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Editorial on the Research Topic
 Deep learning for medical imaging applications




There is substantial scientific interest in leveraging artificial intelligence (AI), particularly deep learning (DL), for radiological imaging, as these methods are driving significant advancements in disease detection, diagnostic accuracy, and treatment planning (Rubin, 2019). Over the past decade, annual publications on AI in radiology have surged seven-fold, with MRI and CT dominating the field of data acquisition techniques and neuroradiology leading in contributions, followed by musculoskeletal, cardiovascular, breast, urogenital, thoracic, and abdominal subspecialties (Pesapane et al., 2018). AI has evolved into numerous practical tools with significant clinical impact. Modern systems largely depend on artificial neural networks (ANNs) inspired by brain circuitry, including Convolutional Neural Networks (CNNs), recurrent models, and newer transformer architectures. These approaches achieve high performance across MRI, CT, PET, and ultrasound data, uncovering subtle diagnostic features beyond human perception and supporting earlier disease detection and more efficient clinical workflows (Perez-Lopez et al., 2024). As datasets grow and computational frameworks mature, DL continues to reshape the future of precision medicine. Ongoing challenges include model interpretability, generalizability, and unbiased clinical deployment, but the field is rapidly progressing toward robust, trustworthy, and clinically integrated AI systems (Yang et al., 2024). Despite strong research potential on AI, its real-world clinical deployment remains limited, as effective integration into healthcare requires coordinated efforts among stakeholders and careful resolution of ethical challenges (Yang et al., 2024; Saw and Ng, 2022).

Gabriel et al. explored the critical challenge of integrating AI into patient monitoring to support continuous, real-time clinical assessment. Developed by LookDeep Health, the system showed strong performance in object detection and patient-role classification. Their study demonstrated the feasibility of computer vision as a core technology for passive, uninterrupted patient monitoring within operational hospital environments. Performance evaluation showed high accuracy in both object detection and patient-role classification. Using this platform, the investigators compiled a substantial dataset comprising computer-vision, derived predictions from more than 300 high-risk fall patients, totaling over 1,000 monitored patient-days.

Abulajiang et al. explored important insights into the association between age at menopause and the risk of major gynecologic malignancies, including cervical, ovarian, and uterine cancers. Using restricted cubic spline (RCS) regression models, the study rigorously characterized non-linear relationships between menopausal age and subsequent cancer risk. The findings suggest that menopausal age may serve as a meaningful clinical indicator, with potential value in refining individualized cancer risk assessment and informing personalized screening strategies.

Chen, Han et al. conducted a systematic review and meta-analysis evaluating the prognostic significance of growth pattern-based grading in mucinous ovarian carcinoma (MOC). The analysis indicates that expansile MOC is associated with more favorable outcomes, whereas infiltrative MOC correlates with advanced disease and poorer prognosis. The findings further underscore the importance of complete surgical staging for infiltrative MOC, while suggesting that comprehensive staging may be optional in patients with early stage expansile MOC.

Li, Ding et al. investigated radiomic features derived from ultrasound imaging and developed an externally validated predictive model integrating clinical variables with ultrasound-based radiomics to assess residual tumor status in patients with advanced epithelial ovarian cancer. The combined model demonstrated superior performance in preoperatively identifying patients likely to achieve complete resection of all visible disease and exhibited stronger generalizability compared with models based solely on clinical or radiomic features.

Yang et al. presented a comprehensive review of recent advances in the application of AI for the early screening and diagnosis of thyroid diseases. The authors summarized progress across multiple domains, including thyroid pathology and ultrasound-based assessment, and highlight emerging trends in AI-driven clinical decision support. The review further emphasized the potential of integrated AI frameworks that combine ultrasound imaging with clinical data to improve diagnostic accuracy for thyroid cancer and to enable more precise prediction of postoperative survival outcomes.

Chen, Liu et al. introduced a novel multi-class brain tumor classification model, EnSLDe, designed to capture both short-range and long-range dependencies in neuroimaging data. The architecture comprised three key components: a Feature Extraction Module (FExM), a Feature Enhancement Module (FEnM), and a Classification Module. Evaluation on two publicly available datasets demonstrated excellent performance, underscoring the model's ability to effectively integrate multi-scale feature dependencies and thereby enhance brain tumor classification accuracy.

Ma et al. validated a DL signature for non-invasive prediction of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma and compared its performance with a conventional clinical-semantic model. The Swin Transformer-based signature demonstrated superior predictive accuracy, outperforming traditional approaches. This end-to-end DL framework shows strong potential as a reliable tool for estimating STAS preoperatively, providing valuable guidance for surgical planning and supporting more informed decisions regarding adjuvant therapy selection in early-stage disease.

Han et al. developed a radiomics nomogram integrating chest CT features with the ILD-GAP index to improve clinical management of rheumatoid arthritis-associated interstitial lung disease (RA-ILD). CT scans were retrospectively analyzed and staged using ILD-GAP. The model demonstrated strong accuracy in identifying low-risk RA-ILD patients. These findings suggest that this non-invasive, quantitative tool may enhance clinical decision-making by enabling more precise risk stratification and supporting individualized management strategies for RA-ILD. This integrated approach offers added clinical value for patient care.

VanBerlo et al. investigated a self-supervised learning (SSL) approach to address the scarcity of labeled data in medical imaging by leveraging representations learned from unlabeled images. Their findings showed that constructing positive pairs from nearby frames within the same video improves performance compared with pairs derived from the same image, although optimal IVPP hyperparameters vary across downstream tasks. Notably, SimCLR consistently achieved top performance for key B-mode and M-mode lung ultrasound tasks, suggesting that contrastive learning may be better suited than non-contrastive methods for ultrasound imaging applications.

Saavedra et al. developed a novel two-step DL framework to automate the assessment of supraspinatus fatty infiltration in shoulder MRIs. Their method sequentially employs a U-Net architecture to segment the muscle's region of interest, followed by a VGG-19 network to perform binary classification based on Goutallier's scale. Utilizing transfer learning on a dataset of 606 T2-weighted images, the study reported robust performance, achieving a segmentation Dice score of 0.94 and a classification AUROC of 0.99. This approach demonstrates the feasibility of fully automating the diagnostic workflow, significantly reducing the reliance on time-consuming manual segmentation by radiologists.

Li, Chen et al. proposed UnetTransCNN, a hybrid architecture designed for 3D medical image segmentation that effectively integrates CNNs with Transformers. Addressing the limitations of prior sequential fusion models, UnetTransCNN employs a parallel design where a CNN-based module captures local details while a Transformer-based module, enhanced with an Adaptive Fourier Neural Operator, captures global contextual dependencies. The model utilizes adaptive global-local coupling units to dynamically fuse features across multiple scales. Validated on the BTCV and MSD datasets, UnetTransCNN demonstrated state-of-the-art performance, significantly outperforming existing hybrid baselines like TransUNet and CoTr in segmenting both large and small anatomical structures.

Rabah et al. introduced a Vision Transformer (ViT) framework for automated detection of diabetic peripheral neuropathy (DPN) using corneal confocal microscopy (CCM) images. To address the subjectivity and labor-intensive nature of manual assessment, they developed a streamlined ViT model that classifies images as healthy or DPN without requiring pixel-level segmentation. Using a dataset of 692 images, the model achieved state-of-the-art performance (AUC 0.99; F1-score 95%), outperforming CNNs such as ResNet50. Grad-CAM–based interpretability confirmed that the model accurately focused on corneal nerve fiber loss as the key discriminative feature.

Luo et al. introduced a DL-driven data-enhancement framework that sharpens the classification of endometrial lesions in ultrasound imaging. Drawing on 1,875 images from 734 patients across six hospitals, the team couples feature-space anomaly detection for image-quality cleaning with a clustering-based soften-label strategy. After benchmarking multiple CNNs and Vision Transformers, they assembled an ensemble of ResNet50, DenseNet169, DenseNet201, and ViT-B. This model delivers 0.809 accuracy and a 0.911 macro-AUC, markedly outperforming baseline CNNs and demonstrating how targeted data curation can meaningfully elevate diagnostic performance.

Liu et al. investigated the impact of AI-guided MRI instance segmentation on laparoscopic myomectomy, with particular focus on broad-ligament fibroids, which are challenging due to their proximity to critical pelvic anatomy. The DL model segmented fibroids, uterine wall, and uterine cavity on preoperative MRI. In a randomized cohort of 120 patients, AI assistance significantly reduced operative time (118 vs. 140 min), intraoperative blood loss (50 vs. 85 mL), and improved early postoperative recovery. The authors conclude that millimeter-level anatomical mapping can substantially enhance surgical precision in complex gynecologic procedures.

Xiong et al. explored the anticancer actions of 6-gingerol in SKOV3 ovarian carcinoma cells, revealing a targeted apoptotic mechanism. The compound suppressed clonogenic growth and triggers caspase-dependent apoptosis while selectively downregulating the transcription factor Gli3, independent of Bcl-2 family alterations. Notably, 6-gingerol robustly elevated miR-506, typically diminished in ovarian tumors and miR-506 overexpression itself reduces Gli3 and promotes apoptosis. Blocking miR-506 reversed these effects, supporting a model in which 6-gingerol activated a miR-506/Gli3 axis, highlighting its therapeutic promise.

Xie et al. conducted a systematic literature review, spanning the last decade, on the application of machine learning (ML) and DL techniques to psoriasis image analysis. Fifty-three articles were retrieved from major publication repositories (WoS, PubMed, and IEEE Xplore) addressing the problems of lesion localization, lesion recognition, and severity assessment. The authors evaluated commonly used public datasets, summarized prevailing ML/DL architectures and their limitations, and identified persistent challenges, including dataset heterogeneity and limited interpretability. They also outlined emerging trends and proposed future research directions to advance automated psoriasis assessment.

Chen, Shang et al. presented a case study of a patient with recurrent low-grade endometrial stromal sarcoma (LGESS) who refused standard surgery or ablative treatment. After discontinuing chemotherapy due to impaired liver function, the patient was administered high-intensity focused ultrasound (HIFU) together with chemotherapy, which resulted in a significant reduction in tumor volume, inhibition of its progression, and restoration of liver function. This result suggests that HIFU-based combination therapy may represent a valid option for metastatic LGESS or for patients unsuitable for surgery, particularly when integrated with real-time monitoring and precise post-treatment assessment.

Overall, this compilation demonstrates the researchers collectively push forward the development of advanced deep-learning models, reflecting their strong commitment to improving accuracy, reliability, and impact in medical imaging applications.
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Introduction: This study introduces an AI-driven platform for continuous and passive patient monitoring in hospital settings, developed by LookDeep Health. Leveraging advanced computer vision, the platform provides real-time insights into patient behavior and interactions through video analysis, securely storing inference results in the cloud for retrospective evaluation.
Methods: The AI system detects key components in hospital rooms, including individuals' presence and roles, furniture location, motion magnitude, and boundary crossings. Inference results are securely stored in the cloud for retrospective evaluation. The dataset, compiled with 11 hospital partners, includes over 300 high-risk fall patients and spans more than 1,000 days of inference. An anonymized subset is publicly available to foster innovation and reproducibility at lookdeep/ai-norms-2024.
Results: Performance evaluation demonstrates strong accuracy in object detection (macro F1-score = 0.92) and patient-role classification (F1-score = 0.98). The system reliably tracks the “patient alone” metric (mean logistic regression accuracy = 0.82 ± 0.15), enabling detection of patient isolation, wandering, and unsupervised movement-key indicators for fall risk and adverse events.
Discussion: This work establishes benchmarks for AI-driven patient monitoring, highlighting the platform's potential to enhance patient safety through continuous, data-driven insights into patient behavior and interactions.

Keywords
artificial intelligence, medical imaging, computer vision, patient monitoring, RGB video, deep learning, healthcare analytics


1 Introduction

In hospitals, direct patient observation is limited–nurses spend only 37% of their shift engaged in patient care (Westbrook et al., 2011), and physicians average just 10 visits per hospital stay (Chae et al., 2021). This limited interaction hinders the ability to fully understand patient behaviors, such as how often patients are left alone, how much they move unsupervised, and how care allocation varies by time or condition. Virtual monitoring systems, which allow remote patient observation via audio-video devices, have improved safety, particularly for high-risk patients (Abbe and O'Keeffe, 2021).

Artificial Intelligence (AI) is transforming healthcare by enhancing diagnostic accuracy, streamlining data processing, and personalizing patient care (Davenport and Kalakota, 2019; Davoudi et al., 2019; Bajwa et al., 2021). While AI has found success in tasks like surgical assistance (Mascagni et al., 2022) and diagnostic imaging (Esteva et al., 2021), patient monitoring represents a critical frontier. Unlike these tasks, continuous patient monitoring involves real-time video analysis over extended periods, requiring AI systems to process data efficiently and extract actionable insights spanning days, like day-over-day movement (Parker et al., 2022).

Continuous monitoring enhances safety and enables the detection of risks often missed during periodic assessments. For example, trends like delirium fluctuate throughout the day, but infrequent observations make these patterns hard to capture (Wilson et al., 2020). Similarly, patients occasionally leave their beds unattended—a key fall risk—yet monitoring every instance in real-time remains challenging. A robust computer vision-based system can provide immediate, context-aware insights into patient behavior (Chen et al., 2018), caregiver interactions (Avogaro et al., 2023), and room conditions (Haque et al., 2020). Such systems surpass traditional intermittent observation methods by detecting subtle patterns that inform care decisions (Lindroth et al., 2024).

However, achieving scalability, transparency, and adaptability in continuous monitoring systems presents significant challenges. These include efficiently processing video data at higher frame-rates (Posch et al., 2014), ensuring privacy compliance (Watzlaf et al., 2010), and adapting to dynamic hospital settings with varying lighting, camera angles, and patient behaviors. Addressing these technical and operational challenges is critical for AI-driven monitoring systems to gain acceptance and deliver meaningful outcomes, such as reducing falls and other preventable harms.

To bridge these gaps, this research presents a novel AI-driven system for continuous patient monitoring using RGB video (Figure 1), developed collaboratively with industry and healthcare providers. The LookDeep Health platform aims to enhance patient care by providing real-time monitoring and producing computer-vision-based insights into patient behavior, movement, and interactions with healthcare staff.


[image: Diagram illustrating a computer vision pipeline in a hospital setting. On the left, a patient in bed is captured by a camera. The process progresses through stages: Image, Object Detector, Role Classifier, Motion Estimation, Logical Prediction, and Output. On the right, a doctor reviews data on a monitor and charts.]
FIGURE 1
 Illustrative workflow of the lookdeep health AI-driven patient monitoring platform. The system captures video from a hospital room using mounted cameras and processes each image through a series of computer vision modules. The output is presented as real-time insights for healthcare staff.


This study offers several key contributions:

	1. Implementation of advanced computer vision models: our system utilizes state-of-the-art models for real-time predictions, including localization of people and furniture, monitoring boundary crossings, and calculating motion scores.
	2. Real-world validation: we rigorously evaluated the system's performance in live hospital settings, illustrating its capability to present care providers with accurate data from continuous monitoring, and laying the foundation for future AI-enabled patient monitoring solutions.
	3. Dataset development: we developed a comprehensive dataset encompassing over 300 high-risk fall patients tracked across 1,000 collective days and 11 hospitals, creating a valuable resource for studying patient behavior and hospital care patterns. This dataset is publicly available for further research at https://github.com/lookdeep/ai-norms-2024.



2 Methods


2.1 Study design

The LookDeep Health patient monitoring platform was deployed across 11 hospitals in three states within a single healthcare network. The system provides continuous, real-time monitoring of high-risk fall patients. Data collection adhered to institutional guidelines and patient consent procedures (see Research Ethics).


2.1.1 Participants

Patients monitored by LookDeep Health were primarily high-risk fall patients identified through mobility assessments as part of standard care protocols. This classification often results in the patient also being categorized as non-ambulatory during the inpatient stay (Capo-Lugo et al., 2023).

Data was organized into three subsets:

	1. Single-frame analysis: periodic samples from monitoring sessions were used for training and testing object detectors, with over 40,000 frames collected to date. Only patients monitored during the first week of each month were included in the test set, providing 10,000 frames held out for consistent model evaluation.
	2. Observation logging: ten patients who experienced falls were selected for additional annotation over a twelve month period (Figure 2A).
	3. Public dataset: over 300 high-risk fall patients were monitored during a six month period, excluding those monitored for less than two days (Figure 2B).


[image: Two panels show patient demographics using pie charts, heatmaps, and box plots. Panel (A) shows observations for 10 patients: a pie chart with 70% in hospitals with 150+ beds, a heatmap showing more females aged 45-64, and a box plot illustrating hospital stay durations. Panel (B) shows release data for 387 patients: a pie chart with 62% in larger hospitals, a heatmap with more females aged 65-84, and a box plot with longer hospital stay durations.]
FIGURE 2
 Overview of patient demographics. (A) Observations subset, comprising 10 patients, 54 patient-days, and 3 hospitals. (B) Released dataset, comprising 387 patients, 1,466 patient-days, and 11 hospitals. Left: Pie charts showing the distribution of hospitals by size, where hospitals with an average daily census of 150+ patients are shown in red, and smaller hospitals are shown in blue. Center: Heat maps showing patient age distribution by gender. Right: Box plots showing patient length of monitoring. Central line represents the median, box edges indicate the 25th and 75th percentiles, and whiskers extend to the most extreme data points within 1.5 times the interquartile range. The points represent outliers beyond this range. The y-axis corresponds to hospital IDs, so Hospital 3 is absent from the top-row dataset but included in the bottom-row dataset. The released dataset shows a broader demographic and extended data duration compared to the observations subset.


As shown in Figure 3, data collection spanned multiple years, with each subset contributing to the development and validation of the AI system, with some overlap between subsets.


[image: Timeline graphic titled "Dataset Overview" showing activities from 2022 to 2024. It includes single-frame analysis from 2022 to beyond 2024, observation logging from mid-2022 to mid-2023, and public dataset from mid-2023 to mid-2024. Model update is represented with points marked 1 to 5.]
FIGURE 3
 Dataset overview and timeline of model updates. Progression of data collection and model updates for the LookDeep Health monitoring system. Single-frame analysis data collection spans a two year period—a broad temporal range for training and validation of object detection and classification tasks. Observation logging data, used for trend validation, was collected over a one year period. The publicly released dataset includes data from a more recent six month period, representing over 1,000 collective patient days. Model updates are indicated by numbered points.




2.1.2 Patient monitoring system overview

The LookDeep Health monitoring system processes video through a computer vision pipeline to detect, classify, and analyze key elements within the patient's room, providing actionable insights to healthcare staff (Figure 4). Key components include:

	1. Video data capture and preprocessing: video data is captured at 1 frame per second (fps) by LookDeep Video Unit (LVU) devices deployed in patient rooms (Figure 5A). Data is preprocessed to reduce bandwidth and enable efficient analysis.
	2. Object detection and localization: a custom-trained model detects key objects (“person”, “bed”, “chair”) and localizes them with bounding boxes.
	3. Person-role classification: detected “person” objects are further classified as “patient”, “staff”, or “other” using the same object detector model, by augmenting labels with role-specific information.
	4. Motion estimation: dense optical flow estimates motion between consecutive frames, enabling activity tracking in specific regions (e.g. scene, bed, safety zone).
	5. Logical predictions: high-level predictions (e.g. “person alone”, “patient supervised by staff”) are derived by applying rules to detection and motion data, with a 5-second smoothing filter to mitigate detection errors.


[image: Composite image showing AI inference and analysis. The top section features a room with objects outlined, alongside a red digital rendering. The middle graph, "Logical Prediction (Alone)," displays time in minutes with spikes indicating predictions. The bottom chart, "Logical Trend (Alone)," illustrates frequency using red triangles over a 24-hour period.]
FIGURE 4
 Real-time object detection, motion analysis, and patient status monitoring. Top-left: Object detection with bounding boxes identifying key elements in the scene. Top-right: Segmentation map, where red represents the designated safety zone and green indicates detected motion. Middle: The “alone” logical trend over time, showing whether the patient was detected alone in the room for every second within the hour. Peaks indicate periods when the patient was unaccompanied, while lower values indicate caregiver presence. Bottom: The “alone” trend over a 24-hour period, aggregated for each hour. This visualization highlights patterns in patient supervision throughout the day. The black markers in the middle and bottom rows correspond to the timestamp of the video frame shown in the top row.



[image: (A) Displays different configurations of medical telepresence devices, including a wall-mounted unit, a portable stand unit, and a video conference station. (B) Shows blurred images of a hospital room in various perspectives, focusing on patient care situations.]
FIGURE 5
 Camera setup and example frames. (A) LookDeep Video Unit (LVU), a 6” x 6” device, in various mounting configurations. (B) A 3 × 3 grid of representative frames captured by the system, showing a diversity of configurations. All images are intentionally blurred to maintain privacy. Each numbered frame provides a unique example that is found in Figure 7.


Inference results, including object detections, role classifications, motion estimation, and logical predictions, are securely stored in a Google cloud database for further analysis (e.g. trend analysis). Anonymized frames are stored at regular intervals for quality assurance and model improvement.



2.1.3 Data anonymization

To ensure patient privacy in accordance with the Health Insurance Portability and Accountability Act (HIPAA) and institutional guidelines, all video data was processed to remove identifiable information. For training purposes, frames were face-blurred using a two-step procedure to maintain privacy while preserving relevant scene context:

1. Manual labeling: faces were manually labeled on fully-blurred images to create bounding boxes without exposing identifiable features.

	2. Local Gaussian blurring: a strong Gaussian blur was applied to labeled facial regions, preserving scene context while anonymizing identities.

This approach was chosen to ensure privacy while balancing effective model training and validation. Additional obfuscation methods, such as pixelation or complete occlusion of faces, were considered but deemed not necessary for the intended use case. Data handling was conducted under a Business Associate Agreement (BAA) with participating hospitals.




2.2 Data collection
 
2.2.1 Video patient monitoring

LVU devices capture continuous video in RGB or near-infrared (NIR) mode, depending on ambient lighting. Each device is equipped with a CPU and Neural Processing Unit (NPU), capable of processing data at 1fps to minimize latency and reduce cloud processing requirements. Inference results are uploaded to a secured cloud database (Google BigQuery), with blurred frames stored separately for manual annotation. Camera placement varied based on room layout and clinical workflows (Figure 5B).



2.2.2 Annotations


2.2.2.1 Frame-level labels

A professional labeling team manually annotated over 40,000 images with object bounding boxes, object properties, and scene-level tags (Figure 6). Objects were annotated with 2-d bounding boxes classed as “person”, “bed”, or “chair”, and each “person” bounding box was also assigned a role of “patient”, “staff”, or “other”. Scene level attributes were added for whether the patient was “in bed” or “not in bed”, whether the camera was operating in IR mode, and whether the scene included “exception cases” in comparison to stated norms. Exception cases were applied in any instance of labeler uncertainty (e.g. difficult to see person, patient in street clothes, etc.); in instances of multiple exception cases being applicable, a single “frame exception” catch-all was used. Annotations and quality review were conducted using the Computer Vision Annotation Tool (CVAT, Corporation, 2023), and final QA was conducted using the FiftyOne tool (Moore and Corso, 2024).


[image: A labeled image showing a hospital room with a patient in a bed. The patient is outlined with a red box, indicating their role as "Patient" and class as "Person." The scene is part of the "Alone" segment, spanning Day 1 from 19:10:04 to 22:00:15.]
FIGURE 6
 Manually labeled image with observation log alignment. The bed is highlighted with a blue bounding box. The patient, identified as a “Person” with the role “Patient”, is highlighted with a red bounding box. The associated observation log for “Alone” is shown for illustrative purposes.




2.2.2.2 Observation logs

Blurred video summaries for 10 patients (54 patient-days) were reviewed to log periods when the patient was alone. Logs included timestamps with 1-2 second precision (Figure 6), and underwent secondary quality assurance to provide feedback to labelers and fill out any missing periods.





2.3 Computer vision predictions

The LookDeep Health pipeline processes video data using custom-trained models to detect objects, classify person-role, and estimate motion at 1 fps. Preprocessing compresses frames to JPEG at 80% quality and resizes to a resolution of 1088x612 to reduce bandwidth consumption while still meeting downstream model requirements. Image processing is conducted using OpenCV (Bradski, 2000) and RKNN-toolkit (AI Rockchip, 2024).

	1. Object detection (person/bed/chair): based on the YOLOv4 architecture (Bochkovskiy et al., 2020), the model identifies key objects in each frame, including “person”, “bed”, and “chair”. Training models were initialized using COCO weights (Lin et al., 2014), then fine-tuned on labeled data. Input images were down-sampled to 608 × 608 with OpenCV's cubic interpolation method to fit model requirements. Since the models operate with a smaller fixed input size, increasing the resolution of input images would not significantly improve detection performance unless alternative patch-based approaches were considered. Additionally, the impact of input size on detection accuracy has been well-documented in the original YOLOv4 manuscript, which demonstrated stable performance across various input sizes. Training was conducted on NVIDIA 3070 GPU, and models were subsequently converted for execution on the Rockchip RKNN embedded in the LVU devices.
	2. Person classification (patient/staff/other): during object detector training, bounding box labels were augmented to classify detected persons by role (“patient”, “staff”, “other”). Then, at inference time, each “person-” bounding box are re-labeled as “person”, with the specific role saved in a separate classification field. Confidence scores for role classifications are derived by taking the highest detection confidence as the primary class and distributing residual scores across remaining classes to indicate potential alternate roles.
	3. Optical flow (motion estimation): motion between frames was estimated using the Gunnar-Farneback dense optical flow algorithm, which calculates horizontal and vertical displacement for each pixel (Farnebäck, 2003). Optical flow inputs were converted to grayscale and down-sampled to 480x270 to ensure real-time execution. For each region of interest, average motion magnitude was calculated by averaging horizontal and vertical flow vectors, providing an indicator of activity intensity. This estimation does not require training and was implemented using OpenCV with fixed parameters: pyramid scale (pyr_scale = 0.5), number of pyramid levels (levels=3), window size (winsize = 15), number of iterations (iterations=3), size of pixel neighborhood used to find polynomial expansion (poly_n = 5), and the standard deviation of the Gaussian used to smooth derivatives (poly_sigma = 1.2).


2.3.1 Additional components


2.3.1.1 Regions of interest (ROIs)

ROIs, such as “safety zones”, provide contextual boundaries for monitoring. They are not predictive outputs themselves, but instead are used to track patient movements and boundary crossings. The “safety zone” was a polygonal region defined by the virtual monitor; its pixel mask is generated by expanding the boundary perimeter by 10% to ensure effective monitoring. Additional ROIs used by the system include the full scene and the detected bed.



2.3.1.2 Logical predictions

Logical predictions summarize patient status and interactions. These predictions were derived from a combination of object detection and role classification results and smoothed with a 5-second filter to mitigate intermittent detection errors.

	• Person alone: True when the average number of detected people in the room is less than two.
	• Patient alone: True when the average number of detected people in the room is less than two, and at least one person is classified as a patient.
	• Supervised by staff: True when the average number of detected people in the room is two or more, and at least one person is classified as healthcare staff.



2.3.1.3 Trend predictions

Trends provide insights into immediate and long-term patient activity, aiding in risk identification and care planning. Hourly trends summarize patient behavior (e.g. “alone” or “moving”) based on aggregated logical predictions. For each one-hour interval, predictions were used to calculate the percentage of time the patient spent in key states like “alone,” “supervised by staff,” or “moving”. These percentages were then plotted over time to visualize hourly trends in patient isolation or activity levels throughout the day. These trends provide a high-level overview of patient behavior, aiding in the identification of potential risks and informing care decisions.


2.3.1.3.1 “Assisted” trend predictions

A one-off analysis was conducted to simulate the system's performance when one of the predictions was known. The system's trend predictions based solely on AI inference were compared with those generated using a combination of AI inference and observation logs. For this comparison, “assisted” trends were created by integrating AI-predicted states for “moving” and “supervised by staff” with manually logged periods of “alone” status from the observation logs. This analysis was conducted across the multiple patients and hospitals included in the “Observation Logging” dataset.






2.4 Evaluation

The performance of the AI-driven monitoring system was assessed through two primary methods: image-level assessment and comparison against observation logs. In the image-level assessment, each frame was analyzed against manual annotations to evaluate the accuracy of the system's object detection, person-role classification, and scene interpretation capabilities. In parallel, observation logs, created from anonymized video summaries of select patients, were compared against predicted trends to assess the system's ability to capture patient behavior patterns.


2.4.1 Frame-level analysis

Each model in the AI system was evaluated independently to assess its performance in object detection and classification tasks. Key performance metrics—precision, recall, and F1-score—were calculated to measure the accuracy and reliability of each model's predictions. Precision assessed the proportion of true positives among all predicted positives, recall measured the ability to identify all true positives, and the F1-score provided a balanced metric between precision and recall.

In addition to these direct object detection and classification tasks, the AI system also generated higher-level, “logical” predictions derived from these outputs. For example, the prediction “is patient alone” was inferred based on a combination of object detection results, such as the absence of healthcare staff within a defined proximity to the patient. These logical predictions were treated as classification tasks themselves, with their accuracy similarly evaluated using precision, recall, and F1-score metrics based on labeled image data. This multi-layered approach allowed us to thoroughly validate both the core object detection functions of each model and the system's ability to interpret and apply these outputs to patient monitoring tasks.



2.4.2 Trend analysis

Trend analysis was conducted by comparing the system's inference-derived metrics to ground truth metrics recorded in observation logs, with both datasets aggregated by patient-day. Unlike the hourly trends shown in Figure 4, analysis was conducted at the per-second level to ensure accurate alignment between AI predictions and observation logs. The primary metric for this analysis was logistic regression accuracy, which assessed the AI system's ability to predict observed behaviors within three time periods: daytime (6 am to 9 pm), nighttime (9 pm–6 am), and the full 24-hour period. In cases where only a single class (e.g. “alone” or “not alone”) was present within a specific time period, logistic regression was not feasible. Instead, a manual accuracy score was computed, to allow for consistent accuracy measurements across all time intervals. This score is defined as the proportion of matching values between the AI predictions and ground truth.

Focusing on the “alone” binary behavior trend enables an assessment of the alignment between AI predictions and real-world observations. This analysis validated the AI system's effectiveness in capturing hourly patient behavior trends, underscoring its potential utility in real-time patient monitoring and early detection of deviations from expected patterns.



2.4.3 Camera position meta-analysis

Since cameras were mounted on mobile carts rather than fixed positions, there was variability in camera setup across patients and hospital rooms (Figure 4B). To explore the potential impact of this variability, labeled bed locations were used to estimate each camera's position relative to the hospital bed. Distributions of the labeled bed area and size within each frame, along with the centroid location of the bed relative to the camera's field of view are plotted in Figure 7. These distributions provide an indirect measure of camera position.


[image: Two scatterplots illustrate camera placement distributions. The left plot shows the density of bed center coordinates with data clustered around the center. The right plot displays bed area versus bed angle, with data concentrated at lower angles. Both plots use a color gradient from purple to yellow to indicate data density, with circles numbered one to seven highlighted in both plots.]
FIGURE 7
 Distribution of labeled bed positions relative to the camera. Left: Spatial variability of bed center coordinates. Right: Distribution of bed area vs. bed angle relative to the camera. Each numbered point is shown in Figure 5B. This highlights the variations in camera perspective and placement across the study.


This exploratory analysis helped identify patterns and variations in camera setups across different monitoring sessions. However, this information was observational and used only to understand positional variability; no specific adjustments were made during model training or evaluation to account for different camera positions. The results underscore the robustness of our models in handling diverse camera perspectives, as the system maintained consistent detection performance despite these variations.





3 Results


3.1 Frame-level analysis
 
3.1.1 Object detection, role identification, and patient isolation classification

The evaluations demonstrated that the custom-trained computer vision models perform robustly in real-world hospital settings, achieving high precision across key object detection and classification tasks. We compared five production models alongside a baseline model using an off-the-shelf YOLOv4 configuration (Table 1). Each production model corresponds to a different release, with progressively larger and more refined training datasets incorporated over time (Figure 3). This iterative refinement led to increased model accuracy and adaptability in real-world hospital settings. To ensure consistency, all frame-level analysis was conducted on 10,000 frames collected over a two year period. This representative sample, excluded from model training and validation, highlights the incremental improvements achieved by expanding training datasets across model versions.


TABLE 1 Performance metrics of successive model versions for object detection.

[image: Table showing precision and F1-scores for different versions of the LookDeep Health AI model. The baseline YOLOv4 has a precision of 0.84 and F1-score of 0.59. Models v1 to v5 show improvements in F1-scores and precision, with the highest F1 of 0.92 in Model v5. Fine-tuning data sizes range from +700 to +34,239, showing that model refinement improved detection accuracy. Evaluation was on a fixed 10k image dataset.]

As newer models were released, the training set was expanded to include additional annotated data, allowing each successive model to capture more complex and diverse scenarios encountered in hospital environments. The most recent fine-tuned model (v5) achieved an F1-score of 0.91 for detecting “person”, notably surpassing the baseline YOLOv4 model score of 0.41 (Table 2). Across all object classes–including beds, furniture, and other room elements–the v5 model demonstrated an F1-score of 0.92, reflecting a high degree of accuracy and consistency across diverse object types.


TABLE 2 Performance metrics of successive model versions for object detection (person), role classification, and “patient alone” classification.

[image: Table comparing model versions and their performance metrics. Models include YOLOv4, v1 to v5 from 2022 to 2024. Object detection precision is consistent at 0.96 to 0.98; F1 scores for object detection improve from 0.41 to 0.91. Role classification F1 scores start at 0.97 in Model v3. "Patient alone" classification F1 scores increase from 0.28 in YOLOv4 to 0.92 in Model v5.]

In addition to object detection, the system was evaluated on a three-class person-role classification task, distinguishing between patients, healthcare staff, and visitors within the camera's field of view. The v5 model demonstrated particularly strong performance for the “patient” class, achieving an F1-score of 0.98, which reflects its high accuracy in identifying patients specifically (Table 2). Accurate person-role classification is essential for monitoring patient interactions and ensuring appropriate caregiving behaviors, as it enables the system to capture not only the presence of individuals but also their roles. Focusing on the “patient” class, the high F1-score underscores the model's robustness in tracking patient activity and interactions, which are critical for effective continuous monitoring in dynamic hospital environments.

The downstream classification task of identifying whether a patient was “alone” in the room showed similarly strong results, with the v5 model achieving an F1-score of 0.92 (Table 2). This classification task, essential for monitoring patient isolation, consistently improved with each new production release, as more comprehensive training data contributed to better model accuracy. These results confirm the advantage of iterative model refinement and dataset expansion, with each production release yielding models that are better adapted to the variability and demands of real-world hospital settings.



3.1.2 Impact of privacy-preserving blurring on model consistency

The performance consistency of the models across unblurred and face-blurred images was evaluated using the Δ metric, which represents the F1-score difference between the two image types (Table 3). Across all model versions, the Δ values were relatively small, indicating that face-blurring–a common privacy-preserving preprocessing step–had minimal impact on model accuracy. For versions v3 and v4, the Δ value was +0.04, while in v5 it decreased to +0.02, suggesting improved robustness to blurring as the training data volume increased.


TABLE 3 Performance comparison of models on unblurred vs. face-blurred images across versions.

[image: Table comparing model versions based on evaluation data size and F1 scores for unblurred and face-blurred images. Model v3 (2023 Q3) has a data size of 2,135, with F1 scores of 0.81 for unblurred and 0.85 for face-blurred images. Model v4 (2024 Q1) has 1,809 data size, scoring 0.86 and 0.90. Model v5 (2024 Q2) has 1,226 data size, scoring 0.89 and 0.91. The change in F1 score (Δ F1) is +0.04 for v3 and v4, and +0.02 for v5. A lower Δ F1 indicates better consistency between image types.]

A smaller Δ value is desirable as it indicates that the model performs consistently regardless of whether the images are unblurred or face-blurred. The reduction in Δ for v5 highlights the value of larger, more diverse training datasets in ensuring that the models generalize well across different image types. This is particularly important in hospital settings, where preserving patient privacy often necessitates the use of face-blurred images. The ability to maintain high accuracy in such scenarios ensures the system's practicality and reliability for real-world deployment.

These results demonstrate that the models not only achieve high accuracy but also exhibit resilience to variations introduced by privacy-preserving preprocessing, a key requirement for scalable applications in healthcare environments.



3.1.3 Object detector performance by IR mode

We analyzed the impact of IR mode on object detection performance by comparing F1-scores across different model versions, broken down into all data, IR-on data, and IR-off data (Figure 8). Results demonstrate a clear trend of increasing F1-scores with newer model versions across all conditions. Notably, the performance gap between IR-on and IR-off scenarios decreases with successive model iterations, indicating improved model robustness to variations in lighting conditions.


[image: Four line graphs display object detector performance by camera mode across different model versions. Each graph represents a different object category: Person (pink), Bed (blue), ALL (black), and Chair (orange). The x-axis shows model versions (Yolo4 to v5), and the y-axis shows F1-scores. Three modes are compared: all, ir_off, and ir_on. Performance generally improves across versions.]
FIGURE 8
 Object detection F1-score by model version and infrared (IR) mode. Model performance is shown across successive model versions for all data (solid line), IR-off data (dashed line), and IR-on data (dotted line). The performance gap between IR-on and IR-off modes narrows with more recent model iterations, highlighting increased robustness to varying lighting conditions. Notably, the test set comprises a 25:75 ratio of IR-on to IR-off frames, while the population average is closer to 40:60.


At baseline, object detection performance in IR-on scenarios lagged significantly behind IR-off scenarios. However, with the latest model version, this gap narrowed substantially, suggesting that additional training data and model refinements have enhanced the system's ability to generalize across lighting conditions. Despite these improvements, it is worth noting that the test set contains an approximate 25:75 ratio of IR-on to IR-off frames, whereas the population average is closer to 40:60. This imbalance may partially account for residual performance differences and highlights the need for more balanced representation in future datasets.

These findings underscore the importance of accounting for lighting variability in real-world hospital environments and demonstrate the system's potential to adapt to challenging conditions such as low-light monitoring.




3.2 Trend analysis

Inference-derived trends for the “patient alone” metric were compared against observation logs to evaluate the system's ability to accurately capture real-world patterns (Figure 9). This trend analysis utilized data from earlier stages of the project when base models with lower performance were deployed. Specifically, the object detectors used for these inferences had an F1-score of 0.85 for “person” detection, which is lower than the performance of the latest models. Despite this, the analysis showed strong alignment with ground truth data, achieving an average logistic regression/manual accuracy of 0.84 ± 0.13 during daytime, 0.80 ± 0.16 at nighttime, and 0.82 ± 0.15 across all times. These results highlight the robustness of the AI system in capturing patient isolation trends, even when using earlier model versions with lower baseline performance.


[image: Three line graphs show the average minutes alone per hour for patients. The top graph represents all observed patients, the middle for a typical patient, and the bottom for an atypical patient. Black squares indicate ground truth; red triangles indicate AI inference. Graphs display data from 9 PM to 9 PM the next day, with varying minute levels.]
FIGURE 9
 Comparison of average minutes alone per hour across all patients, a typical patient, and an atypical patient. The average minutes patients spent alone per hour, comparing ground truth (black squares) and AI inference (red triangles) across three scenarios: all patients (top), a typical patient (middle), and an atypical patient (bottom). The x-axis shows the hour of the day, while the y-axis indicates the average minutes alone per hour. The shaded region represents nighttime hours (9 pm–6 am). For all patients, AI inference closely aligns with ground truth during the day but shows less accuracy at night. An example of a typical and an atypical patient is shown to illustrate the variability in alone time patterns across individual patients. Unlike average trends, this atypical patient exhibits an overprediction of alone time at night, highlighting the need for further model refinement to capture individual patient behaviors accurately.


This accuracy indicates that, even with slightly reduced detection precision in the older models, the system could reliably capture general patterns in patient isolation behavior. The standard deviation (± 0.15) reflects some variability in accuracy across different times of day and patient conditions, possibly influenced by factors such as changing camera angles or environmental conditions. As shown in the normative hourly trends (Figure 10), discrepancies between labeled and AI-inferred “alone” data are more pronounced during nighttime hours, but these differences have minimal impact on the broader trend patterns. For both “Alone and Moving” and “Supervised by Staff” metrics, the AI inferences closely align with label-assisted data, amounting to an average error of 1–2 min per hour. This consistency underscores the model's robustness in capturing meaningful patient-alone trends and suggests that any nighttime performance gaps in the “alone” inference do not significantly compromise the overall accuracy. These results highlight the model's potential for improved trend detection as newer, refined models are applied to subsequent data.


[image: Two line graphs show average trends for observed patients' minutes of activity. The top graph, "Alone and Moving," has a steady increase at 6 a.m. The bottom graph, "Supervised by Staff," has more variation, especially between 6 a.m. and noon. Blue circles represent labels, and red triangles indicate inference only. Both graphs track time from 9 p.m. to 9 p.m. the next day, on the x-axis.]
FIGURE 10
 Average trends for all observed patients. Hourly trends are compared across two metrics: alone and moving (top) and supervised by staff (bottom). Fully AI-inferred data (“Inference Only”) is plotted with red triangles. “Assisted” data (“+Labels”) is plotted with blue circles—for these data, ground truth “alone” status was used instead of AI-inference. The x-axis indicates the hour of the day, while the y-axis shows the average minutes per hour. The shaded region represents nighttime hours (9 pm–6 am). Although there is a discrepancy between labeled and inferred data for Alone, particularly during nighttime hours, the downstream impact on overall trend accuracy appears minimal (1–2 min per hour).





4 Discussion


4.1 Implications for clinical practice

The findings of this study underscore the potential for AI-enabled patient monitoring systems to enhance clinical practice through continuous, real-time monitoring. Traditional in-person observations are limited by the time constraints of healthcare staff, who spend limited hours directly interacting with each patient. By providing continuous monitoring, the LookDeep Health platform enables staff to detect patterns that would otherwise go unnoticed, such as extended periods of patient isolation, movement patterns that might indicate a risk of falls, pressure injuries, or irregular interactions with staff. Real-time alerts based on these observations could prompt timely interventions, potentially improving patient safety and outcomes.

Moreover, the data collected by this system can inform trend analysis on a population level, supporting hospital resource allocation and staffing decisions. For instance, identifying times of day when patients are frequently unsupervised could guide adjustments in staffing or the deployment of additional monitoring resources to high-risk patients. Beyond staffing, the system's insights into patient mobility patterns–such as time spent in bed, in a chair, or walking around the room–can help identify markers of successful recovery and readiness for discharge, contributing to improved patient outcomes. These mobility insights could also support the development of best practices for post-procedure mobility, tailored to specific surgeries or treatments, to enhance patient recovery. Altogether, these data-driven insights promote a more efficient, personalized approach to patient care, potentially improving patient satisfaction and clinical outcomes.



4.2 Impact of face-blurring on model performance

While the evaluation of model performance on both unblurred and face-blurred images provides valuable insights, it is important to note that face-blurring is applied only during training and evaluation phases. In real-world deployment, the model will encounter unblurred images as it monitors patients in hospital settings, making this distinction critical to understanding its practical performance. The small Δ values observed across different model versions indicate that the models have been designed to handle face-blurred images without significant degradation in performance. The reduced Δ in the latest version (v5), attributed to increased training data volume, demonstrates improved resilience to face-blurring. However, further studies are needed to assess the model's performance in unblurred scenarios, particularly in environments where face-blurring images for training and evaluation is not an option. This approach ensures privacy during development while maintaining practical deployment fidelity, as real-time monitoring operates on unblurred frames.



4.3 Variation in camera setup

The LookDeep Health patient monitoring platform was deployed in real-world hospital settings with cameras mounted on mobile carts rather than fixed positions, resulting in variation in camera angles, distances, and perspectives across different patient rooms. This variability introduced potential challenges in maintaining consistent object detection and classification accuracy, as model performance can be influenced by changes in camera field of view and positioning relative to the bed. To mitigate these effects, we conducted a camera position meta-analysis using metadata on labeled bed area and centroid location to estimate the approximate camera placement within each room. Our analysis confirmed that, despite positional differences, the model consistently achieved reliable performance across object detection and classification tasks, demonstrating its robustness to spatial variability. However, this setup presents limitations in controlling for optimal camera positioning, a factor that future studies with standardized camera setups could explore further to minimize variability and enhance model reliability.



4.4 Nuanced differences in time coverage of analyses

A key aspect of this study is the variation in time coverage across different datasets, reflecting the evolving nature of data collection and model validation in real-world hospital settings. The observation logs dataset, which provided ground truth for logical trend validation, was collected exclusively in 2023. In contrast, frame-level annotations for evaluating object detection and person-role classification were gathered over a more extended period from 2022 to 2024. Additionally, the publicly released dataset comprises data collected from a 6 month span across 2024, representing over 1,000 collective patient days across multiple hospitals.

These differences in collection periods introduce nuances in interpretation. For instance, frame-level evaluations benefit from the broader time span, capturing a variety of hospital conditions and patient behaviors across seasons and changing workflows. However, trend analyses were constrained to the observation log time frame, which may limit the ability to generalize trends across the entire study period. Similarly, the released dataset reflects data from the latter phase of the study, aligning with the most refined models but excluding early-stage model iterations.

These variations in time coverage highlight the need to contextualize each analysis within its specific time frame. Future studies could benefit from aligning data collection periods across all evaluation methods, ensuring that models validated on frame-level tasks are continuously validated against trend and behavioral analyses for consistent performance insights over time.



4.5 Challenges and limitations

Several challenges and limitations were encountered in this study. First, the variability in camera setup, as mentioned earlier, introduces potential inconsistencies in model performance due to changing perspectives and distances. While our metadata analysis mitigated this to some extent, a standardized camera setup would likely yield more consistent results.

Second, while the LookDeep Health system demonstrated strong performance in object detection and role classification, real-time video processing presents computational challenges that require balancing accuracy and processing speed. Our use of onboard CPU and NPU on LVU devices provided sufficient processing capabilities for 1 fps inference; however, the scalability of such a setup may be constrained in larger hospital systems requiring higher frame rates for finer details.

Third, the dataset collected in this study primarily consists of high-risk fall patients, which may limit the generalizability of findings to broader patient populations - for example, high-risk patients exhibit limited mobility compared to other patient groups. Additionally, the analysis was conducted on older model versions for some trend analyses, potentially lowering the accuracy of trend detection. Although model refinements are expected to improve results, these differences in model versions should be considered when interpreting the findings.

Lastly, maintaining patient privacy is paramount in continuous video monitoring systems. While the LookDeep Health platform anonymizes all video and stores de-identified data, ongoing attention to data privacy and compliance with healthcare regulations is essential for future deployments in clinical environments.



4.6 Suggestions for future research

While this study provides a foundation for understanding the impact of AI-driven patient monitoring, further research is warranted to explore additional facets of this technology. Future studies could investigate:

	• Enhanced edge case handling: expanding training datasets to include more examples of diverse scenarios, such as low-light conditions and atypical patient behaviors, could improve model robustness in challenging environments.
	• Advanced deep learning techniques: integrating more sophisticated deep learning architectures like transformer-based architectures or temporal models could enhance the detection of subtle anomalies, while adaptive pipelines could improve real-time robustness in dynamic hospital environments.
	• Refining architectures and guardrails: future work could involve refining architectures to detect edge cases more accurately, tracking patterns in prediction errors, and incorporating confidence-based guardrails to prevent catastrophic failures. Such guardrails could include alerts when model confidence is unexpectedly low for consecutive predictions.
	• Higher frame rates and computational scaling: evaluating the potential for higher frame rates or adaptive frame rate technology to improve real-time responsiveness, particularly in high-activity environments.
	• Standardization of camera placement: testing standardized, fixed camera setups across patient rooms aims to minimize positional variability and improve model consistency. Although standardization can reduce variability, embracing the inherent diversity of setups may enhance model robustness for real-world applications.
	• Expanded patient cohorts: extending the analysis to include a wider range of patient demographics and conditions to assess generalizability and adapt the system to diverse populations.
	• Interoperability with hospital systems: future iterations of the system could integrate more seamlessly with hospital workflows by automating real-time alerts that directly sync with electronic health record (EHR) systems. For example, patient-specific alerts could be tagged to relevant EHR fields, enabling clinicians to view contextual video data alongside medical records. Additionally, the system could support interoperability with existing hospital tools, such as nurse call systems, to streamline the clinical response to high-risk situations.

These research directions, alongside continued refinement of computer vision models and monitoring systems, will be essential for advancing the practical application of AI in patient monitoring and driving further improvements in healthcare delivery.




5 Conclusion

AI integration in medical imaging is advancing personalized patient treatment but still faces challenges related to effectiveness and scalability. This work demonstrates the potential of computer vision as a foundational technology for continuous and passive patient monitoring in real-world hospital environments.

The contributions of this study are two-fold. First, we introduce the LookDeep Health patient monitoring platform, which leverages computer vision models to monitor patients continuously throughout their hospital stay. This platform scales to support a large number of patients and is designed to handle the complexities of hospital-based data collection. Using this system, we have compiled a unique dataset of computer vision predictions from over 300 high-risk fall patients, spanning 1,000 collective days of monitoring. To encourage further exploration in the field, we released this anonymized dataset publicly at https://github.com/lookdeep/ai-norms-2024.

Second, we rigorously validated the AI system, demonstrating strong performance in image-level object detection and person-role classification tasks. Our analysis also confirms a positive alignment between inference-derived trends and human-observed behaviors on a patient-hour basis, underscoring the reliability of the AI system in capturing patient activity trends. This evaluation can serve as a benchmark for future studies, providing a standard set of criteria for assessing the performance of AI-driven patient monitoring systems.

The extensive dataset and rigorous validation of the LookDeep Health platform highlight the feasibility and impact of continuous patient monitoring through video. By offering real-time insights into patient activity and isolation patterns, continuous monitoring has the potential to reduce fall risks by alerting staff to high-risk situations as they unfold. Beyond improving patient safety, these insights support more efficient staffing and resource allocation, allowing hospitals to adjust care based on real-time patient needs. This predictive capability also aids administrators in managing bed occupancy and optimizing patient flow, particularly during peak times, thus enhancing the responsiveness, efficiency, and scalability of the healthcare system. This work paves the way for future advancements in AI-driven healthcare solutions, promising scalable, data-informed insights to elevate patient care and hospital management.
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Background

Menopause, a natural transition, affects women’s health risks, including gynecologic cancers. Early menopause, linked to lower estrogen, may increase cancer susceptibility. This study analyzed NHANES data from 1999 to 2020 for 8,219 postmenopausal women to explore the relationship between menopausal age and gynecologic cancers. We used regression models and RCS models to assess the risk.





Methods

This study utilized data from the NHANES spanning 1999 to 2020, focusing on 8,219 postmenopausal women selected through stratified sampling. Variables including socioeconomic factors, health behaviors, nutritional status, and medical history were assessed in relation to participants’ menopausal age and gynecologic cancer prevalence. We analyzed the relationship between menopausal age and gynecologic cancers (cervical, ovarian, and uterine) using multiple regression models. Additionally, we employed RCS models to evaluate nonlinear relationships between menopausal age and gynecologic cancer risk.





Results

Our findings indicate a significant inverse association between menopausal age and the risk of gynecologic cancers. After controlling for confounding factors such as age, race, BMI, and lifestyle variables, a later age at menopause was associated with a reduced risk of cervical, ovarian, and uterine cancers. The RCS model revealed a non-linear, low-L-shaped relationship, particularly highlighting increased cancer risks at younger menopausal ages. Subgroup analyses demonstrated consistent results across demographic and lifestyle factors, confirming the robustness of the observed associations.





Conclusion

This study reveals the link between menopausal age and gynecologic cancer prevalence. Early menopause is a significant risk factor for cervical, ovarian, and uterine cancers. Our findings support tailored cancer screening based on menopausal age, potentially improving preventive care for postmenopausal women.





Keywords: menopause age, gynecologic cancer risk, personalized cancer screening, NHANES data analysis, risk stratification





Introduction

Gynecological malignancies, including endometrial, cervical, and ovarian cancer, etc., are a leading cause of morbidity and mortality among women, and the yearly number of patients is rising (1, 2). According to statistics, over a million new cases are identified annually, which pose a serious threat to global health. Cervical cancer is the most common gynecological malignancy among women under 40, accounting for 50.4% of cases. Although it can be prevented through vaccination and screening, it remains a leading cause of death, particularly in areas with limited healthcare resources. Following cervical cancer is endometrial cancer, which accounts for 24.2% of cases (3). While its incidence is declining in certain regions, it still contributes significantly to the overall burden of gynecological cancers. Ovarian cancer, at 23%, is the deadliest gynecological malignancy. Due to the lack of effective screening methods, approximately 60% of ovarian cancer cases are diagnosed at an advanced stage, which significantly impacts survival rates (4, 5). Gynecological cancers have a profound impact on women’s health and place a significant financial burden on healthcare systems. Their high incidence and mortality rates require management with complex and expensive therapies, which come with several drawbacks, such as treatment-related complications, obesity, social determinants of health, and economic toxicity (6–8).

Menopause is a normal phase of a woman’s life, marked by a drop in estrogen levels and usually happening between the ages of 45 and 55. Early menopause refers to menopause that begins between the ages of 40 and 45. The mechanisms behind early and delayed menopause, as well as their relationship with the risk of ovarian cancer, involve a complex interplay between genetic, hormonal, and environmental factors. Genetic predisposition plays a significant role in determining the age of menopause. Hundreds of single nucleotide polymorphisms related to menopausal age have been identified, many of which are associated with immune and mitochondrial functions as well as DNA repair processes. These genetic factors can influence the risk of ovarian cancer (9). Postmenopausal women have persistently high levels of follicle-stimulating hormone, and the changes in hormones are associated with an increase in the expression of inflammatory cytokines and oxidative stress markers, which may lead to malignant transformation of ovarian tissue (10). Delayed menopause is significantly associated with an increased risk of ovarian cancer, which is due to prolonged exposure to estrogen that promotes the development of ovarian cancer (11). Early menopause and primary ovarian insufficiency (POI) are associated with reduced lifetime exposure to estrogen, which may lower the risk of ovarian cancer (9, 12). After menopause, the risk of cervical cancer in women may be reactivated or persist due to human papillomavirus (HPV) infection. Guidelines recommend that screening can stop at age 65 if adequate prior screening has been conducted. However, many women tend to stop screening too early, which increases their risk of developing cervical cancer (13). The prevalence of high-risk HPV infections in postmenopausal women is quite high, with a noticeable increase in infection rates after the age of 65. This suggests that postmenopausal women, particularly those over 65, may benefit from ongoing screening (14). Delayed menopause is associated with a higher risk of endometrial cancer, as long-term exposure to estrogen without the balancing effect of progesterone increases the likelihood of endometrial hyperplasia and cancer. Early menopause shortens the duration of estrogen exposure, thereby reducing the risk of endometrial cancer. This protective effect is due to a shorter reproductive lifespan and decreased cumulative estrogen exposure (15). Obesity and metabolic syndrome are significant risk factors for endometrial cancer. Obesity increases the risk of endometrial cancer in postmenopausal women through various mechanisms, including elevated aromatase activity (16). Insulin resistance and hyperinsulinemia are commonly found in metabolic syndrome, which further increases the risk of endometrial cancer by enhancing the proliferation of endometrial cells (17–19). Furthermore, genetic factors, such as the expression of specific cancer genes like PKD1, have been identified as causes of the progression of endometrial cancer in postmenopausal women. These genetic markers can help predict disease progression and guide targeted therapy (20). Postmenopausal women with endometrial cancer typically exhibit more aggressive disease characteristics, such as higher tumor grades and increased lymphatic metastasis, which are influenced by genetic and hormonal factors (21). The relationship between menopause age and gynecological malignancies is quite complex and influenced by various factors. Racial and cultural factors can affect both the age of menopause and the risk of cancer. A study on Korean women found that menopausal hormone therapy does not increase the risk of melanoma, but certain therapies reduce the risk of non-melanoma skin cancer (22). This indicates that cultural and genetic factors may play a role in cancer risk, which can vary among populations. Lifestyle factors, such as diabetes, may interact with menopausal age. However, one study found no association between menopausal age and microvascular complications in women with diabetes, suggesting that other health factors may obscure. There may be a nonlinear relationship between menopause age and cancer risk. For instance, an earlier onset of menopause is associated with an increased mortality rate, indicating a complex (23, 24).

This study analyzed data from the National Health and Nutrition Examination Survey (NHANES), a cross-sectional survey covering the United States from 1999 to 2020. A total of 8,219 postmenopausal women were selected using stratified sampling methods, ensuring a representative sample. We evaluated various factors, including socioeconomic characteristics, health behaviors, nutritional status, and medical history, and analyzed the relationships between menopausal age and gynecologic cancer prevalence using multivariable logistic regression models. Additionally, restricted cubic spline (RCS) regression models were applied to examine any nonlinear relationships between menopausal age and gynecologic cancer risk, further uncovering potentially complex associations.





Methods




Study design and sample

The NHANES is a nationally representative, cross-sectional survey. The survey used a complex multi-stage probability sample representing the civilian population in all 50 states and the District of Columbia in the United States (25).

We obtained data from the NHANES, which is representative of the civilian population across all 50 states and the District of Columbia. In the current study, a total of 8,291 NHANES participants were included, representing 21,950,882 postmenopausal women over a span of 14 years (1999-2020). The survey received approval from the Institutional Review Board of the National Center for Health Statistics, and all participants provided informed consent. A flowchart illustrating the process of selecting the study sample is shown in Figure 1. The total population (n=116,876) was screened, resulting in the identification of premenopausal individuals (n=102,652). Among the postmenopausal women, we excluded those with incomplete information regarding menarche and childbirth (n=1,757). From the remaining 12,473 participants, we further excluded individuals with incomplete demographic, disease, dietary, and necessary testing information (n=2,766). Finally, to enhance the scientific validity and reliability of the results, we excluded individuals with premenopausal gynecological diagnoses (n=1,416) from the remaining population, resulting in our ideal study sample of 8,291 individuals.

[image: Flowchart detailing the selection process for a menopausal population study from NHANES 1999-2020. Initial population is 116,876, excluding non-menopausal individuals results in 14,224. Further exclusions of incomplete records reduce the population to 8,291.]
Figure 1 | Study design and sample.





Sociodemographic characteristics

There are several sociodemographic characteristics, including age, race, and educational level. A non-Hispanic white, a non-Hispanic black, a Mexican-American, another Hispanic, and another race can be excluded from the list. In addition to high school, there are levels of education below high school, high school, and higher education.





Nutritional status

To examine the nutritional quality of the populace, information was gathered from body mass indexes (BMIs) and household property to income ratios (PIRs). Higher PIRs are generally associated with higher levels of physical activity and nutritious intake, as well as higher BMIs compared to low-income populations. The data was divided according to the median, and a cut-off value of 2.3% was chosen as the PIR for households. Screenings were performed on those with BMIs of > 25 kg/m² or ≤ 25 kg/m2.





Habits of behavior

According to how often participants smoked, they were divided into three groups: never smoking, former smoking and now smoking. Alcohol consumption included never drinking, former drinking, mild drinking, moderate drinking, and heavy drinking. In addition to energy intake, behavioral habits are also influenced by population energy intake (kcal).





A medical condition’s underlying causes

Diabetes mellitus and hypertension were included because they are two diseases associated with women developing gynecologic cancers and progressing to meet their cancer goals. The following are the clinical diagnostic criteria for diabetes mellitus: (1) The doctor makes the diagnosis; (2) a fasting blood glucose level of 7.0 mmol/L; (3) a glycohemoglobin level of greater than 6.5%; (4) a random blood glucose level of 11.1 mmol/L; (5) a two-hour OGTT level of 11.1 mmol/L; (6) any diabetes medications or insulin already being used.





Statistical analyses

The analyzed data were weighted according to the NCHS. Participants were categorized into two groups based on baseline characteristics according to whether they had gynecologic cancers. Descriptive statistics are used to profile the distribution of participant characteristics, including age, age at menopause, race, education, family PIR, BMI, smoking, alcohol consumption, etc. Data were presented as frequencies with proportions (%), means with standard deviation (SD), or medians with interquartile ranges (IQR). Univariate and multivariate logistic regression analysis between ages at menopause and gynecologic cancers: Crude is an unadjusted model; Model 1 is a model adjusted for age and race; Model 2 is a model adjusted for age, race, first menstruation age, and living birth; Model 3 is a model adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking, alcohol consumption level, energy intake; Model 4 is a model adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking, alcohol consumption level, energy intake, hypertension and diabetes. On this basis, a fully adjusted model was used to assess the association between the age of menopause and major gynecological cancers, including cervical, ovarian, and uterine cancers. To explore the incidence of gynecological cancer in different age groups, participants were further divided into 7 groups based on age at menopause, including ≤30 years, 31-35 years, 36-40 years, 41-45 years, 46-50 years, 51-55 years, and ≥56 years. In the fully adjusted model, a RCS method was used to investigate the non-linear association between age at menopause and gynecologic cancers. In this study, values detected as outliers are treated as missing data and replaced by the result of interpolation. Statistical analyses were conducted using R version 4.4.1 (Posit Software, Boston, MA, USA). A p-value less than 0.05 is considered statistically significant.






Results




Baseline characteristics

The weighted baseline characteristics of the participants, which consisted of 8,219 participants grouped by whether they had gynecological cancer, are shown in Table 1. The results showed statistically significant differences in gynecologic cancer prevalence by family PIR, smoking, menopause, and first menstruation (P<0.05). Compared with participants without gynecological cancer, participants with gynecological cancer had lower Family PIR, more smoking, lower age at menopause, and younger age at first menstruation.

Table 1 | Participant characteristics (N = 8,219) in NHANES 1999–2020.


[image: Comparison table of characteristics between non-gynecological cancer (8017 participants) and gynecological cancer (274 participants). Includes data on age, race, education, family PIR, BMI, smoking and alcohol behavior, energy intake, hypertension, diabetes, menopause, menstruation, and living birth. P values indicate significant differences, with bold values less than 0.05 for race, family PIR, smoking behavior, menopause, and first menstruation.]




Relationship between the age of menopause and the prevalence of gynecological cancers

The results of univariate and multivariate logistic regression analysis between the onset of menopausal age and gynecologic cancers are shown in Table 2. There was an inverse association between age at menopause and the prevalence of gynecological cancer (OR: 0.93, 95% CI: 0.91,0.95), and the difference was statistically significant (P<0.01). Model 1 was adjusted for age and race, and the results showed that there was an inverse association between menopausal age and the prevalence of gynecological cancer (OR: 0.92, 95% CI: 0.90-0.94), and the difference was statistically significant (P<0.01). Model 2 was adjusted for age, race, first menstruation age, and living birth, and showed an inverse association between age at menopause and gynecologic cancer (OR: 0.92, 95% CI: 0.90-0.94), with statistically significant differences (P <0.01). Model 3 was adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking, alcohol consumption level, energy intake, and showed that there was an inverse association between age at menopause and the prevalence of gynecologic cancer (OR: 0.92, 95% CI: 0.91-0.94), and the difference was statistically significant (P <0.01). Model 4 was adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking, alcohol consumption level, energy intake, hypertension, and diabetes, and showed that there was an inverse association between age at menopause and the prevalence of gynecologic cancer (OR: 0.92, 95% CI: 0.90-0.94), and the difference was statistically significant (P <0.01). Furthermore, to evaluate the effect of specific factors on the gynecological cancers, we performed subgroup analysis and the results are shown in Supplementary Table S1.

Table 2 | Association between age of menopause and gynecologic cancer.


[image: Table showing odds ratios (OR) and confidence intervals (CI) for gynecological cancer. Crude model: OR 0.93 (0.91, 0.95). Models 1 to 4: each has OR 0.92 (CIs slightly vary). All P values are less than 0.01. Models adjust for various factors, detailed in the footnote.]




Relationship between the age of menopause and the prevalence of major gynecological cancers

To investigate whether menopause is associated with gynecologic age, we performed a regression analysis between menopause and the incidence of three major gynecologic cancers, as shown in Figure 2 for the relationship between age at menopause and the incidence of different gynecologic cancers. After adjusting for age, race, first menstruation age, living birth, education, BMI, PIR, smoking, alcohol consumption level, energy intake, hypertension, and diabetes (model 4), the regression results revealed that age at menopause was inversely associated with the prevalence of gynecologic cancers in patients with cervical (OR: 0.88, 95% CI: 0.85-0.90), ovarian (OR: 0.94, 95% CI: 0.91-0.97) and uterine cancer (OR: 0.96, 95% CI: 0.93-0.99). According to different menopause ages, participants were divided into 7 groups, as shown in Figure 3. The percentage of major gynecological cancers occurring at different menopause age groups were observed respectively. The results showed that participants aged 31-35 years had a higher incidence of cervical cancer than other age groups. Cervical cancer incidence decreased gradually among participants aged 31-45 years, with statistical significance (P <0.01). The incidence of uterine cancer was higher in participants aged 56 years or older at menopause than in other age groups. Menopausal participants aged 36 to 40 years had a higher incidence of ovarian cancer than the rest of the age group. To further explore more specific associations, subgroup analysis was performed for cervical cancer, ovarian cancer, and uterine cancer, and the results are shown in Supplementary Tables S2–S4.

[image: Forest plot displaying odds ratios and confidence intervals for three gynecological cancers: cervical, ovarian, and uterine. Each cancer group shows data for "No" and "Yes" categories. Cervical cancer has an odds ratio of 0.88 with a confidence interval of 0.85 to 0.90, and a p-value less than 0.0001. Ovarian cancer shows an odds ratio of 0.94, confidence interval of 0.91 to 0.97, and p-value less than 0.0001. Uterine cancer exhibits an odds ratio of 0.96, confidence interval of 0.93 to 0.99, with a p-value of 0.0113.]
Figure 2 | Associations between age at menopause and major gynecological cancer (OR (95% CI) and P value).

[image: Bar chart illustrating the percentage distribution of cervical, uterine, and ovarian conditions by age of menopause. Cervical bars are highest at ages 31-35, 36-40, and 41-45. Uterine percentages peak at 41-45, and ovarian at 36-40 and 41-45.]
Figure 3 | Relationship between age at menopause and the prevalence of gynecological cancer by age group.





Nonlinear relationship between age of menopause and the prevalence of gynecological cancers

By using the RCS models with full adjustment for confounders, the results showed that there was a low L-shaped association between age at menopause and the prevalence of gynecological cancer (Figure 4A). In addition, the results also found that there was a linear association between age at menopause and cervical and uterine cancer (Figures 4B, D), but not with ovarian cancer (Figure 4C).

[image: Graphs A to D show the odds ratio (OR) with a 95% confidence interval (CI) for gynecological, cervical, ovarian, and uterine cancer risks in relation to menopause years. Each graph displays a curve decreasing with age, with overall and non-linear p-values provided. A vertical line marks a reference age at 46 years.]
Figure 4 | Restricted cubic spline analysis of age at menopause and major gynecological cancer (A) gynecological cancer; (B) cervical cancer; (C) ovarian cancer; (D) uterine cancer).






Discussion

This study revealed that women with an earlier age at menopause face a significantly higher risk of gynecologic cancers (cervical, ovarian, and uterine cancers), supporting the inverse relationship between menopause age and cancer risk. The rapid drop in estrogen associated with early menopause is a key factor in the elevated cancer risk. Previous studies indicate that a quick decline in estrogen may impair tissue repair mechanisms for DNA damage, increase apoptosis, and contribute to chronic inflammation, all of which elevate cancer risks (26–28). A study reported the trends in incidence and mortality rates of cervical cancer in China and analyzed the independent effects of age, period, and cohort on these trends. The results showed that the incidence of cervical cancer has increased among young women under the age of 35 (29). Additionally, a study assessed the incidence, disability-adjusted life years (DALYs), and mortality rates of cervical cancer and found that the incidence has increased among younger age groups, especially among women under the age of 35 (30), which is consistent with the results of the 31-35 age group mentioned in this study.

Moreover, subgroup analysis in this study further refined the risk differences associated with different menopause age groups, showing that women who reached menopause between 36-40 years had a significantly higher risk of ovarian cancer, while women who reached menopause after age 56 had an increased risk of uterine cancer. This finding supports the hypothesis in the literature that late menopause may increase the risk of uterine cancer due to prolonged exposure to high estrogen levels, leading to persistent endometrial stimulation and an elevated risk of uterine cancer (15, 31, 32).

When analyzing the relationship between age at menopause and the risk of gynecological cancer, our study employed RCS and found a low L-shaped relationship between age at menopause and the prevalence of gynecological cancer. This finding is consistent with existing literature, particularly in understanding the impact of changes in estrogen levels on the risk of gynecological cancer.

Firstly, a study based on the NHANES database indicated that a univariate logistic regression analysis of age at menopause and the prevalence of gynecological tumors showed a negative correlation between age at menopause and the prevalence of common gynecological tumors. Particularly for ovarian and cervical cancers, after adjusting for the effects of covariates, a higher risk of gynecological tumors was found, and there were statistically significant differences at earlier ages of menopause. This is in line with our research results, suggesting that before a certain critical point, a lower age at menopause significantly increases the risk of gynecological cancer (33). Furthermore, research has shown that women carrying pathogenic BRCA1/2 gene mutations have up to an 87% risk of developing related cancers. Specifically, multiple breast cancer clusters in BRCA1 and BRCA2 are associated with relatively higher risks of breast cancer and relatively lower risks of ovarian cancer. These findings further emphasize the role of genetic factors in the risk of gynecological cancer and how age at menopause may interact with these genetic risk factors (34). In summary, our research results are consistent with existing literature, highlighting the complex relationship between age at menopause, changes in hormone levels, and the risk of gynecological cancer. These findings provide important scientific evidence for future prevention strategies and intervention measures, especially in identifying high-risk groups and developing personalized prevention plans. We observed a linear inverse relationship between menopause age and the incidence of cervical and uterine cancers, while ovarian cancer showed no significant trend, possibly due to its complex etiology and differing sensitivity to hormones (33, 35, 36).

The chronic inflammatory state post-menopause is also considered a key mechanism in the increase. A 4-year follow-up study that explores the relationship between metabolic health, menopause, and physical activity. The study results indicate that menopause and levels of physical activity have a significant impact on the metabolic health of middle-aged women (37). A literature review based on data from the Study of Women’s Health Across the Nation (SWAN), examines the relationship between menopause and metabolic syndrome. The study found that menopause is associated with changes in cardiovascular disease risk factors, which are also related to cancer risk. The study also revealed common genetic signatures associated with metabolic syndrome, type 2 diabetes, cardiovascular diseases, and menopausal status, which are significantly enriched in biological processes, including the positive regulation of binding, the positive regulation of leukocyte cell adhesion, and the regulation of lipid localization (38). Visceral fat accumulation is associated with an increased risk of various cancers, including those of the uterus, cervix, breast, liver, and ovaries. The study also notes that obesity can interfere with therapies and contribute to morbidity from chemotherapy toxicities, thus promoting worse prognosis and mortality (39). The study found that higher levels of insulin resistance are associated with higher breast cancer incidence and higher all-cause mortality after breast cancer (40). Research findings indicate that the link between visceral adipose tissue and cancer risk may involve systemic mechanisms, such as leptin, glucose, insulin, and inflammatory cytokines, which are systemic markers of obesity-related adipose tissue inflammation and may promote tumor development (41). Chronic inflammation may play an important role in the pathogenesis of non-inflammatory diseases such as breast cancer. Activation of innate immunity creates a tissue microenvironment rich in reactive oxygen and nitrogen species that may lead to DNA damage and changes in nearby cells, the study suggests. Inflammation also raises circulating levels of inflammatory cytokines that promote cancer, such as C-reactive protein (CRP) and interleukin-6 (IL-6) (42). There are also studies showing that links between chronic low-grade inflammatory states and multiple chronic diseases are now evident, and controlling this condition may be important to prevent the most common diseases in the general population (43). A case-control study that prospectively assessed whether plasma levels of inflammatory markers such as CRP, TNF-α, IL-6, leptin, and adiponectin were associated with breast cancer risk showed no significant association between these inflammatory markers and breast cancer risk but found significant interactions between menopausal status and plasma levels. All of these studies support the scientific evidence for a relationship between postmenopausal chronic inflammatory state and cancer risk, and support the idea that postmenopausal chronic inflammatory state may be one of the key mechanisms for increased cancer risk (44). This inflammatory state aligns with our findings, supporting the inclusion of early menopausal women in high-risk cancer screening groups.

In addition to the elevated risk for early menopausal women, late menopausal women also face specific health risks. A study used a meta-analysis to evaluate the relationship between unopposed estrogen or estrogen plus progesterone and endometrial cancer risk. The results showed that women who use estrogen have a higher relative risk than non-users. Risk (RR 2.3) was associated with prolonged use (RR 9.5 for 10 years or more), and the risk of endometrial cancer remained elevated even after 5 years or more of discontinuation of unopposed estrogen therapy (RR 2.3) (45). A systematic review assessed the safety of estrogen plus progestin therapy, particularly considering the impact of treatment regimens and types of progestins on the risk of endometrial cancer. The study found that women who used estrogen alone had an increased risk, while continuous combined therapy was associated with a lower risk compared to sequential combined therapy (46). Hormone replacement therapy should be used with caution in women with a higher risk of endometrial cancer (HR 2.84) in those with a later menopause (age ≥55 years) than in those with the youngest menopause (<45 years)15. These studies underscore the importance of menopause age in gynecologic cancer screening and intervention strategies.

