-CAM-based interpretability confirmed that the
model accurately focused on corneal nerve fiber loss as the key
discriminative feature.
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Luo et al. introduced a DL-driven data-enhancement
framework that sharpens the classification of endometrial lesions
in ultrasound imaging. Drawing on 1,875 images from 734 patients
across six hospitals, the team couples feature-space anomaly
detection for image-quality cleaning with a clustering-based
soften-label strategy. After benchmarking multiple CNNs and
Vision Transformers, they assembled an ensemble of ResNet50,
DenseNet169, DenseNet201, and ViT-B. This model delivers
0.809 accuracy and a 0.911 macro-AUC, markedly outperforming
baseline CNNs and demonstrating how targeted data curation can
meaningfully elevate diagnostic performance.

Liu et al. investigated the impact of Al-guided MRI instance
segmentation on laparoscopic myomectomy, with particular focus
on broad-ligament fibroids, which are challenging due to their
proximity to critical pelvic anatomy. The DL model segmented
fibroids, uterine wall, and uterine cavity on preoperative MRI. In a
randomized cohort of 120 patients, Al assistance significantly
(118 vs. 140min),
blood loss (50 vs. 85mL), and improved early postoperative

reduced operative time intraoperative
recovery. The authors conclude that millimeter-level anatomical
mapping can substantially enhance surgical precision in complex
gynecologic procedures.

Xiong et al. explored the anticancer actions of 6-gingerol in
SKOV3 ovarian carcinoma cells, revealing a targeted apoptotic
mechanism. The compound suppressed clonogenic growth
and triggers caspase-dependent apoptosis while selectively
downregulating the transcription factor Gli3, independent of
Bcl-2 family alterations. Notably, 6-gingerol robustly elevated
miR-506, typically diminished in ovarian tumors and miR-506
overexpression itself reduces Gli3 and promotes apoptosis.
Blocking miR-506 reversed these effects, supporting a model in
which 6-gingerol activated a miR-506/Gli3 axis, highlighting its
therapeutic promise.

Xie et al. conducted a systematic literature review, spanning
the last decade, on the application of machine learning (ML)
and DL techniques to psoriasis image analysis. Fifty-three
articles were retrieved from major publication repositories (WoS,
PubMed, and IEEE Xplore) addressing the problems of lesion
localization, lesion recognition, and severity assessment. The
authors evaluated commonly used public datasets, summarized
prevailing ML/DL architectures and their limitations, and
identified persistent challenges, including dataset heterogeneity
and limited interpretability. They also outlined emerging trends
and proposed future research directions to advance automated
psoriasis assessment.

Chen, Shang et al. presented a case study of a patient with
recurrent low-grade endometrial stromal sarcoma (LGESS) who
refused standard surgery or ablative treatment. After discontinuing
chemotherapy due to impaired liver function, the patient was
administered high-intensity focused ultrasound (HIFU) together
with chemotherapy, which resulted in a significant reduction in
tumor volume, inhibition of its progression, and restoration of
liver function. This result suggests that HIFU-based combination

FrontiersinImaging

10.3389/fimag.2025.1761718

therapy may represent a valid option for metastatic LGESS or for
patients unsuitable for surgery, particularly when integrated with
real-time monitoring and precise post-treatment assessment.
Overall, this compilation demonstrates the researchers
collectively push forward the development of advanced deep-
learning models, reflecting their strong commitment to improving
accuracy, reliability, and impact in medical imaging applications.
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Continuous patient monitoring
with Al: real-time analysis of
video in hospital care settings

Paolo Gabriel*, Peter Rehani, Tyler Troy, Tiffany Wyatt,
Michael Choma and Narinder Singh

Department of R&D, LookDeep Health, Oakland, CA, United States

Introduction: This study introduces an Al-driven platform for continuous and
passive patient monitoring in hospital settings, developed by LookDeep Health.
Leveraging advanced computer vision, the platform provides real-time insights
into patient behavior and interactions through video analysis, securely storing
inference results in the cloud for retrospective evaluation.

Methods: The Al system detects key components in hospital rooms, including
individuals’ presence and roles, furniture location, motion magnitude, and
boundary crossings. Inference results are securely stored in the cloud for
retrospective evaluation. The dataset, compiled with 11 hospital partners,
includes over 300 high-risk fall patients and spans more than 1,000 days of
inference. An anonymized subset is publicly available to foster innovation and
reproducibility at lookdeep/ai-norms-2024.

Results: Performance evaluation demonstrates strong accuracy in object
detection (macro Fl-score = 0.92) and patient-role classification (F1-score
= 0.98). The system reliably tracks the “patient alone” metric (mean logistic
regression accuracy = 0.82 + 0.15), enabling detection of patient isolation,
wandering, and unsupervised movement-key indicators for fall risk and adverse
events.

Discussion: This work establishes benchmarks for Al-driven patient monitoring,
highlighting the platform’s potential to enhance patient safety through
continuous, data-driven insights into patient behavior and interactions.

KEYWORDS

artificial intelligence, medical imaging, computer vision, patient monitoring, RGB video,
deep learning, healthcare analytics

1 Introduction

In hospitals, direct patient observation is limited-nurses spend only 37% of their
shift engaged in patient care (Westbrook et al., 2011), and physicians average just 10
visits per hospital stay (Chae et al., 2021). This limited interaction hinders the ability to
fully understand patient behaviors, such as how often patients are left alone, how much
they move unsupervised, and how care allocation varies by time or condition. Virtual
monitoring systems, which allow remote patient observation via audio-video devices, have
improved safety, particularly for high-risk patients (Abbe and O'Keeffe, 2021).

Artificial Intelligence (AI) is transforming healthcare by enhancing diagnostic
accuracy, streamlining data processing, and personalizing patient care (Davenport and
Kalakota, 2019; Davoudi et al., 2019; Bajwa et al., 2021). While AT has found success in tasks
like surgical assistance (Mascagni et al., 2022) and diagnostic imaging (Esteva et al., 2021),
patient monitoring represents a critical frontier. Unlike these tasks, continuous patient
monitoring involves real-time video analysis over extended periods, requiring Al systems
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to process data efficiently and extract actionable insights spanning
days, like day-over-day movement (Parker et al., 2022).

Continuous monitoring enhances safety and enables the
detection of risks often missed during periodic assessments. For
example, trends like delirium fluctuate throughout the day, but
infrequent observations make these patterns hard to capture
(Wilson et al., 2020). Similarly, patients occasionally leave their
beds unattended—a key fall risk—yet monitoring every instance
in real-time remains challenging. A robust computer vision-based
system can provide immediate, context-aware insights into patient
behavior (Chen et al., 2018), caregiver interactions (Avogaro et al.,
2023), and room conditions (Haque et al., 2020). Such systems
surpass traditional intermittent observation methods by detecting
subtle patterns that inform care decisions (Lindroth et al., 2024).

However, achieving scalability, transparency, and adaptability
in continuous monitoring systems presents significant challenges.
These include efficiently processing video data at higher frame-
rates (Posch et al., 2014), ensuring privacy compliance (Watzlaf
et al, 2010), and adapting to dynamic hospital settings with
varying lighting, camera angles, and patient behaviors. Addressing
these technical and operational challenges is critical for AI-driven
monitoring systems to gain acceptance and deliver meaningful
outcomes, such as reducing falls and other preventable harms.

To bridge these gaps, this research presents a novel Al-
driven system for continuous patient monitoring using RGB video
(Figure 1), developed collaboratively with industry and healthcare
providers. The LookDeep Health platform aims to enhance
patient care by providing real-time monitoring and producing
computer-vision-based insights into patient behavior, movement,
and interactions with healthcare staff.

This study offers several key contributions:

1. Implementation of advanced computer vision models: our
system utilizes state-of-the-art models for real-time predictions,
including localization of people and furniture, monitoring
boundary crossings, and calculating motion scores.

2. Real-world validation: we rigorously evaluated the system’s
performance in live hospital settings, illustrating its capability
to present care providers with accurate data from continuous
monitoring, and laying the foundation for future AI-enabled
patient monitoring solutions.

3. Dataset development: we developed a comprehensive dataset
encompassing over 300 high-risk fall patients tracked across
1,000 collective days and 11 hospitals, creating a valuable
resource for studying patient behavior and hospital care
patterns. This dataset is publicly available for further research
at https://github.com/lookdeep/ai-norms-2024.

2 Methods
2.1 Study design

The LookDeep Health patient monitoring platform was
deployed across 11 hospitals in three states within a single
healthcare network. The system provides continuous, real-time
monitoring of high-risk fall patients. Data collection adhered
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to institutional guidelines and patient consent procedures (see
Research Ethics).

2.1.1 Participants

Patients monitored by LookDeep Health were primarily high-
risk fall patients identified through mobility assessments as part
of standard care protocols. This classification often results in
the patient also being categorized as non-ambulatory during the
inpatient stay (Capo-Lugo et al., 2023).

Data was organized into three subsets:

1. Single-frame analysis: periodic samples from monitoring
sessions were used for training and testing object detectors, with
over 40,000 frames collected to date. Only patients monitored
during the first week of each month were included in the test
set, providing 10,000 frames held out for consistent model
evaluation.

2. Observation logging: ten patients who experienced falls were
selected for additional annotation over a twelve month period
(Figure 2A).

3. Public dataset: over 300 high-risk fall patients were monitored
during a six month period, excluding those monitored for less
than two days (Figure 2B).

As shown in Figure 3, data collection spanned multiple years,
with each subset contributing to the development and validation of
the AI system, with some overlap between subsets.

2.1.2 Patient monitoring system overview

The LookDeep Health monitoring system processes video
through a computer vision pipeline to detect, classify, and analyze
key elements within the patient’s room, providing actionable
insights to healthcare staff (Figure 4). Key components include:

1. Video data capture and preprocessing: video data is captured at
1 frame per second (fps) by LookDeep Video Unit (LVU) devices
deployed in patient rooms (Figure 5A). Data is preprocessed to
reduce bandwidth and enable efficient analysis.

2. Object detection and localization: a custom-trained model
detects key objects (“person”, “bed”, “chair”) and localizes them
with bounding boxes.

3. Person-role classification: detected “person” objects are further
classified as “patient”, “staff”, or “other” using the same
object detector model, by augmenting labels with role-specific
information.

4. Motion estimation: dense optical flow estimates motion
between consecutive frames, enabling activity tracking in
specific regions (e.g. scene, bed, safety zone).

5. Logical predictions: high-level predictions (e.g. “person alone”,
“patient supervised by staft”) are derived by applying rules to
detection and motion data, with a 5-second smoothing filter to
mitigate detection errors.

Inference results, including object detections, role

classifications, motion estimation, and logical predictions, are
securely stored in a Google cloud database for further analysis (e.g.
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FIGURE 1

Illustrative workflow of the lookdeep health Al-driven patient monitoring platform. The system captures video from a hospital room using mounted
cameras and processes each image through a series of computer vision modules. The output is presented as real-time insights for healthcare staff.

trend analysis). Anonymized frames are stored at regular intervals
for quality assurance and model improvement.

2.1.3 Data anonymization

To ensure patient privacy in accordance with the Health
Insurance Portability and Accountability Act (HIPAA) and
institutional guidelines, all video data was processed to remove
identifiable information. For training purposes, frames were face-
blurred using a two-step procedure to maintain privacy while
preserving relevant scene context:

1. Manual labeling: faces were manually labeled on fully-blurred

images to create bounding boxes without exposing identifiable

features.

. Local Gaussian blurring: a strong Gaussian blur was applied
to labeled facial regions, preserving scene context while

anonymizing identities.

This approach was chosen to ensure privacy while balancing
effective model training and validation. Additional obfuscation
methods, such as pixelation or complete occlusion of faces,
were considered but deemed not necessary for the intended use
case. Data handling was conducted under a Business Associate
Agreement (BAA) with participating hospitals.

2.2 Data collection

2.2.1 Video patient monitoring

LVU devices capture continuous video in RGB or near-
infrared (NIR) mode, depending on ambient lighting. Each device
is equipped with a CPU and Neural Processing Unit (NPU),
capable of processing data at 1fps to minimize latency and reduce
cloud processing requirements. Inference results are uploaded to
a secured cloud database (Google BigQuery), with blurred frames
stored separately for manual annotation. Camera placement varied
based on room layout and clinical workflows (Figure 5B).
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2.2.2 Annotations
2.2.2.1 Frame-level labels

A professional labeling team manually annotated over 40,000
images with object bounding boxes, object properties, and scene-
level tags (Figure 6). Objects were annotated with 2-d bounding
boxes classed as “person”, “bed”, or “chair”, and each “person”

» o«

bounding box was also assigned a role of “patient”, “staff”, or
“other”. Scene level attributes were added for whether the patient
was “in bed” or “not in bed”, whether the camera was operating
in IR mode, and whether the scene included “exception cases”
in comparison to stated norms. Exception cases were applied in
any instance of labeler uncertainty (e.g. difficult to see person,
patient in street clothes, etc.); in instances of multiple exception
cases being applicable, a single “frame exception” catch-all was
used. Annotations and quality review were conducted using the
Computer Vision Annotation Tool (CVAT, Corporation, 2023), and
final QA was conducted using the FiftyOne tool (Moore and Corso,
2024).

2.2.2.2 Observation logs

Blurred video summaries for 10 patients (54 patient-days) were
reviewed to log periods when the patient was alone. Logs included
timestamps with 1-2 second precision (Figure 6), and underwent
secondary quality assurance to provide feedback to labelers and fill
out any missing periods.

2.3 Computer vision predictions

The LookDeep Health pipeline processes video data using
custom-trained models to detect objects, classify person-role, and
estimate motion at 1 fps. Preprocessing compresses frames to
JPEG at 80% quality and resizes to a resolution of 1088x612 to
reduce bandwidth consumption while still meeting downstream
model requirements. Image processing is conducted using OpenCV
(Bradski, 2000) and RKNN-toolkit (AT Rockchip, 2024).
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FIGURE 2

Overview of patient demographics. (A) Observations subset, comprising 10 patients, 54 patient-days, and 3 hospitals. (B) Released dataset,
comprising 387 patients, 1,466 patient-days, and 11 hospitals. Left: Pie charts showing the distribution of hospitals by size, where hospitals with an
average daily census of 150+ patients are shown in red, and smaller hospitals are shown in blue. Center: Heat maps showing patient age distribution
by gender. Right: Box plots showing patient length of monitoring. Central line represents the median, box edges indicate the 25th and 75th
percentiles, and whiskers extend to the most extreme data points within 1.5 times the interquartile range. The points represent outliers beyond this
range. The y-axis corresponds to hospital IDs, so Hospital 3 is absent from the top-row dataset but included in the bottom-row dataset. The released
dataset shows a broader demographic and extended data duration compared to the observations subset.
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. Object detection (person/bed/chair): based on the YOLOv4
architecture (Bochkovskiy et al., 2020), the model identifies key
objects in each frame, including “person”, “bed”, and “chair”.
Training models were initialized using COCO weights (Lin
et al., 2014), then fine-tuned on labeled data. Input images were
down-sampled to 608 x 608 with OpenCV’s cubic interpolation
method to fit model requirements. Since the models operate
with a smaller fixed input size, increasing the resolution of input
images would not significantly improve detection performance
unless alternative patch-based approaches were considered.
Additionally, the impact of input size on detection accuracy
has been well-documented in the original YOLOv4 manuscript,
which demonstrated stable performance across various input
sizes. Training was conducted on NVIDIA 3070 GPU, and
models were subsequently converted for execution on the
Rockchip RKNN embedded in the LVU devices.

. Person classification (patient/staff/other): during object
detector training, bounding box labels were augmented to
classify detected persons by role (“patient”, “staff”, “other”).
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Then, at inference time, each “person-” bounding box are
re-labeled as “person”, with the specific role saved in a separate
classification field. Confidence scores for role classifications
are derived by taking the highest detection confidence as the
primary class and distributing residual scores across remaining
classes to indicate potential alternate roles.

. Optical flow (motion estimation): motion between frames

was estimated using the Gunnar-Farneback dense optical flow
algorithm, which calculates horizontal and vertical displacement
for each pixel (Farnebidck, 2003). Optical flow inputs were
converted to grayscale and down-sampled to 480x270 to ensure
real-time execution. For each region of interest, average motion
magnitude was calculated by averaging horizontal and vertical
flow vectors, providing an indicator of activity intensity. This
estimation does not require training and was implemented using
OpenCV with fixed parameters: pyramid scale (pyr_scale = 0.5),
number of pyramid levels (levels=3), window size (winsize = 15),
number of iterations (iterations=3), size of pixel neighborhood

used to find polynomial expansion (poly_n = 5), and the
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FIGURE 3

Dataset overview and timeline of model updates. Progression of
data collection and model updates for the LookDeep Health
monitoring system. Single-frame analysis data collection spans a
two year period—a broad temporal range for training and validation
of object detection and classification tasks. Observation logging
data, used for trend validation, was collected over a one year period.
The publicly released dataset includes data from a more recent six
month period, representing over 1,000 collective patient days.
Model updates are indicated by numbered points

standard deviation of the Gaussian used to smooth derivatives
(poly_sigma = 1.2).

2.3.1 Additional components
2.3.1.1 Regions of interest (ROIs)

ROIs, such as “safety zones”, provide contextual boundaries
for monitoring. They are not predictive outputs themselves, but
instead are used to track patient movements and boundary
crossings. The “safety zone” was a polygonal region defined by
the virtual monitor; its pixel mask is generated by expanding
the boundary perimeter by 10% to ensure effective monitoring.
Additional ROIs used by the system include the full scene and the
detected bed.

2.3.1.2 Logical predictions

Logical predictions summarize patient status and interactions.
These predictions were derived from a combination of object
detection and role classification results and smoothed with a 5-
second filter to mitigate intermittent detection errors.

e Person alone: True when the average number of detected
people in the room is less than two.

e Patient alone: True when the average number of detected
people in the room is less than two, and at least one person
is classified as a patient.

e Supervised by staff: True when the average number of
detected people in the room is two or more, and at least one
person is classified as healthcare staff.

2.3.1.3 Trend predictions

Trends provide insights into immediate and long-term patient
activity, aiding in risk identification and care planning. Hourly
trends summarize patient behavior (e.g. “alone” or “moving”) based
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on aggregated logical predictions. For each one-hour interval,
predictions were used to calculate the percentage of time the patient
spent in key states like “alone,” “supervised by staff;” or “moving”.
These percentages were then plotted over time to visualize hourly
trends in patient isolation or activity levels throughout the day.
These trends provide a high-level overview of patient behavior,
aiding in the identification of potential risks and informing care
decisions.

2.3.1.3.1 “Assisted” trend predictions

A one-off analysis was conducted to simulate the system’s
performance when one of the predictions was known. The system’s
trend predictions based solely on Al inference were compared
with those generated using a combination of Al inference and
observation logs. For this comparison, “assisted” trends were
created by integrating Al-predicted states for “moving” and
“supervised by staft” with manually logged periods of “alone” status
from the observation logs. This analysis was conducted across
the multiple patients and hospitals included in the “Observation
Logging” dataset.

2.4 Evaluation

The performance of the Al-driven monitoring system was
assessed through two primary methods: image-level assessment
and comparison against observation logs. In the image-level
assessment, each frame was analyzed against manual annotations
to evaluate the accuracy of the system’s object detection, person-
role classification, and scene interpretation capabilities. In parallel,
observation logs, created from anonymized video summaries of
select patients, were compared against predicted trends to assess the
system’s ability to capture patient behavior patterns.

2.4.1 Frame-level analysis

Each model in the AI system was evaluated independently to
assess its performance in object detection and classification tasks.
Key performance metrics—precision, recall, and F1-score—were
calculated to measure the accuracy and reliability of each model’s
predictions. Precision assessed the proportion of true positives
among all predicted positives, recall measured the ability to identify
all true positives, and the Fl-score provided a balanced metric
between precision and recall.

In addition to these direct object detection and classification
tasks, the AI system also generated higher-level, “logical”
predictions derived from these outputs. For example, the prediction
“is patient alone” was inferred based on a combination of object
detection results, such as the absence of healthcare staff within
a defined proximity to the patient. These logical predictions
were treated as classification tasks themselves, with their accuracy
similarly evaluated using precision, recall, and F1l-score metrics
based on labeled image data. This multi-layered approach allowed
us to thoroughly validate both the core object detection functions
of each model and the system’s ability to interpret and apply these
outputs to patient monitoring tasks.
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FIGURE 4

Real-time object detection, motion analysis, and patient status monitoring. Top-left: Object detection with bounding boxes identifying key elements
in the scene. Top-right: Segmentation map, where red represents the designated safety zone and green indicates detected motion. Middle: The
“alone” logical trend over time, showing whether the patient was detected alone in the room for every second within the hour. Peaks indicate periods
when the patient was unaccompanied, while lower values indicate caregiver presence. Bottom: The "alone” trend over a 24-hour period, aggregated
for each hour. This visualization highlights patterns in patient supervision throughout the day. The black markers in the middle and bottom rows

correspond to the timestamp of the video frame shown in the top row.

2.4.2 Trend analysis

Trend analysis was conducted by comparing the system’s
inference-derived metrics to ground truth metrics recorded in
observation logs, with both datasets aggregated by patient-day.
Unlike the hourly trends shown in Figure 4, analysis was conducted
at the per-second level to ensure accurate alignment between
AT predictions and observation logs. The primary metric for
this analysis was logistic regression accuracy, which assessed the
AT system’s ability to predict observed behaviors within three
time periods: daytime (6 am to 9 pm), nighttime (9 pm-6 am),
and the full 24-hour period. In cases where only a single class
(e.g. “alone” or “not alone”) was present within a specific time
period, logistic regression was not feasible. Instead, a manual
accuracy score was computed, to allow for consistent accuracy
measurements across all time intervals. This score is defined as
the proportion of matching values between the Al predictions and
ground truth.

Focusing on the “alone” binary behavior trend enables
an assessment of the alignment between AI predictions
and real-world observations. This analysis validated the AI
system’s effectiveness in capturing hourly patient behavior
trends, underscoring its in real-time

potential  utility
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patient monitoring and early detection of deviations from
expected patterns.

2.4.3 Camera position meta-analysis

Since cameras were mounted on mobile carts rather than fixed
positions, there was variability in camera setup across patients and
hospital rooms (Figure 4B). To explore the potential impact of
this variability, labeled bed locations were used to estimate each
cameras position relative to the hospital bed. Distributions of the
labeled bed area and size within each frame, along with the centroid
location of the bed relative to the camera’s field of view are plotted
in Figure 7. These distributions provide an indirect measure of
camera position.

This exploratory analysis helped identify patterns and
variations in camera setups across different monitoring sessions.
However, this information was observational and used only
to understand positional variability; no specific adjustments
were made during model training or evaluation to account for
different camera positions. The results underscore the robustness
of our models in handling diverse camera perspectives, as the
system maintained consistent detection performance despite
these variations.
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FIGURE 5
Camera setup and example frames. (A) LookDeep Video Unit (LVU), a 6" x 6" device, in various mounting configurations. (B) A 3 x 3 grid of

representative frames captured by the system, showing a diversity of configurations. All images are intentionally blurred to maintain privacy. Each
numbered frame provides a unique example that is found in Figure 7.

3 Results

3.1 Frame-level analysis

3.1.1 Object detection, role identification, and
patient isolation classification

The evaluations demonstrated that the custom-trained
computer vision models perform robustly in real-world hospital
settings, achieving high precision across key object detection
and classification tasks. We compared five production models
alongside a baseline model using an off-the-shelf YOLOv4
configuration (Table 1). Each production model corresponds to
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a different release, with progressively larger and more refined
training datasets incorporated over time (Figure 3). This iterative
refinement led to increased model accuracy and adaptability in
real-world hospital settings. To ensure consistency, all frame-level
analysis was conducted on 10,000 frames collected over a two year
period. This representative sample, excluded from model training
and validation, highlights the incremental improvements achieved
by expanding training datasets across model versions.

As newer models were released, the training set was expanded
to include additional annotated data, allowing each successive
model to capture more complex and diverse scenarios encountered
in hospital environments. The most recent fine-tuned model (v5)
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achieved an Fl-score of 0.91 for detecting “person”, notably
surpassing the baseline YOLOv4 model score of 0.41 (Table 2).
Across all object classes—including beds, furniture, and other
room elements—the v5 model demonstrated an F1-score of 0.92,
reflecting a high degree of accuracy and consistency across diverse
object types.

In addition to object detection, the system was evaluated on a
three-class person-role classification task, distinguishing between
patients, healthcare staff, and visitors within the cameras field of
view. The v5 model demonstrated particularly strong performance
for the “patient” class, achieving an F1-score of 0.98, which reflects

Labeled Image

Class: Person
Role: Patient

Part of "Alone" Segment:
Day 1, 19:10:04 - 22:00:15

FIGURE 6

Manually labeled image with observation log alignment. The bed is
highlighted with a blue bounding box. The patient, identified as a
“Person” with the role "Patient”, is highlighted with a red bounding
box. The associated observation log for “Alone” is shown for
illustrative purposes.

10.3389/fimag.2025.1547166

its high accuracy in identifying patients specifically (Table 2).
Accurate person-role classification is essential for monitoring
patient interactions and ensuring appropriate caregiving behaviors,
as it enables the system to capture not only the presence of
individuals but also their roles. Focusing on the “patient” class,
the high Fl-score underscores the model’s robustness in tracking
patient activity and interactions, which are critical for effective
continuous monitoring in dynamic hospital environments.

The downstream classification task of identifying whether a
patient was “alone” in the room showed similarly strong results,
with the v5 model achieving an Fl-score of 0.92 (Table 2).
This classification task, essential for monitoring patient isolation,
consistently improved with each new production release, as more
comprehensive training data contributed to better model accuracy.
These results confirm the advantage of iterative model refinement

TABLE 1 Performance metrics of successive model versions for object
detection.

Model version Fine-tuning Object detection (all)
data size

Precision F1
YOLOVA4 (baseline) n/a 0.84 0.59
Model v1 (2022 Q1) +700 0.97 0.74
Model v2 (2023 Q2) +2,474 0.98 0.83
Model v3 (2023 Q3) +10,133 0.97 0.83
Model v4 (2024 Q1) +28,914 0.98 091
Model v5 (2024 Q2) +34,239 0.97 0.92

Summary of precision and Fl-scores across different versions of the LookDeep Health AI
model, highlighting improvements in key tasks as the training data increased. The baseline
YOLOv4 model demonstrates initial performance levels, while successive versions (Models
vl to v5) show incremental gains in object detection. With each model iteration, higher
precision and Fl-scores indicate enhanced detection accuracy and classification reliability,
underscoring the impact of additional data and model refinement on real-time patient
monitoring capabilities. Evaluation was performed on a fixed dataset containing 10k images.

Bed Center Coordinates

FIGURE 7
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TABLE 2 Performance metrics of successive model versions for object detection (person), role classification, and “patient alone” classification.

Model version

Object detection (person)

Role classification “Patient alone” classification

Precision (patient F1) (F1)
YOLOV4 (baseline) 0.98 0.41 n/a 0.28
Model v1 (2022 Q1) 0.98 0.85 n/a 0.86
Model v2 (2023 Q2) 0.97 0.89 n/a 0.91
Model v3 (2023 Q3) 0.97 0.86 0.97 0.88
Model v4 (2024 Q1) 0.97 091 0.98 0.94
Model v5 (2024 Q2) 0.96 091 0.98 0.92

Additional results corresponding to Table 1 are presented here, focusing on object detection of persons, role classification, and “patient alone” classification tasks.

TABLE 3 Performance comparison of models on unblurred vs. face-blurred images across versions.

Model version Evaluation data size

Unblurred images

Face-blurred images

(0] (F1)
Model v3 (2023 Q3) 2,135 0.81 0.85 +0.04
Model v4 (2024 Q1) 1,809 0.86 0.90 +0.04
Model v5 (2024 Q2) 1,226 0.89 0.91 +0.02

Evaluation of model performance on unblurred and face-blurred images across different versions. The F1-score measures the model’s performance, with the “A F1” column showing the gap
between unblurred and face-blurred images. A A value closer to 0 indicates better consistency in model performance between unblurred and face-blurred images.

and dataset expansion, with each production release yielding
models that are better adapted to the variability and demands of
real-world hospital settings.

3.1.2 Impact of privacy-preserving blurring on
model consistency

The performance consistency of the models across unblurred
and face-blurred images was evaluated using the A metric, which
represents the Fl-score difference between the two image types
(Table 3). Across all model versions, the A values were relatively
small, indicating that face-blurring-a common privacy-preserving
preprocessing step—had minimal impact on model accuracy. For
versions v3 and v4, the A value was +0.04, while in v5 it decreased
to +0.02, suggesting improved robustness to blurring as the training
data volume increased.

A smaller A value is desirable as it indicates that the
model performs consistently regardless of whether the images are
unblurred or face-blurred. The reduction in A for v5 highlights
the value of larger, more diverse training datasets in ensuring that
the models generalize well across different image types. This is
particularly important in hospital settings, where preserving patient
privacy often necessitates the use of face-blurred images. The ability
to maintain high accuracy in such scenarios ensures the system’s
practicality and reliability for real-world deployment.

These results demonstrate that the models not only achieve
high accuracy but also exhibit resilience to variations introduced
by privacy-preserving preprocessing, a key requirement for scalable
applications in healthcare environments.

3.1.3 Object detector performance by IR mode
We analyzed the impact of IR mode on object detection
performance by comparing Fl-scores across different model
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versions, broken down into all data, IR-on data, and IR-
off data (Figure8). Results demonstrate a clear trend of
increasing Fl-scores with newer model versions across all
conditions. Notably, the performance gap between IR-on and
IR-off scenarios decreases with successive model iterations,
indicating improved model robustness to variations in
lighting conditions.

At baseline, object detection performance in IR-on scenarios
lagged significantly behind IR-off scenarios. However, with the
latest model version, this gap narrowed substantially, suggesting
that additional training data and model refinements have enhanced
the system’s ability to generalize across lighting conditions.
Despite these improvements, it is worth noting that the test set
contains an approximate 25:75 ratio of IR-on to IR-off frames,
whereas the population average is closer to 40:60. This imbalance
may partially account for residual performance differences
and highlights the need for more balanced representation in
future datasets.

These findings underscore the importance of accounting
for lighting variability in real-world hospital environments and
demonstrate the system’s potential to adapt to challenging

conditions such as low-light monitoring.

3.2 Trend analysis

Inference-derived trends for the “patient alone” metric were
compared against observation logs to evaluate the system’s ability
to accurately capture real-world patterns (Figure 9). This trend
analysis utilized data from earlier stages of the project when base
models with lower performance were deployed. Specifically, the
object detectors used for these inferences had an Fl-score of
0.85 for “person” detection, which is lower than the performance
of the latest models. Despite this, the analysis showed strong
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Object Detector Performance by Camera Mode
Person

Bed

1.0

0.8

0.6

0.4+

0.2

0.0

1 I
Yolo4 vl v2 v3

Chair

v4 v5

Fl-score

1.0

0.8

0.6

0.4

0.2

T
v2 v3
Model Version

FIGURE 8

Object detection F1-score by model version and infrared (IR) mode. Model performance is shown across successive model versions for all data (solid
line), IR-off data (dashed line), and IR-on data (dotted line). The performance gap between IR-on and IR-off modes narrows with more recent model
iterations, highlighting increased robustness to varying lighting conditions. Notably, the test set comprises a 25:75 ratio of IR-on to IR-off frames,

while the population average is closer to 40:60.

0.0

T T T T T

T
Yolo4 vl v2 v3 v4 v5

alignment with ground truth data, achieving an average logistic
regression/manual accuracy of 0.84 £ 0.13 during daytime, 0.80
+ 0.16 at nighttime, and 0.82 £ 0.15 across all times. These results
highlight the robustness of the AI system in capturing patient
isolation trends, even when using earlier model versions with lower
baseline performance.

This accuracy indicates that, even with slightly reduced
detection precision in the older models, the system could reliably
capture general patterns in patient isolation behavior. The standard
deviation (& 0.15) reflects some variability in accuracy across
different times of day and patient conditions, possibly influenced
by factors such as changing camera angles or environmental
conditions. As shown in the normative hourly trends (Figure 10),
discrepancies between labeled and Al-inferred “alone” data are
more pronounced during nighttime hours, but these differences
have minimal impact on the broader trend patterns. For both
“Alone and Moving” and “Supervised by Staff” metrics, the
Al inferences closely align with label-assisted data, amounting
to an average error of 1-2 min per hour. This consistency
underscores the model’s robustness in capturing meaningful
patient-alone trends and suggests that any nighttime performance
gaps in the “alone” inference do not significantly compromise the
overall accuracy. These results highlight the model’s potential for
improved trend detection as newer, refined models are applied to
subsequent data.
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4 Discussion

4.1 Implications for clinical practice

The findings of this study underscore the potential for Al-
enabled patient monitoring systems to enhance clinical practice
through continuous, real-time monitoring. Traditional in-person
observations are limited by the time constraints of healthcare staff,
who spend limited hours directly interacting with each patient. By
providing continuous monitoring, the LookDeep Health platform
enables staff to detect patterns that would otherwise go unnoticed,
such as extended periods of patient isolation, movement patterns
that might indicate a risk of falls, pressure injuries, or irregular
interactions with staff. Real-time alerts based on these observations
could prompt timely interventions, potentially improving patient
safety and outcomes.

Moreover, the data collected by this system can inform
trend analysis on a population level, supporting hospital resource
allocation and staffing decisions. For instance, identifying times
of day when patients are frequently unsupervised could guide
adjustments in staffing or the deployment of additional monitoring
resources to high-risk patients. Beyond staffing, the system’s
insights into patient mobility patterns-such as time spent in bed,
in a chair, or walking around the room-can help identify markers
of successful recovery and readiness for discharge, contributing
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to improved patient outcomes. These mobility insights could also
support the development of best practices for post-procedure
mobility, tailored to specific surgeries or treatments, to enhance
patient recovery. Altogether, these data-driven insights promote a
more efficient, personalized approach to patient care, potentially
improving patient satisfaction and clinical outcomes.

4.2 Impact of face-blurring on model
performance

While the evaluation of model performance on both unblurred

and face-blurred images provides valuable insights, it is important
to note that face-blurring is applied only during training and
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evaluation is not an option. This approach ensures privacy during
development while maintaining practical deployment fidelity, as
real-time monitoring operates on unblurred frames.

4.3 Variation in camera setup

The LookDeep Health patient monitoring platform was
deployed in real-world hospital settings with cameras mounted
on mobile carts rather than fixed positions, resulting in variation
in camera angles, distances, and perspectives across different
patient rooms. This variability introduced potential challenges in
maintaining consistent object detection and classification accuracy,
as model performance can be influenced by changes in camera field
of view and positioning relative to the bed. To mitigate these effects,
we conducted a camera position meta-analysis using metadata on
labeled bed area and centroid location to estimate the approximate
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camera placement within each room. Our analysis confirmed that,
despite positional differences, the model consistently achieved
reliable performance across object detection and classification
tasks, demonstrating its robustness to spatial variability. However,
this setup presents limitations in controlling for optimal camera
positioning, a factor that future studies with standardized camera
setups could explore further to minimize variability and enhance
model reliability.

4.4 Nuanced differences in time coverage
of analyses

A key aspect of this study is the variation in time coverage
across different datasets, reflecting the evolving nature of data
collection and model validation in real-world hospital settings.
The observation logs dataset, which provided ground truth for
logical trend validation, was collected exclusively in 2023. In
contrast, frame-level annotations for evaluating object detection
and person-role classification were gathered over a more extended
period from 2022 to 2024. Additionally, the publicly released
dataset comprises data collected from a 6 month span across
2024, representing over 1,000 collective patient days across
multiple hospitals.

These differences in collection periods introduce nuances
in interpretation. For instance, frame-level evaluations benefit
from the broader time span, capturing a variety of hospital
conditions and patient behaviors across seasons and changing
workflows. However, trend analyses were constrained to the
observation log time frame, which may limit the ability to
generalize trends across the entire study period. Similarly, the
released dataset reflects data from the latter phase of the study,
aligning with the most refined models but excluding early-stage
model iterations.

These variations in time coverage highlight the need to
contextualize each analysis within its specific time frame. Future
studies could benefit from aligning data collection periods across
all evaluation methods, ensuring that models validated on frame-
level tasks are continuously validated against trend and behavioral
analyses for consistent performance insights over time.

4.5 Challenges and limitations

Several challenges and limitations were encountered in this
study. First, the variability in camera setup, as mentioned earlier,
introduces potential inconsistencies in model performance due to
changing perspectives and distances. While our metadata analysis
mitigated this to some extent, a standardized camera setup would
likely yield more consistent results.

Second, while the LookDeep Health system demonstrated
strong performance in object detection and role classification,
real-time video processing presents computational challenges that
require balancing accuracy and processing speed. Our use of
onboard CPU and NPU on LVU devices provided sufficient
processing capabilities for 1 fps inference; however, the scalability of
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such a setup may be constrained in larger hospital systems requiring
higher frame rates for finer details.

Third, the dataset collected in this study primarily consists
of high-risk fall patients, which may limit the generalizability of
findings to broader patient populations - for example, high-risk
patients exhibit limited mobility compared to other patient groups.
Additionally, the analysis was conducted on older model versions
for some trend analyses, potentially lowering the accuracy of trend
detection. Although model refinements are expected to improve
results, these differences in model versions should be considered
when interpreting the findings.

Lastly, maintaining patient privacy is paramount in
continuous video monitoring systems. While the LookDeep
Health platform anonymizes all video and stores de-identified
data, ongoing attention to data privacy and compliance with
healthcare regulations is essential for future deployments in

clinical environments.

4.6 Suggestions for future research

While this study provides a foundation for understanding
the impact of Al-driven patient monitoring, further research is
warranted to explore additional facets of this technology. Future
studies could investigate:

e Enhanced edge case handling: expanding training datasets
to include more examples of diverse scenarios, such as low-
light conditions and atypical patient behaviors, could improve
model robustness in challenging environments.

e Advanced deep learning techniques: integrating more
sophisticated deep learning architectures like transformer-
based architectures or temporal models could enhance
the detection of subtle anomalies, while adaptive pipelines
could improve real-time robustness in dynamic hospital
environments.

e Refining architectures and guardrails: future work could
involve refining architectures to detect edge cases more
accurately, tracking patterns in prediction errors, and
incorporating confidence-based guardrails to prevent
catastrophic failures. Such guardrails could include alerts
when model confidence is unexpectedly low for consecutive
predictions.

e Higher frame rates and computational scaling: evaluating
the potential for higher frame rates or adaptive frame rate
technology to improve real-time responsiveness, particularly
in high-activity environments.

e Standardization of camera placement: testing standardized,
fixed camera setups across patient rooms aims to minimize
positional variability and improve model consistency.
Although standardization can reduce variability, embracing
the inherent diversity of setups may enhance model robustness
for real-world applications.

e Expanded patient cohorts: extending the analysis to include a
wider range of patient demographics and conditions to assess
generalizability and adapt the system to diverse populations.

e Interoperability with hospital systems: future iterations of
the system could integrate more seamlessly with hospital
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workflows by automating real-time alerts that directly sync
with electronic health record (EHR) systems. For example,
patient-specific alerts could be tagged to relevant EHR fields,
enabling clinicians to view contextual video data alongside
medical records. Additionally, the system could support
interoperability with existing hospital tools, such as nurse
call systems, to streamline the clinical response to high-risk
situations.

These research directions, alongside continued refinement of
computer vision models and monitoring systems, will be essential
for advancing the practical application of Al in patient monitoring
and driving further improvements in healthcare delivery.

5 Conclusion

Al integration in medical imaging is advancing personalized
patient treatment but still faces challenges related to effectiveness
and scalability. This work demonstrates the potential of computer
vision as a foundational technology for continuous and passive
patient monitoring in real-world hospital environments.

The contributions of this study are two-fold. First, we
introduce the LookDeep Health patient monitoring platform,
which leverages computer vision models to monitor patients
continuously throughout their hospital stay. This platform scales
to support a large number of patients and is designed to handle the
complexities of hospital-based data collection. Using this system,
we have compiled a unique dataset of computer vision predictions
from over 300 high-risk fall patients, spanning 1,000 collective days
of monitoring. To encourage further exploration in the field, we
released this anonymized dataset publicly at https://github.com/
lookdeep/ai-norms-2024.

Second, we rigorously validated the AI system, demonstrating
strong performance in image-level object detection and person-role
classification tasks. Our analysis also confirms a positive alignment
between inference-derived trends and human-observed behaviors
on a patient-hour basis, underscoring the reliability of the Al
system in capturing patient activity trends. This evaluation can
serve as a benchmark for future studies, providing a standard
set of criteria for assessing the performance of Al-driven patient
monitoring systems.

The extensive dataset and rigorous validation of the LookDeep
Health platform highlight the feasibility and impact of continuous
patient monitoring through video. By offering real-time insights
into patient activity and isolation patterns, continuous monitoring
has the potential to reduce fall risks by alerting staff to high-risk
situations as they unfold. Beyond improving patient safety, these
insights support more efficient staffing and resource allocation,
allowing hospitals to adjust care based on real-time patient needs.
This predictive capability also aids administrators in managing
bed occupancy and optimizing patient flow, particularly during
peak times, thus enhancing the responsiveness, efficiency, and
scalability of the healthcare system. This work paves the way for
future advancements in AI-driven healthcare solutions, promising
scalable, data-informed insights to elevate patient care and
hospital management.
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Background: Menopause, a natural transition, affects women’s health risks,
including gynecologic cancers. Early menopause, linked to lower estrogen,
may increase cancer susceptibility. This study analyzed NHANES data from
1999 to 2020 for 8,219 postmenopausal women to explore the relationship
between menopausal age and gynecologic cancers. We used regression models
and RCS models to assess the risk.

Methods: This study utilized data from the NHANES spanning 1999 to 2020,
focusing on 8,219 postmenopausal women selected through stratified sampling.
Variables including socioeconomic factors, health behaviors, nutritional status,
and medical history were assessed in relation to participants’ menopausal age
and gynecologic cancer prevalence. We analyzed the relationship between
menopausal age and gynecologic cancers (cervical, ovarian, and uterine) using
multiple regression models. Additionally, we employed RCS models to evaluate
nonlinear relationships between menopausal age and gynecologic cancer risk.

Results: Our findings indicate a significant inverse association between
menopausal age and the risk of gynecologic cancers. After controlling for
confounding factors such as age, race, BMI, and lifestyle variables, a later age
at menopause was associated with a reduced risk of cervical, ovarian, and uterine
cancers. The RCS model revealed a non-linear, low-L-shaped relationship,
particularly highlighting increased cancer risks at younger menopausal ages.
Subgroup analyses demonstrated consistent results across demographic and
lifestyle factors, confirming the robustness of the observed associations.

Conclusion: This study reveals the link between menopausal age and
gynecologic cancer prevalence. Early menopause is a significant risk factor for
cervical, ovarian, and uterine cancers. Our findings support tailored cancer
screening based on menopausal age, potentially improving preventive care for
postmenopausal women.

KEYWORDS

menopause age, gynecologic cancer risk, personalized cancer screening, NHANES data
analysis, risk stratification
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Introduction

Gynecological malignancies, including endometrial, cervical, and
ovarian cancer, etc., are a leading cause of morbidity and mortality
among women, and the yearly number of patients is rising (1, 2).
According to statistics, over a million new cases are identified
annually, which pose a serious threat to global health. Cervical
cancer is the most common gynecological malignancy among
women under 40, accounting for 50.4% of cases. Although it can
be prevented through vaccination and screening, it remains a leading
cause of death, particularly in areas with limited healthcare resources.
Following cervical cancer is endometrial cancer, which accounts for
24.2% of cases (3). While its incidence is declining in certain regions,
it still contributes significantly to the overall burden of gynecological
cancers. Ovarian cancer, at 23%, is the deadliest gynecological
malignancy. Due to the lack of effective screening methods,
approximately 60% of ovarian cancer cases are diagnosed at an
advanced stage, which significantly impacts survival rates (4, 5).
Gynecological cancers have a profound impact on women’s health
and place a significant financial burden on healthcare systems. Their
high incidence and mortality rates require management with
complex and expensive therapies, which come with several
drawbacks, such as treatment-related complications, obesity, social
determinants of health, and economic toxicity (6-8).

Menopause is a normal phase of a woman’s life, marked by a drop
in estrogen levels and usually happening between the ages of 45 and
55. Early menopause refers to menopause that begins between the ages
of 40 and 45. The mechanisms behind early and delayed menopause,
as well as their relationship with the risk of ovarian cancer, involve a
complex interplay between genetic, hormonal, and environmental
factors. Genetic predisposition plays a significant role in determining
the age of menopause. Hundreds of single nucleotide polymorphisms
related to menopausal age have been identified, many of which are
associated with immune and mitochondrial functions as well as DNA
repair processes. These genetic factors can influence the risk of ovarian
cancer (9). Postmenopausal women have persistently high levels of
follicle-stimulating hormone, and the changes in hormones are
associated with an increase in the expression of inflammatory
cytokines and oxidative stress markers, which may lead to
malignant transformation of ovarian tissue (10). Delayed
menopause is significantly associated with an increased risk of
ovarian cancer, which is due to prolonged exposure to estrogen that
promotes the development of ovarian cancer (11). Early menopause
and primary ovarian insufficiency (POI) are associated with reduced
lifetime exposure to estrogen, which may lower the risk of ovarian
cancer (9, 12). After menopause, the risk of cervical cancer in women
may be reactivated or persist due to human papillomavirus (HPV)
infection. Guidelines recommend that screening can stop at age 65 if
adequate prior screening has been conducted. However, many women
tend to stop screening too early, which increases their risk of
developing cervical cancer (13). The prevalence of high-risk HPV
infections in postmenopausal women is quite high, with a noticeable
increase in infection rates after the age of 65. This suggests that
postmenopausal women, particularly those over 65, may benefit from
ongoing screening (14). Delayed menopause is associated with a
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higher risk of endometrial cancer, as long-term exposure to estrogen
without the balancing effect of progesterone increases the likelihood of
endometrial hyperplasia and cancer. Early menopause shortens the
duration of estrogen exposure, thereby reducing the risk of
endometrial cancer. This protective effect is due to a shorter
reproductive lifespan and decreased cumulative estrogen exposure
(15). Obesity and metabolic syndrome are significant risk factors for
endometrial cancer. Obesity increases the risk of endometrial cancer
in postmenopausal women through various mechanisms,
including elevated aromatase activity (16). Insulin resistance and
hyperinsulinemia are commonly found in metabolic syndrome,
which further increases the risk of endometrial cancer by enhancing
the proliferation of endometrial cells (17-19). Furthermore, genetic
factors, such as the expression of specific cancer genes like PKD1, have
been identified as causes of the progression of endometrial cancer
in postmenopausal women. These genetic markers can help predict
disease progression and guide targeted therapy (20). Postmenopausal
women with endometrial cancer typically exhibit more aggressive
disease characteristics, such as higher tumor grades and increased
lymphatic metastasis, which are influenced by genetic and hormonal
factors (21). The relationship between menopause age and
gynecological malignancies is quite complex and influenced by
various factors. Racial and cultural factors can affect both the age of
menopause and the risk of cancer. A study on Korean women found
that menopausal hormone therapy does not increase the risk of
melanoma, but certain therapies reduce the risk of non-melanoma
skin cancer (22). This indicates that cultural and genetic factors may
play a role in cancer risk, which can vary among populations. Lifestyle
factors, such as diabetes, may interact with menopausal age. However,
one study found no association between menopausal age and
microvascular complications in women with diabetes, suggesting
that other health factors may obscure. There may be a nonlinear
relationship between menopause age and cancer risk. For instance, an
earlier onset of menopause is associated with an increased mortality
rate, indicating a complex (23, 24).

This study analyzed data from the National Health and Nutrition
Examination Survey (NHANES), a cross-sectional survey covering
the United States from 1999 to 2020. A total of 8,219 postmenopausal
women were selected using stratified sampling methods, ensuring a
representative sample. We evaluated various factors, including
socioeconomic characteristics, health behaviors, nutritional status,
and medical history, and analyzed the relationships between
menopausal age and gynecologic cancer prevalence using
multivariable logistic regression models. Additionally, restricted
cubic spline (RCS) regression models were applied to examine any
nonlinear relationships between menopausal age and gynecologic
cancer risk, further uncovering potentially complex associations.

Methods
Study design and sample

The NHANES is a nationally representative, cross-sectional
survey. The survey used a complex multi-stage probability sample
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representing the civilian population in all 50 states and the District
of Columbia in the United States (25).

We obtained data from the NHANES, which is representative of
the civilian population across all 50 states and the District of
Columbia. In the current study, a total of 8,291 NHANES
participants were included, representing 21,950,882 postmenopausal
women over a span of 14 years (1999-2020). The survey received
approval from the Institutional Review Board of the National Center
for Health Statistics, and all participants provided informed consent. A
flowchart illustrating the process of selecting the study sample is
shown in Figure 1. The total population (n=116,876) was screened,
resulting in the identification of premenopausal individuals
(n=102,652). Among the postmenopausal women, we excluded
those with incomplete information regarding menarche and
childbirth (n=1,757). From the remaining 12,473 participants, we
further excluded individuals with incomplete demographic, disease,
dietary, and necessary testing information (n=2,766). Finally, to
enhance the scientific validity and reliability of the results, we
excluded individuals with premenopausal gynecological diagnoses
(n=1,416) from the remaining population, resulting in our ideal
study sample of 8,291 individuals.

Sociodemographic characteristics

There are several sociodemographic characteristics, including
age, race, and educational level. A non-Hispanic white, a non-

10.3389/fonc.2025.1541585

Hispanic black, a Mexican-American, another Hispanic, and
another race can be excluded from the list. In addition to high
school, there are levels of education below high school, high school,
and higher education.

Nutritional status

To examine the nutritional quality of the populace, information
was gathered from body mass indexes (BMIs) and household
property to income ratios (PIRs). Higher PIRs are generally
associated with higher levels of physical activity and nutritious
intake, as well as higher BMIs compared to low-income
populations. The data was divided according to the median, and a
cut-off value of 2.3% was chosen as the PIR for households.
Screenings were performed on those with BMIs of > 25 kg/m® or
<25 kg/m*.

Habits of behavior

According to how often participants smoked, they were divided
into three groups: never smoking, former smoking and now
smoking. Alcohol consumption included never drinking, former
drinking, mild drinking, moderate drinking, and heavy drinking. In
addition to energy intake, behavioral habits are also influenced by
population energy intake (kcal).

NHANES 1999 -2020
(N = 116876)
Exclude:
> Non-menopsual population
n =102652
menopausal
population
n =14224
Exclude:
» People with incomplete menarche and childbirth information
n =1757
v
Remaining population
n =12473
Exclude:

People with incomplete demographic information n = 1669
“| People with incomplete dietary and lifestyle information n = 827
People with incomplete disease information n = 270

Remaining population
n=9707

Y

extreme values and premenopausal diagnosis of the

Exclude:

gynecological population
n=1416

Remaining population
n = 8291

FIGURE 1
Study design and sample.
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A medical condition’s underlying causes

Diabetes mellitus and hypertension were included because they
are two diseases associated with women developing gynecologic
cancers and progressing to meet their cancer goals. The following
are the clinical diagnostic criteria for diabetes mellitus: (1) The
doctor makes the diagnosis; (2) a fasting blood glucose level of 7.0
mmol/L; (3) a glycohemoglobin level of greater than 6.5%; (4) a
random blood glucose level of 11.1 mmol/L; (5) a two-hour OGTT
level of 11.1 mmol/L; (6) any diabetes medications or insulin
already being used.

Statistical analyses

The analyzed data were weighted according to the NCHS.
Participants were categorized into two groups based on baseline
characteristics according to whether they had gynecologic cancers.
Descriptive statistics are used to profile the distribution of
participant characteristics, including age, age at menopause, race,
education, family PIR, BMI, smoking, alcohol consumption, etc.
Data were presented as frequencies with proportions (%), means
with standard deviation (SD), or medians with interquartile ranges
(IQR). Univariate and multivariate logistic regression analysis
between ages at menopause and gynecologic cancers: Crude is an
unadjusted model; Model 1 is a model adjusted for age and race;
Model 2 is a model adjusted for age, race, first menstruation age,
and living birth; Model 3 is a model adjusted for age, race, first
menstruation age, living birth, education, BMI, PIR, smoking,
alcohol consumption level, energy intake; Model 4 is a model
adjusted for age, race, first menstruation age, living birth,
education, BMI, PIR, smoking, alcohol consumption level, energy
intake, hypertension and diabetes. On this basis, a fully adjusted
model was used to assess the association between the age of
menopause and major gynecological cancers, including cervical,
ovarian, and uterine cancers. To explore the incidence of
gynecological cancer in different age groups, participants were
further divided into 7 groups based on age at menopause,
including <30 years, 31-35 years, 36-40 years, 41-45 years, 46-50
years, 51-55 years, and =56 years. In the fully adjusted model, a RCS
method was used to investigate the non-linear association between
age at menopause and gynecologic cancers. In this study, values
detected as outliers are treated as missing data and replaced by the
result of interpolation. Statistical analyses were conducted using R
version 4.4.1 (Posit Software, Boston, MA, USA). A p-value less
than 0.05 is considered statistically significant.

Results
Baseline characteristics
The weighted baseline characteristics of the participants, which

consisted of 8,219 participants grouped by whether they had
gynecological cancer, are shown in Table 1. The results showed
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statistically significant differences in gynecologic cancer prevalence
by family PIR, smoking, menopause, and first menstruation
(P<0.05). Compared with participants without gynecological
cancer, participants with gynecological cancer had lower Family
PIR, more smoking, lower age at menopause, and younger age at
first menstruation.

Relationship between the age of
menopause and the prevalence of
gynecological cancers

The results of univariate and multivariate logistic regression
analysis between the onset of menopausal age and gynecologic
cancers are shown in Table 2. There was an inverse association
between age at menopause and the prevalence of gynecological
cancer (OR: 0.93, 95% CI: 0.91,0.95), and the difference was
statistically significant (P<0.01). Model 1 was adjusted for age and
race, and the results showed that there was an inverse association
between menopausal age and the prevalence of gynecological cancer
(OR: 0.92, 95% CI: 0.90-0.94), and the difference was statistically
significant (P<0.01). Model 2 was adjusted for age, race, first
menstruation age, and living birth, and showed an inverse
association between age at menopause and gynecologic cancer (OR:
0.92, 95% CI: 0.90-0.94), with statistically significant differences (P
<0.01). Model 3 was adjusted for age, race, first menstruation age,
living birth, education, BMI, PIR, smoking, alcohol consumption level,
energy intake, and showed that there was an inverse association
between age at menopause and the prevalence of gynecologic cancer
(OR: 0.92, 95% CI: 0.91-0.94), and the difference was statistically
significant (P <0.01). Model 4 was adjusted for age, race, first
menstruation age, living birth, education, BMI, PIR, smoking,
alcohol consumption level, energy intake, hypertension, and
diabetes, and showed that there was an inverse association between
age at menopause and the prevalence of gynecologic cancer (OR: 0.92,
95% CI: 0.90-0.94), and the difference was statistically significant (P
<0.01). Furthermore, to evaluate the effect of specific factors on the
gynecological cancers, we performed subgroup analysis and the results
are shown in Supplementary Table SI.

Relationship between the age of
menopause and the prevalence of major
gynecological cancers

To investigate whether menopause is associated with
gynecologic age, we performed a regression analysis between
menopause and the incidence of three major gynecologic cancers,
as shown in Figure 2 for the relationship between age at menopause
and the incidence of different gynecologic cancers. After adjusting
for age, race, first menstruation age, living birth, education, BMI,
PIR, smoking, alcohol consumption level, energy intake,
hypertension, and diabetes (model 4), the regression results
revealed that age at menopause was inversely associated with the
prevalence of gynecologic cancers in patients with cervical (OR:
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TABLE 1 Participant characteristics (N = 8,219) in NHANES 1999-2020.

10.3389/fonc.2025.1541585

TABLE 2 Association between age of menopause and
gynecologic cancer.

Characteristic  Non-gyneco- = Gynecological P
logical cancer cancer value Outcomes Model OR (95% CI) P value
(N = 8,017) (N = 274)
Crude 0.93 (0.91, 0.95) <0.01
Age, years 60.00 (53.00, 69.00) = 61.00 (49.00, 70.00)  0.430
Model 1 0.92 (0.90, 0.94) <0.01
Race, % 0.032 G logical
’ ynecologica Model 2 0.92 (0.90, 0.94) <0.01
Cancer
Non- 3,681.00 (73.54) 173.00 (82.70)
Hispanic White Model 3 0.92 (0.91, 0.94) <0.01
Non-Hispanic Black ~ 1,801.00 (10.90) 36.00 (5.43) Model 4 092 (0.90,0.94) <001
. . OR, odds ratio; CI, confidence interval. Crude is an unadjusted model; model 1 is a model
Mexican American 1,233.00 (4.96) 32.00 (3.52) adjusted for age and race; model 2 is a model adjusted for age, race, first menstruation age and
h . X living birth; model 3 is a model adjusted for age, race, first menstruation age, living birth,
Other Hispanic 741.00 (4.79) 21.00 (3.82) education, BMI, PIR, smoking, alcohol consumption level, energy intake; Model 4 is a model
Other Race 561.00 (5.81) 12,00 (4.53) adjusted for age, lrace, first menstxtuatlon age, hvmg birth, eflucatlon, BMI, PIR, smoking,
alcohol consumption level, energy intake, hypertension and diabetes.
Education level, % 0.700
groups. Cervical cancer incidence decreased gradually among
Less than 2,261.00 (17.49) 82.00 (19.89) - ] o o
high school participants aged 31-45 years, with statistical significance (P
<0.01). The incidence of uterine cancer was higher in participants
High school 2,069.00 (28.36) 74.00 (27.81) .
aged 56 years or older at menopause than in other age groups.
College or above 3,687.00 (54.15) 118.00 (52.30) Menopausal participants aged 36 to 40 years had a higher incidence
Family PIR 3.03 (1.58, 5.00) 2.48 (1.24, 3.85) 0.008 of ovarian cancer than the rest of the age group. To further explore
) more specific associations, subgroup analysis was performed for
BMI, kg/m 28.74 (24.76,33.46) | 30.10 (25.60, 34.99)  0.054 ) . .
cervical cancer, ovarian cancer, and uterine cancer, and the results
Smoke behavior, % 0.001 are shown in Supplementary Tables S2-S4.
Never 4,812.00 (57.24) 125.00 (42.91)
Former 1,940.00 (25.51) 75.00 (29.62) . . .
Nonlinear relationship between age of
Now 1,265.00 (17.24) 74.00 (27.48) menopause and the prevalence of
Alcohol 0.068 gynecological cancers
consumption, %
Never 1,800.00 (16.55) 47.00 (10.00) By using the RCS models with full adjustment for
confounders, the results showed that there was a low L-shaped
Former 1,606.00 (16.80) 68.00 (20.36) .
association between age at menopause and the prevalence of
Mild 2,539.00 (36.58) 86.00 (32.45) gynecological cancer (Figure 4A). In addition, the results also
Moderate 1,308.00 (20.12) 40.00 (21.83) found that there was a linear association between age at
menopause and cervical and uterine cancer (Figures 4B, D), but
Heavy 764.00 (9.95) 33.00 (15.36) . . .
not with ovarian cancer (Figure 4C).
Energy intake, kcal 1,627.00 1,602.00 0.700
(1,260.00, 2,069.00) | (1,215.00, 2,067.00)
Hypertension, % 2,503.00 (26.09) 80.00 (22.10) 0.190
Diabetes, % 2,006.00 (19.46) 77.00 (19.91) 0.880 Gynecological Cancer
0,
Menopause, years 46.00 (39.00, 51.00) | 36.00 (30.00, 46.00) = <0.001 Group  OR(95% CI) P value
Cervical <0.0001
First 13.00 (12.00, 14.00) | 12.00 (11.00, 13.00) = 0.028 No 1.00 .
menstruation, years '
Yes  0.88(0.85,0.90) ~—#—
Living birth 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.950 Ovarian <0.0001
Bold indicates P value < 0.05. No 1.00 N
Yes  0.94(0.91, 0.97) —-
. Uterine 0.0113
0.88, 95% CI: 0.85-0.90), ovarian (OR: 0.94, 95% CI: 0.91-0.97) and No 1.00 .
uterine cancer (OR: 0.96, 95% CI: 0.93-0.99). According to different Yes 0.96(0.93,0.99) s
menopause ages, participants were divided into 7 groups, as shown 0 ;55 0 {% 1 65
in Figure 3. The percentage of major gynecological cancers ' '
FIGURE 2

occurring at different menopause age groups were observed Associations between age at menopause and major gynecological

respectively. The results showed that participants aged 31-35 cancer (OR (95% CI) and P value).

years had a higher incidence of cervical cancer than other age
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FIGURE 3

Relationship between age at menopause and the prevalence of gynecological cancer by age group.

Discussion

This study revealed that women with an earlier age at
menopause face a significantly higher risk of gynecologic cancers
(cervical, ovarian, and uterine cancers), supporting the inverse
relationship between menopause age and cancer risk. The rapid
drop in estrogen associated with early menopause is a key factor in
the elevated cancer risk. Previous studies indicate that a quick
decline in estrogen may impair tissue repair mechanisms for DNA
damage, increase apoptosis, and contribute to chronic
inflammation, all of which elevate cancer risks (26-28). A study
reported the trends in incidence and mortality rates of cervical
cancer in China and analyzed the independent effects of age, period,
and cohort on these trends. The results showed that the incidence of
cervical cancer has increased among young women under the age of
35 (29). Additionally, a study assessed the incidence, disability-
adjusted life years (DALYs), and mortality rates of cervical cancer
and found that the incidence has increased among younger age
groups, especially among women under the age of 35 (30), which is
consistent with the results of the 31-35 age group mentioned in
this study.

Moreover, subgroup analysis in this study further refined the risk
differences associated with different menopause age groups, showing
that women who reached menopause between 36-40 years had a
significantly higher risk of ovarian cancer, while women who reached
menopause after age 56 had an increased risk of uterine cancer. This
finding supports the hypothesis in the literature that late menopause
may increase the risk of uterine cancer due to prolonged exposure to
high estrogen levels, leading to persistent endometrial stimulation
and an elevated risk of uterine cancer (15, 31, 32).

Frontiers in Oncology

When analyzing the relationship between age at menopause and
the risk of gynecological cancer, our study employed RCS and found
a low L-shaped relationship between age at menopause and the
prevalence of gynecological cancer. This finding is consistent with
existing literature, particularly in understanding the impact of
changes in estrogen levels on the risk of gynecological cancer.

Firstly, a study based on the NHANES database indicated that a
univariate logistic regression analysis of age at menopause and the
prevalence of gynecological tumors showed a negative correlation
between age at menopause and the prevalence of common
gynecological tumors. Particularly for ovarian and cervical
cancers, after adjusting for the effects of covariates, a higher risk
of gynecological tumors was found, and there were statistically
significant differences at earlier ages of menopause. This is in line
with our research results, suggesting that before a certain critical
point, a lower age at menopause significantly increases the risk of
gynecological cancer (33). Furthermore, research has shown that
women carrying pathogenic BRCA1/2 gene mutations have up to
an 87% risk of developing related cancers. Specifically, multiple
breast cancer clusters in BRCA1 and BRCA2 are associated with
relatively higher risks of breast cancer and relatively lower risks of
ovarian cancer. These findings further emphasize the role of genetic
factors in the risk of gynecological cancer and how age at
menopause may interact with these genetic risk factors (34). In
summary, our research results are consistent with existing
literature, highlighting the complex relationship between age at
menopause, changes in hormone levels, and the risk of
gynecological cancer. These findings provide important scientific
evidence for future prevention strategies and intervention measures,
especially in identifying high-risk groups and developing
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personalized prevention plans. We observed a linear inverse
relationship between menopause age and the incidence of cervical
and uterine cancers, while ovarian cancer showed no significant
trend, possibly due to its complex etiology and differing sensitivity
to hormones (33, 35, 36).

The chronic inflammatory state post-menopause is also considered
a key mechanism in the increase. A 4-year follow-up study that explores
the relationship between metabolic health, menopause, and physical
activity. The study results indicate that menopause and levels of physical
activity have a significant impact on the metabolic health of middle-aged
women (37). A literature review based on data from the Study of
Women’s Health Across the Nation (SWAN), examines the relationship
between menopause and metabolic syndrome. The study found that
menopause is associated with changes in cardiovascular disease risk
factors, which are also related to cancer risk. The study also revealed
common genetic signatures associated with metabolic syndrome, type 2
diabetes, cardiovascular diseases, and menopausal status, which are
significantly enriched in biological processes, including the positive
regulation of binding, the positive regulation of leukocyte cell
adhesion, and the regulation of lipid localization (38). Visceral fat
accumulation is associated with an increased risk of various cancers,
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including those of the uterus, cervix, breast, liver, and ovaries. The study
also notes that obesity can interfere with therapies and contribute to
morbidity from chemotherapy toxicities, thus promoting worse
prognosis and mortality (39). The study found that higher levels of
insulin resistance are associated with higher breast cancer incidence and
higher all-cause mortality after breast cancer (40). Research findings
indicate that the link between visceral adipose tissue and cancer risk may
involve systemic mechanisms, such as leptin, glucose, insulin, and
inflammatory cytokines, which are systemic markers of obesity-
related adipose tissue inflammation and may promote tumor
development (41). Chronic inflammation may play an important role
in the pathogenesis of non-inflammatory diseases such as breast cancer.
Activation of innate immunity creates a tissue microenvironment rich
in reactive oxygen and nitrogen species that may lead to DNA damage
and changes in nearby cells, the study suggests. Inflammation also raises
circulating levels of inflammatory cytokines that promote cancer, such
as C-reactive protein (CRP) and interleukin-6 (IL-6) (42). There are also
studies showing that links between chronic low-grade inflammatory
states and multiple chronic diseases are now evident, and controlling
this condition may be important to prevent the most common diseases
in the general population (43). A case-control study that prospectively
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assessed whether plasma levels of inflammatory markers such as CRP,
TNF-o, IL-6, leptin, and adiponectin were associated with breast cancer
risk showed no significant association between these inflammatory
markers and breast cancer risk but found significant interactions
between menopausal status and plasma levels. All of these studies
support the scientific evidence for a relationship between
postmenopausal chronic inflammatory state and cancer risk, and
support the idea that postmenopausal chronic inflammatory state
may be one of the key mechanisms for increased cancer risk (44).
This inflammatory state aligns with our findings, supporting the
inclusion of early menopausal women in high-risk cancer
screening groups.

In addition to the elevated risk for early menopausal women, late
menopausal women also face specific health risks. A study used a meta-
analysis to evaluate the relationship between unopposed estrogen or
estrogen plus progesterone and endometrial cancer risk. The results
showed that women who use estrogen have a higher relative risk than
non-users. Risk (RR 2.3) was associated with prolonged use (RR 9.5 for
10 years or more), and the risk of endometrial cancer remained elevated
even after 5 years or more of discontinuation of unopposed estrogen
therapy (RR 2.3) (45). A systematic review assessed the safety of
estrogen plus progestin therapy, particularly considering the impact of
treatment regimens and types of progestins on the risk of endometrial
cancer. The study found that women who used estrogen alone had an
increased risk, while continuous combined therapy was associated with
a lower risk compared to sequential combined therapy (46). Hormone
replacement therapy should be used with caution in women with a
higher risk of endometrial cancer (HR 2.84) in those with a later
menopause (age =55 years) than in those with the youngest menopause
(<45 years)15. These studies underscore the importance of menopause
age in gynecologic cancer screening and intervention strategies.

Recently, more studies have viewed age at menopause as an
outcome of multiple interacting factors, further highlighting its
unique impact on cancer risk. A study points out that lifestyle and
dietary factors determine the age of natural menopause. The research
indicates that a healthy diet and regular exercise are significant factors
affecting the age of menopause, thereby potentially indirectly
influencing the cancer risks associated with early menopause (47). A
systematic review and meta-analysis studied the impact of
psychological interventions on the quality of life of early-stage cancer
patients. The study included psychological interventions such as
cognitive-behavioral therapy, relaxation training, meditation, stress
management, and self-help, which are believed to improve patients’
quality of life and may indirectly affect cancer risk (41). There is also a
method called “emotional support and case finding” used for the
clinical management of cancer patients’ emotions. This approach
emphasizes the importance of psychological support in cancer
treatment and may help reduce cancer risk (48). Psychological
interventions for cancer patients include cognitive-behavioral
therapy, art therapy, and relaxation therapy, among others. These
interventions aim to improve patients’ emotional states and quality of
life, which may positively impact the reduction of cancer risk (49).

This study makes a significant contribution by providing an in-
depth analysis of the relationship between age at menopause and the
risk of three major gynecological cancers: cervical, ovarian, and
endometrial cancer. The results indicate a notable association: early
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menopause correlates with an increased risk of cervical and ovarian
cancers, whereas late menopause is associated with a higher risk of
endometrial cancer. These findings provide a scientific foundation for
future personalized screening and health intervention strategies. The
inverse association between menopausal age and cancer prevalence
suggests that early menopause may be a marker for increased risk,
prompting more frequent monitoring and targeted screening for
women who experience menopause at younger ages. Additionally,
the nonlinear relationship observed highlights the need for
personalized risk assessments, taking into account individual factors
such as age at menopause, lifestyle, and family history, to optimize
prevention and early detection strategies for gynecological cancers.
Unlike previous research that broadly examined the link between
menopausal age and cancer risk, this study categorizes menopausal
age into specific age groups and conducts a subgroup analysis across
different cancer types, thereby revealing age-specific cancer risks.
Furthermore, by employing a multilevel regression model and
adjusting for various confounding variables, the study clarifies the
independent effect of menopausal age on cancer risk, enhancing the
statistical robustness of the findings. Additionally, the use of the large,
representative NHANES database lends strong external validity to the
study. NHANES data encompass participants from diverse racial,
socioeconomic, and health backgrounds, enhancing the
generalizability of the findings. Many previous studies, limited by
small sample sizes or specific populations, restricted the applicability
of their results. By leveraging NHANES’s extensive dataset, this study
addresses these limitations and offers a robust reference point for
personalized cancer screening in various populations. Another notable
achievement of this study is its exploration of a potential nonlinear
relationship between menopausal age and gynecological cancer risk.
Using RCS regression models, the study is among the first to suggest an
L-shaped nonlinear association, indicating that cancer risk may not
increase linearly with menopausal age but could be influenced by a
combination of factors, with critical risk thresholds for different age
groups. This insight provides important theoretical support for age-
segmented clinical management strategies.

