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Cascaded multiplier-free
implementation of adaptive
anti-jamming filter based on
GNSS receiver

Jie Song1,2†, Lei Chen1,2†, Zukun Lu1,2*, Baiyu Li3, Zhe Liu1,2*,
Zhihao Xue1,2, Guangfu Sun1,2 and Wenhong Liu3

1College of Electronic Science and Technology, National University of Defense Technology, Changsha,
China, 2Key Laboratory of Satellite Navigation Technology, Changsha, China, 3Scientific Research Office,
National University of Defense Technology, Changsha, China

Evaluating the computational complexity is critical for assessing the time-
domain anti-jamming performance of GNSS receivers. The multiplier is the
core component that contributes to the computational complexity in time-
domain anti-jamming. However, current algorithms aimed at reducing the
complexity of time-domain anti-jamming typically concentrate on shortening
the filter length, which fails to address the high computational complexity
introduced by the use of multipliers. This paper introduces a cascaded
multiplier-free approach for implementing time-domain anti-jamming in
navigation receivers. We propose a numerical power decomposition
technique based on optimal Canonical Signed Digit coding and coefficient
decomposition. By substituting the multiplier with minimal adder and shift
operations, the computational complexity of the anti-jamming filter with a
high quantization bit-width can be considerably decreased. An optimization
strategy is presented, and the low-complexity multiplier-free technique is
applied to the time-domain anti-jamming filter. Compared to the traditional
Canonical Signed Digit multiplier-free technique, our method can reduce the
components required for a 12-bit quantization anti-interference filter by one
adder, 20 shift operations, and five coded word lengths, while maintaining a
pseudo-range measurement deviation below 0.27 ns.

KEYWORDS

GNSS receiver, time domain anti-interference, optimal CSD coding, numerical power
decomposition, cascaded multiplier-free implementation

1 Introduction

The Global Navigation Satellite System (GNSS) offers precise spatial and
temporal reference data, including three-dimensional positioning, velocity, and
timing [1]. Due to the substantial distance between the satellites and the ground,
and the limited satellite resources, the navigation signal is susceptible to being
overwhelmed by jamming [2]. As various electronic systems have advanced,
competition for electromagnetic frequency bands has become intense, leading to
severe jamming [3]. Ensuring anti-jamming capabilities for GNSS receivers is crucial
to navigate through complex electromagnetic and electronic warfare environments,
ensuring the accuracy of positioning, navigation, and timing for navigational
terminals [4].
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Given the spectrum overlap, mutual interference occurs between
satellite navigation, radar, and 5G systems [5]. The low cost of time-
domain anti-jamming makes it a prevalent solution for fixed-band
narrowband jamming suppression, and is crucial for assessing GNSS
receiver performance. Researchers are developing cost-effective
navigation receivers to keep pace with the evolving GNSS
systems and the development of new features. Chien [6] presents
a cost-effective cascaded IIR adaptive notch filter for interference
suppression that significantly reduces complex computations
resulting from Fourier Transforms (FFT), inverse FFT, or wavelet
transformations. Ren et al. [7] proposes a subspace projection
algorithm with a brief projection length for continuous wave and
linear frequency-sweep interference, thereby reducing
computational complexity. Wang et al. [8] introduces an adaptive
narrowband interference (NBI) suppression technique utilizing
coded-aid technology that obviates the need for FFT or matrix
inversion. Additionally, variable tap-length LMS and sparse
algorithms have seen extensive development [9–11]. Nonetheless,
the multiplier continues to impact complexity. The multiplier is a
pivotal component of DSP calculations within the navigation
receiver [12]. Its complexity scales quadratically with the
quantization bit width, thus necessitating considerable
computational resources. Because multiplication operations
influence the jamming suppression performance in hardware, a
multiplier-less implementation has been adopted to reduce costs
and accelerate convergence [13, 14].

Multiplier-less implementation replaces multipliers with other
operations, such as the read-only memory (ROM) lookup table,
distributed arithmetic (DA) algorithm, binary complement,
Coordinate Rotation Digital Computer (CORDIC), multiple
constant multiplication (MCM), and canonic signed digit (CSD)
coding [15–17]. CSD coding components the filter coefficient as the
sum or difference of the power of 2, replacing the multiplier by shift
operation and adder [18]. The coefficient decomposition
decomposes the coefficient into the product of several numbers
by the lookup table, reducing the adder number by cascading.
Methods can be used in conjunction to reduce the adder
number and sampling bit width. There have been optimization
studies on the implementation methods of various filters without
multipliers [19–21].

However, the above multiplier-less implementation methods
are limited in the practical GNSS receiver applications, which are
usually used in fixed-coefficient filters. The anti-jamming filter
coefficient of GNSS receivers is usually considerable, while the
existing multiplication-less implementation scheme is limited by
the quantization bit width, resulting in significant quantization
errors. The anti-jamming filter multiplication-less implementation
method should be further optimized to minimal adders and shift
operations with easy implementation.

Building on previous work, this paper proposes a cascaded
multiplier-free implementation method for GNSS receiver time-
domain anti-jamming filters. This method is applied to the static
time-domain anti-jamming of satellite navigation receivers,
optimizing the design of high-gain filter coefficients without
multipliers. It reduces the number of adders, shift operations,
and the coding word length of filter coefficients, thereby
decreasing the computational complexity of the anti-
jamming filters.

2 System model

2.1 GNSS receiver model

The GNSS system consists of the space segment, ground segment,
and user segment. Figure 1 illustrates the GNSS receiver structure. The
user terminals process the received radio frequency (RF) signals in RF
front-end (RFFE). The baseband digital signal processing (DSP)
suppresses the unexpected interference after the digital down
conversion (DDC), and applies the multiplier-free anti-jamming
filter based on the LMS adaptive algorithm. After the anti-jamming
data is captured and tracked, it finally enters terminal’s back-end (BE)
for realizing positioning, navigation and timing (PNT) functions [22].

Satellite navigation signals include the carrier, pseudo-random
(PRN) code, and message data. The satellite navigation signal can be
expressed by the carrier modulated with the spread spectrum signal
of PRN code and data in Eq. 1:

s t( ) � ∑ ���
2Pt

√
x t( )D t( )( ) sin 2πft + θ( ) (1)

where, Pt is the average power of navigation signal, x(t) is the PRN
code level, D(t) is the satellite broadcast message data, f is the
central frequency of RF signal, θ is the initial phase of the carrier.

Suppose that the receiver thermal noise is u[n], the interference
signal is j[n], such as continuous wave interference or narrowband
Gaussian noise interference. Continuous wave interference (CWI)
aims at the central frequency of satellite navigation signals by the
continuous high-power single-frequency signal [23]. Narrowband
interference (NBI) is generated by band-limited Gaussian white
noise [24]. The CWI and NBI can be expressed as Eqs 2, 3
respectively:

JCWI �
���
2PJ

√
cos 2πfJt + φ0( ) (2)

JNBI � AnG t( ) p Sa t( ) (3)
where, PJ is the interference power, fJ is the interference frequency,
φ0 is the initial phase, An is the narrowband interference amplitude,
G(t) is the Gaussian white noise, G(t) is convoluted with the finite
band-pass gate function Sa(t) to generate narrowband interference.

The resultant input signal before the anti-jamming module can
be expressed in Eq. 4 [25]:

x n[ ] � s n[ ] + j n[ ] + u n[ ] (4)

2.2 Multiplier-free time-domain adaptive
anti-jamming model

The time-domain anti-jamming algorithm utilizes the adaptive
filter to suppress interference. The iterated filter coefficients should
be implemented to be multiplier-free and then assigned to the
weight storage module. Figure 2 illustrates the flow chart of the
multiplier-free time-domain adaptive anti-jamming algorithm.

Suppose that the input vector of the N-long filter at time n is as
Eq. 5:

x � x n( ), x n − 1( ),/, x n −N + 1( )[ ]T (5)

Suppose the filter quantization bit width is L. The filter weight
vector is as Eq. 6:
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W � fix Norm ω1,ω2, ...,ωN[ ] · 2L[ ] � w1, w2, ..., wN[ ] (6)
where, fix[·] is the rounding function to round off the input signal,
Norm[·] is the normalized function.