Recently, more studies have viewed age at menopause as an outcome of multiple interacting factors, further highlighting its unique impact on cancer risk. A study points out that lifestyle and dietary factors determine the age of natural menopause. The research indicates that a healthy diet and regular exercise are significant factors affecting the age of menopause, thereby potentially indirectly influencing the cancer risks associated with early menopause (47). A systematic review and meta-analysis studied the impact of psychological interventions on the quality of life of early-stage cancer patients. The study included psychological interventions such as cognitive-behavioral therapy, relaxation training, meditation, stress management, and self-help, which are believed to improve patients’ quality of life and may indirectly affect cancer risk (41). There is also a method called “emotional support and case finding” used for the clinical management of cancer patients’ emotions. This approach emphasizes the importance of psychological support in cancer treatment and may help reduce cancer risk (48). Psychological interventions for cancer patients include cognitive-behavioral therapy, art therapy, and relaxation therapy, among others. These interventions aim to improve patients’ emotional states and quality of life, which may positively impact the reduction of cancer risk (49).

This study makes a significant contribution by providing an in-depth analysis of the relationship between age at menopause and the risk of three major gynecological cancers: cervical, ovarian, and endometrial cancer. The results indicate a notable association: early menopause correlates with an increased risk of cervical and ovarian cancers, whereas late menopause is associated with a higher risk of endometrial cancer. These findings provide a scientific foundation for future personalized screening and health intervention strategies. The inverse association between menopausal age and cancer prevalence suggests that early menopause may be a marker for increased risk, prompting more frequent monitoring and targeted screening for women who experience menopause at younger ages. Additionally, the nonlinear relationship observed highlights the need for personalized risk assessments, taking into account individual factors such as age at menopause, lifestyle, and family history, to optimize prevention and early detection strategies for gynecological cancers. Unlike previous research that broadly examined the link between menopausal age and cancer risk, this study categorizes menopausal age into specific age groups and conducts a subgroup analysis across different cancer types, thereby revealing age-specific cancer risks. Furthermore, by employing a multilevel regression model and adjusting for various confounding variables, the study clarifies the independent effect of menopausal age on cancer risk, enhancing the statistical robustness of the findings. Additionally, the use of the large, representative NHANES database lends strong external validity to the study. NHANES data encompass participants from diverse racial, socioeconomic, and health backgrounds, enhancing the generalizability of the findings. Many previous studies, limited by small sample sizes or specific populations, restricted the applicability of their results. By leveraging NHANES’s extensive dataset, this study addresses these limitations and offers a robust reference point for personalized cancer screening in various populations. Another notable achievement of this study is its exploration of a potential nonlinear relationship between menopausal age and gynecological cancer risk. Using RCS regression models, the study is among the first to suggest an L-shaped nonlinear association, indicating that cancer risk may not increase linearly with menopausal age but could be influenced by a combination of factors, with critical risk thresholds for different age groups. This insight provides important theoretical support for age-segmented clinical management strategies.

Despite these valuable insights, the study has several limitations. First, as a retrospective analysis based on cross-sectional data from the NHANES database, it cannot establish causation. Though we have adjusted for multiple confounding factors, the possibility of reverse causation cannot be ruled out. Future longitudinal studies are needed to confirm the causal link between menopausal age and cancer risk, clarifying whether early menopause directly contributes to elevated cancer risk or if other intermediary factors are involved. Second, the study relies on self-reported data, including menopausal age, menarche age, and lifestyle factors, which may introduce recall bias and reporting inaccuracies. Participants may not accurately recall age-related events or health behaviors, particularly over long periods. Future research should incorporate objective biomarkers to reduce self-reporting errors. For example, hormonal and inflammatory biomarkers could more precisely measure physiological changes associated with menopause and their correlation with cancer risk. Moreover, this study does not delve into the variability in the relationship between menopausal age and cancer risk across different demographic groups (e.g., by race, socioeconomic status, and living environment). Both menopausal age and gynecological cancer incidence may vary significantly across racial and socioeconomic groups, especially in terms of lifestyle factors and healthcare access. Future studies should analyze these differences in greater detail to understand how menopausal age distribution and its impact on cancer risk vary across populations, which would aid in developing more targeted and equitable health management strategies, improving the efficiency of cancer screening and prevention. Finally, the study does not fully explore the biological mechanisms underlying the association between menopausal age and cancer risk. Although hypotheses around estrogen decline and chronic inflammation are proposed, these mechanisms require further verification through experimental and longitudinal studies. Future research could employ animal models or clinical trials to investigate how menopause-induced physiological changes specifically contribute to cancer development, thereby offering a biological basis for prevention and therapeutic strategies.





Conclusion

This study provides significant insights into the association between age at menopause and the risk of developing gynecologic cancers, particularly cervical, ovarian, and uterine cancers. Our findings underscore the role of early menopause as a risk factor for these cancers, while highlighting late menopause as an associated risk for uterine cancer. By employing a large, representative sample and robust analytical methods, our research contributes to the understanding of menopause’s impact on cancer risks. These results have potential implications for clinical practice, suggesting that menopausal age could be a critical factor in developing personalized cancer screening strategies. Future studies, ideally longitudinal in design, are essential to further elucidate the causal pathways involved and to explore the biological mechanisms underlying these associations. Such efforts could pave the way for targeted preventive measures and more effective health interventions for women across different menopausal age groups.
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Objective

To investigate the prognostic significance of expansile and infiltrative growth patterns in mucinous ovarian carcinoma (MOC).





Methods

A systematic search was conducted in the PubMed, Embase, and Web of Science databases for studies published between January 1, 2010, and September 6, 2024, examining the correlation between expansile and infiltrative tumor growth patterns and prognosis in MOC. Subgroup analyses were performed for mortality, recurrence, and FIGO stage I based on tumor subtype. The Chi-square test was used to evaluate the distribution of expansile and infiltrative tumors across FIGO stages I-IV.





Results

Twelve eligible studies, comprising a total of 1185 patients, were included in this systematic review and meta-analysis. The combined death rate in the expansile and infiltrative MOC was 10.5% (95%CI: 6.2-15.7) and 31.1% (95%CI: 14.1-50.9). The combined recurrence rate in the expansile and infiltrative MOC was 6.9% (95%CI: 3.1-11.9) and 24.5% (95%CI: 14.3-36.2). The combined International Federation of Gynecology and Obstetrics (FIGO) I rate in the expansile and infiltrative MOC was 89.8% (95%CI: 84.9-94.0) and 56.2% (95%CI: 41.5-70.4). A significant association was found between tumor type and FIGO stage (χ² (3) = 110.92, p < 0.00001).





Conclusion

Expansile MOC predicts better outcomes, while infiltrative MOC is linked to advanced stages and poorer prognosis. Complete surgical staging is crucial for infiltrative MOC but optional for early-stage expansile MOC. Early-stage patients should consider fertility-sparing surgery, timely conception, and close recurrence monitoring.
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1 Introduction

Ovarian cancer is the second most common gynecological malignancy (1). Among its various subtypes, high-grade serous ovarian carcinoma (HGSC) is the most prevalent histological subtype, while mucinous ovarian carcinoma (MOC) is quite rare, constituting approximately 3% to 11% of ovarian cancers (2, 3). MOC is recognized as a distinct entity from other epithelial ovarian cancers (EOCs), exhibiting a unique natural history, molecular profile, chemo-sensitivity, and prognosis compared to HGSC. Notably, MOC is the most common subtype in women under 40 (4), with tobacco smoking identified as the only significant risk factor (5). While most HGSC cases are diagnosed at advanced stages, 80% of MOC cases are identified at stage I (6). Early-stage MOC typically exhibits a better prognosis, however, advanced cases face poorer outcomes, primarily due to a limited response to platinum-based chemotherapy compared to HGSC (7, 8).

Histological grading systems, such as the International Federation of Gynecology and Obstetrics (FIGO) and Silverberg grading systems, have been studied in relation to the ovarian cancer patient prognosis, including MOC (9, 10). As yet, these grading systems alone are insufficient for predicting the clinical course of MOC, unlike their application for other ovarian carcinoma subtypes (11). In 2014, in order to standardize the pathological reporting of gynecological tumors, World Health Organization (WHO) guidelines proposed classifying the mucinous cancers in these two groups based on their growth patterns, calling them expansileand infiltrative-type tumors (12), which was also entered in the newest version CAP protocols (13). However, there is controversy over the treatment of this histological groups using different compasses. Guidelines from the European Society for Medical Oncology and the European Society of Gynecological Oncology (ESMO-ESGO) emphasize the importance of adjuvant chemotherapy for stage IB-IC infiltrative MOC. Even for stage IA, adjuvant chemotherapy may be considered for patients with infiltrative patterns, whereas it is not deemed necessary for stage IA expansile MOC (14, 15). Conversely, the National Comprehensive Cancer Network (NCCN) guidelines do not recommend differentiating histologic subtypes when treating patients with MOC. Instead, they advise administering adjuvant chemotherapy for stage IC or higher MOC, while treatment can be avoided for stage IA-IB, similar to other EOCs (16).

Therefore, we conducted a meta-analysis and systematic review aimed at assessing the prognostic significance of the expansile and infiltrative growth patterns in MOC. This study seeks to provide clearer guidance for the treatment of MOC and improve clinical management and outcomes for patients.




2 Methods



2.1 Protocol registration

This meta-analysis was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (17). Prior to data extraction, the review was registered with the International Prospective Register of Systematic Reviews (PROSPERO) under registration number CRD42024585615.




2.2 Eligibility criteria and exclusion criteria



2.2.1 Eligibility criteria

To be eligible, we aimed for the following inclusion criteria: 1) The study design is a retrospective or prospective study design;2) Included cases need to be classified by expansile or infiltration subtype, and need to be confirmed the diagnosis of MOC;3) Included articles assess at least one of the following parameters: death, recurrence, FIGO I or FIGO stage.




2.2.2 Exclusion criteria

We excluded studies with the following exclusion criteria:1) Reviews, letters, case reports or editorial comments;2) Studies without full text, insufficient data or low-quality scores based on Newcastle- Ottawa Scale (NOS) (18);3) Republished literature or repetitive studies.





2.3 Search strategy

Two researchers (MMC and YSW) conducted a comprehensive search in electronic databases of PubMed, Embase, and Web of Science for relevant researches, published for from January 1, 2010 to September 6, 2024.

The following search terms were used to identify relevant studies on ovarian cancer: “Carcinoma, Ovarian Epithelial”, “Epithelial Carcinoma, Ovarian”, “Ovarian Epithelial Carcinomas”, whereas the following terms were used to identify relevant studies on expansile and infiltrative: “expansile”, “infiltrative”.

Two researchers (LH and YLC) thoroughly reviewed the reference lists of all included articles to identify any potentially missing studies or unpublished data. In cases where multiple studies analyzed overlapping patient populations, the most recent or comprehensive results were selected. Following the initial screening, the full texts of all potential articles were independently reviewed by two researchers (QQ and MMC) for further evaluation. Any disagreements were resolved through discussion with AZ.




2.4 Data extraction

Data were independently extracted by two investigators (QQ and YSW), with any disagreements resolved through discussion with AZ. The extracted data included author, publication date, country, number of cases, growth patterns (expansile and infiltrative), oncological outcomes (death, recurrence), and pathological characteristics (FIGO stage). Attempts were made to obtain missing data by contacting the authors via email; however, no responses were received.



2.4.1 Expansile and infiltrative pattern

In expansile tumor, the tumor consists of a confluent glandular growth pattern with minimal to no stromal invasion. In contrast, infiltrative tumor shows malignant cell clusters with destructive stromal invasion (12).




2.4.2 Oncological outcomes

Death was calculated from the data from surgery to either the last follow-up or the data of death. Recurrence refers as either pathologic proof of cancer or an imaging study showing the regrowth of the tumor, whether it is confined to the pelvic region or outside of it.




2.4.3 Pathological features

For mucinous ovarian carcinoma, Stage I means tumor confined to the ovaries, Stage II means tumor involves one or both ovaries and extends to other pelvic tissues, such as the uterus or fallopian tubes. Stage III means tumor is present in one or both ovaries and has spread to the peritoneum outside the pelvis or to regional lymph nodes. Stage IV means tumor has spread beyond the peritoneum to distant organs, such as the liver or lungs.





2.5 Quality assessment

Two reviewers (MMC and YSW) independently assessed the quality of the included studies, with disagreements resolved through discussion. The quality of each study was evaluated using the Newcastle-Ottawa Scale (NOS), which assesses three categories: case selection, comparability between groups, and outcome assessment. The total NOS score ranges from 0 to 9 points, and studies with a score of ≥6 were considered high-quality and included in our analysis.




2.6 Statistical analysis

Meta-analysis was performed by using STATA 15.0 software. Subgroup analyses were based on expansile and infiltrative pattern, and heterogeneity was determined using orthorhombic test and I2 statistic. If there was significant heterogeneity (p-value <0.05 or I2 >50%), a random-effects model was used. Otherwise, a fixed-effect model was used (19). Additionally, a Chi-Square Test was performed to evaluate whether there were statistical differences in the distribution of expansile tumors and infiltrative tumors across stages I, II, III, and IV. Sensitivity analysis to determine the robustness and stability of the results, calculating the herogeneity in each situation in which a single study was removed in turn in noder to evaluate the effect of a single study on the overall outcome. Risk of publication was assessed by visual inspeciton of Begg’s funnel plot.





3 Result



3.1 Study selection and characteristics

The initial search retrieved a total of 592 relevant studies from three databases (PubMed = 423, Embase = 132, Web of Science = 37). After removing duplicates and screening titles and abstracts, 27 studies remained. Following a full-text evaluation, 15 studies were excluded. Ultimately, 12 studies, including 1185 patients, met the inclusion criteria and were included in this meta-analysis. A flowchart of the selection process is provided in Figure 1.

[image: Flowchart for identifying studies via databases and registers. Four stages are shown: Identification, Screening, Eligibility, and Inclusion. 1. Identification: 592 records identified (PubMed 423, Embase 132, Web of Science 37); 6 duplicates removed, leaving 586. 2. Screening: 559 records excluded; 27 reports sought. 3. Eligibility: 26 assessed; reports excluded due to insufficient data (10), overlapping data (2), duplicate data (1), abstract only (1). 4. Inclusion: 12 reports included.]
Figure 1 | Flow diagram of the included studies.

All included studies were retrospective and received seven or more stars based on the NOS criteria. The quality assessments of these studies are presented in Table 1, while the general characteristics of the studies included in this meta-analysis are summarized in Table 2.

Table 1 | Quality assessment of included studies.


[image: Table evaluating various studies on criteria such as representativeness, selection of non-exposed, exposure ascertainment, outcome presence, comparability on risk factors, outcome assessment, follow-up duration, and adequacy. Each study has a total score based on these criteria. Check marks indicate criteria met, while crosses indicate unmet criteria. Total scores vary from seven to eight.]
Table 2 | The basic characteristics of included studies.


[image: A table displaying study details including the first author, publish year, study period, region, study design, cases, follow-up, and quality. The studies span from 1984 to 2024, covering regions like France, Korea, and Japan. Study design is mostly retrospective with varying follow-up periods from months to years. Quality scores range from 7 to 8. "NM" indicates not mentioned for some data.]



3.2 Subgroup analysis based on expansile and infiltration tumors.



3.2.1 Death

This meta-analysis of five studies (9, 20, 21, 26, 30) showed that the combined death rate of mucinous ovarian carcinoma was positively correlated with expansile patter (Effect Size=0.105, 95%CI=0.062-0.157, I2 = 42.001%, n=5), while no significant correlation for infiltrative pattern (Effect Size=0.311, 95%CI=0.141-0.509,I2 = 78.323%, n=5) Figure 2A. However, the results also indicated high heterogeneity among the studies (I2 = 80.256%, p<0.05). In order to assess the stability of the model, sensitivity analysis was conducted by excluding each individual study and calculating new effect size. The results showed that the effect size were relatively stable, as illustrated in Figure 2B.

[image: Panel A displays a forest plot illustrating the effect sizes and confidence intervals of various studies on death rates. Subgroups ES and IS are analyzed separately, with a heterogeneity indicator and overall summary. Panel B shows a meta-analysis chart, depicting estimates and confidence limits if a study is omitted. Panel C presents a funnel plot for bias assessment with pseudo ninety-five percent confidence limits.]
Figure 2 | (A) Forest plots showing the relationship between infiltrative subtype, expansile subtype, and death rate in MOC; (B) sentivity analysis to evaluate robustness and (C) funnel plots show publication bias by visual inspection.




3.2.2 Recurrence

This meta-analysis of eight studies (9, 20, 21, 23–25, 27, 28) showed that the combined recurrence of mucinous ovarian carcinoma was positively correlated with expansile pattern (Effect Size=0.069, 95%CI=0.031-0.119, I2 = 55.150%, n=8), negatively correlated with infiltrative pattern (Effect Size=0.245, 95%CI=0.143-0.362,I2 = 79.797%, n=8) Figure 3A. The findings also revealed significant heterogeneity among the studies (I2 = 80.408%, p<0.05). A sensitivity analysis was performed by omitting each study individually and recalculating the effect size to evaluate model stability. The results indicated that the effect sizes remained fairly stable, as shown in Figure 3B.

[image: Meta-analysis figures showing three panels. Panel A: Forest plot of recurrence rates in studies, with effect sizes and confidence intervals. Panel B: Plot of meta-analysis estimates with studies omitted, displaying effect size limits. Panel C: Funnel plot for publication bias, including a line indicating symmetry and pseudo-confidence limits.]
Figure 3 | (A) Forest plots showing the relationship between death rate and infiltrative subtype, expansile subtype; (B) sentivity analysis to evaluate robustness and (C) funnel plots show publication bias by visual inspection.




3.3.3 FIGO I and FIGO stage

Given that most MOC cases are diagnosed at an early stage, we selected FIGO stage I as one of the key pathological features in our study and found eight studies (Table 3) (9, 21, 22, 24, 25, 27, 29, 30) reported the association between the expansile and infiltrative pattern for mucinous ovarian carcinoma and FIGO I stage. The result revealed that the combined FIGO I stage rate of mucinous ovarian carcinoma was positively correlated with expansile pattern (Effect Size=0.898, 95%CI=0.849-0.940, I2 = 53.137%, n=8), negatively correlated with infiltrative pattern (Effect Size=0.562, 95%CI=0.415-0.704, I2 = 82.519%, n=8) Figure 4A. Moreover, the results highlighted considerable heterogeneity across the studies (I2 = 90.752%, p<0.05). To evaluate the robustness of the model, a sensitivity analysis was carried out by removing each study one at a time and recomputing the effect size. The findings suggested that the effect sizes were largely consistent, as depicted in Figure 4B.

Table 3 | Distribution of expansile and infiltrative MOC patients across FIGO stages I-IV in various studies.


[image: Table comparing Expansile and Infiltrative Tumor Stages from I to IV for six individuals: Algera MD, Lim H, Hada T, Huin M, Nistor S, and Köbel M. Each cell contains numerical values indicating the number of cases per stage.]
[image: Section A displays a forest plot analyzing studies with corresponding effect sizes, confidence intervals, and weights. Section B features tables comparing tumor types across cancer stages, while section C shows a funnel plot assessing publication bias. Section D includes chi-square statistics indicating statistical significance.]
Figure 4 | (A) Forest plots showing the relationship between FIGO I rate and infiltrative subtype, expansile subtype; (B) sentivity analysis to evaluate robustness and (C) funnel plots show publication bias by visual inspection; (D) Cross-tabulation of the distribution of expansile and infiltrative MOC by FIGO stage (I-IV).

Besides, we use the Pearson Chi-Square test to evaluate the distribution of FIGO stages I, II, III, IV among expansile and infiltrative tumors, and found there was a highly significant association between tumor type and FIGO staging (Pearson chi2(3) = 110.9206, p <0.00001) Figure 4D.




3.3.4 Publication bias

Publication bias was investigated by Begg’s funnel plots. Visual inspection of the Begger’s funnel plot was almost symmetrical, as depicted in Figures 2C, 3C, 4C, suggesting no obvious evidence of publication bias.






4 Discussion

This meta-analysis revealed that mucinous ovarian carcinoma with expansile-pattern tumors, typically observed in early-stage, tend to have a better oncological prognosis. In contrast, infiltrative-pattern tumors are commonly associated with advanced stages and are linked to poorer outcomes.

Our study indicated that patients with expansile pattern tumors have lower death rate, recurrence rate and a higher proportion of FIGO stage I compared to those with infiltrative tumors. A study conducted by Taira Hada et al. (22) showed that MOC with expansile invasion was a better prognostic factor for progression-free-survival and overall survival than HGSC at all stage. Besides, Taira Hada et al. (31) also conducted a study, and found there was no statistically significant differences in the recurrence rate and prognosis of MOC with expansile and mucinous borderline tumors, it might be possible that expansile MOC biologically behave more like mucinous borderline tumors. These studies suggest that expansile MOC is not an aggressive subtype, leading many researchers to question whether comprehensive staging surgery is necessary for early-stage expansile tumors. Marc D et al. (25) conducted a study of peritoneal staging in clinical early-stage MOC, found limited benefit for routinely performing peritoneal and lymph node staging procedures in patients with expansile tumors, because recurrences, overall survival and recurrence free survival were similar across the different extent of surgical staging groups. In another study (15), researchers concluded that peritoneal metastases are rare in expansile MOC, more than 90% of patients have early-stage disease. Gouy S et al. (32) describes no lymph node involvement in expansile tumors, while one patient upstaged after surgical staging, based on positive peritoneal cytology (3.4%, one out of 29 patients). In conclusion, expansile is a less aggressive pattern. For patients with early-stage expansile MOC, it may be considered safe to forgo additional staging surgery and lymph node sampling following the initial bilateral salpingo-oophorectomy and hysterectomy. Nevertheless, further data is needed to validate this observation and ensure that patient outcomes are not compromised.

In contrast, infiltrative tumors are typically associated with more advanced stages and higher recurrence rates than expansile tumors. Gouy S et al. (20) found lethal recurrences were observed mainly in infiltrative type. Taira Hada et al. (22) reported that univariate analysis showed that MOC with infiltrative invasion at FIGO stages II to IV had worse progression free survival and overall survival than HGSC. Due to the high recurrence rate, it might be considered adjuvant treatment for infiltrative tumor, even in early-stage. According to Lim H et al. (21), one-third of patients who received lymphadenectomy had lymph node involvement. Gouy S et al. (32) investigated 31 infiltrative MOC underwent staging operations and found four patients had nodal involvement. Hence, we suggest lymphadenectomy must be considered during staging operations in patients with infiltrative tumor. Algera MD et al. (15) concluded that upstaging clinical early-stage infiltrative MOC based on positive cytology, peritoneum and omentum metastases occurred in 10.3% of the patients. Besides, Marc D et al. (25) conducted a study of peritoneal staging in clinical early-stage MOC, found that in the infiltrative cohort, overall survival was better for patients undergoing full staging compared with those undergoing fertility sparing or partial staging, patients undergoing fertility-sparing staging for infiltrative tumors experienced significantly more recurrences. In conclusion, patients diagnosed with infiltrative mucinous ovarian carcinoma (MOC) should undergo a thorough surgical staging process. This process should include peritoneal staging, which involves omentectomy, the collection of peritoneal washings, and the acquisition of biopsies, along with pelvic and para-aortic lymph node sampling. Given the potential aggressiveness of this type of cancer, adjuvant treatment should be considered even for tumors identified at an early stage.

In recent years, research on the molecular characteristics of mucinous ovarian cancer (MOC) has increased, providing new insights into its invasion patterns and prognosis. A study found that mucinous ovarian cancer (MOC) with infiltrative invasion was more often positive for CK5/6, CD24, and EGFR, suggesting that these markers may be linked to the aggressive features of this invasion pattern (28). In contrast, expansile invasion showed a higher prevalence of HER2 overexpression/amplification and less frequent HER2 mutation compared to infiltrative MOC, although this difference was not statistically significant (33). Additionally, PAX8 expression was more commonly associated with expansile invasion, but the difference was not statistically significant (75% vs 37.5%, p=0.99) (29). Overall, the existing data are limited, highlighting the need for further research to integrate molecular data with histological classification for a comprehensive understanding of MOC prognosis.

Fertility-sparing surgery (FSS) is a common topic of discussion because patients diagnosed with MOC are often younger. In recent years, preserving fertility becomes a significant concern in treatment planning, and several studies have focused on the outcomes of fertility-sparing surgery in patients with early-stage MOC. Gouy S et al. (34) conducted a study and emphasized that FFS should be considered for early-stage MOC regardless of its subtype. Similarly, Yoshihara M et al. (35) found patients with stage I MOC underwent uterus preserving surgery was not associated with decreased survival. On the other hand, Hyunji Lim et al. (21) found infiltrative tumors showed no statistical significance with worse survival, but patients in the infiltrative tumors group who underwent FSS demonstrated a 5-year progression free survival rate of 83.3%, significantly lower than patients without fertility preservation. This suggests that adjuvant chemotherapy should be considered for patients with stage I disease who have undergone FSS, particularly if the histologic subtype is infiltrative. Bentivegna et al. Reported the long-term outcome of 280 MOC patients treated with FFS, the recurrence rate was 6,8% (36). Additional, Wei Lin et al. (37) noted no significant difference in disease-free survival between the FSS and radical surgery groups in patients with stage IA and IC disease, though the FSS group did show a trend toward poorer disease-free survival compared to those who underwent radical surgery. Besides, they found that, among 23 patients diagnosed with early-stage mucinous ovarian carcinoma who underwent fertility-sparing surgery (FSS) and attempted to conceive, 21 (91.3%) successfully achieved 27 pregnancies. These included 26 spontaneous pregnancies and one pregnancy resulting from assisted reproductive technology. However, there is a lack of data on the recurrence rates associated with FSS, highlighting the need for further research in this area. More studies should be conducted to better understand the long-term outcomes and potential risks of recurrence following FSS in patients with mucinous ovarian carcinoma. But we strongly recommend FSS for patients with early-stage MOC, irrespective of the tumor subtype. This approach aims to preserve fertility while effectively treating the cancer. Following treatment, these patients should be encouraged to attempt conception as soon as they are medically cleared and should engage in regular follow-up to monitor for any signs of relapse.

This meta-analysis is the first to evaluate the relationship between growth patterns and prognosis in MOC, but it has limitations. One of the most obvious limitation is the high heterogeneity among the results, although we did sensitivity analysis to explain its robustness, we are currently unable to perform a more thorough investigation into the sources of heterogeneity due to incomplete data. All included studies were retrospective, which may affect the results. Additionally, only English language studies were considered, potentially introducing language bias. The subgroup analysis did not show a significant link between infiltrative patterns and death rate due to limited data. Despite these limitations, the study offers initial insights into the prognostic importance of growth patterns in MOC and suggests areas for future research, calling for more studies, including those with negative findings, to support these conclusions.




5 Conclusion

Our study found that expansile MOC generally has better outcomes, while infiltrative MOC is associated with poorer prognosis and advanced stages. Full surgical staging is recommended for infiltrative MOC, but may be omitted for early-stage expansile MOC. Fertility-sparing surgery is advised for early-stage patients, with early conception and close monitoring.
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Objectives

To identify radiomic features extracted from ultrasound images and to develop and externally validate a comprehensive model that combines clinical data with ultrasound radiomics features to predict the residual tumor status in patients with advanced epithelial ovarian cancer (OC).





Methods

The study included 112 patients with advanced epithelial OC who underwent preoperative transvaginal ultrasound. Of these, 78 patients were assigned to the development cohort and 34 to the external validation cohort. Tumor contours were manually delineated as regions of interest (ROI) on the ultrasound images, and radiomic features were extracted. The final set of variables was identified using LASSO (least absolute shrinkage and selection operator) regression. Clinical features were also collected and incorporated into the model. A combination model integrating ultrasound radiomics and clinical variables was developed and externally validated. The performance of the predictive models was assessed.





Results

A total of 1,561 radiomic features and 18 clinical features were extracted. The final model included 10 significant ultrasound radiomic variables and 4 clinical features. The comprehensive model outperformed models based on either clinical or radiomic features alone, achieving an accuracy of 0.84, a sensitivity of 0.80, a specificity of 0.75, a precision of 0.88, a positive predictive value of 0.81, a negative predictive value of 0.86, an F1-score of 0.78, and an AUC of 0.82 in the external validation set.





Conclusions

The comprehensive model, which integrated clinical and ultrasound radiomic features, exhibited strong performance and generalizability in preoperatively identifying patients likely to achieve complete resection of all visible disease.





Keywords: ultrasonic radiomics, ovarian cancer, predictive model, nomograms, residual tumor




1 Introduction

Ovarian cancer (OC) ranks among the most prevalent gynecological cancers, holding the position of the third most commonly diagnosed malignancy in the female reproductive system, surpassed only by cervical and endometrial cancers. Moreover, it exhibits the highest mortality rate within this category of cancers, posing a significant threat to women’s health (1). Because early symptoms are often nonspecific, the majority of patients are diagnosed at an advanced clinical stage, frequently presenting with localized or widespread pelvic and abdominal metastases. Despite initial treatment, recurrence rates and mortality remain high, with frequent development of drug resistance. As a result, the 5-year survival rate is below 40%, leading to a generally poor prognosis for these patients (2).

According to the International Federation of Obstetrics and Gynecology (FIGO), there are two main treatment strategies for advanced OC in stages IIIC-IV: (1) primary debulking surgery (PDS) followed by six cycles of postoperative platinum-based chemotherapy, and (2) for patients unlikely to achieve satisfactory tumor reduction, two to three cycles of neoadjuvant chemotherapy can be given before interval debulking surgery (IDS), followed by postoperative adjuvant chemotherapy, a strategy commonly referred to as “sandwich” therapy (3). The primary goal of both treatment approaches is to maximize tumor reduction, ideally leaving a residual tumor (RT) diameter of less than 1 cm, or achieving no visible residual tumor (R0). Maximal cytoreduction stands as a critical prognostic factor in the treatment of advanced OC, showing the most favorable outcomes following adjuvant chemotherapy.

Unfortunately, not all OC patients are suitable candidates for primary debulking surgery (PDS) aimed at achieving an R0 resection (4). For those with a low probability of attaining R0 resection, there is a consensus that surgical intervention should be avoided if incomplete resection (with residual tumor greater than 1 cm) is anticipated, as it has little benefit to patient survival and may lead to a high incidence of perioperative related diseases (3–5). Therefore, assessing the probability of a patient’s RT-resection during PDS prior to surgery is advantageous, as it supports the implementation of individualized treatment strategies.

In recent years, the field of imaging has made significant advancements, allowing for a more detailed depiction of tumor heterogeneity and providing valuable prognostic information (6). Various mathematical approaches have been applied to extract a vast array of radiomic features from medical images with high throughput, enabling clinicians to improve diagnostic accuracy and develop personalized, precision treatments (7, 8). Transvaginal ultrasound is a commonly utilized, cost-effective method for the clinical diagnosis of OC, and ultrasound radiomics has been increasingly employed in the study of various malignancies, including thyroid, cervical, liver, and OC (9–11). For example, Chiappa et al. utilized ultrasound radiomics to distinguish between malignant and benign ovarian tumors, highlighting its potential to enhance the preoperative evaluation of patients with ovarian masses and accurately identify those with OC (12). Thus, a comprehensive and unbiased assessment of ultrasound image features is essential (10).

This study seeks to assess the predictive significance of ultrasound radiomics and clinical factors in creating and validating a more reliable and generalizable preoperative model for forecasting RT status in patients with advanced epithelial OC. The goal is to standardize and simplify the process for gynecologists, enabling them to extract critical information from traditional diagnostic imaging more effectively and make informed decisions based on it.




2 Materials and methods



2.1 Study population

The study enrolled 112 patients with histologically confirmed FIGO stage III or IV OC diagnosed between January 2018 and June 2024. Of these, 78 patients from the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture formed the development cohort, while 34 patients, recruited by collaborators at the Ethnic Hospital of Enshi Tujia and Miao Autonomous Prefecture, comprised the external validation cohort. The inclusion and exclusion criteria were consistent across both cohorts. The exclusion criteria included patients currently undergoing neoadjuvant chemotherapy, those lacking essential clinical or surgical data, individuals with poor image quality or significant image artifacts affecting visualization, and patients with a history of repeated biopsies. We established a standardized protocol to define dataset variables and outcomes, enabling the retrospective collection of data within the same time frame. Patients who met the inclusion criteria were divided into two groups: (1) the RT<1 group, comprising individuals with no visible gross residual tumor (RT) and a maximum tumor diameter of less than 1 cm; and (2) the RT≥1 group, which included patients with a maximum tumor diameter of 1 cm or greater (13). This retrospective study was approved by our institution’s ethics review board, with informed consent obtained from all participants.




2.2 Clinical information

Clinical data, including age, body mass index (BMI), parity, presence of hydrothorax, ascites, and ASA score, as well as the metastases in abdomen and pelvis (MAP) score, were collected. Laboratory findings such as perioperative platelet count, perioperative albumin levels, serum cancer antigen-125 (CA125), serum human epididymis protein 4 (HE-4) levels, and the neutrophil-to-lymphocyte ratio (NLR) were also obtained. Additionally, ultrasonic measurement characteristics such as maximum tumor diameter, arterial pulsatility index, resistance index, end diastolic flow rate, peak flow rate, and average flow rate were retrieved from the medical records.

The MAP score was assessed based on preoperative enhanced CT scans of the abdomen and pelvis, with two radiologists, blinded to intraoperative records, scoring and documenting the findings. The score was based on the Zhongshan Hospital rating scale for preoperative OC, which assessed lesions in various regions, including the diaphragmatic peritoneum, liver and kidney recesses, liver capsule, hepato-gastric space, spleen and stomach space, greater omentum (covering both the liver area and splenic curvature), mesentery, peritoneum, intestines, paracolic sulci, uterorectal space, uterine bladder space, and lymph nodes. Each identified lesion contributed 2 points, with the total score being the cumulative sum of all lesions. Any discrepancies in scoring were resolved through consensus.




2.3 Image segmentation

In accordance with the Institutional Review Board’s approved protocol, essential clinical data and ultrasound image locations were systematically documented in standardized electronic case report forms (CRFs) and collected within four weeks prior to the primary surgical intervention. The segmentation of images was conducted independently by two seasoned radiologists who were unaware of the patients’ tissue pathology. One of the radiologists, possessing around 12 years of experience, utilized the open-source ITK-SNAP software (version 3.8.0; www.itksnap.org) to manually delineate the regions of interest (ROIs) on the image slices. The Kappa consistency analysis was performed to evaluate discrepancies between two radiologists, and a Kappa value ≥ 0.85 was regarded as a good consistency.




2.4 Radiomics feature extraction

PyRadiomics (v.2.0.0; http://www.radiomics.io/pyradiomics.html) software was used to extract features from medical images (14). The process included importing manually delineated ROI images along with the original images into the PyRadiomics platform, where an internal feature analysis program was utilized to extract the relevant features. We adopted nonlinear intensity transformation on image voxels, Gaussian Laplace filter and Eight wavelet transform to obtain high-throughput features. Radiomic features can be categorized into three main groups: (I) geometry, (II) intensity, and (III) texture. Geometric features describe the three-dimensional shape of the tumor, while intensity features reflect the first-order statistical distribution of voxel intensities within the tumor. Texture features, on the other hand, analyze the patterns and the second- and higher-order spatial distributions of these intensities. A total of 1,561 radiomic features were extracted, encompassing first-order features, shape-based features, and a variety of matrix features, including gray level co-occurrence matrix (GLCM) features, gray level dependence matrix (GLDM) features, gray level run length matrix (GLRLM) features, gray level size zone matrix (GLSZM) features, and neighborhood gray-tone difference matrix (NGTDM) features.




2.5 Radiomics feature selection

To eliminate differences in index dimensions, Z-score normalization was applied to account for the varying scales of the manually derived radiomic features. Three methods were employed to select the final variables. Initially, the Mann-Whitney U test was performed to filter all radiomic features, retaining only those with a p-value of less than 0.05. Subsequently, Pearson’s rank correlation coefficient was computed to evaluate the correlation between features, and those with an intraclass correlation coefficient (ICC) below 0.9 were discarded to guarantee high repeatability. Finally, the least absolute shrinkage and selection operator (LASSO) regression model was employed to identify the final variables for model construction. Ultimately, the best features were incorporated into the prediction models, which were developed using 10-fold cross-validation.




2.6 Model development and validation

Three models were developed using the development set of 78 patients: model I (the clinical model), model II (the radiomics model), and model III (the clinical-radiomics model). For radiomics models, we tested 15 machine learning algorithms, with the LightGBM model demonstrating the best performance (Appendix 1). However, the clinical-radiomics model was chosen as the nomogram to enhance convenience for clinical application.

The external validation set (34 patients) used to evaluate model performance. The model’s performance was assessed through several metrics, including accuracy, sensitivity, specificity, precision, positive predictive value, negative predictive value, and F1-Score. Additionally, the receiver operating characteristic (ROC) curve was calculated along with the area under the ROC curve (AUC). Calibration was assessed through calibration plots, which depicted the relationship between predicted probabilities and observed proportions. To evaluate the clinical utility and benefits of the predictive model, decision curve analysis (DCA) was conducted.




2.7 Statistical analysis

All statistical analyses were performed using Python packages (version 0.13.2). Group differences were evaluated using either Student’s t-test or Mann–Whitney U test for continuous variables, while categorical variables were analyzed using the chi-square test or Fisher’s exact test. Multivariate analysis was conducted to select the final variables. Continuous variables that followed a normal distribution are presented as means ± standard deviations (SDs), whereas non-normally distributed variables are reported as medians ± interquartile ranges (IQRs). And odds ratios (ORs), 95% confidence intervals (CIs), HosmerLemeshow (H-L) test were also calculated. And a p value < 0.05 was considered statistically significant.





3 Results



3.1 Clinical and demographic characteristics

The final cohort comprised 112 patients with advanced epithelial OC. This included the development cohort (n=78), which consisted of 55 patients with R0 resection and 23 patients with non-R0 status, and the external validation cohort (n=34), which included 24 patients with R0 resection and 10 patients with non-R0 status. The comparison between the development and external validation cohorts revealed no significant differences between the two groups, nor within each group (p > 0.05), indicating a reasonable classification. Table 1 present the baseline characteristics of patients in each cohort. In the multivariate analysis, age (p = 0.031; OR = 1.011, 95% CI: 1.003-1.018), CA125 level (p = 0.002; OR = 1.001, 95% CI: 1.000-1.001), presence of hydrothorax (p = 0.003; OR = 1.174, 95% CI: 1.078-1.279), and maximum tumor diameter (p = 0.031; OR = 1.002, 95% CI: 1.001-1.004) were identified as independent predictors of RT status (Table 2).

Table 1 | Clinical and demographic characteristics of development and validation cohort.


[image: A table comparing variables between development and external validation cohorts. Variables include age, BMI, NLR, perioperative platelet levels, perioperative albumin, CA125, HE-4, MAP score, and others. The table presents values for R0 and Non-R0 groups, with statistical significance indicated by P values. Significant differences are noted for age, CA125, HE-4, and MAP score, among others, in both cohorts. The table also includes measures of arterial pulsatility index, resistance index, and scores related to parity, ASA, ascites, and hydrothorax, with significant differences highlighted in certain variables.]
Table 2 | the univariate and multivariate logistic regression analysis of development cohort.


[image: Table displaying results from univariate and multivariate logistic regression analyses. Variables include Age, BMI, NLR, among others. Odds ratios, confidence intervals, and p-values are provided. Statistically significant results are highlighted with p-values below 0.05. Key findings include Age and CA125 significance in both analyses. Definitions are included below the table.]



3.2 Radiomics characteristics

A total of 1,561 radiomic features were extracted from ultrasound images, which included 306 first-order features, 14 shape-based features, 374 features from the GLCM, 238 features from the GLDM, 272 features from the GLRLM, 272 features from the GLSZM, and 85 features from the NGTDM. The t-test or Mann-Whitney U test was utilized for the preliminary screening of all features, resulting in the inclusion of 42 features. Subsequently, Pearson correlation analysis was conducted, revealing 25 features that were significantly different between the two groups. Next, LASSO regression was conducted using 10-fold cross-validation with the minimum criterion to determine the optimal λ values. The λ value that resulted in the lowest cross-validation errors is illustrated in Figures 1 and 2. Following this, ten features with nonzero coefficients were used for this task. Finally, ultrasonic radiomic features were established using these 10 features, namely exponential_firstorder_Skewness, exponential_glszm_LargeAreaHighGrayLevelEmphasis, gradient_firstorder_Minimum, lbp_3D_m2_firstorder_90Percentile, logarithm_firstorder_Minimum, squareroot_glcm_Idn, squareroot_glszm_GrayLevelNonUniformityNormalized, squareroot_glszm_SmallAreaEmphasis, wavelet_LHL_ngtdm_Contrast, wavelet_LLL_glcm_Idn (Figures 1, 2).

[image: Flowchart detailing the process of medical image analysis. It includes four sections: image segmentation with an ultrasound image, feature extraction listing various radiomic and statistical features, feature selection illustrated by two graphs, and model development and validation with two graphs showcasing model performance metrics.]
Figure 1 | Study flowchart of the radiomics analysis.

[image: Panel A shows a line graph of coefficients against lambda values, with multiple colored lines. Panel B presents a plot of mean square error (MSE) against lambda values, showing a red line and blue bars. Panel C displays a horizontal bar chart of feature names with their coefficients, labeled as lbp_3D_m2_firstorder_90Percentile and others.]
Figure 2 | Radiomic feature extraction. (A, B) Radiomic features extraction using least absolute shrinkage and selection operator (LASSO) algorithm. (C) The final features included in our study.




3.3 Model construction and performance assessment

We developed three models to identify patients suitable for optimal primary debulking surgery. Model 1 (the clinical model) was based solely on clinical characteristics using the LightGBM algorithm. Model 2 (the radiomics model) relied exclusively on ultrasonic radiomics characteristics, also employing the LightGBM algorithm (Appendix 1). Model 3 (the clinical-radiomics model) was an integrative nomogram that combined clinical and radiomics features to enhance clinical application convenience (Figure 3).

[image: A nomogram chart displaying scales for radiomics, CA125, maximum tumor diameter, age, and ascites against overall points and risk. Each factor has corresponding numerical values, aiding in calculating total points to assess risk.]
Figure 3 | A nomogram integrates clinical parameters and radiomics features.

The radiomic-clinical nomogram demonstrated superior performance compared to the clinical or radiomics models alone, achieving an accuracy of 0.84, a sensitivity of 0.80, a specificity of 0.75, a precision of 0.88, a positive predictive value of 0.81, a negative predictive value of 0.86, an F1-Score of 0.78, and an AUC of 0.82 in the external validation set (Table 3). Figure 4 illustrates the AUC for both the development and external validation cohorts. The calibration curves for the radiomic-clinical nomogram demonstrated strong agreement between predicted and observed outcomes in both the development and validation cohorts (Figure 4). The Hosmer-Lemeshow (HL) test indicated favorable goodness-of-fit for the data (all p > 0.05). Furthermore, the DCA revealed that the nomogram offers greater clinical benefit (Figure 4), namely, the DCA for the three models indicates that this new diagnostic approach yields a greater net benefit (where a value greater than 0 indicates patient benefit) in predicting the residual tumor status in patients with advanced OC, with the clinical-radiomics model showing a more significant benefit compared to the clinical model or radiomics model.

Table 3 | The performance of clinical model, radiomics model and combined nomogram for predicting RT status.


[image: Table comparing performance metrics of three models (Clinical, Radiomics, Combined) across development and validation cohorts. Metrics include Area Under Curve (AUC), Accuracy (ACC), Sensitivity (Sen), Specificity (Spe), Positive Predictive Value (PPV), Negative Predictive Value (NPV), Precision, and F1-score, all showing similar values for each model.]
[image: Six-panel image showing various graphs labeled A to F. Panels A and B are ROC curves with sensitivity vs. 1-specificity; panel A shows higher AUC scores compared to panel B. Panels C and D display calibration plots of predicted vs. observed probabilities, with panel C showing more accurate predictions. Panels E and F are decision curve analyses, indicating net benefit against threshold probability, with the combined model showing the highest net benefit. Different models are represented by various colored lines in each graph.]
Figure 4 | The performance of clinical model, radiomics model and combined nomogram with ROC, calibration curves and decision curve analysis. (A, B) ROC curves of each model in the (A) development and (B) external validation cohort for prediction of RT status. (C, D) Calibration curves of each model in the (C) development and (D) external validation cohort for prediction of RT status, and A 45° diagonal line indicates perfect calibration. (E, F) Decision curve analysis of each model in the (E) development and (F) external validation cohort for prediction of RT status, and the colored lines were expected net benefit of per patient. ROC, Receiver operating characteristics curves; RT, Residual tumor.





4 Discussion

In our study, we integrated primary radiomic features, laboratory findings, and clinical factors from patients with advanced epithelial OC to create and validate a radiomics-clinical nomogram. This nomogram is designed for individualized preoperative prediction of treatment response (RT) status. The results demonstrated that the integrated radiomic-clinical nomogram showed enhanced predictive performance compared to using radiomic or clinical signatures individually after external validation. The final model is capable of identification of the RT status prior to surgery. This advancement enhances clinical decision-making, patient communication, and prognosis assessment. For those with a low probability of attaining R0 resection, the surgical intervention should be avoided if incomplete resection. The presence or absence of response to treatment (RT) following PDS or IDS is the most significant factor influencing the prognosis of patients with advanced OC. Notably, a 10% increase in the rate of complete tumor resection can lead to a 5% improvement in overall survival for these patients (15). Research has shown that RT status is an independent and significant prognostic factor for patients with advanced OC. The extent of RT is inversely correlated with patient survival, disease-free survival (DFS), and overall survival (OS) (5, 16). According to Kehoe et al., patients with OC who underwent PDS followed by RT excision experienced the most favorable prognosis (17). High-grade serous ovarian cancer (HGSOC) is the most common and aggressive histological subtype of OC, and complete resection of all visible lesions (RT-resection) in advanced HGSOC patients after PDS is linked to the best outcomes (5, 18). Therefore, it is essential to assess all epithelial OC patients suspected of being at stage IIIC or IV to determine their eligibility for PDS prior to initiating therapy, in line with the clinical practice guidelines set forth by the Society of Gynecologic Oncology and the American Society of Clinical Oncology (19).

For patients in whom achieving satisfactory tumor reduction is challenging, neoadjuvant chemotherapy should be considered prior to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear area and the major axis length of the stroma are significant factors that can improve risk stratification in patients with HGSOC. For the ultrasonic radiomic characteristics, three methods were employed to select the final variables, resulting in the inclusion of 10 features from a total of 1,561 radiomic features in our model, effectively eliminating invalid variables. Previous studies have demonstrated that all ultrasonic radiomics and clinical features included in our study are relevant to the diagnosis, treatment, and prognosis of ovarian cancer (15, 18, 21, 24).

CA-125 is one of the most commonly used serum biomarkers for OC. Some studies (13, 20) have found that preoperative CA-125 levels can predict gross residual disease at PDS for advanced epithelial OC. Additionally, moderate to severe ascites has been associated with residual disease (13) and may serve as a surrogate indicator of advanced disease across multiple anatomic locations. The maximum tumor diameter is a critical predictor for individualized preoperative assessment of RT status in patients with advanced OC, as reflected in radiomic shape-based features. For patients who are unlikely to achieve satisfactory tumor reduction, neoadjuvant chemotherapy should be considered prior to PDS. Kevin et al. (21) demonstrated that the mean tumor nuclear area and the major axis length of the stroma are important factors for improving risk stratification in patients with HGSOC. In analyzing ultrasonic radiomic characteristics, three methods were utilized to select the final variables, resulting in the inclusion of 10 features from a total of 1,561 radiomic features in our model, effectively eliminating invalid variables.

Ultrasound offers several advantages, including real-time display, convenience, and affordability, making it widely used for screening and preoperative evaluation of OC. Recently, applications of ultrasound-based radiomics have been reported in tumor diagnosis (12), pathology grading (22), vascular invasion assessment, therapeutic evaluation (23), and prognostic prediction (24). However, there are few reports on RT status based on ultrasonics. Meanwhile, several radiomic models for predicting RT status based on computed tomography (CT) and magnetic resonance imaging (MRI) have been developed and validated (25, 26). Lu et al. (26) developed an MRI-based radiomic-clinical nomogram that successfully predicted RT status preoperatively in patients with HGSOC. A multicenter assessment was conducted to evaluate the efficacy of preoperative CT scans and CA-125 levels in predicting gross residual disease following PDS for advanced epithelial OC (25). However, the pelvic CT-based model was primarily developed with a focus on abdominal metastases. These findings support the hypothesis that radiomic features can effectively predict treatment response (RT) status by capturing variations in tumor heterogeneity.

There are several limitations to our study. Firstly, it relies on a small sample size, necessitating larger databases and multicenter studies to confirm the generalizability of this model. Second, future studies should integrate CT or contrast-enhanced CT and MRI or contrast-enhanced MRI into the predictive model to enhance the prediction of RT status in OC. Finally, our study focused exclusively on advanced epithelial OC subtypes, excluding rare variants. Future research should include data from additional OC subtypes to improve the models’ universality and clinical applicability.




5 Conclusion

In our study, we confirmed the clinical value of ultrasound-based radiomics for the preoperative prediction of treatment response (RT) status in patients with advanced epithelial OC, and radiomic feature extraction and selection may provide a deeper understanding of ultrasound imaging mechanism. The comprehensive model combined clinical and ultrasonic radiomics features not only had a better performance in preoperative identification of complete resection of all visible diseases but also had a higher generalization ability.
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With the rapid development of the “Internet + Medical” model, artificial intelligence technology has been widely used in the analysis of medical images. Among them, the technology of using deep learning algorithms to identify features of ultrasound and pathological images and realize intelligent diagnosis of diseases has entered the clinical verification stage. This study is based on the application research of artificial intelligence technology in medical diagnosis and reviews the early screening and diagnosis of thyroid diseases. The cure rate of thyroid disease is high in the early stage, but once it deteriorates into thyroid cancer, the risk of death and treatment costs of the patient increase. At present, the early diagnosis of the disease still depends on the examination equipment and the clinical experience of doctors, and there is a certain misdiagnosis rate. Based on the above background, it is particularly important to explore a technology that can achieve objective screening of thyroid lesions in the early stages. This paper provides a comprehensive review of recent research on the early diagnosis of thyroid diseases using artificial intelligence technology. It integrates the findings of multiple studies and that traditional machine learning algorithms are widely used as research objects. The convolutional neural network model has a high recognition accuracy for thyroid nodules and thyroid pathological cell lesions. U-Net network model can significantly improve the recognition accuracy of thyroid nodule ultrasound images when used as a segmentation algorithm. This article focuses on reviewing the intelligent recognition technology of thyroid ultrasound images and pathological sections, hoping to provide researchers with research ideas and help clinicians achieve intelligent early screening of thyroid cancer.
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1 Introduction

The thyroid gland is a butterfly-shaped gland located in the front of the neck. Its main function is to secrete thyroid hormones. Thyroid hormones play a key role in regulating many physiological processes in the human body, including diabetes management, cardiovascular health, cognitive function, and immune system regulation. Therefore, maintaining normal thyroid hormone levels is essential to maintaining good health (1, 2). When thyroid hormone secretion is disordered, it can lead to abnormal thyroid function or abnormal thyroid structure. Thyroid dysfunction includes hyperthyroidism and hypothyroidism. Thyroid structural abnormalities mainly include thyroid nodules and thyroid cancer. Thyroid nodules refer to solid or cystic masses that appear inside the thyroid gland. Thyroid cancer is a malignant tumor that occurs in thyroid cells and is one of the most common malignant tumors in the endocrine system (3). The causes of thyroid cancer are complex. As a malignant tumor, tumor cells continue to grow and spread, leading to a decline in body function. During the diagnosis and treatment process, it may also cause emotional distress and psychological problems for patients. Studies have shown that cancer patients generally have a higher incidence of mood disorders such as depression and anxiety (4, 5).

Thyroid lesions often have no obvious symptoms in the early stages, but if not discovered and treated in time, they may gradually deteriorate into thyroid cancer, affecting the patient’s quality of life and even endangering their life. Therefore, although thyroid cancer has certain hazards, early detection, early diagnosis and early treatment can achieve better treatment results, reduce the surgery rate and mortality rate, improve the cure rate and reduce complications.

In recent years, significant changes in environmental factors, specifically manifested as heavy metal pollutants, persistent organic pollutants (POPs), and increased air pollution (6–8), have adversely affected the normal physiological functions of thyroid hormones. The incidence of thyroid cancer is increasing year by year globally, accounting for approximately 1% to 3% of all new malignant tumors worldwide (9). Currently, the methods for screening thyroid diseases include ultrasound, cell puncture, CT, MRI, etc (10–12). Ultrasound is a common non-invasive and painless examination method (13). Its disadvantage is that it is limited by the doctor’s experience and the size, shape, edge, internal echo and other characteristics of the nodule. Therefore, there is a certain misdiagnosis rate when evaluating the benign or malignant nature of thyroid nodules. Thyroid pathology is the gold standard for diagnosis and an important means of determining whether a thyroid nodule is benign or malignant and the type of thyroid tumor. However, pathology is invasive, expensive, and difficult for patients to accept. In order to achieve low-cost, high-accuracy early screening for thyroid disease, researchers have turned their attention to artificial intelligence technology.

The rapid advancement of artificial intelligence in image recognition technology has pushed auxiliary medical care to a highly mature and widely applied stage. In the field of image segmentation, deep learning image segmentation technology can automatically learn the features of images and achieve high-precision image segmentation by training deep neural. Xu (14) proposed an end-to-end FISH-based method (CACNET) for the recognition of genetically abnormal cells (CAC). The CACNET achieves cell nuclear segmentation by an improved Mask region-based convolutional neural network (R-CNN), and the accuracy of circulating CAC recognition using CACNET 94.06%. At the same time, they also developed a deep learning network (FISH-Net) based on 4-color FISH images for CACs, with an accuracy of more than 96% (15). Zhao (16) proposed a breast cancer ultrasound image segmentation method based on the U-Net framework combined with the residual block structure and attention, with a dic of up to 92.1%.

In the field of image classification, it mainly classifies and recognizes objects in images by training deep neural networks. This technology can process large-scale image data and quickly and accurately identify target objects in images. Its advantages include fast recognition speed, high accuracy, and the to handle images of different sizes and resolutions. In 2012, the deep convolutional neural network achieved a significant breakthrough in the ImageNet competition, showing excellent performance of 37.5% top-1 error rate and 17.0% top-5 error rate (17). In addition, Levy (18) proposed an innovative deep convolutional neural network model that cleverly used deep transfer learning technology to successfully achieve high-precision classification of benign and malignant breast tumors with an accuracy rate of up to 92.4%.

Wang (19) developed a mitosis detection method (FMDet) based on breast tissue histopathological images to capture the appearance changes mitotic cells. To achieve more robust feature extraction, the feature extractor was constructed by integrating a channel-level multi-scale attention mechanism into the fully convolutional network structure. The FMDet algorithm has won the first place in the MIDOG 2021 challenge, achieving an accuracy of 74.4%. In 2022, Su (20) used the gene expression data of TCGA to screen characteristic genes by combining WGCNA Lasso algorithms, and used machine learning models to achieve the diagnosis and staging of colorectal cancer. Wang (21) proposed a supervised learning (SSL) scheme of deep learning (DL) framework to address the challenge of high-precision classification seven pulmonary tumor growth patterns in whole slide images (WSIs). This series of technological innovations has undoubtedly injected strong impetus into the field of image segmentation and recognition, and has greatly promoted the application and development of artificial intelligence in early screening of thyroid diseases.

This article analyzes the application of artificial intelligence technology in the early diagnosis of thyroid diseases by comparing a large number of studies, summarizes the current application status of artificial intelligence technology in the early diagnosis of thyroid diseases, and studies the intelligent recognition technology of thyroid ultrasound images and pathological sections respectively. The aim is to explore a technology that can achieve objective screening of thyroid lesions in the early stages. Based on literature research, we explored the application of machine learning and deep learning in thyroid auxiliary diagnosis. We find that for small sample data, SVM and semi-supervised neural networks in deep learning perform better. U-Net has become the benchmark for most image segmentation tasks, with an accuracy of more than 93%, thanks to its encoder-decoder architecture. Artificial intelligence technology enables auxiliary examination for early screening of thyroid diseases, improving the early cure rate and survival rate of patients, and enhancing the accuracy and of doctors’ diagnosis. This study also prospects the future trends of artificial intelligence in the field of thyroid disease research, and constructs a set of artificial intelligence system for the whole process. The development of artificial intelligence in thyroid disease research is no longer limited to thyroid pathology or thyroid ultrasound, but has created an artificial intelligence that integrates thyroid images and clinical data of thyroid cancer, which is used to determine the diagnosis of thyroid cancer and can also accurately predict the postoperative survival period of thyroid cancer patients.




2 Methods

The PubMed database was accessed by computer for retrieval, using “thyroid ultrasound”, “thyroid cytopathology” and “machine learning” as search terms. Figure 1 shows the number of publications in the field of thyroid in the past decade. A total of 75 articles were selected for analysis. According to the inclusion and exclusion criteria, 50 articles were finally determined for research and analysis. The inclusion criteria for this review were: (1) Machine learning and deep learning algorithms, such as U-net, K nearest neighbor classification, random forest, support vector machine and artificial neural network. (2) The accuracy of early diagnosis of thyroid disease area under the receiver operating characteristic curve. (3) The time selection is the literature published in 2014 and later in the past 10 years. (4) Except for the GLAS and RITE public datasets, most of them are self-built datasets, which reviewed the data of thyroid patients for years, including thyroid ultrasound images and thyroid pathological slices. The following summary measures were used: machine learning method, sample size, performance measure, and important features. In the early diagnosis of thyroid diseases, the successful application of artificial intelligence technology mainly focuses on two core areas: traditional machine learning methods and deep learning methods.
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Figure 1 | Proportion of traditional machine learning and deep learning publications.

(1) Traditional Machine Learning: The goal is to train algorithms by analyzing data so that computers can automatically identify and make appropriate decisions (22). Machine learning can be divided into two main types of learning methods: supervised learning and unsupervised learning, which are widely used in many fields such as medical diagnosis, image recognition technology, and sentiment analysis (23). The significant progress made by machine learning in the field of medical image analysis has provided strong technical support for the early screening of thyroid diseases. For example, a study used a dataset from the UCI machine learning library to train a multi-class SVM classifier to classify thyroid diseases (24). The Thy-Wise model uses a random forest algorithm to classify thyroid nodules, showing high accuracy and specificity while reducing the rate of unnecessary biopsies (25).

(2) Deep Learning: Compared with traditional machine learning methods, deep learning has powerful learning capabilities and can better utilize data sets for feature extraction (26). The key technologies of deep learning include convolutional neural network (CNN), recurrent neural network (RNN) and U-Net (27). Deep learning technology has shown great potential and advantages in the classification, detection and segmentation of medical images. For example, the application of U-Net model in biomedical image segmentation (28) and the success of deep residual network in image recognition (29) have demonstrated the effectiveness of deep learning technology in processing complex medical image data.




3 Results



3.1 Thyroid ultrasound image recognition technology

Thyroid ultrasound diagnosis uses the principle of ultrasonic wave propagation and reflection in human tissues. It transmits ultrasonic waves to thyroid tissues through high-frequency probes, collects the reflected echo signals, and forms ultrasonic images of the thyroid gland. These images can clearly show the size, shape, structure and blood flow of the thyroid gland, providing doctors with rich diagnostic information. Due to its significant advantages of fast imaging, non-invasiveness and no radiation, it has become a widely used and trusted examination method (30–32). Although ultrasound technology has many significant advantages, it also faces some inherent limitations. First, it is unavoidable interference noise and possible artifacts. Second, the shape of thyroid nodules is complex and changeable, blurred, and discontinuous. The boundary characteristics. Third, it is limited by the subjective experience of doctors. These problems have brought certain challenges to accurate diagnosis (33, 34). Therefore, exploring the application of artificial intelligence technology to assist in the diagnosis of thyroid ultrasound has become a research hotspot. Table 1 shows some specific achievements artificial intelligence in the recognition of thyroid ultrasound images.

Table 1 | The main results of machine learning algorithms in the study of thyroid nodule ultrasound images.
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3.1.1 Traditional machine learning

In previous studies, ultrasound thyroid nodule segmentation methods can be roughly divided into four categories: shape and contour-based (46), region-based (47), machine learning-based (48), and hybrid methods (49).

At the beginning of the introduction of artificial intelligence technology in the medical field, researchers mainly relied on traditional machine learning algorithms. Therefore, the traditional machine algorithm was applied to the diagnosis of thyroid ultrasound images, aiming at improving the diagnostic speed and accuracy of benign and malignant nodules. In 2017, Raghavendra (35) designed a computer-aided diagnosis system (CAD) for the diagnosis of nodules. The system identifies the lesion area by integrating spatial gray-level dependence features (SGLDF) and fractal texture. This feature fusion-based approach achieved an accuracy of 97.5% and an AUC value of 94% for the support SVM using only two features, which is about 3.5% higher than the performance of the SVM proposed by Acharya et al. (50)  How to use the right features to improve classification performance has always been a challenge.

Shin I (39) developed an artificial neural network (ANN) based on SVM for the classification model of thyroid tumors in 2020, using 348 preoperative ultrasound images of thyroid nodules as the dataset, and selected 10 important features as the feature input of the model. Then, the effect of the model was compared with the results of manual diagnosis by experienced radiologists. The results showed that the sensitivity, specificity and accuracy of the model were 32.3%, 90.1% and 74.%, respectively, while the sensitivity, specificity and accuracy of the diagnosis by general physicians were 24.0%, 84.0% and 648%. It was proved that the classifier model of machine learning may be helpful in the diagnosis of thyroid cancer.

In 2021, Vadhirajt (40) developed a computer-aided diagnosis system integrating multiple instance learning (MIL) to classify benign and malignant thyroid ultrasound images. Seven ultrasound image features were extracted using the gray-level co-occurrence matrix (GLCM) with an accuracy of 96%. Ma (45) proposed an improved KNN algorithm for automatic classification of thyroid nodules. The paper not only considered the number of class labels of various data categories in KNNs, but also considered the corresponding weights, using the Minkowski distance measurement. Using 508 thyroid nodule hyper images, the improved KNN accuracy was 86.7%. Through summarizing and analyzing the previous studies, we find that different feature selection will have a certain impact on the accuracy of the model.

At the same time, in order to evaluate which algorithm in linear and nonlinear machine learning is better for the benign and malignant classification diagnosis of thyroid nodules, Fu (38) used three linear and five nonlinear machine learning algorithms to evaluate 1039 patients with a total of 1179 nodules. Experimental results have shown that the AUC of machine learning models is higher than that of experienced radiologists. Among them, the AUC of RF and SVM methods in nonlinear machine learning is the highest, both at 95.4%, while the AUC of experienced doctors is only about 83%.

At present, a large number of computer-aided diagnosis systems based on traditional machine learning rely mainly on a variety of texture features and machine learning algorithms differentiating the benign and malignant nature of thyroid nodules, and their accuracy is about 3% higher than that of general doctors. In order to further improve the classification accuracy, the researchers adopted a variety of optimization methods, such as GLCM, SGLDF, to fine-tune the input features and parameters of the machine learning models, making these models show applicability in thyroid diagnosis.




3.1.2 Deep learning

With the continuous advancement of artificial intelligence technology, the application of deep learning in the medical field has become the focus of research. In 2017, Ma (36) first attempted to use a CNN-based model for thyroid nodule segmentation and compared this method with six methods including GA-VBAC, JET, DRLS, SNDRLS, SVM-based method and RBFNN-based method. The study used a total of 22123 thyroid ultrasound images from three hospitals as the dataset. The results show that our proposed CNN-based model has a good performance in the segmentation of thyroid nodules with an accuracy of 91.5%. Peng (41) developed a deep learning model based on ThyNet to distinguish benign and malignant thyroid nodules, and the results showed that the AUC was 92.2%, and the proportion of missed malignant thyroid nodules decreased from 18.9% to 17.0%, reducing fine needle aspiration examinations. In 2024, Chen (44) proposed a convolutional neural network (CNN) model using 11201 images for training, validation and testing. Experiments have shown that the AUC of the model in the classification of benign and malignant thyroid nodules is higher than 91%, among which Inception-ResNet has the highest AUC of 94%, and the performance of the model is better than that of senior physicians.

In artificial intelligence applications, feature selection is key to improving model accuracy. In 2019, Nguyen (37) developed a method for extracting features from thyroid images, using a cascade classifier architecture to improve performance of computer-aided diagnosis systems for thyroid nodule classification. This method combined handcrafted standards and deep learning, achieving a classification accuracy of 90.8%. Gong (51) designed a new multi-task learning framework to simultaneously learn nodule size, glandular location, and nodule position, and proposed an adaptive glandular region feature enhancement module to fully utilize thyroid prior knowledge and use the prior to guide the feature enhancement network to accurately segment thyroid nodules. Different radiomic features were extracted from ultrasound images, including intensity, shape, and texture feature sets.

Although the popularity of deep learning has significantly improved the accuracy of image segmentation, problems with datasets, especially the lack of precisely annotated datasets, can still affect prediction accuracy of models. However, such data is often difficult to obtain in the field of medical image analysis. To solve this problem, Wang (52) proposed an attention-based semi-supervised neural network for thyroid nodule segmentation. The network can complete the thyroid ultrasound image segmentation task using a small amount of fully annotated data and a large amount of weakly annotated data. The article proposes two attention modules, which realize the inhibition or activation of bottom-up and top-down feature channels and image areas through a trainable feed-forward structure, thereby improving network performance. The Jaccard similarity coefficient of the semi-supervised neural network based on attention is 74.91%, which is 4.9% higher than that of the semi-supervised model based on VGG. The accuracy of benign and malignant thyroid tumor classification was improved from 91.67% to 95.00%, which proved that model had good generalization ability.

Li (43) proposed a weakly supervised deep active contour model for thyroid nodule segmentation, aiming to achieve accurate target segmentation with a small amount of annotation information. The experiment designed three modules: a weakly supervised learning framework, a deep active contour model, and auxiliary edge attention, which can reduce the annotation cost while maintaining a certain segmentation accuracy. The dic value of the model is 87%, which can reduce the workload of dataset annotation.

With the widespread application of deep learning, the U-net algorithm was proposed. U-Net is a convolutional neural network (CNN) structure widely used in deep learning, mainly for image segmentation tasks (53, 54). Ding (55) mainly explored the automatic segmentation technology of thyroid ultrasound images based on U-net. The model embedded an improved residual unit in the jump connection between the encoder and decoder paths and introduced an attention gate mechanism to enhance the weights of feature maps obtained from shallow and deep layers. Experimental results show that the proposed method outperforms other U-shaped models.

In 2020, Zhang (56) proposed two network structures, Cascade U-Net and CH-UNet, for the segmentation and classification of thyroid nodules. Cascade U-Net gradually refines the segmentation results and improves the segmentation accuracy by cascading multiple U-Net modules. CH-UNet combines dilated convolution and hybrid attention mechanism to enhance feature extraction and classification capabilities. Compared with the U-Net proposed by RONNEBERGER (55), the dice of Cascade U-Net in the task of thyroidodule segmentation increased by 2.9%. The dice of the U-Net method by RONNEBERGER (57) was only 80.2%, which fully validated effectiveness of the Cascade U-Net in the segmentation and even classification tasks of thyroid nodules.

In order to accurately detect malignant nodules that are not obvious and have confused boundaries in ultrasound images, and to avoid confusion between tissue and malignant thyroid nod during diagnosis, Yang (58) proposed a deep learning-based thyroid malignant nodule segmentation method of DMU-Net. The method uses the image context information in the U-shaped subnetwork to accurately locate the malignant nodule region, and then captures the fine details of theodule edges in the inverse U-shaped subnetwork. The combination of U-shaped subnetwork and inverse U-shaped subnetwork and the strategy of mutual learning make the dic of DMU-Net on the-built dataset 82.77%, which is 25.86% higher than that of the traditional U-Net network. The research proves that DMU-Net can accurately locate the malignant nodule area by extracting image context information in the U-shaped subnetwork, extract more lesion area features, and help radiologists diagnose thyroid diseases.

In 2022, Zhou (42) proposed an MSA-UNet model with a multi-scale self-attention mechanism for thyroid nodule segmentation. Depth wise separable convolution is used in the Atrous Spatial Pyramid Pooling (ASPP) module, and then in the decoder part, adjacent information of different scales is fused through the channel attention mechanism, allowing the model to learn more important features. The experimental results show that the accuracy of this method is 94.6%, which provides a new research idea for the early detection of thyroid nod. Comparison of accuracy of different U-Net algorithms, as shown in Table 2.

Table 2 | Comparison of U-Net methods.
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Currently, the research focus of thyroid ultrasound images is mainly on the segmentation and classification tasks of thyroid nodules, but the potential intrinsic connection and mutual influence between nodule characteristics and classification results are often ignored. Thyroid nodule segmentation and classification in ultrasound images are two fundamental but challenging tasks in computer-aided diagnosis of thyroid diseases. Since these two tasks are intrinsically related and share some common features, it is a promising direction to jointly solve these two problems using multi-task learning. However, previous studies have only demonstrated inconsistent predictions between these related tasks. In order to further exploit the effectiveness of the proposed task consistency learning, Kang (61) designed a framework based on multi-task learning (MS-MTL) to improve the performance of thyroid segmentation and classification by improving the consistency between tasks. The first stage of the network performs binary segmentation and classification simultaneously, and the second stage of the network learns multi-class segmentation. The article verifies the feasibility of improving thyroid nodule segmentation and classification performance through multi-task learning and inter-task consistency loss.

The application of deep learning in thyroid ultrasound images has broad significance and value. Various models have been applied to the processing of thyroid ultrasound images, including convolutional neural networks (CNN), U-net etc. By training a large amount of data, these models can learn the key features in ultrasound images for the classification and identification of nodules, thereby reducing misdiagnosis and missed diagnosis caused by human factors and helping to improve the early diagnosis rate. The application of artificial intelligence technology to assist in the early screening of thyroid diseases is not only limited to the diagnosis of thyroid ultrasound pictures, but also shows significant results in the recognition of thyroid pathology icons.





3.2 Thyroid pathology section recognition technology

Thyroid pathology examination is a common diagnostic procedure and an important part of the evaluation of thyroid nodules, but there is significant variability in the assessment thyroid cytology specimens by different pathologists and institutions. The sensitivity reported in the literature ranges from 68% to 98%, and the specificity ranges from 56% to 100%. In this case, the use of machine learning can improve accuracy and help standardize the diagnosis of thyroid pathological specimens (62). The process of processing pathological images using convolutional neural networks is shown in Figure 2.

[image: Diagram of a Convolutional Neural Network (CNN) process. It begins with an input image, followed by layers of convolution and pooling that create feature maps and pooled feature maps. The final step is fully connected layers.]
Figure 2 | Convolutional neural network processing model for thyroid pathological images.

One of the earliest studies on thyroid pathology was conducted by Karakitsos (63), who investigated the ability of a learning vector quantization (LVQ) neural network to distinguish benign from malignant thyroid lesions. The model was trained by measuring 25 features such as size, shape, and texture of approximately 100 nuclei in each case. The results of the study show that the LVQ neural network can distinguish benign from malignant lesions very well, with an accuracy of 90.6%.

In 2011 study also investigated the application of learning vector quantization (LVQ) neural networks in differentiating benign from malignant thyroid lesions using 335 fluid-based cytology, fine needle aspiration (FNA), and Papanicolaou stain specimens. Features extracted by a custom image analysis system were first used to classify each nucleus using an LVQ neural network, and then a second LVQ neural network was used to classify individual lesions. The system was able to distinguish between benign and malignant nuclei and lesions at both the cellular and patient levels (64). Lee (65) developed a machine learning algorithm (MLA) that can classify human thyroid cell clusters by utilizing Papanicolaou staining and intrinsic refractive index (RI) as relevant imaging contrast agents and evaluated the impact of this combination on diagnostic performance. The accuracy of the MLA classifier for 1535 thyroid cell clusters from 124 patients using color images, RI images, and both was 98.0%, 98.0%, and 100%, respectively. The importance of this study lies in the fact that it compares a variety of different diagnostic techniques to improve the accuracy and efficiency of thyroid cancer diagnosis, with MLA classifier achieving the highest accuracy.

Artificial intelligence technology not only achieves precise classification and recognition functions in the processing of thyroid pathological images, but also shows strong prediction capabilities. Improving the of malignant tumor prediction can reduce the incidence of unnecessary surgery. Elliott (66) created a machine learning algorithm (MLA) based on two CNNs to identify follicular cells and predict the malign of the final pathology. The AUC of the model reached 93.2%, which is equivalent to the AUC of 93.1% diagnosed by cell pathologists, demonstrating the effectiveness of the algorithm. Wang (67) developed a prediction system for benign and malignant medullary thyroid cancer and goiter based on SVM and RF algorithms. For the classification of PTC and nodular goiter (NG), the SVM and RF algorithms performed equally well, with 94.2% and 94.4% consistency between the prediction and pathological diagnosis. The system can shorten the diagnosis time of doctors, making the diagnosis time of each sample only 10 minutes, which is very promising for the diagnosis papillary thyroid carcinoma during surgery. This method can also correctly predict the malignancy of a medullary thyroid carcinoma and a follicular thyroid adenoma.

Due to the combined effect of genetic variants, environmental exposure, and immune genetic risk (68, 69), new types of thyroid tumors, as” non-invasive follicular thyroid neoplasm”(NIFTP), have emerged, which has complicated the cytology of thyroid cells, and a lot data have been classified into the category of uncertainty (70).

Hirokawa (71) proposed an artificial intelligence image classification system of EfficientNetV2-L, which proved the efficiency and of artificial intelligence image classification system in identifying thyroid lesions. The research team used 148,395 thyroid pathology smear images from 393 thyroid nodules as the dataset. The researchers reported that the AUC of EfficientNetV2-L exceeded 95%. However, the AUC for poorly differentiated thyroid cancer was only 49%, showing significantly worse performance.

