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Editorial on the Research Topic

Deep learning for medical imaging applications

There is substantial scientific interest in leveraging artificial intelligence (AI),

particularly deep learning (DL), for radiological imaging, as these methods are driving

significant advancements in disease detection, diagnostic accuracy, and treatment

planning (Rubin, 2019). Over the past decade, annual publications on AI in radiology

have surged seven-fold, with MRI and CT dominating the field of data acquisition

techniques and neuroradiology leading in contributions, followed by musculoskeletal,

cardiovascular, breast, urogenital, thoracic, and abdominal subspecialties (Pesapane et al.,

2018). AI has evolved into numerous practical tools with significant clinical impact.

Modern systems largely depend on artificial neural networks (ANNs) inspired by brain

circuitry, including Convolutional Neural Networks (CNNs), recurrent models, and

newer transformer architectures. These approaches achieve high performance across MRI,

CT, PET, and ultrasound data, uncovering subtle diagnostic features beyond human

perception and supporting earlier disease detection and more efficient clinical workflows

(Perez-Lopez et al., 2024). As datasets grow and computational frameworks mature,

DL continues to reshape the future of precision medicine. Ongoing challenges include

model interpretability, generalizability, and unbiased clinical deployment, but the field is

rapidly progressing toward robust, trustworthy, and clinically integrated AI systems (Yang

et al., 2024). Despite strong research potential on AI, its real-world clinical deployment

remains limited, as effective integration into healthcare requires coordinated efforts among

stakeholders and careful resolution of ethical challenges (Yang et al., 2024; Saw and Ng,

2022).

Gabriel et al. explored the critical challenge of integrating AI into patient monitoring

to support continuous, real-time clinical assessment. Developed by LookDeep Health, the

system showed strong performance in object detection and patient-role classification. Their

study demonstrated the feasibility of computer vision as a core technology for passive,

uninterrupted patient monitoring within operational hospital environments. Performance

evaluation showed high accuracy in both object detection and patient-role classification.

Using this platform, the investigators compiled a substantial dataset comprising computer-

vision, derived predictions from more than 300 high-risk fall patients, totaling over 1,000

monitored patient-days.
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Abulajiang et al. explored important insights into the

association between age at menopause and the risk of major

gynecologic malignancies, including cervical, ovarian, and uterine

cancers. Using restricted cubic spline (RCS) regression models,

the study rigorously characterized non-linear relationships between

menopausal age and subsequent cancer risk. The findings

suggest that menopausal age may serve as a meaningful clinical

indicator, with potential value in refining individualized cancer risk

assessment and informing personalized screening strategies.

Chen, Han et al. conducted a systematic review and meta-

analysis evaluating the prognostic significance of growth pattern-

based grading inmucinous ovarian carcinoma (MOC). The analysis

indicates that expansile MOC is associated with more favorable

outcomes, whereas infiltrative MOC correlates with advanced

disease and poorer prognosis. The findings further underscore the

importance of complete surgical staging for infiltrative MOC, while

suggesting that comprehensive staging may be optional in patients

with early stage expansile MOC.

Li, Ding et al. investigated radiomic features derived from

ultrasound imaging and developed an externally validated

predictive model integrating clinical variables with ultrasound-

based radiomics to assess residual tumor status in patients

with advanced epithelial ovarian cancer. The combined model

demonstrated superior performance in preoperatively identifying

patients likely to achieve complete resection of all visible disease

and exhibited stronger generalizability compared with models

based solely on clinical or radiomic features.

Yang et al. presented a comprehensive review of recent advances

in the application of AI for the early screening and diagnosis of

thyroid diseases. The authors summarized progress across multiple

domains, including thyroid pathology and ultrasound-based

assessment, and highlight emerging trends in AI-driven clinical

decision support. The review further emphasized the potential

of integrated AI frameworks that combine ultrasound imaging

with clinical data to improve diagnostic accuracy for thyroid

cancer and to enable more precise prediction of postoperative

survival outcomes.

Chen, Liu et al. introduced a novel multi-class brain tumor

classification model, EnSLDe, designed to capture both short-

range and long-range dependencies in neuroimaging data. The

architecture comprised three key components: a Feature Extraction

Module (FExM), a Feature Enhancement Module (FEnM), and a

ClassificationModule. Evaluation on two publicly available datasets

demonstrated excellent performance, underscoring the model’s

ability to effectively integrate multi-scale feature dependencies and

thereby enhance brain tumor classification accuracy.

Ma et al. validated a DL signature for non-invasive

prediction of spread through air spaces (STAS) in clinical

stage I lung adenocarcinoma and compared its performance with

a conventional clinical-semantic model. The Swin Transformer-

based signature demonstrated superior predictive accuracy,

outperforming traditional approaches. This end-to-end DL

framework shows strong potential as a reliable tool for estimating

STAS preoperatively, providing valuable guidance for surgical

planning and supporting more informed decisions regarding

adjuvant therapy selection in early-stage disease.

Han et al. developed a radiomics nomogram integrating

chest CT features with the ILD-GAP index to improve clinical

management of rheumatoid arthritis-associated interstitial lung

disease (RA-ILD). CT scans were retrospectively analyzed and

staged using ILD-GAP. The model demonstrated strong accuracy

in identifying low-risk RA-ILD patients. These findings suggest that

this non-invasive, quantitative tool may enhance clinical decision-

making by enabling more precise risk stratification and supporting

individualized management strategies for RA-ILD. This integrated

approach offers added clinical value for patient care.

VanBerlo et al. investigated a self-supervised learning (SSL)

approach to address the scarcity of labeled data in medical imaging

by leveraging representations learned from unlabeled images. Their

findings showed that constructing positive pairs from nearby

frames within the same video improves performance compared

with pairs derived from the same image, although optimal IVPP

hyperparameters vary across downstream tasks. Notably, SimCLR

consistently achieved top performance for key B-mode and M-

mode lung ultrasound tasks, suggesting that contrastive learning

may be better suited than non-contrastive methods for ultrasound

imaging applications.

Saavedra et al. developed a novel two-step DL framework

to automate the assessment of supraspinatus fatty infiltration

in shoulder MRIs. Their method sequentially employs a U-Net

architecture to segment the muscle’s region of interest, followed

by a VGG-19 network to perform binary classification based on

Goutallier’s scale. Utilizing transfer learning on a dataset of 606 T2-

weighted images, the study reported robust performance, achieving

a segmentation Dice score of 0.94 and a classification AUROC of

0.99. This approach demonstrates the feasibility of fully automating

the diagnostic workflow, significantly reducing the reliance on

time-consuming manual segmentation by radiologists.

Li, Chen et al. proposed UnetTransCNN, a hybrid architecture

designed for 3D medical image segmentation that effectively

integrates CNNs with Transformers. Addressing the limitations of

prior sequential fusion models, UnetTransCNN employs a parallel

design where a CNN-based module captures local details while a

Transformer-based module, enhanced with an Adaptive Fourier

Neural Operator, captures global contextual dependencies. The

model utilizes adaptive global-local coupling units to dynamically

fuse features across multiple scales. Validated on the BTCV

and MSD datasets, UnetTransCNN demonstrated state-of-the-art

performance, significantly outperforming existing hybrid baselines

like TransUNet and CoTr in segmenting both large and small

anatomical structures.

Rabah et al. introduced a Vision Transformer (ViT) framework

for automated detection of diabetic peripheral neuropathy (DPN)

using corneal confocal microscopy (CCM) images. To address

the subjectivity and labor-intensive nature of manual assessment,

they developed a streamlined ViT model that classifies images

as healthy or DPN without requiring pixel-level segmentation.

Using a dataset of 692 images, the model achieved state-of-the-art

performance (AUC 0.99; F1-score 95%), outperforming CNNs such

as ResNet50. Grad-CAM–based interpretability confirmed that the

model accurately focused on corneal nerve fiber loss as the key

discriminative feature.
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Luo et al. introduced a DL-driven data-enhancement

framework that sharpens the classification of endometrial lesions

in ultrasound imaging. Drawing on 1,875 images from 734 patients

across six hospitals, the team couples feature-space anomaly

detection for image-quality cleaning with a clustering-based

soften-label strategy. After benchmarking multiple CNNs and

Vision Transformers, they assembled an ensemble of ResNet50,

DenseNet169, DenseNet201, and ViT-B. This model delivers

0.809 accuracy and a 0.911 macro-AUC, markedly outperforming

baseline CNNs and demonstrating how targeted data curation can

meaningfully elevate diagnostic performance.

Liu et al. investigated the impact of AI-guided MRI instance

segmentation on laparoscopic myomectomy, with particular focus

on broad-ligament fibroids, which are challenging due to their

proximity to critical pelvic anatomy. The DL model segmented

fibroids, uterine wall, and uterine cavity on preoperative MRI. In a

randomized cohort of 120 patients, AI assistance significantly

reduced operative time (118 vs. 140min), intraoperative

blood loss (50 vs. 85mL), and improved early postoperative

recovery. The authors conclude that millimeter-level anatomical

mapping can substantially enhance surgical precision in complex

gynecologic procedures.

Xiong et al. explored the anticancer actions of 6-gingerol in

SKOV3 ovarian carcinoma cells, revealing a targeted apoptotic

mechanism. The compound suppressed clonogenic growth

and triggers caspase-dependent apoptosis while selectively

downregulating the transcription factor Gli3, independent of

Bcl-2 family alterations. Notably, 6-gingerol robustly elevated

miR-506, typically diminished in ovarian tumors and miR-506

overexpression itself reduces Gli3 and promotes apoptosis.

Blocking miR-506 reversed these effects, supporting a model in

which 6-gingerol activated a miR-506/Gli3 axis, highlighting its

therapeutic promise.

Xie et al. conducted a systematic literature review, spanning

the last decade, on the application of machine learning (ML)

and DL techniques to psoriasis image analysis. Fifty-three

articles were retrieved from major publication repositories (WoS,

PubMed, and IEEE Xplore) addressing the problems of lesion

localization, lesion recognition, and severity assessment. The

authors evaluated commonly used public datasets, summarized

prevailing ML/DL architectures and their limitations, and

identified persistent challenges, including dataset heterogeneity

and limited interpretability. They also outlined emerging trends

and proposed future research directions to advance automated

psoriasis assessment.

Chen, Shang et al. presented a case study of a patient with

recurrent low-grade endometrial stromal sarcoma (LGESS) who

refused standard surgery or ablative treatment. After discontinuing

chemotherapy due to impaired liver function, the patient was

administered high-intensity focused ultrasound (HIFU) together

with chemotherapy, which resulted in a significant reduction in

tumor volume, inhibition of its progression, and restoration of

liver function. This result suggests that HIFU-based combination

therapy may represent a valid option for metastatic LGESS or for

patients unsuitable for surgery, particularly when integrated with

real-time monitoring and precise post-treatment assessment.

Overall, this compilation demonstrates the researchers

collectively push forward the development of advanced deep-

learning models, reflecting their strong commitment to improving

accuracy, reliability, and impact in medical imaging applications.
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Continuous patient monitoring
with AI: real-time analysis of
video in hospital care settings

Paolo Gabriel*, Peter Rehani, Tyler Troy, Ti�any Wyatt,

Michael Choma and Narinder Singh

Department of R&D, LookDeep Health, Oakland, CA, United States

Introduction: This study introduces an AI-driven platform for continuous and

passive patient monitoring in hospital settings, developed by LookDeep Health.

Leveraging advanced computer vision, the platform provides real-time insights

into patient behavior and interactions through video analysis, securely storing

inference results in the cloud for retrospective evaluation.

Methods: The AI system detects key components in hospital rooms, including

individuals’ presence and roles, furniture location, motion magnitude, and

boundary crossings. Inference results are securely stored in the cloud for

retrospective evaluation. The dataset, compiled with 11 hospital partners,

includes over 300 high-risk fall patients and spans more than 1,000 days of

inference. An anonymized subset is publicly available to foster innovation and

reproducibility at lookdeep/ai-norms-2024.

Results: Performance evaluation demonstrates strong accuracy in object

detection (macro F1-score = 0.92) and patient-role classification (F1-score

= 0.98). The system reliably tracks the “patient alone” metric (mean logistic

regression accuracy = 0.82 ± 0.15), enabling detection of patient isolation,

wandering, and unsupervised movement-key indicators for fall risk and adverse

events.

Discussion: This work establishes benchmarks for AI-driven patient monitoring,

highlighting the platform’s potential to enhance patient safety through

continuous, data-driven insights into patient behavior and interactions.

KEYWORDS

artificial intelligence, medical imaging, computer vision, patient monitoring, RGB video,

deep learning, healthcare analytics

1 Introduction

In hospitals, direct patient observation is limited–nurses spend only 37% of their

shift engaged in patient care (Westbrook et al., 2011), and physicians average just 10

visits per hospital stay (Chae et al., 2021). This limited interaction hinders the ability to

fully understand patient behaviors, such as how often patients are left alone, how much

they move unsupervised, and how care allocation varies by time or condition. Virtual

monitoring systems, which allow remote patient observation via audio-video devices, have

improved safety, particularly for high-risk patients (Abbe and O’Keeffe, 2021).

Artificial Intelligence (AI) is transforming healthcare by enhancing diagnostic

accuracy, streamlining data processing, and personalizing patient care (Davenport and

Kalakota, 2019; Davoudi et al., 2019; Bajwa et al., 2021).While AI has found success in tasks

like surgical assistance (Mascagni et al., 2022) and diagnostic imaging (Esteva et al., 2021),

patient monitoring represents a critical frontier. Unlike these tasks, continuous patient

monitoring involves real-time video analysis over extended periods, requiring AI systems
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to process data efficiently and extract actionable insights spanning

days, like day-over-day movement (Parker et al., 2022).

Continuous monitoring enhances safety and enables the

detection of risks often missed during periodic assessments. For

example, trends like delirium fluctuate throughout the day, but

infrequent observations make these patterns hard to capture

(Wilson et al., 2020). Similarly, patients occasionally leave their

beds unattended—a key fall risk—yet monitoring every instance

in real-time remains challenging. A robust computer vision-based

system can provide immediate, context-aware insights into patient

behavior (Chen et al., 2018), caregiver interactions (Avogaro et al.,

2023), and room conditions (Haque et al., 2020). Such systems

surpass traditional intermittent observation methods by detecting

subtle patterns that inform care decisions (Lindroth et al., 2024).

However, achieving scalability, transparency, and adaptability

in continuous monitoring systems presents significant challenges.

These include efficiently processing video data at higher frame-

rates (Posch et al., 2014), ensuring privacy compliance (Watzlaf

et al., 2010), and adapting to dynamic hospital settings with

varying lighting, camera angles, and patient behaviors. Addressing

these technical and operational challenges is critical for AI-driven

monitoring systems to gain acceptance and deliver meaningful

outcomes, such as reducing falls and other preventable harms.

To bridge these gaps, this research presents a novel AI-

driven system for continuous patient monitoring using RGB video

(Figure 1), developed collaboratively with industry and healthcare

providers. The LookDeep Health platform aims to enhance

patient care by providing real-time monitoring and producing

computer-vision-based insights into patient behavior, movement,

and interactions with healthcare staff.

This study offers several key contributions:

1. Implementation of advanced computer vision models: our

system utilizes state-of-the-art models for real-time predictions,

including localization of people and furniture, monitoring

boundary crossings, and calculating motion scores.

2. Real-world validation: we rigorously evaluated the system’s

performance in live hospital settings, illustrating its capability

to present care providers with accurate data from continuous

monitoring, and laying the foundation for future AI-enabled

patient monitoring solutions.

3. Dataset development: we developed a comprehensive dataset

encompassing over 300 high-risk fall patients tracked across

1,000 collective days and 11 hospitals, creating a valuable

resource for studying patient behavior and hospital care

patterns. This dataset is publicly available for further research

at https://github.com/lookdeep/ai-norms-2024.

2 Methods

2.1 Study design

The LookDeep Health patient monitoring platform was

deployed across 11 hospitals in three states within a single

healthcare network. The system provides continuous, real-time

monitoring of high-risk fall patients. Data collection adhered

to institutional guidelines and patient consent procedures (see

Research Ethics).

2.1.1 Participants
Patients monitored by LookDeep Health were primarily high-

risk fall patients identified through mobility assessments as part

of standard care protocols. This classification often results in

the patient also being categorized as non-ambulatory during the

inpatient stay (Capo-Lugo et al., 2023).

Data was organized into three subsets:

1. Single-frame analysis: periodic samples from monitoring

sessions were used for training and testing object detectors, with

over 40,000 frames collected to date. Only patients monitored

during the first week of each month were included in the test

set, providing 10,000 frames held out for consistent model

evaluation.

2. Observation logging: ten patients who experienced falls were

selected for additional annotation over a twelve month period

(Figure 2A).

3. Public dataset: over 300 high-risk fall patients were monitored

during a six month period, excluding those monitored for less

than two days (Figure 2B).

As shown in Figure 3, data collection spanned multiple years,

with each subset contributing to the development and validation of

the AI system, with some overlap between subsets.

2.1.2 Patient monitoring system overview
The LookDeep Health monitoring system processes video

through a computer vision pipeline to detect, classify, and analyze

key elements within the patient’s room, providing actionable

insights to healthcare staff (Figure 4). Key components include:

1. Video data capture and preprocessing: video data is captured at

1 frame per second (fps) by LookDeep Video Unit (LVU) devices

deployed in patient rooms (Figure 5A). Data is preprocessed to

reduce bandwidth and enable efficient analysis.

2. Object detection and localization: a custom-trained model

detects key objects (“person”, “bed”, “chair”) and localizes them

with bounding boxes.

3. Person-role classification: detected “person” objects are further

classified as “patient”, “staff”, or “other” using the same

object detector model, by augmenting labels with role-specific

information.

4. Motion estimation: dense optical flow estimates motion

between consecutive frames, enabling activity tracking in

specific regions (e.g. scene, bed, safety zone).

5. Logical predictions: high-level predictions (e.g. “person alone”,

“patient supervised by staff”) are derived by applying rules to

detection and motion data, with a 5-second smoothing filter to

mitigate detection errors.

Inference results, including object detections, role

classifications, motion estimation, and logical predictions, are

securely stored in a Google cloud database for further analysis (e.g.
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FIGURE 1

Illustrative workflow of the lookdeep health AI-driven patient monitoring platform. The system captures video from a hospital room using mounted

cameras and processes each image through a series of computer vision modules. The output is presented as real-time insights for healthcare sta�.

trend analysis). Anonymized frames are stored at regular intervals

for quality assurance and model improvement.

2.1.3 Data anonymization
To ensure patient privacy in accordance with the Health

Insurance Portability and Accountability Act (HIPAA) and

institutional guidelines, all video data was processed to remove

identifiable information. For training purposes, frames were face-

blurred using a two-step procedure to maintain privacy while

preserving relevant scene context:

1. Manual labeling: faces were manually labeled on fully-blurred

images to create bounding boxes without exposing identifiable

features.

2. Local Gaussian blurring: a strong Gaussian blur was applied

to labeled facial regions, preserving scene context while

anonymizing identities.

This approach was chosen to ensure privacy while balancing

effective model training and validation. Additional obfuscation

methods, such as pixelation or complete occlusion of faces,

were considered but deemed not necessary for the intended use

case. Data handling was conducted under a Business Associate

Agreement (BAA) with participating hospitals.

2.2 Data collection

2.2.1 Video patient monitoring
LVU devices capture continuous video in RGB or near-

infrared (NIR) mode, depending on ambient lighting. Each device

is equipped with a CPU and Neural Processing Unit (NPU),

capable of processing data at 1fps to minimize latency and reduce

cloud processing requirements. Inference results are uploaded to

a secured cloud database (Google BigQuery), with blurred frames

stored separately for manual annotation. Camera placement varied

based on room layout and clinical workflows (Figure 5B).

2.2.2 Annotations
2.2.2.1 Frame-level labels

A professional labeling team manually annotated over 40,000

images with object bounding boxes, object properties, and scene-

level tags (Figure 6). Objects were annotated with 2-d bounding

boxes classed as “person”, “bed”, or “chair”, and each “person”

bounding box was also assigned a role of “patient”, “staff”, or

“other”. Scene level attributes were added for whether the patient

was “in bed” or “not in bed”, whether the camera was operating

in IR mode, and whether the scene included “exception cases”

in comparison to stated norms. Exception cases were applied in

any instance of labeler uncertainty (e.g. difficult to see person,

patient in street clothes, etc.); in instances of multiple exception

cases being applicable, a single “frame exception” catch-all was

used. Annotations and quality review were conducted using the

Computer VisionAnnotation Tool (CVAT, Corporation, 2023), and

final QA was conducted using the FiftyOne tool (Moore and Corso,

2024).

2.2.2.2 Observation logs

Blurred video summaries for 10 patients (54 patient-days) were

reviewed to log periods when the patient was alone. Logs included

timestamps with 1-2 second precision (Figure 6), and underwent

secondary quality assurance to provide feedback to labelers and fill

out any missing periods.

2.3 Computer vision predictions

The LookDeep Health pipeline processes video data using

custom-trained models to detect objects, classify person-role, and

estimate motion at 1 fps. Preprocessing compresses frames to

JPEG at 80% quality and resizes to a resolution of 1088x612 to

reduce bandwidth consumption while still meeting downstream

model requirements. Image processing is conducted usingOpenCV

(Bradski, 2000) and RKNN-toolkit (AI Rockchip, 2024).
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FIGURE 2

Overview of patient demographics. (A) Observations subset, comprising 10 patients, 54 patient-days, and 3 hospitals. (B) Released dataset,

comprising 387 patients, 1,466 patient-days, and 11 hospitals. Left: Pie charts showing the distribution of hospitals by size, where hospitals with an

average daily census of 150+ patients are shown in red, and smaller hospitals are shown in blue. Center: Heat maps showing patient age distribution

by gender. Right: Box plots showing patient length of monitoring. Central line represents the median, box edges indicate the 25th and 75th

percentiles, and whiskers extend to the most extreme data points within 1.5 times the interquartile range. The points represent outliers beyond this

range. The y-axis corresponds to hospital IDs, so Hospital 3 is absent from the top-row dataset but included in the bottom-row dataset. The released

dataset shows a broader demographic and extended data duration compared to the observations subset.

1. Object detection (person/bed/chair): based on the YOLOv4

architecture (Bochkovskiy et al., 2020), the model identifies key

objects in each frame, including “person”, “bed”, and “chair”.

Training models were initialized using COCO weights (Lin

et al., 2014), then fine-tuned on labeled data. Input images were

down-sampled to 608× 608 with OpenCV’s cubic interpolation

method to fit model requirements. Since the models operate

with a smaller fixed input size, increasing the resolution of input

images would not significantly improve detection performance

unless alternative patch-based approaches were considered.

Additionally, the impact of input size on detection accuracy

has been well-documented in the original YOLOv4 manuscript,

which demonstrated stable performance across various input

sizes. Training was conducted on NVIDIA 3070 GPU, and

models were subsequently converted for execution on the

Rockchip RKNN embedded in the LVU devices.

2. Person classification (patient/staff/other): during object

detector training, bounding box labels were augmented to

classify detected persons by role (“patient”, “staff”, “other”).

Then, at inference time, each “person-” bounding box are

re-labeled as “person”, with the specific role saved in a separate

classification field. Confidence scores for role classifications

are derived by taking the highest detection confidence as the

primary class and distributing residual scores across remaining

classes to indicate potential alternate roles.

3. Optical flow (motion estimation): motion between frames

was estimated using the Gunnar-Farneback dense optical flow

algorithm, which calculates horizontal and vertical displacement

for each pixel (Farnebäck, 2003). Optical flow inputs were

converted to grayscale and down-sampled to 480x270 to ensure

real-time execution. For each region of interest, average motion

magnitude was calculated by averaging horizontal and vertical

flow vectors, providing an indicator of activity intensity. This

estimation does not require training and was implemented using

OpenCV with fixed parameters: pyramid scale (pyr_scale = 0.5),

number of pyramid levels (levels=3), window size (winsize = 15),

number of iterations (iterations=3), size of pixel neighborhood

used to find polynomial expansion (poly_n = 5), and the
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FIGURE 3

Dataset overview and timeline of model updates. Progression of

data collection and model updates for the LookDeep Health

monitoring system. Single-frame analysis data collection spans a

two year period—a broad temporal range for training and validation

of object detection and classification tasks. Observation logging

data, used for trend validation, was collected over a one year period.

The publicly released dataset includes data from a more recent six

month period, representing over 1,000 collective patient days.

Model updates are indicated by numbered points.

standard deviation of the Gaussian used to smooth derivatives

(poly_sigma = 1.2).

2.3.1 Additional components
2.3.1.1 Regions of interest (ROIs)

ROIs, such as “safety zones”, provide contextual boundaries

for monitoring. They are not predictive outputs themselves, but

instead are used to track patient movements and boundary

crossings. The “safety zone” was a polygonal region defined by

the virtual monitor; its pixel mask is generated by expanding

the boundary perimeter by 10% to ensure effective monitoring.

Additional ROIs used by the system include the full scene and the

detected bed.

2.3.1.2 Logical predictions

Logical predictions summarize patient status and interactions.

These predictions were derived from a combination of object

detection and role classification results and smoothed with a 5-

second filter to mitigate intermittent detection errors.

• Person alone: True when the average number of detected

people in the room is less than two.

• Patient alone: True when the average number of detected

people in the room is less than two, and at least one person

is classified as a patient.

• Supervised by staff: True when the average number of

detected people in the room is two or more, and at least one

person is classified as healthcare staff.

2.3.1.3 Trend predictions

Trends provide insights into immediate and long-term patient

activity, aiding in risk identification and care planning. Hourly

trends summarize patient behavior (e.g. “alone” or “moving”) based

on aggregated logical predictions. For each one-hour interval,

predictions were used to calculate the percentage of time the patient

spent in key states like “alone,” “supervised by staff,” or “moving”.

These percentages were then plotted over time to visualize hourly

trends in patient isolation or activity levels throughout the day.

These trends provide a high-level overview of patient behavior,

aiding in the identification of potential risks and informing care

decisions.

2.3.1.3.1 “Assisted” trend predictions

A one-off analysis was conducted to simulate the system’s

performance when one of the predictions was known. The system’s

trend predictions based solely on AI inference were compared

with those generated using a combination of AI inference and

observation logs. For this comparison, “assisted” trends were

created by integrating AI-predicted states for “moving” and

“supervised by staff” withmanually logged periods of “alone” status

from the observation logs. This analysis was conducted across

the multiple patients and hospitals included in the “Observation

Logging” dataset.

2.4 Evaluation

The performance of the AI-driven monitoring system was

assessed through two primary methods: image-level assessment

and comparison against observation logs. In the image-level

assessment, each frame was analyzed against manual annotations

to evaluate the accuracy of the system’s object detection, person-

role classification, and scene interpretation capabilities. In parallel,

observation logs, created from anonymized video summaries of

select patients, were compared against predicted trends to assess the

system’s ability to capture patient behavior patterns.

2.4.1 Frame-level analysis
Each model in the AI system was evaluated independently to

assess its performance in object detection and classification tasks.

Key performance metrics—precision, recall, and F1-score—were

calculated to measure the accuracy and reliability of each model’s

predictions. Precision assessed the proportion of true positives

among all predicted positives, recall measured the ability to identify

all true positives, and the F1-score provided a balanced metric

between precision and recall.

In addition to these direct object detection and classification

tasks, the AI system also generated higher-level, “logical”

predictions derived from these outputs. For example, the prediction

“is patient alone” was inferred based on a combination of object

detection results, such as the absence of healthcare staff within

a defined proximity to the patient. These logical predictions

were treated as classification tasks themselves, with their accuracy

similarly evaluated using precision, recall, and F1-score metrics

based on labeled image data. This multi-layered approach allowed

us to thoroughly validate both the core object detection functions

of each model and the system’s ability to interpret and apply these

outputs to patient monitoring tasks.
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FIGURE 4

Real-time object detection, motion analysis, and patient status monitoring. Top-left: Object detection with bounding boxes identifying key elements

in the scene. Top-right: Segmentation map, where red represents the designated safety zone and green indicates detected motion. Middle: The

“alone” logical trend over time, showing whether the patient was detected alone in the room for every second within the hour. Peaks indicate periods

when the patient was unaccompanied, while lower values indicate caregiver presence. Bottom: The “alone” trend over a 24-hour period, aggregated

for each hour. This visualization highlights patterns in patient supervision throughout the day. The black markers in the middle and bottom rows

correspond to the timestamp of the video frame shown in the top row.

2.4.2 Trend analysis
Trend analysis was conducted by comparing the system’s

inference-derived metrics to ground truth metrics recorded in

observation logs, with both datasets aggregated by patient-day.

Unlike the hourly trends shown in Figure 4, analysis was conducted

at the per-second level to ensure accurate alignment between

AI predictions and observation logs. The primary metric for

this analysis was logistic regression accuracy, which assessed the

AI system’s ability to predict observed behaviors within three

time periods: daytime (6 am to 9 pm), nighttime (9 pm–6 am),

and the full 24-hour period. In cases where only a single class

(e.g. “alone” or “not alone”) was present within a specific time

period, logistic regression was not feasible. Instead, a manual

accuracy score was computed, to allow for consistent accuracy

measurements across all time intervals. This score is defined as

the proportion of matching values between the AI predictions and

ground truth.

Focusing on the “alone” binary behavior trend enables

an assessment of the alignment between AI predictions

and real-world observations. This analysis validated the AI

system’s effectiveness in capturing hourly patient behavior

trends, underscoring its potential utility in real-time

patient monitoring and early detection of deviations from

expected patterns.

2.4.3 Camera position meta-analysis
Since cameras were mounted on mobile carts rather than fixed

positions, there was variability in camera setup across patients and

hospital rooms (Figure 4B). To explore the potential impact of

this variability, labeled bed locations were used to estimate each

camera’s position relative to the hospital bed. Distributions of the

labeled bed area and size within each frame, along with the centroid

location of the bed relative to the camera’s field of view are plotted

in Figure 7. These distributions provide an indirect measure of

camera position.

This exploratory analysis helped identify patterns and

variations in camera setups across different monitoring sessions.

However, this information was observational and used only

to understand positional variability; no specific adjustments

were made during model training or evaluation to account for

different camera positions. The results underscore the robustness

of our models in handling diverse camera perspectives, as the

system maintained consistent detection performance despite

these variations.
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FIGURE 5

Camera setup and example frames. (A) LookDeep Video Unit (LVU), a 6” x 6” device, in various mounting configurations. (B) A 3 × 3 grid of

representative frames captured by the system, showing a diversity of configurations. All images are intentionally blurred to maintain privacy. Each

numbered frame provides a unique example that is found in Figure 7.

3 Results

3.1 Frame-level analysis

3.1.1 Object detection, role identification, and
patient isolation classification

The evaluations demonstrated that the custom-trained

computer vision models perform robustly in real-world hospital

settings, achieving high precision across key object detection

and classification tasks. We compared five production models

alongside a baseline model using an off-the-shelf YOLOv4

configuration (Table 1). Each production model corresponds to

a different release, with progressively larger and more refined

training datasets incorporated over time (Figure 3). This iterative

refinement led to increased model accuracy and adaptability in

real-world hospital settings. To ensure consistency, all frame-level

analysis was conducted on 10,000 frames collected over a two year

period. This representative sample, excluded from model training

and validation, highlights the incremental improvements achieved

by expanding training datasets across model versions.

As newer models were released, the training set was expanded

to include additional annotated data, allowing each successive

model to capture more complex and diverse scenarios encountered

in hospital environments. The most recent fine-tuned model (v5)
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achieved an F1-score of 0.91 for detecting “person”, notably

surpassing the baseline YOLOv4 model score of 0.41 (Table 2).

Across all object classes–including beds, furniture, and other

room elements–the v5 model demonstrated an F1-score of 0.92,

reflecting a high degree of accuracy and consistency across diverse

object types.

In addition to object detection, the system was evaluated on a

three-class person-role classification task, distinguishing between

patients, healthcare staff, and visitors within the camera’s field of

view. The v5 model demonstrated particularly strong performance

for the “patient” class, achieving an F1-score of 0.98, which reflects

FIGURE 6

Manually labeled image with observation log alignment. The bed is

highlighted with a blue bounding box. The patient, identified as a

“Person” with the role “Patient”, is highlighted with a red bounding

box. The associated observation log for “Alone” is shown for

illustrative purposes.

its high accuracy in identifying patients specifically (Table 2).

Accurate person-role classification is essential for monitoring

patient interactions and ensuring appropriate caregiving behaviors,

as it enables the system to capture not only the presence of

individuals but also their roles. Focusing on the “patient” class,

the high F1-score underscores the model’s robustness in tracking

patient activity and interactions, which are critical for effective

continuous monitoring in dynamic hospital environments.

The downstream classification task of identifying whether a

patient was “alone” in the room showed similarly strong results,

with the v5 model achieving an F1-score of 0.92 (Table 2).

This classification task, essential for monitoring patient isolation,

consistently improved with each new production release, as more

comprehensive training data contributed to better model accuracy.

These results confirm the advantage of iterative model refinement

TABLE 1 Performance metrics of successive model versions for object

detection.

Model version Fine-tuning
data size

Object detection (all)

Precision F1

YOLOv4 (baseline) n/a 0.84 0.59

Model v1 (2022 Q1) +700 0.97 0.74

Model v2 (2023 Q2) +2,474 0.98 0.83

Model v3 (2023 Q3) +10,133 0.97 0.83

Model v4 (2024 Q1) +28,914 0.98 0.91

Model v5 (2024 Q2) +34,239 0.97 0.92

Summary of precision and F1-scores across different versions of the LookDeep Health AI

model, highlighting improvements in key tasks as the training data increased. The baseline

YOLOv4 model demonstrates initial performance levels, while successive versions (Models

v1 to v5) show incremental gains in object detection. With each model iteration, higher

precision and F1-scores indicate enhanced detection accuracy and classification reliability,

underscoring the impact of additional data and model refinement on real-time patient

monitoring capabilities. Evaluation was performed on a fixed dataset containing 10k images.

FIGURE 7

Distribution of labeled bed positions relative to the camera. Left: Spatial variability of bed center coordinates. Right: Distribution of bed area vs. bed

angle relative to the camera. Each numbered point is shown in Figure 5B. This highlights the variations in camera perspective and placement across

the study.
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TABLE 2 Performance metrics of successive model versions for object detection (person), role classification, and “patient alone” classification.

Model version Object detection (person) Role classification “Patient alone” classification

Precision F1 (patient F1) (F1)

YOLOv4 (baseline) 0.98 0.41 n/a 0.28

Model v1 (2022 Q1) 0.98 0.85 n/a 0.86

Model v2 (2023 Q2) 0.97 0.89 n/a 0.91

Model v3 (2023 Q3) 0.97 0.86 0.97 0.88

Model v4 (2024 Q1) 0.97 0.91 0.98 0.94

Model v5 (2024 Q2) 0.96 0.91 0.98 0.92

Additional results corresponding to Table 1 are presented here, focusing on object detection of persons, role classification, and “patient alone” classification tasks.

TABLE 3 Performance comparison of models on unblurred vs. face-blurred images across versions.

Model version Evaluation data size Unblurred images Face-blurred images 1 F1

(F1) (F1)

Model v3 (2023 Q3) 2,135 0.81 0.85 +0.04

Model v4 (2024 Q1) 1,809 0.86 0.90 +0.04

Model v5 (2024 Q2) 1,226 0.89 0.91 +0.02

Evaluation of model performance on unblurred and face-blurred images across different versions. The F1-score measures the model’s performance, with the “1 F1” column showing the gap

between unblurred and face-blurred images. A 1 value closer to 0 indicates better consistency in model performance between unblurred and face-blurred images.

and dataset expansion, with each production release yielding

models that are better adapted to the variability and demands of

real-world hospital settings.

3.1.2 Impact of privacy-preserving blurring on
model consistency

The performance consistency of the models across unblurred

and face-blurred images was evaluated using the 1 metric, which

represents the F1-score difference between the two image types

(Table 3). Across all model versions, the 1 values were relatively

small, indicating that face-blurring–a common privacy-preserving

preprocessing step–had minimal impact on model accuracy. For

versions v3 and v4, the 1 value was +0.04, while in v5 it decreased

to +0.02, suggesting improved robustness to blurring as the training

data volume increased.

A smaller 1 value is desirable as it indicates that the

model performs consistently regardless of whether the images are

unblurred or face-blurred. The reduction in 1 for v5 highlights

the value of larger, more diverse training datasets in ensuring that

the models generalize well across different image types. This is

particularly important in hospital settings, where preserving patient

privacy often necessitates the use of face-blurred images. The ability

to maintain high accuracy in such scenarios ensures the system’s

practicality and reliability for real-world deployment.

These results demonstrate that the models not only achieve

high accuracy but also exhibit resilience to variations introduced

by privacy-preserving preprocessing, a key requirement for scalable

applications in healthcare environments.

3.1.3 Object detector performance by IR mode
We analyzed the impact of IR mode on object detection

performance by comparing F1-scores across different model

versions, broken down into all data, IR-on data, and IR-

off data (Figure 8). Results demonstrate a clear trend of

increasing F1-scores with newer model versions across all

conditions. Notably, the performance gap between IR-on and

IR-off scenarios decreases with successive model iterations,

indicating improved model robustness to variations in

lighting conditions.

At baseline, object detection performance in IR-on scenarios

lagged significantly behind IR-off scenarios. However, with the

latest model version, this gap narrowed substantially, suggesting

that additional training data and model refinements have enhanced

the system’s ability to generalize across lighting conditions.

Despite these improvements, it is worth noting that the test set

contains an approximate 25:75 ratio of IR-on to IR-off frames,

whereas the population average is closer to 40:60. This imbalance

may partially account for residual performance differences

and highlights the need for more balanced representation in

future datasets.

These findings underscore the importance of accounting

for lighting variability in real-world hospital environments and

demonstrate the system’s potential to adapt to challenging

conditions such as low-light monitoring.

3.2 Trend analysis

Inference-derived trends for the “patient alone” metric were

compared against observation logs to evaluate the system’s ability

to accurately capture real-world patterns (Figure 9). This trend

analysis utilized data from earlier stages of the project when base

models with lower performance were deployed. Specifically, the

object detectors used for these inferences had an F1-score of

0.85 for “person” detection, which is lower than the performance

of the latest models. Despite this, the analysis showed strong
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FIGURE 8

Object detection F1-score by model version and infrared (IR) mode. Model performance is shown across successive model versions for all data (solid

line), IR-o� data (dashed line), and IR-on data (dotted line). The performance gap between IR-on and IR-o� modes narrows with more recent model

iterations, highlighting increased robustness to varying lighting conditions. Notably, the test set comprises a 25:75 ratio of IR-on to IR-o� frames,

while the population average is closer to 40:60.

alignment with ground truth data, achieving an average logistic

regression/manual accuracy of 0.84 ± 0.13 during daytime, 0.80

± 0.16 at nighttime, and 0.82± 0.15 across all times. These results

highlight the robustness of the AI system in capturing patient

isolation trends, even when using earlier model versions with lower

baseline performance.

This accuracy indicates that, even with slightly reduced

detection precision in the older models, the system could reliably

capture general patterns in patient isolation behavior. The standard

deviation (± 0.15) reflects some variability in accuracy across

different times of day and patient conditions, possibly influenced

by factors such as changing camera angles or environmental

conditions. As shown in the normative hourly trends (Figure 10),

discrepancies between labeled and AI-inferred “alone” data are

more pronounced during nighttime hours, but these differences

have minimal impact on the broader trend patterns. For both

“Alone and Moving” and “Supervised by Staff” metrics, the

AI inferences closely align with label-assisted data, amounting

to an average error of 1–2 min per hour. This consistency

underscores the model’s robustness in capturing meaningful

patient-alone trends and suggests that any nighttime performance

gaps in the “alone” inference do not significantly compromise the

overall accuracy. These results highlight the model’s potential for

improved trend detection as newer, refined models are applied to

subsequent data.

4 Discussion

4.1 Implications for clinical practice

The findings of this study underscore the potential for AI-

enabled patient monitoring systems to enhance clinical practice

through continuous, real-time monitoring. Traditional in-person

observations are limited by the time constraints of healthcare staff,

who spend limited hours directly interacting with each patient. By

providing continuous monitoring, the LookDeep Health platform

enables staff to detect patterns that would otherwise go unnoticed,

such as extended periods of patient isolation, movement patterns

that might indicate a risk of falls, pressure injuries, or irregular

interactions with staff. Real-time alerts based on these observations

could prompt timely interventions, potentially improving patient

safety and outcomes.

Moreover, the data collected by this system can inform

trend analysis on a population level, supporting hospital resource

allocation and staffing decisions. For instance, identifying times

of day when patients are frequently unsupervised could guide

adjustments in staffing or the deployment of additional monitoring

resources to high-risk patients. Beyond staffing, the system’s

insights into patient mobility patterns–such as time spent in bed,

in a chair, or walking around the room–can help identify markers

of successful recovery and readiness for discharge, contributing
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FIGURE 9

Comparison of average minutes alone per hour across all patients, a

typical patient, and an atypical patient. The average minutes patients

spent alone per hour, comparing ground truth (black squares) and AI

inference (red triangles) across three scenarios: all patients (top), a

typical patient (middle), and an atypical patient (bottom). The x-axis

shows the hour of the day, while the y-axis indicates the average

minutes alone per hour. The shaded region represents nighttime

hours (9 pm–6 am). For all patients, AI inference closely aligns with

ground truth during the day but shows less accuracy at night. An

example of a typical and an atypical patient is shown to illustrate the

variability in alone time patterns across individual patients. Unlike

average trends, this atypical patient exhibits an overprediction of

alone time at night, highlighting the need for further model

refinement to capture individual patient behaviors accurately.

to improved patient outcomes. These mobility insights could also

support the development of best practices for post-procedure

mobility, tailored to specific surgeries or treatments, to enhance

patient recovery. Altogether, these data-driven insights promote a

more efficient, personalized approach to patient care, potentially

improving patient satisfaction and clinical outcomes.

4.2 Impact of face-blurring on model
performance

While the evaluation of model performance on both unblurred

and face-blurred images provides valuable insights, it is important

to note that face-blurring is applied only during training and

FIGURE 10

Average trends for all observed patients. Hourly trends are

compared across two metrics: alone and moving (top) and

supervised by sta� (bottom). Fully AI-inferred data (“Inference Only”)

is plotted with red triangles. “Assisted” data (“+Labels”) is plotted with

blue circles—for these data, ground truth “alone” status was used

instead of AI-inference. The x-axis indicates the hour of the day,

while the y-axis shows the average minutes per hour. The shaded

region represents nighttime hours (9 pm–6 am). Although there is a

discrepancy between labeled and inferred data for Alone,

particularly during nighttime hours, the downstream impact on

overall trend accuracy appears minimal (1–2 min per hour).

evaluation phases. In real-world deployment, the model will

encounter unblurred images as it monitors patients in hospital

settings, making this distinction critical to understanding its

practical performance. The small1 values observed across different

model versions indicate that the models have been designed to

handle face-blurred images without significant degradation in

performance. The reduced1 in the latest version (v5), attributed to

increased training data volume, demonstrates improved resilience

to face-blurring. However, further studies are needed to assess

the model’s performance in unblurred scenarios, particularly

in environments where face-blurring images for training and

evaluation is not an option. This approach ensures privacy during

development while maintaining practical deployment fidelity, as

real-time monitoring operates on unblurred frames.

4.3 Variation in camera setup

The LookDeep Health patient monitoring platform was

deployed in real-world hospital settings with cameras mounted

on mobile carts rather than fixed positions, resulting in variation

in camera angles, distances, and perspectives across different

patient rooms. This variability introduced potential challenges in

maintaining consistent object detection and classification accuracy,

as model performance can be influenced by changes in camera field

of view and positioning relative to the bed. Tomitigate these effects,

we conducted a camera position meta-analysis using metadata on

labeled bed area and centroid location to estimate the approximate
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camera placement within each room. Our analysis confirmed that,

despite positional differences, the model consistently achieved

reliable performance across object detection and classification

tasks, demonstrating its robustness to spatial variability. However,

this setup presents limitations in controlling for optimal camera

positioning, a factor that future studies with standardized camera

setups could explore further to minimize variability and enhance

model reliability.

4.4 Nuanced di�erences in time coverage
of analyses

A key aspect of this study is the variation in time coverage

across different datasets, reflecting the evolving nature of data

collection and model validation in real-world hospital settings.

The observation logs dataset, which provided ground truth for

logical trend validation, was collected exclusively in 2023. In

contrast, frame-level annotations for evaluating object detection

and person-role classification were gathered over a more extended

period from 2022 to 2024. Additionally, the publicly released

dataset comprises data collected from a 6 month span across

2024, representing over 1,000 collective patient days across

multiple hospitals.

These differences in collection periods introduce nuances

in interpretation. For instance, frame-level evaluations benefit

from the broader time span, capturing a variety of hospital

conditions and patient behaviors across seasons and changing

workflows. However, trend analyses were constrained to the

observation log time frame, which may limit the ability to

generalize trends across the entire study period. Similarly, the

released dataset reflects data from the latter phase of the study,

aligning with the most refined models but excluding early-stage

model iterations.

These variations in time coverage highlight the need to

contextualize each analysis within its specific time frame. Future

studies could benefit from aligning data collection periods across

all evaluation methods, ensuring that models validated on frame-

level tasks are continuously validated against trend and behavioral

analyses for consistent performance insights over time.

4.5 Challenges and limitations

Several challenges and limitations were encountered in this

study. First, the variability in camera setup, as mentioned earlier,

introduces potential inconsistencies in model performance due to

changing perspectives and distances. While our metadata analysis

mitigated this to some extent, a standardized camera setup would

likely yield more consistent results.

Second, while the LookDeep Health system demonstrated

strong performance in object detection and role classification,

real-time video processing presents computational challenges that

require balancing accuracy and processing speed. Our use of

onboard CPU and NPU on LVU devices provided sufficient

processing capabilities for 1 fps inference; however, the scalability of

such a setupmay be constrained in larger hospital systems requiring

higher frame rates for finer details.

Third, the dataset collected in this study primarily consists

of high-risk fall patients, which may limit the generalizability of

findings to broader patient populations - for example, high-risk

patients exhibit limited mobility compared to other patient groups.

Additionally, the analysis was conducted on older model versions

for some trend analyses, potentially lowering the accuracy of trend

detection. Although model refinements are expected to improve

results, these differences in model versions should be considered

when interpreting the findings.

Lastly, maintaining patient privacy is paramount in

continuous video monitoring systems. While the LookDeep

Health platform anonymizes all video and stores de-identified

data, ongoing attention to data privacy and compliance with

healthcare regulations is essential for future deployments in

clinical environments.

4.6 Suggestions for future research

While this study provides a foundation for understanding

the impact of AI-driven patient monitoring, further research is

warranted to explore additional facets of this technology. Future

studies could investigate:

• Enhanced edge case handling: expanding training datasets

to include more examples of diverse scenarios, such as low-

light conditions and atypical patient behaviors, could improve

model robustness in challenging environments.

• Advanced deep learning techniques: integrating more

sophisticated deep learning architectures like transformer-

based architectures or temporal models could enhance

the detection of subtle anomalies, while adaptive pipelines

could improve real-time robustness in dynamic hospital

environments.

• Refining architectures and guardrails: future work could

involve refining architectures to detect edge cases more

accurately, tracking patterns in prediction errors, and

incorporating confidence-based guardrails to prevent

catastrophic failures. Such guardrails could include alerts

when model confidence is unexpectedly low for consecutive

predictions.

• Higher frame rates and computational scaling: evaluating

the potential for higher frame rates or adaptive frame rate

technology to improve real-time responsiveness, particularly

in high-activity environments.

• Standardization of camera placement: testing standardized,

fixed camera setups across patient rooms aims to minimize

positional variability and improve model consistency.

Although standardization can reduce variability, embracing

the inherent diversity of setupsmay enhancemodel robustness

for real-world applications.

• Expanded patient cohorts: extending the analysis to include a

wider range of patient demographics and conditions to assess

generalizability and adapt the system to diverse populations.

• Interoperability with hospital systems: future iterations of

the system could integrate more seamlessly with hospital
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workflows by automating real-time alerts that directly sync

with electronic health record (EHR) systems. For example,

patient-specific alerts could be tagged to relevant EHR fields,

enabling clinicians to view contextual video data alongside

medical records. Additionally, the system could support

interoperability with existing hospital tools, such as nurse

call systems, to streamline the clinical response to high-risk

situations.

These research directions, alongside continued refinement of

computer vision models and monitoring systems, will be essential

for advancing the practical application of AI in patient monitoring

and driving further improvements in healthcare delivery.

5 Conclusion

AI integration in medical imaging is advancing personalized

patient treatment but still faces challenges related to effectiveness

and scalability. This work demonstrates the potential of computer

vision as a foundational technology for continuous and passive

patient monitoring in real-world hospital environments.

The contributions of this study are two-fold. First, we

introduce the LookDeep Health patient monitoring platform,

which leverages computer vision models to monitor patients

continuously throughout their hospital stay. This platform scales

to support a large number of patients and is designed to handle the

complexities of hospital-based data collection. Using this system,

we have compiled a unique dataset of computer vision predictions

from over 300 high-risk fall patients, spanning 1,000 collective days

of monitoring. To encourage further exploration in the field, we

released this anonymized dataset publicly at https://github.com/

lookdeep/ai-norms-2024.

Second, we rigorously validated the AI system, demonstrating

strong performance in image-level object detection and person-role

classification tasks. Our analysis also confirms a positive alignment

between inference-derived trends and human-observed behaviors

on a patient-hour basis, underscoring the reliability of the AI

system in capturing patient activity trends. This evaluation can

serve as a benchmark for future studies, providing a standard

set of criteria for assessing the performance of AI-driven patient

monitoring systems.

The extensive dataset and rigorous validation of the LookDeep

Health platform highlight the feasibility and impact of continuous

patient monitoring through video. By offering real-time insights

into patient activity and isolation patterns, continuous monitoring

has the potential to reduce fall risks by alerting staff to high-risk

situations as they unfold. Beyond improving patient safety, these

insights support more efficient staffing and resource allocation,

allowing hospitals to adjust care based on real-time patient needs.

This predictive capability also aids administrators in managing

bed occupancy and optimizing patient flow, particularly during

peak times, thus enhancing the responsiveness, efficiency, and

scalability of the healthcare system. This work paves the way for

future advancements in AI-driven healthcare solutions, promising

scalable, data-informed insights to elevate patient care and

hospital management.
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The influence of menopause
age on gynecologic cancer
risk: a comprehensive analysis
using NHANES data
Yiliminuer Abulajiang1, Tao Liu2, Ming Wang1,
Abidan Abulai3 and Yumei Wu1*

1Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child
Health Care Hospital, Beijing, China, 2School of Rehabilitation Medicine, Baoding University of
Technology, Baoding, China, 3Department of Endocrinology, The First People’s Hospital of Kashi,
(The Affiliated Kashi Hospital of Sun Yat-Sen University), Kashi, China
Background: Menopause, a natural transition, affects women’s health risks,

including gynecologic cancers. Early menopause, linked to lower estrogen,

may increase cancer susceptibility. This study analyzed NHANES data from

1999 to 2020 for 8,219 postmenopausal women to explore the relationship

between menopausal age and gynecologic cancers. We used regression models

and RCS models to assess the risk.

Methods: This study utilized data from the NHANES spanning 1999 to 2020,

focusing on 8,219 postmenopausal women selected through stratified sampling.

Variables including socioeconomic factors, health behaviors, nutritional status,

and medical history were assessed in relation to participants’ menopausal age

and gynecologic cancer prevalence. We analyzed the relationship between

menopausal age and gynecologic cancers (cervical, ovarian, and uterine) using

multiple regression models. Additionally, we employed RCS models to evaluate

nonlinear relationships between menopausal age and gynecologic cancer risk.

Results: Our findings indicate a significant inverse association between

menopausal age and the risk of gynecologic cancers. After controlling for

confounding factors such as age, race, BMI, and lifestyle variables, a later age

at menopause was associated with a reduced risk of cervical, ovarian, and uterine

cancers. The RCS model revealed a non-linear, low-L-shaped relationship,

particularly highlighting increased cancer risks at younger menopausal ages.

Subgroup analyses demonstrated consistent results across demographic and

lifestyle factors, confirming the robustness of the observed associations.

Conclusion: This study reveals the link between menopausal age and

gynecologic cancer prevalence. Early menopause is a significant risk factor for

cervical, ovarian, and uterine cancers. Our findings support tailored cancer

screening based on menopausal age, potentially improving preventive care for

postmenopausal women.
KEYWORDS

menopause age, gynecologic cancer risk, personalized cancer screening, NHANES data
analysis, risk stratification
frontiersin.org0123

https://www.frontiersin.org/articles/10.3389/fonc.2025.1541585/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1541585/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1541585/full
https://www.frontiersin.org/articles/10.3389/fonc.2025.1541585/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2025.1541585&domain=pdf&date_stamp=2025-02-11
mailto:wym597118@ccmu.edu.cn
https://doi.org/10.3389/fonc.2025.1541585
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2025.1541585
https://www.frontiersin.org/journals/oncology


Abulajiang et al. 10.3389/fonc.2025.1541585
Introduction

Gynecological malignancies, including endometrial, cervical, and

ovarian cancer, etc., are a leading cause of morbidity and mortality

among women, and the yearly number of patients is rising (1, 2).

According to statistics, over a million new cases are identified

annually, which pose a serious threat to global health. Cervical

cancer is the most common gynecological malignancy among

women under 40, accounting for 50.4% of cases. Although it can

be prevented through vaccination and screening, it remains a leading

cause of death, particularly in areas with limited healthcare resources.

Following cervical cancer is endometrial cancer, which accounts for

24.2% of cases (3). While its incidence is declining in certain regions,

it still contributes significantly to the overall burden of gynecological

cancers. Ovarian cancer, at 23%, is the deadliest gynecological

malignancy. Due to the lack of effective screening methods,

approximately 60% of ovarian cancer cases are diagnosed at an

advanced stage, which significantly impacts survival rates (4, 5).

Gynecological cancers have a profound impact on women’s health

and place a significant financial burden on healthcare systems. Their

high incidence and mortality rates require management with

complex and expensive therapies, which come with several

drawbacks, such as treatment-related complications, obesity, social

determinants of health, and economic toxicity (6–8).

Menopause is a normal phase of a woman’s life, marked by a drop

in estrogen levels and usually happening between the ages of 45 and

55. Early menopause refers tomenopause that begins between the ages

of 40 and 45. The mechanisms behind early and delayed menopause,

as well as their relationship with the risk of ovarian cancer, involve a

complex interplay between genetic, hormonal, and environmental

factors. Genetic predisposition plays a significant role in determining

the age of menopause. Hundreds of single nucleotide polymorphisms

related to menopausal age have been identified, many of which are

associated with immune and mitochondrial functions as well as DNA

repair processes. These genetic factors can influence the risk of ovarian

cancer (9). Postmenopausal women have persistently high levels of

follicle-stimulating hormone, and the changes in hormones are

associated with an increase in the expression of inflammatory

cytokines and oxidative stress markers, which may lead to

malignant transformation of ovarian tissue (10). Delayed

menopause is significantly associated with an increased risk of

ovarian cancer, which is due to prolonged exposure to estrogen that

promotes the development of ovarian cancer (11). Early menopause

and primary ovarian insufficiency (POI) are associated with reduced

lifetime exposure to estrogen, which may lower the risk of ovarian

cancer (9, 12). After menopause, the risk of cervical cancer in women

may be reactivated or persist due to human papillomavirus (HPV)

infection. Guidelines recommend that screening can stop at age 65 if

adequate prior screening has been conducted. However, many women

tend to stop screening too early, which increases their risk of

developing cervical cancer (13). The prevalence of high-risk HPV

infections in postmenopausal women is quite high, with a noticeable

increase in infection rates after the age of 65. This suggests that

postmenopausal women, particularly those over 65, may benefit from

ongoing screening (14). Delayed menopause is associated with a
Frontiers in Oncology 0224
higher risk of endometrial cancer, as long-term exposure to estrogen

without the balancing effect of progesterone increases the likelihood of

endometrial hyperplasia and cancer. Early menopause shortens the

duration of estrogen exposure, thereby reducing the risk of

endometrial cancer. This protective effect is due to a shorter

reproductive lifespan and decreased cumulative estrogen exposure

(15). Obesity and metabolic syndrome are significant risk factors for

endometrial cancer. Obesity increases the risk of endometrial cancer

in postmenopausal women through various mechanisms,

including elevated aromatase activity (16). Insulin resistance and

hyperinsulinemia are commonly found in metabolic syndrome,

which further increases the risk of endometrial cancer by enhancing

the proliferation of endometrial cells (17–19). Furthermore, genetic

factors, such as the expression of specific cancer genes like PKD1, have

been identified as causes of the progression of endometrial cancer

in postmenopausal women. These genetic markers can help predict

disease progression and guide targeted therapy (20). Postmenopausal

women with endometrial cancer typically exhibit more aggressive

disease characteristics, such as higher tumor grades and increased

lymphatic metastasis, which are influenced by genetic and hormonal

factors (21). The relationship between menopause age and

gynecological malignancies is quite complex and influenced by

various factors. Racial and cultural factors can affect both the age of

menopause and the risk of cancer. A study on Korean women found

that menopausal hormone therapy does not increase the risk of

melanoma, but certain therapies reduce the risk of non-melanoma

skin cancer (22). This indicates that cultural and genetic factors may

play a role in cancer risk, which can vary among populations. Lifestyle

factors, such as diabetes, may interact with menopausal age. However,

one study found no association between menopausal age and

microvascular complications in women with diabetes, suggesting

that other health factors may obscure. There may be a nonlinear

relationship between menopause age and cancer risk. For instance, an

earlier onset of menopause is associated with an increased mortality

rate, indicating a complex (23, 24).

This study analyzed data from the National Health and Nutrition

Examination Survey (NHANES), a cross-sectional survey covering

the United States from 1999 to 2020. A total of 8,219 postmenopausal

women were selected using stratified sampling methods, ensuring a

representative sample. We evaluated various factors, including

socioeconomic characteristics, health behaviors, nutritional status,

and medical history, and analyzed the relationships between

menopausal age and gynecologic cancer prevalence using

multivariable logistic regression models. Additionally, restricted

cubic spline (RCS) regression models were applied to examine any

nonlinear relationships between menopausal age and gynecologic

cancer risk, further uncovering potentially complex associations.
Methods

Study design and sample

The NHANES is a nationally representative, cross-sectional

survey. The survey used a complex multi-stage probability sample
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representing the civilian population in all 50 states and the District

of Columbia in the United States (25).

We obtained data from the NHANES, which is representative of

the civilian population across all 50 states and the District of

Columbia. In the current study, a total of 8,291 NHANES

participants were included, representing 21,950,882 postmenopausal

women over a span of 14 years (1999-2020). The survey received

approval from the Institutional Review Board of the National Center

for Health Statistics, and all participants provided informed consent. A

flowchart illustrating the process of selecting the study sample is

shown in Figure 1. The total population (n=116,876) was screened,

resulting in the identification of premenopausal individuals

(n=102,652). Among the postmenopausal women, we excluded

those with incomplete information regarding menarche and

childbirth (n=1,757). From the remaining 12,473 participants, we

further excluded individuals with incomplete demographic, disease,

dietary, and necessary testing information (n=2,766). Finally, to

enhance the scientific validity and reliability of the results, we

excluded individuals with premenopausal gynecological diagnoses

(n=1,416) from the remaining population, resulting in our ideal

study sample of 8,291 individuals.
Sociodemographic characteristics

There are several sociodemographic characteristics, including

age, race, and educational level. A non-Hispanic white, a non-
Frontiers in Oncology 0325
Hispanic black, a Mexican-American, another Hispanic, and

another race can be excluded from the list. In addition to high

school, there are levels of education below high school, high school,

and higher education.
Nutritional status

To examine the nutritional quality of the populace, information

was gathered from body mass indexes (BMIs) and household

property to income ratios (PIRs). Higher PIRs are generally

associated with higher levels of physical activity and nutritious

intake, as well as higher BMIs compared to low-income

populations. The data was divided according to the median, and a

cut-off value of 2.3% was chosen as the PIR for households.

Screenings were performed on those with BMIs of > 25 kg/m² or

≤ 25 kg/m2.
Habits of behavior

According to how often participants smoked, they were divided

into three groups: never smoking, former smoking and now

smoking. Alcohol consumption included never drinking, former

drinking, mild drinking, moderate drinking, and heavy drinking. In

addition to energy intake, behavioral habits are also influenced by

population energy intake (kcal).
FIGURE 1

Study design and sample.
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A medical condition’s underlying causes

Diabetes mellitus and hypertension were included because they

are two diseases associated with women developing gynecologic

cancers and progressing to meet their cancer goals. The following

are the clinical diagnostic criteria for diabetes mellitus: (1) The

doctor makes the diagnosis; (2) a fasting blood glucose level of 7.0

mmol/L; (3) a glycohemoglobin level of greater than 6.5%; (4) a

random blood glucose level of 11.1 mmol/L; (5) a two-hour OGTT

level of 11.1 mmol/L; (6) any diabetes medications or insulin

already being used.
Statistical analyses

The analyzed data were weighted according to the NCHS.

Participants were categorized into two groups based on baseline

characteristics according to whether they had gynecologic cancers.

Descriptive statistics are used to profile the distribution of

participant characteristics, including age, age at menopause, race,

education, family PIR, BMI, smoking, alcohol consumption, etc.

Data were presented as frequencies with proportions (%), means

with standard deviation (SD), or medians with interquartile ranges

(IQR). Univariate and multivariate logistic regression analysis

between ages at menopause and gynecologic cancers: Crude is an

unadjusted model; Model 1 is a model adjusted for age and race;

Model 2 is a model adjusted for age, race, first menstruation age,

and living birth; Model 3 is a model adjusted for age, race, first

menstruation age, living birth, education, BMI, PIR, smoking,

alcohol consumption level, energy intake; Model 4 is a model

adjusted for age, race, first menstruation age, living birth,

education, BMI, PIR, smoking, alcohol consumption level, energy

intake, hypertension and diabetes. On this basis, a fully adjusted

model was used to assess the association between the age of

menopause and major gynecological cancers, including cervical,

ovarian, and uterine cancers. To explore the incidence of

gynecological cancer in different age groups, participants were

further divided into 7 groups based on age at menopause,

including ≤30 years, 31-35 years, 36-40 years, 41-45 years, 46-50

years, 51-55 years, and ≥56 years. In the fully adjusted model, a RCS

method was used to investigate the non-linear association between

age at menopause and gynecologic cancers. In this study, values

detected as outliers are treated as missing data and replaced by the

result of interpolation. Statistical analyses were conducted using R

version 4.4.1 (Posit Software, Boston, MA, USA). A p-value less

than 0.05 is considered statistically significant.
Results

Baseline characteristics

The weighted baseline characteristics of the participants, which

consisted of 8,219 participants grouped by whether they had

gynecological cancer, are shown in Table 1. The results showed
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statistically significant differences in gynecologic cancer prevalence

by family PIR, smoking, menopause, and first menstruation

(P<0.05). Compared with participants without gynecological

cancer, participants with gynecological cancer had lower Family

PIR, more smoking, lower age at menopause, and younger age at

first menstruation.
Relationship between the age of
menopause and the prevalence of
gynecological cancers

The results of univariate and multivariate logistic regression

analysis between the onset of menopausal age and gynecologic

cancers are shown in Table 2. There was an inverse association

between age at menopause and the prevalence of gynecological

cancer (OR: 0.93, 95% CI: 0.91,0.95), and the difference was

statistically significant (P<0.01). Model 1 was adjusted for age and

race, and the results showed that there was an inverse association

between menopausal age and the prevalence of gynecological cancer

(OR: 0.92, 95% CI: 0.90-0.94), and the difference was statistically

significant (P<0.01). Model 2 was adjusted for age, race, first

menstruation age, and living birth, and showed an inverse

association between age at menopause and gynecologic cancer (OR:

0.92, 95% CI: 0.90-0.94), with statistically significant differences (P

<0.01). Model 3 was adjusted for age, race, first menstruation age,

living birth, education, BMI, PIR, smoking, alcohol consumption level,

energy intake, and showed that there was an inverse association

between age at menopause and the prevalence of gynecologic cancer

(OR: 0.92, 95% CI: 0.91-0.94), and the difference was statistically

significant (P <0.01). Model 4 was adjusted for age, race, first

menstruation age, living birth, education, BMI, PIR, smoking,

alcohol consumption level, energy intake, hypertension, and

diabetes, and showed that there was an inverse association between

age at menopause and the prevalence of gynecologic cancer (OR: 0.92,

95% CI: 0.90-0.94), and the difference was statistically significant (P

<0.01). Furthermore, to evaluate the effect of specific factors on the

gynecological cancers, we performed subgroup analysis and the results

are shown in Supplementary Table S1.
Relationship between the age of
menopause and the prevalence of major
gynecological cancers

To investigate whether menopause is associated with

gynecologic age, we performed a regression analysis between

menopause and the incidence of three major gynecologic cancers,

as shown in Figure 2 for the relationship between age at menopause

and the incidence of different gynecologic cancers. After adjusting

for age, race, first menstruation age, living birth, education, BMI,

PIR, smoking, alcohol consumption level, energy intake,

hypertension, and diabetes (model 4), the regression results

revealed that age at menopause was inversely associated with the

prevalence of gynecologic cancers in patients with cervical (OR:
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0.88, 95% CI: 0.85-0.90), ovarian (OR: 0.94, 95% CI: 0.91-0.97) and

uterine cancer (OR: 0.96, 95% CI: 0.93-0.99). According to different

menopause ages, participants were divided into 7 groups, as shown

in Figure 3. The percentage of major gynecological cancers

occurring at different menopause age groups were observed

respectively. The results showed that participants aged 31-35

years had a higher incidence of cervical cancer than other age
Frontiers in Oncology 0527
groups. Cervical cancer incidence decreased gradually among

participants aged 31-45 years, with statistical significance (P

<0.01). The incidence of uterine cancer was higher in participants

aged 56 years or older at menopause than in other age groups.

Menopausal participants aged 36 to 40 years had a higher incidence

of ovarian cancer than the rest of the age group. To further explore

more specific associations, subgroup analysis was performed for

cervical cancer, ovarian cancer, and uterine cancer, and the results

are shown in Supplementary Tables S2–S4.
Nonlinear relationship between age of
menopause and the prevalence of
gynecological cancers

By using the RCS models with full adjustment for

confounders, the results showed that there was a low L-shaped

association between age at menopause and the prevalence of

gynecological cancer (Figure 4A). In addition, the results also

found that there was a linear association between age at

menopause and cervical and uterine cancer (Figures 4B, D), but

not with ovarian cancer (Figure 4C).
FIGURE 2

Associations between age at menopause and major gynecological
cancer (OR (95% CI) and P value).
TABLE 2 Association between age of menopause and
gynecologic cancer.

Outcomes Model OR (95% CI) P value

Gynecological
Cancer

Crude 0.93 (0.91, 0.95) <0.01

Model 1 0.92 (0.90, 0.94) <0.01

Model 2 0.92 (0.90, 0.94) <0.01

Model 3 0.92 (0.91, 0.94) <0.01

Model 4 0.92 (0.90, 0.94) <0.01
OR, odds ratio; CI, confidence interval. Crude is an unadjusted model; model 1 is a model
adjusted for age and race; model 2 is a model adjusted for age, race, first menstruation age and
living birth; model 3 is a model adjusted for age, race, first menstruation age, living birth,
education, BMI, PIR, smoking, alcohol consumption level, energy intake; Model 4 is a model
adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking,
alcohol consumption level, energy intake, hypertension and diabetes.
TABLE 1 Participant characteristics (N = 8,219) in NHANES 1999–2020.

Characteristic Non-gyneco-
logical cancer
(N = 8,017)

Gynecological
cancer

(N = 274)

P
value

Age, years 60.00 (53.00, 69.00) 61.00 (49.00, 70.00) 0.430

Race, % 0.032

Non-
Hispanic White

3,681.00 (73.54) 173.00 (82.70)

Non-Hispanic Black 1,801.00 (10.90) 36.00 (5.43)

Mexican American 1,233.00 (4.96) 32.00 (3.52)

Other Hispanic 741.00 (4.79) 21.00 (3.82)

Other Race 561.00 (5.81) 12.00 (4.53)

Education level, % 0.700

Less than
high school

2,261.00 (17.49) 82.00 (19.89)

High school 2,069.00 (28.36) 74.00 (27.81)

College or above 3,687.00 (54.15) 118.00 (52.30)

Family PIR 3.03 (1.58, 5.00) 2.48 (1.24, 3.85) 0.008

BMI, kg/m2 28.74 (24.76, 33.46) 30.10 (25.60, 34.99) 0.054

Smoke behavior, % 0.001

Never 4,812.00 (57.24) 125.00 (42.91)

Former 1,940.00 (25.51) 75.00 (29.62)

Now 1,265.00 (17.24) 74.00 (27.48)

Alcohol
consumption, %

0.068

Never 1,800.00 (16.55) 47.00 (10.00)

Former 1,606.00 (16.80) 68.00 (20.36)

Mild 2,539.00 (36.58) 86.00 (32.45)

Moderate 1,308.00 (20.12) 40.00 (21.83)

Heavy 764.00 (9.95) 33.00 (15.36)

Energy intake, kcal 1,627.00
(1,260.00, 2,069.00)

1,602.00
(1,215.00, 2,067.00)

0.700

Hypertension, % 2,503.00 (26.09) 80.00 (22.10) 0.190

Diabetes, % 2,006.00 (19.46) 77.00 (19.91) 0.880

Menopause, years 46.00 (39.00, 51.00) 36.00 (30.00, 46.00) <0.001

First
menstruation, years

13.00 (12.00, 14.00) 12.00 (11.00, 13.00) 0.028

Living birth 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.950
Bold indicates P value < 0.05.
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Discussion

This study revealed that women with an earlier age at

menopause face a significantly higher risk of gynecologic cancers

(cervical, ovarian, and uterine cancers), supporting the inverse

relationship between menopause age and cancer risk. The rapid

drop in estrogen associated with early menopause is a key factor in

the elevated cancer risk. Previous studies indicate that a quick

decline in estrogen may impair tissue repair mechanisms for DNA

damage, increase apoptosis, and contribute to chronic

inflammation, all of which elevate cancer risks (26–28). A study

reported the trends in incidence and mortality rates of cervical

cancer in China and analyzed the independent effects of age, period,

and cohort on these trends. The results showed that the incidence of

cervical cancer has increased among young women under the age of

35 (29). Additionally, a study assessed the incidence, disability-

adjusted life years (DALYs), and mortality rates of cervical cancer

and found that the incidence has increased among younger age

groups, especially among women under the age of 35 (30), which is

consistent with the results of the 31-35 age group mentioned in

this study.

Moreover, subgroup analysis in this study further refined the risk

differences associated with different menopause age groups, showing

that women who reached menopause between 36-40 years had a

significantly higher risk of ovarian cancer, while women who reached

menopause after age 56 had an increased risk of uterine cancer. This

finding supports the hypothesis in the literature that late menopause

may increase the risk of uterine cancer due to prolonged exposure to

high estrogen levels, leading to persistent endometrial stimulation

and an elevated risk of uterine cancer (15, 31, 32).
Frontiers in Oncology 0628
When analyzing the relationship between age at menopause and

the risk of gynecological cancer, our study employed RCS and found

a low L-shaped relationship between age at menopause and the

prevalence of gynecological cancer. This finding is consistent with

existing literature, particularly in understanding the impact of

changes in estrogen levels on the risk of gynecological cancer.

Firstly, a study based on the NHANES database indicated that a

univariate logistic regression analysis of age at menopause and the

prevalence of gynecological tumors showed a negative correlation

between age at menopause and the prevalence of common

gynecological tumors. Particularly for ovarian and cervical

cancers, after adjusting for the effects of covariates, a higher risk

of gynecological tumors was found, and there were statistically

significant differences at earlier ages of menopause. This is in line

with our research results, suggesting that before a certain critical

point, a lower age at menopause significantly increases the risk of

gynecological cancer (33). Furthermore, research has shown that

women carrying pathogenic BRCA1/2 gene mutations have up to

an 87% risk of developing related cancers. Specifically, multiple

breast cancer clusters in BRCA1 and BRCA2 are associated with

relatively higher risks of breast cancer and relatively lower risks of

ovarian cancer. These findings further emphasize the role of genetic

factors in the risk of gynecological cancer and how age at

menopause may interact with these genetic risk factors (34). In

summary, our research results are consistent with existing

literature, highlighting the complex relationship between age at

menopause, changes in hormone levels, and the risk of

gynecological cancer. These findings provide important scientific

evidence for future prevention strategies and intervention measures,

especially in identifying high-risk groups and developing
FIGURE 3

Relationship between age at menopause and the prevalence of gynecological cancer by age group.
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personalized prevention plans. We observed a linear inverse

relationship between menopause age and the incidence of cervical

and uterine cancers, while ovarian cancer showed no significant

trend, possibly due to its complex etiology and differing sensitivity

to hormones (33, 35, 36).

The chronic inflammatory state post-menopause is also considered

a key mechanism in the increase. A 4-year follow-up study that explores

the relationship between metabolic health, menopause, and physical

activity. The study results indicate that menopause and levels of physical

activity have a significant impact on themetabolic health ofmiddle-aged

women (37). A literature review based on data from the Study of

Women’s Health Across the Nation (SWAN), examines the relationship

between menopause and metabolic syndrome. The study found that

menopause is associated with changes in cardiovascular disease risk

factors, which are also related to cancer risk. The study also revealed

common genetic signatures associated with metabolic syndrome, type 2

diabetes, cardiovascular diseases, and menopausal status, which are

significantly enriched in biological processes, including the positive

regulation of binding, the positive regulation of leukocyte cell

adhesion, and the regulation of lipid localization (38). Visceral fat

accumulation is associated with an increased risk of various cancers,
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including those of the uterus, cervix, breast, liver, and ovaries. The study

also notes that obesity can interfere with therapies and contribute to

morbidity from chemotherapy toxicities, thus promoting worse

prognosis and mortality (39). The study found that higher levels of

insulin resistance are associated with higher breast cancer incidence and

higher all-cause mortality after breast cancer (40). Research findings

indicate that the link between visceral adipose tissue and cancer riskmay

involve systemic mechanisms, such as leptin, glucose, insulin, and

inflammatory cytokines, which are systemic markers of obesity-

related adipose tissue inflammation and may promote tumor

development (41). Chronic inflammation may play an important role

in the pathogenesis of non-inflammatory diseases such as breast cancer.