Despite these valuable insights, the study has several limitations.
First, as a retrospective analysis based on cross-sectional data from
the NHANES database, it cannot establish causation. Though we
have adjusted for multiple confounding factors, the possibility of
reverse causation cannot be ruled out. Future longitudinal studies
are needed to confirm the causal link between menopausal age and
cancer risk, clarifying whether early menopause directly contributes
to elevated cancer risk or if other intermediary factors are involved.
Second, the study relies on self-reported data, including
menopausal age, menarche age, and lifestyle factors, which may
introduce recall bias and reporting inaccuracies. Participants may
not accurately recall age-related events or health behaviors,
particularly over long periods. Future research should incorporate
objective biomarkers to reduce self-reporting errors. For example,
hormonal and inflammatory biomarkers could more precisely
measure physiological changes associated with menopause and
their correlation with cancer risk. Moreover, this study does not
delve into the variability in the relationship between menopausal
age and cancer risk across different demographic groups (e.g., by
race, socioeconomic status, and living environment). Both
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menopausal age and gynecological cancer incidence may vary
significantly across racial and socioeconomic groups, especially in
terms of lifestyle factors and healthcare access. Future studies
should analyze these differences in greater detail to understand
how menopausal age distribution and its impact on cancer risk vary
across populations, which would aid in developing more targeted
and equitable health management strategies, improving the
efficiency of cancer screening and prevention. Finally, the study
does not fully explore the biological mechanisms underlying the
association between menopausal age and cancer risk. Although
hypotheses around estrogen decline and chronic inflammation are
proposed, these mechanisms require further verification through
experimental and longitudinal studies. Future research could
employ animal models or clinical trials to investigate how
menopause-induced physiological changes specifically contribute
to cancer development, thereby offering a biological basis for
prevention and therapeutic strategies.

Conclusion

This study provides significant insights into the association
between age at menopause and the risk of developing gynecologic
cancers, particularly cervical, ovarian, and uterine cancers. Our
findings underscore the role of early menopause as a risk factor for
these cancers, while highlighting late menopause as an associated
risk for uterine cancer. By employing a large, representative sample
and robust analytical methods, our research contributes to the
understanding of menopause’s impact on cancer risks. These
results have potential implications for clinical practice, suggesting
that menopausal age could be a critical factor in developing
personalized cancer screening strategies. Future studies, ideally
longitudinal in design, are essential to further elucidate the causal
pathways involved and to explore the biological mechanisms
underlying these associations. Such efforts could pave the way for
targeted preventive measures and more effective health
interventions for women across different menopausal age groups.
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Objective: To investigate the prognostic significance of expansile and infiltrative
growth patterns in mucinous ovarian carcinoma (MOC).

Methods: A systematic search was conducted in the PubMed, Embase, and Web
of Science databases for studies published between January 1, 2010, and
September 6, 2024, examining the correlation between expansile and
infiltrative tumor growth patterns and prognosis in MOC. Subgroup analyses
were performed for mortality, recurrence, and FIGO stage | based on tumor
subtype. The Chi-square test was used to evaluate the distribution of expansile
and infiltrative tumors across FIGO stages I-IV.

Results: Twelve eligible studies, comprising a total of 1185 patients, were
included in this systematic review and meta-analysis. The combined death rate
in the expansile and infiltrative MOC was 10.5% (95%Cl: 6.2-15.7) and 31.1% (95%
Cl: 14.1-50.9). The combined recurrence rate in the expansile and infiltrative
MOC was 6.9% (95%Cl: 3.1-11.9) and 24.5% (95%Cl: 14.3-36.2). The combined
International Federation of Gynecology and Obstetrics (FIGO) | rate in the
expansile and infiltrative MOC was 89.8% (95%Cl: 84.9-94.0) and 56.2% (95%
Cl: 41.5-70.4). A significant association was found between tumor type and FIGO
stage (x® (3) = 110.92, p < 0.00001).

Conclusion: Expansile MOC predicts better outcomes, while infiltrative MOC is
linked to advanced stages and poorer prognosis. Complete surgical staging is
crucial for infiltrative MOC but optional for early-stage expansile MOC. Early-
stage patients should consider fertility-sparing surgery, timely conception, and
close recurrence monitoring.

mucinous ovarian carcinoma, pattern-based grading, expansile, infiltrative, prognosis,
meta-analysis
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1 Introduction

Ovarian cancer is the second most common gynecological
malignancy (1). Among its various subtypes, high-grade serous
ovarian carcinoma (HGSC) is the most prevalent histological
subtype, while mucinous ovarian carcinoma (MOC) is quite rare,
constituting approximately 3% to 11% of ovarian cancers (2, 3).
MOC is recognized as a distinct entity from other epithelial ovarian
cancers (EOCs), exhibiting a unique natural history, molecular
profile, chemo-sensitivity, and prognosis compared to HGSC.
Notably, MOC is the most common subtype in women under 40
(4), with tobacco smoking identified as the only significant risk
factor (5). While most HGSC cases are diagnosed at advanced
stages, 80% of MOC cases are identified at stage I (6). Early-stage
MOC typically exhibits a better prognosis, however, advanced cases
face poorer outcomes, primarily due to a limited response to
platinum-based chemotherapy compared to HGSC (7, 8).

Histological grading systems, such as the International
Federation of Gynecology and Obstetrics (FIGO) and Silverberg
grading systems, have been studied in relation to the ovarian cancer
patient prognosis, including MOC (9, 10). As yet, these grading
systems alone are insufficient for predicting the clinical course of
MOC, unlike their application for other ovarian carcinoma
subtypes (11). In 2014, in order to standardize the pathological
reporting of gynecological tumors, World Health Organization
(WHO) guidelines proposed classifying the mucinous cancers in
these two groups based on their growth patterns, calling them
expansileand infiltrative-type tumors (12), which was also entered
in the newest version CAP protocols (13). However, there is
controversy over the treatment of this histological groups using
different compasses. Guidelines from the European Society for
Medical Oncology and the European Society of Gynecological
Oncology (ESMO-ESGO) emphasize the importance of adjuvant
chemotherapy for stage IB-IC infiltrative MOC. Even for stage IA,
adjuvant chemotherapy may be considered for patients with
infiltrative patterns, whereas it is not deemed necessary for stage
IA expansile MOC (14, 15). Conversely, the National
Comprehensive Cancer Network (NCCN) guidelines do not
recommend differentiating histologic subtypes when treating
patients with MOC. Instead, they advise administering adjuvant
chemotherapy for stage IC or higher MOC, while treatment can be
avoided for stage IA-IB, similar to other EOCs (16).

Therefore, we conducted a meta-analysis and systematic review
aimed at assessing the prognostic significance of the expansile and
infiltrative growth patterns in MOC. This study seeks to provide
clearer guidance for the treatment of MOC and improve clinical
management and outcomes for patients.

2 Methods
2.1 Protocol registration

This meta-analysis was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-
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Analyses (PRISMA) guidelines (17). Prior to data extraction, the
review was registered with the International Prospective Register of
Systematic Reviews (PROSPERO) under registration
number CRD42024585615.

2.2 Eligibility criteria and exclusion criteria

2.2.1 Eligibility criteria

To be eligible, we aimed for the following inclusion criteria: 1)
The study design is a retrospective or prospective study design;2)
Included cases need to be classified by expansile or infiltration
subtype, and need to be confirmed the diagnosis of MOCGC;3)
Included articles assess at least one of the following parameters:
death, recurrence, FIGO I or FIGO stage.

2.2.2 Exclusion criteria

We excluded studies with the following exclusion criteria:1)
Reviews, letters, case reports or editorial comments;2) Studies
without full text, insufficient data or low-quality scores based on
Newcastle- Ottawa Scale (NOS) (18);3) Republished literature or
repetitive studies.

2.3 Search strategy

Two researchers (MMC and YSW) conducted a comprehensive
search in electronic databases of PubMed, Embase, and Web of
Science for relevant researches, published for from January 1, 2010
to September 6, 2024.

The following search terms were used to identify relevant studies
on ovarian cancer: “Carcinoma, Ovarian Epithelial”, “Epithelial
Carcinoma, Ovarian”, “Ovarian Epithelial Carcinomas”, whereas the
following terms were used to identify relevant studies on expansile and
infiltrative: “expansile”, “infiltrative”.

Two researchers (LH and YLC) thoroughly reviewed the
reference lists of all included articles to identify any potentially
missing studies or unpublished data. In cases where multiple studies
analyzed overlapping patient populations, the most recent or
comprehensive results were selected. Following the initial
screening, the full texts of all potential articles were independently
reviewed by two researchers (QQ and MMC) for further evaluation.
Any disagreements were resolved through discussion with AZ.

2.4 Data extraction

Data were independently extracted by two investigators (QQ
and YSW), with any disagreements resolved through discussion
with AZ. The extracted data included author, publication date,
country, number of cases, growth patterns (expansile and
infiltrative), oncological outcomes (death, recurrence), and
pathological characteristics (FIGO stage). Attempts were made to
obtain missing data by contacting the authors via email; however,
no responses were received.
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2.4.1 Expansile and infiltrative pattern

In expansile tumor, the tumor consists of a confluent glandular
growth pattern with minimal to no stromal invasion. In contrast,
infiltrative tumor shows malignant cell clusters with destructive
stromal invasion (12).

2.4.2 Oncological outcomes

Death was calculated from the data from surgery to either the
last follow-up or the data of death. Recurrence refers as either
pathologic proof of cancer or an imaging study showing the
regrowth of the tumor, whether it is confined to the pelvic region
or outside of it.

2.4.3 Pathological features

For mucinous ovarian carcinoma, Stage I means tumor
confined to the ovaries, Stage II means tumor involves one or
both ovaries and extends to other pelvic tissues, such as the uterus
or fallopian tubes. Stage III means tumor is present in one or both
ovaries and has spread to the peritoneum outside the pelvis or to
regional lymph nodes. Stage IV means tumor has spread beyond the
peritoneum to distant organs, such as the liver or lungs.

2.5 Quality assessment

Two reviewers (MMC and YSW) independently assessed the
quality of the included studies, with disagreements resolved through
discussion. The quality of each study was evaluated using the
Newecastle-Ottawa Scale (NOS), which assesses three categories:
case selection, comparability between groups, and outcome
assessment. The total NOS score ranges from 0 to 9 points, and
studies with a score of 26 were considered high-quality and
included in our analysis.

2.6 Statistical analysis

Meta-analysis was performed by using STATA 15.0 software.
Subgroup analyses were based on expansile and infiltrative pattern,
and heterogeneity was determined using orthorhombic test and I*
statistic. If there was significant heterogeneity (p-value <0.05 or
I* >50%), a random-effects model was used. Otherwise, a fixed-
effect model was used (19). Additionally, a Chi-Square Test was
performed to evaluate whether there were statistical differences in
the distribution of expansile tumors and infiltrative tumors across
stages I, II, III, and IV. Sensitivity analysis to determine the
robustness and stability of the results, calculating the herogeneity
in each situation in which a single study was removed in turn
in noder to evaluate the effect of a single study on the overall
outcome. Risk of publication was assessed by visual inspeciton of
Begg’s funnel plot.
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3 Result
3.1 Study selection and characteristics

The initial search retrieved a total of 592 relevant studies from
three databases (PubMed = 423, Embase = 132, Web of Science =
37). After removing duplicates and screening titles and abstracts, 27
studies remained. Following a full-text evaluation, 15 studies were
excluded. Ultimately, 12 studies, including 1185 patients, met the
inclusion criteria and were included in this meta-analysis. A
flowchart of the selection process is provided in Figure 1.

All included studies were retrospective and received seven or more
stars based on the NOS criteria. The quality assessments of these
studies are presented in Table 1, while the general characteristics of the
studies included in this meta-analysis are summarized in Table 2.

3.2 Subgroup analysis based on expansile
and infiltration tumors.

3.2.1 Death

This meta-analysis of five studies (9, 20, 21, 26, 30) showed that
the combined death rate of mucinous ovarian carcinoma was
positively correlated with expansile patter (Effect Size=0.105, 95%
CI=0.062-0.157, I> = 42.001%, n=>5), while no significant correlation
for infiltrative pattern (Effect Size=0.311, 95%CI=0.141-0.509,I* =
78.323%, n=5) Figure 2A. However, the results also indicated high
heterogeneity among the studies (I* = 80.256%, p<0.05). In order to
assess the stability of the model, sensitivity analysis was conducted
by excluding each individual study and calculating new effect size.
The results showed that the effect size were relatively stable, as
illustrated in Figure 2B.

3.2.2 Recurrence

This meta-analysis of eight studies (9, 20, 21, 23-25, 27, 28)
showed that the combined recurrence of mucinous ovarian
carcinoma was positively correlated with expansile pattern (Effect
Size=0.069, 95%CI=0.031-0.119, I*> = 55.150%, n=_8), negatively
correlated with infiltrative pattern (Effect Size=0.245, 95%
CI=0.143-0.362,1> = 79.797%, n=8) Figure 3A. The findings also
revealed significant heterogeneity among the studies (I = 80.408%,
p<0.05). A sensitivity analysis was performed by omitting each
study individually and recalculating the effect size to evaluate model
stability. The results indicated that the effect sizes remained fairly
stable, as shown in Figure 3B.

3.3.3 FIGO | and FIGO stage

Given that most MOC cases are diagnosed at an early stage, we
selected FIGO stage I as one of the key pathological features in our
study and found eight studies (Table 3) (9, 21, 22, 24, 25, 27, 29, 30)
reported the association between the expansile and infiltrative
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FIGURE 1

Flow diagram of the included studies.

pattern for mucinous ovarian carcinoma and FIGO I stage. The
result revealed that the combined FIGO I stage rate of mucinous
ovarian carcinoma was positively correlated with expansile pattern
(Effect Size=0.898, 95%CI=0.849-0.940, I*> = 53.137%, n=8),
negatively correlated with infiltrative pattern (Effect Size=0.562,
95%CI=0.415-0.704, 1> = 82.519%, n=8) Figure 4A. Moreover, the
results highlighted considerable heterogeneity across the studies (I*
= 90.752%, p<0.05). To evaluate the robustness of the model, a
sensitivity analysis was carried out by removing each study one at a
time and recomputing the effect size. The findings suggested that
the effect sizes were largely consistent, as depicted in Figure 4B.
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Besides, we use the Pearson Chi-Square test to evaluate the
distribution of FIGO stages I, II, III, IV among expansile and
infiltrative tumors, and found there was a highly significant
association between tumor type and FIGO staging (Pearson chi2
(3) = 110.9206, p <0.00001) Figure 4D.

3.3.4 Publication bias

Publication bias was investigated by Begg’s funnel plots. Visual
inspection of the Begger’s funnel plot was almost symmetrical, as
depicted in Figures 2C, 3C, 4C, suggesting no obvious evidence of
publication bias.
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TABLE 1 Quality assessment of included studies.

Selection Comparability Outcome
Representativeness Selection of Ascertainment = Outcome Comparability = Comparability Assessment = Long Adequacy
non-exposed of exposure not present  on most on other of outcome | enough (completeness
at start important risk factors follow-up of follow-up)
factors (median>=5
year)
Gouy S (20) v/ v v/ v v x v/ v/ v/ 8
Lim H (21) v/ v v v v x v/ x v/ 7
Hada T (22) v v v v v X v X v 7
Tabrizi AD (23) v/ v v v v x v/ x v/ 7
Sotiropoulou M (24) v v v v v X v v v 8
Algera MD (25) v v v v v X v X v 7
Meagher N (26) v v v v v X v X v 7
Huin M (27) v v v v v v v v v 8
Muyldermans K (9) v v v v v X v v v 8
Hada T (28) v v v v v X v X v 7
Nistor S (29) v v v v v X v X v 7
Kobel M (30) v v v v v X v X v 7

“V” indicates that the criteria are met, while “x” indicates that the criteria are not met.
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TABLE 2 The basic characteristics of included studies.

10.3389/fonc.2025.1541572

First author Publish year Study period Region Study design Cases Follow up Quality
Gouy S (20) 2018 1976-2016 France R 64 62m 8
Lim H (21) 2023 2003-2021 Korea R 113 55m 7
Hada T (22) 2022 1984-2019 Japan R 52 54m 7

Tabrizi AD (23) 2010 1984-2000 Iran R 31 NM 7

Sotiropoulou M (24) 2013 1998-2008 Greece R 42 6y 8

Algera MD (25) 2024 2015-2020 Netherlands R 409 999d 7

Meagher N (26) 2021 NM Australia R 133 2y 7
Huin M (27) 2022 2001-2019 France R 94 5y 8

Muyldermans K (9) 2013 1993-2011 Belgium R 44 63m 8
Hada T (28) 2021 1984-2018 Japan R 49 NM 7
Nistor S (29) 2023 2010-2022 UK R 33 37m 7
Kabel M (30) 2024 NM Canada R 121 NM 7

“d” means day, “m” means month and “y” means year. “R” means retrospective. “NM” means not mentioned.

4 Discussion

This meta-analysis revealed that mucinous ovarian carcinoma
with expansile-pattern tumors, typically observed in early-stage,
tend to have a better oncological prognosis. In contrast, infiltrative-
pattern tumors are commonly associated with advanced stages and
are linked to poorer outcomes.

Our study indicated that patients with expansile pattern tumors
have lower death rate, recurrence rate and a higher proportion of
FIGO stage I compared to those with infiltrative tumors. A study
conducted by Taira Hada et al. (22) showed that MOC with expansile
invasion was a better prognostic factor for progression-free-survival
and overall survival than HGSC at all stage. Besides, Taira Hada et al.
(31) also conducted a study, and found there was no statistically
significant differences in the recurrence rate and prognosis of MOC
with expansile and mucinous borderline tumors, it might be possible
that expansile MOC biologically behave more like mucinous
borderline tumors. These studies suggest that expansile MOC is not
an aggressive subtype, leading many researchers to question whether
comprehensive staging surgery is necessary for early-stage expansile
tumors. Marc D et al. (25) conducted a study of peritoneal staging in
clinical early-stage MOC, found limited benefit for routinely
performing peritoneal and lymph node staging procedures in
patients with expansile tumors, because recurrences, overall survival
and recurrence free survival were similar across the different extent of
surgical staging groups. In another study (15), researchers concluded
that peritoneal metastases are rare in expansile MOC, more than 90%
of patients have early-stage disease. Gouy S et al. (32) describes no
lymph node involvement in expansile tumors, while one patient
upstaged after surgical staging, based on positive peritoneal cytology
(3.4%, one out of 29 patients). In conclusion, expansile is a less
aggressive pattern. For patients with early-stage expansile MOC, it
may be considered safe to forgo additional staging surgery and lymph
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node sampling following the initial bilateral salpingo-oophorectomy
and hysterectomy. Nevertheless, further data is needed to validate this
observation and ensure that patient outcomes are not compromised.
In contrast, infiltrative tumors are typically associated with
more advanced stages and higher recurrence rates than expansile
tumors. Gouy S et al. (20) found lethal recurrences were observed
mainly in infiltrative type. Taira Hada et al. (22) reported that
univariate analysis showed that MOC with infiltrative invasion at
FIGO stages IT to IV had worse progression free survival and overall
survival than HGSC. Due to the high recurrence rate, it might be
considered adjuvant treatment for infiltrative tumor, even in early-
stage. According to Lim H et al. (21), one-third of patients who
received lymphadenectomy had lymph node involvement. Gouy S
et al. (32) investigated 31 infiltrative MOC underwent staging
operations and found four patients had nodal involvement.
Hence, we suggest lymphadenectomy must be considered during
staging operations in patients with infiltrative tumor. Algera MD
et al. (15) concluded that upstaging clinical early-stage infiltrative
MOC based on positive cytology, peritoneum and omentum
metastases occurred in 10.3% of the patients. Besides, Marc D
et al. (25) conducted a study of peritoneal staging in clinical early-
stage MOC, found that in the infiltrative cohort, overall survival was
better for patients undergoing full staging compared with those
undergoing fertility sparing or partial staging, patients undergoing
fertility-sparing staging for infiltrative tumors experienced
significantly more recurrences. In conclusion, patients diagnosed
with infiltrative mucinous ovarian carcinoma (MOC) should
undergo a thorough surgical staging process. This process should
include peritoneal staging, which involves omentectomy, the
collection of peritoneal washings, and the acquisition of biopsies,
along with pelvic and para-aortic lymph node sampling. Given the
potential aggressiveness of this type of cancer, adjuvant treatment
should be considered even for tumors identified at an early stage.
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In recent years, research on the molecular characteristics of
mucinous ovarian cancer (MOC) has increased, providing new
insights into its invasion patterns and prognosis. A study found that
mucinous ovarian cancer (MOC) with infiltrative invasion was
more often positive for CK5/6, CD24, and EGFR, suggesting that
these markers may be linked to the aggressive features of this
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invasion pattern (28). In contrast, expansile invasion showed a
higher prevalence of HER2 overexpression/amplification and less
frequent HER2 mutation compared to infiltrative MOC, although
this difference was not statistically significant (33). Additionally,
PAXS8 expression was more commonly associated with expansile
invasion, but the difference was not statistically significant (75% vs
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TABLE 3 Distribution of expansile and infiltrative MOC patients across FIGO stages I-IV in various studies.

Expansile Tumor Stage

Infiltrative Tumor Stage

Algera MD (25) | 243 6 7 116 7 23 2
Lim H (21) 75 3 5 13 0 8 5
Hada T (22) 20 2 1 16 1 7 3
Huin M (27) 28 1 3 19 0 27 9
Nistor S (29) 22 2 0 5 3 2 -
Kébel M (30) 82 9 3 10 3 6 1
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stage (I-1V).

37.5%, p=0.99) (29). Overall, the existing data are limited,
highlighting the need for further research to integrate molecular
data with histological classification for a comprehensive
understanding of MOC prognosis.

Fertility-sparing surgery (FSS) is a common topic of discussion
because patients diagnosed with MOC are often younger. In recent
years, preserving fertility becomes a significant concern in
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treatment planning, and several studies have focused on the
outcomes of fertility-sparing surgery in patients with early-stage
MOC. Gouy S et al. (34) conducted a study and emphasized that
FFS should be considered for early-stage MOC regardless of its
subtype. Similarly, Yoshihara M et al. (35) found patients with stage
I MOC underwent uterus preserving surgery was not associated
with decreased survival. On the other hand, Hyunji Lim et al. (21)
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found infiltrative tumors showed no statistical significance with
worse survival, but patients in the infiltrative tumors group who
underwent FSS demonstrated a 5-year progression free survival rate
of 83.3%, significantly lower than patients without fertility
preservation. This suggests that adjuvant chemotherapy should be
considered for patients with stage I disease who have undergone
FSS, particularly if the histologic subtype is infiltrative. Bentivegna
et al. Reported the long-term outcome of 280 MOC patients treated
with FFS, the recurrence rate was 6,8% (36). Additional, Wei Lin
et al. (37) noted no significant difference in disease-free survival
between the FSS and radical surgery groups in patients with stage IA
and IC disease, though the FSS group did show a trend toward
poorer disease-free survival compared to those who underwent
radical surgery. Besides, they found that, among 23 patients
diagnosed with early-stage mucinous ovarian carcinoma who
underwent fertility-sparing surgery (FSS) and attempted to
conceive, 21 (91.3%) successfully achieved 27 pregnancies. These
included 26 spontaneous pregnancies and one pregnancy resulting
from assisted reproductive technology. However, there is a lack of
data on the recurrence rates associated with FSS, highlighting the
need for further research in this area. More studies should be
conducted to better understand the long-term outcomes and
potential risks of recurrence following FSS in patients with
mucinous ovarian carcinoma. But we strongly recommend FSS
for patients with early-stage MOC, irrespective of the tumor
subtype. This approach aims to preserve fertility while effectively
treating the cancer. Following treatment, these patients should be
encouraged to attempt conception as soon as they are medically
cleared and should engage in regular follow-up to monitor for any
signs of relapse.

This meta-analysis is the first to evaluate the relationship
between growth patterns and prognosis in MOC, but it has
limitations. One of the most obvious limitation is the high
heterogeneity among the results, although we did sensitivity
analysis to explain its robustness, we are currently unable to
perform a more thorough investigation into the sources of
heterogeneity due to incomplete data. All included studies were
retrospective, which may affect the results. Additionally, only
English language studies were considered, potentially introducing
language bias. The subgroup analysis did not show a significant link
between infiltrative patterns and death rate due to limited data.
Despite these limitations, the study offers initial insights into the
prognostic importance of growth patterns in MOC and suggests
areas for future research, calling for more studies, including those
with negative findings, to support these conclusions.

5 Conclusion

Our study found that expansile MOC generally has better
outcomes, while infiltrative MOC is associated with poorer
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prognosis and advanced stages. Full surgical staging is
recommended for infiltrative MOC, but may be omitted for early-
stage expansile MOC. Fertility-sparing surgery is advised for early-
stage patients, with early conception and close monitoring.
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Objectives: To identify radiomic features extracted from ultrasound images and
to develop and externally validate a comprehensive model that combines clinical
data with ultrasound radiomics features to predict the residual tumor status in
patients with advanced epithelial ovarian cancer (OC).

Methods: The study included 112 patients with advanced epithelial OC who
underwent preoperative transvaginal ultrasound. Of these, 78 patients were
assigned to the development cohort and 34 to the external validation cohort.
Tumor contours were manually delineated as regions of interest (ROI) on the
ultrasound images, and radiomic features were extracted. The final set of
variables was identified using LASSO (least absolute shrinkage and selection
operator) regression. Clinical features were also collected and incorporated into
the model. A combination model integrating ultrasound radiomics and clinical
variables was developed and externally validated. The performance of the
predictive models was assessed.

Results: A total of 1,561 radiomic features and 18 clinical features were extracted.
The final model included 10 significant ultrasound radiomic variables and 4
clinical features. The comprehensive model outperformed models based on
either clinical or radiomic features alone, achieving an accuracy of 0.84, a
sensitivity of 0.80, a specificity of 0.75, a precision of 0.88, a positive predictive
value of 0.81, a negative predictive value of 0.86, an F1-score of 0.78, and an AUC
of 0.82 in the external validation set.
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Conclusions: The comprehensive model, which integrated clinical and
ultrasound radiomic features, exhibited strong performance and
generalizability in preoperatively identifying patients likely to achieve complete
resection of all visible disease.

ultrasonic radiomics, ovarian cancer, predictive model, nomograms, residual tumor

1 Introduction

Ovarian cancer (OC) ranks among the most prevalent gynecological
cancers, holding the position of the third most commonly diagnosed
malignancy in the female reproductive system, surpassed only by cervical
and endometrial cancers. Moreover, it exhibits the highest mortality rate
within this category of cancers, posing a significant threat to women’s
health (1). Because early symptoms are often nonspecific, the majority of
patients are diagnosed at an advanced clinical stage, frequently presenting
with localized or widespread pelvic and abdominal metastases. Despite
initial treatment, recurrence rates and mortality remain high, with
frequent development of drug resistance. As a result, the 5-year
survival rate is below 40%, leading to a generally poor prognosis for
these patients (2).

According to the International Federation of Obstetrics and
Gynecology (FIGO), there are two main treatment strategies for
advanced OC in stages IIIC-IV: (1) primary debulking surgery
(PDS) followed by six cycles of postoperative platinum-based
chemotherapy, and (2) for patients unlikely to achieve satisfactory
tumor reduction, two to three cycles of neoadjuvant chemotherapy
can be given before interval debulking surgery (IDS), followed by
postoperative adjuvant chemotherapy, a strategy commonly
referred to as “sandwich” therapy (3). The primary goal of both
treatment approaches is to maximize tumor reduction, ideally
leaving a residual tumor (RT) diameter of less than 1 cm, or
achieving no visible residual tumor (R0). Maximal cytoreduction
stands as a critical prognostic factor in the treatment of advanced
OC, showing the most favorable outcomes following
adjuvant chemotherapy.

Unfortunately, not all OC patients are suitable candidates for
primary debulking surgery (PDS) aimed at achieving an RO
resection (4). For those with a low probability of attaining RO
resection, there is a consensus that surgical intervention should be
avoided if incomplete resection (with residual tumor greater than 1
cm) is anticipated, as it has little benefit to patient survival and may
lead to a high incidence of perioperative related diseases (3-5).
Therefore, assessing the probability of a patient’s RT-resection
during PDS prior to surgery is advantageous, as it supports the
implementation of individualized treatment strategies.

In recent years, the field of imaging has made significant
advancements, allowing for a more detailed depiction of tumor
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heterogeneity and providing valuable prognostic information (6).
Various mathematical approaches have been applied to extract a
vast array of radiomic features from medical images with high
throughput, enabling clinicians to improve diagnostic accuracy and
develop personalized, precision treatments (7, 8). Transvaginal
ultrasound is a commonly utilized, cost-effective method for the
clinical diagnosis of OC, and ultrasound radiomics has been
increasingly employed in the study of various malignancies,
including thyroid, cervical, liver, and OC (9-11). For example,
Chiappa et al. utilized ultrasound radiomics to distinguish between
malignant and benign ovarian tumors, highlighting its potential to
enhance the preoperative evaluation of patients with ovarian masses
and accurately identify those with OC (12). Thus, a comprehensive
and unbiased assessment of ultrasound image features is
essential (10).

This study seeks to assess the predictive significance of
ultrasound radiomics and clinical factors in creating and
validating a more reliable and generalizable preoperative model
for forecasting RT status in patients with advanced epithelial OC.
The goal is to standardize and simplify the process for
gynecologists, enabling them to extract critical information from
traditional diagnostic imaging more effectively and make informed
decisions based on it.

2 Materials and methods
2.1 Study population

The study enrolled 112 patients with histologically confirmed
FIGO stage III or IV OC diagnosed between January 2018 and June
2024. Of these, 78 patients from the Central Hospital of Enshi Tujia
and Miao Autonomous Prefecture formed the development cohort,
while 34 patients, recruited by collaborators at the Ethnic Hospital
of Enshi Tujia and Miao Autonomous Prefecture, comprised the
external validation cohort. The inclusion and exclusion criteria were
consistent across both cohorts. The exclusion criteria included
patients currently undergoing neoadjuvant chemotherapy, those
lacking essential clinical or surgical data, individuals with poor
image quality or significant image artifacts affecting visualization,
and patients with a history of repeated biopsies. We established a
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standardized protocol to define dataset variables and outcomes,
enabling the retrospective collection of data within the same time
frame. Patients who met the inclusion criteria were divided into two
groups: (1) the RT<1 group, comprising individuals with no visible
gross residual tumor (RT) and a maximum tumor diameter of less
than 1 cm; and (2) the RT=1 group, which included patients with a
maximum tumor diameter of 1 cm or greater (13). This
retrospective study was approved by our institution’s ethics
review board, with informed consent obtained from all participants.

2.2 Clinical information

Clinical data, including age, body mass index (BMI), parity,
presence of hydrothorax, ascites, and ASA score, as well as the
metastases in abdomen and pelvis (MAP) score, were collected.
Laboratory findings such as perioperative platelet count,
perioperative albumin levels, serum cancer antigen-125 (CA125),
serum human epididymis protein 4 (HE-4) levels, and the
neutrophil-to-lymphocyte ratio (NLR) were also obtained.
Additionally, ultrasonic measurement characteristics such as
maximum tumor diameter, arterial pulsatility index, resistance
index, end diastolic flow rate, peak flow rate, and average flow
rate were retrieved from the medical records.

The MAP score was assessed based on preoperative enhanced
CT scans of the abdomen and pelvis, with two radiologists, blinded
to intraoperative records, scoring and documenting the findings.
The score was based on the Zhongshan Hospital rating scale for
preoperative OC, which assessed lesions in various regions,
including the diaphragmatic peritoneum, liver and kidney
recesses, liver capsule, hepato-gastric space, spleen and stomach
space, greater omentum (covering both the liver area and splenic
curvature), mesentery, peritoneum, intestines, paracolic sulci,
uterorectal space, uterine bladder space, and lymph nodes. Each
identified lesion contributed 2 points, with the total score being the
cumulative sum of all lesions. Any discrepancies in scoring were
resolved through consensus.

2.3 Image segmentation

In accordance with the Institutional Review Board’s approved
protocol, essential clinical data and ultrasound image locations were
systematically documented in standardized electronic case report
forms (CRFs) and collected within four weeks prior to the primary
surgical intervention. The segmentation of images was conducted
independently by two seasoned radiologists who were unaware of
the patients’ tissue pathology. One of the radiologists, possessing
around 12 years of experience, utilized the open-source ITK-SNAP
software (version 3.8.0; www.itksnap.org) to manually delineate the
regions of interest (ROIs) on the image slices. The Kappa
consistency analysis was performed to evaluate discrepancies
between two radiologists, and a Kappa value > 0.85 was regarded
as a good consistency.
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2.4 Radiomics feature extraction

PyRadiomics (v.2.0.0; http://www.radiomics.io/pyradiomics.html)
software was used to extract features from medical images (14). The
process included importing manually delineated ROI images along
with the original images into the PyRadiomics platform, where an
internal feature analysis program was utilized to extract the relevant
features. We adopted nonlinear intensity transformation on image
voxels, Gaussian Laplace filter and Eight wavelet transform to
obtain high-throughput features. Radiomic features can be
categorized into three main groups: (I) geometry, (II) intensity,
and (IIT) texture. Geometric features describe the three-dimensional
shape of the tumor, while intensity features reflect the first-order
statistical distribution of voxel intensities within the tumor. Texture
features, on the other hand, analyze the patterns and the second-
and higher-order spatial distributions of these intensities. A total of
1,561 radiomic features were extracted, encompassing first-order
features, shape-based features, and a variety of matrix features,
including gray level co-occurrence matrix (GLCM) features, gray
level dependence matrix (GLDM) features, gray level run length
matrix (GLRLM) features, gray level size zone matrix (GLSZM)
features, and neighborhood gray-tone difference matrix
(NGTDM) features.

2.5 Radiomics feature selection

To eliminate differences in index dimensions, Z-score
normalization was applied to account for the varying scales of the
manually derived radiomic features. Three methods were employed
to select the final variables. Initially, the Mann-Whitney U test was
performed to filter all radiomic features, retaining only those with a
p-value of less than 0.05. Subsequently, Pearson’s rank correlation
coefficient was computed to evaluate the correlation between
features, and those with an intraclass correlation coefficient (ICC)
below 0.9 were discarded to guarantee high repeatability. Finally,
the least absolute shrinkage and selection operator (LASSO)
regression model was employed to identify the final variables for
model construction. Ultimately, the best features were incorporated
into the prediction models, which were developed using 10-fold
cross-validation.

2.6 Model development and validation

Three models were developed using the development set of 78
patients: model I (the clinical model), model II (the radiomics model),
and model III (the clinical-radiomics model). For radiomics models,
we tested 15 machine learning algorithms, with the Light GBM model
demonstrating the best performance (Appendix 1). However, the
clinical-radiomics model was chosen as the nomogram to enhance
convenience for clinical application.

The external validation set (34 patients) used to evaluate model
performance. The model’s performance was assessed through
several metrics, including accuracy, sensitivity, specificity,
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precision, positive predictive value, negative predictive value, and
F1-Score. Additionally, the receiver operating characteristic (ROC)
curve was calculated along with the area under the ROC curve
(AUCQ). Calibration was assessed through calibration plots, which
depicted the relationship between predicted probabilities and
observed proportions. To evaluate the clinical utility and benefits
of the predictive model, decision curve analysis (DCA)
was conducted.

2.7 Statistical analysis

All statistical analyses were performed using Python packages
(version 0.13.2). Group differences were evaluated using either
Student’s t-test or Mann-Whitney U test for continuous
variables, while categorical variables were analyzed using the chi-
square test or Fisher’s exact test. Multivariate analysis was
conducted to select the final variables. Continuous variables that
followed a normal distribution are presented as means + standard
deviations (SDs), whereas non-normally distributed variables are
reported as medians + interquartile ranges (IQRs). And odds ratios
(ORs), 95% confidence intervals (CIs), HosmerLemeshow (H-L)
test were also calculated. And a p value < 0.05 was considered
statistically significant.

3 Results

3.1 Clinical and
demographic characteristics

The final cohort comprised 112 patients with advanced
epithelial OC. This included the development cohort (n=78),
which consisted of 55 patients with RO resection and 23 patients
with non-RO status, and the external validation cohort (n=34),
which included 24 patients with RO resection and 10 patients with
non-RO status. The comparison between the development and
external validation cohorts revealed no significant differences
between the two groups, nor within each group (p > 0.05),
indicating a reasonable classification. Table 1 present the baseline
characteristics of patients in each cohort. In the multivariate
analysis, age (p = 0.031; OR = 1.011, 95% CI: 1.003-1.018),
CA125 level (p = 0.002; OR = 1.001, 95% CI: 1.000-1.001),
presence of hydrothorax (p = 0.003; OR = 1.174, 95% CI: 1.078-
1.279), and maximum tumor diameter (p = 0.031; OR = 1.002, 95%
CI: 1.001-1.004) were identified as independent predictors of RT
status (Table 2).

3.2 Radiomics characteristics

A total of 1,561 radiomic features were extracted from
ultrasound images, which included 306 first-order features,
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14 shape-based features, 374 features from the GLCM, 238
features from the GLDM, 272 features from the GLRLM, 272
features from the GLSZM, and 85 features from the NGTDM.
The t-test or Mann-Whitney U test was utilized for the preliminary
screening of all features, resulting in the inclusion of 42 features.
Subsequently, Pearson correlation analysis was conducted,
revealing 25 features that were significantly different between the
two groups. Next, LASSO regression was conducted using 10-fold
cross-validation with the minimum criterion to determine the
optimal A values. The A value that resulted in the lowest cross-
validation errors is illustrated in Figures 1 and 2. Following this, ten
features with nonzero coefficients were used for this task. Finally,
ultrasonic radiomic features were established using these 10
features, namely exponential_firstorder_Skewness,
exponential_glszm_LargeAreaHighGrayLevelEmphasis, gradient_
firstorder_Minimum, lbp_3D_m2_firstorder_90Percentile,
logarithm_firstorder_Minimum, squareroot_glcm_Idn,
squareroot_glszm_GrayLevelNonUniformityNormalized,
squareroot_glszm_SmallAreaEmphasis,
wavelet_LHL_ngtdm_Contrast, wavelet_LLL_glcm_Idn
(Figures 1, 2).

3.3 Model construction and
performance assessment

We developed three models to identify patients suitable for
optimal primary debulking surgery. Model 1 (the clinical model)
was based solely on clinical characteristics using the LightGBM
algorithm. Model 2 (the radiomics model) relied exclusively on
ultrasonic radiomics characteristics, also employing the LightGBM
algorithm (Appendix 1). Model 3 (the clinical-radiomics model)
was an integrative nomogram that combined clinical and radiomics
features to enhance clinical application convenience (Figure 3).

The radiomic-clinical nomogram demonstrated superior
performance compared to the clinical or radiomics models alone,
achieving an accuracy of 0.84, a sensitivity of 0.80, a specificity of
0.75, a precision of 0.88, a positive predictive value of 0.81, a
negative predictive value of 0.86, an F1-Score of 0.78, and an
AUC of 0.82 in the external validation set (Table 3). Figure 4
illustrates the AUC for both the development and external
validation cohorts. The calibration curves for the radiomic-
clinical nomogram demonstrated strong agreement between
predicted and observed outcomes in both the development and
validation cohorts (Figure 4). The Hosmer-Lemeshow (HL) test
indicated favorable goodness-of-fit for the data (all p > 0.05).
Furthermore, the DCA revealed that the nomogram offers greater
clinical benefit (Figure 4), namely, the DCA for the three models
indicates that this new diagnostic approach yields a greater net
benefit (where a value greater than 0 indicates patient benefit) in
predicting the residual tumor status in patients with advanced OC,
with the clinical-radiomics model showing a more significant
benefit compared to the clinical model or radiomics model.
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TABLE 1 Clinical and demographic characteristics of development and validation cohort.

Variables Development cohort (N=78) External validation cohort (N=34)
RO (N=55) Non-RO (N=23) RO (N=24) Non-RO (N=10)

Age 54.55 +9.23 62.13 +7.14 <0.01 54.88 + 9.34 62.10 + 5.51 0.03
BMI 2223 +3.05 22.64 + 3.51 0.72 22.08 +3.73 24.45 + 1.89 0.08
NLR 3.07 + 1.86 329 +1.82 0.70 3.09 £ 1.88 247 + 1.67 0.46
Perioperative platelet 226.82 + 82.89 211.04 + 85.68 0.41 230.00 + 70.89 175.80 + 78.42 0.06
Perioperative albumin 45.69 + 5.48 43.75 + 4.77 0.09 45.80 + 5.62 4537 + 5.87 0.81
CA125 278.36 £ 163.28 465.04 + 179.81 <0.01 284.46 + 136.25 403.10 + 167.44 0.04
HE-4 285.55 £ 135.99 546.83 + 183.08 <0.01 318.08 + 143.04 574.10 + 184.04 <0.01
MAP score 793 +2.77 17.83 + 4.39 <0.01 7.33 £2.18 20.80 + 3.68 <0.01
Maximum tumor diameter 117.25 + 38.89 141.62 + 37.31 0.01 119.19 + 38.81 14191 + 23.24 0.10
Arterial pulsatility index 0.31 +0.14 0.31 +0.12 0.96 0.32 +0.14 0.35 +0.21 0.63
Resistance index 0.26 + 0.09 0.28 + 0.09 0.38 0.27 £ 0.10 0.28 £ 0.13 0.79
End diastolic flow rate 17.09 + 2.50 16.96 + 2.09 0.83 16.67 + 1.88 16.63 + 2.77 0.97
Peak flow rate 23.07 +2.30 23.18 +2.02 0.89 2291 +1.97 2324 +2.14 0.67
Average flow rate 19.51 + 2.22 19.94 + 1.60 0.40 19.72 + 1.89 19.48 + 1.78 0.74
Parity 0.24 0.92

1 4(7.27) 0 3 (12.50) 1 (10.00)

2 38 (69.09) 21 (91.30) 17 (70.83) 7 (70.00)

3 7 (12.73) 2 (8.70) 3 (12.50) 1 (10.00)

4 5(9.09) 0 1(4.17) 1 (10.00)

5 1(1.82) 0 0 0
ASA score 0.14 0.32

1 8 (14.55) 5 (21.74) 8 (33.33) 1 (10.00)

2 16 (29.09) 1(4.35) 3 (12.50) 2 (20.00)

3 10 (18.18) 8 (34.78) 3 (12.50) 2 (20.00)

4 11 (20.00) 5(21.74) 8 (33.33) 2 (20.00)

5 10 (18.18) 4 (17.39) 2 (8.33) 3 (30.00)
Ascites 0.59 0.13

0 22 (40.00) 3 (13.04) 9 (37.50) 4 (40.00)

1 19 (34.55) 4 (17.39) 8(33.33) 3 (30.00)

2 14 (25.45) 16 (69.57) 7 (29.17) 3 (30.00)
Hydrothorax 0.01 0.98

0 23 (41.82) 7 (30.43) 4 (16.67) 5 (50.00)

1 16 (29.09) 9 (39.13) 9 (37.50) 2 (20.00)

2 16 (29.09) 7 (30.43) 11 (45.83) 3 (30.00)

A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; Cls, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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TABLE 2 the univariate and multivariate logistic regression analysis of development cohort.

Variables Univariate logistic regression analysis Multivariate logistic regression analysis
(O] OR 95% ClI P (O] OR 95% ClI P

Age 1.02 1.01-1.03 0.001 1.01 1.00-1.02 0.030
BMI 1.00 0.98-1.04 0.609

NLR 1.01 0.97-1.06 0.639

Perioperative platelet 1.00 1.00-1.00 0.450

Perioperative albumin 0.99 0.97-1.00 0.145

CA125 1.00 1.00-1.00 0.000 1.00 1.00-1.00 0.002
HE-4 0.89 0.85-0.93 0.365

MAP score 0.95 0.94-0.96 0.210

Maximum tumor diameter 1.00 1.00-1.00 0.013 1.00 1.00-1.00 0.031
Arterial pulsatility index 0.98 0.51-1.90 0.959

Resistance index 1.65 0.65-4.24 0.376

End diastolic flow rate 0.96 0.96-1.03 0.830

Peak flow rate 1.00 0.97-1.05 0.837

Average flow rate 1.02 0.98-1.07 0.397

Parity 0.92 0.81-1.04 0.244

ASA score 1.01 0.95-1.08 0.757

Ascites 1.24 1.12-1.36 0.000 117 1.08-1.28 0.003
Hydrothorax 1.65 0.65-4.24 0.376

A p value < 0.05 was considered statistically significant.

ORs, Odds ratios; CIs, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,

metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.

4 Discussion

In our study, we integrated primary radiomic features, laboratory
findings, and clinical factors from patients with advanced epithelial
OC to create and validate a radiomics-clinical nomogram. This
nomogram is designed for individualized preoperative prediction of
treatment response (RT) status. The results demonstrated that the
integrated radiomic-clinical nomogram showed enhanced predictive
performance compared to using radiomic or clinical signatures
individually after external validation. The final model is capable of
identification of the RT status prior to surgery. This advancement
enhances clinical decision-making, patient communication, and
prognosis assessment. For those with a low probability of attaining
RO resection, the surgical intervention should be avoided if
incomplete resection. The presence or absence of response to
treatment (RT) following PDS or IDS is the most significant factor
influencing the prognosis of patients with advanced OC. Notably, a
10% increase in the rate of complete tumor resection can lead to a 5%
improvement in overall survival for these patients (15). Research has
shown that RT status is an independent and significant prognostic
factor for patients with advanced OC. The extent of RT is inversely
correlated with patient survival, disease-free survival (DFS), and
overall survival (OS) (5, 16). According to Kehoe et al, patients
with OC who underwent PDS followed by RT excision experienced
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the most favorable prognosis (17). High-grade serous ovarian cancer
(HGSOC) is the most common and aggressive histological subtype of
OC, and complete resection of all visible lesions (RT-resection) in
advanced HGSOC patients after PDS is linked to the best outcomes
(5, 18). Therefore, it is essential to assess all epithelial OC patients
suspected of being at stage ITIC or IV to determine their eligibility for
PDS prior to initiating therapy, in line with the clinical practice
guidelines set forth by the Society of Gynecologic Oncology and the
American Society of Clinical Oncology (19).

For patients in whom achieving satisfactory tumor reduction is
challenging, neoadjuvant chemotherapy should be considered prior
to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear
area and the major axis length of the stroma are significant factors
that can improve risk stratification in patients with HGSOC. For the
ultrasonic radiomic characteristics, three methods were employed
to select the final variables, resulting in the inclusion of 10 features
from a total of 1,561 radiomic features in our model, effectively
eliminating invalid variables. Previous studies have demonstrated
that all ultrasonic radiomics and clinical features included in our
study are relevant to the diagnosis, treatment, and prognosis of
ovarian cancer (15, 18, 21, 24).

CA-125 is one of the most commonly used serum biomarkers
for OC. Some studies (13, 20) have found that preoperative CA-125
levels can predict gross residual disease at PDS for advanced
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Model development
and validation

Image segmentation Feature extraction Feature selection

1561 radiomic features

306 first-order features

14 shape-based features
374 GLCM features
238 GLDM features
272 GLRLM features
272 GLSZM features

\\ 85 NGTDM features

FIGURE 1
Study flowchart of the radiomics analysis.
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FIGURE 2

Radiomic feature extraction. (A, B) Radiomic features extraction using least absolute shrinkage and selection operator (LASSO) algorithm. (C) The
final features included in our study.
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FIGURE 3
A nomogram integrates clinical parameters and radiomics features.
TABLE 3 The performance of clinical model, radiomics model and combined nomogram for predicting RT status.
Model Cohort AUC ACC Sen Spe PPV NPV Precision F1
Development 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883
Clinical
Validation 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723
Development 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.878
Radiomics
Validation 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704
Development 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900
Combined
Validation 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817

AUC, Area under the curve; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value; F1, F1-Score.
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epithelial OC. Additionally, moderate to severe ascites has been
associated with residual disease (13) and may serve as a surrogate
indicator of advanced disease across multiple anatomic locations.
The maximum tumor diameter is a critical predictor for
individualized preoperative assessment of RT status in patients
with advanced OC, as reflected in radiomic shape-based features.
For patients who are unlikely to achieve satisfactory tumor
reduction, neoadjuvant chemotherapy should be considered prior
to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear
area and the major axis length of the stroma are important factors
for improving risk stratification in patients with HGSOC. In
analyzing ultrasonic radiomic characteristics, three methods were
utilized to select the final variables, resulting in the inclusion of 10
features from a total of 1,561 radiomic features in our model,
effectively eliminating invalid variables.

Ultrasound offers several advantages, including real-time display,
convenience, and affordability, making it widely used for screening
and preoperative evaluation of OC. Recently, applications of
ultrasound-based radiomics have been reported in tumor diagnosis
(12), pathology grading (22), vascular invasion assessment,
therapeutic evaluation (23), and prognostic prediction (24).
However, there are few reports on RT status based on ultrasonics.
Meanwhile, several radiomic models for predicting RT status based
on computed tomography (CT) and magnetic resonance imaging
(MRI) have been developed and validated (25, 26). Lu et al. (26)
developed an MRI-based radiomic-clinical nomogram that
successfully predicted RT status preoperatively in patients with
HGSOC. A multicenter assessment was conducted to evaluate the
efficacy of preoperative CT scans and CA-125 levels in predicting
gross residual disease following PDS for advanced epithelial OC (25).
However, the pelvic CT-based model was primarily developed with a
focus on abdominal metastases. These findings support the
hypothesis that radiomic features can effectively predict treatment
response (RT) status by capturing variations in tumor heterogeneity.

There are several limitations to our study. Firstly, it relies on a
small sample size, necessitating larger databases and multicenter
studies to confirm the generalizability of this model. Second, future
studies should integrate CT or contrast-enhanced CT and MRI or
contrast-enhanced MRI into the predictive model to enhance the
prediction of RT status in OC. Finally, our study focused exclusively
on advanced epithelial OC subtypes, excluding rare variants. Future
research should include data from additional OC subtypes to
improve the models’ universality and clinical applicability.

5 Conclusion

In our study, we confirmed the clinical value of ultrasound-based
radiomics for the preoperative prediction of treatment response (RT)
status in patients with advanced epithelial OC, and radiomic feature
extraction and selection may provide a deeper understanding of
ultrasound imaging mechanism. The comprehensive model
combined clinical and ultrasonic radiomics features not only had a
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better performance in preoperative identification of complete
resection of all visible diseases but also had a higher
generalization ability.
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With the rapid development of the “Internet + Medical” model, artificial
intelligence technology has been widely used in the analysis of medical
images. Among them, the technology of using deep learning algorithms to
identify features of ultrasound and pathological images and realize intelligent
diagnosis of diseases has entered the clinical verification stage. This study is
based on the application research of artificial intelligence technology in medical
diagnosis and reviews the early screening and diagnosis of thyroid diseases. The
cure rate of thyroid disease is high in the early stage, but once it deteriorates into
thyroid cancer, the risk of death and treatment costs of the patient increase. At
present, the early diagnosis of the disease still depends on the examination
equipment and the clinical experience of doctors, and there is a certain
misdiagnosis rate. Based on the above background, it is particularly important
to explore a technology that can achieve objective screening of thyroid lesions in
the early stages. This paper provides a comprehensive review of recent research
on the early diagnosis of thyroid diseases using artificial intelligence technology.
It integrates the findings of multiple studies and that traditional machine learning
algorithms are widely used as research objects. The convolutional neural
network model has a high recognition accuracy for thyroid nodules and
thyroid pathological cell lesions. U-Net network model can significantly
improve the recognition accuracy of thyroid nodule ultrasound images when
used as a segmentation algorithm. This article focuses on reviewing the
intelligent recognition technology of thyroid ultrasound images and
pathological sections, hoping to provide researchers with research ideas and
help clinicians achieve intelligent early screening of thyroid cancer.

KEYWORDS

thyroid disease, machine learning, image recognition, thyroid ultrasound, thyroid
pathological slices
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1 Introduction

The thyroid gland is a butterfly-shaped gland located in the
front of the neck. Its main function is to secrete thyroid hormones.
Thyroid hormones play a key role in regulating many physiological
processes in the human body, including diabetes management,
cardiovascular health, cognitive function, and immune system
regulation. Therefore, maintaining normal thyroid hormone levels
is essential to maintaining good health (I, 2). When thyroid
hormone secretion is disordered, it can lead to abnormal thyroid
function or abnormal thyroid structure. Thyroid dysfunction
includes hyperthyroidism and hypothyroidism. Thyroid structural
abnormalities mainly include thyroid nodules and thyroid cancer.
Thyroid nodules refer to solid or cystic masses that appear inside
the thyroid gland. Thyroid cancer is a malignant tumor that occurs
in thyroid cells and is one of the most common malignant tumors in
the endocrine system (3). The causes of thyroid cancer are complex.
As a malignant tumor, tumor cells continue to grow and spread,
leading to a decline in body function. During the diagnosis and
treatment process, it may also cause emotional distress and
psychological problems for patients. Studies have shown that
cancer patients generally have a higher incidence of mood
disorders such as depression and anxiety (4, 5).

Thyroid lesions often have no obvious symptoms in the early stages,
but if not discovered and treated in time, they may gradually deteriorate
into thyroid cancer, affecting the patient’s quality of life and even
endangering their life. Therefore, although thyroid cancer has certain
hazards, early detection, early diagnosis and early treatment can achieve
better treatment results, reduce the surgery rate and mortality rate,
improve the cure rate and reduce complications.

In recent years, significant changes in environmental factors,
specifically manifested as heavy metal pollutants, persistent organic
pollutants (POPs), and increased air pollution (6-8), have adversely
affected the normal physiological functions of thyroid hormones.
The incidence of thyroid cancer is increasing year by year globally,
accounting for approximately 1% to 3% of all new malignant
tumors worldwide (9). Currently, the methods for screening
thyroid diseases include ultrasound, cell puncture, CT, MRI, etc
(10-12). Ultrasound is a common non-invasive and painless
examination method (13). Its disadvantage is that it is limited by
the doctor’s experience and the size, shape, edge, internal echo and
other characteristics of the nodule. Therefore, there is a certain
misdiagnosis rate when evaluating the benign or malignant nature
of thyroid nodules. Thyroid pathology is the gold standard for
diagnosis and an important means of determining whether a
thyroid nodule is benign or malignant and the type of thyroid
tumor. However, pathology is invasive, expensive, and difficult for
patients to accept. In order to achieve low-cost, high-accuracy early
screening for thyroid disease, researchers have turned their
attention to artificial intelligence technology.

The rapid advancement of artificial intelligence in image
recognition technology has pushed auxiliary medical care to a
highly mature and widely applied stage. In the field of image
segmentation, deep learning image segmentation technology can
automatically learn the features of images and achieve high-
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precision image segmentation by training deep neural. Xu (14)
proposed an end-to-end FISH-based method (CACNET) for the
recognition of genetically abnormal cells (CAC). The CACNET
achieves cell nuclear segmentation by an improved Mask region-
based convolutional neural network (R-CNN), and the accuracy of
circulating CAC recognition using CACNET 94.06%. At the same
time, they also developed a deep learning network (FISH-Net)
based on 4-color FISH images for CACs, with an accuracy of
more than 96% (15). Zhao (16) proposed a breast cancer
ultrasound image segmentation method based on the U-Net
framework combined with the residual block structure and
attention, with a dic of up to 92.1%.

In the field of image classification, it mainly classifies and
recognizes objects in images by training deep neural networks.
This technology can process large-scale image data and quickly and
accurately identify target objects in images. Its advantages include
fast recognition speed, high accuracy, and the to handle images of
different sizes and resolutions. In 2012, the deep convolutional
neural network achieved a significant breakthrough in the
ImageNet competition, showing excellent performance of 37.5%
top-1 error rate and 17.0% top-5 error rate (17). In addition, Levy
(18) proposed an innovative deep convolutional neural network
model that cleverly used deep transfer learning technology to
successfully achieve high-precision classification of benign and
malignant breast tumors with an accuracy rate of up to 92.4%.

Wang (19) developed a mitosis detection method (FMDet) based
on breast tissue histopathological images to capture the appearance
changes mitotic cells. To achieve more robust feature extraction, the
feature extractor was constructed by integrating a channel-level
multi-scale attention mechanism into the fully convolutional
network structure. The FMDet algorithm has won the first place in
the MIDOG 2021 challenge, achieving an accuracy of 74.4%. In 2022,
Su (20) used the gene expression data of TCGA to screen
characteristic genes by combining WGCNA Lasso algorithms, and
used machine learning models to achieve the diagnosis and staging of
colorectal cancer. Wang (21) proposed a supervised learning (SSL)
scheme of deep learning (DL) framework to address the challenge of
high-precision classification seven pulmonary tumor growth patterns
in whole slide images (WSIs). This series of technological innovations
has undoubtedly injected strong impetus into the field of image
segmentation and recognition, and has greatly promoted the
application and development of artificial intelligence in early
screening of thyroid diseases.

This article analyzes the application of artificial intelligence
technology in the early diagnosis of thyroid diseases by comparing a
large number of studies, summarizes the current application status
of artificial intelligence technology in the early diagnosis of thyroid
diseases, and studies the intelligent recognition technology of
thyroid ultrasound images and pathological sections respectively.
The aim is to explore a technology that can achieve objective
screening of thyroid lesions in the early stages. Based on literature
research, we explored the application of machine learning and deep
learning in thyroid auxiliary diagnosis. We find that for small
sample data, SVM and semi-supervised neural networks in deep
learning perform better. U-Net has become the benchmark for most
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image segmentation tasks, with an accuracy of more than 93%,
thanks to its encoder-decoder architecture. Artificial intelligence
technology enables auxiliary examination for early screening of
thyroid diseases, improving the early cure rate and survival rate of
patients, and enhancing the accuracy and of doctors’ diagnosis. This
study also prospects the future trends of artificial intelligence in the
field of thyroid disease research, and constructs a set of artificial
intelligence system for the whole process. The development of
artificial intelligence in thyroid disease research is no longer
limited to thyroid pathology or thyroid ultrasound, but has
created an artificial intelligence that integrates thyroid images and
clinical data of thyroid cancer, which is used to determine the
diagnosis of thyroid cancer and can also accurately predict the
postoperative survival period of thyroid cancer patients.

2 Methods

The PubMed database was accessed by computer for retrieval,
using “thyroid ultrasound”, “thyroid cytopathology” and “machine
learning” as search terms. Figure 1 shows the number of publications
in the field of thyroid in the past decade. A total of 75 articles were
selected for analysis. According to the inclusion and exclusion
criteria, 50 articles were finally determined for research and
analysis. The inclusion criteria for this review were: (1) Machine
learning and deep learning algorithms, such as U-net, K nearest
neighbor classification, random forest, support vector machine and
artificial neural network. (2) The accuracy of early diagnosis of
thyroid disease area under the receiver operating characteristic
curve. (3) The time selection is the literature published in 2014 and
later in the past 10 years. (4) Except for the GLAS and RITE public
datasets, most of them are self-built datasets, which reviewed the data
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of thyroid patients for years, including thyroid ultrasound images
and thyroid pathological slices. The following summary measures
were used: machine learning method, sample size, performance
measure, and important features. In the early diagnosis of thyroid
diseases, the successful application of artificial intelligence
technology mainly focuses on two core areas: traditional machine
learning methods and deep learning methods.

(1) Traditional Machine Learning: The goal is to train
algorithms by analyzing data so that computers can automatically
identify and make appropriate decisions (22). Machine learning can
be divided into two main types of learning methods: supervised
learning and unsupervised learning, which are widely used in many
fields such as medical diagnosis, image recognition technology, and
sentiment analysis (23). The significant progress made by machine
learning in the field of medical image analysis has provided strong
technical support for the early screening of thyroid diseases. For
example, a study used a dataset from the UCI machine learning
library to train a multi-class SVM classifier to classify thyroid
diseases (24). The Thy-Wise model uses a random forest
algorithm to classify thyroid nodules, showing high accuracy and
specificity while reducing the rate of unnecessary biopsies (25).

(2) Deep Learning: Compared with traditional machine
learning methods, deep learning has powerful learning capabilities
and can better utilize data sets for feature extraction (26). The key
technologies of deep learning include convolutional neural network
(CNN), recurrent neural network (RNN) and U-Net (27). Deep
learning technology has shown great potential and advantages in
the classification, detection and segmentation of medical images.
For example, the application of U-Net model in biomedical image
segmentation (28) and the success of deep residual network in
image recognition (29) have demonstrated the effectiveness of deep
learning technology in processing complex medical image data.
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Proportion of traditional machine learning and deep learning publications.
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3 Results

3.1 Thyroid ultrasound image
recognition technology

Thyroid ultrasound diagnosis uses the principle of ultrasonic
wave propagation and reflection in human tissues. It transmits
ultrasonic waves to thyroid tissues through high-frequency probes,
collects the reflected echo signals, and forms ultrasonic images of
the thyroid gland. These images can clearly show the size, shape,
structure and blood flow of the thyroid gland, providing doctors
with rich diagnostic information. Due to its significant advantages
of fast imaging, non-invasiveness and no radiation, it has become a
widely used and trusted examination method (30-32). Although
ultrasound technology has many significant advantages, it also faces
some inherent limitations. First, it is unavoidable interference noise
and possible artifacts. Second, the shape of thyroid nodules is
complex and changeable, blurred, and discontinuous. The
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boundary characteristics. Third, it is limited by the subjective
experience of doctors. These problems have brought certain
challenges to accurate diagnosis (33, 34). Therefore, exploring the
application of artificial intelligence technology to assist in the
diagnosis of thyroid ultrasound has become a research hotspot.
Table 1 shows some specific achievements artificial intelligence in
the recognition of thyroid ultrasound images.

3.1.1 Traditional machine learning

In previous studies, ultrasound thyroid nodule segmentation
methods can be roughly divided into four categories: shape and
contour-based (46), region-based (47), machine learning-based
(48), and hybrid methods (49).

At the beginning of the introduction of artificial intelligence
technology in the medical field, researchers mainly relied on
traditional machine learning algorithms. Therefore, the traditional
machine algorithm was applied to the diagnosis of thyroid
ultrasound images, aiming at improving the diagnostic speed and

TABLE 1 The main results of machine learning algorithms in the study of thyroid nodule ultrasound images.

Published Reference Type of DL Main Performance Conclusion

year

2017 Raghavendra et al. (35) SVM ACC: 97.5%, 242 ultrasound images spatial gray-level dependence

AUC: 94% features (SGLDF) and
fractal texture.

2017 Ma et al. (36) CNN ACC: 91.5% 22123 ultrasound images A multi-view
strategy is used to improve the
performance of the CNN
based model.

2019 Nguyen et al. (37) DCNN Accuracy: 90.88% 237 nodules cascade classifier

2019 Fu et al. (38) RFE,SVM RF AUC: 95.4%, 1179 nodules(including 501 = The performance of RF and

SVM AUC: 95.4% benign and 678 malignant) SVM is superior to
other methods.
2020 Shin et al. (39) SVM ACC: 69.0%, 348 nodules GLCM, GLRLM, Gabor, and
Specificity: 79.4%, Haar wavelet
Sensitivity: 41.7%
2021 Vadhiraj et al. (40) MIL ACC: 96% 99 patients (33 benign, GLCM
66 malignant)

2021 Peng et al. (41) ThyNet AUR: 92.2% 18049 ultrasound images The proportion of missed
malignant thyroid nodules
has decreased.

2022 Zhou et al. (42) MSA-UNet ACC: 94.6%, 1083 patients Atrous Spatial

Dic: 84.6% Pyramid Pooling.

2023 Li et al. (43) WSDAC Dic: 87% 350 ultrasound images Models can reduce the
workload of labeling datasets.

2024 Chen et al. (44) CNN CNN AUC: 91%, 11201 ultrasound images The article conducted

Inception-ResNet substantial, non-substantial,

AUC: 94% and benign malignant
classification studies on
ultrasound images. Inception-
ResNet, due to the expertise of
a senior doctor.

2024 Ma et al. (45) KNN ACC: 86.7% 508 ultrasound images The study considered the
impact of different distance
weights, k-values, and distance
metrics on the
classification results.
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accuracy of benign and malignant nodules. In 2017, Raghavendra
(35) designed a computer-aided diagnosis system (CAD) for the
diagnosis of nodules. The system identifies the lesion area by
integrating spatial gray-level dependence features (SGLDF) and
fractal texture. This feature fusion-based approach achieved an
accuracy of 97.5% and an AUC value of 94% for the support
SVM using only two features, which is about 3.5% higher than the
performance of the SVM proposed by Acharya et al. (50) How to
use the right features to improve classification performance has
always been a challenge.

Shin I (39) developed an artificial neural network (ANN) based
on SVM for the classification model of thyroid tumors in 2020,
using 348 preoperative ultrasound images of thyroid nodules as the
dataset, and selected 10 important features as the feature input of
the model. Then, the effect of the model was compared with the
results of manual diagnosis by experienced radiologists. The results
showed that the sensitivity, specificity and accuracy of the model
were 32.3%, 90.1% and 74.%, respectively, while the sensitivity,
specificity and accuracy of the diagnosis by general physicians were
24.0%, 84.0% and 648%. It was proved that the classifier model of
machine learning may be helpful in the diagnosis of thyroid cancer.

In 2021, Vadhirajt (40) developed a computer-aided diagnosis
system integrating multiple instance learning (MIL) to classify
benign and malignant thyroid ultrasound images. Seven
ultrasound image features were extracted using the gray-level co-
occurrence matrix (GLCM) with an accuracy of 96%. Ma (45)
proposed an improved KNN algorithm for automatic classification
of thyroid nodules. The paper not only considered the number of
class labels of various data categories in KNNs, but also considered
the corresponding weights, using the Minkowski distance
measurement. Using 508 thyroid nodule hyper images, the
improved KNN accuracy was 86.7%. Through summarizing and
analyzing the previous studies, we find that different feature
selection will have a certain impact on the accuracy of the model.

At the same time, in order to evaluate which algorithm in linear
and nonlinear machine learning is better for the benign and
malignant classification diagnosis of thyroid nodules, Fu (38)
used three linear and five nonlinear machine learning algorithms
to evaluate 1039 patients with a total of 1179 nodules. Experimental
results have shown that the AUC of machine learning models is
higher than that of experienced radiologists. Among them, the AUC
of RF and SVM methods in nonlinear machine learning is the
highest, both at 95.4%, while the AUC of experienced doctors is
only about 83%.

At present, a large number of computer-aided diagnosis systems
based on traditional machine learning rely mainly on a variety of
texture features and machine learning algorithms differentiating the
benign and malignant nature of thyroid nodules, and their accuracy is
about 3% higher than that of general doctors. In order to further
improve the classification accuracy, the researchers adopted a variety
of optimization methods, such as GLCM, SGLDF, to fine-tune the
input features and parameters of the machine learning models,
making these models show applicability in thyroid diagnosis.
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3.1.2 Deep learning

With the continuous advancement of artificial intelligence
technology, the application of deep learning in the medical field
has become the focus of research. In 2017, Ma (36) first attempted
to use a CNN-based model for thyroid nodule segmentation and
compared this method with six methods including GA-VBAGC, JET,
DRLS, SNDRLS, SVM-based method and RBFNN-based method.
The study used a total of 22123 thyroid ultrasound images from
three hospitals as the dataset. The results show that our proposed
CNN-based model has a good performance in the segmentation of
thyroid nodules with an accuracy of 91.5%. Peng (41) developed a
deep learning model based on ThyNet to distinguish benign and
malignant thyroid nodules, and the results showed that the AUC
was 92.2%, and the proportion of missed malignant thyroid nodules
decreased from 18.9% to 17.0%, reducing fine needle aspiration
examinations. In 2024, Chen (44) proposed a convolutional neural
network (CNN) model using 11201 images for training, validation
and testing. Experiments have shown that the AUC of the model in
the classification of benign and malignant thyroid nodules is higher
than 91%, among which Inception-ResNet has the highest AUC of
94%, and the performance of the model is better than that of
senior physicians.

In artificial intelligence applications, feature selection is key to
improving model accuracy. In 2019, Nguyen (37) developed a method
for extracting features from thyroid images, using a cascade classifier
architecture to improve performance of computer-aided diagnosis
systems for thyroid nodule classification. This method combined
handcrafted standards and deep learning, achieving a classification
accuracy of 90.8%. Gong (51) designed a new multi-task learning
framework to simultaneously learn nodule size, glandular location,
and nodule position, and proposed an adaptive glandular region
feature enhancement module to fully utilize thyroid prior
knowledge and use the prior to guide the feature enhancement
network to accurately segment thyroid nodules. Different radiomic
features were extracted from ultrasound images, including intensity,
shape, and texture feature sets.

Although the popularity of deep learning has significantly
improved the accuracy of image segmentation, problems with
datasets, especially the lack of precisely annotated datasets, can
still affect prediction accuracy of models. However, such data is
often difficult to obtain in the field of medical image analysis. To
solve this problem, Wang (52) proposed an attention-based semi-
supervised neural network for thyroid nodule segmentation. The
network can complete the thyroid ultrasound image segmentation
task using a small amount of fully annotated data and a large
amount of weakly annotated data. The article proposes two
attention modules, which realize the inhibition or activation of
bottom-up and top-down feature channels and image areas through
a trainable feed-forward structure, thereby improving network
performance. The Jaccard similarity coefficient of the semi-
supervised neural network based on attention is 74.91%, which is
4.9% higher than that of the semi-supervised model based on VGG.
The accuracy of benign and malignant thyroid tumor classification
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was improved from 91.67% to 95.00%, which proved that model
had good generalization ability.

Li (43) proposed a weakly supervised deep active contour model
for thyroid nodule segmentation, aiming to achieve accurate target
segmentation with a small amount of annotation information. The
experiment designed three modules: a weakly supervised learning
framework, a deep active contour model, and auxiliary edge
attention, which can reduce the annotation cost while
maintaining a certain segmentation accuracy. The dic value of the
model is 87%, which can reduce the workload of dataset annotation.

With the widespread application of deep learning, the U-net
algorithm was proposed. U-Net is a convolutional neural network
(CNN) structure widely used in deep learning, mainly for image
segmentation tasks (53, 54). Ding (55) mainly explored the
automatic segmentation technology of thyroid ultrasound images
based on U-net. The model embedded an improved residual unit in
the jump connection between the encoder and decoder paths and
introduced an attention gate mechanism to enhance the weights of
feature maps obtained from shallow and deep layers. Experimental
results show that the proposed method outperforms other U-
shaped models.

In 2020, Zhang (56) proposed two network structures, Cascade
U-Net and CH-UNet, for the segmentation and classification of
thyroid nodules. Cascade U-Net gradually refines the segmentation
results and improves the segmentation accuracy by cascading
multiple U-Net modules. CH-UNet combines dilated convolution
and hybrid attention mechanism to enhance feature extraction and
classification capabilities. Compared with the U-Net proposed by
RONNEBERGER (55), the dice of Cascade U-Net in the task of
thyroidodule segmentation increased by 2.9%. The dice of the U-
Net method by RONNEBERGER (57) was only 80.2%, which fully
validated effectiveness of the Cascade U-Net in the segmentation
and even classification tasks of thyroid nodules.