Define the multiplier-free implementation method as Φ[·].
With the iterated coefficients implemented multiplier-free, the
anti-jamming output signal can be expressed as:

y n( ) � x ·W � ∑N
k�1

x n − k + 1( )Φ wk[ ] (7)

The error signal e(n) is defined as the difference between the
anti-jamming output signal y(n) and the desired signal d(n), where
the desired signal is generally considered to be navigational signal, as
shown in Eq. 8:

e n( ) � d n( ) − y n( ) ≈ s n( ) − y n( ) (8)
The iterative formula of LMS algorithm can be expressed as

Eq. 9 [26]:

Wn+1
M � Wn

M + μxp n( )e n( )
� Wn

M + μxp n( ) s n( ) − y n( )[ ] ≈ Wn
M − μxp n( )y n( ) (9)

where [·]p represent the conjugation.

The multiplier-free implementation of GNSS time-domain anti-
jamming is applicable to satellite navigation receivers with limited
hardware resources. For instance, mobile phones require the
development of miniaturization capabilities and maintaining anti-
interference capabilities, and spaceborne receivers’ functionality is
expanded within the constraints of limited resources. Figure 3
depicts a ground-test module of a satellite-borne receiver in its
practical application.

3 Problem formulation

3.1 CSD coding

The signed number is one of the essential non-standard fixed-point
number in computer algorithm implementation, and its digital range is
1, 0{ }. Since it is not unique, the system with the least nonzero elements
is called the regular signed digit system.

The CSD coding expresses the filter coefficients as the sum or
difference of the power of 2, which is realized by shift operation and
adder. The optimal CSD coding can also reduce the adder number
and the maximum encoding lord length [27].

The mathematical expression of the FIR-filter anti-jamming can
be simplified as shown in Eq. 10 [28]:

FIGURE 1
GNSS receiver structure.

FIGURE 2
Anti-jamming flow chart with multiplier-free implementation.
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yi � ∑N−1

i�0
hixi � ∑N−1

i�0
xi ∑M−1

j�0
hi j( )

� ∑N−1

i�0
xi 2M−1hi M − 1( ) + 2M−1hi M − 1( ) +/ + 21hi 1( ) + 20hi 0( )( )

(10)
where, hi represents the i − th weight of the filter, xi is the input data
to the i − th weight, hi(j) � 0, 1,−1 represents the binary
representation of the i − th weight, M is the binary bit length.

CSD coding replaces all 1 sequences greater than 2 with 10...01
from the lowest bit, where 1 represents the negative 1 bit. The best CSD
coding has minor nonzero elements and the least subtraction times.
Starting from the highest significant bit, replace 101 with 011 [29].

Suppose that the word length of the binary complement-on-two
of value ω is Lbin then the Binary expression is as Eq. 11:

Abin � a″Lbin−1a″Lbin−2/a1
″a0

″ (11)
where, ai � 0, 1, i � 0, 1, ..., Lbin − 1

The word length of CSD encoding of value A is LCSD then the
CSD expression is as Eq. 12:

ACSD � a′LCSD−1a′LCSD−2/a1
′a0

′ (12)
where, a′j � −1, 0, 1, j � 0, 1, ..., LCSD − 1. Usually, the relationship
between CSD code word length and binary complement word length
is as shown in Eq. 13:

LCSD � Lbin +1( ) (13)

The binary complement is updated to CSD coding as shown
from Eqs 14–16:

θi � ai ∧ ai−1 (14)
ζ i � �ζ i−1θi (15)

a′j � 1 − 2ai+1( )ζ i (16)

where, [·]∧ is the exclusive OR operation, the initial value can be
expressed as ai−1 � 0, ζ i−1 � 0, an � an−1.

Then optimize the CSD coding that may have storage waste by
Eq. 17:

A � aL−1aL−2/a1a0 (17)
where, ak � −1, 0, 1, k � 0, 1, ..., L − 1. Usually, the relationship
between CSD code word length and binary complement word
length is as shown in Eq. 18:

L � LCSD −1( ) (18)
Its update process can be expressed from Eqs 19–21:

FIGURE 3
Practical application: ground-test module of spaceborne receiver. (A) Ground testing architecture. (B) Hardware development board.

FIGURE 4
Optimal CSD coding schematic.
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ak � ceil
a′j + aj−2′

2
⎛⎝ ⎞⎠ (19)

ak−1 � a′j ⊕ ak (20)
ak−2 � 1 − 2 aj−1′ ⊕ ak−1( )[ ]aj−2′ (21)

where, ⊕ is the logical AND operation.
The number of adders is expressed as Eq. 22:

Sadd � ∑n−1
k�0

ak| | − 1 (22)

The number of shift operations is expressed as Eq. 23:

Sshift � ∑n−1
k�0

k| ak| |�1 (23)

The figure shows the best CSD coding schematic. The value
211 is taken as an example in Figure 4, the multiplier-free design
based on the optimal CSD coding is composed of 5 values of the
power of 2, and the multiplication operation is realized by four
adders and 18 shift operations.

3.2 Numerical power decomposition

Numerical power decomposition is achieved by cascading
several values to reduce the hardware cost of multiplier-less
implementation [30]. For example, the traditional binary
encoding of the value 231 is 11100111bin, the best CSD
encoding is 100101001, and the original multiplier
implementation can be reduced from 5 adders to 3. If 231 is
factorized into the 7 × 33 cascade, the adders’ number can be
reduced to 2. Figure 5 is the example diagram of numerical power
decomposition.

The value ω can be decomposed into the product of Θ values
and realized by cascading [31] as shown in Eq. 24:

ω � Ω1Ω2/ΩΘ (24)
where, Ωp is the p-th power factor, which consists of the addition
and subtraction of the power of 2 as shown in Eq. 25:

Ωp � 2k1 ±/± 2k2 (25)

The numerical value will affect the device cost of the filter. The
total adder number can be expressed as the sum of the number of
adders required for different decomposition factors, as shown from
Eqs 26–28:

Nadd � ∑Θ
p�1

Spadd (26)

Nshift � ∑Θ
p�1

Spshif t (27)

Nbit � max Lp (28)

where, Spadd, S
p
shift, Lp are the number of adders, the number of shift

operations, and the maximum word length required for the optimal
CSD encoding of the decomposition factor Ωp, respectively.

3.3 Motivations and optimization object

Static anti-jamming filters are usually used in power-sensitive
terminals, and computational complexity is one of the most critical
design elements. The effect of CSD optimal coding to reduce
complexity is limited, and the existing numerical power
decomposition is mainly the lookup table method. The accessible
decomposition results are limited, creating difficulties for the
multiplier-less implementation of large values.

Based on the disadvantages of optimal CSD coding and coefficient
decomposition, in order to solve the problem of high gain in the actual
filter coefficients, this paper proposes a cascaded multiplier-less
implementation. The multiplier-less filter is implemented with
minimum adders, reducing the shift operation and memory word
length. The optimization objective is shown in Eq. 29:

minimizeNadd subject to
Nadd ≤ Sadd
Nshift ≤ Sshift
Nbit ≤ L

⎧⎪⎨⎪⎩ (29)

4 Proposed approach

To design a multiplier-less anti-jamming filter, the numerical
power decomposition of the filter coefficients is first performed to
obtain each decomposition factor. The multiplier-less coding of all

FIGURE 5
Numerical power decomposition schematic.
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decomposition factors is designed according to the optimal CSD
coding method. The flowchart is shown in Figure 6.

Firstly, the numerical power decomposition of the filter
coefficient wi is carried out, and four kinds of decomposition
factors are obtained. The decomposition matrix can be expressed
as is shown in Eq. 30:

Ρ � Ρ1 Ρ2 Ρ3 Ρ4[ ] (30)
where, Ρi is the i-th decomposition factor:

Assume that 2j is a zero-order power factorϒj
0, and the first type

of decomposition factor Ρ1 is the divisor ϒj
0 that can divide wi at

most. Divide wi by Ρ1 to get w1
i , as shown in Eqs 31, 32:

P1 � max ϒj
0 mod wi,ϒ

j
0( ) � 0

∣∣∣∣∣( ), j � 1, 2, ..., floor
B

2
( ) (31)

w1
i � wi/P1 (32)

where, mod(·) is the residue function, B is the binary length of wi,
and floor(·) is the down-integer function. The cascade of the first
type of decomposition factor is realized by a j-th forward
shift operation.