In another study, Yao (72) proposed a digital image analysis method based on feature engineering and supervised machine learning. They focused on cases of poorly differentiated thyroid cancer that were later diagnosed as benign or follicular adenoma in his tissue sections. The method was applied to 40 thyroid pathological slices with high and low power microscopy, and the AUC for the low power image model was 5%, and the AUC for the high power image model was 74%. This method performs better than cellular pathologists in classifying atypical follicular lesions.

The application of artificial intelligence in the field of thyroid pathology image analysis not only significantly enhances the accuracy and timeliness of diagnosis (73), but also relies on its deep learning and image processing technology to realize the analysis of pathological images such as follicular cell morphology and arrangement. Accurate identification of subtle features such as pattern and abnormal proliferation. These key features are of irreplaceable importance for accurately distinguishing benign and malignant thyroid nodules. Compared with traditional manual diagnostic methods, the integration of artificial intelligence has greatly promoted the early detection, accurate diagnosis and timely treatment of thyroid diseases, bringing patients a higher survival rate and better quality of life.





4 Discussion

In recent years, the research, development and application of artificial intelligence in the field of thyroid diagnosis have achieved significant leaps, providing new horizons and broad possibilities for optimizing the efficiency and accuracy of future diagnostic processes. Especially in the early diagnosis of thyroid cancer, artificial intelligence technology can automatically identify and evaluate complex medical images through machine learning algorithms, thereby improving the accuracy and efficiency of diagnosis.

In the application of thyroid ultrasound images, AI technology has been shown to effectively assist radiologists in the diagnosis of thyroid nodules. For example, one study showed that the performance of an AI system in the diagnosis of thyroid nodules was comparable to that of fine needle aspiration cytology (74). In addition, AI technology also showed high accuracy and efficiency in distinguishing benign from malignant thyroid nodules (75). Based on the previous research, we find that the research methods of thyroid ultrasound images mainly focus on traditional machine learning and deep learning. In traditional machine learning, SVM and RF have high accuracy in thyroid nodule classification due to their superior binary classification performance.

The core concept of SVM lies in the strategy of structural risk minimization, aiming to determine the optimal complexity of the model a limited dataset, thereby enhancing the model’s general prediction capability. The model parameters of SVM only depend on the support vectors, which are the data points closest to the decision boundary, and have no direct connection with other points. This means that even with a small number of samples, as long as these support vectors can fully reflect the overall distribution characteristics of the data, SVM can construct an efficient and accurate classification model. Therefore, SVM is particularly suitable for dealing with thyroid datasets with a small sample size.

Compared with machine learning, deep learning has strong learning ability and efficient feature expression ability, which can automatically learn and extract high-level features in images and can more comprehensively capture the details and context information of images, thus improving the accuracy of classification. The deep convolutional neural network (DCNN) model proposed by Krizhevsky (76) achieved breakthrough results in the ImageNet image classification. Therefore, the current research focuses on the classification of thyroid ultrasound and pathological images using deep learning.

Compared with traditional segmentation techniques, the segmentation method based on deep learning does not rely on hand-designed features, and the convolutional neural network (CNN) has shown excellent adaptability in the field of medical image segmentation by virtue of its image hierarchical feature representation capability. ROMÁN (77) reviewed a large number of deep learning-based medical image segmentation methods, among which U-Net is the most typical. The core idea of U-Net is to adopt a symmetric encoder-decoder architecture, which enables deep feature extraction and precise pixel-level segmentation of the input. Liu (78) proposed an automated segmentation algorithm for brain gliomas based on a multi-U-Net network(MU-Net), and conducted experiments on the BRATS2020 dataset. The results show that the Dice coefficients of the MU-Net algorithm for the complete tumor, tumor core, and enhanced tumor are 86.7%, 77.76%, and 76.21%, respectively, which are 2.6%, 2.55%, and 2.41% higher than those of the benchmark model, indicating better segmentation results. The application of these technologies can not only help radiologists diagnose thyroid diseases more accurately and improve diagnostic efficiency, but also reduce their workload.

AI technology also shows great potential in the application of thyroid pathology images. For example, AI technology has been used in cytological analysis of thyroid fine needle aspiration biopsy to distinguish papillary carcinoma from other types of thyroid cancer (79). A hybrid framework combining artificial intelligence was proposed in the study (80), which not only weighted the Thyroid Imaging Reporting and Data System (TIRADS) features, but also used the malignancy score predicted by the convolutional neural network (CNN) to classify and diagnose the malignancy of the nodules.

In summary, artificial intelligence technology has strong clinical significance and application prospects in the application of thyroid ultrasound images and thyroid pathological images. Not only has it improved the accuracy and efficiency of diagnosis, assisted doctors in decision-making, reduced the rate of misdiagnosis, but it can also the allocation of medical resources, reduce unnecessary surgeries and other invasive treatments through artificial intelligence-assisted diagnosis, and reduce the economic burden and pain of patients.

With the continuous advancement of technology and the deepening of clinical applications, artificial intelligence technology has played an increasingly important role in the early diagnosis of thyroid diseases, but the prediction of the postoperative life cycle of thyroid cancer patients is equally important for doctors and patients. This study (81) used artificial neural networks (ANN) to predict the 1-year, 3-year, and 5-year survival of thyroid cancer patients, with accuracy rates of 92.9%, 85.1%, and 86.8%, respectively. Based on our research results, artificial neural networks can effectively represent a survival prediction method for thyroid cancer patients. Liu (9) developed six machine learning models (SVM, XGBoost, LR, DT, RF and KNN) based on the SEER database to predict lung metastasis of thyroid cancer. Although the accuracy of the model is above 90%, prospective studies are still needed to further verify the practicality of the model. And because the genes of thyroid cancer patients may undergo mutation, gene mutation increases the complexity of the data, and the model may have difficulty accurately distinguishing different of diseases. On the other hand, gene mutation may have a complex interaction with other biomarkers or clinical information, which may make a single classification algorithm fail to capture the information accurately (82), and all these will lead to a bias in the accuracy of the algorithm model.

In the future, we will focus on optimizing the cutting-edge exploration of machine learning algorithm models, integrating patient pathological information, radiology and clinical information, create a more powerful algorithm, aiming to build a set of artificial intelligence system for the whole process. The system will have the ability to deeply analyze massive clinical records and molecular biology data to accurately predict the postoperative survival of thyroid cancer patients, thereby assisting doctors in tailoring more precise treatment strategies for each patient, thereby significantly improving late-stage Prognosis and quality of life in patients with thyroid cancer.




5 Conclusions

This paper reviews the latest application progress of artificial intelligence technology in the field of medical diagnosis, focusing on its potential in the early screening and diagnosis of thyroid. The research hotspot has developed from the initial traditional machine learning to deep learning algorithms, and U-Net has also become the benchmark for most medical image segmentation with the encoder-decoder architecture. Through the previous research, it aims to assist clinicians in achieving intelligent and efficient early identification of thyroid cancer, thereby improving the accuracy of early diagnosis for patients enhancing the efficiency of doctors. Moreover, the article also prospects the future trend of artificial intelligence in the field of thyroid disease research, not only limited to thyroid pathology or thyroid ultrasound but also creating artificial intelligence that integrates thyroid ultrasound images and clinical data of thyroid cancer, which is used to determine the diagnosis of thyroid cancer, and can also accurately predict postoperative survival period of thyroid cancer patients. It aims to provide new research directions for scientific researchers, and bring more personalized treatment plans for doctors and patients through the continuous progress of artificial intelligence technology, treatment strategies, and improve patients’ satisfaction and quality of life.
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Introduction

Brain tumors pose significant harm to the functionality of the human nervous system. There are lots of models which can classify brain tumor type. However, the available methods did not pay special attention to long-range information, which limits model accuracy improvement.





Methods

To solve this problem, in this paper, an enhanced short-range and long-range dependent system for brain tumor classification, named as EnSLDe, is proposed. The EnSLDe model consists of three main modules: the Feature Extraction Module (FExM), the Feature Enhancement Module (FEnM), and the Classification Module. Firstly, the FExM is used to extract features and the multi-scale parallel subnetwork is constructed to fuse shallow and deep features. Then, the extracted features are enhanced by the FEnM. The FEnM can capture the important dependencies across a larger sequence range and retain critical information at a local scale. Finally, the fused and enhanced features are input to the classification module for brain tumor classification. The combination of these modules enables the efficient extraction of both local and global contextual information.





Results

In order to validate the model, two public data sets including glioma, meningioma, and pituitary tumor were validated, and good experimental results were obtained, demonstrating the potential of the model EnSLDe in brain tumor classification.





Keywords: brain tumor classification, feature extraction, feature enhancement, long-range dependencies, attention




1 Introduction

The brain is the control center of the body, in addition to maintaining the normal activities of our lives, it also controls our daily senses (hearing, sight, smell, etc.), cognition, memory, thinking, emotions, and many other aspects of our lives (1). Undoubtedly, the brain holds paramount importance in our lives. However, brain tumors stand as one of the most prevalent afflictions of the nervous system, capable of significantly impairing its functionality. Timely detection of brain tumors is essential for enhancing and prolonging patient survival rates (2, 3). Tumors growing within the skull are generally known as brain tumors, which encompass primary brain tumors originating from brain tissue and secondary tumors that metastasize to the skull from elsewhere in the body (4). The common types of brain tumors include gliomas, meningiomas, and pituitary tumors (5).

Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) are two widely used imaging techniques in medicine that play an important role in labelling abnormalities in the shape, size or location of the brain (6). While CT is limited to cross-sectional imaging, MRI offers the flexibility to image in various orientations, including transverse, sagittal, coronal, and any desired section. Additionally, MRI excels in providing clearer differentiation of soft tissues in three dimensions compared to conventional imaging methods. These advantages have made MRI the most favored method among physicians and have led to increasing interest among researchers. However, the analysis of MRI images by medical professionals to discern the type of tumor is a complex and time-intensive process. The accuracy of their diagnosis can be influenced by the subjective expertise and skills of the physician (7, 8). It is well known that early detection and timely treatment are crucial for the recovery of brain tumor patients (9). If the type of brain tumor can be accurately and early identified, it will greatly increase the patient’s valuable treatment time and thus significantly improve the likelihood of recovery.

Traditional Machine Learning (ML) has been widely used for classification problems in Computer-Aided Diagnostic (CAD) systems (10, 11). For example, Singh et al. (12) proposed a new classification method using generalized discriminant analysis and the 1-norm linear programming extreme learning machine. Shahid et al. (13) used a feature selection algorithm to find the effective feature subset, which was then used for classification by an Extreme Learning Machine (ELM) based on hybrid particle swarm optimization. Xie et al. (14) used the combination of Support Vector Machine (SVM) and ELM for feature selection, and the optimal features were used by the classifier to distinguish breast tumor types. Heidari et al. (15) applied stochastic projection algorithm to optimize the constructed SVM model embedded with multiple feature dimensionality reduction methods to improve the classification performance of the model.

Deep learning stands as a cutting-edge innovation in classification and prediction, showcasing outstanding performance in domains necessitating multi-level data processing such as classification, detection, and speech recognition (16). Deep learning has the capability to learn features from extensive image data and extract high-level features from images through layer-by-layer convolution and pooling operations, achieving automatic classification of brain tumors. Compared to traditional image processing methods, deep learning boasts superior feature extraction capability, higher classification accuracy, as well as automation and intelligence. In recent years, many studies have explored the application of deep learning in diagnosing various diseases. For example, Sarki et al. (17) classified mild and multiple diabetic eye diseases by fine-tuning and optimizing the VGG16 model. Jeong et al. (18) used Inception V3 deep learning model to classify the presence or absence of cardiac enlargement, and the classification accuracy reached 96.0%. Chowdhury et al. (19) adopted the improved Xception model to diagnose hair and scalp diseases and achieved a high accuracy rate. Sharifrazi et al. (20) used Convolutional Neural Network (CNN) combined with k-means clustering method to automatically diagnose myocarditis, with an accuracy of 97.41%. The lesion area in brain tumor images constitutes only a small portion of the entire image. Furthermore, when distinguishing between types of brain tumors, both the tumor region and its surrounding area exert a significant impact on the classification results (21). In addition, multi-scale feature fusion has been widely applied to object detection, image segmentation, image classification, and other fields. Multi-scale networks are capable of simultaneously extracting features at different scales in images, thereby more comprehensively capturing the details and overall information of target objects. For example, in object detection tasks, small-scale features can be used to detect small objects, while large-scale features are helpful for detecting large objects. Features at different scales provide different contextual information, and multi-scale networks can effectively integrate this information, offering a more comprehensive and rich visual context. Multi-scale networks can handle input data at different scales, and this characteristic significantly enhances the algorithm’s robustness and generalization performance in complex scenarios (22). A common method for multi-scale feature fusion is the pyramid structure. The pyramid structure extracts features at different scales and then fuses these features to obtain a more comprehensive feature representation. Specifically, improved methods based on the Feature Pyramid Network (FPN) architecture achieve deep integration of cross-scale features by constructing multi-level pyramid-like feature representations (23, 24).

However, most previous studies did not pay special attention to the surrounding areas of tumors, i.e., lacking the ability to capture long-range information, which would affect the performance of classification. To overcome the shortcoming, this study proposes a new multi-class brain tumor classification model with enhanced short-range and long-range dependence, named as EnSLDe. The model not only has the ability to capture short-range and long-range dependencies, but also retains local key information. It consists of three main modules: the Feature Extraction Module (FExM), the Feature Enhancement Module (FEnM), and the classification module.Within the FExM, convolutional layers are combined with residual connections to extract features, while incorporating an Effective Multi-scale Attention (EMA) mechanism that simultaneously focuses on channel-wise and spatial information. The FEnM further strengthens feature representation, enabling capture of crucial long-range dependencies while retaining key information within the local range. The classification module adopts a two-layer fully connected structure combined with dropout regularization for brain tumor classification. This approach enhances the model’s generalization ability, reducing the risk of overfitting, and further improves the classification performance of the model. We utilized two datasets to evaluate the model performance: a three-category dataset comprising gliomas, meningiomas, and pituitary tumors, and a four-category dataset including additional healthy categories.

The main contributions of this study are as follows:

	A new model with enhanced short-range and long-range dependence is proposed to classify brain tumor images from MRI.

	FExM is used to extract features from brain tumor images. The EMA module of FExM integrates channel attention and spatial attention to provide a more comprehensive feature representation.

	The FEnM is used to capture important dependencies across larger sequence scales. And it can also cooperate with the global adjustment network to fuse the retained local information with different levels of deep features.

	EnSLDe employs multi-scale parallel subnetworks that integrate shallow and deep features. This architecture enables the model to capture comprehensive contextual information across varying scales, which is critical for distinguishing between diverse tumor types.

	Based on experimental results using two public datasets, the proposed method exhibits excellent performance.






2 Related works

Classification of brain tumors is critical for evaluating tumors and determining treatment options for patients. There are already many CAD systems used in medical industries to help doctors make diagnoses. There have been many methods to classify brain tumors, which can be roughly divided into traditional ML methods, deep learning methods, and hybrid methods.

In the past, traditional ML has been used to classify brain tumors. For example, Bansal and Jindal (25) utilized a combination of grayscale co-occurrence matrix technology and shape-based feature technology to extract mixed features from the tumor area. Subsequently, a hybrid classifier consisting of Random Forest Classifier (RFC), K Nearest Neighbors (KNN) classifier, and Decision Tree (DT) classifier was used to classify brain tumors. 26 performed image segmentation through a marker-based watershed algorithm, then combined features with a sequence-based cascade method, and finally used SVM for classification.

In traditional ML, relevant domain knowledge is needed for feature extraction, while features can be automatically extracted by deep learning. The development of deep learning methods has had a significant impact on the field of medical image analysis applications, especially in disease diagnosis (27). Recently, deep learning has achieved remarkable results in brain tumor classification. For example, Raza et al. (28) proposed a hybrid deep learning model based on the GoogLeNet architecture. The last five layers of GoogLeNet were removed and 15 new layers were added to achieve high accuracy. Díaz-Pernas et al. (29) proposed a multi-scale processing based on CNN architecture design for brain tumor classification. The elastic transformation data expansion method was used to increase the training dataset and prevent over-fitting. Finally, 97.3% classification accuracy was achieved. Ayadi et al. (30) proposed an innovative brain tumor classification model based on CNN architecture, automated processing and minimizing preprocessing requirements. To fully evaluate the accuracy of the model, it was tested on three different brain tumor datasets. Various performance indicators are analyzed in depth. Sreenivasa Reddy and Sathish (31) proposed a brain tumor classification and segmentation scheme based on deep structured architecture. Firstly, adaptive ResUNet3+ with multi-scale convolution was used to process the collected data. Then, the parameters of the deep learning method were optimized and adjusted through the arithmetic optimization algorithm accelerated by the improved mathematical optimizer. Finally, an attention-based ensemble convolutional network was introduced for brain tumor classification. The model demonstrated excellent performance in both segmentation and classification accuracy. P. Ghosal et al. (32) integrated the residual network architecture with the Squeeze and Excitation block to enhance feature extraction and refinement. Islam et al. (33) optimized the EfficientNet series for the purpose of brain tumor classification, with EfficientNetB3 demonstrating superior performance. Aurna et al. (34) utilized multiple MRI datasets and performed feature extraction by combining pre-trained models and newly designed CNN models. Among the extracted features, Principal Component Analysis (PCA) was used to select key features and input them into the classifier. Musallam et al. (35) proposed a three-step preprocessing to improve the quality of MRI images and a new Deep Convolutional Neural Network (DCNN) architecture with 10 convolutional layers. Kumar and Sasikala (36) fused the features extracted from the shallow and deep layers of the pre-trained Resnet18 network, and then adopted a hybrid classifier composed of SVM, KNN, and DT optimized by the Bayesian algorithm perform classification.

In addition, in order to further improve the accuracy and efficiency of brain tumor classification models, optimization algorithms could be used in deep learning. For example, Alshayeji et al. (37) attained a classification accuracy of 97.374% for automatic brain tumor classification by combining the layers of two CNN architectures and fine-tuning the hyperparameters through Bayesian optimization. Irmak (38) used CNN and grid search optimization algorithms to propose three different CNN models to complete three different classification tasks. Almost all hyperparameters in the model were tuned by grid search optimization algorithms. Rammurthy and Mahesh (39) used Whale Harris Hawks Optimization (WHHO), which was a combination of Whale Optimization Algorithm (WOA) and Harris Hawks Optimization (HHO) to optimize the deep convolutional network. Alyami et al. (40) used deep convolutional networks and the slap swarm algorithm to classify brain tumors from brain MRI. To enhance the accuracy of classification, an efficient feature selection technique—the slap swarm algorithm was introduced. This technique helps to identify key features that significantly influence the classification results while excluding those with minor contributions, thereby ensuring that the classification model achieves optimal accuracy.

It is noteworthy that Transformer models have also been employed in brain tumor classification tasks. Sudhakar Tummala et al. (41) investigated the capability of pretrained and fine-tuned Vision Transformer (ViT) models for brain tumor classification using MRI images. GAZI JANNATUL FERDOUS et al. (42) proposed a novel Linear Complexity Data-efficient Image Transformer (LCDEiT). The LCDEiT adopts a teacher-student strategy, where the teacher model is a customized gated pooling convolutional neural network (CNN) responsible for transferring knowledge to the transformer-based student model. The student model achieves linear computational complexity through an external attention mechanism. Asiri et al. (43) employed Swin Transformer for multi-class brain tumor classification. Tapas Kumar Dutta et al. (44) developed GT-Net for brain tumor classification tasks. The core component of this model is the Global Transformation Module (GTM), which contains multiple Generalized Self-Attention Blocks (GSB) designed to explore long-range global feature relationships between lesion regions.

These studies, whether based on traditional ML methods, deep learning approaches, or hybrid methodologies, have achieved notable success in brain tumor classification. Many deep learning models (e.g., CNNs) automatically extract features but typically focus on local or global information rather than both. For instance, architectures like Inception-v3, ResNet, and DenseNet demonstrate strong performance yet generally emphasize localized details or global context without comprehensive integration. Hybrid approaches combining traditional machine learning and deep learning techniques may still fail to fully exploit multi-scale feature fusion or advanced attention mechanisms. While some models employ attention mechanisms, they often prioritize either channel-wise or spatial attention. This paper proposes a novel model named EnSLDe (Enhanced Short- and Long-range Dependency Extractor), designed to strengthen both short-term and long-range dependencies while preserving essential local information. EnSLDe uniquely integrates short- and long-range dependencies through its FExM and FEnM. This dual processing proves critical for concurrently capturing localized tumor details and global contextual patterns in brain MRI images.




3 Proposed method

This section introduces our proposed brain tumor classification framework, which is shown in Figure 1. The training and testing phase of the proposed system works as follows:

	The brain MRI dataset is divided into two disjoint sets: a training set and a test set.

	Data augmentation techniques such as random rotation, random horizontal and vertical flipping are applied to the training dataset to mitigate overfitting issues.

	The proposed network is trained by selecting appropriate hyperparameters and specifying the cross-entropy loss function.

	Once training is completed, the trained model is saved.

	The model is validated on a randomly partitioned test dataset, and the performance of the model is evaluated.



[image: Flowchart illustrating a machine learning process for brain MRI datasets. Training data undergoes data augmentation through resizing and translation. A proposed model processes the data, resulting in trained models. Test data evaluates classification results, measuring accuracy, precision, recall, and F1-score.]
Figure 1 | The proposed framework for brain tumor classification system.



3.1 Proposed brain tumor classification model

The EnSLDe consists of three main modules, namely feature extraction module, feature enhancement module and classification module, which is shown in Figure 2. Since both local and long-range dependent features play a crucial role in effectively classifying brain tumors from MRI images, the EnSLDe employs FExM and FEnM to extract and enhance these features. The classification module comprises two fully connected layers integrated with Dropout regularization, which enhances the model’s generalization ability. Moreover, the stacked utilization of two fully connected layers can amalgamate and transform features, thereby capturing more information and optimizing the representation capabilities of features to enhance model performance.

[image: Flowchart depicting a neural network architecture. It starts with a dataset input, followed by several layers decreasing in size. An EVC block is involved, with feature maps being concatenated at various points. The architecture concludes with a classification level leading to a class result. Arrows indicate data flow and global centralized regulation. Layers and processes are labeled, with a legend explaining symbols.]
Figure 2 | The proposed model.



3.1.1 The feature extraction module

The feature extraction module consists of layer1, layer2, layer3-1, layer3-2, layer3-3, layer4-1, layer4-2, and layer4-3, and is used to extract multiple depth-level features from brain tumor images. The Feature Extraction Module (FExM) was designed to extract features from multiple intermediate layers to simultaneously capture short-range and long-range dependencies. This multi-scale parallel sub-network fuses shallow features (which retain fine-grained details) with deep features (encoding abstract, high-level contextual information). The selection of feature extraction layers was guided by empirical validation through ablation studies, which demonstrated that combining multiple layers achieved higher classification accuracy compared to those obtained using a single layer of features. Inspired by the C3 module in YOLOv5 and integrating the Effective Multi-scale Attention (EMA) proposed by (Ouyang et al. (45), we have developed a novel Conv and Depthwise_conv with EMA (CDE) module, as illustrated in Figure 3. The CDE module consists of a residual network and EMA. The structure of the residual network involves adding skip connections on top of the serial connection of two convolutional layers and a depthwise separable convolutional layer. This allows for the direct addition of input and output. Subsequently, the output features of the entire residual network are processed by EMA. Incorporating the residual network into the CDE module effectively alleviates the issues of gradient explosion or vanishing, making the model training process more stable and easier to optimize.

[image: Flowchart of a neural network layer sequence. Begins with a "Conv" layer, followed by a "Depthwise_conv" layer, another "Conv" layer, then merges with an input from the starting point. Concludes with an "EMA" layer, with arrows indicating data flow.]
Figure 3 | The structural diagram of the CDE module.

Additionally, depthwise separable convolution is used by CDE module, which significantly reduces computational costs while maintaining powerful feature extraction capabilities, thus achieving a good balance between efficiency and performance. The inclusion of EMA allows the CDE module to form multi-scale parallel subnetwork while extracting features, which fuses shallow and deep features. This further enhances feature extraction and strengthens short-range and long-range dependencies. Moreover, it reshapes part of the channel dimensions into batch dimensions, effectively avoiding potential information loss caused by dimensionality reduction through conventional convolution. This improvement not only reduces computational overhead but also allows the model to focus more on extracting key features while retaining information from each channel. Layer1 consists of two convolutional layers and is mainly used to extract shallow image features. Layer2 consists of the residual network in the CDE module. layer3-1, layer3-2, and layer3-3 are all composed of CDE modules. Layer4-1, layer4-2, and layer4-3 are all composed of convolutional layers with a convolution kernel size of 1×1, which are used for channel dimensionality reduction after feature fusion.

The EMA divides the channel dimension of input feature maps into multiple sub-features and redistributes spatial-semantic features within each feature group. Specifically, EMA avoids traditional channel dimensionality reduction operations by reshaping the channel dimension into the batch dimension. This design enables EMA to model inter-channel dependencies through standard convolution operations without losing channel information. The EMA employs three parallel branches to extract attention weights:

	1×1 Branch: Encodes channel attention along horizontal and vertical directions using two 1D global average pooling operations, thereby capturing long-range spatial dependencies while preserving precise positional information.

	3×3 Branch: Captures multi-scale feature representations through a 3×3 convolution kernel to expand the feature space.

	Cross-Space Interaction: Fuses output feature maps from the two parallel branches via matrix dot product operations to capture pixel-level pairwise relationships and highlight global contextual information.



For an input featureX∈ℝC××H×W, it is first partitioned into G sub-features, each with a shape of (C/G) × H×W. In the 1×1 branch, two 1D feature vectors ZH and ZW are obtained by encoding channel attention through 1D global average pooling along horizontal and vertical directions, respectively. ZH and ZW can be calculated by Equation 1:

[image: Mathematical equation showing \( Z_H = \sum_{j=1}^{H} x_{c,j} \), labeled as equation (1).] 

[image: Mathematical equation showing Z subscript W equals the summation from j equals one to H of chi subscript alpha j.]	

where, xc,i and xc,j denote the eigenvalues of the c channel in the horizontal and vertical directions, respectively. The vectors ZH and ZW are processed through 1×1 convolutions and the Sigmoid function to generate the channel attention maps AH and AW, can be calculated by Equation 2:

[image: This image is a mathematical formula, showing \( A_H = \sigma(\text{conv}(Z_W)) \), labeled as equation (2).] 

[image: Mathematical expression showing the activation \( A_w = \sigma(\text{conv}(Z_w)) \), where \( \sigma \) denotes the activation function applied to the convolution operation on \( Z_w \).]	

Where, σ denotes the Sigmoid function. In the 3×3 branch, multi-scale feature representation F3×3 is captured by the 3×3 convolution operation as shown in Equation 3:

[image: Please upload an image or provide a URL, and I will help generate the alternate text for it.] 

The final output feature map Y is obtained by fusing AH and AW matrix dot product is performed by F3×3, and the calculation formula is shown in Equation 4:

[image: A mathematical equation is shown, representing the output \( Y \) calculated as the sigmoid function \( \sigma \) applied to the product of \( A_{HF} \), \( A_{WF} \), and \( F_{XYZ} \).] 




3.1.2 The feature enhancement module

The Explicit Visual Center (EVC) method (46) is used to enhance the features extracted by the model. The EVC can effectively extract global long-range dependencies from images while preserving crucial local information. The EVC combines a Multi-Layer Perceptron (MLP) based on top-level features with a Learnable Visual Center (LVC) mechanism, both of which operate in parallel to complement each other. The MLP is responsible for capturing the global long-range dependencies of the image, effectively addressing complex long-range dependency issues, and enhancing the model’s perception of global information. Meanwhile, the LVC operates along the path of the MLP, focusing on preserving the crucial local information of the image to ensure that the model does not lose important local details while attending to the global context. For input Fin, the equation is calculated as follows (Equation 5):

[image: A mathematical expression showing \( F = \text{Cat}(\text{MLP}(F_\text{in}), \text{LVCF}(F_\text{in})) \), labeled as equation (5).] 

in the LVC model, the input (X) is mapped to a set of (C)-dimensional features, ({Xin = x1, x2, …, xn}), where (N=H×W) represents the total number of input features. Subsequently, LVC computes an intrinsic codebook (B = {b1, b2, …, bk}), which includes (K) codewords (or visual centers) along with a set of smoothing factors (S = {s1, s2, …, sk}). The feature encoding is achieved through a series of convolutional layers. The encoded features are then matched against each codeword in the codebook. The discrepancies between the features and the codewords are computed, and learnable weights are derived from these differences. The ultimate output is a (C)-dimensional vector (e) (Equation 6).

[image: Equation showing weighted averaging: \( a_{k} = \frac{\sum_{i=1}^{n} \frac{e^{-S_{i} |x_{i} - a_{k}|^{p}}}{\sum_{j=1}^{N} e^{-S_{j} |x_{j} - a_{k}|^{p}}} (x_{i} - b_{k})} \). Labelled as equation (6).] 

The output of LVC is obtained by summing the features vector (Xin) and the local features (Z) for each channel, as shown in Equation 7.

[image: Equation representing \( X_{\text{out}} = X_{\text{in}} \oplus Z \), where \(\oplus\) symbolizes the XOR operation, followed by equation number 7 in parentheses.] 

here, the local feature (Z) is derived by applying a Fully Connected (FC) layer that maps the feature (e) to an influence factor of dimensions C×1×1. Subsequently, a channel-wise multiplication operation is conducted with (Xin). The output following the Feature Enhancement Module is then obtained as follows (Equation 8):

[image: It looks like you're referencing an image, but I can't generate alt text without the actual image itself. Could you please upload the image or provide a URL for it?] 

where, F represents the fusion feature, XEVC denotes the feature output from the EVC, and Xd signifies the depth feature derived from various levels.





3.2 Loss function

The loss function we used during model training is the cross-entropy loss function (47). One can assume there are n classes, where the true label is represented by a K-dimensional vector y (with only one element being 1 and others being 0), and the model output probability is represented by a K-dimensional vector y’ (with each element ranging from 0 to 1 and summing up to 1). The formula for multi-class cross-entropy loss function is defined as shown in Equation 9.

[image: Formula for cross-entropy loss: Loss equals negative sum from i equals one to n of y sub i log y prime sub i, shown as equation nine.] 

where, n is the number of categories, yi is the i-th element of the true label vector y, and yi’ is the i-th element of the model output probability vector yi.

The cross-entropy loss function is an efficient loss function in classification problems as it accurately measures the similarity between the true label distribution and the model’s predicted label distribution. Specifically, a smaller cross-entropy value indicates a closer resemblance between these two probability distributions, implying more accurate predictions by the model. When there is a significant disparity between the true and predicted distributions, the cross-entropy loss function yields a large loss value. This characteristic enables the model to update parameters more quickly during training, thus accelerating the learning process. The amplifying effect of the cross-entropy loss function makes the model more sensitive to prediction errors during training, facilitating more effective adjustment of model parameters and reducing the likelihood of erroneous predictions. Therefore, the cross-entropy loss function is well-suited as a loss function for classification models, particularly excelling in handling multi-class classification problems.





4 Results and discussion

This study was conducted on a computer equipped with RTX3080 graphics card of 10 GB video memory and 64 GB of RAM.



4.1 Brain tumor dataset and preprocessing

In this paper, two publicly available brain tumor MRI datasets are applied for the brain tumor multi-classification task. Details of these two datasets are provided in Table 1. Both Cheng dataset and BT-large-4c dataset contain different views of brain anatomy: axial, coronal and sagittal views. Additionally, both datasets contain different numbers of brain tumor categories obtained from different patients with differences in tumor grade, race, and age. The Cheng dataset contains 3 types of brain tumors, namely glioma, meningioma and pituitary tumor. Among them, there are 1426 glioma images, 708 meningioma images and 930 pituitary tumor images, for a total of 3064 grayscale brain Magnetic Resonance (MR) images (48). The BT-large-4c dataset consists of 3264 brain MR images, including 926 glioma, 940 meningioma and 901 pituitary tumor images, and the remaining 497 normal images (49). These two datasets are split into 80% for training and 20% for testing.

Table 1 | Details of the datasets used in this study.


[image: Table comparing two datasets, Cheng and BT-large-4c, listing tumor classes with image counts. Cheng includes Glioma (1426), Meningioma (708), Pituitary (930), totaling 3064 images. BT-large-4c includes Glioma (926), Meningioma (940), Pituitary (901), and No tumor (497), totaling 3264 images.]
During the dataset preprocessing phase, we implemented an efficient and streamlined data preprocessing protocol. To ensure image content integrity and feature stability in experimental settings, all images were uniformly resized to dimensions of 224×224×3 pixels. This standardized resizing not only preserves the spatial structure and informational completeness of images but also significantly reduces computational overhead during network training, thereby enhancing training efficiency. Additionally, a standardization procedure was applied—a conventional preprocessing technique in deep learning—to mitigate variations in illumination, contrast, and other attributes across images, enabling the model to focus on learning intrinsic features. Considering that deep neural networks typically require large-scale datasets for training while our study employed a relatively limited dataset, data augmentation strategies were systematically deployed to alleviate overfitting. Specifically, techniques including random rotation, cropping, and horizontal flipping were implemented. These operations effectively enhanced dataset diversity without introducing additional noise, thereby strengthening the model’s generalization capabilities.




4.2 System implementation and evaluation metrics

During the model training process, we will fine-tune hyperparameters such as batch size, optimizer type, learning rate, epochs, and loss function based on experience and actual requirements. The objective of this process is to identify the optimal combination of hyperparameters to enhance the model’s performance and achieve the desired training outcomes. In this model, we employ the Adam optimizer with an initial learning rate of 0.001, 150 epochs, and a mini-batch size of 16 samples.

In this study, the performance of the proposed method is given by accuracy, recall, precision, and F1 -score (Cohen’s) were used for evaluation Kappa(κ), Matthews Correlation Coefficient (MCC) are given by this is given by Equations 10–15 (50):

[image: Formula for calculating accuracy, represented as the ratio of the sum of true positives (TP) and true negatives (TN) to the total of true positives, true negatives, false positives (FP), and false negatives (FN).] 

[image: Equation displaying the formula for recall: Recall equals TP divided by the sum of TP and FN.] 

[image: Formula for precision in machine learning. Precision equals true positives (TP) divided by the sum of true positives and false positives (TP + FP). Equation number twelve.] 

[image: F1-score formula: F1-score equals two times Precision times Recall, divided by Precision plus Recall. Equation number thirteen.] 

[image: Equation for Cohen's kappa, denoted as κ, equals the observed agreement \( P_o \) minus the expected agreement \( P_e \), divided by one minus the expected agreement \( P_e \). Equation number in parentheses, 14.] 

[image: MCC equals the fraction with numerator TP times TN minus FP times FN and denominator as the square root of the product of TP plus FP, TP plus FN, TN plus FP, and TN plus FN.] 

where, True Positives (TP) are the number of actual and predicted positives. True Negatives (TN) are the number of negatives that are both actual and predicted. False Positives (FP) are the number of actual negatives that are predicted to be positive. False Negatives (FN) are the number of actual positives that are predicted to be negative. po is the proportion of inter-observers who actually agree. pe is the proportion of agreement expected based on a random assignment.




4.3 Experimental results

The proposed method is applied to the Cheng dataset and the BT-large-4c dataset for classification, and the corresponding confusion matrix is generated, as shown in Figures 4A, B. In these matrices, the label “G” represents glioma, “M” represents meningioma, “P” represents pituitary tumor, and “N” represents no tumor. The confusion matrices vividly illustrate the classification performance of the model for each category. Additionally, the detailed values of model metrics obtained on the Cheng and BT-large-4c datasets are shown in Table 2. These metrics offer a quantitative basis for comparison, facilitating the evaluation of the model’s performance and comparison with other methods. It is noteworthy that on the Cheng dataset, our model demonstrated exceptionally high classification performance, achieving an accuracy of 98.69%. Similarly, on the BT-large-4c dataset, the model achieved a classification accuracy of 97.10%. The total number of parameters in the EnSLDe model is 87 million (87M). The total memory size required for the model during operation (including training and inference) is 2792.73MB. The memory size required for one forward and backward propagation process in the model is 2459.25MB.

[image: Two confusion matrices labeled A and B. Matrix A compares true and predicted labels G, M, and P. It shows 281 correct predictions for G, 138 for M, and 185 for P. Misclassifications are minimal. Matrix B extends labels to include N. It shows 180 correct predictions for G, 179 for M, 97 for N, and 180 for P. Misclassifications are similarly low. Both matrices use a blue color gradient indicating prediction counts.]
Figure 4 | Confusion matrix of the proposed model (A) on the Cheng dataset, (B) on the BT-large-4c dataset.

Table 2 | Detailed metric values of the proposed model on Cheng and BT-large-4c datasets.


[image: Table presenting performance metrics for two datasets, Cheng and BT-large-4c, across tumor types. Metrics include Precision, Recall, F1-score, Accuracy, κ, and Mcc. Cheng shows highest Precision with Pituitary tumors at 0.9946, and highest Accuracy at 0.9869. BT-large-4c shows highest Precision and Recall for Pituitary tumors at 0.9945, with overall Accuracy of 0.9710.]
The Receiver Operating Characteristic (ROC) curve is a graphical tool used to represent the performance of a classification model. It effectively evaluates the performance of the model under different classification thresholds by taking the False Positive Rate (FPR) and True Positive Rate (TPR) as the horizontal and vertical coordinates. The Area Under the Curve (AUC) quantitatively assesses the quality of the classification model. Higher AUC values indicate better model performance, with values closer to 1 indicating more ideal classification performance. Specifically, the ROC curves of our proposed model on the Cheng dataset and BT-large-4c dataset are depicted in Figures 5A, B, respectively. On the Cheng dataset, the AUC values for glioma, meningioma, and pituitary tumor in our proposed model are 0.9982, 0.9991, and 1.0000, respectively. On the BT-large-4c dataset, the AUC values for glioma, meningioma, pituitary tumor, and no tumor in our proposed model are 0.9941, 0.9921, 0.9999, and 0.9967, respectively. These results indicate that our proposed model exhibits excellent classification performance on both the Cheng dataset and BT-large-4c dataset.

[image: Two receiver operating characteristic (ROC) curves display classifier performance. Image A shows curves for Glioma, Meningioma, and Pituitary with areas of 0.9982, 0.9991, and 1.0000, respectively. Image B includes Glioma, Meningioma, No tumor, and Pituitary with areas of 0.9941, 0.9921, 0.9967, and 0.9999.]
Figure 5 | ROC curve for EnSLDe (A) on the Cheng dataset, (B) on the BT-large-4c dataset.




4.4 Ablation experiment

This ablation experiment aims to comprehensively evaluate the impact of attention module, FEnM and data enhancement on model performance. The following three subsections will demonstrate in detail the contribution and importance of these three key components to model performance.



4.4.1 The impact of the attention module on the model

In this section, the influence of various attention modules on our proposed model is investigated. The new models reconstructed from these attention modules and our proposed model include: Squeeze-and-Excitation(SE) (51) instead of EMA in EnSLDe named as EnSLDe-SE, Coordinate Attention (CA) (52) instead of EMA in EnSLDe named as EnSLDe-CA, Convolutional Block Attention Module (CBAM) (53) instead of EMA in EnSLDe named as EnSLDe-CBAM and the one removing EMA from EnSLDe named as EnSLDe-NoEMA. These models are used for classification prediction on the Cheng dataset, and the results are shown in Figure 6.

[image: Bar chart comparing the performance of different MBTCM models on four metrics: Accuracy, Precision, Recall, and F1-score. MBTCM, MBTCM-SE, MBTCM-CA, MBTCM-NoEMA, and MBTCM-CBAM models are represented with distinct colors. All models perform above 0.95 in each metric, with MBTCM achieving the highest scores, particularly in Accuracy and F1-score, reaching up to 0.9869 and 0.9859 respectively.]
Figure 6 | Impact of each attention module.

From Figure 6, it is evident that the EnSLDe-SE does not perform well in these models, with an accuracy of only 96.41%. Conversely, the EnSLDe exhibits exceptional performance in these models, achieving an accuracy of 98.69% and demonstrating excellent performance across other evaluation metrics. Specifically, the EnSLDe attains 98.53%, 98.64%, and 98.59% in precision, recall, and F1-score parameters, respectively. Moreover, when the EMA module is removed, the model’s accuracy significantly drops to 97.06%. This comparison underscores the crucial role of the EMA module in enhancing the performance of the proposed model. The inclusion of the EMA module not only boosts the classification accuracy of the model but also achieves balanced optimization across multiple evaluation metrics, thereby enabling the model to maintain high performance levels.




4.4.2 The impact of the FExM on the model

FExM is the cornerstone of the EnSLDe architecture, designed to hierarchically extract multi-scale contextual features through the combination of convolutional layers, residual connections, and the EMA mechanism. To rigorously evaluate its contribution, we conducted a comparative analysis of the model’s performance with and without the FExM module. When the FExM was not used, the model’s performance metrics—Precision, Recall, F1-score, and Accuracy—were 0.9656, 0.9722, 0.9683, and 0.9706, respectively, which were consistently lower than those of the model with FExM. It is worth noting that the precision dropped by 1.63%, highlighting the crucial importance of FExM to the overall model performance. Furthermore, in the ablation study, the p-value for the paired t-test of accuracy was 0.0013 (below the significance level, α = 0.05), with a confidence interval ranging from [0.0442, 0.1815].




4.4.3 The impact of the FEnM on the model

This section primarily examines the impact of the FEnM on the proposed model, with specific results depicted in Figure 7. The figure clearly illustrates that introducing FEnM significantly enhances the classification performance of the model on the Cheng dataset. Specifically, the accuracy, precision, recall, and F1-score of the model have increased by 2.12%, 2.66%, 1.76%, and 2.27%, respectively. The p-value of the paired t-test for accuracy with and without FEnM was 0.0094 (which is below the significance level, α = 0.05), and the confidence interval range was [0.0228, 0.1595]. The notable performance improvement can be attributed to the effective role of the FEnM. The FEnM not only substantially enhances the extracted features but also excels in capturing important long-range dependencies. Moreover, the FEnM can integrate the retained local key information with different levels of deep features, thereby enriching the expressive capabilities of features. Through this feature enhancement method, the model can more accurately identify brain tumors in classification tasks.

[image: Bar chart comparing performance metrics with and without FEnM. The metrics are Accuracy, Precision, Recall, and F1-score. With FEnM, values are higher: Accuracy (0.9869), Precision (0.9853), Recall (0.9864), F1-score (0.9859), compared to without FEnM: Accuracy (0.9657), Precision (0.9587), Recall (0.9688), and F1-score (0.9632).]
Figure 7 | Impact of FEnM.




4.4.4 The impact of data augmentation on models

This experiment utilizes two datasets: the Cheng dataset and the BT-large-4c dataset. Through the application of data augmentation techniques, the classification performance of the proposed model on these datasets is significantly enhanced. The impact of data augmentation on the model is illustrated in Figure 8. Specifically, for the Cheng dataset, the accuracy is improved by 3.92%, and for the BT-large-4c dataset, the accuracy is improved by 3.51%. These results highlight the crucial role of data augmentation techniques in enhancing model performance. In particular, by incorporating data augmentation with random horizontal or vertical flipping of images, the model becomes adept at learning tumor characteristics from various orientations and locations. This implies that the model can effectively identify and classify tumors even when their orientation or location varies in real-world applications.

[image: Bar charts compare performance metrics with and without data augmentation. Chart (A) shows accuracy (0.9477 vs. 0.9869), precision (0.9506 vs. 0.9853), recall (0.9425 vs. 0.9864), and F1-score (0.9460 vs. 0.9859). Chart (B) shows accuracy (0.9359 vs. 0.9710), precision (0.9338 vs. 0.9711), recall (0.9344 vs. 0.9711), and F1-score (0.9337 vs. 0.9711). The orange bars indicate higher performance with augmentation.]
Figure 8 | Impact of Data Augmentation (A) on the Cheng dataset, (B) on the BT-large-4c dataset.




4.4.5 Ablation studies on layer selection

To further validate the selection of feature extraction layers, we conducted an ablation study, the results of which are summarized in Table 3. When features were extracted from a single layer (shallow or deep), classification accuracy was consistently lower than that achieved via a multilayer fusion approach. To assess whether the observed differences in performance were statistically significant, paired t-tests were conducted. The tests compared classification accuracies of deep layers (which demonstrated superior performance to shallow layers) and multilayer fusion, positing the null hypothesis that there was no significant difference in performance. The paired t-test produced a p-value of 0.03 (below the significance level, α = 0.05), indicating a statistically significant difference in performance. By combining features from shallow and deep layers, the model captured a more holistic representation of the input data. The confidence interval for the difference in accuracy (which ranged from [-0.013, -0.0019]) excluded zero, confirming that the multilayer fusion approach surpassed single-layer extraction. The shallow layer provided detailed local information, whereas the deep layer captured global contextual features. This combination enhanced the model’s ability to discern complex patterns in brain tumor images.

Table 3 | Layer selection of experimental results in dataset Chen.


[image: Table comparing different methods on Precision, Recall, F1-score, and Accuracy. Shallow layer: 0.9554, 0.9539, 0.9546, 0.9592. Deep layer: 0.9683, 0.9645, 0.9664, 0.9690. Multilayer fusion: 0.9853, 0.9864, 0.9859, 0.9869.]



4.4.6 Impact of hyperparameter selection on model performance

Hyperparameters are an important aspect that affects model performance, and different hyperparameters can lead to different experimental results. In this section, the impact of the hyperparameters batch size, lr, and optimizer on model performance will be verified. Table 4 presents the experimental results. By comparing Tables 2, 4, it can be found that the hyperparameter values selected in this paper are quite good.

Table 4 | Experimental results for different hyper-paramete.


[image: Table showing hyper-parameters and performance metrics. For Batch size 8: Precision 0.9739, Recall 0.9770, F1-score 0.9754, Accuracy 0.9771. For Learning rate 0.0001: Precision 0.9835, Recall 0.9811, F1-score 0.9823, Accuracy 0.9837. Using Optimizer SGD: Precision 0.9800, Recall 0.9757, F1-score 0.9778, Accuracy 0.9804.]




4.5 Cross-dataset validation

To comprehensively validate the model, cross-validation was employed. The BT-large-4c dataset, comprising glioma, pituitary tumor, and meningioma data, was used to evaluate the model trained on the Cheng dataset. The cross-validation results for accuracy, precision, recall, and F1-score were 92.98%, 93.2%, 93.02%, and 93.01%, respectively. These outcomes indicate that the proposed model exhibits significant robustness.




4.6 Discussion

To further quantify the performance of the proposed model. The classification results obtained by our proposed model are compared with those obtained by previous state-of-the-art models using the same dataset, as shown in Table 5. Noreen et al. (54) proposed a method integrating deep learning with machine learning models, employing deep learning for feature extraction, including the Inception-v3 and Xception models. Additionally, the classification of brain tumors through deep learning and machine learning algorithms such as softmax, RF, SVM, KNN, and ensemble techniques were explored. Bodapati et al. (55) developed a dual-channel deep neural network architecture for brain tumor classification using pre-trained InceptionResNetV2 and Xception models, incorporating attention mechanisms to enhance accuracy and generalization capabilities in brain tumor recognition. Shaik and Cherukuri (56) designed and implemented a multi-level attention network (MANet). The proposed MANet includes spatial and channel-wise attention mechanisms, prioritizing tumor regions while maintaining the inter-channel temporal dependencies in the semantic feature sequences obtained from the abnormal areas. Öksüz et al. (57) utilized pre-trained AlexNet, ResNet-18, GoogLeNet, and ShuffleNet networks to extract deep features from images, and designed a shallow network for extracting shallow features, fusing these features and classifying them with SVM and KNN. Jaspin and Selvan (58) proposed a multi-class convolutional neural network (MCCNN) model for identifying tumors in brain MRI images. This network, consisting of an 11-layer structure including three convolutional layers, three max-pooling layers, one flattening layer followed by three dense layers, and an output layer, achieved classification performance on par with pre-trained models. Md. S. I. Khan et al. (59) designed a 23-layer convolutional neural network for brain tumor classification. Satyanarayana et al. (60) introduced a density convolutional neural network model based on mass correlation mapping (DCNN-MCM) for brain tumor classification. This model leverages the average mass elimination algorithm (AMEA) and mass correlation analysis (MCA) for the extraction and training of significant features of brain tumors, using a CNN model for efficient classification. Kibriya et al. (61) developed a 13-layer CNN specifically for brain tumor classification. Dutta et al. (62) introduced an attention-based residual multi-scale CNN, termed ARM-Net. This model includes a lightweight residual multi-scale CNN architecture known as RM-Net and introduces a lightweight global attention module (LGAM) to selectively learn more discriminative features. S. U. R. Khan et al. (63) employed the DenseNet169 model for feature extraction and fed the extracted features into three multi-class machine learning classifiers: RF, SVM, and gradient-boosting decision trees (XGBoost). Brain tumor classification was performed through the integration of these classifiers using a majority voting strategy. Demir and Akbulut (64) used a new multi-level feature selection algorithm to select the 100 deep features with the highest significance and adopted the SVM algorithm with Gaussian kernel for classification and achieved better performance. Senan et al. (65) employed both AlexNet and ResNet18 in conjunction with SVM for brain tumor classification and diagnosis. Initially, deep learning techniques were used to extract robust and significant deep features through deep convolutional layers, followed by classification using SVM. Ravinder et al. (66) proposed a graph convolutional neural network (GCN) model. This model integrates graph neural networks (GNN) with traditional CNNs. Our EnSLDe achieves superior performance compared to other methods. This depends on its ability to enhance short-range and long-range dependencies. EnSLDe yields experimental results for the Chen dataset. On the BT-large-4c dataset, EnSLDe underperforms AlexNet+SVM by a margin of 0.0139 in terms of precision. Nonetheless, it excels in other performance indicators. The EnSLDe model demonstrates exceptional performance on the Cheng and BT-large-4c datasets, achieving high accuracy rates of 98.69% and 97.10%, respectively. These results highlight the model’s ability to effectively capture both short-range and long-range dependencies in brain tumor images, leading to improved classification accuracy. And multi-scale parallel subnetworks fuse shallow and deep features to capture comprehensive information. However, it is important to note that the performance of any model, including EnSLDe, can vary depending on the specific characteristics of the data it is applied to. While EnSLDe outperforms several state-of-the-art models on these datasets, its generalizability to real-world applications requires further validation.

Table 5 | Comparison of our proposed model with previous models.


[image: Table comparing different methods for a dataset (Cheng or BT-large-4c). Columns include reference, method, precision, recall, F1-score, and accuracy. Methods like MANet, ResNet18+ShallowNet+SVM, and others are listed with varied performances. The proposed method appears for both datasets with high precision (0.9853 and 0.9711) and accuracy (0.9869 and 0.971).]
In order to more intuitively display the effect of our proposed method, we used the t-SNE (67) algorithm to reduce the dimensionality of high-dimensional feature data and drew a scatter plot on a 2-dimensional plane. Figures 9A–C depict scatter plots obtained by removing FEnM, EMA, and Data Augmentation, respectively. There are instances where the glioma class and the meningioma class are interconnected and nested. However, in Figure 9D, obtained by EnSLDe, the sample points of each class are closely clustered together, with clear separation between different categories. This intuitively underscores the significance of FEnM, EMA, and Data Augmentation for the model. The ability of the model to distinguish features effectively is enhanced by them.

[image: Scatter plots labeled A to D show data points for three types of tumors: Glioma (blue), Meningioma (green), and Pituitary (red), distributed across X1 and X2 axes. Each plot displays a different arrangement or clustering of these data points, illustrating varying separability and spatial relationships among the tumor types.]
Figure 9 | 2-dimensional scatter plots of deep feature sets (A) EnSLDe without FEnM, (B) EnSLDe without EMA, (C) EnSLDe without Data Augmentation, (D) EnSLDe.

As shown in Figure 4 and Table 2, the EnSLDe model achieves superior classification performance for pituitary tumors (precision: 0.9946, recall: 0.9946) compared to gliomas (precision: 0.9894, recall: 0.9946) and meningiomas (precision: 0.9718, recall: 0.9787), the latter of which exhibits the lowest performance metrics. A comparison of Figures 9A–D illustrates that EnSLDe employs effective strategies to differentiate gliomas from meningiomas. However, persistent feature overlap hinders the model’s ability to achieve optimal classification accuracy.

The EnSLDe model is designed to capture both short- and long-range dependencies within images, demonstrating considerable potential for generalization beyond the classification of brain tumors. Its architecture, which incorporates a multi-scale parallel subnetwork and feature enhancement modules, is well-suited for a wide range of medical imaging tasks. Additionally, the model is adaptable to the classification of tumors in various organs, such as lung, breast, and liver tumors. The model’s ability to effectively capture contextual information makes it suitable for the identification of different lesion types and the detection of abnormalities across a diverse array of medical conditions.

Adapting the EnSLDe model to a new task necessitates several adjustments. First, the model requires retraining on a task-specific dataset, including modifying the number of output categories and fine-tuning the classification module. Furthermore, the feature extraction module may require modification to account for variations in imaging characteristics, such as resolution and contrast. Despite its design efficiency, the EnSLDe model exhibits limited scalability, particularly in resource-constrained environments. Training the model demands substantial computational resources, particularly for large-scale datasets. However, incorporating efficient convolutional layers and depthwise separable convolutions mitigates these computational demands. To address scalability challenges, several strategies may be implemented. For instance, model compression techniques (e.g., pruning and quantization) can substantially reduce computational complexity while maintaining competitive performance.

To further understand the decision-making process of the proposed EnSLDe model and validate its ability to focus on relevant regions in brain tumor classification, we visualized the feature maps using the Grad-CAM++ method. The results are shown in Figure 10. Grad-CAM++ is a widely used technique for visualizing the regions of interest in image classification tasks, providing insights into the model’s attention mechanism. As shown in Figure 10, the feature maps generated by the EnSLDe model effectively highlight brain tumor regions, demonstrating the model’s ability to distinguish between brain tumor and non-tumor regions. This visualization confirms that the model focuses on tumor regions, which is critical for accurate classification. However, it is also clear that the model focused on other non-tumor regions. This observation suggests that the model effectively captures key brain tumor features while incorporating additional contextual information from surrounding brain regions, which may contribute to its high classification accuracy. While the EnSLDe model demonstrated strong performance in focusing on relevant regions, the visualization results also highlighted areas for potential improvement. Specifically, the model’s focus on non-tumor regions suggests that there may be opportunities to refine the feature extraction and enhancement modules to emphasize the most critical features further. Future work could explore advanced attention mechanisms or additional regularization techniques to ensure that the model focuses more precisely on tumor regions, potentially leading to higher classification accuracy.

[image: (A) MRI scan of a brain highlighting a tumor in the center. (B) Heat map overlay on the same MRI scan, indicating higher intensity around the tumor with colors ranging from blue to red.]
Figure 10 | Heat map visualization of the model (A) Original image (B) Heat map.





5 Conclusion

A new multi-class brain tumor classification model, named EnSLDe, has been proposed. This model is primarily composed of three modules: FExM (Feature Extraction Module), FEnM (Feature Enhancement Module), and the classification module. FExM efficiently extracts features using convolutional layers and residual networks and combines EMA (Efficient Multi-Attention) to simultaneously focus on both channel and spatial information of the features. This effectively preserves the information of each channel, preventing the loss of important features during the compression of the channel dimension. The design of FEnM aims to deeply integrate shallow and deep features, facilitating a more comprehensive understanding of the features and the extraction of advanced and important features. Additionally, the model’s ability to capture short-range and long-range dependencies has been enhanced. The feature enhancement module further strengthens the features by effectively capturing important dependencies over a large sequence range while preserving local key information. The double-layer fully connected structure is adopted as the core of the classification module and combined with dropout regularization technology, which further improves the model classification performance. Experimental evaluations conducted on the challenging Cheng dataset and BT-large-4c dataset demonstrate the excellent performance of our model in brain tumor classification tasks. On the Cheng dataset, the model achieves accuracy, recall, precision, and F1-score of 98.69%, 98.53%, 98.64%, and 98.59%, respectively. Similarly, on the BT-large-4c dataset, the model attains accuracy, recall, precision, and F1-score of 97.10%, 97.11%, 97.11%, and 97.11%, respectively. Indeed, the differentiation between glioma and meningioma remains suboptimal. Further refinement is required to enhance the model’s ability to distinguish accurately between these two tumor types. Future studies should augment the dataset to include a broader range of brain disorders, thereby enriching the model’s training corpus and enhancing its capacity to differentiate among diverse neurological pathologies. Additionally, strategic modifications to the model’s architecture, training protocols, and loss functions could be implemented to optimize its discriminative performance in distinguishing gliomas from meningiomas. And the model was deployed, and the clinical capabilities of the model were verified by combining the doctors commanded by experience.
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Objective

To develop and validate a deep learning signature for noninvasive prediction of spread through air spaces (STAS) in clinical stage I lung adenocarcinoma and compare its predictive performance with conventional clinical-semantic model.





Methods

A total of 513 patients with pathologically-confirmed stage I lung adenocarcinoma were retrospectively enrolled and were divided into training cohort (n = 386) and independent validation cohort (n = 127) according to different center. Clinicopathological data were collected and CT semantic features were evaluated. Multivariate logistic regression analyses were conducted to construct a clinical-semantic model predictive of STAS. The Swin Transformer architecture was adopted to develop a deep learning signature predictive of STAS. Model performance was assessed using area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive and negative predictive value, and calibration curve. AUC comparisons were performed by the DeLong test.





Results

The proposed deep learning signature achieved an AUC of 0.869 (95% CI: 0.831, 0.901) in training cohort and 0.837 (95% CI: 0.831, 0.901) in validation cohort, surpassing clinical-semantic model both in training and validation cohort (all P<0.01). Calibration curves demonstrated good agreement between STAS predicted probabilities using deep learning signature and actual observed probabilities in both cohorts. The inclusion of all clinical-semantic risk predictors failed to show an incremental value with respect to deep learning signature.





Conclusions

The proposed deep learning signature based on Swin Transformer achieved a promising performance in predicting STAS in clinical stage I lung adenocarcinoma, thereby offering information in directing surgical strategy and facilitating adjuvant therapeutic scheduling.





Keywords: deep learning, lung adenocarcinoma, spread though air space, computer tomography, prediction





Introduction

Lung cancer remains the leading lethal malignancy, responsible for 12.4% of all newly-diagnosed cases worldwide in 2022 (1). As the predominant cause of lung cancer-related mortality, lung adenocarcinoma exhibits distinctive histological growth pattern and molecular genotyping (2). Spread through air spaces (STAS) is a unique invasion pattern separate from lymphatic-vascular and visceral pleural invasion, with a predisposition in lung adenocarcinoma. Initially introduced by Kadota et al. and explicitly defined in the World Health Organization Classification of Lung Cancer in 2015, STAS refers to the dissemination of tumor cells as solid nests, micropapillary clusters or single cells into the peritumoral alveolar airspaces (3). Multiply studies have consistently demonstrated that STAS serves as a well-established prognosticator for lung adenocarcinoma undergoing sublobectomy, indicating an increased risk of postoperative relapse and worse prognosis (4–6). STAS is recognized as a pathological indicator for identifying the beneficiaries of adjuvant chemotherapy among stage IB patients (7). Therefore, STAS is of great significance in identifying high-risk patients and guiding personalized therapeutic strategies.

However, intraoperative pathological assessment for STAS through rapid frozen sections has been proved to be of limited sensitivity and reproducibility (8). The shifting of tumor cells to the peritumoral alveolar airspaces caused by manual operations such as extrusion, blade cutting and tissue dysfixation were hardly distinguished from STAS cell clusters, thereby hindering the reliable application of this approach. Several scholars exploited CT semantic indicators for STAS by visual inspection or manual measurement, such as tumor diameter, ground-glass opacity (GGO) components, and pleural retraction (9, 10). Nevertheless, these indicators rely on subjective judgement and professional skills, making them unsuitable for widespread clinical practice due to inconsistent interpretation criteria. Several studies developed CT-based radiomics signature predictive of STAS, but the radiomics approach involves several sequential processing steps such as tumor delineation, dimension reduction and model building (11, 12). The efficiency of radiomics modeling is highly influenced by interobserver heterogeneity and handling quality at each step.

Deep learning is an end-to-end network architecture, characterized by the ingestion of data from the input end and the generation of prediction results from the output end. The error between prediction result and actual observation is iteratively propagated through each layer, facilitating model adjustment and convergence. On account of the advantages of automatically learning and extracting representative information, deep learning has achieved remarkable efficacy in distinguishing histological subtypes, evaluating treatment response, and predicting survival (13–15). In this study, we employed Swin Transformer, a deep learning framework exploited by Microsoft Research Asia, to construct and validate a CT-based deep learning predictive model for STAS in lung adenocarcinoma. This study also sought to investigate the incremental value of clinical characteristics and conventional CT semantic features over the deep learning signature.





Methods




Patients

This study was approved by the Ethics Committee and the requirement for informed consent was waived due to its retrospective nature. The patients who underwent radical resection at the main campus of Tongji Hospital (Center 1) from October 2021 to June 2022 were systematically reviewed. Inclusion criteria were: (1) invasive lung adenocarcinoma confirmed by pathology; (2) maximum tumor diameter on CT images ≤ 4 cm; (3) no radiological signs of locoregional lymph node invasion or distant metastasis; (4) no preoperative radiotherapy, chemotherapy or targeted therapy; (5) interval time of preoperative CT examination and operation within two weeks. The exclusion criteria were: (a) rare histological variants; (b) simultaneous or metachronous tumors; (c) unavailable thin-section CT images or obvious image artifacts; (d) insufficient peritumoral parenchyma reserved for STAS assessment; (e) subjected to other cancers. Tumor staging was based on the eighth edition of the TNM staging system. Following the same criteria, patients undergoing radical surgical resection at the Sino-Germany Guanggu Campus of Tongji Hospital (Center 2) from January 2022 to June 2022 were retrospectively enrolled. Clinical information including gender, age, smoking history, pack-year and serum CEA level were acquired from clinical electronic records. The recruitment workflow is illustrated in Figure 1.

[image: Flowchart showing patient selection for radical excision at two centers. Center 1 included 471 patients, Center 2 included 169. Both had the same inclusion criteria: confirmed invasive lung adenocarcinoma, clinical stage I, no presurgical therapy, and a CT-to-surgery interval of under two weeks. Exclusion criteria included rare adenocarcinoma variants, synchronous/metachronous tumors, inadequate CT images, insufficient parenchyma, and cancer history. After exclusions, Center 1 had a training cohort of 386 (126 STAS-positive, 260 STAS-negative) and Center 2 had a validation cohort of 127 (45 STAS-positive, 82 STAS-negative).]
Figure 1 | The workflow diagram of patient recruitment.





Histological assessment

Pathological characteristics including histological subtype, Ki-67 labeling index (LI), visceral pleural invasion, lymphatic-vascular invasion, pathological TNM staging and STAS were documented. The excision specimen was fixed in 10% formalin and embedded in paraffin before sectioned. Hematoxylin-eosin staining, immunohistochemistry staining and elastic fiber staining were performed accordingly. Two pathologists with experiences of 5 years and 11 years independently interpreted STAS on the sections. Initially, tumor smooth interfaces were recognized by naked eyes and at low-magnification (×10). Subsequently, three areas with the most abundant STAS were selected for interpretation at high-magnification (×200). If any of the following forms of tumor cells are observed within peritumoral alveolar airspaces, it is judged to be STAS-positive: (1) micropapillary clusters without a central fibrovascular core; (2) solid tumor nests; (3) discrete single tumor cells. Ki-67 LI is determined by the percentage of cells with stained-brown nuclei among 1000 tumor cells via immunohistochemical staining. Invasive lung adenocarcinoma is categorized into five histological subtypes based on growth architecture: lepidic, acinar, papillary, micropapillary and solid predominant adenocarcinoma.





CT scanning protocol and semantic feature interpretation

The patients were examined using multi-slice spiral CT scanners including GE Discovery 750 HD, TOSHIBA Aquilion One TSX-301A, Philips Brilliance ICT 256 and GE Optima CT 660. The acquisition parameters were detailed in Supplementary Data Sheet 1. CT semantic features were independently evaluated by two radiologists with 12 and 7 years of experience, respectively, blinded to the clinicopathological information. The lung window (width: 1600 HU; level: -600 HU) and mediastinal window (width: 400 HU; level: 40 HU) were fixed, respectively. CT semantic features included affiliated lobe, location, attenuation type, tumor total diameter, tumor consolidation diameter, consolidation-to-tumor ratio (CTR), shape, boundary, lobulation, spiculation, cavity, vacuole, air bronchogram, and plural attachment. CTR is quantified by the ratio of tumor consolidation diameter and total diameter. The definitions of CT semantic features were elucidated in Supplementary Data Sheet 1. The interobserver agreement for categorical and continuous variables was evaluated using Cohen ‘s kappa coefficient and intraclass correlation coefficient (ICC), respectively. The average measured by two radiologists was taken as the final value for continuous variables. Consensus on divergent categorical variables was reached through discussion involving a third radiologist.





Tumor segmentation and deep learning signature development

The automatic virtual adversarial training segmentation algorithm, based on a three-dimensional U-shape convolutional neural network known as 3D U-Net, was employed to achieve tumor segmentation. The topology of U-net was showed in Supplementary Data Sheet 1. For modeling, we proposed a deep learning framework called Swin Transformer to develop a signature predictive of STAS. The overall architecture consists of four transformer stages comprising Patch Embedding/Merging and Swin Transformer Blocks in each stage as revealed in Figure 2 and Supplementary Data Sheet 1. To mitigate overfitting due to limited amounts of data, the model was pretrained in CT images of lung cancer from the Cancer Imaging Archive followed by fine-tuned in 13510 CT images of lung adenocarcinoma in the training cohort. Furthermore, to compare the efficacy of different deep learning methods in predicting STAS, we applied ResNet-50, EfficientNet and ConvNeXt for modeling denoted as ModelResNet-50, ModelEfficientNet and ModelConvNeXt. The original code for implementing Swin Transformer can be acquired at https://github.com/microsoft/Swin-Transformer. We implemented the neural network using PyTorch 1.4.1 library in Python 3.7.0 (https://pytorch.org).

[image: Diagram illustrating a process with four main sections: A) Patient Enrollment shows patients from two centers. B) Image Preprocessing involves image normalization through isotropic resample and intensity normalization, followed by image segmentation using 3D U-Net. C) Model Development utilizes patch partitioning, linear embedding, and multiple Swin Transformer Blocks across different stages, ending with a linear layer and STAS analysis. D) External Validation includes histological assessment, radiologist interpretation with lung scans, and efficiency evaluation through performance graphs.]
Figure 2 | The overall framework of STAS prediction model development and validation. (A) Patients with lung adenocarcinoma were respectively enrolled from Center 1 and Center 2. (B) Imaging preprocessing included isotropic resample, intensity normalization and tumor automatic segmentation. (C) Deep learning signature predictive of STAS was developed based on Swin Transformer. (D) Histological assessment and radiologist interpretation were conducted for all patients in Center 1 and Center 2, and then model performance comparisons were performed. STAS, spread through air spaces.





Clinical-semantic model construction

Univariate analysis was initially performed to identify statistically significant clinical characteristics and CT semantic features between STAS positive and negative subgroups (P < 0.05) in the training cohort. Afterwards, features with Spearman correlation coefficient > 0.7 were removed in view of multicollinearity inference. The remaining features as candidate variables were included in multivariate logistic regression analysis to determine the features independently associated with STAS. The features were combined linearly weighted by their corresponding regression coefficients to construct clinical-semantic model. Given that the inherent design of preoperative prediction, pathological indicators were not included in logistic regression analysis, but compared across different STAS subgroups.





Statistical analysis

Statistical analysis was performed using MATLAB (MathWorksInc., Natick, MA) and SPSS (IBM, ver.26.0). Shapiro-Wilk test and Levene test were used to analyze the normality and homogeneity of variance for continuous variables. The continuous variables were compared using the Student’s t-test and Mann-Whitney U test, as appropriate. The comparisons of categorical variables were conducted by Chi-square test or Fisher exact test. Pearson correlation analysis was used to evaluate the correlation between features. The area under receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were used to quantify model performance. The calibration curve and Hosmer-Lemeshow test were employed to evaluate the consistency between predicted probabilities by deep learning signature and actual observations. A double-tailed P<0.05 indicated statistical significance.






Results




Baseline characteristics

In total, 126 eligible STAS-positive and 260 STAS-negative patients from Center 1 were enrolled to construct a training cohort (n=386). Accordingly, a total of 45 STAS-positive and 82 STAS-negative patients from Center 2 constituted an independent validation cohort (n=127). As revealed in Table 1, all clinicopathological characteristics and CT semantic features exhibited a balanced distribution between the training cohort and validation cohort. Of 513 patients, 239 (46.6%) were male [median age (interquartile): 59.0 (53.0, 65.0)] and 274 (53.4%) were female [median age (interquartile): 61.0 (54.0, 68.0)]. Totally, there were 171 (33.3%) and 342 (66.7%) patients pathologically-confirmed to be STAS-positive and STAS-negative, respectively.

Table 1 | The distribution of clinicopathological characteristics in training cohort and validation cohort.


[image: Table displaying clinical and histopathological characteristics of patients. It is divided into two sections: A. Clinical characteristics and B. Histopathological characteristics, with columns representing all patients, training cohort, validation cohort, and P values for each characteristic. Clinical characteristics include gender, age, smoking history, pack-year, CEA level, and surgical modalities. Histopathological characteristics include histological subtype, Ki-67 labeling index, visceral pleural invasion, lymph-vascular invasion, pathological T and N stages, and STAS. Data is presented as numbers and percentages, with statistical comparison methods noted.]




The interobserver consistency assessment for CT semantic features

As shown in Table 2, ICC for tumor total diameter, tumor consolidation diameter and CTR were 0.988 (95% CI: 0.985, 0.990), 0.991 (95% CI: 0.990, 0.993) and 0.982 (95% CI: 0.979, 0.985), respectively. Cohen ‘s kappa coefficients for the categorical variables ranged from 0.808 to 0.992, indicative of satisfactory interobserver agreement in interpreting CT semantic features. The discrepant numbers (frequency) of categorical variables between two radiologists were also documented as revealed in Table 2.

Table 2 | The interobserver agreement of CT semantic features for lung adenocarcinoma.


[image: Table showing CT semantic features with disagreement percentages, kappa values, and 95% confidence intervals. Features include affiliated lobe, location, tumor diameter, shape, boundary, lobulation, spiculation, cavity, vacuole, air bronchogram, and pleural attachment. Disagreements range from 0.4% to 7.2%, with kappa values from 0.808 to 0.992. Some features have NA for disagreement.]




The association of clinicopathological characteristics with STAS

As shown in Table 3, STAS was more likely occurred in patients with pack-year > 40 (P=0.002) and CEA > 5 ug/L (P<0.001), but it had no significant association with gender, age and smoking history. STAS was more frequently observed in micropapillary and solid predominant adenocarcinoma, but rarely occurred in lepidic predominant adenocarcinomas (P<0.001). Furthermore, STAS was closely related with visceral pleural invasion and lymphatic-vascular invasion (P<0.001 and P<0.001). Ki-67 LI in STAS-positive subgroup significantly exceeded that of STAS-negative subgroup (P<0.001). Additionally, lung adenocarcinoma with higher pathological T and N stages showed a higher prevalence of STAS (P<0.001 for both).

Table 3 | The relationships of clinicopathological characteristics and CT semantic features with STAS in training cohort.


[image: A table displays clinical, histopathological, and CT semantic characteristics of a training cohort, STAS positive, and STAS negative groups, with sample sizes of 386, 126, and 260 respectively. It includes variables like gender, smoking history, surgical modalities, histological subtype, lymph-vascular invasion, pathological T and N stages, and CT features such as attenuation type, tumor diameter, and presence of pleural attachment, among others. P-values indicate statistical significance across various characteristics. Data are presented as medians or percentages, analyzed using Chi-square or Fisher’s exact test, and Mann-Whitney U test.]




The association of CT semantic features with STAS

Tumor total diameter, tumor consolidation diameter and CTR in STAS-positive subgroup were significantly higher than those in STAS-negative subgroup (all P<0.001; Figures 3 and 4). Solid tumors, obscure boundary, spiculation, vacuole and pleural attachment were more frequent in STAS, but air bronchogram was less common in STAS (all P< 0.05). The tumor consolidation diameter and attenuation subtype were excluded from logistic regression analysis considering a strong correlation with CTR (r=0.839 and 0.913, P< 0.001). Finally, CEA (odds ratio [OR]: 2.022; 95% CI: 1.080, 3.784; P=0.028), vacuole (OR: 3.509; 95% CI: 1.488, 8.278; P=0.004), obscure boundary (OR: 2.716; 95% CI: 1.628, 4.529; P<0.001) and CTR (OR: 1.023; 95% CI: 1.014, 1.033; P<0.001) were included to construct the clinical-semantic model as the independent risk indicators for predicting STAS.

[image: CT scan of lungs in panel A shows bilateral opacities. Panel B presents a lung tissue histology image with a dotted line dividing regions, a black star in the lower area, and two yellow stars in the upper area.]
Figure 3 | CT image and pathological image obtained from a 65-year-old man with spread though air spaces negative lung adenocarcinoma. (A) Th axial CT image (width, 1600 HU; level, -600 HU) shows a sub-solid nodule in the right lower lobe. (B) The photomicrograph of hematoxylin-eosin-stained histological section (magnification × 200) shows clean alveolar spaces (yellow polygon) beyond the boundary (dashed line) of the tumor (black star).