Activation of innate immunity creates a tissue microenvironment rich

in reactive oxygen and nitrogen species that may lead to DNA damage

and changes in nearby cells, the study suggests. Inflammation also raises

circulating levels of inflammatory cytokines that promote cancer, such

as C-reactive protein (CRP) and interleukin-6 (IL-6) (42). There are also

studies showing that links between chronic low-grade inflammatory

states and multiple chronic diseases are now evident, and controlling

this condition may be important to prevent the most common diseases

in the general population (43). A case-control study that prospectively
FIGURE 4

Restricted cubic spline analysis of age at menopause and major gynecological cancer (A) gynecological cancer; (B) cervical cancer; (C) ovarian
cancer; (D) uterine cancer).
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assessed whether plasma levels of inflammatory markers such as CRP,

TNF-a, IL-6, leptin, and adiponectin were associated with breast cancer
risk showed no significant association between these inflammatory

markers and breast cancer risk but found significant interactions

between menopausal status and plasma levels. All of these studies

support the scientific evidence for a relationship between

postmenopausal chronic inflammatory state and cancer risk, and

support the idea that postmenopausal chronic inflammatory state

may be one of the key mechanisms for increased cancer risk (44).

This inflammatory state aligns with our findings, supporting the

inclusion of early menopausal women in high-risk cancer

screening groups.

In addition to the elevated risk for early menopausal women, late

menopausal women also face specific health risks. A study used a meta-

analysis to evaluate the relationship between unopposed estrogen or

estrogen plus progesterone and endometrial cancer risk. The results

showed that women who use estrogen have a higher relative risk than

non-users. Risk (RR 2.3) was associated with prolonged use (RR 9.5 for

10 years or more), and the risk of endometrial cancer remained elevated

even after 5 years or more of discontinuation of unopposed estrogen

therapy (RR 2.3) (45). A systematic review assessed the safety of

estrogen plus progestin therapy, particularly considering the impact of

treatment regimens and types of progestins on the risk of endometrial

cancer. The study found that women who used estrogen alone had an

increased risk, while continuous combined therapy was associated with

a lower risk compared to sequential combined therapy (46). Hormone

replacement therapy should be used with caution in women with a

higher risk of endometrial cancer (HR 2.84) in those with a later

menopause (age ≥55 years) than in those with the youngest menopause

(<45 years)15. These studies underscore the importance of menopause

age in gynecologic cancer screening and intervention strategies.

Recently, more studies have viewed age at menopause as an

outcome of multiple interacting factors, further highlighting its

unique impact on cancer risk. A study points out that lifestyle and

dietary factors determine the age of natural menopause. The research

indicates that a healthy diet and regular exercise are significant factors

affecting the age of menopause, thereby potentially indirectly

influencing the cancer risks associated with early menopause (47). A

systematic review and meta-analysis studied the impact of

psychological interventions on the quality of life of early-stage cancer

patients. The study included psychological interventions such as

cognitive-behavioral therapy, relaxation training, meditation, stress

management, and self-help, which are believed to improve patients’

quality of life and may indirectly affect cancer risk (41). There is also a

method called “emotional support and case finding” used for the

clinical management of cancer patients’ emotions. This approach

emphasizes the importance of psychological support in cancer

treatment and may help reduce cancer risk (48). Psychological

interventions for cancer patients include cognitive-behavioral

therapy, art therapy, and relaxation therapy, among others. These

interventions aim to improve patients’ emotional states and quality of

life, which may positively impact the reduction of cancer risk (49).

This study makes a significant contribution by providing an in-

depth analysis of the relationship between age at menopause and the

risk of three major gynecological cancers: cervical, ovarian, and

endometrial cancer. The results indicate a notable association: early
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menopause correlates with an increased risk of cervical and ovarian

cancers, whereas late menopause is associated with a higher risk of

endometrial cancer. These findings provide a scientific foundation for

future personalized screening and health intervention strategies. The

inverse association between menopausal age and cancer prevalence

suggests that early menopause may be a marker for increased risk,

prompting more frequent monitoring and targeted screening for

women who experience menopause at younger ages. Additionally,

the nonlinear relationship observed highlights the need for

personalized risk assessments, taking into account individual factors

such as age at menopause, lifestyle, and family history, to optimize

prevention and early detection strategies for gynecological cancers.

Unlike previous research that broadly examined the link between

menopausal age and cancer risk, this study categorizes menopausal

age into specific age groups and conducts a subgroup analysis across

different cancer types, thereby revealing age-specific cancer risks.

Furthermore, by employing a multilevel regression model and

adjusting for various confounding variables, the study clarifies the

independent effect of menopausal age on cancer risk, enhancing the

statistical robustness of the findings. Additionally, the use of the large,

representative NHANES database lends strong external validity to the

study. NHANES data encompass participants from diverse racial,

socioeconomic, and health backgrounds, enhancing the

generalizability of the findings. Many previous studies, limited by

small sample sizes or specific populations, restricted the applicability

of their results. By leveraging NHANES’s extensive dataset, this study

addresses these limitations and offers a robust reference point for

personalized cancer screening in various populations. Another notable

achievement of this study is its exploration of a potential nonlinear

relationship between menopausal age and gynecological cancer risk.

Using RCS regression models, the study is among the first to suggest an

L-shaped nonlinear association, indicating that cancer risk may not

increase linearly with menopausal age but could be influenced by a

combination of factors, with critical risk thresholds for different age

groups. This insight provides important theoretical support for age-

segmented clinical management strategies.

Despite these valuable insights, the study has several limitations.

First, as a retrospective analysis based on cross-sectional data from

the NHANES database, it cannot establish causation. Though we

have adjusted for multiple confounding factors, the possibility of

reverse causation cannot be ruled out. Future longitudinal studies

are needed to confirm the causal link between menopausal age and

cancer risk, clarifying whether early menopause directly contributes

to elevated cancer risk or if other intermediary factors are involved.

Second, the study relies on self-reported data, including

menopausal age, menarche age, and lifestyle factors, which may

introduce recall bias and reporting inaccuracies. Participants may

not accurately recall age-related events or health behaviors,

particularly over long periods. Future research should incorporate

objective biomarkers to reduce self-reporting errors. For example,

hormonal and inflammatory biomarkers could more precisely

measure physiological changes associated with menopause and

their correlation with cancer risk. Moreover, this study does not

delve into the variability in the relationship between menopausal

age and cancer risk across different demographic groups (e.g., by

race, socioeconomic status, and living environment). Both
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menopausal age and gynecological cancer incidence may vary

significantly across racial and socioeconomic groups, especially in

terms of lifestyle factors and healthcare access. Future studies

should analyze these differences in greater detail to understand

how menopausal age distribution and its impact on cancer risk vary

across populations, which would aid in developing more targeted

and equitable health management strategies, improving the

efficiency of cancer screening and prevention. Finally, the study

does not fully explore the biological mechanisms underlying the

association between menopausal age and cancer risk. Although

hypotheses around estrogen decline and chronic inflammation are

proposed, these mechanisms require further verification through

experimental and longitudinal studies. Future research could

employ animal models or clinical trials to investigate how

menopause-induced physiological changes specifically contribute

to cancer development, thereby offering a biological basis for

prevention and therapeutic strategies.
Conclusion

This study provides significant insights into the association

between age at menopause and the risk of developing gynecologic

cancers, particularly cervical, ovarian, and uterine cancers. Our

findings underscore the role of early menopause as a risk factor for

these cancers, while highlighting late menopause as an associated

risk for uterine cancer. By employing a large, representative sample

and robust analytical methods, our research contributes to the

understanding of menopause’s impact on cancer risks. These

results have potential implications for clinical practice, suggesting

that menopausal age could be a critical factor in developing

personalized cancer screening strategies. Future studies, ideally

longitudinal in design, are essential to further elucidate the causal

pathways involved and to explore the biological mechanisms

underlying these associations. Such efforts could pave the way for

targeted preventive measures and more effective health

interventions for women across different menopausal age groups.
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26. Jimenéz-Salazar JE, Damian-Ferrara R, Arteaga M, Batina N, Damián-
Matsumura P. Non-genomic actions of estrogens on the DNA repair pathways are
associated with chemotherapy resistance in breast cancer. Front Oncol. (2021)
11:631007. doi: 10.3389/fonc.2021.631007

27. Chimento A, De Luca A, Avena P, De Amicis F, Casaburi I, Sirianni R, et al.
Estrogen receptors-mediated apoptosis in hormone-dependent cancers. Int J Mol Sci.
(2022) 23:1242. doi: 10.3390/ijms23031242

28. Al-Shami K, Awadi S, Khamees A, Alsheikh AM, Al-Sharif S, Ala' Bereshy R,
et al. Estrogens and the risk of breast cancer: a narrative review of literature. Heliyon.
(2023) 9:e20224. doi: 10.1016/j.heliyon.2023.e20224

29. Sun K, Zheng R, Lei L, Zhang S, Zeng H, Wang S, et al. Trends in incidence rates,
mortality rates, and age-period-cohort effects of cervical cancer - China, 2003-2017.
China CDC weekly. (2022) 4:1070–6. doi: 10.46234/ccdcw2022.216

30. Shen X, Cheng Y, Ren F, Shi Z. The burden of cervical cancer in China. Front
Oncol. (2022) 12:979809. doi: 10.3389/fonc.2022.979809

31. Mahdy H, Casey MJ, Vadakekut ES, Crotzer D. Endometrial cancer. In:
StatPearls. StatPearls Publishing Copyright B, Treasure Island (FL) (2024). ineligible
companies. Disclosure: Murray Casey declares no relevant financial relationships with
ineligible companies. Disclosure: Elsa Vadakekut declares no relevant financial
relationships with ineligible companies. Disclosure: David Crotzer declares no
relevant financial relationships with ineligible companies.

32. Wu Y, Sun W, Liu H, Zhang D. Age at menopause and risk of developing
endometrial cancer: a meta-analysis. BioMed Res Int. (2019) 2019:8584130.
doi: 10.1155/2019/8584130

33. Cheng G, Wang M, Sun H, Lai J, Feng Y, Liu H, et al. Age at menopause is
inversely related to the prevalence of common gynecologic cancers: a study based on
NHANES. Front endocrinology. (2023) 14:1218045. doi: 10.3389/fendo.2023.1218045

34. Petrucelli N, Daly MB, Pal T. BRCA1- and BRCA2-associated hereditary breast
and ovarian cancer. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE,
Amemiya A, editors. GeneReviews(B.). University of Washington, Seattle Copyright B,
Seattle (WA (1993).

35. Karst AM, Drapkin R. Ovarian cancer pathogenesis: a model in evolution. J
Oncol. (2010) 2010:932371. doi: 10.1155/2010/932371

36. Kroeger PT Jr., Drapkin R. Pathogenesis and heterogeneity of ovarian cancer.
Curr Op in obs t e t r i c s g yneco l ogy . ( 2017) 29 :26–34 . do i : 10 . 1097 /
GCO.0000000000000340

37. Hyvärinen M, Juppi HK, Taskinen S, Karppinen JE, Karvinen S, Tammelin TH,
et al. Metabolic health, menopause, and physical activity-a 4-year follow-up study. Int J
obes (London). (2022) 46:544–54. doi: 10.1038/s41366-021-01022-x

38. Janssen I, Powell LH, Crawford S, Lasley B, Sutton-Tyrrell K. Menopause and the
metabolic syndrome: the Study of Women’s Health Across the Nation. Arch Internal
Med. (2008) 168:1568–75. doi: 10.1001/archinte.168.14.1568

39. Crudele L, Piccinin E, Moschetta A. Visceral adiposity and cancer: role in
pathogenesis and prognosis. Nutrients. (2021) 13(6):2101. doi: 10.3390/nu13062101

40. Pan K, Chlebowski RT, Mortimer JE, Gunter MJ, Rohan T, Vitolins MZ, et al.
Insulin resistance and breast cancer incidence and mortality in postmenopausal women
in the Women’s Health Initiative. Cancer. (2020) 126:3638–47. doi: 10.1002/
cncr.v126.16

41. Chakraborty D, Benham V, Bullard B, Kearney T, Hsia HC, Gibbon D, et al.
Fibroblast growth factor receptor is a mechanistic link between visceral adiposity and
cancer. Oncogene. (2017) 36:6668–79. doi: 10.1038/onc.2017.278

42. Jung SY, Papp JC, Sobel EM, Pellegrini M, Yu H, Zhang ZF. Pro-inflammatory
cytokine polymorphisms and interactions with dietary alcohol and estrogen, risk factors
for invasive breast cancer using a post genome-wide analysis for gene-gene and gene-
lifestyle interaction. Sci Rep. (2021) 11:1058. doi: 10.1038/s41598-020-80197-1

43. Masala G, Bendinelli B, Della Bella C, Assedi M, Tapinassi S, Ermini I, et al.
Inflammatory marker changes in a 24-month dietary and physical activity randomised
intervention trial in postmenopausal women. Scientific Rep. (2020) 10:21845.
doi: 10.1038/s41598-020-78796-z

44. Agnoli C, Grioni S, Pala V, Allione A, Matullo G, Gaetano CD, et al. Biomarkers
of inflammation and breast cancer risk: a case-control study nested in the EPIC-Varese
cohort. Sci Rep. (2017) 7:12708. doi: 10.1038/s41598-017-12703-x

45. Grady D, Gebretsadik T, Kerlikowske K, Ernster V, Petitti D. Hormone
replacement therapy and endometrial cancer risk: a meta-analysis. Obstetrics
gynecology. (1995) 85:304–13. doi: 10.1016/0029-7844(94)00383-O

46. Sjögren LL, Mørch LS, Løkkegaard E. Hormone replacement therapy and the
risk of endometrial cancer: a systematic review. Maturitas. (2016) 91:25–35.
doi: 10.1016/j.maturitas.2016.05.013
frontiersin.org

https://doi.org/10.1042/BSR20204457
https://doi.org/10.2147/CMAR.S272478
https://doi.org/10.1186/s12905-022-02104-2
https://doi.org/10.3390/diagnostics13122078
https://doi.org/10.3390/cancers14122885
https://doi.org/10.2147/OTT.S419445
https://doi.org/10.2147/OTT.S419445
https://doi.org/10.1016/j.bpobgyn.2023.102337
https://doi.org/10.1016/j.bpobgyn.2023.102337
https://doi.org/10.1007/s00520-023-07849-6
https://doi.org/10.1007/s00520-023-07849-6
https://doi.org/10.3389/fgene.2021.676546
https://doi.org/10.3389/fgene.2021.676546
https://doi.org/10.1158/1538-7445.AGCA22-A015
https://doi.org/10.1158/1538-7445.AGCA22-A015
https://doi.org/10.1093/aje/kwn006
https://doi.org/10.31557/APJCP.2021.22.10.3165
https://doi.org/10.1097/GME.0000000000002222
https://doi.org/10.1097/GME.0000000000002222
https://doi.org/10.1186/s12905-021-01217-4
https://doi.org/10.1001/jamanetworkopen.2023.32296
https://doi.org/10.1200/JCO.2016.69.4638
https://doi.org/10.1016/j.ejca.2015.08.031
https://doi.org/10.1016/j.ejca.2015.08.031
https://doi.org/10.3389/fonc.2019.00744
https://doi.org/10.1016/j.ygyno.2012.03.032
https://doi.org/10.1016/j.ygyno.2012.03.032
https://doi.org/10.18632/aging.204168
https://doi.org/10.18632/aging.204168
https://doi.org/10.21037/tcr-22-1616
https://doi.org/10.1038/s41598-023-37687-9
https://doi.org/10.1089/jwh.2023.0189
https://doi.org/10.1097/MD.0000000000034066
https://doi.org/10.1177/0145721717698651
https://doi.org/10.1177/0145721717698651
https://doi.org/10.3389/fonc.2021.631007
https://doi.org/10.3390/ijms23031242
https://doi.org/10.1016/j.heliyon.2023.e20224
https://doi.org/10.46234/ccdcw2022.216
https://doi.org/10.3389/fonc.2022.979809
https://doi.org/10.1155/2019/8584130
https://doi.org/10.3389/fendo.2023.1218045
https://doi.org/10.1155/2010/932371
https://doi.org/10.1097/GCO.0000000000000340
https://doi.org/10.1097/GCO.0000000000000340
https://doi.org/10.1038/s41366-021-01022-x
https://doi.org/10.1001/archinte.168.14.1568
https://doi.org/10.3390/nu13062101
https://doi.org/10.1002/cncr.v126.16
https://doi.org/10.1002/cncr.v126.16
https://doi.org/10.1038/onc.2017.278
https://doi.org/10.1038/s41598-020-80197-1
https://doi.org/10.1038/s41598-020-78796-z
https://doi.org/10.1038/s41598-017-12703-x
https://doi.org/10.1016/0029-7844(94)00383-O
https://doi.org/10.1016/j.maturitas.2016.05.013
https://doi.org/10.3389/fonc.2025.1541585
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Abulajiang et al. 10.3389/fonc.2025.1541585
47. Sapre S, Thakur R. Lifestyle and dietary factors determine age at
natural menopause. J Mid-Life Health. (2014) 5:3–5. doi: 10.4103/0976-
7800.127779

48. Dekker J, Karchoud J, Braamse AMJ, Buiting H, Konings IRHM, van Linde ME,
et al. Clinical management of emotions in patients with cancer: introducing the
Frontiers in Oncology 1133
approach “emotional support and case finding. Trans Behav Med. (2020) 10:1399–
405. doi: 10.1093/tbm/ibaa115

49. Semenenko E, Banerjee S, Olver I, Ashinze P. Review of psychological
interventions in patients with cancer. Supportive Care cancer: Off J Multinational
Assoc Supportive Care Cancer. (2023) 31:210. doi: 10.1007/s00520-023-07675-w
frontiersin.org

https://doi.org/10.4103/0976-7800.127779
https://doi.org/10.4103/0976-7800.127779
https://doi.org/10.1093/tbm/ibaa115
https://doi.org/10.1007/s00520-023-07675-w
https://doi.org/10.3389/fonc.2025.1541585
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Frontiers in Oncology

OPEN ACCESS

EDITED BY

Sandeep Kumar Mishra,
Yale University, United States

REVIEWED BY

Hina Sultana,
University of North Carolina System,
United States
Junxiang Huang,
Boston College, United States
Behnaz Jahanbin,
Tehran University of Medical Sciences, Iran
Roberto Altamirano,
University of Chile, Chile

*CORRESPONDENCE

Mengmeng Chen

1277556339@qq.com

Yali Chen

Yalichen182@163.com

RECEIVED 08 December 2024

ACCEPTED 13 March 2025
PUBLISHED 31 March 2025

CITATION

Chen M, Han L, Wang Y, Qiu Q, Chen Y
and Zheng A (2025) The prognostic value
of growth pattern-based grading for
mucinous ovarian carcinoma (MOC): a
systematic review and meta-analysis.
Front. Oncol. 15:1541572.
doi: 10.3389/fonc.2025.1541572

COPYRIGHT

© 2025 Chen, Han, Wang, Qiu, Chen and
Zheng. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 31 March 2025

DOI 10.3389/fonc.2025.1541572
The prognostic value of
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grading for mucinous ovarian
carcinoma (MOC): a systematic
review and meta-analysis
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Yali Chen1,2* and Ai Zheng1,2

1Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan
University, Sichuan, China, 2Key Laboratory of Birth Defects and Related Diseases of Women and
Children (Sichuan University), Ministry of Education, Sichuan, China
Objective: To investigate the prognostic significance of expansile and infiltrative

growth patterns in mucinous ovarian carcinoma (MOC).

Methods: A systematic search was conducted in the PubMed, Embase, and Web

of Science databases for studies published between January 1, 2010, and

September 6, 2024, examining the correlation between expansile and

infiltrative tumor growth patterns and prognosis in MOC. Subgroup analyses

were performed for mortality, recurrence, and FIGO stage I based on tumor

subtype. The Chi-square test was used to evaluate the distribution of expansile

and infiltrative tumors across FIGO stages I-IV.

Results: Twelve eligible studies, comprising a total of 1185 patients, were

included in this systematic review and meta-analysis. The combined death rate

in the expansile and infiltrative MOC was 10.5% (95%CI: 6.2-15.7) and 31.1% (95%

CI: 14.1-50.9). The combined recurrence rate in the expansile and infiltrative

MOC was 6.9% (95%CI: 3.1-11.9) and 24.5% (95%CI: 14.3-36.2). The combined

International Federation of Gynecology and Obstetrics (FIGO) I rate in the

expansile and infiltrative MOC was 89.8% (95%CI: 84.9-94.0) and 56.2% (95%

CI: 41.5-70.4). A significant association was found between tumor type and FIGO

stage (c² (3) = 110.92, p < 0.00001).

Conclusion: Expansile MOC predicts better outcomes, while infiltrative MOC is

linked to advanced stages and poorer prognosis. Complete surgical staging is

crucial for infiltrative MOC but optional for early-stage expansile MOC. Early-

stage patients should consider fertility-sparing surgery, timely conception, and

close recurrence monitoring.
KEYWORDS

mucinous ovarian carcinoma, pattern-based grading, expansile, infiltrative, prognosis,
meta-analysis
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1 Introduction

Ovarian cancer is the second most common gynecological

malignancy (1). Among its various subtypes, high-grade serous

ovarian carcinoma (HGSC) is the most prevalent histological

subtype, while mucinous ovarian carcinoma (MOC) is quite rare,

constituting approximately 3% to 11% of ovarian cancers (2, 3).

MOC is recognized as a distinct entity from other epithelial ovarian

cancers (EOCs), exhibiting a unique natural history, molecular

profile, chemo-sensitivity, and prognosis compared to HGSC.

Notably, MOC is the most common subtype in women under 40

(4), with tobacco smoking identified as the only significant risk

factor (5). While most HGSC cases are diagnosed at advanced

stages, 80% of MOC cases are identified at stage I (6). Early-stage

MOC typically exhibits a better prognosis, however, advanced cases

face poorer outcomes, primarily due to a limited response to

platinum-based chemotherapy compared to HGSC (7, 8).

Histological grading systems, such as the International

Federation of Gynecology and Obstetrics (FIGO) and Silverberg

grading systems, have been studied in relation to the ovarian cancer

patient prognosis, including MOC (9, 10). As yet, these grading

systems alone are insufficient for predicting the clinical course of

MOC, unlike their application for other ovarian carcinoma

subtypes (11). In 2014, in order to standardize the pathological

reporting of gynecological tumors, World Health Organization

(WHO) guidelines proposed classifying the mucinous cancers in

these two groups based on their growth patterns, calling them

expansileand infiltrative-type tumors (12), which was also entered

in the newest version CAP protocols (13). However, there is

controversy over the treatment of this histological groups using

different compasses. Guidelines from the European Society for

Medical Oncology and the European Society of Gynecological

Oncology (ESMO-ESGO) emphasize the importance of adjuvant

chemotherapy for stage IB-IC infiltrative MOC. Even for stage IA,

adjuvant chemotherapy may be considered for patients with

infiltrative patterns, whereas it is not deemed necessary for stage

IA expansile MOC (14, 15). Conversely, the National

Comprehensive Cancer Network (NCCN) guidelines do not

recommend differentiating histologic subtypes when treating

patients with MOC. Instead, they advise administering adjuvant

chemotherapy for stage IC or higher MOC, while treatment can be

avoided for stage IA-IB, similar to other EOCs (16).

Therefore, we conducted a meta-analysis and systematic review

aimed at assessing the prognostic significance of the expansile and

infiltrative growth patterns in MOC. This study seeks to provide

clearer guidance for the treatment of MOC and improve clinical

management and outcomes for patients.
2 Methods

2.1 Protocol registration

This meta-analysis was conducted in accordance with the

Preferred Reporting Items for Systematic Reviews and Meta-
Frontiers in Oncology 0235
Analyses (PRISMA) guidelines (17). Prior to data extraction, the

review was registered with the International Prospective Register of

Systemat ic Reviews (PROSPERO) under reg is tra t ion

number CRD42024585615.
2.2 Eligibility criteria and exclusion criteria

2.2.1 Eligibility criteria
To be eligible, we aimed for the following inclusion criteria: 1)

The study design is a retrospective or prospective study design;2)

Included cases need to be classified by expansile or infiltration

subtype, and need to be confirmed the diagnosis of MOC;3)

Included articles assess at least one of the following parameters:

death, recurrence, FIGO I or FIGO stage.

2.2.2 Exclusion criteria
We excluded studies with the following exclusion criteria:1)

Reviews, letters, case reports or editorial comments;2) Studies

without full text, insufficient data or low-quality scores based on

Newcastle- Ottawa Scale (NOS) (18);3) Republished literature or

repetitive studies.
2.3 Search strategy

Two researchers (MMC and YSW) conducted a comprehensive

search in electronic databases of PubMed, Embase, and Web of

Science for relevant researches, published for from January 1, 2010

to September 6, 2024.

The following search terms were used to identify relevant studies

on ovarian cancer: “Carcinoma, Ovarian Epithelial”, “Epithelial

Carcinoma, Ovarian”, “Ovarian Epithelial Carcinomas”, whereas the

following terms were used to identify relevant studies on expansile and

infiltrative: “expansile”, “infiltrative”.

Two researchers (LH and YLC) thoroughly reviewed the

reference lists of all included articles to identify any potentially

missing studies or unpublished data. In cases where multiple studies

analyzed overlapping patient populations, the most recent or

comprehensive results were selected. Following the initial

screening, the full texts of all potential articles were independently

reviewed by two researchers (QQ and MMC) for further evaluation.

Any disagreements were resolved through discussion with AZ.
2.4 Data extraction

Data were independently extracted by two investigators (QQ

and YSW), with any disagreements resolved through discussion

with AZ. The extracted data included author, publication date,

country, number of cases, growth patterns (expansile and

infiltrative), oncological outcomes (death, recurrence), and

pathological characteristics (FIGO stage). Attempts were made to

obtain missing data by contacting the authors via email; however,

no responses were received.
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2.4.1 Expansile and infiltrative pattern
In expansile tumor, the tumor consists of a confluent glandular

growth pattern with minimal to no stromal invasion. In contrast,

infiltrative tumor shows malignant cell clusters with destructive

stromal invasion (12).

2.4.2 Oncological outcomes
Death was calculated from the data from surgery to either the

last follow-up or the data of death. Recurrence refers as either

pathologic proof of cancer or an imaging study showing the

regrowth of the tumor, whether it is confined to the pelvic region

or outside of it.

2.4.3 Pathological features
For mucinous ovarian carcinoma, Stage I means tumor

confined to the ovaries, Stage II means tumor involves one or

both ovaries and extends to other pelvic tissues, such as the uterus

or fallopian tubes. Stage III means tumor is present in one or both

ovaries and has spread to the peritoneum outside the pelvis or to

regional lymph nodes. Stage IV means tumor has spread beyond the

peritoneum to distant organs, such as the liver or lungs.
2.5 Quality assessment

Two reviewers (MMC and YSW) independently assessed the

quality of the included studies, with disagreements resolved through

discussion. The quality of each study was evaluated using the

Newcastle-Ottawa Scale (NOS), which assesses three categories:

case selection, comparability between groups, and outcome

assessment. The total NOS score ranges from 0 to 9 points, and

studies with a score of ≥6 were considered high-quality and

included in our analysis.
2.6 Statistical analysis

Meta-analysis was performed by using STATA 15.0 software.

Subgroup analyses were based on expansile and infiltrative pattern,

and heterogeneity was determined using orthorhombic test and I2

statistic. If there was significant heterogeneity (p-value <0.05 or

I2 >50%), a random-effects model was used. Otherwise, a fixed-

effect model was used (19). Additionally, a Chi-Square Test was

performed to evaluate whether there were statistical differences in

the distribution of expansile tumors and infiltrative tumors across

stages I, II, III, and IV. Sensitivity analysis to determine the

robustness and stability of the results, calculating the herogeneity

in each situation in which a single study was removed in turn

in noder to evaluate the effect of a single study on the overall

outcome. Risk of publication was assessed by visual inspeciton of

Begg’s funnel plot.
Frontiers in Oncology 0336
3 Result

3.1 Study selection and characteristics

The initial search retrieved a total of 592 relevant studies from

three databases (PubMed = 423, Embase = 132, Web of Science =

37). After removing duplicates and screening titles and abstracts, 27

studies remained. Following a full-text evaluation, 15 studies were

excluded. Ultimately, 12 studies, including 1185 patients, met the

inclusion criteria and were included in this meta-analysis. A

flowchart of the selection process is provided in Figure 1.

All included studies were retrospective and received seven or more

stars based on the NOS criteria. The quality assessments of these

studies are presented in Table 1, while the general characteristics of the

studies included in this meta-analysis are summarized in Table 2.
3.2 Subgroup analysis based on expansile
and infiltration tumors.

3.2.1 Death
This meta-analysis of five studies (9, 20, 21, 26, 30) showed that

the combined death rate of mucinous ovarian carcinoma was

positively correlated with expansile patter (Effect Size=0.105, 95%

CI=0.062-0.157, I2 = 42.001%, n=5), while no significant correlation

for infiltrative pattern (Effect Size=0.311, 95%CI=0.141-0.509,I2 =

78.323%, n=5) Figure 2A. However, the results also indicated high

heterogeneity among the studies (I2 = 80.256%, p<0.05). In order to

assess the stability of the model, sensitivity analysis was conducted

by excluding each individual study and calculating new effect size.

The results showed that the effect size were relatively stable, as

illustrated in Figure 2B.

3.2.2 Recurrence
This meta-analysis of eight studies (9, 20, 21, 23–25, 27, 28)

showed that the combined recurrence of mucinous ovarian

carcinoma was positively correlated with expansile pattern (Effect

Size=0.069, 95%CI=0.031-0.119, I2 = 55.150%, n=8), negatively

correlated with infiltrative pattern (Effect Size=0.245, 95%

CI=0.143-0.362,I2 = 79.797%, n=8) Figure 3A. The findings also

revealed significant heterogeneity among the studies (I2 = 80.408%,

p<0.05). A sensitivity analysis was performed by omitting each

study individually and recalculating the effect size to evaluate model

stability. The results indicated that the effect sizes remained fairly

stable, as shown in Figure 3B.

3.3.3 FIGO I and FIGO stage
Given that most MOC cases are diagnosed at an early stage, we

selected FIGO stage I as one of the key pathological features in our

study and found eight studies (Table 3) (9, 21, 22, 24, 25, 27, 29, 30)

reported the association between the expansile and infiltrative
frontiersin.org
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pattern for mucinous ovarian carcinoma and FIGO I stage. The

result revealed that the combined FIGO I stage rate of mucinous

ovarian carcinoma was positively correlated with expansile pattern

(Effect Size=0.898, 95%CI=0.849-0.940, I2 = 53.137%, n=8),

negatively correlated with infiltrative pattern (Effect Size=0.562,

95%CI=0.415-0.704, I2 = 82.519%, n=8) Figure 4A. Moreover, the

results highlighted considerable heterogeneity across the studies (I2

= 90.752%, p<0.05). To evaluate the robustness of the model, a

sensitivity analysis was carried out by removing each study one at a

time and recomputing the effect size. The findings suggested that

the effect sizes were largely consistent, as depicted in Figure 4B.
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Besides, we use the Pearson Chi-Square test to evaluate the

distribution of FIGO stages I, II, III, IV among expansile and

infiltrative tumors, and found there was a highly significant

association between tumor type and FIGO staging (Pearson chi2

(3) = 110.9206, p <0.00001) Figure 4D.

3.3.4 Publication bias
Publication bias was investigated by Begg’s funnel plots. Visual

inspection of the Begger’s funnel plot was almost symmetrical, as

depicted in Figures 2C, 3C, 4C, suggesting no obvious evidence of

publication bias.
FIGURE 1

Flow diagram of the included studies.
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TABLE 1 Quality assessment of included studies.

Study Selection Comparability Outcome Total

t Outcome
not present
at start

Comparability
on most
important
factors

Comparability
on other
risk factors

Assessment
of outcome

Long
enough
follow-up
(median>=5
year)

Adequacy
(completeness
of follow-up)

✓ ✓ × ✓ ✓ ✓ 8

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ ✓ ✓ 8

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ × ✓ 7

✓ ✓ ✓ ✓ ✓ ✓ 8

✓ ✓ × ✓ ✓ ✓ 8

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ × ✓ 7

✓ ✓ × ✓ × ✓ 7
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Representativeness Selection of
non-exposed

Ascertainme
of exposure

Gouy S (20) ✓ ✓ ✓

Lim H (21) ✓ ✓ ✓

Hada T (22) ✓ ✓ ✓

Tabrizi AD (23) ✓ ✓ ✓

Sotiropoulou M (24) ✓ ✓ ✓

Algera MD (25) ✓ ✓ ✓

Meagher N (26) ✓ ✓ ✓

Huin M (27) ✓ ✓ ✓

Muyldermans K (9) ✓ ✓ ✓

Hada T (28) ✓ ✓ ✓

Nistor S (29) ✓ ✓ ✓

Köbel M (30) ✓ ✓ ✓

“√” indicates that the criteria are met, while “×” indicates that the criteria are not met.
n
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4 Discussion

This meta-analysis revealed that mucinous ovarian carcinoma

with expansile-pattern tumors, typically observed in early-stage,

tend to have a better oncological prognosis. In contrast, infiltrative-

pattern tumors are commonly associated with advanced stages and

are linked to poorer outcomes.

Our study indicated that patients with expansile pattern tumors

have lower death rate, recurrence rate and a higher proportion of

FIGO stage I compared to those with infiltrative tumors. A study

conducted by Taira Hada et al. (22) showed that MOC with expansile

invasion was a better prognostic factor for progression-free-survival

and overall survival than HGSC at all stage. Besides, Taira Hada et al.

(31) also conducted a study, and found there was no statistically

significant differences in the recurrence rate and prognosis of MOC

with expansile and mucinous borderline tumors, it might be possible

that expansile MOC biologically behave more like mucinous

borderline tumors. These studies suggest that expansile MOC is not

an aggressive subtype, leading many researchers to question whether

comprehensive staging surgery is necessary for early-stage expansile

tumors. Marc D et al. (25) conducted a study of peritoneal staging in

clinical early-stage MOC, found limited benefit for routinely

performing peritoneal and lymph node staging procedures in

patients with expansile tumors, because recurrences, overall survival

and recurrence free survival were similar across the different extent of

surgical staging groups. In another study (15), researchers concluded

that peritoneal metastases are rare in expansile MOC, more than 90%

of patients have early-stage disease. Gouy S et al. (32) describes no

lymph node involvement in expansile tumors, while one patient

upstaged after surgical staging, based on positive peritoneal cytology

(3.4%, one out of 29 patients). In conclusion, expansile is a less

aggressive pattern. For patients with early-stage expansile MOC, it

may be considered safe to forgo additional staging surgery and lymph
Frontiers in Oncology 0639
node sampling following the initial bilateral salpingo-oophorectomy

and hysterectomy. Nevertheless, further data is needed to validate this

observation and ensure that patient outcomes are not compromised.

In contrast, infiltrative tumors are typically associated with

more advanced stages and higher recurrence rates than expansile

tumors. Gouy S et al. (20) found lethal recurrences were observed

mainly in infiltrative type. Taira Hada et al. (22) reported that

univariate analysis showed that MOC with infiltrative invasion at

FIGO stages II to IV had worse progression free survival and overall

survival than HGSC. Due to the high recurrence rate, it might be

considered adjuvant treatment for infiltrative tumor, even in early-

stage. According to Lim H et al. (21), one-third of patients who

received lymphadenectomy had lymph node involvement. Gouy S

et al. (32) investigated 31 infiltrative MOC underwent staging

operations and found four patients had nodal involvement.

Hence, we suggest lymphadenectomy must be considered during

staging operations in patients with infiltrative tumor. Algera MD

et al. (15) concluded that upstaging clinical early-stage infiltrative

MOC based on positive cytology, peritoneum and omentum

metastases occurred in 10.3% of the patients. Besides, Marc D

et al. (25) conducted a study of peritoneal staging in clinical early-

stage MOC, found that in the infiltrative cohort, overall survival was

better for patients undergoing full staging compared with those

undergoing fertility sparing or partial staging, patients undergoing

fertility-sparing staging for infiltrative tumors experienced

significantly more recurrences. In conclusion, patients diagnosed

with infiltrative mucinous ovarian carcinoma (MOC) should

undergo a thorough surgical staging process. This process should

include peritoneal staging, which involves omentectomy, the

collection of peritoneal washings, and the acquisition of biopsies,

along with pelvic and para-aortic lymph node sampling. Given the

potential aggressiveness of this type of cancer, adjuvant treatment

should be considered even for tumors identified at an early stage.
TABLE 2 The basic characteristics of included studies.

First author Publish year Study period Region Study design Cases Follow up Quality

Gouy S (20) 2018 1976-2016 France R 64 62m 8

Lim H (21) 2023 2003-2021 Korea R 113 55m 7

Hada T (22) 2022 1984-2019 Japan R 52 54m 7

Tabrizi AD (23) 2010 1984-2000 Iran R 31 NM 7

Sotiropoulou M (24) 2013 1998-2008 Greece R 42 6y 8

Algera MD (25) 2024 2015-2020 Netherlands R 409 999d 7

Meagher N (26) 2021 NM Australia R 133 2y 7

Huin M (27) 2022 2001-2019 France R 94 5y 8

Muyldermans K (9) 2013 1993-2011 Belgium R 44 63m 8

Hada T (28) 2021 1984-2018 Japan R 49 NM 7

Nistor S (29) 2023 2010-2022 UK R 33 37m 7

Köbel M (30) 2024 NM Canada R 121 NM 7
“d” means day, “m” means month and “y” means year. “R” means retrospective. “NM” means not mentioned.
frontiersin.org

https://doi.org/10.3389/fonc.2025.1541572
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1541572
In recent years, research on the molecular characteristics of

mucinous ovarian cancer (MOC) has increased, providing new

insights into its invasion patterns and prognosis. A study found that

mucinous ovarian cancer (MOC) with infiltrative invasion was

more often positive for CK5/6, CD24, and EGFR, suggesting that

these markers may be linked to the aggressive features of this
Frontiers in Oncology 0740
invasion pattern (28). In contrast, expansile invasion showed a

higher prevalence of HER2 overexpression/amplification and less

frequent HER2 mutation compared to infiltrative MOC, although

this difference was not statistically significant (33). Additionally,

PAX8 expression was more commonly associated with expansile

invasion, but the difference was not statistically significant (75% vs
FIGURE 2

(A) Forest plots showing the relationship between infiltrative subtype, expansile subtype, and death rate in MOC; (B) sentivity analysis to evaluate
robustness and (C) funnel plots show publication bias by visual inspection.
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FIGURE 3

(A) Forest plots showing the relationship between death rate and infiltrative subtype, expansile subtype; (B) sentivity analysis to evaluate robustness
and (C) funnel plots show publication bias by visual inspection.
TABLE 3 Distribution of expansile and infiltrative MOC patients across FIGO stages I-IV in various studies.

Expansile Tumor Stage Infiltrative Tumor Stage

I II III IV I II III IV

Algera MD (25) 243 6 7 1 116 7 23 2

Lim H (21) 75 3 5 4 13 0 8 5

Hada T (22) 20 2 1 2 16 1 7 3

Huin M (27) 28 1 3 0 19 0 27 9

Nistor S (29) 22 2 0 – 5 3 2 –

Köbel M (30) 82 9 3 1 10 3 6 1
F
rontiers in Oncolog
y 0841
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37.5%, p=0.99) (29). Overall, the existing data are limited,

highlighting the need for further research to integrate molecular

data with histological classification for a comprehensive

understanding of MOC prognosis.

Fertility-sparing surgery (FSS) is a common topic of discussion

because patients diagnosed with MOC are often younger. In recent

years, preserving fertility becomes a significant concern in
Frontiers in Oncology 0942
treatment planning, and several studies have focused on the

outcomes of fertility-sparing surgery in patients with early-stage

MOC. Gouy S et al. (34) conducted a study and emphasized that

FFS should be considered for early-stage MOC regardless of its

subtype. Similarly, Yoshihara M et al. (35) found patients with stage

I MOC underwent uterus preserving surgery was not associated

with decreased survival. On the other hand, Hyunji Lim et al. (21)
FIGURE 4

(A) Forest plots showing the relationship between FIGO I rate and infiltrative subtype, expansile subtype; (B) sentivity analysis to evaluate robustness
and (C) funnel plots show publication bias by visual inspection; (D) Cross-tabulation of the distribution of expansile and infiltrative MOC by FIGO
stage (I-IV).
frontiersin.org

https://doi.org/10.3389/fonc.2025.1541572
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2025.1541572
found infiltrative tumors showed no statistical significance with

worse survival, but patients in the infiltrative tumors group who

underwent FSS demonstrated a 5-year progression free survival rate

of 83.3%, significantly lower than patients without fertility

preservation. This suggests that adjuvant chemotherapy should be

considered for patients with stage I disease who have undergone

FSS, particularly if the histologic subtype is infiltrative. Bentivegna

et al. Reported the long-term outcome of 280 MOC patients treated

with FFS, the recurrence rate was 6,8% (36). Additional, Wei Lin

et al. (37) noted no significant difference in disease-free survival

between the FSS and radical surgery groups in patients with stage IA

and IC disease, though the FSS group did show a trend toward

poorer disease-free survival compared to those who underwent

radical surgery. Besides, they found that, among 23 patients

diagnosed with early-stage mucinous ovarian carcinoma who

underwent fertility-sparing surgery (FSS) and attempted to

conceive, 21 (91.3%) successfully achieved 27 pregnancies. These

included 26 spontaneous pregnancies and one pregnancy resulting

from assisted reproductive technology. However, there is a lack of

data on the recurrence rates associated with FSS, highlighting the

need for further research in this area. More studies should be

conducted to better understand the long-term outcomes and

potential risks of recurrence following FSS in patients with

mucinous ovarian carcinoma. But we strongly recommend FSS

for patients with early-stage MOC, irrespective of the tumor

subtype. This approach aims to preserve fertility while effectively

treating the cancer. Following treatment, these patients should be

encouraged to attempt conception as soon as they are medically

cleared and should engage in regular follow-up to monitor for any

signs of relapse.

This meta-analysis is the first to evaluate the relationship

between growth patterns and prognosis in MOC, but it has

limitations. One of the most obvious limitation is the high

heterogeneity among the results, although we did sensitivity

analysis to explain its robustness, we are currently unable to

perform a more thorough investigation into the sources of

heterogeneity due to incomplete data. All included studies were

retrospective, which may affect the results. Additionally, only

English language studies were considered, potentially introducing

language bias. The subgroup analysis did not show a significant link

between infiltrative patterns and death rate due to limited data.

Despite these limitations, the study offers initial insights into the

prognostic importance of growth patterns in MOC and suggests

areas for future research, calling for more studies, including those

with negative findings, to support these conclusions.
5 Conclusion

Our study found that expansile MOC generally has better

outcomes, while infiltrative MOC is associated with poorer
Frontiers in Oncology 1043
prognosis and advanced stages. Full surgical staging is

recommended for infiltrative MOC, but may be omitted for early-

stage expansile MOC. Fertility-sparing surgery is advised for early-

stage patients, with early conception and close monitoring.
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Prefecture, En Shi, Hubei, China
Objectives: To identify radiomic features extracted from ultrasound images and

to develop and externally validate a comprehensive model that combines clinical

data with ultrasound radiomics features to predict the residual tumor status in

patients with advanced epithelial ovarian cancer (OC).

Methods: The study included 112 patients with advanced epithelial OC who

underwent preoperative transvaginal ultrasound. Of these, 78 patients were

assigned to the development cohort and 34 to the external validation cohort.

Tumor contours were manually delineated as regions of interest (ROI) on the

ultrasound images, and radiomic features were extracted. The final set of

variables was identified using LASSO (least absolute shrinkage and selection

operator) regression. Clinical features were also collected and incorporated into

the model. A combination model integrating ultrasound radiomics and clinical

variables was developed and externally validated. The performance of the

predictive models was assessed.

Results: A total of 1,561 radiomic features and 18 clinical features were extracted.

The final model included 10 significant ultrasound radiomic variables and 4

clinical features. The comprehensive model outperformed models based on

either clinical or radiomic features alone, achieving an accuracy of 0.84, a

sensitivity of 0.80, a specificity of 0.75, a precision of 0.88, a positive predictive

value of 0.81, a negative predictive value of 0.86, an F1-score of 0.78, and an AUC

of 0.82 in the external validation set.
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Conclusions: The comprehensive model, which integrated clinical and

ultrasound radiomic features, exhibited strong performance and

generalizability in preoperatively identifying patients likely to achieve complete

resection of all visible disease.
KEYWORDS

ultrasonic radiomics, ovarian cancer, predictive model, nomograms, residual tumor
1 Introduction

Ovarian cancer (OC) ranks among the most prevalent gynecological

cancers, holding the position of the third most commonly diagnosed

malignancy in the female reproductive system, surpassed only by cervical

and endometrial cancers. Moreover, it exhibits the highest mortality rate

within this category of cancers, posing a significant threat to women’s

health (1). Because early symptoms are often nonspecific, the majority of

patients are diagnosed at an advanced clinical stage, frequently presenting

with localized or widespread pelvic and abdominal metastases. Despite

initial treatment, recurrence rates and mortality remain high, with

frequent development of drug resistance. As a result, the 5-year

survival rate is below 40%, leading to a generally poor prognosis for

these patients (2).

According to the International Federation of Obstetrics and

Gynecology (FIGO), there are two main treatment strategies for

advanced OC in stages IIIC-IV: (1) primary debulking surgery

(PDS) followed by six cycles of postoperative platinum-based

chemotherapy, and (2) for patients unlikely to achieve satisfactory

tumor reduction, two to three cycles of neoadjuvant chemotherapy

can be given before interval debulking surgery (IDS), followed by

postoperative adjuvant chemotherapy, a strategy commonly

referred to as “sandwich” therapy (3). The primary goal of both

treatment approaches is to maximize tumor reduction, ideally

leaving a residual tumor (RT) diameter of less than 1 cm, or

achieving no visible residual tumor (R0). Maximal cytoreduction

stands as a critical prognostic factor in the treatment of advanced

OC, showing the most favorable outcomes fol lowing

adjuvant chemotherapy.

Unfortunately, not all OC patients are suitable candidates for

primary debulking surgery (PDS) aimed at achieving an R0

resection (4). For those with a low probability of attaining R0

resection, there is a consensus that surgical intervention should be

avoided if incomplete resection (with residual tumor greater than 1

cm) is anticipated, as it has little benefit to patient survival and may

lead to a high incidence of perioperative related diseases (3–5).

Therefore, assessing the probability of a patient’s RT-resection

during PDS prior to surgery is advantageous, as it supports the

implementation of individualized treatment strategies.

In recent years, the field of imaging has made significant

advancements, allowing for a more detailed depiction of tumor
0246
heterogeneity and providing valuable prognostic information (6).

Various mathematical approaches have been applied to extract a

vast array of radiomic features from medical images with high

throughput, enabling clinicians to improve diagnostic accuracy and

develop personalized, precision treatments (7, 8). Transvaginal

ultrasound is a commonly utilized, cost-effective method for the

clinical diagnosis of OC, and ultrasound radiomics has been

increasingly employed in the study of various malignancies,

including thyroid, cervical, liver, and OC (9–11). For example,

Chiappa et al. utilized ultrasound radiomics to distinguish between

malignant and benign ovarian tumors, highlighting its potential to

enhance the preoperative evaluation of patients with ovarian masses

and accurately identify those with OC (12). Thus, a comprehensive

and unbiased assessment of ultrasound image features is

essential (10).

This study seeks to assess the predictive significance of

ultrasound radiomics and clinical factors in creating and

validating a more reliable and generalizable preoperative model

for forecasting RT status in patients with advanced epithelial OC.

The goal is to standardize and simplify the process for

gynecologists, enabling them to extract critical information from

traditional diagnostic imaging more effectively and make informed

decisions based on it.
2 Materials and methods

2.1 Study population

The study enrolled 112 patients with histologically confirmed

FIGO stage III or IV OC diagnosed between January 2018 and June

2024. Of these, 78 patients from the Central Hospital of Enshi Tujia

and Miao Autonomous Prefecture formed the development cohort,

while 34 patients, recruited by collaborators at the Ethnic Hospital

of Enshi Tujia and Miao Autonomous Prefecture, comprised the

external validation cohort. The inclusion and exclusion criteria were

consistent across both cohorts. The exclusion criteria included

patients currently undergoing neoadjuvant chemotherapy, those

lacking essential clinical or surgical data, individuals with poor

image quality or significant image artifacts affecting visualization,

and patients with a history of repeated biopsies. We established a
frontiersin.org
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standardized protocol to define dataset variables and outcomes,

enabling the retrospective collection of data within the same time

frame. Patients who met the inclusion criteria were divided into two

groups: (1) the RT<1 group, comprising individuals with no visible

gross residual tumor (RT) and a maximum tumor diameter of less

than 1 cm; and (2) the RT≥1 group, which included patients with a

maximum tumor diameter of 1 cm or greater (13). This

retrospective study was approved by our institution’s ethics

review board, with informed consent obtained from all participants.
2.2 Clinical information

Clinical data, including age, body mass index (BMI), parity,

presence of hydrothorax, ascites, and ASA score, as well as the

metastases in abdomen and pelvis (MAP) score, were collected.

Laboratory findings such as perioperative platelet count,

perioperative albumin levels, serum cancer antigen-125 (CA125),

serum human epididymis protein 4 (HE-4) levels, and the

neutrophil-to-lymphocyte ratio (NLR) were also obtained.

Additionally, ultrasonic measurement characteristics such as

maximum tumor diameter, arterial pulsatility index, resistance

index, end diastolic flow rate, peak flow rate, and average flow

rate were retrieved from the medical records.

The MAP score was assessed based on preoperative enhanced

CT scans of the abdomen and pelvis, with two radiologists, blinded

to intraoperative records, scoring and documenting the findings.

The score was based on the Zhongshan Hospital rating scale for

preoperative OC, which assessed lesions in various regions,

including the diaphragmatic peritoneum, liver and kidney

recesses, liver capsule, hepato-gastric space, spleen and stomach

space, greater omentum (covering both the liver area and splenic

curvature), mesentery, peritoneum, intestines, paracolic sulci,

uterorectal space, uterine bladder space, and lymph nodes. Each

identified lesion contributed 2 points, with the total score being the

cumulative sum of all lesions. Any discrepancies in scoring were

resolved through consensus.
2.3 Image segmentation

In accordance with the Institutional Review Board’s approved

protocol, essential clinical data and ultrasound image locations were

systematically documented in standardized electronic case report

forms (CRFs) and collected within four weeks prior to the primary

surgical intervention. The segmentation of images was conducted

independently by two seasoned radiologists who were unaware of

the patients’ tissue pathology. One of the radiologists, possessing

around 12 years of experience, utilized the open-source ITK-SNAP

software (version 3.8.0; www.itksnap.org) to manually delineate the

regions of interest (ROIs) on the image slices. The Kappa

consistency analysis was performed to evaluate discrepancies

between two radiologists, and a Kappa value ≥ 0.85 was regarded

as a good consistency.
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2.4 Radiomics feature extraction

PyRadiomics (v.2.0.0; http://www.radiomics.io/pyradiomics.html)

software was used to extract features from medical images (14). The

process included importing manually delineated ROI images along

with the original images into the PyRadiomics platform, where an

internal feature analysis program was utilized to extract the relevant

features. We adopted nonlinear intensity transformation on image

voxels, Gaussian Laplace filter and Eight wavelet transform to

obtain high-throughput features. Radiomic features can be

categorized into three main groups: (I) geometry, (II) intensity,

and (III) texture. Geometric features describe the three-dimensional

shape of the tumor, while intensity features reflect the first-order

statistical distribution of voxel intensities within the tumor. Texture

features, on the other hand, analyze the patterns and the second-

and higher-order spatial distributions of these intensities. A total of

1,561 radiomic features were extracted, encompassing first-order

features, shape-based features, and a variety of matrix features,

including gray level co-occurrence matrix (GLCM) features, gray

level dependence matrix (GLDM) features, gray level run length

matrix (GLRLM) features, gray level size zone matrix (GLSZM)

features, and neighborhood gray-tone difference matrix

(NGTDM) features.
2.5 Radiomics feature selection

To eliminate differences in index dimensions, Z-score

normalization was applied to account for the varying scales of the

manually derived radiomic features. Three methods were employed

to select the final variables. Initially, the Mann-Whitney U test was

performed to filter all radiomic features, retaining only those with a

p-value of less than 0.05. Subsequently, Pearson’s rank correlation

coefficient was computed to evaluate the correlation between

features, and those with an intraclass correlation coefficient (ICC)

below 0.9 were discarded to guarantee high repeatability. Finally,

the least absolute shrinkage and selection operator (LASSO)

regression model was employed to identify the final variables for

model construction. Ultimately, the best features were incorporated

into the prediction models, which were developed using 10-fold

cross-validation.
2.6 Model development and validation

Three models were developed using the development set of 78

patients: model I (the clinical model), model II (the radiomics model),

and model III (the clinical-radiomics model). For radiomics models,

we tested 15 machine learning algorithms, with the LightGBMmodel

demonstrating the best performance (Appendix 1). However, the

clinical-radiomics model was chosen as the nomogram to enhance

convenience for clinical application.

The external validation set (34 patients) used to evaluate model

performance. The model’s performance was assessed through

several metrics, including accuracy, sensitivity, specificity,
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precision, positive predictive value, negative predictive value, and

F1-Score. Additionally, the receiver operating characteristic (ROC)

curve was calculated along with the area under the ROC curve

(AUC). Calibration was assessed through calibration plots, which

depicted the relationship between predicted probabilities and

observed proportions. To evaluate the clinical utility and benefits

of the predictive model, decision curve analysis (DCA)

was conducted.
2.7 Statistical analysis

All statistical analyses were performed using Python packages

(version 0.13.2). Group differences were evaluated using either

Student’s t-test or Mann–Whitney U test for continuous

variables, while categorical variables were analyzed using the chi-

square test or Fisher’s exact test. Multivariate analysis was

conducted to select the final variables. Continuous variables that

followed a normal distribution are presented as means ± standard

deviations (SDs), whereas non-normally distributed variables are

reported as medians ± interquartile ranges (IQRs). And odds ratios

(ORs), 95% confidence intervals (CIs), HosmerLemeshow (H-L)

test were also calculated. And a p value < 0.05 was considered

statistically significant.
3 Results

3.1 Clinical and
demographic characteristics

The final cohort comprised 112 patients with advanced

epithelial OC. This included the development cohort (n=78),

which consisted of 55 patients with R0 resection and 23 patients

with non-R0 status, and the external validation cohort (n=34),

which included 24 patients with R0 resection and 10 patients with

non-R0 status. The comparison between the development and

external validation cohorts revealed no significant differences

between the two groups, nor within each group (p > 0.05),

indicating a reasonable classification. Table 1 present the baseline

characteristics of patients in each cohort. In the multivariate

analysis, age (p = 0.031; OR = 1.011, 95% CI: 1.003-1.018),

CA125 level (p = 0.002; OR = 1.001, 95% CI: 1.000-1.001),

presence of hydrothorax (p = 0.003; OR = 1.174, 95% CI: 1.078-

1.279), and maximum tumor diameter (p = 0.031; OR = 1.002, 95%

CI: 1.001-1.004) were identified as independent predictors of RT

status (Table 2).
3.2 Radiomics characteristics

A total of 1,561 radiomic features were extracted from

ultrasound images, which included 306 first-order features,
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14 shape-based features, 374 features from the GLCM, 238

features from the GLDM, 272 features from the GLRLM, 272

features from the GLSZM, and 85 features from the NGTDM.

The t-test or Mann-Whitney U test was utilized for the preliminary

screening of all features, resulting in the inclusion of 42 features.

Subsequently, Pearson correlation analysis was conducted,

revealing 25 features that were significantly different between the

two groups. Next, LASSO regression was conducted using 10-fold

cross-validation with the minimum criterion to determine the

optimal l values. The l value that resulted in the lowest cross-

validation errors is illustrated in Figures 1 and 2. Following this, ten

features with nonzero coefficients were used for this task. Finally,

ultrasonic radiomic features were established using these 10

f e a tu r e s , n ame l y exponen t i a l _fi r s t o rd e r_Skewne s s ,

exponential_glszm_LargeAreaHighGrayLevelEmphasis, gradient_

firstorder_Minimum, lbp_3D_m2_firstorder_90Percentile,

logarithm_firstorder_Minimum, squareroot_glcm_Idn,

squareroot_glszm_GrayLevelNonUniformityNormalized,

s q u a r e r o o t _ g l s z m _ S m a l l A r e a E m p h a s i s ,

wavelet_LHL_ngtdm_Contrast , wavelet_LLL_glcm_Idn

(Figures 1, 2).
3.3 Model construction and
performance assessment

We developed three models to identify patients suitable for

optimal primary debulking surgery. Model 1 (the clinical model)

was based solely on clinical characteristics using the LightGBM

algorithm. Model 2 (the radiomics model) relied exclusively on

ultrasonic radiomics characteristics, also employing the LightGBM

algorithm (Appendix 1). Model 3 (the clinical-radiomics model)

was an integrative nomogram that combined clinical and radiomics

features to enhance clinical application convenience (Figure 3).

The radiomic-clinical nomogram demonstrated superior

performance compared to the clinical or radiomics models alone,

achieving an accuracy of 0.84, a sensitivity of 0.80, a specificity of

0.75, a precision of 0.88, a positive predictive value of 0.81, a

negative predictive value of 0.86, an F1-Score of 0.78, and an

AUC of 0.82 in the external validation set (Table 3). Figure 4

illustrates the AUC for both the development and external

validation cohorts. The calibration curves for the radiomic-

clinical nomogram demonstrated strong agreement between

predicted and observed outcomes in both the development and

validation cohorts (Figure 4). The Hosmer-Lemeshow (HL) test

indicated favorable goodness-of-fit for the data (all p > 0.05).

Furthermore, the DCA revealed that the nomogram offers greater

clinical benefit (Figure 4), namely, the DCA for the three models

indicates that this new diagnostic approach yields a greater net

benefit (where a value greater than 0 indicates patient benefit) in

predicting the residual tumor status in patients with advanced OC,

with the clinical-radiomics model showing a more significant

benefit compared to the clinical model or radiomics model.
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TABLE 1 Clinical and demographic characteristics of development and validation cohort.

Variables Development cohort (N=78) External validation cohort (N=34)

R0 (N=55) Non-R0 (N=23) P R0 (N=24) Non-R0 (N=10) P

Age 54.55 ± 9.23 62.13 ± 7.14 <0.01 54.88 ± 9.34 62.10 ± 5.51 0.03

BMI 22.23 ± 3.05 22.64 ± 3.51 0.72 22.08 ± 3.73 24.45 ± 1.89 0.08

NLR 3.07 ± 1.86 3.29 ± 1.82 0.70 3.09 ± 1.88 2.47 ± 1.67 0.46

Perioperative platelet 226.82 ± 82.89 211.04 ± 85.68 0.41 230.00 ± 70.89 175.80 ± 78.42 0.06

Perioperative albumin 45.69 ± 5.48 43.75 ± 4.77 0.09 45.80 ± 5.62 45.37 ± 5.87 0.81

CA125 278.36 ± 163.28 465.04 ± 179.81 <0.01 284.46 ± 136.25 403.10 ± 167.44 0.04

HE-4 285.55 ± 135.99 546.83 ± 183.08 <0.01 318.08 ± 143.04 574.10 ± 184.04 <0.01

MAP score 7.93 ± 2.77 17.83 ± 4.39 <0.01 7.33 ± 2.18 20.80 ± 3.68 <0.01

Maximum tumor diameter 117.25 ± 38.89 141.62 ± 37.31 0.01 119.19 ± 38.81 141.91 ± 23.24 0.10

Arterial pulsatility index 0.31 ± 0.14 0.31 ± 0.12 0.96 0.32 ± 0.14 0.35 ± 0.21 0.63

Resistance index 0.26 ± 0.09 0.28 ± 0.09 0.38 0.27 ± 0.10 0.28 ± 0.13 0.79

End diastolic flow rate 17.09 ± 2.50 16.96 ± 2.09 0.83 16.67 ± 1.88 16.63 ± 2.77 0.97

Peak flow rate 23.07 ± 2.30 23.18 ± 2.02 0.89 22.91 ± 1.97 23.24 ± 2.14 0.67

Average flow rate 19.51 ± 2.22 19.94 ± 1.60 0.40 19.72 ± 1.89 19.48 ± 1.78 0.74

Parity 0.24 0.92

1 4 (7.27) 0 3 (12.50) 1 (10.00)

2 38 (69.09) 21 (91.30) 17 (70.83) 7 (70.00)

3 7 (12.73) 2 (8.70) 3 (12.50) 1 (10.00)

4 5 (9.09) 0 1 (4.17) 1 (10.00)

5 1 (1.82) 0 0 0

ASA score 0.14 0.32

1 8 (14.55) 5 (21.74) 8 (33.33) 1 (10.00)

2 16 (29.09) 1 (4.35) 3 (12.50) 2 (20.00)

3 10 (18.18) 8 (34.78) 3 (12.50) 2 (20.00)

4 11 (20.00) 5 (21.74) 8 (33.33) 2 (20.00)

5 10 (18.18) 4 (17.39) 2 (8.33) 3 (30.00)

Ascites 0.59 0.13

0 22 (40.00) 3 (13.04) 9 (37.50) 4 (40.00)

1 19 (34.55) 4 (17.39) 8 (33.33) 3 (30.00)

2 14 (25.45) 16 (69.57) 7 (29.17) 3 (30.00)

Hydrothorax 0.01 0.98

0 23 (41.82) 7 (30.43) 4 (16.67) 5 (50.00)

1 16 (29.09) 9 (39.13) 9 (37.50) 2 (20.00)

2 16 (29.09) 7 (30.43) 11 (45.83) 3 (30.00)
F
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A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; CIs, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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4 Discussion

In our study, we integrated primary radiomic features, laboratory

findings, and clinical factors from patients with advanced epithelial

OC to create and validate a radiomics-clinical nomogram. This

nomogram is designed for individualized preoperative prediction of

treatment response (RT) status. The results demonstrated that the

integrated radiomic-clinical nomogram showed enhanced predictive

performance compared to using radiomic or clinical signatures

individually after external validation. The final model is capable of

identification of the RT status prior to surgery. This advancement

enhances clinical decision-making, patient communication, and

prognosis assessment. For those with a low probability of attaining

R0 resection, the surgical intervention should be avoided if

incomplete resection. The presence or absence of response to

treatment (RT) following PDS or IDS is the most significant factor

influencing the prognosis of patients with advanced OC. Notably, a

10% increase in the rate of complete tumor resection can lead to a 5%

improvement in overall survival for these patients (15). Research has

shown that RT status is an independent and significant prognostic

factor for patients with advanced OC. The extent of RT is inversely

correlated with patient survival, disease-free survival (DFS), and

overall survival (OS) (5, 16). According to Kehoe et al., patients

with OC who underwent PDS followed by RT excision experienced
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the most favorable prognosis (17). High-grade serous ovarian cancer

(HGSOC) is the most common and aggressive histological subtype of

OC, and complete resection of all visible lesions (RT-resection) in

advanced HGSOC patients after PDS is linked to the best outcomes

(5, 18). Therefore, it is essential to assess all epithelial OC patients

suspected of being at stage IIIC or IV to determine their eligibility for

PDS prior to initiating therapy, in line with the clinical practice

guidelines set forth by the Society of Gynecologic Oncology and the

American Society of Clinical Oncology (19).

For patients in whom achieving satisfactory tumor reduction is

challenging, neoadjuvant chemotherapy should be considered prior

to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear

area and the major axis length of the stroma are significant factors

that can improve risk stratification in patients with HGSOC. For the

ultrasonic radiomic characteristics, three methods were employed

to select the final variables, resulting in the inclusion of 10 features

from a total of 1,561 radiomic features in our model, effectively

eliminating invalid variables. Previous studies have demonstrated

that all ultrasonic radiomics and clinical features included in our

study are relevant to the diagnosis, treatment, and prognosis of

ovarian cancer (15, 18, 21, 24).

CA-125 is one of the most commonly used serum biomarkers

for OC. Some studies (13, 20) have found that preoperative CA-125

levels can predict gross residual disease at PDS for advanced
TABLE 2 the univariate and multivariate logistic regression analysis of development cohort.

Variables Univariate logistic regression analysis Multivariate logistic regression analysis

OR OR 95% CI P OR OR 95% CI P

Age 1.02 1.01-1.03 0.001 1.01 1.00-1.02 0.030

BMI 1.00 0.98-1.04 0.609

NLR 1.01 0.97-1.06 0.639

Perioperative platelet 1.00 1.00-1.00 0.450

Perioperative albumin 0.99 0.97-1.00 0.145

CA125 1.00 1.00-1.00 0.000 1.00 1.00-1.00 0.002

HE-4 0.89 0.85-0.93 0.365

MAP score 0.95 0.94-0.96 0.210

Maximum tumor diameter 1.00 1.00-1.00 0.013 1.00 1.00-1.00 0.031

Arterial pulsatility index 0.98 0.51-1.90 0.959

Resistance index 1.65 0.65-4.24 0.376

End diastolic flow rate 0.96 0.96-1.03 0.830

Peak flow rate 1.00 0.97-1.05 0.837

Average flow rate 1.02 0.98-1.07 0.397

Parity 0.92 0.81-1.04 0.244

ASA score 1.01 0.95-1.08 0.757

Ascites 1.24 1.12-1.36 0.000 1.17 1.08-1.28 0.003

Hydrothorax 1.65 0.65-4.24 0.376
A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; CIs, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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FIGURE 1

Study flowchart of the radiomics analysis.
FIGURE 2

Radiomic feature extraction. (A, B) Radiomic features extraction using least absolute shrinkage and selection operator (LASSO) algorithm. (C) The
final features included in our study.
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FIGURE 3

A nomogram integrates clinical parameters and radiomics features.
TABLE 3 The performance of clinical model, radiomics model and combined nomogram for predicting RT status.

Model Cohort AUC ACC Sen Spe PPV NPV Precision F1

Clinical
Development 0.883 0.883 0.883 0.883 0.883 0.883 0.883 0.883

Validation 0.723 0.723 0.723 0.723 0.723 0.723 0.723 0.723

Radiomics
Development 0.878 0.878 0.878 0.878 0.878 0.878 0.878 0.878

Validation 0.704 0.704 0.704 0.704 0.704 0.704 0.704 0.704

Combined
Development 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900

Validation 0.817 0.817 0.817 0.817 0.817 0.817 0.817 0.817
F
rontiers in Onco
logy
 0852
AUC, Area under the curve; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value; F1, F1-Score.
FIGURE 4

The performance of clinical model, radiomics model and combined nomogram with ROC, calibration curves and decision curve analysis. (A, B) ROC
curves of each model in the (A) development and (B) external validation cohort for prediction of RT status. (C, D) Calibration curves of each model
in the (C) development and (D) external validation cohort for prediction of RT status, and A 45° diagonal line indicates perfect calibration.
(E, F) Decision curve analysis of each model in the (E) development and (F) external validation cohort for prediction of RT status, and the colored
lines were expected net benefit of per patient. ROC, Receiver operating characteristics curves; RT, Residual tumor.
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epithelial OC. Additionally, moderate to severe ascites has been

associated with residual disease (13) and may serve as a surrogate

indicator of advanced disease across multiple anatomic locations.

The maximum tumor diameter is a critical predictor for

individualized preoperative assessment of RT status in patients

with advanced OC, as reflected in radiomic shape-based features.

For patients who are unlikely to achieve satisfactory tumor

reduction, neoadjuvant chemotherapy should be considered prior

to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear

area and the major axis length of the stroma are important factors

for improving risk stratification in patients with HGSOC. In

analyzing ultrasonic radiomic characteristics, three methods were

utilized to select the final variables, resulting in the inclusion of 10

features from a total of 1,561 radiomic features in our model,

effectively eliminating invalid variables.

Ultrasound offers several advantages, including real-time display,

convenience, and affordability, making it widely used for screening

and preoperative evaluation of OC. Recently, applications of

ultrasound-based radiomics have been reported in tumor diagnosis

(12), pathology grading (22), vascular invasion assessment,

therapeutic evaluation (23), and prognostic prediction (24).

However, there are few reports on RT status based on ultrasonics.

Meanwhile, several radiomic models for predicting RT status based

on computed tomography (CT) and magnetic resonance imaging

(MRI) have been developed and validated (25, 26). Lu et al. (26)

developed an MRI-based radiomic-clinical nomogram that

successfully predicted RT status preoperatively in patients with

HGSOC. A multicenter assessment was conducted to evaluate the

efficacy of preoperative CT scans and CA-125 levels in predicting

gross residual disease following PDS for advanced epithelial OC (25).

However, the pelvic CT-based model was primarily developed with a

focus on abdominal metastases. These findings support the

hypothesis that radiomic features can effectively predict treatment

response (RT) status by capturing variations in tumor heterogeneity.

There are several limitations to our study. Firstly, it relies on a

small sample size, necessitating larger databases and multicenter

studies to confirm the generalizability of this model. Second, future

studies should integrate CT or contrast-enhanced CT and MRI or

contrast-enhanced MRI into the predictive model to enhance the

prediction of RT status in OC. Finally, our study focused exclusively

on advanced epithelial OC subtypes, excluding rare variants. Future

research should include data from additional OC subtypes to

improve the models’ universality and clinical applicability.
5 Conclusion

In our study, we confirmed the clinical value of ultrasound-based

radiomics for the preoperative prediction of treatment response (RT)

status in patients with advanced epithelial OC, and radiomic feature

extraction and selection may provide a deeper understanding of

ultrasound imaging mechanism. The comprehensive model

combined clinical and ultrasonic radiomics features not only had a
Frontiers in Oncology 0953
better performance in preoperative identification of complete

resection of all visible diseases but also had a higher

generalization ability.
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With the rapid development of the “Internet + Medical” model, artificial

intelligence technology has been widely used in the analysis of medical

images. Among them, the technology of using deep learning algorithms to

identify features of ultrasound and pathological images and realize intelligent

diagnosis of diseases has entered the clinical verification stage. This study is

based on the application research of artificial intelligence technology in medical

diagnosis and reviews the early screening and diagnosis of thyroid diseases. The

cure rate of thyroid disease is high in the early stage, but once it deteriorates into

thyroid cancer, the risk of death and treatment costs of the patient increase. At

present, the early diagnosis of the disease still depends on the examination

equipment and the clinical experience of doctors, and there is a certain

misdiagnosis rate. Based on the above background, it is particularly important

to explore a technology that can achieve objective screening of thyroid lesions in

the early stages. This paper provides a comprehensive review of recent research

on the early diagnosis of thyroid diseases using artificial intelligence technology.

It integrates the findings of multiple studies and that traditional machine learning

algorithms are widely used as research objects. The convolutional neural

network model has a high recognition accuracy for thyroid nodules and

thyroid pathological cell lesions. U-Net network model can significantly

improve the recognition accuracy of thyroid nodule ultrasound images when

used as a segmentation algorithm. This article focuses on reviewing the

intelligent recognition technology of thyroid ultrasound images and

pathological sections, hoping to provide researchers with research ideas and

help clinicians achieve intelligent early screening of thyroid cancer.
KEYWORDS

thyroid disease, machine learning, image recognition, thyroid ultrasound, thyroid
pathological slices
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1 Introduction

The thyroid gland is a butterfly-shaped gland located in the

front of the neck. Its main function is to secrete thyroid hormones.

Thyroid hormones play a key role in regulating many physiological

processes in the human body, including diabetes management,

cardiovascular health, cognitive function, and immune system

regulation. Therefore, maintaining normal thyroid hormone levels

is essential to maintaining good health (1, 2). When thyroid

hormone secretion is disordered, it can lead to abnormal thyroid

function or abnormal thyroid structure. Thyroid dysfunction

includes hyperthyroidism and hypothyroidism. Thyroid structural

abnormalities mainly include thyroid nodules and thyroid cancer.

Thyroid nodules refer to solid or cystic masses that appear inside

the thyroid gland. Thyroid cancer is a malignant tumor that occurs

in thyroid cells and is one of the most commonmalignant tumors in

the endocrine system (3). The causes of thyroid cancer are complex.

As a malignant tumor, tumor cells continue to grow and spread,

leading to a decline in body function. During the diagnosis and

treatment process, it may also cause emotional distress and

psychological problems for patients. Studies have shown that

cancer patients generally have a higher incidence of mood

disorders such as depression and anxiety (4, 5).

Thyroid lesions often have no obvious symptoms in the early stages,

but if not discovered and treated in time, they may gradually deteriorate

into thyroid cancer, affecting the patient’s quality of life and even

endangering their life. Therefore, although thyroid cancer has certain

hazards, early detection, early diagnosis and early treatment can achieve

better treatment results, reduce the surgery rate and mortality rate,

improve the cure rate and reduce complications.

In recent years, significant changes in environmental factors,

specifically manifested as heavy metal pollutants, persistent organic

pollutants (POPs), and increased air pollution (6–8), have adversely

affected the normal physiological functions of thyroid hormones.

The incidence of thyroid cancer is increasing year by year globally,

accounting for approximately 1% to 3% of all new malignant

tumors worldwide (9). Currently, the methods for screening

thyroid diseases include ultrasound, cell puncture, CT, MRI, etc

(10–12). Ultrasound is a common non-invasive and painless

examination method (13). Its disadvantage is that it is limited by

the doctor’s experience and the size, shape, edge, internal echo and

other characteristics of the nodule. Therefore, there is a certain

misdiagnosis rate when evaluating the benign or malignant nature

of thyroid nodules. Thyroid pathology is the gold standard for

diagnosis and an important means of determining whether a

thyroid nodule is benign or malignant and the type of thyroid

tumor. However, pathology is invasive, expensive, and difficult for

patients to accept. In order to achieve low-cost, high-accuracy early

screening for thyroid disease, researchers have turned their

attention to artificial intelligence technology.

The rapid advancement of artificial intelligence in image

recognition technology has pushed auxiliary medical care to a

highly mature and widely applied stage. In the field of image

segmentation, deep learning image segmentation technology can

automatically learn the features of images and achieve high-
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precision image segmentation by training deep neural. Xu (14)

proposed an end-to-end FISH-based method (CACNET) for the

recognition of genetically abnormal cells (CAC). The CACNET

achieves cell nuclear segmentation by an improved Mask region-

based convolutional neural network (R-CNN), and the accuracy of

circulating CAC recognition using CACNET 94.06%. At the same

time, they also developed a deep learning network (FISH-Net)

based on 4-color FISH images for CACs, with an accuracy of

more than 96% (15). Zhao (16) proposed a breast cancer

ultrasound image segmentation method based on the U-Net

framework combined with the residual block structure and

attention, with a dic of up to 92.1%.

In the field of image classification, it mainly classifies and

recognizes objects in images by training deep neural networks.