Assume that 2l + 1 or 2l − 1 is a one-order power factor ϒj
1, the

second decomposition factor Ρ2 is the divisor ϒ
j
1 that can divide wi′

at most. Divide w1
i by Ρ2 to get w2

i as shown in Eqs 33, 34:

P2 � max ϒj
1 mod w1

i ,ϒ
j
1( ) � 0

∣∣∣∣∣( ), j � 1, 2, ..., floor
B′
2

( ) (33)

w2
i � w1

i /Πϒj
1 (34)

where, B′ is the binary length of w1
i . The second decomposition

factor Ρ2 is realized by an l-bit forward shift operation and an adder.
Assume that 2m + 2n + 1 or 2m + 2n − 1 or 2m − 2n + 1 or 2m −

2n − 1 is the second-order power factorϒj
2, The third decomposition

factor Ρ3 is the divisor ϒ
j
2 that can divide w2

i at most. Devide w2
i by

Ρ3 to get ϒj
2, as shown in Eqs 35, 36:

P3 � max ϒj
2 mod w2

i ,ϒ
j
2( ) � 0

∣∣∣∣∣( ), m, n � 1, 2, ..., floor
B″
2

( )
(35)

w3
i � w2

i /Πϒj
2 (36)

where, B″ is the binary length of w2
i . The third type of

decomposition factor is realized by 1 m displacement bit
operation, 1 n displacement bit operation and 2 adders.

The fourth decomposition factor Ρ4 is the remainder w3
i divided

by the third decomposition factor as shown in Eq. 37:

Ρ4 � w3
i (37)

Define the multiplier-free implementation matrix is a cellular
matrix as Eq. 38:

Θ �
a1,B1
a1,B2
..
.

a1,BM1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a2,B1

a2,B2

..

.

a2,BM2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a3,B1

a3,B2

..

.

a3,BM3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a4,B1

a4,B2

..

.

a4,BM4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (38)

Based on complexity, a better multiplier-free implementation
method is selected. In the decomposition process of any power factor
Pp, it should be ensured that the cumulative number of adders and
the cumulative number of shift operations do not exceed the total
number of CSD codes, as shown in Eqs 39, 40:

∑Λ
p�1

Spadd ≤ Sadd (39)

∑Λ
p�1

Spshift ≤ Sshift (40)

When Eqs 39, 40 is violated in any numerical power
decomposition process, the numerical decomposition should be
stopped. The decomposition process takes the last decomposition
factor as the penultimate factor, and the remainder divided by the
penultimate factor is recorded as the last factor. When the complexity
of the cascaded multiplier-less implementation is higher than that of
the traditional optimal CSD coding, the optimal CSD coding method
is still used to achieve multiplication-free coefficients.

According to Eqs 7, 38, the logic circuit flow of anti-jamming
output signal is derived in Eq. 41:

FIGURE 6
Cascaded multiplier-free implementation method flowchart.
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y n( ) � ∑N
k�1

∏4
i�1

∑Mi

j�1
x n − k + 1( ) · 2Bj (41)

5 Performance analysis

5.1 Algorithm complexity comparison

Table 1 presents the complexity comparison between the proposed
method and the traditional multiplier-free implementation method,
considering the number of adders, shift operations, and maximum
word length. The table displays the number of devices for various values

under both multiplier-free implementation methods, highlighting the
less complex approach. Compared to the traditional optimal CSD
coding, the proposed method significantly reduces complexity in
multiplier-free implementation. The number of adders is reduced by
0 or 1, while the number of shift operations and the maximum word
length are reduced significantly by 13 and 2, respectively.

In order to verify the universal adaptability of the cascaded
multiplier-less algorithm, the application rate and complexity
optimization performance of the new algorithm with 1~1,000 values
is analyzed, respectively. Figure 7A shows the usage proportion of the
proposed method. The total integer value of the coefficient is 1~1,000,
the smoothing point is set to 500, and the percentage of the cascade
multiplier-less implementation is selected for each 400-point data

TABLE 1 Algorithm complexity comparison.

Coefficient Traditional method Proposed method

Adder Shift
operation

Maximum code
length

Decomposition
structure

Adder Shift
operation

Maximum code
length

14 1 5 5 2*7 1 4 4

27 2 7 6 3*9 2 4 4

38 2 8 6 2*19 2 6 5

85 3 12 7 5*17 2 6 5

90 3 14 7 2*3*15 2 6 5

153 3 14 8 9*17 2 7 5

170 3 16 8 2*5*17 2 7 5

231 3 16 9 7*33 2 8 6

372 3 21 9 3*4*31 2 8 6

524 2 14 10 4*131 2 10 8

FIGURE 7
Universal adaptability analysis. (A) Usage proportion of the proposed method. (B) Complexity optimization performance.
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calculation optimization method. The results show that as the
coefficient increases, the optimization effect of the cascaded
multiplier-less implementation method is better. Figure 7B
demonstrates the smoothing result of the device reduction after
using the proposed algorithm. Since the device complexity
optimization results are relatively scattered, 59 is used as the
smoothing unit to smooth the optimization data of adder, shift
operation, and maximum coding word length, respectively. The
results show that the cascade multiplier-free implementation method
significantly reduces the number of the three devices on the graph.
Among them, the number of shift operations decreases the most, and
the maximum reduction reaches 19.

The digital filters with lengths of 31 and 59 are designed by
software. The filter quantization bit width is 12, and the initially
designed filter is quantized. The optimization effect of the proposed

method on the device complexity is verified based on the designed
anti-jamming filter to ensure the effectiveness of the cascaded
multiplier-free method in the GNSS receiver. Figure 8 shows that
the optimal CSD coding method based on cascaded multiplier-free
implementation reduces the multiplier and shift operations
compared with CSD coding. After filter coefficient
decomposition, the number of adders optimized by CSD coding
is reduced by 0–2, and the shift operation is reduced by 0–5.

Figure 9 compares the anti-jamming filter complexity based on
the cascaded multiplier-free implementation and the traditional
method to verify the method availability. The results show that
the adder reduction of the proposed method is greater than
0 compared with the traditional method, and the complexity
reduction of the shift operation and the maximum code length is
more pronounced. When the middle tap coefficient of the 58-order

FIGURE 8
Complexity optimization comparison of different CSD codes based on factor cascade. (A) 30-order filter. (B) 58-order filter.

FIGURE 9
Comparison of device count between the proposed and traditional multiplier-free method. (A) 30-order filter. (B) 58-order filter.
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filter is 1,024, the number of shift operations is reduced by 20, and
the maximum code length is reduced by 5.

Debugging and verification were performed on the test platform
illustrated in Figure 3. By minimizing the number of effective
operations, cascading multiplication-free processing was applied
to the constant multiplier. The anti-jamming module achieved a
52% reduction in its effective circuit area.

5.2 Anti-jamming performance

The carrier-to-noise ratio (CNR) after interference mitigation is
a quantitative assessment metric for evaluating time-domain

interference resistance [32]. It is defined as the ratio of the
carrier power to the power spectral density of the baseband
signal noise. A too low carrier-to-noise ratio can severely affect
the receiver’s ability to correctly capture and track. Carrier-to-noise
ratio loss is the difference between the carrier-to-noise ratio under
no-interference conditions and the carrier-to-noise ratio after
interference mitigation defiened as Eq. 42.

ΔCNR � C/N[ ]0 − C/N[ ]ajm
� 10 lg

Bn · ∫∞
−∞Ss f( )df · ∫∞

−∞Sy f( )df − ∫∞
−∞ H f( )∣∣∣∣ ∣∣∣∣2Ss f( )df( )

∫∞
−∞Sn f( )df · ∫∞

−∞ H f( )∣∣∣∣ ∣∣∣∣2Ss f( )df
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭
(42)

FIGURE 10
Interference suppression performance. (A) Spectrum diagram before and after anti-jamming. (B) Anti-jamming output CNR.

FIGURE 11
Measurement accuracy analysis. (A) The correlation function of the output and local signals. (B) SCB curve bias.
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Where, Ss(f), Sn(f) and Sy(f) are the power spectral densities of
navigation signal, noise signal and anti-interference signal
respectively, H(f) is the filter frequency response, and Bn is the
noise bandwidth.