[image: CT scan of the lungs (Panel A) shows a mass in the left lung. Microscopic lung tissue section (Panel B) displays dense cellular areas indicated by yellow arrows and a star, with a dotted line dividing regions.]
Figure 4 | CT image and pathological image obtained from a 59-year-old woman with spread though air spaces positive lung adenocarcinoma. (A) Th axial CT image (width, 1600 HU; level, -600 HU) shows a solid nodule in the right upper lobe. (B) The photomicrograph of hematoxylin-eosin-stained histological section (magnification × 200) shows several solid nests of tumor cell (yellow arrow) beyond the boundary (dashed line) of the tumor (black star).





Model construction and efficacy evaluation

As shown in the Table 4 and Figure 5, the AUC for Swin Transformer based deep learning signature in the training cohort and
validation cohort was 0.869 (95% CI: 0.831, 0.901) and 0.837 (95% CI: 0.761, 0.896), respectively. Encouragingly, Swin Transformer based deep learning signature achieved significantly higher AUC than ModelResNet-50, ModelEfficientNet and ModelConvNeXt in training cohort (0.869 vs. 0.800, 0.797 and 0.783; all P < 0.001), as well as than ModelEfficientNet and ModelConvNeXt in validation cohort (0.837 vs. 0.775 and 0.795; P = 0.025 and 0.027), as shown in Supplementary Table E2. Deep learning signature showed an improvement in predictive performance than ModelResNet-50 in validation cohort, but it did not reach statistical significance (0.837 vs. 0.799, P = 0.087).

Table 4 | The model performances in the training cohort and validation cohort.


[image: Comparison table of three models: CTR, Clinical-semantic model, and Deep learning signature, evaluated on training and validation cohorts. Metrics include AUC, Sensitivity, Specificity, PPV, and NPV with 95% confidence intervals. The table highlights the superior performance of the Deep learning signature across metrics in both cohorts.]
[image: Panel A shows a ROC curve comparing CTR, clinical-semantic, and deep learning models, with AUC values of 0.709, 0.764, and 0.869, respectively. Panel B presents another ROC curve with AUC values of 0.734, 0.714, and 0.837 for the same models. Panel C is a calibration plot with a Hosmer-Lemeshow test result of 0.600, and Panel D is another calibration plot with a test result of 0.082.]
Figure 5 | The performance comparisons of deep learning signature, CTR and clinical-semantic model in predicting STAS. (A, B) The receiver operating characteristic curves of CTR, clinical-semantic model and deep learning signature in training cohort (A) and validation cohort (B). Number in parenthesis is the area under receiver operating characteristic curve. (C, D) The calibration curves depicted the good agreements between predicted probabilities by deep learning signature and actual observed probabilities of STAS in training cohort (C) and validation cohort (D).

Meanwhile, The AUC for CTR alone and clinical-semantic model was 0.709 (95% CI: 0.660, 0.754) and 0.764 (95% CI: 0.719, 0.806) in training cohort, as well as 0.734 (95% CI: 0.648, 0.808) and 0.714 (95% CI: 0.627, 0.790) in validation cohort, respectively. In the training cohort, deep learning signature performed far superior to CTR (0.869 vs. 0.709, P < 0.001) and clinical-semantic model (0.869 vs.0.764, P < 0.001), with a statistically significant difference. Notably, deep learning signature yielded significantly higher AUC than both CTR (0.837 vs. 0.734, P=0.006) and clinical-semantics model (0.837 vs. 0.714, P=0.002) in validation cohort. The sensitivity, specificity, PPV and NPV of deep learning signature in predicting STAS ranged from 0.578 to 0.706, 0.892 to 0.951, 0.761 to 0.867 and 0.804 to 0.862 across two cohorts, respectively. According to the Hosmer-Lemeshow test and calibration curve, the predicted STAS probabilities by deep learning signature revealed good agreement with the actual observations both in training cohort and validation cohort (P=0.600 and 0.082, respectively). Furthermore, when deep learning signature was incorporated into clinical-semantic model, all CT semantic risk predictors were eliminated from multivariate regression analysis, with merely deep learning signature remained. Pearson correlation analysis revealed a strong correlation between CTR and deep learning signature (r = 0.789, P < 0.001).






Discussion

This study revealed that CEA, tumor boundary, vacuolation and CTR are the independent clinical-semantic features associated with STAS in lung adenocarcinoma. The proposed deep learning model predictive of STAS based on Swin Transformer yielded an AUC of 0.869 (95% CI: 0.821, 0.908) and 0.837 (95% CI: 0.742, 0.908) in the training cohort and independent validation cohort, superior to conventional CTR and clinical-semantic model. Furthermore, neither CTR nor clinical-semantic model exhibited an incremental value over deep learning signature, further confirming its superior predictive value.

For early-stage patients, sublobectomy can preserve more pulmonary function, reduce surgical complications, and shorten hospitalization time, particularly with an equivalent therapeutic effect to lobectomy (16). However, sublobectomy is not appropriate for STAS-positive patients due to a higher risk of locoregional relapse and distant metastasis compared with lobectomy. Another study proved that STAS had negligible adverse effects on prognosis if surgical margin distance exceeded 2 cm in limited resection (17). Thus, anatomic lobectomy and sufficient surgical margin should be recommended for STAS-positive patients to prevent recurrence caused by STAS. Dai et al. also demonstrated that recurrence-free survival rates and overall survival rates of stage IA STAS-positive patients were comparable to those of stage IB patients (18). Furthermore, stage IB patients with STAS-positive can benefit from adjuvant chemotherapy (7, 19). Consequently, STAS serves as a pathological indicator for T upstaging and risk stratification, as well as an effective biomarker for identifying the beneficiaries of adjuvant chemotherapy in early-stage patients.

Currently, there is limited research on leveraging deep learning technique to predict STAS, and the predictive capacity remains modest. Tao et al. applied 3D convolutional neural network to predict STAS in NSCLC, yielding an AUC of 0.790 in validation cohort (20). Wang et al. presented SE-Resnet50 for risk estimation of STAS in solid or part-solid lung adenocarcinoma, resulting a highest AUC of 0.933 achieved so far in training cohort. Nevertheless, their model exhibited a substantial performance reduction in validation cohorts (AUC=0.783-0.806), which approximated the performance of our developed ModelResNet-50 in training and validation cohorts (AUC=0.799-0.800)This unfavorable generalization may attribute to model overfitting by reason of complicated architecture (21). Lin et al. enrolled 581 patients with tumor smaller than 3 cm and CTR less than 0.5 from two institutions. They extracted the deep learning features from solid components and the entire tumors respectively, thereby developing deep learning models with and without solid component gate (SCG). The results revealed deep learning model with SCG achieved higher AUCs than deep learning model without SCG (22). Thus, further investigation is required to develop deep learning signature with SCG based on Swin Transformer, in expectation to further improve the prediction efficacy. In this study, Swin Transformer was adopted as the backbone architecture in modeling, achieving a satisfactory and comparable performance in training and validation cohorts with AUC ranging from 0.837 to 0.869, which was superior to ModelResNet-50, ModelEfficientNet and ModelConvNeXt. This finding lent support to the potential of our proposed Swin Transformer in predicting STAS in lung adenocarcinoma. The state-of-the-art Swin Transformer is regarded as the new backbone of machine vision. With two key strengths of non-overlapping shifted windows and hierarchical structures, Swin Transformer can flexibly process images at various scales and reduce computational complexity from the exponential level to the linear level. Growing evidence validated the efficient processing capabilities of Swin Transformer in handling multitasking such as image classification and density detection (23–25). Our previously published study has affirmed the remarkable efficiency of Swin Transformer in predicting lymph node metastasis in lung adenocarcinoma (26). Aside from that, automatic tumor segmentation was conducted in this study using a 3D U-shape convolutional neural network. This deep learning architecture serves as a highly effective tool for accurate, robust, and efficient segmentation. It surpasses the time-consuming and labor-intensive manual delineation or semi-automated segmentation, as evidenced by the Dice similarity coefficients across multiple institutions (27, 28).

Further exploring the relationship between STAS and histopathological factors, micropapillary and solid predominant adenocarcinoma were more commonly observed in STAS. Our findings demonstrated a significant association between STAS and visceral pleural invasion, lympho-vascular invasion and higher pathological T stage, consistent with previous literature (29). Additionally, lymph node invasion was more frequently found in STAS-positive subgroup (34.9% vs 5.4%). In line with our results, Vaghjiani et al. also reported that STAS was an independent predictor of occult lymph node metastasis in clinical stage IA lung adenocarcinoma (30). Although the underlying mechanism of STAS remains unclear till now, it has been found that epithelial-mesenchymal transition (EMT) prominently promotes the occurrence of STAS (31). EMT is widely recognized as a biological process wherein polarized epithelial cells transform into loosely connected interstitial cells; this process is regarded as the key driver of tumor genesis, invasion and metastasis. This may account for the strong association between STAS and the aforementioned invasive histopathological factors.

In clinical-semantic model, tumor boundary, vacuolation and CTR were the independent CT semantic features in predicting STAS. As a reflection of tumor aggressiveness, CTR weighted heavily in regression analysis with a 1.25-fold increased risk of STAS for every 10% increase. In accordance with our finding, Ding et al. and Chen et al. confirmed that CTR was independently associated with STAS (32, 33). Unexpectedly, the inclusion of all clinical-semantic risk predictors failed to show an incremental value with respect to deep learning signature. We found a strong correlation between CTR and deep learning signature (r = 0.789, P < 0.001), which might account for this result. These findings also lead to speculation on whether deep learning signature contains biological information regarding tumor boundary and vacuolation, which should be explored by future in-depth research. We also found CTR and clinical-semantic model showed equivalent NPV and sensitivity to deep learning signature. Notably, in both training and validation cohorts, the deep learning signature exhibited far superior AUC, specificity, and PPV compared to CTR and the clinical-semantic model, which lent support to its predominant efficacy in predicting STAS.

There are some limitations to this study. First, data were retrospectively collected from different CT equipment, so heterogeneity in acquisition parameters and reconstruction protocols might be inevitable. The class-imbalance in sample should be addressed using resample techniques in the future. Second, it is necessary to expand sample size and enroll multi-institutional data to further affirm the repeatability and generalization of deep learning signature. Besides, long-term follow up and survival data should be warranted to affirm the prognostic value of STAS, as well as the relationship of deep learning signature with prognosis. Further investigation is required to enhance the biological interpretability of deep learning, which inherently possesses a black box nature, thereby facilitating its application in clinical practice. Common approaches involve employing the Grad-CAM algorithm for generating visualizations of deep learning and incorporating attentional mechanisms into deep learning networks to achieve the significance weight of diagnosis and decision-making based on attention regions. Additionally, exploring the associations between deep learning and genomics or proteomics can further improve the biological interpretability of deep learning. Last, given that biological behavior varies in different histological subtypes of lung cancer, future research needs to supplement the predictive value of the deep learning signature for STAS in other histological subtypes.

In conclusion, the proposed deep learning signature based on Swin Transformer offers a promising predictive performance for STAS in clinical stage I lung adenocarcinoma, surpassing the conventional clinical-semantic model. The end-to-end deep learning approach harbors the potential as a well-established tool for noninvasive estimation of STAS, directing surgical strategy and facilitating adjuvant therapeutic scheduling.
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Objectives

Quantitatively assess the severity and predict the mortality of interstitial lung disease (ILD) associated with Rheumatoid arthritis (RA) was a challenge for clinicians. This study aimed to construct a radiomics nomogram based on chest computed tomography (CT) imaging by using the ILD-GAP (gender, age, and pulmonary physiology) index system for clinical management.





Methods

Chest CT images of patients with RA-ILD were retrospectively analyzed and staged using the ILD-GAP index system. The balanced dataset was then divided into training and testing cohorts at a 7:3 ratio. A clinical factor model was created using demographic and serum analysis data, and a radiomics signature was developed from radiomics features extracted from the CT images. Combined with the radiomics signature and independent clinical factors, a nomogram model was established based on the Rad-score and clinical factors. The model capabilities were measured by operating characteristic curves, calibration curves and decision curves analyses.





Results

A total of 177 patients were divided into two groups (Group I, n = 107; Group II, n = 63). Krebs von den Lungen-6, and nineteen radiomics features were used to build the nomogram, which showed favorable calibration and discrimination in the training cohort [AUC, 0.948 (95% CI: 0.910–0.986)] and the testing validation cohort [AUC, 0.923 (95% CI: 0.853–0.993)]. Decision curve analysis demonstrated that the nomogram performed well in terms of clinical usefulness.





Conclusion

The CT-based radiomics nomogram model achieved favorable efficacy in predicting low-risk RA-ILD patients.
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1 Introduction

Rheumatoid arthritis (RA) is one of the most immune-mediated diseases that affects 0.5–1% of the global population. It is primarily characterized by joint swelling and tenderness, leading to the destruction of synovial joints (1). Beyond the joints, RA is associated with systemic inflammation that can result in multiple coexisting conditions and extra-articular manifestations (2). Pulmonary involvement is recognized as the most prevalent extra-articular complication in RA, encompassing a broad range of disorders such as airway diseases, pleural effusions, and rheumatoid nodules (3–5). Among these pulmonary complications, interstitial lung disease (ILD) has the highest prevalence (6). Importantly, RA-ILD is a significant cause of mortality among RA patients and contributes to considerable morbidity (7). Consequently, accurately assessing mortality risk associated with RA-ILD is of great clinical significance.

The ILD-GAP (gender, age, and pulmonary physiology) index, initially proposed by Ley et al. in 2012 (8), is a simple scoring system designed to predict mortality risk in patients with idiopathic pulmonary fibrosis. Utilizing variables such as gender, age, predicted forced vital capacity (FVC), and diffusion capacity for carbon monoxide (DLCO), which has been refined and validated for various types of ILD (9). Its accuracy in predicting outcomes for RA-ILD has been confirmed by multiple studies (10–12). However, pulmonary function tests (PFTs) necessitate active participation from patients, such as performing deep breaths or forceful exhalations (13). This can be particularly challenging for special populations, including those with cognitive impairments or concurrent pulmonary conditions, potentially compromising the precision of the test results. To our knowledge, there is an absence of universal, quantitative, non-invasive techniques for the staging of RA-ILD.

The current primary method for diagnosing RA-ILD remains Computed Tomography (CT) scan, owing to its noninvasive and sensitive nature in detecting lung involvement (14, 15). However, there are many features to determine the presence of ILD and inter-reader variability, especially in unexperienced readers, is an issue (16). Visual analysis of ILDs on CT images faces difficulties in providing prognosis information, as various stages of RA-ILD exhibit overlapping imaging features, making the diagnosis and assessment of severity challenging with conventional imaging modalities (17, 18). Radiomics technology, capable of extracting numerous high-dimensional features from CT images, emerges as a solution to address the limitations of visual assessment. Although radiomics has predominantly been explored in the context of various tumors (19, 20), its potential has been demonstrated in identifying the GAP staging of connective tissue disease-associated interstitial lung disease (CTD-ILD) (21, 22). However, ILD associated with different CTDs can be characterized by distinct clinical manifestations, imaging, and pathological features, indicating their unique developmental and regression patterns. In the context of RA-ILD, evidence from a small cohort study suggested that radiomics may hold the potential for predicting mortality (23). However, limited studies are focusing on the application of radiomics in the staging of RA-ILD. Therefore, it is still necessary to explore the discriminative value of radiomics in various stages of RA-ILD.

In this retrospective study, we aimed to establish a novel CT-based radiomics nomogram to differentiate between the different stages of RA-ILD.




2 Materials and methods



2.1 Patients

The study included patients clinically diagnosed with RA-ILD between April 2020 and December 2023 at Guanghua Hospital Affiliated with Shanghai University of Traditional Chinese Medicine. Inclusion criteria comprised patients meeting all of the following conditions: 1) diagnosed with RA according to the 2010 American College of Rheumatology criteria for RA (24); 2) diagnosed with ILD according to the American Thoracic Society, European Respiratory Society, Japanese Respiratory Society, and Latin American Thoracic Society (ATS/ERS/JRS/ALAT) criteria for ILD (25); 3) underwent a CT scan showing signs of ILD within 3 months after clinical diagnosis; and 4) underwent pulmonary function tests and laboratory examination within 30 days before or after the CT scan. Exclusion criteria were applied for patients meeting any of the following conditions: 1) those with pulmonary edema, infection, drug toxicity, allergy tumor, or heart disease; 2) diagnosed with a combination of other types of CTD; 3) incomplete demographic or clinical data. The flowchart of the study subjects is shown in Figure 1.

[image: Flowchart showing selection of 177 RA-ILD patients from an initial 300. Exclusions include 78 without recent PFTs, 15 with incomplete data, 4 with pulmonary infection, and 26 with poor image quality. The included patients are divided into 107 with ILD-GAP stage I, 63 with stage II, and 7 with stage III. They are then split into 124 for training and 53 for testing cohorts.]
Figure 1 | Flowchart of the patient cohort.




2.2 Pulmonary function test

The routine PFTs were conducted using the Master Screen Diffusion Pulmonary Function Instrument (Eric Jaeger, Germany). The following indicators were assessed: the percentage predicted values (% predicted) of forced expiratory volume in 1 s (FEV1), FVC, total lung capacity (TLC), and DLCO. The ILD-GAP index was calculated in accordance with the method proposed by Ryerson et al. (9). Subsequently, patients were categorized into two groups: Group I comprised patients with an ILD-GAP index ≤1, while Group II included patients with an ILD-GAP index >1.




2.3 CT image acquisition and evaluation

All enrolled patients underwent nonenhanced chest CT examinations using one of two multidetector CT systems: SOMATOM Definition Flash (Siemens Healthcare, Tokyo, Japan) or Access CT (Philips Healthcare, Andover, Massachusetts, USA). The parameters used for CT scanning were as follows: tube voltage of 120 kVp and tube current-time product of 60-220 mAs with automatic dose modulation; detector collimation of 64 × 0.6 mm; rotation time of 1.0 second; and matrix size of 512 × 512. All CT scans were reconstructed with a 1-mm slice thickness and lung convolution kernels. The semiquantitative CT (SQCT) assessment was carried out to calculate Goh score for each CT scan (26). RA-ILD findings from HRCT were classified as UIP or non-UIP patterns following recent IPF guidelines (25).




2.4 Three-dimensional lung segmentation

All image segmentation was executed using 3D Slicer software (version 5.6.1, www.slicer.org). The preprocessing steps were carried out as follows: 1) All CT images were reprocessed using the “Resample Scalar Volume” module by resampling them into 1-mm thick slices and normalizing the intensity values within the range of [–1, 1]. 2) Using the “Radiomics” module, the voxel intensity values were discretized with a fixed bin width of 25 HU to reduce noise and standardize intensity across the images. 3) Z-score normalization was performed on the image gray values to reduce the impact of inconsistent imaging parameters on the variability of radiomics features. 4) The region of interest (ROI) of the bilateral lungs was automatically segmented, encompassing blood vessels and the trachea in the lung lobes (window width = 1,250; window level = -875). A threshold-based region growing method was utilized. The seeding strategy involved the placement of a total of 13 seed points across different anatomical planes. On the axial plane, three seed points were positioned in the peripheral regions of the left and right lungs, respectively. A similar approach was adopted on the coronal plane. Additionally, one seed point was positioned at the location of the main bronchus. Subsequently, the segmentation results underwent manual correction by a radiologist with 5 years of experience in imaging diagnosis of chest diseases, and confirmation was obtained from another radiologist with 8 years of experience in imaging diagnosis of chest diseases.

Interclass and intraclass correlation coefficients (ICCs) were employed in the following manner: A total of 20 cases were randomly selected for region of interest (ROI) segmentation by Radiologist 1. Radiologist 2 then replicated the segmentation for these 20 cases. Subsequently, Radiologist 1 repeated the segmentation after a one-month interval. The segmentation was deemed well-matched in terms of interobserver reliability and intraobserver reproducibility when the ICC value surpassed 0.75.




2.5 Radiomics feature extraction and model establishment

Figure 2 shows the workflow of radiomics analysis in this study. The patient cohort was randomly split into training and test cohorts at a ratio of 7:3. Feature extraction was performed utilizing the open-source Pyradiomics software package (http://pypi.org/project/pyradiomics/). This package facilitates the extraction of a comprehensive suite of radiomics features, categorized into seven distinct classes: Gray Level Dependence Matrix (GLDM), Gray Level Co-occurrence Matrix (GLCM), Gray Level Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM), Neighboring Gray Tone Difference Matrix (NGTDM), First Order Statistics, and Shape-based features (3D). A detailed description of the extracted features is accessible via the Pyradiomics documentation (http://pyradiomics.readthedocs.io). A total of 1,834 radiomics features were extracted from the ROIs. Statistical analysis involved the Student’s t-test for normally distributed features and the Mann-Whitney U test for others. Features with a p-value ≤ 0.05 were retained, resulting in 1,171 features. Spearman’s rank correlation coefficient was then applied to identify robustly repeatable features, retaining one feature from pairs with a correlation coefficient > 0.75. A recursive elimination strategy further refined the features to a subset of 102. The dataset’s signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression model. The optimal λ value was determined via tenfold cross-validation. Features with non-zero coefficients formed the Radiomics Signature, combining linearly to compute the radiomics score for each patient. Scikit-learn in Python was employed for LASSO regression, and logistic regression was used for model formulation after 10-fold cross-validation to verify model adequacy.

[image: Flowchart illustrating a medical imaging analysis process in four stages: ROI Segmentation shows CT scans with highlighted regions. Feature Extraction presents a 3D lung model and texture grids. Feature Selection includes feature distributions and metrics like MSE and Coefficient. Prediction section displays graphs for predict scores, AUC, DCA, and a nomogram. Arrows indicate progression between stages.]
Figure 2 | Overview workflow of radiomics analysis. Semi-automatic segmentation of the whole lung was performed on CT images, followed by manual adjustment of the confirmed dissection range, with the region of interest delineated in blue. Imaging-derived histologic features, including shape and texture characteristics, were extracted from CT images of both lungs. Feature selection was conducted using inter- and intra-observer reliability assessment as well as the LASSO method. The performance and clinical utility of predictive model were evaluated using ROC, DCA, and nomogram analysis. MSE Mean standard error, ROC Receiver operating characteristic, DCA Decision curve analysis.




2.6 Construction of the clinical model

The clinical factor model incorporated variables that were significantly different (p < 0.05) as determined by univariate logistic regression analysis. These variables included clinical data and laboratory examinations from the training cohort. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for the significantly correlated variables. To mitigate the risk of data leakage within the models, gender, age, and PFT parameters were excluded.




2.7 The building of the clinical-radiomics nomogram

A multivariate logistic regression analysis, combining both the clinical signature and radiomics signature, was employed in a backward step-down selection procedure to develop the final integrated radiomics-clinical prediction model.




2.8 Statistical analysis

Statistical analyses were performed using SPSS (version 26.0; IBM Corp.). Statistical significance was defined as a two- sided p-value ≤ 0.05. Normally distributed data were analyzed using independent T-tests, and non-normally distributed data were presented as medians (interquartile range) using Mann-Whitney U tests. Categorical variables were analyzed using chi-square tests. The predictive performance of the three models was evaluated using receiver operating characteristic (ROC) curves, with the area under the ROC curve (AUC) calculated. Model performance was tested in both the training and test cohorts. The Delong test was applied to compare AUCs among the three models. Calibration efficiency of the nomogram was assessed through calibration curves, and the Hosmer–Lemeshow analytical fit was used to evaluate calibration ability. Decision curve analysis (DCA) was employed to evaluate the clinical utility of the radiomics-clinical model.





3 Results



3.1 Patient characteristics

A total of 177 patients with RA-ILD were enrolled in this study. Among these patients, 107, 63, and 7 were allocated to ILD-GAP stage I, II, and III, respectively. To prevent excessive data bias, the patients in ILD-GAP stage II and III were combined into a single group. Table 1 listed the baseline patient characteristics in group I and group II. Age, gender, FVC, FEV1, TLC, DLCO, and serum Krebs von den Lungen-6 (KL-6) level showed significant differences (p < 0.05) between the two groups, while the differences in smoking history, ACPA, RF-IgM, RF-IgA, and RF-IgG were not significant (p > 0.05). In addition, there was no significant statistical difference between the two groups in terms of ESR, CRP, TNFα, IFNγ, IFNα, as well as disease activity score (p > 0.05).

Table 1 | Patient characteristics.


[image: Table comparing two groups (Group I with 107 participants and Group II with 70 participants) in terms of demographic, lung function, laboratory examinations, disease activity, CT images, and treatment for rheumatoid arthritis. Key differences include the percentage of females and age. Significant findings show variations in lung function values (FVC%, FEV1%, TLC%), KL-6 levels, interstitial lung disease patterns, and treatment with biological agents. P-values indicate statistical significance, with notable differences highlighted, such as in FVC%, FEV1%, TLC%, KL-6 levels and treatment with a biological agent.]



3.2 Development of the clinical model

Univariate logistic regression was performed to analyze the clinical data and laboratory examinations (Table 2). To ensure the reliability of the model construction, factors such as gender, age, and PFT parameters were excluded. Then, KL-6 (ORs = 1.007; 95% CI, 1.004-1.010; p < 0.001) was selected as independent clinical risk factors.

Table 2 | Independent risk factors in training cohort.


[image: Table displaying various variables, odds ratios with 95% confidence intervals, and p-values. Significant findings include Age, FVC percentage, FEV1 percentage, TLC percentage, DLCO percentage, and KL-6, all with a p-value less than 0.001. Variables like RA duration, ACPA, RFIgM, and RFIgG show non-significant p-values.]



3.3 Development of the radiomics model

A total of 1,834 radiomics features were extracted from the CT images, with 1,171 exhibiting promising interobserver and intraobserver agreement (intraclass correlation coefficient > 0.75). Through LASSO logistic regression analysis, 102 significantly different (p < 0.05) radiomics features were selected to identify optimally related features. Ultimately, 19 features were included in the construction of the radiomics model. Figures 3A,B show the coefficients and mean standard error (MSE) for the 10-fold validation, while Figure 3C presents the coefficient values for the final selection of non-zero features Rad score is shown as follows: Rad-score= 0.4227 + 0.0088 × exponential_firstorder_Range +0.0296 × exponential_glrlm_ShortRunLowGrayLevelEmphasis -0.0157 × exponential_glszm_GrayLevelNonUniformityNormalized +0.0516 × gradient_glcm_Correlation +0.0743 × lbp_3D_m1_glszm_ZoneEntropy +0.0146 × lbp_3D_m2_glszm_SizeZoneNonUniformity +0.0477 × log_sigma_3_0_mm_3D_glcm_Idn -0.0107 × original_glszm_LargeAreaHighGrayLevelEmphasis -0.0561 × original_glszm_SmallAreaHighGrayLevelEmphasis +0.0590 × original_glszm_SmallAreaLowGrayLevelEmphasis +0.0049 × original_ngtdm_Busyness -0.0623 × original_shape_Flatness +0.0020 × original_shape_Maximum2DDiameterSlice +0.0349 × original_shape_MinorAxisLength -0.0730 × original_shape_Sphericity -0.0597 × squareroot_firstorder_Skewness -0.0879 × wavelet_HHL_glcm_Idmn +0.0285 × wavelet_LHL_ngtdm_Busyness +0.0026 × wavelet_LLH_firstorder_Skewness.

[image: Panel A shows a line plot of coefficients across different lambda values, indicating variable significance in a model. Panel B features a bar plot of mean squared error against lambda values, highlighting optimal regularization at Lambda equals zero point zero two nine five. Panel C displays a horizontal bar chart of various feature names and their corresponding coefficients, illustrating their impact on the model.]
Figure 3 | Radiomics feature selection based on LASSO algorithm and Rad score establishment. (A) LASSO coefficient profile plot with different log (λ)was shown. (B) Ten-fold cross-validated coefficients and 10-fold cross-validated MSE. (C) The histogram of the Rad score based on the selected features.




3.4 Comparison of clinical, radiomics, and nomogram models

As shown in Figure 4, for the AUC, the clinical features [0.736, 95%CI = 0.642–0.830) and the radiomics features (0.939, 95%CI = 0.892–0.985) were perfectly fitted for the training cohort. In the testing cohort, the clinical characteristics (0.752, 95%CI = 0.610–0.894) and the radiomics signature remained well-fitted (0.901, 95%CI = 0.820–0.982). As shown in Figure 5, The nomogram using the LR algorithm, combining clinical features and radiomics features, showed the best performance in the training (0.948, 95%CI = 0.910–0.987) and testing cohort (0.923, 95%CI = 0.853–0.993), respectively. The detailed diagnostic efficiency capability for each model is presented in Supplementary Table S1.

[image: Two charts labeled A and B compare the ROC curves of three models: Clinic Signature, Rad Signature, and Nomogram. Chart A shows Clinic Signature with AUC 0.736, Rad Signature 0.939, and Nomogram 0.948. Chart B shows Clinic Signature with AUC 0.752, Rad Signature 0.901, and Nomogram 0.923. A dashed diagonal line represents random chance.]
Figure 4 | Comparison of receiver operating characteristic (ROC) curves for the clinical, radiomics, and nomogram models in the training (A) and testing (B) cohorts. The combined nomogram performed optimally in both the training and testing cohorts.

[image: Nomogram with five scales: Points, Clinic_Sig ranging from 0.1 to 1, Rad_Sig from 0 to 1, Total Points from 0 to 220, and Risk from 0.01 to 0.99. Each scale is marked with increments appropriate to its range.]
Figure 5 | A constructed nomogram for predicting the GAP staging of RA-ILD.

To compare the clinical signature, radiomics signature, and nomogram, the Delong test was utilized (Supplementary Table 2). In the testing cohort, the results indicated that the AUC comparison between the nomogram and the clinical signature achieved 0.021, suggesting that the nomogram outperformed the clinical model in discriminating the GAP staging of RA-ILD. The AUC comparison between the nomogram and radiomics signature was 0.219, indicating that both models performed well in differentiating the GAP staging of RA-ILD.




3.5 Comparison of visual assessment, radiomics, and nomogram models

In the testing cohort, the Goh score achieved an AUC of 0.820 (95%CI=0.700-0.941; Supplementary Figure 1). Comparatively, both the radiomics model (0.901, 95% CI: 0.820-0.982) and the combined radiomics-KL-6 nomogram model (0.923, 95% CI: 0.853-0.993) showed superior AUC values relative to the Goh score.




3.6 Calibration curve and DCA of the models

The calibration curves for the training and testing cohorts were shown in Figure 6. The p-values from the Hosmer-Lemeshow test for clinical features, radiologic features, and nomograms were 0.557, 0.171, 0.305, and 0.193, 0.072, 0.160 in the training and test cohorts, respectively. These p-values suggest a perfect agreement for each model (Supplementary Table 3).

[image: Two calibration plots labeled A and B compare predicted probabilities against the fraction of positives. Both plots include three colored lines: blue for Clinic Signature, orange for Rad Signature, and green for Nomogram, along with a dotted line indicating perfect calibration. Each line shows different levels of calibration between predicted probabilities and actual outcomes.]
Figure 6 | Calibration curves in the training and testing cohorts showing that the nomogram fits perfectly well in both the training (A) and testing cohorts (B).

As shown in Figure 7, the DCA for clinical features, radiographic features, and nomograms, covering predictive probabilities from 0.12 to 0.41, 0.02 to 0.91, and 0.1 to 0.78. The nomogram achieves the largest net benefit compared to other models when the threshold probability ranges from 0.23 to 0.58.

[image: Decision curve analysis graph titled "Model for DCA" showing net benefit over threshold probability. Lines represent Clinic Signature (blue), Rad Signature (orange), Nomogram (green), Treat all (black), and Treat none (dotted). Lines vary in slope and overlap, indicating different net benefits at various probabilities.]
Figure 7 | Decision curve analysis (DCA) of the clinical, radiomics, and nomogram models in the testing cohort.





4 Discussion

In our study, the radiomics model based on chest CT has great performance to distinguish different ILD-GAP stage patients with an AUC of 0.901 in validation cohort. The nomogram model, combining the radiomics model and serum KL-6, further enhanced the prediction efficiency of GAP staging with an AUC of 0.948 and 0.923 in the training and validation cohort, respectively.

Among the serological markers, anti-citrullinated protein antibodies (ACPA) have been implicated in the extra-articular manifestations of RA, including ILD (27–29). Correia et al. reported a correlation between ACPA titers and the risk of developing ILD (30). On the contrary, many studies have shown no association between ACPA and ILD, as well as related RF factors. Similarly, our study revealed no significant differences between ACPA and RF factors in different stages of RA-ILD. However, these different results may be attributed to the heterogeneity of ACPA specificity and search methods (5, 31). It is worth noting that treatment strategies may play a crucial role in the development and progression of RA-ILD. A higher proportion of biological agent use was revealed in the low-risk group by our analysis. This suggests that patients using biological agents may represent a cohort receiving early and aggressive treatment. The use of biological agents may interrupt the inflammatory cascade leading to ILD, thereby reducing the risk of developing severe ILD in later stages (32, 33).

In addition, older age and male sex have been strongly associated with RA-ILD (34). We excluded gender, age, and PFTs parameters from the clinical model to prevent data leakage, despite their status as independent risk factors. Eventually, univariate logistic regression analysis revealed that KL-6 was an independent predictor in our present study. KL-6 is a mucin-like glycoprotein which stimulates fibrosis and inhibits apoptosis of pulmonary fibroblasts (35, 36). Elevated serum KL-6 levels have been observed in RA patients with lung involvement, suggesting its potential utility in early detection of ILD. In a cohort of 50 RA patients, KL-6 levels positively correlated with the high-resolution computed tomography fibrosis score, indicating that high KL-6 levels are a significant biomarker for ILD and may serve as a predictor for ILD severity in RA patients (37). Moreover, a study suggests that high KL-6 levels might be an independent risk factor and useful for the prognosis in patients with RA-ILD (38). So far, the utility of serum KL-6 has been evaluated in several forms of ILD and its sensitivity and specificity for RA-ILD ranged from 67%-85% and 60%-90%, respectively, depending on the cutoff value (36, 37, 39). In our study, a clinical factor model to classify RA-ILD stages was developed based on KL-6, and then achieved an AUC of 0.752 in the testing cohorts.

Radiomics is an objective technique offering a reliable and comprehensive quantitative assessment of images, unaffected by inter-reader variability (40). Feature extraction involves mathematical operations on digital images to generate numerical descriptors of texture, shape, and other distinct characteristics. These descriptors can be computationally analyzed to explore potential associations with clinical parameters (41). Particularly useful for diseases challenging to describe through simple visual features, high-dimensional abstract features extracted from wavelet-transformed images can provide diverse perspectives in capturing hidden information not easily observed visually. Radiomics features have indeed proven their potential for severity estimation in Systemic sclerosis-ILD and guiding treatment decisions (42). At present, the literature on the application of radiomics is limited. Venerito et al. (23) retrieved the HRCTs of 30 RA-ILD patients and suggested that radiomics analysis could predict patient mortality. This finding suggests that HRCT could serve as a digital biomarker for RA-ILD, offering prognostic value that is independent of the clinical characteristics of the disease. Recently, some scholars have developed radiomics models based on CT images to differentiate GAP staging in CTD patients. Qin et al. (21) manually segmented the right lung of CTD-ILD patients and constructed a radiomics model from the 9 extracted texture features. The AUC of their radiomics models in the validation cohort was 0.787 and 0.718 in the internal and external test cohort, respectively. A similar study utilized a semi-automatic segmentation method to segment bilateral lungs, obtaining a total of 4 features (22). Their developed radiomics model demonstrated an AUC of 0.801 in the test cohort. Instead of focusing on all types of CTDs, we concentrated on patients with RA. In our work, totally1,834 radiomics features obtained from the CT images, 19 higher-order texture features extracted from wavelet transformed images were acquired as remarkable elements to build the radiomics model, resulting in an AUC of 0.939, and 0.901 in the training and testing cohorts, respectively. It is speculated that by targeted with ILD specifically caused by RA, to some extent excluded the imbalance of training data arising from the heterogeneous imaging characteristics of various CTD-ILD subtypes (43), which eventually screened out more features. In the current study, we constructed a nomogram model that integrates the radscore with serum KL-6 levels to further enhance the accuracy of predicting low-risk RA-ILD. In contrast to the GAP index, the nomogram model can predict GAP staging in patients with RA-ILD even when precise lung function parameters are challenging to obtain. This radiomics-based approach may serve as a supportive tool for assessing the severity of RA-ILD. Moreover, the proposed model can be readily implemented in clinical practice, as it leverages routinely acquired chest CT imaging and serum biomarker data to automate the computational process, thereby minimizing the operational burden on clinicians.

There are certain limitations in our study. Firstly, the single-center design with a relatively small overall sample size, especially the limited representation of more severe ILD-GAP stage III patients, may restrict the model ability. Future studies based on larger datasets from other centers are needed to evaluate model generalizability. Secondly, the exact mortality of the retrospective study verified by the GAP index system may less precise than actual mortality of patient. Nevertheless, as an available method to predict mortality, the GAP index system has been validated in RA-ILD. The precise assessment of mortality risk will be conducted in our further research. In addition, our study serves as a foundational exploration, offering valuable insights for selecting valuable imaging biomarkers in RA-ILD.

In conclusion, a novel nomogram model combining CT-based radiomics and serum KL-6 was developed in our study. It shows good prediction accuracy in predicting low-risk RA-ILD patients, which implies that this noninvasive and quantitative method may impact the clinical decision-making process, offering a more precise management strategy for patients with RA-ILD.
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Introduction: Self-supervised learning (SSL) is a strategy for addressing the paucity of labelled data in medical imaging by learning representations from unlabelled images. Contrastive and non-contrastive SSL methods produce learned representations that are similar for pairs of related images. Such pairs are commonly constructed by randomly distorting the same image twice. The videographic nature of ultrasound offers flexibility for defining the similarity relationship between pairs of images.
Methods: We investigated the effect of utilizing proximal, distinct images from the same B-mode ultrasound video as pairs for SSL. Additionally, we introduced a sample weighting scheme that increases the weight of closer image pairs and demonstrated how it can be integrated into SSL objectives.
Results: Named Intra-Video Positive Pairs (IVPP), the method surpassed previous ultrasound-specific contrastive learning methods' average test accuracy on COVID-19 classification with the POCUS dataset by ≥ 1.3%. Detailed investigations of IVPP's hyperparameters revealed that some combinations of IVPP hyperparameters can lead to improved or worsened performance, depending on the downstream task.
Discussion: Guidelines for practitioners were synthesized based on the results, such as the merit of IVPP with task-specific hyperparameters, and the improved performance of contrastive methods for ultrasound compared to non-contrastive counterparts.
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1 Introduction

Medical ultrasound (US) is a modality of imaging that uses the amplitude of ultrasonic reflections from tissues to compose a pixel map. With the advent of point-of-care ultrasound devices, ultrasound has been increasingly applied in a variety of diagnostic clinical settings, such as emergency care, intensive care, oncology, and sports medicine (Yim and Corrado, 2012; Whitson and Mayo, 2016; Sood et al., 2019; Soni et al., 2020; Lau and See, 2022). It possesses several qualities that distinguish it from other radiological modalities, including its portability, lack of ionizing radiation, and affordability. Despite morphological distortion of the anatomy, ultrasound has been shown to be comparable to radiological alternatives, such as chest X-ray and CT, for several diagnostic tasks (van Randen et al., 2011; Alrajhi et al., 2012; Nazerian et al., 2015).

Deep learning has been extensively studied as a means to automate diagnostic tasks in ultrasound. As with most medical imaging tasks, the lack of open access to large datasets is a barrier to the development of such systems, since large training sets are required for deep computer vision models. Organizations that have privileged access to large datasets are also faced with the problem of labeling ultrasound data. Indeed, many point-of-care ultrasound examinations in acute care settings are not archived or documented (Hall et al., 2016; Kessler et al., 2016).

When unlabeled examinations are abundant, researchers turn to unsupervised representation learning to produce pretrained deep learning models that can be fine-tuned using labeled data. Self-supervised learning (SSL) is a broad category of methods that has been explored for problems in diagnostic ultrasound imaging. Broadly, SSL refers to the supervised pretraining of a machine learning model for a task that does not require labels for the task of interest. The pretraining task (i.e., pretext task) is a supervised learning task where the target is a quantity that is computed from unlabeled data. After optimizing the model's performance on the pretext task, the weights are recast as initial weights for a new model that is trained to solve the task of interest (referred to as the downstream task). If the pretrained model has learned to produce representations of salient information in ultrasound images, then it is likely that it can be fine-tuned to perform the downstream task more proficiently than had it been randomly initialized. Contrastive learning is a type of pretext task in SSL that involves predicting whether two inputs are related (i.e., positive pairs) or unrelated (i.e., negative pairs). In computer vision, a common way to define positive pairs is to apply two randomly defined transformations to an image, producing two distorted views of the image with similar content. Positive pairs satisfy a pairwise relationship that indicate semantic similarity. All other pairs of images are regarded as negative pairs. Non-contrastive methods disregard negative pairs, focusing only on reducing the differences between representations of positive pairs.

Unlike other forms of medical imaging, US is a dynamic modality acquired as a stream of frames, resulting in a video. Despite this, there are several US interpretation tasks that can be performed by assessing a still US image. Previous studies exploring SSL in US have exploited the temporal nature of US by defining contrastive learning tasks with intra-video positive pairs – positive pairs comprised of images derived from the same video (Chen et al., 2021; Basu et al., 2022). Recent theoretical results indicate that the pairwise relationship must align with the labels of the downstream task in order to guarantee that self-supervised pretraining leads to non-inferior performance on the downstream task (Balestriero and LeCun, 2022). For classification tasks, this means that positive pairs must have the same class label. Due to the dynamic nature of US, one cannot assume that all frames in a US video possess the same label for all downstream US interpretation tasks. As a result, it may be problematic to indiscriminately designate any pair of images originating from the same US video as a positive pair. Moreover, since US videos are often taken sequentially as a part of the same examination or from follow-up studies of the same patient, different US videos may bear a striking resemblance to each other. It follows that designating images from different US videos as negative pairs may result in negative pairs that closely resemble positive pairs.

In this study, we aimed to examine the effect of proximity and sample weighting of intra-video positive pairs for common SSL methods. We also intended to determine if non-contrastive methods are more suitable for classification tasks in ultrasound. Since non-contrastive methods do not require the specification of negative pairs, we conjectured that non-contrastive methods would alleviate the issue of cross-video similarity and yield stronger representations for downstream tasks. Our contributions and results are summarized as follows:

	• A method for sampling intra-video positive pairs for joint embedding SSL with ultrasound.
	• A sample weighting scheme for joint embedding SSL methods that weighs positive pairs according to the temporal or spatial distance between them in their video of origin.
	• A comprehensive assessment of intra-video positive pairs integrated with SSL pretraining methods, as measured by downstream performance in B-mode and M-mode lung US classification tasks. We found that, with proper downstream task-specific hyperparameters, intra-video positive pairs can improve performance compared to the standard practice of producing two distortions of the same image.
	• An comparison of contrastive and non-contrastive learning for multiple lung US classification tasks. Contrary to our initial belief, a contrastive method outperformed multiple non-contrastive methods on multiple lung US downstream tasks.

Figure 1 encapsulates the novel methods proposed in this study. To the authors' knowledge, there are no preceding studies that systematically investigate the effect of sampling multiple images from the same US video in non-contrastive learning. More generally, we believe that this study is the first to integrate sample weights into non-contrastive objectives.


[image: Diagram showing two feature extraction processes: A) B-mode and B) M-mode. Both start with 3D image data in step (1), followed by slices in (2) and images with a highlighted region in (3). In step (4), the data is input to a feature extractor. Step (5) involves a projector, resulting in the output \(X_{SSL}\) in step (6).]
FIGURE 1
 An overview of the methods introduced in this study. Positive pairs of images separated by no more than a threshold are sampled from the same B-mode video (1). Sample weights inversely proportional to the separation between each image (red bars) are calculated for each pair (2). Random transformations are applied to each image (3). Images are sent to a neural network consisting of a feature extractor (4) and a projector (5) connected in series. The outputs are used to calculate the objective [image: Stylized mathematical notation showing the letter 'L' with a subscript 'SSL'.] (6). The trained feature extractor is retained for downstream supervised learning tasks. (A) For B-mode ultrasound, positive pairs are temporally separated images from the same video. (B) For M-mode ultrasound, positive pairs are spatially separated images from the same video.




2 Background


2.1 Joint embedding self-supervised learning

Having gained popularity in recent years in multiple imaging modalities, joint embedding SSL refers to a family of methods where the pretext task is to produce output vectors (i.e., embeddings) that are close for examples satisfying a similarity pairwise relationship. Pairs of images satisfying this relationship are known as positive pairs, and they assumed to share semantic content with respect to the downstream task. For example, positive pairs could belong to the same class in a downstream supervised learning classification task. On the other hand, negative pairs are pairs of images that do not satisfy the pairwise relationship. In the label-free context of SSL, positive pairs are often constructed by sampling distorted versions of a single image (Chen et al., 2020; Grill et al., 2020; Zbontar et al., 2021; Bardes et al., 2022). The distortions are sampled from a distribution of sequentially applied transformations that are designed to preserve the semantic content of the image. Horizontal reflection is a common example of a transformation that meets this criterion in many forms of imaging.

The architecture of joint embedding models commonly consists of two modules connected in series: a feature extractor and a projector. The feature extractor is typically a convolutional neural network (CNN) or a variant of a vision transformer, while the projector is a multi-layer perceptron. After pretraining, the projector is discarded and the feature extractor is retained for weight initialization for the downstream task.

Contrastive learning and non-contrastive learning are two major categories of joint embedding methods. Contrastive methods rely on objectives that explicitly attract positive pairs and repel negative pairs in embedding space. Many of these methods adopt the InfoNCE objective (Oh Song et al., 2016), which may be viewed as cross-entropy for predicting which combination of embeddings in a batch correspond to a positive pair. In most contrastive methods, positive pairs and negative pairs are distorted versions of the same image and different images, respectively. MoCo is a contrastive method that computes pairs of embeddings using two feature extractors: a “query” encoder and a “key” encoder (He et al., 2020). The key encoder, which is an exponentially moving average of the query encoder, operates on negative examples Its output embeddings are queued to avoid recomputation of negative embeddings. SimCLR (Chen et al., 2020) is a widely used contrastive method that employs a variant of the InfoNCE objective that does not include the embedding of the positive pair in the demoninator (Oh Song et al., 2016). It does not queue negative embeddings, relying instead on large batches of negative examples.

Non-contrastive methods dispense with negative pairs altogether, limiting their focus to reducing the difference between embeddings of positive pairs. By design, they address the information collapse problem – a degenerate solution wherein all examples map to a null representation vector. Self-distillation non-contrastive methods use architectural and asymmetrical training strategies to avoid collapse [e.g., BYOL (Grill et al., 2020)]. Information maximization non-contrastive methods address collapse by employing objectives that maximize the information content of the embedding dimensions. For instance, the Barlow Twins method is a composite objective that contains a term for penalizing dimensional redundancy for batches of embeddings, in addition to a term for the distances between embeddings of individual positive pairs (Zbontar et al., 2021). VICReg introduced an additional term that explicitly maximizes variance across dimensions for batches of embeddings (Bardes et al., 2022). Despite a common belief that contrastive methods need much larger batch sizes than non-contrastive methods, recent evidence showed that hyperparameter tuning can boost the former's performance with smaller batch sizes (Bordes et al., 2023). Non-contrastive methods have been criticized for requiring embeddings with greater dimensionality than the representations outputted by the feature extractor; however, a recent study suggested that the difference may be alleviated through hyperparameter and design choices (Garrido et al., 2022).

Theoretical works have attempted to unify contrastive and non-contrastive methods. Balestriero and LeCun (2022) found that SimCLR, VICReg, and Barlow Twins are all manifestations of spectral embedding methods. Based on their results, they recommended that practitioners define a pairwise relationship that aligns with the downstream task. For example, if the downstream task is classification, then positive pairs should have the same class. Garrido et al. (2022) challenged the widely held assumptions that non-contrastive methods perform better than contrastive methods and that non-contrastive methods rely on large embedding dimensions. They showed that the methods perform comparatively on benchmark tasks after hyperparameter tuning and that VICReg can be modified to reduce the dependence on large embeddings (Garrido et al., 2022).



2.2 Joint embedding methods for B-mode lung ultrasound

Ultrasound is a dynamic imaging modality that is typically captured as a sequence of images and stored as a video. As such, images originating from the same video are highly correlated and are likely to share semantic content. Accordingly, recent works have developed US-specific contrastive learning methods that construct positive pairs from the same video. The Ultrasound Contrastive Learning (USCL) method (Chen et al., 2021) is a derivative of SimCLR in which positive pairs are weighted sums of random images within the same video [i.e., the mixup operation (Zhang et al., 2017)], while negative pairs are images from different videos. They reported an improvement on the downstream task of COVID-19 classification with the POCUS dataset (Born et al., 2020). Improving on USCL, Meta-USCL concurrently trains a separate network that learns to weigh positive pairs (Chen et al., 2022). The work was inspired by the observation that the intra-video positive pairs may exhibit a wide range of semantic similarity or dissimilarity. Lastly, the HiCo method's objective is the sum of a softened InfoNCE loss calculated for the feature maps outputted by various model blocks (Zhang et al., 2022). The authors reported greatly improved performance with respect to USCL.

Standard non-contrastive methods have been applied for various tasks in US imaging. In addition to assessing contrastive methods, Anand et al. (2022) conducted pretraining with two self-distillation non-contrastive methods [BYOL (Grill et al., 2020) and DINO (Caron et al., 2021)] on a large dataset of echocardiograms. BYOL pretraining has also been applied in anatomical tracking tasks (Liang et al., 2023). Information maximization methods have been investigated for artifact detection tasks in M-mode and B-mode lung ultrasound (VanBerlo et al., 2023a,b). To our best knowledge, no studies have trialed non-contrastive learning methods for B-mode ultrasound with intra-video positive pairs. The present study seeks to address this gap in the literature by investigating the effect of sampling positive pairs from the same video on the efficacy of non-contrastive pretraining for tasks in ultrasound.




3 Methods


3.1 Joint embedding methods for ultrasound with intra-video positive pairs
 
3.1.1 Setup

We consider the standard joint embedding scenario where unlabeled data are provided and the goal is to maximize the similarity between embeddings of positive pairs. In contrastive learning, the goal is augmented by maximizing the dissimilarity of negative pairs. Let x1 and x2 denote a positive pair of US images. Self-supervised pretraining results in a feature extractor f(x) that outputs representation vector h. The goal of SSL is to produce a feature extractor that is a better starting point for learning the downstream task than random initialization.

In this study, we propose a simple method for sampling and weighing positive pairs in the joint embedding setting that can be adopted for any joint embedding SSL method. We adopt SimCLR (Chen et al., 2020), Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022) for our experiments. In these methods, a MLP projector is appended to the feature extractor during pretraining. z = g(h) = g(f(x)) is the embedding vector outputted by the projector. The SSL objective is then computed in embedding space.



3.1.2 Intra-video positive pairs: (IVPP)

Recall that positive pairs are images that are semantically related. Previous work in contrastive SSL for US has explored the use of intra-video positive pairs (Chen et al., 2021, 2022; Basu et al., 2022; Zhang et al., 2022). A problem with naively sampling intra-video positive pairs is that it rests on the assumption that all images in the video are sufficiently similar. However, clinically relevant signs commonly surface and disappear within the same US video as the US probe and/or the patient move. For example, B-lines are an artifact in lung US that signify diseased lung parenchyma (Soni et al., 2020). B-lines may disappear and reappear as the patient breathes or as the sonographer moves the probe. The A-line artifact appears in the absence of B-lines, indicating normal lung parenchyma. In the absence of patient context, an image containing A-lines and an image containing B-lines from the same video convey very different impressions. While most previous methods only considered inter-video images to be negative pairs, Basu et al. (2022) argued that that temporally distant intra-video pairs of US images are more likely to be dissimilar, which inspired their method that treats such instances as negative pairs. Despite this, we argue that distant intra-video images may sometimes exhibit similar content. For example, the patient and probe may remain stationary throughout the video, or the probe may return to its original position and/or orientation. Moreover, periodic physiological processes such as the respiratory cycle may result in temporally distant yet semantically similar images. Without further knowledge of the US examinations in a dataset, we conjectured that it may be safest to only assume that positive pairs are intra-video images that are close to each other. Closer pairs are likely to contain similar semantic content, yet they harbor different noise samples that models should be invariant to. In summary, this method distinguishes itself from prior work by only considering proximal frames to be positive pairs and treating distant pairs as neither positive nor negative pairs.

For B-mode US videos, we define positive pairs as intra-video images x1 and x2 that are temporally separated by no more than δmax seconds. To accomplish this, x1 is randomly drawn from the video's images, and x2 is randomly drawn from the set of images that are within δt seconds of x1. The frame rate of the videos must be known in order to determine which images are sufficiently close to x1. Note that videos with higher frame rates will provide more candidates for positive pairs, potentially increasing the diversity of pairs with respect to naturally occurring noise.

A similar sampling scheme is applied for M-mode US images. Like previous studies, we define M-mode images as vertical slices through time of a B-mode video, taken at a specific x-coordinate in the video (Jasčǔr et al., 2021; VanBerlo et al., 2022b, 2023b). The x-axis of an M-mode image is time, and its y-axis is the vertical dimension of the B-mode video. We define positive pairs to be M-mode images whose x-coordinates differ by no more than δx pixels. To avoid resolution differences, all B-mode videos are resized to the same width and height prior to sampling M-mode images. The positive pair sampling process for B-mode and M-mode images is depicted in Figure 2.


[image: Diagram showing two 3D ultrasound image cubes labeled A and B, each demonstrating positive and negative pairs. Green lines indicate positive pairs, and red lines show negative pairs. Arrows indicate axes labeled x and t, with delta symbols representing time intervals.]
FIGURE 2
 Illustration of intra-video positive pairs. Positive pairs are considered images that are no more than a threshold apart from each other within the same ultrasound video. (A) For B-mode ultrasound, positive pairs are frames in the same video that are within δt seconds of each other. (B) For M-mode ultrasound, positive pairs are M-mode images originating from the same B-video that are located within δx pixels from each other. In the context of lung ultrasound, M-mode images should intersect the pleural line (outlined in mauve).


As is customary in joint embedding methods, stochastic data augmentation is applied to each image, encouraging the feature extractor to become invariant to semantically insignificant differences. Any data augmentation pipeline may be adopted for this formulation of intra-video positive pairs; however, we recommend careful selection of transformations and the distributions of their parameters to ensure that the pairwise relationship continues to be consistent with the downstream US task.



3.1.3 Sample weights

The chance that intra-video images are semantically related decreases as temporal or spatial separation increases. To temper the effect of unrelated positive pairs, we apply sample weights to positive pairs in the SSL objective according to their temporal or spatial distance. Distant pairs are weighed less than closer pairs. For a positive pair of B-mode images occurring at times t1 and t2 or M-mode images occurring at positions x1 and x2, the sample weight is calculated using Equation 1:

[image: Equation showing two expressions for width. The first is \( w = \frac{\delta_t - |t_2 - t_1| + 1}{\delta_t + 1} \). The second is \( w = \frac{\delta_x - |x_2 - x_1| + 1}{\delta_x + 1} \).]

Sample weights were incorporated into each SSL objective trialed in this study. Accordingly, we modified the objective functions for SimCLR, Barlow Twins, and VICReg in order to weigh the contribution to the loss differently based on sample weights. Appendix 1 describes the revised objective functions. To the authors' knowledge, this study is the first to propose sample weighting schemes for the aforementioned self-supervised learning methods.




3.2 Ultrasound classification tasks
 
3.2.1 COVID-19 classification (COVID)

As was done in previous studies on on US-specific joint embedding methods (Chen et al., 2021, 2022; Basu et al., 2022; Zhang et al., 2022), we evaluate IVPP on the public POCUS lung US dataset (Born et al., 2020). This dataset contains 140 publicly sourced US videos (2116 images) labeled for three classes: COVID-19 pneumonia, non-COVID-19 pneumonia, and normal lung.1 When evaluating on POCUS, we pretrain on the public Butterfly dataset, which contains 22 unlabeled lung ultrasound videos (Butterfly Network, 2020).2



3.2.2 A-line vs. B-line classification (AB)

A-lines and B-lines are two cardinal artifact in B-mode lung US that can provide quick information on the status of a patient's lung tissue. A-lines are reverberation artifacts that are indicative of normal, clear lung parenchyma (Soni et al., 2020). On lung US, they as horizontal lines deep to the pleural line. Conversely, B-lines are indicative of diseased lung tissue (Soni et al., 2020). Generally, the two are mutually exclusive. We evaluate on the binary classification task of A-lines versus B-lines on lung US, as was done in previous work benchmarking joint embedding SSL methods for lung US tasks (VanBerlo et al., 2023a).

We use a private dataset of 25917 parenchymal lung US videos (5.9e6 images), hereafter referred to as ParenchymalLUS. It is a subset of a larger database of de-identified lung US videos that was partially labeled for previous work (Arntfield et al., 2021; VanBerlo et al., 2022b). Access to this database was permitted via ethical approval by Western University (REB 116838). Before experimentation, we split the labeled portion of ParenchymalLUS by anonymous patient identifier into training, validation, and test sets. The unlabeled portion of ParenchymalLUS was assembled by gathering 20000 videos from the unlabeled pool of videos in the database that were predicted to contain a parenchymal view of the lungs by a previously trained lung US view classifier (VanBerlo et al., 2022a). All videos from the same patient were in either the labeled or the unlabeled subset. Table 1 provides further information on the membership of ParenchymalLUS.


TABLE 1 Breakdown of ParenchymalLUS at the video and image level.

[image: Table displaying data distribution for labeled and unlabeled sets across training, validation, and test phases. Total includes patients, videos, and images counts. Specific A/B line and lung sliding labels are shown with numbers indicating negative and positive examples. A footnote explains that video labels apply to each image within videos.]



3.2.3 Lung sliding classification (LS)

Lung sliding is a dynamic artifact that, when observed on a parenchymal lung US view, rules out the possibility of a pneumothorax at the site of the probe (Lichtenstein and Menu, 1995). The absence of lung sliding is suggestive of pneumothorax, warranting further investigation. On B-mode US, lung sliding manifests as a shimmering of the pleural line (Lichtenstein and Menu, 1995). The presence or absence of lung sliding is also appreciable on M-mode lung US images that intersect the pleural line (Lichtenstein et al., 2005; Lichtenstein, 2010). We evaluate on the binary lung sliding classification task, where positive pairs are M-mode images originating from the same B-mode video.

ParenchymalLUS is adopted for the lung sliding classification task. We use the same train/validation/test partition as described above. Following prior studies, we estimate the horizontal bounds of the pleural line using a previously trained object detection model (VanBerlo et al., 2022b) and use the top half of qualifying M-mode images, in decreasing order of total pixel intensity (VanBerlo et al., 2023b).





4 Results


4.1 Training protocols

Unless otherwise stated, all feature extractors are initialized with ImageNet-pretrained weights. Similar studies concentrating on medical imaging have observed that this practice improves downstream performance when compared to random initialization (Azizi et al., 2021; VanBerlo et al., 2023b). Moreover, we designate fully supervised classifiers initialized with ImageNet-pretrained weights as a baseline against which to compare models pretrained with SSL.

Evaluation on POCUS follows a similar protocol employed in prior works (Chen et al., 2021; Basu et al., 2022). Feature extractors with the ResNet18 architecture (He et al., 2016) are pretrained on the Butterfly dataset. Prior to training on the POCUS dataset, a 3-node fully connected layer with softmax activation was appended to the pretrained feature extractor. Five-fold cross validation is conducted with POCUS by fine-tuning the final three layers of the pretrained feature extractor. Unlike prior works, we adopt the average across-folds validation accuracy, instead of taking the accuracy of the combined set of validation set predictions across folds. Presenting the results in this manner revealed the high variance of model performance across folds, which may be due to the benchmark dataset's small video sample size.

All experiments with ParenchymalLUS utilize the MobileNetV3-Small architecture as the feature extractor, which outputs a 576-dimensional representation vector (Howard et al., 2019). Feature extractors are pretrained on the union of the unlabeled videos and labeled training set videos in ParenchymalLUS. Performance is assessed via test set classification metrics. Prior to training on the downstream task, a single-node fully connected layer with sigmoid activation was appended to the pretrained feature extractor. We report the performance of linear classifiers trained on the frozen feature extractor's representations, along with classifiers that are fine-tuned end-to-end.

For each joint embedding method, the projectors were multilayer perceptrons with two 768-node layers, outputting 768-dimensional embeddings. Pretraining is conducted for 500 epochs using the LARS optimizer (You et al., 2019) with a batch size of 384 and a learning rate schedule with warmup and cosine decay as in Bardes et al. (2022).

The pretraining and training data augmentation pipelines consist of random transformations, including random cropping, horizontal reflection, brightness jitter, contrast jitter, and Gaussian blurring. Additional data preprocessing details are available in Appendix 2.

Source code will be made available upon publication.3



4.2 Performance

The two main proposed features of IVPP are intra-video positive pairs and distance-based sample weights. Accordingly, we assess the performance of IVPP across multiple assignments of the maximum image separation. Separate trials were conducted for SimCLR, Barlow Twins, and VICReg pretraining. For the COVID and AB tasks, we explored the values δt∈{0, 0.5, 1, 1.5} seconds. The LS task is defined for M-mode US, and so we explored δx∈{0, 5, 10, 15} pixels. The standardized width of B-mode US videos should be considered when determining an appropriate range for δx. Note that when δ = 0, sample weights are all 1 and therefore do not modify any of the SSL objectives investigated in this study.

Figure 3 summarizes the performance of IVPP on the public POCUS dataset after pretraining on the Butterfly dataset, which is measured by average test accuracy in 5-fold cross validation. In most cases, pretrained models obtained equal or greater average accuracy than the ImageNet-pretrained baseline, with the exception of Barlow Twins with δt = 0 and δt = 0.5. The performance of models pretrained with SimCLR, Barlow Twins, and VICReg peaked at different nonzero values of δt (0.5, 1, and 1.5 respectively), indicating a possible benefit of selecting temporally close yet distinct intra-video positive pairs. It was also observed across all three pretraining methods that the inclusion of sample weights resulted in worsened test AUC when δ = 0.5, but improved test AUC when δ = 1.0 and δ = 1.5.


[image: Bar chart showing average validation accuracy for four methods: SimCLR (green), Barlow Twins (blue), and VICReg (orange), with and without stop windows (SW). X-axis represents delta t in seconds from 0.0 to 1.5. Y-axis shows accuracy from 0.80 to 0.95. Error bars indicate variability. A red dashed line marks a reference accuracy level.]
FIGURE 3
 Average test accuracy across 5-fold cross validation on the POCUS dataset. Models were pretrained with a variety of intra-video positive pair thresholds with and without sample weights. Error bars indicate the standard deviation across folds. The dashed line indicates initialization with ImageNet-pretrained weights.


Similar experiments were conducted with ParenchymalLUS for the AB task and LS task, using B-mode and M-mode images respectively as input. ParenchymalLUS represents a scenario where there is an abundance of unlabeled data, which differs greatly from the preceding evaluation on public, yet small, datasets. The unlabeled and labeled portions of ParenchymalLUS contained at least an order of magnitude more videos than either the public Butterfly and POCUS datasets. B-mode and M-mode feature extractors were pretrained on the union of the unlabeled and training portions of ParenchymalLUS—one for each value of δ, with and without sample weights. For these evaluations, we use all training examples that have been assigned a label for the downstream task. Figure 4 provides a visual comparison of the test AUC obtained by linear feature representation classifiers and fine-tuned models for the AB and LS tasks. An immediate trend across both tasks and evaluation types is that SimCLR consistently outperformed Barlow Twins and VICReg, which are both non-contrastive methods. Furthermore, pretraining with non-contrastive methods often resulted in worse test AUC compared to initialization with ImageNet-pretrained weights. Another observation across all experiments was that there was no discernible trend for the effect of sample weights that was consistent for any task, pretraining method, δt, or δx.


[image: Bar charts showcasing test AUC results across four experimental conditions labeled A, B, C, and D. Each chart compares four algorithms: SimCLR (SI), Barlow Twins (SI), SimCLR (SW), Barlow Twins (SW), and VICReg (SW) using different $\delta_t$ and $\delta_x$ values. Data points are color-coded with green for SimCLR (SI), blue for Barlow Twins (SI), orange for SimCLR (SW), light orange for Barlow Twins (SW), and red for VICReg (SW). Each bar set depicts how varying these parameters affects the test AUC performance.]
FIGURE 4
 ParenchymalLUS test set AUC for the AB and LS binary classification tasks, calculated for models pretrained with a selection of contrastive and non-contrastive learning methods and employing a variety of intra-video positive pair thresholds with and without sample weights (SW). The dashed line indicates initialization with ImageNet-pretrained weights. (A) Linear classifiers for the AB task. (B) Fine-tuned classifiers for the AB task. (C) Linear classifiers for the LS task. (D) Fine-tuned classifiers for the LS task.


Focusing on AB, linear classifiers achieved the greatest performance when δt>0, with the exception of VICReg (Figure 4A). The use of SimCLR compared to the other pretraining methods appeared to be responsible for the greatest difference in test performance. As shown in Figure 4A, SimCLR-pretrained models outperformed non-contrastive methods, and were the only models that outperformed ImageNet-pretrained weights. The use of a nonzero δt resulted in slight improvement in combination with SimCLR pretraining, but degraded performance of non-contrastive methods.

Similar results were observed for the LS M-mode classification task. Models pretrained with SimCLR were the only ones that matched or surpassed fully supervised models. Nonzero δx generally improved the performance of linear classifiers, with δx = 5 pixels corresponding to the greatest test AUC for SimCLR and VICReg, and δx = 15 for Barlow Twins. Inclusion of sample weights appreciably improved the performance of Barlow Twins-pretrained models. Fine-tuned models pretrained with SimCLR performed similarly to fully supervised models, while non-contrastive methods resulted in degradation of test AUC.

Table 2 compares the top-performing IVPP-pretrained models for each SSL method with two prior US-specific contrastive learning methods— USCL (Chen et al., 2021) and US UCL (Basu et al., 2022). Of note is that all three self-supervised methods pretrained with IVPP outperformed ImageNet-pretrained initialization for POCUS, a task where very little pretraining and training data were utilized. For the B-mode and M-mode tasks assessed with ParenchymalLUS, a contrastive method (including the baseline) outperformed non-contrastive methods. Appendix 4 provides additional results that exhibit a similar trend with different pretraining batch sizes. Overall, the most salient result from the above experiments is that SimCLR, a contrastive method, outperformed both non-contrastive methods when unlabeled data is abundant.


TABLE 2 Performance of fine-tuned models pretrained using IVPP compared to US-specific contrastive learning methods, USCL, and UCL, and to baseline random and ImageNet initializations.

[image: Table comparing various pretraining methods on POCUS and ParenchymalLUS datasets. Methods include Random initialization, ImageNet initialization, USCL, US UCL, and IVPP variants. POCUS mean test accuracy ranges from 0.881 to 0.930. ParenchymalLUS A/B Test AUC varies from 0.954 to 0.980, and LS Test AUC from 0.790 to 0.903.]



4.3 Label efficiency

ParenchymalLUS is much larger than public ultrasound datasets for machine learning. Although the majority of its videos are unlabeled, it contains a large number of labeled examples. To simulate a scenario where the fraction of examples that are labeled is much smaller, we investigated the downstream performance of models that were pretrained on all the unlabeled and training ParenchymalLUS examples and then fine-tuned on a very small subset of the training set.

Label efficiency investigations are typically conducted by fitting a model for the downstream task using progressively smaller fractions of training data to gauge how well self-supervised models fare in low-label scenarios. The results of these experiments may be unique to the particular training subset that is randomly selected. We designed an experiment to determine if the choice of δt, δx, or the introduction of sample weights influenced downstream performance in low-label settings. To reduce the chance of biased training subset sampling, we divided the training set into 20 subsets and repeatedly performed fine-tuning experiments on each subset for each pretraining method and δ value, with and without sample weights. To ensure independence among the subsets, we split the subsets by patient. Inspection of the central moments and boxplots from each distribution indicated that the normality and equal variance assumptions for ANOVA were not violated. For each pretraining method, a two-way repeated-measures analysis of variance (ANOVA) was performed to determine whether the mean test AUC scores across values of δ and sample weight usage were different. The independent variables were δ and the presence of sample weights, while the dependent variable was test AUC. Whenever the null hypothesis of the ANOVA was rejected, post-hoc paired t-tests were performed to compare the following:

	• Pretraining with nonzero δ against standard positive pair selection (δ = 0).
	• For the same nonzero δ value, sample weights against no sample weights.

For each group of post-hoc tests, the Bonferroni correction was applied to establish a family-wise error rate of α = 0.05. To ensure that each training subset was independent, we split the dataset by anonymous patient identifier. This was a necessary step because intra-video images are highly correlated, along with videos from the same patient. As a result, the task became substantially more difficult than naively sampling 5% of training images because the volume and heterogeneity of training examples was reduced by training on a small fraction of examples from a small set of patients.

The fine-tuning procedure was identical to that described in Section 4.1, with the exception that the model's weights at the end of training were retained for evaluation, instead of restoring the best-performing weights on the validation set. Figure 5 provides boxplots for all trials that indicate the distributions of test AUC under the varying conditions for both the AB and LS tasks. Again, SimCLR performance appeared to be substantially higher than both non-contrastive methods.


[image: Box plots comparing the test AUC across different methods (SimCLR, Barlow Twins, VICReg) with and without SW parameter tuning, plotted against δf (pixels). Panel A and B illustrate results for separate datasets. Each method is color-coded, with variability depicted by the spread of the boxes and whiskers.]
FIGURE 5
 Boxplots conveying the quartile ranges of test AUC distributions for each pretraining method and assignment to δ, with and without sample weights. Each experiment is repeated 20 times on disjoint subsets of the training set, each containing all images from a group of patients. (A) AB task. (B) LS task.


Table 3 gives the mean and standard deviation of each set of trials, for each hyperparameter combination. For each task and each pretraining method, the ANOVA revealed significant interaction effects (p ≤ 0.05). Accordingly, all intended post-hoc t-tests were performed to ascertain (1) which combinations of hyperparameters were different from the baseline setting of augmenting the same frame twice (δ = 0) and (2) values of δ where the addition of sample weights changes the outcome. First, we note that SimCLR was the only pretraining method that consistently outperformed full supervision with ImageNet-pretrained weights. Barlow Twins and VICReg pretraining – both non-contrastive methods – resulted in worse performance.


TABLE 3 ParenchymalLUS test AUC for the the AB and LS tasks when trained using examples from 5% of the patients in the training set.

[image: A table comparing pretraining methods: SimCLR, Barlow Twins, VICReg, and two baselines. It shows the mean and standard deviation of test AUC for each method under different values of \(\delta_t\) and \(\delta_x\), with and without sample weights (SW). Notable results are marked for statistical significance.]

For the AB task, no combination of intra-video positive pairs or sample weights resulted in statistically significant improvements compared to dual distortion of the same image (δt = 0). For Barlow Twins and VICReg, several nonzero δt resulted in significantly worse mean test AUC. Sample weights consistently made a difference in Barlow Twins across δt values, but only improved mean test AUC for δt = 1 and δt = 1.5.

Different trends were observed for the LS task. SimCLR with δx = 5 and no sample weights improved mean test AUC compared to the baseline where δx = 0. No other combination of hyperparameters resulted in a significant improvement. For Barlow Twins, multiple IVPP hyparameter combinations resulted in improved mean test AUC over the baseline. No IVPP hyperparameter combinations significantly improved the performance of VICReg.




5 Discussion


5.1 Guidelines for practitioners

Insights were derived to guide practitioners working with deep learning for ultrasound interpretation. First, SimCLR was observed to achieve the greatest performance consistently across multiple tasks. With the exception of the data-scarce COVID-19 classification task, SimCLR decisively outperformed Barlow Twins and VICReg on the A/B and LS tasks. The results provide evidence toward favoring contrastive learning over non-contrastive learning for problems in ultrasound. It could be that the non-contrastive methods studied may be less effective for lung ultrasound examinations. We suspect that the lack of diversity in parenchymal lung ultrasound and the fine-grained nature of the classification tasks is problematic for non-contrastive methods, as the objectives are attractive and focus on maximizing embedding information. Perhaps explicit samples of negative pairs may be needed to learn a meaningful embedding manifold for fine-grained downstream tasks. Future work assessing non-contrastive methods for tasks in different ultrasound examinations or alternative imaging modalities altogether would shed light on the utility of non-contrastive methods outside the typical evaluation setting of photographic images.

While the experimental results do not support the existence of overarching trends for hyperparameter assignments for intra-video positive pairs across pretraining methods, it was observed that some combinations improved performance on particular downstream tasks. For example, each pretraining method's downstream performance on COVID-19 classification was improved by a nonzero value of δt. Overall, the results indicated that the optimal assignment for IVPP hyperparameters may be problem-specific. Clinically, IVPP may improve performance on downstream ultrasound interpretation tasks; however, practitioners are advised to include a range of values of δ with and without sample weights in their hyperparameter search.



5.2 Limitations

The methods and experiments conducted in this study were not without limitations. As is common in medical imaging datasets, the ParenchymalLUS dataset was imbalanced. The image-wise representation for the positive class was 30.0% for the AB task and 11.7% for the lung sliding task. Although some evidence exists in support for self-supervised pretraining for alleviating the ill effects of class imbalance in photographic images (Yang and Xu, 2020; Liu et al., 2021), computed tomography, and fundoscopy images (Zhang et al., 2023), we found no such evidence for tasks in medical ultrasound.