This technology can process large-scale image data and quickly and

accurately identify target objects in images. Its advantages include

fast recognition speed, high accuracy, and the to handle images of

different sizes and resolutions. In 2012, the deep convolutional

neural network achieved a significant breakthrough in the

ImageNet competition, showing excellent performance of 37.5%

top-1 error rate and 17.0% top-5 error rate (17). In addition, Levy

(18) proposed an innovative deep convolutional neural network

model that cleverly used deep transfer learning technology to

successfully achieve high-precision classification of benign and

malignant breast tumors with an accuracy rate of up to 92.4%.

Wang (19) developed a mitosis detection method (FMDet) based

on breast tissue histopathological images to capture the appearance

changes mitotic cells. To achieve more robust feature extraction, the

feature extractor was constructed by integrating a channel-level

multi-scale attention mechanism into the fully convolutional

network structure. The FMDet algorithm has won the first place in

the MIDOG 2021 challenge, achieving an accuracy of 74.4%. In 2022,

Su (20) used the gene expression data of TCGA to screen

characteristic genes by combining WGCNA Lasso algorithms, and

used machine learning models to achieve the diagnosis and staging of

colorectal cancer. Wang (21) proposed a supervised learning (SSL)

scheme of deep learning (DL) framework to address the challenge of

high-precision classification seven pulmonary tumor growth patterns

in whole slide images (WSIs). This series of technological innovations

has undoubtedly injected strong impetus into the field of image

segmentation and recognition, and has greatly promoted the

application and development of artificial intelligence in early

screening of thyroid diseases.

This article analyzes the application of artificial intelligence

technology in the early diagnosis of thyroid diseases by comparing a

large number of studies, summarizes the current application status

of artificial intelligence technology in the early diagnosis of thyroid

diseases, and studies the intelligent recognition technology of

thyroid ultrasound images and pathological sections respectively.

The aim is to explore a technology that can achieve objective

screening of thyroid lesions in the early stages. Based on literature

research, we explored the application of machine learning and deep

learning in thyroid auxiliary diagnosis. We find that for small

sample data, SVM and semi-supervised neural networks in deep

learning perform better. U-Net has become the benchmark for most
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image segmentation tasks, with an accuracy of more than 93%,

thanks to its encoder-decoder architecture. Artificial intelligence

technology enables auxiliary examination for early screening of

thyroid diseases, improving the early cure rate and survival rate of

patients, and enhancing the accuracy and of doctors’ diagnosis. This

study also prospects the future trends of artificial intelligence in the

field of thyroid disease research, and constructs a set of artificial

intelligence system for the whole process. The development of

artificial intelligence in thyroid disease research is no longer

limited to thyroid pathology or thyroid ultrasound, but has

created an artificial intelligence that integrates thyroid images and

clinical data of thyroid cancer, which is used to determine the

diagnosis of thyroid cancer and can also accurately predict the

postoperative survival period of thyroid cancer patients.
2 Methods

The PubMed database was accessed by computer for retrieval,

using “thyroid ultrasound”, “thyroid cytopathology” and “machine

learning” as search terms. Figure 1 shows the number of publications

in the field of thyroid in the past decade. A total of 75 articles were

selected for analysis. According to the inclusion and exclusion

criteria, 50 articles were finally determined for research and

analysis. The inclusion criteria for this review were: (1) Machine

learning and deep learning algorithms, such as U-net, K nearest

neighbor classification, random forest, support vector machine and

artificial neural network. (2) The accuracy of early diagnosis of

thyroid disease area under the receiver operating characteristic

curve. (3) The time selection is the literature published in 2014 and

later in the past 10 years. (4) Except for the GLAS and RITE public

datasets, most of them are self-built datasets, which reviewed the data
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of thyroid patients for years, including thyroid ultrasound images

and thyroid pathological slices. The following summary measures

were used: machine learning method, sample size, performance

measure, and important features. In the early diagnosis of thyroid

diseases, the successful application of artificial intelligence

technology mainly focuses on two core areas: traditional machine

learning methods and deep learning methods.

(1) Traditional Machine Learning: The goal is to train

algorithms by analyzing data so that computers can automatically

identify and make appropriate decisions (22). Machine learning can

be divided into two main types of learning methods: supervised

learning and unsupervised learning, which are widely used in many

fields such as medical diagnosis, image recognition technology, and

sentiment analysis (23). The significant progress made by machine

learning in the field of medical image analysis has provided strong

technical support for the early screening of thyroid diseases. For

example, a study used a dataset from the UCI machine learning

library to train a multi-class SVM classifier to classify thyroid

diseases (24). The Thy-Wise model uses a random forest

algorithm to classify thyroid nodules, showing high accuracy and

specificity while reducing the rate of unnecessary biopsies (25).

(2) Deep Learning: Compared with traditional machine

learning methods, deep learning has powerful learning capabilities

and can better utilize data sets for feature extraction (26). The key

technologies of deep learning include convolutional neural network

(CNN), recurrent neural network (RNN) and U-Net (27). Deep

learning technology has shown great potential and advantages in

the classification, detection and segmentation of medical images.

For example, the application of U-Net model in biomedical image

segmentation (28) and the success of deep residual network in

image recognition (29) have demonstrated the effectiveness of deep

learning technology in processing complex medical image data.
FIGURE 1

Proportion of traditional machine learning and deep learning publications.
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3 Results

3.1 Thyroid ultrasound image
recognition technology

Thyroid ultrasound diagnosis uses the principle of ultrasonic

wave propagation and reflection in human tissues. It transmits

ultrasonic waves to thyroid tissues through high-frequency probes,

collects the reflected echo signals, and forms ultrasonic images of

the thyroid gland. These images can clearly show the size, shape,

structure and blood flow of the thyroid gland, providing doctors

with rich diagnostic information. Due to its significant advantages

of fast imaging, non-invasiveness and no radiation, it has become a

widely used and trusted examination method (30–32). Although

ultrasound technology has many significant advantages, it also faces

some inherent limitations. First, it is unavoidable interference noise

and possible artifacts. Second, the shape of thyroid nodules is

complex and changeable, blurred, and discontinuous. The
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boundary characteristics. Third, it is limited by the subjective

experience of doctors. These problems have brought certain

challenges to accurate diagnosis (33, 34). Therefore, exploring the

application of artificial intelligence technology to assist in the

diagnosis of thyroid ultrasound has become a research hotspot.

Table 1 shows some specific achievements artificial intelligence in

the recognition of thyroid ultrasound images.

3.1.1 Traditional machine learning
In previous studies, ultrasound thyroid nodule segmentation

methods can be roughly divided into four categories: shape and

contour-based (46), region-based (47), machine learning-based

(48), and hybrid methods (49).

At the beginning of the introduction of artificial intelligence

technology in the medical field, researchers mainly relied on

traditional machine learning algorithms. Therefore, the traditional

machine algorithm was applied to the diagnosis of thyroid

ultrasound images, aiming at improving the diagnostic speed and
TABLE 1 The main results of machine learning algorithms in the study of thyroid nodule ultrasound images.

Published
year

Reference Type of DL Main Performance Data Conclusion

2017 Raghavendra et al. (35) SVM ACC: 97.5%,
AUC: 94%

242 ultrasound images spatial gray-level dependence
features (SGLDF) and
fractal texture.

2017 Ma et al. (36) CNN ACC: 91.5% 22123 ultrasound images A multi-view
strategy is used to improve the
performance of the CNN
based model.

2019 Nguyen et al. (37) DCNN Accuracy: 90.88% 237 nodules cascade classifier

2019 Fu et al. (38) RF,SVM RF AUC: 95.4%,
SVM AUC: 95.4%

1179 nodules(including 501
benign and 678 malignant)

The performance of RF and
SVM is superior to
other methods.

2020 Shin et al. (39) SVM ACC: 69.0%,
Specificity: 79.4%,
Sensitivity: 41.7%

348 nodules GLCM, GLRLM, Gabor, and
Haar wavelet

2021 Vadhiraj et al. (40) MIL ACC: 96% 99 patients (33 benign,
66 malignant)

GLCM

2021 Peng et al. (41) ThyNet AUR: 92.2% 18049 ultrasound images The proportion of missed
malignant thyroid nodules
has decreased.

2022 Zhou et al. (42) MSA-UNet ACC: 94.6%,
Dic: 84.6%

1083 patients Atrous Spatial
Pyramid Pooling.

2023 Li et al. (43) WSDAC Dic: 87% 350 ultrasound images Models can reduce the
workload of labeling datasets.

2024 Chen et al. (44) CNN CNN AUC: 91%,
Inception-ResNet
AUC: 94%

11201 ultrasound images The article conducted
substantial, non-substantial,
and benign malignant
classification studies on
ultrasound images. Inception-
ResNet, due to the expertise of
a senior doctor.

2024 Ma et al. (45) KNN ACC: 86.7% 508 ultrasound images The study considered the
impact of different distance
weights, k-values, and distance
metrics on the
classification results.
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accuracy of benign and malignant nodules. In 2017, Raghavendra

(35) designed a computer-aided diagnosis system (CAD) for the

diagnosis of nodules. The system identifies the lesion area by

integrating spatial gray-level dependence features (SGLDF) and

fractal texture. This feature fusion-based approach achieved an

accuracy of 97.5% and an AUC value of 94% for the support

SVM using only two features, which is about 3.5% higher than the

performance of the SVM proposed by Acharya et al. (50) How to

use the right features to improve classification performance has

always been a challenge.

Shin I (39) developed an artificial neural network (ANN) based

on SVM for the classification model of thyroid tumors in 2020,

using 348 preoperative ultrasound images of thyroid nodules as the

dataset, and selected 10 important features as the feature input of

the model. Then, the effect of the model was compared with the

results of manual diagnosis by experienced radiologists. The results

showed that the sensitivity, specificity and accuracy of the model

were 32.3%, 90.1% and 74.%, respectively, while the sensitivity,

specificity and accuracy of the diagnosis by general physicians were

24.0%, 84.0% and 648%. It was proved that the classifier model of

machine learning may be helpful in the diagnosis of thyroid cancer.

In 2021, Vadhirajt (40) developed a computer-aided diagnosis

system integrating multiple instance learning (MIL) to classify

benign and malignant thyroid ultrasound images. Seven

ultrasound image features were extracted using the gray-level co-

occurrence matrix (GLCM) with an accuracy of 96%. Ma (45)

proposed an improved KNN algorithm for automatic classification

of thyroid nodules. The paper not only considered the number of

class labels of various data categories in KNNs, but also considered

the corresponding weights, using the Minkowski distance

measurement. Using 508 thyroid nodule hyper images, the

improved KNN accuracy was 86.7%. Through summarizing and

analyzing the previous studies, we find that different feature

selection will have a certain impact on the accuracy of the model.

At the same time, in order to evaluate which algorithm in linear

and nonlinear machine learning is better for the benign and

malignant classification diagnosis of thyroid nodules, Fu (38)

used three linear and five nonlinear machine learning algorithms

to evaluate 1039 patients with a total of 1179 nodules. Experimental

results have shown that the AUC of machine learning models is

higher than that of experienced radiologists. Among them, the AUC

of RF and SVM methods in nonlinear machine learning is the

highest, both at 95.4%, while the AUC of experienced doctors is

only about 83%.

At present, a large number of computer-aided diagnosis systems

based on traditional machine learning rely mainly on a variety of

texture features and machine learning algorithms differentiating the

benign andmalignant nature of thyroid nodules, and their accuracy is

about 3% higher than that of general doctors. In order to further

improve the classification accuracy, the researchers adopted a variety

of optimization methods, such as GLCM, SGLDF, to fine-tune the

input features and parameters of the machine learning models,

making these models show applicability in thyroid diagnosis.
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3.1.2 Deep learning
With the continuous advancement of artificial intelligence

technology, the application of deep learning in the medical field

has become the focus of research. In 2017, Ma (36) first attempted

to use a CNN-based model for thyroid nodule segmentation and

compared this method with six methods including GA-VBAC, JET,

DRLS, SNDRLS, SVM-based method and RBFNN-based method.

The study used a total of 22123 thyroid ultrasound images from

three hospitals as the dataset. The results show that our proposed

CNN-based model has a good performance in the segmentation of

thyroid nodules with an accuracy of 91.5%. Peng (41) developed a

deep learning model based on ThyNet to distinguish benign and

malignant thyroid nodules, and the results showed that the AUC

was 92.2%, and the proportion of missed malignant thyroid nodules

decreased from 18.9% to 17.0%, reducing fine needle aspiration

examinations. In 2024, Chen (44) proposed a convolutional neural

network (CNN) model using 11201 images for training, validation

and testing. Experiments have shown that the AUC of the model in

the classification of benign and malignant thyroid nodules is higher

than 91%, among which Inception-ResNet has the highest AUC of

94%, and the performance of the model is better than that of

senior physicians.

In artificial intelligence applications, feature selection is key to

improving model accuracy. In 2019, Nguyen (37) developed a method

for extracting features from thyroid images, using a cascade classifier

architecture to improve performance of computer-aided diagnosis

systems for thyroid nodule classification. This method combined

handcrafted standards and deep learning, achieving a classification

accuracy of 90.8%. Gong (51) designed a new multi-task learning

framework to simultaneously learn nodule size, glandular location,

and nodule position, and proposed an adaptive glandular region

feature enhancement module to fully utilize thyroid prior

knowledge and use the prior to guide the feature enhancement

network to accurately segment thyroid nodules. Different radiomic

features were extracted from ultrasound images, including intensity,

shape, and texture feature sets.

Although the popularity of deep learning has significantly

improved the accuracy of image segmentation, problems with

datasets, especially the lack of precisely annotated datasets, can

still affect prediction accuracy of models. However, such data is

often difficult to obtain in the field of medical image analysis. To

solve this problem, Wang (52) proposed an attention-based semi-

supervised neural network for thyroid nodule segmentation. The

network can complete the thyroid ultrasound image segmentation

task using a small amount of fully annotated data and a large

amount of weakly annotated data. The article proposes two

attention modules, which realize the inhibition or activation of

bottom-up and top-down feature channels and image areas through

a trainable feed-forward structure, thereby improving network

performance. The Jaccard similarity coefficient of the semi-

supervised neural network based on attention is 74.91%, which is

4.9% higher than that of the semi-supervised model based on VGG.

The accuracy of benign and malignant thyroid tumor classification
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was improved from 91.67% to 95.00%, which proved that model

had good generalization ability.

Li (43) proposed a weakly supervised deep active contour model

for thyroid nodule segmentation, aiming to achieve accurate target

segmentation with a small amount of annotation information. The

experiment designed three modules: a weakly supervised learning

framework, a deep active contour model, and auxiliary edge

attention, which can reduce the annotation cost while

maintaining a certain segmentation accuracy. The dic value of the

model is 87%, which can reduce the workload of dataset annotation.

With the widespread application of deep learning, the U-net

algorithm was proposed. U-Net is a convolutional neural network

(CNN) structure widely used in deep learning, mainly for image

segmentation tasks (53, 54). Ding (55) mainly explored the

automatic segmentation technology of thyroid ultrasound images

based on U-net. The model embedded an improved residual unit in

the jump connection between the encoder and decoder paths and

introduced an attention gate mechanism to enhance the weights of

feature maps obtained from shallow and deep layers. Experimental

results show that the proposed method outperforms other U-

shaped models.

In 2020, Zhang (56) proposed two network structures, Cascade

U-Net and CH-UNet, for the segmentation and classification of

thyroid nodules. Cascade U-Net gradually refines the segmentation

results and improves the segmentation accuracy by cascading

multiple U-Net modules. CH-UNet combines dilated convolution

and hybrid attention mechanism to enhance feature extraction and

classification capabilities. Compared with the U-Net proposed by

RONNEBERGER (55), the dice of Cascade U-Net in the task of

thyroidodule segmentation increased by 2.9%. The dice of the U-

Net method by RONNEBERGER (57) was only 80.2%, which fully

validated effectiveness of the Cascade U-Net in the segmentation

and even classification tasks of thyroid nodules.

In order to accurately detect malignant nodules that are not

obvious and have confused boundaries in ultrasound images, and to

avoid confusion between tissue and malignant thyroid nod during

diagnosis, Yang (58) proposed a deep learning-based thyroid

malignant nodule segmentation method of DMU-Net. The

method uses the image context information in the U-shaped

subnetwork to accurately locate the malignant nodule region, and

then captures the fine details of theodule edges in the inverse U-

shaped subnetwork. The combination of U-shaped subnetwork and

inverse U-shaped subnetwork and the strategy of mutual learning

make the dic of DMU-Net on the-built dataset 82.77%, which is

25.86% higher than that of the traditional U-Net network. The
Frontiers in Oncology 0660
research proves that DMU-Net can accurately locate the malignant

nodule area by extracting image context information in the U-

shaped subnetwork, extract more lesion area features, and help

radiologists diagnose thyroid diseases.

In 2022, Zhou (42) proposed an MSA-UNet model with a

multi-scale self-attention mechanism for thyroid nodule

segmentation. Depth wise separable convolution is used in the

Atrous Spatial Pyramid Pooling (ASPP) module, and then in the

decoder part, adjacent information of different scales is fused

through the channel attention mechanism, allowing the model to

learn more important features. The experimental results show that

the accuracy of this method is 94.6%, which provides a new research

idea for the early detection of thyroid nod. Comparison of accuracy

of different U-Net algorithms, as shown in Table 2.

Currently, the research focus of thyroid ultrasound images is

mainly on the segmentation and classification tasks of thyroid

nodules, but the potential intrinsic connection and mutual

influence between nodule characteristics and classification results

are often ignored. Thyroid nodule segmentation and classification

in ultrasound images are two fundamental but challenging tasks in

computer-aided diagnosis of thyroid diseases. Since these two tasks

are intrinsically related and share some common features, it is a

promising direction to jointly solve these two problems using multi-

task learning. However, previous studies have only demonstrated

inconsistent predictions between these related tasks. In order to

further exploit the effectiveness of the proposed task consistency

learning, Kang (61) designed a framework based on multi-task

learning (MS-MTL) to improve the performance of thyroid

segmentation and classification by improving the consistency

between tasks. The first stage of the network performs binary

segmentation and classification simultaneously, and the second

stage of the network learns multi-class segmentation. The article

verifies the feasibility of improving thyroid nodule segmentation

and classification performance through multi-task learning and

inter-task consistency loss.

The application of deep learning in thyroid ultrasound images

has broad significance and value. Various models have been applied

to the processing of thyroid ultrasound images, including

convolutional neural networks (CNN), U-net etc. By training a

large amount of data, these models can learn the key features in

ultrasound images for the classification and identification of

nodules, thereby reducing misdiagnosis and missed diagnosis

caused by human factors and helping to improve the early

diagnosis rate. The application of artificial intelligence technology

to assist in the early screening of thyroid diseases is not only limited

to the diagnosis of thyroid ultrasound pictures, but also shows

significant results in the recognition of thyroid pathology icons.
3.2 Thyroid pathology section
recognition technology

Thyroid pathology examination is a common diagnostic

procedure and an important part of the evaluation of thyroid

nodules, but there is significant variability in the assessment

thyroid cytology specimens by different pathologists and
TABLE 2 Comparison of U-Net methods.

Reference Methods Recall Accuracy Dice

Ronneberger (57) U-Net 86.1 93.2 80.2

Badrinarayanan (59) SegNet 88.5 94 81.2

Zhou (60) UNET++ 85.9 93.8 80.8

Zhang et al. (56) Cascade U-Net 86.6 94.3 83.1

Zhou et al. (42) MSA-UNet 87 94.6 84.6
frontiersin.org

https://doi.org/10.3389/fonc.2025.1536039
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2025.1536039
institutions. The sensitivity reported in the literature ranges from

68% to 98%, and the specificity ranges from 56% to 100%. In this

case, the use of machine learning can improve accuracy and help

standardize the diagnosis of thyroid pathological specimens (62).

The process of processing pathological images using convolutional

neural networks is shown in Figure 2.

One of the earliest studies on thyroid pathology was conducted

by Karakitsos (63), who investigated the ability of a learning vector

quantization (LVQ) neural network to distinguish benign from

malignant thyroid lesions. The model was trained by measuring 25

features such as size, shape, and texture of approximately 100 nuclei

in each case. The results of the study show that the LVQ neural

network can distinguish benign from malignant lesions very well,

with an accuracy of 90.6%.

In 2011 study also investigated the application of learning

vector quantization (LVQ) neural networks in differentiating

benign from malignant thyroid lesions using 335 fluid-based

cytology, fine needle aspiration (FNA), and Papanicolaou stain

specimens. Features extracted by a custom image analysis system

were first used to classify each nucleus using an LVQ neural

network, and then a second LVQ neural network was used to

classify individual lesions. The system was able to distinguish

between benign and malignant nuclei and lesions at both the

cellular and patient levels (64). Lee (65) developed a machine

learning algorithm (MLA) that can classify human thyroid cell

clusters by utilizing Papanicolaou staining and intrinsic refractive

index (RI) as relevant imaging contrast agents and evaluated the

impact of this combination on diagnostic performance. The

accuracy of the MLA classifier for 1535 thyroid cell clusters from

124 patients using color images, RI images, and both was 98.0%,

98.0%, and 100%, respectively. The importance of this study lies in

the fact that it compares a variety of different diagnostic techniques

to improve the accuracy and efficiency of thyroid cancer diagnosis,

with MLA classifier achieving the highest accuracy.

Artificial intelligence technology not only achieves precise

classification and recognition functions in the processing of

thyroid pathological images, but also shows strong prediction

capabilities. Improving the of malignant tumor prediction can

reduce the incidence of unnecessary surgery. Elliott (66) created a

machine learning algorithm (MLA) based on two CNNs to identify

follicular cells and predict the malign of the final pathology. The
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AUC of the model reached 93.2%, which is equivalent to the AUC

of 93.1% diagnosed by cell pathologists, demonstrating the

effectiveness of the algorithm. Wang (67) developed a prediction

system for benign and malignant medullary thyroid cancer and

goiter based on SVM and RF algorithms. For the classification of

PTC and nodular goiter (NG), the SVM and RF algorithms

performed equally well, with 94.2% and 94.4% consistency

between the prediction and pathological diagnosis. The system

can shorten the diagnosis time of doctors, making the diagnosis

time of each sample only 10 minutes, which is very promising for

the diagnosis papillary thyroid carcinoma during surgery. This

method can also correctly predict the malignancy of a medullary

thyroid carcinoma and a follicular thyroid adenoma.

Due to the combined effect of genetic variants, environmental

exposure, and immune genetic risk (68, 69), new types of thyroid

tumors, as” non-invasive follicular thyroid neoplasm”(NIFTP), have

emerged, which has complicated the cytology of thyroid cells, and a

lot data have been classified into the category of uncertainty (70).

Hirokawa (71) proposed an artificial intelligence image

classification system of EfficientNetV2-L, which proved the

efficiency and of artificial intelligence image classification system

in identifying thyroid lesions. The research team used 148,395

thyroid pathology smear images from 393 thyroid nodules as the

dataset. The researchers reported that the AUC of EfficientNetV2-L

exceeded 95%. However, the AUC for poorly differentiated thyroid

cancer was only 49%, showing significantly worse performance.

In another study, Yao (72) proposed a digital image analysis

method based on feature engineering and supervised machine

learning. They focused on cases of poorly differentiated thyroid

cancer that were later diagnosed as benign or follicular adenoma in

his tissue sections. The method was applied to 40 thyroid

pathological slices with high and low power microscopy, and the

AUC for the low power image model was 5%, and the AUC for the

high power image model was 74%. This method performs better

than cellular pathologists in classifying atypical follicular lesions.

The application of artificial intelligence in the field of thyroid

pathology image analysis not only significantly enhances the

accuracy and timeliness of diagnosis (73), but also relies on its

deep learning and image processing technology to realize the

analysis of pathological images such as follicular cell morphology

and arrangement. Accurate identification of subtle features such as
FIGURE 2

Convolutional neural network processing model for thyroid pathological images.
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pattern and abnormal proliferation. These key features are of

irreplaceable importance for accurately distinguishing benign and

malignant thyroid nodules. Compared with traditional manual

diagnostic methods, the integration of artificial intelligence has

greatly promoted the early detection, accurate diagnosis and

timely treatment of thyroid diseases, bringing patients a higher

survival rate and better quality of life.
4 Discussion

In recent years, the research, development and application of

artificial intelligence in the field of thyroid diagnosis have achieved

significant leaps, providing new horizons and broad possibilities for

optimizing the efficiency and accuracy of future diagnostic processes.

Especially in the early diagnosis of thyroid cancer, artificial

intelligence technology can automatically identify and evaluate

complex medical images through machine learning algorithms,

thereby improving the accuracy and efficiency of diagnosis.

In the application of thyroid ultrasound images, AI technology

has been shown to effectively assist radiologists in the diagnosis of

thyroid nodules. For example, one study showed that the

performance of an AI system in the diagnosis of thyroid nodules

was comparable to that of fine needle aspiration cytology (74). In

addition, AI technology also showed high accuracy and efficiency in

distinguishing benign from malignant thyroid nodules (75). Based

on the previous research, we find that the research methods of

thyroid ultrasound images mainly focus on traditional machine

learning and deep learning. In traditional machine learning, SVM

and RF have high accuracy in thyroid nodule classification due to

their superior binary classification performance.

The core concept of SVM lies in the strategy of structural risk

minimization, aiming to determine the optimal complexity of the

model a limited dataset, thereby enhancing the model’s general

prediction capability. The model parameters of SVM only depend

on the support vectors, which are the data points closest to the

decision boundary, and have no direct connection with other

points. This means that even with a small number of samples, as

long as these support vectors can fully reflect the overall distribution

characteristics of the data, SVM can construct an efficient and

accurate classification model. Therefore, SVM is particularly

suitable for dealing with thyroid datasets with a small sample size.

Compared with machine learning, deep learning has strong

learning ability and efficient feature expression ability, which can

automatically learn and extract high-level features in images and

can more comprehensively capture the details and context

information of images, thus improving the accuracy of

classification. The deep convolutional neural network (DCNN)

model proposed by Krizhevsky (76) achieved breakthrough

results in the ImageNet image classification. Therefore, the

current research focuses on the classification of thyroid

ultrasound and pathological images using deep learning.

Compared with traditional segmentation techniques, the

segmentation method based on deep learning does not rely on

hand-designed features, and the convolutional neural network
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(CNN) has shown excellent adaptability in the field of medical

image segmentation by virtue of its image hierarchical feature

representation capability. ROMÁN (77) reviewed a large number of

deep learning-based medical image segmentation methods, among

which U-Net is the most typical. The core idea of U-Net is to adopt a

symmetric encoder-decoder architecture, which enables deep feature

extraction and precise pixel-level segmentation of the input. Liu (78)

proposed an automated segmentation algorithm for brain gliomas

based on a multi-U-Net network(MU-Net), and conducted

experiments on the BRATS2020 dataset. The results show that the

Dice coefficients of the MU-Net algorithm for the complete tumor,

tumor core, and enhanced tumor are 86.7%, 77.76%, and 76.21%,

respectively, which are 2.6%, 2.55%, and 2.41% higher than those of

the benchmark model, indicating better segmentation results. The

application of these technologies can not only help radiologists

diagnose thyroid diseases more accurately and improve diagnostic

efficiency, but also reduce their workload.

AI technology also shows great potential in the application of

thyroid pathology images. For example, AI technology has been used

in cytological analysis of thyroid fine needle aspiration biopsy to

distinguish papillary carcinoma from other types of thyroid cancer

(79). A hybrid framework combining artificial intelligence was

proposed in the study (80), which not only weighted the Thyroid

Imaging Reporting and Data System (TIRADS) features, but also

used the malignancy score predicted by the convolutional neural

network (CNN) to classify and diagnose the malignancy of

the nodules.

In summary, artificial intelligence technology has strong clinical

significance and application prospects in the application of thyroid

ultrasound images and thyroid pathological images. Not only has it

improved the accuracy and efficiency of diagnosis, assisted doctors

in decision-making, reduced the rate of misdiagnosis, but it can also

the allocation of medical resources, reduce unnecessary surgeries

and other invasive treatments through artificial intelligence-assisted

diagnosis, and reduce the economic burden and pain of patients.

With the continuous advancement of technology and the

deepening of clinical applications, artificial intelligence technology

has played an increasingly important role in the early diagnosis of

thyroid diseases, but the prediction of the postoperative life cycle of

thyroid cancer patients is equally important for doctors and patients.

This study (81) used artificial neural networks (ANN) to predict the

1-year, 3-year, and 5-year survival of thyroid cancer patients, with

accuracy rates of 92.9%, 85.1%, and 86.8%, respectively. Based on our

research results, artificial neural networks can effectively represent a

survival prediction method for thyroid cancer patients. Liu (9)

developed six machine learning models (SVM, XGBoost, LR, DT,

RF and KNN) based on the SEER database to predict lung metastasis

of thyroid cancer. Although the accuracy of the model is above 90%,

prospective studies are still needed to further verify the practicality of

the model. And because the genes of thyroid cancer patients may

undergo mutation, gene mutation increases the complexity of the

data, and the model may have difficulty accurately distinguishing

different of diseases. On the other hand, gene mutation may have a

complex interaction with other biomarkers or clinical information,

which may make a single classification algorithm fail to capture the
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information accurately (82), and all these will lead to a bias in the

accuracy of the algorithm model.

In the future, we will focus on optimizing the cutting-edge

exploration of machine learning algorithm models, integrating

patient pathological information, radiology and clinical

information, create a more powerful algorithm, aiming to build a

set of artificial intelligence system for the whole process. The system

will have the ability to deeply analyze massive clinical records and

molecular biology data to accurately predict the postoperative

survival of thyroid cancer patients, thereby assisting doctors in

tailoring more precise treatment strategies for each patient, thereby

significantly improving late-stage Prognosis and quality of life in

patients with thyroid cancer.
5 Conclusions

This paper reviews the latest application progress of artificial

intelligence technology in the field of medical diagnosis, focusing on

its potential in the early screening and diagnosis of thyroid. The

research hotspot has developed from the initial traditional machine

learning to deep learning algorithms, and U-Net has also become the

benchmark for most medical image segmentation with the encoder-

decoder architecture. Through the previous research, it aims to assist

clinicians in achieving intelligent and efficient early identification of

thyroid cancer, thereby improving the accuracy of early diagnosis for

patients enhancing the efficiency of doctors. Moreover, the article also

prospects the future trend of artificial intelligence in the field of

thyroid disease research, not only limited to thyroid pathology or

thyroid ultrasound but also creating artificial intelligence that

integrates thyroid ultrasound images and clinical data of thyroid

cancer, which is used to determine the diagnosis of thyroid cancer,

and can also accurately predict postoperative survival period of

thyroid cancer patients. It aims to provide new research directions

for scientific researchers, and bring more personalized treatment

plans for doctors and patients through the continuous progress of

artificial intelligence technology, treatment strategies, and improve

patients’ satisfaction and quality of life.
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Introduction: Brain tumors pose significant harm to the functionality of the

human nervous system. There are lots of models which can classify brain tumor

type. However, the available methods did not pay special attention to long-range

information, which limits model accuracy improvement.

Methods: To solve this problem, in this paper, an enhanced short-range and long-

range dependent system for brain tumor classification, named as EnSLDe, is

proposed. The EnSLDe model consists of three main modules: the Feature

Extraction Module (FExM), the Feature Enhancement Module (FEnM), and the

Classification Module. Firstly, the FExM is used to extract features and the multi-

scale parallel subnetwork is constructed to fuse shallow and deep features. Then, the

extracted features are enhanced by the FEnM. The FEnM can capture the important

dependencies across a larger sequence range and retain critical information at a

local scale. Finally, the fused and enhanced features are input to the classification

module for brain tumor classification. The combination of these modules enables

the efficient extraction of both local and global contextual information.

Results: In order to validate the model, two public data sets including glioma,

meningioma, and pituitary tumor were validated, and good experimental results

were obtained, demonstrating the potential of the model EnSLDe in brain

tumor classification.
KEYWORDS

brain tumor classification, feature extraction, feature enhancement, long-range
dependencies, attention
1 Introduction

The brain is the control center of the body, in addition to maintaining the normal

activities of our lives, it also controls our daily senses (hearing, sight, smell, etc.), cognition,

memory, thinking, emotions, and many other aspects of our lives (1). Undoubtedly, the

brain holds paramount importance in our lives. However, brain tumors stand as one of the
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most prevalent afflictions of the nervous system, capable of

significantly impairing its functionality. Timely detection of brain

tumors is essential for enhancing and prolonging patient survival

rates (2, 3). Tumors growing within the skull are generally known as

brain tumors, which encompass primary brain tumors originating

from brain tissue and secondary tumors that metastasize to the skull

from elsewhere in the body (4). The common types of brain tumors

include gliomas, meningiomas, and pituitary tumors (5).

Magnetic Resonance Imaging (MRI) and Computed

Tomography (CT) are two widely used imaging techniques in

medicine that play an important role in labelling abnormalities in

the shape, size or location of the brain (6). While CT is limited to

cross-sectional imaging, MRI offers the flexibility to image in

various orientations, including transverse, sagittal, coronal, and

any desired section. Additionally, MRI excels in providing clearer

differentiation of soft tissues in three dimensions compared to

conventional imaging methods. These advantages have made MRI

the most favored method among physicians and have led to

increasing interest among researchers. However, the analysis of

MRI images by medical professionals to discern the type of tumor is

a complex and time-intensive process. The accuracy of their

diagnosis can be influenced by the subjective expertise and skills

of the physician (7, 8). It is well known that early detection and

timely treatment are crucial for the recovery of brain tumor patients

(9). If the type of brain tumor can be accurately and early identified,

it will greatly increase the patient’s valuable treatment time and thus

significantly improve the likelihood of recovery.

Traditional Machine Learning (ML) has been widely used for

classification problems in Computer-Aided Diagnostic (CAD)

systems (10, 11). For example, Singh et al. (12) proposed a new

classification method using generalized discriminant analysis and

the 1-norm linear programming extreme learning machine. Shahid

et al. (13) used a feature selection algorithm to find the effective

feature subset, which was then used for classification by an Extreme

Learning Machine (ELM) based on hybrid particle swarm

optimization. Xie et al. (14) used the combination of Support

Vector Machine (SVM) and ELM for feature selection, and the

optimal features were used by the classifier to distinguish breast

tumor types. Heidari et al. (15) applied stochastic projection

algorithm to optimize the constructed SVM model embedded

with multiple feature dimensionality reduction methods to

improve the classification performance of the model.

Deep learning stands as a cutting-edge innovation in

classification and prediction, showcasing outstanding

performance in domains necessitating multi-level data processing

such as classification, detection, and speech recognition (16). Deep

learning has the capability to learn features from extensive image

data and extract high-level features from images through layer-by-

layer convolution and pooling operations, achieving automatic

classification of brain tumors. Compared to traditional image

processing methods, deep learning boasts superior feature

extraction capability, higher classification accuracy, as well as

automation and intelligence. In recent years, many studies have

explored the application of deep learning in diagnosing various

diseases. For example, Sarki et al. (17) classified mild and multiple
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diabetic eye diseases by fine-tuning and optimizing the VGG16

model. Jeong et al. (18) used Inception V3 deep learning model to

classify the presence or absence of cardiac enlargement, and the

classification accuracy reached 96.0%. Chowdhury et al. (19)

adopted the improved Xception model to diagnose hair and scalp

diseases and achieved a high accuracy rate. Sharifrazi et al. (20) used

Convolutional Neural Network (CNN) combined with k-means

clustering method to automatically diagnose myocarditis, with an

accuracy of 97.41%. The lesion area in brain tumor images

constitutes only a small portion of the entire image. Furthermore,

when distinguishing between types of brain tumors, both the tumor

region and its surrounding area exert a significant impact on the

classification results (21). In addition, multi-scale feature fusion has

been widely applied to object detection, image segmentation, image

classification, and other fields. Multi-scale networks are capable of

simultaneously extracting features at different scales in images,

thereby more comprehensively capturing the details and overall

information of target objects. For example, in object detection tasks,

small-scale features can be used to detect small objects, while large-

scale features are helpful for detecting large objects. Features at

different scales provide different contextual information, and multi-

scale networks can effectively integrate this information, offering a

more comprehensive and rich visual context. Multi-scale networks

can handle input data at different scales, and this characteristic

significantly enhances the algorithm’s robustness and generalization

performance in complex scenarios (22). A common method for

multi-scale feature fusion is the pyramid structure. The pyramid

structure extracts features at different scales and then fuses these

features to obtain a more comprehensive feature representation.

Specifically, improved methods based on the Feature Pyramid

Network (FPN) architecture achieve deep integration of cross-

scale features by constructing multi-level pyramid-like feature

representations (23, 24).

However, most previous studies did not pay special attention to

the surrounding areas of tumors, i.e., lacking the ability to capture

long-range information, which would affect the performance of

classification. To overcome the shortcoming, this study proposes a

new multi-class brain tumor classification model with enhanced

short-range and long-range dependence, named as EnSLDe. The

model not only has the ability to capture short-range and long-

range dependencies, but also retains local key information. It

consists of three main modules: the Feature Extraction Module

(FExM), the Feature Enhancement Module (FEnM), and the

classification module.Within the FExM, convolutional layers are

combined with residual connections to extract features, while

incorporating an Effective Multi-scale Attention (EMA)

mechanism that simultaneously focuses on channel-wise and

spatial information. The FEnM further strengthens feature

representation, enabling capture of crucial long-range

dependencies while retaining key information within the local

range. The classification module adopts a two-layer fully

connected structure combined with dropout regularization for

brain tumor classification. This approach enhances the model’s

generalization ability, reducing the risk of overfitting, and further

improves the classification performance of the model. We utilized
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two datasets to evaluate the model performance: a three-category

dataset comprising gliomas, meningiomas, and pituitary tumors,

and a four-category dataset including additional healthy categories.

The main contributions of this study are as follows:
Fron
• A new model with enhanced short-range and long-range

dependence is proposed to classify brain tumor images

from MRI.

• FExM is used to extract features from brain tumor images.

The EMA module of FExM integrates channel attention

and spatial attention to provide a more comprehensive

feature representation.

• The FEnM is used to capture important dependencies

across larger sequence scales. And it can also cooperate

with the global adjustment network to fuse the retained

local information with different levels of deep features.

• EnSLDe employs multi-scale parallel subnetworks that

integrate shallow and deep features. This architecture

enables the model to capture comprehensive contextual

information across varying scales, which is critical for

distinguishing between diverse tumor types.

• Based on experimental results using two public datasets, the

proposed method exhibits excellent performance.
2 Related works

Classification of brain tumors is critical for evaluating tumors

and determining treatment options for patients. There are already

many CAD systems used in medical industries to help doctors make

diagnoses. There have been many methods to classify brain tumors,

which can be roughly divided into traditional ML methods, deep

learning methods, and hybrid methods.

In the past, traditional ML has been used to classify brain

tumors. For example, Bansal and Jindal (25) utilized a combination

of grayscale co-occurrence matrix technology and shape-based

feature technology to extract mixed features from the tumor area.

Subsequently, a hybrid classifier consisting of Random Forest

Classifier (RFC), K Nearest Neighbors (KNN) classifier, and

Decision Tree (DT) classifier was used to classify brain tumors.

26 performed image segmentation through a marker-based

watershed algorithm, then combined features with a sequence-

based cascade method, and finally used SVM for classification.

In traditional ML, relevant domain knowledge is needed for

feature extraction, while features can be automatically extracted by

deep learning. The development of deep learning methods has had a

significant impact on the field of medical image analysis

applications, especially in disease diagnosis (27). Recently, deep

learning has achieved remarkable results in brain tumor

classification. For example, Raza et al. (28) proposed a hybrid

deep learning model based on the GoogLeNet architecture. The

last five layers of GoogLeNet were removed and 15 new layers were

added to achieve high accuracy. Dıáz-Pernas et al. (29) proposed a

multi-scale processing based on CNN architecture design for brain
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tumor classification. The elastic transformation data expansion

method was used to increase the training dataset and prevent

over-fitting. Finally, 97.3% classification accuracy was achieved.

Ayadi et al. (30) proposed an innovative brain tumor

classification model based on CNN architecture, automated

processing and minimizing preprocessing requirements. To fully

evaluate the accuracy of the model, it was tested on three different

brain tumor datasets. Various performance indicators are analyzed

in depth. Sreenivasa Reddy and Sathish (31) proposed a brain

tumor classification and segmentation scheme based on deep

structured architecture. Firstly, adaptive ResUNet3+ with multi-

scale convolution was used to process the collected data. Then, the

parameters of the deep learning method were optimized and

adjusted through the arithmetic optimization algorithm

accelerated by the improved mathematical optimizer. Finally, an

attention-based ensemble convolutional network was introduced

for brain tumor classification. The model demonstrated excellent

performance in both segmentation and classification accuracy. P.

Ghosal et al. (32) integrated the residual network architecture with

the Squeeze and Excitation block to enhance feature extraction and

refinement. Islam et al. (33) optimized the EfficientNet series for the

purpose of brain tumor classification, with EfficientNetB3

demonstrating superior performance. Aurna et al. (34) utilized

multiple MRI datasets and performed feature extraction by

combining pre-trained models and newly designed CNN models.

Among the extracted features, Principal Component Analysis

(PCA) was used to select key features and input them into the

classifier. Musallam et al. (35) proposed a three-step preprocessing

to improve the quality of MRI images and a new Deep

Convolutional Neural Network (DCNN) architecture with 10

convolutional layers. Kumar and Sasikala (36) fused the features

extracted from the shallow and deep layers of the pre-trained

Resnet18 network, and then adopted a hybrid classifier composed

of SVM, KNN, and DT optimized by the Bayesian algorithm

perform classification.

In addition, in order to further improve the accuracy and

efficiency of brain tumor classification models, optimization

algorithms could be used in deep learning. For example, Alshayeji

et al. (37) attained a classification accuracy of 97.374% for automatic

brain tumor classification by combining the layers of two CNN

architectures and fine-tuning the hyperparameters through

Bayesian optimization. Irmak (38) used CNN and grid search

optimization algorithms to propose three different CNN models

to complete three different classification tasks. Almost all

hyperparameters in the model were tuned by grid search

optimization algorithms. Rammurthy and Mahesh (39) used

Whale Harris Hawks Optimization (WHHO), which was a

combination of Whale Optimization Algorithm (WOA) and

Harris Hawks Optimization (HHO) to optimize the deep

convolutional network. Alyami et al. (40) used deep convolutional

networks and the slap swarm algorithm to classify brain tumors

from brain MRI. To enhance the accuracy of classification, an

efficient feature selection technique—the slap swarm algorithm was

introduced. This technique helps to identify key features that

significantly influence the classification results while excluding
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those with minor contributions, thereby ensuring that the

classification model achieves optimal accuracy.

It is noteworthy that Transformer models have also been

employed in brain tumor classification tasks. Sudhakar Tummala

et al. (41) investigated the capability of pretrained and fine-tuned

Vision Transformer (ViT) models for brain tumor classification

using MRI images. GAZI JANNATUL FERDOUS et al. (42)

proposed a novel Linear Complexity Data-efficient Image

Transformer (LCDEiT). The LCDEiT adopts a teacher-student

strategy, where the teacher model is a customized gated pooling

convolutional neural network (CNN) responsible for transferring

knowledge to the transformer-based student model. The student

model achieves linear computational complexity through an

external attention mechanism. Asiri et al. (43) employed Swin

Transformer for multi-class brain tumor classification. Tapas

Kumar Dutta et al. (44) developed GT-Net for brain tumor

classification tasks. The core component of this model is the

Global Transformation Module (GTM), which contains multiple

Generalized Self-Attention Blocks (GSB) designed to explore long-

range global feature relationships between lesion regions.

These studies, whether based on traditional ML methods, deep

learning approaches, or hybrid methodologies, have achieved

notable success in brain tumor classification. Many deep learning

models (e.g., CNNs) automatically extract features but typically

focus on local or global information rather than both. For instance,

architectures like Inception-v3, ResNet, and DenseNet demonstrate

strong performance yet generally emphasize localized details or

global context without comprehensive integration. Hybrid

approaches combining traditional machine learning and deep

learning techniques may still fail to fully exploit multi-scale

feature fusion or advanced attention mechanisms. While some

models employ attention mechanisms, they often prioritize either

channel-wise or spatial attention. This paper proposes a novel

model named EnSLDe (Enhanced Short- and Long-range

Dependency Extractor), designed to strengthen both short-term

and long-range dependencies while preserving essential local

information. EnSLDe uniquely integrates short- and long-range
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dependencies through its FExM and FEnM. This dual processing

proves critical for concurrently capturing localized tumor details

and global contextual patterns in brain MRI images.
3 Proposed method

This section introduces our proposed brain tumor classification

framework, which is shown in Figure 1. The training and testing

phase of the proposed system works as follows:
1. The brain MRI dataset is divided into two disjoint sets: a

training set and a test set.

2. Data augmentation techniques such as random rotation,

random horizontal and vertical flipping are applied to the

training dataset to mitigate overfitting issues.

3. The proposed network is trained by selecting appropriate

hyperparameters and specifying the cross-entropy

loss function.

4. Once training is completed, the trained model is saved.

5. The model is validated on a randomly partitioned test

dataset, and the performance of the model is evaluated.
3.1 Proposed brain tumor classification
model

The EnSLDe consists of three main modules, namely feature

extraction module, feature enhancement module and classification

module, which is shown in Figure 2. Since both local and long-range

dependent features play a crucial role in effectively classifying brain

tumors fromMRI images, the EnSLDe employs FExM and FEnM to

extract and enhance these features. The classification module

comprises two fully connected layers integrated with Dropout

regularization, which enhances the model’s generalization ability.

Moreover, the stacked utilization of two fully connected layers can
FIGURE 1

The proposed framework for brain tumor classification system.
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amalgamate and transform features, thereby capturing more

information and optimizing the representation capabilities of

features to enhance model performance.

3.1.1 The feature extraction module
The feature extraction module consists of layer1, layer2, layer3-

1, layer3-2, layer3-3, layer4-1, layer4-2, and layer4-3, and is used to

extract multiple depth-level features from brain tumor images. The

Feature Extraction Module (FExM) was designed to extract features

from multiple intermediate layers to simultaneously capture short-

range and long-range dependencies. This multi-scale parallel sub-

network fuses shallow features (which retain fine-grained details)

with deep features (encoding abstract, high-level contextual

information). The selection of feature extraction layers was guided

by empirical validation through ablation studies, which

demonstrated that combining multiple layers achieved higher

classification accuracy compared to those obtained using a single

layer of features. Inspired by the C3 module in YOLOv5 and

integrating the Effective Multi-scale Attention (EMA) proposed

by (Ouyang et al. (45), we have developed a novel Conv and

Depthwise_conv with EMA (CDE) module, as illustrated in

Figure 3. The CDE module consists of a residual network and

EMA. The structure of the residual network involves adding skip

connections on top of the serial connection of two convolutional

layers and a depthwise separable convolutional layer. This allows for

the direct addition of input and output. Subsequently, the output

features of the entire residual network are processed by EMA.

Incorporating the residual network into the CDE module effectively

alleviates the issues of gradient explosion or vanishing, making the

model training process more stable and easier to optimize.

Additionally, depthwise separable convolution is used by CDE

module, which significantly reduces computational costs while
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maintaining powerful feature extraction capabilities, thus

achieving a good balance between efficiency and performance.

The inclusion of EMA allows the CDE module to form multi-

scale parallel subnetwork while extracting features, which fuses

shallow and deep features. This further enhances feature extraction

and strengthens short-range and long-range dependencies.

Moreover, it reshapes part of the channel dimensions into batch

dimensions, effectively avoiding potential information loss caused

by dimensionality reduction through conventional convolution.

This improvement not only reduces computational overhead but

also allows the model to focus more on extracting key features while

retaining information from each channel. Layer1 consists of two

convolutional layers and is mainly used to extract shallow image

features. Layer2 consists of the residual network in the CDE

module. layer3-1, layer3-2, and layer3-3 are all composed of CDE

modules. Layer4-1, layer4-2, and layer4-3 are all composed of

convolutional layers with a convolution kernel size of 1×1, which

are used for channel dimensionality reduction after feature fusion.

The EMA divides the channel dimension of input feature maps

into multiple sub-features and redistributes spatial-semantic

features within each feature group. Specifically, EMA avoids

traditional channel dimensionality reduction operations by

reshaping the channel dimension into the batch dimension. This

design enables EMA to model inter-channel dependencies through

standard convolution operations without losing channel

information. The EMA employs three parallel branches to extract

attention weights:
1. 1×1 Branch: Encodes channel attention along horizontal and

vertical directions using two 1D global average pooling

operations, thereby capturing long-range spatial dependencies

while preserving precise positional information.
FIGURE 2

The proposed model.
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2. 3×3 Branch: Captures multi-scale feature representations

through a 3×3 convolution kernel to expand the

feature space.

3. Cross-Space Interaction: Fuses output feature maps from

the two parallel branches via matrix dot product operations

to capture pixel-level pairwise relationships and highlight

global contextual information.
For an input featureX∈RC××H×W, it is first partitioned into G

sub-features, each with a shape of (C/G) × H×W. In the 1×1 branch,

two 1D feature vectors ZH and ZW are obtained by encoding

channel attention through 1D global average pooling along

horizontal and vertical directions, respectively. ZH and ZW can be

calculated by Equation 1:
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ZH =o
H

j=1
cc,j (1)

ZW =o
H

j=1
cc,j

where, xc,i and xc,j denote the eigenvalues of the c channel in the

horizontal and vertical directions, respectively. The vectors ZH and

ZW are processed through 1×1 convolutions and the Sigmoid

function to generate the channel attention maps AH and AW, can

be calculated by Equation 2:

AH = s (conv(ZW)) (2)

AW = s (conv(ZW))

Where, s denotes the Sigmoid function. In the 3×3 branch,

multi-scale feature representation F3×3 is captured by the 3×3

convolution operation as shown in Equation 3:

F3�3 = Conv3�3(X) (3)

The final output feature map Y is obtained by fusing AH and AW

matrix dot product is performed by F3×3, and the calculation

formula is shown in Equation 4:

Y = s (AH · AW · F3�3) (4)
3.1.2 The feature enhancement module
The Explicit Visual Center (EVC) method (46) is used to

enhance the features extracted by the model. The EVC can

effectively extract global long-range dependencies from images

while preserving crucial local information. The EVC combines a

Multi-Layer Perceptron (MLP) based on top-level features with a

Learnable Visual Center (LVC) mechanism, both of which operate

in parallel to complement each other. The MLP is responsible for

capturing the global long-range dependencies of the image,

effectively addressing complex long-range dependency issues, and

enhancing the model’s perception of global information.

Meanwhile, the LVC operates along the path of the MLP,

focusing on preserving the crucial local information of the image

to ensure that the model does not lose important local details while

attending to the global context. For input Fin, the equation is

calculated as follows (Equation 5):

F = Cat(MLP(Fin), LVC(Fin)) (5)

in the LVC model, the input (X) is mapped to a set of (C)-

dimensional features, ({Xin = x1, x2, …, xn}), where (N=H×W)

represents the total number of input features. Subsequently, LVC

computes an intrinsic codebook (B = {b1, b2, …, bk}), which

includes (K) codewords (or visual centers) along with a set of

smoothing factors (S = {s1, s2, …, sk}). The feature encoding is

achieved through a series of convolutional layers. The encoded

features are then matched against each codeword in the codebook.

The discrepancies between the features and the codewords are

computed, and learnable weights are derived from these
FIGURE 3

The structural diagram of the CDE module.
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differences. The ultimate output is a (C)-dimensional vector (e)

(Equation 6).

ek =o
n

i=1

e−Sk xi−bkk k2

oK
j=1e

−Sk xi−bkk k2 (xi − bk) (6)

The output of LVC is obtained by summing the features vector

(Xin) and the local features (Z) for each channel, as shown in

Equation 7.

Xout = Xin ⊕ Z (7)

here, the local feature (Z) is derived by applying a Fully

Connected (FC) layer that maps the feature (e) to an influence

factor of dimensions C×1×1. Subsequently, a channel-wise

multiplication operation is conducted with (Xin). The output

following the Feature Enhancement Module is then obtained as

follows (Equation 8):

F = Cat(XEVC ,Xd) (8)

where, F represents the fusion feature, XEVC denotes the feature

output from the EVC, and Xd signifies the depth feature derived

from various levels.
3.2 Loss function

The loss function we used during model training is the cross-

entropy loss function (47). One can assume there are n classes, where

the true label is represented by a K-dimensional vector y (with only one

element being 1 and others being 0), and the model output probability

is represented by a K-dimensional vector y’ (with each element ranging

from 0 to 1 and summing up to 1). The formula for multi-class cross-

entropy loss function is defined as shown in Equation 9.

Loss = −o
n

i=1
yi log yi

0 (9)

where, n is the number of categories, yi is the i-th element of the

true label vector y, and yi’ is the i-th element of the model output

probability vector yi.

The cross-entropy loss function is an efficient loss function in

classification problems as it accurately measures the similarity

between the true label distribution and the model’s predicted
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label distribution. Specifically, a smaller cross-entropy value

indicates a closer resemblance between these two probability

distributions, implying more accurate predictions by the model.

When there is a significant disparity between the true and predicted

distributions, the cross-entropy loss function yields a large loss

value. This characteristic enables the model to update parameters

more quickly during training, thus accelerating the learning process.

The amplifying effect of the cross-entropy loss function makes the

model more sensitive to prediction errors during training,

facilitating more effective adjustment of model parameters and

reducing the likelihood of erroneous predictions. Therefore, the

cross-entropy loss function is well-suited as a loss function for

classification models, particularly excelling in handling multi-class

classification problems.
4 Results and discussion

This study was conducted on a computer equipped with

RTX3080 graphics card of 10 GB video memory and 64 GB

of RAM.
4.1 Brain tumor dataset and preprocessing

In this paper, two publicly available brain tumor MRI datasets are

applied for the brain tumor multi-classification task. Details of these

two datasets are provided in Table 1. Both Cheng dataset and BT-

large-4c dataset contain different views of brain anatomy: axial,

coronal and sagittal views. Additionally, both datasets contain

different numbers of brain tumor categories obtained from different

patients with differences in tumor grade, race, and age. The Cheng

dataset contains 3 types of brain tumors, namely glioma, meningioma

and pituitary tumor. Among them, there are 1426 glioma images, 708

meningioma images and 930 pituitary tumor images, for a total of

3064 grayscale brainMagnetic Resonance (MR) images (48). The BT-

large-4c dataset consists of 3264 brain MR images, including 926

glioma, 940 meningioma and 901 pituitary tumor images, and the

remaining 497 normal images (49). These two datasets are split into

80% for training and 20% for testing.

During the dataset preprocessing phase, we implemented an

efficient and streamlined data preprocessing protocol. To ensure
TABLE 1 Details of the datasets used in this study.

NO. Dataset name Classes Number of Each class Total number of images

1 Cheng

Glioma 1426

3064Meningioma 708

Pituitary 930

2 BT-large-4c

Glioma 926

3264
Meningioma 940

Pituitary 901

No tumor 497
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image content integrity and feature stability in experimental

settings, all images were uniformly resized to dimensions of

224×224×3 pixels. This standardized resizing not only preserves

the spatial structure and informational completeness of images but

also significantly reduces computational overhead during network

training, thereby enhancing training efficiency. Additionally, a

standardization procedure was applied—a conventional

preprocessing technique in deep learning—to mitigate variations

in illumination, contrast, and other attributes across images,

enabling the model to focus on learning intrinsic features.

Considering that deep neural networks typically require large-

scale datasets for training while our study employed a relatively

limited dataset, data augmentation strategies were systematically

deployed to alleviate overfitting. Specifically, techniques including

random rotation, cropping, and horizontal flipping were

implemented. These operations effectively enhanced dataset

diversity without introducing additional noise, thereby

strengthening the model’s generalization capabilities.
4.2 System implementation and evaluation
metrics

During the model training process, we will fine-tune

hyperparameters such as batch size, optimizer type, learning rate,

epochs, and loss function based on experience and actual

requirements. The objective of this process is to identify the

optimal combination of hyperparameters to enhance the model’s

performance and achieve the desired training outcomes. In this

model, we employ the Adam optimizer with an initial learning rate

of 0.001, 150 epochs, and a mini-batch size of 16 samples.

In this study, the performance of the proposed method is given

by accuracy, recall, precision, and F1 -score (Cohen’s) were used for

evaluation Kappa(k), Matthews Correlation Coefficient (MCC) are

given by this is given by Equations 10–15 (50):

Accuracy =
TP + TN

TP + TN + FP + FN
(10)
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Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 − score =
2� Precision� Recall
Precision + Recall

(13)

k =
po − pe
1 − pe

(14)

MCC =
TP � TN − FP � FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
p (15)

where, True Positives (TP) are the number of actual and

predicted positives. True Negatives (TN) are the number of

negatives that are both actual and predicted. False Positives (FP)

are the number of actual negatives that are predicted to be positive.

False Negatives (FN) are the number of actual positives that are

predicted to be negative. po is the proportion of inter-observers who

actually agree. pe is the proportion of agreement expected based on a

random assignment.
4.3 Experimental results

The proposed method is applied to the Cheng dataset and the

BT-large-4c dataset for classification, and the corresponding

confusion matrix is generated, as shown in Figures 4A, B. In

these matrices, the label “G” represents glioma, “M” represents

meningioma, “P” represents pituitary tumor, and “N” represents no

tumor. The confusion matrices vividly illustrate the classification

performance of the model for each category. Additionally, the

detailed values of model metrics obtained on the Cheng and BT-

large-4c datasets are shown in Table 2. These metrics offer a

quantitative basis for comparison, facilitating the evaluation of

the model’s performance and comparison with other methods. It

is noteworthy that on the Cheng dataset, our model demonstrated
FIGURE 4

Confusion matrix of the proposed model (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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exceptionally high classification performance, achieving an

accuracy of 98.69%. Similarly, on the BT-large-4c dataset, the

model achieved a classification accuracy of 97.10%. The total

number of parameters in the EnSLDe model is 87 million (87M).

The total memory size required for the model during operation

(including training and inference) is 2792.73MB. The memory size

required for one forward and backward propagation process in the

model is 2459.25MB.

The Receiver Operating Characteristic (ROC) curve is a graphical

tool used to represent the performance of a classification model. It

effectively evaluates the performance of the model under different

classification thresholds by taking the False Positive Rate (FPR) and

True Positive Rate (TPR) as the horizontal and vertical coordinates.
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The Area Under the Curve (AUC) quantitatively assesses the quality

of the classification model. Higher AUC values indicate better model

performance, with values closer to 1 indicating more ideal

classification performance. Specifically, the ROC curves of our

proposed model on the Cheng dataset and BT-large-4c dataset are

depicted in Figures 5A, B, respectively. On the Cheng dataset, the

AUC values for glioma, meningioma, and pituitary tumor in our

proposed model are 0.9982, 0.9991, and 1.0000, respectively. On the

BT-large-4c dataset, the AUC values for glioma, meningioma,

pituitary tumor, and no tumor in our proposed model are 0.9941,

0.9921, 0.9999, and 0.9967, respectively. These results indicate that

our proposed model exhibits excellent classification performance on

both the Cheng dataset and BT-large-4c dataset.
FIGURE 5

ROC curve for EnSLDe (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
TABLE 2 Detailed metric values of the proposed model on Cheng and BT-large-4c datasets.

Dataset Tumor type Precision Recall F1-score Accuracy k Mcc

Cheng

Glioma 0.9894 0.9860 0.9877

0.9869 0.9795 0.9795
Meningioma 0.9718 0.9787 0.9753

Pituitary 0.9946 0.9946 0.9946

Average 0.9853 0.9864 0.9859

BT-large-4c

Glioma 0.9626 0.9677 0.9651

0.9710 0.9607 0.9607

Meningioma 0.9572 0.9521 0.9547

No tumor 0.9700 0.9700 0.9700

Pituitary 0.9945 0.9945 0.9945

Average 0.9711 0.9711 0.9711
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4.4 Ablation experiment

This ablation experiment aims to comprehensively evaluate the

impact of attention module, FEnM and data enhancement on

model performance. The following three subsections will

demonstrate in detail the contribution and importance of these

three key components to model performance.

4.4.1 The impact of the attention module on the
model

In this section, the influence of various attention modules on

our proposed model is investigated. The new models reconstructed

from these attention modules and our proposed model include:

Squeeze-and-Excitation(SE) (51) instead of EMA in EnSLDe named

as EnSLDe-SE, Coordinate Attention (CA) (52) instead of EMA in

EnSLDe named as EnSLDe-CA, Convolutional Block Attention

Module (CBAM) (53) instead of EMA in EnSLDe named as

EnSLDe-CBAM and the one removing EMA from EnSLDe

named as EnSLDe-NoEMA. These models are used for

classification prediction on the Cheng dataset, and the results are

shown in Figure 6.

From Figure 6, it is evident that the EnSLDe-SE does not

perform well in these models, with an accuracy of only 96.41%.

Conversely, the EnSLDe exhibits exceptional performance in these

models, achieving an accuracy of 98.69% and demonstrating

excellent performance across other evaluation metrics.
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Specifically, the EnSLDe attains 98.53%, 98.64%, and 98.59% in

precision, recall, and F1-score parameters, respectively. Moreover,

when the EMA module is removed, the model’s accuracy

significantly drops to 97.06%. This comparison underscores the

crucial role of the EMA module in enhancing the performance of

the proposed model. The inclusion of the EMA module not only

boosts the classification accuracy of the model but also achieves

balanced optimization across multiple evaluation metrics, thereby

enabling the model to maintain high performance levels.

4.4.2 The impact of the FExM on the model
FExM is the cornerstone of the EnSLDe architecture, designed

to hierarchically extract multi-scale contextual features through the

combination of convolutional layers, residual connections, and the

EMA mechanism. To rigorously evaluate its contribution, we

conducted a comparative analysis of the model’s performance

with and without the FExM module. When the FExM was not

used, the model’s performance metrics—Precision, Recall, F1-score,

and Accuracy—were 0.9656, 0.9722, 0.9683, and 0.9706,

respectively, which were consistently lower than those of the

model with FExM. It is worth noting that the precision dropped

by 1.63%, highlighting the crucial importance of FExM to the

overall model performance. Furthermore, in the ablation study,

the p-value for the paired t-test of accuracy was 0.0013 (below the

significance level, a = 0.05), with a confidence interval ranging from

[0.0442, 0.1815].
FIGURE 6

Impact of each attention module.
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4.4.3 The impact of the FEnM on the model
This section primarily examines the impact of the FEnM on the

proposed model, with specific results depicted in Figure 7. The

figure clearly illustrates that introducing FEnM significantly

enhances the classification performance of the model on the

Cheng dataset. Specifically, the accuracy, precision, recall, and F1-

score of the model have increased by 2.12%, 2.66%, 1.76%, and

2.27%, respectively. The p-value of the paired t-test for accuracy

with and without FEnM was 0.0094 (which is below the significance

level, a = 0.05), and the confidence interval range was [0.0228,

0.1595]. The notable performance improvement can be attributed

to the effective role of the FEnM. The FEnM not only substantially

enhances the extracted features but also excels in capturing

important long-range dependencies. Moreover, the FEnM can

integrate the retained local key information with different levels

of deep features, thereby enriching the expressive capabilities of

features. Through this feature enhancement method, the model can

more accurately identify brain tumors in classification tasks.

4.4.4 The impact of data augmentation on
models

This experiment utilizes two datasets: the Cheng dataset and the

BT-large-4c dataset. Through the application of data augmentation

techniques, the classification performance of the proposed model

on these datasets is significantly enhanced. The impact of data

augmentation on the model is illustrated in Figure 8. Specifically, for

the Cheng dataset, the accuracy is improved by 3.92%, and for the
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BT-large-4c dataset, the accuracy is improved by 3.51%. These

results highlight the crucial role of data augmentation techniques in

enhancing model performance. In particular, by incorporating data

augmentation with random horizontal or vertical flipping of

images, the model becomes adept at learning tumor

characteristics from various orientations and locations. This

implies that the model can effectively identify and classify tumors

even when their orientation or location varies in real-

world applications.

4.4.5 Ablation studies on layer selection
To further validate the selection of feature extraction layers, we

conducted an ablation study, the results of which are summarized in

Table 3. When features were extracted from a single layer (shallow

or deep), classification accuracy was consistently lower than that

achieved via a multilayer fusion approach. To assess whether the

observed differences in performance were statistically significant,

paired t-tests were conducted. The tests compared classification

accuracies of deep layers (which demonstrated superior

performance to shallow layers) and multilayer fusion, positing the

null hypothesis that there was no significant difference in

performance. The paired t-test produced a p-value of 0.03 (below

the significance level, a = 0.05), indicating a statistically significant

difference in performance. By combining features from shallow and

deep layers, the model captured a more holistic representation of

the input data. The confidence interval for the difference in accuracy

(which ranged from [-0.013, -0.0019]) excluded zero, confirming
FIGURE 7

Impact of FEnM.
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that the multilayer fusion approach surpassed single-layer

extraction. The shallow layer provided detailed local information,

whereas the deep layer captured global contextual features. This

combination enhanced the model’s ability to discern complex

patterns in brain tumor images.

4.4.6 Impact of hyperparameter selection on
model performance

Hyperparameters are an important aspect that affects model

performance, and different hyperparameters can lead to different

experimental results. In this section, the impact of the

hyperparameters batch size, lr, and optimizer on model

performance will be verified. Table 4 presents the experimental

results. By comparing Tables 2, 4, it can be found that the

hyperparameter values selected in this paper are quite good.
4.5 Cross-dataset validation

To comprehensively validate the model, cross-validation was

employed. The BT-large-4c dataset, comprising glioma, pituitary

tumor, and meningioma data, was used to evaluate the model

trained on the Cheng dataset. The cross-validation results for

accuracy, precision, recall, and F1-score were 92.98%, 93.2%,

93.02%, and 93.01%, respectively. These outcomes indicate that

the proposed model exhibits significant robustness.
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4.6 Discussion

To further quantify the performance of the proposed model.

The classification results obtained by our proposed model are

compared with those obtained by previous state-of-the-art models

using the same dataset, as shown in Table 5. Noreen et al. (54)

proposed a method integrating deep learning with machine learning

models, employing deep learning for feature extraction, including

the Inception-v3 and Xception models. Additionally, the

classification of brain tumors through deep learning and machine

learning algorithms such as softmax, RF, SVM, KNN, and ensemble

techniques were explored. Bodapati et al. (55) developed a dual-

channel deep neural network architecture for brain tumor

classification using pre-trained InceptionResNetV2 and Xception

models, incorporating attention mechanisms to enhance accuracy

and generalization capabilities in brain tumor recognition. Shaik

and Cherukuri (56) designed and implemented a multi-level

attention network (MANet). The proposed MANet includes

spatial and channel-wise attention mechanisms, prioritizing

tumor regions while maintaining the inter-channel temporal

dependencies in the semantic feature sequences obtained from the

abnormal areas. Öksüz et al. (57) utilized pre-trained AlexNet,

ResNet-18, GoogLeNet, and ShuffleNet networks to extract deep

features from images, and designed a shallow network for extracting

shallow features, fusing these features and classifying them with

SVM and KNN. Jaspin and Selvan (58) proposed a multi-class
TABLE 3 Layer selection of experimental results in dataset Chen.

Method Precision Recall F1-score Accuracy

Shallow layer 0.9554 0.9539 0.9546 0.9592

Deep layer 0.9683 0.9645 0.9664 0.9690

Multilayer fusion (ours) 0.9853 0.9864 0.9859 0.9869
FIGURE 8

Impact of Data Augmentation (A) on the Cheng dataset, (B) on the BT-large-4c dataset.
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convolutional neural network (MCCNN) model for identifying

tumors in brain MRI images. This network, consisting of an 11-

layer structure including three convolutional layers, three max-

pooling layers, one flattening layer followed by three dense layers,

and an output layer, achieved classification performance on par

with pre-trained models. Md. S. I. Khan et al. (59) designed a 23-

layer convolutional neural network for brain tumor classification.

Satyanarayana et al. (60) introduced a density convolutional neural

network model based on mass correlation mapping (DCNN-MCM)

for brain tumor classification. This model leverages the average

mass elimination algorithm (AMEA) and mass correlation analysis

(MCA) for the extraction and training of significant features of

brain tumors, using a CNN model for efficient classification.

Kibriya et al. (61) developed a 13-layer CNN specifically for brain

tumor classification. Dutta et al. (62) introduced an attention-based

residual multi-scale CNN, termed ARM-Net. This model includes a

lightweight residual multi-scale CNN architecture known as RM-

Net and introduces a lightweight global attention module (LGAM)

to selectively learn more discriminative features. S. U. R. Khan et al.

(63) employed the DenseNet169 model for feature extraction and

fed the extracted features into three multi-class machine learning

classifiers: RF, SVM, and gradient-boosting decision trees
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(XGBoost). Brain tumor classification was performed through the

integration of these classifiers using a majority voting strategy.

Demir and Akbulut (64) used a new multi-level feature selection

algorithm to select the 100 deep features with the highest

significance and adopted the SVM algorithm with Gaussian

kernel for classification and achieved better performance. Senan

et al. (65) employed both AlexNet and ResNet18 in conjunction

with SVM for brain tumor classification and diagnosis. Initially,

deep learning techniques were used to extract robust and significant

deep features through deep convolutional layers, followed by

classification using SVM. Ravinder et al. (66) proposed a graph

convolutional neural network (GCN) model. This model integrates

graph neural networks (GNN) with traditional CNNs. Our EnSLDe

achieves superior performance compared to other methods. This

depends on its ability to enhance short-range and long-range

dependencies. EnSLDe yields experimental results for the Chen

dataset. On the BT-large-4c dataset, EnSLDe underperforms

AlexNet+SVM by a margin of 0.0139 in terms of precision.

Nonetheless, it excels in other performance indicators. The

EnSLDe model demonstrates exceptional performance on the

Cheng and BT-large-4c datasets, achieving high accuracy rates of

98.69% and 97.10%, respectively. These results highlight the
TABLE 5 Comparison of our proposed model with previous models.

Reference Dataset Method Precision Recall F1-score Accuracy

Noreen et al. (54)

Cheng

Inception-v3+Ensemble – – – 0.9434

Bodapati et al. (55) Two-Channel DNN – – 0.9779 0.9523

Shaik and Cherukuri (56) MANet 0.9614 0.9599 0.9603 0.9651

Öksüz et al. (57) ResNet18+ShallowNet+SVM 0.9525 0.9527 0.9526 0.9725

Jaspin and Selvan (58) MCCNN 0.95 0.95 0.96 0.9517

Md. S. I. Khan et al. (59) 23-layer CNN 0.965 0.964 0.964 0.978

Satyanarayana et al. (60) DCNN-MCN – – – 0.94

Kibriya et al. (61) 13-layer CNN 0.97 0.96 0.965 0.972

Dutta et al. (62) ARM-Net 0.9646 0.9609 0.9620 0.9664

S. U. R. Khan et al. (63) Hybrid-NET 0.95 0.94 0.94 0.951

Dutta et al. (44) GT−Net – – 96.39 97.11

The Proposed Method EnSLDe 0.9853 0.9864 0.9859 0.9869

Demir and Akbulut (64)

BT-large-4c

R-CNN+SVM 0.964 0.9645 0.964 0.966

Senan et al. (65) AlexNet+SVM 0.985 – – 0.951

Ravinder et al. (66) GCNN 0.9525 0.965 0.9587 0.9501

The Proposed Method EnSLDe 0.9711 0.9711 0.9711 0.971
TABLE 4 Experimental results for different hyper-paramete.

Hyper-parameter Value Precision Recall F1-score Accuracy

Batch 8 0.9739 0.9770 0.9754 0.9771

Lr 0.0001 0.9835 0.9811 0.9823 0.9837

Optimizer SGD 0.9800 0.9757 0.9778 0.9804
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model’s ability to effectively capture both short-range and long-

range dependencies in brain tumor images, leading to improved

classification accuracy. And multi-scale parallel subnetworks fuse

shallow and deep features to capture comprehensive information.

However, it is important to note that the performance of any model,

including EnSLDe, can vary depending on the specific

characteristics of the data it is applied to. While EnSLDe

outperforms several state-of-the-art models on these datasets, its

genera l i z ab i l i t y to rea l -wor ld app l i ca t ions requ i res

further validation.

In order to more intuitively display the effect of our proposed

method, we used the t-SNE (67) algorithm to reduce the

dimensionality of high-dimensional feature data and drew a

scatter plot on a 2-dimensional plane. Figures 9A–C depict scatter

plots obtained by removing FEnM, EMA, and Data Augmentation,

respectively. There are instances where the glioma class and the

meningioma class are interconnected and nested. However, in

Figure 9D, obtained by EnSLDe, the sample points of each class

are closely clustered together, with clear separation between

different categories. This intuitively underscores the significance
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of FEnM, EMA, and Data Augmentation for the model. The ability

of the model to distinguish features effectively is enhanced by them.

As shown in Figure 4 and Table 2, the EnSLDe model achieves

superior classification performance for pituitary tumors (precision:

0.9946, recall: 0.9946) compared to gliomas (precision: 0.9894,

recall: 0.9946) and meningiomas (precision: 0.9718, recall:

0.9787), the latter of which exhibits the lowest performance

metrics. A comparison of Figures 9A–D illustrates that EnSLDe

employs effective strategies to differentiate gliomas from

meningiomas. However, persistent feature overlap hinders the

model’s ability to achieve optimal classification accuracy.

The EnSLDe model is designed to capture both short- and long-

range dependencies within images, demonstrating considerable

potential for generalization beyond the classification of brain

tumors. Its architecture, which incorporates a multi-scale parallel

subnetwork and feature enhancement modules, is well-suited for a

wide range of medical imaging tasks. Additionally, the model is

adaptable to the classification of tumors in various organs, such as

lung, breast, and liver tumors. The model’s ability to effectively

capture contextual information makes it suitable for the
FIGURE 9

2-dimensional scatter plots of deep feature sets (A) EnSLDe without FEnM, (B) EnSLDe without EMA, (C) EnSLDe without Data Augmentation,
(D) EnSLDe.
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identification of different lesion types and the detection of

abnormalities across a diverse array of medical conditions.

Adapting the EnSLDe model to a new task necessitates several

adjustments. First, the model requires retraining on a task-specific

dataset, including modifying the number of output categories and

fine-tuning the classification module. Furthermore, the feature

extraction module may require modification to account for

variations in imaging characteristics, such as resolution and

contrast. Despite its design efficiency, the EnSLDe model exhibits

limited scalability, particularly in resource-constrained

environments. Training the model demands substantial

computational resources, particularly for large-scale datasets.

However, incorporating efficient convolutional layers and

depthwise separable convolutions mitigates these computational

demands. To address scalability challenges, several strategies may

be implemented. For instance, model compression techniques (e.g.,

pruning and quantization) can substantially reduce computational

complexity while maintaining competitive performance.