A static filter with the navigation signal frequency as the
stopband center frequency is designed, and the filter quantization
bit width is set to 12. The carrier-to-noise ratio (CNR) of the
BD3 signal is set to 50 dB·Hz, the interference bandwidth is
2MHz, the jamming-to-signal ratio (JSR) is 40dB, and the
sampling rate of the software receiver is 25 MHz. The
narrowband interference suppression performance based on
the BD3 signal is shown in Figure 10. Figure 10A shows the
spectrum before and after anti-jamming. The results show that
the cascaded multiplier-free method can achieve anti-
interference. The adaptive filter forms a null at least 30 dB in
the interference frequency band. Figure 10B shows the navigation
signal CNR after suppressing interference. The maximum CNR
loss is less than 2 dB·Hz.

Figure 11 analyzes the ranging accuracy of the cascaded
multiplication-free anti-interference method. Figure 11A displays
the correlation function between the anti-interference output and
the local signals. By observing the 10 chips surrounding the
correlation peak, the correlation function of the output signal
remains symmetric with the local signal, and the correlation peak
position shows no obvious distortion. Figure 11B measures the
symmetry of the correlation peak by the SCB curve bias and
quantitatively analyzes the ranging deviation of the receiver [30].
Control the convergence step to reduce the influence of the time-
varying filter on the ranging accuracy. Under a 31-order anti-
interference filter, the pseudo-range measurement deviation is
kept within 0.27 ns, which can ensure the ranging accuracy.

6 Conclusion

This paper introduces a cascaded multiplier-free implementation
method and enhances the corresponding implementation scheme.
This method is applied to the static time domain anti-jamming of
GNSS receivers by replacing multipliers with a minimal number of
adders and shift operations, utilizing optimal CSD coding and
numerical power decomposition. Simulation results demonstrate
that interference occupying 20% of the navigation signal
bandwidth can be effectively suppressed, optimizing the anti-
jamming filter structure. The number of adders, shift operations,
and maximum code length are significantly reduced, with the
maximum number of shift operations decreased by 20. The
pseudo-range measurement accuracy has been verified to be within
0.27 ns, ensuring adequate ranging performance.
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Development status and
challenges of anti-spoofing
technology of GNSS/INS
integrated navigation
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The threat of spoofing interference has posed a severe challenge to the security
application of Global Navigation Satellite System (GNSS). It is particularly urgent and
critical to carry out in-depth defense research on spoofing interference. When
combined with the inertial navigation system (INS), the GNSS/INS integrated
navigation system offers distinct advantages in the field of anti-spoofing
technology research, which has garnered significant attention in recent years.
To summarize the current research achievements of GNSS/INS integrated
navigation anti-spoofing technology, it is necessary to provide an overview of
the three core technical aspects of spoofing attack principles and implementation
strategies, spoofing detection, and spoofing mitigation. First, the principles and
implementation strategies of spoofing interference attacks are introduced, and
different classifications of spoofing interference attacks are given. Then, the
performance characteristics and technical points of different spoofing detection
and spoofing mitigation methods are compared and analyzed, and the
shortcomings and challenges in the current development of GNSS/INS anti-
spoofing technology are pointed out. Finally, based on the summary and
shortcomings of the existing technology, a prospect for the future development
of GNSS/INS integrated navigation anti-spoofing technology is discussed.

KEYWORDS

anti-spoofing, GNSS/INS integrated navigation, spoofing interference, spoofing
detection, spoofing mitigation

1 Introduction

With the continuous development of the Global Navigation Satellite System (GNSS),
more and more military weapons equipment, critical civil facilities, location forensic
application and life safety services rely on the high-precision location, velocity and time
information provided by GNSS [1–4]. However, due to the weak landing level and open civil
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signal structure, satellite signals are vulnerable to intentional and
unintentional electromagnetic interference during transmission,
which makes it a severe challenge to the application of GNSS [5].
Compared with unintentional interference, intentional interference
causes more harm to GNSS and mainly includes suppression
jamming and spoofing interference [6]. Suppression jamming
suppresses the GNSS navigation and positioning services by
transmitting high-power noise to cover the satellite signal. There
are already many mature anti-jamming technologies [7]. Different
from suppression jamming, spoofing interference involves
transmitting false satellite signals to target users, leading them to
receive inaccurate navigation information. Notably, in December
2011, the Iranian military exploited falsified the Global Positioning
System (GPS) signals in a UAV navigation system and successfully
trapped a United States stealth reconnaissance drone RQ-170 [8].
Furthermore, between 22 and 24 June 2017, over 20 ships in the
Black Sea fell victim to extensive deceptive jamming attacks [9]. The
escalation of GPS jamming/spoofing incidents in the Israeli-
Palestinian conflict of 2023 underscores the rising trend of such
attacks, with spoofing assaults on satellite navigation systems now
emblematic of modern warfare. Consequently, research into anti-
spoofing technologies for satellite navigation assumes paramount
importance in fortifying the security and dependability of GNSS.

Since the 1990s, with the establishment and deployment of GPS,
international scholars have initiated research into electronic
protection and anti-jamming techniques [10]. Following a
comprehensive assessment by the United States Department of
Transportation in 2001 [11], which highlighted the vulnerabilities
and risks associated with GPS and identified the looming threat of
spoofing attacks in satellite navigation, the pursuit of GNSS anti-
spoofing technologies gained momentum. Subsequently, scholars
have introduced a range of innovative anti-spoofing solutions,
encompassing spoofing detection and spoofing mitigation
techniques. These anti-spoofing methodologies can be categorized
based on distinct technical principles:

• Anti-spoofing methodologies reliant on navigation signal
attributes, such as signal power [12], carrier-to-noise ratio
[13], direction of arrival [14], and Doppler frequency [15].
While conceptually straightforward and independent of
auxiliary data, these approaches may struggle to counter
sophisticated spoofing tactics effectively.

• Anti-spoofing methodologies grounded in signal encryption
and authentication mechanisms. This category includes
spread spectrum code authentication [16, 17], navigation
data authentication [18, 19], and combined authentication
techniques [20]. However, implementing encryption-based
anti-spoofing measures necessitates modifications to satellite
signals or navigation messages, which is a challenge in
practical application.

• Anti-spoofing methodologies leveraging auxiliary information
[21]. Autonomous navigation systems like inertial navigation
and visual navigation remain impervious to spoofing attacks,
allowing for integration with GNSS to thwart spoofing
attempts through the redundancy of auxiliary navigation data.

In recent years, scholars have focused extensively on the research
and development of anti-spoofing technology based on GNSS/INS

integrated Navigation System, supported by the Inertial Navigation
System (INS). This heightened interest can be attributed to several
key advantages of this approach compared to other technologies:

• The seamless integration of INS and GNSS results in a highly
complementary system, significantly enhancing navigation
accuracy. As evidenced by the widespread adoption of
GNSS/INS integrated navigation systems, these systems are
capable of operating with local resources, ensuring operational
flexibility.

• INS brings information redundancy. The redundancy
provided by INS augments GNSS in Receiver autonomous
integrity monitoring (RAIM), while also facilitating
compatibility with other detection technologies.

• INS can serve as an independent navigation system that
operates autonomously, offering rapid and precise
positioning without reliance on external information. In the
event of GNSS failure, it can transition to pure INS mode,
thereby demonstrating inherent resilience against
interference.

• The residual data constructed for the relevant variables of the
information fusion algorithm of the integrated navigation
system is relatively diversified, which can be
comprehensively utilized to improve the detection probability.

To leverage the anti-spoofing benefits offered by the GNSS/INS
integrated navigation system and enhance its resilience against
jamming attacks, this paper summarizes GNSS spoofing attacks
and anti-spoofing measures. The remaining organization of this
paper is as follows: in Section 2, the principal of spoofing attacks is
introduced and the spoofing scenario of GNSS is analyzed; in Section
3, anti-spoofing technologies based on GNSS/INS integrated
navigation system is described via two types of methods–spoofing
detection and spoofing mitigation—and then the development
status is introduced and analyzed respectively; in Section 4, the
challenges and prospects of anti-spoofing based on GNSS/INS
integrated navigation system are summarized. Finally, Section 5
summarizes the above discussion.