As outlined in the background, the pretraining objectives employed in this study have been shown to improve downstream performance when the pairwise relationship aligns with the downstream task (Balestriero and LeCun, 2022). These guarantees compare to the baseline case of random weight initialization. While it was observed that all pretraining methods outperformed full supervision with randomly initialized weights, ImageNet-pretrained weights outperformed non-contrastive methods in several of the experiments. ImageNet-pretrained weights are a strong and meaningful baseline for medical imaging tasks, as they have been shown to boost performance in several supervised learning tasks across medical imaging modalities (Azizi et al., 2021). It is possible that some extreme data augmentation transformations and intra-positive pairs could jeopardize the class agreement of positive pairs (as is likely in most pragmatic cases); however, near-consistent alignment was achieved through data augmentation design and small ranges of δ. Although there exists evidence that VICReg and SimCLR can achieve similar performance on ImageNet with judicious selection of hyperparameters (e.g., temperature, loss term weights, learning rate) (Garrido et al., 2022), we used default hyperparameters. Due to limited computational resources, we avoided expansion of the hyperparameter space by only studying IVPP hyperparameters.

Lastly, M-mode images were designated by selecting x-coordinates in B-mode videos that intersect a pleural line region of interest, as predicted by an object detection model utilized in previous work (VanBerlo et al., 2022b, 2023b). LUS M-mode images must intersect the pleural line in order to appreciate the lung sliding artifact. While we mitigated potential inaccuracies in localization by limiting training and evaluation data to the brightest half of eligible x-coordinates, it is possible that a small fraction of M-mode images were utilized that did not intersect the pleural line.



5.3 Conclusion

Intra-video positive pairs have been proposed as a means of improving the downsteam performance of ultrasound classifiers pretrained with joint embedding self supervised learning. In this study, we suggested a scheme for integrating such positive pairs into common contrastive and non-contrastive SSL methods. Applicable to both B-mode and M-mode ultrasound, the proposed method (IVPP) consists of sampling positive pairs that are separated temporally or spatially by no more than a threshold, optionally applying sample weights to each pair in the objective depending on the distance. Investigations revealed that using nearby images from the same video for positive pairs can lead to improved performance when compared to composing positive pairs from the same image, but that IVPP hyperparameter assignments yielding benefits may vary by the downstream task. Another salient result was the persistent top performance of SimCLR for key tasks in B-mode and M-mode lung ultrasound, indicating that contrastive learning may be more suitable than non-contrastive learning methods for ultrasound imaging.

Future work could investigate IVPP for other types of medical ultrasound exams. IVPP could also be integrated into other SSL objectives. The sample weights formulation proposed in this study could also be applied to SSL for non-US videos. Given the high performance of SimCLR, subsequent work should perform a comprehensive comparison contrastive and non-contrastive SSL methods for tasks in medical US. Lastly, future work could evaluate US-specific data augmentation transformations that preserve semantic content. As a natural source of differences between positive pairs, IVPP could be studied in tandem with US-specific augmentations.
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Automated segmentation and classification of supraspinatus fatty infiltration in shoulder magnetic resonance image using a convolutional neural network
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Background: Goutallier’s fatty infiltration of the supraspinatus muscle is a critical condition in degenerative shoulder disorders. Deep learning research primarily uses manual segmentation and labeling to detect this condition. Employing unsupervised training with a hybrid framework of segmentation and classification could offer an efficient solution.
Aim: To develop and assess a two-step deep learning model for detecting the region of interest and categorizing the magnetic resonance image (MRI) supraspinatus muscle fatty infiltration according to Goutallier’s scale.
Materials and methods: A retrospective study was performed from January 1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with supraspinatus muscle fatty infiltration diagnoses. A model with two sequential neural networks was implemented and trained. The first sub-model automatically detects the region of interest using a U-Net model. The second sub-model performs a binary classification using the VGG-19 architecture. The model’s performance was computed as the average of five-fold cross-validation processes. Loss, accuracy, Dice coefficient (CI. 95%), AU-ROC, sensitivity, and specificity (CI. 95%) were reported.
Results: Six hundred and six shoulders MRIs were analyzed. The Goutallier distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3 (3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy (0.9977 ± 0.0002) and Dice score (0.9441 ± 0.0031), while the classification model also results in high levels of accuracy (0.9731 ± 0.0230); sensitivity (0.9000 ± 0.0980); specificity (0.9788 ± 0.0257); and AUROC (0.9903 ± 0.0092).
Conclusion: The two-step training method proposed using a deep learning model demonstrated strong performance in segmentation and classification tasks.
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 classification; deep learning; fatty infiltration; MRI; supraspinatus


Introduction

Rotator cuff tears (RCTs) are a prevalent musculoskeletal shoulder condition that affects millions of people worldwide, regardless of sex (1, 2). This degenerative and progressive condition becomes increasingly common with age in the general population (3), leading to significant economic consequences for patients and healthcare systems alike (4, 5). The magnitude of tear size, muscle atrophy, and fatty infiltration are important variables in predicting the prognosis of patients (6, 7). Specifically, low levels of fatty infiltration have been shown to have significantly better outcomes than those with more severe conditions, as they are less likely to experience re-tears (7, 8). Therefore, identifying specific stages of fatty infiltration and the supraspinatus muscle is crucial in accurately predicting patients’ prognoses, particularly for those that are to be exposed to a major surgery or in population of high risk with such as older patients. For this purpose, magnetic resonance image (MRI) is one of the most commonly used medical imaging techniques available for the detection of RCT and fatty infiltration, owing to its high diagnostic accuracy (9). However, patient access to MRI results may take several days due to the large number of exams and the time specialists can dedicate to this task. Therefore, developing tools that can speed-up this process, while having a high accuracy in identifying fatty infiltration, can help reduce waiting times suffered by patients and the burden faced by medical experts.

Goutallier et al. (10) proposed one of the most widely used qualitative scales for identifying supraspinatus fatty infiltration, consisting of five stages ranging from 0 (normal muscle) to 4 (severe fat accumulation). Although Goutallier’s scale was originally developed based on CT scan analysis, it has been adapted for use with MRI. Fuchs et al. (11) proposed a new scale by combining the previously defined stages in Goutallier’s work. Specifically, levels zero and one were merged to create the normal stage, level two was redefined as moderate, and level three or four were considered to represent severe fatty infiltration. However, there has been some controversy over the adaptation of the original scale for use with MRI (12). Furthermore, reducing inter-observer variability when assessing rotator cuff quality from MRI remains a major challenge in diagnostic imaging (13).

On the other hand, deep learning algorithms, especially convolutional neural networks (CNNs), have rapidly become the preferred methodology for analyzing medical images (14–16). Some of the most commonly used deep learning architectures for computer vision tasks include Inception-v3, ResNet50, VGG19, and U-Net (17–20). However, due to complexity of medical image datasets and smaller size compared to other sources of data, transfer learning has become a suitable approach for building and training deep learning models in clinical research. With transfer learning, most of the proposed models for medical diagnosis are based on pre-trained models from the ImageNet dataset and trained using transfer learning techniques (21). This technique involves using a well-trained model from a non-medical source dataset, such as ImageNet, and re-training it in a target dataset, such as medical images, including MRIs (22–24).

Most of the existing deep learning applications are based on supervised training, a commonly used technique for classification using medical images. However, supervised training requires labeled images for the models to learn from their structure. Additionally, in supervised learning, in order to improve the model’s performance, researchers manually select the region of interest (manual segmentation). However, manual segmentation is a time-consuming task, and manual labelling from medical experts is not always available (25). Therefore, to address these limitations, unsupervised training for segmenting the region of interest could be a viable solution. In the context of identifying shoulder fatty infiltration, four recent and highly important articles addressing this problem or closely related have been published. Three of these studies focused on magnetic resonance images (22, 23, 26) while only one utilized CT scans (27). However, all these studies relied on annotated data, which means that each image was manually labeled by an expert to create an image and corresponding infiltration level pairs, or each image was manually segmented to generate a corresponding segmentation mask for that specific image.

In order to address the gap in the literature, the objective of this research is to develop and assess a two-step deep learning framework. The first step performs and automated detection the region of interest (segmentation of the region of interest), while the second step uses the information from the segmentation model to classify the region of interest into one of the Goutallier’s fatty infiltration levels using MRI images, hence, fully automating the process of identifying the Goutallier’s fatty infiltration levels via the usage of deep learning techniques (segmentation and classification hybrid framework).



Materials and methods


Study design

This research was designed as a retrospective, single-site study, following the guidelines outlined in the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE). Patient records were exclusively obtained from MRI examinations conducted at the MEDS Clinic in Santiago, Región Metropolitana, Chile. The study started on September 25th, 2020.



Learning approach

An end-to-end deep learning model was developed to classify the patient risk based on the fatty infiltration of the supraspinatus muscle. The training process was performed in a two-step fashion. In the first step, we trained a segmentation model to extract the region of interest from the image. In the second step, we trained a classification model to determine if there was a risk or not for further surgery based on the level of fatty infiltration in the region of interest detected in the first step. Both models (segmentation and classification) are trained independently and non-recursively. However, segmented images from the first step (segmentation model) are used to train the classification model. Therefore, the training process of the classification model, as well as the testing phase, are performed using results from the segmentation model (segmented images). The training process and workflow of the proposed two-step model is described in Figure 1 as well as in Figure 2.

[image: Flowchart detailing a machine learning workflow. The top section, "Data Preparation," shows steps from DICOM files filtering, conversion to PNG, manual segmentation, and labeling, leading to a final dataset. The bottom section, "Model Training," includes dataset information, stratified k-fold process, and training loop with balancing, upsampling, transformations, and validations. Metrics are obtained at the end. Tools like ITK-Snap and MicroDICOM are mentioned. The process iterates until specified criteria are met, ensuring confidence intervals over folds.]

FIGURE 1
 Workflow diagram.


[image: Flowchart depicting a process starting with an MRI (PNG), followed by segmentation and masking, leading to a classification stage. The final output is either 0 or 1. Arrows indicate the sequence of steps.]

FIGURE 2
 Diagram of the end-to-end model sequence.



Dataset characteristics

The medical institution provided all the data, consisting of 900 DICOM files corresponding to unique exams. Each file corresponds to a T2-weighted Y-view MR sequence of the shoulder. Furthermore, we extracted all 900 medical reports associated to each of the DICOM files. The medical reports were, authored by three different radiologists. These reports used various scales or standards to document the fatty infiltration or degeneration stage. To ensure accurate labeling, we enlisted the expertise of an experienced radiologist who manually labeled the dataset. Moreover, images with diagnostic uncertainties underwent manual segmentation under the supervision of another radiologist, ensuring detailed and reliable annotations.

According to Figure 3, the labeling process resulted in 666 registered images, with one being marked as inconclusive and two remaining unregistered. Additionally, there were 60 images for which segmentation masks could not be created due to a file error. Consequently, our ground truth dataset comprises 606 labeled images along with their corresponding segmentation masks. Table 1 provides an overview of the image label counts, indicating 403, 114, 51, 24, and 14 for Goutallier 0, 1, 2, 3, and 4, respectively. More than 82% of the images fall into grades 0 or 1, indicating a significant imbalance towards lower fatty infiltration grades. The female group exhibited a greater number of samples in the higher grades compared to the male group. Furthermore, except for the observed mean age in the Goutallier 0 group (p < 0.05), there were no significant differences between the female and male groups across Goutallier levels in terms of proportions or mean age.

[image: Flowchart illustrating dataset processing. It begins with an initial dataset of nine hundred images. Images with diagnosis annotations are six hundred sixty-nine, with three excluded for no label and inconclusiveness. Images with labels total six hundred sixty-six. Sixty images are excluded due to a masking error. The final dataset comprises six hundred six images.]

FIGURE 3
 Flowchart for dataset selection.




TABLE 1 Patient data distribution Goutallier’s level by sex.
[image: Table displaying Goutallier level data. Includes total numbers and percentages for males and females, with mean ages and standard deviations. The p-values indicate significance levels, calculated using the Mann–Whitney or t-test.]



Dataset preparation

The DICOM file format is extensively adopted as a standard for medical images in clinical settings. A DICOM data object consists of multiple attributes, including fields such as name, ID, and more. It also incorporates a distinct attribute that contains the image pixel data. In order to enhance the efficiency of image processing during model ingestion, we extracted the pixel data from every DICOM file and converted it to PNG format. This extraction process was facilitated by MicroDICOM, a freely available software for viewing DICOM files.

The ITK-Snap3 software was utilized to generate the segmentation masks. In this case, separate masks were created for the supraspinous fossa area and the supraspinatus muscle area. Considering the specific evaluation of the fatty infiltration grade of the muscle based on the muscle area alone by physiologists, the focus was directed towards the supraspinatus muscle area mask for the subsequent steps. The final outcome of the segmentation process is visualized in Figure 4.

[image: MRI images divided into three panels labeled A, B, and C. Panel A shows a shoulder MRI scan in grayscale. Panel B highlights areas in red and green depicting regions of interest on the MRI. Panel C displays a binary mask isolating the highlighted area in white on a black background.]

FIGURE 4
 Manually segmentation process. (A) Original image. (B) Resulting segmentation masks. Supraspinous fossa in green, supraspinatus muscle in red. (C) Supraspinatus muscle mask.


The data preparation process resulted in multiple images in PNG file format, each accompanied by its corresponding segmentation mask and label. Figure 1 provides a visual representation of the workflow involved in the data preparation.



Criteria for fatty infiltration

The criteria were based on Goutallier’s fatty infiltration definitions. According to the original paper, five levels of fatty infiltration were proposed, ranging from zero to four, to signify the qualitative presence of fat in the muscle. A level zero indicates the absence of fat in the muscle, while higher levels correspond to increasing fatty infiltration. Goutallier’s scale assigns higher values as the fatty infiltration intensifies. A level four indicates a higher amount of fat than muscle present.

As mentioned earlier, the objective is to assist clinicians in determining the risk associated with performing surgery based on the quality of the supraspinatus muscle. From a classifier perspective, this task can be viewed as a binary classification. In this study, Goutallier’s fatty infiltration levels zero or one were classified as “not risky,” while levels three or four were categorized as “risky.” Samples labeled as Goutallier level two were excluded from the analysis. This choice is based on previous research [see Saavedra et al. (20)] where it is shown that including Goutallier’s level 2 into a binary classification task does not significantly impact the performance of a classification model. Also, clinical relevance falls in correctly those cases where there is high or low level of fatty infiltration [see references (10) and (11)].



Proposed model

The proposed model is composed of two sequential neural network models that serve distinct purposes. Model A is designed to narrow down the region of interest in the MRI image by leveraging both the image and the segmentation mask as inputs. The U-Net model is proposed for this task (see next). Its primary objective is to predict the supraspinatus muscle area. The hypothesis is that this approach effectively eliminates irrelevant information from the image, thereby enhancing the performance of the second network. Following Model A (segmentation), Model B (classification task) takes the supraspinatus muscle area of the image as input and predicts the fatty infiltration level based on the Goutallier’s fatty infiltration level scale. An overview of the workflow is provided in Figure 2, while the subsequent subsections offer a detailed explanation.

Cross validation (k-fold) was performed during the training process. The total of 606 Y-view MRI shoulder images were grouped into five non overlapping folds. Each time, four folds were used as the training set and one as the validation set. Every fold was used four times as part of the training set and one time as part of the validation set. Fold composition was the same for both models (Model A and Model B). Model performance was computed as the average of those five training processes and 95% confidence intervals (CI) were obtained. In every training process the model with the lowest loss function value was considered the best model.



Model development and training

The proposed model was built using two sequenced architectures: U-Net (28) (Model A) and VGG-19 (29) (Model B). The first sub-model created the segmentation mask of the input image, and the second, performed the fatty infiltration classification for that same image. The selection of the VGG-19 model for the classification task is supported by previous research [see reference (20)] where it is shown that the VGG-19 is among the best CNN for fatty infiltration (among the tested models). Although the proposed framework follows sequential stages, the training process was performed in two steps. In the first step, we trained the segmentation model using every image and the corresponding segmentation mask as input.

The objective was for the model A to learn to predict the corresponding segmentation mask for an image that had not been seen previously. In the second step, a classification model was trained using the region of interest of the image and its corresponding label. Before feeding the classification model, automatic cropping of the image was performed, and only the region of interest was used as input for the classification model.

A repeated stratified k-fold cross-validation was performed in both steps. This method allowed us to use the entire dataset in the training process and minimize the influence of data selection, as occurs when using random train/validation/test splitting. The k value was set equal to 5 and, therefore, 5 non-intersecting groups were created at random. The proportion of every class in the original dataset was replicated in every group. Each time, four groups were used to create the training set and one was used to create the validation set.

The model performance was computed as the average of 5 training processes, and the corresponding confidence intervals were reported. Confidence intervals obtained from the cross-validation training process was used to assess robustness of the trained models. Due to the high imbalance of the dataset, the minority class was up sampled. In every training process, the smaller class was replicated until the proportion between classes was close to 1:1. The added images were copies of their originals but with slight differences in terms of rotation (±35°), horizontal flipping, and center cropping. The up-sampling process was carried out for the training data only. Figure 1 shows the workflow of the model training process.

Step 1: Training the segmentation model. For the segmentation task, a “U”-shaped neural network was built as described in Khouy et al. (28). The only difference is that (1, 1) padding was used in every convolutional layer to allow the network to utilize the entire image during the training process. The model was training for a maximum of 50 epochs and feeding the network with batches of five images at a time. We used binary cross-entropy loss, implemented in the PyTorch framework. The optimization algorithm used was Adam optimizer with its standard configuration. The learning rate was set to 10-5.

The segmentation process was performed using the U-Net model. The training hyperparameters were as follows: batch size = 8, maximum epochs = 50, input size = 224 × 224 (px), learning rate = 10−3, optimizer = Adam (standard configuration). The loss function used was the Dice loss, which was defined as:

[image: Dice score formula: \( \text{Dice score} = \frac{2 \times p \times t}{p^2 + t^2} \).]

[image: Dice loss equals one minus Dice score, equation two.]

In Equation 1, “p” represents predicted values from the output, and “t” represents true values from the input. Basically, the Dice score (see Equation 2) measures the ratio of the intersection over the union for the resulting segmentation mask (30). The better the performance of the segmentation model, the higher the Dice score value. On the other hand, the Dice loss is the function to be minimized. The higher the value of the Dice score, the lower the value of the loss function.

Step 2. Training the classification model: The VGG-19 architecture was used for the classification task. We kept the convolutional layers of the model as the original and only the last layer of the fully connected layers was changed. Originally, the output of the VGG-19 architecture was 1,000 neurons. In our case we use only one output unit. That way, the model was able to perform the binary classification of the inputs.

To train the model, we used transfer learning. This means that all the weights of the original models trained on the ImageNet dataset were utilized. These weights were not optimized during the training process, and only the classifier layers were optimized. We employed the same maximum number of epochs, batch size, loss function, and optimizer as in the segmentation training process. A termination function was implemented to stop the training process if there was no improvement in the last 10 epochs. The best performance was saved and recorded. The only hyper-parameter that was optimized was the learning rate, and the best performance was achieved at 10−5. In the following section, we will present the output of both models, including the segmentation mask and a detailed explanation of the obtained metric values.




Statistical analysis

Normality tests were conducted, and the analysis of statistical differences between groups utilized either the Mann–Whitney U test or t-test. A significance level of p < 0.05 was employed to establish statistical significance. Descriptive analysis of patient ages was performed, presenting the mean and standard deviation (m ± sd). Categorical data were expressed as percentages and frequencies.

The performance of the models was evaluated and compared based on accuracy, sensitivity, specificity, and area under the receiver operator curve (AU-ROC). A binary classifier produces either 0 or 1 for a given input, corresponding to the actual expected output. True positive (TP) was defined as the model correctly predicting the positive class. False positive (FP) refers to the model incorrectly predicting the positive class when it is actually negative. False negative (FN) occurs when the model incorrectly predicts the negative class when it is actually positive. True negative (TN) is when the model correctly predicts the negative class. Sensitivity, specificity and accuracy (Equations 3–5), were computed as follows:

[image: Sensitivity, also known as the true positive rate, is defined as the formula TP divided by the sum of TP and FN, shown with equation number three.]

[image: Formula for specificity is shown: True Negative divided by the sum of True Negative and False Positive.]

[image: Accuracy formula for a classification model: (True Negatives plus True Positives) divided by (True Negatives plus False Positives plus False Negatives plus True Positives), labeled as equation five.]

The AU-ROC measures the classifier’s performance regardless of the threshold used to convert probability scores into class decisions. The horizontal axis represents recall (sensitivity), while the vertical axis corresponds to precision, calculated as TP/(TP + FP). As both axes range from 0 to 1, the maximum value of the area under the curve inside the square is 1, indicating better classifier performance. A random classifier would have an AU-ROC equal to 0.5.

For metrics such as accuracy, sensitivity, specificity, and AU-ROC, 95% confidence intervals over the mean were calculated to assess model performance. All statistical analyses were conducted using the Python programming language.




Results


Sociodemographic characteristics

Male subjects presented 333 images, representing 55% of the sample. The patient’s average age was 55.1 ± 13.2 years. The data showed the presence of various types of Goutallier levels in MRI exams. An asymmetrical distribution of Goutallier grades was identified. A significant majority, exceeding 82% of the images, fell into grades 0 and 1, indicating a notable prevalence of low fatty infiltration: Goutallier 0 (66.50%), Goutallier 1 (18.81%), Goutallier 2 (8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). Furthermore, the female group exhibited a higher frequency of samples in higher grades compared to the male group, although this disparity did not reach statistical significance. For more information, refer to Table 1.


Step 1. Segmentation

At the outset of the training process, the loss value was recorded at 0.8498 ± 0.0102, serving as an initial baseline for assessing the model’s performance. As training progressed through successive epochs, a consistent reduction in the loss value was observed. Ultimately, post-training, the loss value significantly decreased to 0.0623 ± 0.0050. The training loss value (and other performance metrics) can be observed in Figure 5.

[image: Three line graphs depict model training metrics over epochs. The first graph shows loss decreasing sharply and leveling off around 20 epochs. The second graph shows accuracy starting high and remaining near one. The third graph shows the Dice score increasing quickly and stabilizing near one.]

FIGURE 5
 Loss, accuracy, and Dice score for the segmentation model. The average of the five training processes is shown in segment line. The color shadow shows the confidence interval (C.I. 95%).


The substantial decline in the loss value reflects a considerable improvement in the model’s predictive accuracy. The reduction over the epochs suggests that the model became increasingly proficient at minimizing errors and refining its predictions. The tight standard deviations associated with the initial and final loss values underscore the reliability and consistency of the observed improvements.

These results imply that the deep learning model underwent effective training, optimizing its ability to generalize patterns and make accurate segmentation tasks. The detailed evolution of the loss value throughout the epochs provides a quantitative measure of the model’s learning process and its enhanced performance at the training’s conclusion.

The segmentation task performed by the model can be observed in Figure 6. The original input mask is highlighted in red, and the model’s output mask is highlighted in green. The background of each case displays the original image. Before making modifications, the images were rotated before being fed into the segmentation model. This rotation aims to prevent the model from memorizing specific patterns and, instead, encourages it to learn more generalized concepts from the data.

[image: Ten MRI scans of a shoulder are arranged in two rows. The top row shows five images with red-highlighted areas, while the bottom row shows the same images with green-highlighted areas, indicating distinct regions.]

FIGURE 6
 Input masks and the respectively, output masks obtained from the U-Net model. The original masks are shown in red; the resulting masks are shown in green. For each input image showed in every column of the first or the third row, the corresponding output mask from the U-Net is showed on the same column in the second and fourth rows, respectively.


In most cases, the resulting segmentation mask (in green) closely resembles the original input segmentation mask (in red). This suggests that the model effectively learned to perform the segmentation task without memorizing specific samples from the training dataset. The similarity between the masks indicates that the model has generalized correctly and can apply its knowledge to new images effectively. In this sense, the model efficiently minimized errors during the training process, as indicated by the computed average loss value of 0.0587. This low loss value is crucial because it signifies the model’s ability to consistently converge toward accurate predictions. The small standard deviation of 0.0048 further emphasizes the precision and stability of the model’s training, reinforcing its reliability in capturing intricate patterns within the data. At the same time, the model shows its proficiency in correctly classifying instances with an average accuracy of 0.9977. With a minimal standard deviation of 0.003, the model also shows consistent accuracy across various data points. These findings highlight the robustness of the model in performing precise segmentation tasks. Finally, the model achieved an average Dice score of 0.9441, indicative of its efficacy in capturing the spatial agreement between predicted and ground truth segmentations. A small standard deviation of 0.0035 shows the model’s stability in consistently achieving high Dice scores. These results affirm the model’s performance in image segmentation tasks. For more details, please refer to Table 2.



TABLE 2 Segmentation results.
[image: Table showing loss, accuracy, and Dice score for five training processes. The average loss is 0.0587, accuracy is 0.9977, and Dice score is 0.9441. Standard deviations are 0.0048, 0.003, and 0.0035, respectively. The 95% confidence intervals are 0.0586 ± 0.0042, 0.9977 ± 0.0002, and 0.9441 ± 0.0031.]



Step 2. Classification

Figure 7 shows the original image (A) and the segmentation mask obtained from the U-Net model (B). Then using that segmentation mask, the region of interest was cropped (automated process) from the original image (C). Finally, a resizing function was applied to the image, resulting in (D). This pre-processing allowed the model to decide considering only the supraspinatus muscle, similarly as how the clinicians do.

[image: Image containing four panels labeled A to D. Panel A shows an MRI scan with detailed anatomical structures. Panel B presents a binary mask highlighting a specific region. Panel C displays a pixelated image of the highlighted region. Panel D shows a blurred version of the region, likely for analysis purposes.]

FIGURE 7
 Automatic cropping process. (A) Original image. (B) Output mask from the U-Net model. (C) Cropped region of interest from the original image (ROI). (D) Resized region of interest (224 × 224 px).


During the training process, the loss function value for the validation set was monitored. At the beginning of the training process the loss value was 0.6645 ± 0.0228, decreasing to 0.01178 ± 0.0037 after the training process was concluded. The accuracy, sensitivity, specificity and AUROC were computed as the average of the model performance over the validation set in each of the five training processes of the k-fold. Table 3 shows the results for those metrics in terms of the confidence interval (α = 0.05). As shown, every metric value is above 0.9 (on average), hence showing a good binary classification performance of fatty infiltration of the supraspinatus muscle based on Goutallier’s fatty infiltration scale. In particular, the accuracy reached a level of 97.3% with a 0.023 95% CI, showing high precision (low variability). Even though the results show a higher value of specificity compared to sensitivity, the difference could increase if no oversampling (or other data-balancing technique) was used. In this case, sensitivity reached a level of 90% with 0.98 95% CI, while the sensitivity showed a high level of 97.9% with a low 95% CI of 0.02. Finally, the balancing of these two metrics was computed by the AU-ROC, which has an average level of 99% with a low 95% CI of 0.009, indicating a high level of capability to differentiate risky from non-risky levels of fatty infiltration based on automated segmented images from the U-Net model (see Figures 8, 9).



TABLE 3 Classification model results.
[image: Table showing statistical metrics: Loss, Accuracy, Sensitivity, Specificity, and AUROC. The average loss is 0.1065, accuracy 0.9731, sensitivity 0.9000, specificity 0.9788, and AUROC 0.9903. Standard deviations and 95% confidence intervals are also presented.]

[image: Line graph showing loss decreasing over 50 epochs. The loss begins around 0.9, declining steadily to approximately 0.05. A shaded area indicates variability around the loss line.]

FIGURE 8
 Average and confidence interval (α = 0.05) for the classification validation loss over five-folds cross-validation training processes. Average is shown in segmented line, and confidence interval is shown in shadow.


[image: Four line charts depicting metrics over iterations: Accuracy (green) ranges from 0.9 to 1.0; Sensitivity (pink) fluctuates around 0.9; Specificity (purple) increases towards 1.0; AuROC (blue) is stable near 1.0. Each chart has labeled axes from 1 to 50 on the x-axis and 0.7 to 1.0 on the y-axis.]

FIGURE 9
 Average and confidence interval (α = 0.05) for the classification validation accuracy, sensitivity, specificity, and area under the ROC curve (AUROC), over five-folds cross-validation training processes. Average is shown in segmented line, and confidence interval is shown in shadow.


Results of the proposed automated two steps training model shows that the segmentation model could first learn how to find the region of interest (supraspinatus muscle). Then, the classification model could learn how to classify the input, based on that region of interest, as risky or not risky. Cropping the region of interest before feeding the classifier, allowed the model to learn as clinicians do. However, the two step process proposed here shows a small reduction in classification performance (sensitivity, specificity, accuracy and AU-ROC) when compared to different CNN trained on the same data but considering manual segmentation of the ROI [see Saavedra et al. (20) for details]. Table 4 shows the comparison of the two step proposed model (U-NET + VGG-19) with VGG-19, ResNET-50 and Inception-v3 models. As noted, given that manual segmentation done by professional clinicians and medical expert is more accurate that segmentation performed by U-NET, errors from the U-NET model are passed on to the VGG-19 classification model, resulting a slightly lower performance. However, the (almost insignificant) reduction of performance is valid as the proposed model completely automates the process of identifying the level of fatty infiltration, reducing hence the need for lengthily process of manual segmentation of the ROI of the supraspinatus muscle.



TABLE 4 Classification model comparison with literature.
[image: A table comparing the performance of four models: Proposed model, VGG-19, ResNet-50, and Inception-v3. Metrics include loss, accuracy, sensitivity, specificity, and AUROC. Proposed model has 0.106 loss, 0.973 accuracy, 0.900 sensitivity, 0.978 specificity, and 0.990 AUROC. VGG-19 has 0.096 loss, 0.973 accuracy, 0.947 sensitivity, 0.975 specificity, and 0.991 AUROC. ResNet-50 has 0.123 loss, 0.976 accuracy, 0.925 sensitivity, 0.980 specificity, and 0.992 AUROC. Inception-v3 has 0.102 loss, 0.974 accuracy, 0.869 sensitivity, 0.981 specificity, and 0.991 AUROC.]





Discussion

This article introduces a novel deep-learning framework for assessing the degree of fatty infiltration in the supraspinatus muscle. The framework performs two main tasks: segmenting the region of interest and classifying the level of fatty infiltration on a five-level scale proposed by Goutallier et al. (10) based on the automated segmentation process. To achieve this, we developed two sub-models: the first based on the U-Net architecture for segmentation, and the second based on the VGG-19 architecture with modified classifier layers for binary classification. We first trained the segmentation sub-model using segmentation masks and then trained the classification sub-model using the labels associated with the fatty infiltration diagnosis. We used transfer-learning weights to train both sub-models. The binary output of the model (0 or 1) was interpreted as “not risky” or “risky,” respectively, with higher levels of fatty infiltration indicating a greater risk of re-tear or poor surgical outcomes.

Our model achieved strong performance thanks to the implementation of transfer learning and k-fold cross-validation techniques. By leveraging these approaches, we were able to reduce the number of parameters requiring optimization and utilize the full dataset for both training and validation purposes, effectively guarding against overfitting issues given our relatively small dataset of slightly more than 600 samples. However, some research has made efforts to optimize the process of hyperparameter optimization (31). Still, it’s worth noting that relying on transfer learning from a pre-trained model on the ImageNet dataset may not always represent the most ideal solution. This can be seen as a possible limitation of the relatively small sample of images obtained for this study. Future research should focus on evaluating the effect of the proposed training process. This is needed to understand if the high accuracy levels obtained in this research are driven by transfer learning and data augmentation techniques or to identify if the task or segmenting and classifying fatty infiltration in the supraspinatus muscle is a simpler task compared to more complex images (such as X-rays or ultrasounds of different body or biological structures).

In the medical domain, obtaining labeled data or segmentation masks for images can be challenging. Meanwhile, radiological reports are abundant and readily available. Manual labeling or segmentation is a labor-intensive process, but leveraging the valuable information contained in reports can facilitate model training without significant human effort. Another approach worth considering is unsupervised learning, which can enable the model to learn without relying on fully labeled or segmented data. Additionally, using transfer learning with a pre-trained model in a related domain, such as shoulder MRI images or MRI images more broadly, has the potential to enhance the model’s performance.

Deep learning models have been increasingly applied in radiology, with the U-Net (28) being a particularly popular choice for segmentation tasks. One example of this is Taghizadeh et al. (27), who employed the U-Net model to assess muscle degeneration levels in CT scans. Through a supervised training approach with annotated data, they successfully segmented the structures and characterized the pre-morbid state based on clinical information. By comparing these two states, they were able to quantify the degree of muscle degeneration.

Medina et al. (22) proposed two sequential models trained in a supervised manner via transfer learning from a model pre-trained on the ImageNet dataset. Both models had all their weights initially frozen except for the classifier layers, which were optimized by training the network on a shoulder MRI dataset. Model A aimed to identify the best image in a series depicting the rotator cuff muscles, while Model B focused on segmenting the four rotator cuff muscles. Model A was constructed using the Inception-v3 architecture, while Model B was based on the VGG19 architecture.

Kim et al. (26) proposed a unique approach for assessing muscle atrophy in the supraspinous fossa by measuring the occupation ratio (O.R.) of the supraspinatus muscle. They used a VGG19-like network to segment the region of interest with annotated data, but gaps in the muscle area obtained from the model required filling with a post-processing algorithm. The authors then determined the stage of muscle atrophy based on the O.R. (stage I: O.R. ≥ 0.6; stage 2: 0.4 ≤ O.R. ≤ 0.6; stage 3: O.R. > 0.4). Although this method did not assess the fatty infiltration grade precisely, it was still a valuable contribution.

Ro et al. (23) also utilized the VGG19 model to perform a segmentation task for identifying the region of interest. To convert the grayscale image into a binary representation, they applied Otsu’s thresholding (32), a technique commonly used to separate the foreground (fat) from the background (muscle) in the image. However, as in other studies, post-processing was required, and the results were not directly applicable to a fatty infiltration scale like Goutallier’s.

This study has some limitations that must be considered. Firstly, a domain bias might have been introduced to the prediction because the MRI images and natural images used in the training process came from very different dataset. While we used the cross-validation technique to overcome the over-fitting problem, we were unable to test our data on an external dataset, which could limit the model’s generalizability if it is intended to be used in a production environment. To address this issue, future studies could focus on training the model on a larger set of MRI images to improve both the model’s performance and the clinician’s reliance on an artificial intelligence-driven solution. Also, it is important to consider that in order to bring these new models and technologies to production environment (deployment), computational resources must be considered as the models must be retrained as new data comes in. This also helps improving and refining the deployed models. To properly do this, deployment environments (hospitals or clinics) must be equipped with appropriate computational tools (servers or computers) to efficiently manage the update of models, which also increase in complexity and computational resources needed as more data becomes available. Additionally, the manual labeling task was performed by only one trained radiologist, which might limit the reliability of the ground truth. To improve the accuracy and consistency of the labeling process, future studies could consider involving multiple trained radiologists in the task and comparing the model’s performance with that of the professionals. Finally, further efforts should be pursued to evaluate the feedback-loops during the training process of the proposed two-stage algorithm. This research did not focus on the possible improvements of the segmentation and classification models when feeding their results and predictive errors, similar to what boosting or sequential machine learning algorithms do.

In summary, this study analyzed a dataset of MRI images to assess fatty infiltration levels in the supraspinatus muscle among patients with rotator cuff conditions. We proposed a two-step training method using deep learning models, which demonstrated strong performance in segmentation and classification tasks. These findings indicate the potential of these models for accurate and reliable evaluation of musculoskeletal conditions in similar clinical settings.
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Introduction

Accurate segmentation of 3D medical images is crucial for clinical diagnosis and treatment planning. Traditional CNN-based methods effectively capture local features but struggle with modeling global contextual dependencies. Recently, transformer-based models have shown promise in capturing long-range information; however, their integration with CNNs remains suboptimal in many hybrid approaches.





Methods

We propose UnetTransCNN, a novel parallel architecture that combines the strengths of Vision Transformers (ViT) and Convolutional Neural Networks (CNNs). The model features an Adaptive Fourier Neural Operator (AFNO)-based transformer encoder for global feature extraction and a CNN decoder for local detail restoration. Multi-scale skip connections and adaptive global-local coupling units are incorporated to facilitate effective feature fusion across resolutions. Experiments were conducted on the BTCV and MSD public datasets for multi-organ and tumor segmentation.





Results

UnetTransCNN achieves state-of-the-art performance with an average Dice score of 85.3%, outperforming existing CNN- and transformer-based models on both large and small organ structures. The model notably improves segmentation accuracy for challenging regions, achieving Dice score gains of 6.382% and 6.772% for the gallbladder and adrenal glands, respectively. Robustness was demonstrated across various hyperparameter settings and imaging modalities.





Discussion

These results demonstrate that UnetTransCNN effectively balances local precision and global context, yielding superior segmentation performance in complex anatomical scenarios. Its parallel design and frequency-aware encoding contribute to enhanced generalizability, making it a promising tool for high-precision medical image analysis.





Keywords: fully convolutional neural networks, transformer, medical image segmentation, 3D image, feature fusion




1 Introduction

With the rapid advancements in the fields of computer science and medical imaging, medical imaging technologies such as computed tomography (CT) Vaninsky (1) and magnetic resonance imaging (MRI) Khuntia et al. (2) have emerged as indispensable tools in medical research Lim and Zohren (3), clinical diagnosis Masini et al. (4), and surgical planning Torres et al. (5). These technologies allow non-invasive imaging of internal tissues and organs’ physiological states, representing a key advance in merging computer science with medicine Zeng et al. (6), Shen et al. (7).

The emerging technologies Challu et al. (8), Azad et al. (9) concurrently introducing new challenges such as the need for classification and processing of diagnostic results. Image classification techniques play a pivotal role in autonomously comprehending the content of images to a certain extent. They enable effective identification of pathological regions within medical images, thereby assisting physicians in efficient diagnosis Stankeviciute et al. (10). However, the reality of medical imaging encompasses a diverse array of image types Wu et al. (11), often requiring the application of distinct processing and analytical approaches to differentiate between categories of medical images.

In recent years, advances in deep learning have renewed interest in medical image segmentation, drawing significant attention from researchers Wu et al. (12). Deep learning excels at automatically extracting features from complex data during training, leveraging multi-layered neural networks to create high-dimensional feature representations that boost segmentation performance Le Guen and Thome (13). This capability underpins deep learning-based medical image classification and grading, which supports diagnosis, speeds up image analysis, reduces patient wait times, and eases radiologists’ workloads.

We define key terms here: ‘CNN-based models’ refer to architectures relying on Convolutional Neural Networks (CNNs) for feature extraction, emphasizing local patterns, while ‘Transformer-based models’ use Transformer architectures to capture global contextual relationships via self-attention mechanisms. These definitions will be applied consistently throughout this manuscript.

In practical medical image segmentation, precise classification demands both local lesion details and global contextual information—a challenge for standard CNN-based models. Although CNNs excel at local feature extraction, their inductive bias limits their ability to capture global dependencies, hindering further performance gains. Inspired by the success of Transformer-based models like ViT Stankeviciute et al. (10) in natural image tasks, recent studies have integrated these with CNN-based approaches for medical imaging, often matching or exceeding CNN performance. For instance, TransUNet Du et al. (14), the first to combine Transformer-based and CNN-based strengths [via U-Net Fan et al. (15)], embeds a Transformer in the encoder. Similarly, MCTransformer Elsworth and Güttel (16) unfolds CNN-extracted multiscale features into tokens for Transformer processing.

Despite these advances, integrating local and global features remains challenging when CNNs and Transformers are simply concatenated or embedded. To overcome this, we propose UnetTransCNN, a novel parallel architecture that simultaneously extracts local features (via a CNN-based module) and global features (via a Transformer-based module). Unlike prior models such as TransUNet or MCTransformer, which fuse sequentially, our design optimizes CNNs for local detail and Transformers for global context in parallel. We further introduce adaptive global-local coupling units to dynamically fuse features from both pathways across multiple scales. This enhances accuracy in segmenting complex structures and improves generalizability across diverse medical imaging tasks. The contributions of this paper can be summarized as follows:



1.1 Proposed UnetTransCNN model

We propose the novel UnetTransCNN model that utilizes CNN and ViT (Vision Transformer) in parallel to extract both local and global features from medical images. This dual-path approach ensures a comprehensive feature analysis, enhancing the segmentation accuracy.




1.2 Application to 3D medical image segmentation

We specifically adapt the UnetTransCNN model for 3D medical image segmentation. In order to fit the unique structure of 3D volumes, we incorporate specialized adaptations such as volumetric convolutions and 3D positional encodings, significantly improving the model’s effectiveness in handling spatial relationships within medical volumes.




1.3 Design and implementation of experiments

We design a variety of experiments to demonstrate the superiority of our model. Our UnetTransCNN achieves superior metrics on two public datasets, the BTCV and MSD. Additionally, it demonstrates excellent robustness across various hyperparameters when compared to existing popular models, thereby proving its efficacy in real-world medical applications.





2 Related work



2.1 Enhanced overview of CNN-based segmentation networks in medical imaging

Since the inception of the seminal U-Net architecture, the realm of medical imaging has witnessed profound advancements through the adoption of Convolutional Neural Network (CNN)-based techniques for segmenting 2D and 3D images, as documented in numerous studies Wu et al. (11), Rahman et al. (17). In addressing the intricacies of volume-level segmentation, the innovative 2.5D approach has been introduced. This method ingeniously integrates three distinct perspectives of each voxel via a tri-planar architecture, offering a nuanced view beyond conventional methods. Meanwhile, 3D segmentation strategies Ding et al. (18) directly engage with volumetric images, harnessing a compendium of 2D slices or imaging modalities to achieve a comprehensive analysis.

To adeptly navigate the challenges of downsampling within images, the research community has ventured into the expansion of dimensional concepts, embracing multi-channel and multi-path models. This evolution signifies a stride towards capturing a richer tapestry of image features. Furthermore, the quest for effectively leveraging 3D contextual insights, while judiciously managing computational resources, has propelled the exploration of hierarchical structures. Innovative methodologies have surfaced, incorporating tactics like multi-scale feature extraction and the synergistic amalgamation of diverse frameworks. For example, reference Wu and Xu (19) highlights a pioneering multi-scale framework adept at discerning information across various resolutions, specifically tailored for pancreas segmentation.

These cutting-edge approaches mark a significant milestone in the field of 3D medical image segmentation. They ambitiously aim to navigate the complexities associated with spatial context and the challenges posed by low-resolution imagery, paving the way for groundbreaking research endeavors in multi-level 3D medical image analysis.

Despite the notable success achieved by these methods, they still suffer from a limitation in learning global context and long-range spatial dependencies. This issue can significantly impact the segmentation performance for challenging tasks. Therefore, to further improve segmentation performance Wu et al. (12), researchers are actively exploring new methods and techniques to effectively capture global contextual information and long-range spatial dependencies, thereby enhancing the accuracy and robustness of medical image segmentation.




2.2 Vision transformers

In recent years, visual Transformer models have attracted widespread attention and research in the computer vision field. Dosovitskiy et al. demonstrated excellent performance in image classification tasks by pretraining and fine-tuning a pure Transformer model Lara-Benítez et al. (20). Furthermore, Transformer-based end-to-end object detection models have shown significant advantages in multiple benchmark tests Cirstea et al. (21). To further improve performance, researchers have proposed a series of hierarchical visual Transformer models that gradually reduce the feature resolution in Transformer layers and employ subsampling attention modules to achieve this Fei et al. (22). However, unlike these methods, the representation size in the UnetTransCNN encoder remains unchanged across all Transformer layers. In Section 3, we introduce a method that uses deconvolution and convolution operations to change the feature resolution.

In the realm of image analysis, Transformer-based models have gone beyond image classification and object detection to make significant strides in 2D image segmentation. The SETR model, introduced by Wu et al. (23), leverages a pretrained Transformer encoder alongside a CNN-based decoder variant for semantic segmentation. Meanwhile, Du et al. (14) has pioneered a multi-organ segmentation technique by integrating a Transformer layer within the U-Net architecture’s bottleneck section Kurle et al. (24). Additionally, Xu et al. (25) has developed a strategy that distinguishes the roles of CNN and Transformer, merging their outcomes Wu et al. (26). Godunov and Bohachevsky (27) has innovated an axial attention mechanism rooted in Transformers for 2D medical image segmentation.

Our model sets itself apart from these approaches in crucial ways: (1) UnetTransCNN is tailor-made for 3D segmentation, directly handling volumetric data; (2) It positions the Transformer as the main encoder within the segmentation framework, linking it to the decoder with skip connections rather than merely as an attention component; (3) UnetTransCNN bypasses the need for a backbone CNN for input sequence creation, opting instead for direct use of tokenized patches.

Focusing on 3D medical image segmentation, Cirstea et al. (21) introduced a framework that utilizes a backbone CNN for initial feature extraction, then processes the encoded representation through a Transformer, concluding with a CNN decoder for segmentation prediction Moin and Mahesh (28). In a similar vein, Khan et al. (29) has developed a technique for the semantic segmentation of brain tumors, employing a Transformer within the bottleneck phase of a 3D encoder-decoder CNN model Rogallo and Moin (30). Differing from these methodologies, our approach forges a direct link between the Transformer’s encoding representation and the decoder via skip connections. This strategic decision empowers our model to fully harness the Transformer’s representational capabilities, driving superior performance in 3D medical image segmentation tasks.





3 Method

Our proposed model, named UnetTransCNN, employs an innovative approach that combines the global context capture capability of Transformer with the powerful local feature extraction capability of CNN, aiming to improve the accuracy and efficiency of medical image segmentation. The details of our model are demonstrated in Figure 1.

[image: Diagram of a neural network architecture for image segmentation. The network processes input images into patches, proceeds through four stages with merging and block processing, and outputs segmentation results. An inset illustrates the AFNO Block, highlighting hidden features, residual blocks, channel and spatial mixing, and bottleneck features.]
Figure 1 | Overview of the UnetTransCNN architecture. The input to our model is 3D multi-modal MRI images with 4 channels. The UnetTransCNN creates non-overlapping patches of the input data and uses a patch partition layer to create windows of a desired size for computing Fourier-based attention in the AFNO encoder. The encoded feature representations in the AFNO are fed to a CNN-decoder via skip connections at multiple resolutions.



3.1 Encoder architecture

Integrating the Adaptive Fourier Neural Operator (AFNO) into the encoder enhances its ability to process 3D medical imagery using spatial and frequency domain information. The process begins by dividing the input image into non-overlapping cubic patches of size P × P × P, which are transformed into K-dimensional embedding vectors via:

[image: Mathematical equation displaying \( E_{\text{patch}} = \text{Flatten}(x_p) \cdot W_{\text{proj}} + E_{\text{pos}} \) followed by the number (1).]

Here, xv represents the cubic patches from the input, Wproj is the projection matrix mapping patch data to the embedding space, and Epos encodes the spatial positions of the patches. This process is mathematically defined in Equation (1).

These embeddings are then processed through Transformer layers, each with a multi-head self-attention (MSA) mechanism and a multi-layer perceptron (MLP), strengthening the model’s understanding of global dependencies. The operations in each Transformer layer are given by: These steps are formally described in Equations (2) and (3).

[image: Mathematical equation showing z prime subscript i equals MSA of the normalization of z subscript i minus one, plus z subscript i minus one, labeled as equation two.]

[image: Equation showing a calculation for \( z_i \). It states \( z_i = \text{MLP}(\text{Norm}(z_i)) + z_i' \), with equation number (3).]

where Norm stands for the layer normalization process, and i represents the index of the Transformer layer in sequence.

To integrate the complex Fourier formula and AFNO’s adaptive processing, the embeddings undergo a Fourier transform after the initial MLP transformation and before the Transformer layers. This enables the encoder to adaptively handle spatial frequencies, performed as follows:

1. Discrete Fourier Transform (DFT) of the embedding vector to shift the representation from the spatial to the frequency domain see Equation (4):

[image: The equation shows the discrete Fourier transform: F of k equals the sum from n equals 0 to N minus 1 of e of n times e to the power of negative j two pi over N times n times k.]

2. Adaptive Modulation in the frequency domain, applying learned weights to each frequency component to emphasize relevant spatial frequencies see Equation (5):

[image: Equation depiction showing E_mod(k) equals F(k) multiplied by W(k), labeled as equation 5.]

3. Inverse DFT (IDFT) to convert the modulated frequency components back to the spatial domain, generating enhanced embeddings see Equation (6)

[image: Mathematical formula for \( F'(n) \) equals \(\frac{1}{N}\) times the sum from \( k = 0 \) to \( N-1 \) of \( F_{\text{mod}}(k) \cdot e^{\frac{2\pi i nk}{N}} \), labeled as equation (6).]

The UnetTransCNN model balances global patterns and local details by manipulating data in both frequency and spatial domains, critical for precise medical image segmentation where macroscopic and microscopic features must be accurately captured.

The encoding process relies on the Discrete Fourier Transform (DFT) and Inverse Discrete Fourier Transform (IDFT). The DFT shifts image analysis to the frequency domain, revealing global patterns like periodic textures and edges not easily seen in the spatial domain. This allows the encoder to effectively modulate these broad features. The IDFT then converts the adjusted frequency data back to the spatial domain, preserving the image structure while embedding enhanced features—essential for segmentation, as without it, frequency-domain improvements wouldn’t translate to spatial results.

Through this process, the AFNO-transformer optimizes the encoder to leverage both local and global information, improving its ability to handle complex spatial relationships in volumetric medical data. This Fourier transform integration drives the UnetTransCNN model’s superior performance in medical image segmentation.




3.2 Decoder architecture

The decoder uses Convolutional Neural Networks (CNNs) to extract and restore local image features for precise segmentation. It operates through decoding stages that fuse features from the corresponding encoder stage (via skip connections) with outputs from the previous decoding stage. This process is defined by see Equation (7):

[image: Mathematical equation describing a function: \( F_{\text{dec}} = \text{Conv}(\text{Up}(F_{\text{dec}}^{l-1}) \oplus F_{\text{enc}}) \), labeled as equation (7).]

where [image: Equation symbol depicting capital F with subscript "doc" and superscript "d".]  is the feature map at the decoder’s ith layer, Conv refines the feature maps, Up upsamples to increase resolution, ⊕ merges features, and [image: Mathematical expression showing the symbol F with superscript d and subscript CNC.]  is the encoder’s ith layer feature map linked by skip connections.

After progressing through these stages, a final 1×1×1 convolution layer processes the output to predict semantic labels for each voxel, converting feature maps into class probabilities (see Equation (8)):

[image: \( Y_{\text{pred}} = \text{Softmax}(\text{Conv}_{1 \times 1}(F_{\text{dec}}^{\text{final}})) \), labeled as equation (8).]

Here, Ypred represents the voxel-wise predictions, and Softmax normalizes the final convolution’s logits into a probability distribution across classes, ensuring accurate segmentation of medical images.




3.3 Model application overview

The UnetTransCNN-CNN architecture adeptly integrates the distinct advantages of Transformers and Convolutional Neural Networks (CNNs), harnessing Transformers for their superior global contextual understanding and utilizing CNNs for their acute precision in local detail processing. This dual-approach is particularly advantageous for medical imaging tasks, where it adeptly manages the intrinsic complexity and variability of medical image structures. This results in enhanced segmentation accuracy and improved model reliability. Further, the meticulous development of our model is underpinned by robust mathematical formulations and comprehensive process elucidations, as delineated in prior sections. Consequently, UnetTransCNN-CNN emerges as a profoundly efficient and precise methodology for tackling medical image segmentation challenges, particularly effective in scenarios involving complex anatomical structures. The operational dynamics of the model are succinctly encapsulated in Algorithm 1, providing a clear workflow that underscores the model’s computational strategy.


[image: Flowchart detailing the UNETTRASNCNN procedure for voxel-wise semantic predictions from 3D medical images. It includes steps for the encoder (transformer-based) and decoder (CNN-based) processes, describing patch division, vector flattening, positional embedding additions, frequency domain transformations, multi-layer perceptron applications, upsampling, merging features, convolutional layers, and final segmentation map creation. The process concludes with applying softmax to obtain predictions.]

 Algorithm 1 UnetTransCNN for Medical Image Segmentation with AFNO.






3.4 Model Workflow Example

Input: The input to the model is a 3D multi-modal MRI image with dimensions H ×W ×D ×C, where C = 4 represents the different imaging modalities (e.g., T1, T2, FLAIR). For example, an input could have dimensions 128 × 128 × 128 × 4.

Patch Partition The input data is divided into non-overlapping patches of size 4 × 4 × 4, each patch serving as a token for subsequent processing. The resulting patch dimensions are projected into a feature space through a linear embedding.

AFNO Encoder The encoded features pass through the AFNO encoder, which consists of four hierarchical stages:

	Stage 1: Produces feature maps with dimensions H/2 × W/2 × D/2 × 48. This stage applies Fourier-based global convolution and spatial mixing using the AFNO block.

	Stage 2: Downsamples the spatial resolution to H/4 × W/4 × D/4 × 96 while increasing feature depth.

	Stage 3: Further reduces spatial dimensions to H/8 × W/8 × D/8 × 192.

	Stage 4: Final encoding stage with feature dimensions H/16 × W/16 × D/16 × 384.



Each stage uses patch merging for downsampling and captures multi-scale representations through Fourier domain operations.

CNN Decoder The decoder progressively upsamples the feature maps to the original spatial resolution. Each upsampling stage incorporates skip connections from the corresponding encoder stage, ensuring that both local and global information are retained:

	Stage 1 Decoder: Receives encoder outputs with dimensions H/16 × W/16 × D/16, upsampled and concatenated with encoder outputs from Stage 3.

	Stage 2 Decoder: Further upsamples to H/4 × W/4 × D/4, integrating features from Stage 2.

	Stage 3 Decoder: Restores dimensions to H/2 × W/2 × D/2, using features from Stage 1.






3.5 Comparison with previous hybrid approaches

The integration of CNN-based and Transformer-based models has been explored in prior works like TransUNet Du et al. (14), which combines a Transformer with a U-Net architecture to leverage both local and global features for medical image segmentation. While TransUNet demonstrates notable success, it has limitations that hinder its performance in certain scenarios. Specifically, its heavy reliance on Transformer layers prioritizes global contextual information, often at the expense of fine-grained local details. This imbalance can lead to suboptimal segmentation of intricate structures where precise localization is critical, as the CNN component in TransUNet is not sufficiently optimized to compensate for the Transformer’s focus on broader patterns.

In contrast, UnetTransCNN addresses these shortcomings through a more balanced and refined design. Our approach enhances local feature extraction by incorporating a strengthened CNN-based backbone, tailored to capture detailed spatial information effectively. Simultaneously, we optimize the Transformer-based module to align global contextual understanding with the spatial hierarchies inherent in medical images. This dual-pathway architecture, supported by adaptive global-local coupling units, ensures a complementary integration of local and global features. Unlike TransUNet’s sequential fusion, UnetTransCNN processes these features in parallel, allowing for a more precise and context-aware segmentation. These improvements enable UnetTransCNN to outperform previous hybrid approaches, particularly in tasks requiring both detailed localization and comprehensive contextual awareness.





4 Experiments



4.1 Dataset

Figure 2 depicts a high-dimensional medical computed tomography (CT) image dataset, specifically designed for the segmentation of major abdominal organs for medical image analysis, originating from the Abdominal Organ Segmentation Challenge (BTCV) van der Hoef et al. (31). The dataset encompasses multiple abdominal organs, including the spleen, right kidney (R Kidney), left kidney (L Kidney), gallbladder, esophagus (Eso), liver, stomach, aorta, inferior vena cava (IVC), portal and spleen vein (P&S Vein), pancreas, and adrenal glands (Ad Glands).

[image: Medical imaging diagram showing axial views of various organs segmented in different colors. Organs include spleen, right and left kidneys, gallbladder, esophagus, liver, stomach, aorta, inferior vena cava, portal and splenic veins, pancreas, and adrenal glands. Each organ is marked in distinct colors for identification.]
Figure 2 | Dataset visualization of segmentation.

Each set of images displays multiple consecutive CT slices from the same subject, with each organ marked in a specific color for differentiation. These color-coded markings allow researchers to quickly identify and analyze the boundaries and morphology of the organs. For instance, the spleen is marked in red, kidneys in yellow, and the liver in purple, with each color chosen to optimize visual contrast for algorithmic processing.

The dimensions of this dataset can be described in several aspects:

	Spatial dimension: The images of each organ consist of a series of cross-sections arranged along the body’s vertical axis, showcasing the three-dimensional structure of the organs.

	Time/sequence dimension: Although not directly shown in this image, in practice, such datasets may include temporal sequence information, representing dynamic scans over time.

	Grayscale/intensity dimension: CT images present different grayscale intensities based on the varying degrees of X-ray absorption by tissues, reflecting differences in tissue density.

	Annotation dimension: The CT images of each organ in the dataset come with detailed manual annotations providing ground truth information for training and validating automatic image segmentation algorithms.

	Patient/sample dimension: The dataset includes scans from multiple patients, enhancing sample diversity and aiding algorithms in better generalizing to unseen samples.



The MSD dataset, referenced in Gao and Ma (32), is a critical resource for the brain tumor segmentation task, encompassing a wide array of multi-modal, multi-site MRI and CT data. This dataset is specifically curated with 484 MRI scans, each offering a variety of modalities including FLAIR, T1-weighted (T1w), T1-weighted post-contrast (T1gd), and T2-weighted (T2w) images, accompanied by detailed ground truth labels. These labels facilitate the segmentation of glioma, delineating areas of necrotic/active tumor and edema regions. The MRI images within this dataset are characterized by a uniform voxel spacing of 1.0 × 1.0 × 1.0 mm3, ensuring consistency and precision in volumetric analysis Kim et al. (33), Wu et al. (34), Silva (35). In preparation for training, the dataset undergoes a standard pre-processing step where voxel intensities are normalized using the z-score method. This meticulous preparation allows the segmentation task to be framed as a 3-class challenge, incorporating a 4-channel input to effectively differentiate between the various tumor regions and healthy brain tissue.

To further evaluate the generalization capability of the model, we also use the KiTS19 (36) dataset Yang and Farsiu (37). This dataset is widely used for medical image segmentation tasks and includes a diverse range of kidney tumor cases, which can help evaluate the model’s performance on complex anatomical structures. KiTS19 contains 210 contrast-enhanced CT scans of patients with kidney tumors. The dataset includes annotations for kidney and tumor regions, making it suitable for evaluating segmentation models. The diversity in tumor sizes, shapes, and locations provides a robust test for the generalization capability of the model.




4.2 Evaluation metrics

In our research, we meticulously assess the accuracy of segmentation results by employing the Dice coefficient and the 95% Hausdorff Distance (HD), as delineated in Zeng et al. (6). The Dice coefficient is utilized to quantitatively evaluate the similarity between the actual (ground truth) and predicted segmentation maps, defined for voxel i as Tifor the actual values and Sifor the predicted values, respectively. The formula for the Dice coefficient is given as follows (see Equation (9)):

[image: Dice coefficient formula: Dice(T, S) is equal to two times the sum from i equals one to l of T sub i times S sub i, divided by the sum from i equals one to l of T sub i plus the sum from i equals one to l of S sub i.]

where I is the total number of voxels. This coefficient ranges from 0 to 1, where a value of 1 indicates perfect overlap between the actual and predicted segmentation, and a value of 0 indicates no overlap.

The 95% Hausdorff Distance (HD) measures the spatial distance between the surface points of the actual and predicted segmentation, offering a robust metric for the maximum discrepancy between these two point sets. It is defined as (see Equation (10)):

[image: The image shows a mathematical formula for the Hausdorff distance between two sets \(T'\) and \(S'\). It is expressed as \(HD(T', S') = \max \left( \max_{t' \in T'} \min_{s' \in S'} |t' - s'|, \max_{s' \in S'} \min_{t' \in T'} |s' - t'| \right)\), labeled as equation (10).]

where T′ and S′ represent the sets of actual and predicted surface points, respectively. The HD is particularly sensitive to outliers; therefore, by calculating the 95th percentile of these distances, we mitigate the influence of extreme values, leading to a more representative measurement of model performance. This adjusted metric, focusing on the 95th percentile, effectively reduces the impact of anomalies, providing a more robust and reliable evaluation of the segmentation precision.




4.3 Implementation details

Our UnetTransCNN model was implemented on a high-performance computing cluster equipped with NVIDIA A100 Tensor Core GPUs, each boasting 40 GB of memory, which is particularly crucial for processing large 3D medical images and complex models. We utilized PyTorch as the deep learning framework, opting for an input block size of 64 × 64 × 64 voxels and an embedding dimension of 768, along with 12 transformer layers to capture complex patterns and dependencies. The model underwent training on two benchmark datasets: the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) and the Medical Segmentation Decathlon (MSD). For both datasets, we partitioned the data into training and testing sets, using 80% of the data for training and the remaining 20% for testing. This split was carefully chosen to ensure that the model was evaluated on a diverse range of images that were not seen during the training phase, thus reflecting a realistic assessment of the model’s performance on unseen data. Additionally, diverse 3D medical images from these datasets are used for multi-organ and tumor segmentation tasks. To enhance the model’s robustness and prevent overfitting, we also applied data augmentation techniques such as random rotations, scaling, and elastic deformations. Throughout the training process, we employed the AdamW optimizer with a learning rate of 1e − 4 and a weight decay of 0.01, using an early stopping strategy to prevent overfitting across 150 training epochs. This detailed implementation strategy ensured the effective training and evaluation of the model, leveraging the computational power of NVIDIA A100 GPUs to meet the challenges of 3D medical image segmentation.

For the compared baselines, we adhered to the official configurations and hyperparameters provided in the original papers or publicly available repositories of the competing methods. We ensured uniform dataset splits (80% training and 20% validation) across all methods to eliminate variability introduced by differing data partitions. Further, all methods were evaluated using the Dice coefficient and Hausdorff distance (95%), ensuring consistent and comparable performance assessments. To ensure fairness and consistency across all experiments, we trained all methods on all datasets for 600 epochs.




4.4 Main results

In the rigorous evaluation conducted during the Standard Competition, our novel UnetTransCNN model has set a benchmark, emerging as the frontrunner by achieving an unparalleled average Dice score of 85.3% across various organs. This achievement underscores the model’s exceptional capability in handling the complexities of medical image segmentation. Specifically, UnetTransCNN has displayed a noteworthy advantage in segmenting larger organs. A quantitative summary of these results is presented in Table 1. For instance, it outshines the second-best baselines with significant margins in the segmentation of the spleen, liver, and stomach, registering improvements in the Dice score by 1.043%, 0.830%, and 2.125%, respectively. These figures not only attest to the model’s precision but also its robustness in accurately identifying and delineating the contours of larger organ structures.

Table 1 | This table presents a detailed quantitative analysis of segmentation performance on the BTCV test set, showcasing the comparison between our methodology and other leading-edge models.


[image: A data table compares various methods for medical image segmentation performance across multiple organs: spleen (Spl), right kidney (RKid), left kidney (LKid), gallbladder (Gall), esophagus (Eso), liver (Liv), stomach (Sto), aorta (Aor), inferior vena cava (IVC), veins, pancreas (Pan), and adrenal gland (AG). Methods include SETR NUP, nnUnet, CoTr, U-net variants, among others. Each cell shows a performance value. Bold font highlights best performances. The average (Avg.) column provides overall scores for each method. The table caption explains the context of the evaluations, using the BTCV leaderboard as a reference.]
Detailed segmentation results are illustrated in Figures 2, 3. Furthermore, UnetTransCNN’s proficiency extends to the segmentation of smaller organs, where it remarkably surpasses the second-best baselines by considerable margins of 6.382% and 6.772% in the Dice score for the gallbladder and adrenal glands, respectively. Such impressive performance metrics highlight the model’s detailed attention to the finer aspects of medical imaging, ensuring that even the smallest organs are segmented with high accuracy. These outcomes collectively reinforce the superior segmentation capability of UnetTransCNN, marking a significant advancement in the field of medical image analysis by delivering precise and reliable organ delineation.

[image: Comparison of CT images segmented using different methods: GT, UnetTransCNN, CoTr, TransUNet, and nnUNet. Each row shows different organ segmentation with color coding: spleen (purple), right kidney (green), left kidney (red), aorta (yellow), IVC (light blue), gallbladder (teal), esophagus (dark purple), spleen and portal veins (gray), pancreas (orange), liver (light purple), and adrenal glands (red). Numerical values below each segmented image indicate accuracy scores.]
Figure 3 | This image compares organ segmentation in CT scans across various deep learning models. The first column displays the original CT scans, highlighting specific areas. The second column shows the accurate segmentation (ground truth), while subsequent columns depict results from different models: U-Net Transformer CNN (U-NetTransCNN), Cooperative Transformer (CoTr), TransUNet, and nnU-Net. Predictions are color-coded for different organs, listed at the bottom. Each model’s accuracy is indicated by a Dice similarity coefficient score beneath its segmentation.

In the Standard Competition, we conducted a comprehensive performance analysis of UnetTransCNN in comparison to CNN and transformer-based baselines. Impressively, UnetTransCNN establishes a new state-of-the-art performance, achieving an average Dice score of 85.3% across all organs. Notably, our method demonstrates remarkable superiority in segmenting large organs, such as the spleen, liver, and stomach, surpassing the second-best baselines by margins of 1.043%, 0.830%, and 2.125%, respectively, in terms of Dice score. Moreover, our method exhibits outstanding segmentation capability for small organs, outperforming the second-best baselines by impressive margins of 6.382% and 6.772% on the gallbladder and adrenal glands, respectively, in terms of Dice score. These results further highlight the exceptional performance of UnetTransCNN in accurately delineating organ boundaries. Table 2 presents a full summary of segmentation scores across all organs in the BTCV dataset.

Table 2 | Inference Speed Comparison on MSD Dataset.


[image: Table comparing different methods based on inference time in milliseconds and speedup percentage. Methods listed are nnUNet, TransUNet, CoTr, DconnNet, and UnetTransCNN (Ours). UnetTransCNN shows the best performance with an inference time of 987 ms and a speedup of 39.1%. Bold values indicate top performance in each category.]
In Table 3, we present a comparative analysis of UnetTransCNN, CNN, and transformer-based methodologies for brain tumor and spleen segmentation tasks using the MSD dataset. UnetTransCNN demonstrates superior performance compared to the closest baseline by an average margin of 1.5% across all semantic classes in brain segmentation. Detailed comparisons for brain tumor segmentation are reported in Table 4. Notably, UnetTransCNN exhibits exceptional accuracy in segmenting the tumor core (TC) subregion. Similarly, in spleen segmentation, UnetTransCNN surpasses the best competing methodology by at least 1.0% in terms of Dice score, indicating its superior segmentation capabilities. These results highlight the significant advancements achieved by UnetTransCNN in accurately delineating brain tumors and spleen regions.

Table 3 | Quantitative comparisons of the segmentation performance in brain tumor and spleen segmentation tasks using the MSD dataset.


[image: A table comparing segmentation methods for spleen and brain tumor using metrics Dice and HD95. The spleen segmentation shows UnetTransCNN has the highest Dice score of 0.964 and lowest HD95 of 1.333. For brain tumor segmentation, UnetTransCNN also achieves top metrics across all categories, with a Dice score of 0.789 for WT, 0.585 for ET, 0.934 for TC, and 0.761 for ALL. Bold values highlight the best performances.]
Table 4 | Performance comparison on the KiTS19 dataset.


[image: Table comparing segmentation methods for kidney and tumor analysis. Metrics include Dice score and 95% Hausdorff Distance (HD95). UnetTransCNN has the best performance, with the highest Dice scores and lowest HD95 values in both categories.]
Figure 4 illustrates the performance iteration of a model during wind speed prediction on Dataset BTCV. The curve displays the training loss and validation loss with the change in training epochs. It can be observed that both training loss and validation loss decrease with the increase in training epochs, indicating that the model is learning from the training data and gradually improving its predictive capabilities on unseen data. Additionally, as the validation loss curve steadily decreases and remains close to the training loss curve, it implies that the model does not exhibit overfitting, demonstrating good generalization ability on unseen data.

[image: Line graph showing loss over epochs ranging from 0 to 600. The blue line represents training loss, and the red line represents validation loss. Both lines start high, then decrease and stabilize, with training loss consistently lower. Shaded areas indicate variance.]
Figure 4 | Training and validating curve on dataset BTCV.

Then, on the KiTS19 dataset, the UnetTransCNN model achieves a Dice score of 0.942 for kidney segmentation, which is higher than other models like U-Net (0.912), TransUNet (0.928), and nnU-Net (0.935). This indicates that the model is effective in capturing the global context and local features of the kidney, even in the presence of tumors. The HD95 score of 3.21 for kidney segmentation is also the lowest among the compared models, suggesting that the model accurately delineates the kidney boundaries. For tumor segmentation, UnetTransCNN achieves a Dice score of 0.793, outperforming other models such as U-Net (0.723), TransUNet (0.756), and nnU-Net (0.781). This demonstrates the model’s ability to handle complex and irregular tumor structures. The HD95 score of 6.45 for tumor segmentation is also the best among the compared models, indicating that the model can accurately segment tumors even in challenging cases. The results on the KiTS19 dataset show that UnetTransCNN generalizes well to a diverse range of kidney and tumor cases. Figure 5 visually illustrates segmentation results for kidney and tumor regions from the KiTS19 dataset. The model’s ability to handle both large and small structures (kidneys and tumors) suggests that it can be applied to a wide range of medical image segmentation tasks. The inclusion of the KiTS19 dataset, which contains complex anatomical structures and varying tumor sizes, helps validate the model’s robustness and generalization capability across different medical imaging scenarios.

[image: CT scan of a human torso on the left. The middle and right images show segmentation labels and output on the scan, with regions in purple, green, and yellow representing different areas.]
Figure 5 | Detailed segmentation visualization.

To clarify the advancements of UnetTransCNN over existing models, we provide a detailed comparison with hybrid approaches like TransUNet, MCTransformer, and CoTr. See Table 5 in for a summary of key differences in architecture, feature extraction, and focus.

Table 5 | Comparison of UnetTransCNN with existing hybrid models.


[image: Comparison table of machine learning models including TransUNet, MCTransformer, CoTr, and UnetTransCNN. Columns detail architecture, feature extraction, key strength, and limitation for each model. TransUNet utilizes U-Net and Transformer for global dependency modeling but has limited local detail preservation. MCTransformer combines multi-scale CNN and Transformer for robust feature fusion but is computationally complex. CoTr integrates CNN encoder and Transformer decoder for cross-modal integration with weaker local feature refinement. UnetTransCNN features a refined CNN backbone and optimized Transformer for balanced feature capture with a slightly higher parameter count.]



4.5 Qualitative results



4.5.1 Visualization comparison

This paper proposes the UnetTransCNN model, which demonstrates significant superiority in medical image segmentation tasks, especially in the application of abdominal organ segmentation. The UnetTransCNN model integrates the structural advantages of Unet, the local feature extraction capability of Convolutional Neural Networks (CNN), and the global dependency capturing ability of Transformers, achieving high-precision segmentation of complex structures in medical images. In a comparative study focusing on abdominal organ segmentation, UnetTransCNN exhibited higher segmentation accuracy compared to other advanced models (such as CoTr, TransUNet, and nnUNet). Specifically, UnetTransCNN achieved outstanding results on the Dice Similarity Coefficient (DSC) evaluation metric. For instance, for liver segmentation, UnetTransCNN’s DSC reached 0.95, whereas other models such as TransUNet and nnUNet recorded DSCs of 0.93 and 0.92, respectively. For the more challenging task of pancreas segmentation, UnetTransCNN also performed excellently, with a DSC of 0.89, significantly higher than CoTr’s 0.85 and TransUNet’s 0.87. Beyond improving segmentation accuracy, UnetTransCNN also demonstrated advantages in model inference time. With GPU acceleration, UnetTransCNN’s average processing time was about 2 seconds per image, approximately 20%-30% faster than other models, which is crucial for practical clinical applications, especially in situations requiring rapid diagnosis. Moreover, UnetTransCNN showed strong robustness in handling noise and blurred boundaries in images. Through detailed experimental analysis, the model effectively differentiated between subtle differences among various abdominal organs, maintaining high-level segmentation performance even in cases of lower image quality. In summary, UnetTransCNN not only enhances the accuracy and efficiency of medical image segmentation but also improves the model’s versatility and robustness. These characteristics mark it as a significant advancement in the field of medical imaging analysis, laying a solid foundation for future research and clinical applications. To better demonstrate both macroscopic and microscopic features, we provide visualizations on the performance of our model and other baselines, which is shown in Figure 6. This confirms the effectiveness of our UnetTransCNN for global and local feature extraction.

[image: MRI scans of brain sections are compared across four columns labeled: Ground Truth, Ours, TransBTS, and CoTr. Each column shows two scans with colored regions in red, green, and blue, highlighting specific areas within red boxes. Differences in segmentation accuracy are depicted among the methods.]
Figure 6 | Visualization of macroscopic and microscopic features.

As shown in Figure 7, we observe two sets of medical image data and their corresponding processing results. Each set contains the original computed tomography (CT) images, manually labeled images, and the output images of the machine learning model. By first analyzing the CT images, i.e., IMAGE 1 and IMAGE 2, we can identify abdominal organs such as the liver. These raw scans provide the basic information used for subsequent image processing. The corresponding labeled images, LABEL 1 and LABEL 2, highlight the liver tissue region in a distinct yellow color, and these labels may represent ground truth for training and validation of the machine learning model. The outputs of the model, output 1 and output 2, show the results of the model’s segmentation and recognition of the liver tissue, where the yellow areas indicate the parts of the liver recognized by the model. The comparison of the model outputs with the manually labeled images can be used to evaluate the performance of the model in the tissue recognition task. Further observe the performance metric graphs below, which show the learning curve of the model during the training process. In deep learning training, the epoch represents the full dataset completing one full forward and backward propagation. The curve below shows the stable trend of model performance indicators as the number of epochs increases, indicating the convergence of the learning process.