To further understand the decision-making process of the

proposed EnSLDe model and validate its ability to focus on

relevant regions in brain tumor classification, we visualized the

feature maps using the Grad-CAM++ method. The results are

shown in Figure 10. Grad-CAM++ is a widely used technique for

visualizing the regions of interest in image classification tasks,

providing insights into the model’s attention mechanism. As

shown in Figure 10, the feature maps generated by the EnSLDe

model effectively highlight brain tumor regions, demonstrating the

model’s ability to distinguish between brain tumor and non-tumor

regions. This visualization confirms that the model focuses on

tumor regions, which is critical for accurate classification.

However, it is also clear that the model focused on other non-

tumor regions. This observation suggests that the model effectively

captures key brain tumor features while incorporating additional

contextual information from surrounding brain regions, which may
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contribute to its high classification accuracy. While the EnSLDe

model demonstrated strong performance in focusing on relevant

regions, the visualization results also highlighted areas for potential

improvement. Specifically, the model’s focus on non-tumor regions

suggests that there may be opportunities to refine the feature

extraction and enhancement modules to emphasize the most

critical features further. Future work could explore advanced

attention mechanisms or additional regularization techniques to

ensure that the model focuses more precisely on tumor regions,

potentially leading to higher classification accuracy.
5 Conclusion

A new multi-class brain tumor classification model, named

EnSLDe, has been proposed. This model is primarily composed of

three modules: FExM (Feature Extraction Module), FEnM (Feature

Enhancement Module), and the classification module. FExM

efficiently extracts features using convolutional layers and residual

networks and combines EMA (Efficient Multi-Attention) to

simultaneously focus on both channel and spatial information of

the features. This effectively preserves the information of each

channel, preventing the loss of important features during the

compression of the channel dimension. The design of FEnM aims

to deeply integrate shallow and deep features, facilitating a more

comprehensive understanding of the features and the extraction of

advanced and important features. Additionally, the model’s ability

to capture short-range and long-range dependencies has been

enhanced. The feature enhancement module further strengthens

the features by effectively capturing important dependencies over a

large sequence range while preserving local key information. The

double-layer fully connected structure is adopted as the core of the

classification module and combined with dropout regularization

technology, which further improves the model classification
FIGURE 10

Heat map visualization of the model (A) Original image (B) Heat map.
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performance. Experimental evaluations conducted on the

challenging Cheng dataset and BT-large-4c dataset demonstrate

the excellent performance of our model in brain tumor classification

tasks. On the Cheng dataset, the model achieves accuracy, recall,

precision, and F1-score of 98.69%, 98.53%, 98.64%, and 98.59%,

respectively. Similarly, on the BT-large-4c dataset, the model attains

accuracy, recall, precision, and F1-score of 97.10%, 97.11%, 97.11%,

and 97.11%, respectively. Indeed, the differentiation between glioma

and meningioma remains suboptimal. Further refinement is

required to enhance the model’s ability to distinguish accurately

between these two tumor types. Future studies should augment the

dataset to include a broader range of brain disorders, thereby

enriching the model’s training corpus and enhancing its capacity

to differentiate among diverse neurological pathologies.

Additionally, strategic modifications to the model’s architecture,

training protocols, and loss functions could be implemented to

optimize its discriminative performance in distinguishing gliomas

from meningiomas. And the model was deployed, and the clinical

capabilities of the model were verified by combining the doctors

commanded by experience.
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model for preoperative
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air spaces in clinical stage I
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Objective: To develop and validate a deep learning signature for noninvasive

prediction of spread through air spaces (STAS) in clinical stage I lung

adenocarcinoma and compare its predictive performance with conventional

clinical-semantic model.

Methods: A total of 513 patients with pathologically-confirmed stage I lung

adenocarcinoma were retrospectively enrolled and were divided into training

cohort (n = 386) and independent validation cohort (n = 127) according to

different center. Clinicopathological data were collected and CT semantic

features were evaluated. Multivariate logistic regression analyses were

conducted to construct a clinical-semantic model predictive of STAS. The

Swin Transformer architecture was adopted to develop a deep learning

signature predictive of STAS. Model performance was assessed using area

under the receiver operating characteristic curve (AUC), sensitivity, specificity,

positive and negative predictive value, and calibration curve. AUC comparisons

were performed by the DeLong test.

Results: The proposed deep learning signature achieved an AUC of 0.869 (95%

CI: 0.831, 0.901) in training cohort and 0.837 (95% CI: 0.831, 0.901) in validation

cohort, surpassing clinical-semantic model both in training and validation cohort

(all P<0.01). Calibration curves demonstrated good agreement between STAS

predicted probabilities using deep learning signature and actual observed

probabilities in both cohorts. The inclusion of all clinical-semantic risk

predictors failed to show an incremental value with respect to deep

learning signature.
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Conclusions: The proposed deep learning signature based on Swin Transformer

achieved a promising performance in predicting STAS in clinical stage I lung

adenocarcinoma, thereby offering information in directing surgical strategy and

facilitating adjuvant therapeutic scheduling.
KEYWORDS

deep learning, lung adenocarcinoma, spread though air space, computer
tomography, prediction
Introduction

Lung cancer remains the leading lethal malignancy, responsible

for 12.4% of all newly-diagnosed cases worldwide in 2022 (1). As the

predominant cause of lung cancer-related mortality, lung

adenocarcinoma exhibits distinctive histological growth pattern and

molecular genotyping (2). Spread through air spaces (STAS) is a

unique invasion pattern separate from lymphatic-vascular and

visceral pleural invasion, with a predisposition in lung

adenocarcinoma. Initially introduced by Kadota et al. and explicitly

defined in the World Health Organization Classification of Lung

Cancer in 2015, STAS refers to the dissemination of tumor cells as

solid nests, micropapillary clusters or single cells into the peritumoral

alveolar airspaces (3). Multiply studies have consistently

demonstrated that STAS serves as a well-established prognosticator

for lung adenocarcinoma undergoing sublobectomy, indicating an

increased risk of postoperative relapse and worse prognosis (4–6).

STAS is recognized as a pathological indicator for identifying the

beneficiaries of adjuvant chemotherapy among stage IB patients (7).

Therefore, STAS is of great significance in identifying high-risk

patients and guiding personalized therapeutic strategies.

However, intraoperative pathological assessment for STAS

through rapid frozen sections has been proved to be of limited

sensitivity and reproducibility (8). The shifting of tumor cells to the

peritumoral alveolar airspaces caused by manual operations such as

extrusion, blade cutting and tissue dysfixation were hardly

distinguished from STAS cell clusters, thereby hindering the

reliable application of this approach. Several scholars exploited

CT semantic indicators for STAS by visual inspection or manual

measurement, such as tumor diameter, ground-glass opacity (GGO)

components, and pleural retraction (9, 10). Nevertheless, these

indicators rely on subjective judgement and professional skills,

making them unsuitable for widespread clinical practice due to

inconsistent interpretation criteria. Several studies developed CT-

based radiomics signature predictive of STAS, but the radiomics

approach involves several sequential processing steps such as tumor

delineation, dimension reduction and model building (11, 12). The

efficiency of radiomics modeling is highly influenced by

interobserver heterogeneity and handling quality at each step.
0285
Deep learning is an end-to-end network architecture,

characterized by the ingestion of data from the input end and the

generation of prediction results from the output end. The error

between prediction result and actual observation is iteratively

propagated through each layer, facilitating model adjustment and

convergence. On account of the advantages of automatically

learning and extracting representative information, deep learning

has achieved remarkable efficacy in distinguishing histological

subtypes, evaluating treatment response, and predicting survival

(13–15). In this study, we employed Swin Transformer, a deep

learning framework exploited by Microsoft Research Asia, to

construct and validate a CT-based deep learning predictive model

for STAS in lung adenocarcinoma. This study also sought to

investigate the incremental value of clinical characteristics and

conventional CT semantic features over the deep learning signature.
Methods

Patients

This study was approved by the Ethics Committee and the

requirement for informed consent was waived due to its

retrospective nature. The patients who underwent radical

resection at the main campus of Tongji Hospital (Center 1) from

October 2021 to June 2022 were systematically reviewed. Inclusion

criteria were: (1) invasive lung adenocarcinoma confirmed by

pathology; (2) maximum tumor diameter on CT images ≤ 4 cm;

(3) no radiological signs of locoregional lymph node invasion or

distant metastasis; (4) no preoperative radiotherapy, chemotherapy

or targeted therapy; (5) interval time of preoperative CT

examination and operation within two weeks. The exclusion

criteria were: (a) rare histological variants; (b) simultaneous or

metachronous tumors; (c) unavailable thin-section CT images or

obvious image artifacts; (d) insufficient peritumoral parenchyma

reserved for STAS assessment; (e) subjected to other cancers.

Tumor staging was based on the eighth edition of the TNM

staging system. Following the same criteria, patients undergoing

radical surgical resection at the Sino-Germany Guanggu Campus of
frontiersin.org

https://doi.org/10.3389/fonc.2024.1482965
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ma et al. 10.3389/fonc.2024.1482965
Tongji Hospital (Center 2) from January 2022 to June 2022 were

retrospectively enrolled. Clinical information including gender, age,

smoking history, pack-year and serum CEA level were acquired

from clinical electronic records. The recruitment workflow is

illustrated in Figure 1.
Histological assessment

Pathological characteristics including histological subtype, Ki-

67 labeling index (LI), visceral pleural invasion, lymphatic-vascular

invasion, pathological TNM staging and STAS were documented.

The excision specimen was fixed in 10% formalin and embedded in

paraffin before sectioned. Hematoxylin-eosin staining,

immunohistochemistry staining and elastic fiber staining were

performed accordingly. Two pathologists with experiences of 5

years and 11 years independently interpreted STAS on the

sections. Initially, tumor smooth interfaces were recognized by

naked eyes and at low-magnification (×10). Subsequently, three

areas with the most abundant STAS were selected for interpretation

at high-magnification (×200). If any of the following forms of tumor

cells are observed within peritumoral alveolar airspaces, it is judged

to be STAS-positive: (1) micropapillary clusters without a central

fibrovascular core; (2) solid tumor nests; (3) discrete single tumor

cells. Ki-67 LI is determined by the percentage of cells with stained-

brown nuclei among 1000 tumor cells via immunohistochemical

staining. Invasive lung adenocarcinoma is categorized into five

histological subtypes based on growth architecture: lepidic, acinar,

papillary, micropapillary and solid predominant adenocarcinoma.
CT scanning protocol and semantic
feature interpretation

The patients were examined using multi-slice spiral CT

scanners including GE Discovery 750 HD, TOSHIBA Aquilion

One TSX-301A, Philips Brilliance ICT 256 and GE Optima CT 660.

The acquisition parameters were detailed in Supplementary Data

Sheet 1. CT semantic features were independently evaluated by two

radiologists with 12 and 7 years of experience, respectively, blinded

to the clinicopathological information. The lung window (width:

1600 HU; level: -600 HU) and mediastinal window (width: 400 HU;

level: 40 HU) were fixed, respectively. CT semantic features

included affiliated lobe, location, attenuation type, tumor total

diameter, tumor consolidation diameter, consolidation-to-tumor

ratio (CTR), shape, boundary, lobulation, spiculation, cavity,

vacuole, air bronchogram, and plural attachment. CTR is

quantified by the ratio of tumor consolidation diameter and total

diameter. The definitions of CT semantic features were elucidated

in Supplementary Data Sheet 1. The interobserver agreement for

categorical and continuous variables was evaluated using Cohen ‘s

kappa coefficient and intraclass correlation coefficient (ICC),

respectively. The average measured by two radiologists was taken
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as the final value for continuous variables. Consensus on divergent

categorical variables was reached through discussion involving a

third radiologist.
Tumor segmentation and deep learning
signature development

The automatic virtual adversarial training segmentation

algorithm, based on a three-dimensional U-shape convolutional

neural network known as 3D U-Net, was employed to achieve

tumor segmentation. The topology of U-net was showed in

Supplementary Data Sheet 1. For modeling, we proposed a deep

learning framework called Swin Transformer to develop a signature

predictive of STAS. The overall architecture consists of four

transformer stages comprising Patch Embedding/Merging and

Swin Transformer Blocks in each stage as revealed in Figure 2

and Supplementary Data Sheet 1. To mitigate overfitting due to

limited amounts of data, the model was pretrained in CT images of

lung cancer from the Cancer Imaging Archive followed by fine-

tuned in 13510 CT images of lung adenocarcinoma in the training

cohort. Furthermore, to compare the efficacy of different deep

learning methods in predicting STAS, we applied ResNet-50,

EfficientNet and ConvNeXt for modeling denoted as ModelResNet-

50, ModelEfficientNet and ModelConvNeXt. The original code for

implementing Swin Transformer can be acquired at https://

github.com/microsoft/Swin-Transformer. We implemented the

neural network using PyTorch 1.4.1 library in Python 3.7.0

(https://pytorch.org).
Clinical-semantic model construction

Univariate analysis was initially performed to identify

statistically significant clinical characteristics and CT semantic

features between STAS positive and negative subgroups (P < 0.05)

in the training cohort. Afterwards, features with Spearman

correlation coefficient > 0.7 were removed in view of

multicollinearity inference. The remaining features as candidate

variables were included in multivariate logistic regression analysis

to determine the features independently associated with STAS. The

features were combined linearly weighted by their corresponding

regression coefficients to construct clinical-semantic model. Given

that the inherent design of preoperative prediction, pathological

indicators were not included in logistic regression analysis, but

compared across different STAS subgroups.
Statistical analysis

Statist ical analysis was performed using MATLAB

(MathWorksInc., Natick, MA) and SPSS (IBM, ver.26.0). Shapiro-

Wilk test and Levene test were used to analyze the normality and
frontiersin.org
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homogeneity of variance for continuous variables. The continuous

variables were compared using the Student’s t-test and Mann-

Whitney U test, as appropriate. The comparisons of categorical

variables were conducted by Chi-square test or Fisher exact test.

Pearson correlation analysis was used to evaluate the correlation

between features. The area under receiver operating characteristic
Frontiers in Oncology 0487
curve (AUC), sensitivity, specificity, positive predictive value (PPV)

and negative predictive value (NPV) were used to quantify model

performance. The calibration curve and Hosmer-Lemeshow test

were employed to evaluate the consistency between predicted

probabilities by deep learning signature and actual observations.

A double-tailed P<0.05 indicated statistical significance.
FIGURE 1

The workflow diagram of patient recruitment.
FIGURE 2

The overall framework of STAS prediction model development and validation. (A) Patients with lung adenocarcinoma were respectively enrolled
from Center 1 and Center 2. (B) Imaging preprocessing included isotropic resample, intensity normalization and tumor automatic segmentation.
(C) Deep learning signature predictive of STAS was developed based on Swin Transformer. (D) Histological assessment and radiologist interpretation
were conducted for all patients in Center 1 and Center 2, and then model performance comparisons were performed. STAS, spread through
air spaces.
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Results

Baseline characteristics

In total, 126 eligible STAS-positive and 260 STAS-negative

patients from Center 1 were enrolled to construct a training

cohort (n=386). Accordingly, a total of 45 STAS-positive and 82

STAS-negative patients from Center 2 constituted an independent

validation cohort (n=127). As revealed in Table 1, all

clinicopathological characteristics and CT semantic features

exhibited a balanced distribution between the training cohort and

validation cohort. Of 513 patients, 239 (46.6%) were male [median

age (interquartile): 59.0 (53.0, 65.0)] and 274 (53.4%) were female

[median age (interquartile): 61.0 (54.0, 68.0)]. Totally, there were

171 (33.3%) and 342 (66.7%) patients pathologically-confirmed to

be STAS-positive and STAS-negative, respectively.
The interobserver consistency assessment
for CT semantic features

As shown in Table 2, ICC for tumor total diameter, tumor

consolidation diameter and CTR were 0.988 (95% CI: 0.985, 0.990),

0.991 (95% CI: 0.990, 0.993) and 0.982 (95% CI: 0.979, 0.985),

respectively. Cohen ‘s kappa coefficients for the categorical variables

ranged from 0.808 to 0.992, indicative of satisfactory interobserver

agreement in interpreting CT semantic features. The discrepant

numbers (frequency) of categorical variables between two

radiologists were also documented as revealed in Table 2.
The association of clinicopathological
characteristics with STAS

As shown in Table 3, STAS was more likely occurred in patients

with pack-year > 40 (P=0.002) and CEA > 5 ug/L (P<0.001), but it had

no significant association with gender, age and smoking history. STAS

wasmore frequently observed inmicropapillary and solid predominant

adenocarcinoma, but rarely occurred in lepidic predominant

adenocarcinomas (P<0.001). Furthermore, STAS was closely related

with visceral pleural invasion and lymphatic-vascular invasion

(P<0.001 and P<0.001). Ki-67 LI in STAS-positive subgroup

significantly exceeded that of STAS-negative subgroup (P<0.001).

Additionally, lung adenocarcinoma with higher pathological T and N

stages showed a higher prevalence of STAS (P<0.001 for both).
The association of CT semantic features
with STAS

Tumor total diameter, tumor consolidation diameter and CTR in

STAS-positive subgroup were significantly higher than those in STAS-

negative subgroup (all P<0.001; Figures 3 and 4). Solid tumors, obscure

boundary, spiculation, vacuole and pleural attachment were more

frequent in STAS, but air bronchogram was less common in STAS

(all P< 0.05). The tumor consolidation diameter and attenuation
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subtype were excluded from logistic regression analysis considering a

strong correlation with CTR (r=0.839 and 0.913, P< 0.001). Finally,

CEA (odds ratio [OR]: 2.022; 95% CI: 1.080, 3.784; P=0.028), vacuole

(OR: 3.509; 95% CI: 1.488, 8.278; P=0.004), obscure boundary (OR:

2.716; 95% CI: 1.628, 4.529; P<0.001) and CTR (OR: 1.023; 95% CI:

1.014, 1.033; P<0.001) were included to construct the clinical-semantic

model as the independent risk indicators for predicting STAS.
Model construction and efficacy evaluation

As shown in the Table 4 and Figure 5, the AUC for Swin

Transformer based deep learning signature in the training cohort

and validation cohort was 0.869 (95% CI: 0.831, 0.901) and 0.837

(95% CI: 0.761, 0.896), respectively. Encouragingly, Swin

Transformer based deep learning signature achieved significantly

higher AUC than ModelResNet -50, ModelEffic i entNet and

ModelConvNeXt in training cohort (0.869 vs. 0.800, 0.797 and

0.783; all P < 0.001), as well as than ModelEfficientNet and

ModelConvNeXt in validation cohort (0.837 vs. 0.775 and 0.795; P

= 0.025 and 0.027), as shown in Supplementary Table E2. Deep

learning signature showed an improvement in predictive

performance than ModelResNet-50 in validation cohort, but it did

not reach statistical significance (0.837 vs. 0.799, P = 0.087).

Meanwhile, The AUC for CTR alone and clinical-semantic model

was 0.709 (95% CI: 0.660, 0.754) and 0.764 (95% CI: 0.719, 0.806) in

training cohort, as well as 0.734 (95% CI: 0.648, 0.808) and 0.714

(95% CI: 0.627, 0.790) in validation cohort, respectively. In the

training cohort, deep learning signature performed far superior to

CTR (0.869 vs. 0.709, P < 0.001) and clinical-semantic model (0.869

vs.0.764, P < 0.001), with a statistically significant difference. Notably,

deep learning signature yielded significantly higher AUC than both

CTR (0.837 vs. 0.734, P=0.006) and clinical-semantics model (0.837

vs. 0.714, P=0.002) in validation cohort. The sensitivity, specificity,

PPV and NPV of deep learning signature in predicting STAS ranged

from 0.578 to 0.706, 0.892 to 0.951, 0.761 to 0.867 and 0.804 to 0.862

across two cohorts, respectively. According to the Hosmer-Lemeshow

test and calibration curve, the predicted STAS probabilities by deep

learning signature revealed good agreement with the actual

observations both in training cohort and validation cohort

(P=0.600 and 0.082, respectively). Furthermore, when deep learning

signature was incorporated into clinical-semantic model, all CT

semantic risk predictors were eliminated from multivariate

regression analysis, with merely deep learning signature remained.

Pearson correlation analysis revealed a strong correlation between

CTR and deep learning signature (r = 0.789, P < 0.001).
Discussion

This study revealed that CEA, tumor boundary, vacuolation and

CTR are the independent clinical-semantic features associated with

STAS in lung adenocarcinoma. The proposed deep learning model

predictive of STAS based on Swin Transformer yielded an AUC of

0.869 (95% CI: 0.821, 0.908) and 0.837 (95% CI: 0.742, 0.908) in the

training cohort and independent validation cohort, superior to
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TABLE 1 The distribution of clinicopathological characteristics in training cohort and validation cohort.

Characteristic
All patients Training cohort Validation cohort

P value
(n=513) (n=386) (n=127)

A. Clinical characteristics

Gender 0.108

Female 274 (53.4%) 214 (55.4%) 60 (47.2%)

Male 239 (46.6%) 172 (44.6%) 67 (52.8%)

Age* (year) 60.0 (54.0, 66.0) 59.0 (54.0, 67.0) 62.0 (53.0, 66.0) 0.320

Smoking history 0.728

Nonsmoker 369 (72.0%) 280 (72.5%) 89 (70.1%)

Former smoker 70 (13.6%) 50 (13.0%) 20 (15.7%)

Current smoker 74 (14.4%) 56 (14.5%) 18 (14.2%)

Pack-year 0.907

≤ 3 372 (72.5%) 280 (72.5%) 92 (72.4%)

4-40 89 (17.3%) 68 (17.6%) 21 (16.5%)

> 40 52 (10.2%) 38 (9.9%) 14 (11.1%)

CEA (ug/L) 0.930

≤ 5 435 (84.8%) 327 (84.7%) 108 (85.0%)

> 5 78 (15.2%) 59 (15.3%) 19 (15.0%)

Surgical modalities 0.367

Wedge resection 14 (2.7%) 12 (3.1%) 2 (1.6%)

Sublobectomy 25 (4.9%) 21 (5.4%) 4 (3.1%)

Lobectomy 474 (92.4%) 353 (91.5%) 121 (95.3%)

B. Histopathological characteristics

Histological subtype 0.352

Lepidic 88 (17.2%) 63 (16.3%) 25 (19.7%)

Acinar 240 (46.8%) 185 (47.9%) 55 (43.3%)

Papillary 103 (20.0%) 78 (20.2%) 25 (19.7%)

Micropapillary 43 (8.4%) 28 (7.3%) 15 (11.8%)

Solid 39 (7.6%) 32 (8.3%) 7 (5.5%)

Ki-67 LI* (%) 10 (3.5, 20.0) 9 (5, 20) 10 (3, 20) 0.171

Ki-67 LI 0.817

< 10% 255 (49.7%) 193 (50.0%) 62 (48.8%)

≥ 10% 258 (50.3%) 193 (50.0%) 65 (51.2%)

Visceral pleural invasion 0.786

Present 93 (18.1%) 71 (18.4%) 22 (17.3%)

Absent 420 (81.9%) 315 (81.6%) 105 (82.7%)

Lymph-vascular invasion 0.112

Present 70 (13.6%) 58 (15.0%) 12 (9.4%)

Absent 443 (86.4%) 328 (85.0%) 115 (90.6%)

(Continued)
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conventional CTR and clinical-semantic model. Furthermore,

neither CTR nor clinical-semantic model exhibited an

incremental value over deep learning signature, further

confirming its superior predictive value.

For early-stage patients, sublobectomy can preserve more

pulmonary function, reduce surgical complications, and shorten

hospitalization time, particularly with an equivalent therapeutic

effect to lobectomy (16). However, sublobectomy is not appropriate

for STAS-positive patients due to a higher risk of locoregional

relapse and distant metastasis compared with lobectomy. Another

study proved that STAS had negligible adverse effects on prognosis

if surgical margin distance exceeded 2 cm in limited resection (17).

Thus, anatomic lobectomy and sufficient surgical margin should be

recommended for STAS-positive patients to prevent recurrence

caused by STAS. Dai et al. also demonstrated that recurrence-free

survival rates and overall survival rates of stage IA STAS-positive

patients were comparable to those of stage IB patients (18).

Furthermore, stage IB patients with STAS-positive can benefit

from adjuvant chemotherapy (7, 19). Consequently, STAS serves

as a pathological indicator for T upstaging and risk stratification, as

well as an effective biomarker for identifying the beneficiaries of

adjuvant chemotherapy in early-stage patients.

Currently, there is limited research on leveraging deep learning

technique to predict STAS, and the predictive capacity remains

modest. Tao et al. applied 3D convolutional neural network to

predict STAS in NSCLC, yielding an AUC of 0.790 in validation

cohort (20). Wang et al. presented SE-Resnet50 for risk estimation

of STAS in solid or part-solid lung adenocarcinoma, resulting a
TABLE 1 Continued

Characteristic
All patients Training cohort Validation cohort

P value
(n=513) (n=386) (n=127)

B. Histopathological characteristics

Pathological T stage 0.176

T1a 64 (12.5%) 48 (12.4%) 16 (12.6%)

T1b 238 (46.4%) 170 (44.1%) 68 (53.5%)

T1c 103 (20.1%) 85 (22.0%) 18 (14.2%)

T2 108 (21.0%) 83 (21.5%) 25 (19.7%)

Pathological N stage 0.402

N0 437 (85.1%) 328 (85.0%) 109 (85.8%)

N1 27 (5.3%) 23 (6.0%) 4 (3.1%)

N2 49 (9.6%) 35 (9.0%) 14 (11.1%)

STAS 0.563

Positive 171 (33.3%) 126 (32.6%) 45 (35.4%)

Negative 342 (66.7%) 260 (67.4%) 82 (64.6%)
Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; CTR, consolidation-to-tumor ratio; LI, labeling index; T, tumor; N, node; STAS, spread through air space.
TABLE 2 The interobserver agreement of CT semantic features for
lung adenocarcinoma.

CT semantic
feature

Disagreement Kappa
value/ICC

95% CI

Affiliated lobe‡ 2 (0.4%) 0.992 0.980, 1.000

Location‡ 20 (4.9%) 0.808 0.728, 0.888

Tumor
total diameter§

NA 0.988 0.985, 0.990

Tumor consolidation
diameter§

NA 0.991 0.990, 0.993

CTR§ NA 0.982 0.979, 0.985

Shape‡ 17 (3.3%) 0.883 0.826, 0.940

Boundary‡ 29 (5.7%) 0.844 0.789, 0.890

Lobulation‡ 9 (1.8%) 0.871 0.787, 0.955

Spiculation‡ 12 (2.3%) 0.953 0.928, 0.978

Cavity‡ 8 (1.6%) 0.941 0.900, 0.982

Vacuole‡ 11 (2.1%) 0.859 0.777, 0.941

Air bronchogram‡ 37 (7.2%) 0.856 0.811, 0.901

Pleural attachment‡ 13 (2.5%) 0.945 0.914, 0.976
§ICC was calculated for the continuous variables.
‡Cohen’s kappa coefficient was calculated for the categorical variables.
Disagreement was presented as numbers (percentages).
ICC, intraclass correlation coefficient; CTR, consolidation-to-tumor ratio; CI,
interval confidence.
NA, not applicable.
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TABLE 3 The relationships of clinicopathological characteristics and CT semantic features with STAS in training cohort.

Characteristics
Training cohort STAS positive STAS negative

P value
(n=386) (n=126) (n=260)

A. Clinical characteristics

Gender 0.201

Female 214 (55.4%) 64 (50.8%) 150 (57.7%)

Male 172 (44.6%) 62 (49.2%) 110 (42.3%)

Age* (year) 59.0 (54.0, 67.0) 59.0 (53.8, 68.3) 59.0 (54.0, 65.0) 0.422

Smoking history 0.051

Nonsmoker 280 (72.5%) 84 (66.7%) 186 (75.4%)

Former smoker 50 (13.0%) 24 (19.0%) 26 (10.0%)

Current smoker 56 (14.5%) 18 (14.3%) 38 (14.6%)

Pack-year 0.002

≤ 3 280 (72.5%) 84 (66.7%) 196 (75.4%)

4-40 68 (17.6%) 20 (15.9%) 48 (18.5%)

> 40 38 (9.9%) 22 (17.4%) 16 (6.1%)

CEA < 0.001

≤ 5 ug/L 327 (84.7%) 95 (75.4%) 232 (89.2%)

> 5 ug/L 59 (15.3%) 31 (24.6%) 28 (10.8%)

Surgical modalities 0.147

Wedge resection 12 (3.1%) 3 (2.4%) 9 (3.5%)

Sublobectomy 21 (5.4%) 3 (2.4%) 18 (6.9%)

Lobectomy 353 (91.5%) 120 (95.2%) 233 (89.6%)

B. Histopathological characteristics

Histological subtype < 0.001

Lepidic 63 (16.3%) 5 (4.0%) 58 (22.3%)

Acinar 185 (47.9%) 51 (40.5%) 134 (51.5%)

Papillary 78 (20.2%) 24 (19.0%) 54 (20.8%)

Micropapillary 28 (7.3%) 26 (20.6%) 2 (0.8%)

Solid 32 (8.3%) 20 (15.9%) 12 (4.6%)

Ki-67 LI* (%) 10.0 (5.0, 20.0) 10.8 (7.4, 30.0) 5.0 (3.0, 10.0) < 0.001

Ki-67 LI < 0.001

< 10% 193 (50.0%) 35 (27.8%) 158 (60.8%)

≥ 10% 193 (50.0%) 91 (72.2%) 102 (39.2%)

Visceral pleural invasion < 0.001

Present 71 (18.4%) 36 (28.6%) 35 (13.5%)

Absent 315 (81.6%) 90 (71.4%) 225 (86.5%)

Lymph-vascular invasion < 0.001

Present 58 (15.0%) 47 (37.3%) 11 (4.2%)

Absent 328 (85.0%) 79 (62.7%) 249 (95.8%)

(Continued)
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TABLE 3 Continued

Characteristics
Training cohort STAS positive STAS negative

P value
(n=386) (n=126) (n=260)

B. Histopathological characteristics

Pathological T stage < 0.001

T1a 48 (12.4%) 10 (7.9%) 38 (14.6%)

T1b 170 (44.1%) 42 (33.3%) 128 (49.3%)

T1c 85 (22.0%) 29 (23.1%) 56 (21.5%)

T2 83 (21.5%) 45 (35.7%) 38 (14.6%)

Pathological N stage < 0.001

N0 328 (85.0%) 82 (65.1%) 246 (94.6%)

N1 23 (6.0%) 17 (13.5%) 6 (2.3%)

N2 35 (9.0%) 27 (21.4%) 8 (3.1%)

C. CT Semantic characteristics

Affiliated lobe 0.044

Upper lobe 236 (61.1%) 68 (54.0%) 168 (64.6%)

Middle/lower lobe 150 (38.9%) 58 (46.0%) 92 (35.4%)

Location 0.060

Central 47 (12.2%) 21 (16.7%) 26 (10.0%)

Peripheral 339 (87.8%) 105 (83.3%) 234 (90.0%)

Attenuation type < 0.001

GGO 26 (6.7%) 4 (3.2%) 22 (8.5%)

Sub-solid 208 (53.9%) 46 (36.5%) 162 (62.3%)

Solid 152 (39.4%) 76 (60.3%) 76 (29.2%)

Tumor total diameter (mm)* 22.0 (17.0, 27.0) 25.0 (19.0, 31.0) 21.0 (16.0, 26.0) < 0.001

Tumor consolidation diameter
(mm)*

15.5 (10.0, 23.0) 21.0 (15.8, 28.3) 13.0 (8.0, 20.0) < 0.001

CTR* (%) 78.6 (46.5, 100.0) 100.0 (78.5,100.0) 64.1 (38.1, 100.0) < 0.001

Shape 0.065

Round or oval 324 (83.9%) 112 (88.9%) 212 (81.5%)

Irregular 62 (16.1%) 14 (11.1%) 48 (18.5%)

Presence of obscure boundary 101 (26.2%) 53 (42.1%) 48 (18.5%) < 0.001

Presence of lobulation 359 (93.0%) 121 (96.0%) 238 (91.5%) 0.105

Presence of spiculation 188 (48.7%) 76 (60.3%) 112 (43.1%) 0.001

Presence of cavity 54 (14.0%) 18 (14.3%) 36 (13.8%) 0.907

Presence of vacuole 29 (7.5%) 19 (15.1%) 10 (3.8%) < 0.001

Presence of air bronchogram 200 (51.8%) 56 (44.4%) 144 (55.4%) 0.044

Presence of pleural attachment 118 (30.6%) 48 (38.1%) 70 (26.9%) 0.025
F
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Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; LI, labeling index; T, tumor; N, node; GGO, ground-glass opacity; CTR, consolidation-to-tumor ratio; STAS, spread through air space.
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highest AUC of 0.933 achieved so far in training cohort.

Nevertheless, their model exhibited a substantial performance

reduction in validation cohorts (AUC=0.783-0.806), which

approximated the performance of our developed ModelResNet-50 in

training and validation cohorts (AUC=0.799-0.800)This

unfavorable generalization may attribute to model overfitting by

reason of complicated architecture (21). Lin et al. enrolled 581
Frontiers in Oncology 1093
patients with tumor smaller than 3 cm and CTR less than 0.5 from

two institutions. They extracted the deep learning features from

solid components and the entire tumors respectively, thereby

developing deep learning models with and without solid

component gate (SCG). The results revealed deep learning model

with SCG achieved higher AUCs than deep learning model without

SCG (22). Thus, further investigation is required to develop deep
FIGURE 3

CT image and pathological image obtained from a 65-year-old man with spread though air spaces negative lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a sub-solid nodule in the right lower lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification × 200) shows clean alveolar spaces (yellow polygon) beyond the boundary (dashed line) of the tumor (black star).
FIGURE 4

CT image and pathological image obtained from a 59-year-old woman with spread though air spaces positive lung adenocarcinoma. (A) Th axial CT
image (width, 1600 HU; level, -600 HU) shows a solid nodule in the right upper lobe. (B) The photomicrograph of hematoxylin-eosin-stained
histological section (magnification × 200) shows several solid nests of tumor cell (yellow arrow) beyond the boundary (dashed line) of the tumor
(black star).
TABLE 4 The model performances in the training cohort and validation cohort.

Model AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Training cohort

CTR 0.709 (0.660,0.754) 0.706 (0.619, 0.784) 0.692 (0.632, 0.748) 0.527 (0.449, 0.604) 0.829 (0.773, 0.877)

Clinical-semantic model 0.764 (0.719,0.806) 0.778 (0.695, 0.847) 0.669 (0.608, 0.726) 0.533 (0.458, 0.606) 0.861 (0.806, 0.906)

Deep learning signature 0.869 (0.831,0.901) 0.706 (0.619, 0.784) 0.892 (0.848, 0.927) 0.761 (0.673, 0.835) 0.862 (0.815, 0.901)

Validation cohort

CTR 0.734 (0.648,0.808) 0.689 (0.534, 0.818) 0.744 (0.636, 0.834) 0.596 (0.450, 0.731) 0.813 (0.707, 0.894)

Clinical-semantic model 0.714 (0.627,0.790) 0.778 (0.629, 0.888) 0.671 (0.558, 0.771) 0.565 (0.431, 0.691) 0.846 (0.735, 0.924)

Deep learning signature 0.837 (0.761,0.896) 0.578 (0.422, 0.723) 0.951 (0.880, 0.987) 0.867 (0.693, 0.962) 0.804 (0.711, 0.878)
CTR, consolidation-to-tumor ratio; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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learning signature with SCG based on Swin Transformer, in

expectation to further improve the prediction efficacy. In this

study, Swin Transformer was adopted as the backbone

architecture in modeling, achieving a satisfactory and comparable

performance in training and validation cohorts with AUC ranging

from 0.837 to 0.869, which was superior to ModelResNet-50,

ModelEfficientNet and ModelConvNeXt. This finding lent support to

the potential of our proposed Swin Transformer in predicting STAS

in lung adenocarcinoma. The state-of-the-art Swin Transformer is

regarded as the new backbone of machine vision. With two key

strengths of non-overlapping shifted windows and hierarchical

structures, Swin Transformer can flexibly process images at

various scales and reduce computational complexity from the

exponential level to the linear level. Growing evidence validated

the efficient processing capabilities of Swin Transformer in

handling multitasking such as image classification and density

detection (23–25). Our previously published study has affirmed

the remarkable efficiency of Swin Transformer in predicting lymph
Frontiers in Oncology 1194
node metastasis in lung adenocarcinoma (26). Aside from that,

automatic tumor segmentation was conducted in this study using a

3D U-shape convolutional neural network. This deep learning

architecture serves as a highly effective tool for accurate, robust,

and efficient segmentation. It surpasses the time-consuming and

labor-intensive manual delineation or semi-automated

segmentation, as evidenced by the Dice similarity coefficients

across multiple institutions (27, 28).

Further exploring the relationship between STAS and

histopathological factors, micropapillary and solid predominant

adenocarcinoma were more commonly observed in STAS. Our

findings demonstrated a significant association between STAS and

visceral pleural invasion, lympho-vascular invasion and higher

pathological T stage, consistent with previous literature (29).

Additionally, lymph node invasion was more frequently found in

STAS-positive subgroup (34.9% vs 5.4%). In line with our results,

Vaghjiani et al. also reported that STAS was an independent

predictor of occult lymph node metastasis in clinical stage IA
FIGURE 5

The performance comparisons of deep learning signature, CTR and clinical-semantic model in predicting STAS. (A, B) The receiver operating
characteristic curves of CTR, clinical-semantic model and deep learning signature in training cohort (A) and validation cohort (B). Number in
parenthesis is the area under receiver operating characteristic curve. (C, D) The calibration curves depicted the good agreements between predicted
probabilities by deep learning signature and actual observed probabilities of STAS in training cohort (C) and validation cohort (D).
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lung adenocarcinoma (30). Although the underlying mechanism of

STAS remains unclear till now, it has been found that epithelial-

mesenchymal transition (EMT) prominently promotes the

occurrence of STAS (31). EMT is widely recognized as a

biological process wherein polarized epithelial cells transform into

loosely connected interstitial cells; this process is regarded as the key

driver of tumor genesis, invasion and metastasis. This may account

for the strong association between STAS and the aforementioned

invasive histopathological factors.

In clinical-semantic model, tumor boundary, vacuolation and

CTR were the independent CT semantic features in predicting

STAS. As a reflection of tumor aggressiveness, CTR weighted

heavily in regression analysis with a 1.25-fold increased risk of

STAS for every 10% increase. In accordance with our finding, Ding

et al. and Chen et al. confirmed that CTR was independently

associated with STAS (32, 33). Unexpectedly, the inclusion of all

clinical-semantic risk predictors failed to show an incremental value

with respect to deep learning signature. We found a strong

correlation between CTR and deep learning signature (r = 0.789,

P < 0.001), which might account for this result. These findings also

lead to speculation on whether deep learning signature contains

biological information regarding tumor boundary and vacuolation,

which should be explored by future in-depth research. We also

found CTR and clinical-semantic model showed equivalent NPV

and sensitivity to deep learning signature. Notably, in both training

and validation cohorts, the deep learning signature exhibited far

superior AUC, specificity, and PPV compared to CTR and the

clinical-semantic model, which lent support to its predominant

efficacy in predicting STAS.

There are some limitations to this study. First, data were

retrospectively collected from different CT equipment, so

heterogeneity in acquisition parameters and reconstruction protocols

might be inevitable. The class-imbalance in sample should be addressed

using resample techniques in the future. Second, it is necessary to

expand sample size and enroll multi-institutional data to further affirm

the repeatability and generalization of deep learning signature. Besides,

long-term follow up and survival data should be warranted to affirm

the prognostic value of STAS, as well as the relationship of deep

learning signature with prognosis. Further investigation is required to

enhance the biological interpretability of deep learning, which

inherently possesses a black box nature, thereby facilitating its

application in clinical practice. Common approaches involve

employing the Grad-CAM algorithm for generating visualizations of

deep learning and incorporating attentional mechanisms into deep

learning networks to achieve the significance weight of diagnosis and

decision-making based on attention regions. Additionally, exploring

the associations between deep learning and genomics or proteomics

can further improve the biological interpretability of deep learning.

Last, given that biological behavior varies in different histological

subtypes of lung cancer, future research needs to supplement the

predictive value of the deep learning signature for STAS in other

histological subtypes.

In conclusion, the proposed deep learning signature based on

Swin Transformer offers a promising predictive performance for

STAS in clinical stage I lung adenocarcinoma, surpassing the
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conventional clinical-semantic model. The end-to-end deep

learning approach harbors the potential as a well-established tool

for noninvasive estimation of STAS, directing surgical strategy and

facilitating adjuvant therapeutic scheduling.
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Objectives: Quantitatively assess the severity and predict the mortality of

interstitial lung disease (ILD) associated with Rheumatoid arthritis (RA) was a

challenge for clinicians. This study aimed to construct a radiomics nomogram

based on chest computed tomography (CT) imaging by using the ILD-GAP

(gender, age, and pulmonary physiology) index system for clinical management.

Methods:ChestCT imagesofpatientswithRA-ILDwereretrospectivelyanalyzedand

staged using the ILD-GAP index system. The balanced dataset was then divided into

training and testing cohorts at a 7:3 ratio. A clinical factor model was created using

demographic and serumanalysis data, anda radiomics signaturewasdeveloped from

radiomics features extracted from the CT images. Combined with the radiomics

signatureand independentclinical factors, anomogrammodelwasestablishedbased

on the Rad-score and clinical factors. The model capabilities were measured by

operating characteristic curves, calibration curves and decision curves analyses.

Results: A total of 177 patients were divided into two groups (Group I, n = 107;

Group II, n = 63). Krebs von den Lungen-6, and nineteen radiomics features were

used to build the nomogram, which showed favorable calibration and

discrimination in the training cohort [AUC, 0.948 (95% CI: 0.910–0.986)] and

the testing validation cohort [AUC, 0.923 (95% CI: 0.853–0.993)]. Decision curve

analysis demonstrated that the nomogram performed well in terms of

clinical usefulness.

Conclusion: The CT-based radiomics nomogram model achieved favorable

efficacy in predicting low-risk RA-ILD patients.
KEYWORDS

computed tomography, radiomics, KL-6, rheumatoid arthritis, interstitial lung disease
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1 Introduction

Rheumatoid arthritis (RA) is one of the most immune-mediated

diseases that affects 0.5–1% of the global population. It is primarily

characterized by joint swelling and tenderness, leading to the

destruction of synovial joints (1). Beyond the joints, RA is

associated with systemic inflammation that can result in multiple

coexisting conditions and extra-articular manifestations (2).

Pulmonary involvement is recognized as the most prevalent

extra-articular complication in RA, encompassing a broad range

of disorders such as airway diseases, pleural effusions, and

rheumatoid nodules (3–5) . Among these pulmonary

complications, interstitial lung disease (ILD) has the highest

prevalence (6). Importantly, RA-ILD is a significant cause of

mortality among RA patients and contributes to considerable

morbidity (7). Consequently, accurately assessing mortality risk

associated with RA-ILD is of great clinical significance.

The ILD-GAP (gender, age, and pulmonary physiology) index,

initially proposed by Ley et al. in 2012 (8), is a simple scoring system

designed to predict mortality risk in patients with idiopathic

pulmonary fibrosis. Utilizing variables such as gender, age,

predicted forced vital capacity (FVC), and diffusion capacity for

carbon monoxide (DLCO), which has been refined and validated for

various types of ILD (9). Its accuracy in predicting outcomes for

RA-ILD has been confirmed by multiple studies (10–12). However,

pulmonary function tests (PFTs) necessitate active participation

from patients, such as performing deep breaths or forceful

exhalations (13). This can be particularly challenging for special

populations, including those with cognitive impairments or

concurrent pulmonary conditions, potentially compromising the

precision of the test results. To our knowledge, there is an absence of

universal, quantitative, non-invasive techniques for the staging of

RA-ILD.

The current primary method for diagnosing RA-ILD remains

Computed Tomography (CT) scan, owing to its noninvasive and

sensitive nature in detecting lung involvement (14, 15). However,

there are many features to determine the presence of ILD and inter-

reader variability, especially in unexperienced readers, is an issue

(16). Visual analysis of ILDs on CT images faces difficulties in

providing prognosis information, as various stages of RA-ILD

exhibit overlapping imaging features, making the diagnosis and

assessment of severity challenging with conventional imaging

modalities (17, 18). Radiomics technology, capable of extracting

numerous high-dimensional features from CT images, emerges as a

solution to address the limitations of visual assessment. Although

radiomics has predominantly been explored in the context of

various tumors (19, 20), its potential has been demonstrated in

identifying the GAP staging of connective tissue disease-associated

interstitial lung disease (CTD-ILD) (21, 22). However, ILD

associated with different CTDs can be characterized by distinct

clinical manifestations, imaging, and pathological features,

indicating their unique developmental and regression patterns. In

the context of RA-ILD, evidence from a small cohort study

suggested that radiomics may hold the potential for predicting

mortality (23). However, limited studies are focusing on the

application of radiomics in the staging of RA-ILD. Therefore, it is
Frontiers in Immunology 0299
still necessary to explore the discriminative value of radiomics in

various stages of RA-ILD.

In this retrospective study, we aimed to establish a novel CT-

based radiomics nomogram to differentiate between the different

stages of RA-ILD.
2 Materials and methods

2.1 Patients

The study included patients clinically diagnosed with RA-ILD

between April 2020 and December 2023 at Guanghua Hospital

Affiliated with Shanghai University of Traditional Chinese

Medicine. Inclusion criteria comprised patients meeting all of the

following conditions: 1) diagnosed with RA according to the 2010

American College of Rheumatology criteria for RA (24); 2)

diagnosed with ILD according to the American Thoracic Society,

European Respiratory Society, Japanese Respiratory Society, and

Latin American Thoracic Society (ATS/ERS/JRS/ALAT) criteria for

ILD (25); 3) underwent a CT scan showing signs of ILD within 3

months after clinical diagnosis; and 4) underwent pulmonary

function tests and laboratory examination within 30 days before

or after the CT scan. Exclusion criteria were applied for patients

meeting any of the following conditions: 1) those with pulmonary

edema, infection, drug toxicity, allergy tumor, or heart disease; 2)

diagnosed with a combination of other types of CTD; 3) incomplete

demographic or clinical data. The flowchart of the study subjects is

shown in Figure 1.
2.2 Pulmonary function test

The routine PFTs were conducted using the Master Screen

Diffusion Pulmonary Function Instrument (Eric Jaeger, Germany).

The following indicators were assessed: the percentage predicted

values (% predicted) of forced expiratory volume in 1 s (FEV1),

FVC, total lung capacity (TLC), and DLCO. The ILD-GAP index

was calculated in accordance with the method proposed by Ryerson

et al. (9). Subsequently, patients were categorized into two groups:

Group I comprised patients with an ILD-GAP index ≤1, while

Group II included patients with an ILD-GAP index >1.
2.3 CT image acquisition and evaluation

All enrolled patients underwent nonenhanced chest CT

examinations using one of two multidetector CT systems:

SOMATOM Definition Flash (Siemens Healthcare, Tokyo, Japan)

or Access CT (Philips Healthcare, Andover, Massachusetts, USA).

The parameters used for CT scanning were as follows: tube voltage

of 120 kVp and tube current-time product of 60-220 mAs with

automatic dose modulation; detector collimation of 64 × 0.6 mm;

rotation time of 1.0 second; and matrix size of 512 × 512. All CT

scans were reconstructed with a 1-mm slice thickness and lung

convolution kernels. The semiquantitative CT (SQCT) assessment
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was carried out to calculate Goh score for each CT scan (26). RA-

ILD findings from HRCT were classified as UIP or non-UIP

patterns following recent IPF guidelines (25).
2.4 Three-dimensional lung segmentation

All image segmentation was executed using 3D Slicer software

(version 5.6.1, www.slicer.org). The preprocessing steps were

carried out as follows: 1) All CT images were reprocessed using

the “Resample Scalar Volume” module by resampling them into 1-

mm thick slices and normalizing the intensity values within the

range of [–1, 1]. 2) Using the “Radiomics” module, the voxel

intensity values were discretized with a fixed bin width of 25 HU

to reduce noise and standardize intensity across the images. 3) Z-

score normalization was performed on the image gray values to

reduce the impact of inconsistent imaging parameters on the

variability of radiomics features. 4) The region of interest (ROI)

of the bilateral lungs was automatically segmented, encompassing

blood vessels and the trachea in the lung lobes (window width =

1,250; window level = -875). A threshold-based region growing

method was utilized. The seeding strategy involved the placement of

a total of 13 seed points across different anatomical planes. On the

axial plane, three seed points were positioned in the peripheral

regions of the left and right lungs, respectively. A similar approach

was adopted on the coronal plane. Additionally, one seed point was

positioned at the location of the main bronchus. Subsequently, the

segmentation results underwent manual correction by a radiologist
Frontiers in Immunology 03100
with 5 years of experience in imaging diagnosis of chest diseases,

and confirmation was obtained from another radiologist with 8

years of experience in imaging diagnosis of chest diseases.

Interclass and intraclass correlation coefficients (ICCs) were

employed in the following manner: A total of 20 cases were

randomly selected for region of interest (ROI) segmentation by

Radiologist 1. Radiologist 2 then replicated the segmentation for

these 20 cases. Subsequently, Radiologist 1 repeated the

segmentation after a one-month interval. The segmentation was

deemed well-matched in terms of interobserver reliability and

intraobserver reproducibility when the ICC value surpassed 0.75.
2.5 Radiomics feature extraction and
model establishment

Figure 2 shows the workflow of radiomics analysis in this study.

The patient cohort was randomly split into training and test cohorts

at a ratio of 7:3. Feature extraction was performed utilizing the

open-source Pyradiomics software package (http://pypi.org/

project/pyradiomics/). This package facilitates the extraction of a

comprehensive suite of radiomics features, categorized into seven

distinct classes: Gray Level Dependence Matrix (GLDM), Gray

Level Co-occurrence Matrix (GLCM), Gray Level Run Length

Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),

Neighboring Gray Tone Difference Matrix (NGTDM), First Order

Statistics, and Shape-based features (3D). A detailed description of

the extracted features is accessible via the Pyradiomics
FIGURE 1

Flowchart of the patient cohort.
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documentation (http://pyradiomics.readthedocs.io). A total of

1,834 radiomics features were extracted from the ROIs. Statistical

analysis involved the Student’s t-test for normally distributed

features and the Mann-Whitney U test for others. Features with a

p-value ≤ 0.05 were retained, resulting in 1,171 features. Spearman’s

rank correlation coefficient was then applied to identify robustly

repeatable features, retaining one feature from pairs with a

correlation coefficient > 0.75. A recursive elimination strategy

further refined the features to a subset of 102. The dataset’s

signature was constructed using the least absolute shrinkage and

selection operator (LASSO) regression model. The optimal l value

was determined via tenfold cross-validation. Features with non-zero

coefficients formed the Radiomics Signature, combining linearly to

compute the radiomics score for each patient. Scikit-learn in Python

was employed for LASSO regression, and logistic regression was

used for model formulation after 10-fold cross-validation to verify

model adequacy.
2.6 Construction of the clinical model

The clinical factor model incorporated variables that were

significantly different (p < 0.05) as determined by univariate

logistic regression analysis. These variables included clinical data
Frontiers in Immunology 04101
and laboratory examinations from the training cohort. Odds ratios

(ORs) with 95% confidence intervals (CIs) were calculated for the

significantly correlated variables. To mitigate the risk of data

leakage within the models, gender, age, and PFT parameters

were excluded.
2.7 The building of the clinical-
radiomics nomogram

A multivariate logistic regression analysis, combining both the

clinical signature and radiomics signature, was employed in a

backward step-down selection procedure to develop the final

integrated radiomics-clinical prediction model.
2.8 Statistical analysis

Statistical analyses were performed using SPSS (version 26.0;

IBM Corp.). Statistical significance was defined as a two- sided p-

value ≤ 0.05. Normally distributed data were analyzed using

independent T-tests, and non-normally distributed data were

presented as medians (interquartile range) using Mann-Whitney

U tests. Categorical variables were analyzed using chi-square tests.
FIGURE 2

Overview workflow of radiomics analysis. Semi-automatic segmentation of the whole lung was performed on CT images, followed by manual
adjustment of the confirmed dissection range, with the region of interest delineated in blue. Imaging-derived histologic features, including shape
and texture characteristics, were extracted from CT images of both lungs. Feature selection was conducted using inter- and intra-observer reliability
assessment as well as the LASSO method. The performance and clinical utility of predictive model were evaluated using ROC, DCA, and nomogram
analysis. MSE Mean standard error, ROC Receiver operating characteristic, DCA Decision curve analysis.
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The predictive performance of the three models was evaluated using

receiver operating characteristic (ROC) curves, with the area under

the ROC curve (AUC) calculated. Model performance was tested in

both the training and test cohorts. The Delong test was applied to

compare AUCs among the three models. Calibration efficiency of

the nomogram was assessed through calibration curves, and the

Hosmer–Lemeshow analytical fit was used to evaluate calibration

ability. Decision curve analysis (DCA) was employed to evaluate the

clinical utility of the radiomics-clinical model.
3 Results

3.1 Patient characteristics

A total of 177 patients with RA-ILD were enrolled in this study.

Among these patients, 107, 63, and 7 were allocated to ILD-GAP

stage I, II, and III, respectively. To prevent excessive data bias, the

patients in ILD-GAP stage II and III were combined into a single

group. Table 1 listed the baseline patient characteristics in group I

and group II. Age, gender, FVC, FEV1, TLC, DLCO, and serum

Krebs von den Lungen-6 (KL-6) level showed significant differences

(p < 0.05) between the two groups, while the differences in smoking

history, ACPA, RF-IgM, RF-IgA, and RF-IgG were not significant

(p > 0.05). In addition, there was no significant statistical difference

between the two groups in terms of ESR, CRP, TNFa, IFNg, IFNa,
as well as disease activity score (p > 0.05).
3.2 Development of the clinical model

Univariate logistic regression was performed to analyze the

clinical data and laboratory examinations (Table 2). To ensure the

reliability of the model construction, factors such as gender, age,

and PFT parameters were excluded. Then, KL-6 (ORs = 1.007; 95%

CI, 1.004-1.010; p < 0.001) was selected as independent clinical

risk factors.
3.3 Development of the radiomics model

A total of 1,834 radiomics features were extracted from the CT

images, with 1,171 exhibiting promising interobserver and

intraobserver agreement (intraclass correlation coefficient > 0.75).

Through LASSO logistic regression analysis, 102 significantly

different (p < 0.05) radiomics features were selected to identify

optimally related features. Ultimately, 19 features were included in

the construction of the radiomics model. Figures 3A,B show the

coefficients and mean standard error (MSE) for the 10-fold

validation, while Figure 3C presents the coefficient values for the

final selection of non-zero features Rad score is shown as follows:

Rad-score= 0.4227 + 0.0088 × exponential_firstorder_Range

+0.0296 × exponential_glrlm_ShortRunLowGrayLevelEmphasis

-0.0157 × exponential_glszm_GrayLevelNonUniformity

Normalized +0.0516 × gradient_glcm_Correlation +0.0743 ×

lbp_3D_m1_glszm_ZoneEntropy +0.0146 × lbp_3D_m2_glszm_
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TABLE 1 Patient characteristics.

Variables Group I (n=107) Group II (n=70)
p

value

Female (%) 91(85.05%) 40(57.14%) <0.001

Age, years 58.8 ± 8.9 71.5 ± 5.5 <0.001

RA duration, years 10.00 [4.00-9.25] 11.00 [4.00-20.00] 0.084

Smoking (%) 7(6.54%) 5(7.14%) 0.876

Lung function

FVC% 86.5 ± 18.1 66.3 ± 17.4 <0.001

FEV1% 86.2 ± 18.0 67.2 ± 17.0 <0.001

TLC% 83.6 ± 15.7 56.8 ± 14.6 <0.001

DLCO% 61.5 ± 17.7 32.2 ± 13.4 <0.001

Laboratory Examinations

ACPA, RU/ml
653.90

[240.30-1249.50]
582.10

[138.75-1364.88]
0.782

RF-IgA, U/ml
32.77 [8.22-300.00]

28.18
[6.43-146.40]

0.496

RF-IgG, U/ml
30.01 [6.11-96.76]

40.50
[4.23-136.63]

0.957

RF-IgM, U/ml
127.00

[33.90-369.00]
135.00

[40.25-574.00]
0.590

TNFa, pg/ml 2.56 [1.68-2.67] 2.00 [1.36-2.56] 0.075

IFNg, pg/ml 2.46 [2.27-5.65] 2.46 [1.82-5.05] 0.745

IFNa, pg/ml 1.36 [0.95-2.09] 1.50 [0.96-1.88] 0.830

ESR, mm/h 37.50 [23.75-65.25]
40.00

[18.00-69.00]
0.682

CRP, mg/l 12.35 [2.06-32.95] 7.14 [0.80-22.98] 0.197

KL-6, U/ml
216.58

[137.09-297.30]
376.84

[261.07-539.88]
<0.001

Disease activity

DAS-28-ESR 3.51 ± 1.56 3.33 ± 1.37 0.489

DAS-28-CRP 4.25 ± 1.54 4.12 ± 1.46 0.611

CT images

ILD pattern (UIP/
non-UIP)

50 (46.7%) 64.3(64.3%) 0.022

Goh score, % 12 [8-15] 19 [13-27] <0.001

Treatment for RA

Methotrexate 75 (72.8%) 45 (66.2%) 0.353

Methylprednisolone 47 (46.5%) 37 (57.8%) 0.158

Hydroxychloroquine 18 (18.2%) 11 (16.4%) 0.769

Leflunomide 20 (19.8%) 18 (26.9%) 0.284

Biological agent 69 (67.0%) 30 (44.8%) 0.004
frontie
Categorical variables are presented as n (%). Continuous variables are listed as median (inter-
quartile range, IQR) or as mean ± standard deviation. n, number of patients; FVC, Forced vital
capacity; FEV1, Forced expiratory volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion
capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; RF, rheumatoid factor;
CRP, C-reactive protein; APLA, anti-phospholipid antibodies; KL-6, Krebs von den Lungen-6;
TNFa, tumor necrosis factor alpha; IFNg, interferon gamma; IFNa, interferon alpha; DAS,
disease activity score; UIP, usual interstitial pneumonia.
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SizeZoneNonUniformity +0.0477 × log_sigma_3_0_mm_3D_

glcm_Idn -0.0107 × original_glszm_LargeAreaHighGray

LevelEmphasis -0.0561 × original_glszm_SmallAreaHigh

GrayLevelEmphasis +0.0590 × original_glszm_SmallAreaLowGray

LevelEmphasis +0.0049 × original_ngtdm_Busyness -0.0623 ×

or ig ina l_shape_F la tnes s +0 .0020 × or ig ina l_ shape_

Maximum2DDiameterSl ice +0.0349 × original_shape_

MinorAxisLength -0.0730 × original_shape_Sphericity -0.0597 ×

squareroot_firstorder_Skewness -0.0879 × wavelet_HHL_

glcm_Idmn +0.0285 × wavelet_LHL_ngtdm_Busyness +0.0026 ×

wavelet_LLH_firstorder_Skewness.
3.4 Comparison of clinical, radiomics, and
nomogram models

As shown in Figure 4, for the AUC, the clinical features [0.736,

95%CI = 0.642–0.830) and the radiomics features (0.939, 95%CI =

0.892–0.985) were perfectly fitted for the training cohort. In the

testing cohort, the clinical characteristics (0.752, 95%CI = 0.610–

0.894) and the radiomics signature remained well-fitted (0.901, 95%

CI = 0.820–0.982). As shown in Figure 5, The nomogram using the
Frontiers in Immunology 06103
LR algorithm, combining clinical features and radiomics features,

showed the best performance in the training (0.948, 95%CI = 0.910–

0.987) and testing cohort (0.923, 95%CI = 0.853–0.993),

respectively. The detailed diagnostic efficiency capability for each

model is presented in Supplementary Table S1.

To compare the clinical signature, radiomics signature, and

nomogram, the Delong test was utilized (Supplementary Table 2).

In the testing cohort, the results indicated that the AUC comparison

between the nomogram and the clinical signature achieved 0.021,

suggesting that the nomogram outperformed the clinical model in

discriminating the GAP staging of RA-ILD. The AUC comparison

between the nomogram and radiomics signature was 0.219,

indicating that both models performed well in differentiating the

GAP staging of RA-ILD.
3.5 Comparison of visual assessment,
radiomics, and nomogram models

In the testing cohort, the Goh score achieved an AUC of 0.820

(95%CI=0.700-0.941; Supplementary Figure 1). Comparatively,

both the radiomics model (0.901, 95% CI: 0.820-0.982) and the

combined radiomics-KL-6 nomogrammodel (0.923, 95% CI: 0.853-

0.993) showed superior AUC values relative to the Goh score.
3.6 Calibration curve and DCA of
the models

The calibration curves for the training and testing cohorts were

shown in Figure 6. The p-values from the Hosmer-Lemeshow test

for clinical features, radiologic features, and nomograms were 0.557,

0.171, 0.305, and 0.193, 0.072, 0.160 in the training and test cohorts,

respectively. These p-values suggest a perfect agreement for each

model (Supplementary Table 3).

As shown in Figure 7, the DCA for clinical features,

radiographic features, and nomograms, covering predictive

probabilities from 0.12 to 0.41, 0.02 to 0.91, and 0.1 to 0.78. The

nomogram achieves the largest net benefit compared to other

models when the threshold probability ranges from 0.23 to 0.58.
4 Discussion

In our study, the radiomics model based on chest CT has great

performance to distinguish different ILD-GAP stage patients with

an AUC of 0.901 in validation cohort. The nomogram model,

combining the radiomics model and serum KL-6, further enhanced

the prediction efficiency of GAP staging with an AUC of 0.948 and

0.923 in the training and validation cohort, respectively.

Among the serological markers, anti-citrullinated protein antibodies

(ACPA) have been implicated in the extra-articular manifestations of

RA, including ILD (27–29). Correia et al. reported a correlation between

ACPA titers and the risk of developing ILD (30). On the contrary, many

studies have shown no association between ACPA and ILD, as well as

related RF factors. Similarly, our study revealed no significant differences
TABLE 2 Independent risk factors in training cohort.

Variables
Odds ratio
(95% CI)

p value

Age 1.27(1.17-1.38) <0.001

Gender 0.30(0.13-0.69) 0.005

RA duration 1.03(1.00-1.07) 0.068

FVC% 0.91(0.88-0.94) <0.001

FEV1% 0.94(0.92-0.97) <0.001

TLC% 0.89(0.85-0.92) <0.001

DLCO% 0.88(0.84-0.92) <0.001

ACPA 1.000(0.996-1.004) 0.936

RFIgM 1.000(0.998-1.001) 0.678

RFIgG 1.000(0.996-1.004) 0.936

RFIgA 0.998(0.995-1.002) 0.347

KL-6 1.007(1.004-1.010) <0.001

TNFa 1.02(0.97-1.07) 0.457

IFNa 1.04(0.94-1.15) 0.419

IFNg 0.99(0.91-1.07) 0.771

CRP 0.99(0.97-1.00) 0.183

ESR 0.99(0.97-1.00) 0.168

DAS-28-CRP 0.84(0.64-1.11) 0.219

DAS-28-ESR 0.85(0.65-1.11) 0.227
CI, confidence-interval; ORs, Odds ratio; FVC, Forced vital capacity; FEV1, Forced expiratory
volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion capacity for carbon monoxide; ESR,
erythrocyte sedimentation rate; RF, rheumatoid factor; CRP, C-reactive protein; APLA, anti-
phospholipid antibodies; KL-6, Krebs von den Lungen-6, TNFa, tumor necrosis factor alpha;
IFNg, interferon gamma; IFNa, interferon alpha; DAS, disease activity score.
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A B

FIGURE 4

Comparison of receiver operating characteristic (ROC) curves for the clinical, radiomics, and nomogram models in the training (A) and testing (B)
cohorts. The combined nomogram performed optimally in both the training and testing cohorts.
A B

C

FIGURE 3

Radiomics feature selection based on LASSO algorithm and Rad score establishment. (A) LASSO coefficient profile plot with different log (l)was
shown. (B) Ten-fold cross-validated coefficients and 10-fold cross-validated MSE. (C) The histogram of the Rad score based on the
selected features.
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FIGURE 5

A constructed nomogram for predicting the GAP staging of RA-ILD.
FIGURE 7

Decision curve analysis (DCA) of the clinical, radiomics, and nomogram models in the testing cohort.
A B

FIGURE 6

Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).
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between ACPA and RF factors in different stages of RA-ILD. However,

these different results may be attributed to the heterogeneity of ACPA

specificity and search methods (5, 31). It is worth noting that treatment

strategies may play a crucial role in the development and progression of

RA-ILD. A higher proportion of biological agent use was revealed in the

low-risk group by our analysis. This suggests that patients using

biological agents may represent a cohort receiving early and aggressive

treatment. The use of biological agents may interrupt the inflammatory

cascade leading to ILD, thereby reducing the risk of developing severe

ILD in later stages (32, 33).

In addition, older age and male sex have been strongly

associated with RA-ILD (34). We excluded gender, age, and PFTs

parameters from the clinical model to prevent data leakage, despite

their status as independent risk factors. Eventually, univariate

logistic regression analysis revealed that KL-6 was an independent

predictor in our present study. KL-6 is a mucin-like glycoprotein

which stimulates fibrosis and inhibits apoptosis of pulmonary

fibroblasts (35, 36). Elevated serum KL-6 levels have been

observed in RA patients with lung involvement, suggesting its

potential utility in early detection of ILD. In a cohort of 50 RA

patients, KL-6 levels positively correlated with the high-resolution

computed tomography fibrosis score, indicating that high KL-6

levels are a significant biomarker for ILD and may serve as a

predictor for ILD severity in RA patients (37). Moreover, a study

suggests that high KL-6 levels might be an independent risk factor

and useful for the prognosis in patients with RA-ILD (38). So far,

the utility of serum KL-6 has been evaluated in several forms of ILD

and its sensitivity and specificity for RA-ILD ranged from 67%-85%

and 60%-90%, respectively, depending on the cutoff value (36, 37,

39). In our study, a clinical factor model to classify RA-ILD stages

was developed based on KL-6, and then achieved an AUC of 0.752

in the testing cohorts.

Radiomics is an objective technique offering a reliable and

comprehensive quantitative assessment of images, unaffected by

inter-reader variability (40). Feature extraction involves

mathematical operations on digital images to generate numerical

descriptors of texture, shape, and other distinct characteristics.

These descriptors can be computationally analyzed to explore

potential associations with clinical parameters (41). Particularly

useful for diseases challenging to describe through simple visual

features, high-dimensional abstract features extracted from wavelet-

transformed images can provide diverse perspectives in capturing

hidden information not easily observed visually. Radiomics features

have indeed proven their potential for severity estimation in

Systemic sclerosis-ILD and guiding treatment decisions (42). At

present, the literature on the application of radiomics is limited.

Venerito et al. (23) retrieved the HRCTs of 30 RA-ILD patients and

suggested that radiomics analysis could predict patient mortality.

This finding suggests that HRCT could serve as a digital biomarker

for RA-ILD, offering prognostic value that is independent of the

clinical characteristics of the disease. Recently, some scholars have

developed radiomics models based on CT images to differentiate

GAP staging in CTD patients. Qin et al. (21) manually segmented

the right lung of CTD-ILD patients and constructed a radiomics
Frontiers in Immunology 09106
model from the 9 extracted texture features. The AUC of their

radiomics models in the validation cohort was 0.787 and 0.718 in

the internal and external test cohort, respectively. A similar study

utilized a semi-automatic segmentation method to segment bilateral

lungs, obtaining a total of 4 features (22). Their developed radiomics

model demonstrated an AUC of 0.801 in the test cohort. Instead of

focusing on all types of CTDs, we concentrated on patients with RA.

In our work, totally1,834 radiomics features obtained from the CT

images, 19 higher-order texture features extracted from wavelet

transformed images were acquired as remarkable elements to build

the radiomics model, resulting in an AUC of 0.939, and 0.901 in the

training and testing cohorts, respectively. It is speculated that by

targeted with ILD specifically caused by RA, to some extent

excluded the imbalance of training data arising from the

heterogeneous imaging characteristics of various CTD-ILD

subtypes (43), which eventually screened out more features. In

the current study, we constructed a nomogram model that

integrates the radscore with serum KL-6 levels to further enhance

the accuracy of predicting low-risk RA-ILD. In contrast to the GAP

index, the nomogram model can predict GAP staging in patients

with RA-ILD even when precise lung function parameters are

challenging to obtain. This radiomics-based approach may serve

as a supportive tool for assessing the severity of RA-ILD. Moreover,

the proposed model can be readily implemented in clinical practice,

as it leverages routinely acquired chest CT imaging and serum

biomarker data to automate the computational process, thereby

minimizing the operational burden on clinicians.

There are certain limitations in our study. Firstly, the single-

center design with a relatively small overall sample size, especially

the limited representation of more severe ILD-GAP stage III

patients, may restrict the model ability. Future studies based on

larger datasets from other centers are needed to evaluate model

generalizability. Secondly, the exact mortality of the retrospective

study verified by the GAP index system may less precise than actual

mortality of patient. Nevertheless, as an available method to predict

mortality, the GAP index system has been validated in RA-ILD. The

precise assessment of mortality risk will be conducted in our further

research. In addition, our study serves as a foundational

exploration, offering valuable insights for selecting valuable

imaging biomarkers in RA-ILD.

In conclusion, a novel nomogram model combining CT-based

radiomics and serum KL-6 was developed in our study. It shows

good prediction accuracy in predicting low-risk RA-ILD patients,

which implies that this noninvasive and quantitative method may

impact the clinical decision-making process, offering a more precise

management strategy for patients with RA-ILD.
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Introduction: Self-supervised learning (SSL) is a strategy for addressing the

paucity of labelled data in medical imaging by learning representations from

unlabelled images. Contrastive and non-contrastive SSL methods produce

learned representations that are similar for pairs of related images. Such pairs

are commonly constructed by randomly distorting the same image twice. The

videographic nature of ultrasound o�ers flexibility for defining the similarity

relationship between pairs of images.

Methods: We investigated the e�ect of utilizing proximal, distinct images from

the same B-mode ultrasound video as pairs for SSL. Additionally, we introduced

a sample weighting scheme that increases the weight of closer image pairs and

demonstrated how it can be integrated into SSL objectives.

Results: Named Intra-Video Positive Pairs (IVPP), themethod surpassed previous

ultrasound-specific contrastive learning methods’ average test accuracy on

COVID-19 classification with the POCUS dataset by ≥ 1.3%. Detailed

investigations of IVPP’s hyperparameters revealed that some combinations

of IVPP hyperparameters can lead to improved or worsened performance,

depending on the downstream task.

Discussion: Guidelines for practitioners were synthesized based on the

results, such as the merit of IVPP with task-specific hyperparameters, and the

improved performance of contrastive methods for ultrasound compared to

non-contrastive counterparts.

KEYWORDS

self-supervised learning, ultrasound, contrastive learning, non-contrastive learning,

representation learning

1 Introduction

Medical ultrasound (US) is a modality of imaging that uses the amplitude of

ultrasonic reflections from tissues to compose a pixel map. With the advent of point-

of-care ultrasound devices, ultrasound has been increasingly applied in a variety of

diagnostic clinical settings, such as emergency care, intensive care, oncology, and sports

medicine (Yim and Corrado, 2012; Whitson and Mayo, 2016; Sood et al., 2019; Soni

et al., 2020; Lau and See, 2022). It possesses several qualities that distinguish it from

other radiological modalities, including its portability, lack of ionizing radiation, and

affordability. Despite morphological distortion of the anatomy, ultrasound has been shown

to be comparable to radiological alternatives, such as chest X-ray and CT, for several

diagnostic tasks (van Randen et al., 2011; Alrajhi et al., 2012; Nazerian et al., 2015).

Frontiers in Imaging 01 frontiersin.org109

https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://www.frontiersin.org/journals/imaging#editorial-board
https://doi.org/10.3389/fimag.2024.1416114
http://crossmark.crossref.org/dialog/?doi=10.3389/fimag.2024.1416114&domain=pdf&date_stamp=2024-06-20
mailto:bvanberl@uwaterloo.ca
https://doi.org/10.3389/fimag.2024.1416114
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fimag.2024.1416114/full
https://www.frontiersin.org/journals/imaging
https://www.frontiersin.org


VanBerlo et al. 10.3389/fimag.2024.1416114

Deep learning has been extensively studied as a means to

automate diagnostic tasks in ultrasound. As with most medical

imaging tasks, the lack of open access to large datasets is a

barrier to the development of such systems, since large training

sets are required for deep computer vision models. Organizations

that have privileged access to large datasets are also faced

with the problem of labeling ultrasound data. Indeed, many

point-of-care ultrasound examinations in acute care settings are

not archived or documented (Hall et al., 2016; Kessler et al.,

2016).

When unlabeled examinations are abundant, researchers turn

to unsupervised representation learning to produce pretrained

deep learning models that can be fine-tuned using labeled data.

Self-supervised learning (SSL) is a broad category of methods that

has been explored for problems in diagnostic ultrasound imaging.

Broadly, SSL refers to the supervised pretraining of a machine

learning model for a task that does not require labels for the task

of interest. The pretraining task (i.e., pretext task) is a supervised

learning task where the target is a quantity that is computed from

unlabeled data. After optimizing the model’s performance on the

pretext task, the weights are recast as initial weights for a new

model that is trained to solve the task of interest (referred to as the

downstream task). If the pretrained model has learned to produce

representations of salient information in ultrasound images, then

it is likely that it can be fine-tuned to perform the downstream task

more proficiently than had it been randomly initialized. Contrastive

learning is a type of pretext task in SSL that involves predicting

whether two inputs are related (i.e., positive pairs) or unrelated

(i.e., negative pairs). In computer vision, a common way to define

positive pairs is to apply two randomly defined transformations to

an image, producing two distorted views of the image with similar

content. Positive pairs satisfy a pairwise relationship that indicate

semantic similarity. All other pairs of images are regarded as

negative pairs. Non-contrastive methods disregard negative pairs,

focusing only on reducing the differences between representations

of positive pairs.

Unlike other forms of medical imaging, US is a dynamic

modality acquired as a stream of frames, resulting in a video.

Despite this, there are several US interpretation tasks that can be

performed by assessing a still US image. Previous studies exploring

SSL in US have exploited the temporal nature of US by defining

contrastive learning tasks with intra-video positive pairs – positive

pairs comprised of images derived from the same video (Chen et al.,

2021; Basu et al., 2022). Recent theoretical results indicate that the

pairwise relationship must align with the labels of the downstream

task in order to guarantee that self-supervised pretraining leads

to non-inferior performance on the downstream task (Balestriero

and LeCun, 2022). For classification tasks, this means that positive

pairs must have the same class label. Due to the dynamic nature

of US, one cannot assume that all frames in a US video possess

the same label for all downstream US interpretation tasks. As a

result, it may be problematic to indiscriminately designate any pair

of images originating from the same US video as a positive pair.