2 Spoofing scenario analysis

Spoofing and anti-spoofing are in a adversarial relationship. A
profound comprehension of spoofing is pivotal for effective research
in anti-spoofing measures. With the aim to better study anti-
spoofing technologies in integrated navigation, it is necessary to
elucidate the basic principles, implementation strategies, and
classification of deception interference based on available literature.

2.1 Spoofing modeling

The fundamental principle underlying spoofing involves the
transmission of a deceptive signal by the spoofer, characterized by a
slightly amplified power level compared to the authentic navigation
signal, directed towards the targeted receiver. This act disrupts the
receiver’s ability to accurately capture and track the authentic
satellite signal, leading it to erroneously lock onto the false
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satellite signal instead. Therefore, the spoofer must accurately
replicate the carrier, PRN/spread spectrum, data code, and
Doppler range of the real navigation signal. The conventional
satellite navigation signal as perceived by the receiver can be
represented by the expression Equation 1:

y t( ) � Re ∑N
i�1

AiDi t − τ i t( )( )Ci t − τi t( )( )ej ωc−ωd( ) t−τi t( )( )+θi[ ]⎧⎨⎩ ⎫⎬⎭
(1)

where N is the number of visible satellites, the subscript i
indicates the i-th satellite, A is the carrier amplitude of the
satellite signal, D is the data code, C is the spread spectrum
code, τ(t) is the code phase, ωc is the carrier frequency, ωd is the
Doppler frequency, θ is the initial carrier phase. Therefore, a set
of spoofing signals sent by the spoofer should be similar to the
form shown in Equation 2:

ys t( ) � Re ∑Ns

i�1
AsiD̂i t − τsi t( )( )Ci t − τsi t( )( )ej ωc−ωsi( ) t−τsi t( )( )−θsi[ ]⎧⎨⎩ ⎫⎬⎭

(2)
where Ns indicates the number of spoofing signals, Asi, τsi, ωsi and
θsi respectively correspond to the amplitude, code phase, Doppler
frequency and initial carrier phase of the spoofing signal; D̂i(t)
represents the best estimate of the spoofed data code Di. The carrier
phase of the spoofing signal is determined by the initial phase and
the Doppler frequency. Typically, to circumvent the autonomous
integrity monitoring capabilities of the receiver, the spoofer would
generate a number of spoofing signals equivalent to the quantity of
authentic signals transmitted by the visible satellite. Under the attack
of spoofing interference, the target receiver will receive both
authentic navigation signal and spoofing signal, which can be
expressed as Equation 3:

ytot t( ) � y t( ) + ys t( ) + n t( ) (3)
where, n(t) denotes noise. The noise may also be affected by
spoofing attacks. Thus, a simple model of a spoofing attacks is
shown in Figure 1.

The analysis above is based on the level of satellite navigation
signals. When spoofing attack is directed towards the target receiver,

its effects are most readily discernible at the information layer.
Specifically, the influence on the pseudo-range information layer
can be effectively modeled with Equation 4. Suppose that the
true pseudo-range measurement model of the i-th satellite at
time t is:

ρ i( ) t( ) � cτ i( ) + c t + δtu( ) − t − δt i( )( )( ) � c τ i( ) + δtu + δt i( )( ) (4)
where ρ(i) is the true pseudo-range, c is the speed of light, τ(i) is the
signal propagation delay, δtu and δt(i) is the receiver clock error
and satellite clock error. Supposing Δτ(i) represents the additional
signal delay imposed by the spoofer at the target receiver, the
formulation for the spoofed pseudo-range can be articulated by
Equation 5:

ρ i( )
s � ρ i( ) + Δρ � ρ i( ) + cΔτ i( )

s (5)
where Δρ is the additional pseudo-range. Supposing that the
spoofing signal can be expressed as an M-order polynomial of
(t − tLock ) after being captured and tracked, the following
expression is given:

Δτ i( )
s � ∑M

n�1
an t − tLock( )n + b, t≥ tLock

0, t< tLock

⎧⎪⎪⎨⎪⎪⎩ (6)

where tLock is the moment when the spoofing signal is captured and
tracked, an is the polynomial coefficient, b is the polynomial
intercept. Generally, the polynomial order M is usually 1. Thus,
based on Equation 6, the spoofing attack model at the measurement
level can be derived as Equation 7.

Δρ � cΔτ i( )
s � c a t − tLock( ) + b[ ], t≥ tLock

0, t< tLock
{ (7)

Here, when a � 0 and b ≠ 0, it is step spoofing. When a ≠ 0 and
b � 0, it is slowly varying spoofing.

2.2 Spoofing attack classification

There are two methods for spoofer to generate spoofing signals
in the form of Equation 2, namely generative spoofing attack
methods and forwarding spoofing attack methods [22, 23]. These
two methods are discussed in detail below.

2.2.1 Generative spoofing attack
Generative spoofing attack device directly generates spoofing

signals on the premise of known signal pseudo-code and navigation
message parameters. Consequently, in the context of Generative
spoofing attack, the spoofer can generate deceptive signals
independently of the GNSS system. Besides, it is possible for a
spoofer to allow for flexible adjustment of various parameters
according to their own requirements. However, the
implementation of this method entails relatively high costs and
complexity. Generative spoofing attacks pose a significant threat to
civilian receivers lacking anti-spoofing capabilities. Conversely, for
military signals with undisclosed signal structures, the feasibility of
generative spoofing attack is limited, thereby restricting its
application scope. The general model generative spoofing attack
is illustrated in Figure 2.

FIGURE 1
Spoofing attack model. The fake satellites are imaginary. The
spoofed signals ys emitted by the spoofing source and the real satellite
signals y are simultaneously received by the target receiver.
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2.2.2 Forwarding spoofing attack
In response to the inability of generative spoofing attack to tackle

encrypted navigation signals like military codes, forwarding spoofing
attack has emerged. Forwarding spoofing attack involves the deceptive
jamming source receiving genuine satellite navigation signals through
its own antenna and then, after appropriate delay and power
amplification, transmitting them to the target receiver to achieve
the spoofing effect. Therefore, a prominent feature of forwarding
spoofing attack is that the time delay of the spoofing signal reaching
the target receiver must be greater than that of the authentic signal.
Obviously, this kind of spoofer do not needs to parse navigation
signals but only requires power amplification and time delay.
Consequently, compared to generative spoofer, forwarding spoofer
has a simpler construction, mainly comprising receiving antennas,
amplifiers, and transmitting antennas.

According to the different methods of receiving and processing
satellite signals, forwarding spoofing attacks can be divided into two
types as shown in Figure 3. The first type spoofer involves a single
antenna, which is used to receive all available genuine satellite
navigation signals within the area. These signals are then
uniformly delayed and power-amplified before being retransmitted
using a transmitting antenna. While the second type spoofer involves
multi-antenna array, which utilizes lots of high-gain narrow-beam
array antennas, with each receiving antenna corresponding to a
specific satellite signal within the area. Different delays are applied
to the various satellite signals before retransmission. Obviously, the
first type of forwarding spoofing attack, due to the uniform delay, is
more easily detectable by the receiver. The second type offers higher
concealment and can deceive the receiver to a designated location, but
it presents greater practical operational difficulty.

To sum up, the classification characteristics of spoofing attack
based on signal generation mode are summarized in Table 1.

2.3 Spoofing attack implementation policy

In the spoofing process, once the spoofing source successfully
generates spoofing signals, it encounters the challenge of subtly

injecting these signals into the tracking loop of the target receiver
without detection.

Two strategies are employed to address the challenge:
synchronous spoofing and asynchronous spoofing. Synchronous
spoofing involves generating false signals that align with the real
signal in terms of code phase and Doppler shift. Initially, the power
of the spoofing signal is kept low to evade detection before entering
the tracking loop. Subsequently, the power gradually increases upon
entering the loop, prompting the receiver to lock onto the spoofing
signal. The desired spoofing effect is achieved by adjusting the code
phase and carrier phase. This strategy facilitates incremental
spoofing and is depicted in Figure 4. Synchronous spoofing offers
high concealment but presents technical complexities.