In order to accurately detect malignant nodules that are not
obvious and have confused boundaries in ultrasound images, and to
avoid confusion between tissue and malignant thyroid nod during
diagnosis, Yang (58) proposed a deep learning-based thyroid
malignant nodule segmentation method of DMU-Net. The
method uses the image context information in the U-shaped
subnetwork to accurately locate the malignant nodule region, and
then captures the fine details of theodule edges in the inverse U-
shaped subnetwork. The combination of U-shaped subnetwork and
inverse U-shaped subnetwork and the strategy of mutual learning
make the dic of DMU-Net on the-built dataset 82.77%, which is
25.86% higher than that of the traditional U-Net network. The

TABLE 2 Comparison of U-Net methods.

Reference Methods Recall = Accuracy Dice
Ronneberger (57) U-Net 86.1 93.2 80.2
Badrinarayanan (59) | SegNet 88.5 94 81.2
Zhou (60) UNET++ 85.9 93.8 80.8
Zhang et al. (56) Cascade U-Net 86.6 94.3 83.1
Zhou et al. (42) MSA-UNet 87 94.6 84.6
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research proves that DMU-Net can accurately locate the malignant
nodule area by extracting image context information in the U-
shaped subnetwork, extract more lesion area features, and help
radiologists diagnose thyroid diseases.

In 2022, Zhou (42) proposed an MSA-UNet model with a
multi-scale self-attention mechanism for thyroid nodule
segmentation. Depth wise separable convolution is used in the
Atrous Spatial Pyramid Pooling (ASPP) module, and then in the
decoder part, adjacent information of different scales is fused
through the channel attention mechanism, allowing the model to
learn more important features. The experimental results show that
the accuracy of this method is 94.6%, which provides a new research
idea for the early detection of thyroid nod. Comparison of accuracy
of different U-Net algorithms, as shown in Table 2.

Currently, the research focus of thyroid ultrasound images is
mainly on the segmentation and classification tasks of thyroid
nodules, but the potential intrinsic connection and mutual
influence between nodule characteristics and classification results
are often ignored. Thyroid nodule segmentation and classification
in ultrasound images are two fundamental but challenging tasks in
computer-aided diagnosis of thyroid diseases. Since these two tasks
are intrinsically related and share some common features, it is a
promising direction to jointly solve these two problems using multi-
task learning. However, previous studies have only demonstrated
inconsistent predictions between these related tasks. In order to
further exploit the effectiveness of the proposed task consistency
learning, Kang (61) designed a framework based on multi-task
learning (MS-MTL) to improve the performance of thyroid
segmentation and classification by improving the consistency
between tasks. The first stage of the network performs binary
segmentation and classification simultaneously, and the second
stage of the network learns multi-class segmentation. The article
verifies the feasibility of improving thyroid nodule segmentation
and classification performance through multi-task learning and
inter-task consistency loss.

The application of deep learning in thyroid ultrasound images
has broad significance and value. Various models have been applied
to the processing of thyroid ultrasound images, including
convolutional neural networks (CNN), U-net etc. By training a
large amount of data, these models can learn the key features in
ultrasound images for the classification and identification of
nodules, thereby reducing misdiagnosis and missed diagnosis
caused by human factors and helping to improve the early
diagnosis rate. The application of artificial intelligence technology
to assist in the early screening of thyroid diseases is not only limited
to the diagnosis of thyroid ultrasound pictures, but also shows
significant results in the recognition of thyroid pathology icons.

3.2 Thyroid pathology section
recognition technology

Thyroid pathology examination is a common diagnostic
procedure and an important part of the evaluation of thyroid
nodules, but there is significant variability in the assessment
thyroid cytology specimens by different pathologists and
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institutions. The sensitivity reported in the literature ranges from
68% to 98%, and the specificity ranges from 56% to 100%. In this
case, the use of machine learning can improve accuracy and help
standardize the diagnosis of thyroid pathological specimens (62).
The process of processing pathological images using convolutional
neural networks is shown in Figure 2.

One of the earliest studies on thyroid pathology was conducted
by Karakitsos (63), who investigated the ability of a learning vector
quantization (LVQ) neural network to distinguish benign from
malignant thyroid lesions. The model was trained by measuring 25
features such as size, shape, and texture of approximately 100 nuclei
in each case. The results of the study show that the LVQ neural
network can distinguish benign from malignant lesions very well,
with an accuracy of 90.6%.

In 2011 study also investigated the application of learning
vector quantization (LVQ) neural networks in differentiating
benign from malignant thyroid lesions using 335 fluid-based
cytology, fine needle aspiration (FNA), and Papanicolaou stain
specimens. Features extracted by a custom image analysis system
were first used to classify each nucleus using an LVQ neural
network, and then a second LVQ neural network was used to
classify individual lesions. The system was able to distinguish
between benign and malignant nuclei and lesions at both the
cellular and patient levels (64). Lee (65) developed a machine
learning algorithm (MLA) that can classify human thyroid cell
clusters by utilizing Papanicolaou staining and intrinsic refractive
index (RI) as relevant imaging contrast agents and evaluated the
impact of this combination on diagnostic performance. The
accuracy of the MLA classifier for 1535 thyroid cell clusters from
124 patients using color images, RI images, and both was 98.0%,
98.0%, and 100%, respectively. The importance of this study lies in
the fact that it compares a variety of different diagnostic techniques
to improve the accuracy and efficiency of thyroid cancer diagnosis,
with MLA classifier achieving the highest accuracy.

Artificial intelligence technology not only achieves precise
classification and recognition functions in the processing of
thyroid pathological images, but also shows strong prediction
capabilities. Improving the of malignant tumor prediction can
reduce the incidence of unnecessary surgery. Elliott (66) created a
machine learning algorithm (MLA) based on two CNNs to identify
follicular cells and predict the malign of the final pathology. The
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AUC of the model reached 93.2%, which is equivalent to the AUC
of 93.1% diagnosed by cell pathologists, demonstrating the
effectiveness of the algorithm. Wang (67) developed a prediction
system for benign and malignant medullary thyroid cancer and
goiter based on SVM and RF algorithms. For the classification of
PTC and nodular goiter (NG), the SVM and RF algorithms
performed equally well, with 94.2% and 94.4% consistency
between the prediction and pathological diagnosis. The system
can shorten the diagnosis time of doctors, making the diagnosis
time of each sample only 10 minutes, which is very promising for
the diagnosis papillary thyroid carcinoma during surgery. This
method can also correctly predict the malignancy of a medullary
thyroid carcinoma and a follicular thyroid adenoma.

Due to the combined effect of genetic variants, environmental
exposure, and immune genetic risk (68, 69), new types of thyroid
tumors, as” non-invasive follicular thyroid neoplasm”(NIFTP), have
emerged, which has complicated the cytology of thyroid cells, and a
lot data have been classified into the category of uncertainty (70).

Hirokawa (71) proposed an artificial intelligence image
classification system of EfficientNetV2-L, which proved the
efficiency and of artificial intelligence image classification system
in identifying thyroid lesions. The research team used 148,395
thyroid pathology smear images from 393 thyroid nodules as the
dataset. The researchers reported that the AUC of EfficientNetV2-L
exceeded 95%. However, the AUC for poorly differentiated thyroid
cancer was only 49%, showing significantly worse performance.

In another study, Yao (72) proposed a digital image analysis
method based on feature engineering and supervised machine
learning. They focused on cases of poorly differentiated thyroid
cancer that were later diagnosed as benign or follicular adenoma in
his tissue sections. The method was applied to 40 thyroid
pathological slices with high and low power microscopy, and the
AUC for the low power image model was 5%, and the AUC for the
high power image model was 74%. This method performs better
than cellular pathologists in classifying atypical follicular lesions.

The application of artificial intelligence in the field of thyroid
pathology image analysis not only significantly enhances the
accuracy and timeliness of diagnosis (73), but also relies on its
deep learning and image processing technology to realize the
analysis of pathological images such as follicular cell morphology
and arrangement. Accurate identification of subtle features such as
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pattern and abnormal proliferation. These key features are of
irreplaceable importance for accurately distinguishing benign and
malignant thyroid nodules. Compared with traditional manual
diagnostic methods, the integration of artificial intelligence has
greatly promoted the early detection, accurate diagnosis and
timely treatment of thyroid diseases, bringing patients a higher
survival rate and better quality of life.

4 Discussion

In recent years, the research, development and application of
artificial intelligence in the field of thyroid diagnosis have achieved
significant leaps, providing new horizons and broad possibilities for
optimizing the efficiency and accuracy of future diagnostic processes.
Especially in the early diagnosis of thyroid cancer, artificial
intelligence technology can automatically identify and evaluate
complex medical images through machine learning algorithms,
thereby improving the accuracy and efficiency of diagnosis.

In the application of thyroid ultrasound images, AI technology
has been shown to effectively assist radiologists in the diagnosis of
thyroid nodules. For example, one study showed that the
performance of an Al system in the diagnosis of thyroid nodules
was comparable to that of fine needle aspiration cytology (74). In
addition, AI technology also showed high accuracy and efficiency in
distinguishing benign from malignant thyroid nodules (75). Based
on the previous research, we find that the research methods of
thyroid ultrasound images mainly focus on traditional machine
learning and deep learning. In traditional machine learning, SVM
and RF have high accuracy in thyroid nodule classification due to
their superior binary classification performance.

The core concept of SVM lies in the strategy of structural risk
minimization, aiming to determine the optimal complexity of the
model a limited dataset, thereby enhancing the model’s general
prediction capability. The model parameters of SVM only depend
on the support vectors, which are the data points closest to the
decision boundary, and have no direct connection with other
points. This means that even with a small number of samples, as
long as these support vectors can fully reflect the overall distribution
characteristics of the data, SVM can construct an efficient and
accurate classification model. Therefore, SVM is particularly
suitable for dealing with thyroid datasets with a small sample size.

Compared with machine learning, deep learning has strong
learning ability and efficient feature expression ability, which can
automatically learn and extract high-level features in images and
can more comprehensively capture the details and context
information of images, thus improving the accuracy of
classification. The deep convolutional neural network (DCNN)
model proposed by Krizhevsky (76) achieved breakthrough
results in the ImageNet image classification. Therefore, the
current research focuses on the classification of thyroid
ultrasound and pathological images using deep learning.

Compared with traditional segmentation techniques, the
segmentation method based on deep learning does not rely on
hand-designed features, and the convolutional neural network
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(CNN) has shown excellent adaptability in the field of medical
image segmentation by virtue of its image hierarchical feature
representation capability. ROMAN (77) reviewed a large number of
deep learning-based medical image segmentation methods, among
which U-Net is the most typical. The core idea of U-Net is to adopt a
symmetric encoder-decoder architecture, which enables deep feature
extraction and precise pixel-level segmentation of the input. Liu (78)
proposed an automated segmentation algorithm for brain gliomas
based on a multi-U-Net network(MU-Net), and conducted
experiments on the BRATS2020 dataset. The results show that the
Dice coefficients of the MU-Net algorithm for the complete tumor,
tumor core, and enhanced tumor are 86.7%, 77.76%, and 76.21%,
respectively, which are 2.6%, 2.55%, and 2.41% higher than those of
the benchmark model, indicating better segmentation results. The
application of these technologies can not only help radiologists
diagnose thyroid diseases more accurately and improve diagnostic
efficiency, but also reduce their workload.

AT technology also shows great potential in the application of
thyroid pathology images. For example, Al technology has been used
in cytological analysis of thyroid fine needle aspiration biopsy to
distinguish papillary carcinoma from other types of thyroid cancer
(79). A hybrid framework combining artificial intelligence was
proposed in the study (80), which not only weighted the Thyroid
Imaging Reporting and Data System (TIRADS) features, but also
used the malignancy score predicted by the convolutional neural
network (CNN) to classify and diagnose the malignancy of
the nodules.

In summary, artificial intelligence technology has strong clinical
significance and application prospects in the application of thyroid
ultrasound images and thyroid pathological images. Not only has it
improved the accuracy and efficiency of diagnosis, assisted doctors
in decision-making, reduced the rate of misdiagnosis, but it can also
the allocation of medical resources, reduce unnecessary surgeries
and other invasive treatments through artificial intelligence-assisted
diagnosis, and reduce the economic burden and pain of patients.

With the continuous advancement of technology and the
deepening of clinical applications, artificial intelligence technology
has played an increasingly important role in the early diagnosis of
thyroid diseases, but the prediction of the postoperative life cycle of
thyroid cancer patients is equally important for doctors and patients.
This study (81) used artificial neural networks (ANN) to predict the
1-year, 3-year, and 5-year survival of thyroid cancer patients, with
accuracy rates of 92.9%, 85.1%, and 86.8%, respectively. Based on our
research results, artificial neural networks can effectively represent a
survival prediction method for thyroid cancer patients. Liu (9)
developed six machine learning models (SVM, XGBoost, LR, DT,
RF and KNN) based on the SEER database to predict lung metastasis
of thyroid cancer. Although the accuracy of the model is above 90%,
prospective studies are still needed to further verify the practicality of
the model. And because the genes of thyroid cancer patients may
undergo mutation, gene mutation increases the complexity of the
data, and the model may have difficulty accurately distinguishing
different of diseases. On the other hand, gene mutation may have a
complex interaction with other biomarkers or clinical information,

which may make a single classification algorithm fail to capture the
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information accurately (82), and all these will lead to a bias in the
accuracy of the algorithm model.

In the future, we will focus on optimizing the cutting-edge
exploration of machine learning algorithm models, integrating
patient pathological information, radiology and clinical
information, create a more powerful algorithm, aiming to build a
set of artificial intelligence system for the whole process. The system
will have the ability to deeply analyze massive clinical records and
molecular biology data to accurately predict the postoperative
survival of thyroid cancer patients, thereby assisting doctors in
tailoring more precise treatment strategies for each patient, thereby
significantly improving late-stage Prognosis and quality of life in
patients with thyroid cancer.

5 Conclusions

This paper reviews the latest application progress of artificial
intelligence technology in the field of medical diagnosis, focusing on
its potential in the early screening and diagnosis of thyroid. The
research hotspot has developed from the initial traditional machine
learning to deep learning algorithms, and U-Net has also become the
benchmark for most medical image segmentation with the encoder-
decoder architecture. Through the previous research, it aims to assist
clinicians in achieving intelligent and efficient early identification of
thyroid cancer, thereby improving the accuracy of early diagnosis for
patients enhancing the efficiency of doctors. Moreover, the article also
prospects the future trend of artificial intelligence in the field of
thyroid disease research, not only limited to thyroid pathology or
thyroid ultrasound but also creating artificial intelligence that
integrates thyroid ultrasound images and clinical data of thyroid
cancer, which is used to determine the diagnosis of thyroid cancer,
and can also accurately predict postoperative survival period of
thyroid cancer patients. It aims to provide new research directions
for scientific researchers, and bring more personalized treatment
plans for doctors and patients through the continuous progress of
artificial intelligence technology, treatment strategies, and improve
patients’ satisfaction and quality of life.
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short-range and long-range
dependent system for brain
tumor classification
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Technology, Luoyang, China, 2College of Information Engineering, Henan University of Science and
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Introduction: Brain tumors pose significant harm to the functionality of the
human nervous system. There are lots of models which can classify brain tumor
type. However, the available methods did not pay special attention to long-range
information, which limits model accuracy improvement.

Methods: To solve this problem, in this paper, an enhanced short-range and long-
range dependent system for brain tumor classification, named as EnSLDe, is
proposed. The EnSLDe model consists of three main modules: the Feature
Extraction Module (FExM), the Feature Enhancement Module (FEnM), and the
Classification Module. Firstly, the FExM is used to extract features and the multi-
scale parallel subnetwork is constructed to fuse shallow and deep features. Then, the
extracted features are enhanced by the FEnM. The FEnM can capture the important
dependencies across a larger sequence range and retain critical information at a
local scale. Finally, the fused and enhanced features are input to the classification
module for brain tumor classification. The combination of these modules enables
the efficient extraction of both local and global contextual information.

Results: In order to validate the model, two public data sets including glioma,
meningioma, and pituitary tumor were validated, and good experimental results
were obtained, demonstrating the potential of the model EnSLDe in brain
tumor classification.

KEYWORDS

brain tumor classification, feature extraction, feature enhancement, long-range
dependencies, attention

1 Introduction

The brain is the control center of the body, in addition to maintaining the normal
activities of our lives, it also controls our daily senses (hearing, sight, smell, etc.), cognition,
memory, thinking, emotions, and many other aspects of our lives (1). Undoubtedly, the
brain holds paramount importance in our lives. However, brain tumors stand as one of the
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most prevalent afflictions of the nervous system, capable of
significantly impairing its functionality. Timely detection of brain
tumors is essential for enhancing and prolonging patient survival
rates (2, 3). Tumors growing within the skull are generally known as
brain tumors, which encompass primary brain tumors originating
from brain tissue and secondary tumors that metastasize to the skull
from elsewhere in the body (4). The common types of brain tumors
include gliomas, meningiomas, and pituitary tumors (5).

Magnetic Resonance Imaging (MRI) and Computed
Tomography (CT) are two widely used imaging techniques in
medicine that play an important role in labelling abnormalities in
the shape, size or location of the brain (6). While CT is limited to
cross-sectional imaging, MRI offers the flexibility to image in
various orientations, including transverse, sagittal, coronal, and
any desired section. Additionally, MRI excels in providing clearer
differentiation of soft tissues in three dimensions compared to
conventional imaging methods. These advantages have made MRI
the most favored method among physicians and have led to
increasing interest among researchers. However, the analysis of
MRI images by medical professionals to discern the type of tumor is
a complex and time-intensive process. The accuracy of their
diagnosis can be influenced by the subjective expertise and skills
of the physician (7, 8). It is well known that early detection and
timely treatment are crucial for the recovery of brain tumor patients
(9). If the type of brain tumor can be accurately and early identified,
it will greatly increase the patient’s valuable treatment time and thus
significantly improve the likelihood of recovery.

Traditional Machine Learning (ML) has been widely used for
classification problems in Computer-Aided Diagnostic (CAD)
systems (10, 11). For example, Singh et al. (12) proposed a new
classification method using generalized discriminant analysis and
the 1-norm linear programming extreme learning machine. Shahid
et al. (13) used a feature selection algorithm to find the effective
feature subset, which was then used for classification by an Extreme
Learning Machine (ELM) based on hybrid particle swarm
optimization. Xie et al. (14) used the combination of Support
Vector Machine (SVM) and ELM for feature selection, and the
optimal features were used by the classifier to distinguish breast
tumor types. Heidari et al. (15) applied stochastic projection
algorithm to optimize the constructed SVM model embedded
with multiple feature dimensionality reduction methods to
improve the classification performance of the model.

Deep learning stands as a cutting-edge innovation in
classification and prediction, showcasing outstanding
performance in domains necessitating multi-level data processing
such as classification, detection, and speech recognition (16). Deep
learning has the capability to learn features from extensive image
data and extract high-level features from images through layer-by-
layer convolution and pooling operations, achieving automatic
classification of brain tumors. Compared to traditional image
processing methods, deep learning boasts superior feature
extraction capability, higher classification accuracy, as well as
automation and intelligence. In recent years, many studies have
explored the application of deep learning in diagnosing various
diseases. For example, Sarki et al. (17) classified mild and multiple
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diabetic eye diseases by fine-tuning and optimizing the VGG16
model. Jeong et al. (18) used Inception V3 deep learning model to
classify the presence or absence of cardiac enlargement, and the
classification accuracy reached 96.0%. Chowdhury et al. (19)
adopted the improved Xception model to diagnose hair and scalp
diseases and achieved a high accuracy rate. Sharifrazi et al. (20) used
Convolutional Neural Network (CNN) combined with k-means
clustering method to automatically diagnose myocarditis, with an
accuracy of 97.41%. The lesion area in brain tumor images
constitutes only a small portion of the entire image. Furthermore,
when distinguishing between types of brain tumors, both the tumor
region and its surrounding area exert a significant impact on the
classification results (21). In addition, multi-scale feature fusion has
been widely applied to object detection, image segmentation, image
classification, and other fields. Multi-scale networks are capable of
simultaneously extracting features at different scales in images,
thereby more comprehensively capturing the details and overall
information of target objects. For example, in object detection tasks,
small-scale features can be used to detect small objects, while large-
scale features are helpful for detecting large objects. Features at
different scales provide different contextual information, and multi-
scale networks can eftectively integrate this information, offering a
more comprehensive and rich visual context. Multi-scale networks
can handle input data at different scales, and this characteristic
significantly enhances the algorithm’s robustness and generalization
performance in complex scenarios (22). A common method for
multi-scale feature fusion is the pyramid structure. The pyramid
structure extracts features at different scales and then fuses these
features to obtain a more comprehensive feature representation.
Specifically, improved methods based on the Feature Pyramid
Network (FPN) architecture achieve deep integration of cross-
scale features by constructing multi-level pyramid-like feature
representations (23, 24).

However, most previous studies did not pay special attention to
the surrounding areas of tumors, i.e., lacking the ability to capture
long-range information, which would affect the performance of
classification. To overcome the shortcoming, this study proposes a
new multi-class brain tumor classification model with enhanced
short-range and long-range dependence, named as EnSLDe. The
model not only has the ability to capture short-range and long-
range dependencies, but also retains local key information. It
consists of three main modules: the Feature Extraction Module
(FExM), the Feature Enhancement Module (FEnM), and the
classification module.Within the FExM, convolutional layers are
combined with residual connections to extract features, while
incorporating an Effective Multi-scale Attention (EMA)
mechanism that simultaneously focuses on channel-wise and
spatial information. The FEnM further strengthens feature
representation, enabling capture of crucial long-range
dependencies while retaining key information within the local
range. The classification module adopts a two-layer fully
connected structure combined with dropout regularization for
brain tumor classification. This approach enhances the model’s
generalization ability, reducing the risk of overfitting, and further
improves the classification performance of the model. We utilized
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two datasets to evaluate the model performance: a three-category

dataset comprising gliomas, meningiomas, and pituitary tumors,

and a four-category dataset including additional healthy categories.
The main contributions of this study are as follows:

A new model with enhanced short-range and long-range
dependence is proposed to classify brain tumor images
from MRL

» FExM is used to extract features from brain tumor images.
The EMA module of FExM integrates channel attention
and spatial attention to provide a more comprehensive
feature representation.

e The FEnM is used to capture important dependencies
across larger sequence scales. And it can also cooperate
with the global adjustment network to fuse the retained
local information with different levels of deep features.

* EnSLDe employs multi-scale parallel subnetworks that
integrate shallow and deep features. This architecture
enables the model to capture comprehensive contextual
information across varying scales, which is critical for
distinguishing between diverse tumor types.

* Based on experimental results using two public datasets, the

proposed method exhibits excellent performance.

2 Related works

Classification of brain tumors is critical for evaluating tumors
and determining treatment options for patients. There are already
many CAD systems used in medical industries to help doctors make
diagnoses. There have been many methods to classify brain tumors,
which can be roughly divided into traditional ML methods, deep
learning methods, and hybrid methods.

In the past, traditional ML has been used to classify brain
tumors. For example, Bansal and Jindal (25) utilized a combination
of grayscale co-occurrence matrix technology and shape-based
feature technology to extract mixed features from the tumor area.
Subsequently, a hybrid classifier consisting of Random Forest
Classifier (RFC), K Nearest Neighbors (KNN) classifier, and
Decision Tree (DT) classifier was used to classify brain tumors.
26 performed image segmentation through a marker-based
watershed algorithm, then combined features with a sequence-
based cascade method, and finally used SVM for classification.

In traditional ML, relevant domain knowledge is needed for
feature extraction, while features can be automatically extracted by
deep learning. The development of deep learning methods has had a
significant impact on the field of medical image analysis
applications, especially in disease diagnosis (27). Recently, deep
learning has achieved remarkable results in brain tumor
classification. For example, Raza et al. (28) proposed a hybrid
deep learning model based on the GoogLeNet architecture. The
last five layers of GoogLeNet were removed and 15 new layers were
added to achieve high accuracy. Diaz-Pernas et al. (29) proposed a
multi-scale processing based on CNN architecture design for brain
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tumor classification. The elastic transformation data expansion
method was used to increase the training dataset and prevent
over-fitting. Finally, 97.3% classification accuracy was achieved.
Ayadi et al. (30) proposed an innovative brain tumor
classification model based on CNN architecture, automated
processing and minimizing preprocessing requirements. To fully
evaluate the accuracy of the model, it was tested on three different
brain tumor datasets. Various performance indicators are analyzed
in depth. Sreenivasa Reddy and Sathish (31) proposed a brain
tumor classification and segmentation scheme based on deep
structured architecture. Firstly, adaptive ResUNet3+ with multi-
scale convolution was used to process the collected data. Then, the
parameters of the deep learning method were optimized and
adjusted through the arithmetic optimization algorithm
accelerated by the improved mathematical optimizer. Finally, an
attention-based ensemble convolutional network was introduced
for brain tumor classification. The model demonstrated excellent
performance in both segmentation and classification accuracy. P.
Ghosal et al. (32) integrated the residual network architecture with
the Squeeze and Excitation block to enhance feature extraction and
refinement. Islam et al. (33) optimized the EfficientNet series for the
purpose of brain tumor classification, with EfficientNetB3
demonstrating superior performance. Aurna et al. (34) utilized
multiple MRI datasets and performed feature extraction by
combining pre-trained models and newly designed CNN models.
Among the extracted features, Principal Component Analysis
(PCA) was used to select key features and input them into the
classifier. Musallam et al. (35) proposed a three-step preprocessing
to improve the quality of MRI images and a new Deep
Convolutional Neural Network (DCNN) architecture with 10
convolutional layers. Kumar and Sasikala (36) fused the features
extracted from the shallow and deep layers of the pre-trained
Resnet18 network, and then adopted a hybrid classifier composed
of SVM, KNN, and DT optimized by the Bayesian algorithm
perform classification.

In addition, in order to further improve the accuracy and
efficiency of brain tumor classification models, optimization
algorithms could be used in deep learning. For example, Alshayeji
etal. (37) attained a classification accuracy of 97.374% for automatic
brain tumor classification by combining the layers of two CNN
architectures and fine-tuning the hyperparameters through
Bayesian optimization. Irmak (38) used CNN and grid search
optimization algorithms to propose three different CNN models
to complete three different classification tasks. Almost all
hyperparameters in the model were tuned by grid search
optimization algorithms. Rammurthy and Mahesh (39) used
Whale Harris Hawks Optimization (WHHO), which was a
combination of Whale Optimization Algorithm (WOA) and
Harris Hawks Optimization (HHO) to optimize the deep
convolutional network. Alyami et al. (40) used deep convolutional
networks and the slap swarm algorithm to classify brain tumors
from brain MRI. To enhance the accuracy of classification, an
efficient feature selection technique—the slap swarm algorithm was
introduced. This technique helps to identify key features that
significantly influence the classification results while excluding
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those with minor contributions, thereby ensuring that the
classification model achieves optimal accuracy.

It is noteworthy that Transformer models have also been
employed in brain tumor classification tasks. Sudhakar Tummala
et al. (41) investigated the capability of pretrained and fine-tuned
Vision Transformer (ViT) models for brain tumor classification
using MRI images. GAZI JANNATUL FERDOUS et al. (42)
proposed a novel Linear Complexity Data-efficient Image
Transformer (LCDEIT). The LCDEIT adopts a teacher-student
strategy, where the teacher model is a customized gated pooling
convolutional neural network (CNN) responsible for transferring
knowledge to the transformer-based student model. The student
model achieves linear computational complexity through an
external attention mechanism. Asiri et al. (43) employed Swin
Transformer for multi-class brain tumor classification. Tapas
Kumar Dutta et al. (44) developed GT-Net for brain tumor
classification tasks. The core component of this model is the
Global Transformation Module (GTM), which contains multiple
Generalized Self-Attention Blocks (GSB) designed to explore long-
range global feature relationships between lesion regions.

These studies, whether based on traditional ML methods, deep
learning approaches, or hybrid methodologies, have achieved
notable success in brain tumor classification. Many deep learning
models (e.g., CNNs) automatically extract features but typically
focus on local or global information rather than both. For instance,
architectures like Inception-v3, ResNet, and DenseNet demonstrate
strong performance yet generally emphasize localized details or
global context without comprehensive integration. Hybrid
approaches combining traditional machine learning and deep
learning techniques may still fail to fully exploit multi-scale
feature fusion or advanced attention mechanisms. While some
models employ attention mechanisms, they often prioritize either
channel-wise or spatial attention. This paper proposes a novel
model named EnSLDe (Enhanced Short- and Long-range
Dependency Extractor), designed to strengthen both short-term
and long-range dependencies while preserving essential local
information. EnSLDe uniquely integrates short- and long-range

10.3389/fonc.2025.1512739

dependencies through its FExM and FEnM. This dual processing
proves critical for concurrently capturing localized tumor details
and global contextual patterns in brain MRI images.

3 Proposed method

This section introduces our proposed brain tumor classification
framework, which is shown in Figure 1. The training and testing
phase of the proposed system works as follows:

. The brain MRI dataset is divided into two disjoint sets: a
training set and a test set.

. Data augmentation techniques such as random rotation,
random horizontal and vertical flipping are applied to the
training dataset to mitigate overfitting issues.

. The proposed network is trained by selecting appropriate
hyperparameters and specifying the cross-entropy
loss function.

4. Once training is completed, the trained model is saved.

. The model is validated on a randomly partitioned test
dataset, and the performance of the model is evaluated.

3.1 Proposed brain tumor classification
model

The EnSLDe consists of three main modules, namely feature
extraction module, feature enhancement module and classification
module, which is shown in Figure 2. Since both local and long-range
dependent features play a crucial role in effectively classifying brain
tumors from MRI images, the EnSLDe employs FExM and FEnM to
extract and enhance these features. The classification module
comprises two fully connected layers integrated with Dropout
regularization, which enhances the model’s generalization ability.
Moreover, the stacked utilization of two fully connected layers can

FIGURE 1
The proposed framework for brain tumor classification system.
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FIGURE 2
The proposed model.

amalgamate and transform features, thereby capturing more
information and optimizing the representation capabilities of
features to enhance model performance.

3.1.1 The feature extraction module

The feature extraction module consists of layerl, layer2, layer3-
1, layer3-2, layer3-3, layer4-1, layer4-2, and layer4-3, and is used to
extract multiple depth-level features from brain tumor images. The
Feature Extraction Module (FExM) was designed to extract features
from multiple intermediate layers to simultaneously capture short-
range and long-range dependencies. This multi-scale parallel sub-
network fuses shallow features (which retain fine-grained details)
with deep features (encoding abstract, high-level contextual
information). The selection of feature extraction layers was guided
by empirical validation through ablation studies, which
demonstrated that combining multiple layers achieved higher
classification accuracy compared to those obtained using a single
layer of features. Inspired by the C3 module in YOLOvV5 and
integrating the Effective Multi-scale Attention (EMA) proposed
by (Ouyang et al. (45), we have developed a novel Conv and
Depthwise_conv with EMA (CDE) module, as illustrated in
Figure 3. The CDE module consists of a residual network and
EMA. The structure of the residual network involves adding skip
connections on top of the serial connection of two convolutional
layers and a depthwise separable convolutional layer. This allows for
the direct addition of input and output. Subsequently, the output
features of the entire residual network are processed by EMA.
Incorporating the residual network into the CDE module effectively
alleviates the issues of gradient explosion or vanishing, making the
model training process more stable and easier to optimize.

Additionally, depthwise separable convolution is used by CDE
module, which significantly reduces computational costs while
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maintaining powerful feature extraction capabilities, thus
achieving a good balance between efficiency and performance.
The inclusion of EMA allows the CDE module to form multi-
scale parallel subnetwork while extracting features, which fuses
shallow and deep features. This further enhances feature extraction
and strengthens short-range and long-range dependencies.
Moreover, it reshapes part of the channel dimensions into batch
dimensions, effectively avoiding potential information loss caused
by dimensionality reduction through conventional convolution.
This improvement not only reduces computational overhead but
also allows the model to focus more on extracting key features while
retaining information from each channel. Layerl consists of two
convolutional layers and is mainly used to extract shallow image
features. Layer2 consists of the residual network in the CDE
module. layer3-1, layer3-2, and layer3-3 are all composed of CDE
modules. Layer4-1, layer4-2, and layer4-3 are all composed of
convolutional layers with a convolution kernel size of 1x1, which
are used for channel dimensionality reduction after feature fusion.

The EMA divides the channel dimension of input feature maps
into multiple sub-features and redistributes spatial-semantic
features within each feature group. Specifically, EMA avoids
traditional channel dimensionality reduction operations by
reshaping the channel dimension into the batch dimension. This
design enables EMA to model inter-channel dependencies through
standard convolution operations without losing channel
information. The EMA employs three parallel branches to extract
attention weights:

1. 1x1 Branch: Encodes channel attention along horizontal and
vertical directions using two 1D global average pooling
operations, thereby capturing long-range spatial dependencies
while preserving precise positional information.

frontiersin.org


https://doi.org/10.3389/fonc.2025.1512739
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Chen et al.

2. 3x3 Branch: Captures multi-scale feature representations
through a 3x3 convolution kernel to expand the
feature space.

3. Cross-Space Interaction: Fuses output feature maps from
the two parallel branches via matrix dot product operations
to capture pixel-level pairwise relationships and highlight
global contextual information.

For an input featureX€R“>™W it is first partitioned into G

sub-features, each with a shape of (C/G) x HXW. In the 1x1 branch,

two 1D feature vectors Zy and Zy, are obtained by encoding
channel attention through 1D global average pooling along
horizontal and vertical directions, respectively. Z;; and Zy, can be

calculated by Equation 1:

|
y

Conv

v

Depthwise conv

v

Conv

a9
N

v
EMA

FIGURE 3
The structural diagram of the CDE module
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H
ZH = Exc,j (1)
=1
H
Zy = E}Cc,j

=1

where, x.; and x.; denote the eigenvalues of the ¢ channel in the
horizontal and vertical directions, respectively. The vectors Zy and
Zyw are processed through 1x1 convolutions and the Sigmoid
function to generate the channel attention maps Ay and Ay, can
be calculated by Equation 2:

Ay = o(conv(Zy)) 2

Ay = o(conv(Zy))

Where, ¢ denotes the Sigmoid function. In the 3x3 branch,
multi-scale feature representation Fj.; is captured by the 3x3
convolution operation as shown in Equation 3:

F3,3 = Convs,3(X) (3)

The final output feature map Y is obtained by fusing Ayyand Ay,
matrix dot product is performed by Fs.s, and the calculation
formula is shown in Equation 4:

Y =0(Ay - Ay - F343) 4)

3.1.2 The feature enhancement module

The Explicit Visual Center (EVC) method (46) is used to
enhance the features extracted by the model. The EVC can
effectively extract global long-range dependencies from images
while preserving crucial local information. The EVC combines a
Multi-Layer Perceptron (MLP) based on top-level features with a
Learnable Visual Center (LVC) mechanism, both of which operate
in parallel to complement each other. The MLP is responsible for
capturing the global long-range dependencies of the image,
effectively addressing complex long-range dependency issues, and
enhancing the model’s perception of global information.
Meanwhile, the LVC operates along the path of the MLP,
focusing on preserving the crucial local information of the image
to ensure that the model does not lose important local details while
attending to the global context. For input F;,, the equation is
calculated as follows (Equation 5):

F = Cat(MLP(F,,), LVC(F,,)) (5)

in the LVC model, the input (X) is mapped to a set of (C)-
.., X,}), where (N=HxW)
represents the total number of input features. Subsequently, LVC
computes an intrinsic codebook (B = {bl, b2, ..., b}), which

dimensional features, ({X;, = x;, X

includes (K) codewords (or visual centers) along with a set of
smoothing factors (S = {s;, s ..., s}). The feature encoding is
achieved through a series of convolutional layers. The encoded
features are then matched against each codeword in the codebook.
The discrepancies between the features and the codewords are
computed, and learnable weights are derived from these
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differences. The ultimate output is a (C)-dimensional vector (e)
(Equation 6).

e_skai_kaZ

¢ =3 by ©)
i=1

K oSl hl G
=

The output of LVC is obtained by summing the features vector
(X;,) and the local features (Z) for each channel, as shown in

Equation 7.

Xout = Xin ez (7)

here, the local feature (Z) is derived by applying a Fully
Connected (FC) layer that maps the feature (e) to an influence
factor of dimensions Cx1x1. Subsequently, a channel-wise
multiplication operation is conducted with (X;,). The output
following the Feature Enhancement Module is then obtained as
follows (Equation 8):

F = Clll’(XEvc,Xd) (8)

where, F represents the fusion feature, Xgyc denotes the feature
output from the EVC, and X, signifies the depth feature derived
from various levels.

3.2 Loss function

The loss function we used during model training is the cross-
entropy loss function (47). One can assume there are n classes, where
the true label is represented by a K-dimensional vector y (with only one
element being 1 and others being 0), and the model output probability
is represented by a K-dimensional vector y’ (with each element ranging
from 0 to 1 and summing up to 1). The formula for multi-class cross-
entropy loss function is defined as shown in Equation 9.

Loss = —éy,v log y;’ )

i=1
where, # is the number of categories, y; is the i-th element of the
true label vector y, and y;’ is the i-th element of the model output
probability vector y;.
The cross-entropy loss function is an efficient loss function in
classification problems as it accurately measures the similarity
between the true label distribution and the model’s predicted

TABLE 1 Details of the datasets used in this study.

10.3389/fonc.2025.1512739

label distribution. Specifically, a smaller cross-entropy value
indicates a closer resemblance between these two probability
distributions, implying more accurate predictions by the model.
When there is a significant disparity between the true and predicted
distributions, the cross-entropy loss function yields a large loss
value. This characteristic enables the model to update parameters
more quickly during training, thus accelerating the learning process.
The amplifying effect of the cross-entropy loss function makes the
model more sensitive to prediction errors during training,
facilitating more effective adjustment of model parameters and
reducing the likelihood of erroneous predictions. Therefore, the
cross-entropy loss function is well-suited as a loss function for
classification models, particularly excelling in handling multi-class
classification problems.

4 Results and discussion

This study was conducted on a computer equipped with
RTX3080 graphics card of 10 GB video memory and 64 GB
of RAM.

4.1 Brain tumor dataset and preprocessing

In this paper, two publicly available brain tumor MRI datasets are
applied for the brain tumor multi-classification task. Details of these
two datasets are provided in Table 1. Both Cheng dataset and BT-
large-4c dataset contain different views of brain anatomy: axial,
coronal and sagittal views. Additionally, both datasets contain
different numbers of brain tumor categories obtained from different
patients with differences in tumor grade, race, and age. The Cheng
dataset contains 3 types of brain tumors, namely glioma, meningioma
and pituitary tumor. Among them, there are 1426 glioma images, 708
meningioma images and 930 pituitary tumor images, for a total of
3064 grayscale brain Magnetic Resonance (MR) images (48). The BT-
large-4c dataset consists of 3264 brain MR images, including 926
glioma, 940 meningioma and 901 pituitary tumor images, and the
remaining 497 normal images (49). These two datasets are split into
80% for training and 20% for testing.

During the dataset preprocessing phase, we implemented an
efficient and streamlined data preprocessing protocol. To ensure

NO. Dataset name Classes Number of Each class Total number of images
Glioma 1426
1 Cheng Meningioma 708 3064
Pituitary 930
Glioma 926
Meningioma 940
2 BT-large-4c 3264
Pituitary 901
No tumor 497
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image content integrity and feature stability in experimental
settings, all images were uniformly resized to dimensions of
224x224x3 pixels. This standardized resizing not only preserves
the spatial structure and informational completeness of images but
also significantly reduces computational overhead during network
training, thereby enhancing training efficiency. Additionally, a
standardization procedure was applied—a conventional
preprocessing technique in deep learning—to mitigate variations
in illumination, contrast, and other attributes across images,
enabling the model to focus on learning intrinsic features.
Considering that deep neural networks typically require large-
scale datasets for training while our study employed a relatively
limited dataset, data augmentation strategies were systematically
deployed to alleviate overfitting. Specifically, techniques including
random rotation, cropping, and horizontal flipping were
implemented. These operations effectively enhanced dataset
diversity without introducing additional noise, thereby
strengthening the model’s generalization capabilities.

4.2 System implementation and evaluation
metrics

During the model training process, we will fine-tune
hyperparameters such as batch size, optimizer type, learning rate,
epochs, and loss function based on experience and actual
requirements. The objective of this process is to identify the
optimal combination of hyperparameters to enhance the model’s
performance and achieve the desired training outcomes. In this
model, we employ the Adam optimizer with an initial learning rate
of 0.001, 150 epochs, and a mini-batch size of 16 samples.

In this study, the performance of the proposed method is given
by accuracy, recall, precision, and F1 -score (Cohen’s) were used for
evaluation Kappa(k), Matthews Correlation Coefficient (MCC) are
given by this is given by Equations 10-15 (50):

TP + TN

A - 10
COUTaSY = TP Y TN + FP + FN (10)

10.3389/fonc.2025.1512739

TP
Recall = ———— 11
TP+ EN (1)
Precision = TP (12)
" TP + FP
2 X Precision x Recall
F1 - score = — (13)
Precision + Recall
K = Do — Pe (14)
1-p,
TP x TN — FP x FN
MCC = X x (15)

/(TP + FP)(TP + EN)(TN + FP)(IN + FN)

where, True Positives (TP) are the number of actual and
predicted positives. True Negatives (TN) are the number of
negatives that are both actual and predicted. False Positives (FP)
are the number of actual negatives that are predicted to be positive.
False Negatives (FN) are the number of actual positives that are
predicted to be negative. p, is the proportion of inter-observers who
actually agree. p, is the proportion of agreement expected based on a
random assignment.

4.3 Experimental results

The proposed method is applied to the Cheng dataset and the
BT-large-4c dataset for classification, and the corresponding
confusion matrix is generated, as shown in Figures 4A, B. In
these matrices, the label “G” represents glioma, “M” represents
meningioma, “P” represents pituitary tumor, and “N” represents no
tumor. The confusion matrices vividly illustrate the classification
performance of the model for each category. Additionally, the
detailed values of model metrics obtained on the Cheng and BT-
large-4c datasets are shown in Table 2. These metrics offer a
quantitative basis for comparison, facilitating the evaluation of
the model’s performance and comparison with other methods. It
is noteworthy that on the Cheng dataset, our model demonstrated
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Confusion matrix of the proposed model (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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TABLE 2 Detailed metric values of the proposed model on Cheng and BT-large-4c datasets.

Dataset Tumor type  Precision Recall Fl-score Accuracy K Mcc
Glioma 0.9894 0.9860 0.9877
Meningioma 0.9718 0.9787 0.9753

Cheng 0.9869 0.9795 0.9795
Pituitary 0.9946 0.9946 0.9946
Average 0.9853 0.9864 0.9859
Glioma 0.9626 0.9677 0.9651
Meningioma 0.9572 0.9521 0.9547

BT-large-4c No tumor 0.9700 0.9700 0.9700 0.9710 0.9607 0.9607
Pituitary 0.9945 0.9945 0.9945
Average 0.9711 0.9711 0.9711

exceptionally high classification performance, achieving an
accuracy of 98.69%. Similarly, on the BT-large-4c dataset, the
model achieved a classification accuracy of 97.10%. The total
number of parameters in the EnSLDe model is 87 million (87M).
The total memory size required for the model during operation
(including training and inference) is 2792.73MB. The memory size
required for one forward and backward propagation process in the
model is 2459.25MB.

The Receiver Operating Characteristic (ROC) curve is a graphical
tool used to represent the performance of a classification model. It
effectively evaluates the performance of the model under different
classification thresholds by taking the False Positive Rate (FPR) and
True Positive Rate (TPR) as the horizontal and vertical coordinates.

The Area Under the Curve (AUC) quantitatively assesses the quality
of the classification model. Higher AUC values indicate better model
performance, with values closer to 1 indicating more ideal
classification performance. Specifically, the ROC curves of our
proposed model on the Cheng dataset and BT-large-4c dataset are
depicted in Figures 5A, B, respectively. On the Cheng dataset, the
AUC values for glioma, meningioma, and pituitary tumor in our
proposed model are 0.9982, 0.9991, and 1.0000, respectively. On the
BT-large-4c dataset, the AUC values for glioma, meningioma,
pituitary tumor, and no tumor in our proposed model are 0.9941,
0.9921, 0.9999, and 0.9967, respectively. These results indicate that
our proposed model exhibits excellent classification performance on
both the Cheng dataset and BT-large-4c dataset.

Receiver operating characteristic curve
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ROC curve for EnSLDe (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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4.4 Ablation experiment

This ablation experiment aims to comprehensively evaluate the
impact of attention module, FEnM and data enhancement on
model performance. The following three subsections will
demonstrate in detail the contribution and importance of these
three key components to model performance.

4.4.1 The impact of the attention module on the
model

In this section, the influence of various attention modules on
our proposed model is investigated. The new models reconstructed
from these attention modules and our proposed model include:
Squeeze-and-Excitation(SE) (51) instead of EMA in EnSLDe named
as EnSLDe-SE, Coordinate Attention (CA) (52) instead of EMA in
EnSLDe named as EnSLDe-CA, Convolutional Block Attention
Module (CBAM) (53) instead of EMA in EnSLDe named as
EnSLDe-CBAM and the one removing EMA from EnSLDe
named as EnSLDe-NoEMA. These models are used for
classification prediction on the Cheng dataset, and the results are
shown in Figure 6.

From Figure 6, it is evident that the EnSLDe-SE does not
perform well in these models, with an accuracy of only 96.41%.
Conversely, the EnSLDe exhibits exceptional performance in these
models, achieving an accuracy of 98.69% and demonstrating
excellent performance across other evaluation metrics.

10.3389/fonc.2025.1512739

Specifically, the EnSLDe attains 98.53%, 98.64%, and 98.59% in
precision, recall, and F1-score parameters, respectively. Moreover,
when the EMA module is removed, the model’s accuracy
significantly drops to 97.06%. This comparison underscores the
crucial role of the EMA module in enhancing the performance of
the proposed model. The inclusion of the EMA module not only
boosts the classification accuracy of the model but also achieves
balanced optimization across multiple evaluation metrics, thereby
enabling the model to maintain high performance levels.

4.4.2 The impact of the FExM on the model

FExM is the cornerstone of the EnSLDe architecture, designed
to hierarchically extract multi-scale contextual features through the
combination of convolutional layers, residual connections, and the
EMA mechanism. To rigorously evaluate its contribution, we
conducted a comparative analysis of the model’s performance
with and without the FExXM module. When the FExM was not
used, the model’s performance metrics—Precision, Recall, F1-score,
and Accuracy—were 0.9656, 0.9722, 0.9683, and 0.9706,
respectively, which were consistently lower than those of the
model with FExM. It is worth noting that the precision dropped
by 1.63%, highlighting the crucial importance of FExM to the
overall model performance. Furthermore, in the ablation study,
the p-value for the paired t-test of accuracy was 0.0013 (below the
significance level, o = 0.05), with a confidence interval ranging from
[0.0442, 0.1815].
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FIGURE 6
Impact of each attention module.
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Impact of FEnM.

4.4.3 The impact of the FEnM on the model

This section primarily examines the impact of the FEnM on the
proposed model, with specific results depicted in Figure 7. The
figure clearly illustrates that introducing FEnM significantly
enhances the classification performance of the model on the
Cheng dataset. Specifically, the accuracy, precision, recall, and F1-
score of the model have increased by 2.12%, 2.66%, 1.76%, and
2.27%, respectively. The p-value of the paired t-test for accuracy
with and without FEnM was 0.0094 (which is below the significance
level, oo = 0.05), and the confidence interval range was [0.0228,
0.1595]. The notable performance improvement can be attributed
to the effective role of the FEnM. The FEnM not only substantially
enhances the extracted features but also excels in capturing
important long-range dependencies. Moreover, the FEnM can
integrate the retained local key information with different levels
of deep features, thereby enriching the expressive capabilities of
features. Through this feature enhancement method, the model can
more accurately identify brain tumors in classification tasks.

4.4.4 The impact of data augmentation on
models

This experiment utilizes two datasets: the Cheng dataset and the
BT-large-4c dataset. Through the application of data augmentation
techniques, the classification performance of the proposed model
on these datasets is significantly enhanced. The impact of data
augmentation on the model is illustrated in Figure 8. Specifically, for
the Cheng dataset, the accuracy is improved by 3.92%, and for the
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BT-large-4c dataset, the accuracy is improved by 3.51%. These
results highlight the crucial role of data augmentation techniques in
enhancing model performance. In particular, by incorporating data
augmentation with random horizontal or vertical flipping of
images, the model becomes adept at learning tumor
characteristics from various orientations and locations. This
implies that the model can effectively identify and classify tumors
even when their orientation or location varies in real-
world applications.

4.4.5 Ablation studies on layer selection

To further validate the selection of feature extraction layers, we
conducted an ablation study, the results of which are summarized in
Table 3. When features were extracted from a single layer (shallow
or deep), classification accuracy was consistently lower than that
achieved via a multilayer fusion approach. To assess whether the
observed differences in performance were statistically significant,
paired t-tests were conducted. The tests compared classification
accuracies of deep layers (which demonstrated superior
performance to shallow layers) and multilayer fusion, positing the
null hypothesis that there was no significant difference in
performance. The paired t-test produced a p-value of 0.03 (below
the significance level, o. = 0.05), indicating a statistically significant
difference in performance. By combining features from shallow and
deep layers, the model captured a more holistic representation of
the input data. The confidence interval for the difference in accuracy
(which ranged from [-0.013, -0.0019]) excluded zero, confirming
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Impact of Data Augmentation (A) on the Cheng dataset, (B) on the BT-large-4c dataset.

that the multilayer fusion approach surpassed single-layer
extraction. The shallow layer provided detailed local information,
whereas the deep layer captured global contextual features. This
combination enhanced the model’s ability to discern complex
patterns in brain tumor images.

4.4.6 Impact of hyperparameter selection on
model performance

Hyperparameters are an important aspect that affects model
performance, and different hyperparameters can lead to different
experimental results. In this section, the impact of the
hyperparameters batch size, lr, and optimizer on model
performance will be verified. Table 4 presents the experimental
results. By comparing Tables 2, 4, it can be found that the
hyperparameter values selected in this paper are quite good.

4.5 Cross-dataset validation

To comprehensively validate the model, cross-validation was
employed. The BT-large-4c dataset, comprising glioma, pituitary
tumor, and meningioma data, was used to evaluate the model
trained on the Cheng dataset. The cross-validation results for
accuracy, precision, recall, and Fl-score were 92.98%, 93.2%,
93.02%, and 93.01%, respectively. These outcomes indicate that
the proposed model exhibits significant robustness.

TABLE 3 Layer selection of experimental results in dataset Chen.

4.6 Discussion

To further quantify the performance of the proposed model.
The classification results obtained by our proposed model are
compared with those obtained by previous state-of-the-art models
using the same dataset, as shown in Table 5. Noreen et al. (54)
proposed a method integrating deep learning with machine learning
models, employing deep learning for feature extraction, including
the Inception-v3 and Xception models. Additionally, the
classification of brain tumors through deep learning and machine
learning algorithms such as softmax, RF, SVM, KNN, and ensemble
techniques were explored. Bodapati et al. (55) developed a dual-
channel deep neural network architecture for brain tumor
classification using pre-trained InceptionResNetV2 and Xception
models, incorporating attention mechanisms to enhance accuracy
and generalization capabilities in brain tumor recognition. Shaik
and Cherukuri (56) designed and implemented a multi-level
attention network (MANet). The proposed MANet includes
spatial and channel-wise attention mechanisms, prioritizing
tumor regions while maintaining the inter-channel temporal
dependencies in the semantic feature sequences obtained from the
abnormal areas. Oksiiz et al. (57) utilized pre-trained AlexNet,
ResNet-18, GoogLeNet, and ShuffleNet networks to extract deep
features from images, and designed a shallow network for extracting
shallow features, fusing these features and classifying them with
SVM and KNN. Jaspin and Selvan (58) proposed a multi-class

Method Precision Recall F1-score Accuracy
Shallow layer 0.9554 0.9539 0.9546 0.9592
Deep layer 0.9683 ‘ 0.9645 0.9664 0.9690
Multilayer fusion (ours) 0.9853 ‘ 0.9864 0.9859 0.9869
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TABLE 4 Experimental results for different hyper-paramete.

10.3389/fonc.2025.1512739

Hyper-parameter Value Precision Recall Fl-score Accuracy
Batch 8 0.9739 0.9770 0.9754 0.9771
Lr 0.0001 0.9835 0.9811 0.9823 0.9837
Optimizer SGD 0.9800 0.9757 09778 0.9804

convolutional neural network (MCCNN) model for identifying
tumors in brain MRI images. This network, consisting of an 11-
layer structure including three convolutional layers, three max-
pooling layers, one flattening layer followed by three dense layers,
and an output layer, achieved classification performance on par
with pre-trained models. Md. S. I. Khan et al. (59) designed a 23-
layer convolutional neural network for brain tumor classification.
Satyanarayana et al. (60) introduced a density convolutional neural
network model based on mass correlation mapping (DCNN-MCM)
for brain tumor classification. This model leverages the average
mass elimination algorithm (AMEA) and mass correlation analysis
(MCA) for the extraction and training of significant features of
brain tumors, using a CNN model for efficient classification.
Kibriya et al. (61) developed a 13-layer CNN specifically for brain
tumor classification. Dutta et al. (62) introduced an attention-based
residual multi-scale CNN, termed ARM-Net. This model includes a
lightweight residual multi-scale CNN architecture known as RM-
Net and introduces a lightweight global attention module (LGAM)
to selectively learn more discriminative features. S. U. R. Khan et al.
(63) employed the DenseNet169 model for feature extraction and
fed the extracted features into three multi-class machine learning
classifiers: RF, SVM, and gradient-boosting decision trees

TABLE 5 Comparison of our proposed model with previous models.

(XGBoost). Brain tumor classification was performed through the
integration of these classifiers using a majority voting strategy.
Demir and Akbulut (64) used a new multi-level feature selection
algorithm to select the 100 deep features with the highest
significance and adopted the SVM algorithm with Gaussian
kernel for classification and achieved better performance. Senan
et al. (65) employed both AlexNet and ResNetl8 in conjunction
with SVM for brain tumor classification and diagnosis. Initially,
deep learning techniques were used to extract robust and significant
deep features through deep convolutional layers, followed by
classification using SVM. Ravinder et al. (66) proposed a graph
convolutional neural network (GCN) model. This model integrates
graph neural networks (GNN) with traditional CNNs. Our EnSLDe
achieves superior performance compared to other methods. This
depends on its ability to enhance short-range and long-range
dependencies. EnSLDe yields experimental results for the Chen
dataset. On the BT-large-4c dataset, EnSLDe underperforms
AlexNet+SVM by a margin of 0.0139 in terms of precision.
Nonetheless, it excels in other performance indicators. The
EnSLDe model demonstrates exceptional performance on the
Cheng and BT-large-4c datasets, achieving high accuracy rates of
98.69% and 97.10%, respectively. These results highlight the

Reference Dataset Method Precision Recall Fl-score Accuracy
Noreen et al. (54) Inception-v3+Ensemble - - - 0.9434
Bodapati et al. (55) Two-Channel DNN - - 0.9779 0.9523
Shaik and Cherukuri (56) MANet 0.9614 0.9599 0.9603 0.9651
Oksiiz et al. (57) ResNet18+ShallowNet+SVM 0.9525 0.9527 0.9526 0.9725
Jaspin and Selvan (58) MCCNN 0.95 0.95 0.96 0.9517
Md. S. I. Khan et al. (59) 23-layer CNN 0.965 0.964 0.964 0.978
Cheng
Satyanarayana et al. (60) DCNN-MCN - - - 0.94
Kibriya et al. (61) 13-layer CNN 0.97 0.96 0.965 0.972
Dutta et al. (62) ARM-Net 0.9646 0.9609 0.9620 0.9664
S. U. R. Khan et al. (63) Hybrid-NET 0.95 0.94 0.94 0.951
Dutta et al. (44) GT-Net - - 96.39 97.11
The Proposed Method EnSLDe 0.9853 0.9864 0.9859 0.9869
Demir and Akbulut (64) R-CNN+SVM 0.964 0.9645 0.964 0.966
Senan et al. (65) AlexNet+SVM 0.985 - - 0.951
BT-large-4c
Ravinder et al. (66) GCNN 0.9525 0.965 0.9587 0.9501
The Proposed Method EnSLDe 0.9711 0.9711 0.9711 0.971
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2-dimensional scatter plots of deep feature sets (A) EnSLDe without FEnM, (B) EnSLDe without EMA, (C) EnSLDe without Data Augmentation,

(D) EnSLDe.

model’s ability to effectively capture both short-range and long-
range dependencies in brain tumor images, leading to improved
classification accuracy. And multi-scale parallel subnetworks fuse
shallow and deep features to capture comprehensive information.
However, it is important to note that the performance of any model,
including EnSLDe, can vary depending on the specific
characteristics of the data it is applied to. While EnSLDe
outperforms several state-of-the-art models on these datasets, its
generalizability to real-world applications requires
further validation.

In order to more intuitively display the effect of our proposed
method, we used the t-SNE (67) algorithm to reduce the
dimensionality of high-dimensional feature data and drew a
scatter plot on a 2-dimensional plane. Figures 9A-C depict scatter
plots obtained by removing FEnM, EMA, and Data Augmentation,
respectively. There are instances where the glioma class and the
meningioma class are interconnected and nested. However, in
Figure 9D, obtained by EnSLDe, the sample points of each class
are closely clustered together, with clear separation between
different categories. This intuitively underscores the significance

Frontiers in Oncology

of FEnM, EMA, and Data Augmentation for the model. The ability
of the model to distinguish features effectively is enhanced by them.

As shown in Figure 4 and Table 2, the EnSLDe model achieves
superior classification performance for pituitary tumors (precision:
0.9946, recall: 0.9946) compared to gliomas (precision: 0.9894,
recall: 0.9946) and meningiomas (precision: 0.9718, recall:
0.9787), the latter of which exhibits the lowest performance
metrics. A comparison of Figures 9A-D illustrates that EnSLDe
employs effective strategies to differentiate gliomas from
meningiomas. However, persistent feature overlap hinders the
model’s ability to achieve optimal classification accuracy.

The EnSLDe model is designed to capture both short- and long-
range dependencies within images, demonstrating considerable
potential for generalization beyond the classification of brain
tumors. Its architecture, which incorporates a multi-scale parallel
subnetwork and feature enhancement modules, is well-suited for a
wide range of medical imaging tasks. Additionally, the model is
adaptable to the classification of tumors in various organs, such as
lung, breast, and liver tumors. The model’s ability to effectively
capture contextual information makes it suitable for the
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identification of different lesion types and the detection of
abnormalities across a diverse array of medical conditions.

Adapting the EnSLDe model to a new task necessitates several
adjustments. First, the model requires retraining on a task-specific
dataset, including modifying the number of output categories and
fine-tuning the classification module. Furthermore, the feature
extraction module may require modification to account for
variations in imaging characteristics, such as resolution and
contrast. Despite its design efficiency, the EnSLDe model exhibits
limited scalability, particularly in resource-constrained
environments. Training the model demands substantial
computational resources, particularly for large-scale datasets.
However, incorporating efficient convolutional layers and
depthwise separable convolutions mitigates these computational
demands. To address scalability challenges, several strategies may
be implemented. For instance, model compression techniques (e.g.,
pruning and quantization) can substantially reduce computational
complexity while maintaining competitive performance.

To further understand the decision-making process of the
proposed EnSLDe model and validate its ability to focus on
relevant regions in brain tumor classification, we visualized the
feature maps using the Grad-CAM++ method. The results are
shown in Figure 10. Grad-CAM++ is a widely used technique for
visualizing the regions of interest in image classification tasks,
providing insights into the model’s attention mechanism. As
shown in Figure 10, the feature maps generated by the EnSLDe
model effectively highlight brain tumor regions, demonstrating the
model’s ability to distinguish between brain tumor and non-tumor
regions. This visualization confirms that the model focuses on
tumor regions, which is critical for accurate classification.
However, it is also clear that the model focused on other non-
tumor regions. This observation suggests that the model effectively
captures key brain tumor features while incorporating additional
contextual information from surrounding brain regions, which may

(A)

Heat map visualization of the model (A) Original image (B) Heat map.

FIGURE 10
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contribute to its high classification accuracy. While the EnSLDe
model demonstrated strong performance in focusing on relevant
regions, the visualization results also highlighted areas for potential
improvement. Specifically, the model’s focus on non-tumor regions
suggests that there may be opportunities to refine the feature
extraction and enhancement modules to emphasize the most
critical features further. Future work could explore advanced
attention mechanisms or additional regularization techniques to
ensure that the model focuses more precisely on tumor regions,
potentially leading to higher classification accuracy.

5 Conclusion

A new multi-class brain tumor classification model, named
EnSLDe, has been proposed. This model is primarily composed of
three modules: FExM (Feature Extraction Module), FEnM (Feature
Enhancement Module), and the classification module. FExM
efficiently extracts features using convolutional layers and residual
networks and combines EMA (Efficient Multi-Attention) to
simultaneously focus on both channel and spatial information of
the features. This effectively preserves the information of each
channel, preventing the loss of important features during the
compression of the channel dimension. The design of FEnM aims
to deeply integrate shallow and deep features, facilitating a more
comprehensive understanding of the features and the extraction of
advanced and important features. Additionally, the model’s ability
to capture short-range and long-range dependencies has been
enhanced. The feature enhancement module further strengthens
the features by effectively capturing important dependencies over a
large sequence range while preserving local key information. The
double-layer fully connected structure is adopted as the core of the
classification module and combined with dropout regularization
technology, which further improves the model classification

(B)
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performance. Experimental evaluations conducted on the
challenging Cheng dataset and BT-large-4c dataset demonstrate
the excellent performance of our model in brain tumor classification
tasks. On the Cheng dataset, the model achieves accuracy, recall,
precision, and Fl-score of 98.69%, 98.53%, 98.64%, and 98.59%,
respectively. Similarly, on the BT-large-4c dataset, the model attains
accuracy, recall, precision, and F1-score of 97.10%, 97.11%, 97.11%,
and 97.11%, respectively. Indeed, the differentiation between glioma
and meningioma remains suboptimal. Further refinement is
required to enhance the model’s ability to distinguish accurately
between these two tumor types. Future studies should augment the
dataset to include a broader range of brain disorders, thereby
enriching the model’s training corpus and enhancing its capacity
to differentiate among diverse neurological pathologies.
Additionally, strategic modifications to the model’s architecture,
training protocols, and loss functions could be implemented to
optimize its discriminative performance in distinguishing gliomas
from meningiomas. And the model was deployed, and the clinical
capabilities of the model were verified by combining the doctors
commanded by experience.
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Objective: To develop and validate a deep learning signature for noninvasive
prediction of spread through air spaces (STAS) in clinical stage | lung
adenocarcinoma and compare its predictive performance with conventional
clinical-semantic model.

Methods: A total of 513 patients with pathologically-confirmed stage | lung
adenocarcinoma were retrospectively enrolled and were divided into training
cohort (n = 386) and independent validation cohort (n = 127) according to
different center. Clinicopathological data were collected and CT semantic
features were evaluated. Multivariate logistic regression analyses were
conducted to construct a clinical-semantic model predictive of STAS. The
Swin Transformer architecture was adopted to develop a deep learning
signature predictive of STAS. Model performance was assessed using area
under the receiver operating characteristic curve (AUC), sensitivity, specificity,
positive and negative predictive value, and calibration curve. AUC comparisons
were performed by the DelLong test.

Results: The proposed deep learning signature achieved an AUC of 0.869 (95%
Cl: 0.831, 0.901) in training cohort and 0.837 (95% ClI: 0.831, 0.901) in validation
cohort, surpassing clinical-semantic model both in training and validation cohort
(all P<0.01). Calibration curves demonstrated good agreement between STAS
predicted probabilities using deep learning signature and actual observed
probabilities in both cohorts. The inclusion of all clinical-semantic risk
predictors failed to show an incremental value with respect to deep
learning signature.
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Conclusions: The proposed deep learning signature based on Swin Transformer
achieved a promising performance in predicting STAS in clinical stage | lung
adenocarcinoma, thereby offering information in directing surgical strategy and
facilitating adjuvant therapeutic scheduling.

deep learning, lung adenocarcinoma, spread though air space, computer
tomography, prediction

Introduction

Lung cancer remains the leading lethal malignancy, responsible
for 12.4% of all newly-diagnosed cases worldwide in 2022 (1). As the
predominant cause of lung cancer-related mortality, lung
adenocarcinoma exhibits distinctive histological growth pattern and
molecular genotyping (2). Spread through air spaces (STAS) is a
unique invasion pattern separate from lymphatic-vascular and
visceral pleural invasion, with a predisposition in lung
adenocarcinoma. Initially introduced by Kadota et al. and explicitly
defined in the World Health Organization Classification of Lung
Cancer in 2015, STAS refers to the dissemination of tumor cells as
solid nests, micropapillary clusters or single cells into the peritumoral
alveolar airspaces (3). Multiply studies have consistently
demonstrated that STAS serves as a well-established prognosticator
for lung adenocarcinoma undergoing sublobectomy, indicating an
increased risk of postoperative relapse and worse prognosis (4-6).
STAS is recognized as a pathological indicator for identifying the
beneficiaries of adjuvant chemotherapy among stage IB patients (7).
Therefore, STAS is of great significance in identifying high-risk
patients and guiding personalized therapeutic strategies.

However, intraoperative pathological assessment for STAS
through rapid frozen sections has been proved to be of limited
sensitivity and reproducibility (8). The shifting of tumor cells to the
peritumoral alveolar airspaces caused by manual operations such as
extrusion, blade cutting and tissue dysfixation were hardly
distinguished from STAS cell clusters, thereby hindering the
reliable application of this approach. Several scholars exploited
CT semantic indicators for STAS by visual inspection or manual
measurement, such as tumor diameter, ground-glass opacity (GGO)
components, and pleural retraction (9, 10). Nevertheless, these
indicators rely on subjective judgement and professional skills,
making them unsuitable for widespread clinical practice due to
inconsistent interpretation criteria. Several studies developed CT-
based radiomics signature predictive of STAS, but the radiomics
approach involves several sequential processing steps such as tumor
delineation, dimension reduction and model building (11, 12). The
efficiency of radiomics modeling is highly influenced by
interobserver heterogeneity and handling quality at each step.
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Deep learning is an end-to-end network architecture,
characterized by the ingestion of data from the input end and the
generation of prediction results from the output end. The error
between prediction result and actual observation is iteratively
propagated through each layer, facilitating model adjustment and
convergence. On account of the advantages of automatically
learning and extracting representative information, deep learning
has achieved remarkable efficacy in distinguishing histological
subtypes, evaluating treatment response, and predicting survival
(13-15). In this study, we employed Swin Transformer, a deep
learning framework exploited by Microsoft Research Asia, to
construct and validate a CT-based deep learning predictive model
for STAS in lung adenocarcinoma. This study also sought to
investigate the incremental value of clinical characteristics and
conventional CT semantic features over the deep learning signature.

Methods
Patients

This study was approved by the Ethics Committee and the
requirement for informed consent was waived due to its
retrospective nature. The patients who underwent radical
resection at the main campus of Tongji Hospital (Center 1) from
October 2021 to June 2022 were systematically reviewed. Inclusion
criteria were: (1) invasive lung adenocarcinoma confirmed by
pathology; (2) maximum tumor diameter on CT images < 4 cm;
(3) no radiological signs of locoregional lymph node invasion or
distant metastasis; (4) no preoperative radiotherapy, chemotherapy
or targeted therapy; (5) interval time of preoperative CT
examination and operation within two weeks. The exclusion
criteria were: (a) rare histological variants; (b) simultaneous or
metachronous tumors; (c) unavailable thin-section CT images or
obvious image artifacts; (d) insufficient peritumoral parenchyma
reserved for STAS assessment; (e) subjected to other cancers.
Tumor staging was based on the eighth edition of the TNM
staging system. Following the same criteria, patients undergoing
radical surgical resection at the Sino-Germany Guanggu Campus of
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Tongji Hospital (Center 2) from January 2022 to June 2022 were
retrospectively enrolled. Clinical information including gender, age,
smoking history, pack-year and serum CEA level were acquired
from clinical electronic records. The recruitment workflow is
illustrated in Figure 1.

Histological assessment

Pathological characteristics including histological subtype, Ki-
67 labeling index (LI), visceral pleural invasion, lymphatic-vascular
invasion, pathological TNM staging and STAS were documented.
The excision specimen was fixed in 10% formalin and embedded in
paraffin before sectioned. Hematoxylin-eosin staining,
immunohistochemistry staining and elastic fiber staining were
performed accordingly. Two pathologists with experiences of 5
years and 11 years independently interpreted STAS on the
sections. Initially, tumor smooth interfaces were recognized by
naked eyes and at low-magnification (x10). Subsequently, three
areas with the most abundant STAS were selected for interpretation
at high-magnification (x200). If any of the following forms of tumor
cells are observed within peritumoral alveolar airspaces, it is judged
to be STAS-positive: (1) micropapillary clusters without a central
fibrovascular core; (2) solid tumor nests; (3) discrete single tumor
cells. Ki-67 LI is determined by the percentage of cells with stained-
brown nuclei among 1000 tumor cells via immunohistochemical
staining. Invasive lung adenocarcinoma is categorized into five
histological subtypes based on growth architecture: lepidic, acinar,
papillary, micropapillary and solid predominant adenocarcinoma.

CT scanning protocol and semantic
feature interpretation

The patients were examined using multi-slice spiral CT
scanners including GE Discovery 750 HD, TOSHIBA Aquilion
One TSX-301A, Philips Brilliance ICT 256 and GE Optima CT 660.
The acquisition parameters were detailed in Supplementary Data
Sheet 1. CT semantic features were independently evaluated by two
radiologists with 12 and 7 years of experience, respectively, blinded
to the clinicopathological information. The lung window (width:
1600 HU; level: -600 HU) and mediastinal window (width: 400 HU;
level: 40 HU) were fixed, respectively. CT semantic features
included affiliated lobe, location, attenuation type, tumor total
diameter, tumor consolidation diameter, consolidation-to-tumor
ratio (CTR), shape, boundary, lobulation, spiculation, cavity,
vacuole, air bronchogram, and plural attachment. CTR is
quantified by the ratio of tumor consolidation diameter and total
diameter. The definitions of CT semantic features were elucidated
in Supplementary Data Sheet 1. The interobserver agreement for
categorical and continuous variables was evaluated using Cohen ‘s
kappa coefficient and intraclass correlation coefficient (ICC),
respectively. The average measured by two radiologists was taken
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as the final value for continuous variables. Consensus on divergent
categorical variables was reached through discussion involving a
third radiologist.