Moreover, since US videos are often taken sequentially as a part

of the same examination or from follow-up studies of the same

patient, different US videos may bear a striking resemblance to each

other. It follows that designating images from different US videos

as negative pairs may result in negative pairs that closely resemble

positive pairs.

In this study, we aimed to examine the effect of proximity

and sample weighting of intra-video positive pairs for common

SSL methods. We also intended to determine if non-contrastive

methods are more suitable for classification tasks in ultrasound.

Since non-contrastive methods do not require the specification

of negative pairs, we conjectured that non-contrastive methods

would alleviate the issue of cross-video similarity and yield stronger

representations for downstream tasks. Our contributions and

results are summarized as follows:

• A method for sampling intra-video positive pairs for joint

embedding SSL with ultrasound.

• A sample weighting scheme for joint embedding SSL methods

that weighs positive pairs according to the temporal or spatial

distance between them in their video of origin.

• A comprehensive assessment of intra-video positive pairs

integrated with SSL pretraining methods, as measured by

downstream performance in B-mode and M-mode lung US

classification tasks. We found that, with proper downstream

task-specific hyperparameters, intra-video positive pairs can

improve performance compared to the standard practice of

producing two distortions of the same image.

• An comparison of contrastive and non-contrastive learning

for multiple lung US classification tasks. Contrary to our

initial belief, a contrastive method outperformed multiple

non-contrastive methods on multiple lung US downstream

tasks.

Figure 1 encapsulates the novel methods proposed in this

study. To the authors’ knowledge, there are no preceding studies

that systematically investigate the effect of sampling multiple

images from the same US video in non-contrastive learning. More

generally, we believe that this study is the first to integrate sample

weights into non-contrastive objectives.

2 Background

2.1 Joint embedding self-supervised
learning

Having gained popularity in recent years in multiple imaging

modalities, joint embedding SSL refers to a family of methods

where the pretext task is to produce output vectors (i.e.,

embeddings) that are close for examples satisfying a similarity

pairwise relationship. Pairs of images satisfying this relationship

are known as positive pairs, and they assumed to share semantic

content with respect to the downstream task. For example, positive

pairs could belong to the same class in a downstream supervised

learning classification task. On the other hand, negative pairs are

pairs of images that do not satisfy the pairwise relationship. In the

label-free context of SSL, positive pairs are often constructed by

sampling distorted versions of a single image (Chen et al., 2020;

Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2022). The

distortions are sampled from a distribution of sequentially applied
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A

B

FIGURE 1

An overview of the methods introduced in this study. Positive pairs of images separated by no more than a threshold are sampled from the same

B-mode video (1). Sample weights inversely proportional to the separation between each image (red bars) are calculated for each pair (2). Random

transformations are applied to each image (3). Images are sent to a neural network consisting of a feature extractor (4) and a projector (5) connected

in series. The outputs are used to calculate the objective LSSL (6). The trained feature extractor is retained for downstream supervised learning tasks.

(A) For B-mode ultrasound, positive pairs are temporally separated images from the same video. (B) For M-mode ultrasound, positive pairs are

spatially separated images from the same video.

transformations that are designed to preserve the semantic content

of the image. Horizontal reflection is a common example of a

transformation that meets this criterion in many forms of imaging.

The architecture of joint embeddingmodels commonly consists

of two modules connected in series: a feature extractor and

a projector. The feature extractor is typically a convolutional

neural network (CNN) or a variant of a vision transformer, while

the projector is a multi-layer perceptron. After pretraining, the

projector is discarded and the feature extractor is retained for

weight initialization for the downstream task.

Contrastive learning and non-contrastive learning are twomajor

categories of joint embedding methods. Contrastive methods rely

on objectives that explicitly attract positive pairs and repel negative

pairs in embedding space. Many of these methods adopt the

InfoNCE objective (Oh Song et al., 2016), which may be viewed

as cross-entropy for predicting which combination of embeddings

in a batch correspond to a positive pair. In most contrastive

methods, positive pairs and negative pairs are distorted versions

of the same image and different images, respectively. MoCo is a

contrastive method that computes pairs of embeddings using two
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feature extractors: a “query” encoder and a “key” encoder (He

et al., 2020). The key encoder, which is an exponentially moving

average of the query encoder, operates on negative examples

Its output embeddings are queued to avoid recomputation of

negative embeddings. SimCLR (Chen et al., 2020) is a widely used

contrastive method that employs a variant of the InfoNCE objective

that does not include the embedding of the positive pair in the

demoninator (Oh Song et al., 2016). It does not queue negative

embeddings, relying instead on large batches of negative examples.

Non-contrastive methods dispense with negative pairs

altogether, limiting their focus to reducing the difference between

embeddings of positive pairs. By design, they address the

information collapse problem – a degenerate solution wherein

all examples map to a null representation vector. Self-distillation

non-contrastive methods use architectural and asymmetrical

training strategies to avoid collapse [e.g., BYOL (Grill et al., 2020)].

Information maximization non-contrastive methods address

collapse by employing objectives that maximize the information

content of the embedding dimensions. For instance, the Barlow

Twins method is a composite objective that contains a term for

penalizing dimensional redundancy for batches of embeddings,

in addition to a term for the distances between embeddings of

individual positive pairs (Zbontar et al., 2021). VICReg introduced

an additional term that explicitly maximizes variance across

dimensions for batches of embeddings (Bardes et al., 2022).

Despite a common belief that contrastive methods need much

larger batch sizes than non-contrastive methods, recent evidence

showed that hyperparameter tuning can boost the former’s

performance with smaller batch sizes (Bordes et al., 2023). Non-

contrastive methods have been criticized for requiring embeddings

with greater dimensionality than the representations outputted by

the feature extractor; however, a recent study suggested that the

difference may be alleviated through hyperparameter and design

choices (Garrido et al., 2022).

Theoretical works have attempted to unify contrastive and

non-contrastive methods. Balestriero and LeCun (2022) found

that SimCLR, VICReg, and Barlow Twins are all manifestations

of spectral embedding methods. Based on their results, they

recommended that practitioners define a pairwise relationship

that aligns with the downstream task. For example, if the

downstream task is classification, then positive pairs should have

the same class. Garrido et al. (2022) challenged the widely held

assumptions that non-contrastive methods perform better than

contrastive methods and that non-contrastive methods rely on

large embedding dimensions. They showed that the methods

perform comparatively on benchmark tasks after hyperparameter

tuning and that VICReg can be modified to reduce the dependence

on large embeddings (Garrido et al., 2022).

2.2 Joint embedding methods for B-mode
lung ultrasound

Ultrasound is a dynamic imaging modality that is typically

captured as a sequence of images and stored as a video. As such,

images originating from the same video are highly correlated and

are likely to share semantic content. Accordingly, recent works have

developed US-specific contrastive learning methods that construct

positive pairs from the same video. The Ultrasound Contrastive

Learning (USCL) method (Chen et al., 2021) is a derivative of

SimCLR in which positive pairs are weighted sums of random

images within the same video [i.e., the mixup operation (Zhang

et al., 2017)], while negative pairs are images from different

videos. They reported an improvement on the downstream task

of COVID-19 classification with the POCUS dataset (Born et al.,

2020). Improving on USCL, Meta-USCL concurrently trains a

separate network that learns to weigh positive pairs (Chen et al.,

2022). The work was inspired by the observation that the intra-

video positive pairs may exhibit a wide range of semantic similarity

or dissimilarity. Basu et al. (2022) proposed a MoCo-inspired

solution where positive pairs are images that are temporally close

within a video, while negative pairs consist of either pairs from

different videos or pairs from the same video that are separated

temporally by a no less than a gradually decreasing threshold.

Lastly, the HiCo method’s objective is the sum of a softened

InfoNCE loss calculated for the feature maps outputted by various

model blocks (Zhang et al., 2022). The authors reported greatly

improved performance with respect to USCL.

Standard non-contrastive methods have been applied for

various tasks in US imaging. In addition to assessing contrastive

methods, Anand et al. (2022) conducted pretraining with two self-

distillation non-contrastive methods [BYOL (Grill et al., 2020) and

DINO (Caron et al., 2021)] on a large dataset of echocardiograms.

BYOL pretraining has also been applied in anatomical tracking

tasks (Liang et al., 2023). Information maximization methods

have been investigated for artifact detection tasks in M-mode

and B-mode lung ultrasound (VanBerlo et al., 2023a,b). To our

best knowledge, no studies have trialed non-contrastive learning

methods for B-mode ultrasound with intra-video positive pairs.

The present study seeks to address this gap in the literature by

investigating the effect of sampling positive pairs from the same

video on the efficacy of non-contrastive pretraining for tasks in

ultrasound.

3 Methods

3.1 Joint embedding methods for
ultrasound with intra-video positive pairs

3.1.1 Setup
We consider the standard joint embedding scenario where

unlabeled data are provided and the goal is to maximize the

similarity between embeddings of positive pairs. In contrastive

learning, the goal is augmented by maximizing the dissimilarity of

negative pairs. Let x1 and x2 denote a positive pair of US images.

Self-supervised pretraining results in a feature extractor f (x) that

outputs representation vector h. The goal of SSL is to produce

a feature extractor that is a better starting point for learning the

downstream task than random initialization.

In this study, we propose a simple method for sampling

and weighing positive pairs in the joint embedding setting that

can be adopted for any joint embedding SSL method. We adopt

SimCLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021)

and VICReg (Bardes et al., 2022) for our experiments. In these

methods, a MLP projector is appended to the feature extractor

during pretraining. z = g(h) = g(f (x)) is the embedding vector
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outputted by the projector. The SSL objective is then computed in

embedding space.

3.1.2 Intra-video positive pairs: (IVPP)
Recall that positive pairs are images that are semantically

related. Previous work in contrastive SSL for US has explored

the use of intra-video positive pairs (Chen et al., 2021, 2022;

Basu et al., 2022; Zhang et al., 2022). A problem with naively

sampling intra-video positive pairs is that it rests on the assumption

that all images in the video are sufficiently similar. However,

clinically relevant signs commonly surface and disappear within

the same US video as the US probe and/or the patient move. For

example, B-lines are an artifact in lung US that signify diseased

lung parenchyma (Soni et al., 2020). B-lines may disappear and

reappear as the patient breathes or as the sonographer moves

the probe. The A-line artifact appears in the absence of B-lines,

indicating normal lung parenchyma. In the absence of patient

context, an image containing A-lines and an image containing

B-lines from the same video convey very different impressions.

While most previous methods only considered inter-video images

to be negative pairs, Basu et al. (2022) argued that that temporally

distant intra-video pairs of US images are more likely to be

dissimilar, which inspired their method that treats such instances

as negative pairs. Despite this, we argue that distant intra-video

images may sometimes exhibit similar content. For example, the

patient and probe may remain stationary throughout the video, or

the probe may return to its original position and/or orientation.

Moreover, periodic physiological processes such as the respiratory

cycle may result in temporally distant yet semantically similar

images. Without further knowledge of the US examinations in

a dataset, we conjectured that it may be safest to only assume

that positive pairs are intra-video images that are close to each

other. Closer pairs are likely to contain similar semantic content,

yet they harbor different noise samples that models should be

invariant to. In summary, this method distinguishes itself from

prior work by only considering proximal frames to be positive

pairs and treating distant pairs as neither positive nor negative

pairs.

For B-mode US videos, we define positive pairs as intra-video

images x1 and x2 that are temporally separated by no more than

δmax seconds. To accomplish this, x1 is randomly drawn from the

video’s images, and x2 is randomly drawn from the set of images

that are within δt seconds of x1. The frame rate of the videos must

be known in order to determine which images are sufficiently close

to x1. Note that videos with higher frame rates will provide more

candidates for positive pairs, potentially increasing the diversity of

pairs with respect to naturally occurring noise.

A similar sampling scheme is applied for M-mode US images.

Like previous studies, we define M-mode images as vertical slices

through time of a B-mode video, taken at a specific x-coordinate

in the video (Jasčǔr et al., 2021; VanBerlo et al., 2022b, 2023b). The

x-axis of an M-mode image is time, and its y-axis is the vertical

dimension of the B-mode video. We define positive pairs to be M-

mode images whose x-coordinates differ by no more than δx pixels.

To avoid resolution differences, all B-mode videos are resized to

the same width and height prior to sampling M-mode images. The

positive pair sampling process for B-mode and M-mode images is

depicted in Figure 2.

As is customary in joint embedding methods, stochastic

data augmentation is applied to each image, encouraging the

feature extractor to become invariant to semantically insignificant

differences. Any data augmentation pipeline may be adopted

for this formulation of intra-video positive pairs; however,

we recommend careful selection of transformations and the

distributions of their parameters to ensure that the pairwise

relationship continues to be consistent with the downstream US

task.

3.1.3 Sample weights
The chance that intra-video images are semantically related

decreases as temporal or spatial separation increases. To temper

the effect of unrelated positive pairs, we apply sample weights to

positive pairs in the SSL objective according to their temporal or

spatial distance. Distant pairs are weighed less than closer pairs. For

a positive pair of B-mode images occurring at times t1 and t2 or M-

mode images occurring at positions x1 and x2, the sample weight is

calculated using Equation 1:

w =
δt − |t2 − t1| + 1

δt + 1
w =

δx − |x2 − x1| + 1

δx + 1
(1)

Sample weights were incorporated into each SSL objective

trialed in this study. Accordingly, we modified the objective

functions for SimCLR, Barlow Twins, and VICReg in order to

weigh the contribution to the loss differently based on sample

weights. Appendix 1 describes the revised objective functions. To

the authors’ knowledge, this study is the first to propose sample

weighting schemes for the aforementioned self-supervised learning

methods.

3.2 Ultrasound classification tasks

3.2.1 COVID-19 classification (COVID)
As was done in previous studies on on US-specific joint

embedding methods (Chen et al., 2021, 2022; Basu et al., 2022;

Zhang et al., 2022), we evaluate IVPP on the public POCUS

lung US dataset (Born et al., 2020). This dataset contains 140

publicly sourced US videos (2116 images) labeled for three classes:

COVID-19 pneumonia, non-COVID-19 pneumonia, and normal

lung.1 When evaluating on POCUS, we pretrain on the public

Butterfly dataset, which contains 22 unlabeled lung ultrasound

videos (Butterfly Network, 2020).2

3.2.2 A-line vs. B-line classification (AB)
A-lines and B-lines are two cardinal artifact in B-mode lung

US that can provide quick information on the status of a patient’s

1 See dataset details at the public POCUS repository (Born et al., 2020):

https://github.com/jannisborn/covid19_ultrasound.

2 Accessed via a URL available at the public USCL repository (Chen et al.,

2021): https://github.com/983632847/USCL.
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FIGURE 2

Illustration of intra-video positive pairs. Positive pairs are considered images that are no more than a threshold apart from each other within the same

ultrasound video. (A) For B-mode ultrasound, positive pairs are frames in the same video that are within δt seconds of each other. (B) For M-mode

ultrasound, positive pairs are M-mode images originating from the same B-video that are located within δx pixels from each other. In the context of

lung ultrasound, M-mode images should intersect the pleural line (outlined in mauve).

lung tissue. A-lines are reverberation artifacts that are indicative of

normal, clear lung parenchyma (Soni et al., 2020). On lung US, they

as horizontal lines deep to the pleural line. Conversely, B-lines are

indicative of diseased lung tissue (Soni et al., 2020). Generally, the

two are mutually exclusive. We evaluate on the binary classification

task of A-lines versus B-lines on lung US, as was done in previous

work benchmarking joint embedding SSL methods for lung US

tasks (VanBerlo et al., 2023a).

We use a private dataset of 25917 parenchymal lung US videos

(5.9e6 images), hereafter referred to as ParenchymalLUS. It is a

subset of a larger database of de-identified lung US videos that

was partially labeled for previous work (Arntfield et al., 2021;

VanBerlo et al., 2022b). Access to this database was permitted

via ethical approval by Western University (REB 116838). Before

experimentation, we split the labeled portion of ParenchymalLUS

by anonymous patient identifier into training, validation, and test

sets. The unlabeled portion of ParenchymalLUS was assembled by

gathering 20000 videos from the unlabeled pool of videos in the

database that were predicted to contain a parenchymal view of the

lungs by a previously trained lung US view classifier (VanBerlo

et al., 2022a). All videos from the same patient were in either

the labeled or the unlabeled subset. Table 1 provides further

information on the membership of ParenchymalLUS.

3.2.3 Lung sliding classification (LS)
Lung sliding is a dynamic artifact that, when observed on

a parenchymal lung US view, rules out the possibility of a

pneumothorax at the site of the probe (Lichtenstein and Menu,

1995). The absence of lung sliding is suggestive of pneumothorax,

warranting further investigation. On B-mode US, lung sliding

manifests as a shimmering of the pleural line (Lichtenstein and

Menu, 1995). The presence or absence of lung sliding is also

appreciable on M-mode lung US images that intersect the pleural

line (Lichtenstein et al., 2005; Lichtenstein, 2010). We evaluate on

the binary lung sliding classification task, where positive pairs are

M-mode images originating from the same B-mode video.

ParenchymalLUS is adopted for the lung sliding classification

task. We use the same train/validation/test partition as described

above. Following prior studies, we estimate the horizontal bounds

of the pleural line using a previously trained object detection

model (VanBerlo et al., 2022b) and use the top half of qualifying M-

mode images, in decreasing order of total pixel intensity (VanBerlo

et al., 2023b).

4 Results

4.1 Training protocols

Unless otherwise stated, all feature extractors are initialized

with ImageNet-pretrained weights. Similar studies concentrating

on medical imaging have observed that this practice improves

downstream performance when compared to random

initialization (Azizi et al., 2021; VanBerlo et al., 2023b). Moreover,

we designate fully supervised classifiers initialized with ImageNet-

pretrained weights as a baseline against which to compare models

pretrained with SSL.

Evaluation on POCUS follows a similar protocol employed in

prior works (Chen et al., 2021; Basu et al., 2022). Feature extractors

with the ResNet18 architecture (He et al., 2016) are pretrained on

the Butterfly dataset. Prior to training on the POCUS dataset, a 3-

node fully connected layer with softmax activation was appended

to the pretrained feature extractor. Five-fold cross validation is

conducted with POCUS by fine-tuning the final three layers of

the pretrained feature extractor. Unlike prior works, we adopt

the average across-folds validation accuracy, instead of taking the

accuracy of the combined set of validation set predictions across

folds. Presenting the results in this manner revealed the high
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TABLE 1 Breakdown of ParenchymalLUS at the video and image level.

Unlabeled Labeled

Train Validation Test

Total

Patients 5, 204 1, 540 330 329

Videos 20,000 4123 858 936

Images 4,611,063 927,889 191,437 208,648

A/B line labels
Videos − 2, 100 / 998 441 / 197 512 / 213

Images − 484,287 / 216,505 99,132 / 40,608 116,648 / 42,122

Lung sliding labels
Videos − 3, 169 / 477 631 /103 707 / 96

Images − 727,205 / 96,771 146,322 / 23,218 166,753 / 21,911

x/y indicates the number of negative and positive labeled examples available for each task, respectively. Video labels apply to each image within the video. Note that some videos were not labeled

for both tasks.

variance of model performance across folds, which may be due to

the benchmark dataset’s small video sample size.

All experiments with ParenchymalLUS utilize the

MobileNetV3-Small architecture as the feature extractor, which

outputs a 576-dimensional representation vector (Howard

et al., 2019). Feature extractors are pretrained on the union

of the unlabeled videos and labeled training set videos in

ParenchymalLUS. Performance is assessed via test set classification

metrics. Prior to training on the downstream task, a single-node

fully connected layer with sigmoid activation was appended to the

pretrained feature extractor. We report the performance of linear

classifiers trained on the frozen feature extractor’s representations,

along with classifiers that are fine-tuned end-to-end.

For each joint embedding method, the projectors were

multilayer perceptrons with two 768-node layers, outputting 768-

dimensional embeddings. Pretraining is conducted for 500 epochs

using the LARS optimizer (You et al., 2019) with a batch size of

384 and a learning rate schedule with warmup and cosine decay as

in Bardes et al. (2022).

The pretraining and training data augmentation pipelines

consist of random transformations, including random cropping,

horizontal reflection, brightness jitter, contrast jitter, and Gaussian

blurring. Additional data preprocessing details are available in

Appendix 2.

Source code will be made available upon publication.3

4.2 Performance

The two main proposed features of IVPP are intra-video

positive pairs and distance-based sample weights. Accordingly, we

assess the performance of IVPP across multiple assignments of the

maximum image separation. Separate trials were conducted for

SimCLR, Barlow Twins, and VICReg pretraining. For the COVID

and AB tasks, we explored the values δt ∈ {0, 0.5, 1, 1.5} seconds.

The LS task is defined for M-mode US, and so we explored δx ∈

{0, 5, 10, 15} pixels. The standardized width of B-mode US videos

should be considered when determining an appropriate range for

3 https://github.com/bvanberl/IVPP

FIGURE 3

Average test accuracy across 5-fold cross validation on the POCUS

dataset. Models were pretrained with a variety of intra-video positive

pair thresholds with and without sample weights. Error bars indicate

the standard deviation across folds. The dashed line indicates

initialization with ImageNet-pretrained weights.

δx. Note that when δ = 0, sample weights are all 1 and therefore do

not modify any of the SSL objectives investigated in this study.

Figure 3 summarizes the performance of IVPP on the public

POCUS dataset after pretraining on the Butterfly dataset, which

is measured by average test accuracy in 5-fold cross validation. In

most cases, pretrained models obtained equal or greater average

accuracy than the ImageNet-pretrained baseline, with the exception

of Barlow Twins with δt = 0 and δt = 0.5. The performance

of models pretrained with SimCLR, Barlow Twins, and VICReg

peaked at different nonzero values of δt (0.5, 1, and 1.5 respectively),

indicating a possible benefit of selecting temporally close yet

distinct intra-video positive pairs. It was also observed across all

three pretraining methods that the inclusion of sample weights

resulted in worsened test AUC when δ = 0.5, but improved test

AUC when δ = 1.0 and δ = 1.5.

Similar experiments were conducted with ParenchymalLUS for

the AB task and LS task, using B-mode and M-mode images

respectively as input. ParenchymalLUS represents a scenario

where there is an abundance of unlabeled data, which differs

greatly from the preceding evaluation on public, yet small,
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FIGURE 4

ParenchymalLUS test set AUC for the AB and LS binary classification tasks, calculated for models pretrained with a selection of contrastive and

non-contrastive learning methods and employing a variety of intra-video positive pair thresholds with and without sample weights (SW). The dashed

line indicates initialization with ImageNet-pretrained weights. (A) Linear classifiers for the AB task. (B) Fine-tuned classifiers for the AB task. (C) Linear

classifiers for the LS task. (D) Fine-tuned classifiers for the LS task.

datasets. The unlabeled and labeled portions of ParenchymalLUS

contained at least an order of magnitude more videos than

either the public Butterfly and POCUS datasets. B-mode and

M-mode feature extractors were pretrained on the union of

the unlabeled and training portions of ParenchymalLUS—one

for each value of δ, with and without sample weights. For

these evaluations, we use all training examples that have been

assigned a label for the downstream task. Figure 4 provides a

visual comparison of the test AUC obtained by linear feature

representation classifiers and fine-tuned models for the AB and

LS tasks. An immediate trend across both tasks and evaluation

types is that SimCLR consistently outperformed Barlow Twins and

VICReg, which are both non-contrastive methods. Furthermore,

pretraining with non-contrastive methods often resulted in worse

test AUC compared to initialization with ImageNet-pretrained

weights. Another observation across all experiments was that there

was no discernible trend for the effect of sample weights that was

consistent for any task, pretraining method, δt , or δx.

Focusing on AB, linear classifiers achieved the greatest

performance when δt > 0, with the exception of VICReg

(Figure 4A). The use of SimCLR compared to the other pretraining

methods appeared to be responsible for the greatest difference

in test performance. As shown in Figure 4A, SimCLR-pretrained

models outperformed non-contrastive methods, and were the only

models that outperformed ImageNet-pretrained weights. The use

of a nonzero δt resulted in slight improvement in combination with

SimCLR pretraining, but degraded performance of non-contrastive

methods.

Similar results were observed for the LSM-mode classification

task. Models pretrained with SimCLR were the only ones that

matched or surpassed fully supervised models. Nonzero δx

generally improved the performance of linear classifiers, with

δx = 5 pixels corresponding to the greatest test AUC for

SimCLR and VICReg, and δx = 15 for Barlow Twins. Inclusion

of sample weights appreciably improved the performance of

Barlow Twins-pretrained models. Fine-tuned models pretrained

with SimCLR performed similarly to fully supervised models, while

non-contrastive methods resulted in degradation of test AUC.

Table 2 compares the top-performing IVPP-pretrained models

for each SSL method with two prior US-specific contrastive

learning methods— USCL (Chen et al., 2021) and US UCL (Basu

et al., 2022). Of note is that all three self-supervised methods

pretrained with IVPP outperformed ImageNet-pretrained

initialization for POCUS, a task where very little pretraining and

training data were utilized. For the B-mode and M-mode tasks

assessed with ParenchymalLUS, a contrastive method (including

the baseline) outperformed non-contrastive methods. Appendix 4

provides additional results that exhibit a similar trend with

different pretraining batch sizes. Overall, the most salient result

from the above experiments is that SimCLR, a contrastive method,
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TABLE 2 Performance of fine-tuned models pretrained using IVPP compared to US-specific contrastive learning methods, USCL, and UCL, and to

baseline random and ImageNet initializations.

Dataset POCUS ParenchymalLUS

Pretraining method Mean (std) test accuracy A/B Test AUC LS Test AUC

Random initialization 0.881 (0.050) 0.954 0.790

ImageNet initialization 0.908 (0.043) 0.973 0.898

USCL (Chen et al., 2021) 0.905 (0.044) 0.979 0.874

US UCL (Basu et al., 2022) 0.901 (0.054) 0.967 0.809

IVPP [SimCLR] 0.926 (0.043) 0.980 0.903

IVPP [Barlow Twins] 0.921 (0.054) 0.969 0.887

IVPP [VICReg] 0.930 (0.046) 0.971 0.862

outperformed both non-contrastive methods when unlabeled data

is abundant.

4.3 Label e�ciency

ParenchymalLUS is much larger than public ultrasound

datasets for machine learning. Although the majority of its

videos are unlabeled, it contains a large number of labeled

examples. To simulate a scenario where the fraction of

examples that are labeled is much smaller, we investigated

the downstream performance of models that were pretrained

on all the unlabeled and training ParenchymalLUS examples

and then fine-tuned on a very small subset of the training

set.

Label efficiency investigations are typically conducted by fitting

a model for the downstream task using progressively smaller

fractions of training data to gauge how well self-supervised models

fare in low-label scenarios. The results of these experiments may be

unique to the particular training subset that is randomly selected.

We designed an experiment to determine if the choice of δt , δx,

or the introduction of sample weights influenced downstream

performance in low-label settings. To reduce the chance of biased

training subset sampling, we divided the training set into 20 subsets

and repeatedly performed fine-tuning experiments on each subset

for each pretraining method and δ value, with and without sample

weights. To ensure independence among the subsets, we split

the subsets by patient. Inspection of the central moments and

boxplots from each distribution indicated that the normality and

equal variance assumptions for ANOVA were not violated. For

each pretraining method, a two-way repeated-measures analysis

of variance (ANOVA) was performed to determine whether the

mean test AUC scores across values of δ and sample weight usage

were different. The independent variables were δ and the presence

of sample weights, while the dependent variable was test AUC.

Whenever the null hypothesis of the ANOVAwas rejected, post-hoc

paired t-tests were performed to compare the following:

• Pretraining with nonzero δ against standard positive pair

selection (δ = 0).

• For the same nonzero δ value, sample weights against no

sample weights.

For each group of post-hoc tests, the Bonferroni correction was

applied to establish a family-wise error rate of α = 0.05. To ensure

that each training subset was independent, we split the dataset by

anonymous patient identifier. This was a necessary step because

intra-video images are highly correlated, along with videos from

the same patient. As a result, the task became substantially more

difficult than naively sampling 5% of training images because the

volume and heterogeneity of training examples was reduced by

training on a small fraction of examples from a small set of patients.

The fine-tuning procedure was identical to that described in

Section 4.1, with the exception that the model’s weights at the end

of training were retained for evaluation, instead of restoring the

best-performing weights on the validation set. Figure 5 provides

boxplots for all trials that indicate the distributions of test AUC

under the varying conditions for both the AB and LS tasks. Again,

SimCLR performance appeared to be substantially higher than both

non-contrastive methods.

Table 3 gives the mean and standard deviation of each set of

trials, for each hyperparameter combination. For each task and each

pretraining method, the ANOVA revealed significant interaction

effects (p ≤ 0.05). Accordingly, all intended post-hoc t-tests were

performed to ascertain (1) which combinations of hyperparameters

were different from the baseline setting of augmenting the same

frame twice (δ = 0) and (2) values of δ where the addition of

sample weights changes the outcome. First, we note that SimCLR

was the only pretraining method that consistently outperformed

full supervision with ImageNet-pretrained weights. Barlow Twins

and VICReg pretraining – both non-contrastive methods – resulted

in worse performance.

For the AB task, no combination of intra-video positive pairs

or sample weights resulted in statistically significant improvements

compared to dual distortion of the same image (δt = 0).

For Barlow Twins and VICReg, several nonzero δt resulted in

significantly worse mean test AUC. Sample weights consistently

made a difference in Barlow Twins across δt values, but only

improved mean test AUC for δt = 1 and δt = 1.5.

Different trends were observed for the LS task. SimCLR with

δx = 5 and no sample weights improved mean test AUC

compared to the baseline where δx = 0. No other combination

of hyperparameters resulted in a significant improvement.

For Barlow Twins, multiple IVPP hyparameter combinations

resulted in improved mean test AUC over the baseline. No
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A B

FIGURE 5

Boxplots conveying the quartile ranges of test AUC distributions for each pretraining method and assignment to δ, with and without sample weights.

Each experiment is repeated 20 times on disjoint subsets of the training set, each containing all images from a group of patients. (A) AB task. (B) LS
task.

TABLE 3 ParenchymalLUS test AUC for the the AB and LS tasks when trained using examples from 5% of the patients in the training set.

AB LS

Pretrain method δt SW Mean (std) test AUC δx SW Mean (std) test AUC

SimCLR

0 ✗ 0.938 (0.007) 0 ✗ 0.812 (0.037)

0.5 ✗ 0.931 (0.010)∗ 5 ✗ 0.824 (0.030)∗

0.5 ✓ 0.936 (0.007)† 5 ✓ 0.820 (0.033)

1 ✗ 0.934 (0.011) 10 ✗ 0.815 (0.035)

1 ✓ 0.933 (0.011) 10 ✓ 0.816 (0.037)

1.5 ✗ 0.936 (0.013) 15 ✗ 0.819 (0.034)

1.5 ✓ 0.932 (0.012) 15 ✓ 0.798 (0.039)∗†

Barlow Twins

0 ✗ 0.914 (0.014) 0 ✗ 0.693 (0.044)

0.5 ✗ 0.914 (0.010)∗ 5 ✗ 0.694 (0.040)

0.5 ✓ 0.883 (0.017)∗† 5 ✓ 0.780 (0.040)∗†

1 ✗ 0.877 (0.022)∗ 10 ✗ 0.705 (0.051)

1 ✓ 0.891 (0.018)∗† 10 ✓ 0.706 (0.066)

1.5 ✗ 0.870 (0.024)∗ 15 ✗ 0.769 (0.037)∗

1.5 ✓ 0.892 (0.015)∗† 15 ✓ 0.707 (0.071)†

VICReg

0 ✗ 0.917 (0.011) 0 ✗ 0.690 (0.042)

0.5 ✗ 0.879 (0.024)∗ 5 ✗ 0.675 (0.036)

0.5 ✓ 0.879 (0.021)∗ 5 ✓ 0.679 (0.038)

1 ✗ 0.872 (0.023)∗ 10 ✗ 0.680 (0.039)

1 ✓ 0.876 (0.024)∗ 10 ✓ 0.675 (0.040)

1.5 ✗ 0.860 (0.026)∗ 15 ✗ 0.710 (0.036)

1.5 ✓ 0.870 (0.021)∗† 15 ✓ 0.685 (0.039)†

None (ImageNet-pretrained) 0.896 (0.017) 0.783 (0.028)

None (random initialization) 0.774 (0.051) 0.507 (0.022)

Twenty trials were performed for each pretraining method, value of δ, with and without sample weights (SW). Mean and standard deviation of the test AUC across trials are reported for

each condition. ∗Significantly different (p < 0.05) than baseline for the pretraining method where δ = 0. †Significantly different (p < 0.05) for particular δ when sample weights are applied,

compared to no sample weight.
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IVPP hyperparameter combinations significantly improved the

performance of VICReg.

5 Discussion

5.1 Guidelines for practitioners

Insights were derived to guide practitioners working with

deep learning for ultrasound interpretation. First, SimCLR was

observed to achieve the greatest performance consistently across

multiple tasks. With the exception of the data-scarce COVID-

19 classification task, SimCLR decisively outperformed Barlow

Twins and VICReg on the A/B and LS tasks. The results

provide evidence toward favoring contrastive learning over non-

contrastive learning for problems in ultrasound. It could be that

the non-contrastive methods studied may be less effective for lung

ultrasound examinations. We suspect that the lack of diversity in

parenchymal lung ultrasound and the fine-grained nature of the

classification tasks is problematic for non-contrastive methods, as

the objectives are attractive and focus on maximizing embedding

information. Perhaps explicit samples of negative pairs may be

needed to learn a meaningful embedding manifold for fine-grained

downstream tasks. Future work assessing non-contrastive methods

for tasks in different ultrasound examinations or alternative

imaging modalities altogether would shed light on the utility of

non-contrastive methods outside the typical evaluation setting of

photographic images.

While the experimental results do not support the existence of

overarching trends for hyperparameter assignments for intra-video

positive pairs across pretrainingmethods, it was observed that some

combinations improved performance on particular downstream

tasks. For example, each pretraining method’s downstream

performance on COVID-19 classification was improved by a

nonzero value of δt . Overall, the results indicated that the optimal

assignment for IVPP hyperparameters may be problem-specific.

Clinically, IVPP may improve performance on downstream

ultrasound interpretation tasks; however, practitioners are advised

to include a range of values of δ with and without sample weights

in their hyperparameter search.

5.2 Limitations

Themethods and experiments conducted in this study were not

without limitations. As is common in medical imaging datasets,

the ParenchymalLUS dataset was imbalanced. The image-wise

representation for the positive class was 30.0% for the AB task and

11.7% for the lung sliding task. Although some evidence exists

in support for self-supervised pretraining for alleviating the ill

effects of class imbalance in photographic images (Yang and Xu,

2020; Liu et al., 2021), computed tomography, and fundoscopy

images (Zhang et al., 2023), we found no such evidence for tasks

in medical ultrasound.

As outlined in the background, the pretraining objectives

employed in this study have been shown to improve downstream

performance when the pairwise relationship aligns with the

downstream task (Balestriero and LeCun, 2022). These guarantees

compare to the baseline case of random weight initialization.

While it was observed that all pretraining methods outperformed

full supervision with randomly initialized weights, ImageNet-

pretrained weights outperformed non-contrastive methods in

several of the experiments. ImageNet-pretrained weights are a

strong and meaningful baseline for medical imaging tasks, as

they have been shown to boost performance in several supervised

learning tasks acrossmedical imagingmodalities (Azizi et al., 2021).

It is possible that some extreme data augmentation transformations

and intra-positive pairs could jeopardize the class agreement of

positive pairs (as is likely in most pragmatic cases); however, near-

consistent alignment was achieved through data augmentation

design and small ranges of δ. Although there exists evidence

that VICReg and SimCLR can achieve similar performance

on ImageNet with judicious selection of hyperparameters (e.g.,

temperature, loss term weights, learning rate) (Garrido et al., 2022),

we used default hyperparameters. Due to limited computational

resources, we avoided expansion of the hyperparameter space by

only studying IVPP hyperparameters.

Lastly, M-mode images were designated by selecting x-

coordinates in B-mode videos that intersect a pleural line region

of interest, as predicted by an object detection model utilized in

previous work (VanBerlo et al., 2022b, 2023b). LUSM-mode images

must intersect the pleural line in order to appreciate the lung sliding

artifact.While wemitigated potential inaccuracies in localization by

limiting training and evaluation data to the brightest half of eligible

x-coordinates, it is possible that a small fraction of M-mode images

were utilized that did not intersect the pleural line.

5.3 Conclusion

Intra-video positive pairs have been proposed as a means of

improving the downsteam performance of ultrasound classifiers

pretrained with joint embedding self supervised learning. In

this study, we suggested a scheme for integrating such positive

pairs into common contrastive and non-contrastive SSL methods.

Applicable to both B-mode and M-mode ultrasound, the

proposed method (IVPP) consists of sampling positive pairs

that are separated temporally or spatially by no more than a

threshold, optionally applying sample weights to each pair in

the objective depending on the distance. Investigations revealed

that using nearby images from the same video for positive

pairs can lead to improved performance when compared to

composing positive pairs from the same image, but that IVPP

hyperparameter assignments yielding benefits may vary by the

downstream task. Another salient result was the persistent top

performance of SimCLR for key tasks in B-mode and M-

mode lung ultrasound, indicating that contrastive learning may

be more suitable than non-contrastive learning methods for

ultrasound imaging.

Future work could investigate IVPP for other types of medical

ultrasound exams. IVPP could also be integrated into other SSL

objectives. The sample weights formulation proposed in this study

could also be applied to SSL for non-US videos. Given the

high performance of SimCLR, subsequent work should perform

a comprehensive comparison contrastive and non-contrastive
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SSL methods for tasks in medical US. Lastly, future work

could evaluate US-specific data augmentation transformations that

preserve semantic content. As a natural source of differences

between positive pairs, IVPP could be studied in tandem with

US-specific augmentations.
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Automated segmentation and 
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Background: Goutallier’s fatty infiltration of the supraspinatus muscle is a 
critical condition in degenerative shoulder disorders. Deep learning research 
primarily uses manual segmentation and labeling to detect this condition. 
Employing unsupervised training with a hybrid framework of segmentation and 
classification could offer an efficient solution.

Aim: To develop and assess a two-step deep learning model for detecting 
the region of interest and categorizing the magnetic resonance image (MRI) 
supraspinatus muscle fatty infiltration according to Goutallier’s scale.

Materials and methods: A retrospective study was performed from January 
1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with 
supraspinatus muscle fatty infiltration diagnoses. A model with two sequential 
neural networks was implemented and trained. The first sub-model 
automatically detects the region of interest using a U-Net model. The second 
sub-model performs a binary classification using the VGG-19 architecture. The 
model’s performance was computed as the average of five-fold cross-validation 
processes. Loss, accuracy, Dice coefficient (CI. 95%), AU-ROC, sensitivity, and 
specificity (CI. 95%) were reported.

Results: Six hundred and six shoulders MRIs were analyzed. The Goutallier 
distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3 
(3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy 
(0.9977  ±  0.0002) and Dice score (0.9441  ±  0.0031), while the classification 
model also results in high levels of accuracy (0.9731  ±  0.0230); sensitivity 
(0.9000  ±  0.0980); specificity (0.9788  ±  0.0257); and AUROC (0.9903  ±  0.0092).

Conclusion: The two-step training method proposed using a deep learning 
model demonstrated strong performance in segmentation and classification 
tasks.
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Introduction

Rotator cuff tears (RCTs) are a prevalent musculoskeletal shoulder 
condition that affects millions of people worldwide, regardless of sex 
(1, 2). This degenerative and progressive condition becomes 
increasingly common with age in the general population (3), leading 
to significant economic consequences for patients and healthcare 
systems alike (4, 5). The magnitude of tear size, muscle atrophy, and 
fatty infiltration are important variables in predicting the prognosis of 
patients (6, 7). Specifically, low levels of fatty infiltration have been 
shown to have significantly better outcomes than those with more 
severe conditions, as they are less likely to experience re-tears (7, 8). 
Therefore, identifying specific stages of fatty infiltration and the 
supraspinatus muscle is crucial in accurately predicting patients’ 
prognoses, particularly for those that are to be exposed to a major 
surgery or in population of high risk with such as older patients. For 
this purpose, magnetic resonance image (MRI) is one of the most 
commonly used medical imaging techniques available for the 
detection of RCT and fatty infiltration, owing to its high diagnostic 
accuracy (9). However, patient access to MRI results may take several 
days due to the large number of exams and the time specialists can 
dedicate to this task. Therefore, developing tools that can speed-up 
this process, while having a high accuracy in identifying fatty 
infiltration, can help reduce waiting times suffered by patients and the 
burden faced by medical experts.

Goutallier et  al. (10) proposed one of the most widely used 
qualitative scales for identifying supraspinatus fatty infiltration, 
consisting of five stages ranging from 0 (normal muscle) to 4 (severe 
fat accumulation). Although Goutallier’s scale was originally 
developed based on CT scan analysis, it has been adapted for use with 
MRI. Fuchs et  al. (11) proposed a new scale by combining the 
previously defined stages in Goutallier’s work. Specifically, levels zero 
and one were merged to create the normal stage, level two was 
redefined as moderate, and level three or four were considered to 
represent severe fatty infiltration. However, there has been some 
controversy over the adaptation of the original scale for use with MRI 
(12). Furthermore, reducing inter-observer variability when assessing 
rotator cuff quality from MRI remains a major challenge in diagnostic 
imaging (13).

On the other hand, deep learning algorithms, especially 
convolutional neural networks (CNNs), have rapidly become the 
preferred methodology for analyzing medical images (14–16). Some 
of the most commonly used deep learning architectures for computer 
vision tasks include Inception-v3, ResNet50, VGG19, and U-Net 
(17–20). However, due to complexity of medical image datasets and 
smaller size compared to other sources of data, transfer learning has 
become a suitable approach for building and training deep learning 
models in clinical research. With transfer learning, most of the 
proposed models for medical diagnosis are based on pre-trained 
models from the ImageNet dataset and trained using transfer learning 
techniques (21). This technique involves using a well-trained model 
from a non-medical source dataset, such as ImageNet, and re-training 
it in a target dataset, such as medical images, including MRIs (22–24).

Most of the existing deep learning applications are based on 
supervised training, a commonly used technique for classification 
using medical images. However, supervised training requires labeled 
images for the models to learn from their structure. Additionally, in 
supervised learning, in order to improve the model’s performance, 

researchers manually select the region of interest (manual 
segmentation). However, manual segmentation is a time-consuming 
task, and manual labelling from medical experts is not always available 
(25). Therefore, to address these limitations, unsupervised training for 
segmenting the region of interest could be a viable solution. In the 
context of identifying shoulder fatty infiltration, four recent and 
highly important articles addressing this problem or closely related 
have been published. Three of these studies focused on magnetic 
resonance images (22, 23, 26) while only one utilized CT scans (27). 
However, all these studies relied on annotated data, which means that 
each image was manually labeled by an expert to create an image and 
corresponding infiltration level pairs, or each image was manually 
segmented to generate a corresponding segmentation mask for that 
specific image.

In order to address the gap in the literature, the objective of this 
research is to develop and assess a two-step deep learning framework. 
The first step performs and automated detection the region of interest 
(segmentation of the region of interest), while the second step uses the 
information from the segmentation model to classify the region of 
interest into one of the Goutallier’s fatty infiltration levels using MRI 
images, hence, fully automating the process of identifying the 
Goutallier’s fatty infiltration levels via the usage of deep learning 
techniques (segmentation and classification hybrid framework).

Materials and methods

Study design

This research was designed as a retrospective, single-site study, 
following the guidelines outlined in the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE). Patient records 
were exclusively obtained from MRI examinations conducted at the 
MEDS Clinic in Santiago, Región Metropolitana, Chile. The study 
started on September 25th, 2020.

Learning approach

An end-to-end deep learning model was developed to classify the 
patient risk based on the fatty infiltration of the supraspinatus muscle. 
The training process was performed in a two-step fashion. In the first 
step, we trained a segmentation model to extract the region of interest 
from the image. In the second step, we trained a classification model 
to determine if there was a risk or not for further surgery based on the 
level of fatty infiltration in the region of interest detected in the first 
step. Both models (segmentation and classification) are trained 
independently and non-recursively. However, segmented images from 
the first step (segmentation model) are used to train the classification 
model. Therefore, the training process of the classification model, as 
well as the testing phase, are performed using results from the 
segmentation model (segmented images). The training process and 
workflow of the proposed two-step model is described in Figure 1 as 
well as in Figure 2.

Dataset characteristics
The medical institution provided all the data, consisting of 900 

DICOM files corresponding to unique exams. Each file corresponds 
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FIGURE 1

Workflow diagram.

FIGURE 2

Diagram of the end-to-end model sequence.
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to a T2-weighted Y-view MR sequence of the shoulder. Furthermore, 
we extracted all 900 medical reports associated to each of the DICOM 
files. The medical reports were, authored by three different radiologists. 
These reports used various scales or standards to document the fatty 
infiltration or degeneration stage. To ensure accurate labeling, 
we enlisted the expertise of an experienced radiologist who manually 
labeled the dataset. Moreover, images with diagnostic uncertainties 
underwent manual segmentation under the supervision of another 
radiologist, ensuring detailed and reliable annotations.

According to Figure  3, the labeling process resulted in 666 
registered images, with one being marked as inconclusive and two 
remaining unregistered. Additionally, there were 60 images for which 
segmentation masks could not be  created due to a file error. 
Consequently, our ground truth dataset comprises 606 labeled images 
along with their corresponding segmentation masks. Table 1 provides 
an overview of the image label counts, indicating 403, 114, 51, 24, and 
14 for Goutallier 0, 1, 2, 3, and 4, respectively. More than 82% of the 
images fall into grades 0 or 1, indicating a significant imbalance 
towards lower fatty infiltration grades. The female group exhibited a 
greater number of samples in the higher grades compared to the male 
group. Furthermore, except for the observed mean age in the 
Goutallier 0 group (p < 0.05), there were no significant differences 
between the female and male groups across Goutallier levels in terms 
of proportions or mean age.

Dataset preparation
The DICOM file format is extensively adopted as a standard for 

medical images in clinical settings. A DICOM data object consists of 
multiple attributes, including fields such as name, ID, and more. It also 
incorporates a distinct attribute that contains the image pixel data. In 
order to enhance the efficiency of image processing during model 
ingestion, we extracted the pixel data from every DICOM file and 
converted it to PNG format. This extraction process was facilitated by 
MicroDICOM, a freely available software for viewing DICOM files.

The ITK-Snap3 software was utilized to generate the 
segmentation masks. In this case, separate masks were created for the 

supraspinous fossa area and the supraspinatus muscle area. 
Considering the specific evaluation of the fatty infiltration grade of 
the muscle based on the muscle area alone by physiologists, the focus 
was directed towards the supraspinatus muscle area mask for the 
subsequent steps. The final outcome of the segmentation process is 
visualized in Figure 4.

The data preparation process resulted in multiple images in PNG 
file format, each accompanied by its corresponding segmentation 
mask and label. Figure  1 provides a visual representation of the 
workflow involved in the data preparation.

Criteria for fatty infiltration
The criteria were based on Goutallier’s fatty infiltration definitions. 

According to the original paper, five levels of fatty infiltration were 
proposed, ranging from zero to four, to signify the qualitative presence 
of fat in the muscle. A level zero indicates the absence of fat in the 
muscle, while higher levels correspond to increasing fatty infiltration. 
Goutallier’s scale assigns higher values as the fatty infiltration 
intensifies. A level four indicates a higher amount of fat than 
muscle present.

As mentioned earlier, the objective is to assist clinicians in 
determining the risk associated with performing surgery based on 
the quality of the supraspinatus muscle. From a classifier perspective, 
this task can be  viewed as a binary classification. In this study, 
Goutallier’s fatty infiltration levels zero or one were classified as “not 
risky,” while levels three or four were categorized as “risky.” Samples 
labeled as Goutallier level two were excluded from the analysis. This 
choice is based on previous research [see Saavedra et al. (20)] where 
it is shown that including Goutallier’s level 2 into a binary 
classification task does not significantly impact the performance of a 
classification model. Also, clinical relevance falls in correctly those 
cases where there is high or low level of fatty infiltration [see 
references (10) and (11)].

Proposed model
The proposed model is composed of two sequential neural 

network models that serve distinct purposes. Model A is designed to 
narrow down the region of interest in the MRI image by leveraging 
both the image and the segmentation mask as inputs. The U-Net 
model is proposed for this task (see next). Its primary objective is to 
predict the supraspinatus muscle area. The hypothesis is that this 
approach effectively eliminates irrelevant information from the image, 
thereby enhancing the performance of the second network. Following 
Model A (segmentation), Model B (classification task) takes the 
supraspinatus muscle area of the image as input and predicts the fatty 
infiltration level based on the Goutallier’s fatty infiltration level scale. 
An overview of the workflow is provided in Figure  2, while the 
subsequent subsections offer a detailed explanation.

Cross validation (k-fold) was performed during the training 
process. The total of 606 Y-view MRI shoulder images were grouped 
into five non overlapping folds. Each time, four folds were used as the 
training set and one as the validation set. Every fold was used four 
times as part of the training set and one time as part of the validation 
set. Fold composition was the same for both models (Model A and 
Model B). Model performance was computed as the average of those 
five training processes and 95% confidence intervals (CI) were 
obtained. In every training process the model with the lowest loss 
function value was considered the best model.

FIGURE 3

Flowchart for dataset selection.
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Model development and training
The proposed model was built using two sequenced architectures: 

U-Net (28) (Model A) and VGG-19 (29) (Model B). The first 
sub-model created the segmentation mask of the input image, and the 
second, performed the fatty infiltration classification for that same 
image. The selection of the VGG-19 model for the classification task 
is supported by previous research [see reference (20)] where it is 
shown that the VGG-19 is among the best CNN for fatty infiltration 
(among the tested models). Although the proposed framework follows 
sequential stages, the training process was performed in two steps. In 
the first step, we trained the segmentation model using every image 
and the corresponding segmentation mask as input.

The objective was for the model A to learn to predict the 
corresponding segmentation mask for an image that had not been 
seen previously. In the second step, a classification model was trained 
using the region of interest of the image and its corresponding label. 
Before feeding the classification model, automatic cropping of the 
image was performed, and only the region of interest was used as 
input for the classification model.

A repeated stratified k-fold cross-validation was performed in both 
steps. This method allowed us to use the entire dataset in the training 
process and minimize the influence of data selection, as occurs when 
using random train/validation/test splitting. The k value was set equal 
to 5 and, therefore, 5 non-intersecting groups were created at random. 
The proportion of every class in the original dataset was replicated in 
every group. Each time, four groups were used to create the training set 
and one was used to create the validation set.

The model performance was computed as the average of 5 training 
processes, and the corresponding confidence intervals were reported. 

Confidence intervals obtained from the cross-validation training 
process was used to assess robustness of the trained models. Due to 
the high imbalance of the dataset, the minority class was up sampled. 
In every training process, the smaller class was replicated until the 
proportion between classes was close to 1:1. The added images were 
copies of their originals but with slight differences in terms of rotation 
(±35°), horizontal flipping, and center cropping. The up-sampling 
process was carried out for the training data only. Figure 1 shows the 
workflow of the model training process.

Step 1: Training the segmentation model. For the segmentation 
task, a “U”-shaped neural network was built as described in Khouy 
et al. (28). The only difference is that (1, 1) padding was used in every 
convolutional layer to allow the network to utilize the entire image 
during the training process. The model was training for a maximum 
of 50 epochs and feeding the network with batches of five images at a 
time. We used binary cross-entropy loss, implemented in the PyTorch 
framework. The optimization algorithm used was Adam optimizer 
with its standard configuration. The learning rate was set to 10-5.

The segmentation process was performed using the U-Net model. 
The training hyperparameters were as follows: batch size = 8, 
maximum epochs = 50, input size = 224 × 224 (px), learning rate = 10−3, 
optimizer = Adam (standard configuration). The loss function used 
was the Dice loss, which was defined as:

	
Dice score = × × +( )2

2 2p t p t/
	

(1)

	 Dice loss Dice score= −1 	 (2)

TABLE 1  Patient data distribution Goutallier’s level by sex.

Goutallier 
level

N (%) Female Male p-value

N (%) Age mean (SD) N (%) Age mean (SD) N Age

0 403 (66.50) 140 (35) 53.06 (10.55) 263 (65) 49.24 (13.13) 0.477 ***

1 114 (18.81) 74 (65) 61.50 (10.37) 40 (35) 63.58 (8.17) 0.465 0.371

2 51 (8.42) 31 (61) 66.65 (9.53) 20 (39) 66.40 (10.13) 0.447 0.992

3 24 (3.96) 16 (67) 68.88 (7.74) 8 (33) 64.25 (7.59) 0.424 0.230

4 14 (2.31) 13 (93) 67.31 (7.33) 1 (7) N.A. 0.354 0.8

Total 606 (100) 274 (45) 58.47 (11.67) 332 (55) 52.42 (13.81) 0.483

Mann–Whitney or t-test were used to compute the significance (alpha 0.05).

FIGURE 4

Manually segmentation process. (A) Original image. (B) Resulting segmentation masks. Supraspinous fossa in green, supraspinatus muscle in red. 
(C) Supraspinatus muscle mask.
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In Equation 1, “p” represents predicted values from the output, and 
“t” represents true values from the input. Basically, the Dice score (see 
Equation 2) measures the ratio of the intersection over the union for 
the resulting segmentation mask (30). The better the performance of 
the segmentation model, the higher the Dice score value. On the other 
hand, the Dice loss is the function to be minimized. The higher the 
value of the Dice score, the lower the value of the loss function.

Step 2. Training the classification model: The VGG-19 architecture 
was used for the classification task. We kept the convolutional layers 
of the model as the original and only the last layer of the fully 
connected layers was changed. Originally, the output of the VGG-19 
architecture was 1,000 neurons. In our case we use only one output 
unit. That way, the model was able to perform the binary classification 
of the inputs.

To train the model, we used transfer learning. This means that all 
the weights of the original models trained on the ImageNet dataset 
were utilized. These weights were not optimized during the training 
process, and only the classifier layers were optimized. We employed 
the same maximum number of epochs, batch size, loss function, and 
optimizer as in the segmentation training process. A termination 
function was implemented to stop the training process if there was no 
improvement in the last 10 epochs. The best performance was saved 
and recorded. The only hyper-parameter that was optimized was the 
learning rate, and the best performance was achieved at 10−5. In the 
following section, we will present the output of both models, including 
the segmentation mask and a detailed explanation of the obtained 
metric values.

Statistical analysis

Normality tests were conducted, and the analysis of statistical 
differences between groups utilized either the Mann–Whitney U test 
or t-test. A significance level of p < 0.05 was employed to establish 
statistical significance. Descriptive analysis of patient ages was 
performed, presenting the mean and standard deviation (m ± sd). 
Categorical data were expressed as percentages and frequencies.

The performance of the models was evaluated and compared 
based on accuracy, sensitivity, specificity, and area under the receiver 
operator curve (AU-ROC). A binary classifier produces either 0 or 1 
for a given input, corresponding to the actual expected output. True 
positive (TP) was defined as the model correctly predicting the 
positive class. False positive (FP) refers to the model incorrectly 
predicting the positive class when it is actually negative. False negative 
(FN) occurs when the model incorrectly predicts the negative class 
when it is actually positive. True negative (TN) is when the model 
correctly predicts the negative class. Sensitivity, specificity and 
accuracy (Equations 3–5), were computed as follows:

	 Sensitivity true positive rate TP TP FN( ) +( ): / 	 (3)

	 Specificity TN TN FP: / +( )	 (4)

	 Accuracy TN TP TN FP FN TP: /+( ) + + +( )	 (5)

The AU-ROC measures the classifier’s performance regardless of 
the threshold used to convert probability scores into class decisions. 
The horizontal axis represents recall (sensitivity), while the vertical 
axis corresponds to precision, calculated as TP/(TP + FP). As both 
axes range from 0 to 1, the maximum value of the area under the curve 
inside the square is 1, indicating better classifier performance. A 
random classifier would have an AU-ROC equal to 0.5.

For metrics such as accuracy, sensitivity, specificity, and AU-ROC, 
95% confidence intervals over the mean were calculated to assess 
model performance. All statistical analyses were conducted using the 
Python programming language.

Results

Sociodemographic characteristics

Male subjects presented 333 images, representing 55% of the 
sample. The patient’s average age was 55.1 ± 13.2 years. The data 
showed the presence of various types of Goutallier levels in MRI 
exams. An asymmetrical distribution of Goutallier grades was 
identified. A significant majority, exceeding 82% of the images, fell 
into grades 0 and 1, indicating a notable prevalence of low fatty 
infiltration: Goutallier 0 (66.50%), Goutallier 1 (18.81%), Goutallier 
2 (8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). 
Furthermore, the female group exhibited a higher frequency of 
samples in higher grades compared to the male group, although this 
disparity did not reach statistical significance. For more information, 
refer to Table 1.

Step 1. Segmentation
At the outset of the training process, the loss value was recorded 

at 0.8498 ± 0.0102, serving as an initial baseline for assessing the 
model’s performance. As training progressed through successive 
epochs, a consistent reduction in the loss value was observed. 
Ultimately, post-training, the loss value significantly decreased to 
0.0623 ± 0.0050. The training loss value (and other performance 
metrics) can be observed in Figure 5.

The substantial decline in the loss value reflects a considerable 
improvement in the model’s predictive accuracy. The reduction over 
the epochs suggests that the model became increasingly proficient at 
minimizing errors and refining its predictions. The tight standard 
deviations associated with the initial and final loss values underscore 
the reliability and consistency of the observed improvements.

These results imply that the deep learning model underwent 
effective training, optimizing its ability to generalize patterns and 
make accurate segmentation tasks. The detailed evolution of the loss 
value throughout the epochs provides a quantitative measure of the 
model’s learning process and its enhanced performance at the 
training’s conclusion.

The segmentation task performed by the model can be observed 
in Figure 6. The original input mask is highlighted in red, and the 
model’s output mask is highlighted in green. The background of each 
case displays the original image. Before making modifications, the 
images were rotated before being fed into the segmentation model. 
This rotation aims to prevent the model from memorizing specific 
patterns and, instead, encourages it to learn more generalized concepts 
from the data.
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In most cases, the resulting segmentation mask (in green) closely 
resembles the original input segmentation mask (in red). This suggests 
that the model effectively learned to perform the segmentation task 
without memorizing specific samples from the training dataset. The 
similarity between the masks indicates that the model has generalized 
correctly and can apply its knowledge to new images effectively. In this 
sense, the model efficiently minimized errors during the training 
process, as indicated by the computed average loss value of 0.0587. 
This low loss value is crucial because it signifies the model’s ability to 
consistently converge toward accurate predictions. The small standard 
deviation of 0.0048 further emphasizes the precision and stability of 
the model’s training, reinforcing its reliability in capturing intricate 
patterns within the data. At the same time, the model shows its 
proficiency in correctly classifying instances with an average accuracy 
of 0.9977. With a minimal standard deviation of 0.003, the model also 

shows consistent accuracy across various data points. These findings 
highlight the robustness of the model in performing precise 
segmentation tasks. Finally, the model achieved an average Dice score 
of 0.9441, indicative of its efficacy in capturing the spatial agreement 
between predicted and ground truth segmentations. A small standard 
deviation of 0.0035 shows the model’s stability in consistently 
achieving high Dice scores. These results affirm the model’s 
performance in image segmentation tasks. For more details, please 
refer to Table 2.

Step 2. Classification
Figure 7 shows the original image (A) and the segmentation mask 

obtained from the U-Net model (B). Then using that segmentation 
mask, the region of interest was cropped (automated process) from the 
original image (C). Finally, a resizing function was applied to the 

FIGURE 5

Loss, accuracy, and Dice score for the segmentation model. The average of the five training processes is shown in segment line. The color shadow 
shows the confidence interval (C.I. 95%).

FIGURE 6

Input masks and the respectively, output masks obtained from the U-Net model. The original masks are shown in red; the resulting masks are shown in 
green. For each input image showed in every column of the first or the third row, the corresponding output mask from the U-Net is showed on the 
same column in the second and fourth rows, respectively.
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TABLE 3  Classification model results.

Loss Accuracy Sensitivity Specificity AUROC

Average 0.1065 0.9731 0.9000 0.9788 0.9903

S.D 0.0584 0.0263 0.1118 0.0293 0.0105

CI. (95%) 0.1065 ± 0.0512 0.9731 ± 0.0230 0.9000 ± 0.0980 0.9788 ± 0.0257 0.9903 ± 0.0092

Confidence interval computed from the validation set of the five training processes at α = 0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown.

image, resulting in (D). This pre-processing allowed the model to 
decide considering only the supraspinatus muscle, similarly as how 
the clinicians do.

During the training process, the loss function value for the 
validation set was monitored. At the beginning of the training process 
the loss value was 0.6645 ± 0.0228, decreasing to 0.01178 ± 0.0037 after 
the training process was concluded. The accuracy, sensitivity, 
specificity and AUROC were computed as the average of the model 
performance over the validation set in each of the five training 
processes of the k-fold. Table 3 shows the results for those metrics in 
terms of the confidence interval (α = 0.05). As shown, every metric 
value is above 0.9 (on average), hence showing a good binary 
classification performance of fatty infiltration of the supraspinatus 
muscle based on Goutallier’s fatty infiltration scale. In particular, the 
accuracy reached a level of 97.3% with a 0.023 95% CI, showing high 

precision (low variability). Even though the results show a higher 
value of specificity compared to sensitivity, the difference could 
increase if no oversampling (or other data-balancing technique) was 
used. In this case, sensitivity reached a level of 90% with 0.98 95% CI, 
while the sensitivity showed a high level of 97.9% with a low 95% CI 
of 0.02. Finally, the balancing of these two metrics was computed by 
the AU-ROC, which has an average level of 99% with a low 95% CI of 
0.009, indicating a high level of capability to differentiate risky from 
non-risky levels of fatty infiltration based on automated segmented 
images from the U-Net model (see Figures 8, 9).

Results of the proposed automated two steps training model shows 
that the segmentation model could first learn how to find the region of 
interest (supraspinatus muscle). Then, the classification model could 
learn how to classify the input, based on that region of interest, as risky 
or not risky. Cropping the region of interest before feeding the classifier, 
allowed the model to learn as clinicians do. However, the two step 
process proposed here shows a small reduction in classification 
performance (sensitivity, specificity, accuracy and AU-ROC) when 
compared to different CNN trained on the same data but considering 
manual segmentation of the ROI [see Saavedra et al. (20) for details]. 
Table  4 shows the comparison of the two step proposed model 
(U-NET + VGG-19) with VGG-19, ResNET-50 and Inception-v3 
models. As noted, given that manual segmentation done by professional 
clinicians and medical expert is more accurate that segmentation 
performed by U-NET, errors from the U-NET model are passed on to 
the VGG-19 classification model, resulting a slightly lower performance. 
However, the (almost insignificant) reduction of performance is valid 
as the proposed model completely automates the process of identifying 
the level of fatty infiltration, reducing hence the need for lengthily 
process of manual segmentation of the ROI of the supraspinatus muscle.

Discussion

This article introduces a novel deep-learning framework for 
assessing the degree of fatty infiltration in the supraspinatus muscle. 
The framework performs two main tasks: segmenting the region of 
interest and classifying the level of fatty infiltration on a five-level scale 
proposed by Goutallier et al. (10) based on the automated segmentation 
process. To achieve this, we developed two sub-models: the first based 
on the U-Net architecture for segmentation, and the second based on 
the VGG-19 architecture with modified classifier layers for binary 
classification. We  first trained the segmentation sub-model using 
segmentation masks and then trained the classification sub-model 
using the labels associated with the fatty infiltration diagnosis. We used 
transfer-learning weights to train both sub-models. The binary output 
of the model (0 or 1) was interpreted as “not risky” or “risky,” 
respectively, with higher levels of fatty infiltration indicating a greater 
risk of re-tear or poor surgical outcomes.

TABLE 2  Segmentation results.

Loss Accuracy Dice score

Average 0.0587 0.9977 0.9441

S.D 0.0048 0.003 0.0035

CI. (95%) 0.0586 ± 0.0042 0.9977 ± 0.0002 0.9441 ± 0.0031

Loss, accuracy, and Dice score were computed as the average of five training processes. 
Confidence interval calculated at α = 0.05.

FIGURE 7

Automatic cropping process. (A) Original image. (B) Output mask 
from the U-Net model. (C) Cropped region of interest from the 
original image (ROI). (D) Resized region of interest (224 × 224 px).
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Our model achieved strong performance thanks to the 
implementation of transfer learning and k-fold cross-validation 
techniques. By leveraging these approaches, we were able to reduce the 
number of parameters requiring optimization and utilize the full dataset 
for both training and validation purposes, effectively guarding against 
overfitting issues given our relatively small dataset of slightly more than 
600 samples. However, some research has made efforts to optimize the 
process of hyperparameter optimization (31). Still, it’s worth noting that 
relying on transfer learning from a pre-trained model on the ImageNet 
dataset may not always represent the most ideal solution. This can 
be seen as a possible limitation of the relatively small sample of images 
obtained for this study. Future research should focus on evaluating the 
effect of the proposed training process. This is needed to understand if 
the high accuracy levels obtained in this research are driven by transfer 
learning and data augmentation techniques or to identify if the task or 
segmenting and classifying fatty infiltration in the supraspinatus muscle 

is a simpler task compared to more complex images (such as X-rays or 
ultrasounds of different body or biological structures).

In the medical domain, obtaining labeled data or segmentation masks 
for images can be  challenging. Meanwhile, radiological reports are 
abundant and readily available. Manual labeling or segmentation is a 
labor-intensive process, but leveraging the valuable information contained 
in reports can facilitate model training without significant human effort. 
Another approach worth considering is unsupervised learning, which can 
enable the model to learn without relying on fully labeled or segmented 
data. Additionally, using transfer learning with a pre-trained model in a 
related domain, such as shoulder MRI images or MRI images more 
broadly, has the potential to enhance the model’s performance.

Deep learning models have been increasingly applied in radiology, 
with the U-Net (28) being a particularly popular choice for 
segmentation tasks. One example of this is Taghizadeh et al. (27), who 
employed the U-Net model to assess muscle degeneration levels in CT 
scans. Through a supervised training approach with annotated data, 
they successfully segmented the structures and characterized the 
pre-morbid state based on clinical information. By comparing these 
two states, they were able to quantify the degree of muscle degeneration.

Medina et al. (22) proposed two sequential models trained in a 
supervised manner via transfer learning from a model pre-trained on 
the ImageNet dataset. Both models had all their weights initially 
frozen except for the classifier layers, which were optimized by 
training the network on a shoulder MRI dataset. Model A aimed to 
identify the best image in a series depicting the rotator cuff muscles, 
while Model B focused on segmenting the four rotator cuff muscles. 
Model A was constructed using the Inception-v3 architecture, while 
Model B was based on the VGG19 architecture.

Kim et al. (26) proposed a unique approach for assessing muscle 
atrophy in the supraspinous fossa by measuring the occupation ratio 

FIGURE 8

Average and confidence interval (α  =  0.05) for the classification 
validation loss over five-folds cross-validation training processes. 
Average is shown in segmented line, and confidence interval is 
shown in shadow.

FIGURE 9

Average and confidence interval (α  =  0.05) for the classification validation accuracy, sensitivity, specificity, and area under the ROC curve (AUROC), over 
five-folds cross-validation training processes. Average is shown in segmented line, and confidence interval is shown in shadow.

TABLE 4  Classification model comparison with literature.

Loss Accuracy Sensitivity Specificity AUROC

Proposed model 0.106 ± 0.051 0.973 ± 0.023 0.900 ± 0.098 0.978 ± 0.025 0.990 ± 0.009

VGG-19 0.096 ± 0.010 0.973 ± 0.006 0.947 ± 0.039 0.975 ± 0.006 0.991 ± 0.003

ResNet-50 0.123 ± 0.011 0.976 ± 0.006 0.925 ± 0.053 0.980 ± 0.006 0.992 ± 0.003

Inception-v3 0.102 ± 0.009 0.974 ± 0.007 0.869 ± 0.085 0.981 ± 0.006 0.991 ± 0.004

Confidence interval computed from the validation set of the five training processes at α = 0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown. 
Models used for comparison are obtained from Saavedra et al. (20).
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(O.R.) of the supraspinatus muscle. They used a VGG19-like network 
to segment the region of interest with annotated data, but gaps in the 
muscle area obtained from the model required filling with a post-
processing algorithm. The authors then determined the stage of 
muscle atrophy based on the O.R. (stage I: O.R. ≥ 0.6; stage 2: 0.4 ≤ 
O.R. ≤ 0.6; stage 3: O.R. > 0.4). Although this method did not assess 
the fatty infiltration grade precisely, it was still a valuable contribution.

Ro et  al. (23) also utilized the VGG19 model to perform a 
segmentation task for identifying the region of interest. To convert the 
grayscale image into a binary representation, they applied Otsu’s 
thresholding (32), a technique commonly used to separate the 
foreground (fat) from the background (muscle) in the image. However, 
as in other studies, post-processing was required, and the results were 
not directly applicable to a fatty infiltration scale like Goutallier’s.

This study has some limitations that must be considered. Firstly, 
a domain bias might have been introduced to the prediction because 
the MRI images and natural images used in the training process came 
from very different dataset. While we  used the cross-validation 
technique to overcome the over-fitting problem, we were unable to test 
our data on an external dataset, which could limit the model’s 
generalizability if it is intended to be  used in a production 
environment. To address this issue, future studies could focus on 
training the model on a larger set of MRI images to improve both the 
model’s performance and the clinician’s reliance on an artificial 
intelligence-driven solution. Also, it is important to consider that in 
order to bring these new models and technologies to production 
environment (deployment), computational resources must 
be considered as the models must be retrained as new data comes in. 
This also helps improving and refining the deployed models. To 
properly do this, deployment environments (hospitals or clinics) must 
be  equipped with appropriate computational tools (servers or 
computers) to efficiently manage the update of models, which also 
increase in complexity and computational resources needed as more 
data becomes available. Additionally, the manual labeling task was 
performed by only one trained radiologist, which might limit the 
reliability of the ground truth. To improve the accuracy and 
consistency of the labeling process, future studies could consider 
involving multiple trained radiologists in the task and comparing the 
model’s performance with that of the professionals. Finally, further 
efforts should be pursued to evaluate the feedback-loops during the 
training process of the proposed two-stage algorithm. This research 
did not focus on the possible improvements of the segmentation and 
classification models when feeding their results and predictive errors, 
similar to what boosting or sequential machine learning algorithms do.

In summary, this study analyzed a dataset of MRI images to assess 
fatty infiltration levels in the supraspinatus muscle among patients 
with rotator cuff conditions. We proposed a two-step training method 
using deep learning models, which demonstrated strong performance 
in segmentation and classification tasks. These findings indicate the 
potential of these models for accurate and reliable evaluation of 
musculoskeletal conditions in similar clinical settings.
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Introduction: Accurate segmentation of 3D medical images is crucial for clinical

diagnosis and treatment planning. Traditional CNN-based methods effectively

capture local features but struggle with modeling global contextual

dependencies. Recently, transformer-based models have shown promise in

capturing long-range information; however, their integration with CNNs

remains suboptimal in many hybrid approaches.

Methods: We propose UnetTransCNN, a novel parallel architecture that

combines the strengths of Vision Transformers (ViT) and Convolutional Neural

Networks (CNNs). The model features an Adaptive Fourier Neural Operator

(AFNO)-based transformer encoder for global feature extraction and a CNN

decoder for local detail restoration. Multi-scale skip connections and adaptive

global-local coupling units are incorporated to facilitate effective feature fusion

across resolutions. Experiments were conducted on the BTCV and MSD public

datasets for multi-organ and tumor segmentation.

Results: UnetTransCNN achieves state-of-the-art performance with an average

Dice score of 85.3%, outperforming existing CNN- and transformer-based

models on both large and small organ structures. The model notably improves

segmentation accuracy for challenging regions, achieving Dice score gains of

6.382% and 6.772% for the gallbladder and adrenal glands, respectively.

Robustness was demonstrated across various hyperparameter settings and

imaging modalities.

Discussion: These results demonstrate that UnetTransCNN effectively balances

local precision and global context, yielding superior segmentation performance

in complex anatomical scenarios. Its parallel design and frequency-aware

encoding contribute to enhanced generalizability, making it a promising tool

for high-precision medical image analysis.
KEYWORDS

fully convolutional neural networks, transformer, medical image segmentation, 3D
image, feature fusion
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1 Introduction

With the rapid advancements in the fields of computer science

and medical imaging, medical imaging technologies such as

computed tomography (CT) Vaninsky (1) and magnetic

resonance imaging (MRI) Khuntia et al. (2) have emerged as

indispensable tools in medical research Lim and Zohren (3),

clinical diagnosis Masini et al. (4), and surgical planning Torres

et al. (5). These technologies allow non-invasive imaging of internal

tissues and organs’ physiological states, representing a key advance

in merging computer science with medicine Zeng et al. (6), Shen

et al. (7).

The emerging technologies Challu et al. (8), Azad et al. (9)

concurrently introducing new challenges such as the need for

classification and processing of diagnostic results. Image

classification techniques play a pivotal role in autonomously

comprehending the content of images to a certain extent. They

enable effective identification of pathological regions within medical

images, thereby assisting physicians in efficient diagnosis

Stankeviciute et al. (10). However, the reality of medical imaging

encompasses a diverse array of image types Wu et al. (11), often

requiring the application of distinct processing and analytical

approaches to differentiate between categories of medical images.

In recent years, advances in deep learning have renewed interest

in medical image segmentation, drawing significant attention from

researchers Wu et al. (12). Deep learning excels at automatically

extracting features from complex data during training, leveraging

multi-layered neural networks to create high-dimensional feature

representations that boost segmentation performance Le Guen and

Thome (13). This capability underpins deep learning-based medical

image classification and grading, which supports diagnosis, speeds

up image analysis, reduces patient wait times, and eases

radiologists’ workloads.

We define key terms here: ‘CNN-based models’ refer to

architectures relying on Convolutional Neural Networks (CNNs)

for feature extraction, emphasizing local patterns, while

‘Transformer-based models’ use Transformer architectures to

capture global contextual relationships via self-attention

mechanisms. These definitions will be applied consistently

throughout this manuscript.