[image: CT scans of two liver cross-sections are shown on the left (image 1, image 2). Corresponding segmentations and outputs in yellow are in the middle and right columns (label 1, output 1; label 2, output 2). Below, two graphs display training and validation mean Dice scores over epochs, with the left graph in blue and the right in red.]
Figure 7 | Visualization of results case study.





4.6 Ablation study



4.6.1 Decoder choice

We assessed the efficiency of various decoder architectures in enhancing segmentation outcomes by integrating them with UNETR’s encoder, focusing on MRI and CT segmentation tasks. This evaluation, detailed in Table 6, involved comparing the performance of the standard UNETR decoder against threedimensional alternatives: Naive UpSampling (NUP), Progressive UpSampling (PUP), and Multi-scale Aggregation (MLA).

Table 6 | Effect of the decoder architecture on segmentation performance.


[image: Comparison table showing the performance of different decoders: NUP, PUP, MLA, and UnetTransCNN, across spleen and brain data points (WT, ET, TC, All). Values represent performance metrics, with bold indicating best in category. NUP stands for Naive UpSampling, PUP for Progressive UpSampling, and MLA for Multi-scale Aggregation.]
The findings reveal that while all tested decoder architectures offer less than ideal performance, MLA demonstrates a marginal superiority over NUP and PUP. Specifically, in the context of brain tumor segmentation, UNETR, equipped with its original decoder, surpasses the MLA, PUP, and NUP decoder variants by 2.7%, 4.3%, and 7.5%, respectively, in average Dice score. In spleen segmentation tasks, similarly, UNETR exceeds the performance of MLA, PUP, and NUP decoders by 1.4%, 2.3%, and 3.2%, correspondingly.




4.6.2 Impact of patch resolution on performance

Our investigation into the effects of patch resolution on segmentation accuracy revealed a direct correlation between decreased resolution and increased sequence length, which in turn, elevates memory usage due to its inverse relationship with resolution’s cubic value. As documented in Table 7, lowering the input patch resolution consistently enhances segmentation performance. For instance, decreasing the resolution from 32 to 16 yielded an increase of 1.1% and 0.8% in the average Dice score for spleen and brain tumor segmentation tasks, respectively.

Table 7 | Effect of patch resolution on segmentation performance.


[image: Table comparing performance metrics for spleen and brain segmentation at different resolutions: 32, 16, and 8. Spleen performance is highest at resolution 8 with 0.974. Brain categories WT, ET, TC, and All display varying scores, with the highest in WT at resolution 8, 0.799. Bold values highlight the best performance in each category.]
Further reduction of resolution from 16 to 8 amplifies this improvement; the average Dice score for spleen segmentation escalated from 0.963 to 0.974 (an increase of 0.011), and for brain segmentation, from 0.786 to 0.799 (an increase of 0.013). These results suggest continuous performance benefits from resolution reduction.

However, it is critical to mention that our experiments did not extend to resolutions lower than 8 due to memory limitations, leaving the potential impact of further reduced resolutions on performance undetermined. Although lower resolutions might promise additional improvements, they risk sacrificing crucial details or diminishing accuracy. Therefore, selecting an appropriate resolution requires a careful balance between computational efficiency and segmentation efficacy.





4.7 Inference efficiency analysis

Real-time segmentation is crucial in clinical applications, where rapid image analysis can facilitate timely decision-making. While segmentation accuracy is a key evaluation metric, the inference speed of deep learning models significantly impacts their practical usability in medical imaging. In this experiment, we compare the inference time of UnetTransCNN with existing state-of-the-art baselines on 3D medical image segmentation tasks.



4.7.1 Experimental setup

To ensure a fair comparison, all models are evaluated under identical conditions:

	Hardware: NVIDIA A100 Tensor Core GPU (40GB).

	Framework: PyTorch + CUDA 11.8.

	Batch Size: 1 (single 3D volume of 128 × 128 × 128).

	Dataset: Medical Segmentation Decathlon (MSD).

	Metric: Average inference time per volume (milliseconds, ms).



We measure the time required for each model to process a single 3D medical image, excluding data loading and preprocessing, to focus solely on model inference speed.




4.7.2 Analysis



4.7.2.1 Faster inference time

UnetTransCNN achieves an average inference time of 987 ms, making it the fastest model among the tested baselines. Compared to nnUNet (1620 ms), our model is 39.1% faster, enabling real-time segmentation for medical applications.




4.7.2.2 Efficiency compared to transformer-based models

Transformer-based models such as TransUNet (1405 ms) and CoTr (1202 ms) show improved segmentation performance over traditional CNN architectures but at the cost of increased computational complexity. UnetTransCNN, by efficiently integrating both CNN and Transformer modules, maintains high segmentation accuracy while achieving a significantly lower inference time.




4.7.2.3 Speed advantage over DconnNet

DconnNet, another hybrid CNN-Transformer model, achieves 1100 ms inference time, which is still 11.4% slower than UnetTransCNN. This demonstrates that our model’s architectural design effectively balances performance and computational efficiency.







5 Conclusion

In this study, we introduced UnetTransCNN, a novel architecture that effectively combines the global contextual strengths of Transformers with the robust local feature extraction capabilities of convolutional neural networks (CNNs). This innovative integration is specifically engineered to enhance both the accuracy and efficiency of medical image segmentation. Our validation on two benchmark datasets—the Multi Atlas Labeling Beyond The Cranial Vault (BTCV) for multi-organ segmentation and the Medical Segmentation Decathlon (MSD) for brain tumor and spleen segmentation—demonstrates that UnetTransCNN achieves state-of-the-art performance, highlighting its potential as a transformative tool in the field of medical imaging. While UnetTransCNN offers significant advancements, it does come with its challenges. One notable limitation is its computational demand, which may impact its deployment in settings with limited processing capabilities. Additionally, there are specific conditions under which the model’s performance may not be optimal, such as in cases with extremely low contrast in images or very irregular anatomical structures that are not well-represented in the training data. As we plan to broaden the application of UnetTransCNN to more varied medical imaging tasks, including dynamic imaging studies where temporal resolution is critical, we also acknowledge the need to address and improve computational efficiency, which is vital for real-time diagnostic applications.
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Early detection and management of diabetic peripheral neuropathy (DPN) are critical to reducing associated morbidity and mortality. Corneal Confocal Microscopy (CCM) facilitates the imaging of corneal nerves to detect early and progressive nerve damage in DPN. However, its wider adoption has been limited by the subjectivity and time-intensive nature of manual nerve fiber quantification. This study investigates the diagnostic utility of state-of-the-art Vision Transformer (ViT) models for the binary classification of CCM images to distinguish between healthy controls and individuals with DPN. The ViT model's performance was also compared to ResNet50, a convolutional neural network (CNN) previously applied for DPN detection using CCM images. Using a dataset of approximately 700 CCM images, the ViT model achieved an AUC of 0.99, a sensitivity of 98%, a specificity of 92%, and an F1-score of 95%, outperforming previously reported methods. These findings highlight the potential of the ViT model as a reliable tool for CCM-based DPN diagnosis, eliminating the need for time-consuming manual image segmentation. Moreover, the results reinforce CCM's value as a non-invasive and precise imaging modality for detecting nerve damage, particularly in neuropathy-related conditions such as DPN.
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1 Introduction

The Burden of Diseases, Injuries, and Risk Factors Study (GBD) estimated that, in 2021, diabetes affected 529 million people across 204 countries and territories, underscoring the high prevalence of the condition among various age groups worldwide (Ong et al., 2023). Diabetic Peripheral Neuropathy (DPN) is a neuropathic condition affecting the peripheral nerves, often presenting as a distal, symmetrical sensory or motor deficit. As a major long-term complication of diabetes, DPN can result in painful neuropathy, foot ulceration, and amputation.

Early and accurate diagnosis of DPN is essential for timely intervention and effective disease management (Ponirakis et al., 2021, 2022). Without treatment, DPN can lead to serious outcomes, including loss of sensation, falls, foot ulcers, and even limb amputations. Additionally, diabetic patients with DPN face a higher risk of mortality from any cause or cardiovascular disease compared to those without DPN (Jensen et al., 2021; Elafros et al., 2022; Eid et al., 2023).

Corneal Confocal Microscopy (CCM) is a non-invasive imaging technique that serves as a precise surrogate biomarker for small fiber neuropathy. The corneal nerves, accessible through CCM, are frequently impacted in the early stages of DPN, enabling clinicians to detect nerve damage before more severe symptoms develop. Manual analysis of CCM images is labor-intensive, subjective, and requires significant expertise, with interobserver variability that can limit diagnostic accuracy for DPN. Using Deep Learning (DL), Salahouddin et al. (2021) employed a U-Net-based model to automate the segmentation and quantification of corneal nerves in CCM images, achieving discrimination between patients with and without DPN, with an average area under the curve (AUC) of 0.93. Moving toward eliminating the need for pixel-wise annotations, Preston et al. (2022) utilized a ResNet model to diagnose peripheral neuropathy, reporting an average sensitivity of 84% in correctly identifying DPN patients on a test set of 40 images.

Following recent advancements in automated DPN diagnostics, we evaluated a state-of-the-art Vision Transformer (ViT) model for classifying DPN patients using CCM images, comparing its performance to the established ResNet architecture. Our approach, which eliminates the need for pixel-wise annotations, is the first to apply ViTs for DPN classification on CCM images, demonstrating high accuracy on a relatively large dataset. Additionally, we employed Grad-CAM to generate heatmaps, visually highlighting regions that contribute most to the classification decision and confirming a focus on corneal nerves. Figure 1 shows an overview of the transformer-based model architecture for corneal nerve classification.


[image: Flowchart depicting a machine learning process for classifying medical images. Input images are divided into patches, then undergo linear projection and positional embedding. These are processed by a transformer encoder. Outputs are labeled 0-5, leading to classification of DPN or healthy via an MLP head. A Score CAM generates heatmaps for visualization.]
FIGURE 1
 Overview of the transformer-based model architecture for corneal nerve classification. The input image is divided into patches, which are linearly projected and positionally embedded before being fed into the transformer encoder. The output representations are used for classification between DPN and healthy cases through an MLP head. Additionally, Score-CAM generates heatmaps highlighting relevant regions in the patches, aiding interpretability in classification.




2 Method


2.1 Dataset

The experiment was carried out on a database of 692 CCM images (358 healthy controls and 334 DPN cases) collected from 106 subjects (29 patients with DPN and 77 healthy controls), captured using the Heidelberg HRTIII corneal confocal microscope. This is a sub-analysis of the LANDMark study (Pritchard et al., 2014)—a multi-center study conducted at the University of Manchester, UK and Queensland University of Technology, Australia in 2009–2014. The LANDMark study adhered to the tenets of the Declaration of Helsinki and was approved by the relevant institutional review boards. Informed, written consent was obtained from all subjects prior to participation.

The images have a size of 384 × 384 pixels, 8-bit gray levels, and are stored in BMP format. To mitigate potential biases arising from the relatively small sample size and the varying number of images per subject, we employed a rigorous data splitting strategy. The dataset was divided into training (60%), validation (20%), and testing sets (20%). To ensure balanced representation across sets, we performed stratified splitting based on subject-level allocation. This ensured that no images from the same subject were included in more than one set, preventing potential bias arising from inter-subject variability.



2.2 Vision transformer

Introduced by Dosovitskiy et al. (2020), Vision Transformers (ViTs) have quickly gained prominence in classification tasks, often outperforming traditional methods (Bazi et al., 2021; Ding et al., 2023; Long et al., 2024). The ViT model includes an embedding layer, a transformer encoder, and an MLP head. The input image is divided into non-overlapping patches, each treated as a token, with position embeddings added to retain spatial information. These embeddings are processed by the encoder, which consists of stacked layers with multiheaded self-attention (capturing relationships across image regions), an MLP block (refining extracted information), and a normalization layer (ensuring data stability). Finally, the MLP head translates encoded information into the predicted class.

Our work leverages the capabilities of ViTs to construct a robust and scalable system, while addressing technical complexities associated with data preprocessing and model development. To enhance efficiency and potentially improve performance, we optimized the original ViT architecture (Dosovitskiy et al., 2020) by reducing the number of Transformer layers, thereby streamlining the model and overfitting. Furthermore, we decreased the MLP size, leading to a substantial decrease in model parameters and computational cost. We modified the input patch size. This trade-off increases the effective sequence length for the Transformer while simultaneously reducing computational complexity, as the number of patches decreases quadratically with the increase in patch size. These modifications resulted in a dramatic reduction in model parameters from 86M to 6M, making our model significantly more compact and potentially easier to deploy on resource-constrained devices.

To enhance model performance and stability, we incorporated a batch normalization layer after the Transformer block. Unlike the original model's layer normalization, which normalized across all features within a sample, our batch normalization normalizes each feature independently across the mini-batch. This modification aims to improve training stability and potentially enhance generalization. To further mitigate overfitting, we integrated Dropout throughout the model architecture. Dropout randomly deactivates a fraction of neurons during training, preventing excessive reliance on specific features and encouraging weight sharing across the network, ultimately leading to more robust and generalizable models.



2.3 Model training

We trained our ViT model using Python 3.7.10 and TensorFlow with Keras on a GPU P100 for 150 epochs. Images were resized to 256 × 256 pixels and divided by the ViT into 144 patches of 20 × 20 pixels each. During training, we applied a combination of feature normalization and data augmentation techniques on each patch, including horizontal flipping, zooming (height and width factor 0.2), and slight rotation (factor 0.02), to enhance model robustness. Optimizing ViT's complex structure is challenging, so we used the AdamW optimizer with Decoupled Weight Decay Regularization, with specific parameters listed in Table 1, carefully selected for a balance of accuracy and efficiency (https://github.com/serag-ai/ViT-CCM).


TABLE 1 Parameters of the trained ViT.

[image: Table displaying parameters and their values: Learning rate and weight decay both at 0.0001, patch size and batch size at 20, number of heads at 6, projection dimension at 128, and number of training epochs at 150.]




3 Evaluation metrics

We assessed our model's performance using several key metrics: Area Under the Receiver Operating Characteristic Curve (AUC), Specificity, Sensitivity, and F1-score.

AUC is a threshold-independent metric that evaluates the performance of a classification model. It represents the probability that the model will rank a randomly chosen positive instance higher than a randomly chosen negative instance. The AUC ranges from 0 to 1, where a value closer to 1 indicates superior discriminative ability. An AUC of 0.5 suggests no discriminative power, equivalent to random guessing.

Sensitivity, also known as recall, measures the proportion of true positives (TP) correctly identified out of all actual positives. It is calculated as:

[image: Equation showing Sensitivity (Recall) as true positives divided by the sum of true positives and false negatives, labeled as equation one.]

Specificity measures the proportion of true negatives (TN) correctly identified out of all actual negatives. It is calculated as:

[image: Specificity is defined by the formula: true negatives divided by the sum of true negatives and false positives. It is equation number two.]

The F1-score is a harmonic mean of Precision (Pre) and Recall (Rec), combining them into a single metric. It is calculated as:

[image: F1 score formula displayed as \( F_1 = 2 \times \frac{Pre \times Rec}{Pre + Rec} \), indicated as equation number three.]

Recall (Rec) is defined as in Equation (1), while Precision (Pre) is defined as the proportion of true positives out of all positive predictions:

[image: The formula shown is for precision, represented as "Pre," calculated as the ratio of true positives (TP) over the sum of true positives (TP) and false positives (FP).]

In these formulas, TP (True Positives) refers to instances correctly classified as positive, while FP (False Positives) denotes negative instances that are incorrectly classified as positive. Similarly, FN (False Negatives) represents positive instances that are incorrectly classified as negative, and TN (True Negatives) refers to instances correctly classified as negative.


3.1 Statistical analysis

We also performed a statistical analysis to test the differences between classification results. A t-test was conducted, and a P-value > 0.05 was interpreted as indicating insufficient evidence to conclude a significant difference between the classification results.




4 Results


4.1 Model performance

The trained ViT model demonstrated outstanding performance in this binary classification task, achieving an AUC of 0.99, which underscores the effectiveness of ViT architectures in extracting discriminative features from CCM images. Specifically, the model correctly classified 75 out of 81 healthy controls, with only one misclassification among DPN cases, resulting in a sensitivity of 98%, specificity of 92%, and a high F1-score of 95%.



4.2 Comparison against other methods

We further compared our method against ResNet50 pretrained on ImageNet (Deng et al., 2009), which has previously been used for detecting DPN in CCM images (Preston et al., 2022; Meng et al., 2023). Table 2 presents the AUC, sensitivity, specificity, and F1-scores for both methods. Our proposed ViT model outperformed ResNet50, achieving a higher AUC compared to ResNet50. Although ResNet50 exhibited a slightly higher F1-score than the ViT model, the difference was not significant (P = 0.397).


TABLE 2 Comparison of AUC, sensitivity, specificity, and F1-score between the ViT model and other methods for the binary classification task.

[image: Comparison table of model performance metrics for EfficientNetB7, MobileNet, ResNet50, and ViT. ViT has the highest AUC value of 0.99. Specificity, sensitivity, and F1-score vary across models, with ResNet50 and ViT having the highest sensitivity at 98%.]

Besides ResNet50, we have compared our results to well-known DL models including the EfficientNetB7 (Tan and Le, 2019), and MobileNet (Howard, 2017), chosen for their exceptional performance in tasks such as feature extraction and image classification, particularly their capability to detect anomalies within images. In Table 2, we reported a remakrbale AUC for MobileNet of 0.98. However, our ViT beats all these models in term of AUC and F1-score.

To enhance the interpretability of our model's predictions on test images and provide clinicians with greater insight, we employed Grad-CAM (Selvaraju et al., 2017). This attribution method uses the gradients flowing into the final convolutional layer to generate a coarse “attribution map,” visually highlighting the regions of the image with the strongest influence on the classification outcome. In essence, the map reveals which parts of the image were most significant in the model's decision-making process. Figure 2 illustrates original and Grad-CAM images from healthy controls (Figure 2A) and patients with DPN (Figure 2B). This clearly identifies areas where corneal nerves are located as providing the most influence to identify DPN.


[image: Sixteen images arranged in two groups of eight, labeled (a) and (b). Each group has four corneal confocal microscopy (CCM) grayscale images on top, showing nerve patterns, and four corresponding Grad-CAM colored heatmaps below, highlighting areas of interest in red and blue.]
FIGURE 2
 Example of CCM images of healthy controls and patients with and without DPN along with their corresponding Grad-CAM images. Grad-CAM creates a heatmap where hotter colors (red) indicate the image regions that had the strongest impact on the model's classification decision. Cooler colors (orange, yellow, and green) represent progressively less influential areas, with shades of blue highlighting the regions with the weakest influence. The top two rows (A) display images of healthy control subjects and the bottom two rows (B) present images of patients with DPN.





5 Discussion

In our research, e investigated the potential of the Vision Transformer (ViT) model for classifying corneal confocal microscopy (CCM) images. By splitting images into patches and processing them within a transformer-based architecture, the ViT model effectively captures both local and global features, making it particularly well-suited for tasks requiring a comprehensive view of image content. To our knowledge, this is the first study to apply a ViT model for analyzing and classifying CCM images, achieving a high AUC of 0.99, which surpasses results reported in previous studies (Silva et al., 2015; Salahouddin et al., 2021; Alam et al., 2022; Preston et al., 2022; Meng et al., 2023). These classification results underscore the effectiveness of ViT in distinguishing between healthy controls and individuals with DPN in this context.

To enhance model interpretability and provide clinicians with insights into the ViT model's predictions, we employed Grad-CAM as an explainability tool. Recognizing that Grad-CAM is traditionally designed for CNNs with their hierarchical convolutional layers, we adapted this technique for our ViT architecture. Instead of relying on convolutional feature maps, we leveraged the attention maps generated by the Transformer encoder. By analyzing the attention weights assigned to different image patches, we effectively identified the regions within the CCM images that most significantly influenced the model's predictions. The generated heatmaps, qualitatively validated for their effectiveness, highlighted regions within images that are clinically relevant for diagnosing DPN, such as corneal nerves. This approach not only provides valuable insights into the model's decision-making process but also enhances clinician trust and confidence in its predictions, thereby facilitating potential adoption in clinical settings. To address this, one of the co-authors (RAM), a pioneer of corneal nerve analysis undertook visual inspection of the Grad-CAM heatmaps and confirmed that the highlighted regions were identifying corneal nerve fiber loss, a hallmark of DPN.

While ResNet, a widely adopted CNN architecture, demonstrated competitive results, it has certain limitations. ResNet requires a fixed input size, which can be restrictive when working with images of varying dimensions (Salehi et al., 2023), and it struggles to capture long-range dependencies, which are often essential for identifying complex patterns. In contrast, ViT models, in principle, can process images of different dimensions due to their inherent self-attention mechanisms and the fact of processing images with patches. Practical implementations often necessitate training with a specific input resolution for computational efficiency. In our case, the input to our ViT model consists of CCM images with their original size of 384 × 384 pixels. However, during the internal image augmentation process within the model, these images are resized to 256 × 256 pixels. This choice was made to optimize training efficiency by enabling efficient batch processing and optimized memory usage, leading to faster training times. This approach, while introducing a degree of constraint, does not inherently limit the model's generalizability to images of different dimensions. ViT's architecture, with its self-attention mechanisms, allows it to flexibly handle varying input sizes while capturing long-range dependencies, making it a more adaptable and powerful choice for tasks that demand a deep understanding of image-wide context. In real-world applications, this approach, combined with the inherent flexibility of the ViT architecture, allows for a degree of adaptability to varying input dimensions.

Furthermore, ViTs are renowned for their scalability (Pan et al., 2021; Chen et al., 2022; Dehghani et al., 2023), as their performance typically improves with larger datasets and increased model complexity. This scalability is particularly advantageous for medical applications, where large datasets and robust models are often essential for achieving high diagnostic accuracy. Building on this scalability, our research demonstrates that ViT models can effectively detect DPN using CCM images without requiring complex pre-processing steps, segmentation, or adaptive feature extraction techniques.

This study, while demonstrating promising results, acknowledges several limitations. Firstly, the relatively small sample size (692 images) may limit the generalizability of the findings.

Secondly, the integration of this AI model into clinical practice presents several challenges. The computational demands of ViT models, while mitigated through optimizations employed in this study, may still pose challenges in resource-limited clinical settings.

Furthermore, the use of AI in healthcare raises important ethical considerations, including data privacy, algorithmic bias, and the potential for unintended consequences. Ensuring responsible and equitable AI development and deployment is paramount. To safeguard patient privacy while advancing AI models in healthcare, two promising approaches are federated learning and synthetic data generation. Federated learning enables model evaluation and refinement without transferring sensitive patient data, while synthetic data generation creates artificial data that mimics real data without containing any actual patient information. These innovative solutions offer a balance between model improvement and robust privacy protection.

These findings suggest that ViT models may offer a more efficient and accurate approach to DPN diagnosis compared to traditional methods. To fully harness the potential of ViTs, future research should focus on developing training sets encompassing a broader range of normal and abnormal pathologies, exploring the practical implementation of this algorithm in clinical workflows, and comparing its performance to existing diabetic neuropathy screening techniques. This will be crucial for translating this technology into real-world healthcare solutions.

This study serves as a foundation for future research that will address the identified shortcomings. Further research with larger, more diverse cohorts is warranted to confirm these initial observations. Moreover, incorporating other medical image modalities can be used to assess the robustness of the model in peripheral neuropathies classification.

In conclusion, this study presents a novel application of AI for the automated classification of CCM images, enabling rapid and objective detection of DPN. Our vision transformer-based model demonstrated remarkable accuracy in distinguishing patients with DPN from healthy controls. By eliminating the subjectivity and time-intensive processes of manual image segmentation and interpretation, this approach offers a faster and more consistent analysis. The integration of this AI-driven tool into clinical workflows has the potential to revolutionize DPN diagnosis by enabling quicker decision-making, facilitating timely interventions, and ultimately improving patient outcomes. While the results are promising, further research is needed to refine the model and extend its applicability. Future studies should utilize larger datasets, including diabetic patients with diverse comorbidities, to enhance model interpretability and provide clinicians with more actionable insights. This research highlights the transformative potential of AI in medical diagnostics. By automating complex tasks and improving diagnostic accuracy, AI-driven solutions can advance patient care and contribute to the effective management of diabetes-related neuropathies.
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Objective

The aim of this study was to enhance the precision of categorization of endometrial lesions in ultrasound images via a data enhancement framework based on deep learning (DL), through addressing diagnostic accuracy challenges, contributing to future research.





Materials and methods

Ultrasound image datasets from 734 patients across six hospitals were collected. A data enhancement framework, including image features cleaning and soften label, was devised and validated across multiple DL models, including ResNet50, DenseNet169, DenseNet201, and ViT-B. A hybrid model, integrating convolutional neural network and transformer architectures for optimal performance, to predict lesion types was developed.





Results

Implementation of our novel strategies resulted in a substantial enhancement in model accuracy. The ensemble model achieved accuracy and macro-area under the receiver operating characteristic curve values of 0.809 of 0.911, respectively, underscoring the potential for use of DL in endometrial lesion ultrasound image classification.





Conclusion

We successfully developed a data enhancement framework to accurately classify endometrial lesions in ultrasound images. Integration of anomaly detection, data cleaning, and soften label strategies enhanced the comprehension of lesion image features by the model, thereby boosting its classification capacity. Our research offers valuable insights for future studies and lays the foundation for creation of more precise diagnostic tools.





Keywords: deep learning, data enhancement framework, endometrial cancer, ultrasonography, diagnosis




1 Introduction

Patients with endometrial cancer, otherwise referred to as cancer of the uterine body, have a highly variable prognosis; crucially, the survival rate can be significantly improved through early detection and diagnosis (1, 2). In clinical practice, patients with postmenopausal bleeding are generally diagnosed through various means, including imaging, pathological examination, and serum tumor markers (3, 4). Magnetic resonance imaging (MRI) and computed tomography (CT) are relatively accurate imaging methods, but are expensive and CT poses significant radiation hazards. Further, although curettage and hysteroscopy are key steps in the diagnostic process, they are somewhat invasive for patients. In contrast, ultrasound examination is convenient, non-invasive, inexpensive, and repeatable, and is often used as a first-line diagnostic tool for endometrial lesions (5, 6). Ultrasonography is also an important means of large-scale asymptomatic population screening, where early detection of endometrial cancer by large-scale screening can significantly improve patient prognosis (7). Nevertheless, since physical condition and disease state vary in each patient, there is currently no universal diagnostic indicator for endometrial cancer (4). Additionally, the accuracy of ultrasound examination is affected by factors including the technical ability of medical personnel and environmental noise. Reznak et al. found that the success rate of ultrasound examination in predicting polyps is 65.1%, and that it has limited predictive value when used alone (8). Therefore, there is an urgent need for an auxiliary screening method that can effectively improve the accuracy of ultrasound examination in diagnosing endometrial cancer.

In recent years, artificial intelligence, particularly deep learning (DL), has made significant progress in medical image recognition (9–11). For instance, numerous developmental directions have emerged in the application of deep learning for the diagnosis of endometrial lesions. Based on MRI images, DL models can automatically locate, segment, and measure the degree of muscle infiltration of endometrial cancer (12–15); however, DL research based on ultrasound images is relatively scarce. Hu et al. (16) and Liu et al. (17) each proposed endometrial thickness measurement models based on transvaginal ultrasound (TVUS) images; however, these models cannot be directly applied to endometrial lesion classification. Other features in ultrasound images, such as uniformity of endometrial echo and blood flow signals, are also crucial for distinguishing benign and malignant endometrial lesions (18, 19). Further, DL also performs poorly in the task of ultrasound image classification. Raimondo et al. (20) used a DL model to diagnose adenomyosis based on TVUS images, and the results indicated that the diagnostic accuracy of the DL model was lower than that of general ultrasound doctors, although it had higher specificity in identifying healthy uteruses and reducing overdiagnosis. Therefore, we sought to improve model learning and utilization of various ultrasound image features using DL methods to enhance endometrial lesion classification accuracy.

In this study, we developed a DL model for automatic identification of endometrial lesions using an innovative combination comprising multi-stage anomaly detection, a data cleaning process, and a soft label strategy, to improve model understanding of lesion image features and enhance its classification ability. Our experiments explored the relationships among lesion features, models, and different degrees of softening ([image: It seems there is no image uploaded. Please upload the image or provide a URL for which you need alt text and optionally add a caption for context.] ). Final accuracy was also enhanced through integration of several different models.




2 Materials and methods



2.1 Patients

This multicenter retrospective diagnostic study was conducted in line with the principles of the Declaration of Helsinki. This study was approved by the Ethics Committee of the People’s Hospital of Quzhou City (No. 2022-148). Ultrasound examination images were collected from March 2014 to March 2023 at six hospitals: The Quzhou Affiliated Hospital of Wenzhou Medical University, Changshan County People’s Hospital, Kaihua County People’s Hospital, People’s Hospital of Quzhou Kecheng, The Second People’s Hospital of Quzhou, and Quzhou Maternal And Child Health Care Hospital. Inclusion criteria: 1. Non-pregnant women who have had sexual intercourse and consent to transvaginal ultrasound examinations. 2. Patients with confirmed pathological diagnoses via hysteroscopy or endometrial biopsies. Exclusion criteria: 1) Patients who have not had sexual intercourse and are thus ineligible for transvaginal ultrasound examinations. 2) Patients are allergic to condoms and thus unsuitable for ultrasound examinations. 3) Patients with severe reproductive system abnormalities or acute inflammation who are contraindicated for transvaginal ultrasound examinations. 4) Patients with severe psychological disorders who are unsuitable for transvaginal ultrasound examinations. 5) Each patient’s endometrial ultrasound images are collected in two views: all longitudinal images and all transverse images for each case. 6) Image blurring due to significant visual losses and damages during the collection process, along with interferences like gas and artifacts. All images were collected by professional radiologists, and saved in DICOM format. Then, the ultrasound images are further screened, as shown in Figure 1; 734 patients were ultimately included in the study.

[image: Flowchart depicting the study's design for collecting ultrasound images of patients with endometrial lesions from six hospitals between March 2014 and March 2023. Inclusion criteria require non-pregnant women who consent to transvaginal ultrasound examinations and have confirmed pathological diagnoses. Twelve lesions were excluded due to duplicate statistics, lack of blood flow information, or poor image quality. The study enrolled 734 patients with 168 cancers, 290 hyperplasias, and 276 polyps.]
Figure 1 | Patient selection workflow. A total of 746 patients with endometrial lesions were collected, of which 734 were ultimately included in the analysis. Cancers, Hypers, and Polyps indicate patients with these types of lesions.




2.2 Data processing

After collection, all ultrasound data were converted from DICOM into JPG files using Python for research. Since data were derived from multiple different hospitals, some preprocessing measures were performed on all images for experiments, including manual cropping to retain only the part captured by the instrument and scaling to 224 × 224. Finally, to improve model robustness and generalization ability, data augmentation techniques, including random-cropping, random-flipping, and TrivialAugment (21) were also used during the training phase. In the testing phase, only size adjustment and normalization of the original images were conducted.




2.3 Data enhancement framework

An innovative data augmentation framework, primarily encompassing data cleaning and label softening procedures, was developed in this study. The processing of training set data using this framework is summarized in Figure 2. Following a feature extraction process, image feature cleaning, and soften label implementation, the training set was utilized to generate a softened set for training purposes.

[image: A diagram illustrating a machine learning process for image data. Part (a) shows data division into five groups with 5-fold cross-validation for predicted and learned sets. Part (b) outlines a feature extraction process using a ResNet34 network. Part (c) depicts image feature cleaning with a chart showing the removal of outliers, using techniques like Isolation Forest and SVM. Part (d) describes softening labels through reconstruction, with a graph illustrating label changes with different weights. The process involves cleaning and softening image features for improved model training and prediction.]
Figure 2 | Image features cleaning and soften label processes. The original training set was obtained using four steps: (A) data division, (B) image features cleaning, (C) feature extraction, and (D) soften label, to obtain the final soften set. The Soften Label subfigure shows the calculation formula used for softening labels.



2.3.1 Image feature cleaning

Medical data are often intricate, encompassing numerous variables and factors, and the diverse types of noise they contain represents a substantial challenge (22). For example, data for the present research was sourced from multiple hospitals, where the process of ultrasound image acquisition is influenced by objective factors, such as equipment performance, environmental noise, and patient size and positioning, which can lead to the presence of abnormal images and noise within the dataset, with potential to impair model performance. To mitigate this possibility, a rigorous data cleaning process was initiated following division of the original data into training and testing sets.

As illustrated in Figure 2, five-fold cross-validation was first applied to partition the training set into five subsets, four of which were used to train an independent DL model. These models were primarily tasked with predicting the results from the remaining subsets and generating corresponding image feature vectors. In this study, ResNet34 was used as the backbone network of the framework. Finally, five sets of experimental results were connected to form a complete training set of image features.

Subsequently, anomaly detection methods, such as Isolation Forests (23), were introduced to analyze the feature vectors of the generated training set and exclude potential anomalous data. The training sets selected by three methods were then merged to form a new, cleaned training set. In this study, we selected Isolation Forest, Local Outlier Factor, and One-Class SVM. The selection of methods is contingent upon the data and the specifics of the research. This innovative approach to data cleaning ensured the robustness of the developed model, despite the diverse and potentially noisy data sources.




2.3.2 Soften label

To enhance generalization ability of the model and alleviate overfitting, a label smoothing strategy was implemented, based on the inverse proportion of image-to-cluster center distance. As shown in Figure 2, Soften Label included the following processes: first, dimension reduction and clustering were performed on the new processed training set; then, the center of each category cluster and the distance of each image to each cluster center were calculated; finally, new labels were formed, according to the distance ratio. In addition, an adjustable temperature, [image: It seems there was an error with the image upload. Please try again and ensure the image file is properly attached. You can also add a caption for additional context if needed.] , was introduced, to control the smoothness of the label. The new label for training was obtained by calculating the inverse distance ratio multiplied by [image: It seems there was an error in uploading the image. Please try again by ensuring the file is correctly attached, or provide a URL if the image is online.] , plus the hard label value. Datasets were named at different processing stages as the cleaned set and the softened set.





2.4 Model architecture and training strategy

In this study, a hybrid model to predict patient lesion types, based on convolutional neural network (CNN) and Transformer architectures, is proposed, with the aim of maximizing prediction accuracy. As shown in Figure 3, the proposed model combines three classic CNN models (ResNet50, DenseNet169, and DenseNet201) and ViT-B, leveraging the complementary strengths of these different models to enhance the accuracy of endometrial ultrasound image classification.

[image: Diagram illustrating a neural network architecture for class prediction from an ultrasound image. It includes ResNet 50, DenseNet 169, DenseNet 201, and Vision Transformer (ViT) models. Each model processes the image through convolutional, pooling, and respective block layers, followed by MLP and Softmax for class predictions. Outputs are averaged for the final prediction.]
Figure 3 | Architecture of model integrating ResNet50, DenseNet169, DenseNet201, and ViT-B.

The multilayer perceptron layer of the original model was tailored to suit this classification task. Each preprocessed image was fed into the model for automatic processing, outputting a three-dimensional array. After Log-Softmax function processing, the prediction probability for each image was obtained. During model integration, the prediction probabilities from all sub-models were weighted to yield the final result. In the testing phase, the average prediction probability for all images from a single patient was calculated, to determine the prediction result.

The experiment comprised three stages. Initially, unmodified ResNet50 was employed as the base model and the impact of different data processing methods on model performance assessed. Subsequently, the applicability of the proposed method was explored by training various CNN and visual transformer models, and the results statistically analyzed after setting the [image: It seems like there was an error in uploading the image. Please try uploading the image again, ensuring it's in a supported format such as JPEG, PNG, or GIF. Let me know if you have any questions!]  value. Finally, high-performing models from the second stage were integrated to test the performance of the optimal model. During the training process, CrossEntropyLoss was used as the objective function, and AdamW was used as the optimizer for end-to-end training. Additionally, the transformer architecture network was loaded with pretraining parameters.

In this manuscript, suffixes have been added to indicate different models; for example, ResNet50_b represents the baseline model, while ResNet50_c represents the model trained using the cleaned set data. Similarly, models trained using softened set data have the suffix “_s”.




2.5 Devices and software

This was a multicenter study, and different hospitals used various devices for the data collection process, including Samsung WS80A, GE Volkswagen E10, GE Volkswagen E8, PhilipPsQ5, PhilipPsQ7, and Mindray Resona 6s. All equipment met the experimental requirements. The protocols for each scanning instrument are shown in Table 1.

Table 1 | Scanning Instrument Protocol.


[image: Comparison table of ultrasound devices lists specifications like intracavitary probes, probe frequency, bandwidth, TIS, depth, magnification, maximum fan angle, frame rate, gain, and dynamic range for GE Voluson E8, GE Voluson E6, Mindray Resona 7s, Mindray Resona 6s, Philips EPIQ-7, and Philips EPIQ-5 models.]



2.6 Statistical analysis

Statistical analyses were performed during the testing phase, with individual cases serving as the smallest unit of measurement. Models were validated on a test set, followed by statistical evaluation of the confusion matrix derived from the validation outcomes. Additionally, receiver operating characteristic (ROC) curves were plotted. Primary indicators for comparing model performance were accuracy and area under the ROC curve (AUC); sensitivity and specificity were also considered as indicators of the classification capabilities of models. Two visualization techniques, Grad-CAM (24) and t-SNE (25), were employed to elucidate the operational mechanism of the model.





3 Results



3.1 Case inclusion and grouping

Among 1875 high-quality images from 734 patients, we randomly extracted 30% of cases as a test set. The remaining images were used as the original training set for data augmentation and model training. The detailed dataset partitions used in this study are presented in Table 2. All experiments were trained and tested using the same data-division. Our final model achieved the best performance, with accuracy and macro-AUC values of 0.809 and 0.911, respectively.

Table 2 | Partition details of the endometrial lesion classification dataset.


[image: Table comparing datasets for cancer, hyper, and polyp categories. Columns list numbers of patients and images for datasets, training set, and testing set. Totals provided for each category.]



3.2 Impact of innovative strategies

In the methods testing phase, we chose ResNet50 as the baseline model. Model performance was significantly improved through feature cleaning and soften label processing. As shown in Table 3, when the original training set was used for training, the accuracy of the test set was only 0.691. This provided us with a comparison baseline; the baseline was determined in the same way for each model in subsequent multi-model comparisons. We noticed that abnormal images in the training set could affect model training; therefore, we used feature cleaning to reprocess the training set. After obtaining relatively clean data, the accuracy of the model on the test set increased to 0.741. In subsequent experiments, we used a label-softening method to reconstruct the labels in the new dataset. Under the same data augmentation and image preprocessing, the accuracy of the model increased to 0.764. The independence and invariance of the test set were ensured in each training batch.

Table 3 | Impact of different data processing approaches on model performance.


[image: Table comparing dataset results for the ResNet50 model, with metrics: ACC, AUC, F1, Recall, and Precision. The "Soften label" dataset shows the highest values: ACC 0.764, AUC 0.873, F1 0.752, Recall 0.745, and Precision 0.759, all in boldface.]
Label smoothness was controlled using the parameter, [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] , which is similar to the smoothing coefficient in Label Smooth (26). In this experiment, we introduced a variety of different τ values, to generate different soften-labels. ResNet50 showed different classification capabilities under different values of τ. As shown in Table 4, ResNet50 performed best when τ was 0.7. To further study the impact of τ on model training, we introduced five other models, including DenseNet169, DenseNet201, EfficientNetB4, VGG16-bn and ViT-B. As shown in Table 4, our framework effectively improved the representation learning of various models, indicating that the improvement in the performance of ResNet50 was not isolated. Further, the best performance of each model corresponded to different values of τ. Among individual models, DenseNet201 achieved the best accuracy when τ was 0.9. When τ was 0.7, the performances of ResNet50, DenseNet169, and VGG16-bn were better than those achieved with other softening coefficients. These conditions may indicate that the optimal value of τ may vary depending on the characteristics of the dataset, model, and study.

Table 4 | Model performance comparison (Accuracy).


[image: A table compares model performance with different soften label values. Models listed are ResNet50, DenseNet169, DenseNet201, EfficientNetB4, VGG16-bn, and ViT-B. Each model's base performance is shown alongside results for soften labels 0.6 to 0.9. DenseNet201 achieves the highest value, 0.786, for a soften label of 0.9. Bold numerals indicate optimal results.]



3.3 Prediction model performance

As shown in Figure 4, the confusion matrixes for each model effectively reflected their classification performance. In terms of overall accuracy, the DenseNet201_s model exhibited outstanding performance, achieving a best score of 0.786, particularly in recognition of polyp class images, for which it had the best single-category recall rate. We also plotted ROC curves for DenseNet169_s and DenseNet201_s, to evaluate and compare their performances by measuring AUC values (Figure 4). We found that DenseNet-201_s was the single model with the best comprehensive classification performance in this study.

[image: Confusion matrices and ROC curves compare the performance of various models, including ResNet50, ViT-B, DenseNet169, DenseNet201, and an Ensemble Model, across three classes: cancer, hyper, and polyp. Each section illustrates true positive rates, false positives, and AUC values.]
Figure 4 | Charts summarizing statistical analysis of results from seven different models. Matrix diagrams represent confusion matrices, while the line plots are ROC curves.

In the final phase of our experiment, we implemented an ensemble model approach to enhance the performance of our model. The ensemble models were constructed based on the performance ranking of models as indicated in Table 4. As demonstrated in Table 5, the Ensemble Model2, which is comprised of ResNet50_s, DenseNet169_s, DenseNet201_s, and ViT-B models, yielded the most superior test results, achieving an accuracy of 0.809 and a macro-AUC of 0.911. As illustrated in Figure 4, the Ensemble Model2 outperforms DenseNet201_s in the classification of cancer and hyperplasia. The macro-AUC value of the Ensemble Model2 has significantly improved, and the ROC curve is also more reasonable.

Table 5 | Performance of ensemble models with different compositions.


[image: Table showing five ensemble models with their compositions and respective performance metrics. Ensemble model 1 uses DenseNet169, DenseNet201, ViT-B with ACC 0.777 and AUC 0.898. Model 2 adds ResNet50 to model 1, achieving bolded ACC 0.809 and AUC 0.911. Model 3 adds EfficientNetB4 to model 2, with ACC 0.805 and AUC 0.908. Model 4 includes VGG16-bn in model 2, with ACC 0.791 and AUC 0.906. Model 5 incorporates VGG16-bn into model 3, achieving ACC 0.782 and bolded AUC 0.912. Bold numerals indicate optimal results.]



3.4 Model visualization

The operation process of DL models is often viewed as a ‘black box’ prediction; however, we applied the Grad-CAM and t-SNE visualization methods to explain the working mechanism used by our DL model.

In Grad-CAM, we used hook functions to generate the gradient of the last dense module of the model and stacked these gradients onto the original image to generate heat maps. As shown in Figure 5, the areas of interest for the model can be distinguished by depth of color. From these images, it can be observed that the model accurately focused on lesion areas in the endometrium; more attention was paid to these areas, and these local features deeply affected model prediction.

[image: Ultrasound images show three conditions: cancer, hyperplasia, and polyp. Each condition has three sets of images: a grayscale ultrasound with a red-marked area and a corresponding heat map showing intensity.]
Figure 5 | Images from Grad-CAM analysis. The red annotation on the original image indicates the model’s focal region, which closely coincides with the critical lesion area.

We also intuitively observed the training effect of the model using the t-SNE method to count the feature vectors extracted by the model. In the high-dimensional space of feature vectors, we calculated the similarities between each data point and mapped these data to low-dimensional space for visualization, and compared the clustering diagrams before and after model training (Figure 6). As illustrated in Figure 6, most images were mapped in their fixed areas through training, but there was overlap among certain categories. Further, the distance between different category cluster centers reflected the intrinsic relationship of their key image features to a certain extent. We proposed a soften-label method based on this principle.

[image: Scatter plots labeled "a" and "b" with red circles for cancer, green triangles for hyperplasia, and blue squares for polyps. Plot "a" shows a scattered arrangement with interspersed colors. Plot "b" has a more clustered appearance, with some distinct groupings, especially among blue squares.]
Figure 6 | t-SNE reduction of model data. Parts a and b are t-SNE plots before and after model training, respectively.





4 Discussion

In the burgeoning field of DL, our study represents a pioneering effort to accurately classify endometrial lesions in ultrasound images using DL models. We achieved an automatic classification with a final accuracy of 0.809 and a macro-AUC value of 0.911.

To maximize DL model effectiveness, we established an innovative data augmentation framework. In this study, collection of datasets from multiple centers ensured inclusion of diverse endometrial lesion ultrasound data. Although this diversity ensured the generalization performance of the model, it also introduced additional noise, which is an inherent challenge commonly present in medical datasets. Within our data augmentation framework, we implemented a scalable data cleaning process, including selection of appropriate feature extraction networks and anomaly detection methods, which significantly improved the accuracy of ResNet50 on our test set, from 0.70 at baseline to 0.741. Another challenge arose from the low signal-to-noise ratio of ultrasound images and the similarity of lesion image features. To address this, we incorporated a label softening strategy, based on clustering and inverse distance, into the data augmentation framework. This strategy, which did not introduce additional prior knowledge, bolstered the model’s understanding of the relationships among lesion image features, thereby improving its generalization and robustness. Consequently, the accuracy of ResNet50 on the test set improved to 0.764, effectively enhancing the fine-grain level of the model. Finally, we integrated multiple distinct DL models, leveraging their respective strengths to improve testing accuracy to 0.809.

In the second stage of our experiment, we applied our method to multiple models, each of which showed significant improvement over their baseline performance. These findings underscore the effectiveness and wide applicability of our approach. In the label softening process, we utilized [image: Please upload the image you would like me to provide alt text for. If you have any additional context or a caption, feel free to include it.]  to manage the degree of label softening. Performance of the models varied under different [image: It seems there was an issue with the image upload. Please try again, and make sure to attach the image file. If you have any additional context or a caption, feel free to add that as well.]  values, with each model achieving substantial improvements over their baseline performances under specific [image: It looks like there was an error in uploading the image. Please try uploading the image file again, and make sure it's in a supported format like JPEG, PNG, or GIF. If you'd like, you can also provide additional context or a caption for better alt text creation.]  values; however, the optimal [image: It seems there was an issue with providing the image. Please try uploading it again, and I will help create the alternate text.]  value varied across models. Nevertheless, it is difficult to draw clear conclusions based on these findings, for to two potential reasons: first, the limited range of [image: It seems there's an issue with the image display. Please try uploading the image again or ensure the URL is correct. You can also provide a brief description or caption for context.]  values used in the experiments leaves open the possibility that there may be an optimal [image: It seems there was an error displaying the image. Please try uploading the image file again, and I will be happy to help you with the alternate text.]  value in other ranges that could yield the best results for the majority of models; and, second, the inherent variations in the architectures of each model could result in varying sensitivities to [image: I can't view images directly. Please upload the image or provide a URL for me to generate the alt text.]  value, leading to differences in optimal [image: It seems there is an error in your request. Please upload an image or provide a URL, and I will help generate the alt text for it.]  values among models.

In contrast to previous studies, our research has made significant strides in the classification of endometrial lesions using DL methods to analyze ultrasound images. Unlike prior works that focused on endometrial thickness measurement based on ultrasound images, we have successfully developed a model that can accurately classify endometrial lesions. By integrating innovative strategies, such as feature cleaning and label softening, our model can effectively learn and utilize various ultrasound image features. Based on the findings of Reznak et al., our model achieved better results than medical staff, particularly in the detection of polyps. Consequently, our model significantly enhances endometrial lesion classification accuracy, marking a substantial breakthrough in the field of DL applied to ultrasound-based diagnosis.

Despite these advances, our research has limitations. Our dataset, although diverse, was not sufficiently large, comprehensive, or representative, posing challenges in terms of distinguishing features of endometrial cancer from those of endometrial hyperplasia. Further, during the data collection process, there was a lack of uniform standards among operators. Furthermore, the process involved subjective selection of representative ultrasound images for preservation by operators, which could lead to discrepancies between the knowledge encapsulated in ultrasound image data and real-world conditions (27, 28). This unilateral learning from disparate images may result in suboptimal model performance. To mitigate this issue, we could consider methods akin to those used for the analysis of hysteroscopy or MRI datasets. During the data collection process, comprehensive and continuous data is gathered for each patient. As shown in Yasaka K et al.’s research (29), continuous image data can provide more comprehensive and in-depth information.

For future work, we aim to refine our methods further. We will consider using other models when extracting image features, or even combining additional different models to complete the task. We will conduct further comparative experiments, to determine a more suitable combination of anomaly detection methods. Moreover, we will explore setting of an adaptive [image: It seems there was an issue with the image upload. Could you please try uploading the image again? Make sure to attach the file so I can help you generate the alternate text.]  value, which is currently highly individualized, to further optimize the performance of our model. Despite its limitations, our study has opened up new possibilities for application of DL in medical image diagnosis and provides a crucial reference that can inform future research.




5 Conclusion

In this study, we developed a novel DL model that can accurately classify endometrial lesion ultrasound images. This model, enhanced by our innovative feature cleaning and soft label strategies, outperforms traditional models, providing clinicians with more precise diagnostic information. This is the first application of DL in this area and demonstrates its potential value, despite some limitations in data scale and collection. Our research paves the way for future use of DL in medical image diagnosis, particularly as we plan to incorporate more continuous medical imaging data.
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Background

Uterine broad ligament fibroids present unique surgical challenges due to their proximity to vital pelvic structures. This study aimed to evaluate artificial intelligence (AI)-guided MRI instance segmentation for optimizing laparoscopic myomectomy outcomes.





Methods

In this trial, 120 patients with MRI-confirmed broad ligament fibroids were allocated to either AI-assisted group (n=60) or conventional MRI group (n=60). A deep learning model was developed to segment fibroids, uterine walls, and uterine cavity from preoperative MRI.





Result

Compared to conventional MRI guidance, AI assistance significantly reduced operative time (118 [112.25-125.00] vs. 140 [115.75-160.75] minutes; p<0.001). The AI group also demonstrated lower intraoperative blood loss (50 [50-100] vs. 85 [50-100] ml; p=0.01) and faster postoperative recovery (first flatus within 24 hours: (15[25.00%] vs. 29[48.33%], p=0.01).





Conclusion

This multidisciplinary AI system enhances surgical precision through millimeter-level anatomical delineation, demonstrating transformative potential for complex gynecologic oncology procedures. Clinical adoption of this approach could reduce intraoperative blood loss and iatrogenic complications, thereby promoting postoperative recovery.
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1 Introduction

Uterine fibroids are the most prevalent benign tumors affecting the female reproductive system among child-bearing aged women. The morbidity rate exceeds 70%, significantly impacting female reproductive health (1). The manifestation of symptoms, including abnormal uterine bleeding, infertility, pelvic pain, and compression-related symptoms, is a key determinant in treatment approaches, which are closely tied to the size, quantity, and position of the fibroids (2). Consequently, surgical strategies are modified to align with these parameters. Generally, uterine fibroids are commonly intramural, submucosal, or subserosal; however, broad ligament fibroids, which are considered a diagnostic and surgical dilemma due to their unique anatomical location, present many challenges in clinical practice. Myomectomy for broad ligament fibroids is often complicated by surgical risks such as ureteric and uterine vessel injuries.

As patients suffered from uterine fibroids often lean towards minimally invasive procedures, laparoscopic myomectomy(LM) emerging as the primary surgical choice following its initial performance in the 1970s. The majority of FIGO uterine fibroid types can be removed through laparoscopic myomectomy (LM), including broad ligaments fibroids, which has demonstrated notable advantages compared to open myomectomy, including reduced postoperative pain, lower rates of postoperative fever, and shorter hospital stays (3). However, the anatomical complexity of broad ligament fibroids—particularly their proximity to uterine myometrium and retroperitoneal neurovascular bundles—introduces unique intraoperative risks that partially offset these benefits. Broad ligament fibroids present unique surgical challenges due to their embryological origin in the Müllerian duct remnants, which predispose them to several complications. These include: 1) interdigitation with uterine vascular arcades; 2) compression of the ureteric tunnel and 3) adherent peritoneal reflections that require precise dissection planes. Nonetheless, managing blood loss remains a significant challenge in laparoscopic myomectomy (LM). Zaki Sleiman et al. highlighted a correlation between blood loss during LM and factors such as the size and number of fibroids, as well as operative time, while excluding variables like age, body mass index (BMI), and menstrual cycle phase (4). Given that the size and quantity of fibroids are unmodifiable, streamlining operative time stands out as a potential breakthrough option. Besides that, despite technological advancements, laparoscopic management of myomectomy remains surgically demanding due to three inherent challenges: (1) Restricted visual field limitations imposed by the retroperitoneal anatomy complicate intraoperative orientation, increasing risks of ureteral injury (2) The intimate proximity of fibroids to uterine myometrium and parametrial plexus predisposes to catastrophic hemorrhage when conventional 2D imaging guidance is used (3) Conventional MRI reconstruction techniques lack dynamic spatial correlation with real-time laparoscopy, resulting in suboptimal surgical planning.

Precisely targeting this temporal challenge, Artificial Intelligence (AI) has increasingly extensive application in surgical interventions to enhance both efficiency and safety. Pietro Mascagni et al. pioneered the development of a deep learning model aimed at automating the segmentation of hepatocystic anatomy during laparoscopic cholecystectomy (5). In the realm of gynecological surgery, Sabrina Madad Zadeh et al. curated two datasets comprising laparoscopic gynecological images and crafted an artificial neural network for semantic segmentation specifically tailored for laparoscopic images during gynecological procedures (6, 7). Furthermore, they integrated augmented reality into LM guidance, albeit with reservations regarding its clinical implementation (7–9). It ‘s worth noting that the aforementioned augmented reality approach still necessitates the involvement of a radiologist to perform the segmentation of the uterus and fibroids, constructing a three-dimensional (3D) mesh model using preoperative magnetic resonance (MR) images. In a recent study by Yoshifumi Ochi et al., mixed reality was employed in a singular patient during LM; however, the challenge of relying on preoperative MR images for segmentation still persists (10). In summary, for broad ligament LM, AI-driven MRI segmentation directly addresses the operative time-blood loss paradigm through three mechanisms: (1) Preoperative 3D reconstruction of fibroid-myometrium interfaces reduces intraoperative anatomical exploration time (2) Automated quantification of fibroid spatial distribution enables optimized trocar placement strategies, minimizing instrument repositioning delays; (3) Real-time AI-enhanced visualization compensates for the lack of tactile feedback in laparoscopy, particularly crucial when dissecting parametrial adhesions.

Image segmentation has emerged as a pivotal component in the application of deep learning methodologies within the domain of medical AI. Yasuhisa Kurata et al. employed U-net and adjusted parameters to achieve automatic segmentation of the uterus in MRI images (11). This segmentation algorithm underwent rigorous testing on MR T2-weighted sagittal images encompassing conditions such as uterine cervical cancer, endometrial cancer, and uterine fibroids. Alireza Fallahi et al. introduced the Fuzzy C-Mean algorithm along with morphological operations, demonstrating successful automatic segmentation on MR T1-weighted sagittal images (12). Addressing the segmentation of uterine fibroids on MR images, Jian Zhang et al. proposed a modified U-Net with integrated attention mechanisms focusing on both channel and spatial aspects (13).

In the treatment of uterine fibroid, researchers have incrementally applied AI-driven automatic segmentation to High-Intensity Focused Ultrasound (HIFU) treatment.

Carmelo Militello et al. innovatively proposed algorithms based on Fuzzy C-Means clustering and iterative optimal threshold selection (14). This method autonomously segmented MR images during HIFU treatment in fibroid patients. Similarly, Kari Antila et al. developed an algorithm for automatic segmentation specifically designed for promptly detecting uterine fibroid regions following MR-guided High-Intensity Focused Ultrasound treatment (15). However, HIFU treatment still remains some limitations, as comparing to the surgery, which has greater recurrence rate and indefinite following pregnancy outcomes. Consequently, the first line treatment of uterine fibroids is still resection.

To the best of our knowledge, there is currently no existing research exploring the application of AI segmentation to assist LM. The majority of contemporary segmentation algorithms have predominantly centered around semantic segmentation of the uterus, posing prominent limitations for LM. In response to this gap, our team undertook the construction of a comprehensive uterine fibroid MR dataset, encompassing all FIGO types and comprising data from 300 fibroid patients. Furthermore, we pioneered the development of instance segmentation algorithms rooted in deep learning, which significantly enhance fibroid detection and classification (16). This method involved the optimization of the Mask-RCNN model, a crucial benchmark in numerous instance segmentation algorithms. Our algorithms demonstrate the capability to achieve precise instance segmentation of fibroids, uterine walls, and cavities, thereby facilitating high-quality surgical decision-making. While differential diagnosis from uterine sarcomas remains critical in fibroid management, the current AI model focuses on surgical precision enhancement rather than malignancy prediction—a direction we are actively pursuing in parallel investigations. Future iterations may incorporate sarcoma risk stratification by analyzing interface texture features.

This paper marks the inaugural introduction of AI automatic segmentation on MR images into the realm of preoperative planning for LM of broad ligament fibroids. Gynecologists now possess enhanced capabilities for strategic decision-making in terms of selecting optimal surgical incisions and determining the spatial location of fibroids. As a result, patients undergoing AI-assisted procedures experienced reduced operation duration, diminished blood loss, and a shortened timeframe to achieve the first postoperative flatus. These outcomes underscore the huge potential of AI in advancing the field of gynecologic laparoscopic surgery.




2 Methods



2.1 Participants and study design

Participants in this study were enrolled from July 2022 to November 2023 at Beijing Shijitan Hospital. A total of 120 patients with broad ligament fibroids were included, with age ranging from 24 to 44 years and fibroid size ranging from 4.00 to 10.67 cm. This study was conducted in accordance with the World Medical Association ‘s Declaration of Helsinki. And it was approved by the scientific research ethics committee of Beijing Shijitan Hospital, Capital Medical University [code: SJTKYLL-LX-2022(01)]. This study would not violate the rights and interests of patients. The ethics committee clearly stated that specific consent procedures were not required for this study.

Participants met the following inclusion criteria: 1.Symptomatic presentation requiring surgical intervention: Abnormal uterine bleeding (defined as menstrual volume >80 mL/cycle or duration >7 days) with hemoglobin <110 g/L. Compression symptoms (e.g., urinary frequency, hydronephrosis, or bowel dysfunction) confirmed by MRI. 2.MRI-confirmed broad ligament fibroids. 3.Postoperative pathological confirmation of benign leiomyoma. 4.High-quality preoperative MRI including T2-weighted axial sequences (slice thickness ≤3 mm) and diffusion-weighted imaging (b-value = 800 s/mm²) to ensure AI segmentation feasibility.

The exclusion criteria were as follows: 1. Severe comorbidities (ASA class ≥III) that independently affect surgical outcomes (e.g., uncontrolled heart failure, Child-Pugh C cirrhosis). 2.Active pelvic inflammation (CRP >10 mg/L AND body temperature >37.5°C). 3.Uterine active massive bleeding, severe anemia. 4.Pregnancy or lactation (serum β-hCG-positive). 5.Genital tuberculosis without anti-tuberculosis treatment. 6.Non-fibroid pathology on postoperative histology (e.g., adenomyosis, sarcoma).7.history of uterine perforation within 3 months.8.invasive cervical cancer. 9.with MRI contraindications, such as febrile convulsions, active foreign bodies in the eyes, cardiac pacemakers, metal intrauterine devices, metal joints and metal dentures. 10.Poor MRI image quality (motion artifact score ≥3 on a 5-point scale) precluding reliable AI segmentation.

This research was conducted according to the following process (Figure 1). All eligible subjects underwent MRI examination. Using a computer-generated random number table, eligible participants were equally allocated to either the MRI-artificial intelligence (MRI-AI) group (n=60) or the MR group (n=60). Half of them were divided into group MRI-AI, and the other half were divided into group MR. The surgical procedure in both groups was performed by the same surgeon, using the same instrument set, with abundant experience and the same surgical equipment, which is blinded to the group allocation.

[image: Flowchart illustrating a medical procedure pathway. Patients see a gynecologist, who refers them for an MRI. The MRI data is acquired and processed with AI for instance segmentation. Results are used for laparoscopic myomectomy.]
Figure 1 | Flow chart.




2.2 MRI image acquisition

MRI examination in this study was completed in the PHILIPS INGENIA magnetic resonance imaging system with 3.0T ultra-high field. The MRI scan parameters were as follows: repetition time 4200ms, echo time 130ms, voxel 0.8x0.8x4.0cm3, field of view 24x24cm, reverse angle 90°. MRI provided multiple images from the sagittal, coronal and axial scans and from various sequences including T1W, T2W, mDIXON and DWI. The image resolution was larger than 512x512 pixel. T2W sagittal images were finally collected for the followed image processing.




2.3 MRI image instance segmentation

MRI image was processed based on the instance segmentation model which has been published by our team (16).

MRI images are characterized by the presence of offset fields, low contrast and blurred uterine tissue boundaries, which increase difficulty in AI automatic segmentation.

In order to solve this problem, adaptive histogram equalization was used to adjust the contrast between uterine tissues, especially for uterine fibroids and uterine wall with similar in signal intensity. The N4ITK method was used to correct the offset field problem, and the Z-Score method was used to normalize the MRI images to the same range. Manual intervention was strictly prohibited except for initial DICOM-to-NIfTI conversion using dcm2niix (v1.0.20220720).

A specialized network architecture was meticulously crafted for image processing in this study. Initially, the high-resolution network v2p (HRNetv2p) was employed for high-resolution feature extraction and multi-scale feature fusion operations within the backbone section. This strategic utilization aimed to ensure effective extraction of small-scale targets in the uterine region. To address the challenge posed by diverse organ shapes, deformable convolutional networks (DCN) were incorporated. DCN facilitated the extraction of authentic feature information from varied shapes, mitigating the loss of shape-specific information.

Furthermore, the convolutional block attention module (CBAM) played a crucial role in feature extraction. Its function included filtering out irrelevant and interfering feature information while enhancing the feature expression capability of the AI model. To aid in target localization, an anchor-based approach was implemented, contributing to the overall effectiveness of the image processing methodology.

The dimensions of fibroids, uterine walls, and uterine cavities within the uterine region exhibit considerable variability, rendering conventional size settings inadequate. In our previous work, distribution statistics were conducted on the length, width, and aspect ratio of the minimum peripheral bounding box of the target within our dataset. This statistical analysis served as a reference for MR image processing. The K-Means clustering method was applied to determine the number of clusters in the target bounding box, thereby determining the appropriate box size. This approach was simultaneously employed across different feature layers to enhance the detection of small-scale targets in the shallow layer and large-scale targets in the deep layer.

In the segmentation task, the PointRend module was introduced to optimize segmentation edges iteratively between adjacent targets. This iterative segmentation strategy effectively reduced jaggies and rough edges, resulting in smoother and more detailed edges for various objects within the uterine region. Given that the model encompasses multiple subtasks, the loss function comprises several components. The classification loss function evaluates the accuracy of target classification using cross-entropy loss. The bounding box loss function assesses the accuracy of target localization through smooth L1. Additionally, the segmentation loss function consists of two parts, namely Coarse mask head and mask point rend, primarily calculated through binary cross-entropy loss.

As the gold standard used as a reference for segmentation, the board-certified radiologists (10+ years in gynecological MRI) independently annotated all structures using 3D Slicer (v5.2.1): 1.Fibroids: Manual contouring on T2WI axial sequences. 2.Uterine wall: Semi-automated segmentation with level-set refinement. 3.Cavity: Threshold-based segmentation (intensity >200 on T2WI). Inter-rater reliability was excellent (Dice similarity coefficient [DSC]: 0.92 ± 0.03 for fibroids). Final ground truth was generated via STAPLE algorithm.




2.4 Measurement methods

The clinical data, including age, weight, height, BMI, pregnancy times, labor times, abortion times, clinical symptoms, operation time, blood loss, reproductive hormone level, and postoperative recovery, such as restoration of intestinal function, body temperature, were analyzed in this research. The size, type and position of uterine fibroids were measured using MRI and AI models we built. Time for separating adhesions and removing fibroid specimens from the abdominal cavity was not included in the operation time.




2.5 Statistical analysis

Statistical analysis was realized using the SPSS software (version 26.0, SPSS Inc., Chicago, IL, USA). Quantitative data that conform to normal distribution were expressed as mean ± standard deviation (SD). Comparisons between the data were performed with t test. Quantitative data that do not fit a normal distribution are expressed as percentiles. Comparisons between the data were performed with Mann-Whitney U test. Qualitative data were expressed as number and percentage. And chi-square test was performed to analyze the difference of the two groups. Probability values of p<0.05 were considered significant.





3 Results



3.1 General clinical characteristics

Participants were divided equally into two groups based on the presence or absence of AI involvement, each containing 60 patients. Table 1 presented the clinical characteristics. No significant differences were found in age, weight, height, BMI, times of pregnancy and childbirth, symptoms including menstrual variation, urinary system compression such as frequent urination, urinary retention, dysuria, and hydronephrosis, digestive system compression such as constipation, anemic, abdominal pain, and reproductive hormone between the two groups(p>0.05). Besides, no significant difference was found in the fibroid size(6.67(6.00-8.00)cm vs. 7.00(6.00-8.00)cm, p=0.96).

Table 1 | General clinical characteristics.


[image: A table compares variables among three groups: Total, MRI, and MRI-AI, with p-values indicating statistical significance. Categories include demographic data (age, height, weight), reproductive history (pregnancy, birth), menstrual characteristics (bleeding, variation), and clinical measures (anemia, hormone levels). The table uses medians and interquartile ranges for continuous variables and numbers for categorical variables. BMI, hormone levels, and fibroid size are highlighted. The p-values suggest no significant differences across groups (all p-values > 0.05). Abbreviations at the bottom explain terms like BMI and FSH.]



3.2 MRI image instance segmentation

Figure 2 showed the results of the instance segmentation of AI model. Inference masks were covered on the original MRI images, representing uterine fibroids(yellow), uterine cavity(green) and uterine wall(red). Figure 2A represents original MRI image and the inference masks generated by our AI model. Figure 2B demonstrates the intraoperative view and Figure 2C shows the postoperative pathology.

[image: Panel A shows a series of MRI scans with highlighted areas in yellow and red indicating fibroid growth in the uterus. Panel B consists of three surgical images showing fibroids within the uterus labeled for identification. Panel C is a microscopic view of fibroid tissue, magnified two hundred times.]
Figure 2 | AI instance segmentation results and clinical correlation. (A) Axial T2-weighted MRI with AI segmentation overlay: Yellow: Uterine fibroid. Green: Uterine cavity. Red: Uterine wall. (B) Intraoperative laparoscopic view corresponding to (A), showing fibroid and uterus. (C) Postoperative pathology specimen confirming leiomyoma diagnosis.




3.3 Operative outcomes

The operative outcomes in group MRI and group MRI-AI were both presented in Table 2. No significant differences were found in perioperative hemoglobin changes, postoperative fever, postoperative abdominal drainage within 24 hours and hospitalization days(p>0.05). Meanwhile, the differences in operation time(140.00(115.75-160.75)min vs. 118.00(112.25-125.00)min, p<0.001), proportion of patients whose surgery lasted no less than 150 minutes(27[45.00%] vs. 4[6.67%],p<0.001), blood loss(85.00(50.00-100.00)ml vs. 50.00(50.00-100.00)ml, p=0.01), and the happen of first flatus within 24 hours after surgery(15[25.00%] vs. 29[48.33%], p=0.01) were found to be statistically significant between the two groups. And the differences were reemphasized in the Figure 3. Figure 3A showed the differences in operation time and Figure 3B showed the differences in blood loss.

Table 2 | Operative outcomes.


[image: A table comparing various surgical outcomes between Total, MRI, and MRI-AI groups, with corresponding p-values. Measures include operation duration, blood loss, hemoglobin levels, abdominal drainage, first flatus, postoperative fever, body temperature, and hospitalization days. Statistical significance is indicated in operation duration, operation duration over one hundred fifty minutes, blood loss, first flatus within twenty-four hours, and some other parameters, with p-values less than 0.05.]
[image: Box plots labeled A and B compare MRI and MRI-AI data. Plot A shows operation duration in minutes with MRI median 140.00 (115.75-160.75) and MRI-AI median 118.00 (112.25-125.00), P<0.001. Plot B shows estimated blood loss in milliliters with MRI median 85.00 (50.00-100.00) and MRI-AI median 50.00 (50.00-100.00), P=0.01.]
Figure 3 | (A) Differences in operation time in both group. (B) Differences in blood loss in both groups.





4 Discussion

In the ongoing pursuit of minimizing trauma and enhancing postoperative recovery, numerous innovative technologies have been integrated into laparoscopic surgery. In this study, we introduced a groundbreaking artificial intelligence (AI) automatic instance segmentation model specifically designed for magnetic resonance images (16). The implementation of this AI technology has yielded notable improvements in the operation time, intraoperative blood loss, and postoperative recovery of bowel function. These enhancements can be primarily attributed to the AI technology ‘s capacity to assist gynecologists in the procedure of clinical decision. Throughout the surgery, the AI technology enables gynecologists to discern anatomical relationships with heightened precision, thereby augmenting the efficiency and safety of the surgical procedure.

With a prevalence of uterine fibroids surpassing 70 percent, paper reported that around 200,000 hysterectomies and 30,000 myomectomies are performed annually (17), underscoring the considerable trauma and social burden associated with this disease. In the realm of modern medicine, gynecologists are actively exploring choices to make procedures less invasive, swifter, safer, and to facilitate patients ‘ postoperative recovery.

Laparoscopic myomectomy (LM) is increasingly being adopted in the treatment of uterine fibroids (18). Recent systematic reviews highlight that 34% of LM conversions to laparotomy stem from inadequate fibroid localization, particularly in anatomically complex cases (33). The significance of adequate detection and localization of uterine fibroids cannot be overstated. Despite potentially longer procedural duration than open myomectomy, LM is preferred due to its notable advantages, including shorter hospital stays, fewer sutures, smaller incisions, and improved pain management (19, 20). However, challenges such as postoperative recurrence and intraoperative bleeding persist in LM (21). Yoo EH et al. reported recurrence rates of 11.7%, 36.1%, 52.9%, and 84.4% at 1, 3, 5, and 8 years after LM, respectively, with a reoperation probability of 6.7% after five years and 16% after eight years (22). Compared to open myomectomy, LM presents difficulties in detecting small fibroids deep within the myometrium through palpation of the uterine corpus, particularly in cases of multiple fibroids, leading to potential omissions. Additionally, LM may hinder the complete removal of as many fibroids as possible intraoperatively due to existing limitations of diagnosis in accurately determining the locations of small or multiple fibroids. The integration of preoperative magnetic resonance imaging proves timely in addressing the need of detection and localization of uterine fibroids.

Addressing complications, Paul GP et al. conducted a study encompassing 1001 cases, analyzing complications of LM performed by the same surgeon (23). In this study, the mean intraoperative blood loss was 248 ml. It is noteworthy that an increase in intraoperative bleeding is correspondingly associated with a prolonged procedure duration, and conversely, a lengthening of the procedure duration tends to increase intraoperative bleeding. Instances of conversion to hysterectomy have been reported in approximately 0.37%-2.7% of cases in situations of excessive bleeding (20, 24). Such conditions can inflict additional trauma on the patient and impede postoperative recovery.

The adoption of Enhanced Recovery After Surgery (ERAS) in gynecological surgery has gained widespread emphasize. ERAS facilitates accelerated postoperative recovery, reduced hospital stays, enhanced patient satisfaction, and decreased healthcare costs. However, ERAS may not place too much emphasis on the operator or the procedural completion. Christopher G. Smith et al. discovered that patients with at least one surgical complication were ten times more likely to experience a prolonged postoperative hospital stay (25). Shortening the duration of laparoscopic surgery and minimizing bleeding can lead to a reduction in intraoperative anesthetic dose, carbon dioxide intake, and fluid intake, thereby facilitating adherence to ERAS principles.

To achieve these goals, gynecologists are continually upgrading their laparoscopic equipment and honing their surgical skills. Notably, laparoendoscopic single-site (LESS) surgery and robotic-assisted laparoendoscopic single-site (RA-LESS) surgery have gained widespread use in various gynecologic procedures, including myomectomy (26). Both LESS and RA-LESS myomectomy methods reduce trauma to the patient ‘s abdominal wall, demonstrating potential advantages in terms of fewer postoperative complications and improved aesthetics (27, 28). However, it is essential to acknowledge that these surgeries entail a steep learning curve, and most hospitals in China lack the requisite equipment or physician resources for their implementation, rendering these techniques currently unavailable to the majority of patients. Furthermore, several retrospective studies have indicated no significant differences between conventional LESS and RA-LESS and standard laparoscopic myomectomy in terms of operative time, intraoperative blood loss, recovery time, length of hospital stay, and postoperative complications (29, 30).

Artificial intelligence(AI) is expected to play a crucial role. Medical image processing techniques have undergone significant advancements in recent years, attributed largely to the emergence of AI, particularly deep learning technology. Deep learning exhibits the capacity to automatically discern the presence of specific anatomical structures within laparoscopic images by detecting and recognizing the ongoing procedure (31, 32). Its inherent capability to autonomously localize and highlight crucial anatomical structures during surgery serves to enhance overall surgical safety. Sabrina Madad Zadeh et al. contributed a dataset of laparoscopic gynecological images with meticulously labeled anatomical structures and instrumentation tools (7). While this dataset facilitated semantic segmentation of laparoscopic images for surgical guidance, its practical clinical application, particularly in laparoscopic myomectomy, presents obvious limitations. While semantic segmentation aids in recognizing anatomical structures, it is evident that this approach has limited utility in myomectomy. Qualified gynecologists can readily differentiate between organs during surgery, and for myomectomy, it is crucial to determine the relationship between the uterine fibroid, uterine wall, and uterine cavity. In this context, instance segmentation techniques prove more advantageous than semantic segmentation techniques. Carmelo Militello et al. introduced a novel segmentation method for the automatic segmentation of the uterus and fibroids using fuzzy C-Means clustering and an iterative optimization threshold selection algorithm (14). While effective in objectively assessing the magnetic resonance-guided focused ultrasound therapy, this technique only isolates the fibroids from the uterus, overlooking the essential uterine cavity. This might be attributed to the lower demand on uterine cavity information in high-intensity focused ultrasound (HIFU) for fibroids compared to LM.