Tumor segmentation and deep learning
signature development

The automatic virtual adversarial training segmentation
algorithm, based on a three-dimensional U-shape convolutional
neural network known as 3D U-Net, was employed to achieve
tumor segmentation. The topology of U-net was showed in
Supplementary Data Sheet 1. For modeling, we proposed a deep
learning framework called Swin Transformer to develop a signature
predictive of STAS. The overall architecture consists of four
transformer stages comprising Patch Embedding/Merging and
Swin Transformer Blocks in each stage as revealed in Figure 2
and Supplementary Data Sheet 1. To mitigate overfitting due to
limited amounts of data, the model was pretrained in CT images of
lung cancer from the Cancer Imaging Archive followed by fine-
tuned in 13510 CT images of lung adenocarcinoma in the training
cohort. Furthermore, to compare the efficacy of different deep
learning methods in predicting STAS, we applied ResNet-50,
EfficientNet and ConvNeXt for modeling denoted as Modelresner-
50, Modelgmcientnver and Modelconynex. The original code for
implementing Swin Transformer can be acquired at https://
github.com/microsoft/Swin-Transformer. We implemented the
neural network using PyTorch 1.4.1 library in Python 3.7.0
(https://pytorch.org).

Clinical-semantic model construction

Univariate analysis was initially performed to identify
statistically significant clinical characteristics and CT semantic
features between STAS positive and negative subgroups (P < 0.05)
in the training cohort. Afterwards, features with Spearman
correlation coefficient > 0.7 were removed in view of
multicollinearity inference. The remaining features as candidate
variables were included in multivariate logistic regression analysis
to determine the features independently associated with STAS. The
features were combined linearly weighted by their corresponding
regression coefficients to construct clinical-semantic model. Given
that the inherent design of preoperative prediction, pathological
indicators were not included in logistic regression analysis, but
compared across different STAS subgroups.

Statistical analysis
Statistical analysis was performed using MATLAB

(MathWorksInc., Natick, MA) and SPSS (IBM, ver.26.0). Shapiro-
Wilk test and Levene test were used to analyze the normality and
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« Pathologically-confirmed invasive lung
adenocarcinoma;
« Clinical stage I lung ad
+ No presurgical radiotherapy, chemotherapy
or targeted therapy;
« Interval time of contrast-enhanced CT
examination and surgery within 2 weeks.
Rare variants of adenocarcinoma (n=38); « Rare variants of adenocarcinoma (n=17);
Synchronous or metachronous tumors (n=12); «  Synchronous or metachronous tumors (n=6);
No thin-section CT image or obvious image « No thin-section CT image or obvious image
artifacts (n=21); artifacts (n=13);
Insufficient peritumoral parenchyma (n=9); « Insufficient peritumoral parenchyma (n=4);
Histories of other cancers (n=5). « Histories of other cancers (n=2).
« STAS-positive (n=126) * STAS-positive (n=45)
* STAS-negative(n=260) * STAS-negative(n=82)
FIGURE 1

The workflow diagram of patient recruitment.

homogeneity of variance for continuous variables. The continuous
variables were compared using the Student’s t-test and Mann-
Whitney U test, as appropriate. The comparisons of categorical
variables were conducted by Chi-square test or Fisher exact test.
Pearson correlation analysis was used to evaluate the correlation
between features. The area under receiver operating characteristic

curve (AUC), sensitivity, specificity, positive predictive value (PPV)
and negative predictive value (NPV) were used to quantify model
performance. The calibration curve and Hosmer-Lemeshow test
were employed to evaluate the consistency between predicted
probabilities by deep learning signature and actual observations.
A double-tailed P<0.05 indicated statistical significance.

A. Patient Enrollment

B. Image Preprocessing

C. Model Development

Center 1

Center 2

Stage 1: Image Normalization

e

Isotropic Resample

Intensity Normalization

Swin Transformer
Block

Stage 2: Image Segmentation

3D U-Net

FIGURE 2

The overall framework of STAS prediction model development and validation. (A) Patients with lung adenocarcinoma were respectively enrolled
from Center 1 and Center 2. (B) Imaging preprocessing included isotropic resample, intensity normalization and tumor automatic segmentation.

(C) Deep learning signature predictive of STAS was developed based on Swin Transformer. (D) Histological assessment and radiologist interpretation
were conducted for all patients in Center 1 and Center 2, and then model performance comparisons were performed. STAS, spread through

air spaces.

=
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Results
Baseline characteristics

In total, 126 eligible STAS-positive and 260 STAS-negative
patients from Center 1 were enrolled to construct a training
cohort (n=386). Accordingly, a total of 45 STAS-positive and 82
STAS-negative patients from Center 2 constituted an independent
validation cohort (n=127). As revealed in Table 1, all
clinicopathological characteristics and CT semantic features
exhibited a balanced distribution between the training cohort and
validation cohort. Of 513 patients, 239 (46.6%) were male [median
age (interquartile): 59.0 (53.0, 65.0)] and 274 (53.4%) were female
[median age (interquartile): 61.0 (54.0, 68.0)]. Totally, there were
171 (33.3%) and 342 (66.7%) patients pathologically-confirmed to
be STAS-positive and STAS-negative, respectively.

The interobserver consistency assessment
for CT semantic features

As shown in Table 2, ICC for tumor total diameter, tumor
consolidation diameter and CTR were 0.988 (95% CI: 0.985, 0.990),
0.991 (95% CI: 0.990, 0.993) and 0.982 (95% CI: 0.979, 0.985),
respectively. Cohen ‘s kappa coefficients for the categorical variables
ranged from 0.808 to 0.992, indicative of satisfactory interobserver
agreement in interpreting CT semantic features. The discrepant
numbers (frequency) of categorical variables between two
radiologists were also documented as revealed in Table 2.

The association of clinicopathological
characteristics with STAS

As shown in Table 3, STAS was more likely occurred in patients
with pack-year > 40 (P=0.002) and CEA > 5 ug/L (P<0.001), but it had
no significant association with gender, age and smoking history. STAS
was more frequently observed in micropapillary and solid predominant
adenocarcinoma, but rarely occurred in lepidic predominant
adenocarcinomas (P<0.001). Furthermore, STAS was closely related
with visceral pleural invasion and lymphatic-vascular invasion
(P<0.001 and P<0.001). Ki-67 LI in STAS-positive subgroup
significantly exceeded that of STAS-negative subgroup (P<0.001).
Additionally, lung adenocarcinoma with higher pathological T and N
stages showed a higher prevalence of STAS (P<0.001 for both).

The association of CT semantic features
with STAS

Tumor total diameter, tumor consolidation diameter and CTR in
STAS-positive subgroup were significantly higher than those in STAS-
negative subgroup (all P<0.001; Figures 3 and 4). Solid tumors, obscure
boundary, spiculation, vacuole and pleural attachment were more
frequent in STAS, but air bronchogram was less common in STAS
(all P< 0.05). The tumor consolidation diameter and attenuation
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subtype were excluded from logistic regression analysis considering a
strong correlation with CTR (r=0.839 and 0.913, P< 0.001). Finally,
CEA (odds ratio [OR]: 2.022; 95% CI: 1.080, 3.784; P=0.028), vacuole
(OR: 3.509; 95% CI: 1.488, 8.278; P=0.004), obscure boundary (OR:
2.716; 95% CI: 1.628, 4.529; P<0.001) and CTR (OR: 1.023; 95% CI:
1.014, 1.033; P<0.001) were included to construct the clinical-semantic
model as the independent risk indicators for predicting STAS.

Model construction and efficacy evaluation

As shown in the Table 4 and Figure 5, the AUC for Swin
Transformer based deep learning signature in the training cohort
and validation cohort was 0.869 (95% CI: 0.831, 0.901) and 0.837
(95% CI: 0.761, 0.896), respectively. Encouragingly, Swin
Transformer based deep learning signature achieved significantly
higher AUC than Modelgesnet-50, Modelgsicientner and
Modelconynexe in training cohort (0.869 vs. 0.800, 0.797 and
0.783; all P < 0.001), as well as than Modelggcientne: and
Modelconynexe in validation cohort (0.837 vs. 0.775 and 0.795; P
= 0.025 and 0.027), as shown in Supplementary Table E2. Deep
learning signature showed an improvement in predictive
performance than Modelgesnerso in validation cohort, but it did
not reach statistical significance (0.837 vs. 0.799, P = 0.087).

Meanwhile, The AUC for CTR alone and clinical-semantic model
was 0.709 (95% CI: 0.660, 0.754) and 0.764 (95% CI: 0.719, 0.806) in
training cohort, as well as 0.734 (95% CI: 0.648, 0.808) and 0.714
(95% CI: 0.627, 0.790) in validation cohort, respectively. In the
training cohort, deep learning signature performed far superior to
CTR (0.869 vs. 0.709, P < 0.001) and clinical-semantic model (0.869
vs.0.764, P < 0.001), with a statistically significant difference. Notably,
deep learning signature yielded significantly higher AUC than both
CTR (0.837 vs. 0.734, P=0.006) and clinical-semantics model (0.837
vs. 0.714, P=0.002) in validation cohort. The sensitivity, specificity,
PPV and NPV of deep learning signature in predicting STAS ranged
from 0.578 to 0.706, 0.892 to 0.951, 0.761 to 0.867 and 0.804 to 0.862
across two cohorts, respectively. According to the Hosmer-Lemeshow
test and calibration curve, the predicted STAS probabilities by deep
learning signature revealed good agreement with the actual
observations both in training cohort and validation cohort
(P=0.600 and 0.082, respectively). Furthermore, when deep learning
signature was incorporated into clinical-semantic model, all CT
semantic risk predictors were eliminated from multivariate
regression analysis, with merely deep learning signature remained.
Pearson correlation analysis revealed a strong correlation between
CTR and deep learning signature (r = 0.789, P < 0.001).

Discussion

This study revealed that CEA, tumor boundary, vacuolation and
CTR are the independent clinical-semantic features associated with
STAS in lung adenocarcinoma. The proposed deep learning model
predictive of STAS based on Swin Transformer yielded an AUC of
0.869 (95% CI: 0.821, 0.908) and 0.837 (95% CI: 0.742, 0.908) in the
training cohort and independent validation cohort, superior to
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TABLE 1 The distribution of clinicopathological characteristics in training cohort and validation cohort.

All patients Training cohort Validation cohort

Characteristic P value
(GERYK)) (n=386) (n=127)

A. Clinical characteristics

Gender 0.108
Female 274 (53.4%) 214 (55.4%) 60 (47.2%)
Male 239 (46.6%) 172 (44.6%) 67 (52.8%)
Age* (year) 60.0 (54.0, 66.0) 59.0 (54.0, 67.0) 62.0 (53.0, 66.0) 0.320
Smoking history 0.728
Nonsmoker 369 (72.0%) 280 (72.5%) 89 (70.1%)
Former smoker 70 (13.6%) 50 (13.0%) 20 (15.7%)
Current smoker 74 (14.4%) 56 (14.5%) 18 (14.2%)
Pack-year 0.907
<3 372 (72.5%) 280 (72.5%) 92 (72.4%)
4-40 89 (17.3%) 68 (17.6%) 21 (16.5%)
> 40 52 (10.2%) 38 (9.9%) 14 (11.1%)
CEA (ug/L) 0.930
<5 435 (84.8%) 327 (84.7%) 108 (85.0%)
>5 78 (15.2%) 59 (15.3%) 19 (15.0%)
Surgical modalities 0.367
Wedge resection 14 (2.7%) 12 (3.1%) 2 (1.6%)
Sublobectomy 25 (4.9%) 21 (5.4%) 4 (3.1%)
Lobectomy 474 (92.4%) 353 (91.5%) 121 (95.3%)

B. Histopathological characteristics

Histological subtype 0.352
Lepidic 88 (17.2%) 63 (16.3%) 25 (19.7%)
Acinar 240 (46.8%) 185 (47.9%) 55 (43.3%)
Papillary 103 (20.0%) 78 (20.2%) 25 (19.7%)
Micropapillary 43 (8.4%) 28 (7.3%) 15 (11.8%)
Solid 39 (7.6%) 32 (8.3%) 7 (5.5%)
Ki-67 LI* (%) 10 (3.5, 20.0) 9 (5, 20) 10 (3, 20) 0.171
Ki-67 LI 0.817
<10% 255 (49.7%) 193 (50.0%) 62 (48.8%)
> 10% 258 (50.3%) 193 (50.0%) 65 (51.2%)
Visceral pleural invasion 0.786
Present 93 (18.1%) 71 (18.4%) 22 (17.3%)
Absent 420 (81.9%) 315 (81.6%) 105 (82.7%)
Lymph-vascular invasion 0.112
Present 70 (13.6%) 58 (15.0%) 12 (9.4%)
Absent 443 (86.4%) 328 (85.0%) 115 (90.6%)

(Continued)
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TABLE 1 Continued

All patients Training cohort Validation cohort oAl
SEe (n=513) (n=386) (n=127) =
B. Histopathological characteristics
Pathological T stage 0.176
Tla 64 (12.5%) 48 (12.4%) 16 (12.6%)
Tib 238 (46.4%) 170 (44.1%) 68 (53.5%)
Tlc 103 (20.1%) 85 (22.0%) 18 (14.2%)
T2 108 (21.0%) 83 (21.5%) 25 (19.7%)
Pathological N stage 0.402
NO 437 (85.1%) 328 (85.0%) 109 (85.8%)
N1 27 (5.3%) 23 (6.0%) 4 (3.1%)
N2 49 (9.6%) 35 (9.0%) 14 (11.1%)
STAS 0.563
Positive 171 (33.3%) 126 (32.6%) 45 (35.4%)
Negative 342 (66.7%) 260 (67.4%) 82 (64.6%)

Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; CTR, consolidation-to-tumor ratio; LI, labeling index; T, tumor; N, node; STAS, spread through air space.

conventional CTR and clinical-semantic model. Furthermore,

TABLE 2 The interobserver agreement of CT semantic features for

lung adenocarcinoma. neither CTR nor clinical-semantic model exhibited an
incremental value over deep learning signature, further
CT semantic Disagreement  Kappa 95% ClI confirming its superior predictive value.
feature value/ICC For early-stage patients, sublobectomy can preserve more
Affiliated lobe* 2 (0.4%) 0.992 0.980, 1.000 pulmonary function, reduce surgical complications, and shorten
Location® 20 (4.9%) 0.808 0728, 0,858 hospitalization time, particularly with an equivalent therapeutic
effect to lobectomy (16). However, sublobectomy is not appropriate
;Ftn;(:; r® NA 0988 0983, 0.990 for STAS-positive patients due to a higher risk of locoregional
otal diameter
relapse and distant metastasis compared with lobectomy. Another
zum"r Cg“s"lidati"“ NA 0.991 0.990, 0.993 study proved that STAS had negligible adverse effects on prognosis
iameter
if surgical margin distance exceeded 2 cm in limited resection (17).
CTR® NA 0.982 0.979, 0.985 Thus, anatomic lobectomy and sufficient surgical margin should be
Shape* 17 (3.3%) 0.883 0.826, 0.940 recommended for STAS-positive patients to prevent recurrence
caused by STAS. Dai et al. also demonstrated that recurrence-free
Boundary* 29 (5.7%) 0.844 0.789, 0.890 ) ) .
survival rates and overall survival rates of stage IA STAS-positive
Lobulation® 9 (1.8%) 0871 0.787, 0.955 patients were comparable to those of stage IB patients (18).
Spiculation® 12 (2.3%) 0.953 0.928, 0.978 Furthermore, stage IB patients with STAS-positive can benefit
. from adjuvant chemotherapy (7, 19). Consequently, STAS serves
Cavity 8 (1.6%) 0941 0.900, 0.982 o ) ) o
as a pathological indicator for T upstaging and risk stratification, as
Vacuole" 11 (2.1%) 0.859 0.777, 0941 well as an effective biomarker for identifying the beneficiaries of
Air bronchogram* 37 (7.2%) 0.856 0.811, 0.901 adjuvant chemotherapy in early-stage patients.
. Currently, there is limited research on leveraging deep learning
Pleural attachment 13 (2.5%) 0.945 0.914, 0.976 . . L K .
technique to predict STAS, and the predictive capacity remains

SICC was calculated for the continuous variables.

#Cohen’s kappa coefficient was calculated for the categorical variables.
Disagreement was presented as numbers (percentages). predict STAS in NSCLC, yleldlng an AUC of 0.790 in validation
ICC, intraclass correlation coefficient; CTR, consolidation-to-tumor ratio; CI,
interval confidence.

NA, not applicable. of STAS in solid or part-solid lung adenocarcinoma, resulting a

modest. Tao et al. applied 3D convolutional neural network to

cohort (20). Wang et al. presented SE-Resnet50 for risk estimation
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TABLE 3 The relationships of clinicopathological characteristics and CT semantic features with STAS in training cohort.

Training cohort STAS positive STAS negative

Characteristics P value
(n=386) (n=126) (n=260)

A. Clinical characteristics

Gender 0.201
Female 214 (55.4%) 64 (50.8%) 150 (57.7%)
Male 172 (44.6%) 62 (49.2%) 110 (42.3%)
Age* (year) 59.0 (54.0, 67.0) 59.0 (53.8, 68.3) 59.0 (54.0, 65.0) 0.422
Smoking history 0.051
Nonsmoker 280 (72.5%) 84 (66.7%) 186 (75.4%)
Former smoker 50 (13.0%) 24 (19.0%) 26 (10.0%)
Current smoker 56 (14.5%) 18 (14.3%) 38 (14.6%)
Pack-year 0.002
<3 280 (72.5%) 84 (66.7%) 196 (75.4%)
4-40 68 (17.6%) 20 (15.9%) 48 (18.5%)
> 40 38 (9.9%) 22 (17.4%) 16 (6.1%)
CEA < 0.001
<5 ug/L 327 (84.7%) 95 (75.4%) 232 (89.2%)
> 5ug/L 59 (15.3%) 31 (24.6%) 28 (10.8%)
Surgical modalities 0.147
Wedge resection 12 (3.1%) 3(2.4%) 9 (3.5%)
Sublobectomy 21 (5.4%) 3(2.4%) 18 (6.9%)
Lobectomy 353 (91.5%) 120 (95.2%) 233 (89.6%)

B. Histopathological characteristics

Histological subtype < 0.001
Lepidic 63 (16.3%) 5 (4.0%) 58 (22.3%)
Acinar 185 (47.9%) 51 (40.5%) 134 (51.5%)
Papillary 78 (20.2%) 24 (19.0%) 54 (20.8%)
Micropapillary 28 (7.3%) 26 (20.6%) 2 (0.8%)
Solid 32 (8.3%) 20 (15.9%) 12 (4.6%)
Ki-67 LI* (%) 10.0 (5.0, 20.0) 10.8 (7.4, 30.0) 5.0 (3.0, 10.0) < 0.001
Ki-67 LI < 0.001
< 10% 193 (50.0%) 35 (27.8%) 158 (60.8%)
> 10% 193 (50.0%) 91 (72.2%) 102 (39.2%)
Visceral pleural invasion < 0.001
Present 71 (18.4%) 36 (28.6%) 35 (13.5%)
Absent 315 (81.6%) 90 (71.4%) 225 (86.5%)
Lymph-vascular invasion < 0.001
Present 58 (15.0%) 47 (37.3%) 11 (4.2%)
Absent 328 (85.0%) 79 (62.7%) 249 (95.8%)

(Continued)
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TABLE 3 Continued

Training cohort STAS positive STAS negative oAl
SHAracerstics (n=386) (n=126) (n=260) =
B. Histopathological characteristics
Pathological T stage < 0.001
Tla 48 (12.4%) 10 (7.9%) 38 (14.6%)
T1b 170 (44.1%) 42 (33.3%) 128 (49.3%)
Tlc 85 (22.0%) 29 (23.1%) 56 (21.5%)
T2 83 (21.5%) 45 (35.7%) 38 (14.6%)
Pathological N stage < 0.001
NO 328 (85.0%) 82 (65.1%) 246 (94.6%)
N1 23 (6.0%) 17 (13.5%) 6 (2.3%)
N2 35 (9.0%) 27 (21.4%) 8 (3.1%)
C. CT Semantic characteristics
Affiliated lobe 0.044
Upper lobe 236 (61.1%) 68 (54.0%) 168 (64.6%)
Middle/lower lobe 150 (38.9%) 58 (46.0%) 92 (35.4%)
Location 0.060
Central 47 (12.2%) 21 (16.7%) 26 (10.0%)
Peripheral 339 (87.8%) 105 (83.3%) 234 (90.0%)
Attenuation type < 0.001
GGO 26 (6.7%) 4 (3.2%) 22 (8.5%)
Sub-solid 208 (53.9%) 46 (36.5%) 162 (62.3%)
Solid 152 (39.4%) 76 (60.3%) 76 (29.2%)
Tumor total diameter (mm)* 22.0 (17.0, 27.0) 25.0 (19.0, 31.0) 21.0 (16.0, 26.0) < 0.001
Tumor consolidation diameter 15.5 (10.0, 23.0) 21.0 (15.8, 28.3) 13.0 (8.0, 20.0) < 0.001
(mm)*
CTR* (%) 78.6 (46.5, 100.0) 100.0 (78.5,100.0) 64.1 (38.1, 100.0) < 0.001
Shape 0.065
Round or oval 324 (83.9%) 112 (88.9%) 212 (81.5%)
Irregular 62 (16.1%) 14 (11.1%) 48 (18.5%)
Presence of obscure boundary 101 (26.2%) 53 (42.1%) 48 (18.5%) < 0.001
Presence of lobulation 359 (93.0%) 121 (96.0%) 238 (91.5%) 0.105
Presence of spiculation 188 (48.7%) 76 (60.3%) 112 (43.1%) 0.001
Presence of cavity 54 (14.0%) 18 (14.3%) 36 (13.8%) 0.907
Presence of vacuole 29 (7.5%) 19 (15.1%) 10 (3.8%) < 0.001
Presence of air bronchogram 200 (51.8%) 56 (44.4%) 144 (55.4%) 0.044
Presence of pleural attachment 118 (30.6%) 48 (38.1%) 70 (26.9%) 0.025

Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; LI, labeling index; T, tumor; N, node; GGO, ground-glass opacity; CTR, consolidation-to-tumor ratio; STAS, spread through air space.
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FIGURE 3

CT image and pathological image obtained from a 65-year-old man with spread though air spaces negative lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a sub-solid nodule in the right lower lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification x 200) shows clean alveolar spaces (yellow polygon) beyond the boundary (dashed line) of the tumor (black star).
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FIGURE 4
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CT image and pathological image obtained from a 59-year-old woman with spread though air spaces positive lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a solid nodule in the right upper lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification X 200) shows several solid nests of tumor cell (yellow arrow) beyond the boundary (dashed line) of the tumor

TABLE 4 The model performances in the training cohort and validation cohort.

AUC (95% ClI)

Sensitivity (95% CI)

Specificity (95% Cl)

PPV (95% Cl) NPV (95% Cl)

Training cohort

CTR

Clinical-semantic model

0.709 (0.660,0.754)

0.764 (0.719,0.806)

0.706 (0.619, 0.784)

0.778 (0.695, 0.847)

0.692 (0.632, 0.748)

0.669 (0.608, 0.726)

0.527 (0.449, 0.604)

0.533 (0.458, 0.606)

0.829 (0.773, 0.877)

0.861 (0.806, 0.906)

Deep learning signature

0.869 (0.831,0.901)

0.706 (0.619, 0.784)

0.892 (0.848, 0.927)

0.761 (0.673, 0.835)

0.862 (0.815, 0.901)

Validation cohort
CTR
Clinical-semantic model

Deep learning signature

0.734 (0.648,0.808)
0.714 (0.627,0.790)

0.837 (0.761,0.896)

0.689 (0.534, 0.818)
0.778 (0.629, 0.888)

0.578 (0.422, 0.723)

0.744 (0.636, 0.834)
0.671 (0.558, 0.771)

0.951 (0.880, 0.987)

0.596 (0.450, 0.731)
0.565 (0.431, 0.691)

0.867 (0.693, 0.962)

0.813 (0.707, 0.894)
0.846 (0.735, 0.924)

0.804 (0.711, 0.878)

CTR, consolidation-to-tumor ratio; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

highest AUC of 0.933 achieved so far in training cohort.
Nevertheless, their model exhibited a substantial performance
reduction in validation cohorts (AUC=0.783-0.806), which
approximated the performance of our developed Modelgegnet 50 in
training and validation cohorts (AUC=0.799-0.800)This
unfavorable generalization may attribute to model overfitting by
reason of complicated architecture (21). Lin et al. enrolled 581
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patients with tumor smaller than 3 cm and CTR less than 0.5 from
two institutions. They extracted the deep learning features from
solid components and the entire tumors respectively, thereby
developing deep learning models with and without solid
component gate (SCG). The results revealed deep learning model
with SCG achieved higher AUCs than deep learning model without
SCG (22). Thus, further investigation is required to develop deep
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The performance comparisons of deep learning signature, CTR and clinical-semantic model in predicting STAS. (A, B) The receiver operating
characteristic curves of CTR, clinical-semantic model and deep learning signature in training cohort (A) and validation cohort (B). Number in
parenthesis is the area under receiver operating characteristic curve. (C, D) The calibration curves depicted the good agreements between predicted
probabilities by deep learning signature and actual observed probabilities of STAS in training cohort (C) and validation cohort (D).

learning signature with SCG based on Swin Transformer, in
expectation to further improve the prediction efficacy. In this
study, Swin Transformer was adopted as the backbone
architecture in modeling, achieving a satisfactory and comparable
performance in training and validation cohorts with AUC ranging
from 0.837 to 0.869, which was superior to Modelgesnet.50»
Modelgficientver and Modelconynext- This finding lent support to
the potential of our proposed Swin Transformer in predicting STAS
in lung adenocarcinoma. The state-of-the-art Swin Transformer is
regarded as the new backbone of machine vision. With two key
strengths of non-overlapping shifted windows and hierarchical
structures, Swin Transformer can flexibly process images at
various scales and reduce computational complexity from the
exponential level to the linear level. Growing evidence validated
the efficient processing capabilities of Swin Transformer in
handling multitasking such as image classification and density
detection (23-25). Our previously published study has affirmed
the remarkable efficiency of Swin Transformer in predicting lymph
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node metastasis in lung adenocarcinoma (26). Aside from that,
automatic tumor segmentation was conducted in this study using a
3D U-shape convolutional neural network. This deep learning
architecture serves as a highly effective tool for accurate, robust,
and efficient segmentation. It surpasses the time-consuming and
labor-intensive manual delineation or semi-automated
segmentation, as evidenced by the Dice similarity coefficients
across multiple institutions (27, 28).

Further exploring the relationship between STAS and
histopathological factors, micropapillary and solid predominant
adenocarcinoma were more commonly observed in STAS. Our
findings demonstrated a significant association between STAS and
visceral pleural invasion, lympho-vascular invasion and higher
pathological T stage, consistent with previous literature (29).
Additionally, lymph node invasion was more frequently found in
STAS-positive subgroup (34.9% vs 5.4%). In line with our results,
Vaghjiani et al. also reported that STAS was an independent
predictor of occult lymph node metastasis in clinical stage IA

frontiersin.org


https://doi.org/10.3389/fonc.2024.1482965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Ma et al.

lung adenocarcinoma (30). Although the underlying mechanism of
STAS remains unclear till now, it has been found that epithelial-
mesenchymal transition (EMT) prominently promotes the
occurrence of STAS (31). EMT is widely recognized as a
biological process wherein polarized epithelial cells transform into
loosely connected interstitial cells; this process is regarded as the key
driver of tumor genesis, invasion and metastasis. This may account
for the strong association between STAS and the aforementioned
invasive histopathological factors.

In clinical-semantic model, tumor boundary, vacuolation and
CTR were the independent CT semantic features in predicting
STAS. As a reflection of tumor aggressiveness, CTR weighted
heavily in regression analysis with a 1.25-fold increased risk of
STAS for every 10% increase. In accordance with our finding, Ding
et al. and Chen et al. confirmed that CTR was independently
associated with STAS (32, 33). Unexpectedly, the inclusion of all
clinical-semantic risk predictors failed to show an incremental value
with respect to deep learning signature. We found a strong
correlation between CTR and deep learning signature (r = 0.789,
P <0.001), which might account for this result. These findings also
lead to speculation on whether deep learning signature contains
biological information regarding tumor boundary and vacuolation,
which should be explored by future in-depth research. We also
found CTR and clinical-semantic model showed equivalent NPV
and sensitivity to deep learning signature. Notably, in both training
and validation cohorts, the deep learning signature exhibited far
superior AUC, specificity, and PPV compared to CTR and the
clinical-semantic model, which lent support to its predominant
efficacy in predicting STAS.

There are some limitations to this study. First, data were
retrospectively collected from different CT equipment, so
heterogeneity in acquisition parameters and reconstruction protocols
might be inevitable. The class-imbalance in sample should be addressed
using resample techniques in the future. Second, it is necessary to
expand sample size and enroll multi-institutional data to further affirm
the repeatability and generalization of deep learning signature. Besides,
long-term follow up and survival data should be warranted to affirm
the prognostic value of STAS, as well as the relationship of deep
learning signature with prognosis. Further investigation is required to
enhance the biological interpretability of deep learning, which
inherently possesses a black box nature, thereby facilitating its
application in clinical practice. Common approaches involve
employing the Grad-CAM algorithm for generating visualizations of
deep learning and incorporating attentional mechanisms into deep
learning networks to achieve the significance weight of diagnosis and
decision-making based on attention regions. Additionally, exploring
the associations between deep learning and genomics or proteomics
can further improve the biological interpretability of deep learning.
Last, given that biological behavior varies in different histological
subtypes of lung cancer, future research needs to supplement the
predictive value of the deep learning signature for STAS in other
histological subtypes.

In conclusion, the proposed deep learning signature based on
Swin Transformer offers a promising predictive performance for

STAS in clinical stage I lung adenocarcinoma, surpassing the
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conventional clinical-semantic model. The end-to-end deep
learning approach harbors the potential as a well-established tool
for noninvasive estimation of STAS, directing surgical strategy and
facilitating adjuvant therapeutic scheduling.
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Chinese Medicine, Shanghai, China, 2Department of Radiology, Guanghua Hospital Affiliated to
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Objectives: Quantitatively assess the severity and predict the mortality of
interstitial lung disease (ILD) associated with Rheumatoid arthritis (RA) was a
challenge for clinicians. This study aimed to construct a radiomics nomogram
based on chest computed tomography (CT) imaging by using the ILD-GAP
(gender, age, and pulmonary physiology) index system for clinical management.

Methods: Chest CTimages of patients with RA-ILD were retrospectively analyzed and
staged using the ILD-GAP index system. The balanced dataset was then divided into
training and testing cohorts at a 7:3 ratio. A clinical factor model was created using
demographic and serum analysis data, and a radiomics signature was developed from
radiomics features extracted from the CT images. Combined with the radiomics
signature and independent clinical factors, anomogram model was established based
on the Rad-score and clinical factors. The model capabilities were measured by
operating characteristic curves, calibration curves and decision curves analyses.

Results: A total of 177 patients were divided into two groups (Group |, n = 107;
Group I, n = 63). Krebs von den Lungen-6, and nineteen radiomics features were
used to build the nomogram, which showed favorable calibration and
discrimination in the training cohort [AUC, 0.948 (95% Cl: 0.910-0.986)] and
the testing validation cohort [AUC, 0.923 (95% CI: 0.853-0.993)]. Decision curve
analysis demonstrated that the nomogram performed well in terms of
clinical usefulness.

Conclusion: The CT-based radiomics nomogram model achieved favorable
efficacy in predicting low-risk RA-ILD patients.
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1 Introduction

Rheumatoid arthritis (RA) is one of the most immune-mediated
diseases that affects 0.5-1% of the global population. It is primarily
characterized by joint swelling and tenderness, leading to the
destruction of synovial joints (1). Beyond the joints, RA is
associated with systemic inflammation that can result in multiple
coexisting conditions and extra-articular manifestations (2).
Pulmonary involvement is recognized as the most prevalent
extra-articular complication in RA, encompassing a broad range
of disorders such as airway diseases, pleural effusions, and
rheumatoid nodules (3-5). Among these pulmonary
complications, interstitial lung disease (ILD) has the highest
prevalence (6). Importantly, RA-ILD is a significant cause of
mortality among RA patients and contributes to considerable
morbidity (7). Consequently, accurately assessing mortality risk
associated with RA-ILD is of great clinical significance.

The ILD-GAP (gender, age, and pulmonary physiology) index,
initially proposed by Ley et al. in 2012 (8), is a simple scoring system
designed to predict mortality risk in patients with idiopathic
pulmonary fibrosis. Utilizing variables such as gender, age,
predicted forced vital capacity (FVC), and diftusion capacity for
carbon monoxide (DL¢g), which has been refined and validated for
various types of ILD (9). Its accuracy in predicting outcomes for
RA-ILD has been confirmed by multiple studies (10-12). However,
pulmonary function tests (PFTs) necessitate active participation
from patients, such as performing deep breaths or forceful
exhalations (13). This can be particularly challenging for special
populations, including those with cognitive impairments or
concurrent pulmonary conditions, potentially compromising the
precision of the test results. To our knowledge, there is an absence of
universal, quantitative, non-invasive techniques for the staging of
RA-ILD.

The current primary method for diagnosing RA-ILD remains
Computed Tomography (CT) scan, owing to its noninvasive and
sensitive nature in detecting lung involvement (14, 15). However,
there are many features to determine the presence of ILD and inter-
reader variability, especially in unexperienced readers, is an issue
(16). Visual analysis of ILDs on CT images faces difficulties in
providing prognosis information, as various stages of RA-ILD
exhibit overlapping imaging features, making the diagnosis and
assessment of severity challenging with conventional imaging
modalities (17, 18). Radiomics technology, capable of extracting
numerous high-dimensional features from CT images, emerges as a
solution to address the limitations of visual assessment. Although
radiomics has predominantly been explored in the context of
various tumors (19, 20), its potential has been demonstrated in
identifying the GAP staging of connective tissue disease-associated
interstitial lung disease (CTD-ILD) (21, 22). However, ILD
associated with different CTDs can be characterized by distinct
clinical manifestations, imaging, and pathological features,
indicating their unique developmental and regression patterns. In
the context of RA-ILD, evidence from a small cohort study
suggested that radiomics may hold the potential for predicting
mortality (23). However, limited studies are focusing on the
application of radiomics in the staging of RA-ILD. Therefore, it is
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still necessary to explore the discriminative value of radiomics in
various stages of RA-ILD.

In this retrospective study, we aimed to establish a novel CT-
based radiomics nomogram to differentiate between the different
stages of RA-ILD.

2 Materials and methods

2.1 Patients

The study included patients clinically diagnosed with RA-ILD
between April 2020 and December 2023 at Guanghua Hospital
Affiliated with Shanghai University of Traditional Chinese
Medicine. Inclusion criteria comprised patients meeting all of the
following conditions: 1) diagnosed with RA according to the 2010
American College of Rheumatology criteria for RA (24); 2)
diagnosed with ILD according to the American Thoracic Society,
European Respiratory Society, Japanese Respiratory Society, and
Latin American Thoracic Society (ATS/ERS/JRS/ALAT) criteria for
ILD (25); 3) underwent a CT scan showing signs of ILD within 3
months after clinical diagnosis; and 4) underwent pulmonary
function tests and laboratory examination within 30 days before
or after the CT scan. Exclusion criteria were applied for patients
meeting any of the following conditions: 1) those with pulmonary
edema, infection, drug toxicity, allergy tumor, or heart disease; 2)
diagnosed with a combination of other types of CTD; 3) incomplete
demographic or clinical data. The flowchart of the study subjects is
shown in Figure 1.

2.2 Pulmonary function test

The routine PFTs were conducted using the Master Screen
Diffusion Pulmonary Function Instrument (Eric Jaeger, Germany).
The following indicators were assessed: the percentage predicted
values (% predicted) of forced expiratory volume in 1 s (FEVI),
FVC, total lung capacity (TLC), and DLco. The ILD-GAP index
was calculated in accordance with the method proposed by Ryerson
et al. (9). Subsequently, patients were categorized into two groups:
Group I comprised patients with an ILD-GAP index <1, while
Group II included patients with an ILD-GAP index >1.

2.3 CT image acquisition and evaluation

All enrolled patients underwent nonenhanced chest CT
examinations using one of two multidetector CT systems:
SOMATOM Definition Flash (Siemens Healthcare, Tokyo, Japan)
or Access CT (Philips Healthcare, Andover, Massachusetts, USA).
The parameters used for CT scanning were as follows: tube voltage
of 120 kVp and tube current-time product of 60-220 mAs with
automatic dose modulation; detector collimation of 64 x 0.6 mm;
rotation time of 1.0 second; and matrix size of 512 x 512. All CT
scans were reconstructed with a 1-mm slice thickness and lung
convolution kernels. The semiquantitative CT (SQCT) assessment
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FIGURE 1
Flowchart of the patient cohort

was carried out to calculate Goh score for each CT scan (26). RA-
ILD findings from HRCT were classified as UIP or non-UIP
patterns following recent IPF guidelines (25).

2.4 Three-dimensional lung segmentation

All image segmentation was executed using 3D Slicer software
(version 5.6.1, www.slicer.org). The preprocessing steps were
carried out as follows: 1) All CT images were reprocessed using
the “Resample Scalar Volume” module by resampling them into 1-
mm thick slices and normalizing the intensity values within the
range of [-1, 1]. 2) Using the “Radiomics” module, the voxel
intensity values were discretized with a fixed bin width of 25 HU
to reduce noise and standardize intensity across the images. 3) Z-
score normalization was performed on the image gray values to
reduce the impact of inconsistent imaging parameters on the
variability of radiomics features. 4) The region of interest (ROI)
of the bilateral lungs was automatically segmented, encompassing
blood vessels and the trachea in the lung lobes (window width =
1,250; window level = -875). A threshold-based region growing
method was utilized. The seeding strategy involved the placement of
a total of 13 seed points across different anatomical planes. On the
axial plane, three seed points were positioned in the peripheral
regions of the left and right lungs, respectively. A similar approach
was adopted on the coronal plane. Additionally, one seed point was
positioned at the location of the main bronchus. Subsequently, the
segmentation results underwent manual correction by a radiologist
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v

Testing cohort, n=53

with 5 years of experience in imaging diagnosis of chest diseases,
and confirmation was obtained from another radiologist with 8
years of experience in imaging diagnosis of chest diseases.
Interclass and intraclass correlation coefficients (ICCs) were
employed in the following manner: A total of 20 cases were
randomly selected for region of interest (ROI) segmentation by
Radiologist 1. Radiologist 2 then replicated the segmentation for
these 20 cases. Subsequently, Radiologist 1 repeated the
segmentation after a one-month interval. The segmentation was
deemed well-matched in terms of interobserver reliability and
intraobserver reproducibility when the ICC value surpassed 0.75.

2.5 Radiomics feature extraction and
model establishment

Figure 2 shows the workflow of radiomics analysis in this study.
The patient cohort was randomly split into training and test cohorts
at a ratio of 7:3. Feature extraction was performed utilizing the
open-source Pyradiomics software package (http://pypi.org/
project/pyradiomics/). This package facilitates the extraction of a
comprehensive suite of radiomics features, categorized into seven
distinct classes: Gray Level Dependence Matrix (GLDM), Gray
Level Co-occurrence Matrix (GLCM), Gray Level Run Length
Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
Neighboring Gray Tone Difference Matrix (NGTDM), First Order
Statistics, and Shape-based features (3D). A detailed description of
the extracted features is accessible via the Pyradiomics
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Overview workflow of radiomics analysis. Semi-automatic segmentation of the whole lung was performed on CT images, followed by manual
adjustment of the confirmed dissection range, with the region of interest delineated in blue. Imaging-derived histologic features, including shape
and texture characteristics, were extracted from CT images of both lungs. Feature selection was conducted using inter- and intra-observer reliability
assessment as well as the LASSO method. The performance and clinical utility of predictive model were evaluated using ROC, DCA, and nomogram
analysis. MSE Mean standard error, ROC Receiver operating characteristic, DCA Decision curve analysis

documentation (http://pyradiomics.readthedocs.io). A total of
1,834 radiomics features were extracted from the ROIs. Statistical
analysis involved the Student’s t-test for normally distributed
features and the Mann-Whitney U test for others. Features with a
p-value < 0.05 were retained, resulting in 1,171 features. Spearman’s
rank correlation coefficient was then applied to identify robustly
repeatable features, retaining one feature from pairs with a
correlation coefficient > 0.75. A recursive elimination strategy
further refined the features to a subset of 102. The dataset’s
signature was constructed using the least absolute shrinkage and
selection operator (LASSO) regression model. The optimal A value
was determined via tenfold cross-validation. Features with non-zero
coefficients formed the Radiomics Signature, combining linearly to
compute the radiomics score for each patient. Scikit-learn in Python
was employed for LASSO regression, and logistic regression was
used for model formulation after 10-fold cross-validation to verify

model adequacy.

2.6 Construction of the clinical model
The clinical factor model incorporated variables that were

significantly different (p < 0.05) as determined by univariate
logistic regression analysis. These variables included clinical data
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and laboratory examinations from the training cohort. Odds ratios
(ORs) with 95% confidence intervals (CIs) were calculated for the
significantly correlated variables. To mitigate the risk of data
leakage within the models, gender, age, and PFT parameters
were excluded.

2.7 The building of the clinical-
radiomics nomogram

A multivariate logistic regression analysis, combining both the
clinical signature and radiomics signature, was employed in a
backward step-down selection procedure to develop the final
integrated radiomics-clinical prediction model.

2.8 Statistical analysis

Statistical analyses were performed using SPSS (version 26.0;
IBM Corp.). Statistical significance was defined as a two- sided p-
value < 0.05. Normally distributed data were analyzed using
independent T-tests, and non-normally distributed data were
presented as medians (interquartile range) using Mann-Whitney
U tests. Categorical variables were analyzed using chi-square tests.
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The predictive performance of the three models was evaluated using
receiver operating characteristic (ROC) curves, with the area under
the ROC curve (AUC) calculated. Model performance was tested in
both the training and test cohorts. The Delong test was applied to
compare AUCs among the three models. Calibration efficiency of
the nomogram was assessed through calibration curves, and the
Hosmer-Lemeshow analytical fit was used to evaluate calibration
ability. Decision curve analysis (DCA) was employed to evaluate the
clinical utility of the radiomics-clinical model.

3 Results
3.1 Patient characteristics

A total of 177 patients with RA-ILD were enrolled in this study.
Among these patients, 107, 63, and 7 were allocated to ILD-GAP
stage I, II, and III, respectively. To prevent excessive data bias, the
patients in ILD-GAP stage II and III were combined into a single
group. Table 1 listed the baseline patient characteristics in group I
and group II. Age, gender, FVC, FEVI, TLC, DL¢o, and serum
Krebs von den Lungen-6 (KL-6) level showed significant differences
(p < 0.05) between the two groups, while the differences in smoking
history, ACPA, RF-IgM, RF-IgA, and RF-IgG were not significant
(p > 0.05). In addition, there was no significant statistical difference
between the two groups in terms of ESR, CRP, TNFo, IFNY, IFNo,
as well as disease activity score (p > 0.05).

3.2 Development of the clinical model

Univariate logistic regression was performed to analyze the
clinical data and laboratory examinations (Table 2). To ensure the
reliability of the model construction, factors such as gender, age,
and PFT parameters were excluded. Then, KL-6 (ORs = 1.007; 95%
CI, 1.004-1.010; p < 0.001) was selected as independent clinical
risk factors.

3.3 Development of the radiomics model

A total of 1,834 radiomics features were extracted from the CT
images, with 1,171 exhibiting promising interobserver and
intraobserver agreement (intraclass correlation coefficient > 0.75).
Through LASSO logistic regression analysis, 102 significantly
different (p < 0.05) radiomics features were selected to identify
optimally related features. Ultimately, 19 features were included in
the construction of the radiomics model. Figures 3A,B show the
coefficients and mean standard error (MSE) for the 10-fold
validation, while Figure 3C presents the coefficient values for the
final selection of non-zero features Rad score is shown as follows:
Rad-score= 0.4227 + 0.0088 x exponential_firstorder_Range
+0.0296 x exponential_glrlm_ShortRunLowGrayLevelEmphasis
-0.0157 x exponential_glszm_GrayLevelNonUniformity
Normalized +0.0516 x gradient_glem_Correlation +0.0743 x
Ibp_3D_mI1_glszm_ZoneEntropy +0.0146 x lbp_3D_m2_glszm_
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TABLE 1 Patient characteristics.

Variables Group | (n=107) Group Il (n=70)
Female (%) 91(85.05%) 40(57.14%) <0.001
Age, years 588 + 8.9 715+ 5.5 <0.001
RA duration, years 10.00 [4.00-9.25] 11.00 [4.00-20.00] 0.084
Smoking (%) 7(6.54%) 5(7.14%) 0.876
Lung function
FVC% 86.5 + 18.1 66.3 +17.4 <0.001
FEV1% 86.2 = 18.0 67.2 +17.0 <0.001
TLC% 83.6 £ 15.7 56.8 + 14.6 <0.001
DLco% 615+ 17.7 322+ 134 <0.001
Laboratory Examinations
653.90 582.10
ACPA, RU/ml [240.3071249.501 (138.75-1364.88] 2
32.77 [8.22-300.00] 28.18 0.496
RE-IgA, U/ml [6.43-146.40]
RF-IgG, U/ml 30.01 [6.11-96.76] [4.2:?1'22.63] 0.957
127.00 135.00 0.590
RE-IgM, U/ml [33.90-369.00] [40.25-574.00]
TNFa, pg/ml 2.56 [1.68-2.67] 2.00 [1.36-2.56] 0.075
IFNY, pg/ml 2.46 [2.27-5.65] 2.46 [1.82-5.05] 0.745
IFNo, pg/ml 1.36 [0.95-2.09] 1.50 [0.96-1.88] 0.830
ESR, mm/h 37.50 [23.75-65.25] [18.38:2(;.00] 0.682
CRP, mg/l 12.35 [2.06-32.95] 7.14 [0.80-22.98] 0.197
216.58 376.84
KL-6, U/ml [137.09-297.30] [261.07-539.88] <0.001
Disease activity
DAS-28-ESR 3.51 + 1.56 333 £1.37 0.489
DAS-28-CRP 4.25 + 1.54 4.12 + 1.46 0.611
CT images
ii?;;;m (urp/ 50 (46.7%) 64.3(64.3%) 0022
Goh score, % 12 [8-15] 19 [13-27] <0.001
Treatment for RA
Methotrexate 75 (72.8%) 45 (66.2%) 0.353
Methylprednisolone 47 (46.5%) 37 (57.8%) 0.158
Hydroxychloroquine 18 (18.2%) 11 (16.4%) 0.769
Leflunomide 20 (19.8%) 18 (26.9%) 0.284
Biological agent 69 (67.0%) 30 (44.8%) 0.004

Categorical variables are presented as n (%). Continuous variables are listed as median (inter-
quartile range, IQR) or as mean # standard deviation. n, number of patients; FVC, Forced vital
capacity; FEV1, Forced expiratory volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion
capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; RF, rheumatoid factor;
CRP, C-reactive protein; APLA, anti-phospholipid antibodies; KL-6, Krebs von den Lungen-6;
TNFo,, tumor necrosis factor alpha; IFNY, interferon gamma; IFNo, interferon alpha; DAS,
disease activity score; UIP, usual interstitial pneumonia.
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TABLE 2 Independent risk factors in training cohort.

Variables Qi e p value
(95% Cl)
Age 1.27(1.17-1.38) <0.001
Gender 0.30(0.13-0.69) 0.005
RA duration 1.03(1.00-1.07) 0.068
FVC% 0.91(0.88-0.94) <0.001
FEV1% 0.94(0.92-0.97) <0.001
TLC% 0.89(0.85-0.92) <0.001
DLco% 0.88(0.84-0.92) <0.001
ACPA 1.000(0.996-1.004) 0.936
RFIgM 1.000(0.998-1.001) 0.678
RFIgG 1.000(0.996-1.004) 0.936
RFIgA 0.998(0.995-1.002) 0.347
KL-6 1.007(1.004-1.010) <0.001
TNFo. 1.02(0.97-1.07) 0.457
IFNo. 1.04(0.94-1.15) 0.419
IFNy 0.99(0.91-1.07) 0.771
CRP 0.99(0.97-1.00) 0.183
ESR 0.99(0.97-1.00) 0.168
DAS-28-CRP 0.84(0.64-1.11) 0.219
DAS-28-ESR 0.85(0.65-1.11) 0.227

CI, confidence-interval; ORs, Odds ratio; FVC, Forced vital capacity; FEV1, Forced expiratory
volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion capacity for carbon monoxide; ESR,
erythrocyte sedimentation rate; RF, rheumatoid factor; CRP, C-reactive protein; APLA, anti-
phospholipid antibodies; KL-6, Krebs von den Lungen-6, TNFo,, tumor necrosis factor alpha;
IFNY, interferon gamma; IFNo, interferon alpha; DAS, disease activity score.

SizeZoneNonUniformity +0.0477 x log_sigma_3_0_mm_3D_
glem_Idn -0.0107 x original_glszm_LargeAreaHighGray
LevelEmphasis -0.0561 x original_glszm_SmallAreaHigh
GrayLevelEmphasis +0.0590 x original glszm_SmallAreaLowGray
LevelEmphasis +0.0049 x original_ngtdm_Busyness -0.0623 x
original_shape_Flatness +0.0020 x original_shape_
Maximum2DDiameterSlice +0.0349 X original_shape_
MinorAxisLength -0.0730 X original_shape_Sphericity -0.0597 X
squareroot_firstorder_Skewness -0.0879 x wavelet_ HHL_
glem_Idmn +0.0285 x wavelet_LHL_ngtdm_Busyness +0.0026 X
wavelet LLH_firstorder Skewness.

3.4 Comparison of clinical, radiomics, and
nomogram models

As shown in Figure 4, for the AUC, the clinical features [0.736,
95%CI = 0.642-0.830) and the radiomics features (0.939, 95%CI =
0.892-0.985) were perfectly fitted for the training cohort. In the
testing cohort, the clinical characteristics (0.752, 95%CI = 0.610-
0.894) and the radiomics signature remained well-fitted (0.901, 95%
CI = 0.820-0.982). As shown in Figure 5, The nomogram using the
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LR algorithm, combining clinical features and radiomics features,
showed the best performance in the training (0.948, 95%CI = 0.910-
0.987) and testing cohort (0.923, 95%CI = 0.853-0.993),
respectively. The detailed diagnostic efficiency capability for each
model is presented in Supplementary Table SI.

To compare the clinical signature, radiomics signature, and
nomogram, the Delong test was utilized (Supplementary Table 2).
In the testing cohort, the results indicated that the AUC comparison
between the nomogram and the clinical signature achieved 0.021,
suggesting that the nomogram outperformed the clinical model in
discriminating the GAP staging of RA-ILD. The AUC comparison
between the nomogram and radiomics signature was 0.219,
indicating that both models performed well in differentiating the
GAP staging of RA-ILD.

3.5 Comparison of visual assessment,
radiomics, and nomogram models

In the testing cohort, the Goh score achieved an AUC of 0.820
(95%CI=0.700-0.941; Supplementary Figure 1). Comparatively,
both the radiomics model (0.901, 95% CI: 0.820-0.982) and the
combined radiomics-KL-6 nomogram model (0.923, 95% CI: 0.853-
0.993) showed superior AUC values relative to the Goh score.

3.6 Calibration curve and DCA of
the models

The calibration curves for the training and testing cohorts were
shown in Figure 6. The p-values from the Hosmer-Lemeshow test
for clinical features, radiologic features, and nomograms were 0.557,
0.171, 0.305, and 0.193, 0.072, 0.160 in the training and test cohorts,
respectively. These p-values suggest a perfect agreement for each
model (Supplementary Table 3).

As shown in Figure 7, the DCA for clinical features,
radiographic features, and nomograms, covering predictive
probabilities from 0.12 to 0.41, 0.02 to 0.91, and 0.1 to 0.78. The
nomogram achieves the largest net benefit compared to other
models when the threshold probability ranges from 0.23 to 0.58.

4 Discussion

In our study, the radiomics model based on chest CT has great
performance to distinguish different ILD-GAP stage patients with
an AUC of 0.901 in validation cohort. The nomogram model,
combining the radiomics model and serum KL-6, further enhanced
the prediction efficiency of GAP staging with an AUC of 0.948 and
0.923 in the training and validation cohort, respectively.

Among the serological markers, anti-citrullinated protein antibodies
(ACPA) have been implicated in the extra-articular manifestations of
RA, including ILD (27-29). Correia et al. reported a correlation between
ACPA titers and the risk of developing ILD (30). On the contrary, many
studies have shown no association between ACPA and ILD, as well as
related RF factors. Similarly, our study revealed no significant differences

frontiersin.org


https://doi.org/10.3389/fimmu.2024.1417156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Han et al. 10.3389/fimmu.2024.1417156
A B
1.0
09
04
08
o7
0.2
" 06
£ 3
% 205
S 0o
04
HUHHTT
-0.2
(s
01
-04
00
1072 1072 107 10° 1073 102 107 10°
Lambda(A=0.0295) Lambda(A=0.0295)
C
Ibp_3D_m1_glszm_ZoneEntropy { wmmm Coefficients I
original_glszm_Small yLevelEmph |
gradient_glcm_Correlation I
log_sigma_3_0_mm_3D_glcm_ldn |
original_shape_MinorAxisLength |
p ial_glrim_ShortRunl yLevelEmpt |
wavelet_LHL_ngtdm_Busyness ]
Ibp_3D_m2_glszm_SizeZoneNonUniformity =
E exponential_firstorder_Range —
o original_ngtdm_Busyness =]
% wavelet_LLH_firstorder_Skewness |
= original_shape_Maximum2DDiameterSlice i
original_glszm_Larg lighGrayLevelEmpt |
exponential_glszm_GrayLevelNonUniformityNormalized | |
original_glszm_SmallAreaHighGrayLevelEmph I
q firstorder_Sk ]
original_shape_Flatness ———————
original_shape_Sphericity I
wavelet HHL_glem_idmn {  IEE—
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
FIGURE 3
Radiomics feature selection based on LASSO algorithm and Rad score establishment. (A) LASSO coefficient profile plot with different log (A)was
shown. (B) Ten-fold cross-validated coefficients and 10-fold cross-validated MSE. (C) The histogram of the Rad score based on the
selected features.

FIGURE 4

Model AUC

Model AUC

10

L = Clinic Signature AUC: 0.736 (95%C1 0.642-0830) = Clinic Signature AUC: 0.752 (95%C1 0.610-0895)
4 =+« Rad Signature AUC: 0.939 (95%C1 0.892-0.985) ==+ Rad Signature AUC: 0.901 (95%C1 0.820-0.982)
L e Nomogram AUC: 0.948 (95%C1 0.910-0.986) i e Nomogram AUC: 0,923 (35%C1 0.853-0.993)
00 00
00 02 04 0s 08 10 00 02 04 06 08 10
1 - Specificity 1 - Specificity

Comparison of receiver operating characteristic (ROC) curves for the clinical, radiomics, and nomogram models in the training (A) and testing (B)
cohorts. The combined nomogram performed optimally in both the training and testing cohorts.

Frontiers in Immunology

104

frontiersin.org



https://doi.org/10.3389/fimmu.2024.1417156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2024.1417156

Han et al.
0 10 20 30 40 50 60 70 80 90 100
Points . h ! A ) h | 7 ;
Clinic_Sig r T T T T T T T J
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
Rad_Sig c T T T T T T T T T 1
0 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
Total Points T T T T T T T T T T T 1
0 20 40 60 80 100 120 140 160 180 200 220
Risk ; . : : )
0.01 0.25 05 0.75 0.99
FIGURE 5
A constructed nomogram for predicting the GAP staging of RA-ILD.
A B
10 1.0
08 08
_§06 % 06
5 5
§ $
.E 04 .E 04
02 02
------ Perfectly calibrated - Perfectly calibrated
—a— Clinic Signature —=— (Clinic Signature
—=— Rad Signature —=— Rad Signature
00 —a— Nomogram 00 —=— Nomogram
00 02 04 06 08 10 00 02 04 06 08 10
Mean predicted probability Mean predicted probability

FIGURE 6

Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).

Model for DCA

—— Clinic Signature
—— Rad Signature
04 —— Nomogram
— Treatall
Treat none
03
& 02
g
a
2
01 LN N
0.0
-0.1
0.0 0.2 04 0.8 1.0

X 06
Threshold Probability

FIGURE 7
Decision curve analysis (DCA) of the clinical, radiomics, and nomogram models in the testing cohort.

Frontiers in Immunology 105

frontiersin.org



https://doi.org/10.3389/fimmu.2024.1417156
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Han et al.

between ACPA and RF factors in different stages of RA-ILD. However,
these different results may be attributed to the heterogeneity of ACPA
specificity and search methods (5, 31). It is worth noting that treatment
strategies may play a crucial role in the development and progression of
RA-ILD. A higher proportion of biological agent use was revealed in the
low-risk group by our analysis. This suggests that patients using
biological agents may represent a cohort receiving early and aggressive
treatment. The use of biological agents may interrupt the inflammatory
cascade leading to ILD, thereby reducing the risk of developing severe
ILD in later stages (32, 33).

In addition, older age and male sex have been strongly
associated with RA-ILD (34). We excluded gender, age, and PFTs
parameters from the clinical model to prevent data leakage, despite
their status as independent risk factors. Eventually, univariate
logistic regression analysis revealed that KL-6 was an independent
predictor in our present study. KL-6 is a mucin-like glycoprotein
which stimulates fibrosis and inhibits apoptosis of pulmonary
fibroblasts (35, 36). Elevated serum KL-6 levels have been
observed in RA patients with lung involvement, suggesting its
potential utility in early detection of ILD. In a cohort of 50 RA
patients, KL-6 levels positively correlated with the high-resolution
computed tomography fibrosis score, indicating that high KL-6
levels are a significant biomarker for ILD and may serve as a
predictor for ILD severity in RA patients (37). Moreover, a study
suggests that high KL-6 levels might be an independent risk factor
and useful for the prognosis in patients with RA-ILD (38). So far,
the utility of serum KL-6 has been evaluated in several forms of ILD
and its sensitivity and specificity for RA-ILD ranged from 67%-85%
and 60%-90%, respectively, depending on the cutoff value (36, 37,
39). In our study, a clinical factor model to classify RA-ILD stages
was developed based on KL-6, and then achieved an AUC of 0.752
in the testing cohorts.

Radiomics is an objective technique offering a reliable and
comprehensive quantitative assessment of images, unaffected by
inter-reader variability (40). Feature extraction involves
mathematical operations on digital images to generate numerical
descriptors of texture, shape, and other distinct characteristics.
These descriptors can be computationally analyzed to explore
potential associations with clinical parameters (41). Particularly
useful for diseases challenging to describe through simple visual
features, high-dimensional abstract features extracted from wavelet-
transformed images can provide diverse perspectives in capturing
hidden information not easily observed visually. Radiomics features
have indeed proven their potential for severity estimation in
Systemic sclerosis-ILD and guiding treatment decisions (42). At
present, the literature on the application of radiomics is limited.
Venerito et al. (23) retrieved the HRCTSs of 30 RA-ILD patients and
suggested that radiomics analysis could predict patient mortality.
This finding suggests that HRCT could serve as a digital biomarker
for RA-ILD, offering prognostic value that is independent of the
clinical characteristics of the disease. Recently, some scholars have
developed radiomics models based on CT images to differentiate
GAP staging in CTD patients. Qin et al. (21) manually segmented
the right lung of CTD-ILD patients and constructed a radiomics
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model from the 9 extracted texture features. The AUC of their
radiomics models in the validation cohort was 0.787 and 0.718 in
the internal and external test cohort, respectively. A similar study
utilized a semi-automatic segmentation method to segment bilateral
lungs, obtaining a total of 4 features (22). Their developed radiomics
model demonstrated an AUC of 0.801 in the test cohort. Instead of
focusing on all types of CTDs, we concentrated on patients with RA.
In our work, totally1,834 radiomics features obtained from the CT
images, 19 higher-order texture features extracted from wavelet
transformed images were acquired as remarkable elements to build
the radiomics model, resulting in an AUC of 0.939, and 0.901 in the
training and testing cohorts, respectively. It is speculated that by
targeted with ILD specifically caused by RA, to some extent
excluded the imbalance of training data arising from the
heterogeneous imaging characteristics of various CTD-ILD
subtypes (43), which eventually screened out more features. In
the current study, we constructed a nomogram model that
integrates the radscore with serum KL-6 levels to further enhance
the accuracy of predicting low-risk RA-ILD. In contrast to the GAP
index, the nomogram model can predict GAP staging in patients
with RA-ILD even when precise lung function parameters are
challenging to obtain. This radiomics-based approach may serve
as a supportive tool for assessing the severity of RA-ILD. Moreover,
the proposed model can be readily implemented in clinical practice,
as it leverages routinely acquired chest CT imaging and serum
biomarker data to automate the computational process, thereby
minimizing the operational burden on clinicians.

There are certain limitations in our study. Firstly, the single-
center design with a relatively small overall sample size, especially
the limited representation of more severe ILD-GAP stage III
patients, may restrict the model ability. Future studies based on
larger datasets from other centers are needed to evaluate model
generalizability. Secondly, the exact mortality of the retrospective
study verified by the GAP index system may less precise than actual
mortality of patient. Nevertheless, as an available method to predict
mortality, the GAP index system has been validated in RA-ILD. The
precise assessment of mortality risk will be conducted in our further
research. In addition, our study serves as a foundational
exploration, offering valuable insights for selecting valuable
imaging biomarkers in RA-ILD.

In conclusion, a novel nomogram model combining CT-based
radiomics and serum KL-6 was developed in our study. It shows
good prediction accuracy in predicting low-risk RA-ILD patients,
which implies that this noninvasive and quantitative method may
impact the clinical decision-making process, offering a more precise
management strategy for patients with RA-ILD.
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Introduction: Self-supervised learning (SSL) is a strategy for addressing the
paucity of labelled data in medical imaging by learning representations from
unlabelled images. Contrastive and non-contrastive SSL methods produce
learned representations that are similar for pairs of related images. Such pairs
are commonly constructed by randomly distorting the same image twice. The
videographic nature of ultrasound offers flexibility for defining the similarity
relationship between pairs of images.

Methods: We investigated the effect of utilizing proximal, distinct images from
the same B-mode ultrasound video as pairs for SSL. Additionally, we introduced
a sample weighting scheme that increases the weight of closer image pairs and
demonstrated how it can be integrated into SSL objectives.

Results: Named Intra-Video Positive Pairs (IVPP), the method surpassed previous
ultrasound-specific contrastive learning methods’ average test accuracy on
COVID-19 classification with the POCUS dataset by > 1.3%. Detailed
investigations of IVPP's hyperparameters revealed that some combinations
of IVPP hyperparameters can lead to improved or worsened performance,
depending on the downstream task.

Discussion: Guidelines for practitioners were synthesized based on the
results, such as the merit of IVPP with task-specific hyperparameters, and the
improved performance of contrastive methods for ultrasound compared to
non-contrastive counterparts.

KEYWORDS

self-supervised learning, ultrasound, contrastive learning, non-contrastive learning,
representation learning

1 Introduction

Medical ultrasound (US) is a modality of imaging that uses the amplitude of
ultrasonic reflections from tissues to compose a pixel map. With the advent of point-
of-care ultrasound devices, ultrasound has been increasingly applied in a variety of
diagnostic clinical settings, such as emergency care, intensive care, oncology, and sports
medicine (Yim and Corrado, 2012; Whitson and Mayo, 2016; Sood et al., 2019; Soni
et al.,, 2020; Lau and See, 2022). It possesses several qualities that distinguish it from
other radiological modalities, including its portability, lack of ionizing radiation, and
affordability. Despite morphological distortion of the anatomy, ultrasound has been shown
to be comparable to radiological alternatives, such as chest X-ray and CT, for several
diagnostic tasks (van Randen et al., 2011; Alrajhi et al., 2012; Nazerian et al., 2015).
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Deep learning has been extensively studied as a means to
automate diagnostic tasks in ultrasound. As with most medical
imaging tasks, the lack of open access to large datasets is a
barrier to the development of such systems, since large training
sets are required for deep computer vision models. Organizations
that have privileged access to large datasets are also faced
with the problem of labeling ultrasound data. Indeed, many
point-of-care ultrasound examinations in acute care settings are
not archived or documented (Hall et al., 2016; Kessler et al.,
2016).

When unlabeled examinations are abundant, researchers turn
to unsupervised representation learning to produce pretrained
deep learning models that can be fine-tuned using labeled data.
Self-supervised learning (SSL) is a broad category of methods that
has been explored for problems in diagnostic ultrasound imaging.
Broadly, SSL refers to the supervised pretraining of a machine
learning model for a task that does not require labels for the task
of interest. The pretraining task (i.e., pretext task) is a supervised
learning task where the target is a quantity that is computed from
unlabeled data. After optimizing the model’s performance on the
pretext task, the weights are recast as initial weights for a new
model that is trained to solve the task of interest (referred to as the
downstream task). If the pretrained model has learned to produce
representations of salient information in ultrasound images, then
it is likely that it can be fine-tuned to perform the downstream task
more proficiently than had it been randomly initialized. Contrastive
learning is a type of pretext task in SSL that involves predicting
whether two inputs are related (i.e., positive pairs) or unrelated
(i.e., negative pairs). In computer vision, a common way to define
positive pairs is to apply two randomly defined transformations to
an image, producing two distorted views of the image with similar
content. Positive pairs satisfy a pairwise relationship that indicate
semantic similarity. All other pairs of images are regarded as
negative pairs. Non-contrastive methods disregard negative pairs,
focusing only on reducing the differences between representations
of positive pairs.

Unlike other forms of medical imaging, US is a dynamic
modality acquired as a stream of frames, resulting in a video.
Despite this, there are several US interpretation tasks that can be
performed by assessing a still US image. Previous studies exploring
SSL in US have exploited the temporal nature of US by defining
contrastive learning tasks with intra-video positive pairs — positive
pairs comprised of images derived from the same video (Chen et al.,
2021; Basu et al., 2022). Recent theoretical results indicate that the
pairwise relationship must align with the labels of the downstream
task in order to guarantee that self-supervised pretraining leads
to non-inferior performance on the downstream task (Balestriero
and LeCun, 2022). For classification tasks, this means that positive
pairs must have the same class label. Due to the dynamic nature
of US, one cannot assume that all frames in a US video possess
the same label for all downstream US interpretation tasks. As a
result, it may be problematic to indiscriminately designate any pair
of images originating from the same US video as a positive pair.
Moreover, since US videos are often taken sequentially as a part
of the same examination or from follow-up studies of the same
patient, different US videos may bear a striking resemblance to each
other. It follows that designating images from different US videos
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as negative pairs may result in negative pairs that closely resemble
positive pairs.

In this study, we aimed to examine the effect of proximity
and sample weighting of intra-video positive pairs for common
SSL methods. We also intended to determine if non-contrastive
methods are more suitable for classification tasks in ultrasound.
Since non-contrastive methods do not require the specification
of negative pairs, we conjectured that non-contrastive methods
would alleviate the issue of cross-video similarity and yield stronger
representations for downstream tasks. Our contributions and
results are summarized as follows:

e A method for sampling intra-video positive pairs for joint
embedding SSL with ultrasound.

e A sample weighting scheme for joint embedding SSL methods
that weighs positive pairs according to the temporal or spatial
distance between them in their video of origin.

e A comprehensive assessment of intra-video positive pairs
integrated with SSL pretraining methods, as measured by
downstream performance in B-mode and M-mode lung US
classification tasks. We found that, with proper downstream
task-specific hyperparameters, intra-video positive pairs can
improve performance compared to the standard practice of
producing two distortions of the same image.

e An comparison of contrastive and non-contrastive learning
for multiple lung US classification tasks. Contrary to our
initial belief, a contrastive method outperformed multiple
non-contrastive methods on multiple lung US downstream
tasks.

Figure 1 encapsulates the novel methods proposed in this
study. To the authors’ knowledge, there are no preceding studies
that systematically investigate the effect of sampling multiple
images from the same US video in non-contrastive learning. More
generally, we believe that this study is the first to integrate sample
weights into non-contrastive objectives.

2 Background

2.1 Joint embedding self-supervised
learning

Having gained popularity in recent years in multiple imaging
modalities, joint embedding SSL refers to a family of methods
where the pretext task is to produce output vectors (ie.,
embeddings) that are close for examples satisfying a similarity
pairwise relationship. Pairs of images satisfying this relationship
are known as positive pairs, and they assumed to share semantic
content with respect to the downstream task. For example, positive
pairs could belong to the same class in a downstream supervised
learning classification task. On the other hand, negative pairs are
pairs of images that do not satisfy the pairwise relationship. In the
label-free context of SSL, positive pairs are often constructed by
sampling distorted versions of a single image (Chen et al., 2020;
Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2022). The
distortions are sampled from a distribution of sequentially applied
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FIGURE 1

spatially separated images from the same video

An overview of the methods introduced in this study. Positive pairs of images separated by no more than a threshold are sampled from the same
B-mode video (1). Sample weights inversely proportional to the separation between each image (red bars) are calculated for each pair (2). Random
transformations are applied to each image (3). Images are sent to a neural network consisting of a feature extractor (4) and a projector (5) connected
in series. The outputs are used to calculate the objective Lss (6). The trained feature extractor is retained for downstream supervised learning tasks.
(A) For B-mode ultrasound, positive pairs are temporally separated images from the same video. (B) For M-mode ultrasound, positive pairs are
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transformations that are designed to preserve the semantic content
of the image. Horizontal reflection is a common example of a
transformation that meets this criterion in many forms of imaging.

The architecture of joint embedding models commonly consists
of two modules connected in series: a feature extractor and
a projector. The feature extractor is typically a convolutional
neural network (CNN) or a variant of a vision transformer, while
the projector is a multi-layer perceptron. After pretraining, the
projector is discarded and the feature extractor is retained for
weight initialization for the downstream task.

FrontiersinImaging

Contrastive learning and non-contrastive learning are two major
categories of joint embedding methods. Contrastive methods rely
on objectives that explicitly attract positive pairs and repel negative
pairs in embedding space. Many of these methods adopt the
InfoNCE objective (Oh Song et al., 2016), which may be viewed
as cross-entropy for predicting which combination of embeddings
in a batch correspond to a positive pair. In most contrastive
methods, positive pairs and negative pairs are distorted versions
of the same image and different images, respectively. MoCo is a
contrastive method that computes pairs of embeddings using two
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feature extractors: a “query” encoder and a “key” encoder (He
et al., 2020). The key encoder, which is an exponentially moving
average of the query encoder, operates on negative examples
Its output embeddings are queued to avoid recomputation of
negative embeddings. SimCLR (Chen et al., 2020) is a widely used
contrastive method that employs a variant of the InfoNCE objective
that does not include the embedding of the positive pair in the
demoninator (Oh Song et al., 2016). It does not queue negative
embeddings, relying instead on large batches of negative examples.