In practical medical image segmentation, precise classification

demands both local lesion details and global contextual information

—a challenge for standard CNN-based models. Although CNNs

excel at local feature extraction, their inductive bias limits their

ability to capture global dependencies, hindering further

performance gains. Inspired by the success of Transformer-based

models like ViT Stankeviciute et al. (10) in natural image tasks,

recent studies have integrated these with CNN-based approaches

for medical imaging, often matching or exceeding CNN

performance. For instance, TransUNet Du et al. (14), the first to

combine Transformer-based and CNN-based strengths [via U-Net

Fan et al. (15)], embeds a Transformer in the encoder. Similarly,

MCTransformer Elsworth and Güttel (16) unfolds CNN-extracted

multiscale features into tokens for Transformer processing.
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Despite these advances, integrating local and global features

remains challenging when CNNs and Transformers are simply

concatenated or embedded. To overcome this, we propose

UnetTransCNN, a novel parallel architecture that simultaneously

extracts local features (via a CNN-based module) and global

features (via a Transformer-based module). Unlike prior models

such as TransUNet or MCTransformer, which fuse sequentially,

our design optimizes CNNs for local detail and Transformers for

global context in parallel. We further introduce adaptive global-

local coupling units to dynamically fuse features from both

pathways across multiple scales. This enhances accuracy in

segmenting complex structures and improves generalizability

across diverse medical imaging tasks. The contributions of this

paper can be summarized as follows:
1.1 Proposed UnetTransCNN model

We propose the novel UnetTransCNN model that utilizes CNN

and ViT (Vision Transformer) in parallel to extract both local and

global features from medical images. This dual-path approach

ensures a comprehensive feature analysis, enhancing the

segmentation accuracy.
1.2 Application to 3D medical image
segmentation

We specifically adapt the UnetTransCNNmodel for 3Dmedical

image segmentation. In order to fit the unique structure of 3D

volumes, we incorporate specialized adaptations such as volumetric

convolutions and 3D positional encodings, significantly improving

the model’s effectiveness in handling spatial relationships within

medical volumes.
1.3 Design and implementation of
experiments

We design a variety of experiments to demonstrate the

superiority of our model. Our UnetTransCNN achieves superior

metrics on two public datasets, the BTCV and MSD. Additionally, it

demonstrates excellent robustness across various hyperparameters

when compared to existing popular models, thereby proving its

efficacy in real-world medical applications.
2 Related work

2.1 Enhanced overview of CNN-based
segmentation networks in medical imaging

Since the inception of the seminal U-Net architecture, the realm

of medical imaging has witnessed profound advancements through

the adoption of Convolutional Neural Network (CNN)-based
frontiersin.org

https://doi.org/10.3389/fonc.2025.1467672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1467672
techniques for segmenting 2D and 3D images, as documented in

numerous studies Wu et al. (11), Rahman et al. (17). In addressing

the intricacies of volume-level segmentation, the innovative 2.5D

approach has been introduced. This method ingeniously integrates

three distinct perspectives of each voxel via a tri-planar architecture,

offering a nuanced view beyond conventional methods. Meanwhile,

3D segmentation strategies Ding et al. (18) directly engage with

volumetric images, harnessing a compendium of 2D slices or

imaging modalities to achieve a comprehensive analysis.

To adeptly navigate the challenges of downsampling within

images, the research community has ventured into the expansion of

dimensional concepts, embracing multi-channel and multi-path

models. This evolution signifies a stride towards capturing a

richer tapestry of image features. Furthermore, the quest for

effectively leveraging 3D contextual insights, while judiciously

managing computational resources, has propelled the exploration

of hierarchical structures. Innovative methodologies have surfaced,

incorporating tactics like multi-scale feature extraction and the

synergistic amalgamation of diverse frameworks. For example,

reference Wu and Xu (19) highlights a pioneering multi-scale

framework adept at discerning information across various

resolutions, specifically tailored for pancreas segmentation.

These cutting-edge approaches mark a significant milestone in

the field of 3D medical image segmentation. They ambitiously aim

to navigate the complexities associated with spatial context and the

challenges posed by low-resolution imagery, paving the way for

groundbreaking research endeavors in multi-level 3D medical

image analysis.

Despite the notable success achieved by these methods, they still

suffer from a limitation in learning global context and long-range

spatial dependencies. This issue can significantly impact the

segmentation performance for challenging tasks. Therefore, to

further improve segmentation performance Wu et al. (12),

researchers are actively exploring new methods and techniques to

effectively capture global contextual information and long-range

spatial dependencies, thereby enhancing the accuracy and

robustness of medical image segmentation.
2.2 Vision transformers

In recent years, visual Transformer models have attracted

widespread attention and research in the computer vision field.

Dosovitskiy et al. demonstrated excellent performance in image

classification tasks by pretraining and fine-tuning a pure

Transformer model Lara-Benı ́tez et al. (20). Furthermore,

Transformer-based end-to-end object detection models have

shown significant advantages in multiple benchmark tests Cirstea

et al. (21). To further improve performance, researchers have

proposed a series of hierarchical visual Transformer models that

gradually reduce the feature resolution in Transformer layers and

employ subsampling attention modules to achieve this Fei et al.

(22). However, unlike these methods, the representation size in the

UnetTransCNN encoder remains unchanged across all
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Transformer layers. In Section 3, we introduce a method that uses

deconvolution and convolution operations to change the

feature resolution.

In the realm of image analysis, Transformer-based models have

gone beyond image classification and object detection to make

significant strides in 2D image segmentation. The SETR model,

introduced by Wu et al. (23), leverages a pretrained Transformer

encoder alongside a CNN-based decoder variant for semantic

segmentation. Meanwhile, Du et al. (14) has pioneered a multi-

organ segmentation technique by integrating a Transformer layer

within the U-Net architecture’s bottleneck section Kurle et al. (24).

Additionally, Xu et al. (25) has developed a strategy that distinguishes

the roles of CNN and Transformer, merging their outcomesWu et al.

(26). Godunov and Bohachevsky (27) has innovated an axial

attention mechanism rooted in Transformers for 2D medical

image segmentation.

Our model sets itself apart from these approaches in crucial ways:

(1) UnetTransCNN is tailor-made for 3D segmentation, directly

handling volumetric data; (2) It positions the Transformer as the

main encoder within the segmentation framework, linking it to the

decoder with skip connections rather than merely as an attention

component; (3) UnetTransCNN bypasses the need for a backbone

CNN for input sequence creation, opting instead for direct use of

tokenized patches.

Focusing on 3D medical image segmentation, Cirstea et al. (21)

introduced a framework that utilizes a backbone CNN for initial

feature extraction, then processes the encoded representation through

a Transformer, concluding with a CNN decoder for segmentation

prediction Moin and Mahesh (28). In a similar vein, Khan et al. (29)

has developed a technique for the semantic segmentation of brain

tumors, employing a Transformer within the bottleneck phase of a

3D encoder-decoder CNN model Rogallo and Moin (30). Differing

from these methodologies, our approach forges a direct link between

the Transformer’s encoding representation and the decoder via skip

connections. This strategic decision empowers our model to fully

harness the Transformer’s representational capabilities, driving

superior performance in 3D medical image segmentation tasks.
3 Method

Our proposed model, named UnetTransCNN, employs an

innovative approach that combines the global context capture

capability of Transformer with the powerful local feature

extraction capability of CNN, aiming to improve the accuracy

and efficiency of medical image segmentation. The details of our

model are demonstrated in Figure 1.
3.1 Encoder architecture

Integrating the Adaptive Fourier Neural Operator (AFNO) into

the encoder enhances its ability to process 3D medical imagery

using spatial and frequency domain information. The process

begins by dividing the input image into non-overlapping cubic
frontiersin.or
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patches of size P × P × P, which are transformed into K-dimensional

embedding vectors via:

Epatch = Flatten(xv) · Wproj + Epos (1)

Here, xv represents the cubic patches from the input, Wproj is

the projection matrix mapping patch data to the embedding space,

and Epos encodes the spatial positions of the patches. This process is

mathematically defined in Equation (1).

These embeddings are then processed through Transformer

layers, each with a multi-head self-attention (MSA) mechanism and

a multi-layer perceptron (MLP), strengthening the model’s

understanding of global dependencies. The operations in each

Transformer layer are given by: These steps are formally

described in Equations (2) and (3).

zi
0
= MSA(Norm(zi−1)) + zi−1 (2)

zi = MLP(Norm(zi
0
)) + zi

0
(3)

where Norm stands for the layer normalization process, and i

represents the index of the Transformer layer in sequence.

To integrate the complex Fourier formula and AFNO’s adaptive

processing, the embeddings undergo a Fourier transform after the initial

MLP transformation and before the Transformer layers. This enables the

encoder to adaptively handle spatial frequencies, performed as follows:

1. Discrete Fourier Transform (DFT) of the embedding vector

to shift the representation from the spatial to the frequency domain

see Equation (4):

F(k) = o
N−1

n=0
e(n) · e−

2p i
N nk (4)

2. Adaptive Modulation in the frequency domain, applying

learned weights to each frequency component to emphasize

relevant spatial frequencies see Equation (5):
Frontiers in Oncology 04136
Fmod(k) = F(k) · W(k) (5)

3. Inverse DFT (IDFT) to convert the modulated frequency

components back to the spatial domain, generating enhanced

embeddings see Equation (6)

e0(n) =
1
N o

N−1

k=0

Fmod(k) · e
2p i
N nk (6)

The UnetTransCNN model balances global patterns and local

details by manipulating data in both frequency and spatial domains,

critical for precise medical image segmentation where macroscopic

and microscopic features must be accurately captured.

The encoding process relies on the Discrete Fourier Transform

(DFT) and Inverse Discrete Fourier Transform (IDFT). The DFT

shifts image analysis to the frequency domain, revealing global

patterns like periodic textures and edges not easily seen in the

spatial domain. This allows the encoder to effectively modulate

these broad features. The IDFT then converts the adjusted

frequency data back to the spatial domain, preserving the image

structure while embedding enhanced features—essential for

segmentation, as without it, frequency-domain improvements

wouldn’t translate to spatial results.

Through this process, the AFNO-transformer optimizes the

encoder to leverage both local and global information, improving its

ability to handle complex spatial relationships in volumetric medical

data. This Fourier transform integration drives the UnetTransCNN

model’s superior performance in medical image segmentation.

3.2 Decoder architecture

The decoder uses Convolutional Neural Networks (CNNs) to

extract and restore local image features for precise segmentation. It

operates through decoding stages that fuse features from the

corresponding encoder stage (via skip connections) with outputs
FIGURE 1

Overview of the UnetTransCNN architecture. The input to our model is 3D multi-modal MRI images with 4 channels. The UnetTransCNN creates non-
overlapping patches of the input data and uses a patch partition layer to create windows of a desired size for computing Fourier-based attention in the
AFNO encoder. The encoded feature representations in the AFNO are fed to a CNN-decoder via skip connections at multiple resolutions.
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from the previous decoding stage. This process is defined by see

Equation (7):

Fi
dec = Conv(Up(Fi−1

dec)⊕ Fi
enc), (7)

where Fi
dec is the feature map at the decoder’s ith layer, Conv

refines the feature maps, Up upsamples to increase resolution, ⊕
merges features, and Fi

enc is the encoder’s ith layer feature map

linked by skip connections.

After progressing through these stages, a final 1×1×1 convolution

layer processes the output to predict semantic labels for each voxel,

converting feature maps into class probabilities (see Equation (8)):

Ypred = Softmax Conv1�1�1 Ffinal
dec

� �� �

, (8)

Here, Ypred represents the voxel-wise predictions, and Softmax

normalizes the final convolution’s logits into a probability

distribution across classes, ensuring accurate segmentation of

medical images.
3.3 Model application overview

The UnetTransCNN-CNN architecture adeptly integrates the

distinct advantages of Transformers and Convolutional Neural

Networks (CNNs), harnessing Transformers for their superior global

contextual understanding and utilizing CNNs for their acute precision

in local detail processing. This dual-approach is particularly

advantageous for medical imaging tasks, where it adeptly manages

the intrinsic complexity and variability of medical image structures.

This results in enhanced segmentation accuracy and improved model

reliability. Further, the meticulous development of our model is

underpinned by robust mathematical formulations and

comprehensive process elucidations, as delineated in prior sections.

Consequently, UnetTransCNN-CNN emerges as a profoundly efficient

and precise methodology for tackling medical image segmentation

challenges, particularly effective in scenarios involving complex

anatomical structures. The operational dynamics of the model are

succinctly encapsulated in Algorithm 1, providing a clear workflow that

underscores the model’s computational strategy.
Fron
1: Input: X - 3D medical image, P - Size of cubic patches,

K - Dimension of embedding space

2: Output: Ypred - Voxel-wise semantic predictions

3: procedure UNETTRANSCNN

4: //Encoder: Transformer-based

5: Divide X into non-overlapping cubic patches of size

P

tiers in Oncology 05137
6: for each patch xv in X do

7: Flatten xvto create a vector

8: Map flattened patch to K-dimensional embedding

space using Wproj

9: end for

10: Add positional embeddings Epos to patch embeddings

11: Initialize z0 with patch embeddings + positional

embeddings

12: for each Transformer layer i in 1 to L do

13: Apply AFNO: Transform zi−1 to frequency domain,

modulate, and inverse transform

14: z0i = MSA(Norm(zi − 1)) + zi − 1 ▹ Apply MSA and add

residual

15: zi = MLP(Norm(z0
i)) + z0

i ▹ Apply MLP and add

residual

16: end for

17: //Decoder: CNN-based

18: Initialize F0
dec with the output of the last

Transformer layer

19: for each decoding stage i in 1 to N do

20: Upsample Fi−1
dec to match dimension of Fi

dec

21: Merge upsampled features with Fi
enc using skip

connections

22: Apply convolutional layers to merged features to

obtain Fi
dec

23: end for

24: //Final segmentation map

25: Apply a 1 × 1 × 1 convolution to FN
dec to get logits

26: Apply softmax to logits to obtain Ypred

27: return Ypred

28: end procedure
Algorithm 1. UnetTransCNN for Medical Image Segmentation with AFNO.
frontiersin.org
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3.4 Model Workflow Example

Input: The input to the model is a 3D multi-modal MRI image

with dimensions H ×W ×D ×C, where C = 4 represents the different

imaging modalities (e.g., T1, T2, FLAIR). For example, an input

could have dimensions 128 × 128 × 128 × 4.

Patch Partition The input data is divided into non-overlapping

patches of size 4 × 4 × 4, each patch serving as a token for

subsequent processing. The resulting patch dimensions are

projected into a feature space through a linear embedding.

AFNO Encoder The encoded features pass through the AFNO

encoder, which consists of four hierarchical stages:
Fron
• Stage 1: Produces feature maps with dimensionsH/2 ×W/2

× D/2 × 48. This stage applies Fourier-based global

convolution and spatial mixing using the AFNO block.

• Stage 2: Downsamples the spatial resolution to H/4 × W/4

× D/4 × 96 while increasing feature depth.

• Stage 3: Further reduces spatial dimensions to H/8 ×W/8 ×

D/8 × 192.

• Stage 4: Final encoding stage with feature dimensions H/16

× W/16 × D/16 × 384.
Each stage uses patch merging for downsampling and captures

multi-scale representations through Fourier domain operations.

CNNDecoder The decoder progressively upsamples the feature

maps to the original spatial resolution. Each upsampling stage

incorporates skip connections from the corresponding encoder

stage, ensuring that both local and global information are retained:
• Stage 1 Decoder: Receives encoder outputs with

dimensions H/16 × W/16 × D/16, upsampled and

concatenated with encoder outputs from Stage 3.

• Stage 2 Decoder: Further upsamples to H/4 × W/4 × D/4,

integrating features from Stage 2.

• Stage 3 Decoder: Restores dimensions to H/2 ×W/2 × D/2,

using features from Stage 1.
tiers in Oncology 06138
3.5 Comparison with previous hybrid
approaches

The integration of CNN-based and Transformer-based models

has been explored in prior works like TransUNet Du et al. (14),

which combines a Transformer with a U-Net architecture to

leverage both local and global features for medical image

segmentation. While TransUNet demonstrates notable success, it

has limitations that hinder its performance in certain scenarios.

Specifically, its heavy reliance on Transformer layers prioritizes

global contextual information, often at the expense of fine-grained

local details. This imbalance can lead to suboptimal segmentation of

intricate structures where precise localization is critical, as the CNN

component in TransUNet is not sufficiently optimized to

compensate for the Transformer’s focus on broader patterns.

In contrast, UnetTransCNN addresses these shortcomings through

a more balanced and refined design. Our approach enhances local

feature extraction by incorporating a strengthened CNN-based

backbone, tailored to capture detailed spatial information effectively.

Simultaneously, we optimize the Transformer-based module to align

global contextual understanding with the spatial hierarchies inherent in

medical images. This dual-pathway architecture, supported by adaptive

global-local coupling units, ensures a complementary integration of

local and global features. Unlike TransUNet’s sequential fusion,

UnetTransCNN processes these features in parallel, allowing for a

more precise and context-aware segmentation. These improvements

enable UnetTransCNN to outperform previous hybrid approaches,

particularly in tasks requiring both detailed localization and

comprehensive contextual awareness.
4 Experiments

4.1 Dataset

Figure 2 depicts a high-dimensional medical computed

tomography (CT) image dataset, specifically designed for the
FIGURE 2

Dataset visualization of segmentation.
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segmentation of major abdominal organs for medical image

analysis, originating from the Abdominal Organ Segmentation

Challenge (BTCV) van der Hoef et al. (31). The dataset

encompasses multiple abdominal organs, including the spleen,

right kidney (R Kidney), left kidney (L Kidney), gallbladder,

esophagus (Eso), liver, stomach, aorta, inferior vena cava (IVC),

portal and spleen vein (P&S Vein), pancreas, and adrenal glands

(Ad Glands).

Each set of images displays multiple consecutive CT slices from

the same subject, with each organ marked in a specific color for

differentiation. These color-coded markings allow researchers to

quickly identify and analyze the boundaries and morphology of the

organs. For instance, the spleen is marked in red, kidneys in yellow,

and the liver in purple, with each color chosen to optimize visual

contrast for algorithmic processing.

The dimensions of this dataset can be described in

several aspects:
Fron
1. Spatial dimension: The images of each organ consist of a

series of cross-sections arranged along the body’s vertical

axis, showcasing the three-dimensional structure of

the organs.

2. Time/sequence dimension: Although not directly shown in

this image, in practice, such datasets may include temporal

sequence information, representing dynamic scans

over time.

3. Grayscale/intensity dimension: CT images present different

grayscale intensities based on the varying degrees of X-ray

absorption by tissues, reflect ing differences in

tissue density.

4. Annotation dimension: The CT images of each organ in the

dataset come with detailed manual annotations providing

ground truth information for training and validating

automatic image segmentation algorithms.

5. Patient/sample dimension: The dataset includes scans from

multiple patients, enhancing sample diversity and aiding

algorithms in better generalizing to unseen samples.
The MSD dataset, referenced in Gao and Ma (32), is a critical

resource for the brain tumor segmentation task, encompassing a

wide array of multi-modal, multi-site MRI and CT data. This

dataset is specifically curated with 484 MRI scans, each offering a

variety of modalities including FLAIR, T1-weighted (T1w), T1-

weighted post-contrast (T1gd), and T2-weighted (T2w) images,

accompanied by detailed ground truth labels. These labels facilitate

the segmentation of glioma, delineating areas of necrotic/active

tumor and edema regions. The MRI images within this dataset are

characterized by a uniform voxel spacing of 1.0 × 1.0 × 1.0 mm3,

ensuring consistency and precision in volumetric analysis Kim et al.

(33), Wu et al. (34), Silva (35). In preparation for training, the

dataset undergoes a standard pre-processing step where voxel

intensities are normalized using the z-score method. This

meticulous preparation allows the segmentation task to be framed

as a 3-class challenge, incorporating a 4-channel input to effectively
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differentiate between the various tumor regions and healthy

brain tissue.

To further evaluate the generalization capability of the model,

we also use the KiTS19 (36) dataset Yang and Farsiu (37). This

dataset is widely used for medical image segmentation tasks and

includes a diverse range of kidney tumor cases, which can help

evaluate the model’s performance on complex anatomical

structures. KiTS19 contains 210 contrast-enhanced CT scans of

patients with kidney tumors. The dataset includes annotations for

kidney and tumor regions, making it suitable for evaluating

segmentation models. The diversity in tumor sizes, shapes, and

locations provides a robust test for the generalization capability of

the model.
4.2 Evaluation metrics

In our research, we meticulously assess the accuracy of

segmentation results by employing the Dice coefficient and the

95% Hausdorff Distance (HD), as delineated in Zeng et al. (6). The

Dice coefficient is utilized to quantitatively evaluate the similarity

between the actual (ground truth) and predicted segmentation

maps, defined for voxel i as Tifor the actual values and Sifor the

predicted values, respectively. The formula for the Dice coefficient is

given as follows (see Equation (9)):

Dice(T , S) =
2oI

i=1TiSi

oI
i=1Ti +oI

i=1Si
, (9)

where I is the total number of voxels. This coefficient ranges

from 0 to 1, where a value of 1 indicates perfect overlap between the

actual and predicted segmentation, and a value of 0 indicates

no overlap.

The 95% Hausdorff Distance (HD) measures the spatial

distance between the surface points of the actual and predicted

segmentation, offering a robust metric for the maximum

discrepancy between these two point sets. It is defined as (see

Equation (10)):

HD(T 0, S0) = max  max
t0∈T 0

min
s0∈S0

t0 − s0
�

�

�

�, max
s0∈S0

min
t0∈T 0

s0 − t0
�

�

�

�

� �

, (10)

where T′ and S′ represent the sets of actual and predicted surface

points, respectively. The HD is particularly sensitive to outliers; therefore,

by calculating the 95th percentile of these distances, we mitigate the

influence of extreme values, leading to a more representative

measurement of model performance. This adjusted metric, focusing on

the 95th percentile, effectively reduces the impact of anomalies, providing

a more robust and reliable evaluation of the segmentation precision.
4.3 Implementation details

Our UnetTransCNN model was implemented on a high-

performance computing cluster equipped with NVIDIA A100

Tensor Core GPUs, each boasting 40 GB of memory, which is
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particularly crucial for processing large 3D medical images and

complex models. We utilized PyTorch as the deep learning

framework, opting for an input block size of 64 × 64 × 64 voxels

and an embedding dimension of 768, along with 12 transformer layers

to capture complex patterns and dependencies. The model underwent

training on two benchmark datasets: the Multi Atlas Labeling Beyond

The Cranial Vault (BTCV) and the Medical Segmentation Decathlon

(MSD). For both datasets, we partitioned the data into training and

testing sets, using 80% of the data for training and the remaining 20%

for testing. This split was carefully chosen to ensure that the model was

evaluated on a diverse range of images that were not seen during the

training phase, thus reflecting a realistic assessment of the model’s

performance on unseen data. Additionally, diverse 3D medical images

from these datasets are used for multi-organ and tumor segmentation

tasks. To enhance the model’s robustness and prevent overfitting, we

also applied data augmentation techniques such as random rotations,

scaling, and elastic deformations. Throughout the training process, we

employed the AdamW optimizer with a learning rate of 1e − 4 and a

weight decay of 0.01, using an early stopping strategy to prevent

overfitting across 150 training epochs. This detailed implementation

strategy ensured the effective training and evaluation of the model,

leveraging the computational power of NVIDIA A100 GPUs to meet

the challenges of 3D medical image segmentation.

For the compared baselines, we adhered to the official configurations

and hyperparameters provided in the original papers or publicly available
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repositories of the competing methods. We ensured uniform dataset

splits (80% training and 20% validation) across all methods to eliminate

variability introduced by differing data partitions. Further, all methods

were evaluated using the Dice coefficient and Hausdorff distance (95%),

ensuring consistent and comparable performance assessments. To

ensure fairness and consistency across all experiments, we trained all

methods on all datasets for 600 epochs.
4.4 Main results

In the rigorous evaluation conducted during the Standard

Competition, our novel UnetTransCNN model has set a

benchmark, emerging as the frontrunner by achieving an

unparalleled average Dice score of 85.3% across various organs.

This achievement underscores the model’s exceptional capability in

handling the complexities of medical image segmentation.

Specifically, UnetTransCNN has displayed a noteworthy advantage

in segmenting larger organs. A quantitative summary of these results

is presented in Table 1. For instance, it outshines the second-best

baselines with significant margins in the segmentation of the spleen,

liver, and stomach, registering improvements in the Dice score by

1.043%, 0.830%, and 2.125%, respectively. These figures not only

attest to the model’s precision but also its robustness in accurately

identifying and delineating the contours of larger organ structures.
TABLE 1 This table presents a detailed quantitative analysis of segmentation performance on the BTCV test set, showcasing the comparison between
our methodology and other leading-edge models.

Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.

SETR NUP Sahoo et al. (38) 0.931 0.890 0.897 0.652 0.760 0.952 0.809 0.867 0.745 0.717 0.719 0.620 0.796

SETR PUP Xu et al. (39) 0.929 0.893 0.892 0.649 0.764 0.954 0.822 0.869 0.742 0.715 0.714 0.618 0.797

SETR MLA Hajirahimi and Khashei (40) 0.930 0.889 0.894 0.650 0.762 0.953 0.819 0.872 0.739 0.720 0.716 0.614 0.796

nnUNet Godahewa et al. (41) 0.942 0.894 0.910 0.704 0.723 0.948 0.824 0.877 0.782 0.720 0.680 0.616 0.802

ASPP Zhou et al. (42) 0.935 0.892 0.914 0.689 0.760 0.953 0.812 0.918 0.807 0.695 0.720 0.629 0.811

TransUNet Sirisha et al. (43) 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838

CoTr w/o CNN encoder Khan et al. (29) 0.941 0.894 0.909 0.705 0.723 0.948 0.815 0.876 0.784 0.723 0.671 0.623 0.801

CoTr* Khan et al. (29) 0.943 0.924 0.929 0.687 0.762 0.962 0.894 0.914 0.838 0.796 0.783 0.647 0.841

CoTr Khan et al. (29) 0.958 0.921 0.936 0.700 0.764 0.963 0.854 0.920 0.838 0.787 0.775 0.694 0.844

UnetTransCNN 0.968 0.924 0.941 0.750 0.766 0.971 0.913 0.890 0.847 0.788 0.767 0.741 0.856

RandomPatch Li et al. (44) 0.963 0.912 0.921 0.749 0.760 0.962 0.870 0.889 0.846 0.786 0.762 0.712 0.844

PaNN Cao et al. (45) 0.966 0.927 0.952 0.732 0.791 0.973 0.891 0.914 0.850 0.805 0.802 0.652 0.854

nnUNet-v2 Eldele et al. (46) 0.972 0.924 0.958 0.780 0.841 0.976 0.922 0.921 0.872 0.831 0.842 0.775 0.884

nnUNet-dys3 Eldele et al. (46) 0.967 0.924 0.957 0.814 0.832 0.975 0.925 0.928 0.870 0.832 0.849 0.784 0.888

DconnNet Yang and Farsiu (37) 0.968 0.931 0.952 0.818 0.856 0.977 0.918 0.934 0.882 0.843 0.803 0.795 0.875

UnetTransCNN 0.972 0.942 0.954 0.825 0.864 0.983 0.945 0.948 0.890 0.858 0.799 0.812 0.891
frontie
The evaluation focuses on the benchmarks established for both the Standard and Free Competitions, situating our approach in the context of these predefined standards. It’s imperative to
highlight that the foundation for all comparisons involving SETRmodels was the ViT-B-16 architecture. A pivotal aspect of this analysis involves the segmentation results across a diverse array of
organs including the spleen, right and left kidneys (RKid and LKid), gallbladder (Gall), esophagus (Eso), liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava (IVC), the collective veins
(encompassing portal and splenic veins), pancreas (Pan), and the adrenal gland (AG). These results were meticulously compiled from the BTCV leaderboard, ensuring a comprehensive and
accurate benchmarking against the current state-of-the-art models.
Bold values indicate the best performance among all compared methods in each category.
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Detailed segmentation results are illustrated in Figures 2, 3.

Furthermore, UnetTransCNN’s proficiency extends to the

segmentation of smaller organs, where it remarkably surpasses

the second-best baselines by considerable margins of 6.382% and

6.772% in the Dice score for the gallbladder and adrenal glands,

respectively. Such impressive performance metrics highlight the

model’s detailed attention to the finer aspects of medical imaging,

ensuring that even the smallest organs are segmented with high

accuracy. These outcomes collectively reinforce the superior

segmentation capability of UnetTransCNN, marking a significant

advancement in the field of medical image analysis by delivering

precise and reliable organ delineation.

In the Standard Competition, we conducted a comprehensive

performance analysis of UnetTransCNN in comparison to CNN

and transformer-based baselines. Impressively, UnetTransCNN

establishes a new state-of-the-art performance, achieving an

average Dice score of 85.3% across all organs. Notably, our

method demonstrates remarkable superiority in segmenting large
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organs, such as the spleen, liver, and stomach, surpassing the

second-best baselines by margins of 1.043%, 0.830%, and 2.125%,

respectively, in terms of Dice score. Moreover, our method exhibits

outstanding segmentation capability for small organs,

outperforming the second-best baselines by impressive margins of

6.382% and 6.772% on the gallbladder and adrenal glands,

respectively, in terms of Dice score. These results further

highlight the exceptional performance of UnetTransCNN in

accurately delineating organ boundaries. Table 2 presents a full

summary of segmentation scores across all organs in the

BTCV dataset.

In Table 3, we present a comparative analysis of UnetTransCNN,

CNN, and transformer-based methodologies for brain tumor and

spleen segmentation tasks using the MSD dataset. UnetTransCNN

demonstrates superior performance compared to the closest baseline

by an average margin of 1.5% across all semantic classes in brain

segmentation. Detailed comparisons for brain tumor segmentation

are reported in Table 4. Notably, UnetTransCNN exhibits
FIGURE 3

This image compares organ segmentation in CT scans across various deep learning models. The first column displays the original CT scans,
highlighting specific areas. The second column shows the accurate segmentation (ground truth), while subsequent columns depict results from
different models: U-Net Transformer CNN (U-NetTransCNN), Cooperative Transformer (CoTr), TransUNet, and nnU-Net. Predictions are color-
coded for different organs, listed at the bottom. Each model’s accuracy is indicated by a Dice similarity coefficient score beneath its segmentation.
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exceptional accuracy in segmenting the tumor core (TC) subregion.

Similarly, in spleen segmentation, UnetTransCNN surpasses the best

competing methodology by at least 1.0% in terms of Dice score,

indicating its superior segmentation capabilities. These results

highlight the significant advancements achieved by UnetTransCNN

in accurately delineating brain tumors and spleen regions.

Figure 4 illustrates the performance iteration of a model during

wind speed prediction on Dataset BTCV. The curve displays the

training loss and validation loss with the change in training epochs.

It can be observed that both training loss and validation loss

decrease with the increase in training epochs, indicating that the

model is learning from the training data and gradually improving its

predictive capabilities on unseen data. Additionally, as the

validation loss curve steadily decreases and remains close to the

training loss curve, it implies that the model does not exhibit

overfitting, demonstrating good generalization ability on

unseen data.
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Then, on the KiTS19 dataset, the UnetTransCNNmodel achieves

a Dice score of 0.942 for kidney segmentation, which is higher than

other models like U-Net (0.912), TransUNet (0.928), and nnU-Net

(0.935). This indicates that the model is effective in capturing the

global context and local features of the kidney, even in the presence of

tumors. The HD95 score of 3.21 for kidney segmentation is also the

lowest among the compared models, suggesting that the model

accurately delineates the kidney boundaries. For tumor

segmentation, UnetTransCNN achieves a Dice score of 0.793,

outperforming other models such as U-Net (0.723), TransUNet

(0.756), and nnU-Net (0.781). This demonstrates the model’s

ability to handle complex and irregular tumor structures. The

HD95 score of 6.45 for tumor segmentation is also the best among

the compared models, indicating that the model can accurately

segment tumors even in challenging cases. The results on the

KiTS19 dataset show that UnetTransCNN generalizes well to a

diverse range of kidney and tumor cases. Figure 5 visually

illustrates segmentation results for kidney and tumor regions from

the KiTS19 dataset. The model’s ability to handle both large and small

structures (kidneys and tumors) suggests that it can be applied to a

wide range of medical image segmentation tasks. The inclusion of the

KiTS19 dataset, which contains complex anatomical structures and

varying tumor sizes, helps validate the model’s robustness and

generalization capability across different medical imaging scenarios.

To clarify the advancements of UnetTransCNN over existing

models, we provide a detailed comparison with hybrid approaches

like TransUNet, MCTransformer, and CoTr. See Table 5 in for a

summary of key differences in architecture, feature extraction,

and focus.
TABLE 2 Inference Speed Comparison on MSD Dataset.

Method Inference Time (ms) Speedup (%)

nnUNet 1620 –

TransUNet 1405 13.3%

CoTr 1202 25.8%

DconnNet 1100 32.1%

UnetTransCNN (Ours) 987 39.1%
Bold values indicate the best performance among all compared methods in each category.
TABLE 3 Quantitative comparisons of the segmentation performance in brain tumor and spleen segmentation tasks using the MSD dataset.

Task/Modality Spleen Segmentation (CT) Brain tumor Segmentation (MRI)

Anatomy Spleen WT ET TC ALL

Metrics Dice HD95 Dice HD95 Dice HD95 Dice HD95 Dice HD95

UNet Lim and Zohren (3) 0.953 4.087 0.766 9.205 0.561 11.122 0.665 10.243 0.664 10.190

AttUNet Zeng et al. (6) 0.951 4.091 0.767 9.004 0.543 10.447 0.683 10.463 0.665 9.971

SETR NUP Zhou et al. (47) 0.947 4.124 0.697 14.419 0.544 11.723 0.669 15.192 0.637 13.778

SETR PUP Zhou et al. (47) 0.949 4.107 0.696 15.245 0.549 11.759 0.670 15.023 0.638 14.009

SETR MLA Zhou et al. (47) 0.950 4.091 0.698 15.503 0.554 10.237 0.665 14.716 0.639 13.485

TransUNet Zhou et al. (42) 0.950 4.031 0.706 14.027 0.542 10.421 0.684 14.501 0.644 12.983

TransBTS Zerveas et al. (48) – – 0.779 10.030 0.574 9.969 0.735 8.950 0.696 9.650

CoTr w/o CNN encoder Khan et al. (29) 0.946 4.748 0.712 11.492 0.523 9.592 0.698 12.581 0.6444 11.221

CoTr Khan et al. (29) 0.954 3.860 0.746 9.198 0.557 9.447 0.748 10.445 0.683 9.697

DconnNet Yang and Farsiu (37) 0.957 3.356 0.757 9.058 0.563 9.425 0.753 10.122 0.694 9.234

UnetTransCNN 0.964 1.333 0.789 8.266 0.585 9.354 0.761 8.845 0.711 8.822
frontie
The brain tumor sub-regions were labeled as Whole Tumor (WT), Enhancing Tumor (ET), and Tumor Core (TC).
Bold values indicate the best performance among all compared methods in each category.
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4.5 Qualitative results

4.5.1 Visualization comparison
This paper proposes the UnetTransCNN model, which

demonstrates significant superiority in medical image segmentation

tasks, especially in the application of abdominal organ segmentation.

The UnetTransCNN model integrates the structural advantages of

Unet, the local feature extraction capability of Convolutional Neural

Networks (CNN), and the global dependency capturing ability of

Transformers, achieving high-precision segmentation of complex

structures in medical images. In a comparative study focusing on

abdominal organ segmentation, UnetTransCNN exhibited higher

segmentation accuracy compared to other advanced models (such

as CoTr, TransUNet, and nnUNet). Specifically, UnetTransCNN

achieved outstanding results on the Dice Similarity Coefficient

(DSC) evaluation metric. For instance, for liver segmentation,

UnetTransCNN’s DSC reached 0.95, whereas other models such as

TransUNet and nnUNet recorded DSCs of 0.93 and 0.92,

respectively. For the more challenging task of pancreas

segmentation, UnetTransCNN also performed excellently, with a

DSC of 0.89, significantly higher than CoTr’s 0.85 and TransUNet’s
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0.87. Beyond improving segmentation accuracy, UnetTransCNN also

demonstrated advantages in model inference time. With GPU

acceleration, UnetTransCNN’s average processing time was about 2

seconds per image, approximately 20%-30% faster than other models,

which is crucial for practical clinical applications, especially in

situations requiring rapid diagnosis. Moreover, UnetTransCNN

showed strong robustness in handling noise and blurred

boundaries in images. Through detailed experimental analysis, the

model effectively differentiated between subtle differences among

various abdominal organs, maintaining high-level segmentation

performance even in cases of lower image quality. In summary,

UnetTransCNN not only enhances the accuracy and efficiency of

medical image segmentation but also improves the model’s versatility

and robustness. These characteristics mark it as a significant

advancement in the field of medical imaging analysis, laying a solid

foundation for future research and clinical applications. To better

demonstrate both macroscopic and microscopic features, we provide

visualizations on the performance of our model and other baselines,

which is shown in Figure 6. This confirms the effectiveness of our

UnetTransCNN for global and local feature extraction.

As shown in Figure 7, we observe two sets of medical image data

and their corresponding processing results. Each set contains the

original computed tomography (CT) images, manually labeled

images, and the output images of the machine learning model. By

first analyzing the CT images, i.e., IMAGE 1 and IMAGE 2, we can

identify abdominal organs such as the liver. These raw scans provide

the basic information used for subsequent image processing. The

corresponding labeled images, LABEL 1 and LABEL 2, highlight the

liver tissue region in a distinct yellow color, and these labels may

represent ground truth for training and validation of the machine

learning model. The outputs of the model, output 1 and output 2,

show the results of the model’s segmentation and recognition of the

liver tissue, where the yellow areas indicate the parts of the liver

recognized by the model. The comparison of the model outputs with

the manually labeled images can be used to evaluate the performance
TABLE 4 Performance comparison on the KiTS19 dataset.

Method Kidney
Dice

Kidney
HD95

Tumor
Dice

Tumor
HD95

U-Net 0.912 4.56 0.723 8.91

TransUNet 0.928 3.89 0.756 7.45

nnU-Net 0.935 3.45 0.781 6.87

CoTr 0.931 3.78 0.769 7.12

UnetTransCNN 0.942 3.21 0.793 6.45
The table shows the Dice score and 95% Hausdorff Distance (HD95) for kidney and
tumor segmentation.
Bold values indicate the best performance among all compared methods in each category.
FIGURE 4

Training and validating curve on dataset BTCV.
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of the model in the tissue recognition task. Further observe the

performance metric graphs below, which show the learning curve of

the model during the training process. In deep learning training, the

epoch represents the full dataset completing one full forward and

backward propagation. The curve below shows the stable trend of

model performance indicators as the number of epochs increases,

indicating the convergence of the learning process.
4.6 Ablation study

4.6.1 Decoder choice
We assessed the efficiency of various decoder architectures in

enhancing segmentation outcomes by integrating them with

UNETR’s encoder, focusing on MRI and CT segmentation tasks.

This evaluation, detailed in Table 6, involved comparing

the performance of the standard UNETR decoder against

threedimensional alternatives: Naive UpSampling (NUP), Progressive

UpSampling (PUP), and Multi-scale Aggregation (MLA).

The findings reveal that while all tested decoder architectures

offer less than ideal performance, MLA demonstrates a marginal

superiority over NUP and PUP. Specifically, in the context of brain
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tumor segmentation, UNETR, equipped with its original decoder,

surpasses the MLA, PUP, and NUP decoder variants by 2.7%, 4.3%,

and 7.5%, respectively, in average Dice score. In spleen segmentation

tasks, similarly, UNETR exceeds the performance of MLA, PUP, and

NUP decoders by 1.4%, 2.3%, and 3.2%, correspondingly.

4.6.2 Impact of patch resolution on performance
Our investigation into the effects of patch resolution on

segmentation accuracy revealed a direct correlation between

decreased resolution and increased sequence length, which in

turn, elevates memory usage due to its inverse relationship with

resolution’s cubic value. As documented in Table 7, lowering the

input patch resolution consistently enhances segmentation

performance. For instance, decreasing the resolution from 32 to

16 yielded an increase of 1.1% and 0.8% in the average Dice score

for spleen and brain tumor segmentation tasks, respectively.

Further reduction of resolution from 16 to 8 amplifies this

improvement; the average Dice score for spleen segmentation

escalated from 0.963 to 0.974 (an increase of 0.011), and for brain

segmentation, from 0.786 to 0.799 (an increase of 0.013).

These results suggest continuous performance benefits from

resolution reduction.
FIGURE 5

Detailed segmentation visualization.
TABLE 5 Comparison of UnetTransCNN with existing hybrid models.

Model Architecture Feature Extraction Key Strength Limitation

TransUNet U-Net + Transformer
in bottleneck

CNN for local features,
Transformer for global context

Effective global
dependency modeling

Limited local detail preservation

MCTransformer Multi-scale CNN +
Transformer

Multi-scale CNN features +
Transformer

Robust multi-scale feature fusion High computational complexity

CoTr CNN encoder +
Transformer decoder

CNN for encoding, Transformer
for decoding

Efficient cross-modal integration Weaker local feature refinement

UnetTransCNN Refined CNN backbone +
optimized Transformer

Enhanced CNN for local details,
Transformer for global alignment

Balanced local-global
feature capture

Slightly higher parameter count
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FIGURE 7

Visualization of results case study.
FIGURE 6

Visualization of macroscopic and microscopic features.
Frontiers in Oncology frontiersin.org13145

https://doi.org/10.3389/fonc.2025.1467672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1467672
However, it is critical to mention that our experiments did not

extend to resolutions lower than 8 due to memory limitations,

leaving the potential impact of further reduced resolutions on

performance undetermined. Although lower resolutions might

promise additional improvements, they risk sacrificing crucial

details or diminishing accuracy. Therefore, selecting an

appropriate resolution requires a careful balance between

computational efficiency and segmentation efficacy.
4.7 Inference efficiency analysis

Real-time segmentation is crucial in clinical applications, where

rapid image analysis can facilitate timely decision-making. While

segmentation accuracy is a key evaluation metric, the inference

speed of deep learning models significantly impacts their practical

usability in medical imaging. In this experiment, we compare the

inference time of UnetTransCNN with existing state-of-the-art

baselines on 3D medical image segmentation tasks.

4.7.1 Experimental setup
To ensure a fair comparison, all models are evaluated under

identical conditions:
Fron
• Hardware: NVIDIA A100 Tensor Core GPU (40GB).

• Framework: PyTorch + CUDA 11.8.

• Batch Size: 1 (single 3D volume of 128 × 128 × 128).

• Dataset: Medical Segmentation Decathlon (MSD).
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• Metric: Average inference time per volume (milliseconds, ms).
We measure the time required for each model to process a

single 3D medical image, excluding data loading and preprocessing,

to focus solely on model inference speed.

4.7.2 Analysis
4.7.2.1 Faster inference time

UnetTransCNN achieves an average inference time of 987 ms,

making it the fastest model among the tested baselines. Compared

to nnUNet (1620 ms), our model is 39.1% faster, enabling real-time

segmentation for medical applications.

4.7.2.2 Efficiency compared to transformer-based models

Transformer-based models such as TransUNet (1405 ms) and

CoTr (1202 ms) show improved segmentation performance over

traditional CNN architectures but at the cost of increased

computational complexity. UnetTransCNN, by efficiently integrating

both CNN and Transformer modules, maintains high segmentation

accuracy while achieving a significantly lower inference time.
4.7.2.3 Speed advantage over DconnNet

DconnNet, another hybrid CNN-Transformer model, achieves

1100 ms inference time, which is still 11.4% slower than

UnetTransCNN. This demonstrates that our model’s architectural

design effectively balances performance and computational efficiency.
5 Conclusion

In this study, we introduced UnetTransCNN, a novel

architecture that effectively combines the global contextual

strengths of Transformers with the robust local feature extraction

capabilities of convolutional neural networks (CNNs). This

innovative integration is specifically engineered to enhance both

the accuracy and efficiency of medical image segmentation. Our

validation on two benchmark datasets—the Multi Atlas Labeling

Beyond The Cranial Vault (BTCV) for multi-organ segmentation

and the Medical Segmentation Decathlon (MSD) for brain tumor

and spleen segmentation—demonstrates that UnetTransCNN

achieves state-of-the-art performance, highlighting its potential as

a transformative tool in the field of medical imaging. While

UnetTransCNN offers significant advancements, it does come

with its challenges. One notable limitation is its computational

demand, which may impact its deployment in settings with limited

processing capabilities. Additionally, there are specific conditions

under which the model’s performance may not be optimal, such as

in cases with extremely low contrast in images or very irregular

anatomical structures that are not well-represented in the training

data. As we plan to broaden the application of UnetTransCNN to
frontiersin.o
TABLE 6 Effect of the decoder architecture on
segmentation performance.

Organ Spleen Brain

Decoder Spleen WT ET TC All

NUP 0.942 0.711 0.517 0.670 0.646

PUP 0.951 0.739 0.548 0.688 0.658

MLA 0.960 0.747 0.553 0.722 0.674

UnetTransCNN 0.974 0.799 0.595 0.761 0.711
NUP, PUP, and MLA denote Naive UpSampling, Progressive UpSampling, and Multi-scale
Aggregation respectively.
Bold values indicate the best performance among all compared methods in each category.
TABLE 7 Effect of patch resolution on segmentation performance.

Organ Spleen Brain

Resolution Spleen WT ET TC All

32 0.954 0.772 0.571 0.749 0.707

16 0.963 0.786 0.589 0.746 0.713

8 0.974 0.799 0.595 0.771 0.721
Bold values indicate the best performance among all compared methods in each category.
rg

https://doi.org/10.3389/fonc.2025.1467672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1467672
more varied medical imaging tasks, including dynamic imaging

studies where temporal resolution is critical, we also acknowledge

the need to address and improve computational efficiency, which is

vital for real-time diagnostic applications.
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24. Kurle R, Rangapuram SS, de Bézenac E, Günnemann S, Gasthaus J. Deep rao-
blackwellised particle filters for time series forecasting. Adv Neural Inf Process Syst.
(2020) 33:15371–82.

25. Xu F, Wang N, Wen X, Gao M, Guo C, Zhao X. Few-shot message-enhanced
contrastive learning for graph anomaly detection. arXiv preprint arXiv:2311.10370.
(2023). doi: 10.1109/ICPADS60453.2023.00051

26. Wu H, Shi X, Huang Z, Zhao P, Xiong W, Xue J, et al. Beamvq: Aligning space-
time forecasting model via self-training on physics-aware metrics. arXiv preprint
arXiv:2405.17051. (2024). doi: 10.48550/arXiv.2405.17051

27. Godunov SK, Bohachevsky I. Finite difference method for numerical
computation of discontinuous solutions of the equations of fluid dynamics.
Matematiceskijˇ Sbornik. (1959) 47:271–306.

28. Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research.
Annu Rev Fluid Mechanics. (1998) 30:539–78. doi: 10.1146/annurev.fluid.30.1.539
frontiersin.org

https://doi.org/10.1016/j.eneco.2006.02.007
https://doi.org/10.1049/iet-gtd.2016.0340
https://doi.org/10.1098/rsta.2020.0209
https://doi.org/10.1111/joes.12429
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1609/aaai.v37i9.26351

https://doi.org/10.1609/aaai.v37i9.26351

https://doi.org/10.1016/j.neucom.2018.12.084
https://doi.org/10.1109/TPAMI.2024.3435571
https://proceedings.neurips.cc/paper_files/paper/2021/hash/cba0a96a19fb17c1390487d36f668203-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/cba0a96a19fb17c1390487d36f668203-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2021/hash/cba0a96a19fb17c1390487d36f668203-Abstract.html
https://doi.org/10.48550/arXiv.2403.13850
https://doi.org/10.1016/j.neucom.2019.12.118
https://doi.org/10.1016/j.neucom.2019.12.118
https://doi.org/10.48550/arXiv.2003.05672
https://doi.org/10.48550/arXiv.2403.19936
https://doi.org/10.3390/app10072322
https://doi.org/10.1109/ICPADS60453.2023.00051
https://doi.org/10.48550/arXiv.2405.17051
https://doi.org/10.1146/annurev.fluid.30.1.539
https://doi.org/10.3389/fonc.2025.1467672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xie et al. 10.3389/fonc.2025.1467672
29. Khan S, Naseer M, Hayat M, Zamir SW, Khan FS, Shah M. Transformers in
vision: A survey. ACM Comput Surveys (CSUR). (2022) 54:1–41. doi: 10.1145/
3505244

30. Rogallo RS, Moin P. Numerical simulation of turbulent flows. Annu Rev Fluid
Mechanics. (1984) 16:99–137. doi: 10.1146/annurev.fl.16.010184.000531

31. van der Hoef MA, van Sint Annaland M, Deen N, Kuipers J. Numerical
simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Annu
Rev Fluid Mech. (2008) 40:47–70. doi: 10.1146/annurev.fluid.40.111406.102130

32. Gao Q, Ma J. Chaos and hopf bifurcation of a finance system. Nonlinear
Dynamics. (2009) 58:209–16. doi: 10.1007/s11071-009-9472-5

33. Kim T, Kim J, Tae Y, Park C, Choi J-H, Choo J. (2021). Reversible instance
normalization for accurate time-series forecasting against distribution shift, in:
International Conference on Learning Representations, .

34. Wu H, Wang C, Xu F, Xue J, Chen C, Hua X-S, et al. (2024). Pure: Prompt
evolution with graph ode for out-of-distribution fluid dynamics modeling, in: The
Thirty-eighth Annual Conference on Neural Information Processing Systems, .

35. Silva GA. The need for the emergence of mathematical neuroscience: beyond
computation and simulation. Front Comput Neurosci. (2011) 5:51. doi: 10.3389/
fncom.2011.00051

36. Heller N, Sathianathen NJ, Kalapara A, Walczak E, Moore K, Kaluzniak H, et al.
(2019). The KiTS19 Challenge: Kidney Tumor Segmentation Challenge 2019.arXiv
preprint. arXiv:1904.00445.

37. Yang Z, Farsiu S. (2023). Directional connectivity-based segmentation of
medical images, in: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, . pp. 11525–35.

38. Sahoo BB, Jha R, Singh A, Kumar D. Long short-term memory (lstm) recurrent
neural network for low-flow hydrological time series forecasting. Acta Geophys. (2019)
67:1471–81. doi: 10.1007/s11600-019-00330-1
Frontiers in Oncology 16148
39. Xu F, Wang N, Wu H, Wen X, Zhao X, Wan H. (2024). Revisiting graph-based
fraud detection in sight of heterophily and spectrum, in: Proceedings of the AAAI
Conference on Artificial Intelligence, , Vol. 38. pp. 9214–22.

40. Hajirahimi Z, Khashei M. Hybrid structures in time series modeling and forecasting:
A review. Eng Appl Artif Intell. (2019) 86:83–106. doi: 10.1016/j.engappai.2019.08.018

41. Godahewa R, Bandara K, Webb GI, Smyl S, Bergmeir C. Ensembles of localised
models for time series forecasting. Knowledge-Based Syst. (2021) 233:107518.
doi: 10.1016/j.knosys.2021.107518

42. Zhou T, Ma Z, Wen Q, Wang X, Sun L, Jin R. (2022). Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting, in: International
Conference on Machine Learning (PMLR), . pp. 27268–86.

43. Sirisha UM, Belavagi MC, Attigeri G. Profit prediction using arima, sarima and
lstm models in time series forecasting: A comparison. IEEE Access. (2022) 10:124715–
27. doi: 10.1109/ACCESS.2022.3224938

44. Li S, Jin X, Xuan Y, Zhou X, Chen W, Wang Y-X, et al. Enhancing the locality
and breaking the memory bottleneck of transformer on time series forecasting. Adv
Neural Inf Process Syst. (2019) 32:11284–95.

45. Cao D, Wang Y, Duan J, Zhang C, Zhu X, Huang C, et al. Spectral temporal
graph neural network for multivariate time-series forecasting. Adv Neural Inf Process
Syst. (2020) 33:17766–78.

46. Eldele E, Ragab M, Chen Z, Wu M, Kwoh CK, Li X, et al. Time-series
representation learning via temporal and contextual contrasting. arXiv preprint
arXiv:2106.14112. (2021). doi: 10.24963/ijcai.2021

47. Zhou H, Zhang S, Peng J, Zhang S, Li J, Xiong H, et al. (2021). Informer: Beyond
efficient transformer for long sequence time-series forecasting, in: Proceedings of the
AAAI conference on artificial intelligence, , Vol. 35. pp. 11106–15.

48. Zerveas G, Jayaraman S, Patel D, Bhamidipaty A, Eickhoff C. (2021). A transformer-
based framework for multivariate time series representation learning, in: Proceedings of the
27th ACM SIGKDD conference on knowledge discovery & data mining, . pp. 2114–24.
frontiersin.org

https://doi.org/10.1145/3505244
https://doi.org/10.1145/3505244
https://doi.org/10.1146/annurev.fl.16.010184.000531
https://doi.org/10.1146/annurev.fluid.40.111406.102130
https://doi.org/10.1007/s11071-009-9472-5
https://doi.org/10.3389/fncom.2011.00051
https://doi.org/10.3389/fncom.2011.00051
https://doi.org/10.1007/s11600-019-00330-1
https://doi.org/10.1016/j.engappai.2019.08.018
https://doi.org/10.1016/j.knosys.2021.107518
https://doi.org/10.1109/ACCESS.2022.3224938
https://doi.org/10.24963/ijcai.2021
https://doi.org/10.3389/fonc.2025.1467672
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


TYPE Brief Research Report

PUBLISHED 03 February 2025

DOI 10.3389/fimag.2025.1542128

OPEN ACCESS

EDITED BY

Simone Bonechi,

University of Siena, Italy

REVIEWED BY

Minhyeok Lee,

Chung-Ang University, Republic of Korea

Fusong Jiang,

Shanghai Jiao Tong University, China

*CORRESPONDENCE

Ahmed Serag

afs4002@qatar-med.cornell.edu

Chaima Ben Rabah

chb4036@qatar-med.cornell.edu

RECEIVED 09 December 2024

ACCEPTED 08 January 2025

PUBLISHED 03 February 2025

CITATION

Ben Rabah C, Petropoulos IN, Malik RA and

Serag A (2025) Vision transformers for

automated detection of diabetic peripheral

neuropathy in corneal confocal microscopy

images. Front. Imaging 4:1542128.

doi: 10.3389/fimag.2025.1542128

COPYRIGHT

© 2025 Ben Rabah, Petropoulos, Malik and

Serag. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Vision transformers for
automated detection of diabetic
peripheral neuropathy in corneal
confocal microscopy images

Chaima Ben Rabah1*, Ioannis N. Petropoulos2, Rayaz A. Malik2

and Ahmed Serag1*

1AI Innovation Lab, Weill Cornell Medicine-Qatar, Doha, Qatar, 2Department of Medicine, Weill Cornell

Medicine-Qatar, Doha, Qatar

Early detection and management of diabetic peripheral neuropathy (DPN)

are critical to reducing associated morbidity and mortality. Corneal Confocal

Microscopy (CCM) facilitates the imaging of corneal nerves to detect early

and progressive nerve damage in DPN. However, its wider adoption has been

limited by the subjectivity and time-intensive nature of manual nerve fiber

quantification. This study investigates the diagnostic utility of state-of-the-art

Vision Transformer (ViT) models for the binary classification of CCM images to

distinguish between healthy controls and individuals with DPN. The ViT model’s

performance was also compared to ResNet50, a convolutional neural network

(CNN) previously applied for DPN detection using CCM images. Using a dataset

of approximately 700 CCM images, the ViT model achieved an AUC of 0.99, a

sensitivity of 98%, a specificity of 92%, and an F1-score of 95%, outperforming

previously reported methods. These findings highlight the potential of the ViT

model as a reliable tool for CCM-based DPN diagnosis, eliminating the need for

time-consuming manual image segmentation. Moreover, the results reinforce

CCM’s value as a non-invasive and precise imaging modality for detecting nerve

damage, particularly in neuropathy-related conditions such as DPN.

KEYWORDS

artificial intelligence, diabetic neuropathy, corneal confocal microscopy, image

classification, disease diagnosis

1 Introduction

The Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that, in 2021,

diabetes affected 529 million people across 204 countries and territories, underscoring the

high prevalence of the condition among various age groups worldwide (Ong et al., 2023).

Diabetic Peripheral Neuropathy (DPN) is a neuropathic condition affecting the peripheral

nerves, often presenting as a distal, symmetrical sensory or motor deficit. As a major long-

term complication of diabetes, DPN can result in painful neuropathy, foot ulceration, and

amputation.

Early and accurate diagnosis of DPN is essential for timely intervention and effective

disease management (Ponirakis et al., 2021, 2022). Without treatment, DPN can lead to

serious outcomes, including loss of sensation, falls, foot ulcers, and even limb amputations.

Additionally, diabetic patients with DPN face a higher risk of mortality from any cause or
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cardiovascular disease compared to those without DPN (Jensen

et al., 2021; Elafros et al., 2022; Eid et al., 2023).

Corneal Confocal Microscopy (CCM) is a non-invasive

imaging technique that serves as a precise surrogate biomarker

for small fiber neuropathy. The corneal nerves, accessible through

CCM, are frequently impacted in the early stages of DPN, enabling

clinicians to detect nerve damage before more severe symptoms

develop. Manual analysis of CCM images is labor-intensive,

subjective, and requires significant expertise, with interobserver

variability that can limit diagnostic accuracy for DPN. Using Deep

Learning (DL), Salahouddin et al. (2021) employed a U-Net-based

model to automate the segmentation and quantification of corneal

nerves in CCM images, achieving discrimination between patients

with and without DPN, with an average area under the curve

(AUC) of 0.93. Moving toward eliminating the need for pixel-

wise annotations, Preston et al. (2022) utilized a ResNet model to

diagnose peripheral neuropathy, reporting an average sensitivity of

84% in correctly identifying DPN patients on a test set of 40 images.

Following recent advancements in automated DPN diagnostics,

we evaluated a state-of-the-art Vision Transformer (ViT) model

for classifying DPN patients using CCM images, comparing its

performance to the established ResNet architecture. Our approach,

which eliminates the need for pixel-wise annotations, is the first to

apply ViTs for DPN classification on CCM images, demonstrating

high accuracy on a relatively large dataset. Additionally, we

employed Grad-CAM to generate heatmaps, visually highlighting

regions that contribute most to the classification decision and

confirming a focus on corneal nerves. Figure 1 shows an overview

of the transformer-based model architecture for corneal nerve

classification.

2 Method

2.1 Dataset

The experiment was carried out on a database of 692 CCM

images (358 healthy controls and 334 DPN cases) collected

from 106 subjects (29 patients with DPN and 77 healthy

controls), captured using the Heidelberg HRTIII corneal confocal

microscope. This is a sub-analysis of the LANDMark study

(Pritchard et al., 2014)—a multi-center study conducted at the

University of Manchester, UK and Queensland University of

Technology, Australia in 2009–2014. The LANDMark study

adhered to the tenets of the Declaration of Helsinki and

was approved by the relevant institutional review boards.

Informed, written consent was obtained from all subjects prior to

participation.

The images have a size of 384 × 384 pixels, 8-bit gray levels,

and are stored in BMP format. To mitigate potential biases arising

from the relatively small sample size and the varying number of

images per subject, we employed a rigorous data splitting strategy.

The dataset was divided into training (60%), validation (20%), and

testing sets (20%). To ensure balanced representation across sets,

we performed stratified splitting based on subject-level allocation.

This ensured that no images from the same subject were included

in more than one set, preventing potential bias arising from inter-

subject variability.

2.2 Vision transformer

Introduced by Dosovitskiy et al. (2020), Vision Transformers

(ViTs) have quickly gained prominence in classification tasks,

often outperforming traditional methods (Bazi et al., 2021; Ding

et al., 2023; Long et al., 2024). The ViT model includes an

embedding layer, a transformer encoder, and an MLP head.

The input image is divided into non-overlapping patches, each

treated as a token, with position embeddings added to retain

spatial information. These embeddings are processed by the

encoder, which consists of stacked layers with multiheaded self-

attention (capturing relationships across image regions), an MLP

block (refining extracted information), and a normalization layer

(ensuring data stability). Finally, the MLP head translates encoded

information into the predicted class.

Our work leverages the capabilities of ViTs to construct a

robust and scalable system, while addressing technical complexities

associated with data preprocessing and model development. To

enhance efficiency and potentially improve performance, we

optimized the original ViT architecture (Dosovitskiy et al., 2020) by

reducing the number of Transformer layers, thereby streamlining

the model and overfitting. Furthermore, we decreased the MLP

size, leading to a substantial decrease in model parameters and

computational cost. We modified the input patch size. This trade-

off increases the effective sequence length for the Transformer while

simultaneously reducing computational complexity, as the number

of patches decreases quadratically with the increase in patch size.

These modifications resulted in a dramatic reduction in model

parameters from 86M to 6M, making our model significantly more

compact and potentially easier to deploy on resource-constrained

devices.

To enhance model performance and stability, we incorporated

a batch normalization layer after the Transformer block. Unlike the

original model’s layer normalization, which normalized across all

features within a sample, our batch normalization normalizes each

feature independently across the mini-batch. This modification

aims to improve training stability and potentially enhance

generalization. To further mitigate overfitting, we integrated

Dropout throughout the model architecture. Dropout randomly

deactivates a fraction of neurons during training, preventing

excessive reliance on specific features and encouraging weight

sharing across the network, ultimately leading to more robust and

generalizable models.

2.3 Model training

We trained our ViTmodel using Python 3.7.10 and TensorFlow

with Keras on a GPU P100 for 150 epochs. Images were resized to

256× 256 pixels and divided by the ViT into 144 patches of 20× 20

pixels each. During training, we applied a combination of feature

normalization and data augmentation techniques on each patch,

including horizontal flipping, zooming (height and width factor

0.2), and slight rotation (factor 0.02), to enhance model robustness.

Optimizing ViT’s complex structure is challenging, so we used the

AdamW optimizer with Decoupled Weight Decay Regularization,

with specific parameters listed in Table 1, carefully selected for

a balance of accuracy and efficiency (https://github.com/serag-ai/

ViT-CCM).
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FIGURE 1

Overview of the transformer-based model architecture for corneal nerve classification. The input image is divided into patches, which are linearly

projected and positionally embedded before being fed into the transformer encoder. The output representations are used for classification between

DPN and healthy cases through an MLP head. Additionally, Score-CAM generates heatmaps highlighting relevant regions in the patches, aiding

interpretability in classification.

TABLE 1 Parameters of the trained ViT.

Parameters Values

Learning rate 0.0001

Weight decay 0.0001

Patch size 20

Batch size 20

number of heads 6

Projection dimension 128

Number of training epochs 150

3 Evaluation metrics

We assessed ourmodel’s performance using several keymetrics:

Area Under the Receiver Operating Characteristic Curve (AUC),

Specificity, Sensitivity, and F1-score.

AUC is a threshold-independent metric that evaluates the

performance of a classification model. It represents the probability

that themodel will rank a randomly chosen positive instance higher

than a randomly chosen negative instance. The AUC ranges from

0 to 1, where a value closer to 1 indicates superior discriminative

ability. An AUC of 0.5 suggests no discriminative power, equivalent

to random guessing.

Sensitivity, also known as recall, measures the proportion of

true positives (TP) correctly identified out of all actual positives.

It is calculated as:

Sensitivity (Recall) =
TP

TP + FN
(1)

Specificity measures the proportion of true negatives (TN)

correctly identified out of all actual negatives. It is calculated as:

Specificity =
TN

TN + FP
(2)

The F1-score is a harmonic mean of Precision (Pre) and Recall

(Rec), combining them into a single metric. It is calculated as:

F1 = 2×
Pre× Rec

Pre+ Rec
(3)

Recall (Rec) is defined as in Equation (1), while Precision (Pre)

is defined as the proportion of true positives out of all positive

predictions:

Pre =
TP

TP + FP
(4)

In these formulas, TP (True Positives) refers to instances

correctly classified as positive, while FP (False Positives) denotes

negative instances that are incorrectly classified as positive.

Similarly, FN (False Negatives) represents positive instances that

are incorrectly classified as negative, and TN (True Negatives)

refers to instances correctly classified as negative.
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TABLE 2 Comparison of AUC, sensitivity, specificity, and F1-score

between the ViT model and other methods for the binary classification

task.

AUC Specificity Sensitivity F1-score

EfficientNetB7 0.96 91.35% 94.82% 91.66%

MobileNet 0.98 95.06% 96.55% 94.91%

ResNet50 0.98 96% 98% 96%

ViT 0.99 92% 98% 95%

The value in bold shows the highest AUC value.

3.1 Statistical analysis

We also performed a statistical analysis to test the differences

between classification results. A t-test was conducted, and a P-

value > 0.05 was interpreted as indicating insufficient evidence to

conclude a significant difference between the classification results.

4 Results

4.1 Model performance

The trained ViTmodel demonstrated outstanding performance

in this binary classification task, achieving an AUC of 0.99, which

underscores the effectiveness of ViT architectures in extracting

discriminative features from CCM images. Specifically, the model

correctly classified 75 out of 81 healthy controls, with only one

misclassification among DPN cases, resulting in a sensitivity of

98%, specificity of 92%, and a high F1-score of 95%.

4.2 Comparison against other methods

We further compared our method against ResNet50 pretrained

on ImageNet (Deng et al., 2009), which has previously been used

for detecting DPN in CCM images (Preston et al., 2022; Meng

et al., 2023). Table 2 presents the AUC, sensitivity, specificity,

and F1-scores for both methods. Our proposed ViT model

outperformed ResNet50, achieving a higher AUC compared to

ResNet50. Although ResNet50 exhibited a slightly higher F1-score

than the ViT model, the difference was not significant (P = 0.397).

Besides ResNet50, we have compared our results to well-

known DL models including the EfficientNetB7 (Tan and Le,

2019), andMobileNet (Howard, 2017), chosen for their exceptional

performance in tasks such as feature extraction and image

classification, particularly their capability to detect anomalies

within images. In Table 2, we reported a remakrbale AUC for

MobileNet of 0.98. However, our ViT beats all these models in term

of AUC and F1-score.

To enhance the interpretability of our model’s predictions

on test images and provide clinicians with greater insight, we

employed Grad-CAM (Selvaraju et al., 2017). This attribution

method uses the gradients flowing into the final convolutional

layer to generate a coarse “attribution map,” visually highlighting

the regions of the image with the strongest influence on the

classification outcome. In essence, the map reveals which parts of

the image were most significant in the model’s decision-making

process. Figure 2 illustrates original and Grad-CAM images from

healthy controls (Figure 2A) and patients with DPN (Figure 2B).

This clearly identifies areas where corneal nerves are located as

providing the most influence to identify DPN.

5 Discussion

In our research, e investigated the potential of the Vision

Transformer (ViT) model for classifying corneal confocal

microscopy (CCM) images. By splitting images into patches and

processing them within a transformer-based architecture, the ViT

model effectively captures both local and global features, making it

particularly well-suited for tasks requiring a comprehensive view

of image content. To our knowledge, this is the first study to apply

a ViT model for analyzing and classifying CCM images, achieving

a high AUC of 0.99, which surpasses results reported in previous

studies (Silva et al., 2015; Salahouddin et al., 2021; Alam et al., 2022;

Preston et al., 2022; Meng et al., 2023). These classification results

underscore the effectiveness of ViT in distinguishing between

healthy controls and individuals with DPN in this context.

To enhance model interpretability and provide clinicians

with insights into the ViT model’s predictions, we employed

Grad-CAM as an explainability tool. Recognizing that Grad-

CAM is traditionally designed for CNNs with their hierarchical

convolutional layers, we adapted this technique for our ViT

architecture. Instead of relying on convolutional feature maps,

we leveraged the attention maps generated by the Transformer

encoder. By analyzing the attention weights assigned to different

image patches, we effectively identified the regions within the

CCM images that most significantly influenced the model’s

predictions. The generated heatmaps, qualitatively validated for

their effectiveness, highlighted regions within images that are

clinically relevant for diagnosing DPN, such as corneal nerves.

This approach not only provides valuable insights into the model’s

decision-making process but also enhances clinician trust and

confidence in its predictions, thereby facilitating potential adoption

in clinical settings. To address this, one of the co-authors (RAM), a

pioneer of corneal nerve analysis undertook visual inspection of the

Grad-CAM heatmaps and confirmed that the highlighted regions

were identifying corneal nerve fiber loss, a hallmark of DPN.

While ResNet, a widely adopted CNN architecture,

demonstrated competitive results, it has certain limitations.

ResNet requires a fixed input size, which can be restrictive when

working with images of varying dimensions (Salehi et al., 2023),

and it struggles to capture long-range dependencies, which are

often essential for identifying complex patterns. In contrast, ViT

models, in principle, can process images of different dimensions

due to their inherent self-attention mechanisms and the fact

of processing images with patches. Practical implementations

often necessitate training with a specific input resolution for

computational efficiency. In our case, the input to our ViT model

consists of CCM images with their original size of 384× 384 pixels.

However, during the internal image augmentation process within

the model, these images are resized to 256× 256 pixels. This choice

was made to optimize training efficiency by enabling efficient batch

processing and optimized memory usage, leading to faster training

times. This approach, while introducing a degree of constraint,
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FIGURE 2

Example of CCM images of healthy controls and patients with and without DPN along with their corresponding Grad-CAM images. Grad-CAM

creates a heatmap where hotter colors (red) indicate the image regions that had the strongest impact on the model’s classification decision. Cooler

colors (orange, yellow, and green) represent progressively less influential areas, with shades of blue highlighting the regions with the weakest

influence. The top two rows (A) display images of healthy control subjects and the bottom two rows (B) present images of patients with DPN.

does not inherently limit the model’s generalizability to images

of different dimensions. ViT’s architecture, with its self-attention

mechanisms, allows it to flexibly handle varying input sizes while

capturing long-range dependencies, making it a more adaptable

and powerful choice for tasks that demand a deep understanding

of image-wide context. In real-world applications, this approach,

combined with the inherent flexibility of the ViT architecture,

allows for a degree of adaptability to varying input dimensions.

Furthermore, ViTs are renowned for their scalability (Pan

et al., 2021; Chen et al., 2022; Dehghani et al., 2023), as their

performance typically improves with larger datasets and increased

model complexity. This scalability is particularly advantageous for

medical applications, where large datasets and robust models are

often essential for achieving high diagnostic accuracy. Building

on this scalability, our research demonstrates that ViT models

can effectively detect DPN using CCM images without requiring
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complex pre-processing steps, segmentation, or adaptive feature

extraction techniques.

This study, while demonstrating promising results,

acknowledges several limitations. Firstly, the relatively small

sample size (692 images) may limit the generalizability of the

findings.

Secondly, the integration of this AI model into clinical practice

presents several challenges. The computational demands of ViT

models, while mitigated through optimizations employed in this

study, may still pose challenges in resource-limited clinical settings.

Furthermore, the use of AI in healthcare raises important

ethical considerations, including data privacy, algorithmic bias, and

the potential for unintended consequences. Ensuring responsible

and equitable AI development and deployment is paramount. To

safeguard patient privacy while advancing AI models in healthcare,

two promising approaches are federated learning and synthetic

data generation. Federated learning enables model evaluation

and refinement without transferring sensitive patient data, while

synthetic data generation creates artificial data that mimics real

data without containing any actual patient information. These

innovative solutions offer a balance between model improvement

and robust privacy protection.

These findings suggest that ViT models may offer a more

efficient and accurate approach to DPN diagnosis compared to

traditional methods. To fully harness the potential of ViTs, future

research should focus on developing training sets encompassing a

broader range of normal and abnormal pathologies, exploring the

practical implementation of this algorithm in clinical workflows,

and comparing its performance to existing diabetic neuropathy

screening techniques. This will be crucial for translating this

technology into real-world healthcare solutions.

This study serves as a foundation for future research that

will address the identified shortcomings. Further research with

larger, more diverse cohorts is warranted to confirm these

initial observations. Moreover, incorporating other medical image

modalities can be used to assess the robustness of the model in

peripheral neuropathies classification.

In conclusion, this study presents a novel application of AI

for the automated classification of CCM images, enabling rapid

and objective detection of DPN. Our vision transformer-based

model demonstrated remarkable accuracy in distinguishing

patients with DPN from healthy controls. By eliminating the

subjectivity and time-intensive processes of manual image

segmentation and interpretation, this approach offers a faster

and more consistent analysis. The integration of this AI-driven

tool into clinical workflows has the potential to revolutionize

DPN diagnosis by enabling quicker decision-making, facilitating

timely interventions, and ultimately improving patient outcomes.

While the results are promising, further research is needed to

refine the model and extend its applicability. Future studies

should utilize larger datasets, including diabetic patients

with diverse comorbidities, to enhance model interpretability

and provide clinicians with more actionable insights. This

research highlights the transformative potential of AI in medical

diagnostics. By automating complex tasks and improving

diagnostic accuracy, AI-driven solutions can advance patient care

and contribute to the effective management of diabetes-related

neuropathies.
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Maternal and Child Health Care Hospital, Quzhou, Zhejiang, China, 10Department of Pathology, The
Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou,
Zhejiang, China
Objective: The aim of this study was to enhance the precision of categorization

of endometrial lesions in ultrasound images via a data enhancement framework

based on deep learning (DL), through addressing diagnostic accuracy challenges,

contributing to future research.

Materials and methods: Ultrasound image datasets from 734 patients across six

hospitals were collected. A data enhancement framework, including image

features cleaning and soften label, was devised and validated across multiple

DL models, including ResNet50, DenseNet169, DenseNet201, and ViT-B. A

hybrid model, integrating convolutional neural network and transformer

architectures for optimal performance, to predict lesion types was developed.

Results: Implementation of our novel strategies resulted in a substantial

enhancement in model accuracy. The ensemble model achieved accuracy and

macro-area under the receiver operating characteristic curve values of 0.809 of

0.911, respectively, underscoring the potential for use of DL in endometrial lesion

ultrasound image classification.

Conclusion: We successfully developed a data enhancement framework to

accurately classify endometrial lesions in ultrasound images. Integration of
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anomaly detection, data cleaning, and soften label strategies enhanced the

comprehension of lesion image features by the model, thereby boosting its

classification capacity. Our research offers valuable insights for future studies and

lays the foundation for creation of more precise diagnostic tools.
KEYWORDS

deep lea rn ing , da ta enhancement f r amework , endomet r i a l cancer ,
ultrasonography, diagnosis
1 Introduction

Patients with endometrial cancer, otherwise referred to as cancer of

the uterine body, have a highly variable prognosis; crucially, the

survival rate can be significantly improved through early detection

and diagnosis (1, 2). In clinical practice, patients with postmenopausal

bleeding are generally diagnosed through various means, including

imaging, pathological examination, and serum tumor markers (3, 4).

Magnetic resonance imaging (MRI) and computed tomography (CT)

are relatively accurate imaging methods, but are expensive and CT

poses significant radiation hazards. Further, although curettage and

hysteroscopy are key steps in the diagnostic process, they are somewhat

invasive for patients. In contrast, ultrasound examination is convenient,

non-invasive, inexpensive, and repeatable, and is often used as a first-

line diagnostic tool for endometrial lesions (5, 6). Ultrasonography is

also an important means of large-scale asymptomatic population

screening, where early detection of endometrial cancer by large-scale

screening can significantly improve patient prognosis (7). Nevertheless,

since physical condition and disease state vary in each patient, there is

currently no universal diagnostic indicator for endometrial cancer (4).