On the other hand, asynchronous spoofing disrupts the target
receiver by employing high-power interference to cause it to lose
lock. Subsequently, spoofing signals are transmitted to allow the
target receiver to capture them during reacquisition. Unlike
synchronous spoofing, asynchronous spoofing does not require
the interference source to generate false signals mirroring the real

FIGURE 2
The schematic of generative spoofing attack. Generative
spoofing sources do not need to receive real satellite signals and can
directly generate spoofed signals based on known signal structures.

FIGURE 3
The diagram of forwarding spoofing attack, which is drawn with
reference to the literature [65]. (A) The forwarding spoofing based on
single antenna. (B) The forwarding spoofing based on multi-
antenna array.

Frontiers in Physics frontiersin.org04

Wang et al. 10.3389/fphy.2024.1425084

18

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1425084


signal in code phase and Doppler shift. While asynchronous
spoofing incurs lower technical costs, it lacks effective
concealment compared to synchronous spoofing.

3 Development status

From the perspective of the published literature, research on
anti-spoofing technology for GNSS/INS-based integrated navigation
systems primarily focuses on two key areas: spoofing detection and
spoofingmitigation. Spoofing detection aims to identify the presence
of spoofing interference, while spoofingmitigation works to mitigate
or eliminate the impact of spoofing interference. According to the
difference of processing layers, spoofing detection technology for
satellite navigation systems can be categorized into signal layer-
based and information layer-based approaches. Currently, the
predominant focus in the research area is on enhancing GNSS
resilience against spoofing at the information layer by leveraging
auxiliary data provided by the INS. There is comparatively less
emphasis on research related to anti-spoofing efforts at the
signal layer.

3.1 Spoofing detection based on the
integrated navigation

Spoofing detection is to determine whether there is a spoofing
signal in the signal from the receiver. In addition to realizing the goal
of detecting the spoofed signal, spoofing detection also hopes to
achieve high detection accuracy and short detection time through
algorithm design and setting the appropriate test statistics, with the
purpose of reducing the effect of spoofed signals on the navigation

system during the detection process. Based on existing literature, the
spoofing detection algorithms based on the combined GNSS/INS
navigation system can be further categorized according to the
different test statistics: detection algorithms based on the
measured values, detection algorithms based on the filtered
innovation, and other spoofing detection algorithms.

3.1.1 Detection algorithms based on the
measured values

The systemmeasurement value refers to the direct measurement
information resolved by the integrated navigation system and its
subsystems such as position, velocity, acceleration, attitude, etc.
Residual consistency detection method, which detect spoofing by
utilizing the high positioning accuracy in a short period of time and
independent characteristics of INS, is a typical example of this type
of algorithm, e.g., position/velocity based residual consistency
detection. The detection domain of literature [24] is position, and
literature [25] investigates vehicle speed based spoofing detection.
Figure 5 is the flow of the position/velocity consistency detection
algorithm referring to [26].

In addition, literature [27] describes a method for detecting
GNSS spoofing signals using accelerometers. The method performs
spoofing detection by comparing the acceleration estimated from
the GNSS output with the acceleration output from the INS
accelerometer. Literature [28] improves the detection
performance by using both the residual acceleration and the
north (or east) accelerometer error component as decision
variables. Literature [29] detects the spoofing using pseudo-range
rate, through comparing the constructed pseudo-range rate from
INS and the pseudo-range rate solved by GNSS. Different from the
pseudo-range detection, the pseudo-range rate detection is more
sensitive to the slowly varying spoofing interference. For scenarios of
spoofed attacks on selected satellites, literature [30] takes advantage
of GNSS/INS tightly coupled integration that its navigation solving
is possible even with only one visible satellite for spoofing detection.
The traversal method is adopted to solve all visible satellites one by
one, and then the results are compared with the receiver clock
difference/clock drift equivalent distance deviation to detect
spoofing. By this method, the influence of spoofed stars can be
eliminated to ensure the positioning accuracy of the combination
navigation system.

In the case of airborne vehicles, attitude can also play a role in
spoofing detection. [31] conducted experimental tests using UAV
platforms and discovered that spoofing attacks significantly impact
pitch and roll angles, while minimally affecting heading angle.
Additionally, [32] employed carrier phase double-difference
observables for spoofing signal detection and integrated this with
attitude data from the INS to successfully identify and counter
forward spoofing interference.

However, the above-mentioned spoofing detection methods,
focusing on a single dimension, may only address specific

TABLE 1 The summary for forwarding spoofing and generative spoofing.

Spoofing types Advantages Shortcomings

Generative spoofing attack Highly covert; Freely adjustable Difficult and costly to realize; Invalid for encrypted signals

Forwarding spoofing attack Easy to realize; Not restricted by encryption Single spoofing effect; Single target for implementation

FIGURE 4
The schematic diagram of Synchronous spoofing
implementation process.The spoofer captures each receiver channel
by aligning the spoofed signal with the true signal from each visible
satellite. It starts with low power and then gradually increases the
power until it captures the receiver’s tracking loop. Finally the receiver
is slowly lured to a false localization result.
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spoofing interferences and are susceptible to failure when attackers
alter their tactics. By expanding the dimensionality of comparison
information, these limitations can be overcome while enhancing
detection performance. For instance, [33] employed a short-term
pure inertial error propagation model to utilize position and velocity
data from inertial guidance for predicting and estimating the guard’s
pseudo-range and pseudo-range rate. They integrated actual system
measurements to create pseudo-range and pseudo-range rate time
series and conducted spoofing detection by parameter fitting of these
time series. In another study referenced as [34], the impact of
spoofing attacks on the navigation receiver’s time was leveraged,
incorporating a consistent spoofing detection model in the time
dimension alongside the position dimension.

Taken together, this type of detection algorithm is simple in
principle and the test statistics are easy to obtain. However, this type
of detection method is greatly affected by the accuracy of the inertial
device, the higher the IMU accuracy, the better the detection
performance. At the same time, it is affected by the cumulative
effect of the inertial navigation device error. When the spoofing
attacks exist for a longer period, this type of algorithm will no longer
be applicable. Besides it cannot satisfy the detection requirement of
induced slowly varying spoofing interference.

3.1.2 Detection algorithms based on filter
innovation

Filter innovation is defined as the difference between the actual
observed value of a system state variable and the predicted value of
the Kalman filter algorithm, which is the new information added to
the observed value at the current moment. The spoofing attack
directly affect the system measurement information, which in turn
will cause the filter innovation to be affected. Therefore, test
statistic constructed by the statistical characteristics of the
normalized filter innovation can be used for spoofing detection.
[35] analyzed the impact of spoofing attack on the Kalman filtering
process, and the summary of the conclusions can be obtained
as follows:

• the spoofing attack has a direct effect on the innovation of the
current moment, and a cumulative effect on the innovation of
the future moment;

• the spoofing attack has a large effect on the expectation of the
innovation and the error estimation of INS, and has no
significant effect on the filtering error covariance array;

• the innovation is most affected in the initial stage of spoofing
introduction; and

• due to the effect of the feedback correction mechanism of the
filter, the innovation is dynamically adjusted towards the
expectation of zero.

Currently, spoofing detection with filter innovation can be
categorized into snapshot and sequential methods [36]. Snapshot
method is to construct the test statistic only with the current
moment of the innovation, while sequential method is to
construct the test statistic using the innovation sequences and
their covariance matrices within a time window. Typical
snapshot methods include the chi-square test based on
innovation [37, 38], and the multiple solution separation [39].
The chi-square detection method based on innovation is only
effective for step spoofing with large amplitude fluctuations. The
multiple solution separation method can effectively detect slowly
varying spoofing, but not for the full satellite spoofing scenario. One
of the typical sequential methods is Autonomous Integrity
Monitoring Extrapolation (AIME) [40], which utilizes the
sequence of Kalman filtering innovation to construct a test
statistic. Literature [41] states that, compared to the snapshot
method of detection, the extrapolation method is more suitable
for satellite slowly varying spoofing detection. Spoofing offsets of
position and velocity are very small during the filtering period when
facing slowly varying spoofing signal attack, leading to the filter
slowly correcting the output of the inertial navigation with a small
correction amount. This property gives the snapshot method a long
detection time and a high rate of missed alarms [42]. Meanwhile, the
error tracking and closed-loop correction mechanism of Kalman
filter are also the reasons for long detection delay problem of AIME
when detecting slowly varying spoofing [43].