Non-contrastive methods dispense with negative pairs
altogether, limiting their focus to reducing the difference between
embeddings of positive pairs. By design, they address the
information collapse problem - a degenerate solution wherein
all examples map to a null representation vector. Self-distillation
non-contrastive methods use architectural and asymmetrical
training strategies to avoid collapse [e.g., BYOL (Grill et al., 2020)].
Information maximization non-contrastive methods address
collapse by employing objectives that maximize the information
content of the embedding dimensions. For instance, the Barlow
Twins method is a composite objective that contains a term for
penalizing dimensional redundancy for batches of embeddings,
in addition to a term for the distances between embeddings of
individual positive pairs (Zbontar et al., 2021). VICReg introduced
an additional term that explicitly maximizes variance across
dimensions for batches of embeddings (Bardes et al., 2022).
Despite a common belief that contrastive methods need much
larger batch sizes than non-contrastive methods, recent evidence
showed that hyperparameter tuning can boost the former’s
performance with smaller batch sizes (Bordes et al., 2023). Non-
contrastive methods have been criticized for requiring embeddings
with greater dimensionality than the representations outputted by
the feature extractor; however, a recent study suggested that the
difference may be alleviated through hyperparameter and design
choices (Garrido et al., 2022).

Theoretical works have attempted to unify contrastive and
non-contrastive methods. Balestriero and LeCun (2022) found
that SimCLR, VICReg, and Barlow Twins are all manifestations
of spectral embedding methods. Based on their results, they
recommended that practitioners define a pairwise relationship
that aligns with the downstream task. For example, if the
downstream task is classification, then positive pairs should have
the same class. Garrido et al. (2022) challenged the widely held
assumptions that non-contrastive methods perform better than
contrastive methods and that non-contrastive methods rely on
large embedding dimensions. They showed that the methods
perform comparatively on benchmark tasks after hyperparameter
tuning and that VICReg can be modified to reduce the dependence
on large embeddings (Garrido et al., 2022).

2.2 Joint embedding methods for B-mode
lung ultrasound

Ultrasound is a dynamic imaging modality that is typically
captured as a sequence of images and stored as a video. As such,
images originating from the same video are highly correlated and
are likely to share semantic content. Accordingly, recent works have
developed US-specific contrastive learning methods that construct
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positive pairs from the same video. The Ultrasound Contrastive
Learning (USCL) method (Chen et al.,, 2021) is a derivative of
SimCLR in which positive pairs are weighted sums of random
images within the same video [i.e., the mixup operation (Zhang
et al, 2017)], while negative pairs are images from different
videos. They reported an improvement on the downstream task
of COVID-19 classification with the POCUS dataset (Born et al.,
2020). Improving on USCL, Meta-USCL concurrently trains a
separate network that learns to weigh positive pairs (Chen et al.,
2022). The work was inspired by the observation that the intra-
video positive pairs may exhibit a wide range of semantic similarity
or dissimilarity. Basu et al. (2022) proposed a MoCo-inspired
solution where positive pairs are images that are temporally close
within a video, while negative pairs consist of either pairs from
different videos or pairs from the same video that are separated
temporally by a no less than a gradually decreasing threshold.
Lastly, the HiCo method’s objective is the sum of a softened
InfoNCE loss calculated for the feature maps outputted by various
model blocks (Zhang et al., 2022). The authors reported greatly
improved performance with respect to USCL.

Standard non-contrastive methods have been applied for
various tasks in US imaging. In addition to assessing contrastive
methods, Anand et al. (2022) conducted pretraining with two self-
distillation non-contrastive methods [BYOL (Grill et al., 2020) and
DINO (Caron et al., 2021)] on a large dataset of echocardiograms.
BYOL pretraining has also been applied in anatomical tracking
tasks (Liang et al, 2023). Information maximization methods
have been investigated for artifact detection tasks in M-mode
and B-mode lung ultrasound (VanBerlo et al., 2023a,b). To our
best knowledge, no studies have trialed non-contrastive learning
methods for B-mode ultrasound with intra-video positive pairs.
The present study seeks to address this gap in the literature by
investigating the effect of sampling positive pairs from the same
video on the efficacy of non-contrastive pretraining for tasks in
ultrasound.

3 Methods

3.1 Joint embedding methods for
ultrasound with intra-video positive pairs

3.1.1 Setup

We consider the standard joint embedding scenario where
unlabeled data are provided and the goal is to maximize the
similarity between embeddings of positive pairs. In contrastive
learning, the goal is augmented by maximizing the dissimilarity of
negative pairs. Let x; and x, denote a positive pair of US images.
Self-supervised pretraining results in a feature extractor f(x) that
outputs representation vector h. The goal of SSL is to produce
a feature extractor that is a better starting point for learning the
downstream task than random initialization.

In this study, we propose a simple method for sampling
and weighing positive pairs in the joint embedding setting that
can be adopted for any joint embedding SSL method. We adopt
SimCLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021)
and VICReg (Bardes et al., 2022) for our experiments. In these
methods, a MLP projector is appended to the feature extractor
during pretraining. z = g(h) = g(f(x)) is the embedding vector
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outputted by the projector. The SSL objective is then computed in
embedding space.

3.1.2 Intra-video positive pairs: (IVPP)

Recall that positive pairs are images that are semantically
related. Previous work in contrastive SSL for US has explored
the use of intra-video positive pairs (Chen et al., 2021, 2022;
Basu et al.,, 2022; Zhang et al., 2022). A problem with naively
sampling intra-video positive pairs is that it rests on the assumption
that all images in the video are sufficiently similar. However,
clinically relevant signs commonly surface and disappear within
the same US video as the US probe and/or the patient move. For
example, B-lines are an artifact in lung US that signify diseased
lung parenchyma (Soni et al., 2020). B-lines may disappear and
reappear as the patient breathes or as the sonographer moves
the probe. The A-line artifact appears in the absence of B-lines,
indicating normal lung parenchyma. In the absence of patient
context, an image containing A-lines and an image containing
B-lines from the same video convey very different impressions.
While most previous methods only considered inter-video images
to be negative pairs, Basu et al. (2022) argued that that temporally
distant intra-video pairs of US images are more likely to be
dissimilar, which inspired their method that treats such instances
as negative pairs. Despite this, we argue that distant intra-video
images may sometimes exhibit similar content. For example, the
patient and probe may remain stationary throughout the video, or
the probe may return to its original position and/or orientation.
Moreover, periodic physiological processes such as the respiratory
cycle may result in temporally distant yet semantically similar
images. Without further knowledge of the US examinations in
a dataset, we conjectured that it may be safest to only assume
that positive pairs are intra-video images that are close to each
other. Closer pairs are likely to contain similar semantic content,
yet they harbor different noise samples that models should be
invariant to. In summary, this method distinguishes itself from
prior work by only considering proximal frames to be positive
pairs and treating distant pairs as neither positive nor negative
pairs.

For B-mode US videos, we define positive pairs as intra-video
images x1 and x, that are temporally separated by no more than
Smax seconds. To accomplish this, x; is randomly drawn from the
video’s images, and x; is randomly drawn from the set of images
that are within §; seconds of x;. The frame rate of the videos must
be known in order to determine which images are sufficiently close
to x1. Note that videos with higher frame rates will provide more
candidates for positive pairs, potentially increasing the diversity of
pairs with respect to naturally occurring noise.

A similar sampling scheme is applied for M-mode US images.
Like previous studies, we define M-mode images as vertical slices
through time of a B-mode video, taken at a specific x-coordinate
in the video (Jascur et al., 2021; VanBerlo et al., 2022b, 2023b). The
x-axis of an M-mode image is time, and its y-axis is the vertical
dimension of the B-mode video. We define positive pairs to be M-
mode images whose x-coordinates differ by no more than &y pixels.
To avoid resolution differences, all B-mode videos are resized to
the same width and height prior to sampling M-mode images. The
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positive pair sampling process for B-mode and M-mode images is
depicted in Figure 2.

As is customary in joint embedding methods, stochastic
data augmentation is applied to each image, encouraging the
feature extractor to become invariant to semantically insignificant
differences. Any data augmentation pipeline may be adopted
for this formulation of intra-video positive pairs; however,
we recommend careful selection of transformations and the
distributions of their parameters to ensure that the pairwise
relationship continues to be consistent with the downstream US
task.

3.1.3 Sample weights

The chance that intra-video images are semantically related
decreases as temporal or spatial separation increases. To temper
the effect of unrelated positive pairs, we apply sample weights to
positive pairs in the SSL objective according to their temporal or
spatial distance. Distant pairs are weighed less than closer pairs. For
a positive pair of B-mode images occurring at times t; and ¢, or M-
mode images occurring at positions x; and x5, the sample weight is
calculated using Equation 1:

Sl —nl+1
W= ———————
8t + 1

=l —xl+1

5 1 (1

Sample weights were incorporated into each SSL objective
trialed in this study. Accordingly, we modified the objective
functions for SimCLR, Barlow Twins, and VICReg in order to
weigh the contribution to the loss differently based on sample
weights. Appendix 1 describes the revised objective functions. To
the authors’ knowledge, this study is the first to propose sample
weighting schemes for the aforementioned self-supervised learning
methods.

3.2 Ultrasound classification tasks

3.2.1 COVID-19 classification (COVI D)

As was done in previous studies on on US-specific joint
embedding methods (Chen et al., 2021, 2022; Basu et al., 2022;
Zhang et al., 2022), we evaluate IVPP on the public POCUS
lung US dataset (Born et al., 2020). This dataset contains 140
publicly sourced US videos (2116 images) labeled for three classes:
COVID-19 pneumonia, non-COVID-19 pneumonia, and normal
lung.! When evaluating on POCUS, we pretrain on the public
Butterfly dataset, which contains 22 unlabeled lung ultrasound
videos (Butterfly Network, 2020).2

3.2.2 A-line vs. B-line classification (AB)
A-lines and B-lines are two cardinal artifact in B-mode lung
US that can provide quick information on the status of a patient’s

1 See dataset details at the public POCUS repository (Born et al.,, 2020):
https://github.com/jannisborn/covid19_ultrasound.

2 Accessed via a URL available at the public USCL repository (Chen et al.,
2021): https://github.com/983632847/USCL.
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FIGURE 2

Illustration of intra-video positive pairs. Positive pairs are considered images that are no more than a threshold apart from each other within the same
ultrasound video. (A) For B-mode ultrasound, positive pairs are frames in the same video that are within §; seconds of each other. (B) For M-mode
ultrasound, positive pairs are M-mode images originating from the same B-video that are located within §x pixels from each other. In the context of
lung ultrasound, M-mode images should intersect the pleural line (outlined in mauve).

lung tissue. A-lines are reverberation artifacts that are indicative of
normal, clear lung parenchyma (Soni et al., 2020). On lung US, they
as horizontal lines deep to the pleural line. Conversely, B-lines are
indicative of diseased lung tissue (Soni et al., 2020). Generally, the
two are mutually exclusive. We evaluate on the binary classification
task of A-lines versus B-lines on lung US, as was done in previous
work benchmarking joint embedding SSL methods for lung US
tasks (VanBerlo et al., 2023a).

We use a private dataset of 25917 parenchymal lung US videos
(5.9¢6 images), hereafter referred to as ParenchymalLUS. It is a
subset of a larger database of de-identified lung US videos that
was partially labeled for previous work (Arntfield et al., 2021;
VanBerlo et al., 2022b). Access to this database was permitted
via ethical approval by Western University (REB 116838). Before
experimentation, we split the labeled portion of ParenchymalLUS
by anonymous patient identifier into training, validation, and test
sets. The unlabeled portion of ParenchymalLUS was assembled by
gathering 20000 videos from the unlabeled pool of videos in the
database that were predicted to contain a parenchymal view of the
lungs by a previously trained lung US view classifier (VanBerlo
et al., 2022a). All videos from the same patient were in either
the labeled or the unlabeled subset. Table 1 provides further
information on the membership of ParenchymalLUS.

3.2.3 Lung sliding classification (LS)

Lung sliding is a dynamic artifact that, when observed on
a parenchymal lung US view, rules out the possibility of a
pneumothorax at the site of the probe (Lichtenstein and Menu,
1995). The absence of lung sliding is suggestive of pneumothorax,
warranting further investigation. On B-mode US, lung sliding
manifests as a shimmering of the pleural line (Lichtenstein and
Menu, 1995). The presence or absence of lung sliding is also
appreciable on M-mode lung US images that intersect the pleural
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line (Lichtenstein et al., 2005; Lichtenstein, 2010). We evaluate on
the binary lung sliding classification task, where positive pairs are
M-mode images originating from the same B-mode video.

ParenchymalLUS is adopted for the lung sliding classification
task. We use the same train/validation/test partition as described
above. Following prior studies, we estimate the horizontal bounds
of the pleural line using a previously trained object detection
model (VanBerlo et al., 2022b) and use the top half of qualifying M-
mode images, in decreasing order of total pixel intensity (VanBerlo
et al., 2023b).

4 Results

4.1 Training protocols

Unless otherwise stated, all feature extractors are initialized
with ImageNet-pretrained weights. Similar studies concentrating
on medical imaging have observed that this practice improves
downstream  performance when compared to random
initialization (Azizi et al., 2021; VanBerlo et al., 2023b). Moreover,
we designate fully supervised classifiers initialized with ImageNet-
pretrained weights as a baseline against which to compare models
pretrained with SSL.

Evaluation on POCUS follows a similar protocol employed in
prior works (Chen et al., 2021; Basu et al., 2022). Feature extractors
with the ResNet18 architecture (He et al., 2016) are pretrained on
the Butterfly dataset. Prior to training on the POCUS dataset, a 3-
node fully connected layer with softmax activation was appended
to the pretrained feature extractor. Five-fold cross validation is
conducted with POCUS by fine-tuning the final three layers of
the pretrained feature extractor. Unlike prior works, we adopt
the average across-folds validation accuracy, instead of taking the
accuracy of the combined set of validation set predictions across
folds. Presenting the results in this manner revealed the high
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TABLE 1 Breakdown of ParenchymalLUS at the video and image level.

10.3389/fimag.2024.1416114

Unlabeled Labeled
Validation

Patients 5,204 1,540 330 329
Total Videos 20,000 4123 858 936

Images 4,611,063 927,889 191,437 208,648

Videos - 2,100/998 441/197 512/213
A/B line labels

Images — 484,287 /216,505 99,132 /40,608 116,648 /42,122

Videos - 3,169/477 631/103 707 /96
Lung sliding labels

Images — 727,205/96,771 146,322/23,218 166,753 /21,911

x/y indicates the number of negative and positive labeled examples available for each task, respectively. Video labels apply to each image within the video. Note that some videos were not labeled

for both tasks.

variance of model performance across folds, which may be due to
the benchmark dataset’s small video sample size.

All  experiments with ParenchymalLUS utilize the
MobileNetV3-Small architecture as the feature extractor, which
(Howard
et al., 2019). Feature extractors are pretrained on the union
of the unlabeled videos and labeled training set videos in
ParenchymalLUS. Performance is assessed via test set classification
metrics. Prior to training on the downstream task, a single-node

outputs a 576-dimensional representation vector

fully connected layer with sigmoid activation was appended to the
pretrained feature extractor. We report the performance of linear
classifiers trained on the frozen feature extractor’s representations,
along with classifiers that are fine-tuned end-to-end.

For each joint embedding method, the projectors were
multilayer perceptrons with two 768-node layers, outputting 768-
dimensional embeddings. Pretraining is conducted for 500 epochs
using the LARS optimizer (You et al., 2019) with a batch size of
384 and a learning rate schedule with warmup and cosine decay as
in Bardes et al. (2022).

The pretraining and training data augmentation pipelines
consist of random transformations, including random cropping,
horizontal reflection, brightness jitter, contrast jitter, and Gaussian
blurring. Additional data preprocessing details are available in
Appendix 2.

Source code will be made available upon publication.®

4.2 Performance

The two main proposed features of IVPP are intra-video
positive pairs and distance-based sample weights. Accordingly, we
assess the performance of IVPP across multiple assignments of the
maximum image separation. Separate trials were conducted for
SimCLR, Barlow Twins, and VICReg pretraining. For the COVI D
and AB tasks, we explored the values §; € {0,0.5, 1, 1.5} seconds.
The LS task is defined for M-mode US, and so we explored 8, €
{0, 5, 10, 15} pixels. The standardized width of B-mode US videos
should be considered when determining an appropriate range for

3 https://github.com/bvanberl/IVPP

FrontiersinImaging

—_
(=3
=]

i | i | | |
0.0 0.5 1.0
Ot [seconds]

e
o
G

e
o
S

e
1
<

Average Validation Accuracy

o
%
S

W SimCLR (no SW)
SimCLR (SW)

EEE Barlow Twins (no SW)
[ Barlow Twins (SW)

I VICReg (no SW)
VICReg (SW)

FIGURE 3

Average test accuracy across 5-fold cross validation on the POCUS
dataset. Models were pretrained with a variety of intra-video positive
pair thresholds with and without sample weights. Error bars indicate
the standard deviation across folds. The dashed line indicates
initialization with ImageNet-pretrained weights.

8x. Note that when § = 0, sample weights are all 1 and therefore do
not modify any of the SSL objectives investigated in this study.

Figure 3 summarizes the performance of IVPP on the public
POCUS dataset after pretraining on the Butterfly dataset, which
is measured by average test accuracy in 5-fold cross validation. In
most cases, pretrained models obtained equal or greater average
accuracy than the ImageNet-pretrained baseline, with the exception
of Barlow Twins with §; = 0 and §; = 0.5. The performance
of models pretrained with SimCLR, Barlow Twins, and VICReg
peaked at different nonzero values of §; (0.5, 1, and 1.5 respectively),
indicating a possible benefit of selecting temporally close yet
distinct intra-video positive pairs. It was also observed across all
three pretraining methods that the inclusion of sample weights
resulted in worsened test AUC when § = 0.5, but improved test
AUCwhend =1.0and § = 1.5.

Similar experiments were conducted with ParenchymalLUS for
the AB task and LS task, using B-mode and M-mode images
respectively as input. ParenchymalLUS represents a scenario
where there is an abundance of unlabeled data, which differs
greatly from the preceding evaluation on public, yet small,
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FIGURE 4

classifiers for the LS task. (D) Fine-tuned classifiers for the LS task.

ParenchymallLUS test set AUC for the AB and LS binary classification tasks, calculated for models pretrained with a selection of contrastive and
non-contrastive learning methods and employing a variety of intra-video positive pair thresholds with and without sample weights (SW). The dashed
line indicates initialization with ImageNet-pretrained weights. (A) Linear classifiers for the AB task. (B) Fine-tuned classifiers for the AB task. (C) Linear
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datasets. The unlabeled and labeled portions of ParenchymalLUS
contained at least an order of magnitude more videos than
either the public Butterfly and POCUS datasets. B-mode and
M-mode feature extractors were pretrained on the union of
the unlabeled and training portions of ParenchymalLUS—one
for each value of 8§, with and without sample weights. For
these evaluations, we use all training examples that have been
assigned a label for the downstream task. Figure4 provides a
visual comparison of the test AUC obtained by linear feature
representation classifiers and fine-tuned models for the AB and
LS tasks. An immediate trend across both tasks and evaluation
types is that SimCLR consistently outperformed Barlow Twins and
VICReg, which are both non-contrastive methods. Furthermore,
pretraining with non-contrastive methods often resulted in worse
test AUC compared to initialization with ImageNet-pretrained
weights. Another observation across all experiments was that there
was no discernible trend for the effect of sample weights that was
consistent for any task, pretraining method, &, or .

Focusing on AB, linear classifiers achieved the greatest
> 0, with the exception of VICReg
(Figure 4A). The use of SImCLR compared to the other pretraining

performance when &

methods appeared to be responsible for the greatest difference
in test performance. As shown in Figure 4A, SimCLR-pretrained
models outperformed non-contrastive methods, and were the only
models that outperformed ImageNet-pretrained weights. The use
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of a nonzero §; resulted in slight improvement in combination with
SimCLR pretraining, but degraded performance of non-contrastive
methods.

Similar results were observed for the LS M-mode classification
task. Models pretrained with SimCLR were the only ones that
matched or surpassed fully supervised models. Nonzero &y
generally improved the performance of linear classifiers, with
8y = 5 pixels corresponding to the greatest test AUC for
SimCLR and VICReg, and 8, = 15 for Barlow Twins. Inclusion
of sample weights appreciably improved the performance of
Barlow Twins-pretrained models. Fine-tuned models pretrained
with SIimCLR performed similarly to fully supervised models, while
non-contrastive methods resulted in degradation of test AUC.

Table 2 compares the top-performing IVPP-pretrained models
for each SSL method with two prior US-specific contrastive
learning methods— USCL (Chen et al., 2021) and US UCL (Basu
et al., 2022). Of note is that all three self-supervised methods
pretrained with IVPP
initialization for POCUS, a task where very little pretraining and
training data were utilized. For the B-mode and M-mode tasks
assessed with ParenchymalLUS, a contrastive method (including
the baseline) outperformed non-contrastive methods. Appendix 4
provides additional results that exhibit a similar trend with
different pretraining batch sizes. Overall, the most salient result
from the above experiments is that SimCLR, a contrastive method,

outperformed ImageNet-pretrained
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TABLE 2 Performance of fine-tuned models pretrained using IVPP compared to US-specific contrastive learning methods, USCL, and UCL, and to
baseline random and ImageNet initializations.

Dataset POCUS ParenchymallLUS

Pretraining method Mean (std) test accuracy A/B Test AUC LS Test AUC
Random initialization 0.881 (0.050) 0.954 0.790
ImageNet initialization 0.908 (0.043) 0.973 0.898
USCL (Chen et al., 2021) 0.905 (0.044) 0.979 0.874

US UCL (Basu et al., 2022) 0.901 (0.054) 0.967 0.809

IVPP [SimCLR] 0.926 (0.043) 0.980 0.903

IVPP [Barlow Twins] 0.921(0.054) 0.969 0.887

IVPP [VICReg] 0.930 (0.046) 0.971 0.862

outperformed both non-contrastive methods when unlabeled data
is abundant.

4.3 Label efficiency

ParenchymalLUS is much larger than public ultrasound
datasets for machine learning. Although the majority of its
videos are unlabeled, it contains a large number of labeled
examples. To simulate a scenario where the fraction of
examples that are labeled is much smaller, we investigated
the downstream performance of models that were pretrained
on all the unlabeled and training ParenchymalLUS examples
and then fine-tuned on a very small subset of the training
set.

Label efficiency investigations are typically conducted by fitting
a model for the downstream task using progressively smaller
fractions of training data to gauge how well self-supervised models
fare in low-label scenarios. The results of these experiments may be
unique to the particular training subset that is randomly selected.
We designed an experiment to determine if the choice of &, dx,
or the introduction of sample weights influenced downstream
performance in low-label settings. To reduce the chance of biased
training subset sampling, we divided the training set into 20 subsets
and repeatedly performed fine-tuning experiments on each subset
for each pretraining method and § value, with and without sample
weights. To ensure independence among the subsets, we split
the subsets by patient. Inspection of the central moments and
boxplots from each distribution indicated that the normality and
equal variance assumptions for ANOVA were not violated. For
each pretraining method, a two-way repeated-measures analysis
of variance (ANOVA) was performed to determine whether the
mean test AUC scores across values of § and sample weight usage
were different. The independent variables were § and the presence
of sample weights, while the dependent variable was test AUC.
Whenever the null hypothesis of the ANOVA was rejected, post-hoc
paired t-tests were performed to compare the following:

e Pretraining with nonzero 8§ against standard positive pair
selection (§ = 0).

e For the same nonzero § value, sample weights against no
sample weights.
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For each group of post-hoc tests, the Bonferroni correction was
applied to establish a family-wise error rate of « = 0.05. To ensure
that each training subset was independent, we split the dataset by
anonymous patient identifier. This was a necessary step because
intra-video images are highly correlated, along with videos from
the same patient. As a result, the task became substantially more
difficult than naively sampling 5% of training images because the
volume and heterogeneity of training examples was reduced by
training on a small fraction of examples from a small set of patients.

The fine-tuning procedure was identical to that described in
Section 4.1, with the exception that the model’s weights at the end
of training were retained for evaluation, instead of restoring the
best-performing weights on the validation set. Figure 5 provides
boxplots for all trials that indicate the distributions of test AUC
under the varying conditions for both the AB and LS tasks. Again,
SimCLR performance appeared to be substantially higher than both
non-contrastive methods.

Table 3 gives the mean and standard deviation of each set of
trials, for each hyperparameter combination. For each task and each
pretraining method, the ANOVA revealed significant interaction
effects (p < 0.05). Accordingly, all intended post-hoc t-tests were
performed to ascertain (1) which combinations of hyperparameters
were different from the baseline setting of augmenting the same
frame twice (§ = 0) and (2) values of § where the addition of
sample weights changes the outcome. First, we note that SimCLR
was the only pretraining method that consistently outperformed
full supervision with ImageNet-pretrained weights. Barlow Twins
and VICReg pretraining — both non-contrastive methods - resulted
in worse performance.

For the AB task, no combination of intra-video positive pairs
or sample weights resulted in statistically significant improvements
compared to dual distortion of the same image (§; = 0).
For Barlow Twins and VICReg, several nonzero §; resulted in
significantly worse mean test AUC. Sample weights consistently
made a difference in Barlow Twins across §; values, but only
improved mean test AUC for §; = 1 and §; = 1.5.

Different trends were observed for the LS task. SimCLR with
8 =
compared to the baseline where §, = 0. No other combination

5 and no sample weights improved mean test AUC
of hyperparameters resulted in a significant improvement.

For Barlow Twins, multiple IVPP hyparameter combinations
resulted in improved mean test AUC over the baseline. No

frontiersin.org


https://doi.org/10.3389/fimag.2024.1416114
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org

VanBerlo et al. 10.3389/fimag.2024.1416114

A B
ﬁ ﬂ 0.85
L]
© o
0.75
8 o o o o .
< ) 2070{ oo o
g z
a £ 0.65
¢ 0.60
o o o
) 0.55 o o
+ o
0 0.5 1.0 1.5 0 5 10 15

¢ [pixels] O [pixels]

[ SimCLR (No SW) I Barlow Twins (No SW) I VICReg (No SW)

I SimCLR (No SW) I Barlow Twins (No SW) I VICReg (No SW) X .
[ SimCLR (SW) [ Barlow Twins (SW) [ VICReg (SW)

[0 SimCLR (SW) = Barlow Twins (SW) [0 VICReg (SW)

FIGURE 5

Boxplots conveying the quartile ranges of test AUC distributions for each pretraining method and assignment to §, with and without sample weights.
Each experiment is repeated 20 times on disjoint subsets of the training set, each containing all images from a group of patients. (A) AB task. (B) LS
task.

TABLE 3 ParenchymalLUS test AUC for the the AB and LS tasks when trained using examples from 5% of the patients in the training set.

AB LS
Pretrain method Mean (std) test AUC Mean (std) test AUC
0 0 0.938 (0.007) 0 O 0.812(0.037)
0.5 O 0.931(0.010)* 5 a 0.824 (0.030)*
0.5 O 0.936 (0.007)" 5 O 0.820(0.033)
SimCLR 1 o 0.934(0.011) 10 O 0.815 (0.035)
1 0 0.933(0.011) 10 O 0.816 (0.037)
15 0 0.936(0.013) 15 O 0.819 (0.034)
1.5 0 0.932(0.012) 15 0 0.798 (0.039)*"
0 0 0.914(0.014) 0 O 0.693 (0.044)
0.5 O 0.914(0.010)* 5 a 0.694 (0.040)
0.5 0 0.883 (0.017)*" 5 u] 0.780 (0.040)*"
Barlow Twins 1 ] 0.877 (0.022)* 10 a 0.705 (0.051)
1 0 0.891 (0.018)*" 10 0 0.706 (0.066)
15 O 0.870 (0.024)* 15 O 0.769 (0.037)*
1.5 ] 0.892 (0.015)*" 15 O 0.707 (0.071)"
0 O 0.917(0.011) 0 o 0.690 (0.042)
0.5 0 0.879 (0.024)* 5 a 0.675 (0.036)
0.5 0 0.879 (0.021)* 5 O 0.679 (0.038)
VICReg 1 ] 0.872(0.023)* 10 a 0.680 (0.039)
1 0 0.876 (0.024)* 10 0 0.675 (0.040)
15 O 0.860 (0.026)* 15 ] 0.710 (0.036)
1.5 u] 0.870 (0.021)*" 15 0 0.685(0.039)"
None (ImageNet-pretrained) 0.896 (0.017) 0.783 (0.028)
None (random initialization) 0.774(0.051) 0.507 (0.022)

Twenty trials were performed for each pretraining method, value of &, with and without sample weights (SW). Mean and standard deviation of the test AUC across trials are reported for
each condition. *Significantly different (p < 0.05) than baseline for the pretraining method where § = 0. TSignificantly different (p < 0.05) for particular § when sample weights are applied,

compared to no sample weight.
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IVPP hyperparameter combinations significantly improved the
performance of VICReg.

5 Discussion

5.1 Guidelines for practitioners

Insights were derived to guide practitioners working with
deep learning for ultrasound interpretation. First, SimCLR was
observed to achieve the greatest performance consistently across
multiple tasks. With the exception of the data-scarce COVID-
19 classification task, SimCLR decisively outperformed Barlow
Twins and VICReg on the A/B and LS tasks. The results
provide evidence toward favoring contrastive learning over non-
contrastive learning for problems in ultrasound. It could be that
the non-contrastive methods studied may be less effective for lung
ultrasound examinations. We suspect that the lack of diversity in
parenchymal lung ultrasound and the fine-grained nature of the
classification tasks is problematic for non-contrastive methods, as
the objectives are attractive and focus on maximizing embedding
information. Perhaps explicit samples of negative pairs may be
needed to learn a meaningful embedding manifold for fine-grained
downstream tasks. Future work assessing non-contrastive methods
for tasks in different ultrasound examinations or alternative
imaging modalities altogether would shed light on the utility of
non-contrastive methods outside the typical evaluation setting of
photographic images.

While the experimental results do not support the existence of
overarching trends for hyperparameter assignments for intra-video
positive pairs across pretraining methods, it was observed that some
combinations improved performance on particular downstream
tasks. For example, each pretraining methods downstream
performance on COVID-19 classification was improved by a
nonzero value of §;. Overall, the results indicated that the optimal
assignment for IVPP hyperparameters may be problem-specific.
Clinically, IVPP may improve performance on downstream
ultrasound interpretation tasks; however, practitioners are advised
to include a range of values of § with and without sample weights
in their hyperparameter search.

5.2 Limitations

The methods and experiments conducted in this study were not
without limitations. As is common in medical imaging datasets,
the ParenchymalLUS dataset was imbalanced. The image-wise
representation for the positive class was 30.0% for the AB task and
11.7% for the lung sliding task. Although some evidence exists
in support for self-supervised pretraining for alleviating the ill
effects of class imbalance in photographic images (Yang and Xu,
2020; Liu et al, 2021), computed tomography, and fundoscopy
images (Zhang et al., 2023), we found no such evidence for tasks
in medical ultrasound.

As outlined in the background, the pretraining objectives
employed in this study have been shown to improve downstream
performance when the pairwise relationship aligns with the
downstream task (Balestriero and LeCun, 2022). These guarantees
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compare to the baseline case of random weight initialization.
While it was observed that all pretraining methods outperformed
full supervision with randomly initialized weights, ImageNet-
pretrained weights outperformed non-contrastive methods in
several of the experiments. ImageNet-pretrained weights are a
strong and meaningful baseline for medical imaging tasks, as
they have been shown to boost performance in several supervised
learning tasks across medical imaging modalities (Azizi et al., 2021).
It is possible that some extreme data augmentation transformations
and intra-positive pairs could jeopardize the class agreement of
positive pairs (as is likely in most pragmatic cases); however, near-
consistent alignment was achieved through data augmentation
design and small ranges of §. Although there exists evidence
that VICReg and SimCLR can achieve similar performance
on ImageNet with judicious selection of hyperparameters (e.g.,
temperature, loss term weights, learning rate) (Garrido et al., 2022),
we used default hyperparameters. Due to limited computational
resources, we avoided expansion of the hyperparameter space by
only studying IVPP hyperparameters.

Lastly, M-mode images were designated by selecting x-
coordinates in B-mode videos that intersect a pleural line region
of interest, as predicted by an object detection model utilized in
previous work (VanBerlo et al., 2022b, 2023b). LUS M-mode images
must intersect the pleural line in order to appreciate the lung sliding
artifact. While we mitigated potential inaccuracies in localization by
limiting training and evaluation data to the brightest half of eligible
x-coordinates, it is possible that a small fraction of M-mode images
were utilized that did not intersect the pleural line.

5.3 Conclusion

Intra-video positive pairs have been proposed as a means of
improving the downsteam performance of ultrasound classifiers
pretrained with joint embedding self supervised learning. In
this study, we suggested a scheme for integrating such positive
pairs into common contrastive and non-contrastive SSL methods.
Applicable to both B-mode and M-mode ultrasound, the
proposed method (IVPP) consists of sampling positive pairs
that are separated temporally or spatially by no more than a
threshold, optionally applying sample weights to each pair in
the objective depending on the distance. Investigations revealed
that using nearby images from the same video for positive
pairs can lead to improved performance when compared to
composing positive pairs from the same image, but that IVPP
hyperparameter assignments yielding benefits may vary by the
downstream task. Another salient result was the persistent top
performance of SimCLR for key tasks in B-mode and M-
mode lung ultrasound, indicating that contrastive learning may
be more suitable than non-contrastive learning methods for
ultrasound imaging.

Future work could investigate IVPP for other types of medical
ultrasound exams. IVPP could also be integrated into other SSL
objectives. The sample weights formulation proposed in this study
could also be applied to SSL for non-US videos. Given the
high performance of SimCLR, subsequent work should perform
a comprehensive comparison contrastive and non-contrastive
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SSL methods for tasks in medical US. Lastly, future work
could evaluate US-specific data augmentation transformations that
preserve semantic content. As a natural source of differences
between positive pairs, IVPP could be studied in tandem with
US-specific augmentations.
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Background: Goutallier's fatty infiltration of the supraspinatus muscle is a
critical condition in degenerative shoulder disorders. Deep learning research
primarily uses manual segmentation and labeling to detect this condition.
Employing unsupervised training with a hybrid framework of segmentation and
classification could offer an efficient solution.

Aim: To develop and assess a two-step deep learning model for detecting
the region of interest and categorizing the magnetic resonance image (MRI)
supraspinatus muscle fatty infiltration according to Goutallier’s scale.

Materials and methods: A retrospective study was performed from January
1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with
supraspinatus muscle fatty infiltration diagnoses. A model with two sequential
neural networks was implemented and trained. The first sub-model
automatically detects the region of interest using a U-Net model. The second
sub-model performs a binary classification using the VGG-19 architecture. The
model's performance was computed as the average of five-fold cross-validation
processes. Loss, accuracy, Dice coefficient (Cl. 95%), AU-ROC, sensitivity, and
specificity (Cl. 95%) were reported.

Results: Six hundred and six shoulders MRIs were analyzed. The Goutallier
distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3
(3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy
(0.9977 4+ 0.0002) and Dice score (0.9441+ 0.0031), while the classification
model also results in high levels of accuracy (0.9731+ 0.0230); sensitivity
(0.9000 + 0.0980); specificity (0.9788 + 0.0257); and AUROC (0.9903 + 0.0092).

Conclusion: The two-step training method proposed using a deep learning
model demonstrated strong performance in segmentation and classification
tasks.

KEYWORDS

classification, deep learning, fatty infiltration, MRI, supraspinatus
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Introduction

Rotator cuff tears (RCTs) are a prevalent musculoskeletal shoulder
condition that affects millions of people worldwide, regardless of sex
(1, 2).

increasingly common with age in the general population (3), leading

This degenerative and progressive condition becomes

to significant economic consequences for patients and healthcare
systems alike (4, 5). The magnitude of tear size, muscle atrophy, and
fatty infiltration are important variables in predicting the prognosis of
patients (6, 7). Specifically, low levels of fatty infiltration have been
shown to have significantly better outcomes than those with more
severe conditions, as they are less likely to experience re-tears (7, 8).
Therefore, identifying specific stages of fatty infiltration and the
supraspinatus muscle is crucial in accurately predicting patients’
prognoses, particularly for those that are to be exposed to a major
surgery or in population of high risk with such as older patients. For
this purpose, magnetic resonance image (MRI) is one of the most
commonly used medical imaging techniques available for the
detection of RCT and fatty infiltration, owing to its high diagnostic
accuracy (9). However, patient access to MRI results may take several
days due to the large number of exams and the time specialists can
dedicate to this task. Therefore, developing tools that can speed-up
this process, while having a high accuracy in identifying fatty
infiltration, can help reduce waiting times suffered by patients and the
burden faced by medical experts.

Goutallier et al. (10) proposed one of the most widely used
qualitative scales for identifying supraspinatus fatty infiltration,
consisting of five stages ranging from 0 (normal muscle) to 4 (severe
fat accumulation). Although Goutallier’s scale was originally
developed based on CT scan analysis, it has been adapted for use with
MRI. Fuchs et al. (11) proposed a new scale by combining the
previously defined stages in Goutallier’s work. Specifically, levels zero
and one were merged to create the normal stage, level two was
redefined as moderate, and level three or four were considered to
represent severe fatty infiltration. However, there has been some
controversy over the adaptation of the original scale for use with MRI
(12). Furthermore, reducing inter-observer variability when assessing
rotator cuff quality from MRI remains a major challenge in diagnostic
imaging (13).

On the other hand, deep learning algorithms, especially
convolutional neural networks (CNNs), have rapidly become the
preferred methodology for analyzing medical images (14-16). Some
of the most commonly used deep learning architectures for computer
vision tasks include Inception-v3, ResNet50, VGG19, and U-Net
(17-20). However, due to complexity of medical image datasets and
smaller size compared to other sources of data, transfer learning has
become a suitable approach for building and training deep learning
models in clinical research. With transfer learning, most of the
proposed models for medical diagnosis are based on pre-trained
models from the ImageNet dataset and trained using transfer learning
techniques (21). This technique involves using a well-trained model
from a non-medical source dataset, such as ImageNet, and re-training
itin a target dataset, such as medical images, including MRIs (22-24).

Most of the existing deep learning applications are based on
supervised training, a commonly used technique for classification
using medical images. However, supervised training requires labeled
images for the models to learn from their structure. Additionally, in
supervised learning, in order to improve the model’s performance,
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researchers manually select the region of interest (manual
segmentation). However, manual segmentation is a time-consuming
task, and manual labelling from medical experts is not always available
(25). Therefore, to address these limitations, unsupervised training for
segmenting the region of interest could be a viable solution. In the
context of identifying shoulder fatty infiltration, four recent and
highly important articles addressing this problem or closely related
have been published. Three of these studies focused on magnetic
resonance images (22, 23, 26) while only one utilized CT scans (27).
However, all these studies relied on annotated data, which means that
each image was manually labeled by an expert to create an image and
corresponding infiltration level pairs, or each image was manually
segmented to generate a corresponding segmentation mask for that
specific image.

In order to address the gap in the literature, the objective of this
research is to develop and assess a two-step deep learning framework.
The first step performs and automated detection the region of interest
(segmentation of the region of interest), while the second step uses the
information from the segmentation model to classify the region of
interest into one of the Goutallier’s fatty infiltration levels using MRI
images, hence, fully automating the process of identifying the
Goutallier’s fatty infiltration levels via the usage of deep learning
techniques (segmentation and classification hybrid framework).

Materials and methods
Study design

This research was designed as a retrospective, single-site study,
following the guidelines outlined in the Strengthening the Reporting
of Observational Studies in Epidemiology (STROBE). Patient records
were exclusively obtained from MRI examinations conducted at the
MEDS Clinic in Santiago, Regiéon Metropolitana, Chile. The study
started on September 25th, 2020.

Learning approach

An end-to-end deep learning model was developed to classify the
patient risk based on the fatty infiltration of the supraspinatus muscle.
The training process was performed in a two-step fashion. In the first
step, we trained a segmentation model to extract the region of interest
from the image. In the second step, we trained a classification model
to determine if there was a risk or not for further surgery based on the
level of fatty infiltration in the region of interest detected in the first
step. Both models (segmentation and classification) are trained
independently and non-recursively. However, segmented images from
the first step (segmentation model) are used to train the classification
model. Therefore, the training process of the classification model, as
well as the testing phase, are performed using results from the
segmentation model (segmented images). The training process and
workflow of the proposed two-step model is described in Figure 1 as
well as in Figure 2.

Dataset characteristics

The medical institution provided all the data, consisting of 900
DICOM files corresponding to unique exams. Each file corresponds
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to a T2-weighted Y-view MR sequence of the shoulder. Furthermore,
we extracted all 900 medical reports associated to each of the DICOM
files. The medical reports were, authored by three different radiologists.
These reports used various scales or standards to document the fatty
infiltration or degeneration stage. To ensure accurate labeling,
we enlisted the expertise of an experienced radiologist who manually
labeled the dataset. Moreover, images with diagnostic uncertainties
underwent manual segmentation under the supervision of another
radiologist, ensuring detailed and reliable annotations.

According to Figure 3, the labeling process resulted in 666
registered images, with one being marked as inconclusive and two
remaining unregistered. Additionally, there were 60 images for which
segmentation masks could not be created due to a file error.
Consequently, our ground truth dataset comprises 606 labeled images
along with their corresponding segmentation masks. Table 1 provides
an overview of the image label counts, indicating 403, 114, 51, 24, and
14 for Goutallier 0, 1, 2, 3, and 4, respectively. More than 82% of the
images fall into grades 0 or 1, indicating a significant imbalance
towards lower fatty infiltration grades. The female group exhibited a
greater number of samples in the higher grades compared to the male
group. Furthermore, except for the observed mean age in the
Goutallier 0 group (p<0.05), there were no significant differences
between the female and male groups across Goutallier levels in terms
of proportions or mean age.

Dataset preparation

The DICOM file format is extensively adopted as a standard for
medical images in clinical settings. A DICOM data object consists of
multiple attributes, including fields such as name, ID, and more. It also
incorporates a distinct attribute that contains the image pixel data. In
order to enhance the efficiency of image processing during model
ingestion, we extracted the pixel data from every DICOM file and
converted it to PNG format. This extraction process was facilitated by
MicroDICOM, a freely available software for viewing DICOM files.

The ITK-Snap3 software was utilized to generate the
segmentation masks. In this case, separate masks were created for the

Initial dataset

n =900
Images with Images excluded
diagnosis anotations » (no label registered = 2;
n =669 not conclusive =1)
A
Images with label .| Images without mask
n = 666 "l (errorin file = 60)

Final dataset
n = 606

FIGURE 3
Flowchart for dataset selection.
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supraspinous fossa area and the supraspinatus muscle area.
Considering the specific evaluation of the fatty infiltration grade of
the muscle based on the muscle area alone by physiologists, the focus
was directed towards the supraspinatus muscle area mask for the
subsequent steps. The final outcome of the segmentation process is
visualized in Figure 4.

The data preparation process resulted in multiple images in PNG
file format, each accompanied by its corresponding segmentation
mask and label. Figure 1 provides a visual representation of the
workflow involved in the data preparation.

Criteria for fatty infiltration

The criteria were based on Goutallier’s fatty infiltration definitions.
According to the original paper, five levels of fatty infiltration were
proposed, ranging from zero to four, to signify the qualitative presence
of fat in the muscle. A level zero indicates the absence of fat in the
muscle, while higher levels correspond to increasing fatty infiltration.
Goutallier’s scale assigns higher values as the fatty infiltration
intensifies. A level four indicates a higher amount of fat than
muscle present.

As mentioned earlier, the objective is to assist clinicians in
determining the risk associated with performing surgery based on
the quality of the supraspinatus muscle. From a classifier perspective,
this task can be viewed as a binary classification. In this study,
Goutallier’s fatty infiltration levels zero or one were classified as “not
risky,” while levels three or four were categorized as “risky”” Samples
labeled as Goutallier level two were excluded from the analysis. This
choice is based on previous research [see Saavedra et al. (20)] where
it is shown that including Goutallier’s level 2 into a binary
classification task does not significantly impact the performance of a
classification model. Also, clinical relevance falls in correctly those
cases where there is high or low level of fatty infiltration [see
references (10) and (11)].

Proposed model

The proposed model is composed of two sequential neural
network models that serve distinct purposes. Model A is designed to
narrow down the region of interest in the MRI image by leveraging
both the image and the segmentation mask as inputs. The U-Net
model is proposed for this task (see next). Its primary objective is to
predict the supraspinatus muscle area. The hypothesis is that this
approach effectively eliminates irrelevant information from the image,
thereby enhancing the performance of the second network. Following
Model A (segmentation), Model B (classification task) takes the
supraspinatus muscle area of the image as input and predicts the fatty
infiltration level based on the Goutallier’s fatty infiltration level scale.
An overview of the workflow is provided in Figure 2, while the
subsequent subsections offer a detailed explanation.

Cross validation (k-fold) was performed during the training
process. The total of 606 Y-view MRI shoulder images were grouped
into five non overlapping folds. Each time, four folds were used as the
training set and one as the validation set. Every fold was used four
times as part of the training set and one time as part of the validation
set. Fold composition was the same for both models (Model A and
Model B). Model performance was computed as the average of those
five training processes and 95% confidence intervals (CI) were
obtained. In every training process the model with the lowest loss
function value was considered the best model.
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TABLE 1 Patient data distribution Goutallier’s level by sex.

Goutallier Female

level

0 403 (66.50) 140 (35) 53.06 (10.55)
1 114 (18.81) 74 (65) 61.50 (10.37)
2 51(8.42) 31 (61) 66.65 (9.53)
3 24 (3.96) 16 (67) 68.88 (7.74)
4 14 (2.31) 13 (93) 67.31 (7.33)
Total 606 (100) 274 (45) 58.47 (11.67)

Mann-Whitney or t-test were used to compute the significance (alpha 0.05).

10.3389/fmed.2024.1416169

263 (65) 49.24 (13.13) 0.477

40 (35) 63.58 (8.17) 0.465 0.371

20 (39) 66.40 (10.13) 0.447 0.992
8 (33) 64.25 (7.59) 0.424 0.230
1(7) NA. 0.354 0.8

332 (55) 52.42 (13.81) 0.483

FIGURE 4

(C) Supraspinatus muscle mask.

Manually segmentation process. (A) Original image. (B) Resulting segmentation masks. Supraspinous fossa in green, supraspinatus muscle in red.

Model development and training

The proposed model was built using two sequenced architectures:
U-Net (28) (Model A) and VGG-19 (29) (Model B). The first
sub-model created the segmentation mask of the input image, and the
second, performed the fatty infiltration classification for that same
image. The selection of the VGG-19 model for the classification task
is supported by previous research [see reference (20)] where it is
shown that the VGG-19 is among the best CNN for fatty infiltration
(among the tested models). Although the proposed framework follows
sequential stages, the training process was performed in two steps. In
the first step, we trained the segmentation model using every image
and the corresponding segmentation mask as input.

The objective was for the model A to learn to predict the
corresponding segmentation mask for an image that had not been
seen previously. In the second step, a classification model was trained
using the region of interest of the image and its corresponding label.
Before feeding the classification model, automatic cropping of the
image was performed, and only the region of interest was used as
input for the classification model.

A repeated stratified k-fold cross-validation was performed in both
steps. This method allowed us to use the entire dataset in the training
process and minimize the influence of data selection, as occurs when
using random train/validation/test splitting. The k value was set equal
to 5 and, therefore, 5 non-intersecting groups were created at random.
The proportion of every class in the original dataset was replicated in
every group. Each time, four groups were used to create the training set
and one was used to create the validation set.

The model performance was computed as the average of 5 training
processes, and the corresponding confidence intervals were reported.
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Confidence intervals obtained from the cross-validation training
process was used to assess robustness of the trained models. Due to
the high imbalance of the dataset, the minority class was up sampled.
In every training process, the smaller class was replicated until the
proportion between classes was close to 1:1. The added images were
copies of their originals but with slight differences in terms of rotation
(+35°), horizontal flipping, and center cropping. The up-sampling
process was carried out for the training data only. Figure 1 shows the
workflow of the model training process.

Step 1: Training the segmentation model. For the segmentation
task, a “U”-shaped neural network was built as described in Khouy
etal. (28). The only difference is that (1, 1) padding was used in every
convolutional layer to allow the network to utilize the entire image
during the training process. The model was training for a maximum
of 50 epochs and feeding the network with batches of five images at a
time. We used binary cross-entropy loss, implemented in the PyTorch
framework. The optimization algorithm used was Adam optimizer
with its standard configuration. The learning rate was set to 10-5.

The segmentation process was performed using the U-Net model.
The training hyperparameters were as follows: batch size=8,
maximum epochs =50, input size =224 x 224 (px), learning rate=107,
optimizer = Adam (standard configuration). The loss function used
was the Dice loss, which was defined as:

Dicescore=2><p><t/(p2+t2) (1)

Dice loss =1 — Dice score 2)
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In Equation 1, “p” represents predicted values from the output, and
“t” represents true values from the input. Basically, the Dice score (see
Equation 2) measures the ratio of the intersection over the union for
the resulting segmentation mask (30). The better the performance of
the segmentation model, the higher the Dice score value. On the other
hand, the Dice loss is the function to be minimized. The higher the
value of the Dice score, the lower the value of the loss function.

Step 2. Training the classification model: The VGG-19 architecture
was used for the classification task. We kept the convolutional layers
of the model as the original and only the last layer of the fully
connected layers was changed. Originally, the output of the VGG-19
architecture was 1,000 neurons. In our case we use only one output
unit. That way, the model was able to perform the binary classification
of the inputs.

To train the model, we used transfer learning. This means that all
the weights of the original models trained on the ImageNet dataset
were utilized. These weights were not optimized during the training
process, and only the classifier layers were optimized. We employed
the same maximum number of epochs, batch size, loss function, and
optimizer as in the segmentation training process. A termination
function was implemented to stop the training process if there was no
improvement in the last 10 epochs. The best performance was saved
and recorded. The only hyper-parameter that was optimized was the
learning rate, and the best performance was achieved at 10°. In the
following section, we will present the output of both models, including
the segmentation mask and a detailed explanation of the obtained
metric values.

Statistical analysis

Normality tests were conducted, and the analysis of statistical
differences between groups utilized either the Mann-Whitney U test
or t-test. A significance level of p<0.05 was employed to establish
statistical significance. Descriptive analysis of patient ages was
performed, presenting the mean and standard deviation (m +sd).
Categorical data were expressed as percentages and frequencies.

The performance of the models was evaluated and compared
based on accuracy, sensitivity, specificity, and area under the receiver
operator curve (AU-ROC). A binary classifier produces either 0 or 1
for a given input, corresponding to the actual expected output. True
positive (TP) was defined as the model correctly predicting the
positive class. False positive (FP) refers to the model incorrectly
predicting the positive class when it is actually negative. False negative
(FN) occurs when the model incorrectly predicts the negative class
when it is actually positive. True negative (TN) is when the model
correctly predicts the negative class. Sensitivity, specificity and
accuracy (Equations 3-5), were computed as follows:

Sensitivity (true positive rate): TP / (TP + FN) 3)
Specificity : TN /(TN + FP) (4)
Accuracy : (TN +TP) /(TN + FP + FN + TP) (5)
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The AU-ROC measures the classifier’s performance regardless of
the threshold used to convert probability scores into class decisions.
The horizontal axis represents recall (sensitivity), while the vertical
axis corresponds to precision, calculated as TP/(TP +FP). As both
axes range from 0 to 1, the maximum value of the area under the curve
inside the square is 1, indicating better classifier performance. A
random classifier would have an AU-ROC equal to 0.5.

For metrics such as accuracy, sensitivity, specificity, and AU-ROC,
95% confidence intervals over the mean were calculated to assess
model performance. All statistical analyses were conducted using the
Python programming language.

Results
Sociodemographic characteristics

Male subjects presented 333 images, representing 55% of the
sample. The patient’s average age was 55.1+13.2years. The data
showed the presence of various types of Goutallier levels in MRI
exams. An asymmetrical distribution of Goutallier grades was
identified. A significant majority, exceeding 82% of the images, fell
into grades 0 and 1, indicating a notable prevalence of low fatty
infiltration: Goutallier 0 (66.50%), Goutallier 1 (18.81%), Goutallier
2 (8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%).
Furthermore, the female group exhibited a higher frequency of
samples in higher grades compared to the male group, although this
disparity did not reach statistical significance. For more information,
refer to Table 1.

Step 1. Segmentation

At the outset of the training process, the loss value was recorded
at 0.8498+0.0102, serving as an initial baseline for assessing the
model’s performance. As training progressed through successive
epochs, a consistent reduction in the loss value was observed.
Ultimately, post-training, the loss value significantly decreased to
0.0623+0.0050. The training loss value (and other performance
metrics) can be observed in Figure 5.

The substantial decline in the loss value reflects a considerable
improvement in the model’s predictive accuracy. The reduction over
the epochs suggests that the model became increasingly proficient at
minimizing errors and refining its predictions. The tight standard
deviations associated with the initial and final loss values underscore
the reliability and consistency of the observed improvements.

These results imply that the deep learning model underwent
effective training, optimizing its ability to generalize patterns and
make accurate segmentation tasks. The detailed evolution of the loss
value throughout the epochs provides a quantitative measure of the
model’s learning process and its enhanced performance at the
training’s conclusion.

The segmentation task performed by the model can be observed
in Figure 6. The original input mask is highlighted in red, and the
model’s output mask is highlighted in green. The background of each
case displays the original image. Before making modifications, the
images were rotated before being fed into the segmentation model.
This rotation aims to prevent the model from memorizing specific
patterns and, instead, encourages it to learn more generalized concepts
from the data.
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FIGURE 5

Loss, accuracy, and Dice score for the segmentation model. The average of the five training processes is shown in segment line. The color shadow

shows the confidence interval (C.I. 95%).

'
I

FIGURE 6

Input masks and the respectively, output masks obtained from the U-Net model. The original masks are shown in red; the resulting masks are shown in
green. For each input image showed in every column of the first or the third row, the corresponding output mask from the U-Net is showed on the

same column in the second and fourth rows, respectively.

In most cases, the resulting segmentation mask (in green) closely
resembles the original input segmentation mask (in red). This suggests
that the model effectively learned to perform the segmentation task
without memorizing specific samples from the training dataset. The
similarity between the masks indicates that the model has generalized
correctly and can apply its knowledge to new images effectively. In this
sense, the model efficiently minimized errors during the training
process, as indicated by the computed average loss value of 0.0587.
This low loss value is crucial because it signifies the model’s ability to
consistently converge toward accurate predictions. The small standard
deviation of 0.0048 further emphasizes the precision and stability of
the model’s training, reinforcing its reliability in capturing intricate
patterns within the data. At the same time, the model shows its
proficiency in correctly classifying instances with an average accuracy
0f 0.9977. With a minimal standard deviation of 0.003, the model also
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shows consistent accuracy across various data points. These findings
highlight the robustness of the model in performing precise
segmentation tasks. Finally, the model achieved an average Dice score
of 0.9441, indicative of its efficacy in capturing the spatial agreement
between predicted and ground truth segmentations. A small standard
deviation of 0.0035 shows the models stability in consistently
achieving high Dice scores. These results affirm the models
performance in image segmentation tasks. For more details, please

refer to Table 2.

Step 2. Classification

Figure 7 shows the original image (A) and the segmentation mask
obtained from the U-Net model (B). Then using that segmentation
mask, the region of interest was cropped (automated process) from the
original image (C). Finally, a resizing function was applied to the
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image, resulting in (D). This pre-processing allowed the model to
decide considering only the supraspinatus muscle, similarly as how
the clinicians do.

During the training process, the loss function value for the
validation set was monitored. At the beginning of the training process
the loss value was 0.6645 +0.0228, decreasing to 0.01178 +0.0037 after
the training process was concluded. The accuracy, sensitivity,
specificity and AUROC were computed as the average of the model
performance over the validation set in each of the five training
processes of the k-fold. Table 3 shows the results for those metrics in
terms of the confidence interval (¢ =0.05). As shown, every metric
value is above 0.9 (on average), hence showing a good binary
classification performance of fatty infiltration of the supraspinatus
muscle based on Goutallier’s fatty infiltration scale. In particular, the
accuracy reached a level of 97.3% with a 0.023 95% CI, showing high

B
{
)
¢
Cc D
FIGURE 7
Automatic cropping process. (A) Original image. (B) Output mask

from the U-Net model. (C) Cropped region of interest from the
original image (ROI). (D) Resized region of interest (224 x 224 px).

TABLE 2 Segmentation results.

- Loss Accuracy Dice score

Average 0.0587 0.9977 0.9441
S.D 0.0048 0.003 0.0035
CIL. (95%) 0.0586 +0.0042 0.9977 £0.0002 0.9441+0.0031

Loss, accuracy, and Dice score were computed as the average of five training processes.
Confidence interval calculated at a=0.05.

TABLE 3 Classification model results.

10.3389/fmed.2024.1416169

precision (low variability). Even though the results show a higher
value of specificity compared to sensitivity, the difference could
increase if no oversampling (or other data-balancing technique) was
used. In this case, sensitivity reached a level of 90% with 0.98 95% CI,
while the sensitivity showed a high level of 97.9% with a low 95% CI
of 0.02. Finally, the balancing of these two metrics was computed by
the AU-ROC, which has an average level of 99% with a low 95% CI of
0.009, indicating a high level of capability to differentiate risky from
non-risky levels of fatty infiltration based on automated segmented
images from the U-Net model (see Figures 8, 9).

Results of the proposed automated two steps training model shows
that the segmentation model could first learn how to find the region of
interest (supraspinatus muscle). Then, the classification model could
learn how to classify the input, based on that region of interest, as risky
or not risky. Cropping the region of interest before feeding the classifier,
allowed the model to learn as clinicians do. However, the two step
process proposed here shows a small reduction in classification
performance (sensitivity, specificity, accuracy and AU-ROC) when
compared to different CNN trained on the same data but considering
manual segmentation of the ROI [see Saavedra et al. (20) for details].
Table 4 shows the comparison of the two step proposed model
(U-NET+VGG-19) with VGG-19, ResNET-50 and Inception-v3
models. As noted, given that manual segmentation done by professional
clinicians and medical expert is more accurate that segmentation
performed by U-NET, errors from the U-NET model are passed on to
the VGG-19 classification model, resulting a slightly lower performance.
However, the (almost insignificant) reduction of performance is valid
as the proposed model completely automates the process of identifying
the level of fatty infiltration, reducing hence the need for lengthily
process of manual segmentation of the ROI of the supraspinatus muscle.

Discussion

This article introduces a novel deep-learning framework for
assessing the degree of fatty infiltration in the supraspinatus muscle.
The framework performs two main tasks: segmenting the region of
interest and classifying the level of fatty infiltration on a five-level scale
proposed by Goutallier et al. (10) based on the automated segmentation
process. To achieve this, we developed two sub-models: the first based
on the U-Net architecture for segmentation, and the second based on
the VGG-19 architecture with modified classifier layers for binary
classification. We first trained the segmentation sub-model using
segmentation masks and then trained the classification sub-model
using the labels associated with the fatty infiltration diagnosis. We used
transfer-learning weights to train both sub-models. The binary output
of the model (0 or 1) was interpreted as “not risky” or “risky;,”
respectively, with higher levels of fatty infiltration indicating a greater
risk of re-tear or poor surgical outcomes.

Accuracy
Average 0.1065 0.9731
S.D 0.0584 0.0263
CL (95%) 0.1065+0.0512 0.9731+0.0230

Sensitivity Specificity
0.9000 0.9788 0.9903
0.1118 0.0293 0.0105
0.9000 +0.0980 0.9788+0.0257 0.9903 +0.0092

Confidence interval computed from the validation set of the five training processes at @=0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown.
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Our model achieved strong performance thanks to the
implementation of transfer learning and k-fold cross-validation
techniques. By leveraging these approaches, we were able to reduce the
number of parameters requiring optimization and utilize the full dataset
for both training and validation purposes, effectively guarding against
overfitting issues given our relatively small dataset of slightly more than
600 samples. However, some research has made efforts to optimize the
process of hyperparameter optimization (31). Still, it's worth noting that
relying on transfer learning from a pre-trained model on the ImageNet
dataset may not always represent the most ideal solution. This can
be seen as a possible limitation of the relatively small sample of images
obtained for this study. Future research should focus on evaluating the
effect of the proposed training process. This is needed to understand if
the high accuracy levels obtained in this research are driven by transfer
learning and data augmentation techniques or to identify if the task or
segmenting and classifying fatty infiltration in the supraspinatus muscle

Loss
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0.75 4

0.50 4

0.25 4

0.00 T T T T

1 10 20 30 40 50

FIGURE 8
Average and confidence interval (@ = 0.05) for the classification
validation loss over five-folds cross-validation training processes.
Average is shown in segmented line, and confidence interval is
shown in shadow.
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is a simpler task compared to more complex images (such as X-rays or
ultrasounds of different body or biological structures).

In the medical domain, obtaining labeled data or segmentation masks
for images can be challenging. Meanwhile, radiological reports are
abundant and readily available. Manual labeling or segmentation is a
labor-intensive process, but leveraging the valuable information contained
in reports can facilitate model training without significant human effort.
Another approach worth considering is unsupervised learning, which can
enable the model to learn without relying on fully labeled or segmented
data. Additionally, using transfer learning with a pre-trained model in a
related domain, such as shoulder MRI images or MRI images more
broadly; has the potential to enhance the model’s performance.

Deep learning models have been increasingly applied in radiology,
with the U-Net (28) being a particularly popular choice for
segmentation tasks. One example of this is Taghizadeh et al. (27), who
employed the U-Net model to assess muscle degeneration levels in CT
scans. Through a supervised training approach with annotated data,
they successfully segmented the structures and characterized the
pre-morbid state based on clinical information. By comparing these
two states, they were able to quantify the degree of muscle degeneration.

Medina et al. (22) proposed two sequential models trained in a
supervised manner via transfer learning from a model pre-trained on
the ImageNet dataset. Both models had all their weights initially
frozen except for the classifier layers, which were optimized by
training the network on a shoulder MRI dataset. Model A aimed to
identify the best image in a series depicting the rotator cuff muscles,
while Model B focused on segmenting the four rotator cuff muscles.
Model A was constructed using the Inception-v3 architecture, while
Model B was based on the VGG19 architecture.

Kim et al. (26) proposed a unique approach for assessing muscle
atrophy in the supraspinous fossa by measuring the occupation ratio

Accuracy Sensitivity
1.0 A 1.0 A
MR A 4 s
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FIGURE 9
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Average and confidence interval (@ = 0.05) for the classification validation accuracy, sensitivity, specificity, and area under the ROC curve (AUROC), over
five-folds cross-validation training processes. Average is shown in segmented line, and confidence interval is shown in shadow.

TABLE 4 Classification model comparison with literature.

Loss Accuracy Sensitivity Specificity AUROC
Proposed model 0.106 + 0.051 0.973 +0.023 0.900 + 0.098 0.978 +0.025 0.990 + 0.009
VGG-19 0.096 % 0.010 0.973 £ 0.006 0.947 % 0.039 0.975 + 0.006 0.991 % 0.003
ResNet-50 0.123 +0.011 0.976 + 0.006 0.925 + 0.053 0.980 = 0.006 0.992 + 0.003
Inception-v3 0.102 £ 0.009 0.974 % 0.007 0.869 + 0.085 0.981 + 0.006 0.991 + 0.004

Confidence interval computed from the validation set of the five training processes at a =0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown.

Models used for comparison are obtained from Saavedra et al. (20).
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(O.R.) of the supraspinatus muscle. They used a VGG19-like network
to segment the region of interest with annotated data, but gaps in the
muscle area obtained from the model required filling with a post-
processing algorithm. The authors then determined the stage of
muscle atrophy based on the O.R. (stage I: O.R. > 0.6; stage 2: 0.4 <
O.R. £ 0.6; stage 3: O.R. > 0.4). Although this method did not assess
the fatty infiltration grade precisely, it was still a valuable contribution.
Ro et al. (23) also utilized the VGG19 model to perform a
segmentation task for identifying the region of interest. To convert the
grayscale image into a binary representation, they applied Otsu’s
thresholding (32), a technique commonly used to separate the
foreground (fat) from the background (muscle) in the image. However,
as in other studies, post-processing was required, and the results were
not directly applicable to a fatty infiltration scale like Goutallier’s.
This study has some limitations that must be considered. Firstly,
a domain bias might have been introduced to the prediction because
the MRI images and natural images used in the training process came
from very different dataset. While we used the cross-validation
technique to overcome the over-fitting problem, we were unable to test
our data on an external dataset, which could limit the model’s
generalizability if it is intended to be used in a production
environment. To address this issue, future studies could focus on
training the model on a larger set of MRI images to improve both the
model’s performance and the clinicians reliance on an artificial
intelligence-driven solution. Also, it is important to consider that in
order to bring these new models and technologies to production
environment (deployment), computational resources must
be considered as the models must be retrained as new data comes in.
This also helps improving and refining the deployed models. To
properly do this, deployment environments (hospitals or clinics) must
be equipped with appropriate computational tools (servers or
computers) to efficiently manage the update of models, which also
increase in complexity and computational resources needed as more
data becomes available. Additionally, the manual labeling task was
performed by only one trained radiologist, which might limit the
reliability of the ground truth. To improve the accuracy and
consistency of the labeling process, future studies could consider
involving multiple trained radiologists in the task and comparing the
model’s performance with that of the professionals. Finally, further
efforts should be pursued to evaluate the feedback-loops during the
training process of the proposed two-stage algorithm. This research
did not focus on the possible improvements of the segmentation and
classification models when feeding their results and predictive errors,
similar to what boosting or sequential machine learning algorithms do.
In summary, this study analyzed a dataset of MRI images to assess
fatty infiltration levels in the supraspinatus muscle among patients
with rotator cuff conditions. We proposed a two-step training method
using deep learning models, which demonstrated strong performance
in segmentation and classification tasks. These findings indicate the
potential of these models for accurate and reliable evaluation of
musculoskeletal conditions in similar clinical settings.
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Introduction: Accurate segmentation of 3D medical images is crucial for clinical
diagnosis and treatment planning. Traditional CNN-based methods effectively
capture local features but struggle with modeling global contextual
dependencies. Recently, transformer-based models have shown promise in
capturing long-range information; however, their integration with CNNs
remains suboptimal in many hybrid approaches.

Methods: We propose UnetTransCNN, a novel parallel architecture that
combines the strengths of Vision Transformers (ViT) and Convolutional Neural
Networks (CNNs). The model features an Adaptive Fourier Neural Operator
(AFNO)-based transformer encoder for global feature extraction and a CNN
decoder for local detail restoration. Multi-scale skip connections and adaptive
global-local coupling units are incorporated to facilitate effective feature fusion
across resolutions. Experiments were conducted on the BTCV and MSD public
datasets for multi-organ and tumor segmentation.

Results: UnetTransCNN achieves state-of-the-art performance with an average
Dice score of 85.3%, outperforming existing CNN- and transformer-based
models on both large and small organ structures. The model notably improves
segmentation accuracy for challenging regions, achieving Dice score gains of
6.382% and 6.772% for the gallbladder and adrenal glands, respectively.
Robustness was demonstrated across various hyperparameter settings and
imaging modalities.

Discussion: These results demonstrate that UnetTransCNN effectively balances
local precision and global context, yielding superior segmentation performance
in complex anatomical scenarios. Its parallel design and frequency-aware
encoding contribute to enhanced generalizability, making it a promising tool
for high-precision medical image analysis.

fully convolutional neural networks, transformer, medical image segmentation, 3D
image, feature fusion
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1 Introduction

With the rapid advancements in the fields of computer science
and medical imaging, medical imaging technologies such as
computed tomography (CT) Vaninsky (1) and magnetic
resonance imaging (MRI) Khuntia et al. (2) have emerged as
indispensable tools in medical research Lim and Zohren (3),
clinical diagnosis Masini et al. (4), and surgical planning Torres
et al. (5). These technologies allow non-invasive imaging of internal
tissues and organs’ physiological states, representing a key advance
in merging computer science with medicine Zeng et al. (6), Shen
et al. (7).

The emerging technologies Challu et al. (8), Azad et al. (9)
concurrently introducing new challenges such as the need for
classification and processing of diagnostic results. Image
classification techniques play a pivotal role in autonomously
comprehending the content of images to a certain extent. They
enable effective identification of pathological regions within medical
images, thereby assisting physicians in efficient diagnosis
Stankeviciute et al. (10). However, the reality of medical imaging
encompasses a diverse array of image types Wu et al. (11), often
requiring the application of distinct processing and analytical
approaches to differentiate between categories of medical images.

In recent years, advances in deep learning have renewed interest
in medical image segmentation, drawing significant attention from
researchers Wu et al. (12). Deep learning excels at automatically
extracting features from complex data during training, leveraging
multi-layered neural networks to create high-dimensional feature
representations that boost segmentation performance Le Guen and
Thome (13). This capability underpins deep learning-based medical
image classification and grading, which supports diagnosis, speeds
up image analysis, reduces patient wait times, and eases
radiologists’ workloads.

We define key terms here: ‘CNN-based models’ refer to
architectures relying on Convolutional Neural Networks (CNNs)
for feature extraction, emphasizing local patterns, while
‘Transformer-based models’ use Transformer architectures to
capture global contextual relationships via self-attention
mechanisms. These definitions will be applied consistently
throughout this manuscript.

In practical medical image segmentation, precise classification
demands both local lesion details and global contextual information
—a challenge for standard CNN-based models. Although CNNs
excel at local feature extraction, their inductive bias limits their
ability to capture global dependencies, hindering further
performance gains. Inspired by the success of Transformer-based
models like ViT Stankeviciute et al. (10) in natural image tasks,
recent studies have integrated these with CNN-based approaches
for medical imaging, often matching or exceeding CNN
performance. For instance, TransUNet Du et al. (14), the first to
combine Transformer-based and CNN-based strengths [via U-Net
Fan et al. (15)], embeds a Transformer in the encoder. Similarly,
MCTransformer Elsworth and Giittel (16) unfolds CNN-extracted
multiscale features into tokens for Transformer processing.
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Despite these advances, integrating local and global features
remains challenging when CNNs and Transformers are simply
concatenated or embedded. To overcome this, we propose
UnetTransCNN, a novel parallel architecture that simultaneously
extracts local features (via a CNN-based module) and global
features (via a Transformer-based module). Unlike prior models
such as TransUNet or MCTransformer, which fuse sequentially,
our design optimizes CNNs for local detail and Transformers for
global context in parallel. We further introduce adaptive global-
local coupling units to dynamically fuse features from both
pathways across multiple scales. This enhances accuracy in
segmenting complex structures and improves generalizability
across diverse medical imaging tasks. The contributions of this
paper can be summarized as follows:

1.1 Proposed UnetTransCNN model

We propose the novel UnetTransCNN model that utilizes CNN
and ViT (Vision Transformer) in parallel to extract both local and
global features from medical images. This dual-path approach
ensures a comprehensive feature analysis, enhancing the
segmentation accuracy.

1.2 Application to 3D medical image
segmentation

We specifically adapt the UnetTransCNN model for 3D medical
image segmentation. In order to fit the unique structure of 3D
volumes, we incorporate specialized adaptations such as volumetric
convolutions and 3D positional encodings, significantly improving
the model’s effectiveness in handling spatial relationships within
medical volumes.