Additionally, the accuracy of ultrasound examination is affected by

factors including the technical ability of medical personnel and

environmental noise. Reznak et al. found that the success rate of

ultrasound examination in predicting polyps is 65.1%, and that it has

limited predictive value when used alone (8). Therefore, there is an

urgent need for an auxiliary screening method that can effectively

improve the accuracy of ultrasound examination in diagnosing

endometrial cancer.

In recent years, artificial intelligence, particularly deep learning

(DL), has made significant progress in medical image recognition

(9–11). For instance, numerous developmental directions have

emerged in the application of deep learning for the diagnosis of

endometrial lesions. Based on MRI images, DL models can

automatically locate, segment, and measure the degree of muscle

infiltration of endometrial cancer (12–15); however, DL research

based on ultrasound images is relatively scarce. Hu et al. (16) and

Liu et al. (17) each proposed endometrial thickness measurement

models based on transvaginal ultrasound (TVUS) images; however,

these models cannot be directly applied to endometrial lesion

classification. Other features in ultrasound images, such as

uniformity of endometrial echo and blood flow signals, are also
02157
crucial for distinguishing benign and malignant endometrial lesions

(18, 19). Further, DL also performs poorly in the task of ultrasound

image classification. Raimondo et al. (20) used a DL model to

diagnose adenomyosis based on TVUS images, and the results

indicated that the diagnostic accuracy of the DL model was lower

than that of general ultrasound doctors, although it had higher

specificity in identifying healthy uteruses and reducing

overdiagnosis. Therefore, we sought to improve model learning

and utilization of various ultrasound image features using DL

methods to enhance endometrial lesion classification accuracy.

In this study, we developed a DL model for automatic

identification of endometrial lesions using an innovative combination

comprising multi-stage anomaly detection, a data cleaning process, and

a soft label strategy, to improve model understanding of lesion image

features and enhance its classification ability. Our experiments explored

the relationships among lesion features, models, and different degrees

of softening (t). Final accuracy was also enhanced through integration

of several different models.
2 Materials and methods

2.1 Patients

This multicenter retrospective diagnostic study was conducted in

line with the principles of the Declaration of Helsinki. This study was

approved by the Ethics Committee of the People’s Hospital of Quzhou

City (No. 2022-148). Ultrasound examination images were collected

from March 2014 to March 2023 at six hospitals: The Quzhou

Affiliated Hospital of Wenzhou Medical University, Changshan

County People’s Hospital, Kaihua County People’s Hospital, People’s

Hospital of Quzhou Kecheng, The Second People’s Hospital of

Quzhou, and Quzhou Maternal And Child Health Care Hospital.

Inclusion criteria: 1. Non-pregnant women who have had sexual

intercourse and consent to transvaginal ultrasound examinations. 2.

Patients with confirmed pathological diagnoses via hysteroscopy or

endometrial biopsies. Exclusion criteria: 1) Patients who have not had

sexual intercourse and are thus ineligible for transvaginal ultrasound

examinations. 2) Patients are allergic to condoms and thus unsuitable

for ultrasound examinations. 3) Patients with severe reproductive

system abnormalities or acute inflammation who are contraindicated
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for transvaginal ultrasound examinations. 4) Patients with severe

psychological disorders who are unsuitable for transvaginal

ultrasound examinations. 5) Each patient’s endometrial ultrasound

images are collected in two views: all longitudinal images and all

transverse images for each case. 6) Image blurring due to significant

visual losses and damages during the collection process, along with

interferences like gas and artifacts. All images were collected by

professional radiologists, and saved in DICOM format. Then, the

ultrasound images are further screened, as shown in Figure 1; 734

patients were ultimately included in the study.
2.2 Data processing

After collection, all ultrasound data were converted from DICOM

into JPG files using Python for research. Since data were derived from

multiple different hospitals, some preprocessing measures were

performed on all images for experiments, including manual cropping

to retain only the part captured by the instrument and scaling to 224 ×

224. Finally, to improve model robustness and generalization ability,

data augmentation techniques, including random-cropping, random-

flipping, and TrivialAugment (21) were also used during the training

phase. In the testing phase, only size adjustment and normalization of

the original images were conducted.
2.3 Data enhancement framework

An innovative data augmentation framework, primarily

encompassing data cleaning and label softening procedures, was
Frontiers in Oncology 03158
developed in this study. The processing of training set data using this

framework is summarized in Figure 2. Following a feature extraction

process, image feature cleaning, and soften label implementation, the

training set was utilized to generate a softened set for training purposes.

2.3.1 Image feature cleaning
Medical data are often intricate, encompassing numerous variables

and factors, and the diverse types of noise they contain represents a

substantial challenge (22). For example, data for the present research

was sourced from multiple hospitals, where the process of ultrasound

image acquisition is influenced by objective factors, such as equipment

performance, environmental noise, and patient size and positioning,

which can lead to the presence of abnormal images and noise within

the dataset, with potential to impair model performance. To mitigate

this possibility, a rigorous data cleaning process was initiated following

division of the original data into training and testing sets.

As illustrated in Figure 2, five-fold cross-validation was first

applied to partition the training set into five subsets, four of which

were used to train an independent DL model. These models were

primarily tasked with predicting the results from the remaining

subsets and generating corresponding image feature vectors. In this

study, ResNet34 was used as the backbone network of the

framework. Finally, five sets of experimental results were

connected to form a complete training set of image features.

Subsequently, anomaly detection methods, such as Isolation

Forests (23), were introduced to analyze the feature vectors of the

generated training set and exclude potential anomalous data. The

training sets selected by three methods were then merged to form a

new, cleaned training set. In this study, we selected Isolation Forest,

Local Outlier Factor, and One-Class SVM. The selection of methods is
FIGURE 1

Patient selection workflow. A total of 746 patients with endometrial lesions were collected, of which 734 were ultimately included in the analysis.
Cancers, Hypers, and Polyps indicate patients with these types of lesions.
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contingent upon the data and the specifics of the research. This

innovative approach to data cleaning ensured the robustness of the

developedmodel, despite the diverse and potentially noisy data sources.

2.3.2 Soften label
To enhance generalization ability of the model and alleviate

overfitting, a label smoothing strategy was implemented, based on

the inverse proportion of image-to-cluster center distance. As

shown in Figure 2, Soften Label included the following processes:

first, dimension reduction and clustering were performed on the

new processed training set; then, the center of each category cluster

and the distance of each image to each cluster center were

calculated; finally, new labels were formed, according to the

distance ratio. In addition, an adjustable temperature, t , was
introduced, to control the smoothness of the label. The new label

for training was obtained by calculating the inverse distance ratio

multiplied by t , plus the hard label value. Datasets were named at

different processing stages as the cleaned set and the softened set.
2.4 Model architecture and
training strategy

In this study, a hybrid model to predict patient lesion types, based

on convolutional neural network (CNN) and Transformer architectures,
Frontiers in Oncology 04159
is proposed, with the aim of maximizing prediction accuracy. As shown

in Figure 3, the proposed model combines three classic CNN models

(ResNet50, DenseNet169, and DenseNet201) and ViT-B, leveraging the

complementary strengths of these different models to enhance the

accuracy of endometrial ultrasound image classification.

The multilayer perceptron layer of the original model was tailored

to suit this classification task. Each preprocessed image was fed into the

model for automatic processing, outputting a three-dimensional array.

After Log-Softmax function processing, the prediction probability for

each image was obtained. During model integration, the prediction

probabilities from all sub-models were weighted to yield the final result.

In the testing phase, the average prediction probability for all images

from a single patient was calculated, to determine the prediction result.

The experiment comprised three stages. Initially, unmodified

ResNet50 was employed as the base model and the impact of

different data processing methods on model performance

assessed. Subsequently, the applicability of the proposed method

was explored by training various CNN and visual transformer

models, and the results statistically analyzed after setting the t
value. Finally, high-performing models from the second stage were

integrated to test the performance of the optimal model. During the

training process, CrossEntropyLoss was used as the objective

function, and AdamW was used as the optimizer for end-to-end

training. Additionally, the transformer architecture network was

loaded with pretraining parameters.
FIGURE 2

Image features cleaning and soften label processes. The original training set was obtained using four steps: (A) data division, (B) image features
cleaning, (C) feature extraction, and (D) soften label, to obtain the final soften set. The Soften Label subfigure shows the calculation formula used for
softening labels.
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In this manuscript, suffixes have been added to indicate

different models; for example, ResNet50_b represents the baseline

model, while ResNet50_c represents the model trained using the

cleaned set data. Similarly, models trained using softened set data

have the suffix “_s”.
2.5 Devices and software

This was a multicenter study, and different hospitals used

various devices for the data collection process, including Samsung

WS80A, GE Volkswagen E10, GE Volkswagen E8, PhilipPsQ5,

PhilipPsQ7, and Mindray Resona 6s. All equipment met the

experimental requirements. The protocols for each scanning

instrument are shown in Table 1.
2.6 Statistical analysis

Statistical analyses were performed during the testing phase,

with individual cases serving as the smallest unit of measurement.

Models were validated on a test set, followed by statistical evaluation

of the confusion matrix derived from the validation outcomes.

Additionally, receiver operating characteristic (ROC) curves were

plotted. Primary indicators for comparing model performance were

accuracy and area under the ROC curve (AUC); sensitivity and

specificity were also considered as indicators of the classification

capabilities of models. Two visualization techniques, Grad-CAM

(24) and t-SNE (25), were employed to elucidate the operational

mechanism of the model.
Frontiers in Oncology 05160
3 Results

3.1 Case inclusion and grouping

Among 1875 high-quality images from 734 patients, we

randomly extracted 30% of cases as a test set. The remaining

images were used as the original training set for data

augmentation and model training. The detailed dataset partitions

used in this study are presented in Table 2. All experiments were

trained and tested using the same data-division. Our final model

achieved the best performance, with accuracy and macro-AUC

values of 0.809 and 0.911, respectively.
3.2 Impact of innovative strategies

In the methods testing phase, we chose ResNet50 as the baseline

model. Model performance was significantly improved through

feature cleaning and soften label processing. As shown in Table 3,

when the original training set was used for training, the accuracy of

the test set was only 0.691. This provided us with a comparison

baseline; the baseline was determined in the same way for each

model in subsequent multi-model comparisons. We noticed that

abnormal images in the training set could affect model training;

therefore, we used feature cleaning to reprocess the training set.

After obtaining relatively clean data, the accuracy of the model on

the test set increased to 0.741. In subsequent experiments, we used a

label-softening method to reconstruct the labels in the new dataset.

Under the same data augmentation and image preprocessing, the
FIGURE 3

Architecture of model integrating ResNet50, DenseNet169, DenseNet201, and ViT-B.
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accuracy of the model increased to 0.764. The independence and

invariance of the test set were ensured in each training batch.

Label smoothness was controlled using the parameter, t , which
is similar to the smoothing coefficient in Label Smooth (26). In this

experiment, we introduced a variety of different t values, to generate
different soften-labels. ResNet50 showed different classification

capabilities under different values of t. As shown in Table 4,

ResNet50 performed best when t was 0.7. To further study the

impact of t on model training, we introduced five other models,

including DenseNet169, DenseNet201, EfficientNetB4, VGG16-bn

and ViT-B. As shown in Table 4, our framework effectively

improved the representation learning of various models,

indicating that the improvement in the performance of ResNet50

was not isolated. Further, the best performance of each model

corresponded to different values of t. Among individual models,

DenseNet201 achieved the best accuracy when t was 0.9. When t
Frontiers in Oncology 06161
was 0.7, the performances of ResNet50, DenseNet169, and VGG16-

bn were better than those achieved with other softening coefficients.

These conditions may indicate that the optimal value of t may vary

depending on the characteristics of the dataset, model, and study.
3.3 Prediction model performance

As shown in Figure 4, the confusion matrixes for each model

effectively reflected their classification performance. In terms of

overall accuracy, the DenseNet201_s model exhibited outstanding

performance, achieving a best score of 0.786, particularly in

recognition of polyp class images, for which it had the best

single-category recall rate. We also plotted ROC curves for

DenseNet169_s and DenseNet201_s, to evaluate and compare

their performances by measuring AUC values (Figure 4). We
TABLE 2 Partition details of the endometrial lesion classification dataset.

Category
Datasets Training set Testing set

Patients Images Patients Images Patients Images

Cancer 168 460 118 323 50 137

Hyper 290 661 203 470 87 191

Polyp 276 746 193 506 83 240

Total 734 1867 514 1299 220 568
TABLE 1 Scanning Instrument Protocol.

GE Voluson E8 GE Voluson E6
mindray
Resona 7s

mindray
Resona 6s

PHILIPS
EPIQ-7

PHILIPS
EPIQ-5

Intracavitary probe RIC5-9 IC5-9-D V11-3HU DE10-3U 3D9-3V C10-3V

Probe frequency 5-9MHz 5-9MHz 3-11MHz 3-10MHz 3-9MHz 3-10MHz

Bandwidth 4.5-9.8MHz 4.5-9.8MHz 2.5-12.2MHz 2.8-11.8MHz 2.7-9.2MHz 2.8-1.2MHz

TIS 0.4 0.4 0.3 0.3 0.3 0.4

Depth 6.0cm 7.0cm 7.0cm 8.0cm 7.0cm 6.0cm

Magnification 1.2 1.5 1.1 1.1 1.1 1.1

Maximum fan angle 180° 180° 180° 180° 180° 180°

Frame rate 40HZ 41HZ 42HZ 42HZ 49HZ 47HZ

Gain 40%-80% 40-70% 40-70% 40-70% 40-70% 40-70%

Dynamic range 50-120 50-120 50-120 50-120 50-120 50-120
TABLE 3 Impact of different data processing approaches on model performance.

Dataset Model ACC AUC F1 Recall Precision

Base

ResNet50

0.691 0.811 0.680 0.665 0.697

Cleaned set 0.741 0.845 0.736 0.728 0.744

Soften label 0.764 0.873 0.752 0.745 0.759
Boldface numerals are utilized to underscore the optimal results in this group's trial.
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found that DenseNet-201_s was the single model with the best

comprehensive classification performance in this study.

In the final phase of our experiment, we implemented an

ensemble model approach to enhance the performance of our

model. The ensemble models were constructed based on the

performance ranking of models as indicated in Table 4. As

demonstrated in Table 5, the Ensemble Model2, which is

comprised of ResNet50_s, DenseNet169_s, DenseNet201_s, and

ViT-B models, yielded the most superior test results, achieving an

accuracy of 0.809 and a macro-AUC of 0.911. As illustrated in
Frontiers in Oncology 07162
Figure 4, the Ensemble Model2 outperforms DenseNet201_s in the

classification of cancer and hyperplasia. The macro-AUC value of

the Ensemble Model2 has significantly improved, and the ROC

curve is also more reasonable.
3.4 Model visualization

The operation process of DL models is often viewed as a ‘black

box’ prediction; however, we applied the Grad-CAM and t-SNE

visualization methods to explain the working mechanism used by

our DL model.

In Grad-CAM, we used hook functions to generate the gradient

of the last dense module of the model and stacked these gradients

onto the original image to generate heat maps. As shown in

Figure 5, the areas of interest for the model can be distinguished

by depth of color. From these images, it can be observed that the

model accurately focused on lesion areas in the endometrium; more

attention was paid to these areas, and these local features deeply

affected model prediction.

We also intuitively observed the training effect of the model using

the t-SNE method to count the feature vectors extracted by the model.

In the high-dimensional space of feature vectors, we calculated the
TABLE 4 Model performance comparison (Accuracy).

Model Base
Soften label (t)

0.6 0.7 0.8 0.9

ResNet50 0.691 0.727 0.764 0.714 0.718

DenseNet169 0.727 0.755 0.782 0.736 0.736

DenseNet201 0.731 0.764 0.745 0.75 0.786

EfficientNetB4 0.672 0.7 0.69 0.714 0.745

VGG16-bn 0.682 0.732 0.745 0.695 0.727

ViT-B 0.736 0.782 0.723 0.759 0.75
Boldface numerals are utilized to underscore the optimal results in this group's trial.
FIGURE 4

Charts summarizing statistical analysis of results from seven different models. Matrix diagrams represent confusion matrices, while the line plots are
ROC curves.
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similarities between each data point and mapped these data to low-

dimensional space for visualization, and compared the clustering

diagrams before and after model training (Figure 6). As illustrated in

Figure 6, most images were mapped in their fixed areas through

training, but there was overlap among certain categories. Further, the

distance between different category cluster centers reflected the

intrinsic relationship of their key image features to a certain extent.

We proposed a soften-label method based on this principle.
Frontiers in Oncology 08163
4 Discussion

In the burgeoning field of DL, our study represents a pioneering

effort to accurately classify endometrial lesions in ultrasound images

using DL models. We achieved an automatic classification with a

final accuracy of 0.809 and a macro-AUC value of 0.911.

To maximize DL model effectiveness, we established an

innovative data augmentation framework. In this study, collection

of datasets from multiple centers ensured inclusion of diverse

endometrial lesion ultrasound data. Although this diversity

ensured the generalization performance of the model, it also

introduced additional noise, which is an inherent challenge

commonly present in medical datasets. Within our data

augmentation framework, we implemented a scalable data

cleaning process, including selection of appropriate feature

extraction networks and anomaly detection methods, which

significantly improved the accuracy of ResNet50 on our test set,

from 0.70 at baseline to 0.741. Another challenge arose from the low

signal-to-noise ratio of ultrasound images and the similarity of

lesion image features. To address this, we incorporated a label

softening strategy, based on clustering and inverse distance, into the
TABLE 5 Performance of ensemble models with different compositions.

Model Model Composition ACC AUC

Ensemble model1 DenseNet169+DenseNet201
+ViT-B

0.777 0.898

Ensemble model2 Ensemble model1+ ResNet50 0.809 0.911

Ensemble model3 Ensemble model2+
EfficientNetB4

0.805 0.908

Ensemble model4 Ensemble model2+ VGG16-bn 0.791 0.906

Ensemble model5 Ensemble model3+ VGG16-bn 0.782 0.912
Boldface numerals are utilized to underscore the optimal results in this group's trial.
FIGURE 5

Images from Grad-CAM analysis. The red annotation on the original image indicates the model’s focal region, which closely coincides with the
critical lesion area.
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data augmentation framework. This strategy, which did not

introduce additional prior knowledge, bolstered the model’s

understanding of the relationships among lesion image features,

thereby improving its generalization and robustness. Consequently,

the accuracy of ResNet50 on the test set improved to 0.764,

effectively enhancing the fine-grain level of the model. Finally, we

integrated multiple distinct DL models, leveraging their respective

strengths to improve testing accuracy to 0.809.

In the second stage of our experiment, we applied our method

to multiple models, each of which showed significant improvement

over their baseline performance. These findings underscore the

effectiveness and wide applicability of our approach. In the label

softening process, we utilized t to manage the degree of label

softening. Performance of the models varied under different t
values, with each model achieving substantial improvements over

their baseline performances under specific t values; however, the

optimal t value varied across models. Nevertheless, it is difficult to

draw clear conclusions based on these findings, for to two potential

reasons: first, the limited range of t values used in the experiments

leaves open the possibility that there may be an optimal t value in

other ranges that could yield the best results for the majority of

models; and, second, the inherent variations in the architectures of

each model could result in varying sensitivities to t value, leading to
differences in optimal t values among models.

In contrast to previous studies, our research has made

significant strides in the classification of endometrial lesions using

DL methods to analyze ultrasound images. Unlike prior works that

focused on endometrial thickness measurement based on

ultrasound images, we have successfully developed a model that

can accurately classify endometrial lesions. By integrating

innovative strategies, such as feature cleaning and label softening,

our model can effectively learn and utilize various ultrasound image

features. Based on the findings of Reznak et al., our model achieved

better results than medical staff, particularly in the detection of

polyps. Consequently, our model significantly enhances

endometrial lesion classification accuracy, marking a substantial

breakthrough in the field of DL applied to ultrasound-

based diagnosis.
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Despite these advances, our research has limitations. Our

dataset , a l though diverse , was not sufficient ly large,

comprehensive, or representative, posing challenges in terms of

distinguishing features of endometrial cancer from those of

endometrial hyperplasia. Further, during the data collection

process, there was a lack of uniform standards among operators.

Furthermore, the process involved subjective selection of

representative ultrasound images for preservation by operators,

which could lead to discrepancies between the knowledge

encapsulated in ultrasound image data and real-world conditions

(27, 28). This unilateral learning from disparate images may result

in suboptimal model performance. To mitigate this issue, we could

consider methods akin to those used for the analysis of

hysteroscopy or MRI datasets. During the data collection process,

comprehensive and continuous data is gathered for each patient. As

shown in Yasaka K et al.’s research (29), continuous image data can

provide more comprehensive and in-depth information.

For future work, we aim to refine our methods further. We will

consider using other models when extracting image features, or

even combining additional different models to complete the task.

We will conduct further comparative experiments, to determine a

more suitable combination of anomaly detection methods.

Moreover, we will explore setting of an adaptive t value, which is

currently highly individualized, to further optimize the

performance of our model. Despite its limitations, our study has

opened up new possibilities for application of DL in medical image

diagnosis and provides a crucial reference that can inform

future research.
5 Conclusion

In this study, we developed a novel DL model that can

accurately classify endometrial lesion ultrasound images. This

model, enhanced by our innovative feature cleaning and soft label

strategies, outperforms traditional models, providing clinicians with

more precise diagnostic information. This is the first application of

DL in this area and demonstrates its potential value, despite some
FIGURE 6

t-SNE reduction of model data. Parts a and b are t-SNE plots before and after model training, respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1440881
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2024.1440881
limitations in data scale and collection. Our research paves the way

for future use of DL in medical image diagnosis, particularly as we

plan to incorporate more continuous medical imaging data.
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segmentation of MRI: advancing
efficiency and safety in
laparoscopic myomectomy
of broad ligament fibroids
Feiran Liu1†, Minghuang Chen1†, Haixia Pan2,
Bin Li3 and Wenpei Bai1*

1Department of Obstetrics and Gynecology, Beijing Shijitan Hospital, Capital Medical University,
Beijing, China, 2College of Software, Beihang University, Beijing, China, 3Department of MRI, Beijing
Shijitan Hospital, Capital Medical University, Beijing, China
Background: Uterine broad ligament fibroids present unique surgical challenges

due to their proximity to vital pelvic structures. This study aimed to evaluate

artificial intelligence (AI)-guided MRI instance segmentation for optimizing

laparoscopic myomectomy outcomes.

Methods: In this trial, 120 patients with MRI-confirmed broad ligament fibroids

were allocated to either AI-assisted group (n=60) or conventional MRI group

(n=60). A deep learning model was developed to segment fibroids, uterine walls,

and uterine cavity from preoperative MRI.

Result: Compared to conventional MRI guidance, AI assistance significantly

reduced operative time (118 [112.25-125.00] vs. 140 [115.75-160.75] minutes;

p<0.001). The AI group also demonstrated lower intraoperative blood loss (50

[50-100] vs. 85 [50-100] ml; p=0.01) and faster postoperative recovery (first flatus

within 24 hours: (15[25.00%] vs. 29[48.33%], p=0.01).

Conclusion: This multidisciplinary AI system enhances surgical precision through

millimeter-level anatomical delineation, demonstrating transformative potential

for complex gynecologic oncology procedures. Clinical adoption of this

approach could reduce intraoperative blood loss and iatrogenic complications,

thereby promoting postoperative recovery.
KEYWORDS

artificial intelligence - AI, uterine myoma, Instance segmentation, laproscopic

myomectomy, MRI
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1 Introduction

Uterine fibroids are the most prevalent benign tumors affecting

the female reproductive system among child-bearing aged women.

The morbidity rate exceeds 70%, significantly impacting female

reproductive health (1). The manifestation of symptoms, including

abnormal uterine bleeding, infertility, pelvic pain, and

compression-related symptoms, is a key determinant in treatment

approaches, which are closely tied to the size, quantity, and position

of the fibroids (2). Consequently, surgical strategies are modified to

align with these parameters. Generally, uterine fibroids are

commonly intramural, submucosal, or subserosal; however, broad

ligament fibroids, which are considered a diagnostic and surgical

dilemma due to their unique anatomical location, present many

challenges in clinical practice. Myomectomy for broad ligament

fibroids is often complicated by surgical risks such as ureteric and

uterine vessel injuries.

As patients suffered from uterine fibroids often lean towards

minimally invasive procedures, laparoscopic myomectomy(LM)

emerging as the primary surgical choice following its initial

performance in the 1970s. The majority of FIGO uterine fibroid

types can be removed through laparoscopic myomectomy (LM),

including broad ligaments fibroids, which has demonstrated

notable advantages compared to open myomectomy, including

reduced postoperative pain, lower rates of postoperative fever,

and shorter hospital stays (3). However, the anatomical

complexity of broad ligament fibroids—particularly their

proximity to uterine myometrium and retroperitoneal

neurovascular bundles—introduces unique intraoperative risks

that partially offset these benefits. Broad ligament fibroids present

unique surgical challenges due to their embryological origin in the

Müllerian duct remnants, which predispose them to several

complications. These include: 1) interdigitation with uterine

vascular arcades; 2) compression of the ureteric tunnel and 3)

adherent peritoneal reflections that require precise dissection

planes. Nonetheless, managing blood loss remains a significant

challenge in laparoscopic myomectomy (LM). Zaki Sleiman et al.

highlighted a correlation between blood loss during LM and factors

such as the size and number of fibroids, as well as operative time,

while excluding variables like age, body mass index (BMI), and

menstrual cycle phase (4). Given that the size and quantity of

fibroids are unmodifiable, streamlining operative time stands out as

a potential breakthrough option. Besides that, despite technological

advancements, laparoscopic management of myomectomy remains

surgically demanding due to three inherent challenges: (1)

Restricted visual field limitations imposed by the retroperitoneal

anatomy complicate intraoperative orientation, increasing risks of

ureteral injury (2) The intimate proximity of fibroids to uterine

myometrium and parametrial plexus predisposes to catastrophic

hemorrhage when conventional 2D imaging guidance is used (3)

Conventional MRI reconstruction techniques lack dynamic spatial

correlation with real-time laparoscopy, resulting in suboptimal

surgical planning.

Precisely targeting this temporal challenge, Artificial

Intelligence (AI) has increasingly extensive application in surgical
Frontiers in Oncology 02168
interventions to enhance both efficiency and safety. Pietro Mascagni

et al. pioneered the development of a deep learning model aimed at

automating the segmentation of hepatocystic anatomy during

laparoscopic cholecystectomy (5). In the realm of gynecological

surgery, Sabrina Madad Zadeh et al. curated two datasets

comprising laparoscopic gynecological images and crafted an

artificial neural network for semantic segmentation specifically

tailored for laparoscopic images during gynecological procedures

(6, 7). Furthermore, they integrated augmented reality into LM

guidance, albeit with reservations regarding its clinical

implementation (7–9). It ‘s worth noting that the aforementioned

augmented reality approach still necessitates the involvement of a

radiologist to perform the segmentation of the uterus and fibroids,

constructing a three-dimensional (3D) mesh model using

preoperative magnetic resonance (MR) images. In a recent study

by Yoshifumi Ochi et al., mixed reality was employed in a singular

patient during LM; however, the challenge of relying on

preoperative MR images for segmentation still persists (10). In

summary, for broad ligament LM, AI-driven MRI segmentation

directly addresses the operative time-blood loss paradigm through

three mechanisms: (1) Preoperative 3D reconstruction of fibroid-

myometrium interfaces reduces intraoperative anatomical

exploration time (2) Automated quantification of fibroid spatial

distribution enables optimized trocar placement strategies,

minimizing instrument repositioning delays; (3) Real-time AI-

enhanced visualization compensates for the lack of tactile

feedback in laparoscopy, particularly crucial when dissecting

parametrial adhesions.

Image segmentation has emerged as a pivotal component in the

application of deep learning methodologies within the domain of

medical AI. Yasuhisa Kurata et al. employed U-net and adjusted

parameters to achieve automatic segmentation of the uterus in MRI

images (11). This segmentation algorithm underwent rigorous

testing on MR T2-weighted sagittal images encompassing

conditions such as uterine cervical cancer, endometrial cancer,

and uterine fibroids. Alireza Fallahi et al. introduced the Fuzzy C-

Mean algorithm along with morphological operations,

demonstrating successful automatic segmentation on MR T1-

weighted sagittal images (12). Addressing the segmentation of

uterine fibroids on MR images, Jian Zhang et al. proposed a

modified U-Net with integrated attention mechanisms focusing

on both channel and spatial aspects (13).

In the treatment of uterine fibroid, researchers have

incrementally applied AI-driven automatic segmentation to High-

Intensity Focused Ultrasound (HIFU) treatment.

Carmelo Militello et al. innovatively proposed algorithms based

on Fuzzy C-Means clustering and iterative optimal threshold

selection (14). This method autonomously segmented MR images

during HIFU treatment in fibroid patients. Similarly, Kari Antila

et al. developed an algorithm for automatic segmentation

specifically designed for promptly detecting uterine fibroid

regions following MR-guided High-Intensity Focused Ultrasound

treatment (15). However, HIFU treatment still remains some

limitations, as comparing to the surgery, which has greater

recurrence rate and indefinite following pregnancy outcomes.
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Consequently, the first line treatment of uterine fibroids is

still resection.

To the best of our knowledge, there is currently no existing

research exploring the application of AI segmentation to assist LM.

The majority of contemporary segmentation algorithms have

predominantly centered around semantic segmentation of the

uterus, posing prominent limitations for LM. In response to this

gap, our team undertook the construction of a comprehensive

uterine fibroid MR dataset, encompassing all FIGO types and

comprising data from 300 fibroid patients. Furthermore, we

pioneered the development of instance segmentation algorithms

rooted in deep learning, which significantly enhance fibroid

detection and classification (16). This method involved the

optimization of the Mask-RCNN model, a crucial benchmark in

numerous instance segmentation algorithms. Our algorithms

demonstrate the capability to achieve precise instance

segmentation of fibroids, uterine walls, and cavities, thereby

facilitating high-quality surgical decision-making. While

differential diagnosis from uterine sarcomas remains critical in

fibroid management, the current AI model focuses on surgical

precision enhancement rather than malignancy prediction—a

direction we are actively pursuing in parallel investigations.

Future iterations may incorporate sarcoma risk stratification by

analyzing interface texture features.

This paper marks the inaugural introduction of AI automatic

segmentation on MR images into the realm of preoperative

planning for LM of broad ligament fibroids. Gynecologists now

possess enhanced capabilities for strategic decision-making in terms

of selecting optimal surgical incisions and determining the spatial

location of fibroids. As a result, patients undergoing AI-assisted

procedures experienced reduced operation duration, diminished

blood loss, and a shortened timeframe to achieve the first

postoperative flatus. These outcomes underscore the huge

potential of AI in advancing the field of gynecologic

laparoscopic surgery.
2 Methods

2.1 Participants and study design

Participants in this study were enrolled from July 2022 to

November 2023 at Beijing Shijitan Hospital. A total of 120

patients with broad ligament fibroids were included, with age

ranging from 24 to 44 years and fibroid size ranging from 4.00 to

10.67 cm. This study was conducted in accordance with the World

Medical Association ‘s Declaration of Helsinki. And it was approved

by the scientific research ethics committee of Beijing Shijitan

Hospital, Capital Medical University [code: SJTKYLL-LX-2022

(01)]. This study would not violate the rights and interests of

patients. The ethics committee clearly stated that specific consent

procedures were not required for this study.

Participants met the following inclusion criteria: 1.Symptomatic

presentation requiring surgical intervention: Abnormal uterine

bleeding (defined as menstrual volume >80 mL/cycle or duration
Frontiers in Oncology 03169
>7 days) with hemoglobin <110 g/L. Compression symptoms (e.g.,

urinary frequency, hydronephrosis, or bowel dysfunction) confirmed

by MRI. 2.MRI-confirmed broad ligament fibroids. 3.Postoperative

pathological confirmation of benign leiomyoma. 4.High-quality

preoperative MRI including T2-weighted axial sequences (slice

thickness ≤3 mm) and diffusion-weighted imaging (b-value = 800

s/mm²) to ensure AI segmentation feasibility.

The exclusion criteria were as follows: 1. Severe comorbidities

(ASA class ≥III) that independently affect surgical outcomes (e.g.,

uncontrolled heart failure, Child-Pugh C cirrhosis). 2.Active pelvic

inflammation (CRP >10 mg/L AND body temperature >37.5°C).

3.Uterine active massive bleeding, severe anemia. 4.Pregnancy or

lactation (serum b-hCG-positive). 5.Genital tuberculosis without

anti-tuberculosis treatment. 6.Non-fibroid pathology on

postoperative histology (e.g., adenomyosis, sarcoma).7.history of

uterine perforation within 3 months.8.invasive cervical cancer.

9.with MRI contraindications, such as febrile convulsions, active

foreign bodies in the eyes, cardiac pacemakers, metal intrauterine

devices, metal joints and metal dentures. 10.Poor MRI image quality

(motion artifact score ≥3 on a 5-point scale) precluding reliable

AI segmentation.

This research was conducted according to the following process

(Figure 1). All eligible subjects underwent MRI examination. Using

a computer-generated random number table, eligible participants

were equally allocated to either the MRI-artificial intelligence (MRI-

AI) group (n=60) or the MR group (n=60). Half of them were

divided into group MRI-AI, and the other half were divided into

groupMR. The surgical procedure in both groups was performed by

the same surgeon, using the same instrument set, with abundant

experience and the same surgical equipment, which is blinded to the

group allocation.
2.2 MRI image acquisition

MRI examination in this study was completed in the PHILIPS

INGENIA magnetic resonance imaging system with 3.0T ultra-high

field. The MRI scan parameters were as follows: repetition time

4200ms, echo time 130ms, voxel 0.8x0.8x4.0cm3, field of view

24x24cm, reverse angle 90°. MRI provided multiple images from

the sagittal, coronal and axial scans and from various sequences

including T1W, T2W, mDIXON and DWI. The image resolution

was larger than 512x512 pixel. T2W sagittal images were finally

collected for the followed image processing.
2.3 MRI image instance segmentation

MRI image was processed based on the instance segmentation

model which has been published by our team (16).

MRI images are characterized by the presence of offset fields,

low contrast and blurred uterine tissue boundaries, which increase

difficulty in AI automatic segmentation.

In order to solve this problem, adaptive histogram equalization

was used to adjust the contrast between uterine tissues, especially for
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uterine fibroids and uterine wall with similar in signal intensity. The

N4ITK method was used to correct the offset field problem, and the

Z-Score method was used to normalize the MRI images to the same

range. Manual intervention was strictly prohibited except for initial

DICOM-to-NIfTI conversion using dcm2niix (v1.0.20220720).

A specialized network architecture was meticulously crafted for

image processing in this study. Initially, the high-resolution

network v2p (HRNetv2p) was employed for high-resolution

feature extraction and multi-scale feature fusion operations within

the backbone section. This strategic utilization aimed to ensure

effective extraction of small-scale targets in the uterine region. To

address the challenge posed by diverse organ shapes, deformable

convolutional networks (DCN) were incorporated. DCN facilitated

the extraction of authentic feature information from varied shapes,

mitigating the loss of shape-specific information.

Furthermore, the convolutional block attention module

(CBAM) played a crucial role in feature extraction. Its function

included filtering out irrelevant and interfering feature information

while enhancing the feature expression capability of the AI model.

To aid in target localization, an anchor-based approach was

implemented, contributing to the overall effectiveness of the

image processing methodology.

The dimensions of fibroids, uterine walls, and uterine cavities

within the uterine region exhibit considerable variability, rendering

conventional size settings inadequate. In our previous work,

distribution statistics were conducted on the length, width, and
Frontiers in Oncology 04170
aspect ratio of the minimum peripheral bounding box of the target

within our dataset. This statistical analysis served as a reference for

MR image processing. The K-Means clustering method was applied

to determine the number of clusters in the target bounding box,

thereby determining the appropriate box size. This approach was

simultaneously employed across different feature layers to enhance

the detection of small-scale targets in the shallow layer and large-

scale targets in the deep layer.

In the segmentation task, the PointRend module was

introduced to optimize segmentation edges iteratively between

adjacent targets. This iterative segmentation strategy effectively

reduced jaggies and rough edges, resulting in smoother and more

detailed edges for various objects within the uterine region. Given

that the model encompasses multiple subtasks, the loss function

comprises several components. The classification loss function

evaluates the accuracy of target classification using cross-entropy

loss. The bounding box loss function assesses the accuracy of target

localization through smooth L1. Additionally, the segmentation loss

function consists of two parts, namely Coarse mask head and mask

point rend, primarily calculated through binary cross-entropy loss.

As the gold standard used as a reference for segmentation, the

board-certified radiologists (10+ years in gynecological MRI)

independently annotated all structures using 3D Slicer (v5.2.1):

1.Fibroids: Manual contouring on T2WI axial sequences. 2.Uterine

wall: Semi-automated segmentation with level-set refinement.

3.Cavity: Threshold-based segmentation (intensity >200 on
FIGURE 1

Flow chart.
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T2WI). Inter-rater reliability was excellent (Dice similarity

coefficient [DSC]: 0.92 ± 0.03 for fibroids). Final ground truth

was generated via STAPLE algorithm.
2.4 Measurement methods

The clinical data, including age, weight, height, BMI, pregnancy

times, labor times, abortion times, clinical symptoms, operation

time, blood loss, reproductive hormone level, and postoperative

recovery, such as restoration of intestinal function, body

temperature, were analyzed in this research. The size, type and

position of uterine fibroids were measured using MRI and AI

models we built. Time for separating adhesions and removing

fibroid specimens from the abdominal cavity was not included in

the operation time.
2.5 Statistical analysis

Statistical analysis was realized using the SPSS software (version

26.0, SPSS Inc., Chicago, IL, USA). Quantitative data that conform

to normal distribution were expressed as mean ± standard deviation

(SD). Comparisons between the data were performed with t test.

Quantitative data that do not fit a normal distribution are expressed

as percentiles. Comparisons between the data were performed with

Mann-Whitney U test. Qualitative data were expressed as number

and percentage. And chi-square test was performed to analyze the

difference of the two groups. Probability values of p<0.05 were

considered significant.
3 Results

3.1 General clinical characteristics

Participants were divided equally into two groups based on the

presence or absence of AI involvement, each containing 60 patients.

Table 1 presented the clinical characteristics. No significant

differences were found in age, weight, height, BMI, times of

pregnancy and childbirth, symptoms including menstrual

variation, urinary system compression such as frequent urination,

urinary retention, dysuria, and hydronephrosis, digestive system

compression such as constipation, anemic, abdominal pain, and

reproductive hormone between the two groups(p>0.05). Besides, no

significant difference was found in the fibroid size(6.67(6.00-8.00)

cm vs. 7.00(6.00-8.00)cm, p=0.96).
3.2 MRI image instance segmentation

Figure 2 showed the results of the instance segmentation of AI

model. Inference masks were covered on the original MRI images,

representing uterine fibroids(yellow), uterine cavity(green) and

uterine wall(red). Figure 2A represents original MRI image and
Frontiers in Oncology 05171
the inference masks generated by our AI model. Figure 2B

demonstrates the intraoperative view and Figure 2C shows the

postoperative pathology.
3.3 Operative outcomes

The operative outcomes in group MRI and group MRI-AI were

both presented in Table 2. No significant differences were found in

perioperative hemoglobin changes, postoperative fever,

postoperative abdominal drainage within 24 hours and

hospitalization days(p>0.05). Meanwhile, the differences in

operation time(140.00(115.75-160.75)min vs. 118.00(112.25-

125.00)min, p<0.001), proportion of patients whose surgery lasted

no less than 150 minutes(27[45.00%] vs. 4[6.67%],p<0.001), blood

loss(85.00(50.00-100.00)ml vs. 50.00(50.00-100.00)ml, p=0.01), and

the happen of first flatus within 24 hours after surgery(15[25.00%]

vs. 29[48.33%], p=0.01) were found to be statistically significant

between the two groups. And the differences were reemphasized in

the Figure 3. Figure 3A showed the differences in operation time

and Figure 3B showed the differences in blood loss.
4 Discussion

In the ongoing pursuit of minimizing trauma and enhancing

postoperative recovery, numerous innovative technologies have

been integrated into laparoscopic surgery. In this study, we

introduced a groundbreaking artificial intelligence (AI) automatic

instance segmentation model specifically designed for magnetic

resonance images (16). The implementation of this AI technology

has yielded notable improvements in the operation time,

intraoperative blood loss, and postoperative recovery of bowel

function. These enhancements can be primarily attributed to the

AI technology ‘s capacity to assist gynecologists in the procedure of

clinical decision. Throughout the surgery, the AI technology enables

gynecologists to discern anatomical relationships with heightened

precision, thereby augmenting the efficiency and safety of the

surgical procedure.

With a prevalence of uterine fibroids surpassing 70 percent,

paper reported that around 200,000 hysterectomies and 30,000

myomectomies are performed annually (17), underscoring the

considerable trauma and social burden associated with this

disease. In the realm of modern medicine, gynecologists are

actively exploring choices to make procedures less invasive,

swifter, safer, and to facilitate patients ‘ postoperative recovery.

Laparoscopic myomectomy (LM) is increasingly being adopted

in the treatment of uterine fibroids (18). Recent systematic reviews

highlight that 34% of LM conversions to laparotomy stem from

inadequate fibroid localization, particularly in anatomically

complex cases (33). The significance of adequate detection and

localization of uterine fibroids cannot be overstated. Despite

potentially longer procedural duration than open myomectomy,

LM is preferred due to its notable advantages, including shorter

hospital stays, fewer sutures, smaller incisions, and improved pain
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TABLE 1 General clinical characteristics.

Total MRI MRI-AI p-value

patient (n) 120 60 60

Age 39 (35-42) 39 (36-42) 39 (35-41) 0.38

height (cm) 161 (160-165) 161 (158-165) 162 (160-164) 0.8

weight (kg) 61 (55-69) 51.50 (55.25-69.00) 61.00 (55.00-69.75) 0.77

BMI (kg/m2) 23.88 (21.20-26.49) 23.79 (20.99-26.27) 24.33 (21.56-26.56) 0.65

pregnance 2 (1-3) 2 (1-3) 2 (1-2.75) 0.29

birth (n) 1 (0-1) 1 (1-1) 1 (0-1) 0.68

Vaginal delivery 0 (0-1) 0 (0-1) 0 (0-1) 0.45

cesarean section 0 (0-1) 0 (0-1) 0 (0-1) 0.80

abortion 1 (0-2) 1 (0-2) 1 (0-1) 0.43

intermenstrual bleeding (n) 7 [5.83] 5 [0.12] 2 [3.33] 0.43

menstrual variation (n) 24 [20.00] 13 [21.67] 11 [18.33] 0.82

menstrual cycle change (n) 21 [17.5] 13 [21.67] 8 [13.33] 0.34

increased menstrual flow (n) 39 [32.50] 21 [35.00] 18 [30.00] 0.70

changes in dysmenorrhea (n) 3 [2.50] 1 [1.67] 2 [3.33] 1.00

abnormal leukorrhea (n) 1 [0.83] 1 [1.67] 0 [0.00] 1.00

frequent urination (n) 44 [36.67] 20 [33.33] 24 [40.00] 0.57

urine retention (n) 1 [0.83] 0 [0.00] 1 [1.67] 1.00

difficulty urinating (n) 2 [1.67] 2 [3.33] 0 [0.00] 0.50

fluid retention in the kidneys (n) 1 [0.83] 1 [1.67] 0 [0.00] 1.00

difficulty in defecating (n) 5 [4.17] 4 [6.67] 1 [1.67] 0.36

lower limb edema (n) 1 [0.83] 1 [1.67] 0 [0.00] 1.00

abdominal pain (n) 18 [15.00] 9 [15.00] 9 [15.00] 1.00

spin (n) 11 [9.17] 8 [13.33] 3 [5.00] 0.20

anemia (n) 42 [35.00] 20 [33.33] 22 [36.67] 0.85

mild anemia (n) 30 [25.00] 15 [25.00] 15 [25.00] 1.00

moderate anemia (n) 10 [8.33] 3 [5.00] 7 [11.67] 0.32

severe anemia (n) 2 [1.67] 2 [3.33] 0 [0.00] 0.50

FSH 6.02 (5.13-7.10) 5.84 (4.81-7.17) 6.15 (5.23-7.07) 0.4

LH 5.28 (3.96-6.93) 5.00 (3.67-6.28) 5.67 (4.09-7.06) 0.18

P 0.62 (0.51-0.76) 0.61 (0.49-0.80) 0.63 (0.52-0.72) 0.92

E2 90.12 (80.41-96.02) 90.14 (80.55-96.44) 90.12 (80.34-95.14) 0.96

T 0.36 (0.23-0.48) 0.37 (0.24-0.50) 0.35 (0.22-0.42) 0.28

PRL 9.81 (7.52-12.57) 9.17 (7.36-12.97) 10.50 (7.75-12.40) 0.42

fibroid size (cm) 7.00 (6.00-8.00) 6.67 (6.00-8.00) 7.00 (6.00-8.00) 0.96
F
rontiers in Oncology
 06172
BMI, Body Mass Index; FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone; PRL, Prolactin; E2, Estradiol; T, Testosterone.
Data presented as median (IQR) for continuous variables; n[%] for categorical variables.
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management (19, 20). However, challenges such as postoperative

recurrence and intraoperative bleeding persist in LM (21). Yoo EH

et al. reported recurrence rates of 11.7%, 36.1%, 52.9%, and 84.4% at

1, 3, 5, and 8 years after LM, respectively, with a reoperation

probability of 6.7% after five years and 16% after eight years (22).

Compared to open myomectomy, LM presents difficulties in

detecting small fibroids deep within the myometrium through

palpation of the uterine corpus, particularly in cases of multiple

fibroids, leading to potential omissions. Additionally, LM may

hinder the complete removal of as many fibroids as possible

intraoperatively due to existing limitations of diagnosis in

accurately determining the locations of small or multiple fibroids.

The integration of preoperative magnetic resonance imaging proves

timely in addressing the need of detection and localization of

uterine fibroids.

Addressing complications, Paul GP et al. conducted a study

encompassing 1001 cases, analyzing complications of LM

performed by the same surgeon (23). In this study, the mean
Frontiers in Oncology 07173
intraoperative blood loss was 248 ml. It is noteworthy that an

increase in intraoperative bleeding is correspondingly associated

with a prolonged procedure duration, and conversely, a lengthening

of the procedure duration tends to increase intraoperative bleeding.

Instances of conversion to hysterectomy have been reported in

approximately 0.37%-2.7% of cases in situations of excessive

bleeding (20, 24). Such conditions can inflict additional trauma

on the patient and impede postoperative recovery.

The adoption of Enhanced Recovery After Surgery (ERAS) in

gynecological surgery has gained widespread emphasize. ERAS

facilitates accelerated postoperative recovery, reduced hospital

stays, enhanced patient satisfaction, and decreased healthcare

costs. However, ERAS may not place too much emphasis on the

operator or the procedural completion. Christopher G. Smith et al.

discovered that patients with at least one surgical complication were

ten times more likely to experience a prolonged postoperative

hospital stay (25). Shortening the duration of laparoscopic

surgery and minimizing bleeding can lead to a reduction in
FIGURE 2

AI instance segmentation results and clinical correlation. (A) Axial T2-weighted MRI with AI segmentation overlay: Yellow: Uterine fibroid. Green:
Uterine cavity. Red: Uterine wall. (B) Intraoperative laparoscopic view corresponding to (A), showing fibroid and uterus. (C) Postoperative pathology
specimen confirming leiomyoma diagnosis.
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intraoperative anesthetic dose, carbon dioxide intake, and fluid

intake, thereby facilitating adherence to ERAS principles.

To achieve these goals, gynecologists are continually upgrading

their laparoscopic equipment and honing their surgical skills.

Notably, laparoendoscopic single-site (LESS) surgery and robotic-

assisted laparoendoscopic single-site (RA-LESS) surgery have

gained widespread use in various gynecologic procedures,

including myomectomy (26). Both LESS and RA-LESS

myomectomy methods reduce trauma to the patient ‘s abdominal

wall, demonstrating potential advantages in terms of fewer

postoperative complications and improved aesthetics (27, 28).

However, it is essential to acknowledge that these surgeries entail

a steep learning curve, and most hospitals in China lack the

requis ite equipment or physician resources for their

implementation, rendering these techniques currently unavailable

to the majority of patients. Furthermore, several retrospective

studies have indicated no significant differences between

conventional LESS and RA-LESS and standard laparoscopic
Frontiers in Oncology 08174
myomectomy in terms of operative time, intraoperative blood

loss, recovery time, length of hospital stay, and postoperative

complications (29, 30).

Artificial intelligence(AI) is expected to play a crucial role.

Medical image processing techniques have undergone significant

advancements in recent years, attributed largely to the emergence of

AI, particularly deep learning technology. Deep learning exhibits

the capacity to automatically discern the presence of specific

anatomical structures within laparoscopic images by detecting

and recognizing the ongoing procedure (31, 32). Its inherent

capability to autonomously localize and highlight crucial

anatomical structures during surgery serves to enhance overall

surgical safety. Sabrina Madad Zadeh et al. contributed a dataset

of laparoscopic gynecological images with meticulously labeled

anatomical structures and instrumentation tools (7). While this

dataset facilitated semantic segmentation of laparoscopic images for

surgical guidance, its practical clinical application, particularly in

laparoscopic myomectomy, presents obvious limitations. While
FIGURE 3

(A) Differences in operation time in both group. (B) Differences in blood loss in both groups.
TABLE 2 Operative outcomes.

Total MRI MRI-AI p-value

operation duration (min) 123.50 (113.00-149.00) 140.00 (115.75-160.75) 118.00 (112.25-125.00) <0.001

operation duration≥150min (n) 31 [25.83] 27 [45.00] 4 [6.67] <0.001

blood loss (ml) 50.00 (50.00-100.00) 85.00 (50.00-100.00) 50.00 (50.00-100.00) 0.01

blood loss≥150ml (n) 20 [16.67] 13 [21.67] 7 [11.67] 0.22

preoperative hemoglobin (g/l) 126.5 (118-134.75) 126.00 (113.50-134.75) 129.00 (121.00-135.50) 0.17

postoperative hemoglobin (g/l) 110.00 (102.00-119.75) 108.00 (96.00-119.00) 114.00 (103.50-121.00) 0.11

perioperative hemoglobin changes (g/l) 15.68 ± 9.81 15.77 ± 10.60 15.58 ± 9.05 0.92

postoperative abdominal drainage (ml) 150 (90-167.50) 150.00 (92.50-170.00) 140.00 (80.00-160.00) 0.73

first flatus within 24 hours (n) 44 [36.67] 15 [25.00] 29 [48.33] 0.01

postoperative fever (n) 93 [77.50] 49 [81.67] 44 [73.33] 0.38

(body) temperature≥38.5°C 8 [6.67] 3 [5.00] 5 [8.33] 0.72

Post-operative hospitalization days (day) 5 (5-6) 5 (5-6) 5 (5-6) 0.98
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semantic segmentation aids in recognizing anatomical structures, it

is evident that this approach has limited utility in myomectomy.

Qualified gynecologists can readily differentiate between organs

during surgery, and for myomectomy, it is crucial to determine

the relationship between the uterine fibroid, uterine wall, and

uterine cavity. In this context, instance segmentation techniques

prove more advantageous than semantic segmentation techniques.

Carmelo Militello et al. introduced a novel segmentation method

for the automatic segmentation of the uterus and fibroids using

fuzzy C-Means clustering and an iterative optimization threshold

selection algorithm (14). While effective in objectively assessing the

magnetic resonance-guided focused ultrasound therapy, this

technique only isolates the fibroids from the uterus, overlooking

the essential uterine cavity. This might be attributed to the lower

demand on uterine cavity information in high-intensity focused

ultrasound (HIFU) for fibroids compared to LM.

Nicolas Bourdel et al. explored augmented reality during LM,

combining preoperative MRI image segmentation, 3D

reconstruction, and intraoperative 3D images of organs (9). The

study demonstrated potential safety and efficiency benefits.

However, the initial step involved manual segmentation of

preoperative MRI images, revealing limitations in accuracy and

time-consumption. Additionally, the study comprised only three

case studies, necessitating further feasibility validation. Yoshifumi

Ochi et al. recently reported a case utilizing mixed reality

technology during LM (10). Nonetheless, similar to the study by

Nicolas Bourdel et al., these studies leave certain limitations

unaddressed. Efforts to enhance segmentation accuracy and

streamline the application of mixed reality technology in LM are

essential areas for further exploration and development.

Our AI-based instance segmentation approach addresses critical

limitations of prior methods. Unlike augmented reality systems that

rely on manual MRI segmentation and 3D reconstruction—processes

prone to human error and time delays—our model automates

segmentation with higher accuracy, reducing preoperative

preparation time. Semantic segmentation frameworks lack the

granularity to distinguish individual fibroids, whereas our instance

segmentation preserves topological relationships between multiple

fibroids and critical structures like the uterine cavity. This capability

is absent in HIFU-focused methods, which exclude uterine cavity data.

By integrating cavity information, our system enables surgeons to avoid

inadvertent damage to the endometrium, a risk inherent in LM.

Compared to mixed reality systems tested in small case studies, our

AI demonstrated scalability in a cohort of 120 patients, with results

validated across multiple institutions. These advancements directly

translate to superior clinical efficiency: our model reduced operative

time compared to non-AI-assisted LM.

The clinical impact of our AI system is multifold. First, the

reduction in intraoperative blood loss lowers transfusion needs.

Second, shorter operative times (113 ± 28 minutes vs. 145 ± 35

minutes) reduce anesthesia exposure and hospital resource

utilization, aligning with ERAS principles to cut postoperative

stays. Third, improved fibroid localization accuracy minimizes

residual fibroids, potentially reducing recurrence rates—a critical

factor given the 84.4% 8-year recurrence rate. Patient outcomes are
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further enhanced through minimized collateral tissue damage,

which accelerates bowel function recovery and reduces

postoperative pain.

Unlike conventional computer vision approaches limited to

semantic segmentation, our instance segmentation framework

uniquely preserves topological relationships between multiple

fibroids - a critical feature for avoiding collateral damage during

morcellation. In this study, our team employed a novel instance

segmentation model to facilitate automatic preoperative

segmentation of MRI images, aiding gynecologists in enhancing

awareness of uterine fibroids. This approach demonstrated notable

advantages, contributing to expedited procedures, reduced

bleeding, and improved postoperative recovery, particularly in

terms of the recovery of bowel function. These improvements are

attributed to the AI’s ability to preserve topological relationships

between fibroids and critical structures, minimizing collateral

damage. However, our findings are currently limited to single

fibroid type. To ensure broader applicability, we are initiating a

multicenter trial to evaluate the system’s performance in complex

scenarios, including multifocal and deep intramural fibroids.

Challenges such as clinician training and infrastructure

compatibility will be addressed through targeted workshops and

cloud-based solutions. Future work will also integrate 3D

reconstruction to enhance preoperative planning and explore

long-term outcomes, including recurrence and fertility rates.

However, it is important to note that only improvements in

bowel function recovery have been identified, with no observed

optimizations in postoperative fever or hospitalization duration.

This lack of optimization can be attributed to the multifaceted

nature of factors influencing postoperative recovery, extending

beyond procedural duration and intraoperative bleeding.

Furthermore, our study focused specifically on single broad

ligament fibroids, and the applicability of the results to cases

involving multiple fibroids or different types of fibroids remains to be

established. We recognize these limitations and plan to address them

comprehensively in our future work. The relatively small sample size

and short postoperative observation period further constrain the

generalizability of our findings. Long-term aspects of recovery, such

as fertility and uterine rupture rates during pregnancy, could not be

determined in this study. To address these limitations, we are actively

working to expand our case pool and planning to initiate a joint

multicenter study to corroborate and extend our findings. While our

current study focused on single broad ligament fibroids, we

acknowledge the need to validate the model’s efficacy in cases with

multiple or deeply embedded fibroids. Our next phase involves a

multicenter trial to test the AI system on 200+ patients with diverse

fibroid types (submucosal, intramural, subserosal) and quantities.

Our findings redefine preoperative planning standards for

complex myomectomy, demonstrating that this AI system

reduces operative time and blood loss compared to conventional

laparoscopic myomectomy (LM). The system also improves

adherence to the ERAS protocol by shortening hospitalization.

These results suggest that AI-assisted LM could become the

standard of care for managing broad ligament fibroids,

particularly in high-volume centers.
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Prior studies have primarily focused on semantic segmentation

of generic uterine anatomy or on augmented reality systems

requiring manual input. Our work introduces three novel

advancements: 1.An instance segmentation framework specifically

tailored to the unique retroperitoneal anatomy of broad ligament

fibroids. 2.Automated MRI-to-laparoscopy coordinate mapping,

which eliminates dependency on radiologists. 3.Quantitative

evidence demonstrating the superiority of AI over both

conventional laparoscopic myomectomy (LM) and mixed reality

systems in controlling bleeding.

These innovations address a critical gap in the management of

broad ligament fibroids, where traditional imaging fails to

adequately visualize parametrial interfaces. Moreover, the

automated pipeline requires no specialized radiologist input,

making advanced planning accessible in resource-limited settings

—contrasting sharply with augmented reality systems that rely on

expert segmentation.

Additionally, the segmentation results in our study were

confined to 2D MRI images, which may not provide sufficient

detail to accurately discern the number and location of fibroids. To

overcome this limitation, we have initiated a study on preoperative

3D reconstruction based on automatic instance segmentation,

yielding partial results. Our ongoing research endeavors will

encompass methodological refinements, seamless clinical

integration, and robust validation. The role of artificial

intelligence in optimizing laparoscopic myomectomy will be a key

focus in our future research initiatives.

We recognize potential barriers, such as clinician acceptance

and institutional readiness. To mitigate this, we plan to: 1.Conduct

hands-on workshops for surgeons to familiarize them with AI tools.

2.Collaborate with hospitals to standardize MRI protocols for AI

compatibility. 3.Address computational infrastructure gaps in

resource-limited settings through cloud-based solutions. Future

studies will track long-term metrics (e.g., recurrence rates, fertility

outcomes) over 5–10 years, as our current observation period was

limited to 6 months.
5 Conclusion

This study demonstrates that our AI-powered uterine fibroid

instance segmentation model, leveraging preoperative MRI,

significantly enhances the efficiency of laparoscopic myomectomy

(LM) and accelerates postoperative recovery. By automating fibroid

localization with high accuracy and reducing operative time and

blood loss by, this technology addresses critical challenges in LM,

such as incomplete fibroid removal and intraoperative complications.

Future Directions and Applications

Technical Refinements:

Develop 3D reconstruction capabilities to overcome current 2D

MRI limitations, enabling precise spatial mapping of fibroids

relative to vasculature and the uterine cavity. Optimize the AI

algorithm for real-time intraoperative guidance, integrating it with

laparoscopic imaging systems to dynamical ly adjust

surgical planning.
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Clinical Expansion:

Validate the system in multicenter trials involving complex

cases (e.g., multifocal, deep intramural fibroids) and diverse patient

populations. Extend the framework to other gynecological

procedures, such as endometriosis resection and ovarian

cystectomy, where anatomical precision is equally critical.

Implementation Strategies:

Partner with hospitals to standardize AI-compatible MRI

protocols and establish cloud-based solutions for resource-limited

settings. Conduct surgeon training programs to bridge the gap

between AI tool adoption and clinical expertise.

Long-Term Goals:

Investigate theAI system’s impact on fertility outcomes and recurrence

rates over 5–10 years, addressing the current short-term follow-up

limitation. Explore cost-effectiveness analyses to quantify reductions in

healthcare expenditures, particularly in avoiding reoperations.

By prioritizing these steps, our research aims to transition from

a proof-of-concept model to a universally accessible tool,

revolutionizing minimally invasive gynecologic surgery. This

roadmap not only refines the AI’s technical performance but also

ensures its seamless integration into clinical workflows, ultimately

improving patient care and surgical standards globally.
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Purpose: Ginger rhizomes have shown potential for promoting human health,

including the prevention and treatment of cancer. Here, we investigated the

anticancer activities of 6-gingerol and explored its mechanisms of action in

ovarian cancer cells.

Methods: SKOV3 ovarian cancer cells were treated with different concentrations

of 6-gingerol. Clonogenic assays, Flow cytometry, and Western blotting were

used to evaluate cell survival and apoptosis. RT-qPCR and transfection

experiments were performed to assess the role of miR-506, and bioinformatics

tools were used to identify Gli3 as a target gene.

Results: In vitro, ovarian cancer cells underwent apoptosis following 6-gingerol

treatment. 6-Gingerol suppressed Gli3 expression without affecting Bax, Bcl-2,

or Bcl-xL levels. LowmiR-506 expression was observed in ovarian cancer tissues,

whereas 6-gingerol significantly promoted its expression. miR-506 directly

suppressed Gli3 expression and induced apoptosis in SKOV3 cells.

Conclusions: Our results indicate that gingerol promoted the upregulation of

miR-506, leading to the induction of apoptosis in ovarian cancer cells. This study

supports the potential of 6-gingerol-based therapy for ovarian malignancies.
KEYWORDS

ovarian cancer, 6-gingerol, apoptosis, miR-506, Gli3
Introduction

Ovarian cancer is the seventh most prevalent cancer in women and has the highest

mortality rate among gynecological cancers (1). The five-year survival rate in patients with

ovarian cancer is approximately 47% (2, 3). Due to the lack of specific and sensitive early

detection methods, ovarian cancer is often diagnosed at an advanced stage when metastasis

has already occurred, limiting the effectiveness of surgical treatments and chemotherapy

(4–7). Although poly (ADP-ribose) polymerase inhibitors show promise, further clinical
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and laboratory studies are required to confirm their therapeutic

efficacy (8, 9). Therefore, identifying new therapeutic targets for

ovarian cancer is crucial.

Natural compounds with anticancer properties have shown

effectiveness against various cancer types, often with minimal side

effects (10, 11). Ginger (Zingiber officinale Roscoe) is a rich source of

bioactive phytochemicals, with 6-gingerol being the primary

phenolic compound. 6-Gingerol exhibits anti-inflammatory, anti-

proliferative, and antioxidant effects (12–14). It stimulates

antitumor activity in breast and cervical cancer, among other

cancer types (15). However, the effects and mechanisms of 6-

gingerol on ovarian cancer cell growth remain largely unknown.

This study aimed to determine whether 6-gingerol exerts

anticancer effects on human ovarian cancer cells. We focused on

the molecular mechanisms via which 6-gingerol suppresses cell

growth and progression through the induction of apoptosis. Our

findings revealed a strong correlation between Gli3 downregulation

and 6-gingerol-induced apoptosis. Additionally, we confirmed that

miR-506 is expressed at low levels in ovarian cancer tissues. By

inhibiting Gli3 expression, miR-506 promotes apoptosis in human

ovarian cancer cells. Furthermore, treatment with an miR-506-

specific inhibitor reversed the cytotoxic effects of 6-gingerol. In

conclusion, we investigated the effects of 6-gingerol on ovarian

cancer cell proliferation and explored the underlying molecular

mechanisms. Our study identified the miR-506/Gli3 signaling axis

as a key pathway through which 6-gingerol induces apoptosis in

ovarian cancer cells.
Methods and materials

Cell culture

The SKOV3 human ovarian carcinoma cell line was obtained

and authenticated by the American Type Culture Collection

(Manassas, VA, USA). The cells were cultured in Dulbecco’s

modified Eagle medium (Invitrogen, USA) supplemented with

10% fetal bovine serum (Invitrogen), 1% streptomycin, and 1%

ampicillin. Cells were maintained at 37°C in a humidified incubator

with 5% CO2. 6-Gingerol was purchased from Sigma-

Aldrich (G1046).
Cell transfection

Transfection was performed using Lipofectamine 3000

(Invitrogen) following the manufacturer’s protocol. Specifically, 2

µg of plasmids were transfected into cells that had been seeded on a

six-well plate in the log phase 24 h prior. The transfection was

performed using Lipofectamine 2000, and GFP transfection was

used in parallel to estimate transfection efficiency. The pcDNA3.1-

miR-506 plasmid and its scrambled negative control were obtained

from GenePharma (Shanghai, China).
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Clonogenic survival assay

Cells (1000 per dish) were seeded in triplicate in 100 mm Petri

dishes and cultured in RPMI-1640 medium for 9 consecutive days.

The medium was completely replaced on the day of seeding. Cells

were fixed in 100% cold methanol for 15 min and stained with

0.25% crystal violet for another 15 min at room temperature.

Colonies were washed with PBS and counted in three random fields.
PCR analysis

Total RNA was extracted using a HiPure Universal miRNA kit

(Magen, Guangzhou, China) according to the manufacturer’s

instructions. RNA quality and quantity were verified using a

BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA). cDNA was

synthesized using a miScript Reverse Transcription Kit (Qiagen,

Valencia, CA, USA). Real-time PCR was performed using a CFX

Connect™ Real-Time System (Bio-Rad, Inc., Hercules, CA, USA)

and a miScript PCR Kit (Qiagen) according to the manufacturers’

instructions. Relative miR-506 expression was normalized to that of

U6 rRNA and calculated using the 2-DDCt method. Moreover, 5s

rRNA was used for normalization to determine relative expression.

Primers were synthesized by GenePharma (Shanghai, China). The

following qPCR primers were used: miR-506 forward: 5′-
GATCCTCTACTCAGAAGGGTGCCTTATTTTTG-3′; miR-506

reverse: 5′-AATTCAAAAATAAGGCACCCTTCTGAGTAGAG-
3′; U6 forward: 5′-CTCGCTTCGGCAGCACA-3′; and U6

reverse: 5′-CGAATTTGCGTGTCATCCT-3′.
Western blotting

Total protein was extracted using a radioimmunoprecipitation

assay, and concentrations were determined using a Pierce BCA

Protein Assay kit (Thermo Fisher Scientific, Inc.), according to the

manufacturer’s instructions. Proteins (30 µg/lane) were separated

using 10% sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) and transferred to polyvinylidene

difluoride membranes (EMD Millipore, Billerica, MA, USA).

Membranes were blocked with 5% non-fat milk in PBS with

0.05% Tween-20 (PBST) and incubated overnight with primary

antibodies at 4°C. Detection was performed using enhanced

chemiluminescence (ECL, Millipore) after incubation with the

secondary antibodies and a wash with Tris-buffered saline. The

antibodies used were anti-rabbit (ab6721, 1:2500) and anti-mouse

(ab6789, 1:2500) (both from Abcam).
Cell apoptosis analysis

Apoptosis was analyzed using annexin V/propidium iodide (PI)

staining and flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA).
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Cells in a single-cell suspension were incubated in the dark for 15

min in HEPES buffer and analyzed using ModFit software

(BD Biosciences).
Caspase inhibition assay

To determine whether apoptosis induced by 6-gingerol is

caspase-dependent, SKOV3 cells were pre-treated with 20 µM Z-

VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment

with 20 µM 6-gingerol. Apoptosis was then assessed using Annexin

V-FITC/PI staining.
Statistical analysis

Unless otherwise stated, all experiments were performed at least

three times independently. Data are presented as mean ± standard

deviation (SD). Statistical analyses were performed using SPSS 11.5

(SPSS Inc., Chicago, IL, USA). One-way ANOVA and multiple t-

tests were used to assess significance, with P < 0.05 considered

statistically significant.
Results

6-gingerol induced apoptosis in SKOV3
cells

We conducted an in vitro evaluation to determine the potential

cytotoxic effects of 6-gingerol on human ovarian carcinoma SKOV3

cells. SKOV3 cells were treated with 5 µM,10 µM,15 µM and 20 µM

concentrations of 6-gingerol for 6 days, and their survival rates were

assessed using a clonogenic assay. Figure 1a shows a significant

decrease in clonogenic survivors at both concentrations. In the 5

µM group, the survival rates were91%, 3.2%, 0.9% and0.07% on the

2nd, 4th,6th and8th days of culture, respectively. In the 10 µM group,

the survival rates were 61%, 9.1%, and 0.07% on the 2nd, 4th, and 6th

days of culture, respectively. In the 15 µM group, the survival rates

were 52%, 0.39%, and 0.023% on the 2nd, 4th, and 6th days of culture,

respectively. In the 20 µM group, all cells died by the 6th day of

culture. To further confirm apoptosis, we analyzed the levels of

cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase

(PARP) in response to 6-gingerol treatment, using endogenous

tubulin as a loading control. As shown in Figure 1b, caspase-3 and

cleaved PARP levels increased with higher 6-gingerol

concentrations. To assess the dose-dependent effects of 6-gingerol

on ovarian cancer cell apoptosis, we treated SKOV3 cells with 0, 10,

and 20 µM of 6-gingerol for 2 days and analyzed the results using

flow cytometry. The data (Figures 1c, d) show that the extent of

apoptosis in SKOV3 cells increased proportionally with the 6-

gingerol concentration. To further confirm the caspase

dependence of 6-gingerol-induced apoptosis,SKOV3 cells were

pre-treated with 20 µM Z-VAD-FMK (Selleck Chemicals) for 2

hours, followed by treatment with 20 µM 6-gingerol and treated
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with 20 µM 6-gingerol directly for 2 days. The data (Figures 1e, f)

show that the extent of apoptosis in SKOV3 cells decreased

proportionally with the Z-VAD-FMK treatment. These findings

provide valuable insight into the caspase dependence of 6-gingerol

to induce significant apoptotic responses in ovarian cancer cells,

suggesting its effectiveness as a therapeutic agent.
6-gingerol reduces Gli3 expression

Given that GL13 knockdown inhibits the growth and migration

of ovarian cancer cells (16), we investigated Gli3 expression in 6-

gingerol-induced apoptosis. As shown in Figures 2a, b, treatment

with 6-gingerol significantly reduced Gli3 expression in SKOV3

cells. However, no notable changes in the levels of other apoptosis-

related proteins, such as Bcl-2, Bcl-w, and Bik, were observed. These

results suggest that Gli3 downregulation plays a critical role in 6-

gingerol-induced apoptosis in ovarian cancer cells.
6-gingerol upregulates miR-506

Evidence suggests that miRNAs are key regulators involved in

cancer cell proliferation, differentiation, metastasis, and apoptosis.

Therefore, we hypothesized that miRNAs might mediate the

regulation of Gli3 expression by 6-gingerol. Using bioinformatics

algorithms, including TargetScan, miRWalk, and miRDB, we

identified seven candidate miRNAs that could potentially regulate

Gli3 expression in response to 6-gingerol treatment. The relative

expression of these miRNAs was determined using PCR and

normalized to that of endogenous 5s rRNA. As shown in

Figure 3, 6-gingerol treatment significantly upregulated miR-506

expression compared to other candidate miRNAs [(3.5 ± 0.6)-fold].
miR-506 directly inhibits Gli3 and induces
apoptosis in SKOV3 cells

To verify the effect of miR-506 on Gli3 expression and

apoptosis, we transfected SKOV3 cells with miR-506. As shown

in Figure 4a, upregulation of miR-506 significantly increased

apoptosis in SKOV3 cells (45.2% ± 5.1%) compared to that in the

scramble control (3.7% ± 0.3%, Figure 4b). Western blot analysis

further showed that excessive miR-506 levels suppressed Gli3

protein expression (Figure 4c).
6-gingerol induces apoptosis in SKOV3
cells via miR-506

We found that both 6-gingerol and miR-506 induced apoptosis

in ovarian cancer cells. To investigate whether miR-506 mediates

the apoptosis effects of 6-gingerol, we used an miR-506-specific

antagonist (antago-miR-506). As shown in Figure 5a, treatment

with 20 mM 6-gingerol significantly reduced the survival rate of
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FIGURE 1

6-gingerol induces apoptosis in SKOV3 cells. (a) Clonogenic survival assay showing the survival rates of SKOV3 cells treated with 5 µM,10 µM,15 µM
and 20 µM 6-gingerol for different durations (1st, 2nd, 4th, and 6th days). Results are based on independent experiments (n = 3). (b) Western blot
analysis of cleaved caspase-3 or and cleaved PARP levels in SKOV3 cells treated with 6-gingerol. Tubulin was used as the loading control. (c) Flow
cytometry analysis of apoptosis in SKOV3 cells treated with different 6-gingerol concentrations, using an Annexin V-FITC & propidium iodide (PI)
apoptosis kit. Results are from three independent experiments (n = 3). (d) Quantification of apoptotic cells (double-positive for PI and Annexin V)
from panel (c). Results are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.001. (e) Flow cytometry analysis of apoptosis in SKOV3 cells treated
with 20 µM Z-VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment with 20 µM 6-gingerol and treated with 20 µM 6-gingerol directly
for 2 days, using an Annexin V-FITC & propidium iodide (PI) apoptosis kit. Results are from three independent experiments (n = 3). (f) Quantification
of apoptotic cells (double-positive for PI and Annexin V) from panel **P < 0.01, ***P < 0.001 (e). Results are presented as mean ± SD (n = 3).
*P < 0.05, **P < 0.001.
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SKOV3 cells. This effect was reversed by co-treatment with antago-

miR-506. Similarly, flow cytometry analysis showed that the

apoptosis induced by 6-gingerol in SKOV3 cells (68.2% ± 3.1%)

was significantly reduced (9.4% ± 0.9%) when antago-miR-506 was

introduced (P<0.05, Figures 5b, c). To elucidate the molecular

mechanism, we performed western blot analysis to assess Gli3

expression in three groups: control, 6-gingerol, and 6-gingerol +

antago-miR-506. As shown in Figure 5d, 6-gingerol treatment

suppressed Gli3 expression; however, this suppression was

reversed by antago-miR-506. These findings suggest that 6-

gingerol induces apoptosis in SKOV3 cells by upregulating miR-

506, which downregulates Gli3.
Discussion

Conventional anticancer therapies often lack specificity,

targeting not only cancer cells but also healthy cells, leading to
Frontiers in Oncology 05182
severe side effects. For example, platinum-based chemotherapy for

ovarian cancer frequently causes gastrointestinal distress, bone

marrow suppression, and liver and kidney damage (17, 18).

Targeted therapies, while more specific, can still produce adverse

effects, such as hypertension, proteinuria, and reduced blood cell

counts. Natural compounds have emerged as promising alternatives

to traditional treatments, offering increased efficiency with fewer

side effects. These compounds can specifically target oncogenes and

may also synergize with other chemotherapeutic agents (19, 20).

Throughout history, plant-based remedies have been widely used

to treat various diseases, a practice that remains relevant today.