To enhance the detection performance and reduce the
detection delay associated with slowly varying spoofing
detection methods, literature [44] introduced a spoofing
detection algorithm based on adaptive sequential probability
ratio detection (SPRT). Combined with Bayes parameter
estimation theory, SPRT can adaptively adjust the test statistic
by modifying the risk parameter, thereby enhancing both the
detection speed and performance of the algorithm. In addition to
optimizing the innovation sequence algorithm, [45] proposed the
detection algorithm that utilizing the changing rate of innovation
to construct the test statistic. Integration of SPRT with AIME has

FIGURE 5
The flow chart of position or velocity consistency detection algorithm. The consistency detection algorithm achieves spoofing detection by
comparing the solved data from GNSS with the solved data from INS.
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significantly improved the detection efficiency of slowly varying
spoofing detection. Additionally, [46] put forward a spoofing
detection algorithm based on innovation skewness. It is
experimentally demonstrated that the algorithm can improve
the detection delay performance of induced retardation
spoofing attacks by more than 35% compared to the general
continuous method.

Robust estimation is a class of estimation methods that
minimize the influence of observations in the presence of
anomalous observations [47]. Therefore, robust estimation can
not only be used to solve the problem of residual influence of
fake calendar elements in the past for deception suppression, but
also can solve the problem of error tracking and closed-loop
correction feedback mechanism to improve the performance of
spoofing detection algorithms. The spoofing detection algorithm
based on robust estimation are designed to attenuate the effect of
spoofing interference by selecting a suitable equivalent weight
function to compute the weights [48–52]. The model of the
detection method is shown in Figure 6, where v refers to the
innovation sequence, T is the test statistic and w denotes weight
vector. Based on the robust estimation and detection window, [49]
proposed an improved detection algorithm. To improve the
detection performance and navigation accuracy, the algorithm
calculated the weight factors by two suitable thresholds and
could adaptively adjust the gain matrix to reduce the weight of
the spoofed satellite measurements. [50] proposed a GNSS/INS
tightly combined innovation optimized robust estimation
spoofing detection algorithm, which further improved the
detection efficiency and detection performance of induced
retardation spoofing interference.

For the problem of high false alarm rate of the traditional
innovation detection algorithms after the deception disappears,

[53] established a mode adjustment criterion based on GNSS/INS
tightly coupled system. Its core idea was employing sliding window
detection to downgrade the innovation when the measurement
value may be anomalous while other time remaining unchanged.
By switching between the two modes, the computational burden of
past observations and the detection delay were shortened. When
subjected to intermittent spoofing attacks, the improved algorithm
had higher detection sensitivity and could recover immediately after
the spoofing disappeared. In addition, the response speed to the next
spoofing attack was faster.

In order to avoid the effects of closed-loop correction
mechanisms, other scholars have equivalently implemented
closed-loop correction using an open-loop correction structure
with cumulative error valuations [54]. Particularly, [55]
combined the sliding window accumulation of chi-square
detection based on innovation with the open-loop correction
structure for spoofing detection of GNSS/INS tightly coupled
system. Compared with the traditional chi-square detection
method, this algorithm reduced the detection time for trap
spoofing interference by 25% and improved the detection
sensitivity for slowly varying spoofing interference.

Overall, the use of spoofing detection methods based on
innovation can effectively identify trap spoofing. However, the
detection time for slowly varying spoofing attacks may be
prolonged due to error tracking and the negative feedback
effect of Kalman filter. In some cases, the combined navigation
system may already have been deceived by the spoofing attack
before successful detection, allowing the spoofing to achieve its
intended purpose. Additionally, many detection algorithms for
slowly varying spoofing attacks may struggle to effectively detect
when the deception disappears, potentially leading to harmful
consequences.

FIGURE 6
The flowchart of spoofing detection algorithm based on robust estimation. The algorithm constructs the test statistic T via filter innovation v, which
is used to compare against the judgment thresholds T1 and T2. The corresponding weights w are then adjusted according to the comparison results.
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3.1.3 Other detection algorithms based on
integrated navigation

With the rapid development of artificial intelligence (AI) in
recent years, many scholars explore the use of neural networks for
deception detection problems. The Probabilistic Neural Network
(PNN), whose model structure is shown in Figure 7, stands out for
its rapid convergence, high classification accuracy, and effectiveness
in pattern recognition and fault detection [56]. For instance, [57]
developed a PNNmodel for detecting forwarding spoofing, ensuring
real-time detection of such interference. Additionally, researchers
have leveraged innovative approaches such as generative adversarial
networks (GANs) to combat GNSS spoofing by learning and
analyzing spoofed signal features [58]. Furthermore, in literature
[59], spoofing attacks were detected by creating a feature vector that
captures the differences in velocity estimates from GNSS receivers
and IMUs on genuine and spoofed trajectories, followed by training
a neural network for detection. These methods have yielded good
detection results. However, it is evident that AI-based spoofing
detection methods require the collection of data related to
spoofed and real signals in advance, and the detection model is
poorly migratable, which constrains the widespread use of the
algorithms.

In addition to AI-based approaches, some researchers have
tapped into redundant information from alternative navigation
augmentation systems like visual odometry (VO) to assist
spoofing detection [60]. VO can serve as a good supplement to
GNSS positioning. This article first used an optimized coupling
framework to fuse the measurement results of VO and INS, and then
monitored the deviation between the fusion results and GNSS. After
successfully detecting deception, the optimized estimation algorithm
is modified to prevent the system from being affected by deceptive
GNSS data and enable it to continue localization. However, it is
important to note that this detection method may necessitate
adjustments to the hardware system and is typically applicable
only to combined navigation systems that already include
visual odometry.

3.2 Spoofing mitigation based on the
integrated navigation

Anti-spoofing technology not only needs to detect and identify
the spoofing signals, but also needs to mitigate the effects of spoofing
attacks as much as possible after spoofing detection.

Some scholars have proposed borrowing deception suppression
methods from multipath suppression techniques. While the
characteristics of multipath effects and deception attacks share
similarities, there are key distinctions: (1) Signal delay difference:
The multipath signal tends to lag behind the real satellite signals,
while the deception signal may be ahead of the real signals; (2)
Receiver Tracking Loop Impact: Multipath signals distort the
correlation peaks of the tracking loop, affecting tracking
accuracy. In contrast, deception signals can be separated from
the correlation peaks of the spoofed signal using correlation
strategies. This separation can lead the tracking loop to lock onto
the spoofed signal, preventing the estimation of parameters for the
genuine satellite signal by the Multipath Estimation Delay Locked
Loop (MEDLL). Therefore, the spoofing suppression algorithm
needs to control the receiver tracking loop according to the
spoofing signal identification results to ensure that the receiver
always locks on the real satellite signal. To deal with these
distinctions, a spoofing mitigation algorithm must tailor the
control of the receiver tracking loop based on the identified
spoofing signals. This approach ensures that the receiver
consistently locks onto the authentic satellite signal, mitigating
the impact of deception attacks.

The utilization of MEDLL in a GNSS/INS integrated navigation
system, as described in literature [61], represents a typical approach
for spoofing mitigation. By leveraging INS information, this method
can effectively identify and suppress spoofed signals. Furthermore,
literature [62, 63] introduced the multi-correlator structure of
MEDLL for the GNSS/INS integrated navigation system. When
combined with the robust Kalman filtering algorithm, this structure
resulted in an effective anti-spoofing algorithm. The algorithm

FIGURE 7
The model structure of PNN. PNN consists of input layer, sample layer, addition layer and output layer. The core of PNN is the sample layer. The
sampple layer is used to calculate the pattern distance of the samples to be recognized and then the radial basis function is used as the activation function.
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reduced the position error under spoofing attacks from 600 m to
10.0 m [63]. However, it is important to note that while algorithms
based on multipath suppression demonstrate strong spoofing
detection and suppression capabilities, they are reliant on the
presence of genuine satellite signals for their operation. In
scenarios where genuine satellite signals are absent, these
algorithms may not be effective. Therefore, further research and
development may be necessary to address this limitation and
ensure robust anti-spoofing capabilities in all operational
conditions.