1.3 Design and implementation of
experiments

We design a variety of experiments to demonstrate the
superiority of our model. Our UnetTransCNN achieves superior
metrics on two public datasets, the BTCV and MSD. Additionally, it
demonstrates excellent robustness across various hyperparameters
when compared to existing popular models, thereby proving its
efficacy in real-world medical applications.

2 Related work

2.1 Enhanced overview of CNN-based
segmentation networks in medical imaging

Since the inception of the seminal U-Net architecture, the realm

of medical imaging has witnessed profound advancements through
the adoption of Convolutional Neural Network (CNN)-based
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techniques for segmenting 2D and 3D images, as documented in
numerous studies Wu et al. (11), Rahman et al. (17). In addressing
the intricacies of volume-level segmentation, the innovative 2.5D
approach has been introduced. This method ingeniously integrates
three distinct perspectives of each voxel via a tri-planar architecture,
offering a nuanced view beyond conventional methods. Meanwhile,
3D segmentation strategies Ding et al. (18) directly engage with
volumetric images, harnessing a compendium of 2D slices or
imaging modalities to achieve a comprehensive analysis.

To adeptly navigate the challenges of downsampling within
images, the research community has ventured into the expansion of
dimensional concepts, embracing multi-channel and multi-path
models. This evolution signifies a stride towards capturing a
richer tapestry of image features. Furthermore, the quest for
effectively leveraging 3D contextual insights, while judiciously
managing computational resources, has propelled the exploration
of hierarchical structures. Innovative methodologies have surfaced,
incorporating tactics like multi-scale feature extraction and the
synergistic amalgamation of diverse frameworks. For example,
reference Wu and Xu (19) highlights a pioneering multi-scale
framework adept at discerning information across various
resolutions, specifically tailored for pancreas segmentation.

These cutting-edge approaches mark a significant milestone in
the field of 3D medical image segmentation. They ambitiously aim
to navigate the complexities associated with spatial context and the
challenges posed by low-resolution imagery, paving the way for
groundbreaking research endeavors in multi-level 3D medical
image analysis.

Despite the notable success achieved by these methods, they still
suffer from a limitation in learning global context and long-range
spatial dependencies. This issue can significantly impact the
segmentation performance for challenging tasks. Therefore, to
further improve segmentation performance Wu et al. (12),
researchers are actively exploring new methods and techniques to
effectively capture global contextual information and long-range
spatial dependencies, thereby enhancing the accuracy and
robustness of medical image segmentation.

2.2 Vision transformers

In recent years, visual Transformer models have attracted
widespread attention and research in the computer vision field.
Dosovitskiy et al. demonstrated excellent performance in image
classification tasks by pretraining and fine-tuning a pure
Transformer model Lara-Benitez et al. (20). Furthermore,
Transformer-based end-to-end object detection models have
shown significant advantages in multiple benchmark tests Cirstea
et al. (21). To further improve performance, researchers have
proposed a series of hierarchical visual Transformer models that
gradually reduce the feature resolution in Transformer layers and
employ subsampling attention modules to achieve this Fei et al.
(22). However, unlike these methods, the representation size in the
UnetTransCNN encoder remains unchanged across all
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Transformer layers. In Section 3, we introduce a method that uses
deconvolution and convolution operations to change the
feature resolution.

In the realm of image analysis, Transformer-based models have
gone beyond image classification and object detection to make
significant strides in 2D image segmentation. The SETR model,
introduced by Wu et al. (23), leverages a pretrained Transformer
encoder alongside a CNN-based decoder variant for semantic
segmentation. Meanwhile, Du et al. (14) has pioneered a multi-
organ segmentation technique by integrating a Transformer layer
within the U-Net architecture’s bottleneck section Kurle et al. (24).
Additionally, Xu et al. (25) has developed a strategy that distinguishes
the roles of CNN and Transformer, merging their outcomes Wu et al.
(26). Godunov and Bohachevsky (27) has innovated an axial
attention mechanism rooted in Transformers for 2D medical
image segmentation.

Our model sets itself apart from these approaches in crucial ways:
(1) UnetTransCNN is tailor-made for 3D segmentation, directly
handling volumetric data; (2) It positions the Transformer as the
main encoder within the segmentation framework, linking it to the
decoder with skip connections rather than merely as an attention
component; (3) UnetTransCNN bypasses the need for a backbone
CNN for input sequence creation, opting instead for direct use of
tokenized patches.

Focusing on 3D medical image segmentation, Cirstea et al. (21)
introduced a framework that utilizes a backbone CNN for initial
feature extraction, then processes the encoded representation through
a Transformer, concluding with a CNN decoder for segmentation
prediction Moin and Mahesh (28). In a similar vein, Khan et al. (29)
has developed a technique for the semantic segmentation of brain
tumors, employing a Transformer within the bottleneck phase of a
3D encoder-decoder CNN model Rogallo and Moin (30). Differing
from these methodologies, our approach forges a direct link between
the Transformer’s encoding representation and the decoder via skip
connections. This strategic decision empowers our model to fully
harness the Transformer’s representational capabilities, driving
superior performance in 3D medical image segmentation tasks.

3 Method

Our proposed model, named UnetTransCNN, employs an
innovative approach that combines the global context capture
capability of Transformer with the powerful local feature
extraction capability of CNN, aiming to improve the accuracy
and efficiency of medical image segmentation. The details of our
model are demonstrated in Figure 1.

3.1 Encoder architecture

Integrating the Adaptive Fourier Neural Operator (AFNO) into
the encoder enhances its ability to process 3D medical imagery
using spatial and frequency domain information. The process
begins by dividing the input image into non-overlapping cubic
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Overview of the UnetTransCNN architecture. The input to our model is 3D multi-modal MRI images with 4 channels. The UnetTransCNN creates non-
overlapping patches of the input data and uses a patch partition layer to create windows of a desired size for computing Fourier-based attention in the
AFNO encoder. The encoded feature representations in the AFNO are fed to a CNN-decoder via skip connections at multiple resolutions.

patches of size P x P x P, which are transformed into K-dimensional
embedding vectors via:

Epaen = Flatten(x,) - Wi + Epog (1)

Here, x, represents the cubic patches from the input, W; is
the projection matrix mapping patch data to the embedding space,
and E,, encodes the spatial positions of the patches. This process is
mathematically defined in Equation (1).

These embeddings are then processed through Transformer
layers, each with a multi-head self-attention (MSA) mechanism and
a multi-layer perceptron (MLP), strengthening the model’s
understanding of global dependencies. The operations in each
Transformer layer are given by: These steps are formally
described in Equations (2) and (3).

= MSA(Norm(z;_,)) + zi_; 2)

2 = MLP(Norm(z) + 2, 3)

where Norm stands for the layer normalization process, and i
represents the index of the Transformer layer in sequence.

To integrate the complex Fourier formula and AFNO’s adaptive
processing, the embeddings undergo a Fourier transform after the initial
MLP transformation and before the Transformer layers. This enables the
encoder to adaptively handle spatial frequencies, performed as follows:

1. Discrete Fourier Transform (DFT) of the embedding vector
to shift the representation from the spatial to the frequency domain
see Equation (4):

N-1 "
F(k) = 3 e(n) - ¥" 4)
n=0

2. Adaptive Modulation in the frequency domain, applying
learned weights to each frequency component to emphasize
relevant spatial frequencies see Equation (5):
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Fmod(k) =

3. Inverse DFT (IDFT) to convert the modulated frequency
components back to the spatial domain, generating enhanced

F(k) - W(k) (5)

embeddings see Equation (6)

/ 1 2k
e(n) = X Fmnoa(k) - ¥ (6)
k=0

The UnetTransCNN model balances global patterns and local
details by manipulating data in both frequency and spatial domains,
critical for precise medical image segmentation where macroscopic
and microscopic features must be accurately captured.

The encoding process relies on the Discrete Fourier Transform
(DFT) and Inverse Discrete Fourier Transform (IDFT). The DFT
shifts image analysis to the frequency domain, revealing global
patterns like periodic textures and edges not easily seen in the
spatial domain. This allows the encoder to effectively modulate
these broad features. The IDFT then converts the adjusted
frequency data back to the spatial domain, preserving the image
structure while embedding enhanced features—essential for
segmentation, as without it, frequency-domain improvements
wouldn’t translate to spatial results.

Through this process, the AFNO-transformer optimizes the
encoder to leverage both local and global information, improving its
ability to handle complex spatial relationships in volumetric medical
data. This Fourier transform integration drives the UnetTransCNN
model’s superior performance in medical image segmentation.

3.2 Decoder architecture

The decoder uses Convolutional Neural Networks (CNNs) to
extract and restore local image features for precise segmentation. It
operates through decoding stages that fuse features from the
corresponding encoder stage (via skip connections) with outputs
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from the previous decoding stage. This process is defined by see
Equation (7):

Fi.. = Conv(Up(Fit) ® Fiy), @)

where Fi._ is the feature map at the decoder’s ith layer, Conv
refines the feature maps, Up upsamples to increase resolution, @
merges features, and F. is the encoder’s ith layer feature map
linked by skip connections.

After progressing through these stages, a final 1x1x1 convolution
layer processes the output to predict semantic labels for each voxel,
converting feature maps into class probabilities (see Equation (8)):

Yired = Softmax (Con"lxlxl (Fdﬁ?cal) ) > (8)

Here, Yreq represents the voxel-wise predictions, and Softmax
normalizes the final convolution’s logits into a probability
distribution across classes, ensuring accurate segmentation of
medical images.

3.3 Model application overview

The UnetTransCNN-CNN architecture adeptly integrates the
distinct advantages of Transformers and Convolutional Neural
Networks (CNNs), harnessing Transformers for their superior global
contextual understanding and utilizing CNNs for their acute precision
in local detail processing. This dual-approach is particularly
advantageous for medical imaging tasks, where it adeptly manages
the intrinsic complexity and variability of medical image structures.
This results in enhanced segmentation accuracy and improved model
reliability. Further, the meticulous development of our model is
underpinned by robust mathematical formulations and
comprehensive process elucidations, as delineated in prior sections.
Consequently, UnetTransCNN-CNN emerges as a profoundly efficient
and precise methodology for tackling medical image segmentation
challenges, particularly effective in scenarios involving complex
anatomical structures. The operational dynamics of the model are
succinctly encapsulated in Algorithm 1, providing a clear workflow that
underscores the model’s computational strategy.

7: Input: X - 3Dmedical image, P - Size of cubic patches,
K - Dimension of embedding space

2: Output: Yy eq - Voxel-wise semantic predictions
3: procedure UNETTRANSCNN
4:  //Encoder: Transformer-based

5: Divide X intonon-overlapping cubic patches of size
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6: for each patch x, in X do

7 Flatten x,to create a vector

8: Map flattened patch to K-dimensional embedding
space using Wyroj

9: end for

10: Addpositional embeddings Epes to patch embeddings

11: 1Initialize zp with patch embeddings + positional
embeddings

12: for each Transformer layer 1 in 1 toL do

13: Apply AFNO: Transform z;-4 to frequency domain,
modulate, and inverse transform

14 7'i =MSA(Norm(zi-1))+z; -1 > Apply MSA and add
residual

15: z; = MLP(Norm(Z})) + Z; > Apply MLP and add
residual

16: end for

17: //Decoder: CNN-based

18: Initialize FY,. with the output of the last
Transformer layer

19: for each decoding stage i in 1 to N do

20: Upsample Fi;! tomatch dimension of Fj,

21: Merge upsampled features with FL. using skip
connections

22 Apply convolutional layers tomerged features to

obtain Fi.

23: end for

24: //Final segmentation map

25: Applyalx1x1convolution to Fl to get logits
26: Apply softmax to logits to obtain Ypreq

27 return Ypreq

28: end procedure

Algorithm 1. UnetTransCNN for Medical Image Segmentation with AFNO.
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3.4 Model Workflow Example

Input: The input to the model is a 3D multi-modal MRI image
with dimensions H xW xD xC, where C = 4 represents the different
imaging modalities (e.g., T1, T2, FLAIR). For example, an input
could have dimensions 128 x 128 x 128 x 4.

Patch Partition The input data is divided into non-overlapping
patches of size 4 x 4 x 4, each patch serving as a token for
subsequent processing. The resulting patch dimensions are
projected into a feature space through a linear embedding.

AFNO Encoder The encoded features pass through the AFNO
encoder, which consists of four hierarchical stages:

Stage 1: Produces feature maps with dimensions H/2 x W/2
x D/2 x 48. This stage applies Fourier-based global
convolution and spatial mixing using the AFNO block.
Stage 2: Downsamples the spatial resolution to H/4 x W/4
x D/4 x 96 while increasing feature depth.

Stage 3: Further reduces spatial dimensions to H/8 x W/8 x
D/8 x 192.

Stage 4: Final encoding stage with feature dimensions H/16
x W/16 x D/16 x 384.

Each stage uses patch merging for downsampling and captures
multi-scale representations through Fourier domain operations.

CNN Decoder The decoder progressively upsamples the feature
maps to the original spatial resolution. Each upsampling stage
incorporates skip connections from the corresponding encoder
stage, ensuring that both local and global information are retained:

Stage 1 Decoder: Receives encoder outputs with
dimensions H/16 x W/16 x D/16, upsampled and
concatenated with encoder outputs from Stage 3.

Stage 2 Decoder: Further upsamples to H/4 x W/4 x D/4,
integrating features from Stage 2.

Stage 3 Decoder: Restores dimensions to H/2 x W/2 x D/2,
using features from Stage 1.

Liver

Stomach Aorta

10.3389/fonc.2025.1467672

3.5 Comparison with previous hybrid
approaches

The integration of CNN-based and Transformer-based models
has been explored in prior works like TransUNet Du et al. (14),
which combines a Transformer with a U-Net architecture to
leverage both local and global features for medical image
segmentation. While TransUNet demonstrates notable success, it
has limitations that hinder its performance in certain scenarios.
Specifically, its heavy reliance on Transformer layers prioritizes
global contextual information, often at the expense of fine-grained
local details. This imbalance can lead to suboptimal segmentation of
intricate structures where precise localization is critical, as the CNN
component in TransUNet is not sufficiently optimized to
compensate for the Transformer’s focus on broader patterns.

In contrast, UnetTransCNN addresses these shortcomings through
a more balanced and refined design. Our approach enhances local
feature extraction by incorporating a strengthened CNN-based
backbone, tailored to capture detailed spatial information effectively.
Simultaneously, we optimize the Transformer-based module to align
global contextual understanding with the spatial hierarchies inherent in
medical images. This dual-pathway architecture, supported by adaptive
global-local coupling units, ensures a complementary integration of
local and global features. Unlike TransUNet’s sequential fusion,
UnetTransCNN processes these features in parallel, allowing for a
more precise and context-aware segmentation. These improvements
enable UnetTransCNN to outperform previous hybrid approaches,
particularly in tasks requiring both detailed localization and
comprehensive contextual awareness.

4 Experiments

4.1 Dataset

Figure 2 depicts a high-dimensional medical computed
tomography (CT) image dataset, specifically designed for the

IVC P&S Vein Pancreas Ad Glands
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FIGURE 2
Dataset visualization of segmentation.
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segmentation of major abdominal organs for medical image
analysis, originating from the Abdominal Organ Segmentation
Challenge (BTCV) van der Hoef et al. (31). The dataset
encompasses multiple abdominal organs, including the spleen,
right kidney (R Kidney), left kidney (L Kidney), gallbladder,
esophagus (Eso), liver, stomach, aorta, inferior vena cava (IVC),
portal and spleen vein (P&S Vein), pancreas, and adrenal glands
(Ad Glands).

Each set of images displays multiple consecutive CT slices from
the same subject, with each organ marked in a specific color for
differentiation. These color-coded markings allow researchers to
quickly identify and analyze the boundaries and morphology of the
organs. For instance, the spleen is marked in red, kidneys in yellow,
and the liver in purple, with each color chosen to optimize visual
contrast for algorithmic processing.

The dimensions of this dataset can be described in
several aspects:

1. Spatial dimension: The images of each organ consist of a
series of cross-sections arranged along the body’s vertical
axis, showcasing the three-dimensional structure of
the organs.

2. Time/sequence dimension: Although not directly shown in
this image, in practice, such datasets may include temporal
sequence information, representing dynamic scans
over time.

3. Grayscale/intensity dimension: CT images present different
grayscale intensities based on the varying degrees of X-ray
absorption by tissues, reflecting differences in
tissue density.

4. Annotation dimension: The CT images of each organ in the
dataset come with detailed manual annotations providing
ground truth information for training and validating
automatic image segmentation algorithms.

5. Patient/sample dimension: The dataset includes scans from
multiple patients, enhancing sample diversity and aiding
algorithms in better generalizing to unseen samples.

The MSD dataset, referenced in Gao and Ma (32), is a critical
resource for the brain tumor segmentation task, encompassing a
wide array of multi-modal, multi-site MRI and CT data. This
dataset is specifically curated with 484 MRI scans, each offering a
variety of modalities including FLAIR, T1-weighted (T1w), T1-
weighted post-contrast (T1gd), and T2-weighted (T2w) images,
accompanied by detailed ground truth labels. These labels facilitate
the segmentation of glioma, delineating areas of necrotic/active
tumor and edema regions. The MRI images within this dataset are
characterized by a uniform voxel spacing of 1.0 x 1.0 x 1.0 mm?,
ensuring consistency and precision in volumetric analysis Kim et al.
(33), Wu et al. (34), Silva (35). In preparation for training, the
dataset undergoes a standard pre-processing step where voxel
intensities are normalized using the z-score method. This
meticulous preparation allows the segmentation task to be framed
as a 3-class challenge, incorporating a 4-channel input to effectively
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differentiate between the various tumor regions and healthy
brain tissue.

To further evaluate the generalization capability of the model,
we also use the KiTS19 (36) dataset Yang and Farsiu (37). This
dataset is widely used for medical image segmentation tasks and
includes a diverse range of kidney tumor cases, which can help
evaluate the model’s performance on complex anatomical
structures. KiTS19 contains 210 contrast-enhanced CT scans of
patients with kidney tumors. The dataset includes annotations for
kidney and tumor regions, making it suitable for evaluating
segmentation models. The diversity in tumor sizes, shapes, and
locations provides a robust test for the generalization capability of
the model.

4.2 Evaluation metrics

In our research, we meticulously assess the accuracy of
segmentation results by employing the Dice coefficient and the
95% Hausdorff Distance (HD), as delineated in Zeng et al. (6). The
Dice coefficient is utilized to quantitatively evaluate the similarity
between the actual (ground truth) and predicted segmentation
maps, defined for voxel i as Tifor the actual values and Sfor the
predicted values, respectively. The formula for the Dice coefficient is
given as follows (see Equation (9)):

23 TS
Ef:lTi + Ef:lsi

where I is the total number of voxels. This coefficient ranges

Dice(T,S) = )

from 0 to 1, where a value of 1 indicates perfect overlap between the
actual and predicted segmentation, and a value of 0 indicates
no overlap.

The 95% Hausdorff Distance (HD) measures the spatial
distance between the surface points of the actual and predicted
segmentation, offering a robust metric for the maximum
discrepancy between these two point sets. It is defined as (see
Equation (10)):

HD(T',S) = max (maxmin}t' - s/},maxmin|s/ - t'|), (10)
reTJES Jesier

where T and S represent the sets of actual and predicted surface
points, respectively. The HD is particularly sensitive to outliers; therefore,
by calculating the 95th percentile of these distances, we mitigate the
influence of extreme values, leading to a more representative
measurement of model performance. This adjusted metric, focusing on
the 95th percentile, effectively reduces the impact of anomalies, providing
a more robust and reliable evaluation of the segmentation precision.

4.3 Implementation details
Our UnetTransCNN model was implemented on a high-

performance computing cluster equipped with NVIDIA A100
Tensor Core GPUs, each boasting 40 GB of memory, which is
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particularly crucial for processing large 3D medical images and
complex models. We utilized PyTorch as the deep learning
framework, opting for an input block size of 64 x 64 x 64 voxels
and an embedding dimension of 768, along with 12 transformer layers
to capture complex patterns and dependencies. The model underwent
training on two benchmark datasets: the Multi Atlas Labeling Beyond
The Cranial Vault (BTCV) and the Medical Segmentation Decathlon
(MSD). For both datasets, we partitioned the data into training and
testing sets, using 80% of the data for training and the remaining 20%
for testing. This split was carefully chosen to ensure that the model was
evaluated on a diverse range of images that were not seen during the
training phase, thus reflecting a realistic assessment of the model’s
performance on unseen data. Additionally, diverse 3D medical images
from these datasets are used for multi-organ and tumor segmentation
tasks. To enhance the model’s robustness and prevent overfitting, we
also applied data augmentation techniques such as random rotations,
scaling, and elastic deformations. Throughout the training process, we
employed the AdamW optimizer with a learning rate of le — 4 and a
weight decay of 0.01, using an early stopping strategy to prevent
overfitting across 150 training epochs. This detailed implementation
strategy ensured the effective training and evaluation of the model,
leveraging the computational power of NVIDIA A100 GPUs to meet
the challenges of 3D medical image segmentation.

For the compared baselines, we adhered to the official configurations
and hyperparameters provided in the original papers or publicly available

10.3389/fonc.2025.1467672

repositories of the competing methods. We ensured uniform dataset
splits (80% training and 20% validation) across all methods to eliminate
variability introduced by differing data partitions. Further, all methods
were evaluated using the Dice coefficient and Hausdorff distance (95%),
ensuring consistent and comparable performance assessments. To
ensure fairness and consistency across all experiments, we trained all
methods on all datasets for 600 epochs.

4.4 Main results

In the rigorous evaluation conducted during the Standard
Competition, our novel UnetTransCNN model has set a
benchmark, emerging as the frontrunner by achieving an
unparalleled average Dice score of 85.3% across various organs.
This achievement underscores the model’s exceptional capability in
handling the complexities of medical image segmentation.
Specifically, UnetTransCNN has displayed a noteworthy advantage
in segmenting larger organs. A quantitative summary of these results
is presented in Table 1. For instance, it outshines the second-best
baselines with significant margins in the segmentation of the spleen,
liver, and stomach, registering improvements in the Dice score by
1.043%, 0.830%, and 2.125%, respectively. These figures not only
attest to the model’s precision but also its robustness in accurately
identifying and delineating the contours of larger organ structures.

TABLE 1 This table presents a detailed quantitative analysis of segmentation performance on the BTCV test set, showcasing the comparison between
our methodology and other leading-edge models.

Methods Spl  RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.
SETR NUP Sahoo et al. (38) 0931  0.890 0897 0652 | 0760 0952 0809 | 0867 0745 0717 | 0719 0620 0796
SETR PUP Xu et al. (39) 0929 0893 | 0892 0649 0764 0954 0822 0869 0742 0715 0714 0618 | 0797
SETR MLA Hajirahimi and Khashei (40) 0930 0889 | 0894 0650 0762 | 0953 0819 0872 0739 0720 | 0716 @ 0614 079
nnUNet Godahewa et al. (41) 0942 0894 | 0910 0704 0723 0948 0824 0877 0782 0720 | 0680 0616 0802
ASPP Zhou et al. (42) 0935 0892 | 0914 0689 0760 0953 0812 | 0918 0807 0695 0720 0629 0811
TransUNet Sirisha et al. (43) 0952 0927 | 0929 0662 0757 | 0969 0889 0920 0833 0791 | 0775 0637 0838
CoTr w/o CNN encoder Khan et al. (29) 0941 | 0.894 0909 0705 & 0723 0948 0815 | 0876 0784 0723 0671 0623 | 0.801
CoTr* Khan et al. (29) 0943 0924 | 0929 0687 0762 0962 0894 0914 0838 0796 0783 0647 0841
CoTr Khan et al. (29) 0958 0921 | 0936 0700 0764 0963 0854 0920 0838 0787 0775 0694 | 0.844
UnetTransCNN 0968 0924 | 0941 0.750 0766 0971 0913 0890 0847 0788 | 0767 0741 0.856
RandomPatch Li et al. (44) 0963 0912 | 0921 0749 0760 0962 0870 0889 0846 078 0762 0712 | 0.844
PaNN Cao et al. (45) 0966 0927 | 0952 0732 0791 | 0973 0891 0914 0850 0805 0802 0652 | 0.854
nnUNet-v2 Eldele et al. (46) 0.972 0.924 0.958 0.780 0.841 0976 = 0922 @ 0.921 0.872 0.831 0.842 | 0.775 0.884
nnUNet-dys3 Eldele et al. (46) 0967 0924 0957 0814 | 0832 0975 0925 0928 0870 0832  0.849 0784  0.888
DconnNet Yang and Farsiu (37) 0968 0931 | 0952 0818 0856 0977 0918 0934 0882 0843 | 0803 0795 0875
UnetTransCNN 0972 0942 | 0954  0.825 0.864 0.983 0945 0948 0890 0858 0799 0.812  0.891

The evaluation focuses on the benchmarks established for both the Standard and Free Competitions, situating our approach in the context of these predefined standards. It’s imperative to
highlight that the foundation for all comparisons involving SETR models was the ViT-B-16 architecture. A pivotal aspect of this analysis involves the segmentation results across a diverse array of
organs including the spleen, right and left kidneys (RKid and LKid), gallbladder (Gall), esophagus (Eso), liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava (IVC), the collective veins
(encompassing portal and splenic veins), pancreas (Pan), and the adrenal gland (AG). These results were meticulously compiled from the BTCV leaderboard, ensuring a comprehensive and
accurate benchmarking against the current state-of-the-art models.

Bold values indicate the best performance among all compared methods in each category.
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Detailed segmentation results are illustrated in Figures 2, 3.
Furthermore, UnetTransCNN’s proficiency extends to the
segmentation of smaller organs, where it remarkably surpasses
the second-best baselines by considerable margins of 6.382% and
6.772% in the Dice score for the gallbladder and adrenal glands,
respectively. Such impressive performance metrics highlight the
model’s detailed attention to the finer aspects of medical imaging,
ensuring that even the smallest organs are segmented with high
accuracy. These outcomes collectively reinforce the superior
segmentation capability of UnetTransCNN, marking a significant
advancement in the field of medical image analysis by delivering
precise and reliable organ delineation.

In the Standard Competition, we conducted a comprehensive
performance analysis of UnetTransCNN in comparison to CNN
and transformer-based baselines. Impressively, UnetTransCNN
establishes a new state-of-the-art performance, achieving an
average Dice score of 85.3% across all organs. Notably, our
method demonstrates remarkable superiority in segmenting large

CT image

UnetTransCNN
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organs, such as the spleen, liver, and stomach, surpassing the
second-best baselines by margins of 1.043%, 0.830%, and 2.125%,
respectively, in terms of Dice score. Moreover, our method exhibits
outstanding segmentation capability for small organs,
outperforming the second-best baselines by impressive margins of
6.382% and 6.772% on the gallbladder and adrenal glands,
respectively, in terms of Dice score. These results further
highlight the exceptional performance of UnetTransCNN in
accurately delineating organ boundaries. Table 2 presents a full
summary of segmentation scores across all organs in the
BTCV dataset.

In Table 3, we present a comparative analysis of UnetTransCNN,
CNN, and transformer-based methodologies for brain tumor and
spleen segmentation tasks using the MSD dataset. UnetTransCNN
demonstrates superior performance compared to the closest baseline
by an average margin of 1.5% across all semantic classes in brain
segmentation. Detailed comparisons for brain tumor segmentation
are reported in Table 4. Notably, UnetTransCNN exhibits

CoTr

oo O

TransUNet

. 'Y
P 0\~

A\

I Gallbladder
S&P Veins

I Liver

B Adrenal glands
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Pancreas

This image compares organ segmentation in CT scans across various deep learning models. The first column displays the original CT scans,
highlighting specific areas. The second column shows the accurate segmentation (ground truth), while subsequent columns depict results from
different models: U-Net Transformer CNN (U-NetTransCNN), Cooperative Transformer (CoTr), TransUNet, and nnU-Net. Predictions are color-
coded for different organs, listed at the bottom. Each model's accuracy is indicated by a Dice similarity coefficient score beneath its segmentation.
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TABLE 2 Inference Speed Comparison on MSD Dataset.

Method Inference Time (ms) = Speedup (%)
nnUNet 1620 -
TransUNet 1405 13.3%

CoTr 1202 25.8%

DconnNet 1100 32.1%
UnetTransCNN (Ours) 987 39.1%

Bold values indicate the best performance among all compared methods in each category.

exceptional accuracy in segmenting the tumor core (TC) subregion.
Similarly, in spleen segmentation, UnetTransCNN surpasses the best
competing methodology by at least 1.0% in terms of Dice score,
indicating its superior segmentation capabilities. These results
highlight the significant advancements achieved by UnetTransCNN
in accurately delineating brain tumors and spleen regions.

Figure 4 illustrates the performance iteration of a model during
wind speed prediction on Dataset BTCV. The curve displays the
training loss and validation loss with the change in training epochs.
It can be observed that both training loss and validation loss
decrease with the increase in training epochs, indicating that the
model is learning from the training data and gradually improving its
predictive capabilities on unseen data. Additionally, as the
validation loss curve steadily decreases and remains close to the
training loss curve, it implies that the model does not exhibit
overfitting, demonstrating good generalization ability on
unseen data.

10.3389/fonc.2025.1467672

Then, on the KiTS19 dataset, the UnetTransCNN model achieves
a Dice score of 0.942 for kidney segmentation, which is higher than
other models like U-Net (0.912), TransUNet (0.928), and nnU-Net
(0.935). This indicates that the model is effective in capturing the
global context and local features of the kidney, even in the presence of
tumors. The HD95 score of 3.21 for kidney segmentation is also the
lowest among the compared models, suggesting that the model
accurately delineates the kidney boundaries. For tumor
segmentation, UnetTransCNN achieves a Dice score of 0.793,
outperforming other models such as U-Net (0.723), TransUNet
(0.756), and nnU-Net (0.781). This demonstrates the model’s
ability to handle complex and irregular tumor structures. The
HD95 score of 6.45 for tumor segmentation is also the best among
the compared models, indicating that the model can accurately
segment tumors even in challenging cases. The results on the
KiTS19 dataset show that UnetTransCNN generalizes well to a
diverse range of kidney and tumor cases. Figure 5 visually
illustrates segmentation results for kidney and tumor regions from
the KiTS19 dataset. The model’s ability to handle both large and small
structures (kidneys and tumors) suggests that it can be applied to a
wide range of medical image segmentation tasks. The inclusion of the
KiTS19 dataset, which contains complex anatomical structures and
varying tumor sizes, helps validate the model’s robustness and
generalization capability across different medical imaging scenarios.

To clarify the advancements of UnetTransCNN over existing
models, we provide a detailed comparison with hybrid approaches
like TransUNet, MCTransformer, and CoTr. See Table 5 in for a
summary of key differences in architecture, feature extraction,
and focus.

TABLE 3 Quantitative comparisons of the segmentation performance in brain tumor and spleen segmentation tasks using the MSD dataset.

Task/Modality Spleen Segmentation (CT) Brain tumor Segmentation (MRI)
Anatomy Spleen ET TC
Metrics Dice HD95 Dice HD95 | Dice HD95 | Dice HD95 | Dice HD95
UNet Lim and Zohren (3) 0.953 4087 0766 9205 | 0561 | 11122 0665 | 10.243 0.664 | 10.190
AttUNet Zeng et al. (6) 0951 4091 0767  9.004 | 0543 | 10447 0683 10463 0.665 = 9.971
SETR NUP Zhou et al. (47) 0.947 4124 0697 14419 0544 | 11723 0669 | 15192 0637 | 13778
SETR PUP Zhou et al. (47) 0.949 4107 0696 15245 0549 | 11759 0670 | 15023 0.638 | 14.009
SETR MLA Zhou et al. (47) 0.950 4091 0698 15503 | 0.554 | 10237 0665 14716 0.639 13485
TransUNet Zhou et al. (42) 0.950 4031 0706 14027 0542 10421 0684 14501 0.644 | 12.983
TransBTS Zerveas et al. (48) - - 0779 10030 @ 0574 | 9969 0735 8950 | 0.696 | 9.650
CoTr w/o CNN encoder Khan et al. (29) 0.946 4748 0712 11492 | 0523 | 9592 0698 12581  0.6444 11221
CoTr Khan et al. (29) 0.954 3.860 0746 9198 | 0557 | 9447 0748 10445 0683 | 9.697
DconnNet Yang and Farsiu (37) 0.957 3.356 0757 9.058 | 0563 | 9425 0753 10122  0.694 @ 9234
UnetTransCNN 0.964 1.333 0789 8266 | 0585 | 9354 0761 8845 0711  8.822

The brain tumor sub-regions were labeled as Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC).

Bold values indicate the best performance among all compared methods in each category.
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TABLE 4 Performance comparison on the KiTS19 dataset.

Method Kidney Kidney Tumor Tumor
Dice HD95 Dice HD95
U-Net 0.912 4.56 0.723 8.91
TransUNet 0.928 3.89 0.756 7.45
nnU-Net 0.935 3.45 0.781 6.87
CoTr 0.931 378 0.769 7.12
UnetTransCNN | 0.942 3.21 0.793 6.45

The table shows the Dice score and 95% Hausdorff Distance (HD95) for kidney and
tumor segmentation.
Bold values indicate the best performance among all compared methods in each category.

4.5 Qualitative results

4.5.1 Visualization comparison

This paper proposes the UnetTransCNN model, which
demonstrates significant superiority in medical image segmentation
tasks, especially in the application of abdominal organ segmentation.
The UnetTransCNN model integrates the structural advantages of
Unet, the local feature extraction capability of Convolutional Neural
Networks (CNN), and the global dependency capturing ability of
Transformers, achieving high-precision segmentation of complex
structures in medical images. In a comparative study focusing on
abdominal organ segmentation, UnetTransCNN exhibited higher
segmentation accuracy compared to other advanced models (such
as CoTr, TransUNet, and nnUNet). Specifically, UnetTransCNN
achieved outstanding results on the Dice Similarity Coefficient
(DSC) evaluation metric. For instance, for liver segmentation,
UnetTransCNN’s DSC reached 0.95, whereas other models such as
TransUNet and nnUNet recorded DSCs of 0.93 and 0.92,
respectively. For the more challenging task of pancreas
segmentation, UnetTransCNN also performed excellently, with a
DSC of 0.89, significantly higher than CoTr’s 0.85 and TransUNet’s

0.15 ||

loss

0.1t/

0.05

10.3389/fonc.2025.1467672

0.87. Beyond improving segmentation accuracy, UnetTransCNN also
demonstrated advantages in model inference time. With GPU
acceleration, UnetTransCNN’s average processing time was about 2
seconds per image, approximately 20%-30% faster than other models,
which is crucial for practical clinical applications, especially in
situations requiring rapid diagnosis. Moreover, UnetTransCNN
showed strong robustness in handling noise and blurred
boundaries in images. Through detailed experimental analysis, the
model effectively differentiated between subtle differences among
various abdominal organs, maintaining high-level segmentation
performance even in cases of lower image quality. In summary,
UnetTransCNN not only enhances the accuracy and efficiency of
medical image segmentation but also improves the model’s versatility
and robustness. These characteristics mark it as a significant
advancement in the field of medical imaging analysis, laying a solid
foundation for future research and clinical applications. To better
demonstrate both macroscopic and microscopic features, we provide
visualizations on the performance of our model and other baselines,
which is shown in Figure 6. This confirms the effectiveness of our
UnetTransCNN for global and local feature extraction.

As shown in Figure 7, we observe two sets of medical image data
and their corresponding processing results. Each set contains the
original computed tomography (CT) images, manually labeled
images, and the output images of the machine learning model. By
first analyzing the CT images, i.e., IMAGE 1 and IMAGE 2, we can
identify abdominal organs such as the liver. These raw scans provide
the basic information used for subsequent image processing. The
corresponding labeled images, LABEL 1 and LABEL 2, highlight the
liver tissue region in a distinct yellow color, and these labels may
represent ground truth for training and validation of the machine
learning model. The outputs of the model, output 1 and output 2,
show the results of the model’s segmentation and recognition of the
liver tissue, where the yellow areas indicate the parts of the liver
recognized by the model. The comparison of the model outputs with
the manually labeled images can be used to evaluate the performance

train
validation

0 150

FIGURE 4
Training and validating curve on dataset BTCV.
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FIGURE 5
Detailed segmentation visualization.

of the model in the tissue recognition task. Further observe the
performance metric graphs below, which show the learning curve of
the model during the training process. In deep learning training, the
epoch represents the full dataset completing one full forward and
backward propagation. The curve below shows the stable trend of
model performance indicators as the number of epochs increases,
indicating the convergence of the learning process.

4.6 Ablation study

4.6.1 Decoder choice

We assessed the efficiency of various decoder architectures in
enhancing segmentation outcomes by integrating them with
UNETR’s encoder, focusing on MRI and CT segmentation tasks.
This evaluation, detailed in Table 6, involved comparing
the performance of the standard UNETR decoder against
threedimensional alternatives: Naive UpSampling (NUP), Progressive
UpSampling (PUP), and Multi-scale Aggregation (MLA).

The findings reveal that while all tested decoder architectures
offer less than ideal performance, MLA demonstrates a marginal
superiority over NUP and PUP. Specifically, in the context of brain

TABLE 5 Comparison of UnetTransCNN with existing hybrid models.

10.3389/fonc.2025.1467672

label

tumor segmentation, UNETR, equipped with its original decoder,
surpasses the MLA, PUP, and NUP decoder variants by 2.7%, 4.3%,
and 7.5%, respectively, in average Dice score. In spleen segmentation
tasks, similarly, UNETR exceeds the performance of MLA, PUP, and
NUP decoders by 1.4%, 2.3%, and 3.2%, correspondingly.

4.6.2 Impact of patch resolution on performance

Our investigation into the effects of patch resolution on
segmentation accuracy revealed a direct correlation between
decreased resolution and increased sequence length, which in
turn, elevates memory usage due to its inverse relationship with
resolution’s cubic value. As documented in Table 7, lowering the
input patch resolution consistently enhances segmentation
performance. For instance, decreasing the resolution from 32 to
16 yielded an increase of 1.1% and 0.8% in the average Dice score
for spleen and brain tumor segmentation tasks, respectively.

Further reduction of resolution from 16 to 8 amplifies this
improvement; the average Dice score for spleen segmentation
escalated from 0.963 to 0.974 (an increase of 0.011), and for brain
segmentation, from 0.786 to 0.799 (an increase of 0.013).
These results suggest continuous performance benefits from
resolution reduction.

Model Architecture Key Strength Limitation

TransUNet U-Net + Transformer CNN for local features,
in bottleneck Transformer for global context

MCTransformer Multi-scale CNN + Multi-scale CNN features +
Transformer Transformer

CoTr CNN encoder + CNN for encoding, Transformer
Transformer decoder for decoding

UnetTransCNN Refined CNN backbone + Enhanced CNN for local details,

optimized Transformer

Frontiers in Oncology

Transformer for global alignment

144

Effective global
dependency modeling

Robust multi-scale feature fusion

Efficient cross-modal integration

Balanced local-global
feature capture

Limited local detail preservation

High computational complexity

Weaker local feature refinement

Slightly higher parameter count
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FIGURE 6
Visualization of macroscopic and microscopic features.
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TABLE 6 Effect of the decoder architecture on
segmentation performance.

Organ Spleen
Decoder Spleen WT
NUP 0.942 0711 0.517 0.670 0.646
PUP 0.951 0.739 0.548 0.688 0.658
MLA 0.960 0.747 0.553 0.722 0.674
UnetTransCNN | 0.974 0.799 0.595 0.761 0.711

NUP, PUP, and MLA denote Naive UpSampling, Progressive UpSampling, and Multi-scale
Aggregation respectively.
Bold values indicate the best performance among all compared methods in each category.

TABLE 7 Effect of patch resolution on segmentation performance.

Organ Spleen

Resolution = Spleen WT ET TC

32 0.954 0.772 0571 0.749 0.707
16 0.963 0.786 0.589 0.746 0713
8 0.974 0.799 0.595 0.771 0.721

Bold values indicate the best performance among all compared methods in each category.

However, it is critical to mention that our experiments did not
extend to resolutions lower than 8 due to memory limitations,
leaving the potential impact of further reduced resolutions on
performance undetermined. Although lower resolutions might
promise additional improvements, they risk sacrificing crucial
details or diminishing accuracy. Therefore, selecting an
appropriate resolution requires a careful balance between
computational efficiency and segmentation efficacy.

4.7 Inference efficiency analysis

Real-time segmentation is crucial in clinical applications, where
rapid image analysis can facilitate timely decision-making. While
segmentation accuracy is a key evaluation metric, the inference
speed of deep learning models significantly impacts their practical
usability in medical imaging. In this experiment, we compare the
inference time of UnetTransCNN with existing state-of-the-art
baselines on 3D medical image segmentation tasks.

4.7.1 Experimental setup
To ensure a fair comparison, all models are evaluated under
identical conditions:

* Hardware: NVIDIA A100 Tensor Core GPU (40GB).
* Framework: PyTorch + CUDA 11.8.

* Batch Size: 1 (single 3D volume of 128 x 128 x 128).
* Dataset: Medical Segmentation Decathlon (MSD).
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e Metric: Average inference time per volume (milliseconds, ms).

We measure the time required for each model to process a
single 3D medical image, excluding data loading and preprocessing,
to focus solely on model inference speed.

4.7.2 Analysis
4.7.2.1 Faster inference time

UnetTransCNN achieves an average inference time of 987 ms,
making it the fastest model among the tested baselines. Compared
to nnUNet (1620 ms), our model is 39.1% faster, enabling real-time
segmentation for medical applications.

4.7.2.2 Efficiency compared to transformer-based models
Transformer-based models such as TransUNet (1405 ms) and
CoTr (1202 ms) show improved segmentation performance over
traditional CNN architectures but at the cost of increased
computational complexity. UnetTransCNN, by efficiently integrating
both CNN and Transformer modules, maintains high segmentation
accuracy while achieving a significantly lower inference time.

4.7.2.3 Speed advantage over DconnNet

DconnNet, another hybrid CNN-Transformer model, achieves
1100 ms inference time, which is still 11.4% slower than
UnetTransCNN. This demonstrates that our model’s architectural
design effectively balances performance and computational efficiency.

5 Conclusion

In this study, we introduced UnetTransCNN, a novel
architecture that effectively combines the global contextual
strengths of Transformers with the robust local feature extraction
capabilities of convolutional neural networks (CNNs). This
innovative integration is specifically engineered to enhance both
the accuracy and efficiency of medical image segmentation. Our
validation on two benchmark datasets—the Multi Atlas Labeling
Beyond The Cranial Vault (BTCV) for multi-organ segmentation
and the Medical Segmentation Decathlon (MSD) for brain tumor
and spleen segmentation—demonstrates that UnetTransCNN
achieves state-of-the-art performance, highlighting its potential as
a transformative tool in the field of medical imaging. While
UnetTransCNN offers significant advancements, it does come
with its challenges. One notable limitation is its computational
demand, which may impact its deployment in settings with limited
processing capabilities. Additionally, there are specific conditions
under which the model’s performance may not be optimal, such as
in cases with extremely low contrast in images or very irregular
anatomical structures that are not well-represented in the training
data. As we plan to broaden the application of UnetTransCNN to
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more varied medical imaging tasks, including dynamic imaging
studies where temporal resolution is critical, we also acknowledge
the need to address and improve computational efficiency, which is
vital for real-time diagnostic applications.
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Vision transformers for
automated detection of diabetic
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Early detection and management of diabetic peripheral neuropathy (DPN)
are critical to reducing associated morbidity and mortality. Corneal Confocal
Microscopy (CCM) facilitates the imaging of corneal nerves to detect early
and progressive nerve damage in DPN. However, its wider adoption has been
limited by the subjectivity and time-intensive nature of manual nerve fiber
quantification. This study investigates the diagnostic utility of state-of-the-art
Vision Transformer (ViT) models for the binary classification of CCM images to
distinguish between healthy controls and individuals with DPN. The ViT model's
performance was also compared to ResNet50, a convolutional neural network
(CNN) previously applied for DPN detection using CCM images. Using a dataset
of approximately 700 CCM images, the ViT model achieved an AUC of 0.99, a
sensitivity of 98%, a specificity of 92%, and an F1-score of 95%, outperforming
previously reported methods. These findings highlight the potential of the ViT
model as a reliable tool for CCM-based DPN diagnosis, eliminating the need for
time-consuming manual image segmentation. Moreover, the results reinforce
CCM's value as a non-invasive and precise imaging modality for detecting nerve
damage, particularly in neuropathy-related conditions such as DPN.

KEYWORDS

artificial intelligence, diabetic neuropathy, corneal confocal microscopy, image
classification, disease diagnosis

1 Introduction

The Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that, in 2021,
diabetes affected 529 million people across 204 countries and territories, underscoring the
high prevalence of the condition among various age groups worldwide (Ong et al., 2023).
Diabetic Peripheral Neuropathy (DPN) is a neuropathic condition affecting the peripheral
nerves, often presenting as a distal, symmetrical sensory or motor deficit. As a major long-
term complication of diabetes, DPN can result in painful neuropathy, foot ulceration, and
amputation.

Early and accurate diagnosis of DPN is essential for timely intervention and effective
disease management (Ponirakis et al., 2021, 2022). Without treatment, DPN can lead to
serious outcomes, including loss of sensation, falls, foot ulcers, and even limb amputations.
Additionally, diabetic patients with DPN face a higher risk of mortality from any cause or
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cardiovascular disease compared to those without DPN (Jensen
et al.,, 2021; Elafros et al., 2022; Eid et al., 2023).

Corneal Confocal Microscopy (CCM) is a non-invasive
imaging technique that serves as a precise surrogate biomarker
for small fiber neuropathy. The corneal nerves, accessible through
CCM, are frequently impacted in the early stages of DPN, enabling
clinicians to detect nerve damage before more severe symptoms
develop. Manual analysis of CCM images is labor-intensive,
subjective, and requires significant expertise, with interobserver
variability that can limit diagnostic accuracy for DPN. Using Deep
Learning (DL), Salahouddin et al. (2021) employed a U-Net-based
model to automate the segmentation and quantification of corneal
nerves in CCM images, achieving discrimination between patients
with and without DPN, with an average area under the curve
(AUC) of 0.93. Moving toward eliminating the need for pixel-
wise annotations, Preston et al. (2022) utilized a ResNet model to
diagnose peripheral neuropathy, reporting an average sensitivity of
84% in correctly identifying DPN patients on a test set of 40 images.

Following recent advancements in automated DPN diagnostics,
we evaluated a state-of-the-art Vision Transformer (ViT) model
for classifying DPN patients using CCM images, comparing its
performance to the established ResNet architecture. Our approach,
which eliminates the need for pixel-wise annotations, is the first to
apply ViTs for DPN classification on CCM images, demonstrating
high accuracy on a relatively large dataset. Additionally, we
employed Grad-CAM to generate heatmaps, visually highlighting
regions that contribute most to the classification decision and
confirming a focus on corneal nerves. Figure 1 shows an overview
of the transformer-based model architecture for corneal nerve
classification.

2 Method
2.1 Dataset

The experiment was carried out on a database of 692 CCM
images (358 healthy controls and 334 DPN cases) collected
from 106 subjects (29 patients with DPN and 77 healthy
controls), captured using the Heidelberg HRTIII corneal confocal
microscope. This is a sub-analysis of the LANDMark study
(Pritchard et al., 2014)—a multi-center study conducted at the
University of Manchester, UK and Queensland University of
Technology, Australia in 2009-2014. The LANDMark study
adhered to the tenets of the Declaration of Helsinki and
was approved by the relevant institutional review boards.
Informed, written consent was obtained from all subjects prior to
participation.

The images have a size of 384 x 384 pixels, 8-bit gray levels,
and are stored in BMP format. To mitigate potential biases arising
from the relatively small sample size and the varying number of
images per subject, we employed a rigorous data splitting strategy.
The dataset was divided into training (60%), validation (20%), and
testing sets (20%). To ensure balanced representation across sets,
we performed stratified splitting based on subject-level allocation.
This ensured that no images from the same subject were included
in more than one set, preventing potential bias arising from inter-
subject variability.
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2.2 Vision transformer

Introduced by Dosovitskiy et al. (2020), Vision Transformers
(ViTs) have quickly gained prominence in classification tasks,
often outperforming traditional methods (Bazi et al., 2021; Ding
et al, 2023; Long et al, 2024). The ViT model includes an
embedding layer, a transformer encoder, and an MLP head.
The input image is divided into non-overlapping patches, each
treated as a token, with position embeddings added to retain
spatial information. These embeddings are processed by the
encoder, which consists of stacked layers with multiheaded self-
attention (capturing relationships across image regions), an MLP
block (refining extracted information), and a normalization layer
(ensuring data stability). Finally, the MLP head translates encoded
information into the predicted class.

Our work leverages the capabilities of ViTs to construct a
robust and scalable system, while addressing technical complexities
associated with data preprocessing and model development. To
enhance efficiency and potentially improve performance, we
optimized the original ViT architecture (Dosovitskiy et al., 2020) by
reducing the number of Transformer layers, thereby streamlining
the model and overfitting. Furthermore, we decreased the MLP
size, leading to a substantial decrease in model parameters and
computational cost. We modified the input patch size. This trade-
off increases the effective sequence length for the Transformer while
simultaneously reducing computational complexity, as the number
of patches decreases quadratically with the increase in patch size.
These modifications resulted in a dramatic reduction in model
parameters from 86M to 6M, making our model significantly more
compact and potentially easier to deploy on resource-constrained
devices.

To enhance model performance and stability, we incorporated
a batch normalization layer after the Transformer block. Unlike the
original model’s layer normalization, which normalized across all
features within a sample, our batch normalization normalizes each
feature independently across the mini-batch. This modification
aims to improve training stability and potentially enhance
generalization. To further mitigate overfitting, we integrated
Dropout throughout the model architecture. Dropout randomly
deactivates a fraction of neurons during training, preventing
excessive reliance on specific features and encouraging weight
sharing across the network, ultimately leading to more robust and
generalizable models.

2.3 Model training

We trained our ViT model using Python 3.7.10 and TensorFlow
with Keras on a GPU P100 for 150 epochs. Images were resized to
256 x 256 pixels and divided by the ViT into 144 patches of 20 x 20
pixels each. During training, we applied a combination of feature
normalization and data augmentation techniques on each patch,
including horizontal flipping, zooming (height and width factor
0.2), and slight rotation (factor 0.02), to enhance model robustness.
Optimizing ViT’s complex structure is challenging, so we used the
AdamW optimizer with Decoupled Weight Decay Regularization,
with specific parameters listed in Table 1, carefully selected for
a balance of accuracy and efficiency (https://github.com/serag-ai/
ViT-CCM).
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FIGURE 1
Overview of the transformer-based model architecture for corneal nerve classification. The input image is divided into patches, which are linearly
projected and positionally embedded before being fed into the transformer encoder. The output representations are used for classification between
DPN and healthy cases through an MLP head. Additionally, Score-CAM generates heatmaps highlighting relevant regions in the patches, aiding
interpretability in classification.

TABLE 1 Parameters of the trained ViT.

Parameters Values
Learning rate 0.0001
Weight decay 0.0001
Patch size 20
Batch size 20
number of heads 6
Projection dimension 128
Number of training epochs 150

3 Evaluation metrics

We assessed our model’s performance using several key metrics:
Area Under the Receiver Operating Characteristic Curve (AUC),
Specificity, Sensitivity, and F1-score.

AUC is a threshold-independent metric that evaluates the
performance of a classification model. It represents the probability
that the model will rank a randomly chosen positive instance higher
than a randomly chosen negative instance. The AUC ranges from
0 to 1, where a value closer to 1 indicates superior discriminative
ability. An AUC of 0.5 suggests no discriminative power, equivalent
to random guessing.
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Sensitivity, also known as recall, measures the proportion of
true positives (TP) correctly identified out of all actual positives.
It is calculated as:

TP

Sensitivity (Recall) = ———
TP + FN

(1)
Specificity measures the proportion of true negatives (TN)
correctly identified out of all actual negatives. It is calculated as:

TN

TN 1 FP @)
N + FP

Specificity =
The F1-score is a harmonic mean of Precision (Pre) and Recall
(Rec), combining them into a single metric. It is calculated as:

Pre x Rec

F1 =2X ——
Pre + Rec

3)

Recall (Rec) is defined as in Equation (1), while Precision (Pre)
is defined as the proportion of true positives out of all positive
predictions:

TP

Pre = ——
TP + FP

(4)

In these formulas, TP (True Positives) refers to instances
correctly classified as positive, while FP (False Positives) denotes
negative instances that are incorrectly classified as positive.
Similarly, FN (False Negatives) represents positive instances that
are incorrectly classified as negative, and TN (True Negatives)
refers to instances correctly classified as negative.
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TABLE 2 Comparison of AUC, sensitivity, specificity, and F1-score
between the ViT model and other methods for the binary classification
task.

AUC Specificity Sensitivity Fl-score
EfficientNetB7 | 0.96 91.35% 94.82% 91.66%
MobileNet 0.98 95.06% 96.55% 94.91%
ResNet50 0.98 96% 98% 96%
ViT 0.99 92% 98% 95%

The value in bold shows the highest AUC value.
3.1 Statistical analysis

We also performed a statistical analysis to test the differences
between classification results. A t-test was conducted, and a P-
value > 0.05 was interpreted as indicating insufficient evidence to
conclude a significant difference between the classification results.

4 Results

4.1 Model performance

The trained ViT model demonstrated outstanding performance
in this binary classification task, achieving an AUC of 0.99, which
underscores the effectiveness of ViT architectures in extracting
discriminative features from CCM images. Specifically, the model
correctly classified 75 out of 81 healthy controls, with only one
misclassification among DPN cases, resulting in a sensitivity of
98%, specificity of 92%, and a high F1-score of 95%.

4.2 Comparison against other methods

We further compared our method against ResNet50 pretrained
on ImageNet (Deng et al., 2009), which has previously been used
for detecting DPN in CCM images (Preston et al., 2022; Meng
et al, 2023). Table2 presents the AUC, sensitivity, specificity,
and Fl-scores for both methods. Our proposed ViT model
outperformed ResNet50, achieving a higher AUC compared to
ResNet50. Although ResNet50 exhibited a slightly higher F1-score
than the ViT model, the difference was not significant (P = 0.397).

Besides ResNet50, we have compared our results to well-
known DL models including the EfficientNetB7 (Tan and Le,
2019), and MobileNet (Howard, 2017), chosen for their exceptional
performance in tasks such as feature extraction and image
classification, particularly their capability to detect anomalies
within images. In Table 2, we reported a remakrbale AUC for
MobileNet of 0.98. However, our ViT beats all these models in term
of AUC and F1-score.

To enhance the interpretability of our model’s predictions
on test images and provide clinicians with greater insight, we
employed Grad-CAM (Selvaraju et al, 2017). This attribution
method uses the gradients flowing into the final convolutional
layer to generate a coarse “attribution map,” visually highlighting
the regions of the image with the strongest influence on the
classification outcome. In essence, the map reveals which parts of
the image were most significant in the model’s decision-making
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process. Figure 2 illustrates original and Grad-CAM images from
healthy controls (Figure 2A) and patients with DPN (Figure 2B).
This clearly identifies areas where corneal nerves are located as
providing the most influence to identify DPN.

5 Discussion

In our research, e investigated the potential of the Vision
Transformer (ViT) model for classifying corneal confocal
microscopy (CCM) images. By splitting images into patches and
processing them within a transformer-based architecture, the ViT
model effectively captures both local and global features, making it
particularly well-suited for tasks requiring a comprehensive view
of image content. To our knowledge, this is the first study to apply
a ViT model for analyzing and classifying CCM images, achieving
a high AUC of 0.99, which surpasses results reported in previous
studies (Silva et al., 2015; Salahouddin et al., 2021; Alam et al., 2022;
Preston et al., 2022; Meng et al., 2023). These classification results
underscore the effectiveness of ViT in distinguishing between
healthy controls and individuals with DPN in this context.

To enhance model interpretability and provide clinicians
with insights into the ViT model’s predictions, we employed
Grad-CAM as an explainability tool. Recognizing that Grad-
CAM is traditionally designed for CNNs with their hierarchical
convolutional layers, we adapted this technique for our ViT
architecture. Instead of relying on convolutional feature maps,
we leveraged the attention maps generated by the Transformer
encoder. By analyzing the attention weights assigned to different
image patches, we effectively identified the regions within the
CCM images that most significantly influenced the model’s
predictions. The generated heatmaps, qualitatively validated for
their effectiveness, highlighted regions within images that are
clinically relevant for diagnosing DPN, such as corneal nerves.
This approach not only provides valuable insights into the model’s
decision-making process but also enhances clinician trust and
confidence in its predictions, thereby facilitating potential adoption
in clinical settings. To address this, one of the co-authors (RAM), a
pioneer of corneal nerve analysis undertook visual inspection of the
Grad-CAM heatmaps and confirmed that the highlighted regions
were identifying corneal nerve fiber loss, a hallmark of DPN.

While ResNet, a widely adopted CNN
demonstrated competitive results, it has certain limitations.

architecture,

ResNet requires a fixed input size, which can be restrictive when
working with images of varying dimensions (Salehi et al., 2023),
and it struggles to capture long-range dependencies, which are
often essential for identifying complex patterns. In contrast, ViT
models, in principle, can process images of different dimensions
due to their inherent self-attention mechanisms and the fact
of processing images with patches. Practical implementations
often necessitate training with a specific input resolution for
computational efficiency. In our case, the input to our ViT model
consists of CCM images with their original size of 384 x 384 pixels.
However, during the internal image augmentation process within
the model, these images are resized to 256 x 256 pixels. This choice
was made to optimize training efficiency by enabling efficient batch
processing and optimized memory usage, leading to faster training
times. This approach, while introducing a degree of constraint,
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CCMimage

Grad-CAM

CCMimage

Grad-CAM

FIGURE 2

(b)

Example of CCM images of healthy controls and patients with and without DPN along with their corresponding Grad-CAM images. Grad-CAM
creates a heatmap where hotter colors (red) indicate the image regions that had the strongest impact on the model's classification decision. Cooler
colors (orange, yellow, and green) represent progressively less influential areas, with shades of blue highlighting the regions with the weakest
influence. The top two rows (A) display images of healthy control subjects and the bottom two rows (B) present images of patients with DPN.

does not inherently limit the model’s generalizability to images
of different dimensions. ViT’s architecture, with its self-attention
mechanisms, allows it to flexibly handle varying input sizes while
capturing long-range dependencies, making it a more adaptable
and powerful choice for tasks that demand a deep understanding
of image-wide context. In real-world applications, this approach,
combined with the inherent flexibility of the ViT architecture,
allows for a degree of adaptability to varying input dimensions.

FrontiersinImaging

Furthermore, ViTs are renowned for their scalability (Pan
et al, 2021; Chen et al, 2022; Dehghani et al.,, 2023), as their
performance typically improves with larger datasets and increased
model complexity. This scalability is particularly advantageous for
medical applications, where large datasets and robust models are
often essential for achieving high diagnostic accuracy. Building
on this scalability, our research demonstrates that ViT models
can effectively detect DPN using CCM images without requiring
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complex pre-processing steps, segmentation, or adaptive feature
extraction techniques.

This
acknowledges several limitations. Firstly, the relatively small

study, while demonstrating promising results,
sample size (692 images) may limit the generalizability of the
findings.

Secondly, the integration of this AT model into clinical practice
presents several challenges. The computational demands of ViT
models, while mitigated through optimizations employed in this
study, may still pose challenges in resource-limited clinical settings.

Furthermore, the use of AI in healthcare raises important
ethical considerations, including data privacy, algorithmic bias, and
the potential for unintended consequences. Ensuring responsible
and equitable AI development and deployment is paramount. To
safeguard patient privacy while advancing AI models in healthcare,
two promising approaches are federated learning and synthetic
data generation. Federated learning enables model evaluation
and refinement without transferring sensitive patient data, while
synthetic data generation creates artificial data that mimics real
data without containing any actual patient information. These
innovative solutions offer a balance between model improvement
and robust privacy protection.

These findings suggest that ViT models may offer a more
efficient and accurate approach to DPN diagnosis compared to
traditional methods. To fully harness the potential of ViTs, future
research should focus on developing training sets encompassing a
broader range of normal and abnormal pathologies, exploring the
practical implementation of this algorithm in clinical workflows,
and comparing its performance to existing diabetic neuropathy
screening techniques. This will be crucial for translating this
technology into real-world healthcare solutions.

This study serves as a foundation for future research that
will address the identified shortcomings. Further research with
larger, more diverse cohorts is warranted to confirm these
initial observations. Moreover, incorporating other medical image
modalities can be used to assess the robustness of the model in
peripheral neuropathies classification.

In conclusion, this study presents a novel application of Al
for the automated classification of CCM images, enabling rapid
and objective detection of DPN. Our vision transformer-based
model demonstrated remarkable accuracy in distinguishing
patients with DPN from healthy controls. By eliminating the
subjectivity and time-intensive processes of manual image
segmentation and interpretation, this approach offers a faster
and more consistent analysis. The integration of this AI-driven
tool into clinical workflows has the potential to revolutionize
DPN diagnosis by enabling quicker decision-making, facilitating
timely interventions, and ultimately improving patient outcomes.
While the results are promising, further research is needed to
refine the model and extend its applicability. Future studies
should utilize larger datasets, including diabetic patients
with diverse comorbidities, to enhance model interpretability
and provide clinicians with more actionable insights. This
research highlights the transformative potential of AI in medical
diagnostics. By automating complex tasks and improving
diagnostic accuracy, Al-driven solutions can advance patient care
and contribute to the effective management of diabetes-related
neuropathies.
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analysis through a data
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Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China, **Department of Pathology, The
Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou,

Zhejiang, China

Objective: The aim of this study was to enhance the precision of categorization
of endometrial lesions in ultrasound images via a data enhancement framework
based on deep learning (DL), through addressing diagnostic accuracy challenges,
contributing to future research.

Materials and methods: Ultrasound image datasets from 734 patients across six
hospitals were collected. A data enhancement framework, including image
features cleaning and soften label, was devised and validated across multiple
DL models, including ResNet50, DenseNetl69, DenseNet201, and ViT-B. A
hybrid model, integrating convolutional neural network and transformer
architectures for optimal performance, to predict lesion types was developed.

Results: Implementation of our novel strategies resulted in a substantial
enhancement in model accuracy. The ensemble model achieved accuracy and
macro-area under the receiver operating characteristic curve values of 0.809 of
0.911, respectively, underscoring the potential for use of DL in endometrial lesion
ultrasound image classification.

Conclusion: We successfully developed a data enhancement framework to
accurately classify endometrial lesions in ultrasound images. Integration of
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anomaly detection, data cleaning, and soften label strategies enhanced the
comprehension of lesion image features by the model, thereby boosting its
classification capacity. Our research offers valuable insights for future studies and
lays the foundation for creation of more precise diagnostic tools.

deep learning, data enhancement framework, endometrial cancer,
ultrasonography, diagnosis

1 Introduction

Patients with endometrial cancer, otherwise referred to as cancer of
the uterine body, have a highly variable prognosis; crucially, the
survival rate can be significantly improved through early detection
and diagnosis (1, 2). In clinical practice, patients with postmenopausal
bleeding are generally diagnosed through various means, including
imaging, pathological examination, and serum tumor markers (3, 4).
Magnetic resonance imaging (MRI) and computed tomography (CT)
are relatively accurate imaging methods, but are expensive and CT
poses significant radiation hazards. Further, although curettage and
hysteroscopy are key steps in the diagnostic process, they are somewhat
invasive for patients. In contrast, ultrasound examination is convenient,
non-invasive, inexpensive, and repeatable, and is often used as a first-
line diagnostic tool for endometrial lesions (5, 6). Ultrasonography is
also an important means of large-scale asymptomatic population
screening, where early detection of endometrial cancer by large-scale
screening can significantly improve patient prognosis (7). Nevertheless,
since physical condition and disease state vary in each patient, there is
currently no universal diagnostic indicator for endometrial cancer (4).
Additionally, the accuracy of ultrasound examination is affected by
factors including the technical ability of medical personnel and
environmental noise. Reznak et al. found that the success rate of
ultrasound examination in predicting polyps is 65.1%, and that it has
limited predictive value when used alone (8). Therefore, there is an
urgent need for an auxiliary screening method that can effectively
improve the accuracy of ultrasound examination in diagnosing
endometrial cancer.

In recent years, artificial intelligence, particularly deep learning
(DL), has made significant progress in medical image recognition
(9-11). For instance, numerous developmental directions have
emerged in the application of deep learning for the diagnosis of
endometrial lesions. Based on MRI images, DL models can
automatically locate, segment, and measure the degree of muscle
infiltration of endometrial cancer (12-15); however, DL research
based on ultrasound images is relatively scarce. Hu et al. (16) and
Liu et al. (17) each proposed endometrial thickness measurement
models based on transvaginal ultrasound (TVUS) images; however,
these models cannot be directly applied to endometrial lesion
classification. Other features in ultrasound images, such as
uniformity of endometrial echo and blood flow signals, are also

Frontiers in Oncology

crucial for distinguishing benign and malignant endometrial lesions
(18, 19). Further, DL also performs poorly in the task of ultrasound
image classification. Raimondo et al. (20) used a DL model to
diagnose adenomyosis based on TVUS images, and the results
indicated that the diagnostic accuracy of the DL model was lower
than that of general ultrasound doctors, although it had higher
specificity in identifying healthy uteruses and reducing
overdiagnosis. Therefore, we sought to improve model learning
and utilization of various ultrasound image features using DL
methods to enhance endometrial lesion classification accuracy.

In this study, we developed a DL model for automatic
identification of endometrial lesions using an innovative combination
comprising multi-stage anomaly detection, a data cleaning process, and
a soft label strategy, to improve model understanding of lesion image
features and enhance its classification ability. Our experiments explored
the relationships among lesion features, models, and different degrees
of softening (7). Final accuracy was also enhanced through integration
of several different models.

2 Materials and methods

2.1 Patients

This multicenter retrospective diagnostic study was conducted in
line with the principles of the Declaration of Helsinki. This study was
approved by the Ethics Committee of the People’s Hospital of Quzhou
City (No. 2022-148). Ultrasound examination images were collected
from March 2014 to March 2023 at six hospitals: The Quzhou
Affiliated Hospital of Wenzhou Medical University, Changshan
County People’s Hospital, Kaihua County People’s Hospital, People’s
Hospital of Quzhou Kecheng, The Second People’s Hospital of
Quzhou, and Quzhou Maternal And Child Health Care Hospital.
Inclusion criteria: 1. Non-pregnant women who have had sexual
intercourse and consent to transvaginal ultrasound examinations. 2.
Patients with confirmed pathological diagnoses via hysteroscopy or
endometrial biopsies. Exclusion criteria: 1) Patients who have not had
sexual intercourse and are thus ineligible for transvaginal ultrasound
examinations. 2) Patients are allergic to condoms and thus unsuitable
for ultrasound examinations. 3) Patients with severe reproductive
system abnormalities or acute inflammation who are contraindicated
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for transvaginal ultrasound examinations. 4) Patients with severe
psychological disorders who are unsuitable for transvaginal
ultrasound examinations. 5) Each patient’s endometrial ultrasound
images are collected in two views: all longitudinal images and all
transverse images for each case. 6) Image blurring due to significant
visual losses and damages during the collection process, along with
interferences like gas and artifacts. All images were collected by
professional radiologists, and saved in DICOM format. Then, the
ultrasound images are further screened, as shown in Figure 1; 734
patients were ultimately included in the study.

2.2 Data processing

After collection, all ultrasound data were converted from DICOM
into JPG files using Python for research. Since data were derived from
multiple different hospitals, some preprocessing measures were
performed on all images for experiments, including manual cropping
to retain only the part captured by the instrument and scaling to 224 x
224. Finally, to improve model robustness and generalization ability,
data augmentation techniques, including random-cropping, random-
flipping, and TrivialAugment (21) were also used during the training
phase. In the testing phase, only size adjustment and normalization of
the original images were conducted.

2.3 Data enhancement framework

An innovative data augmentation framework, primarily
encompassing data cleaning and label softening procedures, was

10.3389/fonc.2024.1440881

developed in this study. The processing of training set data using this
framework is summarized in Figure 2. Following a feature extraction
process, image feature cleaning, and soften label implementation, the
training set was utilized to generate a softened set for training purposes.

2.3.1 Image feature cleaning

Medical data are often intricate, encompassing numerous variables
and factors, and the diverse types of noise they contain represents a
substantial challenge (22). For example, data for the present research
was sourced from multiple hospitals, where the process of ultrasound
image acquisition is influenced by objective factors, such as equipment
performance, environmental noise, and patient size and positioning,
which can lead to the presence of abnormal images and noise within
the dataset, with potential to impair model performance. To mitigate
this possibility, a rigorous data cleaning process was initiated following
division of the original data into training and testing sets.

As illustrated in Figure 2, five-fold cross-validation was first
applied to partition the training set into five subsets, four of which
were used to train an independent DL model. These models were
primarily tasked with predicting the results from the remaining
subsets and generating corresponding image feature vectors. In this
study, ResNet34 was used as the backbone network of the
framework. Finally, five sets of experimental results were
connected to form a complete training set of image features.

Subsequently, anomaly detection methods, such as Isolation
Forests (23), were introduced to analyze the feature vectors of the
generated training set and exclude potential anomalous data. The
training sets selected by three methods were then merged to form a
new, cleaned training set. In this study, we selected Isolation Forest,
Local Outlier Factor, and One-Class SVM. The selection of methods is
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LQ

Quzhou Ke City Quzhou Qujiang Qu.zllou
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1. Non-pregnant women who have had
sexual intercourse and consent to
transvaginal ultrasound examinations.

A 4

2. Patients with confirmed pathological
diagnoses via hysteroscopy or
‘endometrial biopsies.

Ultrasound image data collection of
patients with endometrial lesions in 6
hospitals from March 2014 to March

2023.(n=746)

cluded leisions (n=12)
with duplicate statistic (n=2)
with all ultrasound images

Y

P»(contain blood flow information
(n=2)

with poor ultrasound image
quality (n=8)

Patients enrolled in this study.
(n =734, Cancers = 168, Hypers =
290, Polyps = 276)

FIGURE 1

Patient selection workflow. A total of 746 patients with endometrial lesions were collected, of which 734 were ultimately included in the analysis.