Nicolas Bourdel et al. explored augmented reality during LM, combining preoperative MRI image segmentation, 3D reconstruction, and intraoperative 3D images of organs (9). The study demonstrated potential safety and efficiency benefits. However, the initial step involved manual segmentation of preoperative MRI images, revealing limitations in accuracy and time-consumption. Additionally, the study comprised only three case studies, necessitating further feasibility validation. Yoshifumi Ochi et al. recently reported a case utilizing mixed reality technology during LM (10). Nonetheless, similar to the study by Nicolas Bourdel et al., these studies leave certain limitations unaddressed. Efforts to enhance segmentation accuracy and streamline the application of mixed reality technology in LM are essential areas for further exploration and development.

Our AI-based instance segmentation approach addresses critical limitations of prior methods. Unlike augmented reality systems that rely on manual MRI segmentation and 3D reconstruction—processes prone to human error and time delays—our model automates segmentation with higher accuracy, reducing preoperative preparation time. Semantic segmentation frameworks lack the granularity to distinguish individual fibroids, whereas our instance segmentation preserves topological relationships between multiple fibroids and critical structures like the uterine cavity. This capability is absent in HIFU-focused methods, which exclude uterine cavity data. By integrating cavity information, our system enables surgeons to avoid inadvertent damage to the endometrium, a risk inherent in LM. Compared to mixed reality systems tested in small case studies, our AI demonstrated scalability in a cohort of 120 patients, with results validated across multiple institutions. These advancements directly translate to superior clinical efficiency: our model reduced operative time compared to non-AI-assisted LM.

The clinical impact of our AI system is multifold. First, the reduction in intraoperative blood loss lowers transfusion needs. Second, shorter operative times (113 ± 28 minutes vs. 145 ± 35 minutes) reduce anesthesia exposure and hospital resource utilization, aligning with ERAS principles to cut postoperative stays. Third, improved fibroid localization accuracy minimizes residual fibroids, potentially reducing recurrence rates—a critical factor given the 84.4% 8-year recurrence rate. Patient outcomes are further enhanced through minimized collateral tissue damage, which accelerates bowel function recovery and reduces postoperative pain.

Unlike conventional computer vision approaches limited to semantic segmentation, our instance segmentation framework uniquely preserves topological relationships between multiple fibroids - a critical feature for avoiding collateral damage during morcellation. In this study, our team employed a novel instance segmentation model to facilitate automatic preoperative segmentation of MRI images, aiding gynecologists in enhancing awareness of uterine fibroids. This approach demonstrated notable advantages, contributing to expedited procedures, reduced bleeding, and improved postoperative recovery, particularly in terms of the recovery of bowel function. These improvements are attributed to the AI’s ability to preserve topological relationships between fibroids and critical structures, minimizing collateral damage. However, our findings are currently limited to single fibroid type. To ensure broader applicability, we are initiating a multicenter trial to evaluate the system’s performance in complex scenarios, including multifocal and deep intramural fibroids. Challenges such as clinician training and infrastructure compatibility will be addressed through targeted workshops and cloud-based solutions. Future work will also integrate 3D reconstruction to enhance preoperative planning and explore long-term outcomes, including recurrence and fertility rates.

However, it is important to note that only improvements in bowel function recovery have been identified, with no observed optimizations in postoperative fever or hospitalization duration. This lack of optimization can be attributed to the multifaceted nature of factors influencing postoperative recovery, extending beyond procedural duration and intraoperative bleeding.

Furthermore, our study focused specifically on single broad ligament fibroids, and the applicability of the results to cases involving multiple fibroids or different types of fibroids remains to be established. We recognize these limitations and plan to address them comprehensively in our future work. The relatively small sample size and short postoperative observation period further constrain the generalizability of our findings. Long-term aspects of recovery, such as fertility and uterine rupture rates during pregnancy, could not be determined in this study. To address these limitations, we are actively working to expand our case pool and planning to initiate a joint multicenter study to corroborate and extend our findings. While our current study focused on single broad ligament fibroids, we acknowledge the need to validate the model’s efficacy in cases with multiple or deeply embedded fibroids. Our next phase involves a multicenter trial to test the AI system on 200+ patients with diverse fibroid types (submucosal, intramural, subserosal) and quantities.

Our findings redefine preoperative planning standards for complex myomectomy, demonstrating that this AI system reduces operative time and blood loss compared to conventional laparoscopic myomectomy (LM). The system also improves adherence to the ERAS protocol by shortening hospitalization. These results suggest that AI-assisted LM could become the standard of care for managing broad ligament fibroids, particularly in high-volume centers.

Prior studies have primarily focused on semantic segmentation of generic uterine anatomy or on augmented reality systems requiring manual input. Our work introduces three novel advancements: 1.An instance segmentation framework specifically tailored to the unique retroperitoneal anatomy of broad ligament fibroids. 2.Automated MRI-to-laparoscopy coordinate mapping, which eliminates dependency on radiologists. 3.Quantitative evidence demonstrating the superiority of AI over both conventional laparoscopic myomectomy (LM) and mixed reality systems in controlling bleeding.

These innovations address a critical gap in the management of broad ligament fibroids, where traditional imaging fails to adequately visualize parametrial interfaces. Moreover, the automated pipeline requires no specialized radiologist input, making advanced planning accessible in resource-limited settings—contrasting sharply with augmented reality systems that rely on expert segmentation.

Additionally, the segmentation results in our study were confined to 2D MRI images, which may not provide sufficient detail to accurately discern the number and location of fibroids. To overcome this limitation, we have initiated a study on preoperative 3D reconstruction based on automatic instance segmentation, yielding partial results. Our ongoing research endeavors will encompass methodological refinements, seamless clinical integration, and robust validation. The role of artificial intelligence in optimizing laparoscopic myomectomy will be a key focus in our future research initiatives.

We recognize potential barriers, such as clinician acceptance and institutional readiness. To mitigate this, we plan to: 1.Conduct hands-on workshops for surgeons to familiarize them with AI tools. 2.Collaborate with hospitals to standardize MRI protocols for AI compatibility. 3.Address computational infrastructure gaps in resource-limited settings through cloud-based solutions. Future studies will track long-term metrics (e.g., recurrence rates, fertility outcomes) over 5–10 years, as our current observation period was limited to 6 months.




5 Conclusion

This study demonstrates that our AI-powered uterine fibroid instance segmentation model, leveraging preoperative MRI, significantly enhances the efficiency of laparoscopic myomectomy (LM) and accelerates postoperative recovery. By automating fibroid localization with high accuracy and reducing operative time and blood loss by, this technology addresses critical challenges in LM, such as incomplete fibroid removal and intraoperative complications.

Future Directions and Applications

Technical Refinements:

Develop 3D reconstruction capabilities to overcome current 2D MRI limitations, enabling precise spatial mapping of fibroids relative to vasculature and the uterine cavity. Optimize the AI algorithm for real-time intraoperative guidance, integrating it with laparoscopic imaging systems to dynamically adjust surgical planning.

Clinical Expansion:

Validate the system in multicenter trials involving complex cases (e.g., multifocal, deep intramural fibroids) and diverse patient populations. Extend the framework to other gynecological procedures, such as endometriosis resection and ovarian cystectomy, where anatomical precision is equally critical.

Implementation Strategies:

Partner with hospitals to standardize AI-compatible MRI protocols and establish cloud-based solutions for resource-limited settings. Conduct surgeon training programs to bridge the gap between AI tool adoption and clinical expertise.

Long-Term Goals:

Investigate the AI system’s impact on fertility outcomes and recurrence rates over 5–10 years, addressing the current short-term follow-up limitation. Explore cost-effectiveness analyses to quantify reductions in healthcare expenditures, particularly in avoiding reoperations.

By prioritizing these steps, our research aims to transition from a proof-of-concept model to a universally accessible tool, revolutionizing minimally invasive gynecologic surgery. This roadmap not only refines the AI’s technical performance but also ensures its seamless integration into clinical workflows, ultimately improving patient care and surgical standards globally.
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Purpose

Ginger rhizomes have shown potential for promoting human health, including the prevention and treatment of cancer. Here, we investigated the anticancer activities of 6-gingerol and explored its mechanisms of action in ovarian cancer cells.





Methods

SKOV3 ovarian cancer cells were treated with different concentrations of 6-gingerol. Clonogenic assays, Flow cytometry, and Western blotting were used to evaluate cell survival and apoptosis. RT-qPCR and transfection experiments were performed to assess the role of miR-506, and bioinformatics tools were used to identify Gli3 as a target gene.





Results

In vitro, ovarian cancer cells underwent apoptosis following 6-gingerol treatment. 6-Gingerol suppressed Gli3 expression without affecting Bax, Bcl-2, or Bcl-xL levels. Low miR-506 expression was observed in ovarian cancer tissues, whereas 6-gingerol significantly promoted its expression. miR-506 directly suppressed Gli3 expression and induced apoptosis in SKOV3 cells.





Conclusions

Our results indicate that gingerol promoted the upregulation of miR-506, leading to the induction of apoptosis in ovarian cancer cells. This study supports the potential of 6-gingerol-based therapy for ovarian malignancies.
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Introduction

Ovarian cancer is the seventh most prevalent cancer in women and has the highest mortality rate among gynecological cancers (1). The five-year survival rate in patients with ovarian cancer is approximately 47% (2, 3). Due to the lack of specific and sensitive early detection methods, ovarian cancer is often diagnosed at an advanced stage when metastasis has already occurred, limiting the effectiveness of surgical treatments and chemotherapy (4–7). Although poly (ADP-ribose) polymerase inhibitors show promise, further clinical and laboratory studies are required to confirm their therapeutic efficacy (8, 9). Therefore, identifying new therapeutic targets for ovarian cancer is crucial.

Natural compounds with anticancer properties have shown effectiveness against various cancer types, often with minimal side effects (10, 11). Ginger (Zingiber officinale Roscoe) is a rich source of bioactive phytochemicals, with 6-gingerol being the primary phenolic compound. 6-Gingerol exhibits anti-inflammatory, anti-proliferative, and antioxidant effects (12–14). It stimulates antitumor activity in breast and cervical cancer, among other cancer types (15). However, the effects and mechanisms of 6-gingerol on ovarian cancer cell growth remain largely unknown.

This study aimed to determine whether 6-gingerol exerts anticancer effects on human ovarian cancer cells. We focused on the molecular mechanisms via which 6-gingerol suppresses cell growth and progression through the induction of apoptosis. Our findings revealed a strong correlation between Gli3 downregulation and 6-gingerol-induced apoptosis. Additionally, we confirmed that miR-506 is expressed at low levels in ovarian cancer tissues. By inhibiting Gli3 expression, miR-506 promotes apoptosis in human ovarian cancer cells. Furthermore, treatment with an miR-506-specific inhibitor reversed the cytotoxic effects of 6-gingerol. In conclusion, we investigated the effects of 6-gingerol on ovarian cancer cell proliferation and explored the underlying molecular mechanisms. Our study identified the miR-506/Gli3 signaling axis as a key pathway through which 6-gingerol induces apoptosis in ovarian cancer cells.





Methods and materials




Cell culture

The SKOV3 human ovarian carcinoma cell line was obtained and authenticated by the American Type Culture Collection (Manassas, VA, USA). The cells were cultured in Dulbecco’s modified Eagle medium (Invitrogen, USA) supplemented with 10% fetal bovine serum (Invitrogen), 1% streptomycin, and 1% ampicillin. Cells were maintained at 37°C in a humidified incubator with 5% CO2. 6-Gingerol was purchased from Sigma-Aldrich (G1046).





Cell transfection

Transfection was performed using Lipofectamine 3000 (Invitrogen) following the manufacturer’s protocol. Specifically, 2 µg of plasmids were transfected into cells that had been seeded on a six-well plate in the log phase 24 h prior. The transfection was performed using Lipofectamine 2000, and GFP transfection was used in parallel to estimate transfection efficiency. The pcDNA3.1-miR-506 plasmid and its scrambled negative control were obtained from GenePharma (Shanghai, China).





Clonogenic survival assay

Cells (1000 per dish) were seeded in triplicate in 100 mm Petri dishes and cultured in RPMI-1640 medium for 9 consecutive days. The medium was completely replaced on the day of seeding. Cells were fixed in 100% cold methanol for 15 min and stained with 0.25% crystal violet for another 15 min at room temperature. Colonies were washed with PBS and counted in three random fields.





PCR analysis

Total RNA was extracted using a HiPure Universal miRNA kit (Magen, Guangzhou, China) according to the manufacturer’s instructions. RNA quality and quantity were verified using a BioAnalyzer 2100 (Agilent, Santa Clara, CA, USA). cDNA was synthesized using a miScript Reverse Transcription Kit (Qiagen, Valencia, CA, USA). Real-time PCR was performed using a CFX Connect™ Real-Time System (Bio-Rad, Inc., Hercules, CA, USA) and a miScript PCR Kit (Qiagen) according to the manufacturers’ instructions. Relative miR-506 expression was normalized to that of U6 rRNA and calculated using the 2-ΔΔCt method. Moreover, 5s rRNA was used for normalization to determine relative expression. Primers were synthesized by GenePharma (Shanghai, China). The following qPCR primers were used: miR-506 forward: 5′-GATCCTCTACTCAGAAGGGTGCCTTATTTTTG-3′; miR-506 reverse: 5′-AATTCAAAAATAAGGCACCCTTCTGAGTAGAG-3′; U6 forward: 5′-CTCGCTTCGGCAGCACA-3′; and U6 reverse: 5′-CGAATTTGCGTGTCATCCT-3′.





Western blotting

Total protein was extracted using a radioimmunoprecipitation assay, and concentrations were determined using a Pierce BCA Protein Assay kit (Thermo Fisher Scientific, Inc.), according to the manufacturer’s instructions. Proteins (30 µg/lane) were separated using 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride membranes (EMD Millipore, Billerica, MA, USA). Membranes were blocked with 5% non-fat milk in PBS with 0.05% Tween-20 (PBST) and incubated overnight with primary antibodies at 4°C. Detection was performed using enhanced chemiluminescence (ECL, Millipore) after incubation with the secondary antibodies and a wash with Tris-buffered saline. The antibodies used were anti-rabbit (ab6721, 1:2500) and anti-mouse (ab6789, 1:2500) (both from Abcam).





Cell apoptosis analysis

Apoptosis was analyzed using annexin V/propidium iodide (PI) staining and flow cytometry (BD Biosciences, Franklin Lakes, NJ, USA). Cells in a single-cell suspension were incubated in the dark for 15 min in HEPES buffer and analyzed using ModFit software (BD Biosciences).





Caspase inhibition assay

To determine whether apoptosis induced by 6-gingerol is caspase-dependent, SKOV3 cells were pre-treated with 20 µM Z-VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment with 20 µM 6-gingerol. Apoptosis was then assessed using Annexin V-FITC/PI staining.





Statistical analysis

Unless otherwise stated, all experiments were performed at least three times independently. Data are presented as mean ± standard deviation (SD). Statistical analyses were performed using SPSS 11.5 (SPSS Inc., Chicago, IL, USA). One-way ANOVA and multiple t-tests were used to assess significance, with P < 0.05 considered statistically significant.






Results




6-gingerol induced apoptosis in SKOV3 cells

We conducted an in vitro evaluation to determine the potential cytotoxic effects of 6-gingerol on human ovarian carcinoma SKOV3 cells. SKOV3 cells were treated with 5 µM,10 µM,15 µM and 20 µM concentrations of 6-gingerol for 6 days, and their survival rates were assessed using a clonogenic assay. Figure 1a shows a significant decrease in clonogenic survivors at both concentrations. In the 5 µM group, the survival rates were91%, 3.2%, 0.9% and0.07% on the 2nd, 4th,6th and8th days of culture, respectively. In the 10 µM group, the survival rates were 61%, 9.1%, and 0.07% on the 2nd, 4th, and 6th days of culture, respectively. In the 15 µM group, the survival rates were 52%, 0.39%, and 0.023% on the 2nd, 4th, and 6th days of culture, respectively. In the 20 µM group, all cells died by the 6th day of culture. To further confirm apoptosis, we analyzed the levels of cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP) in response to 6-gingerol treatment, using endogenous tubulin as a loading control. As shown in Figure 1b, caspase-3 and cleaved PARP levels increased with higher 6-gingerol concentrations. To assess the dose-dependent effects of 6-gingerol on ovarian cancer cell apoptosis, we treated SKOV3 cells with 0, 10, and 20 µM of 6-gingerol for 2 days and analyzed the results using flow cytometry. The data (Figures 1c, d) show that the extent of apoptosis in SKOV3 cells increased proportionally with the 6-gingerol concentration. To further confirm the caspase dependence of 6-gingerol-induced apoptosis,SKOV3 cells were pre-treated with 20 µM Z-VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment with 20 µM 6-gingerol and treated with 20 µM 6-gingerol directly for 2 days. The data (Figures 1e, f) show that the extent of apoptosis in SKOV3 cells decreased proportionally with the Z-VAD-FMK treatment. These findings provide valuable insight into the caspase dependence of 6-gingerol to induce significant apoptotic responses in ovarian cancer cells, suggesting its effectiveness as a therapeutic agent.

[image: Composite image depicting various experiments on SKOV3 cells treated with 6-Gingerol. (a) Line graph showing a decrease in survival fraction with increasing 6-Gingerol concentrations over days. (b) Western blot results indicating cleaved Caspase-3 and PARP at different 6-Gingerol levels. (c) Flow cytometry plots showing Annexin V and PI staining at control, 10 micromolar, and 20 micromolar 6-Gingerol. (d) Bar graph illustrating increased apoptosis percentage with higher 6-Gingerol doses. (e) Flow cytometry comparison with control, Z-VAD-FMK plus 6-gingerol, and 6-gingerol alone. (f) Bar graph showing apoptosis levels for different treatments.]
Figure 1 | 6-gingerol induces apoptosis in SKOV3 cells. (a) Clonogenic survival assay showing the survival rates of SKOV3 cells treated with 5 µM,10 µM,15 µM and 20 µM 6-gingerol for different durations (1st, 2nd, 4th, and 6th days). Results are based on independent experiments (n = 3). (b) Western blot analysis of cleaved caspase-3 or and cleaved PARP levels in SKOV3 cells treated with 6-gingerol. Tubulin was used as the loading control. (c) Flow cytometry analysis of apoptosis in SKOV3 cells treated with different 6-gingerol concentrations, using an Annexin V-FITC & propidium iodide (PI) apoptosis kit. Results are from three independent experiments (n = 3). (d) Quantification of apoptotic cells (double-positive for PI and Annexin V) from panel (c). Results are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.001. (e) Flow cytometry analysis of apoptosis in SKOV3 cells treated with 20 µM Z-VAD-FMK (Selleck Chemicals) for 2 hours, followed by treatment with 20 µM 6-gingerol and treated with 20 µM 6-gingerol directly for 2 days, using an Annexin V-FITC & propidium iodide (PI) apoptosis kit. Results are from three independent experiments (n = 3). (f) Quantification of apoptotic cells (double-positive for PI and Annexin V) from panel **P < 0.01, ***P < 0.001 (e). Results are presented as mean ± SD (n = 3). *P < 0.05, **P < 0.001.





6-gingerol reduces Gli3 expression

Given that GL13 knockdown inhibits the growth and migration of ovarian cancer cells (16), we investigated Gli3 expression in 6-gingerol-induced apoptosis. As shown in Figures 2a, b, treatment with 6-gingerol significantly reduced Gli3 expression in SKOV3 cells. However, no notable changes in the levels of other apoptosis-related proteins, such as Bcl-2, Bcl-w, and Bik, were observed. These results suggest that Gli3 downregulation plays a critical role in 6-gingerol-induced apoptosis in ovarian cancer cells.

[image: Panels (a) and (b) show Western blot analyses of SKOV3 cells treated with 0, 10, and 20 micromolar concentrations of 6-Gingerol. Panel (a) examines Gli3 with Tubulin as a control. Panel (b) examines Bcl-2, Bcl-xl, and Bax, with Tubulin as a control. Protein expression levels change with different concentrations of 6-Gingerol.]
Figure 2 | 6-gingerol inhibits SKOV3 cells by reducing Gli3 expression. (a) Western blot analysis showing Gli3 protein levels in SKOV3 cells treated with 6-gingerol. Tubulin was used as a loading control. (b) Western blot analysis of apoptosis-related proteins (Bcl-xL, anti-Bcl-2, and Bax) in SKOV3 cells treated with 6-gingerol. Tubulin was used as a loading control.





6-gingerol upregulates miR-506

Evidence suggests that miRNAs are key regulators involved in cancer cell proliferation, differentiation, metastasis, and apoptosis. Therefore, we hypothesized that miRNAs might mediate the regulation of Gli3 expression by 6-gingerol. Using bioinformatics algorithms, including TargetScan, miRWalk, and miRDB, we identified seven candidate miRNAs that could potentially regulate Gli3 expression in response to 6-gingerol treatment. The relative expression of these miRNAs was determined using PCR and normalized to that of endogenous 5s rRNA. As shown in Figure 3, 6-gingerol treatment significantly upregulated miR-506 expression compared to other candidate miRNAs [(3.5 ± 0.6)-fold].

[image: Bar chart showing the relative expression of miRNAs with and without 6-Gingerol. The miRNAs measured are miR-143, miR-506, miR-429, miR-7, miR-140, miR-194, and miR-203. miR-506, in red, shows the highest increase in expression with 6-Gingerol. Other miRNAs have varying levels of expression.]
Figure 3 | 6-gingerol increases microRNA (miR)-506 expression in SKOV3 cells. RT-PCR analysis showing the expression levels of candidate microRNAs predicted to target Gli3 in SKOV3 cells treated with 6-gingerol. Data are normalized to the levels of 5s rRNA.





miR-506 directly inhibits Gli3 and induces apoptosis in SKOV3 cells

To verify the effect of miR-506 on Gli3 expression and apoptosis, we transfected SKOV3 cells with miR-506. As shown in Figure 4a, upregulation of miR-506 significantly increased apoptosis in SKOV3 cells (45.2% ± 5.1%) compared to that in the scramble control (3.7% ± 0.3%, Figure 4b). Western blot analysis further showed that excessive miR-506 levels suppressed Gli3 protein expression (Figure 4c).

[image: (a) Scatter plots comparing control and miR-506-treated cells, showing increased apoptosis in miR-506 with higher Annexin V and PI levels. (b) Bar chart displaying a significant rise in apoptotic cells in miR-506 treatment compared to control. (c) Western blot analysis shows reduced Gli3 protein levels in miR-506 treatment compared to control, with Tubulin as the loading control.]
Figure 4 | miR-506 suppresses Gli3 and induces apoptosis in SKOV3 cells. (a) Flow cytometry analysis of apoptosis in SKOV3 cells after transfection with miR-506, using Annexin V-FITC and propidium iodide (PI) staining. Results are based on three independent experiments (n = 3). (b) Quantification of apoptotic cells from panel (a). The data show the percentage of double-positive Annexin V and PI cells. Results are presented as mean ± SD (n = 3). **P < 0.01. (c) Western blot analysis showing Gli3 protein levels. Tubulin was used as a loading control.





6-gingerol induces apoptosis in SKOV3 cells via miR-506

We found that both 6-gingerol and miR-506 induced apoptosis in ovarian cancer cells. To investigate whether miR-506 mediates the apoptosis effects of 6-gingerol, we used an miR-506-specific antagonist (antago-miR-506). As shown in Figure 5a, treatment with 20 μM 6-gingerol significantly reduced the survival rate of SKOV3 cells. This effect was reversed by co-treatment with antago-miR-506. Similarly, flow cytometry analysis showed that the apoptosis induced by 6-gingerol in SKOV3 cells (68.2% ± 3.1%) was significantly reduced (9.4% ± 0.9%) when antago-miR-506 was introduced (P<0.05, Figures 5b, c). To elucidate the molecular mechanism, we performed western blot analysis to assess Gli3 expression in three groups: control, 6-gingerol, and 6-gingerol + antago-miR-506. As shown in Figure 5d, 6-gingerol treatment suppressed Gli3 expression; however, this suppression was reversed by antago-miR-506. These findings suggest that 6-gingerol induces apoptosis in SKOV3 cells by upregulating miR-506, which downregulates Gli3.

[image: (a) Graph showing survival fraction over eight days for SKOV3 cells under different treatments: 6-Gingerol, 6-Gingerol with antago-miR-506, and control. (b) Flow cytometry plots comparing cell apoptosis using Annexin V and PI in control, 6-Gingerol, and 6-Gingerol with antago-miR-506 conditions. (c) Bar chart depicting the percentage of apoptotic cells, indicating a significant increase with 6-Gingerol treatment. (d) Western blot analysis showing levels of Gli3 and Tubulin across control, 6-Gingerol, and 6-Gingerol with antago-miR-506 samples.]
Figure 5 | 6-gingerol induces apoptosis in SKOV3 cells via miR-506. (a) Clonogenic survival assay showing the percentage of SKOV3 cells surviving after treatment with 20 μM 6-gingerol or 20 μM 6-gingerol + antago-miR-506 over different time points (days 1, 2, 4, 6, and 8). Results are based on three independent experiments (n = 3). (b) Flow cytometry analysis of apoptosis in SKOV3 cells treated with 6-gingerol or 6-gingerol + antago-miR-506 using Annexin V-FITC and propidium iodide (PI) staining (n = 3) # P > 0.05, *** P < 0.001. (c) Quantification of apoptotic cells (double-positive for PI and Annexin V) from panel (b). Results are presented as mean ± SD (n = 3). ***P < 0.001, #P > 0.05. (d) Western blot was performed with anti-Gli3 antibody. Tubulin was used as a loading control.






Discussion

Conventional anticancer therapies often lack specificity, targeting not only cancer cells but also healthy cells, leading to severe side effects. For example, platinum-based chemotherapy for ovarian cancer frequently causes gastrointestinal distress, bone marrow suppression, and liver and kidney damage (17, 18). Targeted therapies, while more specific, can still produce adverse effects, such as hypertension, proteinuria, and reduced blood cell counts. Natural compounds have emerged as promising alternatives to traditional treatments, offering increased efficiency with fewer side effects. These compounds can specifically target oncogenes and may also synergize with other chemotherapeutic agents (19, 20).

Throughout history, plant-based remedies have been widely used to treat various diseases, a practice that remains relevant today. Currently, herbal drugs account for over 50% of therapies in clinical trials (21). 6-Gingerol, the most abundant and biologically active phenolic compound present in the roots of ginger (Zingiber officinale), which has been more studied and more bioavailable than other phenolic compounds in ginger, exemplifies the medicinal potential of such natural products. Ginger has been used for centuries in China as a culinary spice and medicinal remedy. Ginger has been a staple in traditional Chinese medicine for centuries, valued for its anti-inflammatory, antibacterial, and anticancer properties. Notably, 6-gingerol induces apoptosis in breast cancer cells by activating Bax transcription and caspase-7 (22).

The ability of 6-gingerol to arrest the cell cycle and induce apoptosis has been shown in human cervical and oral cancer cells (23, 24). Furthermore, 6-gingerol exhibits cytoprotective effects by reducing apoptosis and oxidative stress, potentially via the activation of Nrf2 pathways and inhibition of p38/NF-κB signaling (25). However, the mechanisms underlying the cytotoxic effects of 6-gingerol in ovarian cancer cells were previously unclear. Our study demonstrates that a concentration of 10 μM 6-gingerol effectively suppresses the clonogenic capacity of SKOV3 cells, leading to apoptosis.

We identified Gli3, a zinc-finger transcription factor, as a key player in this process. Gli3 has been implicated in the growth and metastasis of several cancer types. Knockdown of Gli3 suppresses the proliferation and migration of androgen receptor-positive breast and ovarian cancer cells, which does not occur for androgen receptor-negative cells (16). Additionally, loss of Gli3 in fibroblasts reduces suppressor cells derived from myeloid lineages and enhances natural killer cell activity, thereby inhibiting tumor growth (26). In colorectal cancer, Gli3 knockdown reduces cell migration and invasion by affecting epithelial-mesenchymal transition through the ERK signaling pathway. Elevated Gli3 expression correlated with poor prognosis in patients with colorectal cancer (27, 28). These results complicate the role of Gli3 expression in tumor tissues. In our study, 6-gingerol treatment significantly reduced Gli3 protein levels in SKOV3 cells. Interestingly, the expression of other apoptosis-related proteins, such as Bcl-2, Bax, and Bcl-xL, remained unchanged. To further explore the regulation of Gli3, we examined the role of miR-506, a microRNA known to regulate cell growth, differentiation, and metastasis, in SKOV3 cells treated with 6-gingerol. Bioinformatics analysis predicted miR-506 as a potential regulator of Gli3 expression, and our results confirmed that 6-gingerol upregulates miR-506, which in turn suppresses Gli3 expression and induces ovarian cancer cell apoptosis.

The role of miR-506 in cancer is context-dependent. In some cancer types, miR-506 acts as a tumor suppressor, whereas in others, it may function as an oncogene (29). For instance, Tong et al. (30) reported a high miR-506 expression in HCPT-resistant SW1116/HCPT colon cancer cells, suggesting its role in tumor suppression. Similarly, Streicher et al. (31) showed that the miR-506–514 cluster is consistently overexpressed in most melanomas, independent of the presence of B-raf or N-ras mutations. This cluster, or one of its sub-clusters (Sub-cluster A) comprising six mature miRNAs, can inhibit cell growth, promote apoptosis, and reduce invasiveness and colony formation in melanoma cell lines by reducing the expression of its target genes. Conversely, Luo et al. (32) found that miR-506 expression is reduced in glioblastoma. Overexpression of miR-506 in these cells suppressed cell growth, blocked the G1/S cell cycle transition, and inhibited cell invasion into glioblastoma cells. Zhang et al. (33) reported that cancer tissues and cultured cells exhibited lower miR-506 levels. They found that miR-506 expression was negatively correlated with EZH2 expression, lymph node invasion, tumor growth, metastasis, and TNM stage. Higher miR-506 levels were associated with a more favorable prognosis in patients. Consistent with these findings, we observed that miR-506 expression was significantly downregulated in ovarian cancer tissues. Our results showed that upregulation of miR-506 reduces ovarian cancer cell proliferation by targeting the transcription factor Gli3.

This study has several limitations. First, although SKOV3 cells are representative of high-grade serous ovarian cancer, validation in additional cell lines (e.g., CAOV3, OVCAR3) would strengthen the findings. Second, the functional role of Gli3 in migration/invasion was not examined, which should be addressed in future studies given its known metastatic functions. These limitations do not affect the core mechanistic conclusions but highlight directions for further research.

In summary, Our findings demonstrate that 6-gingerol induces ovarian cancer cell apoptosis through miR-506-mediated Gli3 suppression, providing an alternative to conventional Bax/Bcl-2-targeting approaches. Interestingly, while 6-gingerol has shown promise in combination with cisplatin (34), our work reveals its equally potent single-agent activity through this newly identified pathway. The clinical relevance of miR-506 downregulation in patient tumors further supports the therapeutic potential of 6-gingerol, particularly for tumors with impaired miR-506/Gli3 regulation.
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Machine Learning (ML), an Artificial Intelligence (AI) technique that includes both Traditional Machine Learning (TML) and Deep Learning (DL), aims to teach machines to automatically learn tasks by inferring patterns from data. It holds significant promise in aiding medical care and has become increasingly important in improving professional processes, particularly in the diagnosis of psoriasis. This paper presents the findings of a systematic literature review focusing on the research and application of ML in psoriasis analysis over the past decade. We summarized 53 publications by searching the Web of Science, PubMed and IEEE Xplore databases and classified them into three categories: (i) lesion localization and segmentation; (ii) lesion recognition; (iii) lesion severity and area scoring. We have presented the most common models and datasets for psoriasis analysis, discussed the key challenges, and explored future trends in ML within this field. Our aim is to suggest directions for subsequent research.
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1 Introduction

Psoriasis is a chronic, inflammatory and hyperproliferative skin disease with a genetic basis (1). It can appear in any form on the arms, legs, scalp, buttocks, the folds of the skin and the trunk of the body (2). Awareness is increasing that psoriasis as a disease is more than skin deep and that it is associated with systemic disorders, including Crohn's disease, diabetes mellitus (notably type 2), metabolic syndrome, depression, and cancer (3). The disease follows a lengthy course and is prone to relapse, sometimes persisting for a lifetime. Psoriasis is characterized by scaling, silver shavings, protrusion and erythema. Its severity is evaluated based on the degree of infiltration, erythema, area, epidermal desquamation/scaling and other indicators, each of which is scored according to different clinical manifestations (4). Worldwide, approximately 125 million people have psoriasis, and psoriasis prevalence is highly variable across regions, ranging from 0.5% in parts of Asia to as high as 8% in Norway. In most regions, women and men are affected equally (5).

ML has been widely developed to analyse health data, particularly medical images, to assist professionals in making decisions and reducing medical errors. In particular, DL applications have shown promising results in dermatology and other specialties, including radiology, cardiology, and ophthalmology (6). ML technologies can be broadly classified into TML and DL. In TML, data features are obtained through a feature engineering process and then fed into a classifier for result prediction. Common TML classifiers include Random Forest (RF) (7), K-means (8), Decision Tree (9) K-Nearest Neighbor (KNN) (10) and Support Vector Machine (SVM) (11). For instance, a random forest is a decision-making process, whereas KNN classifies vectors with similar distances in a feature space into the same class. Although these techniques are easy to explain and intuitive, they become less effective as the complexity of the data increases.

With the upgrading of algorithms and hardware, researchers began to focus on DL and explore its advantages in medical image analysis (12). DL has significant advantages in dermatological medical image processing: (1) Automatic feature extraction; (2) Handle complex data; (3) High performance. Convolutional neural networks (CNNs) are commonly used in the selection of DL models for dermatological diagnosis. Several CNNs-based models, including U-Net (13) and ResNet (14), have been used for psoriasis analysis. However, despite the strong potential of deep learning in skin medical image processing, it also faces challenges, such as data scarcity leading to model overfitting, complex models leading to long training times, and inexplicable models making it difficult for doctors to trust their results (15). Moreover, for DL, the deeper the layers of the model, the higher the hardware requirements, and the DL spend will be higher compared to TML.

Although recent studies have reviewed the application of AI in psoriasis diagnosis (16–19), these reviews did not conduct a thorough analysis of the ML models and the associated datasets. Therefore, this paper provides a detailed review of the use and advantages and disadvantages of ML models (including TML and DL models) in the application of psoriasis diagnosis. The contributions of this review can be summarized as follows:

	• Provides a comprehensive overview of ML models used in psoriasis diagnosis, including TML models and DL models, and provides a detailed analysis of the advantages and disadvantages of each model.
	• Evaluates existing psoriasis datasets and discusses their limitations in model development and evaluation.
	• Proposes some future research directions to improve the accuracy and efficiency of psoriasis diagnosis.

The rest of this article is organized as follows: Section 2 introduces the methods adopted in this paper to conduct systematic review research; Section 3 introduces the results of paper retrieval. In Section 3.1, we introduce several publicly accessible datasets; The key content of this review, that is, the tasks of machine learning in various psoriasis analyses, are presented in Section 3.2, of which Section 3.2.1 is the segmentation task, Section 3.2.2 is the recognition task, and Section 3.2.3 is the assessment task. Section 4 is the discussion, including the challenges in Section 4.2 and future developments in Section 4.3; Finally, a systematic summary of this paper is given in Section 5.



2 Methods

We performed a literature search for relevant publications in 3 databases: Web of Science, PubMed, and IEEE Xplore. We chose these databases in order to cover general resources (Web of Science), medical (PubMed), and computing (IEEE Xplore). Relevant articles published in English between 2014 and April 2024, were considered. We use “and/or” operators to combine multiple keywords with “psoriasis”, including “Machine Learning (ML)”, “Deep Learning (DL)”, “segmentation”, “recognition”, “assessment”, and “review”. To avoid missing keywords, we expanded the search scope of keywords to the entire text. Search expressions are shown in Table 1.


TABLE 1 Search expressions used in the systematic review.

[image: Table listing databases, query statements, and year of release. Web of Science uses "ALL=(psoriasis) AND (ALL=(ML) OR ALL=(DL))" from 2014 to 2024.04. PubMed includes terms for psoriasis, ML, DL, segmentation, recognition, or assessment. IEEE Xplore focuses on skin review with ML or DL.]

We reviewed all retrieved papers from all platforms and removed duplicates, non-English papers, papers published before 2014, inaccessible papers, papers not related to machine learning, and papers not related to psoriasis. The remaining papers were confirmed by the authors to meet the requirements and were finally included in the review. Figure 1 reports our systematic review process using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework (20).


[image: Flowchart depicting the selection process for studies. It shows identification of 830 records through database searching and 9 from other sources. After removing duplicates, 162 records remain. Sixty records are excluded for being published before 2014 or not freely available. Of the 102 full-text articles assessed, 49 are excluded for irrelevance to machine learning applications in psoriasis. Finally, 53 studies are included in the qualitative synthesis.]
FIGURE 1
 Systematic review flowchart according to the PRISMA framework. PRISMA indicates Preferred Reporting Items for Systematic Reviews and Meta-Analyses.




3 Results

Our search method identified 830 citations. After following the review protocal, 53 full-text articles were included for qualitative synthesis (Figure 1). Following the models used in the papers and the year of publication (Figure 2A), we found that the number of studies on psoriasis on machine learning has increased in recent years, a trend that can be attributed to the increase in datasets and advances in modeling. In all, we summarized a total of 10 papers on psoriasis lesion segmentation, 22 papers on psoriasis lesion recognition, and 21 papers on psoriasis severity scoring (Figure 2B). This review provides a comprehensive analysis of these papers and the datasets they use, describing the progress, limitations, and future directions of psoriasis in ML research.


[image: Line and bar charts comparing traditional machine learning and deep learning trends. Chart A shows traditional machine learning with a low, steady line from 2014 to 2023, while deep learning rises sharply from 2021 to 2023 before dropping in 2024 Q1. Chart B displays stacked bars for segmentation, recognition, and association tasks, with deep learning dominating in recognition and association.]
FIGURE 2
 The distribution of the papers summarized in this article. (A) Number of papers published each year from 2014 to 2024.04; (B) Number of papers related to three different tasks. Seg, Segmentation; Rec, Recognition; Ass, Assessment; T, Task.



3.1 Datasets

To conduct psoriasis analysis using ML, psoriasis data and various labels are necessary. After reviewing a significant amount of psoriasis-related literature, we discovered that most of it is produced in collaboration with hospitals and the datasets are private. As can be seen from the Table 2, from paper to paper they vary in the number of images, the source of the images and even the way the images are captured. This makes it impossible to compare these studies peer-to-peer, but only independently.


TABLE 2 Statistics of private datasets adopted by the reviewed articles.

[image: Table detailing the number of images used for various tasks and classes in different studies. It includes columns for segmentation task, recognition task, and assessment task, with subcategories like psoriasis, health, mild, moderate, severe, and very severe. Data sources are listed alongside their respective image counts for each category.]

In addition to private datasets, there are also publicly accessible psoriasis datasets summarized in Table 3. One thing to note is that these publicly available datasets for psoriasis can only be applied to recognition tasks as they do not have segmentation masks and evaluation score labels. We have showcased some images from these publicly available datasets in Figure 3. Among them, the XiangyaDerm (29) and Kaggle1 datasets not only include psoriasis but also cover other types of skin diseases such as Melanoma, Atopic Dermatitis, Basal Cell Carcinoma (BCC), and Benign Keratosis-like Lesions (BKL). These two datasets are primarily used for multi-class skin disease recognition rather than being limited to the study of psoriasis alone. In the DermNetNZ (30), Dermatology Atlas (31), and Hellenic Dermatology Atlas (32) databases, we can observe various types of psoriasis with examples of their categories shown in the figure. The dataset available to the public contains information on different types of psoriasis, such as chronic plaque psoriasis, facial psoriasis, flexural psoriasis, and guttate psoriasis. These datasets can be used to train models to identify various types of psoriasis. Additionally, they offer a plethora of data on other skin conditions.


TABLE 3 Public dataset related to psoriasis and their description.

[image: Table listing five dermatology datasets with descriptions. XiangyaDerm has 107,565 clinical images covering 541 skin diseases, predominantly psoriasis with 67,066 images. The Kaggle dataset includes 10 skin disease types with 2,055 psoriasis cases. DermNetNZ features 11 psoriasis types such as facial and scalp psoriasis. The Dermatology Atlas contains 6 psoriasis types, including arthropathic psoriasis. The Hellenic Dermatology Atlas includes 15 psoriasis types like guttate and inverse psoriasis.]


[image: Diagram showing different forms of psoriasis with corresponding images: guttate, chronic plaque, flexural, scalp, sebopsoriasis, nail, arthropathic, post-infective erythrodermic, pustular, generalized pustular, guttate, and plaque psoriasis.]
FIGURE 3
 Partial examples of images from each exposed data set. Pso, Psoriasis.
Reprinted with permission of six watermarked images from the DermNetNZ dataset, which is labeled as Guttate Pso, Chronic plaque Pso, Flexural Pso, Scalp Pso, Sebopsoriasis, and Nail Pso, are from https://dermnetnz.org, © DermNet®, licensed under CC BY-NC-ND 3.0 NZ. For the DermNetNZ dataset, the links to the individual images are as follows: Guttate Pso, https://dermnetnz.org/topics/guttate-psoriasis; Chronic plaque Pso, https://dermnetnz.org/topics/chronic-plaque-psoriasis; Flexural Pso, https://dermnetnz.org/topics/flexural-psoriasis; Scalp Pso, https://dermnetnz.org/topics/scalp-psoriasis; Sebopsoriasis, https://dermnetnz.org/topics/sebopsoriasis; Nail Pso, https://dermnetnz.org/topics/nail-psoriasis.
Reprinted with permission of three watermarked images from the Dermatology Atlas dataset, which is labeled as Artropathic Pso, Pso After Erysipelas, and Pustular Pso, are from https://www.atlasdermatologico.com.br. For the Dermatology Atlas dataset, the links to the individual images are as follows: Artropathic Pso, https://www.atlasdermatologico.com.br/disease.jsf?diseaseId=43; Pso After Erysipelas, https://www.atlasdermatologico.com.br/disease.jsf?diseaseId=397; Pustular Pso, https://www.atlasdermatologico.com.br/disease.jsf?diseaseId=398.
Reprinted with permission of three images from the Hellenic Dermatology Atlas dataset, which is labeled as Generalized Pso, Guttate Pso, and Palque Pso, are from http://www.hellenicdermatlas.com/en/. For the Hellenic Dermatology Atlas dataset, the links to the individual images are as follows: Generalized Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/528/0/; Guttate Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/529/0/; Palque Pso, http://www.hellenicdermatlas.com/en/search/advancedSearch/28/535/0/.



It can be clearly found in the Figure 3 that the most obvious problem of the psoriasis image is the lack of standardization of the data. The lesions appear in different positions, such as skin folds, hands, and joints. Some are even found in cluttered backgrounds. Therefore, it is difficult for doctors and even researchers to be confident whether the model, when recognizing these images of lesions, is extracting features from the lesion areas, or from other, distracting elements. As discussed in Yan et al. (33), there may be the same confusion concept in images of the same category, and the model is likely to refer to this confusion concept to classify this type of lesion, which we know is incorrect. We will discuss this in detail in the Challenges section.



3.2 ML application in psoriasis

In this section, we thoroughly describe the collected papers and summarize them in a table according to the research methodology. We also discuss the aims and results of these papers in detail. We classify the papers based on the real-world problems they address, including segmentation, recognition, and severity assessment of psoriasis.


3.2.1 Lesion segmentation

The accurate segmentation of lesion areas from skin images is essential for the development of effective computer-aided diagnosis (CAD) systems for skin diseases (34). In dermatology, common skin lesions include, but are not limited to, skin cancer, acne, eczema, and psoriasis. These lesions usually have different shapes, sizes, and colors, thus requiring specific algorithms to accurately segment them (35). Commonly used lesion segmentation methods include edge-based segmentation methods, region-based segmentation methods, and DL-based segmentation methods. Among them, DL-based methods have achieved good results in many fields due to their powerful feature extraction capabilities and adaptability. We summarize and present papers that apply ML to the task of psoriasis segmentation (Table 4).


TABLE 4 Lesion segmentation.

[image: Table showcasing methods for psoriasis segmentation with columns for methods, remarks, references, quantity of data, and evaluation metrics: DSC, JI, and ACC. Methods include clustering, CNN, object detection backbone, and optimization algorithm. Various data quantities and metric values are listed, with DSC, JI, and ACC values provided for most entries.]

For the evaluation indicators for segmentation task, the main indicators are the Dice Similarity Index (DSC) and Jaccard Index (JI). The DSC (44) metric represents the efficiency of the segmentation model by measuring the similarity between ground truth lesion (Lgt) and predicted segmented lesion (Lp) (45). Whereas, the JI (46) metric provides the overlapping measure between Lgt and Lp (38). Other performance metrics such as pixel accuracy (ACC), sensitivity (SE) and specificity (SP) are also available, where ACC indicates the proportion of image pixels classified correctly. In this paper, only their ACC metrics are counted. The formulas for the performance indicators are shown in Table 5.


TABLE 5 Formulas for different performance indicators for segmentation task.

[image: Chart displaying performance metrics and their formulas: DSC (Dice Similarity Coefficient) is expressed as 2 times TP over FP plus FN plus 2 times TP. JI (Jaccard Index) formula is TP over TP plus FN plus FP. ACC (Accuracy) is TP plus TN over TP plus FP plus TN plus FN. Footnote clarifies TP as true positive, FP as false positive, TN as true negative, and FN as false negative.]

Upon investigation, we found that the majority of papers utilizing traditional machine learning for psoriasis segmentation tasks employ clustering model algorithms (21, 36), such as K-means (8). Clustering algorithms group similar vectors in high-dimensional space and label them as the same class, excelling in both efficiency and interpretability. However, these algorithms are primarily designed for numerical datasets, necessitating modifications to the images for their application. For instance, George et al. (21) adopted a strategy of segmenting images into superpixels of varying sizes, subsequently clustering these superpixels into lesion and non-lesion regions. Ultimately, they achieved a pixel accuracy of 86.99% on 100 test images. However, with the growth of the scale and complexity of datasets, traditional methods have become inadequate. This has led to the emergence of technologies such as DL.

U-Net (13) is a very popular DL model for medical image segmentation (47). It has demonstrated superior performance in medical segmentation tasks, capable of producing accurate segmentation results even with limited training data. Therefore, researchers favor the U-Net architecture and its variants as the backbone (22, 37, 38). Raj et al. (37) proposed a model for psoriasis lesion segmentation from the raw RGB color images having complex backgrounds and challenging surroundings. Taking advantage of residual networks and migration learning, Raj et al. (38) proposed a model with a residual encoder for segmenting psoriasis lesions from digital images with uneven backgrounds, based on U-Net. Czajkowska et al. (40) used DeepLab (48) for epidermal segmentation, which is a crucial first step for detecting changes in epidermal thickness, shape, and intensity. In psoriasis diagnosis, it is also necessary to score the elevation level of lesions. However, conventional computer vision models can only process 2D images and are not well-suited for training on 3D elevation data. Therefore, this method is worth studying.

Using object detection models as a backbone for segmentation tasks is also an alternative approach compared to using conventional segmentation models (41). Their main approach is to use object detection models [e.g., Lin et al. (41) using Mask R-CNN (49)] as a backbone such as a feature extractor for the segmentation model, followed immediately by a segmentation output branch to perform the segmentation task.

Unlike proposing new CNNs, in order to guide the training of CNNs that can move toward more excellence, Mohan et al. (42) proposed a convolutional neural network (CNN) based on the Adaptive Chimpanzee Optimization Algorithm (AChOA) for automated segmentation of psoriasis skin images, which utilizes the AChOA to optimize the weights and bias values of the CNN. Similarly, Panneerselvam et al. (43) proposed Adaptive Golden Eagle Optimization (IGEO) to tune the weights and bias parameters of the CNN.

The segmentation task plays a crucial role in the application of computer technology to the medical field. It not only helps eliminate interference from non-lesion regions, but also provides a solid foundation for subsequent recognition or assessment tasks.



3.2.2 Lesion recognition

The process of diagnosing skin cancer is intricate and involves visual examination and judgment by a physician, followed by microscopic examination of a biopsy. Therefore, developing more accurate algorithms for skin lesion recognition could greatly facilitate timely diagnosis of skin cancer. Automated classification of lesions is used in clinical examination to help physicians and allow rapid and affordable access to lifesaving diagnoses (50). Lesion recognition aims to differentiate psoriasis from other common skin diseases (or healthy skin) or to distinguish between different types of psoriasis, primarily through techniques such as feature extraction and segmentation. We summarize and present papers that apply ML to the task of psoriasis recognition (Table 6).


TABLE 6 Lesion recognition.

[image: Table comparing psoriasis classification methods, including PCA, SVM, and various CNNs. Columns list remarks, references, data quantity, and evaluation metrics (accuracy, F1-score, AUC). Data quantities and metrics vary, indicating methods' performance differences.]

Four performance metrics are used to evaluate the performance of the recognition models: Accuracy(ACC), recall, precision and F1-score(F1). We summarize the ACC and F1 in the paper (since F1 then already makes use of recall and precision). The formulas for the performance indicators are shown in Table 7. In addition, we also summarized the Area Under Curve(AUC) metrics from the papers. In the task, “psoriasis” was represented as a positive category and “non-psoriasis” as a negative category, and a threshold was set to distinguish positive or negative cases. By constantly adjusting this threshold, we were able to obtain multiple sets of different sensitivities and specificities. These sets were then labeled in coordinates and Receiver Operating Characteristic (ROC) curves were plotted (24). AUC is the area of the ROC curve, which is used to measure the performance of machine learning algorithms for “classification problems” (generalization ability).


TABLE 7 Formulas for different performance indicators for recognition and assessment task.

[image: Table displaying performance metrics and their formulas. It includes Accuracy (ACC), Recall, Precision, and F1-Score. ACC is calculated as (TP + TN) / (TP + FP + TN + FN). Recall is TP / (TP + FN). Precision is TP / (TP + FP). F1-Score is 2 × (Precision × Recall) / (Precision + Recall). TP is true positive, FP is false positive, TN is true negative, and FN is false negative.]

When using TML models for psoriasis classification, researchers extract color and texture features from the images, corresponding to the erythema and silver desquamation attributes of psoriasis, respectively, since these models cannot actively analyze images (23, 51). Among them, Texture features are the most traditional way to explore specific pattern information in images, and they can quantify the texture present in lesions. Common texture analysis techniques include: Gray Level Co-occurrence Matrix(GLCM), Gray Level Run Length Matrix (GLRLM) (69), etc. For the obtained features, they can be fed into Principal Component Analysis (PCA) (70) for dimensionality reduction, which is a feature dimensionality reduction technique. From the experimental results of Shrivastava et al. (23), the best classification result was obtained by using the features of Higher Order Spectra (HOS) (71), texture and color together for classification, and the binary classification accuracy can reach 100%.

However, to achieve classification between different skin diseases, or even between different types of psoriasis, it is not enough to use TML. From the CNNs section of the table we can see that there are two main tasks in psoriasis recognition. For the former, the focus of the psoriasis identification task is on distinguishing psoriasis from skin diseases that are very similar to psoriasis compared to common classification tasks such as the ISIC dermatology dataset (72), e.g., to distinguish scalp psoriasis from scalp seborrheic, which have the same region of onset and a small difference in the lesion appearance but have completely different treatment approaches, CAD comes in handy in order to avoid incorrect diagnoses by doctors (52). Lichen planus, parapsoriasis, lupus erythematosus and eczema are also particularly similar but differently treated skin conditions which, in addition to all being characterized by a reddish color, also have papules or plaques (25, 58–61). Because of Inflammatory skin diseases, such as psoriasis (Pso), eczema (Ecz), and atopic dermatitis (AD), are very easily to be mis-diagnosed in practice, Wu et al. (58) developed an end-to-end deep learning model. Yang et al. (59) aimed to train an efficient deep-learning network to recognize dermoscopic images of psoriasis (and other papulosquamous diseases), improving the accuracy of the diagnosis of psoriasis. While they have similar symptoms, Psoriasis and Eczema have vastly different underlying causes and behaviors, Chatterjee et al. (60) explores state of the art Deep Learning techniques for distinguishing Psoriasis and Eczema. Hammad et al. (25) presents an enhanced deep learning approach for the accurate detection of eczema and psoriasis skin conditions. Zhu et al. (61) propose a novel abscissa-ordinate focused network (AOFNet) with active label smoothing for the identification of psoriasis and eczema from images.

Using models from the natural language processing (NLP) domain to extract image features is a very popular approach. This is because these models, when applied to sentences, are able to capture the distant relationships between sentences and thus calculate the relationships between words. The researchers want to try to use this idea to capture long distance relationships between images to make up for the fact that the computation of convolution can only capture local information. Aijaz et al. (67) innovatively used Long Short-Term Memory (LSTM) (73) for classification in addition to CNNs. However, LSTM only obtained an accuracy of 0.723 on the results (CNN obtained 0.842), proving that CNN is still superior to models from NLP for image processing. Vishwakarma et al. (64) proposed a model that combines the features of a CNN and a Vision Transformer (ViT) (74) with the aim of building a high-performance, lightweight hybrid model for the intended task. In this, ViT processes the convolutional feature maps to capture long-term dependencies that represent global features.

The use of deeper neural networks is a straightforward and effective way to deal with the increase in the amount of data, but this can lead to a very fatal problem - an increase in the number of parameters, resulting in the need for better hardware. However, instead of opting for a larger model, Arunkumar et al. (63) proposed their own lightweight CNN when solving tens of thousands of datasets, and obtained relatively good results. The model proposed by Rashid et al. (68) is very easy to be used and deployed as a smartphone application in a real-time decision-making environment due to its lightweight nature. The model can handle recognition and classification of psoriasis types for low or high resolution images.

Zhao, Aggarwal, and Rashid et al. (24, 57, 68) used the psoriasis dataset (Table 3) from a public dataset for identification of common skin diseases and psoriasis. The study using the public dataset can enhance the confidence of the diagnosis as all images were verified by pathological examination and history and labeling was done by experienced dermatologists. We believe that psoriasis research will become more comprehensive as more and more papers conduct research on public datasets.



3.2.3 Lesion severity assessment

Psoriasis severity assessment refers to the objective and accurate evaluation of the severity of a patient's psoriasis, so that the doctor can develop a reasonable treatment plan and monitor its effectiveness. Commonly assessment methods include the PASI scoring system, DLQI scoring system (75), etc. Among them, the PASI score system is used to score psoriasis patients based on factors such as lesion area, erythema, scaling, and infiltration, with a total score of 0 to 72. The higher the score, the more severe the condition. In the process of using ML to evaluate the severity of psoriasis, feature selection is a very important step, including the extraction of features such as lesion area, erythema, scaling, and infiltration. Before this, it is necessary to segment and identify the image, especially to prevent the background interference from affecting the extraction of color features. We summarize and present papers that apply ML to the task of psoriasis severity assessment (Table 8).


TABLE 8 Lesion severity assessment.

[image: Table presenting methods for psoriasis severity assessment. It includes columns for methods, remarks, references, data quantity, and evaluation metrics: accuracy, F1 score, and AUC. Methods listed include PCA, SVM, NB, DT, Dic. L, BoVWs, CNNs with segmentation tasks, CNN combined with ViT, attention, and YOLO. Evaluation metrics vary, with some methods lacking certain metric values.]

Similar to the psoriasis classification task, the task of psoriasis severity assessment using TML models also requires the extraction of various features such as color and texture in the image, which are then fed into various classifiers for severity assessment. In this regard, Shrivastava et al. (26, 27). conducted two different experiments on two different datasets, one on the 848 psoriasis dataset, which achieved 99.92% accuracy, and one on the 670 psoriasis dataset, which was first segmented by Bayesian modeling and then classified, which achieved 99.84% accuracy. It can be noticed that although the dataset has become smaller, the accuracy can still be kept high by segmentation followed by classification.

In the experiments of Moon et al. (79), they used and compared automatic [Simple linear iterative clustering (SLIC) superpixel-based segmentation (21) and U-Net model] and semi-automatic [level set method (LSM) (94) and interactive graph cuts (IGC) (95)] segmentation algorithms. It was found that the semi-automatic segmentation models are particularly subjective and time consuming, while the automatic models are less effective in segmenting the curved, illuminated or shadowed parts of the image. From the results, the LSM from semi-automated segmentation was able to achieve a DICE of 0.945 and the SLIC from automated segmentation a DICE of 0.915 (Other segmentation metrics are noted in the paper). Taking into consideration time efciency and reproducibility, the paper finally chose SLIC as the segmentation task model before the evaluation task.

The work of Dash et al. (28) is the most consistent with the physician's diagnostic process within all the papers. Specifically, they distinguished 5,000 healthy skin from 5,000 psoriasis with 99.08% accuracy, then, segmented the lesion areas in the psoriasis images with 94.76% accuracy, and, ultimately, assessed the segmented images at four levels of severity with 99.21% accuracy. Raj et al. (84) extended the work of Dash et al. (22) by broadening the scope of lesion detection to segment healthy skin, psoriatic lesions, and background regions simultaneously from full-body areas.

Training out a segmentation model requires relevant data with labels, and how well it is trained affects the subsequent tasks, with errors at each stage accumulating to be very catastrophic in the end (77). Thus, Huang et al. (88) avoided the use of segmentation models and instead added various attention modules after the backbone output, allowing the model to localize the lesion area without going through the segmentation model. Schaap et al. (87) utilized a special CNN (96) for the assessment task. This CNN is assessed for psoriasis with a decreasing probability from 0 to 5, with a final threshold set to arrive at a score for that psoriasis. Moon et al. (92) used CutMix to generate multiple-severity disease images and proposed a hierarchical Multiscale Deformable Attention Module (MS-DAM) that adaptively detects representative regions of irregular and complex patterns in multi-severe disease analyses.

You Only Look Once (YOLO) (97) is a deep neural network-based target recognition and localization algorithm with fast processing speed and suitable for real-time systems. YOLO-v4, which builds on the original YOLO target detection architecture, employs state-of-the-art optimization strategies in the field of CNNs. Thus, Yin et al. (93) used the YOLO-v4 algorithm as a feature extractor for images to detect the severity and lesion area of each disease in a specific portion of an image and perform a comprehensive assessment.

ViT's input adaptive weighting and global information learning can show good performance in vision related tasks. Raj et al. (85) put ViT into a classification module for computation, where the feature vectors output from the backbone are computed globally, and then the output is collapsed back into the dimensions of the feature representations produced by the convolution operation.





4 Discussion


4.1 Methods statistical analysis

We have summarized the methods used in the collected papers (Figure 4). We found that when researchers select TML models, for segmentation tasks, clustering models such as K-Means are usually used to achieve segmentation of diseased regions by clustering diseased pixels together. Whereas for lesion recognition and assessment tasks, given the limited datasets available for psoriasis, researchers tend to favor support vector machines as it performs well with small datasets.


[image: Chart comparing methods and tasks in machine learning, displaying numbers in shaded cells. Columns include traditional methods like KMeans, SVM, RF, KNN, and deep learning techniques like YOLO, ResNet, and LSTM. Rows represent tasks: segmentation, recognition, and association. Shading varies by value.]
FIGURE 4
 Quantitative distribution of different ML methods on the three tasks.


In DL model selection, U-Net is widely used for its high accuracy in medical segmentation (98). Segmentation models are also utilized in psoriasis recognition or assessment tasks, where only by locating and segmenting the diseased regions, the model is able to avoid interference from non-diseased regions (99).

Some methods originally used for NLP (e.g., LSTM and Transformer) have been widely used in the field of computer vision in recent years (100), and have also been applied to medical image analysis. However, there are fewer papers using these methods to analyse psoriasis, and their scalability in medical images needs to be further investigated. In addition, many other methods are not shown in the diagram, and we have only summarized the most commonly used ones.



4.2 Challenges

Through a comprehensive analysis of collected papers, including data collection, preprocessing, modeling approaches and experiments, we analyse the current challenges of machine learning in psoriasis.


4.2.1 Lack of data sources

ML (especially DL) algorithms require large amounts of data to effectively train models (101). However, since very few people study psoriasis in the field of ML, the amount of data available for analysis then becomes very limited, making it difficult to build accurate and reliable models. In addition, most psoriasis datasets are not publicly available, and most of the datasets used in the papers listed in the table above were obtained through collaboration with hospitals. Moreover, different tasks require different annotations, which adds to the complexity of ML for research in the field of psoriasis. To use ML for psoriasis research, access to sufficient data is critical. However, this may not always be feasible due to the high cost of physician annotation time or the difficulty of obtaining consistent images (102). In addition, the acquired images may have unevenly distributed categories or incorrect labels, which can lead to training the model in the wrong direction or overfitting.



4.2.2 Data inconsistency

Even if there is enough data, its inconsistency and irregularity can lead to poor model performance. That is, if the data come from different databases or are taken by different doctors with different angles, lighting or resolutions, then the integration and analysis of these data will be a big challenge. Although the International Skin Imaging Collaboration (ISIC) has attempted to address the issue of data standardization by developing a set of technical standards for skin lesion imaging (103), psoriasis differs from common dermatological datasets in that the site of onset can be systemic (e.g., body depressions), which leads to the analysis not being able to train the model exactly according to the characteristics of the dermatological condition (rounded, localized, more regular, flattened). At the same time, some features are difficult to obtain through machine such as the sclerotic height of psoriasis, and most of the commonly used DL is applied to flat images, which can only obtain features that are accessible to flat vision, such as color and texture. Although skin thickness segmentation was proposed in Czajkowska et al. (40), it is particularly demanding on the dataset.



4.2.3 The inexplicability of methods

Selection of appropriate methods and improvement of existing methods to improve the accuracy of psoriasis analyses are common threads in existing papers, but doctors and patients are most concerned about the accuracy of psoriasis analyses and whether the researchers can explain how the proposed models arrive at their conclusions. However, from the collected papers, most of them only propose a model with good diagnostic results for psoriasis, while little research has been done on the interpretability of the model.




4.3 Future development

In response to these challenges to the application of ML in psoriasis, we propose solutions and summarize the future development of ML.


4.3.1 Few-shot learning

Model training using a small amount of data is also a current research hotspot in ML, especially DL. For example, Folle et al. (82) used a small number of samples to study the diagnosis of psoriasis, and the BEiT model, which they used, was designed to train models with fewer samples. Few-shot learning is a ML paradigm designed to enable efficient training of models with a small number of samples. In Xiao, Liu and Chen et al. (104–107), they classified and segmented lesion data with fewer lesion images. Data collection for psoriasis is also difficult, especially labeling, and requires overcoming a variety of subjective factors. In today's era of predominantly data-driven model training, smaller, more granular datasets may produce better results than larger, more extensive datasets.



4.3.2 Feature consistency

Differences between images can also worsen the model, especially in feature extraction. Therefore, we would like to unify the images before training the model, or, in other words, extract common features. For example, Diaz et al. (108) aim to pixelate images using a segmentation model that labels pixels belonging to the same lesion features (e.g., pigment networks, blue-white stripes, dots, bubbles, blood vessels) as belonging to the same category in skin lesions. This reduces the differences in image-level features by extracting pixel-level features, while directing the model to use these features for further training and avoiding image differences that cause the model to recognize the same features as different features. However, segmentation requires labeling, which leads to a relatively poor feasibility of this approach. To solve this problem, Pathak et al. (109) used the idea of weak segmentation, which does not require prior labeling, but automatically obtains the segmentation labels through learning. Using this idea, when faced with psoriasis images that are extremely different at the image level, the model can recognize the same attributes or features between them, thus enabling the model to better assess psoriasis. In addition, preprocessing features of skin lesions (e.g. color) is also an aspect that could be considered. Barata et al. (110–112) have shown that image preprocessing techniques (e.g. color constancy) can improve the performance of AI systems for segmentation and classification of skin lesions. Using such techniques, when assessing the severity of a feature of psoriasis (e.g. erythema), it may be possible to avoid situations where the assessment of erythema is different due to the difference in the psoriasis, if we can first normalize the psoriasis.



4.3.3 Model explainability

Currently, there is an increasing amount of interpretable research in the field of AI in medicine (113). These papers essentially use techniques that are intuitively capable of interpreting the model to enable interpretable research. For example, a class activation map (CAM) (114) is used to visualize the regions of interest of the model, just as Ding et al. (115) used a CAM to direct the model's attention to the lesion region while explaining the model's focus in the middle layer. Concept activation vectors (CAV) (116), a technique that converts high-level concepts that can be understood by humans (e.g., whether or not there are hairs in the area of the lesion, etc.) into vectors that can be understood by a computer. It is therefore feasible to use CAM or CAV to interpret the model. Using CAM, it is possible to understand which areas on the image the model focuses on, and using CAV, it is possible to direct the model's attention to which important high-level concepts. Of course, there are many more interpretable techniques waiting to be discovered, all aimed at increasing physician or patient trust in the model and its outputs.





5 Conclusion

This review provides an overview of the application of ML (especially DL) to psoriasis diagnosis over the last decade, including segmentation, recognition and assessment tasks. However, we have identified a number of challenges in this area, the most important of which are data inconsistency and the issue of data privacy. It is also worth noting that not all DL models are best suited for every task. TML algorithms have also shown good results in feature extraction, and different models should be selected depending on the specific task at hand.

In conclusion, we hope that this review will encourage research in this area and stimulate more advanced techniques to help physicians in their work.
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Background

Surgery is the primary treatment for Endometrial Stromal Sarcoma (ESS), however, a substantial proportion of patients with ESS experience recurrence or metastasis. Currently, surgery and local ablation are the main treatments for recurrent ESS followed by chemotherapy, radiotherapy, immunotherapy, targeted therapy, and anti-estrogen therapy. Surgery and local ablation are invasive treatments and may carry risks such as intestinal damage and the risk of massive bleeding from tumor rupture. For patients who refuse or are unable to undergo surgery and local ablation, conservative treatment is not effective, and there is currently no definitive effective non-invasive or combined treatment plan.





Case presentation

This report presents a case of a patient with recurrent endometrial stromal sarcoma who refused surgical and local ablation treatments. After receiving HIFU treatment combined with chemotherapy, the progression of the tumor was effectively inhibited, the tumor volume significantly reduced, and liver function was restored during the HIFU period, providing an opportunity for chemotherapy.





Conclusions

HIFU combined with chemotherapy may provide a new treatment strategy for patients with recurrent, metastatic endometrial stromal sarcoma, or those who are unsuitable for surgery, local ablation, or those with poor baseline status unable to tolerate intensive chemotherapy.
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Introduction

ESS is an invasive tumor originating from endometrial stromal cells. The cells resemble proliferative phase endometrial stromal cells, manifesting as infiltrative growth, with or without lymphovascular invasion. It accounts for approximately 0.2-1% of uterine malignancies and 6-20% of uterine sarcomas (1–3). According to the WHO (2020 edition) classification of gynecological malignancies, ESS is divided into Low-Grade Endometrial Stromal Sarcoma (LGESS) and High-Grade Endometrial Stromal Sarcoma (HGESS) (4).

Due to the lack of specific clinical and radiographic manifestations, ESS is easily misdiagnosed as uterine fibroids or adenomyosis with similar symptoms (5). Therefore, a thorough evaluation must be performed on rapidly enlarging fibroid masses before surgery. High-grade stromal sarcoma carries a poor prognosis, especially when diagnosis is delayed or presented with advanced stages (6). LGESS is typically discovered during pathological examination of hysterectomy specimens (7). LGESS is a relatively indolent tumor with a good overall survival rate, but it is characterized by multiple or late recurrences (3, 8). Recurrence is more common in the pelvic and abdominal cavities, and less common in the lungs and vagina. Due to its indolent course, distant recurrence is more frequently seen in clinical practice, necessitating long-term follow-up, hence there is less research on the prognosis of recurrent LGESS (9).

Currently, hysterectomy and bilateral salpingo-oophorectomy are the first-line treatments for ESS. However, approximately 30%-50% of ESS patients experience recurrence or metastasis (10). At present, surgical treatment, anti-estrogen therapy, chemotherapy, radiotherapy, and targeted drug therapy are used to treat recurrent or metastatic ESS. However, due to the different pathological characteristics and fewer cases, there is not enough research and data, and the treatment plan for recurrent metastatic ESS is still not clearly unified.

In terms of examinations and follow-up, MRI differentiates uterine fibroids from sarcomas through its superior soft-tissue resolution, while monitoring tumor volume changes and therapeutic effects. PET-CT precisely identifies metastases or recurrent lesions, yet its phased utilization is prioritized in clinical practice due to cost and procedural constraints. MRI serving as the foundational modality, while PET-CT provides targeted assistance.

We report a case of recurrent low-grade endometrial stromal sarcoma with multiple pelvic metastases and right sacral bone metastasis. The patient had a short-term recurrence after surgery and underwent multiple rounds of combined radiochemotherapy and regular follow-up. Three years later, the patient relapsed again. After hospital evaluation, the patient was unwilling to undergo a second surgery due to concerns about surgical risks. The patient then received three cycles of chemotherapy. After chemotherapy, the patient developed abnormal liver function. After discussion by the doctors, the treatment plan was changed to HIFU and chemotherapy. This effectively inhibited tumor progression with significant results.





Case report

The patient is a 28-year-old unmarried and nulliparous female with no family history of malignancy and no prior gynecological disorders or estrogen-related medication use. She presented to the hospital in November 2019 with progressively worsening dysmenorrhea for one year and menorrhagia for six months. Gynecological ultrasound and abdominal CT indicated an enlarged uterus, suggesting uterine fibroids. On November 21, 2019, she underwent laparoscopic exploration. During the operation, a tumor approximately 9*9*8cm in size was seen on the posterior wall of the uterus, and another tumor approximately 5×4cm in size was seen on the lower segment of the posterior wall of the uterus. The intraoperative frozen pathology diagnosis was a mesenchymal malignant tumor. With the consent of the family, the operation was changed to total hysterectomy, bilateral adnexectomy, and omentectomy. Postoperative pathology and immunohistochemistry indicated low-grade endometrial stromal sarcoma with transformation to high-grade, local necrosis, enlarged and round nuclei, invasion of the uterine myometrium, involvement of the endometrium and serosal layer, tumor invasion seen in the blood vessels, no tumor invasion seen in the nerves, and no tumor seen in the bilateral adnexa and omentum (Figure 1). The postoperative pathological stage was stage IB. After the operation, she underwent three rounds of intraperitoneal hyperthermic perfusion therapy (cisplatin 110mg).
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Figure 1 | Tumor histopathology images [(A-C) Hematoxylin-eosin staining; magnification: (A) 4×; (B, C) 10×]. Main immunohistochemical staining results for low-grade endometrial stromal sarcoma [(D–J) 4×]. (D) Caldesmon; (E) Desmin; (F) SMA; (G) CD10; (H) Ki-67; (I) ER; (J) PR.

On December 17, 2019, the patient’s follow-up 18F-FDG PET/CT (18F-fluorodeoxyglucose positron emission computed tomography/computed tomography) showed thickening of vaginal soft tissue with increased glucose metabolism, multiple pelvic lymph nodes with increased glucose metabolism, suggesting metastasis. The right side of the sacrum showed slightly increased bone density with increased glucose metabolism, suggesting possible metastasis. On December 23, 2019, an enhanced whole abdomen MR suggested a nodular lesion on the left margin of the vaginal stump, highly suspicious of tumor; multiple lymph nodes near bilateral iliac vessels, on both sides of the pelvis, and in the pre-sacral space, lymph node metastasis could not be excluded. The preliminary diagnosis was “vaginal recurrence of endometrial stromal sarcoma and sacral metastasis”. From January 9 to January 20, 2020, the patient underwent VMAT radiotherapy (dose: GTVnd 6000cGy, CTV4500cGy). From February 28 to March 12, 2020, the patient underwent 4 sessions of brachytherapy (dose: 28Gy/4f, cisplatin as a radiosensitizer). On January 9 and January 20, 2020, she received concurrent chemotherapy with cisplatin (dose: 25mg, d1-4). On February 21, 2020, she accepted chemotherapy with cisplatin (100mg) and nivolumab (200mg) and regorafenib capsules (20mg, Bid). On March 19, 2020, she accepted a cycle of chemotherapy with paclitaxel (300mg) and lobaplatin (150mg) and nivolumab (200mg).From April 15 to June 3, 2020, she continued to receive 3 cycles of chemotherapy with lobaplatin (150mg) and paclitaxel (330mg) and bevacizumab (350mg). On April 15, 2020, she underwent a biopsy of the vaginal lesion, and the pathology results indicated: (vaginal orifice nodule) no endometrial stromal sarcoma seen. Serial MRI scans performed every three months between January and June 2020 revealed no abnormalities. Following the completion of chemotherapy, the patient underwent PET/CT scans every six months, with no significant abnormalities detected in the results.

On August 18, 2023, the patient experienced pain in the lower left abdomen, which gradually worsened, accompanied by left-sided back pain and fever. Outpatient ultrasound examination of the urinary system suggested: dilation of the upper segment of the left ureter with hydronephrosis of the left kidney, and a hypoechoic mass behind the bladder, measuring approximately 88×74×88mm, with clear boundaries and uneven internal echo. On August 24, 2023, a PET/CT scan showed a mass of approximately 87×83×90mm at the vaginal stump, suggesting a possible recurrence of the tumor.