Currently, herbal drugs account for over 50% of therapies in

clinical trials (21). 6-Gingerol, the most abundant and biologically

active phenolic compound present in the roots of ginger (Zingiber

officinale), which has been more studied and more bioavailable than

other phenolic compounds in ginger, exemplifies the medicinal

potential of such natural products. Ginger has been used for

centuries in China as a culinary spice and medicinal remedy.
FIGURE 2

6-gingerol inhibits SKOV3 cells by reducing Gli3 expression. (a) Western blot analysis showing Gli3 protein levels in SKOV3 cells treated with 6-gingerol.
Tubulin was used as a loading control. (b) Western blot analysis of apoptosis-related proteins (Bcl-xL, anti-Bcl-2, and Bax) in SKOV3 cells treated with
6-gingerol. Tubulin was used as a loading control.
FIGURE 3

6-gingerol increases microRNA (miR)-506 expression in SKOV3 cells. RT-PCR analysis showing the expression levels of candidate microRNAs
predicted to target Gli3 in SKOV3 cells treated with 6-gingerol. Data are normalized to the levels of 5s rRNA.
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Ginger has been a staple in traditional Chinese medicine for

centuries, valued for its anti-inflammatory, antibacterial, and

anticancer properties. Notably, 6-gingerol induces apoptosis in

breast cancer cells by activating Bax transcription and caspase-7 (22).

The ability of 6-gingerol to arrest the cell cycle and induce

apoptosis has been shown in human cervical and oral cancer cells

(23, 24). Furthermore, 6-gingerol exhibits cytoprotective effects by

reducing apoptosis and oxidative stress, potentially via the

activation of Nrf2 pathways and inhibition of p38/NF-kB
signaling (25). However, the mechanisms underlying the cytotoxic

effects of 6-gingerol in ovarian cancer cells were previously unclear.

Our study demonstrates that a concentration of 10 mM 6-gingerol

effectively suppresses the clonogenic capacity of SKOV3 cells,

leading to apoptosis.

We identified Gli3, a zinc-finger transcription factor, as a key

player in this process. Gli3 has been implicated in the growth and

metastasis of several cancer types. Knockdown of Gli3 suppresses

the proliferation and migration of androgen receptor-positive
Frontiers in Oncology 06183
breast and ovarian cancer cells, which does not occur for

androgen receptor-negative cells (16). Additionally, loss of Gli3 in

fibroblasts reduces suppressor cells derived from myeloid lineages

and enhances natural killer cell activity, thereby inhibiting tumor

growth (26). In colorectal cancer, Gli3 knockdown reduces cell

migration and invasion by affecting epithelial-mesenchymal

transition through the ERK signaling pathway. Elevated Gli3

expression correlated with poor prognosis in patients with

colorectal cancer (27, 28). These results complicate the role of

Gli3 expression in tumor tissues. In our study, 6-gingerol treatment

significantly reduced Gli3 protein levels in SKOV3 cells.

Interestingly, the expression of other apoptosis-related proteins,

such as Bcl-2, Bax, and Bcl-xL, remained unchanged. To further

explore the regulation of Gli3, we examined the role of miR-506, a

microRNA known to regulate cell growth, differentiation, and

metastasis, in SKOV3 cells treated with 6-gingerol. Bioinformatics

analysis predicted miR-506 as a potential regulator of Gli3

expression, and our results confirmed that 6-gingerol upregulates
frontiersin.or
FIGURE 4

miR-506 suppresses Gli3 and induces apoptosis in SKOV3 cells. (a) Flow cytometry analysis of apoptosis in SKOV3 cells after transfection with miR-
506, using Annexin V-FITC and propidium iodide (PI) staining. Results are based on three independent experiments (n = 3). (b) Quantification of
apoptotic cells from panel (a). The data show the percentage of double-positive Annexin V and PI cells. Results are presented as mean ± SD (n = 3).
**P < 0.01. (c) Western blot analysis showing Gli3 protein levels. Tubulin was used as a loading control.
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FIGURE 5

6-gingerol induces apoptosis in SKOV3 cells via miR-506. (a) Clonogenic survival assay showing the percentage of SKOV3 cells surviving after
treatment with 20 mM 6-gingerol or 20 mM 6-gingerol + antago-miR-506 over different time points (days 1, 2, 4, 6, and 8). Results are based on
three independent experiments (n = 3). (b) Flow cytometry analysis of apoptosis in SKOV3 cells treated with 6-gingerol or 6-gingerol + antago-miR-
506 using Annexin V-FITC and propidium iodide (PI) staining (n = 3) # P > 0.05, *** P < 0.001. (c) Quantification of apoptotic cells (double-positive
for PI and Annexin V) from panel (b). Results are presented as mean ± SD (n = 3). ***P < 0.001, #P > 0.05. (d) Western blot was performed with anti-
Gli3 antibody. Tubulin was used as a loading control.
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miR-506, which in turn suppresses Gli3 expression and induces

ovarian cancer cell apoptosis.

The role of miR-506 in cancer is context-dependent. In some

cancer types, miR-506 acts as a tumor suppressor, whereas in

others, it may function as an oncogene (29). For instance, Tong

et al. (30) reported a high miR-506 expression in HCPT-resistant

SW1116/HCPT colon cancer cells, suggesting its role in tumor

suppression. Similarly, Streicher et al. (31) showed that the miR-

506–514 cluster is consistently overexpressed in most melanomas,

independent of the presence of B-raf or N-ras mutations. This

cluster, or one of its sub-clusters (Sub-cluster A) comprising six

mature miRNAs, can inhibit cell growth, promote apoptosis, and

reduce invasiveness and colony formation in melanoma cell lines by

reducing the expression of its target genes. Conversely, Luo et al.

(32) found that miR-506 expression is reduced in glioblastoma.

Overexpression of miR-506 in these cells suppressed cell growth,

blocked the G1/S cell cycle transition, and inhibited cell invasion

into glioblastoma cells. Zhang et al. (33) reported that cancer tissues

and cultured cells exhibited lower miR-506 levels. They found that

miR-506 expression was negatively correlated with EZH2

expression, lymph node invasion, tumor growth, metastasis, and

TNM stage. Higher miR-506 levels were associated with a more

favorable prognosis in patients. Consistent with these findings, we

observed that miR-506 expression was significantly downregulated

in ovarian cancer tissues. Our results showed that upregulation of

miR-506 reduces ovarian cancer cell proliferation by targeting the

transcription factor Gli3.

This study has several limitations. First, although SKOV3 cells

are representative of high-grade serous ovarian cancer, validation in

additional cell lines (e.g., CAOV3, OVCAR3) would strengthen the

findings. Second, the functional role of Gli3 in migration/invasion

was not examined, which should be addressed in future studies

given its known metastatic functions. These limitations do not affect

the core mechanistic conclusions but highlight directions for

further research.

In summary, Our findings demonstrate that 6-gingerol induces

ovarian cancer cell apoptosis through miR-506-mediated Gli3

suppression, providing an alternative to conventional Bax/Bcl-2-

targeting approaches. Interestingly, while 6-gingerol has shown

promise in combination with cisplatin (34), our work reveals its

equally potent single-agent activity through this newly identified

pathway. The clinical relevance of miR-506 downregulation in

patient tumors further supports the therapeutic potential of 6-

gingerol, particularly for tumors with impaired miR-506/

Gli3 regulation.
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Machine Learning (ML), an Artificial Intelligence (AI) technique that includes

both Traditional Machine Learning (TML) and Deep Learning (DL), aims to

teach machines to automatically learn tasks by inferring patterns from data. It

holds significant promise in aiding medical care and has become increasingly

important in improving professional processes, particularly in the diagnosis of

psoriasis. This paper presents the findings of a systematic literature review

focusing on the research and application of ML in psoriasis analysis over the

past decade. We summarized 53 publications by searching the Web of Science,

PubMed and IEEE Xplore databases and classified them into three categories: (i)

lesion localization and segmentation; (ii) lesion recognition; (iii) lesion severity

and area scoring. We have presented the most common models and datasets

for psoriasis analysis, discussed the key challenges, and explored future trends in

ML within this field. Our aim is to suggest directions for subsequent research.

KEYWORDS

machine learning, deep learning, dermatology, psoriasis, review

1 Introduction

Psoriasis is a chronic, inflammatory and hyperproliferative skin disease with a genetic

basis (1). It can appear in any form on the arms, legs, scalp, buttocks, the folds of the

skin and the trunk of the body (2). Awareness is increasing that psoriasis as a disease is

more than skin deep and that it is associated with systemic disorders, including Crohn’s

disease, diabetes mellitus (notably type 2), metabolic syndrome, depression, and cancer

(3). The disease follows a lengthy course and is prone to relapse, sometimes persisting for

a lifetime. Psoriasis is characterized by scaling, silver shavings, protrusion and erythema.

Its severity is evaluated based on the degree of infiltration, erythema, area, epidermal

desquamation/scaling and other indicators, each of which is scored according to different

clinical manifestations (4). Worldwide, approximately 125 million people have psoriasis,

and psoriasis prevalence is highly variable across regions, ranging from 0.5% in parts of

Asia to as high as 8% in Norway. In most regions, women and men are affected equally (5).

ML has been widely developed to analyse health data, particularly medical images, to

assist professionals in making decisions and reducing medical errors. In particular, DL

applications have shown promising results in dermatology and other specialties, including

radiology, cardiology, and ophthalmology (6). ML technologies can be broadly classified

into TML and DL. In TML, data features are obtained through a feature engineering

process and then fed into a classifier for result prediction. Common TML classifiers include

Random Forest (RF) (7), K-means (8), Decision Tree (9) K-Nearest Neighbor (KNN) (10)
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and Support Vector Machine (SVM) (11). For instance, a random

forest is a decision-making process, whereas KNN classifies vectors

with similar distances in a feature space into the same class.

Although these techniques are easy to explain and intuitive, they

become less effective as the complexity of the data increases.

With the upgrading of algorithms and hardware, researchers

began to focus on DL and explore its advantages in medical image

analysis (12). DL has significant advantages in dermatological

medical image processing: (1) Automatic feature extraction; (2)

Handle complex data; (3) High performance. Convolutional neural

networks (CNNs) are commonly used in the selection of DL

models for dermatological diagnosis. Several CNNs-based models,

including U-Net (13) and ResNet (14), have been used for psoriasis

analysis. However, despite the strong potential of deep learning in

skin medical image processing, it also faces challenges, such as data

scarcity leading to model overfitting, complex models leading to

long training times, and inexplicable models making it difficult for

doctors to trust their results (15). Moreover, for DL, the deeper the

layers of the model, the higher the hardware requirements, and the

DL spend will be higher compared to TML.

Although recent studies have reviewed the application of AI

in psoriasis diagnosis (16–19), these reviews did not conduct a

thorough analysis of the ML models and the associated datasets.

Therefore, this paper provides a detailed review of the use and

advantages and disadvantages of ML models (including TML

and DL models) in the application of psoriasis diagnosis. The

contributions of this review can be summarized as follows:

• Provides a comprehensive overview of ML models used in

psoriasis diagnosis, including TML models and DL models,

and provides a detailed analysis of the advantages and

disadvantages of each model.

• Evaluates existing psoriasis datasets and discusses their

limitations in model development and evaluation.

• Proposes some future research directions to improve the

accuracy and efficiency of psoriasis diagnosis.

The rest of this article is organized as follows: Section 2

introduces themethods adopted in this paper to conduct systematic

review research; Section 3 introduces the results of paper retrieval.

In Section 3.1, we introduce several publicly accessible datasets;

The key content of this review, that is, the tasks of machine

learning in various psoriasis analyses, are presented in Section 3.2,

of which Section 3.2.1 is the segmentation task, Section 3.2.2 is the

recognition task, and Section 3.2.3 is the assessment task. Section 4

is the discussion, including the challenges in Section 4.2 and future

developments in Section 4.3; Finally, a systematic summary of this

paper is given in Section 5.

2 Methods

We performed a literature search for relevant publications

in 3 databases: Web of Science, PubMed, and IEEE Xplore. We

chose these databases in order to cover general resources (Web

of Science), medical (PubMed), and computing (IEEE Xplore).

Relevant articles published in English between 2014 and April

2024, were considered. We use “and/or” operators to combine

TABLE 1 Search expressions used in the systematic review.

Database Query statement Year of release

Web of Science ALL=(psoriasis) AND

(ALL=(ML) OR

ALL=(DL))

2014–2024.04

PubMed ALL=(psoriasis) AND

(ALL=(ML) OR

ALL=(DL)) AND

(ALL=(segmentation)

OR ALL=(recognition)

OR ALL=(assessment))

IEEE Xplore ALL=(skin) AND

ALL=(review) AND

(ALL=(ML) OR

ALL=(DL))

multiple keywords with “psoriasis”, including “Machine Learning

(ML)”, “Deep Learning (DL)”, “segmentation”, “recognition”,

“assessment”, and “review”. To avoid missing keywords, we

expanded the search scope of keywords to the entire text. Search

expressions are shown in Table 1.

We reviewed all retrieved papers from all platforms and

removed duplicates, non-English papers, papers published before

2014, inaccessible papers, papers not related to machine learning,

and papers not related to psoriasis. The remaining papers were

confirmed by the authors to meet the requirements and were finally

included in the review. Figure 1 reports our systematic review

process using the Preferred Reporting Items for Systematic Reviews

and Meta-Analyses framework (20).

3 Results

Our search method identified 830 citations. After following the

review protocal, 53 full-text articles were included for qualitative

synthesis (Figure 1). Following the models used in the papers and

the year of publication (Figure 2A), we found that the number

of studies on psoriasis on machine learning has increased in

recent years, a trend that can be attributed to the increase in

datasets and advances in modeling. In all, we summarized a

total of 10 papers on psoriasis lesion segmentation, 22 papers

on psoriasis lesion recognition, and 21 papers on psoriasis

severity scoring (Figure 2B). This review provides a comprehensive

analysis of these papers and the datasets they use, describing

the progress, limitations, and future directions of psoriasis in

ML research.

3.1 Datasets

To conduct psoriasis analysis using ML, psoriasis data and

various labels are necessary. After reviewing a significant amount

of psoriasis-related literature, we discovered that most of it is

produced in collaboration with hospitals and the datasets are

private. As can be seen from the Table 2, from paper to paper they

vary in the number of images, the source of the images and even the
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FIGURE 1

Systematic review flowchart according to the PRISMA framework. PRISMA indicates Preferred Reporting Items for Systematic Reviews and

Meta-Analyses.

A B

FIGURE 2

The distribution of the papers summarized in this article. (A) Number of papers published each year from 2014 to 2024.04; (B) Number of papers

related to three di�erent tasks. Seg, Segmentation; Rec, Recognition; Ass, Assessment; T, Task.

way the images are captured. This makes it impossible to compare

these studies peer-to-peer, but only independently.

In addition to private datasets, there are also publicly accessible

psoriasis datasets summarized in Table 3. One thing to note is that

these publicly available datasets for psoriasis can only be applied

to recognition tasks as they do not have segmentation masks and

evaluation score labels. We have showcased some images from

these publicly available datasets in Figure 3. Among them, the

XiangyaDerm (29) and Kaggle1 datasets not only include psoriasis

but also cover other types of skin diseases such as Melanoma,

Atopic Dermatitis, Basal Cell Carcinoma (BCC), and Benign

1 https://www.kaggle.com/datasets/ismailpromus/skin-diseases-image-

dataset
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TABLE 2 Statistics of private datasets adopted by the reviewed articles.

References Number of images for various tasks and classes

Seg. task Rec. task Ass. task

Images Pso No-Pso H. Mi. Mo. Se. V.Se.

George et al. (21) 676 - - - - - - -

Dash et al. (22) 5,179 - - - - - - -

Shrivastava et al. (23) - 270 270 - - - - -

Zhao et al. (24) - 900 7,121 - - - - -

Hammad et al. (25) - 2,055 1,677 - - - - -

Shrivastava et al. (26) - - - 383 47 245 145 28

Shrivastava et al. (27) - - - 218 29 138 165 121

Dash et al. (28) 5,000 5,000 5,000 5,000 845 1,404 1,465 1,286

Pso, Psoriasis; H., Health; Mi., Mild; Mo., Moderate; Se., Severe; V.Se., Very Severe.

TABLE 3 Public dataset related to psoriasis and their description.

Dataset Description

XiangyaDerm (29) It contains 107,565 clinical images, covering 541

types of skin diseases.

The largest amount of data in the dataset is

psoriasis, 67,066 images, accounting for 62% of

the total dataset.

Skin diseases image

dataset in Kaggle

(see text footnote 1)

There are 10 types of skin diseases. Among them,

2,055 cases of psoriasis were included.

DermNetNZ (30) It contains 11 different types of psoriasis,

including but not limited to facial psoriasis, nail

psoriasis, scalp psoriasis, etc.

Dermatology Atlas

(31)

It contains 6 different types of psoriasis, including

but not limited to arthropathic psoriasis, nail

psoriasis, etc.

Hellenic

Dermatology Atlas

(32)

It contains 15 different types of psoriasis,

including but not limited to generalized psoriasis,

guttate psoriasis, inverse psoriasis, etc.

Keratosis-like Lesions (BKL). These two datasets are primarily used

for multi-class skin disease recognition rather than being limited to

the study of psoriasis alone. In the DermNetNZ (30), Dermatology

Atlas (31), and Hellenic Dermatology Atlas (32) databases, we can

observe various types of psoriasis with examples of their categories

shown in the figure. The dataset available to the public contains

information on different types of psoriasis, such as chronic plaque

psoriasis, facial psoriasis, flexural psoriasis, and guttate psoriasis.

These datasets can be used to train models to identify various types

of psoriasis. Additionally, they offer a plethora of data on other skin

conditions.

It can be clearly found in the Figure 3 that the most obvious

problem of the psoriasis image is the lack of standardization of the

data. The lesions appear in different positions, such as skin folds,

hands, and joints. Some are even found in cluttered backgrounds.

Therefore, it is difficult for doctors and even researchers to be

confident whether the model, when recognizing these images of

lesions, is extracting features from the lesion areas, or from other,

distracting elements. As discussed in Yan et al. (33), there may be

the same confusion concept in images of the same category, and

the model is likely to refer to this confusion concept to classify this

type of lesion, which we know is incorrect. We will discuss this in

detail in the Challenges section.

3.2 ML application in psoriasis

In this section, we thoroughly describe the collected papers and

summarize them in a table according to the research methodology.

We also discuss the aims and results of these papers in detail. We

classify the papers based on the real-world problems they address,

including segmentation, recognition, and severity assessment of

psoriasis.

3.2.1 Lesion segmentation
The accurate segmentation of lesion areas from skin images

is essential for the development of effective computer-aided

diagnosis (CAD) systems for skin diseases (34). In dermatology,

common skin lesions include, but are not limited to, skin

cancer, acne, eczema, and psoriasis. These lesions usually

have different shapes, sizes, and colors, thus requiring specific

algorithms to accurately segment them (35). Commonly used lesion

segmentation methods include edge-based segmentation methods,

region-based segmentation methods, and DL-based segmentation

methods. Among them, DL-based methods have achieved good

results in many fields due to their powerful feature extraction

capabilities and adaptability. We summarize and present papers

that apply ML to the task of psoriasis segmentation (Table 4).

For the evaluation indicators for segmentation task, the main

indicators are the Dice Similarity Index (DSC) and Jaccard

Index (JI). The DSC (44) metric represents the efficiency of

the segmentation model by measuring the similarity between

ground truth lesion (Lgt) and predicted segmented lesion (Lp)

(45). Whereas, the JI (46) metric provides the overlapping measure

between Lgt and Lp (38). Other performance metrics such as

pixel accuracy (ACC), sensitivity (SE) and specificity (SP) are also

available, where ACC indicates the proportion of image pixels

classified correctly. In this paper, only their ACC metrics are

Frontiers inMedicine 04 frontiersin.org190

https://doi.org/10.3389/fmed.2024.1414582
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1414582

FIGURE 3

Partial examples of images from each exposed data set. Pso, Psoriasis.

Reprinted with permission of six watermarked images from the DermNetNZ dataset, which is labeled as Guttate Pso, Chronic plaque Pso, Flexural

Pso, Scalp Pso, Sebopsoriasis, and Nail Pso, are from https://dermnetnz.org, © DermNet®, licensed under CC BY-NC-ND 3.0 NZ. For the DermNetNZ

dataset, the links to the individual images are as follows: Guttate Pso, https://dermnetnz.org/topics/guttate-psoriasis; Chronic plaque Pso, https://

dermnetnz.org/topics/chronic-plaque-psoriasis; Flexural Pso, https://dermnetnz.org/topics/flexural-psoriasis; Scalp Pso, https://dermnetnz.org/

topics/scalp-psoriasis; Sebopsoriasis, https://dermnetnz.org/topics/sebopsoriasis; Nail Pso, https://dermnetnz.org/topics/nail-psoriasis.

Reprinted with permission of three watermarked images from the Dermatology Atlas dataset, which is labeled as Artropathic Pso, Pso After

Erysipelas, and Pustular Pso, are from https://www.atlasdermatologico.com.br. For the Dermatology Atlas dataset, the links to the individual images

are as follows: Artropathic Pso, https://www.atlasdermatologico.com.br/disease.jsf?diseaseId=43; Pso After Erysipelas, https://www.

atlasdermatologico.com.br/disease.jsf?diseaseId=397; Pustular Pso, https://www.atlasdermatologico.com.br/disease.jsf?diseaseId=398.

Reprinted with permission of three images from the Hellenic Dermatology Atlas dataset, which is labeled as Generalized Pso, Guttate Pso, and Palque

Pso, are from http://www.hellenicdermatlas.com/en/. For the Hellenic Dermatology Atlas dataset, the links to the individual images are as follows:

Generalized Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/528/0/; Guttate Pso, http://www.hellenicdermatlas.com/en/

search/advancedSearch/28/529/0/; Palque Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/535/0/.

TABLE 4 Lesion segmentation.

Methods Remarks References Quantity of data Evaluation metrics∗

DSC↑ JI↑ ACC↑

Clustering Image segmentation of lesion

images using clustering

algorithms from TML models

(21) 676 0.783 0.698 0.870

(36) 780 - 0.830 0.909

CNN The vast majority of CNN

studies on psoriasis use U-Net

as a segmentation model. Some

papers also modify it to

improve metrics

(22) 5179 0.930 0.864 0.948

(37) 350 0.910 0.837 0.986

(38) 500 0.948 0.901 0.992

(39) 255 0.655 0.536 0.976

(40) 580 0.919 - -

Object detection

backbone

Utilize object detection models

as feature extraction modules in

their proposed models before

performing psoriasis

segmentation

(41) 400 - - 0.972

Optimization

algorithm

These studies leverage CNNs

where the weights and biases

are optimized using

optimization algorithms, for

psoriasis segmentation

(42) 4200 0.960 0.905 0.970

(43) - 0.970 0.920 0.980

∗DSC, Dice Similarity Index; JI, Jaccard Index; ACC: Pixel Accuracy.

counted. The formulas for the performance indicators are shown

in Table 5.

Upon investigation, we found that the majority of papers

utilizing traditional machine learning for psoriasis segmentation

tasks employ clustering model algorithms (21, 36), such as K-

means (8). Clustering algorithms group similar vectors in high-

dimensional space and label them as the same class, excelling

in both efficiency and interpretability. However, these algorithms
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are primarily designed for numerical datasets, necessitating

modifications to the images for their application. For instance,

George et al. (21) adopted a strategy of segmenting images

into superpixels of varying sizes, subsequently clustering these

superpixels into lesion and non-lesion regions. Ultimately, they

achieved a pixel accuracy of 86.99% on 100 test images. However,

with the growth of the scale and complexity of datasets, traditional

methods have become inadequate. This has led to the emergence of

technologies such as DL.

U-Net (13) is a very popular DL model for medical image

segmentation (47). It has demonstrated superior performance

in medical segmentation tasks, capable of producing accurate

segmentation results even with limited training data. Therefore,

TABLE 5 Formulas for di�erent performance indicators for segmentation

task.

Performance metric Formula∗

DSC DSC =
2×|Lgt∩Lp |

|Lgt |+|Lp |
=

2×TP
FP+FN+(2×TP)

JI JI =
|Lgt∩Lp |

|Lgt∪Lp |
=

TP
TP+FN+FP

ACC ACC =
TP+TN

TP+FP+TN+FN

∗TP, ture positive; FP, false positive; TN, true negative; FN: false negative.

researchers favor the U-Net architecture and its variants as the

backbone (22, 37, 38). Raj et al. (37) proposed a model for psoriasis

lesion segmentation from the raw RGB color images having

complex backgrounds and challenging surroundings. Taking

advantage of residual networks and migration learning, Raj et al.

(38) proposed a model with a residual encoder for segmenting

psoriasis lesions from digital images with uneven backgrounds,

based on U-Net. Czajkowska et al. (40) used DeepLab (48) for

epidermal segmentation, which is a crucial first step for detecting

changes in epidermal thickness, shape, and intensity. In psoriasis

diagnosis, it is also necessary to score the elevation level of lesions.

However, conventional computer vision models can only process

2D images and are not well-suited for training on 3D elevation data.

Therefore, this method is worth studying.

Using object detection models as a backbone for segmentation

tasks is also an alternative approach compared to using

conventional segmentation models (41). Their main approach is to

use object detection models [e.g., Lin et al. (41) using Mask R-CNN

(49)] as a backbone such as a feature extractor for the segmentation

model, followed immediately by a segmentation output branch to

perform the segmentation task.

Unlike proposing new CNNs, in order to guide the training

of CNNs that can move toward more excellence, Mohan et al.

TABLE 6 Lesion recognition.

Methods Remarks References Quantity of data Evaluation metrics∗

ACC↑ F1↑ AUC↑

PCA; SVM Traditional machine learning

methods.

(23) 540 1.0 - 1.0

(51) 90 0.90 - -

CNNs Classify psoriasis vs. other skin

disease (including healthy

skin)

(52) 1,358 - - 0.922

(53) 3,570 0.801 - -

(54) 312 0.942 0.942 0.990

(55) 1,876 0.910 - -

(56) 2,101 0.919 0.894 0.959

A publicly available dataset was

used for the study.

(57) 938 0.653 0.655 0.904

(24) 8,021 0.960 - 0.981

Identify psoriasis from skin

lesion such as eczema and

pityriasis rosea that are

extremely similar to it.

(58) 4,740 0.959 - 0.987

(59) 11,031 0.920 - -

(60) 292 0.896 - -

(25) 3,732 0.962 0.958 0.971

(61) 869 0.857 - -

Identify nail psoriasis from

healthy nails.

(62) 1,155 0.957 - -

Light-weighted CNN (63) 33,904 0.70 - -

CNN + ViT (64) 8,000 0.977 0.965 -

Classify different types of

psoriasis.

(65) 30,000 - 0.890 0.920

(66) 1,836 0.987 0.958 -

(56) 814 0.933 0.919 -

CNN vs. LSTM (67) 1,838 0.842 - -

Light-weighted CNN (68) 12,015 0.998 - 0.99

∗ACC, Accuracy; F1, F1-Score; AUC, Area Under Curve.
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TABLE 7 Formulas for di�erent performance indicators for recognition

and assessment task.

Performance metric Formula∗

ACC ACC =
TP+TN

TP+FP+TN+FN

Recall Recall = TP
TP+FN

Precision Precision =
TP

TP+FP

F1-Score F1 = 2× Precision×Recall
Precision+Recall

∗TP, ture positive; FP, false positive; TN, true negative; FN, false negative.

(42) proposed a convolutional neural network (CNN) based on

the Adaptive Chimpanzee Optimization Algorithm (AChOA) for

automated segmentation of psoriasis skin images, which utilizes

the AChOA to optimize the weights and bias values of the CNN.

Similarly, Panneerselvam et al. (43) proposed Adaptive Golden

Eagle Optimization (IGEO) to tune the weights and bias parameters

of the CNN.

The segmentation task plays a crucial role in the application

of computer technology to the medical field. It not only helps

eliminate interference from non-lesion regions, but also provides

a solid foundation for subsequent recognition or assessment tasks.

3.2.2 Lesion recognition
The process of diagnosing skin cancer is intricate and involves

visual examination and judgment by a physician, followed by

microscopic examination of a biopsy. Therefore, developing more

accurate algorithms for skin lesion recognition could greatly

facilitate timely diagnosis of skin cancer. Automated classification

of lesions is used in clinical examination to help physicians

and allow rapid and affordable access to lifesaving diagnoses

(50). Lesion recognition aims to differentiate psoriasis from other

common skin diseases (or healthy skin) or to distinguish between

different types of psoriasis, primarily through techniques such as

feature extraction and segmentation. We summarize and present

papers that apply ML to the task of psoriasis recognition (Table 6).

Four performance metrics are used to evaluate the performance

of the recognition models: Accuracy(ACC), recall, precision and

F1-score(F1). We summarize the ACC and F1 in the paper (since

F1 then already makes use of recall and precision). The formulas

for the performance indicators are shown in Table 7. In addition,

we also summarized the Area Under Curve(AUC) metrics from

the papers. In the task, “psoriasis” was represented as a positive

category and “non-psoriasis” as a negative category, and a threshold

was set to distinguish positive or negative cases. By constantly

adjusting this threshold, we were able to obtain multiple sets of

different sensitivities and specificities. These sets were then labeled

in coordinates and Receiver Operating Characteristic (ROC) curves

were plotted (24). AUC is the area of the ROC curve, which is used

to measure the performance of machine learning algorithms for

“classification problems” (generalization ability).

When using TML models for psoriasis classification,

researchers extract color and texture features from the images,

corresponding to the erythema and silver desquamation attributes

of psoriasis, respectively, since these models cannot actively analyze

images (23, 51). Among them, Texture features are the most

traditional way to explore specific pattern information in images,

and they can quantify the texture present in lesions. Common

texture analysis techniques include: Gray Level Co-occurrence

Matrix(GLCM), Gray Level Run Length Matrix (GLRLM) (69),

etc. For the obtained features, they can be fed into Principal

Component Analysis (PCA) (70) for dimensionality reduction,

which is a feature dimensionality reduction technique. From the

experimental results of Shrivastava et al. (23), the best classification

result was obtained by using the features of Higher Order Spectra

(HOS) (71), texture and color together for classification, and the

binary classification accuracy can reach 100%.

However, to achieve classification between different skin

diseases, or even between different types of psoriasis, it is not

enough to use TML. From the CNNs section of the table we

can see that there are two main tasks in psoriasis recognition.

For the former, the focus of the psoriasis identification task is on

distinguishing psoriasis from skin diseases that are very similar to

psoriasis compared to common classification tasks such as the ISIC

dermatology dataset (72), e.g., to distinguish scalp psoriasis from

scalp seborrheic, which have the same region of onset and a small

difference in the lesion appearance but have completely different

treatment approaches, CAD comes in handy in order to avoid

incorrect diagnoses by doctors (52). Lichen planus, parapsoriasis,

lupus erythematosus and eczema are also particularly similar but

differently treated skin conditions which, in addition to all being

characterized by a reddish color, also have papules or plaques (25,

58–61). Because of Inflammatory skin diseases, such as psoriasis

(Pso), eczema (Ecz), and atopic dermatitis (AD), are very easily to

be mis-diagnosed in practice, Wu et al. (58) developed an end-

to-end deep learning model. Yang et al. (59) aimed to train an

efficient deep-learning network to recognize dermoscopic images

of psoriasis (and other papulosquamous diseases), improving the

accuracy of the diagnosis of psoriasis. While they have similar

symptoms, Psoriasis and Eczema have vastly different underlying

causes and behaviors, Chatterjee et al. (60) explores state of the art

Deep Learning techniques for distinguishing Psoriasis and Eczema.

Hammad et al. (25) presents an enhanced deep learning approach

for the accurate detection of eczema and psoriasis skin conditions.

Zhu et al. (61) propose a novel abscissa-ordinate focused network

(AOFNet) with active label smoothing for the identification of

psoriasis and eczema from images.

Using models from the natural language processing (NLP)

domain to extract image features is a very popular approach. This is

because thesemodels, when applied to sentences, are able to capture

the distant relationships between sentences and thus calculate the

relationships between words. The researchers want to try to use

this idea to capture long distance relationships between images to

make up for the fact that the computation of convolution can only

capture local information. Aijaz et al. (67) innovatively used Long

Short-Term Memory (LSTM) (73) for classification in addition

to CNNs. However, LSTM only obtained an accuracy of 0.723

on the results (CNN obtained 0.842), proving that CNN is still

superior to models from NLP for image processing. Vishwakarma

et al. (64) proposed a model that combines the features of a CNN

and a Vision Transformer (ViT) (74) with the aim of building a

high-performance, lightweight hybrid model for the intended task.

In this, ViT processes the convolutional feature maps to capture

long-term dependencies that represent global features.
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The use of deeper neural networks is a straightforward and

effective way to deal with the increase in the amount of data,

but this can lead to a very fatal problem - an increase in the

number of parameters, resulting in the need for better hardware.

However, instead of opting for a larger model, Arunkumar et al.

(63) proposed their own lightweight CNN when solving tens of

thousands of datasets, and obtained relatively good results. The

model proposed by Rashid et al. (68) is very easy to be used

and deployed as a smartphone application in a real-time decision-

making environment due to its lightweight nature. The model can

handle recognition and classification of psoriasis types for low or

high resolution images.

Zhao, Aggarwal, and Rashid et al. (24, 57, 68) used the psoriasis

dataset (Table 3) from a public dataset for identification of common

skin diseases and psoriasis. The study using the public dataset can

enhance the confidence of the diagnosis as all images were verified

by pathological examination and history and labeling was done by

experienced dermatologists. We believe that psoriasis research will

become more comprehensive as more and more papers conduct

research on public datasets.

3.2.3 Lesion severity assessment
Psoriasis severity assessment refers to the objective and accurate

evaluation of the severity of a patient’s psoriasis, so that the

doctor can develop a reasonable treatment plan and monitor its

effectiveness. Commonly assessment methods include the PASI

scoring system, DLQI scoring system (75), etc. Among them, the

PASI score system is used to score psoriasis patients based on

factors such as lesion area, erythema, scaling, and infiltration, with

a total score of 0 to 72. The higher the score, the more severe

the condition. In the process of using ML to evaluate the severity

of psoriasis, feature selection is a very important step, including

the extraction of features such as lesion area, erythema, scaling,

and infiltration. Before this, it is necessary to segment and identify

the image, especially to prevent the background interference from

affecting the extraction of color features. We summarize and

present papers that apply ML to the task of psoriasis severity

assessment (Table 8).

Similar to the psoriasis classification task, the task of psoriasis

severity assessment using TML models also requires the extraction

of various features such as color and texture in the image, which

are then fed into various classifiers for severity assessment. In

this regard, Shrivastava et al. (26, 27). conducted two different

experiments on two different datasets, one on the 848 psoriasis

dataset, which achieved 99.92% accuracy, and one on the 670

psoriasis dataset, which was first segmented by Bayesian modeling

and then classified, which achieved 99.84% accuracy. It can be

noticed that although the dataset has become smaller, the accuracy

can still be kept high by segmentation followed by classification.

In the experiments of Moon et al. (79), they used and

compared automatic [Simple linear iterative clustering (SLIC)

superpixel-based segmentation (21) and U-Net model] and semi-

automatic [level set method (LSM) (94) and interactive graph cuts

(IGC) (95)] segmentation algorithms. It was found that the semi-

automatic segmentation models are particularly subjective and

time consuming, while the automatic models are less effective in

segmenting the curved, illuminated or shadowed parts of the image.

From the results, the LSM from semi-automated segmentation was

able to achieve a DICE of 0.945 and the SLIC from automated

segmentation a DICE of 0.915 (Other segmentation metrics are

noted in the paper). Taking into consideration time efciency and

reproducibility, the paper finally chose SLIC as the segmentation

task model before the evaluation task.

The work of Dash et al. (28) is the most consistent with the

physician’s diagnostic process within all the papers. Specifically,

they distinguished 5,000 healthy skin from 5,000 psoriasis with

99.08% accuracy, then, segmented the lesion areas in the psoriasis

images with 94.76% accuracy, and, ultimately, assessed the

segmented images at four levels of severity with 99.21% accuracy.

Raj et al. (84) extended the work of Dash et al. (22) by broadening

the scope of lesion detection to segment healthy skin, psoriatic

lesions, and background regions simultaneously from full-body

areas.

Training out a segmentation model requires relevant data with

labels, and how well it is trained affects the subsequent tasks, with

errors at each stage accumulating to be very catastrophic in the

end (77). Thus, Huang et al. (88) avoided the use of segmentation

models and instead added various attention modules after the

backbone output, allowing the model to localize the lesion area

without going through the segmentation model. Schaap et al.

(87) utilized a special CNN (96) for the assessment task. This

CNN is assessed for psoriasis with a decreasing probability from

0 to 5, with a final threshold set to arrive at a score for that

psoriasis. Moon et al. (92) used CutMix to generate multiple-

severity disease images and proposed a hierarchical Multiscale

Deformable Attention Module (MS-DAM) that adaptively detects

representative regions of irregular and complex patterns in multi-

severe disease analyses.

You Only Look Once (YOLO) (97) is a deep neural network-

based target recognition and localization algorithm with fast

processing speed and suitable for real-time systems. YOLO-v4,

which builds on the original YOLO target detection architecture,

employs state-of-the-art optimization strategies in the field of

CNNs. Thus, Yin et al. (93) used the YOLO-v4 algorithm as a

feature extractor for images to detect the severity and lesion area

of each disease in a specific portion of an image and perform a

comprehensive assessment.

ViT’s input adaptive weighting and global information learning

can show good performance in vision related tasks. Raj et al. (85)

put ViT into a classification module for computation, where the

feature vectors output from the backbone are computed globally,

and then the output is collapsed back into the dimensions of the

feature representations produced by the convolution operation.

4 Discussion

4.1 Methods statistical analysis

We have summarized the methods used in the collected papers

(Figure 4). We found that when researchers select TMLmodels, for

segmentation tasks, clustering models such as K-Means are usually

used to achieve segmentation of diseased regions by clustering

diseased pixels together. Whereas for lesion recognition and
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TABLE 8 Lesion severity assessment.

Methods Remarks References Quantity of data Evaluation metrics∗

ACC↑ F1↑ AUC↑

PCA; SVM; NB; DT Traditional machine learning

methods

(76) 17 0.920 - -

(26) 848 0.999 - 0.999

(27) 670 0.998 - 0.998

Dic. L; BoVWs A novel image representation

and unsupervised feature

extractor method

(77) 676 - 0.710 -

(78) 676 0.808 - -

CNNs Segmentation was performed

before severity assessment

(28) 5,000 0.926 0.926 0.992

Semi-automatic vs. automatic

segmentation algorithms

(79) 80 - 0.989 -

Segmenting and scoring nail

psoriasis

(80) 705 0.765 - -

(81) 300+ 0.915 - -

(82) 1,154 0.55 0.55 0.63

Segmenting and scoring

pustular psoriasis (PP)

(83) 611 0.667 - -

Segmenting and scoring large

areas of psoriasis

(84) 500 0.942 - -

CNN + ViT (85) 1,018 0.795 0.792 0.950

Direct assessment of psoriasis

severity using CNNs

(86) 705 - - -

(87) 1,731 - - -

(88) 14,096 - - -

(89) 5,951 - 0.940 -

(90) 792 0.910 - -

(91) 2,700 - - -

Attention (92) 792 0.908 0.930 -

YOLO (93) 2,657 - - -

FIGURE 4

Quantitative distribution of di�erent ML methods on the three tasks.

assessment tasks, given the limited datasets available for psoriasis,

researchers tend to favor support vector machines as it performs

well with small datasets.

In DL model selection, U-Net is widely used for its high

accuracy in medical segmentation (98). Segmentation models are

also utilized in psoriasis recognition or assessment tasks, where

only by locating and segmenting the diseased regions, the model

is able to avoid interference from non-diseased regions (99).

Some methods originally used for NLP (e.g., LSTM and

Transformer) have been widely used in the field of computer vision
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in recent years (100), and have also been applied to medical image

analysis. However, there are fewer papers using these methods to

analyse psoriasis, and their scalability in medical images needs to

be further investigated. In addition, many other methods are not

shown in the diagram, and we have only summarized the most

commonly used ones.

4.2 Challenges

Through a comprehensive analysis of collected papers,

including data collection, preprocessing, modeling approaches and

experiments, we analyse the current challenges of machine learning

in psoriasis.

4.2.1 Lack of data sources
ML (especially DL) algorithms require large amounts of data to

effectively train models (101). However, since very few people study

psoriasis in the field ofML, the amount of data available for analysis

then becomes very limited, making it difficult to build accurate and

reliable models. In addition, most psoriasis datasets are not publicly

available, and most of the datasets used in the papers listed in the

table above were obtained through collaboration with hospitals.

Moreover, different tasks require different annotations, which adds

to the complexity of ML for research in the field of psoriasis. To

use ML for psoriasis research, access to sufficient data is critical.

However, this may not always be feasible due to the high cost of

physician annotation time or the difficulty of obtaining consistent

images (102). In addition, the acquired images may have unevenly

distributed categories or incorrect labels, which can lead to training

the model in the wrong direction or overfitting.

4.2.2 Data inconsistency
Even if there is enough data, its inconsistency and irregularity

can lead to poor model performance. That is, if the data come from

different databases or are taken by different doctors with different

angles, lighting or resolutions, then the integration and analysis

of these data will be a big challenge. Although the International

Skin Imaging Collaboration (ISIC) has attempted to address the

issue of data standardization by developing a set of technical

standards for skin lesion imaging (103), psoriasis differs from

common dermatological datasets in that the site of onset can be

systemic (e.g., body depressions), which leads to the analysis not

being able to train themodel exactly according to the characteristics

of the dermatological condition (rounded, localized, more regular,

flattened). At the same time, some features are difficult to obtain

through machine such as the sclerotic height of psoriasis, and most

of the commonly used DL is applied to flat images, which can only

obtain features that are accessible to flat vision, such as color and

texture. Although skin thickness segmentation was proposed in

Czajkowska et al. (40), it is particularly demanding on the dataset.

4.2.3 The inexplicability of methods
Selection of appropriate methods and improvement of existing

methods to improve the accuracy of psoriasis analyses are common

threads in existing papers, but doctors and patients are most

concerned about the accuracy of psoriasis analyses and whether the

researchers can explain how the proposed models arrive at their

conclusions. However, from the collected papers, most of them

only propose a model with good diagnostic results for psoriasis,

while little research has been done on the interpretability of

the model.

4.3 Future development

In response to these challenges to the application of ML

in psoriasis, we propose solutions and summarize the future

development of ML.

4.3.1 Few-shot learning
Model training using a small amount of data is also a current

research hotspot in ML, especially DL. For example, Folle et al.

(82) used a small number of samples to study the diagnosis of

psoriasis, and the BEiT model, which they used, was designed

to train models with fewer samples. Few-shot learning is a ML

paradigm designed to enable efficient training of models with a

small number of samples. In Xiao, Liu and Chen et al. (104–107),

they classified and segmented lesion data with fewer lesion images.

Data collection for psoriasis is also difficult, especially labeling,

and requires overcoming a variety of subjective factors. In today’s

era of predominantly data-driven model training, smaller, more

granular datasets may produce better results than larger, more

extensive datasets.

4.3.2 Feature consistency
Differences between images can also worsen the model,

especially in feature extraction. Therefore, we would like to unify

the images before training the model, or, in other words, extract

common features. For example, Diaz et al. (108) aim to pixelate

images using a segmentation model that labels pixels belonging

to the same lesion features (e.g., pigment networks, blue-white

stripes, dots, bubbles, blood vessels) as belonging to the same

category in skin lesions. This reduces the differences in image-

level features by extracting pixel-level features, while directing the

model to use these features for further training and avoiding image

differences that cause the model to recognize the same features as

different features. However, segmentation requires labeling, which

leads to a relatively poor feasibility of this approach. To solve this

problem, Pathak et al. (109) used the idea of weak segmentation,

which does not require prior labeling, but automatically obtains the

segmentation labels through learning. Using this idea, when faced

with psoriasis images that are extremely different at the image level,

the model can recognize the same attributes or features between

them, thus enabling themodel to better assess psoriasis. In addition,

preprocessing features of skin lesions (e.g. color) is also an aspect

that could be considered.Barata et al. (110–112) have shown that

image preprocessing techniques (e.g. color constancy) can improve

the performance of AI systems for segmentation and classification

of skin lesions. Using such techniques, when assessing the severity
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of a feature of psoriasis (e.g. erythema), it may be possible to

avoid situations where the assessment of erythema is different

due to the difference in the psoriasis, if we can first normalize

the psoriasis.

4.3.3 Model explainability
Currently, there is an increasing amount of interpretable

research in the field of AI in medicine (113). These papers

essentially use techniques that are intuitively capable of interpreting

the model to enable interpretable research. For example, a class

activation map (CAM) (114) is used to visualize the regions of

interest of the model, just as Ding et al. (115) used a CAM to

direct the model’s attention to the lesion region while explaining

the model’s focus in the middle layer. Concept activation vectors

(CAV) (116), a technique that converts high-level concepts that can

be understood by humans (e.g., whether or not there are hairs in

the area of the lesion, etc.) into vectors that can be understood by a

computer. It is therefore feasible to use CAM or CAV to interpret

the model. Using CAM, it is possible to understand which areas

on the image the model focuses on, and using CAV, it is possible to

direct themodel’s attention to which important high-level concepts.

Of course, there are many more interpretable techniques waiting to

be discovered, all aimed at increasing physician or patient trust in

the model and its outputs.

5 Conclusion

This review provides an overview of the application of ML

(especially DL) to psoriasis diagnosis over the last decade, including

segmentation, recognition and assessment tasks. However, we have

identified a number of challenges in this area, themost important of

which are data inconsistency and the issue of data privacy. It is also

worth noting that not all DL models are best suited for every task.

TML algorithms have also shown good results in feature extraction,

and different models should be selected depending on the specific

task at hand.

In conclusion, we hope that this review will encourage research

in this area and stimulate more advanced techniques to help

physicians in their work.
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High-intensity focused
ultrasound as a combined
approach for the treatment of
recurrent low-grade endometrial
stromal sarcoma: a case report
and literature review
Huihui Chen1,2†, Xiaonan Shang1†, Yue Shen1†, Huajing Huang3,
Zhebo Jiang2, Qingyi Wang2, Zhixing Cao4, Peiyu Yan1,5,6,
Suying Xiao2, Liangyu Chen2, Donghui Huang2*

and Min Kang1,2*

1Faculty of Chinese Medicine, Macau University of Science and Technology, Macao, Macao SAR,
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Zhuhai, Guangdong, China, 5State Key Laboratory of Quality Research in Chinese Medicines,
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Technology Research Institute, Macao, Macao SAR, China
Background: Surgery is the primary treatment for Endometrial Stromal Sarcoma

(ESS), however, a substantial proportion of patients with ESS experience

recurrence or metastasis. Currently, surgery and local ablation are the main

treatments for recurrent ESS followed by chemotherapy, radiotherapy,

immunotherapy, targeted therapy, and anti-estrogen therapy. Surgery and

local ablation are invasive treatments and may carry risks such as intestinal

damage and the risk of massive bleeding from tumor rupture. For patients who

refuse or are unable to undergo surgery and local ablation, conservative

treatment is not effective, and there is currently no definitive effective non-

invasive or combined treatment plan.

Case presentation: This report presents a case of a patient with recurrent

endometrial stromal sarcoma who refused surgical and local ablation

treatments. After receiving HIFU treatment combined with chemotherapy, the

progression of the tumor was effectively inhibited, the tumor volume significantly

reduced, and liver function was restored during the HIFU period, providing an

opportunity for chemotherapy.

Conclusions: HIFU combined with chemotherapy may provide a new treatment

strategy for patients with recurrent, metastatic endometrial stromal sarcoma, or

those who are unsuitable for surgery, local ablation, or those with poor baseline

status unable to tolerate intensive chemotherapy.
KEYWORDS

LGESS, HIFU, tumor recurrence, combination therapy, case report
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Introduction

ESS is an invasive tumor originating from endometrial stromal

cells. The cells resemble proliferative phase endometrial stromal

cells, manifesting as infiltrative growth, with or without

lymphovascular invasion. It accounts for approximately 0.2-1% of

uterine malignancies and 6-20% of uterine sarcomas (1–3).

According to the WHO (2020 edition) classification of

gynecological malignancies, ESS is divided into Low-Grade

Endometrial Stromal Sarcoma (LGESS) and High-Grade

Endometrial Stromal Sarcoma (HGESS) (4).

Due to the lack of specific clinical and radiographic

manifestations, ESS is easily misdiagnosed as uterine fibroids or

adenomyosis with similar symptoms (5). Therefore, a thorough

evaluation must be performed on rapidly enlarging fibroid masses

before surgery. High-grade stromal sarcoma carries a poor

prognosis, especially when diagnosis is delayed or presented with

advanced stages (6). LGESS is typically discovered during

pathological examination of hysterectomy specimens (7). LGESS

is a relatively indolent tumor with a good overall survival rate, but it

is characterized by multiple or late recurrences (3, 8). Recurrence is

more common in the pelvic and abdominal cavities, and less

common in the lungs and vagina. Due to its indolent course,

distant recurrence is more frequently seen in clinical practice,

necessitating long-term follow-up, hence there is less research on

the prognosis of recurrent LGESS (9).

Currently, hysterectomy and bilateral salpingo-oophorectomy

are the first-line treatments for ESS. However, approximately 30%-

50% of ESS patients experience recurrence or metastasis (10). At

present, surgical treatment, anti-estrogen therapy, chemotherapy,

radiotherapy, and targeted drug therapy are used to treat recurrent

or metastatic ESS. However, due to the different pathological

characteristics and fewer cases, there is not enough research and

data, and the treatment plan for recurrent metastatic ESS is still not

clearly unified.

In terms of examinations and follow-up, MRI differentiates

uterine fibroids from sarcomas through its superior soft-tissue

resolution, while monitoring tumor volume changes and

therapeutic effects. PET-CT precisely identifies metastases or

recurrent lesions, yet its phased utilization is prioritized in clinical

practice due to cost and procedural constraints. MRI serving as the

foundational modality, while PET-CT provides targeted assistance.

We report a case of recurrent low-grade endometrial stromal

sarcoma with multiple pelvic metastases and right sacral bone

metastasis. The patient had a short-term recurrence after surgery

and underwent multiple rounds of combined radiochemotherapy

and regular follow-up. Three years later, the patient relapsed again.

After hospital evaluation, the patient was unwilling to undergo a

second surgery due to concerns about surgical risks. The patient

then received three cycles of chemotherapy. After chemotherapy,

the patient developed abnormal liver function. After discussion by

the doctors, the treatment plan was changed to HIFU and

chemotherapy. This effectively inhibited tumor progression with

significant results.
Frontiers in Oncology 02202
Case report

The patient is a 28-year-old unmarried and nulliparous female

with no family history of malignancy and no prior gynecological

disorders or estrogen-related medication use. She presented to the

hospital in November 2019 with progressively worsening

dysmenorrhea for one year and menorrhagia for six months.

Gynecological ultrasound and abdominal CT indicated an

enlarged uterus, suggesting uterine fibroids. On November 21,

2019, she underwent laparoscopic exploration. During the

operation, a tumor approximately 9*9*8cm in size was seen on

the posterior wall of the uterus, and another tumor approximately

5×4cm in size was seen on the lower segment of the posterior wall of

the uterus. The intraoperative frozen pathology diagnosis was a

mesenchymal malignant tumor. With the consent of the family, the

operation was changed to total hysterectomy, bilateral

adnexectomy, and omentectomy. Postoperative pathology and

immunohistochemistry indicated low-grade endometrial stromal

sarcoma with transformation to high-grade, local necrosis, enlarged

and round nuclei, invasion of the uterine myometrium,

involvement of the endometrium and serosal layer, tumor

invasion seen in the blood vessels, no tumor invasion seen in the

nerves, and no tumor seen in the bilateral adnexa and omentum

(Figure 1). The postoperative pathological stage was stage IB. After

the operation, she underwent three rounds of intraperitoneal

hyperthermic perfusion therapy (cisplatin 110mg).

On December 17, 2019, the patient’s follow-up 18F-FDG PET/

CT (18F-fluorodeoxyglucose positron emission computed

tomography/computed tomography) showed thickening of

vaginal soft tissue with increased glucose metabolism, multiple

pelvic lymph nodes with increased glucose metabolism,

suggesting metastasis. The right side of the sacrum showed

slightly increased bone density with increased glucose

metabolism, suggesting possible metastasis. On December 23,

2019, an enhanced whole abdomen MR suggested a nodular

lesion on the left margin of the vaginal stump, highly suspicious

of tumor; multiple lymph nodes near bilateral iliac vessels, on both

sides of the pelvis, and in the pre-sacral space, lymph node

metastasis could not be excluded. The preliminary diagnosis was

“vaginal recurrence of endometrial stromal sarcoma and sacral

metastasis”. From January 9 to January 20, 2020, the patient

underwent VMAT radiotherapy (dose: GTVnd 6000cGy,

CTV4500cGy). From February 28 to March 12, 2020, the patient

underwent 4 sessions of brachytherapy (dose: 28Gy/4f, cisplatin as a

radiosensitizer). On January 9 and January 20, 2020, she received

concurrent chemotherapy with cisplatin (dose: 25mg, d1-4). On

February 21, 2020, she accepted chemotherapy with cisplatin

(100mg) and nivolumab (200mg) and regorafenib capsules

(20mg, Bid). On March 19, 2020, she accepted a cycle of

chemotherapy with paclitaxel (300mg) and lobaplatin (150mg)

and nivolumab (200mg).From April 15 to June 3, 2020, she

continued to receive 3 cycles of chemotherapy with lobaplatin

(150mg) and paclitaxel (330mg) and bevacizumab (350mg). On

April 15, 2020, she underwent a biopsy of the vaginal lesion, and the
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pathology results indicated: (vaginal orifice nodule) no endometrial

stromal sarcoma seen. Serial MRI scans performed every three

months between January and June 2020 revealed no abnormalities.

Following the completion of chemotherapy, the patient underwent

PET/CT scans every six months, with no significant abnormalities

detected in the results.

On August 18, 2023, the patient experienced pain in the lower

left abdomen, which gradually worsened, accompanied by left-sided

back pain and fever. Outpatient ultrasound examination of the

urinary system suggested: dilation of the upper segment of the left

ureter with hydronephrosis of the left kidney, and a hypoechoic

mass behind the bladder, measuring approximately 88×74×88mm,

with clear boundaries and uneven internal echo. On August 24,

2023, a PET/CT scan showed a mass of approximately

87×83×90mm at the vaginal stump, suggesting a possible

recurrence of the tumor.

The patient was admitted to the hospital for treatment on August

28, 2023, and underwent enhanced abdominal MR and urinary CTU

examinations. The MR enhancement suggested an abnormal signal in

the pelvic cavity, measuring approximately 99mm×88mm×116mm,

suggesting local tumor recurrence, possibly involving the rectum,

colon, bladder, and left ureter. After pelvic metastasis, the patient’s

primary symptoms included left-sided lumbar soreness, abdominal

distension, and lower abdominal pain. Physical examination revealed

a pelvic mass measuring approximately 9 cm×8 cm on triple

examination, with a firm consistency, poor mobility, no significant

tenderness, and no percussion tenderness over the sacrococcygeal
Frontiers in Oncology 03203
region. After multidisciplinary consultation, the patient was informed

of the high risk of surgery, including potential intestinal and bladder

injury, and the possibility of performing intestinal and renal fistula

surgery, ablation therapymay carry risks of tumor rupture and bleeding,

and injury to the intestines and bladder. The patient strongly refused

surgery and ablation therapy, requesting conservative treatment. After

ruling out contraindications to chemotherapy, the patient underwent

three cycles of systemic chemotherapy with the TC regimen (paclitaxel

injection 260mg + carboplatin injection 500mg) on September 5,

September 26, and October 23, 2023. The tumor size decreased from

99mm×88mm×116mm to 69.2mm×57.8mm×75.4mm (Figures 2A, B).

On November 12, 2023, the patient’s liver function showed

significant abnormalities (Alanine transaminase (ALT): 47.7 U/L;

Aspartic amino transferase (AST): 32.8 U/L;CTCAE version 5.0:

Grade 1 hepatotoxicity) and she could not receive the fourth cycle of

chemotherapy as scheduled. After discussion and with the patient’s

consent, the treatment plan was changed to HIFU treatment and

liver protection treatment, waiting for the opportunity for

chemotherapy. From November 13 to November 24, 2023, the

patient underwent nine intermittent HIFU treatments, after which

the blood flow in the pelvic tumor significantly decreased. During

this period, the patient was given liver protection treatment

(silymarin capsules 140mg, bid, orally), and glutathione (1.2g, qd,

intravenous infusion). On December 12, 2023, the patient’s liver

function recovered, and she underwent the fourth cycle of systemic

chemotherapy with the TC regimen (paclitaxel injection 260mg +

carboplatin injection 600mg). On January 5, 2024, the patient’s liver
FIGURE 1

Tumor histopathology images [(A-C) Hematoxylin-eosin staining; magnification: (A) 4×; (B, C) 10×]. Main immunohistochemical staining results for
low-grade endometrial stromal sarcoma [(D–J) 4×]. (D) Caldesmon; (E) Desmin; (F) SMA; (G) CD10; (H) Ki-67; (I) ER; (J) PR.
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function was abnormal again (Alanine transaminase (ALT): 118.6

U/L;Aspartic amino transferase (AST):41.6 U/L;CTCAE version

5.0: Grade 1 hepatotoxicity) and she could not receive the fifth

cycle of chemotherapy as scheduled. From January 8 to January 16,

2024, the patient received eight intermittent HIFU treatments, and

liver protection treatment was continued during the treatment

period. On February 2, 2024, the patient’s liver function

recovered, and she underwent the fifth cycle of systemic

chemotherapy with the TC regimen (paclitaxel injection 270mg +

carboplatin injection 780mg). After 17 HIFU treatments

combined with chemotherapy, the patient’s lesion decreased from

69.2mm×57.8mm×75.4mm to 43mm×33mm×45mm (Figures 2C–E).

The scattered small nodules in the original pelvic cavity disappeared,

the dilation of the upper segment of the original left ureter improved

significantly, the turbidity of the fat space in the original pelvic cavity

and the pelvic effusion disappeared. The edema of the left piriformis

muscle significantly improved. The level of tumor markers gradually

decreased and tended to stabilize. The patient’s abdominal pain

and bloating symptoms disappeared, and she had no other

discomfort. On March 8, 2024, she underwent the sixth cycle of

systemic chemotherapy with the TC regimen (paclitaxel injection

270mg + carboplatin injection 650mg).

On April 22, 2024, a PET/CT scan suggested that the blood flow

signal around the patient’s pelvic mass had significantly decreased,

the mass had basically shown changes after HIFU treatment

(Figure 3), and the patient’s tumor markers (Figure 4) had

steadily decreased and trended toward stabilization. The

treatment effect was satisfactory. The patient was advised to

undergo surgical treatment, but she still refused. The benefit of

immunotherapy for the patient was not evident at present. The
Frontiers in Oncology 04204
patient requested regular follow-up, and there were no new lesions

at present. It is recommended to continue regular HIFU

maintenance treatment in the future. The patient is currently

under continued follow-up observation. The disease timeline is

shown in Figure 5.
Methods

In this case, the patient used the yLab Class C Ultrasound

Diagnostic System (Shenzhen Baisheng Medical Equipment Co.,

Ltd) and the HIFUNIT9000 Focused Ultrasound Tumor Ablation

Machine (Shanghai Aishen Technology Development Co., Ltd).

The system consists of a main unit, motor system, control console,

monitoring system, power supply, and water treatment system.

Pre-treatment preparation: The patient was instructed to

abstain from high-protein food the day before the treatment.

Prior to the treatment, the patient was asked to retain a small

amount of urine to fill the bladder. Lactulose oral solution (Beijing

Hanmei, 100ml/bottle) was administered for bowel preparation,

and parecoxib sodium (Dynastat) was administered via

intramuscular injection for analgesia.

During the treatment, phloroglucinol injection was

administered intravenously. The patient was positioned supine,

and the machine located the pelvic tumor. Throughout the

procedure, the treatment intensity and duration were adjusted

according to the patient’s tolerance and the grayscale changes

displayed on the ultrasound.

HIFU is a non-invasive therapeutic technique that does not

require anesthesia, has no incisions, no radiation, and has a quick
FIGURE 2

MRI images of the patient. (A) Tumor volume size of the patient’s first MRI after recurrence. (B) Tumor volume size before the first HIFU treatment
after three courses of chemotherapy with TC regimen. (C) Tumor volume size after first HIFU treatment. (D) Tumor volume size after the fourth
course of TC regimen chemotherapy. (E) Tumor volume size after the second HIFU treatment.
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recovery time. It is primarily used for solid tumors that can be

observed under ultrasound, such as adenomyosis, uterine fibroids,

osteosarcoma, most primary and metastatic liver tumors, etc.

The principle of HIFU treatment involves precise positioning and

outlining of the tumor under ultrasound, scanning point by point and

layer by layer according to the shape of the tumor. Utilizing the

penetrative and focusing properties of ultrasound waves, the waves

emitted from outside the body are focused on the pathological tissue

inside the body. Through thermal effects, mechanical effects, and
Frontiers in Oncology 05205
cavitation effects, the temperature of the pathological tissue rises

instantly to 60-100°C, causing instantaneous irreversible cell death

and coagulative necrosis of the tumor tissue. HIFU therapy achieves

precise targeted ablation through real-time ultrasound imaging

guidance. A 3.5–5 MHz dual-mode transducer enables

simultaneous visualization of anatomical structures and blood flow

distribution. During treatment, gray-scale ultrasound images are

acquired at 5-minute intervals, monitoring echo intensity

enhancement in the target area (indicative of coagulative necrosis).
FIGURE 4

The trend chart of various tumor indicators. (A) First HIFU treatment; (B) Second HIFU treatment.
FIGURE 3

(A–D) Pre-treatment PET/CT: A pelvic soft tissue mass demonstrates heterogeneously intense radiotracer uptake with a maximum standardized
uptake value (SUVmax) of approximately 7.0. The lesion measures approximately 8.7 × 8.3 × 9.0 cm, showing internal necrotic components. The
mass invades the vaginal stump and exhibits ill-defined borders with the rectum and the pelvic segment of the left ureter. (E–H) Post-treatment
PET/CT after 6 courses of chemotherapy and 2 sessions of HIFU therapy.A hypodense lesion is noted in the left pelvis, measuring approximately
4.7 cm × 3.1 cm. It demonstrates ill-defined borders with the vaginal stump and has an SUVmax of 2.8.
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Initial acoustic intensity is set at 300–500 W/cm², with

dynamic adjustments to pulse frequency (0.8–1.2 MHz) and duty

cycle (30–50%) based on real-time thermal curves (target

temperature 55–65°C). Should acoustic pathway deviation occur

(e.g., due to bowel gas interference), immediate treatment

suspension and refocalization of the acoustic energy are

implemented (Figure 6).

In the assessment of patient adaptability, it is mainly based on the

evaluation of subjective symptoms such as lumbosacral pain, abdominal

pain, lower - limb neuralgia, and local skin burning during the patient’s

treatment. If the pain and skin burning are obvious, the energy intensity

should be reduced or the treatment should be suspended. Regarding the

efficacy assessment, there are currently no precise treatment standards

and data. Our clinical experience mainly relies on ultrasound

examinations. A better treatment effect is indicated when, in

comparison before and after treatment, the area of enhanced echo of

the mass under ultrasound exceeds 90%, the closure rate of small blood

vessels exceeds 70%, and the reduction rate of blood - flow signals in

local thick blood vessels exceeds 50%.
Frontiers in Oncology 06206
Discussion

ESS is a relatively rare gynecological malignancy. The treatment

of recurrent ESS remains a challenge. The 5-year survival rate for

patients with stage I and II low-grade ESS reaches 90%, while for

patients with stage III and IV, it is about 50% (9). Previous studies

have reported recurrence rates of LGESS ranging from 10% to 76%,

which may be due to its characteristic of recurrence over 5 years,

resulting in a large difference in recurrence rates (11). At present,

the main treatment option for endometrial stromal sarcoma is

surgery, supplemented by chemotherapy, radiotherapy, anti-

estrogen therapy, etc. Due to the many adverse reactions of

radiotherapy and chemotherapy and the inability to continue, for

patients who cannot undergo surgery, ablation therapy can be

chosen. However, the ablation process requires puncture, which

may damage surrounding organs such as the intestines and bladder.

The puncture process may lead to the risk of tumor rupture,

bleeding, and tumor dissemination and metastasis. Therefore, the

treatment of recurrent ESS remains a significant challenge.
FIGURE 6

Schematic diagram of HIFU operation principle.
FIGURE 5

Time-event axis.
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In this case, the patient was diagnosed with LGESS and experienced

rapid recurrence shortly after surgery. After multiple rounds of

combined radiotherapy and chemotherapy, the condition stabilized

and regular follow-up examinations were scheduled. In August 2023,

the tumor recurred again, measuring approximately 10cm, with

multiple pelvic metastases and right sacral bone metastasis. The

tumor was suspected of locally recurring and possibly invading the

rectum, colon, bladder, and left ureter. Unable to accept the risks of

surgery, the patient strongly refused surgical intervention and

underwent chemotherapy. After three cycles of chemotherapy, the

tumor size decreased from 99mm×88mm×116mm to

69.2mm×57.8mm×75.4mm. However, due to abnormal liver function,

the fourth cycle of chemotherapy could not be administered. After

evaluation and discussion, HIFU treatment was added, liver protection

treatment was administered during this period, and the timing for

chemotherapy was awaited. After 17 sessions of HIFU treatment

combined with systemic chemotherapy, the tumor size reduced from

69.2mm×57.8mm×75.4mm to 43mm×33mm×45mm, no longer

compressing the bladder and ureter, the scattered small nodules in

the pelvic cavity disappeared, the level of tumor markers gradually

decreased and stabilized, and the patient’s abdominal pain and bloating

disappeared, significantly improving her quality of life. HIFU treatment

during periods when chemotherapy cannot be administered can

continuously inhibit tumor progression, preventing tumor

enlargement during periods without chemotherapy. Combined liver

protection treatment is beneficial for the recovery of liver function,

allowing the patient to receive chemotherapy on schedule.

HIFU is a novel non-invasive thermotherapy that can cause

coagulative necrosis of tumor tissue. It has the advantages of high

repeatability, uniform heat diffusion, virtually painless treatment

process, no external injuries, rapid postoperative recovery, and no

impact on patient function. It has been proven effective and safe in

the treatment of solid tumors such as uterine fibroids, breast cancer,

and pancreatic cancer. A prospective study suggested that the

effectiveness of HIFU in treating uterine fibroids was higher than

surgical treatment, and it was safer (12). MR-HIFU treatment

significantly alleviates the clinical symptoms caused by uterine

fibroids and effectively reduces the tumor volume (13). In

addition, a retrospective review findings of HIFU treatment was

more effective than secondary myoma resection, with fewer side

effects, longer asymptomatic periods, and lower risk of re-

intervention (14). A systematic review study showed that patients

with postoperative pathological diagnosis of uterine sarcomas

(including LGESS and uterine leiomyosarcoma) do not cause

histological dissemination of sarcoma after receiving HIFU

treatment (15). HIFU treatment has therapeutic effects on uterine

fibroids and sarcomas, and also has good effects in the treatment of

other pelvic tumors. Zhong Q,etc (16), retrospectively analyzed 153

patients with cervical cancer residual or recurrent after

chemoradiotherapy (CRT) who received HIFU treatment from

2010 to 2021. The results showed that HIFU can significantly

reduce the size of residual or recurrent lesions, improve local

control rates and survival time, and even elderly or physically

poor patients can tolerate it, providing a supplementary treatment

method for cervical cancer patients with adverse reactions after
Frontiers in Oncology 07207
chemotherapy. Lei T,etc (17), treated 8 patients with recurrent

ovarian cancer or metastatic pelvic tumors with HIFU, and found

that the pain relief rate was 60%, short-term quality of life

improved, and adverse reactions after treatment were mild.

Studies have shown that HIFU treatment of pelvic metastatic

tumors or recurrent ovarian cancer is feasible and without serious

complications. HIFU treatment is also used in breast cancer and

pancreatic cancer. Zulkifli D,etc (18), included nine studies and

found that HIFU can induce coagulative necrosis of local breast

cancer tumors, with small side effects, good cosmetic effects, and a

5-year disease-free survival rate of more than 90%. A meta-analysis

evaluated 19 studies with a total of 939 patients, and the results

showed that HIFU treatment combined with drug treatment of

pancreatic cancer can relieve patients’ chronic pain, the incidence of

adverse events is low, and it can improve the overall survival rate

(19). In the treatment of prostate cancer, HIFU treatment also plays

a role. Parry MG reported that after 1381 patients with prostate

cancer received HIFU treatment, the tumor effectively shrank, and

urinary and reproductive functions were preserved, with little

impact on the quality of life (20).

HIFU is currently used for pelvic and abdominal solid tumors,

and the treatment effect is good, patients with residual or recurrent

tumors in the pelvis after radiotherapy and chemotherapy also

benefit. These research results provide evidence for us to choose to

add HIFU in this case, clinical data also prove that HIFU combined

with chemotherapy for the treatment of recurrent low-grade

endometrial stromal sarcoma is effective and safe.

During HIFU treatment, different tumor sizes and locations are

associated with distinct side effects and limitations. To enhance

treatment safety, prior to treatment, it is necessary to improve the

patient’s nutritional status, control underlying diseases, and

establish psychological expectations. Additionally, multi - modal

imaging techniques should be employed to precisely locate the

lesion. During the treatment, parameters should be dynamically

adjusted based on the tumor size, depth, blood supply

characteristics, and the patient’s adverse reactions. This ensures

effective ablation of the tumor tissue while minimizing damage to

the surrounding normal tissues to the greatest extent. After the

treatment, measures should be taken as early as possible to address

adverse reactions. Hierarchical interventions should be carried out

for common problems such as fever, pain, and skin damage.

Meanwhile, psychological counseling should be provided to

improve the patient’s treatment experience.

The combined HIFU therapy has gained increasing attention,

and changes in immune-related markers and tumor biomarkers

may be associated with treatment prognosis. Dong S et al. compared

pancreatic cancer patients receiving HIFU-priority versus

chemotherapy-priority regimens in combined therapy and found

that the HIFU-priority group demonstrated significantly improved

overall survival (OS) (HR = 0.38) (21). Additionally, patients with

normal CRP and CA125 levels exhibited longer survival. Elevated

neutrophil-lymphocyte ratio (NLR) and low lymphocyte-monocyte

ratio (LMR) were associated with poor prognosis. Wang R et al.

found that patients positive for CD133 and other stem cell markers

may benefit from targeted nanocarrier-based therapies combined
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with HIFU (22). HIFU may enhance chemotherapeutic efficacy by

creating a tumor hypoxic environment that activates hypoxia-

inducible factors (HIFs), thereby improving the delivery efficiency

of chemotherapeutic agents such as doxorubicin. Concurrently,

HIFU promotes CD4+/CD8+ lymphocyte infiltration into tumor

tissues (23, 24). HIFU activates systemic immune responses by

releasing tumor antigens and danger signals, with CD8+

lymphocyte infiltration correlating with regression of distant

untreated lesions (24, 25). Patients with higher baseline tumor-

infiltrating lymphocyte (TIL) levels are more suitable for HIFU

combined with PD-1 inhibitors and chemotherapy (26, 27).

In terms of pathological characteristics, the combination of

HIFU and chemotherapy significantly controls the growth of

recurrent lesions in mucinous ovarian cancer (28). In advanced

gastric cancer (GC) patients, HIFU-priority regimens following

neoadjuvant chemotherapy significantly improve OS, particularly

in stage III patients (HR = 1.61) (29). Multimodal imaging serves as

the gold standard for post-HIFU chemotherapeutic response

evaluation, with contrast-enhanced CT/MRI clearly delineating

tumor anatomy and Extent of necrosis (30, 31). Molecular

ultrasound imaging dynamically monitors tumor vascular

characteristics (via the QuanTAV index), predicting treatment

sensitivity (32). Translucent texture changes in ultrasound/MRI

follow-up of muscularis lesions indicate therapeutic efficacy,

whereas residual enhancing foci warrant caution for recurrence

(33, 34). Future research should prioritize refining a multi-

parameter decision model integrating tumor biomarkers, imaging

features, pathological staging, and immunological status to optimize

HIFU-chemotherapy combination therapy precision.

The main mechanisms by which HIFU combined with

chemotherapy may exert its therapeutic effect are likely related to

the following aspects. First, tumor cells are more sensitive to high

temperatures than normal cells. HIFU destroys tumor tissue

through its thermal effect, inducing apoptosis of tumor cells; the

thermal effect can increase tumor blood flow and enhance the

permeability of the tumor cell membrane, thereby accelerating the

penetration and absorption of chemotherapeutic drugs (21, 35).

Second, after HIFU treatment, tumor cells die and cellular

components enter the bloodstream. The expression of a large

number of tumor antigens in the fragments activates the immune

system’s anti-tumor response. Third, some studies suggest that

HIFU treatment can change the tumor ’s resistance to

chemotherapy, increasing the sensitivity of tumor cells to

chemotherapeutic drugs (36, 37). The anti-tumor mechanism of

HIFU treatment is still under research, especially the impact on the

immune system which requires further exploration.

While offering the advantage of non-invasiveness, HIFU

possesses significant limitations in clinical application. Its

efficacy is constrained by tissue acoustic properties; it cannot

effectively penetrate gas-containing organs (e.g., lungs) or bone,

limiting its use for tumors in locations like the thorax or

intracranial cavity. Furthermore, HIFU application is highly

dependent on specific tumor characteristics: size, well-defined

margins, and proximity to critical vasculature or nerves. Tumors

that are excessively large or unfavorably located pose procedural
Frontiers in Oncology 08208
risks, including potential damage to adjacent structures such as

bowel loops or nerves.

Additionally, real-time monitoring during treatment and

accurate post-procedural efficacy assessment remain challenging.

The inability to obtain tissue samples for histopathological

confirmation necessitates reliance on post-treatment imaging

follow-up for evaluating response. Procedural success heavily

depends on operator expertise, resulting in a steep learning curve.

Crucially, HIFU primarily ablates localized tumor tissue; it does not

target systemic tumor dissemination via hematogenous spread,

lymphatic metastasis, or distant seeding. Therefore, HIFU must be

integrated with systemic therapies and serves as an effective adjunct

to, rather than a replacement for, conventional cancer treatments.
Conclusions

In conclusion, this case demonstrates that HIFU combined with

chemotherapy is effective in treating recurrent endometrial stromal

sarcoma. This combined treatment provides a new option for patients

who refuse secondary surgery or cannot tolerate it.We hope that more

clinical research and data will confirm its effectiveness and safety in the

future, and further explore its mechanism of action in endometrial

stromal sarcoma, especially its impact on immune function and the

mechanism of action in increasing sensitivity and enhancing efficacy.
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