Cancers, Hypers, and Polyps indicate patients with these types of lesions

Frontiers in Oncology

158

frontiersin.org


https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Luo et al. 10.3389/fonc.2024.1440881
Data division Predicted sefs Learned sets Image Features Cleaning
il 10 r .
Group1 || fold 1 fold2  fold3  foldd  foud5 | e
= s
Group2 || fold2 foldl  fold3 fold4 fold5 | .
fold division = ¢
Group3 || fold3 fold 1 fold2  foldd  fold5 | \
Group 4 H fold 4 fold1  fold2  fold3  fold5 I :
Train set Groups || fold5 fold 1 fold2  fold3  foldd | o 5,
3 3 i :
a. C
— g Image Features Cleaning ] i Soften Label
Feature Extraction Netl B z g
RSl ] 7 =
Feature Extraction Net2 = Leletinliorest =
@ )
& 3
Feature Extraction Net3 g Local Outlier Factor —_ 2 LLati . =———p Soften set
—_— = i R o E Reconstruction
Feature Extraction Net4 & One Class SVM 2 )
" = £ Cleaned
Feature Extraction Net5 ‘§ oo S set |Original label
= £ { J
Feature Extraction Process Soften Label
ResNet34 51 a8 4 1
o ,nﬁ. T
(T 7 ) traini el labelf = (1 —7) - w; + 7 - label;
l Learned sets '—M"m o B
\12
Predicted sets' image o N
features ) 22 A
—_— s0
) Predicted sets [prodicting s
T 3 3 h 3
FIGURE 2

Image features cleaning and soften label processes. The original training set was obtained using four steps: (A) data division, (B) image features
cleaning, (C) feature extraction, and (D) soften label, to obtain the final soften set. The Soften Label subfigure shows the calculation formula used for

softening labels.

contingent upon the data and the specifics of the research. This
innovative approach to data cleaning ensured the robustness of the
developed model, despite the diverse and potentially noisy data sources.

2.3.2 Soften label

To enhance generalization ability of the model and alleviate
overfitting, a label smoothing strategy was implemented, based on
the inverse proportion of image-to-cluster center distance. As
shown in Figure 2, Soften Label included the following processes:
first, dimension reduction and clustering were performed on the
new processed training set; then, the center of each category cluster
and the distance of each image to each cluster center were
calculated; finally, new labels were formed, according to the
distance ratio. In addition, an adjustable temperature, 7, was
introduced, to control the smoothness of the label. The new label
for training was obtained by calculating the inverse distance ratio
multiplied by 7, plus the hard label value. Datasets were named at
different processing stages as the cleaned set and the softened set.

2.4 Model architecture and
training strategy

In this study, a hybrid model to predict patient lesion types, based
on convolutional neural network (CNN) and Transformer architectures,
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is proposed, with the aim of maximizing prediction accuracy. As shown
in Figure 3, the proposed model combines three classic CNN models
(ResNet50, DenseNet169, and DenseNet201) and ViT-B, leveraging the
complementary strengths of these different models to enhance the
accuracy of endometrial ultrasound image classification.

The multilayer perceptron layer of the original model was tailored
to suit this classification task. Each preprocessed image was fed into the
model for automatic processing, outputting a three-dimensional array.
After Log-Softmax function processing, the prediction probability for
each image was obtained. During model integration, the prediction
probabilities from all sub-models were weighted to yield the final result.
In the testing phase, the average prediction probability for all images
from a single patient was calculated, to determine the prediction result.

The experiment comprised three stages. Initially, unmodified
ResNet50 was employed as the base model and the impact of
different data processing methods on model performance
assessed. Subsequently, the applicability of the proposed method
was explored by training various CNN and visual transformer
models, and the results statistically analyzed after setting the 7
value. Finally, high-performing models from the second stage were
integrated to test the performance of the optimal model. During the
training process, CrossEntropyLoss was used as the objective
function, and AdamW was used as the optimizer for end-to-end
training. Additionally, the transformer architecture network was
loaded with pretraining parameters.
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Architecture of model integrating ResNet50, DenseNet169, DenseNet201, and ViT-B.

In this manuscript, suffixes have been added to indicate
different models; for example, ResNet50_b represents the baseline
model, while ResNet50_c represents the model trained using the
cleaned set data. Similarly, models trained using softened set data
have the suffix “_s”.

2.5 Devices and software

This was a multicenter study, and different hospitals used
various devices for the data collection process, including Samsung
WS80A, GE Volkswagen E10, GE Volkswagen ES8, PhilipPsQ5,
PhilipPsQ7, and Mindray Resona 6s. All equipment met the
experimental requirements. The protocols for each scanning
instrument are shown in Table 1.

2.6 Statistical analysis

Statistical analyses were performed during the testing phase,
with individual cases serving as the smallest unit of measurement.
Models were validated on a test set, followed by statistical evaluation
of the confusion matrix derived from the validation outcomes.
Additionally, receiver operating characteristic (ROC) curves were
plotted. Primary indicators for comparing model performance were
accuracy and area under the ROC curve (AUC); sensitivity and
specificity were also considered as indicators of the classification
capabilities of models. Two visualization techniques, Grad-CAM
(24) and t-SNE (25), were employed to elucidate the operational
mechanism of the model.
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3 Results
3.1 Case inclusion and grouping

Among 1875 high-quality images from 734 patients, we
randomly extracted 30% of cases as a test set. The remaining
images were used as the original training set for data
augmentation and model training. The detailed dataset partitions
used in this study are presented in Table 2. All experiments were
trained and tested using the same data-division. Our final model
achieved the best performance, with accuracy and macro-AUC
values of 0.809 and 0.911, respectively.

3.2 Impact of innovative strategies

In the methods testing phase, we chose ResNet50 as the baseline
model. Model performance was significantly improved through
feature cleaning and soften label processing. As shown in Table 3,
when the original training set was used for training, the accuracy of
the test set was only 0.691. This provided us with a comparison
baseline; the baseline was determined in the same way for each
model in subsequent multi-model comparisons. We noticed that
abnormal images in the training set could affect model training;
therefore, we used feature cleaning to reprocess the training set.
After obtaining relatively clean data, the accuracy of the model on
the test set increased to 0.741. In subsequent experiments, we used a
label-softening method to reconstruct the labels in the new dataset.
Under the same data augmentation and image preprocessing, the
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TABLE 1 Scanning Instrument Protocol.

10.3389/fonc.2024.1440881

GE Voluson E8  GE Voluson E6 mindray mindray PHILIPS PHILIPS
Resona 7s Resona 6s EPIQ-7 EPIQ-5
Intracavitary probe RIC5-9 1C5-9-D V11-3HU DE10-3U 3D9-3V C10-3V
Probe frequency 5-9MHz 5-9MHz 3-11MHz 3-10MHz 3-9MHz 3-10MHz
Bandwidth 4.5-9.8MHz 4.5-9.8MHz 2.5-12.2MHz 2.8-11.8MHz 2.7-9.2MHz 2.8-1.2MHz
TIS 0.4 0.4 0.3 0.3 0.3 0.4
Depth 6.0cm 7.0cm 7.0cm 8.0cm 7.0cm 6.0cm
Magnification 12 1.5 1.1 1.1 1.1 1.1
Maximum fan angle 180° 180° 180° 180° 180° 180°
Frame rate 40HZ 41HZ 42HZ 42HZ 49HZ 47HZ
Gain 40%-80% 40-70% 40-70% 40-70% 40-70% 40-70%
Dynamic range 50-120 50-120 50-120 50-120 50-120 50-120

TABLE 2 Partition details of the endometrial lesion classification dataset.

Datasets Training set

Category

Patients

Images

Patients

Images

Testing set

Patients

Images

Cancer 168 460 118 323 ‘ 50 137
Hyper 290 661 203 470 ‘ 87 191
Polyp 276 746 193 506 ‘ 83 240
Total 734 1867 514 1299 ‘ 220 568

accuracy of the model increased to 0.764. The independence and
invariance of the test set were ensured in each training batch.
Label smoothness was controlled using the parameter, 7, which
is similar to the smoothing coefficient in Label Smooth (26). In this
experiment, we introduced a variety of different t values, to generate
different soften-labels. ResNet50 showed different classification
capabilities under different values of T. As shown in Table 4,
ResNet50 performed best when T was 0.7. To further study the
impact of T on model training, we introduced five other models,
including DenseNet169, DenseNet201, EfficientNetB4, VGG16-bn
and ViT-B. As shown in Table 4, our framework effectively
improved the representation learning of various models,
indicating that the improvement in the performance of ResNet50
was not isolated. Further, the best performance of each model
corresponded to different values of . Among individual models,
DenseNet201 achieved the best accuracy when T was 0.9. When ©

was 0.7, the performances of ResNet50, DenseNet169, and VGG16-
bn were better than those achieved with other softening coefficients.
These conditions may indicate that the optimal value of T may vary
depending on the characteristics of the dataset, model, and study.

3.3 Prediction model performance

As shown in Figure 4, the confusion matrixes for each model
effectively reflected their classification performance. In terms of
overall accuracy, the DenseNet201_s model exhibited outstanding
performance, achieving a best score of 0.786, particularly in
recognition of polyp class images, for which it had the best
single-category recall rate. We also plotted ROC curves for
DenseNet169_s and DenseNet201_s, to evaluate and compare
their performances by measuring AUC values (Figure 4). We

TABLE 3 Impact of different data processing approaches on model performance.

Dataset Model ACC AUC F1 Recall Precision
Base 0.691 0.811 0.680 0.665 0.697

Cleaned set ResNet50 0.741 0.845 0.736 0.728 0.744

Soften label 0.764 0.873 0.752 0.745 0.759

Boldface numerals are utilized to underscore the optimal results in this group's trial.
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TABLE 4 Model performance comparison (Accuracy).

Soften label (1)

0.7 0.8
ResNet50 0.691 0.727 0.764 0.714 0.718
DenseNet169 0.727 0.755 0.782 0.736 0.736
DenseNet201 0.731 0.764 0.745 0.75 0.786
EfficientNetB4 0.672 0.7 0.69 0.714 0.745
VGG16-bn 0.682 0.732 0.745 0.695 0.727
ViT-B 0.736 0.782 0.723 0.759 0.75

Boldface numerals are utilized to underscore the optimal results in this group's trial.

found that DenseNet-201_s was the single model with the best
comprehensive classification performance in this study.

In the final phase of our experiment, we implemented an
ensemble model approach to enhance the performance of our
model. The ensemble models were constructed based on the
performance ranking of models as indicated in Table 4. As
demonstrated in Table 5, the Ensemble Model2, which is
comprised of ResNet50_s, DenseNet169_s, DenseNet201_s, and
ViT-B models, yielded the most superior test results, achieving an
accuracy of 0.809 and a macro-AUC of 0.911. As illustrated in

hyper cancer

polyp

hyper cancer

polyp

10.3389/fonc.2024.1440881

Figure 4, the Ensemble Model2 outperforms DenseNet201_s in the
classification of cancer and hyperplasia. The macro-AUC value of
the Ensemble Model2 has significantly improved, and the ROC
curve is also more reasonable.

3.4 Model visualization

The operation process of DL models is often viewed as a ‘black
box’ prediction; however, we applied the Grad-CAM and t-SNE
visualization methods to explain the working mechanism used by
our DL model.

In Grad-CAM, we used hook functions to generate the gradient
of the last dense module of the model and stacked these gradients
onto the original image to generate heat maps. As shown in
Figure 5, the areas of interest for the model can be distinguished
by depth of color. From these images, it can be observed that the
model accurately focused on lesion areas in the endometrium; more
attention was paid to these areas, and these local features deeply
affected model prediction.

We also intuitively observed the training effect of the model using
the t-SNE method to count the feature vectors extracted by the model.
In the high-dimensional space of feature vectors, we calculated the
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Charts summarizing statistical analysis of results from seven different models. Matrix diagrams represent confusion matrices, while the line plots are

ROC curves.

Frontiers in Oncology

162

frontiersin.org


https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org

Luo et al.

TABLE 5 Performance of ensemble models with different compositions.

Model Model Composition ACC AUC
Ensemble modell DenseNet169+DenseNet201 0.777 0.898
+ViT-B
Ensemble model2 Ensemble modell+ ResNet50 0.809 0.911
Ensemble model3 Ensemble model2+ 0.805 0.908
EfficientNetB4
Ensemble model4 Ensemble model2+ VGG16-bn 0.791 0.906
Ensemble model5 Ensemble model3+ VGG16-bn 0.782 0.912

Boldface numerals are utilized to underscore the optimal results in this group's trial.

similarities between each data point and mapped these data to low-
dimensional space for visualization, and compared the clustering
diagrams before and after model training (Figure 6). As illustrated in
Figure 6, most images were mapped in their fixed areas through
training, but there was overlap among certain categories. Further, the
distance between different category cluster centers reflected the
intrinsic relationship of their key image features to a certain extent.
We proposed a soften-label method based on this principle.

Cancer

10.3389/fonc.2024.1440881

4 Discussion

In the burgeoning field of DL, our study represents a pioneering
effort to accurately classify endometrial lesions in ultrasound images
using DL models. We achieved an automatic classification with a
final accuracy of 0.809 and a macro-AUC value of 0.911.

To maximize DL model effectiveness, we established an
innovative data augmentation framework. In this study, collection
of datasets from multiple centers ensured inclusion of diverse
endometrial lesion ultrasound data. Although this diversity
ensured the generalization performance of the model, it also
introduced additional noise, which is an inherent challenge
commonly present in medical datasets. Within our data
augmentation framework, we implemented a scalable data
cleaning process, including selection of appropriate feature
extraction networks and anomaly detection methods, which
significantly improved the accuracy of ResNet50 on our test set,
from 0.70 at baseline to 0.741. Another challenge arose from the low
signal-to-noise ratio of ultrasound images and the similarity of
lesion image features. To address this, we incorporated a label
softening strategy, based on clustering and inverse distance, into the

FIGURE 5
Images from Grad-CAM analysis. The
critical lesion area.
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red annotation on the original image indicates the model's focal region, which closely coincides with the
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data augmentation framework. This strategy, which did not
introduce additional prior knowledge, bolstered the model’s
understanding of the relationships among lesion image features,
thereby improving its generalization and robustness. Consequently,
the accuracy of ResNet50 on the test set improved to 0.764,
effectively enhancing the fine-grain level of the model. Finally, we
integrated multiple distinct DL models, leveraging their respective
strengths to improve testing accuracy to 0.809.

In the second stage of our experiment, we applied our method
to multiple models, each of which showed significant improvement
over their baseline performance. These findings underscore the
effectiveness and wide applicability of our approach. In the label
softening process, we utilized 7 to manage the degree of label
softening. Performance of the models varied under different 7
values, with each model achieving substantial improvements over
their baseline performances under specific 7 values; however, the
optimal 7 value varied across models. Nevertheless, it is difficult to
draw clear conclusions based on these findings, for to two potential
reasons: first, the limited range of 7 values used in the experiments
leaves open the possibility that there may be an optimal 7 value in
other ranges that could yield the best results for the majority of
models; and, second, the inherent variations in the architectures of
each model could result in varying sensitivities to 7 value, leading to
differences in optimal 7 values among models.

In contrast to previous studies, our research has made
significant strides in the classification of endometrial lesions using
DL methods to analyze ultrasound images. Unlike prior works that
focused on endometrial thickness measurement based on
ultrasound images, we have successfully developed a model that
can accurately classify endometrial lesions. By integrating
innovative strategies, such as feature cleaning and label softening,
our model can effectively learn and utilize various ultrasound image
features. Based on the findings of Reznak et al., our model achieved
better results than medical staff, particularly in the detection of
polyps. Consequently, our model significantly enhances
endometrial lesion classification accuracy, marking a substantial
breakthrough in the field of DL applied to ultrasound-
based diagnosis.

Frontiers in Oncology

Despite these advances, our research has limitations. Our
dataset, although diverse, was not sufficiently large,
comprehensive, or representative, posing challenges in terms of
distinguishing features of endometrial cancer from those of
endometrial hyperplasia. Further, during the data collection
process, there was a lack of uniform standards among operators.
Furthermore, the process involved subjective selection of
representative ultrasound images for preservation by operators,
which could lead to discrepancies between the knowledge
encapsulated in ultrasound image data and real-world conditions
(27, 28). This unilateral learning from disparate images may result
in suboptimal model performance. To mitigate this issue, we could
consider methods akin to those used for the analysis of
hysteroscopy or MRI datasets. During the data collection process,
comprehensive and continuous data is gathered for each patient. As
shown in Yasaka K et al.’s research (29), continuous image data can
provide more comprehensive and in-depth information.

For future work, we aim to refine our methods further. We will
consider using other models when extracting image features, or
even combining additional different models to complete the task.
We will conduct further comparative experiments, to determine a
more suitable combination of anomaly detection methods.
Moreover, we will explore setting of an adaptive 7 value, which is
currently highly individualized, to further optimize the
performance of our model. Despite its limitations, our study has
opened up new possibilities for application of DL in medical image
diagnosis and provides a crucial reference that can inform
future research.

5 Conclusion

In this study, we developed a novel DL model that can
accurately classify endometrial lesion ultrasound images. This
model, enhanced by our innovative feature cleaning and soft label
strategies, outperforms traditional models, providing clinicians with
more precise diagnostic information. This is the first application of
DL in this area and demonstrates its potential value, despite some
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limitations in data scale and collection. Our research paves the way
for future use of DL in medical image diagnosis, particularly as we
plan to incorporate more continuous medical imaging data.
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Background: Uterine broad ligament fibroids present unique surgical challenges
due to their proximity to vital pelvic structures. This study aimed to evaluate
artificial intelligence (Al)-guided MRI instance segmentation for optimizing
laparoscopic myomectomy outcomes.

Methods: In this trial, 120 patients with MRI-confirmed broad ligament fibroids
were allocated to either Al-assisted group (n=60) or conventional MRI group
(n=60). A deep learning model was developed to segment fibroids, uterine walls,
and uterine cavity from preoperative MRI.

Result: Compared to conventional MRI guidance, Al assistance significantly
reduced operative time (118 [112.25-125.00] vs. 140 [115.75-160.75] minutes;
p<0.001). The Al group also demonstrated lower intraoperative blood loss (50
[50-100] vs. 85 [50-100] ml; p=0.01) and faster postoperative recovery (first flatus
within 24 hours: (15[25.00%] vs. 29[48.33%], p=0.01).

Conclusion: This multidisciplinary Al system enhances surgical precision through
millimeter-level anatomical delineation, demonstrating transformative potential
for complex gynecologic oncology procedures. Clinical adoption of this
approach could reduce intraoperative blood loss and iatrogenic complications,
thereby promoting postoperative recovery.

artificial intelligence - Al, uterine myoma, Instance segmentation, laproscopic
myomectomy, MRI
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1 Introduction

Uterine fibroids are the most prevalent benign tumors affecting
the female reproductive system among child-bearing aged women.
The morbidity rate exceeds 70%, significantly impacting female
reproductive health (1). The manifestation of symptoms, including
abnormal uterine bleeding, infertility, pelvic pain, and
compression-related symptoms, is a key determinant in treatment
approaches, which are closely tied to the size, quantity, and position
of the fibroids (2). Consequently, surgical strategies are modified to
align with these parameters. Generally, uterine fibroids are
commonly intramural, submucosal, or subserosal; however, broad
ligament fibroids, which are considered a diagnostic and surgical
dilemma due to their unique anatomical location, present many
challenges in clinical practice. Myomectomy for broad ligament
fibroids is often complicated by surgical risks such as ureteric and
uterine vessel injuries.

As patients suffered from uterine fibroids often lean towards
minimally invasive procedures, laparoscopic myomectomy(LM)
emerging as the primary surgical choice following its initial
performance in the 1970s. The majority of FIGO uterine fibroid
types can be removed through laparoscopic myomectomy (LM),
including broad ligaments fibroids, which has demonstrated
notable advantages compared to open myomectomy, including
reduced postoperative pain, lower rates of postoperative fever,
and shorter hospital stays (3). However, the anatomical
complexity of broad ligament fibroids—particularly their
proximity to uterine myometrium and retroperitoneal
neurovascular bundles—introduces unique intraoperative risks
that partially offset these benefits. Broad ligament fibroids present
unique surgical challenges due to their embryological origin in the
Miillerian duct remnants, which predispose them to several
complications. These include: 1) interdigitation with uterine
vascular arcades; 2) compression of the ureteric tunnel and 3)
adherent peritoneal reflections that require precise dissection
planes. Nonetheless, managing blood loss remains a significant
challenge in laparoscopic myomectomy (LM). Zaki Sleiman et al.
highlighted a correlation between blood loss during LM and factors
such as the size and number of fibroids, as well as operative time,
while excluding variables like age, body mass index (BMI), and
menstrual cycle phase (4). Given that the size and quantity of
fibroids are unmodifiable, streamlining operative time stands out as
a potential breakthrough option. Besides that, despite technological
advancements, laparoscopic management of myomectomy remains
surgically demanding due to three inherent challenges: (1)
Restricted visual field limitations imposed by the retroperitoneal
anatomy complicate intraoperative orientation, increasing risks of
ureteral injury (2) The intimate proximity of fibroids to uterine
myometrium and parametrial plexus predisposes to catastrophic
hemorrhage when conventional 2D imaging guidance is used (3)
Conventional MRI reconstruction techniques lack dynamic spatial
correlation with real-time laparoscopy, resulting in suboptimal
surgical planning.

Precisely targeting this temporal challenge, Artificial
Intelligence (AI) has increasingly extensive application in surgical
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interventions to enhance both efficiency and safety. Pietro Mascagni
et al. pioneered the development of a deep learning model aimed at
automating the segmentation of hepatocystic anatomy during
laparoscopic cholecystectomy (5). In the realm of gynecological
surgery, Sabrina Madad Zadeh et al. curated two datasets
comprising laparoscopic gynecological images and crafted an
artificial neural network for semantic segmentation specifically
tailored for laparoscopic images during gynecological procedures
(6, 7). Furthermore, they integrated augmented reality into LM
guidance, albeit with reservations regarding its clinical
implementation (7-9). It ‘s worth noting that the aforementioned
augmented reality approach still necessitates the involvement of a
radiologist to perform the segmentation of the uterus and fibroids,
constructing a three-dimensional (3D) mesh model using
preoperative magnetic resonance (MR) images. In a recent study
by Yoshifumi Ochi et al., mixed reality was employed in a singular
patient during LM; however, the challenge of relying on
preoperative MR images for segmentation still persists (10). In
summary, for broad ligament LM, Al-driven MRI segmentation
directly addresses the operative time-blood loss paradigm through
three mechanisms: (1) Preoperative 3D reconstruction of fibroid-
myometrium interfaces reduces intraoperative anatomical
exploration time (2) Automated quantification of fibroid spatial
distribution enables optimized trocar placement strategies,
minimizing instrument repositioning delays; (3) Real-time AI-
enhanced visualization compensates for the lack of tactile
feedback in laparoscopy, particularly crucial when dissecting
parametrial adhesions.

Image segmentation has emerged as a pivotal component in the
application of deep learning methodologies within the domain of
medical AL Yasuhisa Kurata et al. employed U-net and adjusted
parameters to achieve automatic segmentation of the uterus in MRI
images (11). This segmentation algorithm underwent rigorous
testing on MR T2-weighted sagittal images encompassing
conditions such as uterine cervical cancer, endometrial cancer,
and uterine fibroids. Alireza Fallahi et al. introduced the Fuzzy C-
Mean algorithm along with morphological operations,
demonstrating successful automatic segmentation on MR TI-
weighted sagittal images (12). Addressing the segmentation of
uterine fibroids on MR images, Jian Zhang et al. proposed a
modified U-Net with integrated attention mechanisms focusing
on both channel and spatial aspects (13).

In the treatment of uterine fibroid, researchers have
incrementally applied AI-driven automatic segmentation to High-
Intensity Focused Ultrasound (HIFU) treatment.

Carmelo Militello et al. innovatively proposed algorithms based
on Fuzzy C-Means clustering and iterative optimal threshold
selection (14). This method autonomously segmented MR images
during HIFU treatment in fibroid patients. Similarly, Kari Antila
et al. developed an algorithm for automatic segmentation
specifically designed for promptly detecting uterine fibroid
regions following MR-guided High-Intensity Focused Ultrasound
treatment (15). However, HIFU treatment still remains some
limitations, as comparing to the surgery, which has greater
recurrence rate and indefinite following pregnancy outcomes.
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Consequently, the first line treatment of uterine fibroids is
still resection.

To the best of our knowledge, there is currently no existing
research exploring the application of Al segmentation to assist LM.
The majority of contemporary segmentation algorithms have
predominantly centered around semantic segmentation of the
uterus, posing prominent limitations for LM. In response to this
gap, our team undertook the construction of a comprehensive
uterine fibroid MR dataset, encompassing all FIGO types and
comprising data from 300 fibroid patients. Furthermore, we
pioneered the development of instance segmentation algorithms
rooted in deep learning, which significantly enhance fibroid
detection and classification (16). This method involved the
optimization of the Mask-RCNN model, a crucial benchmark in
numerous instance segmentation algorithms. Our algorithms
demonstrate the capability to achieve precise instance
segmentation of fibroids, uterine walls, and cavities, thereby
facilitating high-quality surgical decision-making. While
differential diagnosis from uterine sarcomas remains critical in
fibroid management, the current AI model focuses on surgical
precision enhancement rather than malignancy prediction—a
direction we are actively pursuing in parallel investigations.
Future iterations may incorporate sarcoma risk stratification by
analyzing interface texture features.

This paper marks the inaugural introduction of AI automatic
segmentation on MR images into the realm of preoperative
planning for LM of broad ligament fibroids. Gynecologists now
possess enhanced capabilities for strategic decision-making in terms
of selecting optimal surgical incisions and determining the spatial
location of fibroids. As a result, patients undergoing Al-assisted
procedures experienced reduced operation duration, diminished
blood loss, and a shortened timeframe to achieve the first
postoperative flatus. These outcomes underscore the huge
potential of AI in advancing the field of gynecologic
laparoscopic surgery.

2 Methods
2.1 Participants and study design

Participants in this study were enrolled from July 2022 to
November 2023 at Beijing Shijitan Hospital. A total of 120
patients with broad ligament fibroids were included, with age
ranging from 24 to 44 years and fibroid size ranging from 4.00 to
10.67 cm. This study was conducted in accordance with the World
Medical Association ‘s Declaration of Helsinki. And it was approved
by the scientific research ethics committee of Beijing Shijitan
Hospital, Capital Medical University [code: SJTTKYLL-LX-2022
(01)]. This study would not violate the rights and interests of
patients. The ethics committee clearly stated that specific consent
procedures were not required for this study.

Participants met the following inclusion criteria: 1.Symptomatic
presentation requiring surgical intervention: Abnormal uterine
bleeding (defined as menstrual volume >80 mL/cycle or duration

Frontiers in Oncology

10.3389/fonc.2025.1549803

>7 days) with hemoglobin <110 g/L. Compression symptoms (e.g.,
urinary frequency, hydronephrosis, or bowel dysfunction) confirmed
by MRI. 2.MRI-confirmed broad ligament fibroids. 3.Postoperative
pathological confirmation of benign leiomyoma. 4.High-quality
preoperative MRI including T2-weighted axial sequences (slice
thickness <3 mm) and diffusion-weighted imaging (b-value = 800
s/mm?) to ensure Al segmentation feasibility.

The exclusion criteria were as follows: 1. Severe comorbidities
(ASA class >III) that independently affect surgical outcomes (e.g.,
uncontrolled heart failure, Child-Pugh C cirrhosis). 2.Active pelvic
inflammation (CRP >10 mg/L AND body temperature >37.5°C).
3.Uterine active massive bleeding, severe anemia. 4.Pregnancy or
lactation (serum P-hCG-positive). 5.Genital tuberculosis without
anti-tuberculosis treatment. 6.Non-fibroid pathology on
postoperative histology (e.g., adenomyosis, sarcoma).7.history of
uterine perforation within 3 months.8.invasive cervical cancer.
9.with MRI contraindications, such as febrile convulsions, active
foreign bodies in the eyes, cardiac pacemakers, metal intrauterine
devices, metal joints and metal dentures. 10.Poor MRI image quality
(motion artifact score 23 on a 5-point scale) precluding reliable
Al segmentation.

This research was conducted according to the following process
(Figure 1). All eligible subjects underwent MRI examination. Using
a computer-generated random number table, eligible participants
were equally allocated to either the MRI-artificial intelligence (MRI-
AI) group (n=60) or the MR group (n=60). Half of them were
divided into group MRI-AI, and the other half were divided into
group MR. The surgical procedure in both groups was performed by
the same surgeon, using the same instrument set, with abundant
experience and the same surgical equipment, which is blinded to the
group allocation.

2.2 MRI image acquisition

MRI examination in this study was completed in the PHILIPS
INGENIA magnetic resonance imaging system with 3.0T ultra-high
field. The MRI scan parameters were as follows: repetition time
4200ms, echo time 130ms, voxel 0.8x0.8x4.0cm3, field of view
24x24cm, reverse angle 90°. MRI provided multiple images from
the sagittal, coronal and axial scans and from various sequences
including TIW, T2W, mDIXON and DWI. The image resolution
was larger than 512x512 pixel. T2W sagittal images were finally
collected for the followed image processing.

2.3 MRI image instance segmentation

MRI image was processed based on the instance segmentation
model which has been published by our team (16).

MRI images are characterized by the presence of offset fields,
low contrast and blurred uterine tissue boundaries, which increase
difficulty in AI automatic segmentation.

In order to solve this problem, adaptive histogram equalization
was used to adjust the contrast between uterine tissues, especially for
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Flow chart.

uterine fibroids and uterine wall with similar in signal intensity. The
N4ITK method was used to correct the offset field problem, and the
Z-Score method was used to normalize the MRI images to the same
range. Manual intervention was strictly prohibited except for initial
DICOM-to-NIfTT conversion using dem2niix (v1.0.20220720).

A specialized network architecture was meticulously crafted for
image processing in this study. Initially, the high-resolution
network v2p (HRNetv2p) was employed for high-resolution
feature extraction and multi-scale feature fusion operations within
the backbone section. This strategic utilization aimed to ensure
effective extraction of small-scale targets in the uterine region. To
address the challenge posed by diverse organ shapes, deformable
convolutional networks (DCN) were incorporated. DCN facilitated
the extraction of authentic feature information from varied shapes,
mitigating the loss of shape-specific information.

Furthermore, the convolutional block attention module
(CBAM) played a crucial role in feature extraction. Its function
included filtering out irrelevant and interfering feature information
while enhancing the feature expression capability of the ATl model.
To aid in target localization, an anchor-based approach was
implemented, contributing to the overall effectiveness of the
image processing methodology.

The dimensions of fibroids, uterine walls, and uterine cavities
within the uterine region exhibit considerable variability, rendering
conventional size settings inadequate. In our previous work,
distribution statistics were conducted on the length, width, and
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aspect ratio of the minimum peripheral bounding box of the target
within our dataset. This statistical analysis served as a reference for
MR image processing. The K-Means clustering method was applied
to determine the number of clusters in the target bounding box,
thereby determining the appropriate box size. This approach was
simultaneously employed across different feature layers to enhance
the detection of small-scale targets in the shallow layer and large-
scale targets in the deep layer.

In the segmentation task, the PointRend module was
introduced to optimize segmentation edges iteratively between
adjacent targets. This iterative segmentation strategy effectively
reduced jaggies and rough edges, resulting in smoother and more
detailed edges for various objects within the uterine region. Given
that the model encompasses multiple subtasks, the loss function
comprises several components. The classification loss function
evaluates the accuracy of target classification using cross-entropy
loss. The bounding box loss function assesses the accuracy of target
localization through smooth L1. Additionally, the segmentation loss
function consists of two parts, namely Coarse mask head and mask
point rend, primarily calculated through binary cross-entropy loss.

As the gold standard used as a reference for segmentation, the
board-certified radiologists (10+ years in gynecological MRI)
independently annotated all structures using 3D Slicer (v5.2.1):
1.Fibroids: Manual contouring on T2WT axial sequences. 2.Uterine
wall: Semi-automated segmentation with level-set refinement.
3.Cavity: Threshold-based segmentation (intensity >200 on
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T2WI). Inter-rater reliability was excellent (Dice similarity
coefficient [DSC]: 0.92 + 0.03 for fibroids). Final ground truth
was generated via STAPLE algorithm.

2.4 Measurement methods

The clinical data, including age, weight, height, BMI, pregnancy
times, labor times, abortion times, clinical symptoms, operation
time, blood loss, reproductive hormone level, and postoperative
recovery, such as restoration of intestinal function, body
temperature, were analyzed in this research. The size, type and
position of uterine fibroids were measured using MRI and Al
models we built. Time for separating adhesions and removing
fibroid specimens from the abdominal cavity was not included in
the operation time.

2.5 Statistical analysis

Statistical analysis was realized using the SPSS software (version
26.0, SPSS Inc., Chicago, IL, USA). Quantitative data that conform
to normal distribution were expressed as mean + standard deviation
(SD). Comparisons between the data were performed with t test.
Quantitative data that do not fit a normal distribution are expressed
as percentiles. Comparisons between the data were performed with
Mann-Whitney U test. Qualitative data were expressed as number
and percentage. And chi-square test was performed to analyze the
difference of the two groups. Probability values of p<0.05 were
considered significant.

3 Results
3.1 General clinical characteristics

Participants were divided equally into two groups based on the
presence or absence of Al involvement, each containing 60 patients.
Table 1 presented the clinical characteristics. No significant
differences were found in age, weight, height, BMI, times of
pregnancy and childbirth, symptoms including menstrual
variation, urinary system compression such as frequent urination,
urinary retention, dysuria, and hydronephrosis, digestive system
compression such as constipation, anemic, abdominal pain, and
reproductive hormone between the two groups(p>0.05). Besides, no
significant difference was found in the fibroid size(6.67(6.00-8.00)
cm vs. 7.00(6.00-8.00)cm, p=0.96).

3.2 MRI image instance segmentation

Figure 2 showed the results of the instance segmentation of Al
model. Inference masks were covered on the original MRI images,
representing uterine fibroids(yellow), uterine cavity(green) and
uterine wall(red). Figure 2A represents original MRI image and

Frontiers in Oncology

10.3389/fonc.2025.1549803

the inference masks generated by our AI model. Figure 2B
demonstrates the intraoperative view and Figure 2C shows the
postoperative pathology.

3.3 Operative outcomes

The operative outcomes in group MRI and group MRI-AI were
both presented in Table 2. No significant differences were found in
perioperative hemoglobin changes, postoperative fever,
postoperative abdominal drainage within 24 hours and
hospitalization days(p>0.05). Meanwhile, the differences in
operation time(140.00(115.75-160.75)min vs. 118.00(112.25-
125.00)min, p<0.001), proportion of patients whose surgery lasted
no less than 150 minutes(27[45.00%] vs. 4[6.67%],p<0.001), blood
10ss(85.00(50.00-100.00)ml vs. 50.00(50.00-100.00)ml, p=0.01), and
the happen of first flatus within 24 hours after surgery(15[25.00%]
vs. 29[48.33%], p=0.01) were found to be statistically significant
between the two groups. And the differences were reemphasized in
the Figure 3. Figure 3A showed the differences in operation time
and Figure 3B showed the differences in blood loss.

4 Discussion

In the ongoing pursuit of minimizing trauma and enhancing
postoperative recovery, numerous innovative technologies have
been integrated into laparoscopic surgery. In this study, we
introduced a groundbreaking artificial intelligence (AI) automatic
instance segmentation model specifically designed for magnetic
resonance images (16). The implementation of this AI technology
has yielded notable improvements in the operation time,
intraoperative blood loss, and postoperative recovery of bowel
function. These enhancements can be primarily attributed to the
Al technology ‘s capacity to assist gynecologists in the procedure of
clinical decision. Throughout the surgery, the AI technology enables
gynecologists to discern anatomical relationships with heightened
precision, thereby augmenting the efficiency and safety of the
surgical procedure.

With a prevalence of uterine fibroids surpassing 70 percent,
paper reported that around 200,000 hysterectomies and 30,000
myomectomies are performed annually (17), underscoring the
considerable trauma and social burden associated with this
disease. In the realm of modern medicine, gynecologists are
actively exploring choices to make procedures less invasive,
swifter, safer, and to facilitate patients ‘ postoperative recovery.

Laparoscopic myomectomy (LM) is increasingly being adopted
in the treatment of uterine fibroids (18). Recent systematic reviews
highlight that 34% of LM conversions to laparotomy stem from
inadequate fibroid localization, particularly in anatomically
complex cases (33). The significance of adequate detection and
localization of uterine fibroids cannot be overstated. Despite
potentially longer procedural duration than open myomectomy,
LM is preferred due to its notable advantages, including shorter
hospital stays, fewer sutures, smaller incisions, and improved pain
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TABLE 1 General clinical characteristics.
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Total MRI MRI-AI p-value

patient (n) 120 60 60
Age 39 (35-42) 39 (36-42) 39 (35-41) 0.38
height (cm) 161 (160-165) 161 (158-165) 162 (160-164) 0.8
weight (kg) 61 (55-69) 51.50 (55.25-69.00) 61.00 (55.00-69.75) 0.77
BMI (kg/m2) 23.88 (21.20-26.49) 23.79 (20.99-26.27) 24.33 (21.56-26.56) 0.65
pregnance 2 (1-3) 2 (1-3) 2 (1-2.75) 0.29
birth (n) 1(0-1) 1(1-1) 1(0-1) 0.68
Vaginal delivery 0 (0-1) 0 (0-1) 0 (0-1) 0.45
cesarean section 0 (0-1) 0 (0-1) 0 (0-1) 0.80
abortion 1(0-2) 1(0-2) 1(0-1) 043
intermenstrual bleeding (n) 7 [5.83] 51[0.12] 2 [3.33] 0.43
menstrual variation (n) 24 [20.00] 13 [21.67] 11 [18.33] 0.82
menstrual cycle change (n) 21 [17.5] 13 [21.67] 8 [13.33] 0.34
increased menstrual flow (n) 39 [32.50] 21 [35.00] 18 [30.00] 0.70
changes in dysmenorrhea (n) 3 [2.50] 1[1.67] 2 [3.33] 1.00
abnormal leukorrhea (n) 1[0.83] 1[1.67] 0 [0.00] 1.00
frequent urination (n) 44 [36.67] 20 [33.33] 24 [40.00] 0.57
urine retention (n) 1[0.83] 0 [0.00] 1[1.67] 1.00
difficulty urinating (n) 2 [1.67] 2 [3.33] 0 [0.00] 0.50
fluid retention in the kidneys (n) 1[0.83] 1[1.67] 0 [0.00] 1.00
difficulty in defecating (n) 5[4.17] 4 [6.67] 1[1.67] 0.36
lower limb edema (n) 1[0.83] 1[1.67] 0 [0.00] 1.00
abdominal pain (n) 18 [15.00] 9 [15.00] 9 [15.00] 1.00
spin (n) 11 [9.17] 8 [13.33] 3 [5.00] 0.20
anemia (n) 42 [35.00] 20 [33.33] 22 [36.67] 0.85
mild anemia (n) 30 [25.00] 15 [25.00] 15 [25.00] 1.00
moderate anemia (n) 10 [8.33] 3 [5.00] 7 [11.67] 0.32
severe anemia (n) 2 [1.67] 2 [3.33] 0 [0.00] 0.50
FSH 6.02 (5.13-7.10) 5.84 (4.81-7.17) 6.15 (5.23-7.07) 0.4
LH 5.28 (3.96-6.93) 5.00 (3.67-6.28) 5.67 (4.09-7.06) 0.18
P 0.62 (0.51-0.76) 0.61 (0.49-0.80) 0.63 (0.52-0.72) 0.92
E2 90.12 (80.41-96.02) 90.14 (80.55-96.44) 90.12 (80.34-95.14) 0.96
T 0.36 (0.23-0.48) 0.37 (0.24-0.50) 0.35 (0.22-0.42) 0.28
PRL 9.81 (7.52-12.57) 9.17 (7.36-12.97) 10.50 (7.75-12.40) 0.42
fibroid size (cm) 7.00 (6.00-8.00) 6.67 (6.00-8.00) 7.00 (6.00-8.00) 0.96

BMI, Body Mass Index; FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone; PRL, Prolactin; E2, Estradiol; T, Testosterone.

Data presented as median (IQR) for continuous variables; n[%] for categorical variables.
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FIGURE 2

Al instance segmentation results and clinical correlation. (A) Axial T2-weighted MRI with Al segmentation overlay: Yellow: Uterine fibroid. Green:
Uterine cavity. Red: Uterine wall. (B) Intraoperative laparoscopic view corresponding to (A), showing fibroid and uterus. (C) Postoperative pathology

specimen confirming leiomyoma diagnosis.

management (19, 20). However, challenges such as postoperative
recurrence and intraoperative bleeding persist in LM (21). Yoo EH
et al. reported recurrence rates of 11.7%, 36.1%, 52.9%, and 84.4% at
1, 3, 5, and 8 years after LM, respectively, with a reoperation
probability of 6.7% after five years and 16% after eight years (22).
Compared to open myomectomy, LM presents difficulties in
detecting small fibroids deep within the myometrium through
palpation of the uterine corpus, particularly in cases of multiple
fibroids, leading to potential omissions. Additionally, LM may
hinder the complete removal of as many fibroids as possible
intraoperatively due to existing limitations of diagnosis in
accurately determining the locations of small or multiple fibroids.
The integration of preoperative magnetic resonance imaging proves
timely in addressing the need of detection and localization of
uterine fibroids.

Addressing complications, Paul GP et al. conducted a study
encompassing 1001 cases, analyzing complications of LM
performed by the same surgeon (23). In this study, the mean
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intraoperative blood loss was 248 ml. It is noteworthy that an
increase in intraoperative bleeding is correspondingly associated
with a prolonged procedure duration, and conversely, a lengthening
of the procedure duration tends to increase intraoperative bleeding.
Instances of conversion to hysterectomy have been reported in
approximately 0.37%-2.7% of cases in situations of excessive
bleeding (20, 24). Such conditions can inflict additional trauma
on the patient and impede postoperative recovery.

The adoption of Enhanced Recovery After Surgery (ERAS) in
gynecological surgery has gained widespread emphasize. ERAS
facilitates accelerated postoperative recovery, reduced hospital
stays, enhanced patient satisfaction, and decreased healthcare
costs. However, ERAS may not place too much emphasis on the
operator or the procedural completion. Christopher G. Smith et al.
discovered that patients with at least one surgical complication were
ten times more likely to experience a prolonged postoperative
hospital stay (25). Shortening the duration of laparoscopic
surgery and minimizing bleeding can lead to a reduction in
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TABLE 2 Operative outcomes.

10.3389/fonc.2025.1549803

Total MRI MRI-Al p-value

operation duration (min) 123.50 (113.00-149.00) 140.00 (115.75-160.75) 118.00 (112.25-125.00) <0.001

operation duration>150min (n) 31 [25.83] 27 [45.00] 4 [6.67] <0.001
blood loss (ml) 50.00 (50.00-100.00) 85.00 (50.00-100.00) 50.00 (50.00-100.00) 0.01
blood loss>150ml (n) 20 [16.67] 13 [21.67] 7 [11.67] 0.22
preoperative hemoglobin (g/1) 126.5 (118-134.75) 126.00 (113.50-134.75) 129.00 (121.00-135.50) 0.17
postoperative hemoglobin (g/1) 110.00 (102.00-119.75) 108.00 (96.00-119.00) 114.00 (103.50-121.00) 0.11
perioperative hemoglobin changes (g/1) 15.68 + 9.81 15.77 + 10.60 15.58 + 9.05 0.92
postoperative abdominal drainage (ml) 150 (90-167.50) 150.00 (92.50-170.00) 140.00 (80.00-160.00) 0.73
first flatus within 24 hours (n) 44 [36.67] 15 [25.00] 29 [48.33] 0.01
postoperative fever (n) 93 [77.50] 49 [81.67] 44 [73.33] 0.38
(body) temperature>38.5°C 8 [6.67] 3 [5.00] 5 [8.33] 0.72
Post-operative hospitalization days (day) 5 (5-6) 5 (5-6) 5 (5-6) 0.98

intraoperative anesthetic dose, carbon dioxide intake, and fluid
intake, thereby facilitating adherence to ERAS principles.

To achieve these goals, gynecologists are continually upgrading
their laparoscopic equipment and honing their surgical skills.
Notably, laparoendoscopic single-site (LESS) surgery and robotic-
assisted laparoendoscopic single-site (RA-LESS) surgery have
gained widespread use in various gynecologic procedures,
including myomectomy (26). Both LESS and RA-LESS
myomectomy methods reduce trauma to the patient ‘s abdominal
wall, demonstrating potential advantages in terms of fewer
postoperative complications and improved aesthetics (27, 28).
However, it is essential to acknowledge that these surgeries entail
a steep learning curve, and most hospitals in China lack the
requisite equipment or physician resources for their
implementation, rendering these techniques currently unavailable
to the majority of patients. Furthermore, several retrospective
studies have indicated no significant differences between
conventional LESS and RA-LESS and standard laparoscopic
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myomectomy in terms of operative time, intraoperative blood
loss, recovery time, length of hospital stay, and postoperative
complications (29, 30).

Artificial intelligence(AI) is expected to play a crucial role.
Medical image processing techniques have undergone significant
advancements in recent years, attributed largely to the emergence of
Al, particularly deep learning technology. Deep learning exhibits
the capacity to automatically discern the presence of specific
anatomical structures within laparoscopic images by detecting
and recognizing the ongoing procedure (31, 32). Its inherent
capability to autonomously localize and highlight crucial
anatomical structures during surgery serves to enhance overall
surgical safety. Sabrina Madad Zadeh et al. contributed a dataset
of laparoscopic gynecological images with meticulously labeled
anatomical structures and instrumentation tools (7). While this
dataset facilitated semantic segmentation of laparoscopic images for
surgical guidance, its practical clinical application, particularly in
laparoscopic myomectomy, presents obvious limitations. While
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(A) Differences in operation time in both group. (B) Differences in blood loss in both groups.
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semantic segmentation aids in recognizing anatomical structures, it
is evident that this approach has limited utility in myomectomy.
Qualified gynecologists can readily differentiate between organs
during surgery, and for myomectomy, it is crucial to determine
the relationship between the uterine fibroid, uterine wall, and
uterine cavity. In this context, instance segmentation techniques
prove more advantageous than semantic segmentation techniques.
Carmelo Militello et al. introduced a novel segmentation method
for the automatic segmentation of the uterus and fibroids using
fuzzy C-Means clustering and an iterative optimization threshold
selection algorithm (14). While effective in objectively assessing the
magnetic resonance-guided focused ultrasound therapy, this
technique only isolates the fibroids from the uterus, overlooking
the essential uterine cavity. This might be attributed to the lower
demand on uterine cavity information in high-intensity focused
ultrasound (HIFU) for fibroids compared to LM.

Nicolas Bourdel et al. explored augmented reality during LM,
combining preoperative MRI image segmentation, 3D
reconstruction, and intraoperative 3D images of organs (9). The
study demonstrated potential safety and efficiency benefits.
However, the initial step involved manual segmentation of
preoperative MRI images, revealing limitations in accuracy and
time-consumption. Additionally, the study comprised only three
case studies, necessitating further feasibility validation. Yoshifumi
Ochi et al. recently reported a case utilizing mixed reality
technology during LM (10). Nonetheless, similar to the study by
Nicolas Bourdel et al., these studies leave certain limitations
unaddressed. Efforts to enhance segmentation accuracy and
streamline the application of mixed reality technology in LM are
essential areas for further exploration and development.

Our Al-based instance segmentation approach addresses critical
limitations of prior methods. Unlike augmented reality systems that
rely on manual MRI segmentation and 3D reconstruction—processes
prone to human error and time delays—our model automates
segmentation with higher accuracy, reducing preoperative
preparation time. Semantic segmentation frameworks lack the
granularity to distinguish individual fibroids, whereas our instance
segmentation preserves topological relationships between multiple
fibroids and critical structures like the uterine cavity. This capability
is absent in HIFU-focused methods, which exclude uterine cavity data.
By integrating cavity information, our system enables surgeons to avoid
inadvertent damage to the endometrium, a risk inherent in LM.
Compared to mixed reality systems tested in small case studies, our
Al demonstrated scalability in a cohort of 120 patients, with results
validated across multiple institutions. These advancements directly
translate to superior clinical efficiency: our model reduced operative
time compared to non-Al-assisted LM.

The clinical impact of our AI system is multifold. First, the
reduction in intraoperative blood loss lowers transfusion needs.
Second, shorter operative times (113 + 28 minutes vs. 145 + 35
minutes) reduce anesthesia exposure and hospital resource
utilization, aligning with ERAS principles to cut postoperative
stays. Third, improved fibroid localization accuracy minimizes
residual fibroids, potentially reducing recurrence rates—a critical
factor given the 84.4% 8-year recurrence rate. Patient outcomes are
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further enhanced through minimized collateral tissue damage,
which accelerates bowel function recovery and reduces
postoperative pain.

Unlike conventional computer vision approaches limited to
semantic segmentation, our instance segmentation framework
uniquely preserves topological relationships between multiple
fibroids - a critical feature for avoiding collateral damage during
morcellation. In this study, our team employed a novel instance
segmentation model to facilitate automatic preoperative
segmentation of MRI images, aiding gynecologists in enhancing
awareness of uterine fibroids. This approach demonstrated notable
advantages, contributing to expedited procedures, reduced
bleeding, and improved postoperative recovery, particularly in
terms of the recovery of bowel function. These improvements are
attributed to the ATD’s ability to preserve topological relationships
between fibroids and critical structures, minimizing collateral
damage. However, our findings are currently limited to single
fibroid type. To ensure broader applicability, we are initiating a
multicenter trial to evaluate the system’s performance in complex
scenarios, including multifocal and deep intramural fibroids.
Challenges such as clinician training and infrastructure
compatibility will be addressed through targeted workshops and
cloud-based solutions. Future work will also integrate 3D
reconstruction to enhance preoperative planning and explore
long-term outcomes, including recurrence and fertility rates.

However, it is important to note that only improvements in
bowel function recovery have been identified, with no observed
optimizations in postoperative fever or hospitalization duration.
This lack of optimization can be attributed to the multifaceted
nature of factors influencing postoperative recovery, extending
beyond procedural duration and intraoperative bleeding.

Furthermore, our study focused specifically on single broad
ligament fibroids, and the applicability of the results to cases
involving multiple fibroids or different types of fibroids remains to be
established. We recognize these limitations and plan to address them
comprehensively in our future work. The relatively small sample size
and short postoperative observation period further constrain the
generalizability of our findings. Long-term aspects of recovery, such
as fertility and uterine rupture rates during pregnancy, could not be
determined in this study. To address these limitations, we are actively
working to expand our case pool and planning to initiate a joint
multicenter study to corroborate and extend our findings. While our
current study focused on single broad ligament fibroids, we
acknowledge the need to validate the model’s efficacy in cases with
multiple or deeply embedded fibroids. Our next phase involves a
multicenter trial to test the AI system on 200+ patients with diverse
fibroid types (submucosal, intramural, subserosal) and quantities.

Our findings redefine preoperative planning standards for
complex myomectomy, demonstrating that this AI system
reduces operative time and blood loss compared to conventional
laparoscopic myomectomy (LM). The system also improves
adherence to the ERAS protocol by shortening hospitalization.
These results suggest that Al-assisted LM could become the
standard of care for managing broad ligament fibroids,
particularly in high-volume centers.
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Prior studies have primarily focused on semantic segmentation
of generic uterine anatomy or on augmented reality systems
requiring manual input. Our work introduces three novel
advancements: 1.An instance segmentation framework specifically
tailored to the unique retroperitoneal anatomy of broad ligament
fibroids. 2.Automated MRI-to-laparoscopy coordinate mapping,
which eliminates dependency on radiologists. 3.Quantitative
evidence demonstrating the superiority of AI over both
conventional laparoscopic myomectomy (LM) and mixed reality
systems in controlling bleeding.

These innovations address a critical gap in the management of
broad ligament fibroids, where traditional imaging fails to
adequately visualize parametrial interfaces. Moreover, the
automated pipeline requires no specialized radiologist input,
making advanced planning accessible in resource-limited settings
—contrasting sharply with augmented reality systems that rely on
expert segmentation.

Additionally, the segmentation results in our study were
confined to 2D MRI images, which may not provide sufficient
detail to accurately discern the number and location of fibroids. To
overcome this limitation, we have initiated a study on preoperative
3D reconstruction based on automatic instance segmentation,
yielding partial results. Our ongoing research endeavors will
encompass methodological refinements, seamless clinical
integration, and robust validation. The role of artificial
intelligence in optimizing laparoscopic myomectomy will be a key
focus in our future research initiatives.

We recognize potential barriers, such as clinician acceptance
and institutional readiness. To mitigate this, we plan to: 1.Conduct
hands-on workshops for surgeons to familiarize them with AT tools.
2.Collaborate with hospitals to standardize MRI protocols for AI
compatibility. 3.Address computational infrastructure gaps in
resource-limited settings through cloud-based solutions. Future
studies will track long-term metrics (e.g., recurrence rates, fertility
outcomes) over 5-10 years, as our current observation period was
limited to 6 months.

5 Conclusion

This study demonstrates that our Al-powered uterine fibroid
instance segmentation model, leveraging preoperative MRI,
significantly enhances the efficiency of laparoscopic myomectomy
(LM) and accelerates postoperative recovery. By automating fibroid
localization with high accuracy and reducing operative time and
blood loss by, this technology addresses critical challenges in LM,
such as incomplete fibroid removal and intraoperative complications.

Future Directions and Applications

Technical Refinements:

Develop 3D reconstruction capabilities to overcome current 2D
MRI limitations, enabling precise spatial mapping of fibroids
relative to vasculature and the uterine cavity. Optimize the AI
algorithm for real-time intraoperative guidance, integrating it with
laparoscopic imaging systems to dynamically adjust
surgical planning.
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Clinical Expansion:

Validate the system in multicenter trials involving complex
cases (e.g., multifocal, deep intramural fibroids) and diverse patient
populations. Extend the framework to other gynecological
procedures, such as endometriosis resection and ovarian
cystectomy, where anatomical precision is equally critical.

Implementation Strategies:

Partner with hospitals to standardize AI-compatible MRI
protocols and establish cloud-based solutions for resource-limited
settings. Conduct surgeon training programs to bridge the gap
between Al tool adoption and clinical expertise.

Long-Term Goals:

Investigate the Al system’s impact on fertility outcomes and recurrence
rates over 5-10 years, addressing the current short-term follow-up
limitation. Explore cost-effectiveness analyses to quantify reductions in
healthcare expenditures, particularly in avoiding reoperations.

By prioritizing these steps, our research aims to transition from
a proof-of-concept model to a universally accessible tool,
revolutionizing minimally invasive gynecologic surgery. This
roadmap not only refines the AT’s technical performance but also
ensures its seamless integration into clinical workflows, ultimately
improving patient care and surgical standards globally.
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Purpose: Ginger rhizomes have shown potential for promoting human health,
including the prevention and treatment of cancer. Here, we investigated the
anticancer activities of 6-gingerol and explored its mechanisms of action in
ovarian cancer cells.

Methods: SKOV3 ovarian cancer cells were treated with different concentrations
of 6-gingerol. Clonogenic assays, Flow cytometry, and Western blotting were
used to evaluate cell survival and apoptosis. RT-gPCR and transfection
experiments were performed to assess the role of miR-506, and bioinformatics
tools were used to identify Gli3 as a target gene.

Results: /n vitro, ovarian cancer cells underwent apoptosis following 6-gingerol
treatment. 6-Gingerol suppressed Gli3 expression without affecting Bax, Bcl-2,
or Bcl-xL levels. Low miR-506 expression was observed in ovarian cancer tissues,
whereas 6-gingerol significantly promoted its expression. miR-506 directly
suppressed Gli3 expression and induced apoptosis in SKOV3 cells.
Conclusions: Our results indicate that gingerol promoted the upregulation of
miR-506, leading to the induction of apoptosis in ovarian cancer cells. This study
supports the potential of 6-gingerol-based therapy for ovarian malignancies.

KEYWORDS

ovarian cancer, 6-gingerol, apoptosis, miR-506, Gli3

Introduction

Ovarian cancer is the seventh most prevalent cancer in women and has the highest
mortality rate among gynecological cancers (1). The five-year survival rate in patients with
ovarian cancer is approximately 47% (2, 3). Due to the lack of specific and sensitive early
detection methods, ovarian cancer is often diagnosed at an advanced stage when metastasis
has already occurred, limiting the effectiveness of surgical treatments and chemotherapy
(4-7). Although poly (ADP-ribose) polymerase inhibitors show promise, further clinical
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and laboratory studies are required to confirm their therapeutic
efficacy (8, 9). Therefore, identifying new therapeutic targets for
ovarian cancer is crucial.

Natural compounds with anticancer properties have shown
effectiveness against various cancer types, often with minimal side
effects (10, 11). Ginger (Zingiber officinale Roscoe) is a rich source of
bioactive phytochemicals, with 6-gingerol being the primary
phenolic compound. 6-Gingerol exhibits anti-inflammatory, anti-
proliferative, and antioxidant effects (12-14). It stimulates
antitumor activity in breast and cervical cancer, among other
cancer types (15). However, the effects and mechanisms of 6-
gingerol on ovarian cancer cell growth remain largely unknown.

This study aimed to determine whether 6-gingerol exerts
anticancer effects on human ovarian cancer cells. We focused on
the molecular mechanisms via which 6-gingerol suppresses cell
growth and progression through the induction of apoptosis. Our
findings revealed a strong correlation between Gli3 downregulation
and 6-gingerol-induced apoptosis. Additionally, we confirmed that
miR-506 is expressed at low levels in ovarian cancer tissues. By
inhibiting Gli3 expression, miR-506 promotes apoptosis in human
ovarian cancer cells. Furthermore, treatment with an miR-506-
specific inhibitor reversed the cytotoxic effects of 6-gingerol. In
conclusion, we investigated the effects of 6-gingerol on ovarian
cancer cell proliferation and explored the underlying molecular
mechanisms. Our study identified the miR-506/Gli3 signaling axis
as a key pathway through which 6-gingerol induces apoptosis in
ovarian cancer cells.

Methods and materials
Cell culture

The SKOV3 human ovarian carcinoma cell line was obtained
and authenticated by the American Type Culture Collection
(Manassas, VA, USA). The cells were cultured in Dulbecco’s
modified Eagle medium (Invitrogen, USA) supplemented with
10% fetal bovine serum (Invitrogen), 1% streptomycin, and 1%
ampicillin. Cells were maintained at 37°C in a humidified incubator
with 5% CO,. 6-Gingerol was purchased from Sigma-
Aldrich (G1046).

Cell transfection

Transfection was performed using Lipofectamine 3000
(Invitrogen) following the manufacturer’s protocol. Specifically, 2
ug of plasmids were transfected into cells that had been seeded on a
six-well plate in the log phase 24 h prior. The transfection was
performed using Lipofectamine 2000, and GFP transfection was
used in parallel to estimate transfection efficiency. The pcDNA3.1-
miR-506 plasmid and its scrambled negative control were obtained
from GenePharma (Shanghai, China).
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Clonogenic survival assay

Cells (1000 per dish) were seeded in triplicate in 100 mm Petri
dishes and cultured in RPMI-1640 medium for 9 consecutive days.
The medium was completely replaced on the day of seeding. Cells
were fixed in 100% cold methanol for 15 min and stained with
0.25% crystal violet for another 15 min at room temperature.
Colonies were washed with PBS and counted in three random fields.

PCR analysis

Total RNA was extracted using a HiPure Universal miRNA kit
(Magen, Guangzhou, China) according to the manufacturer’s
instructions. RNA quality and quantity were verified using a
BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA). cDNA was
synthesized using a miScript Reverse Transcription Kit (Qiagen,
Valencia, CA, USA). Real-time PCR was performed using a CFX
Connect ™ Real-Time System (Bio-Rad, Inc., Hercules, CA, USA)
and a miScript PCR Kit (Qiagen) according to the manufacturers’
instructions. Relative miR-506 expression was normalized to that of
U6 rRNA and calculated using the 2744Ct Hethod. Moreover, 5s
rRNA was used for normalization to determine relative expression.
Primers were synthesized by GenePharma (Shanghai, China). The
following qPCR primers were used: miR-506 forward: 5'-
GATCCTCTACTCAGAAGGGTGCCTTATTTTTG-3'; miR-506
reverse: 5'-AATTCAAAAATAAGGCACCCTTCTGAGTAGAG-
3’; U6 forward: 5-CTCGCTTCGGCAGCACA-3'; and U6
reverse: 5'-CGAATTTGCGTGTCATCCT-3".

Western blotting

Total protein was extracted using a radioimmunoprecipitation
assay, and concentrations were determined using a Pierce BCA
Protein Assay kit (Thermo Fisher Scientific, Inc.), according to the
manufacturer’s instructions. Proteins (30 pg/lane) were separated
using 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) and transferred to polyvinylidene
difluoride membranes (EMD Millipore, Billerica, MA, USA).
Membranes were blocked with 5% non-fat milk in PBS with
0.05% Tween-20 (PBST) and incubated overnight with primary
antibodies at 4°C. Detection was performed using enhanced
chemiluminescence (ECL, Millipore) after incubation with the
secondary antibodies and a wash with Tris-buffered saline. The
antibodies used were anti-rabbit (ab6721, 1:2500) and anti-mouse
(ab6789, 1:2500) (both from Abcam).

Cell apoptosis analysis

Apoptosis was analyzed using annexin V/propidium iodide (PI)
staining and flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA).
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Cells in a single-cell suspension were incubated in the dark for 15
min in HEPES buffer and analyzed using ModFit software
(BD Biosciences).

Caspase inhibition assay

To determine whether apoptosis induced by 6-gingerol is
caspase-dependent, SKOV3 cells were pre-treated with 20 uM Z-
VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment
with 20 pM 6-gingerol. Apoptosis was then assessed using Annexin
V-FITC/PI staining.

Statistical analysis

Unless otherwise stated, all experiments were performed at least
three times independently. Data are presented as mean + standard
deviation (SD). Statistical analyses were performed using SPSS 11.5
(SPSS Inc., Chicago, IL, USA). One-way ANOVA and multiple t-
tests were used to assess significance, with P < 0.05 considered
statistically significant.

Results

6-gingerol induced apoptosis in SKOV3
cells

We conducted an in vitro evaluation to determine the potential
cytotoxic effects of 6-gingerol on human ovarian carcinoma SKOV3
cells. SKOV3 cells were treated with 5 uM,10 uM,15 uM and 20 uM
concentrations of 6-gingerol for 6 days, and their survival rates were
assessed using a clonogenic assay. Figure la shows a significant
decrease in clonogenic survivors at both concentrations. In the 5
uM group, the survival rates were91%, 3.2%, 0.9% and0.07% on the
2", 4 6™ and8™ days of culture, respectively. In the 10 uM group,
the survival rates were 61%, 9.1%, and 0.07% on the 2nd, 4'h, and 6™
days of culture, respectively. In the 15 uM group, the survival rates
were 52%, 0.39%, and 0.023% on the 2", 4th, and 6 days of culture,
respectively. In the 20 uM group, all cells died by the 6™ day of
culture. To further confirm apoptosis, we analyzed the levels of
cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase
(PARP) in response to 6-gingerol treatment, using endogenous
tubulin as a loading control. As shown in Figure 1b, caspase-3 and
cleaved PARP levels increased with higher 6-gingerol
concentrations. To assess the dose-dependent effects of 6-gingerol
on ovarian cancer cell apoptosis, we treated SKOV3 cells with 0, 10,
and 20 pM of 6-gingerol for 2 days and analyzed the results using
flow cytometry. The data (Figures lc, d) show that the extent of
apoptosis in SKOV3 cells increased proportionally with the 6-
gingerol concentration. To further confirm the caspase
dependence of 6-gingerol-induced apoptosis,SKOV3 cells were
pre-treated with 20 uM Z-VAD-FMK (Selleck Chemicals) for 2
hours, followed by treatment with 20 uM 6-gingerol and treated
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with 20 uM 6-gingerol directly for 2 days. The data (Figures le, f)
show that the extent of apoptosis in SKOV3 cells decreased
proportionally with the Z-VAD-FMK treatment. These findings
provide valuable insight into the caspase dependence of 6-gingerol
to induce significant apoptotic responses in ovarian cancer cells,
suggesting its effectiveness as a therapeutic agent.

6-gingerol reduces Gli3 expression

Given that GL13 knockdown inhibits the growth and migration
of ovarian cancer cells (16), we investigated Gli3 expression in 6-
gingerol-induced apoptosis. As shown in Figures 2a, b, treatment
with 6-gingerol significantly reduced Gli3 expression in SKOV3
cells. However, no notable changes in the levels of other apoptosis-
related proteins, such as Bcl-2, Bcl-w, and Bik, were observed. These
results suggest that Gli3 downregulation plays a critical role in 6-
gingerol-induced apoptosis in ovarian cancer cells.

6-gingerol upregulates miR-506

Evidence suggests that miRNAs are key regulators involved in
cancer cell proliferation, differentiation, metastasis, and apoptosis.
Therefore, we hypothesized that miRNAs might mediate the
regulation of Gli3 expression by 6-gingerol. Using bioinformatics
algorithms, including TargetScan, miRWalk, and miRDB, we
identified seven candidate miRNAs that could potentially regulate
Gli3 expression in response to 6-gingerol treatment. The relative
expression of these miRNAs was determined using PCR and
normalized to that of endogenous 5s rRNA. As shown in
Figure 3, 6-gingerol treatment significantly upregulated miR-506
expression compared to other candidate miRNAs [(3.5 + 0.6)-fold].

miR-506 directly inhibits Gli3 and induces
apoptosis in SKOV3 cells

To verify the effect of miR-506 on Gli3 expression and
apoptosis, we transfected SKOV3 cells with miR-506. As shown
in Figure 4a, upregulation of miR-506 significantly increased
apoptosis in SKOV3 cells (45.2% + 5.1%) compared to that in the
scramble control (3.7% + 0.3%, Figure 4b). Western blot analysis
further showed that excessive miR-506 levels suppressed Gli3
protein expression (Figure 4c).

6-gingerol induces apoptosis in SKOV3
cells via miR-506

We found that both 6-gingerol and miR-506 induced apoptosis
in ovarian cancer cells. To investigate whether miR-506 mediates
the apoptosis effects of 6-gingerol, we used an miR-506-specific
antagonist (antago-miR-506). As shown in Figure 5a, treatment
with 20 UM 6-gingerol significantly reduced the survival rate of
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6-gingerol induces apoptosis in SKOV3 cells. (a) Clonogenic survival assay showing the survival rates of SKOV3 cells treated with 5 uM,10 pM,15 M
and 20 pM 6-gingerol for different durations (15!, 2", 4™, and 6" days). Results are based on independent experiments (n = 3). (b) Western blot
analysis of cleaved caspase-3 or and cleaved PARP levels in SKOV3 cells treated with 6-gingerol. Tubulin was used as the loading control. (c) Flow
cytometry analysis of apoptosis in SKOV3 cells treated with different 6-gingerol concentrations, using an Annexin V-FITC & propidium iodide (PI)
apoptosis kit. Results are from three independent experiments (n = 3). (d) Quantification of apoptotic cells (double-positive for Pl and Annexin V)
from panel (c). Results are presented as mean + SD (n = 3). *P < 0.05, **P < 0.001. (e) Flow cytometry analysis of apoptosis in SKOV3 cells treated
with 20 uM Z-VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment with 20 uM 6-gingerol and treated with 20 uM 6-gingerol directly
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*P < 0.05, **P < 0.001.
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6-gingerol inhibits SKOV3 cells by reducing Gli3 expression. (a) Western blot analysis showing Gli3 protein levels in SKOV3 cells treated with 6-gingerol.
Tubulin was used as a loading control. (b) Western blot analysis of apoptosis-related proteins (Bcl-xL, anti-Bcl-2, and Bax) in SKOV3 cells treated with

6-gingerol. Tubulin was used as a loading control.

SKOV3 cells. This effect was reversed by co-treatment with antago-
miR-506. Similarly, flow cytometry analysis showed that the
apoptosis induced by 6-gingerol in SKOV3 cells (68.2% =+ 3.1%)
was significantly reduced (9.4% + 0.9%) when antago-miR-506 was
introduced (P<0.05, Figures 5b, c). To elucidate the molecular
mechanism, we performed western blot analysis to assess Gli3
expression in three groups: control, 6-gingerol, and 6-gingerol +
antago-miR-506. As shown in Figure 5d, 6-gingerol treatment
suppressed Gli3 expression; however, this suppression was
reversed by antago-miR-506. These findings suggest that 6-
gingerol induces apoptosis in SKOV3 cells by upregulating miR-
506, which downregulates Gli3.

Discussion

Conventional anticancer therapies often lack specificity,
targeting not only cancer cells but also healthy cells, leading to

Relative expression of miRNAs

0

severe side effects. For example, platinum-based chemotherapy for
ovarian cancer frequently causes gastrointestinal distress, bone
marrow suppression, and liver and kidney damage (17, 18).
Targeted therapies, while more specific, can still produce adverse
effects, such as hypertension, proteinuria, and reduced blood cell
counts. Natural compounds have emerged as promising alternatives
to traditional treatments, offering increased efficiency with fewer
side effects. These compounds can specifically target oncogenes and
may also synergize with other chemotherapeutic agents (19, 20).
Throughout history, plant-based remedies have been widely used
to treat various diseases, a practice that remains relevant today.
Currently, herbal drugs account for over 50% of therapies in
clinical trials (21). 6-Gingerol, the most abundant and biologically
active phenolic compound present in the roots of ginger (Zingiber
officinale), which has been more studied and more bioavailable than
other phenolic compounds in ginger, exemplifies the medicinal
potential of such natural products. Ginger has been used for
centuries in China as a culinary spice and medicinal remedy.
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FIGURE 3

idan

6-gingerol increases microRNA (miR)-506 expression in SKOV3 cells. RT-PCR analysis showing the expression levels of candidate microRNAs
predicted to target Gli3 in SKOV3 cells treated with 6-gingerol. Data are normalized to the levels of 5s rRNA.
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miR-506 suppresses Gli3 and induces apoptosis in SKOV3 cells. (a) Flow cytometry analysis of apoptosis in SKOV3 cells after transfection with miR-
506, using Annexin V-FITC and propidium iodide (PI) staining. Results are based on three independent experiments (n = 3). (b) Quantification of
apoptotic cells from panel (a). The data show the percentage of double-positive Annexin V and PI cells. Results are presented as mean + SD (n = 3).
**P < 0.01. (c) Western blot analysis showing Gli3 protein levels. Tubulin was used as a loading control.

Ginger has been a staple in traditional Chinese medicine for
centuries, valued for its anti-inflammatory, antibacterial, and
anticancer properties. Notably, 6-gingerol induces apoptosis in
breast cancer cells by activating Bax transcription and caspase-7 (22).

The ability of 6-gingerol to arrest the cell cycle and induce
apoptosis has been shown in human cervical and oral cancer cells
(23, 24). Furthermore, 6-gingerol exhibits cytoprotective effects by
reducing apoptosis and oxidative stress, potentially via the
activation of Nrf2 pathways and inhibition of p38/NF-xB
signaling (25). However, the mechanisms underlying the cytotoxic
effects of 6-gingerol in ovarian cancer cells were previously unclear.
Our study demonstrates that a concentration of 10 UM 6-gingerol
effectively suppresses the clonogenic capacity of SKOV3 cells,
leading to apoptosis.