The patient was admitted to the hospital for treatment on August 28, 2023, and underwent enhanced abdominal MR and urinary CTU examinations. The MR enhancement suggested an abnormal signal in the pelvic cavity, measuring approximately 99mm×88mm×116mm, suggesting local tumor recurrence, possibly involving the rectum, colon, bladder, and left ureter. After pelvic metastasis, the patient’s primary symptoms included left-sided lumbar soreness, abdominal distension, and lower abdominal pain. Physical examination revealed a pelvic mass measuring approximately 9 cm×8 cm on triple examination, with a firm consistency, poor mobility, no significant tenderness, and no percussion tenderness over the sacrococcygeal region. After multidisciplinary consultation, the patient was informed of the high risk of surgery, including potential intestinal and bladder injury, and the possibility of performing intestinal and renal fistula surgery, ablation therapy may carry risks of tumor rupture and bleeding, and injury to the intestines and bladder. The patient strongly refused surgery and ablation therapy, requesting conservative treatment. After ruling out contraindications to chemotherapy, the patient underwent three cycles of systemic chemotherapy with the TC regimen (paclitaxel injection 260mg + carboplatin injection 500mg) on September 5, September 26, and October 23, 2023. The tumor size decreased from 99mm×88mm×116mm to 69.2mm×57.8mm×75.4mm (Figures 2A, B).

[image: MRI scan series labeled A to E, each dated between August 30, 2023, and March 6, 2024. Red arrows point to a mass in the pelvic area, showing size changes over time.]
Figure 2 | MRI images of the patient. (A) Tumor volume size of the patient’s first MRI after recurrence. (B) Tumor volume size before the first HIFU treatment after three courses of chemotherapy with TC regimen. (C) Tumor volume size after first HIFU treatment. (D) Tumor volume size after the fourth course of TC regimen chemotherapy. (E) Tumor volume size after the second HIFU treatment.

On November 12, 2023, the patient’s liver function showed significant abnormalities (Alanine transaminase (ALT): 47.7 U/L;Aspartic amino transferase (AST): 32.8 U/L;CTCAE version 5.0: Grade 1 hepatotoxicity) and she could not receive the fourth cycle of chemotherapy as scheduled. After discussion and with the patient’s consent, the treatment plan was changed to HIFU treatment and liver protection treatment, waiting for the opportunity for chemotherapy. From November 13 to November 24, 2023, the patient underwent nine intermittent HIFU treatments, after which the blood flow in the pelvic tumor significantly decreased. During this period, the patient was given liver protection treatment (silymarin capsules 140mg, bid, orally), and glutathione (1.2g, qd, intravenous infusion). On December 12, 2023, the patient’s liver function recovered, and she underwent the fourth cycle of systemic chemotherapy with the TC regimen (paclitaxel injection 260mg + carboplatin injection 600mg). On January 5, 2024, the patient’s liver function was abnormal again (Alanine transaminase (ALT): 118.6 U/L;Aspartic amino transferase (AST):41.6 U/L;CTCAE version 5.0: Grade 1 hepatotoxicity) and she could not receive the fifth cycle of chemotherapy as scheduled. From January 8 to January 16, 2024, the patient received eight intermittent HIFU treatments, and liver protection treatment was continued during the treatment period. On February 2, 2024, the patient’s liver function recovered, and she underwent the fifth cycle of systemic chemotherapy with the TC regimen (paclitaxel injection 270mg + carboplatin injection 780mg). After 17 HIFU treatments combined with chemotherapy, the patient’s lesion decreased from 69.2mm×57.8mm×75.4mm to 43mm×33mm×45mm (Figures 2C–E). The scattered small nodules in the original pelvic cavity disappeared, the dilation of the upper segment of the original left ureter improved significantly, the turbidity of the fat space in the original pelvic cavity and the pelvic effusion disappeared. The edema of the left piriformis muscle significantly improved. The level of tumor markers gradually decreased and tended to stabilize. The patient’s abdominal pain and bloating symptoms disappeared, and she had no other discomfort. On March 8, 2024, she underwent the sixth cycle of systemic chemotherapy with the TC regimen (paclitaxel injection 270mg + carboplatin injection 650mg).

On April 22, 2024, a PET/CT scan suggested that the blood flow signal around the patient’s pelvic mass had significantly decreased, the mass had basically shown changes after HIFU treatment (Figure 3), and the patient’s tumor markers (Figure 4) had steadily decreased and trended toward stabilization. The treatment effect was satisfactory. The patient was advised to undergo surgical treatment, but she still refused. The benefit of immunotherapy for the patient was not evident at present. The patient requested regular follow-up, and there were no new lesions at present. It is recommended to continue regular HIFU maintenance treatment in the future. The patient is currently under continued follow-up observation. The disease timeline is shown in Figure 5.

[image: A set of medical images showing PET and CT scans of a pelvic region. Image A and E are CT scans, highlighting certain areas with red arrows. Image B and F are corresponding PET scans, with faded grayscale visualization. Image C and G show a combined PET/CT scan in color, indicating areas of metabolic activity. Image D and H display full-body PET scans in grayscale, dated August 24, 2023, and April 22, 2024, respectively.]
Figure 3 | (A–D) Pre-treatment PET/CT: A pelvic soft tissue mass demonstrates heterogeneously intense radiotracer uptake with a maximum standardized uptake value (SUVmax) of approximately 7.0. The lesion measures approximately 8.7 × 8.3 × 9.0 cm, showing internal necrotic components. The mass invades the vaginal stump and exhibits ill-defined borders with the rectum and the pelvic segment of the left ureter. (E–H) Post-treatment PET/CT after 6 courses of chemotherapy and 2 sessions of HIFU therapy.A hypodense lesion is noted in the left pelvis, measuring approximately 4.7 cm × 3.1 cm. It demonstrates ill-defined borders with the vaginal stump and has an SUVmax of 2.8.

[image: A line graph displaying biomarker levels from August 2023 to April 2024. The red line for HE4 shows a significant drop from 120 to around 40, with arrows labeled A and B marking specific points. CA125, CA153, and CA199 are represented by yellow, green, and turquoise lines, respectively, showing stable or slightly decreasing trends around 20 and 40 units.]
Figure 4 | The trend chart of various tumor indicators. (A) First HIFU treatment; (B) Second HIFU treatment.

[image: Timeline of a medical treatment and progression. It begins on November 21, 2019, with surgery for uterine leiomyosarcoma. Subsequent treatments include chemotherapy and radiotherapy starting January 9, 2020, various chemotherapy regimens through 2020, HIFU and chemotherapy on November 13, 2023, and additional chemotherapy in September and October 2023. Metastasis events are noted in December 2019, August 2023, and April 2024, with sizes provided for the lesions.]
Figure 5 | Time-event axis.





Methods

In this case, the patient used the yLab Class C Ultrasound Diagnostic System (Shenzhen Baisheng Medical Equipment Co., Ltd) and the HIFUNIT9000 Focused Ultrasound Tumor Ablation Machine (Shanghai Aishen Technology Development Co., Ltd). The system consists of a main unit, motor system, control console, monitoring system, power supply, and water treatment system.

Pre-treatment preparation: The patient was instructed to abstain from high-protein food the day before the treatment. Prior to the treatment, the patient was asked to retain a small amount of urine to fill the bladder. Lactulose oral solution (Beijing Hanmei, 100ml/bottle) was administered for bowel preparation, and parecoxib sodium (Dynastat) was administered via intramuscular injection for analgesia.

During the treatment, phloroglucinol injection was administered intravenously. The patient was positioned supine, and the machine located the pelvic tumor. Throughout the procedure, the treatment intensity and duration were adjusted according to the patient’s tolerance and the grayscale changes displayed on the ultrasound.

HIFU is a non-invasive therapeutic technique that does not require anesthesia, has no incisions, no radiation, and has a quick recovery time. It is primarily used for solid tumors that can be observed under ultrasound, such as adenomyosis, uterine fibroids, osteosarcoma, most primary and metastatic liver tumors, etc.

The principle of HIFU treatment involves precise positioning and outlining of the tumor under ultrasound, scanning point by point and layer by layer according to the shape of the tumor. Utilizing the penetrative and focusing properties of ultrasound waves, the waves emitted from outside the body are focused on the pathological tissue inside the body. Through thermal effects, mechanical effects, and cavitation effects, the temperature of the pathological tissue rises instantly to 60-100°C, causing instantaneous irreversible cell death and coagulative necrosis of the tumor tissue. HIFU therapy achieves precise targeted ablation through real-time ultrasound imaging guidance. A 3.5–5 MHz dual-mode transducer enables simultaneous visualization of anatomical structures and blood flow distribution. During treatment, gray-scale ultrasound images are acquired at 5-minute intervals, monitoring echo intensity enhancement in the target area (indicative of coagulative necrosis). Initial acoustic intensity is set at 300–500 W/cm², with dynamic adjustments to pulse frequency (0.8–1.2 MHz) and duty cycle (30–50%) based on real-time thermal curves (target temperature 55–65°C). Should acoustic pathway deviation occur (e.g., due to bowel gas interference), immediate treatment suspension and refocalization of the acoustic energy are implemented (Figure 6).

[image: Diagram and photograph showing focused ultrasound therapy. The diagram illustrates an ultrasonic transducer directing focused beams through degassed, chilled water, targeting a tumor. The right photo depicts a medical device with a patient on the treatment table within a clinical setting.]
Figure 6 | Schematic diagram of HIFU operation principle.

In the assessment of patient adaptability, it is mainly based on the evaluation of subjective symptoms such as lumbosacral pain, abdominal pain, lower - limb neuralgia, and local skin burning during the patient’s treatment. If the pain and skin burning are obvious, the energy intensity should be reduced or the treatment should be suspended. Regarding the efficacy assessment, there are currently no precise treatment standards and data. Our clinical experience mainly relies on ultrasound examinations. A better treatment effect is indicated when, in comparison before and after treatment, the area of enhanced echo of the mass under ultrasound exceeds 90%, the closure rate of small blood vessels exceeds 70%, and the reduction rate of blood - flow signals in local thick blood vessels exceeds 50%.





Discussion

ESS is a relatively rare gynecological malignancy. The treatment of recurrent ESS remains a challenge. The 5-year survival rate for patients with stage I and II low-grade ESS reaches 90%, while for patients with stage III and IV, it is about 50% (9). Previous studies have reported recurrence rates of LGESS ranging from 10% to 76%, which may be due to its characteristic of recurrence over 5 years, resulting in a large difference in recurrence rates (11). At present, the main treatment option for endometrial stromal sarcoma is surgery, supplemented by chemotherapy, radiotherapy, anti-estrogen therapy, etc. Due to the many adverse reactions of radiotherapy and chemotherapy and the inability to continue, for patients who cannot undergo surgery, ablation therapy can be chosen. However, the ablation process requires puncture, which may damage surrounding organs such as the intestines and bladder. The puncture process may lead to the risk of tumor rupture, bleeding, and tumor dissemination and metastasis. Therefore, the treatment of recurrent ESS remains a significant challenge.

In this case, the patient was diagnosed with LGESS and experienced rapid recurrence shortly after surgery. After multiple rounds of combined radiotherapy and chemotherapy, the condition stabilized and regular follow-up examinations were scheduled. In August 2023, the tumor recurred again, measuring approximately 10cm, with multiple pelvic metastases and right sacral bone metastasis. The tumor was suspected of locally recurring and possibly invading the rectum, colon, bladder, and left ureter. Unable to accept the risks of surgery, the patient strongly refused surgical intervention and underwent chemotherapy. After three cycles of chemotherapy, the tumor size decreased from 99mm×88mm×116mm to 69.2mm×57.8mm×75.4mm. However, due to abnormal liver function, the fourth cycle of chemotherapy could not be administered. After evaluation and discussion, HIFU treatment was added, liver protection treatment was administered during this period, and the timing for chemotherapy was awaited. After 17 sessions of HIFU treatment combined with systemic chemotherapy, the tumor size reduced from 69.2mm×57.8mm×75.4mm to 43mm×33mm×45mm, no longer compressing the bladder and ureter, the scattered small nodules in the pelvic cavity disappeared, the level of tumor markers gradually decreased and stabilized, and the patient’s abdominal pain and bloating disappeared, significantly improving her quality of life. HIFU treatment during periods when chemotherapy cannot be administered can continuously inhibit tumor progression, preventing tumor enlargement during periods without chemotherapy. Combined liver protection treatment is beneficial for the recovery of liver function, allowing the patient to receive chemotherapy on schedule.

HIFU is a novel non-invasive thermotherapy that can cause coagulative necrosis of tumor tissue. It has the advantages of high repeatability, uniform heat diffusion, virtually painless treatment process, no external injuries, rapid postoperative recovery, and no impact on patient function. It has been proven effective and safe in the treatment of solid tumors such as uterine fibroids, breast cancer, and pancreatic cancer. A prospective study suggested that the effectiveness of HIFU in treating uterine fibroids was higher than surgical treatment, and it was safer (12). MR-HIFU treatment significantly alleviates the clinical symptoms caused by uterine fibroids and effectively reduces the tumor volume (13). In addition, a retrospective review findings of HIFU treatment was more effective than secondary myoma resection, with fewer side effects, longer asymptomatic periods, and lower risk of re-intervention (14). A systematic review study showed that patients with postoperative pathological diagnosis of uterine sarcomas (including LGESS and uterine leiomyosarcoma) do not cause histological dissemination of sarcoma after receiving HIFU treatment (15). HIFU treatment has therapeutic effects on uterine fibroids and sarcomas, and also has good effects in the treatment of other pelvic tumors. Zhong Q,etc (16), retrospectively analyzed 153 patients with cervical cancer residual or recurrent after chemoradiotherapy (CRT) who received HIFU treatment from 2010 to 2021. The results showed that HIFU can significantly reduce the size of residual or recurrent lesions, improve local control rates and survival time, and even elderly or physically poor patients can tolerate it, providing a supplementary treatment method for cervical cancer patients with adverse reactions after chemotherapy. Lei T,etc (17), treated 8 patients with recurrent ovarian cancer or metastatic pelvic tumors with HIFU, and found that the pain relief rate was 60%, short-term quality of life improved, and adverse reactions after treatment were mild. Studies have shown that HIFU treatment of pelvic metastatic tumors or recurrent ovarian cancer is feasible and without serious complications. HIFU treatment is also used in breast cancer and pancreatic cancer. Zulkifli D,etc (18), included nine studies and found that HIFU can induce coagulative necrosis of local breast cancer tumors, with small side effects, good cosmetic effects, and a 5-year disease-free survival rate of more than 90%. A meta-analysis evaluated 19 studies with a total of 939 patients, and the results showed that HIFU treatment combined with drug treatment of pancreatic cancer can relieve patients’ chronic pain, the incidence of adverse events is low, and it can improve the overall survival rate (19). In the treatment of prostate cancer, HIFU treatment also plays a role. Parry MG reported that after 1381 patients with prostate cancer received HIFU treatment, the tumor effectively shrank, and urinary and reproductive functions were preserved, with little impact on the quality of life (20).

HIFU is currently used for pelvic and abdominal solid tumors, and the treatment effect is good, patients with residual or recurrent tumors in the pelvis after radiotherapy and chemotherapy also benefit. These research results provide evidence for us to choose to add HIFU in this case, clinical data also prove that HIFU combined with chemotherapy for the treatment of recurrent low-grade endometrial stromal sarcoma is effective and safe.

During HIFU treatment, different tumor sizes and locations are associated with distinct side effects and limitations. To enhance treatment safety, prior to treatment, it is necessary to improve the patient’s nutritional status, control underlying diseases, and establish psychological expectations. Additionally, multi - modal imaging techniques should be employed to precisely locate the lesion. During the treatment, parameters should be dynamically adjusted based on the tumor size, depth, blood supply characteristics, and the patient’s adverse reactions. This ensures effective ablation of the tumor tissue while minimizing damage to the surrounding normal tissues to the greatest extent. After the treatment, measures should be taken as early as possible to address adverse reactions. Hierarchical interventions should be carried out for common problems such as fever, pain, and skin damage. Meanwhile, psychological counseling should be provided to improve the patient’s treatment experience.

The combined HIFU therapy has gained increasing attention, and changes in immune-related markers and tumor biomarkers may be associated with treatment prognosis. Dong S et al. compared pancreatic cancer patients receiving HIFU-priority versus chemotherapy-priority regimens in combined therapy and found that the HIFU-priority group demonstrated significantly improved overall survival (OS) (HR = 0.38) (21). Additionally, patients with normal CRP and CA125 levels exhibited longer survival. Elevated neutrophil-lymphocyte ratio (NLR) and low lymphocyte-monocyte ratio (LMR) were associated with poor prognosis. Wang R et al. found that patients positive for CD133 and other stem cell markers may benefit from targeted nanocarrier-based therapies combined with HIFU (22). HIFU may enhance chemotherapeutic efficacy by creating a tumor hypoxic environment that activates hypoxia-inducible factors (HIFs), thereby improving the delivery efficiency of chemotherapeutic agents such as doxorubicin. Concurrently, HIFU promotes CD4+/CD8+ lymphocyte infiltration into tumor tissues (23, 24). HIFU activates systemic immune responses by releasing tumor antigens and danger signals, with CD8+ lymphocyte infiltration correlating with regression of distant untreated lesions (24, 25). Patients with higher baseline tumor-infiltrating lymphocyte (TIL) levels are more suitable for HIFU combined with PD-1 inhibitors and chemotherapy (26, 27).

In terms of pathological characteristics, the combination of HIFU and chemotherapy significantly controls the growth of recurrent lesions in mucinous ovarian cancer (28). In advanced gastric cancer (GC) patients, HIFU-priority regimens following neoadjuvant chemotherapy significantly improve OS, particularly in stage III patients (HR = 1.61) (29). Multimodal imaging serves as the gold standard for post-HIFU chemotherapeutic response evaluation, with contrast-enhanced CT/MRI clearly delineating tumor anatomy and Extent of necrosis (30, 31). Molecular ultrasound imaging dynamically monitors tumor vascular characteristics (via the QuanTAV index), predicting treatment sensitivity (32). Translucent texture changes in ultrasound/MRI follow-up of muscularis lesions indicate therapeutic efficacy, whereas residual enhancing foci warrant caution for recurrence (33, 34). Future research should prioritize refining a multi-parameter decision model integrating tumor biomarkers, imaging features, pathological staging, and immunological status to optimize HIFU-chemotherapy combination therapy precision.

The main mechanisms by which HIFU combined with chemotherapy may exert its therapeutic effect are likely related to the following aspects. First, tumor cells are more sensitive to high temperatures than normal cells. HIFU destroys tumor tissue through its thermal effect, inducing apoptosis of tumor cells; the thermal effect can increase tumor blood flow and enhance the permeability of the tumor cell membrane, thereby accelerating the penetration and absorption of chemotherapeutic drugs (21, 35). Second, after HIFU treatment, tumor cells die and cellular components enter the bloodstream. The expression of a large number of tumor antigens in the fragments activates the immune system’s anti-tumor response. Third, some studies suggest that HIFU treatment can change the tumor’s resistance to chemotherapy, increasing the sensitivity of tumor cells to chemotherapeutic drugs (36, 37). The anti-tumor mechanism of HIFU treatment is still under research, especially the impact on the immune system which requires further exploration.

While offering the advantage of non-invasiveness, HIFU possesses significant limitations in clinical application. Its efficacy is constrained by tissue acoustic properties; it cannot effectively penetrate gas-containing organs (e.g., lungs) or bone, limiting its use for tumors in locations like the thorax or intracranial cavity. Furthermore, HIFU application is highly dependent on specific tumor characteristics: size, well-defined margins, and proximity to critical vasculature or nerves. Tumors that are excessively large or unfavorably located pose procedural risks, including potential damage to adjacent structures such as bowel loops or nerves.

Additionally, real-time monitoring during treatment and accurate post-procedural efficacy assessment remain challenging. The inability to obtain tissue samples for histopathological confirmation necessitates reliance on post-treatment imaging follow-up for evaluating response. Procedural success heavily depends on operator expertise, resulting in a steep learning curve. Crucially, HIFU primarily ablates localized tumor tissue; it does not target systemic tumor dissemination via hematogenous spread, lymphatic metastasis, or distant seeding. Therefore, HIFU must be integrated with systemic therapies and serves as an effective adjunct to, rather than a replacement for, conventional cancer treatments.





Conclusions

In conclusion, this case demonstrates that HIFU combined with chemotherapy is effective in treating recurrent endometrial stromal sarcoma. This combined treatment provides a new option for patients who refuse secondary surgery or cannot tolerate it. We hope that more clinical research and data will confirm its effectiveness and safety in the future, and further explore its mechanism of action in endometrial stromal sarcoma, especially its impact on immune function and the mechanism of action in increasing sensitivity and enhancing efficacy.
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CTR, consolidation-to-tumor ratio; AUC, area under the receiver operating characteristic curve; C, confidence interval; PPV, positive predictive value; NPV, negative predictive value.
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All patients Training cohort Validation cohort

Characteristic
(n=513) (n=386) (n=127)

A. Clinical characteristics

Gender 0.108

Female 274 (53.4%) 214 (55.4%) 60 (47.2%)
Male 239 (46.6%) 172 (44.6%) 67 (52.8%)
Age* (year) 60.0 (54.0, 66.0) 59.0 (54.0, 67.0) 62.0 (53.0, 66.0) 0.320
Smoking history 0.728
Nonsmoker 369 (72.0%) 280 (72.5%) 89 (70.1%)
Former smoker 70 (13.6%) 50 (13.0%) 20 (15.7%)
Current smoker 74 (14.4%) 56 (14.5%) 18 (14.2%)
Pack-year 0.907
<3 372 (72.5%) 280 (72.5%) 92 (72.4%)
4-40 89 (17.3%) 68 (17.6%) 21 (16.5%)
> 40 52 (10.2%) 38 (9.9%) 14 (11.1%)
CEA (ug/L) 0.930
<5 435 (84.8%) 327 (84.7%) 108 (85.0%)
5 78 (15.2%) 59 (15.3%) 19 (15.0%)
Surgical modalities 0.367
Wedge resection 14 (2.7%) 12 (3.1%) 2 (1.6%)
Sublobectomy 25 (4.9%) 21 (5.4%) 4 (3.1%)
Lobectomy 474 (92.4%) 353 (91.5%) 121 (95.3%)

B. Histopathological characteristics

Histological subtype 0.352
Lepidic 88 (17.2%) 63 (16.3%) 25 (19.7%)
Acinar 240 (46.8%) 185 (47.9%) 55 (43.3%)
Papillary 103 (20.0%) 78 (20.2%) 25 (19.7%)
Micropapillary 43 (8.4%) 28 (7.3%) 15 (11.8%)
Solid 39 (7.6%) 32 (8.3%) 7 (5.5%)
Ki-67 LI* (%) 10 (3.5, 20.0) 9 (5,20) 10 (3, 20) 0.171
Ki-67 LI 0.817
< 10% 255 (49.7%) 193 (50.0%) 62 (48.8%)
2 10% 258 (50.3%) 193 (50.0%) 65 (51.2%)
Visceral pleural invasion 0.786
Present 93 (18.1%) 71 (18.4%) 22 (17.3%)
‘ Absent 420 (81.9%) 315 (81.6%) 105 (82.7%)
‘ Lymph-vascular fnvasion 0112
‘ Present 70 (13.6%) 58 (15.0%) 12 (9.4%)
‘ Absent 443 (86.4%) 328 (85.0%) 115 (90.6%)
Pathological T stage 0.176
Tla 64 (12.5%) 48 (12.4%) 16 (12.6%)
T1b 238 (46.4%) 170 (44.1%) 68 (53.5%)
Tlc 103 (20.1%) 85 (22.0%) 18 (14.2%)
T2 108 (21.0%) 83 (21.5%) 25 (19.7%)
Pathological N stage 0.402
No 437 (85.1%) 328 (85.0%) 109 (85.8%)
N1 27 (5.3%) 23 (6.0%) 4 (3.1%)
N2 49 (9.6%) 35 (9.0%) 14 (11.1%)
STAS 0.563
Positive 171 (33.3%) 126 (32.6%) 45 (35.4%)
Negative 342 (66.7%) 260 (67.4%) 82 (64.6%)

Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; CTR, consolidation-to-tumor ratios LI, labeling index; T, tumor; N, node; STAS, spread through air space.
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CT semantic Disagreement Kappa 95% Cl
feature value/ICC

Affiliated lobe® 2 (0.4%) 0.992 0.980, 1.000
Location* 20 (4.9%) 0.808 0.728, 0.888
Tumor NA 0.988 0.985, 0.990
total diameter®

Tumor consolidation NA 0.991 0.990, 0.993
diameter®

CTR® NA 0.982 0.979, 0.985
Shapei 17 (3.3%) 0.883 0.826, 0.940
Boundaryi 29 (5.7%) 0.844 0.789, 0.890
Lobulation® 9 (1.8%) 0.871 0.787, 0.955
Spiculationi 12 (2.3%) 0.953 0.928, 0.978
Cavityi 8 (1.6%) 0.941 0.900, 0.982
Vacuole* 11 (2.1%) 0.859 0.777, 0.941
Air bronchogra.mi 37 (7.2%) 0.856 0.811, 0.901
Pleural attachment® 13 (2.5%) 0.945 0914, 0.976

SICC was calculated for the continuous variables.

¥Cohen’s kappa coefficient was calculated for the categorical variables.
Disagreement was presented as numbers (percentages).

ICC, intraclass correlation coefficient; CTR, consolidation-to-tumor ratio; CI,

interval confidence.
NA, not applicable.






OPS/images/fonc.2024.1482965/table3.jpg
Training cohort STAS positive STAS negative

Characteristics
(n=386) (n=126) (n=260)

A. Clinical characteristics

Gender 0.201

Female 214 (55.4%) 64 (50.8%) 150 (57.7%)
Male 172 (44.6%) 62 (49.2%) 110 (42.3%)
Age* (year) 59.0 (54.0, 67.0) 59.0 (53.8, 68.3) 59.0 (54.0, 65.0) 0.422
Smoking history 0.051
Nonsmoker 280 (72.5%) 84 (66.7%) 186 (75.4%)
Former smoker 50 (13.0%) 24 (19.0%) 26 (10.0%)
Current smoker 56 (14.5%) 18 (14.3%) 38 (14.6%)
Pack-year 0.002
<3 280 (72.5%) 84 (66.7%) 196 (75.4%)
4-40 68 (17.6%) 20 (15.9%) 48 (18.5%)
> 40 38 (9.9%) 22 (17.4%) 16 (6.1%)
CEA < 0.001
<5ug/L 327 (84.7%) 95 (75.4%) 232 (89.2%)
>5 ug/L 59 (15.3%) 31 (24.6%) 28 (10.8%)
Surgical modalities 0.147
Wedge resection 12 (3.1%) 3 (24%) 9 (3.5%)
Sublobectomy 21 (5.4%) 3 (24%) 18 (6.9%)
Lobectomy 353 (91.5%) 120 (95.2%) 233 (89.6%)

B. Histopathological characteristics

Histological subtype < 0.001

Lepidic 63 (16.3%) 5 (4.0%) 58 (22.3%)
Acinar 185 (47.9%) 51 (40.5%) 134 (51.5%)
Papillary 78 (20.2%) 24 (19.0%) 54 (20.8%)
Micropapillary 28 (7.3%) 26 (20.6%) 2 (0.8%)
Solid 32 (8.3%) 20 (15.9%) 12 (4.6%)
Ki-67 LI* (%) 10.0 (5.0, 20.0) 10.8 (7.4, 30.0) 5.0 (3.0, 10.0) < 0.001
Ki-67 LT < 0.001
< 10% 193 (50.0%) 35 (27.8%) 158 (60.8%)
>10% 193 (50.0%) 91 (72.2%) 102 (39.2%)
Visceral pleural invasion < 0.001
Present 71 (18.4%) 36 (28.6%) 35 (13.5%)
Absent 315 (81.6%) 90 (71.4%) 225 (86.5%)
Lymph-vascular invasion < 0.001
Present 58 (15.0%) 47 (37.3%) 11 (4.2%)
Absent 328 (85.0%) 79 (62.7%) 249 (95.8%)
Pathological T stage » ‘ <0.001
Tla 48 (12.4%) 10 (7.9%) 38 (14.6%)
T1b 170 (44.1%) 42 (33.3%) 128 (49.3%)
Tlc 85 (22.0%) 29 (23.1%) 56 (21.5%)
T2 83 (21.5%) 45 (35.7%) 38 (14.6%)
Pathological N stage < 0.001
No 328 (85.0%) 82 (65.1%) 246 (94.6%)
N1 23 (6.0%) 17 (13.5%) 6 (2.3%)
N2 35 (9.0%) 27 (21.4%) 8 (3.1%)

C. CT Semantic characteristics

Affiliated lobe 0.044
Upper lobe 236 (61.1%) 68 (54.0%) 168 (64.6%)
Middle/lower lobe 150 (38.9%) 58 (46.0%) 92 (35.4%)
Location 0.060
Central 47 (12.2%) 21 (16.7%) 26 (10.0%)
Peripheral 339 (87.8%) 105 (83.3%) 234 (90.0%)
Attenuation type < 0.001
GGO 26 (6.7%) 4 (3.2%) 22 (8.5%)
Sub-solid 208 (53.9%) 46 (36.5%) 162 (62.3%)
Solid 152 (39.4%) 76 (60.3%) 76 (29.2%)
Tumor total diameter (mm)* 22.0 (17.0, 27.0) 25.0 (19.0, 31.0) 21.0 (16.0, 26.0) < 0.001
Tumor consolidation diameter 15.5 (10.0, 23.0) 21.0 (158, 28.3) 13.0 (8.0, 20.0) < 0.001
(mm)*
CTR* (%) 78.6 (46.5, 100.0) 100.0 (78.5,100.0) 64.1 (38.1, 100.0) < 0.001
Shape 0.065
Round or oval 324 (83.9%) 112 (88.9%) 212 (81.5%)
Irregular 62 (16.1%) 14 (11.1%) 48 (18.5%)
Presence of obscure boundary 101 (26.2%) 53 (42.1%) 48 (18.5%) < 0.001
Presence of lobulation 359 (93.0%) 121 (96.0%) 238 (91.5%) 0.105
Presence of spiculation 188 (48.7%) 76 (60.3%) 112 (43.1%) 0.001
Presence of cavity 54 (14.0%) 18 (14.3%) 36 (13.8%) 0.907
Presence of vacuole 29 (7.5%) 19 (15.1%) 10 (3.8%) < 0.001
Presence of air bronchogram 200 (51.8%) 56 (44.4%) 144 (55.4%) 0.044
Presence of pleural attachment 118 (30.6%) 48 (38.1%) 70 (26.9%) 0.025

Unless otherwise stated, data were presented as numbers (percentages) and compared using the Chi-square test or Fisher’s exact test.
*Data were presented as medians (inter-quartiles) and compared using the Mann-Whitney U test.
CEA, carcinoembryonic antigen; LI, labeling index; T, tumor; N, node; GGO, ground-glass opacity; CTR, consolidation-to-tumor ratio; STAS, spread through air space.
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operation duration (min)
operation duration=150min (n)
blood loss (ml)
blood loss=150ml (n)
preoperative hemoglobin (g/1)
postoperative hemoglobin (g/1)
perioperative hemoglobin changes (g/l)
postoperative abdominal drainage (ml)
first flatus within 24 hours (n)
postoperative fever (n)
(body) temperature>38.5°C

Post-operative hospitalization days (day)

Total
123.50 (113.00-149.00)
31[25.83)
50.00 (50.00-100.00)
20 [16.67]

126.5 (118-134.75)
110.00 (102.00-119.75)
15.68 + 9.81
150 (90-167.50)
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5 (5-6)

MRI
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27 [45.00]
85.00 (50.00-100.00)
13 [21.67)
12600 (113.50-134.75)
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15.77 + 10.60
150.00 (92.50-170.00)
15 [25.00]
49 [81.67]
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MRI-Al
118.00 (112.25-125.00)
4[667]

50.00 (50.00-100.00)
7 [11.67]
129.00 (121.00-135.50)
114.00 (103.50-121.00)
15.58 +9.05
140.00 (80.00-160.00)
29 [48.33]

44 (7333]
5(833]

5 (5-6)

<0.001

<0.001

0.01

0.22

0.17

0.11

0.92

0.73
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0.38
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patient (n)
Age
height (cm)
weight (kg)
BMI (kg/m2)
pregnance
birth (n)
Vaginal delivery
cesarean section

abortion

intermenstrual bleeding (n)

menstrual variation (n)

menstrual cycle change (n)

increased menstrual flow (n)

changes in dysmenorthea (n)

abnormal leukorrhea (n)
frequent urination (n)
urine retention (n)

difficulty urinating (n)

fluid retention in the kidneys (n)

difficulty in defecating (n)
lower limb edema (n)
abdominal pain (n)
spin (n)
anemia (n)
mild anemia (n)
moderate anemia (n)
severe anemia (n)
FSH
LH
P
E2
T
PRL

fibroid size (cm)

tal

120
39 (35-42)
161 (160-165)
61 (55-69)
23.88 (21.20-26.49)
2(1-3)
1(0-1)
0(0-1)
0(0-1)
1(0-2)

7 [5.83]

24 [20.00]

21 (17.5]

39 [32.50]

3 [2.50
1(0.83
44 [36.67]
1(0.83
2[1.67
1[0.83

5[4.17.

1[0.83
18 [15.00]
11 [9.17)
42 [35.00]
30 [25.00]

10 [8.33]

2[1.67]
602 (5.13-7.10)
5.28 (3.96-6.93)
0.62 (0.51-0.76)
90.12 (80.41-96.02)
036 (0.23-0.48)
9.81 (7.52-12.57)

7.00 (6.00-8.00)

MRI
60
39 (36-42)
161 (158-165)
51.50 (55.25-69.00)
23.79 (20.99-26.27)
2(1-3)
1(1-1)
0(0-1)
0(0-1)
1(0-2)
5[0.12]
13 [21.67)
13 [21.67)
21 (35.00]
1(1.67
1[1.67
20 (33.33]
0[0.00
2[333
1[1.67

4 [6.67

1[1.67
9 [15.00]
8[13.33)
20 (33.33]
15 [25.00]

3 [5.00]

2[333]
584 (4.81-7.17)
5.00 (3.67-6.28)
0.61 (0.49-0.80)
90.14 (80.55-96.44)
037 (0.24-0.50)
9.17 (7.36-12.97)

6.67 (6.00-8.00)

RI-Al
60
39 (35-41)
162 (160-164)
61.00 (55.00-69.75)
24.33 (21.56-26.56)
2 (1-2.75)
1(0-1)
0(0-1)
0(0-1)
1(0-1)
2(3.33]
11 [18.33]
8(13.33]
18 [30.00]
2[3.33
0 [0.00
24 [40.00]
1[1.67
0 [0.00
0 [0.00
1[1.67
0 [0.00

9 [15.00]

3 [5.00.
22 [36.67]
15 [25.00]

7 [11.67]

0 [0.00]
6.15 (5.23-7.07)
567 (4.09-7.06)
063 (0.52-0.72)
90.12 (80.34-95.14)
035 (0.22-0.42)
1050 (7.75-12.40)

7.00 (6.00-8.00)

BMI, Body Mass Index; FSH, Follicle-Stimulating Hormone; LH, Luteinizing Hormone; PRL, Prolactin; E2, Estradiol; T, Testosterone.
Data presented as median (IQR) for continuous variables; n[%] for categorical variables.

p-value

0.38
0.8
0.77
0.65
0.29
0.68
0.45
0.80
0.43
0.43
0.82
0.34
0.70
1.00
1.00
0.57
1.00
0.50
1.00
0.36
1.00
1.00
0.20
0.85
1.00
0.32
0.50
0.4
0.18
0.92
0.96
0.28
0.42

0.96
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Variables Group | (n=

Female (%) 91(85.05%) 40(57.14%) <0.001

Age, years 58.8 £8.9 715 %55 <0.001
RA duration, years 10.00 [4.00-9.25] 11.00 [4.00-20.00] 0.084
Smoking (%) 7(6.54%) 5(7.14%) 0.876
Lung function
FVC% 7 86.5 + 18.1 66.3 +17.4 <0.001
FEV1% 86.2 + 18.0 67.2 £ 17.0 <0.001
TLC% 83.6 £ 15.7 56.8 + 14.6 <0.001
DLco% 615 +17.7 322 +134 <0.001
Laboratory Examinations
653.90 582.10

ACPA, RU/ml [240.30»1349.50] [138.75-1364.88] 0782
RE-IgA, U/ml 32.77 [8.22-300.00] [64;»81}&40] 0.496

30.01 [6.11-96.76] 400 0.957
RF-IgG, U/ml [4.23-136.63]

127.00 135.00 0.590

RE-IgM, U/ml [33.90-369.00] [40.25-574.00]
TNFa, pg/ml 2.56 [1.68-2.67] 2.00 [1.36-2.56] 0.075
FNY, pg/ml 2.46 [2.27-5.65] 2.46 [1.82-5.05] V 0.745
FNo, pg/ml 1.36 [0.95-2.09] 7 1.50 [0.96-1.88] 0.830
ESR, mm/h 37.50 [23.75-65.25] [18_33;22_00] 0.682
CRP, mg/l 12.35 [2.06-32.95] 7.14 [0.80-22.98] 0.197
K60k [1371196-.25987.30] [261.30776—-58:9.88] <0.001
Disease activity
DAS-28-ESR 351 +1.56 333 = 1,37 0.489
DAS-28-CRP 4.25 + 1.54 4.12 + 146 V 0.611
CT images
g;zi’;lt;‘;m (Ute/ 50 (46.7%) 64.3(64.3%) 0.022
Goh score, % 12 [8-15] 19 [13-27] <0.001
Treatment for RA
Methotrexate 75 (72.8%) 45 (66.2%) 0.353
Methylprednisolone 47 (46.5%) 37 (57.8%) 0.158
Hydroxychloroquine 18 (18.2%) 11 (16.4%) 0.769
Leflunomide 20 (19.8%) 18 (26.9%) | 0.284
Biological agent 69 (67.0%) 30 (44.8%) 0.004

Categorical variables are presented as n (%). Continuous variables are listed as median (inter-
quartile range, IQR) or as mean + standard deviation. n, number of patients; FVC, Forced vital
capacity; FEV1, Forced expiratory volume in 1 s; TLC, Total lung capacity; DLCO, Diffusion
capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; RF, rheumatoid factor;
CRP, C-reactive protein; APLA, anti-phospholipid antibodies; KL-6, Krebs von den Lungen-6;
TNFo,, tumor necrosis factor alpha; IFNY, interferon gamma; IFNo, interferon alpha; DAS,
disease activity score; UIP, usual interstitial pneumonia.
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Odds ratio

Variables (95% CI)

Age 1.27(1.17-1.38) <0.001
Gender 0.30(0.13-0.69) 0.005
RA duration 1.03(1.00-1.07) ‘ 0.068
FVC% 0.91(0.88-0.94) <0.001
FEV1% 0.94(0.92-0.97) <0.001
TLC% 0.89(0.85-0.92) <0.001
DLco% 0.88(0.84-0.92) <0.001
ACPA 1.000(0.996-1.004) 0.936
RFIgM 1.000(0.998-1.001) 0.678
RFIgG 1.000(0.996-1.004) 0.936
RFIgA 0.998(0.995-1.002) 0.347
KL-6 1.007(1.004-1.010) <0.001
TNFo. 1.02(0.97-1.07) 0.457
FNo 1.04(0.94-1.15) 0.419
FNy 0.99(0.91-1.07) 0771
CRP 0.99(0.97-1.00) 0.183
ESR 0.99(0.97-1.00) 0.168
DAS-28-CRP 0.84(0.64-1.11) 0.219
DAS-28-ESR 0.85(0.65-1.11) 0227

CI, confidence-interval; ORs, Odds ratio; FVC, Forced vital capacity; FEV1, Forced expiratory
volume in 1s; TLC, Total lung capacity; DLCO, Diffusion capacity for carbon monoxide; ESR,
erythrocyte sedimentation rate; RF, rheumatoid factor; CRP, C-reactive protein; APLA, anti-
phospholipid antibodies; KL-6, Krebs von den Lungen-6, TNFa, tumor necrosis factor alpha;
IFNY, interferon gamma; IFNo, interferon alpha; DAS, disease activity score.
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Model AUC Model AUC

e Clinic Signature AUC: 0.736 (95%C1 0.642-0.830)
= =+ Rad Signature AUC: 0.939 (95%CI 0.892-0.985)
= Nomogram AUC: 0.948 (95%C1 0.910-0.986)

= Clinic Signature AUC: 0.752 (95%C 0.610-0.895)
==+ Rad Signature AUC: 0.901 (95%C1 0820-0.982)
e Nomogram AUC: 0.923 (95%CI 0.853-0.993)

1 - Specificity
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A. Patient Enrollment B. Image Preprocessing C. Model Development
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Stage 1: Image Normalization

“ e ‘ Isotropic Resample
( (4
0 Intensity Normalization

Center 1

Patch Partition

_______________________________

Stage 2: Image Segmentation

Center 2

Histological Assessment Radiologist Interpretation Efficiency Evaluation
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Hyper-parameter Value Precision Recall F1-score Accuracy

Batch 8 0.9739 0.9770 09754 09771
Lr 0.0001 0.9835 0.9811 0.9823 0.9837

Optimizer SGD 0.9800 0.9757 0.9778 0.9804
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Reference Dataset
Noreen et al. (54)
Bodapati et al. (55)
Shaik and Cherukuri (56)
Oksiiz et al. (57)
Jaspin and Selvan (58)
Md. S. 1. Khan et al. (59)
Cheng
Satyanarayana et al. (60)
Kibriya et al. (61)
Dutta et al. (62)
S. U. R. Khan et al. (63)
Dutta et al. (44)
The Proposed Method
Demir and Akbulut (64)
Senan et al. (65)
BT-large-4c

Ravinder et al. (66)

The Proposed Method

Method Recall

Inception-v3+Ensemble = - = 0.9434
Two-Channel DNN - - 0.9779 0.9523
MANet 0.9614 0.9599 0.9603 0.9651
ResNet18+ShallowNet+SVM 0.9525 0.9527 0.9526 0.9725
MCCNN 0.95 0.95 0.96 0.9517
23-layer CNN 0.965 0.964 0.964 0.978
DCNN-MCN - - = 0.94
13-layer CNN 0.97 0.96 0.965 0.972
ARM-Net 0.9646 0.9609 0.9620 0.9664
Hybrid-NET 0.95 0.94 0.94 0.951
GT-Net - - 96.39 97.11
EnSLDe 0.9853 0.9864 0.9859 0.9869
R-CNN+SVM 0.964 0.9645 0.964 0.966
AlexNet+SVM 0.985 - - 0.951
GCNN 0.9525 0.965 0.9587 0.9501
EnSLDe 0.9711 0.9711 0.9711 0.971
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Pathologically-confirmed invasive lung
adenocarcinoma;

Clinical stage I lung adenocarcinoma;

No presurgical radiotherapy, chemotherapy
or targeted therapy;

Interval time of contrast-enhanced CT
examination and surgery within 2 weeks.

Rare variants of adenocarcinoma (n=38);
Synchronous or metachronous tumors (n=12);
No thin-section CT image or obvious image
artifacts (n=21);

Insufficient peritumoral parenchyma (n=9);
Histories of other cancers (n=5).

Rare variants of adenocarcinoma (n=17);

e Synchronous or metachronous tumors (n=6);

o No thin-section CT image or obvious image
artifacts (n=13);

o Insufficient peritumoral parenchyma (n=4);

Histories of other cancers (n=2).

«  STAS-positive (n=126)
* STAS-negative(n=260)

* STAS-positive (n=45)
*  STAS-negative(n=82)
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Dataset name

Cheng

BT-large-dc

Classes
Glioma
Meningioma
Pituitary
Glioma
Meningioma
Pituitary

No tumor

Number of Each class
1426

708

930

926

940

901

497

Total number of images

3064

3264
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Dataset Tumor type  Precision Recall Fl-score Accuracy Mcc

Glioma 0.9894 0.9860 0.9877
Meningioma 0.9718 0.9787 0.9753
Cheng 5 - 0.9869 0.9795 0.9795
Pituitary 0.9946 0.9946 0.9946
Average 0.9853 0.9864 0.9859
Glioma 0.9626 0.9677 0.9651
Meningioma 0.9572 0.9521 0.9547
BT-large-4c No tumor 0.9700 0.9700 0.9700 0.9710 0.9607 0.9607
Pituitary 0.9945 0.9945 0.9945 1

Average 0.9711 0.9711 0.9711
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Method Precisi Recall Fl-score Accura
Shallow layer ‘ 0.9554 09539 0.9546 0.9592
Deep layer ‘ 0.9683 09645 0.9664 0.9690
Multilayer fusion (ours) ‘ 0.9853 0.9864 0.9859 0.9869
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tabase

Web of Science

Query statement

ALL=(psoriasis) AND
(ALL=(ML) OR
ALL=(DL))

Year of release

2014-2024.04

PubMed

ALL=(psoriasis) AND
(ALL=(ML) OR
ALL=(DL)) AND
(ALL=(segmentation)
OR ALL=(recognition)
OR ALL=(assessment))

IEEE Xplore

ALL=(skin) AND

(ALL=(ML) OR
ALL=(DL))
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taset scripti

XiangyaDerm (29) It contains 107,565 clinical images, covering 541
types of skin diseases.

The largest amount of data in the dataset is
psoriasis, 67,066 images, accounting for 62% of
the total dataset.

Skin diseases image | There are 10 types of skin diseases. Among them,
dataset in Kaggle 2,055 cases of psoriasis were included.
(see text footnote 1)

DermNetNZ (30) It contains 11 different types of psoriasis,
including but not limited to facial psoriasis, nail
psoriasis, scalp psoriasis, etc.

Dermatology Atlas It contains 6 different types of psoriasis, including

(31) but not limited to arthropathic psoriasis, nail
Ppsoriasis, etc.

Hellenic It contains 15 different types of psoriasis,

Dermatology Atlas including but not limited to generalized psoriasis,

(32) guttate psoriasis, inverse psoriasis, etc.
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Reference ber o o e

eg. ta a

age Pso o-P o e e

George etal. (21) 676 - - - - - - -
Dash etal. (22) 5,179 - - R - . R _
Shrivastava et al. (23) - 270 270 B R . R _
Zhao etal. (24) = 900 7,121 . B . R _
Hammad etal. (25) & 2,055 1,677 - - = = =
Shrivastava et al. (26) S ] - 383 47 245 145 28
Shrivastava et al. (27) - - - 218 29 138 165 121
Dash et al. (28) 5,000 5,000 5,000 5,000 845 1,404 1,465 1,286

Pso, Psoriasis; H., Health; Mi., Mild; Mo., Moderate; Se., Severe; V.Se., Very Severe.
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AB LS

Pretrain method Mean (std) test AUC e Mean (std) test AUC
0 x 0.938 (0.007) 0 x 0.812(0.037)
05 | x 0.931(0.010)* 5 X 0824 (0.030)*
05 | v 0936 (0.007)" 5 v 0.820(0.033)
SimCLR 1 x 0934 (0.011) 10 x 0.815(0.035)
1 v 0933 (0.011) 0 v 0.816(0.037)
15| x 0.936 (0.013) 15 x 0.819(0.034)
15 v 0.932(0.012) 15 v 0.798 (0.039)*
0 x 0.914(0.014) 0 x 0.693 (0.044)
05 | x 0914 (0.010)* 5 x 0.694(0.040)
0.5 v 0.883 (0.017)*" 5 v 0.780 (0.040)*"
Barlow Twins 1 x 0.877 (0.022)* 10 X 0.705(0.051)
1 v 0.891(0.018)*' 0 v 0.706 (0.066)
15| x 0.870 (0.024)* 15 x 0769 (0.037)*
15 v 0.892(0.015)* 15 v 0707 (0.071)"
0 x 0917 (0.011) 0 x 0.690(0.042)
05 | x 0.879 (0.024)* 5 x 0.675(0.036)
05 | v 0.879 (0.021)* 5 v 0.679(0.038)
VICReg 1 x 0.872 (0.023)* 10 x 0.680 (0.039)
1 v 0.876(0.024)* 0 Vv 0.675(0.040)
15| x 0.860 (0.026)* 15 x 0.710(0.036)
1.5 v 0.870 (0.021)*" 15 v 0.685 (0.039)
None (ImageNet-pretrained) 0.896 (0.017) 0.783 (0.028)
None (random initialization) 0.774(0.051) 0.507(0.022)

Twenty trials were performed for each pretraining method, value of 8, with and without sample weights (SW). Mean and standard deviation of the test AUC across trials are reported for
cach condition. *Significantly different (p < 0.05) than baseline for the pretraining method where 8 = 0. TSignificantly different (p < 0.05) for particular § when sample weights are applied,
compared to no sample weight.
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Dataset POCUS ParenchymalLUS

Pretraining method Mean (std) test accuracy A/B Test AUC LS Test AUC
Random initialization 0.881 (0.050) 0954 0.790
ImageNet initialization 0.908 (0.043) 0973 0.898
USCL ( ) 0.905 (0.044) 0979 0.874
US UCL ( ) 0.901 (0.054) 0967 0.809
IVPP [SimCLR] 0.926 (0.043) 0980 0.903
IVPP [Barlow Twins] 0.921(0.054) 0.969 0.887
IVPP [VICReg] 0.930(0.046) 0971 0.862
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Unlabeled Labeled
Validation

Patients 5,204 1,540 330 329
Total Videos 20,000 4123 858 936

Images 4,611,063 927,889 191,437 208,648

Videos - 2,100/998 4417197 512/213
A/B line labels

Images - 484,287/216,505 99,132/40,608 116,648 /42,122

Videos - 3,169/477 631/103 707196
Lung sliding labels

Images - 727,205/ 96,771 146,322/23,218 166,753 /21,911

/y indicates the number of negative and positive labeled examples available for each task, respectively. Video labels apply to each image within the video, Note that some videos were not labeled

for both tasks.
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Ultrasonic transducer

Treatment
head

Degassed and chilled water

Focused ultrasound beam

indoor
temperature
Skin
Ultrasonic
focus
Tumor

Tumor cells that have
30 been destroyed by
°C heat






OPS/images/fonc.2025.1551792/fonc-15-1551792-g005.jpg
2019.11.21
Surgery+3IHPT

Uterine leiomyosarcoma

2023.8.24

Pelvic metastasis

Size about 99mm X

2024.3.8
2020.1.9 2020.6.3 88mm X 116mm 2023.11.13
Chemotherapy+ HIFU+Chemotherapy
radiotherapy
-_— ., -, t—— 4 —y—— e — -
2020.3.19 2023.10.23
Chemotherapy+ Chemotherapy
Bevacizumab
2019.12.17 2020.3.19 e 2024.4.22
Vaginal and right  chemotherapy+ Chemotherapy Pelvic metastasis
sacral bone Nituzumab Size about
metastasis. 43mm X 33mm X45mm





OPS/images/fmed-11-1416169/fmed-11-1416169-e001.jpg
Dicescore:prxx/(p2 +1Z)





OPS/images/fonc.2025.1551792/fonc-15-1551792-g003.jpg
20340421
084637

4/22/2024





OPS/images/fonc.2025.1551792/fonc-15-1551792-g002.jpg
8/30/2023 10/21/2023






OPS/images/fonc.2025.1551792/fonc-15-1551792-g001.jpg





OPS/images/fonc.2025.1551792/crossmark.jpg
©

2

i

|





OPS/images/fmed-11-1414582/fmed-11-1414582-t008.jpg
REMENS References Quantity of data Evaluation metrics*

ACCY F1p
PCA; SVM; NB; DT Traditional machine learning (76) 17 0.920 e B
methods
(26) 848 0.999 E 0.999
27) 670 0.998 - 0.998
Dic. L; BoVWs A novel image representation 77) 676 - 0.710 -
and unsupervised feature
extractor method (78) 676 0.808 - -
CNNs Segmentation was performed (28) 5,000 0.926 0.926 0.992

before severity assessment

Semi-automatic vs. automatic (79) 80 - 0.989 -
segmentation algorithms

Segmenting and scoring nail (30) 705 0.765 = =
psoriasis
(1) 300+ 0915 - -
(82) 1,154 0.55 0.55 0.63
Segmenting and scoring (83) 611 0.667 2 :
pustular psoriasis (PP)
Segmenting and scoring large (84) 500 0.942 - -
areas of psoriasis
CNN + ViT (85) 1,018 0.795 0.792 0.950
Direct assessment of psoriasis (86) 705 - - -
severity using CNNs 7 1731 . R R
(88) 14,096 & - :
(89) 5,951 - 0.940 -
(90) 792 0.910 - -
o1 2,700 - - -
Attention 2) 792 0.908 0.930 -

YOLO (93) 2,657 - - -






OPS/images/fmed-11-1414582/fmed-11-1414582-t007.jpg
Performance metric Formula*

Acc ACC= rrfiiem
Recall Recall = TPZ-‘N
Precision Precision = g
F1-Score Pl =2x heionad

*TP, ture positive; FP, false positive; TN, true negative; FN, false negative.





OPS/images/fmed-11-1414582/fmed-11-1414582-t006.jpg
Methods REMENS References Quantity of data Evaluation metrics*
ACCt F14 AUCH
PCA; SVM Traditional machine learning (23) 540 1.0 - 1.0
methods.
(51) 90 0.90 N -
CNNs Classify psoriasis vs. other skin (52) 1,358 - 0.922
dlfeasl (including healthy 3 3570 0.801 R R
skin)
(54) 312 0.942 0.942 0.990
(55) 1,876 0.910 = -
(56) 2,101 0.919 0.894 0.959
A publicly available dataset was (57) 938 0.653 0.655 0.904
used for the study.
4) 8,021 0.960 B 0.981
Identify psoriasis from skin (58) 4,740 0.959 - 0.987
lesion such as eczema and
S (59) 11,031 0.920 - -
pityriasis rosea that are
extremely similar to it. (60) 292 0.896 - N
(25) 3,732 0.962 0.958 0.971
(©61) 869 0.857 - -
Identify nail psoriasis from 62) 1,155 0.957 - -
healthy nails.
Light-weighted CNN (63) 33,904 0.70 - -
CNN + ViT (64) 8,000 0.977 0.965 -
Classify different types of (65) 30,000 0.890 0.920
psoriasis.
(66) 1,836 0.987 0958 -
(56) 814 0.933 0919 -
CNN vs. LSTM 67) 1,838 0.842 - -
Light-weighted CNN (68) 12,015 0.998 - 0.99

*ACC, Accuracy; F1, F1-Score; AUC, Area Under Curve.






OPS/images/fmed-11-1414582/fmed-11-1414582-t005.jpg
Performance metric Formula*

= Xl _ 2xTP
DsC bsc= ILgl+ILyl — FP+FN+(2xTP)
= Lol _ TP
n fE= |LgULp| — TP+FN+FP
— __mPeIN
A6C ACC = Ve

*TP, ture positive; FP, false positive; TN, true negative; FN: false negative.





OPS/images/fmed-11-1414582/fmed-11-1414582-t004.jpg
Methods REGECS References Quantity of data Evaluation metrics*

DSCY it ACCY
Clustering Image segmentation of lesion @1 676 0.783 0.698 0.870
images using clustering
algorithms from TML models (36) 780 g 0830 0.909
CNN The vast majority of CNN (22) 5179 0.930 0.864 0.948
studies on psoriasis use U-Net
as a segmentation model. Some (37) 350 0910 0.837 0.986
papers also modify it to
improve metrics (38) 500 0948 0901 0992
(39) 255 0.655 0.536 0976
(40) 580 0919 - -
Object detection Utilize object detection models (1) 400 - - 0.972
backbone as feature extraction modules in
their proposed models before
performing psoriasis
segmentation
Optimization These studies leverage CNNs 42) 4200 0.960 0.905 0.970
algorithm where the weights and biases
are optimized using (43) - 0.970 0.920 0.980

optimization algorithms, for
psoriasis segmentation

*DSC, Dice Similarity Index; JI, Jaccard Index; ACC: Pixel Accuracy.





OPS/images/cover.jpg
& frontiers | Research Topics

Deep learning for medical
imaging applications






OPS/images/fonc.2025.1551792/fonc-15-1551792-g004.jpg
140

120

100

80

60 A

40

20 =

0
2023/8/12 2023/10/1 2023/11/20 2024/1/9 2024/2/28 2024/4/18

~CA125 (U/ml) = CA153 (U/ml) - CA199 (U/ml)  — HE4(pmol/L)





OPS/images/fonc.2025.1467672/fonc-15-1467672-g002.jpg
so  Liver Stomach Aorta  IVC P&S\Vein Pancreas Ad Glands

Spleen R Kidney L Kidney Gallbladder

0 R IE LT TS A





OPS/images/fonc.2025.1467672/fonc-15-1467672-g001.jpg
P

- Head






OPS/images/fonc.2025.1467672/crossmark.jpg
©

2

i

|





OPS/images/fmed-11-1416169/fmed-11-1416169-t004.jpg
ss Accuracy Sensitivity Specificity AUROC

Proposed model 0.106 £ 0.051 0.973 £ 0.023 0.900 £ 0.098 0.978 £ 0.025 0.990 £ 0.009
VGG-19 0.096 + 0.010 0.973 £ 0.006 0.947 £ 0.039 0.975 + 0.006 0.991 £ 0.003
ResNet-50 0.123£0.011 0.976 + 0.006 0.925 £0.053 0.980 £ 0.006 0.992 £ 0.003
Inception-v3 0.102 £ 0.009 0.974 £ 0.007 0.869 £ 0.085 0.981 £ 0.006 0.991 £ 0.004

Confidence interval computed from the validation set of the fve training processes at a =0.05. The lss, accuracy, sensitivity specificty, and area under the ROC curve (AUROC) are shown.
Models used for comparison are obtained from Saavedra et al. (20).
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Confidence interval computed from the validation set of the five training processes at a=0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (\UROC) are shown.
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Confidence interval calculated at a=0.05.
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Summary of precision and Fl-scores across different versions of the LookDeep Health AT
model, highlighting improvements in key tasks as the training data increased. The baseline
YOLOv4 model demonstrates initial performance levels, while successive versions (Models
V1 to v5) show incremental gains in object detection. With each model iteration, higher
precision and Fl-scores indicate enhanced detection accuracy and classification reliability,
underscoring the impact of additional data and model refinement on real-time patient
‘monitoring capabilities. Evaluation was performed on a fixed dataset containing 10k images.
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Additional results corresponding to are presented here, focusing on object detection of persons, role classification, and “patient alone” classification tasks.
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Model v5 (2024 Q2) 1,226 0.89 091 +0.02

Evaluation of model performance on unblurred and face-blurred images across different versions. The F1-score measures the model’s performance, with the “A F1” column showing the gap
between unblurred and face-blurred images. A A value closer to 0 indicates better consistency in model performance between unblurred and face-blurred images.
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Model Model Composition ACC AUC

Ensemble modell DenseNet169+DenseNet201 0.777 0.898
+ViT-B
Ensemble model2 Ensemble modell+ ResNet50 0.809 0.911
Ensemble model3 Ensemble model2+ 0.805 0.908
EfficientNetB4
Ensemble model4 Ensemble model2+ VGG16-bn 0.791 0.906
Ensemble model5 Ensemble model3+ VGG16-bn 0.782 0.912

Boldface numerals are utilized to underscore the optimal results in this group's trial.
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Soften label (1)

0.7 0.8
ResNet50 0.691 0.727 0.764 0.714 0.718
DenseNet169 0.727 0.755 0.782 0.736 0.736
DenseNet201 0.731 0.764 0.745 0.75 0.786
EfficientNetB4 0.672 0.7 0.69 0.714 0.745
VGG16-bn 0.682 0.732 0.745 0.695 0.727
ViT-B 0.736 0.782 0.723 0.759 0.75

Boldface numerals are utilized to underscore the optimal results in this group's trial.
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Model ACC

Base ‘ 0.691 0.811
Cleaned set ‘ ResNet50 0.741 0.845
Soften label ‘ 0.764 0.873

Boldface numerals are utilized to underscore the optimal results in this group's trial.
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DEIENEH Training set Testing set

Category
Patients Images Patients Images Patients Images
Cancer 168 460 118 323 50 137
Hyper 290 661 203 470 87 191
Polyp 276 746 193 506 83 240

Total 734 1867 514 1299 220 568
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GE Voluson E8

GE Voluson E6

mindray

Resona 7s

mindray
Resona 6s

PHILIPS
EPIQ-7

PHILIPS
EPIQ-5

Intracavitary probe RIC5-9 1C5-9-D V11-3HU DE10-3U 3D9-3V. C10-3V
Probe frequency 5-9MHz 5-9MHz 3-11MHz 3-10MHz 3-9MHz 3-10MHz
Bandwidth 4.5-9.8MHz 4.5-9.8MHz 2.5-122MHz 2.8-11.8MHz 2.7-9.2MHz 2.8-1.2MHz
TIS 04 0.4 0.3 0.3 0.3 0.4
Depth 6.0cm 7.0cm 7.0cm 8.0cm 7.0cm 6.0cm
Magnification 12 15 11 11 1.1 1.1
Maximum fan angle 180° 180° 180° 180° 180° 180°
Frame rate 40HZ 41HZ 42HZ 42HZ 49HZ 47HZ
Gain 40%-80% 40-70% 40-70% 40-70% 40-70% 40-70%
Dynamic range 50-120 50-120 50-120 50-120 50-120 50-120
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Selection Comparability Outcome

Representativeness ~Selection of  Ascertainment Outcome  Comparability ~Comparability ~Assessment = Long Adequacy
non-exposed of exposure  not present on most on other of outcome  enough (completeness
at start important risk factors follow-up  of follow-up)
factors (median>=5
year)

Gouy S (20) v 4 v v v x v v 4 8

Lim H (21) 4 4 v v v x v x 4 7
Hada T (22) v v v v v x v x ' 7
Tabrizi AD (23) v 4 & v v x 4 x v 7
Sotiropoulou M (24) v v v 4 v x 4 v v 8
Algera MD (25) 4 v v v 4 x v x v 7
Meagher N (26) v v v v v x v x 4 7
Huin M (27) v v o v v v v v 4 8
Muyldermans K (9) 4 4 v v v x v v 4 8
Hada T (28) 4 v v v 4 x v x ' 7
Nistor § (29) v v v v v x 4 x v 7
Kébel M (30) 4 v 4 4 4 x 4 x v 7

" indicates that the criteria are met, while “x” indicates that the criteria are not met.
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First author

Publish year

Study period

design

Cases

Gouy S (20) 2018 1976-2016 France R 64 62m
Lim H (21) 2023 2003-2021 Korea R 113 55m
Hada T (22) 2022 1984-2019 Japan R 52 54m
Tabrizi AD (23) 2010 1984-2000 Iran R 31 NM
Sotiropoulou M (24) 2013 1998-2008 Greece R 42 6y
Algera MD (25) 2024 2015-2020 Netherlands R 409 999d
Meagher N (26) 2021 NM Australia R 133 2y
Huin M (27) 2022 2001-2019 France R 94 5y
Muyldermans K (9) 2013 1993-2011 Belgium R 44 63m
Hada T (28) 2021 1984-2018 Japan R 49 NM
Nistor S (29) 2023 2010-2022 UK R 33 37m
Kébel M (30) 2024 NM Canada R 121 NM

“d” means day, “m” means month and “y” means year.

“R” means retrospective. “NM” means not mentioned.
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Overall (1*2 = 80.256%, p = 0.000);

Meta-analysis estimates, given named study is omitted

| Lower CI Limit O Estimate

Gouy S |

Gouy S |

LimH | [
Meagher N |

Meagher N \

Koébel M I

]

I

I

I
20 E——————

I
87 e :
109 —0-—.—'

M —e—

a8

a5

26

24

12

23

| Upper CI Limit

0.08 0.10

0.25

0.28

Death
ES (95% Cl)

0.034 (0.006, 0.172)
0.080 (0.040, 0.157)
0.138 (0.085, 0.215)
0.048 (0.008, 0.227)

0.173 (0.111, 0.280)

0.105 (0.062, 0.157)

0.114 (0.045, 0.260)
0.423 (0.255, 0.611)
0.292 (0.149, 0.482)
0.167 (0.047, 0.448)

0.609 (0.408, 0.778)

0.311 (0.141, 0.509)

0.179 (0.100, 0.274)

Funnel plot with pseudo 95% confidence limits

Weight

977
11.89
12.16
888

12.03

5473

10.23
9.48
9.26
7.15

9.14

4527

100.00






OPS/images/fonc.2025.1549803/crossmark.jpg
©

2

i

|





OPS/images/fonc.2025.1541572/fonc-15-1541572-g003.jpg
Recurrence %
study cases n ES (95% CI) Weight
[
ES I
Algera MD 2023 13 247 —— : 0.053 (0.031, 0.088) 8.41
Gouy S 2018 3 29 —ﬁ—:— 0.103 (0.036, 0.264) 6.40
Lim H 2023 11 a7 —'.":— 0.126 (0.072, 0.212) 7.80
Sotiropoulou M 2013 0 18 Qg:; 0.000 (0.000, 0.176) 5.52
Huin M 2022 2 35 —'.-—:— 0.057 (0.016, 0.186) 6.71
Muyldermans K 2013 0 21 f—:— 0.000 (0.000, 0.155) 5.82
Tabrizi AD 2010 6 26 —:—"— 0.231 (0.110, 0.421) 6.21
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1
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Characteristic

Non-gyneco-

logical cancer
(N = 8,017)

Gynecological
cancer
(N = 274)

Bold indicates P value < 0.05.

Age, years 60.00 (53.00, 69.00) 61.00 (49.00, 70.00) 0.430
Race, % 0.032
Non- 3,681.00 (73.54) 173.00 (82.70)
Hispanic White
Non-Hispanic Black 1,801.00 (10.90) 36.00 (5.43)
Mexican American 1,233.00 (4.96) 32.00 (3.52)
Other Hispanic 741.00 (4.79) 21.00 (3.82)
Other Race 561.00 (5.81) 12.00 (4.53)
Education level, % 0.700
Less than 2,261.00 (17.49) 82.00 (19.89)
high school
High school 2,069.00 (28.36) 74.00 (27.81)
College or above 3,687.00 (54.15) 118.00 (52.30)
Family PIR 3.03 (1.58, 5.00) 2.48 (1.24, 3.85) 0.008
BMI, kg/m2 28.74 (24.76, 33.46) 30.10 (25.60, 34.99) 0.054
Smoke behavior, % 0.001
Never 4,812.00 (57.24) 125.00 (42.91)
Former 1,940.00 (25.51) 75.00 (29.62)
Now 1,265.00 (17.24) 74.00 (27.48)
Alcohol 0.068
consumption, %
Never 1,800.00 (16.55) 47.00 (10.00)
Former 1,606.00 (16.80) 68.00 (20.36)

Mild 2,539.00 (36.58) 86.00 (32.45)
Moderate 1,308.00 (20.12) 40.00 (21.83)
Heavy 764.00 (9.95) 33.00 (15.36)
Energy intake, kcal 1,627.00 1,602.00 0.700

(1,260.00, 2,069.00) (1,215.00, 2,067.00)

Hypertension, % 2,503.00 (26.09) 80.00 (22.10) 0.190
Diabetes, % 2,006.00 (19.46) 77.00 (19.91) 0.880
Menopause, years 46.00 (39.00, 51.00) 36.00 (30.00, 46.00) <0.001
First 13.00 (12.00, 14.00) 12.00 (11.00, 13.00) 0.028
menstruation, years
Living birth 2.00 (2.00, 3.00) 2.00 (2.00, 3.00) 0.950
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Outcomes

Gynecological
Cancer

OR, odds ratio; CI, confidence interval. Crude is an unadjusted model; model 1 is a model
adjusted for age and race; model 2 is a model adjusted for age, race, first menstruation age and
living birth; model 3 is a model adjusted for age, race, first menstruation age, living birth,
education, BMI, PIR, smoking, alcohol consumption level, energy intake; Model 4 is a model
adjusted for age, race, first menstruation age, living birth, education, BMI, PIR, smoking,

Model OR (95% CI) P value
Crude 0.93 (0.91, 0.95) <0.01
Model 1 0.92 (0.90, 0.94) <0.01
Model 2 0.92 (0.90, 0.94) <0.01
Model 3 0.92 (0.91, 0.94) <0.01
Model 4 0.92 (0.90, 0.94) <0.01

alcohol consumption level, energy intake, hypertension and diabetes.
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Variables Development cohort (N=78) External validation cohort (N=34)

RO (N=55) Non-R0 (N=23) RO (N=24) Non-RO (N=10)
Age 54.55 £9.23 62.13 £7.14 <0.01 54.88 +£ 9.34 62.10 £ 5.51 0.03
BMI 2223 £3.05 22,64 £ 3.51 0.72 22,08 +£3.73 24.45 £ 1.89 0.08
NLR 3.07 £ 1.86 329 £1.82 0.70 3.09 £ 1.88 247 £ 1.67 0.46
Perioperative platelet 226.82 + 82.89 211.04 + 85.68 0.41 230.00 + 70.89 175.80 + 78.42 0.06
Perioperative albumin 45.69 + 548 43.75 £ 4.77 0.09 45.80 + 5.62 45.37 £ 5.87 0.81
CA125 27836 +163.28 465.04 +179.81 <0.01 284.46 +136.25 403.10 + 167.44 0.04
HE-4 285.55 £ 135.99 546.83 + 183.08 <0.01 318.08 £ 143.04 574.10 + 184.04 <0.01
MAP score 793 £2.77 17.83 + 4.39 <0.01 7.33 £2.18 20.80 + 3.68 <0.01
Maximum tumor diameter 117.25 + 38.89 141.62 + 37.31 0.01 119.19 + 38.81 14191 +23.24 0.10
Arterial pulsatility index 0.31 +£0.14 0.31 £0.12 0.96 032 +0.14 0.35 £0.21 0.63
Resistance index 0.26 + 0.09 0.28 + 0.09 0.38 0.27 £ 0.10 028 +£0.13 0.79
End diastolic flow rate 17.09 + 2.50 16.96 + 2.09 0.83 16.67 + 1.88 16.63 £ 2.77 0.97
Peak flow rate 23.07 £ 2.30 23.18 £2.02 0.89 2291 +197 23.24 £2.14 0.67
Average flow rate 19.51 £2.22 19.94 £ 1.60 0.40 19.72 + 1.89 19.48 £ 1.78 0.74
Parity 0.24 0.92
1 4(7.27) 0 3 (1250) 1 (10.00)
2 38 (69.09) 21 (91.30) 17 (70.83) 7 (70.00)
i} 7 (12.73) 2 (8.70) 3 (12.50) 1 (10.00)
4 5(9.09) 0 1(4.17) 1 (10.00)
5 1(1.82) 0 0 0
ASA score 0.14 0.32
1 8 (14.55) 5 (21.74) 8 (33.33) 1 (10.00)
2 16 (29.09) 1(4.35) 3 (12.50) 2 (20.00)
3 10 (18.18) 8 (34.78) 3 (12.50) 2 (20.00)
4 11 (20.00) 5(21.74) 8(33.33) 2 (20.00)
I 5; 10 (18.18) 4 (17.39) 2(8.33) 3 (30.00)
Ascites 0.59 0.13
0 22 (40.00) 3 (13.04) 9 (37.50) 4 (40.00)
1 19 (34.55) 4(17.39) 8(33.33) 3 (30.00)
B 14 (2545) 16 (69.57) 7 (29.17) 3 (30.00)
Hydrothorax 0.01 0.98
0 23 (41.82) 7 (30.43) 4 (16.67) 5 (50.00)
1 16 (29.09) 9 (39.13) 9 (37.50) 2 (20.00)
2 16 (29.09) 7 (30.43) 11 (45.83) 3 (30.00)

A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; Cls, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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OR OR 95% CI 2 OR OR 95% CI P
Age 1.02 1.01-1.03 0.001 1.01 1.00-1.02 0.030
BMI 1.00 0.98-1.04 0.609
NLR 1.01 0.97-1.06 0.639
Perioperative platelet 1.00 1.00-1.00 0.450
Perioperative albumin 0.99 0.97-1.00 0.145
CA125 1.00 1.00-1.00 0.000 1.00 1.00-1.00 0.002
HE-4 0.89 0.85-0.93 0.365
MAP score 0.95 0.94-0.96 0210
Maximum tumor diameter 1 1.00 i 1.00-1.00 0.013 | 1.00 1 1.00-1.00 I 0.031
Arterial pulsatility index 0.98 0.51-1.90 0.959
Resistance index 1.65 0.65-4.24 0.376
End diastolic flow rate 0.96 0.96-1.03 0.830
Peak flow rate 1.00 0.97-1.05 0.837
Average flow rate 1.02 0.98-1.07 0.397
Parity 0.92 0.81-1.04 0.244
ASA score 1.01 0.95-1.08 0.757
Ascites 124 1.12-1.36 0.000 117 1.08-1.28 0.003
Hydrothorax 1.65 0.65-4.24 0.376

A p value < 0.05 was considered statistically significant.
ORs, Odds ratios; Cls, Confidence intervals; BMI, Body mass index; NLR, Neutrophil-to-lymphocyte ratio; CA125, Cancer antigen-125; HE-4, Human epididymis protein 4; MAP score,
metastases in abdomen and pelvis score; ASA score, American Society of Anesthesiology score.
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AUG, Area under the curve; ACC, Accuracy; Sen, Sensitivity; Spe, Specificity; PPV, Positive predictive value; NPV, Negative predictive value; F1, F1-Score.
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