We identified Gli3, a zinc-finger transcription factor, as a key
player in this process. Gli3 has been implicated in the growth and
metastasis of several cancer types. Knockdown of Gli3 suppresses
the proliferation and migration of androgen receptor-positive
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breast and ovarian cancer cells, which does not occur for
androgen receptor-negative cells (16). Additionally, loss of Gli3 in
fibroblasts reduces suppressor cells derived from myeloid lineages
and enhances natural killer cell activity, thereby inhibiting tumor
growth (26). In colorectal cancer, Gli3 knockdown reduces cell
migration and invasion by affecting epithelial-mesenchymal
transition through the ERK signaling pathway. Elevated Gli3
expression correlated with poor prognosis in patients with
colorectal cancer (27, 28). These results complicate the role of
Gli3 expression in tumor tissues. In our study, 6-gingerol treatment
significantly reduced Gli3 protein levels in SKOV3 cells.
Interestingly, the expression of other apoptosis-related proteins,
such as Bcl-2, Bax, and Bcl-xL, remained unchanged. To further
explore the regulation of Gli3, we examined the role of miR-506, a
microRNA known to regulate cell growth, differentiation, and
metastasis, in SKOV3 cells treated with 6-gingerol. Bioinformatics
analysis predicted miR-506 as a potential regulator of Gli3
expression, and our results confirmed that 6-gingerol upregulates
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FIGURE 5

6-gingerol induces apoptosis in SKOV3 cells via miR-506. (a) Clonogenic survival assay showing the percentage of SKOV3 cells surviving after
treatment with 20 uM 6-gingerol or 20 uM 6-gingerol + antago-miR-506 over different time points (days 1, 2, 4, 6, and 8). Results are based on
three independent experiments (n = 3). (b) Flow cytometry analysis of apoptosis in SKOV3 cells treated with 6-gingerol or 6-gingerol + antago-miR-
506 using Annexin V-FITC and propidium iodide (Pl) staining (n = 3) # P > 0.05, *** P < 0.001. (c) Quantification of apoptotic cells (double-positive
for Pl and Annexin V) from panel (b). Results are presented as mean + SD (n = 3). ***P < 0.001, #P > 0.05. (d) Western blot was performed with anti-

Gli3 antibody. Tubulin was used as a loading control.
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miR-506, which in turn suppresses Gli3 expression and induces
ovarian cancer cell apoptosis.

The role of miR-506 in cancer is context-dependent. In some
cancer types, miR-506 acts as a tumor suppressor, whereas in
others, it may function as an oncogene (29). For instance, Tong
et al. (30) reported a high miR-506 expression in HCPT-resistant
SW1116/HCPT colon cancer cells, suggesting its role in tumor
suppression. Similarly, Streicher et al. (31) showed that the miR-
506-514 cluster is consistently overexpressed in most melanomas,
independent of the presence of B-raf or N-ras mutations. This
cluster, or one of its sub-clusters (Sub-cluster A) comprising six
mature miRNAs, can inhibit cell growth, promote apoptosis, and
reduce invasiveness and colony formation in melanoma cell lines by
reducing the expression of its target genes. Conversely, Luo et al.
(32) found that miR-506 expression is reduced in glioblastoma.
Overexpression of miR-506 in these cells suppressed cell growth,
blocked the G1/S cell cycle transition, and inhibited cell invasion
into glioblastoma cells. Zhang et al. (33) reported that cancer tissues
and cultured cells exhibited lower miR-506 levels. They found that
miR-506 expression was negatively correlated with EZH2
expression, lymph node invasion, tumor growth, metastasis, and
TNM stage. Higher miR-506 levels were associated with a more
favorable prognosis in patients. Consistent with these findings, we
observed that miR-506 expression was significantly downregulated
in ovarian cancer tissues. Our results showed that upregulation of
miR-506 reduces ovarian cancer cell proliferation by targeting the
transcription factor Gli3.

This study has several limitations. First, although SKOV3 cells
are representative of high-grade serous ovarian cancer, validation in
additional cell lines (e.g., CAOV3, OVCAR3) would strengthen the
findings. Second, the functional role of Gli3 in migration/invasion
was not examined, which should be addressed in future studies
given its known metastatic functions. These limitations do not affect
the core mechanistic conclusions but highlight directions for
further research.

In summary, Our findings demonstrate that 6-gingerol induces
ovarian cancer cell apoptosis through miR-506-mediated Gli3
suppression, providing an alternative to conventional Bax/Bcl-2-
targeting approaches. Interestingly, while 6-gingerol has shown
promise in combination with cisplatin (34), our work reveals its
equally potent single-agent activity through this newly identified
pathway. The clinical relevance of miR-506 downregulation in
patient tumors further supports the therapeutic potential of 6-
gingerol, particularly for tumors with impaired miR-506/
Gli3 regulation.
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Machine Learning (ML), an Artificial Intelligence (Al) technique that includes
both Traditional Machine Learning (TML) and Deep Learning (DL), aims to
teach machines to automatically learn tasks by inferring patterns from data. It
holds significant promise in aiding medical care and has become increasingly
important in improving professional processes, particularly in the diagnosis of
psoriasis. This paper presents the findings of a systematic literature review
focusing on the research and application of ML in psoriasis analysis over the
past decade. We summarized 53 publications by searching the Web of Science,
PubMed and IEEE Xplore databases and classified them into three categories: (i)
lesion localization and segmentation; (ii) lesion recognition; (iii) lesion severity
and area scoring. We have presented the most common models and datasets
for psoriasis analysis, discussed the key challenges, and explored future trends in
ML within this field. Our aim is to suggest directions for subsequent research.

KEYWORDS

machine learning, deep learning, dermatology, psoriasis, review

1 Introduction

Psoriasis is a chronic, inflammatory and hyperproliferative skin disease with a genetic
basis (1). It can appear in any form on the arms, legs, scalp, buttocks, the folds of the
skin and the trunk of the body (2). Awareness is increasing that psoriasis as a disease is
more than skin deep and that it is associated with systemic disorders, including Crohn’s
disease, diabetes mellitus (notably type 2), metabolic syndrome, depression, and cancer
(3). The disease follows a lengthy course and is prone to relapse, sometimes persisting for
a lifetime. Psoriasis is characterized by scaling, silver shavings, protrusion and erythema.
Its severity is evaluated based on the degree of infiltration, erythema, area, epidermal
desquamation/scaling and other indicators, each of which is scored according to different
clinical manifestations (4). Worldwide, approximately 125 million people have psoriasis,
and psoriasis prevalence is highly variable across regions, ranging from 0.5% in parts of
Asia to as high as 8% in Norway. In most regions, women and men are affected equally (5).

ML has been widely developed to analyse health data, particularly medical images, to
assist professionals in making decisions and reducing medical errors. In particular, DL
applications have shown promising results in dermatology and other specialties, including
radiology, cardiology, and ophthalmology (6). ML technologies can be broadly classified
into TML and DL. In TML, data features are obtained through a feature engineering
process and then fed into a classifier for result prediction. Common TML classifiers include
Random Forest (RF) (7), K-means (8), Decision Tree (9) K-Nearest Neighbor (KNN) (10)
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and Support Vector Machine (SVM) (11). For instance, a random
forest is a decision-making process, whereas KNN classifies vectors
with similar distances in a feature space into the same class.
Although these techniques are easy to explain and intuitive, they
become less effective as the complexity of the data increases.

With the upgrading of algorithms and hardware, researchers
began to focus on DL and explore its advantages in medical image
analysis (12). DL has significant advantages in dermatological
medical image processing: (1) Automatic feature extraction; (2)
Handle complex data; (3) High performance. Convolutional neural
networks (CNNs) are commonly used in the selection of DL
models for dermatological diagnosis. Several CNNs-based models,
including U-Net (13) and ResNet (14), have been used for psoriasis
analysis. However, despite the strong potential of deep learning in
skin medical image processing, it also faces challenges, such as data
scarcity leading to model overfitting, complex models leading to
long training times, and inexplicable models making it difficult for
doctors to trust their results (15). Moreover, for DL, the deeper the
layers of the model, the higher the hardware requirements, and the
DL spend will be higher compared to TML.

Although recent studies have reviewed the application of Al
in psoriasis diagnosis (16-19), these reviews did not conduct a
thorough analysis of the ML models and the associated datasets.
Therefore, this paper provides a detailed review of the use and
advantages and disadvantages of ML models (including TML
and DL models) in the application of psoriasis diagnosis. The
contributions of this review can be summarized as follows:

e Provides a comprehensive overview of ML models used in
psoriasis diagnosis, including TML models and DL models,
and provides a detailed analysis of the advantages and
disadvantages of each model.

e Evaluates existing psoriasis datasets and discusses their
limitations in model development and evaluation.

e Proposes some future research directions to improve the
accuracy and efficiency of psoriasis diagnosis.

The rest of this article is organized as follows: Section 2
introduces the methods adopted in this paper to conduct systematic
review research; Section 3 introduces the results of paper retrieval.
In Section 3.1, we introduce several publicly accessible datasets;
The key content of this review, that is, the tasks of machine
learning in various psoriasis analyses, are presented in Section 3.2,
of which Section 3.2.1 is the segmentation task, Section 3.2.2 is the
recognition task, and Section 3.2.3 is the assessment task. Section 4
is the discussion, including the challenges in Section 4.2 and future
developments in Section 4.3; Finally, a systematic summary of this
paper is given in Section 5.

2 Methods

We performed a literature search for relevant publications
in 3 databases: Web of Science, PubMed, and IEEE Xplore. We
chose these databases in order to cover general resources (Web
of Science), medical (PubMed), and computing (IEEE Xplore).
Relevant articles published in English between 2014 and April
2024, were considered. We use “and/or” operators to combine
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TABLE 1 Search expressions used in the systematic review.

Database Query statement  Year of release

Web of Science ALL=(psoriasis) AND 2014-2024.04
(ALL=(ML) OR

ALL=(DL))

PubMed ALL=(psoriasis) AND
(ALL=(ML) OR
ALL=(DL)) AND
(ALL=(segmentation)
OR ALL=(recognition)
OR ALL=(assessment))

IEEE Xplore ALL=(skin) AND
ALL=(review) AND
(ALL=(ML) OR

ALL=(DL))

multiple keywords with “psoriasis”, including “Machine Learning
(ML)”?, “Deep Learning (DL)”, “segmentation”, “recognition”,
“assessment”, and “review”. To avoid missing keywords, we
expanded the search scope of keywords to the entire text. Search
expressions are shown in Table 1.

We reviewed all retrieved papers from all platforms and
removed duplicates, non-English papers, papers published before
2014, inaccessible papers, papers not related to machine learning,
and papers not related to psoriasis. The remaining papers were
confirmed by the authors to meet the requirements and were finally
included in the review. Figure I reports our systematic review
process using the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses framework (20).

3 Results

Our search method identified 830 citations. After following the
review protocal, 53 full-text articles were included for qualitative
synthesis (Figure 1). Following the models used in the papers and
the year of publication (Figure 2A), we found that the number
of studies on psoriasis on machine learning has increased in
recent years, a trend that can be attributed to the increase in
datasets and advances in modeling. In all, we summarized a
total of 10 papers on psoriasis lesion segmentation, 22 papers
on psoriasis lesion recognition, and 21 papers on psoriasis
severity scoring (Figure 2B). This review provides a comprehensive
analysis of these papers and the datasets they use, describing
the progress, limitations, and future directions of psoriasis in
ML research.

3.1 Datasets

To conduct psoriasis analysis using ML, psoriasis data and
various labels are necessary. After reviewing a significant amount
of psoriasis-related literature, we discovered that most of it is
produced in collaboration with hospitals and the datasets are
private. As can be seen from the Table 2, from paper to paper they
vary in the number of images, the source of the images and even the
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FIGURE 2
The distribution of the papers summarized in this article. (A) Number of papers published each year from 2014 to 2024.04; (B) Number of papers
related to three different tasks. Seg, Segmentation; Rec, Recognition; Ass, Assessment; T, Task.

way the images are captured. This makes it impossible to compare
these studies peer-to-peer, but only independently.

In addition to private datasets, there are also publicly accessible
psoriasis datasets summarized in Table 3. One thing to note is that
these publicly available datasets for psoriasis can only be applied
to recognition tasks as they do not have segmentation masks and
evaluation score labels. We have showcased some images from
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these publicly available datasets in Figure 3. Among them, the
XiangyaDerm (29) and Kaggle' datasets not only include psoriasis
but also cover other types of skin diseases such as Melanoma,
Atopic Dermatitis, Basal Cell Carcinoma (BCC), and Benign

1

dataset

https://www.kaggle.com/datasets/ismailpromus/skin-diseases-image-
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TABLE 2 Statistics of private datasets adopted by the reviewed articles.

10.3389/fmed.2024.1414582

References Number of images for various tasks and classes
Seg. task Rec. task Ass. task

Images No-Pso Mo.
George et al. (21) 676 - - - - - - _
Dash et al. (22) 5,179 - - - - - - -
Shrivastava et al. (23) - 270 270 - = - - -
Zhao et al. (24) - 900 7,121 - - - - -
Hammad et al. (25) - 2,055 1,677 - - - - -
Shrivastava et al. (26) - - - 383 47 245 145 28
Shrivastava et al. (27) - - - 218 29 138 165 121
Dash et al. (28) 5,000 5,000 5,000 5,000 845 1,404 1,465 1,286

Pso, Psoriasis; H., Health; Mi., Mild; Mo., Moderate; Se., Severe; V.Se., Very Severe.

TABLE 3 Public dataset related to psoriasis and their description.

Dataset Description

XiangyaDerm (29) It contains 107,565 clinical images, covering 541
types of skin diseases.

The largest amount of data in the dataset is
psoriasis, 67,066 images, accounting for 62% of

the total dataset.

Skin diseases image
dataset in Kaggle
(see text footnote 1)

There are 10 types of skin diseases. Among them,
2,055 cases of psoriasis were included.

DermNetNZ (30) It contains 11 different types of psoriasis,
including but not limited to facial psoriasis, nail
psoriasis, scalp psoriasis, etc.

Dermatology Atlas It contains 6 different types of psoriasis, including

(31) but not limited to arthropathic psoriasis, nail
psoriasis, etc.

Hellenic It contains 15 different types of psoriasis,
Dermatology Atlas including but not limited to generalized psoriasis,
(32) guttate psoriasis, inverse psoriasis, etc.

Keratosis-like Lesions (BKL). These two datasets are primarily used
for multi-class skin disease recognition rather than being limited to
the study of psoriasis alone. In the DermNetNZ (30), Dermatology
Atlas (31), and Hellenic Dermatology Atlas (32) databases, we can
observe various types of psoriasis with examples of their categories
shown in the figure. The dataset available to the public contains
information on different types of psoriasis, such as chronic plaque
psoriasis, facial psoriasis, flexural psoriasis, and guttate psoriasis.
These datasets can be used to train models to identify various types
of psoriasis. Additionally, they offer a plethora of data on other skin
conditions.

It can be clearly found in the Figure 3 that the most obvious
problem of the psoriasis image is the lack of standardization of the
data. The lesions appear in different positions, such as skin folds,
hands, and joints. Some are even found in cluttered backgrounds.
Therefore, it is difficult for doctors and even researchers to be
confident whether the model, when recognizing these images of
lesions, is extracting features from the lesion areas, or from other,
distracting elements. As discussed in Yan et al. (33), there may be
the same confusion concept in images of the same category, and
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the model is likely to refer to this confusion concept to classify this
type of lesion, which we know is incorrect. We will discuss this in
detail in the Challenges section.

3.2 ML application in psoriasis

In this section, we thoroughly describe the collected papers and
summarize them in a table according to the research methodology.
We also discuss the aims and results of these papers in detail. We
classify the papers based on the real-world problems they address,
including segmentation, recognition, and severity assessment of
psoriasis.

3.2.1 Lesion segmentation

The accurate segmentation of lesion areas from skin images
is essential for the development of effective computer-aided
diagnosis (CAD) systems for skin diseases (34). In dermatology,
common skin lesions include, but are not limited to, skin
cancer, acne, eczema, and psoriasis. These lesions usually
have different shapes, sizes, and colors, thus requiring specific
algorithms to accurately segment them (35). Commonly used lesion
segmentation methods include edge-based segmentation methods,
region-based segmentation methods, and DL-based segmentation
methods. Among them, DL-based methods have achieved good
results in many fields due to their powerful feature extraction
capabilities and adaptability. We summarize and present papers
that apply ML to the task of psoriasis segmentation (Table 4).

For the evaluation indicators for segmentation task, the main
indicators are the Dice Similarity Index (DSC) and Jaccard
Index (JI). The DSC (44) metric represents the efficiency of
the segmentation model by measuring the similarity between
ground truth lesion (Lg) and predicted segmented lesion (L)
(45). Whereas, the JI (46) metric provides the overlapping measure
between Lg; and L, (38). Other performance metrics such as
pixel accuracy (ACC), sensitivity (SE) and specificity (SP) are also
available, where ACC indicates the proportion of image pixels
classified correctly. In this paper, only their ACC metrics are
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FIGURE 3

Partial examples of images from each exposed data set. Pso, Psoriasis.

Reprinted with permission of six watermarked images from the DermNetNZ dataset, which is labeled as Guttate Pso, Chronic plaque Pso, Flexural
Pso, Scalp Pso, Sebopsoriasis, and Nail Pso, are from https://dermnetnz.org, ® DermNet®, licensed under CC BY-NC-ND 3.0 NZ. For the DermNetNZ
dataset, the links to the individual images are as follows: Guttate Pso, https://dermnetnz.org/topics/guttate- psoriasis; Chronic plaque Pso, https://
dermnetnz.org/topics/chronic-plaque- psoriasis; Flexural Pso, https://dermnetnz.org/topics/flexural-psoriasis; Scalp Pso, https://dermnetnz.org/
topics/scalp-psoriasis; Sebopsoriasis, https://dermnetnz.org/topics/sebopsoriasis; Nail Pso, https://dermnetnz.org/topics/nail- psoriasis.

Reprinted with permission of three watermarked images from the Dermatology Atlas dataset, which is labeled as Artropathic Pso, Pso After
Erysipelas, and Pustular Pso, are from https://www.atlasdermatologico.com.br. For the Dermatology Atlas dataset, the links to the individual images
are as follows: Artropathic Pso, https://www.atlasdermatologico.com.br/disease jsf?diseaseld=43; Pso After Erysipelas, https://www.
atlasdermatologico.com.br/disease jsf?diseaseld=397; Pustular Pso, https://www.atlasdermatologico.com.br/disease jsf?diseaseld=398.

Reprinted with permission of three images from the Hellenic Dermatology Atlas dataset, which is labeled as Generalized Pso, Guttate Pso, and Palque
Pso, are from http://www.hellenicdermatlas.com/en/. For the Hellenic Dermatology Atlas dataset, the links to the individual images are as follows:
Generalized Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/528/0/; Guttate Pso, http://www.hellenicdermatlas.com/en/
search/advancedSearch/28/529/0/; Palque Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/535/0/.

TABLE 4 Lesion segmentation.

Methods Remarks References Quantity of data Evaluation metrics*
DSCt Jip ACCt

Clustering Image segmentation of lesion (21) 676 0.783 0.698 0.870

images using clustering

algorithms from TML models (36) 780 N 0.830 0.909
CNN The vast majority of CNN (22) 5179 0.930 0.864 0.948

studies on psoriasis use U-Net

as a segmentation model. Some (37) 350 0.910 0.837 0.986

papers also modify it to

improve metrics (38) 500 0.948 0.901 0.992

(39) 255 0.655 0.536 0.976
(40) 580 0.919 - -

Object detection Utilize object detection models (41) 400 - - 0.972
backbone as feature extraction modules in

their proposed models before

performing psoriasis

segmentation
Optimization These studies leverage CNNs (42) 4200 0.960 0.905 0.970
algorithm where the weights and biases

are optimized using (43) - 0.970 0.920 0.980

optimization algorithms, for

psoriasis segmentation

*DSC, Dice Similarity Index; JI, Jaccard Index; ACC: Pixel Accuracy.

counted. The formulas for the performance indicators are shown  tasks employ clustering model algorithms (21, 36), such as K-
in Table 5. means (8). Clustering algorithms group similar vectors in high-

Upon investigation, we found that the majority of papers  dimensional space and label them as the same class, excelling
utilizing traditional machine learning for psoriasis segmentation  in both efficiency and interpretability. However, these algorithms
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are primarily designed for numerical datasets, necessitating
modifications to the images for their application. For instance,
George et al. (21) adopted a strategy of segmenting images
into superpixels of varying sizes, subsequently clustering these
superpixels into lesion and non-lesion regions. Ultimately, they
achieved a pixel accuracy of 86.99% on 100 test images. However,
with the growth of the scale and complexity of datasets, traditional
methods have become inadequate. This has led to the emergence of
technologies such as DL.

U-Net (13) is a very popular DL model for medical image
segmentation (47). It has demonstrated superior performance
in medical segmentation tasks, capable of producing accurate
segmentation results even with limited training data. Therefore,

TABLE 5 Formulas for different performance indicators for segmentation
task.

Performance metric Formula*

_ 2x|LgNLp| 2x TP
DsC DSC = [Lg|+1L,| — FP+EN+(2xTP)
_ Lyl TP
1 JI = [LyUL,| — TP+FN+FP
_ TP+TIN
ACC ACC = TP+FP+TN+FN

*TP, ture positive; FP, false positive; TN, true negative; FN: false negative.

TABLE 6 Lesion recognition.

Methods Remarks References

10.3389/fmed.2024.1414582

researchers favor the U-Net architecture and its variants as the
backbone (22, 37, 38). Raj etal. (37) proposed a model for psoriasis
lesion segmentation from the raw RGB color images having
complex backgrounds and challenging surroundings. Taking
advantage of residual networks and migration learning, Raj et al.
(38) proposed a model with a residual encoder for segmenting
psoriasis lesions from digital images with uneven backgrounds,
based on U-Net. Czajkowska et al. (40) used DeepLab (48) for
epidermal segmentation, which is a crucial first step for detecting
changes in epidermal thickness, shape, and intensity. In psoriasis
diagnosis, it is also necessary to score the elevation level of lesions.
However, conventional computer vision models can only process
2D images and are not well-suited for training on 3D elevation data.
Therefore, this method is worth studying.

Using object detection models as a backbone for segmentation
tasks is also an alternative approach compared to using
conventional segmentation models (41). Their main approach is to
use object detection models [e.g., Lin et al. (41) using Mask R-CNN
(49)] as a backbone such as a feature extractor for the segmentation
model, followed immediately by a segmentation output branch to
perform the segmentation task.

Unlike proposing new CNNs, in order to guide the training
of CNNs that can move toward more excellence, Mohan et al.

Evaluation metrics*
F1¢

Quantity of data

ACC1t

AUCH

PCA; SVM Traditional machine learning (23) 540 1.0 - 1.0

methods.

(51) 90 0.90 - -

CNNs Classify psoriasis vs. other skin (52) 1,358 - - 0.922

dlfease (including healthy 3) 3,570 0.801 . .
skin)

(54) 312 0.942 0.942 0.990

(55) 1,876 0.910 - -

(56) 2,101 0.919 0.894 0.959
A publicly available dataset was (57) 938 0.653 0.655 0.904
used for the study.

(24) 8,021 0.960 - 0.981
Identify psoriasis from skin (58) 4,740 0.959 - 0.987
lesion such as eczema and
pityriasis rosea that are (9 11,031 0920 B B
extremely similar to it. (60) 292 0.896 B B

(25) 3,732 0.962 0.958 0.971

(61) 869 0.857 - -
Identify nail psoriasis from (62) 1,155 0.957 - -
healthy nails.
Light-weighted CNN (63) 33,904 0.70 - -
CNN + ViT (64) 8,000 0.977 0.965 -
Classify different types of (65) 30,000 - 0.890 0.920
psoriasis.

(66) 1,836 0.987 0.958 -

(56) 814 0.933 0.919 -
CNN vs. LSTM (67) 1,838 0.842 - -
Light-weighted CNN (68) 12,015 0.998 - 0.99

*ACC, Accuracy; F1, F1-Score; AUC, Area Under Curve.
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TABLE 7 Formulas for different performance indicators for recognition
and assessment task.

Performance metric Formula*

ACC ACC = mfpiiem
Recall Recall = Tpiipm
Precision Precision = %
F1-Score Fl=2x %ﬁéiﬁ%

*TP, ture positive; FP, false positive; TN, true negative; FN, false negative.

(42) proposed a convolutional neural network (CNN) based on
the Adaptive Chimpanzee Optimization Algorithm (AChOA) for
automated segmentation of psoriasis skin images, which utilizes
the AChOA to optimize the weights and bias values of the CNN.
Similarly, Panneerselvam et al. (43) proposed Adaptive Golden
Eagle Optimization (IGEO) to tune the weights and bias parameters
of the CNN.

The segmentation task plays a crucial role in the application
of computer technology to the medical field. It not only helps
eliminate interference from non-lesion regions, but also provides
a solid foundation for subsequent recognition or assessment tasks.

3.2.2 Lesion recognition

The process of diagnosing skin cancer is intricate and involves
visual examination and judgment by a physician, followed by
microscopic examination of a biopsy. Therefore, developing more
accurate algorithms for skin lesion recognition could greatly
facilitate timely diagnosis of skin cancer. Automated classification
of lesions is used in clinical examination to help physicians
and allow rapid and affordable access to lifesaving diagnoses
(50). Lesion recognition aims to differentiate psoriasis from other
common skin diseases (or healthy skin) or to distinguish between
different types of psoriasis, primarily through techniques such as
feature extraction and segmentation. We summarize and present
papers that apply ML to the task of psoriasis recognition (Table 6).

Four performance metrics are used to evaluate the performance
of the recognition models: Accuracy(ACC), recall, precision and
Fl1-score(F1). We summarize the ACC and F1 in the paper (since
F1 then already makes use of recall and precision). The formulas
for the performance indicators are shown in Table 7. In addition,
we also summarized the Area Under Curve(AUC) metrics from
the papers. In the task, “psoriasis” was represented as a positive
category and “non-psoriasis” as a negative category, and a threshold
was set to distinguish positive or negative cases. By constantly
adjusting this threshold, we were able to obtain multiple sets of
different sensitivities and specificities. These sets were then labeled
in coordinates and Receiver Operating Characteristic (ROC) curves
were plotted (24). AUC is the area of the ROC curve, which is used
to measure the performance of machine learning algorithms for
“classification problems” (generalization ability).

When using TML models for
researchers extract color and texture features from the images,

psoriasis classification,

corresponding to the erythema and silver desquamation attributes

of psoriasis, respectively, since these models cannot actively analyze
images (23, 51). Among them, Texture features are the most
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traditional way to explore specific pattern information in images,
and they can quantify the texture present in lesions. Common
texture analysis techniques include: Gray Level Co-occurrence
Matrix(GLCM), Gray Level Run Length Matrix (GLRLM) (69),
etc. For the obtained features, they can be fed into Principal
Component Analysis (PCA) (70) for dimensionality reduction,
which is a feature dimensionality reduction technique. From the
experimental results of Shrivastava et al. (23), the best classification
result was obtained by using the features of Higher Order Spectra
(HOS) (71), texture and color together for classification, and the
binary classification accuracy can reach 100%.

However, to achieve classification between different skin
diseases, or even between different types of psoriasis, it is not
enough to use TML. From the CNNs section of the table we
can see that there are two main tasks in psoriasis recognition.
For the former, the focus of the psoriasis identification task is on
distinguishing psoriasis from skin diseases that are very similar to
psoriasis compared to common classification tasks such as the ISIC
dermatology dataset (72), e.g., to distinguish scalp psoriasis from
scalp seborrheic, which have the same region of onset and a small
difference in the lesion appearance but have completely different
treatment approaches, CAD comes in handy in order to avoid
incorrect diagnoses by doctors (52). Lichen planus, parapsoriasis,
lupus erythematosus and eczema are also particularly similar but
differently treated skin conditions which, in addition to all being
characterized by a reddish color, also have papules or plaques (25,
58-61). Because of Inflammatory skin diseases, such as psoriasis
(Pso), eczema (Ecz), and atopic dermatitis (AD), are very easily to
be mis-diagnosed in practice, Wu et al. (58) developed an end-
to-end deep learning model. Yang et al. (59) aimed to train an
efficient deep-learning network to recognize dermoscopic images
of psoriasis (and other papulosquamous diseases), improving the
accuracy of the diagnosis of psoriasis. While they have similar
symptoms, Psoriasis and Eczema have vastly different underlying
causes and behaviors, Chatterjee et al. (60) explores state of the art
Deep Learning techniques for distinguishing Psoriasis and Eczema.
Hammad et al. (25) presents an enhanced deep learning approach
for the accurate detection of eczema and psoriasis skin conditions.
Zhu et al. (61) propose a novel abscissa-ordinate focused network
(AOFNet) with active label smoothing for the identification of
psoriasis and eczema from images.

Using models from the natural language processing (NLP)
domain to extract image features is a very popular approach. This is
because these models, when applied to sentences, are able to capture
the distant relationships between sentences and thus calculate the
relationships between words. The researchers want to try to use
this idea to capture long distance relationships between images to
make up for the fact that the computation of convolution can only
capture local information. Aijaz et al. (67) innovatively used Long
Short-Term Memory (LSTM) (73) for classification in addition
to CNNs. However, LSTM only obtained an accuracy of 0.723
on the results (CNN obtained 0.842), proving that CNN is still
superior to models from NLP for image processing. Vishwakarma
et al. (64) proposed a model that combines the features of a CNN
and a Vision Transformer (ViT) (74) with the aim of building a
high-performance, lightweight hybrid model for the intended task.
In this, ViT processes the convolutional feature maps to capture
long-term dependencies that represent global features.
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The use of deeper neural networks is a straightforward and
effective way to deal with the increase in the amount of data,
but this can lead to a very fatal problem - an increase in the
number of parameters, resulting in the need for better hardware.
However, instead of opting for a larger model, Arunkumar et al.
(63) proposed their own lightweight CNN when solving tens of
thousands of datasets, and obtained relatively good results. The
model proposed by Rashid et al. (68) is very easy to be used
and deployed as a smartphone application in a real-time decision-
making environment due to its lightweight nature. The model can
handle recognition and classification of psoriasis types for low or
high resolution images.

Zhao, Aggarwal, and Rashid et al. (24, 57, 68) used the psoriasis
dataset (Table 3) from a public dataset for identification of common
skin diseases and psoriasis. The study using the public dataset can
enhance the confidence of the diagnosis as all images were verified
by pathological examination and history and labeling was done by
experienced dermatologists. We believe that psoriasis research will
become more comprehensive as more and more papers conduct
research on public datasets.

3.2.3 Lesion severity assessment

Psoriasis severity assessment refers to the objective and accurate
evaluation of the severity of a patient’s psoriasis, so that the
doctor can develop a reasonable treatment plan and monitor its
effectiveness. Commonly assessment methods include the PASI
scoring system, DLQI scoring system (75), etc. Among them, the
PASI score system is used to score psoriasis patients based on
factors such as lesion area, erythema, scaling, and infiltration, with
a total score of 0 to 72. The higher the score, the more severe
the condition. In the process of using ML to evaluate the severity
of psoriasis, feature selection is a very important step, including
the extraction of features such as lesion area, erythema, scaling,
and infiltration. Before this, it is necessary to segment and identify
the image, especially to prevent the background interference from
affecting the extraction of color features. We summarize and
present papers that apply ML to the task of psoriasis severity
assessment (Table 8).

Similar to the psoriasis classification task, the task of psoriasis
severity assessment using TML models also requires the extraction
of various features such as color and texture in the image, which
are then fed into various classifiers for severity assessment. In
this regard, Shrivastava et al. (26, 27). conducted two different
experiments on two different datasets, one on the 848 psoriasis
dataset, which achieved 99.92% accuracy, and one on the 670
psoriasis dataset, which was first segmented by Bayesian modeling
and then classified, which achieved 99.84% accuracy. It can be
noticed that although the dataset has become smaller, the accuracy
can still be kept high by segmentation followed by classification.

In the experiments of Moon et al. (79), they used and
compared automatic [Simple linear iterative clustering (SLIC)
superpixel-based segmentation (21) and U-Net model] and semi-
automatic [level set method (LSM) (94) and interactive graph cuts
(IGC) (95)] segmentation algorithms. It was found that the semi-
automatic segmentation models are particularly subjective and
time consuming, while the automatic models are less effective in
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segmenting the curved, illuminated or shadowed parts of the image.
From the results, the LSM from semi-automated segmentation was
able to achieve a DICE of 0.945 and the SLIC from automated
segmentation a DICE of 0.915 (Other segmentation metrics are
noted in the paper). Taking into consideration time efciency and
reproducibility, the paper finally chose SLIC as the segmentation
task model before the evaluation task.

The work of Dash et al. (28) is the most consistent with the
physician’s diagnostic process within all the papers. Specifically,
they distinguished 5,000 healthy skin from 5,000 psoriasis with
99.08% accuracy, then, segmented the lesion areas in the psoriasis
images with 94.76% accuracy, and, ultimately, assessed the
segmented images at four levels of severity with 99.21% accuracy.
Raj et al. (84) extended the work of Dash et al. (22) by broadening
the scope of lesion detection to segment healthy skin, psoriatic
lesions, and background regions simultaneously from full-body
areas.

Training out a segmentation model requires relevant data with
labels, and how well it is trained affects the subsequent tasks, with
errors at each stage accumulating to be very catastrophic in the
end (77). Thus, Huang et al. (88) avoided the use of segmentation
models and instead added various attention modules after the
backbone output, allowing the model to localize the lesion area
without going through the segmentation model. Schaap et al.
(87) utilized a special CNN (96) for the assessment task. This
CNN is assessed for psoriasis with a decreasing probability from
0 to 5, with a final threshold set to arrive at a score for that
psoriasis. Moon et al. (92) used CutMix to generate multiple-
severity disease images and proposed a hierarchical Multiscale
Deformable Attention Module (MS-DAM) that adaptively detects
representative regions of irregular and complex patterns in multi-
severe disease analyses.

You Only Look Once (YOLO) (97) is a deep neural network-
based target recognition and localization algorithm with fast
processing speed and suitable for real-time systems. YOLO-v4,
which builds on the original YOLO target detection architecture,
employs state-of-the-art optimization strategies in the field of
CNNs. Thus, Yin et al. (93) used the YOLO-v4 algorithm as a
feature extractor for images to detect the severity and lesion area
of each disease in a specific portion of an image and perform a
comprehensive assessment.

ViT’s input adaptive weighting and global information learning
can show good performance in vision related tasks. Raj et al. (85)
put ViT into a classification module for computation, where the
feature vectors output from the backbone are computed globally,
and then the output is collapsed back into the dimensions of the
feature representations produced by the convolution operation.

4 Discussion

4.1 Methods statistical analysis

We have summarized the methods used in the collected papers
(Figure 4). We found that when researchers select TML models, for
segmentation tasks, clustering models such as K-Means are usually
used to achieve segmentation of diseased regions by clustering
diseased pixels together. Whereas for lesion recognition and
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TABLE 8 Lesion severity assessment.

10.3389/fmed.2024.1414582

Methods Remarks References Quantity of data Evaluation metrics*
ACCt F14 AUCtH
PCA; SVM; NB; DT Traditional machine learning (76) 17 0.920 - -
methods
(26) 848 0.999 - 0.999
27) 670 0.998 - 0.998
Dic. L; BoVWs A novel image representation (77) 676 - 0.710 -
and unsupervised feature
extractor method (78) 676 0.808 - -
CNNs Segmentation was performed (28) 5,000 0.926 0.926 0.992
before severity assessment
Semi-automatic vs. automatic (79) 80 - 0.989 -
segmentation algorithms
Segmenting and scoring nail (80) 705 0.765 - -
psoriasis
(81) 300+ 0.915 - -
(82) 1,154 0.55 0.55 0.63
Segmenting and scoring (83) 611 0.667 - -
pustular psoriasis (PP)
Segmenting and scoring large (84) 500 0.942 - -
areas of psoriasis
CNN + ViT (85) 1,018 0.795 0.792 0.950
Direct assessment of psoriasis (86) 705 - - -
severity using CNNs
87) 1,731 - - -
(88) 14,096 - - B
(89) 5,951 - 0.940 -
(90) 792 0.910 - -
1) 2,700 - - R
Attention 92) 792 0.908 0.930 -
YOLO (93) 2,657 - - -
Methods Traditional Machine Learning Deep Learning
] 2 “g -] c g b ;
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FIGURE 4
Quantitative distribution of different ML methods on the three tasks.

assessment tasks, given the limited datasets available for psoriasis,  also utilized in psoriasis recognition or assessment tasks, where

researchers tend to favor support vector machines as it performs  only by locating and segmenting the diseased regions, the model
well with small datasets. is able to avoid interference from non-diseased regions (99).
Some methods originally used for NLP (e.g., LSTM and

Transformer) have been widely used in the field of computer vision

In DL model selection, U-Net is widely used for its high
accuracy in medical segmentation (98). Segmentation models are
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in recent years (100), and have also been applied to medical image
analysis. However, there are fewer papers using these methods to
analyse psoriasis, and their scalability in medical images needs to
be further investigated. In addition, many other methods are not
shown in the diagram, and we have only summarized the most
commonly used ones.

4.2 Challenges

Through a comprehensive analysis of collected papers,
including data collection, preprocessing, modeling approaches and
experiments, we analyse the current challenges of machine learning
in psoriasis.

4.2.1 Lack of data sources

ML (especially DL) algorithms require large amounts of data to
effectively train models (101). However, since very few people study
psoriasis in the field of ML, the amount of data available for analysis
then becomes very limited, making it difficult to build accurate and
reliable models. In addition, most psoriasis datasets are not publicly
available, and most of the datasets used in the papers listed in the
table above were obtained through collaboration with hospitals.
Moreover, different tasks require different annotations, which adds
to the complexity of ML for research in the field of psoriasis. To
use ML for psoriasis research, access to sufficient data is critical.
However, this may not always be feasible due to the high cost of
physician annotation time or the difficulty of obtaining consistent
images (102). In addition, the acquired images may have unevenly
distributed categories or incorrect labels, which can lead to training
the model in the wrong direction or overfitting.

4.2.2 Data inconsistency

Even if there is enough data, its inconsistency and irregularity
can lead to poor model performance. That is, if the data come from
different databases or are taken by different doctors with different
angles, lighting or resolutions, then the integration and analysis
of these data will be a big challenge. Although the International
Skin Imaging Collaboration (ISIC) has attempted to address the
issue of data standardization by developing a set of technical
standards for skin lesion imaging (103), psoriasis differs from
common dermatological datasets in that the site of onset can be
systemic (e.g., body depressions), which leads to the analysis not
being able to train the model exactly according to the characteristics
of the dermatological condition (rounded, localized, more regular,
flattened). At the same time, some features are difficult to obtain
through machine such as the sclerotic height of psoriasis, and most
of the commonly used DL is applied to flat images, which can only
obtain features that are accessible to flat vision, such as color and
texture. Although skin thickness segmentation was proposed in
Czajkowska et al. (40), it is particularly demanding on the dataset.

4.2.3 The inexplicability of methods
Selection of appropriate methods and improvement of existing
methods to improve the accuracy of psoriasis analyses are common
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threads in existing papers, but doctors and patients are most
concerned about the accuracy of psoriasis analyses and whether the
researchers can explain how the proposed models arrive at their
conclusions. However, from the collected papers, most of them
only propose a model with good diagnostic results for psoriasis,
while little research has been done on the interpretability of
the model.

4.3 Future development

In response to these challenges to the application of ML
in psoriasis, we propose solutions and summarize the future
development of ML.

4.3.1 Few-shot learning

Model training using a small amount of data is also a current
research hotspot in ML, especially DL. For example, Folle et al.
(82) used a small number of samples to study the diagnosis of
psoriasis, and the BEiT model, which they used, was designed
to train models with fewer samples. Few-shot learning is a ML
paradigm designed to enable efficient training of models with a
small number of samples. In Xiao, Liu and Chen et al. (104-107),
they classified and segmented lesion data with fewer lesion images.
Data collection for psoriasis is also difficult, especially labeling,
and requires overcoming a variety of subjective factors. In today’s
era of predominantly data-driven model training, smaller, more
granular datasets may produce better results than larger, more
extensive datasets.

4.3.2 Feature consistency

Differences between images can also worsen the model,
especially in feature extraction. Therefore, we would like to unify
the images before training the model, or, in other words, extract
common features. For example, Diaz et al. (108) aim to pixelate
images using a segmentation model that labels pixels belonging
to the same lesion features (e.g., pigment networks, blue-white
stripes, dots, bubbles, blood vessels) as belonging to the same
category in skin lesions. This reduces the differences in image-
level features by extracting pixel-level features, while directing the
model to use these features for further training and avoiding image
differences that cause the model to recognize the same features as
different features. However, segmentation requires labeling, which
leads to a relatively poor feasibility of this approach. To solve this
problem, Pathak et al. (109) used the idea of weak segmentation,
which does not require prior labeling, but automatically obtains the
segmentation labels through learning. Using this idea, when faced
with psoriasis images that are extremely different at the image level,
the model can recognize the same attributes or features between
them, thus enabling the model to better assess psoriasis. In addition,
preprocessing features of skin lesions (e.g. color) is also an aspect
that could be considered.Barata et al. (110-112) have shown that
image preprocessing techniques (e.g. color constancy) can improve
the performance of Al systems for segmentation and classification
of skin lesions. Using such techniques, when assessing the severity
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of a feature of psoriasis (e.g. erythema), it may be possible to
avoid situations where the assessment of erythema is different
due to the difference in the psoriasis, if we can first normalize
the psoriasis.

4.3.3 Model explainability

Currently, there is an increasing amount of interpretable
research in the field of AI in medicine (113). These papers
essentially use techniques that are intuitively capable of interpreting
the model to enable interpretable research. For example, a class
activation map (CAM) (114) is used to visualize the regions of
interest of the model, just as Ding et al. (115) used a CAM to
direct the model’s attention to the lesion region while explaining
the model’s focus in the middle layer. Concept activation vectors
(CAV) (116), a technique that converts high-level concepts that can
be understood by humans (e.g., whether or not there are hairs in
the area of the lesion, etc.) into vectors that can be understood by a
computer. It is therefore feasible to use CAM or CAV to interpret
the model. Using CAM, it is possible to understand which areas
on the image the model focuses on, and using CAV, it is possible to
direct the model’s attention to which important high-level concepts.
Of course, there are many more interpretable techniques waiting to
be discovered, all aimed at increasing physician or patient trust in
the model and its outputs.

5 Conclusion

This review provides an overview of the application of ML
(especially DL) to psoriasis diagnosis over the last decade, including
segmentation, recognition and assessment tasks. However, we have
identified a number of challenges in this area, the most important of
which are data inconsistency and the issue of data privacy. It is also
worth noting that not all DL models are best suited for every task.
TML algorithms have also shown good results in feature extraction,
and different models should be selected depending on the specific
task at hand.

In conclusion, we hope that this review will encourage research
in this area and stimulate more advanced techniques to help
physicians in their work.
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Background: Surgery is the primary treatment for Endometrial Stromal Sarcoma
(ESS), however, a substantial proportion of patients with ESS experience
recurrence or metastasis. Currently, surgery and local ablation are the main
treatments for recurrent ESS followed by chemotherapy, radiotherapy,
immunotherapy, targeted therapy, and anti-estrogen therapy. Surgery and
local ablation are invasive treatments and may carry risks such as intestinal
damage and the risk of massive bleeding from tumor rupture. For patients who
refuse or are unable to undergo surgery and local ablation, conservative
treatment is not effective, and there is currently no definitive effective non-
invasive or combined treatment plan.

Case presentation: This report presents a case of a patient with recurrent
endometrial stromal sarcoma who refused surgical and local ablation
treatments. After receiving HIFU treatment combined with chemotherapy, the
progression of the tumor was effectively inhibited, the tumor volume significantly
reduced, and liver function was restored during the HIFU period, providing an
opportunity for chemotherapy.

Conclusions: HIFU combined with chemotherapy may provide a new treatment
strategy for patients with recurrent, metastatic endometrial stromal sarcoma, or
those who are unsuitable for surgery, local ablation, or those with poor baseline
status unable to tolerate intensive chemotherapy.
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LGESS, HIFU, tumor recurrence, combination therapy, case report
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Introduction

ESS is an invasive tumor originating from endometrial stromal
cells. The cells resemble proliferative phase endometrial stromal
cells, manifesting as infiltrative growth, with or without
lymphovascular invasion. It accounts for approximately 0.2-1% of
uterine malignancies and 6-20% of uterine sarcomas (1-3).
According to the WHO (2020 edition) classification of
gynecological malignancies, ESS is divided into Low-Grade
Endometrial Stromal Sarcoma (LGESS) and High-Grade
Endometrial Stromal Sarcoma (HGESS) (4).

Due to the lack of specific clinical and radiographic
manifestations, ESS is easily misdiagnosed as uterine fibroids or
adenomyosis with similar symptoms (5). Therefore, a thorough
evaluation must be performed on rapidly enlarging fibroid masses
before surgery. High-grade stromal sarcoma carries a poor
prognosis, especially when diagnosis is delayed or presented with
advanced stages (6). LGESS is typically discovered during
pathological examination of hysterectomy specimens (7). LGESS
is a relatively indolent tumor with a good overall survival rate, but it
is characterized by multiple or late recurrences (3, 8). Recurrence is
more common in the pelvic and abdominal cavities, and less
common in the lungs and vagina. Due to its indolent course,
distant recurrence is more frequently seen in clinical practice,
necessitating long-term follow-up, hence there is less research on
the prognosis of recurrent LGESS (9).

Currently, hysterectomy and bilateral salpingo-oophorectomy
are the first-line treatments for ESS. However, approximately 30%-
50% of ESS patients experience recurrence or metastasis (10). At
present, surgical treatment, anti-estrogen therapy, chemotherapy,
radiotherapy, and targeted drug therapy are used to treat recurrent
or metastatic ESS. However, due to the different pathological
characteristics and fewer cases, there is not enough research and
data, and the treatment plan for recurrent metastatic ESS is still not
clearly unified.

In terms of examinations and follow-up, MRI differentiates
uterine fibroids from sarcomas through its superior soft-tissue
resolution, while monitoring tumor volume changes and
therapeutic effects. PET-CT precisely identifies metastases or
recurrent lesions, yet its phased utilization is prioritized in clinical
practice due to cost and procedural constraints. MRI serving as the
foundational modality, while PET-CT provides targeted assistance.

We report a case of recurrent low-grade endometrial stromal
sarcoma with multiple pelvic metastases and right sacral bone
metastasis. The patient had a short-term recurrence after surgery
and underwent multiple rounds of combined radiochemotherapy
and regular follow-up. Three years later, the patient relapsed again.
After hospital evaluation, the patient was unwilling to undergo a
second surgery due to concerns about surgical risks. The patient
then received three cycles of chemotherapy. After chemotherapy,
the patient developed abnormal liver function. After discussion by
the doctors, the treatment plan was changed to HIFU and
chemotherapy. This effectively inhibited tumor progression with
significant results.
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Case report

The patient is a 28-year-old unmarried and nulliparous female
with no family history of malignancy and no prior gynecological
disorders or estrogen-related medication use. She presented to the
hospital in November 2019 with progressively worsening
dysmenorrhea for one year and menorrhagia for six months.
Gynecological ultrasound and abdominal CT indicated an
enlarged uterus, suggesting uterine fibroids. On November 21,
2019, she underwent laparoscopic exploration. During the
operation, a tumor approximately 9*9*8cm in size was seen on
the posterior wall of the uterus, and another tumor approximately
5x4cm in size was seen on the lower segment of the posterior wall of
the uterus. The intraoperative frozen pathology diagnosis was a
mesenchymal malignant tumor. With the consent of the family, the
operation was changed to total hysterectomy, bilateral
adnexectomy, and omentectomy. Postoperative pathology and
immunohistochemistry indicated low-grade endometrial stromal
sarcoma with transformation to high-grade, local necrosis, enlarged
and round nuclei, invasion of the uterine myometrium,
involvement of the endometrium and serosal layer, tumor
invasion seen in the blood vessels, no tumor invasion seen in the
nerves, and no tumor seen in the bilateral adnexa and omentum
(Figure 1). The postoperative pathological stage was stage IB. After
the operation, she underwent three rounds of intraperitoneal
hyperthermic perfusion therapy (cisplatin 110mg).

On December 17, 2019, the patient’s follow-up 18F-FDG PET/
CT (18F-fluorodeoxyglucose positron emission computed
tomography/computed tomography) showed thickening of
vaginal soft tissue with increased glucose metabolism, multiple
pelvic lymph nodes with increased glucose metabolism,
suggesting metastasis. The right side of the sacrum showed
slightly increased bone density with increased glucose
metabolism, suggesting possible metastasis. On December 23,
2019, an enhanced whole abdomen MR suggested a nodular
lesion on the left margin of the vaginal stump, highly suspicious
of tumor; multiple lymph nodes near bilateral iliac vessels, on both
sides of the pelvis, and in the pre-sacral space, lymph node
metastasis could not be excluded. The preliminary diagnosis was
“vaginal recurrence of endometrial stromal sarcoma and sacral
metastasis”. From January 9 to January 20, 2020, the patient
underwent VMAT radiotherapy (dose: GTVnd 6000cGy,
CTV4500cGy). From February 28 to March 12, 2020, the patient
underwent 4 sessions of brachytherapy (dose: 28Gy/4f, cisplatin as a
radiosensitizer). On January 9 and January 20, 2020, she received
concurrent chemotherapy with cisplatin (dose: 25mg, d1-4). On
February 21, 2020, she accepted chemotherapy with cisplatin
(100mg) and nivolumab (200mg) and regorafenib capsules
(20mg, Bid). On March 19, 2020, she accepted a cycle of
chemotherapy with paclitaxel (300mg) and lobaplatin (150mg)
and nivolumab (200mg).From April 15 to June 3, 2020, she
continued to receive 3 cycles of chemotherapy with lobaplatin
(150mg) and paclitaxel (330mg) and bevacizumab (350mg). On
April 15, 2020, she underwent a biopsy of the vaginal lesion, and the
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FIGURE 1

Tumor histopathology images [(A-C) Hematoxylin-eosin staining; magnification: (A) 4x; (B, C) 10x]. Main immunohistochemical staining results for
low-grade endometrial stromal sarcoma [(D-J) 4x]. (D) Caldesmon; (E) Desmin; (F) SMA; (G) CD10; (H) Ki-67; (1) ER; (J) PR.

pathology results indicated: (vaginal orifice nodule) no endometrial
stromal sarcoma seen. Serial MRI scans performed every three
months between January and June 2020 revealed no abnormalities.
Following the completion of chemotherapy, the patient underwent
PET/CT scans every six months, with no significant abnormalities
detected in the results.

On August 18, 2023, the patient experienced pain in the lower
left abdomen, which gradually worsened, accompanied by left-sided
back pain and fever. Outpatient ultrasound examination of the
urinary system suggested: dilation of the upper segment of the left
ureter with hydronephrosis of the left kidney, and a hypoechoic
mass behind the bladder, measuring approximately 88x74x88mm,
with clear boundaries and uneven internal echo. On August 24,
2023, a PET/CT scan showed a mass of approximately
87x83x90mm at the vaginal stump, suggesting a possible
recurrence of the tumor.

The patient was admitted to the hospital for treatment on August
28, 2023, and underwent enhanced abdominal MR and urinary CTU
examinations. The MR enhancement suggested an abnormal signal in
the pelvic cavity, measuring approximately 99mmx88mmx116mm,
suggesting local tumor recurrence, possibly involving the rectum,
colon, bladder, and left ureter. After pelvic metastasis, the patient’s
primary symptoms included left-sided lumbar soreness, abdominal
distension, and lower abdominal pain. Physical examination revealed
a pelvic mass measuring approximately 9 cmx8 cm on triple
examination, with a firm consistency, poor mobility, no significant
tenderness, and no percussion tenderness over the sacrococcygeal
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region. After multidisciplinary consultation, the patient was informed
of the high risk of surgery, including potential intestinal and bladder
injury, and the possibility of performing intestinal and renal fistula
surgery, ablation therapy may carry risks of tumor rupture and bleeding,
and injury to the intestines and bladder. The patient strongly refused
surgery and ablation therapy, requesting conservative treatment. After
ruling out contraindications to chemotherapy, the patient underwent
three cycles of systemic chemotherapy with the TC regimen (paclitaxel
injection 260mg + carboplatin injection 500mg) on September 5,
September 26, and October 23, 2023. The tumor size decreased from
99mmx88mmx116mm to 69.2mmx57.8mmx75.4mm (Figures 2A, B).

On November 12, 2023, the patient’s liver function showed
significant abnormalities (Alanine transaminase (ALT): 47.7 U/L;
Aspartic amino transferase (AST): 32.8 U/L;CTCAE version 5.0:
Grade 1 hepatotoxicity) and she could not receive the fourth cycle of
chemotherapy as scheduled. After discussion and with the patient’s
consent, the treatment plan was changed to HIFU treatment and
liver protection treatment, waiting for the opportunity for
chemotherapy. From November 13 to November 24, 2023, the
patient underwent nine intermittent HIFU treatments, after which
the blood flow in the pelvic tumor significantly decreased. During
this period, the patient was given liver protection treatment
(silymarin capsules 140mg, bid, orally), and glutathione (1.2g, qd,
intravenous infusion). On December 12, 2023, the patient’s liver
function recovered, and she underwent the fourth cycle of systemic
chemotherapy with the TC regimen (paclitaxel injection 260mg +
carboplatin injection 600mg). On January 5, 2024, the patient’s liver
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FIGURE 2

MRI images of the patient. (A) Tumor volume size of the patient's first MRI after recurrence. (B) Tumor volume size before the first HIFU treatment
after three courses of chemotherapy with TC regimen. (C) Tumor volume size after first HIFU treatment. (D) Tumor volume size after the fourth
course of TC regimen chemotherapy. (E) Tumor volume size after the second HIFU treatment.

function was abnormal again (Alanine transaminase (ALT): 118.6
U/L;Aspartic amino transferase (AST):41.6 U/L;CTCAE version
5.0: Grade 1 hepatotoxicity) and she could not receive the fifth
cycle of chemotherapy as scheduled. From January 8 to January 16,
2024, the patient received eight intermittent HIFU treatments, and
liver protection treatment was continued during the treatment
period. On February 2, 2024, the patient’s liver function
recovered, and she underwent the fifth cycle of systemic
chemotherapy with the TC regimen (paclitaxel injection 270mg +
carboplatin injection 780mg). After 17 HIFU treatments
combined with chemotherapy, the patient’s lesion decreased from
69.2mmx57.8mmx75.4mm to 43mmx33mmx45mm (Figures 2C-E).
The scattered small nodules in the original pelvic cavity disappeared,
the dilation of the upper segment of the original left ureter improved
significantly, the turbidity of the fat space in the original pelvic cavity
and the pelvic effusion disappeared. The edema of the left piriformis
muscle significantly improved. The level of tumor markers gradually
decreased and tended to stabilize. The patient’s abdominal pain
and bloating symptoms disappeared, and she had no other
discomfort. On March 8, 2024, she underwent the sixth cycle of
systemic chemotherapy with the TC regimen (paclitaxel injection
270mg + carboplatin injection 650mg).

On April 22, 2024, a PET/CT scan suggested that the blood flow
signal around the patient’s pelvic mass had significantly decreased,
the mass had basically shown changes after HIFU treatment
(Figure 3), and the patient’s tumor markers (Figure 4) had
steadily decreased and trended toward stabilization. The
treatment effect was satisfactory. The patient was advised to
undergo surgical treatment, but she still refused. The benefit of
immunotherapy for the patient was not evident at present. The
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patient requested regular follow-up, and there were no new lesions
at present. It is recommended to continue regular HIFU
maintenance treatment in the future. The patient is currently
under continued follow-up observation. The disease timeline is
shown in Figure 5.

Methods

In this case, the patient used the yLab Class C Ultrasound
Diagnostic System (Shenzhen Baisheng Medical Equipment Co.,
Ltd) and the HIFUNIT9000 Focused Ultrasound Tumor Ablation
Machine (Shanghai Aishen Technology Development Co., Ltd).
The system consists of a main unit, motor system, control console,
monitoring system, power supply, and water treatment system.

Pre-treatment preparation: The patient was instructed to
abstain from high-protein food the day before the treatment.
Prior to the treatment, the patient was asked to retain a small
amount of urine to fill the bladder. Lactulose oral solution (Beijing
Hanmei, 100ml/bottle) was administered for bowel preparation,
and parecoxib sodium (Dynastat) was administered via
intramuscular injection for analgesia.

During the treatment, phloroglucinol injection was
administered intravenously. The patient was positioned supine,
and the machine located the pelvic tumor. Throughout the
procedure, the treatment intensity and duration were adjusted
according to the patient’s tolerance and the grayscale changes
displayed on the ultrasound.

HIFU is a non-invasive therapeutic technique that does not
require anesthesia, has no incisions, no radiation, and has a quick
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(A-D) Pre-treatment PET/CT: A pelvic soft tissue mass demonstrates heterogeneously intense radiotracer uptake with a maximum standardized
uptake value (SUVmax) of approximately 7.0. The lesion measures approximately 8.7 x 8.3 X 9.0 cm, showing internal necrotic components. The
mass invades the vaginal stump and exhibits ill-defined borders with the rectum and the pelvic segment of the left ureter. (E—H) Post-treatment
PET/CT after 6 courses of chemotherapy and 2 sessions of HIFU therapy.A hypodense lesion is noted in the left pelvis, measuring approximately
4.7 cm X 3.1 cm. It demonstrates ill-defined borders with the vaginal stump and has an SUVmax of 2.8.

recovery time. It is primarily used for solid tumors that can be
observed under ultrasound, such as adenomyosis, uterine fibroids,
osteosarcoma, most primary and metastatic liver tumors, etc.

The principle of HIFU treatment involves precise positioning and
outlining of the tumor under ultrasound, scanning point by point and
layer by layer according to the shape of the tumor. Utilizing the
penetrative and focusing properties of ultrasound waves, the waves
emitted from outside the body are focused on the pathological tissue
inside the body. Through thermal effects, mechanical effects, and
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cavitation effects, the temperature of the pathological tissue rises
instantly to 60-100°C, causing instantaneous irreversible cell death
and coagulative necrosis of the tumor tissue. HIFU therapy achieves
precise targeted ablation through real-time ultrasound imaging
guidance. A 3.5-5 MHz dual-mode transducer enables
simultaneous visualization of anatomical structures and blood flow
distribution. During treatment, gray-scale ultrasound images are
acquired at 5-minute intervals, monitoring echo intensity
enhancement in the target area (indicative of coagulative necrosis).
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The trend chart of various tumor indicators. (A) First HIFU treatment; (B) Second HIFU treatment.
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Time-event axis.

Initial acoustic intensity is set at 300-500 W/cm?, with
dynamic adjustments to pulse frequency (0.8-1.2 MHz) and duty
cycle (30-50%) based on real-time thermal curves (target
temperature 55-65°C). Should acoustic pathway deviation occur
(e.g., due to bowel gas interference), immediate treatment
suspension and refocalization of the acoustic energy are
implemented (Figure 6).

In the assessment of patient adaptability, it is mainly based on the
evaluation of subjective symptoms such as lumbosacral pain, abdominal
pain, lower - limb neuralgia, and local skin burning during the patient’s
treatment. If the pain and skin burning are obvious, the energy intensity
should be reduced or the treatment should be suspended. Regarding the
efficacy assessment, there are currently no precise treatment standards
and data. Our clinical experience mainly relies on ultrasound
examinations. A better treatment effect is indicated when, in
comparison before and after treatment, the area of enhanced echo of
the mass under ultrasound exceeds 90%, the closure rate of small blood
vessels exceeds 70%, and the reduction rate of blood - flow signals in
local thick blood vessels exceeds 50%.

Discussion

ESS is a relatively rare gynecological malignancy. The treatment
of recurrent ESS remains a challenge. The 5-year survival rate for
patients with stage I and II low-grade ESS reaches 90%, while for
patients with stage IIT and IV, it is about 50% (9). Previous studies
have reported recurrence rates of LGESS ranging from 10% to 76%,
which may be due to its characteristic of recurrence over 5 years,
resulting in a large difference in recurrence rates (11). At present,
the main treatment option for endometrial stromal sarcoma is
surgery, supplemented by chemotherapy, radiotherapy, anti-
estrogen therapy, etc. Due to the many adverse reactions of
radiotherapy and chemotherapy and the inability to continue, for
patients who cannot undergo surgery, ablation therapy can be
chosen. However, the ablation process requires puncture, which
may damage surrounding organs such as the intestines and bladder.
The puncture process may lead to the risk of tumor rupture,
bleeding, and tumor dissemination and metastasis. Therefore, the
treatment of recurrent ESS remains a significant challenge.
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FIGURE 6
Schematic diagram of HIFU operation principle.
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In this case, the patient was diagnosed with LGESS and experienced
rapid recurrence shortly after surgery. After multiple rounds of
combined radiotherapy and chemotherapy, the condition stabilized
and regular follow-up examinations were scheduled. In August 2023,
the tumor recurred again, measuring approximately 10cm, with
multiple pelvic metastases and right sacral bone metastasis. The
tumor was suspected of locally recurring and possibly invading the
rectum, colon, bladder, and left ureter. Unable to accept the risks of
surgery, the patient strongly refused surgical intervention and
underwent chemotherapy. After three cycles of chemotherapy, the
tumor size decreased from 99mmx88mmx1l6mm to
69.2mmx57.8mmx75.4mm. However, due to abnormal liver function,
the fourth cycle of chemotherapy could not be administered. After
evaluation and discussion, HIFU treatment was added, liver protection
treatment was administered during this period, and the timing for
chemotherapy was awaited. After 17 sessions of HIFU treatment
combined with systemic chemotherapy, the tumor size reduced from
69.2mmx57.8mmx75.4mm to 43mmx33mmx45mm, no longer
compressing the bladder and ureter, the scattered small nodules in
the pelvic cavity disappeared, the level of tumor markers gradually
decreased and stabilized, and the patient’s abdominal pain and bloating
disappeared, significantly improving her quality of life. HIFU treatment
during periods when chemotherapy cannot be administered can
continuously inhibit tumor progression, preventing tumor
enlargement during periods without chemotherapy. Combined liver
protection treatment is beneficial for the recovery of liver function,
allowing the patient to receive chemotherapy on schedule.

HIFU is a novel non-invasive thermotherapy that can cause
coagulative necrosis of tumor tissue. It has the advantages of high
repeatability, uniform heat diffusion, virtually painless treatment
process, no external injuries, rapid postoperative recovery, and no
impact on patient function. It has been proven effective and safe in
the treatment of solid tumors such as uterine fibroids, breast cancer,
and pancreatic cancer. A prospective study suggested that the
effectiveness of HIFU in treating uterine fibroids was higher than
surgical treatment, and it was safer (12). MR-HIFU treatment
significantly alleviates the clinical symptoms caused by uterine
fibroids and effectively reduces the tumor volume (13). In
addition, a retrospective review findings of HIFU treatment was
more effective than secondary myoma resection, with fewer side
effects, longer asymptomatic periods, and lower risk of re-
intervention (14). A systematic review study showed that patients
with postoperative pathological diagnosis of uterine sarcomas
(including LGESS and uterine leiomyosarcoma) do not cause
histological dissemination of sarcoma after receiving HIFU
treatment (15). HIFU treatment has therapeutic effects on uterine
fibroids and sarcomas, and also has good effects in the treatment of
other pelvic tumors. Zhong Q,etc (16), retrospectively analyzed 153
patients with cervical cancer residual or recurrent after
chemoradiotherapy (CRT) who received HIFU treatment from
2010 to 2021. The results showed that HIFU can significantly
reduce the size of residual or recurrent lesions, improve local
control rates and survival time, and even elderly or physically
poor patients can tolerate it, providing a supplementary treatment
method for cervical cancer patients with adverse reactions after
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chemotherapy. Lei T,etc (17), treated 8 patients with recurrent
ovarian cancer or metastatic pelvic tumors with HIFU, and found
that the pain relief rate was 60%, short-term quality of life
improved, and adverse reactions after treatment were mild.
Studies have shown that HIFU treatment of pelvic metastatic
tumors or recurrent ovarian cancer is feasible and without serious
complications. HIFU treatment is also used in breast cancer and
pancreatic cancer. Zulkifli D,etc (18), included nine studies and
found that HIFU can induce coagulative necrosis of local breast
cancer tumors, with small side effects, good cosmetic effects, and a
5-year disease-free survival rate of more than 90%. A meta-analysis
evaluated 19 studies with a total of 939 patients, and the results
showed that HIFU treatment combined with drug treatment of
pancreatic cancer can relieve patients’ chronic pain, the incidence of
adverse events is low, and it can improve the overall survival rate
(19). In the treatment of prostate cancer, HIFU treatment also plays
a role. Parry MG reported that after 1381 patients with prostate
cancer received HIFU treatment, the tumor effectively shrank, and
urinary and reproductive functions were preserved, with little
impact on the quality of life (20).

HIFU is currently used for pelvic and abdominal solid tumors,
and the treatment effect is good, patients with residual or recurrent
tumors in the pelvis after radiotherapy and chemotherapy also
benefit. These research results provide evidence for us to choose to
add HIFU in this case, clinical data also prove that HIFU combined
with chemotherapy for the treatment of recurrent low-grade
endometrial stromal sarcoma is effective and safe.

During HIFU treatment, different tumor sizes and locations are
associated with distinct side effects and limitations. To enhance
treatment safety, prior to treatment, it is necessary to improve the
patient’s nutritional status, control underlying diseases, and
establish psychological expectations. Additionally, multi - modal
imaging techniques should be employed to precisely locate the
lesion. During the treatment, parameters should be dynamically
adjusted based on the tumor size, depth, blood supply
characteristics, and the patient’s adverse reactions. This ensures
effective ablation of the tumor tissue while minimizing damage to
the surrounding normal tissues to the greatest extent. After the
treatment, measures should be taken as early as possible to address
adverse reactions. Hierarchical interventions should be carried out
for common problems such as fever, pain, and skin damage.
Meanwhile, psychological counseling should be provided to
improve the patient’s treatment experience.

The combined HIFU therapy has gained increasing attention,
and changes in immune-related markers and tumor biomarkers
may be associated with treatment prognosis. Dong S et al. compared
pancreatic cancer patients receiving HIFU-priority versus
chemotherapy-priority regimens in combined therapy and found
that the HIFU-priority group demonstrated significantly improved
overall survival (OS) (HR = 0.38) (21). Additionally, patients with
normal CRP and CA125 levels exhibited longer survival. Elevated
neutrophil-lymphocyte ratio (NLR) and low lymphocyte-monocyte
ratio (LMR) were associated with poor prognosis. Wang R et al.
found that patients positive for CD133 and other stem cell markers
may benefit from targeted nanocarrier-based therapies combined
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with HIFU (22). HIFU may enhance chemotherapeutic efficacy by
creating a tumor hypoxic environment that activates hypoxia-
inducible factors (HIFs), thereby improving the delivery efficiency
of chemotherapeutic agents such as doxorubicin. Concurrently,
HIFU promotes CD4+/CD8+ lymphocyte infiltration into tumor
tissues (23, 24). HIFU activates systemic immune responses by
releasing tumor antigens and danger signals, with CD8+
lymphocyte infiltration correlating with regression of distant
untreated lesions (24, 25). Patients with higher baseline tumor-
infiltrating lymphocyte (TIL) levels are more suitable for HIFU
combined with PD-1 inhibitors and chemotherapy (26, 27).

In terms of pathological characteristics, the combination of
HIFU and chemotherapy significantly controls the growth of
recurrent lesions in mucinous ovarian cancer (28). In advanced
gastric cancer (GC) patients, HIFU-priority regimens following
neoadjuvant chemotherapy significantly improve OS, particularly
in stage III patients (HR = 1.61) (29). Multimodal imaging serves as
the gold standard for post-HIFU chemotherapeutic response
evaluation, with contrast-enhanced CT/MRI clearly delineating
tumor anatomy and Extent of necrosis (30, 31). Molecular
ultrasound imaging dynamically monitors tumor vascular
characteristics (via the QuanTAV index), predicting treatment
sensitivity (32). Translucent texture changes in ultrasound/MRI
follow-up of muscularis lesions indicate therapeutic efficacy,
whereas residual enhancing foci warrant caution for recurrence
(33, 34). Future research should prioritize refining a multi-
parameter decision model integrating tumor biomarkers, imaging
features, pathological staging, and immunological status to optimize
HIFU-chemotherapy combination therapy precision.

The main mechanisms by which HIFU combined with
chemotherapy may exert its therapeutic effect are likely related to
the following aspects. First, tumor cells are more sensitive to high
temperatures than normal cells. HIFU destroys tumor tissue
through its thermal effect, inducing apoptosis of tumor cells; the
thermal effect can increase tumor blood flow and enhance the
permeability of the tumor cell membrane, thereby accelerating the
penetration and absorption of chemotherapeutic drugs (21, 35).
Second, after HIFU treatment, tumor cells die and cellular
components enter the bloodstream. The expression of a large
number of tumor antigens in the fragments activates the immune
system’s anti-tumor response. Third, some studies suggest that
HIFU treatment can change the tumor’s resistance to
chemotherapy, increasing the sensitivity of tumor cells to
chemotherapeutic drugs (36, 37). The anti-tumor mechanism of
HIFU treatment is still under research, especially the impact on the
immune system which requires further exploration.

While offering the advantage of non-invasiveness, HIFU
possesses significant limitations in clinical application. Its
efficacy is constrained by tissue acoustic properties; it cannot
effectively penetrate gas-containing organs (e.g., lungs) or bone,
limiting its use for tumors in locations like the thorax or
intracranial cavity. Furthermore, HIFU application is highly
dependent on specific tumor characteristics: size, well-defined
margins, and proximity to critical vasculature or nerves. Tumors
that are excessively large or unfavorably located pose procedural
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risks, including potential damage to adjacent structures such as
bowel loops or nerves.

Additionally, real-time monitoring during treatment and
accurate post-procedural efficacy assessment remain challenging.
The inability to obtain tissue samples for histopathological
confirmation necessitates reliance on post-treatment imaging
follow-up for evaluating response. Procedural success heavily
depends on operator expertise, resulting in a steep learning curve.
Crucially, HIFU primarily ablates localized tumor tissue; it does not
target systemic tumor dissemination via hematogenous spread,
lymphatic metastasis, or distant seeding. Therefore, HIFU must be
integrated with systemic therapies and serves as an effective adjunct
to, rather than a replacement for, conventional cancer treatments.

Conclusions

In conclusion, this case demonstrates that HIFU combined with
chemotherapy is effective in treating recurrent endometrial stromal
sarcoma. This combined treatment provides a new option for patients
who refuse secondary surgery or cannot tolerate it. We hope that more
clinical research and data will confirm its effectiveness and safety in the
future, and further explore its mechanism of action in endometrial
stromal sarcoma, especially its impact on immune function and the
mechanism of action in increasing sensitivity and enhancing efficacy.
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