It is indeed well-recognized that integrating robust factor into
filtering algorithms can effectively suppress the impact of spoofing
attacks in combined navigation systems. Many contemporary
research efforts focusing on spoofing mitigation algorithms
within combined navigation systems have centered their
improvements on the robust estimation algorithm. For instance,
[64] analyzed the impact of spoofing attacks on GNSS/INS
integration and explored an anti-spoofing method based on
Adaptively Robust Kalman Filter. By this way, they succeeded in
bolstering the system’s anti-spoofing interference capability and
adaptive capacity.

Overall, current research on deception mitigation algorithms
can be categorized into the following three types: a) Utilizing the
MEDLL algorithm to recover genuine positioning results by
distinguishing between authentic and spoofed signals; b)
Incorporating the robust factor into filtering algorithms to
mitigate the impact of spoofing on measurement information; c).
The spoofing mitigation based on the relevant algorithms of AI.
Generally speaking, the research on spoofing suppression algorithms
is relatively small, and spoofing mitigation algorithms based on
integrated navigation need to be studied deeper.

4 Challenges and future
development trends

Anti-spoofing technology based on GNSS/INS integrated
navigation system has become increasingly important for
navigation security. Although some research progress has been
made in this area, there are still many problems and challenges
that need to be further explored and investigated. The following
section will analyze the problems encountered and provide an
outlook on future development trends for the research area.

4.1 Focusing on technical research in
spoofing mitigation

Currently, anti-spoofing techniques for combined navigation
systems mainly focus on spoofing detection and identification. But it
is indeed crucial to not only focus on spoofing detection and
identification but also on spoofing mitigation to enhance the
safety and reliability of integrated navigation systems. By
developing effective spoofing mitigation algorithms, the normal
operation of the navigation system and the maintenance of high
accuracy under spoofing attacks will be ensured. Research that
delves deeper into the characteristics of spoofing signals and their
propagation mechanisms will be essential for the advancement of

anti-spoofing technologies. This will ultimately contribute to the
development of more robust and secure integrated navigation
systems in the future.

4.2 Enhancing resilience to complex and
volatile spoofing techniques

Existing anti-spoofing techniques often can only address a
single type of spoofing attack and lack sufficient resistance to
complex and variable spoofing methods. Therefore, future
research will likely focus on improving the system’s ability to
resist such attacks. With the continuous maturation of AI and
machine learning algorithms, the GNSS/INS combined
navigation system can integrate various anti-spoofing
techniques, together with AI models to adaptively identify and
cope with various spoofing attacks, thus achieving intelligent and
adaptive anti-spoofing techniques. On the other hand, it is also
necessary to strengthen research on spoofing interference
techniques to provide support for feasibility testing of anti-
spoofing techniques.

4.3 Optimize real-time performance and
accuracy in highly dynamic environments

Under the dynamic environment, such as high-speed motion or
complex terrain, anti-spoofing techniques are put to the test in terms
of real-time and accuracy. The system must quickly and accurately
distinguish between the real and spoofed signals, which places
greater demands on the technique’s performance. To address this
challenge, future research will focus on optimizing algorithms and
data processing methods to improve the system’s real-time and
accuracy. For instance, to reduce data processing time, one can use
more efficient signal processing techniques. Additionally, to
improve the system’s computational power and response speed,
advanced hardware platforms and parallel computing techniques
can be utilized.

4.4 Conduct anti-spoofing techniques
based on deep GNSS/INS navigation system

Depending on the depth of information, the GNSS/INS
integrated navigation system has three types of combined modes:
loose integration, tight integration and deep integration. The
performance and impact of these modes differ significantly when
dealing with spoofing interference. There are few studies analyze the
impact of spoofing and anti-spoofing research for deeply coupled
systems. The existing literature primarily focuses more on anti-
spoofing technology based on loosely coupled systems and tightly
coupled systems. In recent years, with the continuous development
of theoretical research and engineering practice in deeply coupled
systems, the anti-spoofing need for deeply coupled systems has
become increasingly prominent. Therefore, analyzing the impact of
spoofing interference on the deep GNSS/INS integration system and
developing appropriate anti-spoofing studies holds great theoretical
significance and practical value.
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5 Conclusion

This paper focuses on the anti-spoofing technology of GNSS/
INS integrated navigation systems for enhancing the safety of
integrated system. Firstly, the paper introduces the principle of
spoofing interference technology and attack strategies, which
have different classifications based on their generating modes,
attack strategies, and manifestations. Secondly, the paper sorts
out and summarizes the current research status of anti-spoofing
technology of GNSS/INS combined navigation systems. This paper
compares and analyzes the performance characteristics and
technical aspects of detection methods based on the measured
values, filter innovation, and other detection methods based on
integrated navigation systems. Then, the paper sorts out the
spoofing mitigation methods based on multipath suppression and
robust estimation. Finally, with the purpose of providing solid
technical support for the safe application of satellite navigation
systems, this paper points out the difficulties faced by the
development of GNSS/INS anti-spoofing technology and the
future development direction.
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Satellite navigation interference monitoring is an important means to effectively
evaluate interference and ensure the normal operation of global navigation
satellite system (GNSS). Once interference is detected, this monitoring can
identify the type of it, perform direction-finding and localization, evaluate its
impact on GNSS, and guide the implementation of effective countermeasures.
With the continuous progress of interference technology, the power required
to cause the same jamming effect to the navigation system is getting smaller
and smaller. Traditional radio monitoring system has been unable to meet the
needs of the current satellite navigation monitoring in terms of sensitivity and
accuracy. It is of great significance to develop and improve the dedicated satellite
navigation monitoring system. This paper introduces the basic concept of
satellite navigation interference monitoring and the composition of the system,
analyzes the key technologies and finally gives an outlook on the development
trends in this field.

KEYWORDS

global navigation satellite system, interference monitoring system, interference
detection, interference identification, interference direction finding

1 Introduction

The Global Navigation Satellite System (GNSS) is a generic term for satellite navigation
systems that provide all-weather, continuous, global coverage for positioning, navigation,
and timing services. Currently, the world has seen the formation of four major global
satellite navigation systems: the United States’ Global Positioning System (GPS) [1–3],
the European Union’s Galileo Satellite Navigation System (Galileo) [1–3], Russia’s Global
Navigation Satellite System (GLONASS) [1, 3], and China’s BeiDou Navigation Satellite
System (BDS) [3, 4]. In addition, India and Japan have respectively constructed the Indian
Regional Navigation Satellite System (IRNSS) [1, 3, 5] and the Quasi-Zenith Satellite System
(QZSS) [1, 3, 6].

Satellite navigation systems have become fundamental spatiotemporal reference
infrastructures. The development of navigation technology profoundly impacts
various sectors of society including economy, surveying, power, transportation, and
military affairs. An increasing number of infrastructures have developed a strong
reliance on satellite navigation systems. Should these systems suffer a breakdown,
it could lead to severe consequences, thereby making the enhancement of GNSS
system stability increasingly critical.
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TABLE 1 Some malicious interference incidents [10].

Time Location Interference incidents

1990 Persian Gulf In the Gulf War, the US, Iraq and other adversaries
electronic countermeasure

1999 Yugoslavia In the Kosovo War, the two sides send out
jamming signals to reduce navigation accuracy or
to mislead the enemy

2011 Iran Iranian forces have beamed a decoy signal to
capture a US RQ-170 Sentinel drone

2017 The Black Sea The GPS systems of ships operating in the Black
Sea were attacked with spoofing and jamming, and
the ship was located at an airport several miles
away

2020 Point Reyes GPS crop circles in Point Reyes are deliberately
GPS spoofed

However, the GNSS system is inherently vulnerable [7] and is
highly susceptible to various types of interference [8]. Interference
can be broadly categorized into natural and anthropogenic
types. Anthropogenic interference can be further subdivided
into unintentional and intentional categories. Given the finite
nature of the electromagnetic spectrum, GNSS systems are
particularly susceptible to out-of-band interference from harmonics
and inter-modulation products, as well as in-band interference
from co-channel operations [9]. A notable example occurred
at a U.S. port where GPS receivers were disrupted for several
hours each evening following the workday, eventually traced
back to unintentional interference from active TV antennas
atop nearby residents’ homes after months of investigation
[3].Satellite navigation signals, originating from satellites orbiting
approximately 20,000 km above the Earth’s surface, arrive
at ground level with powers as low as −130 dBm which is
over a billion times weaker than typical broadcast television
signals. Civilian signal formats used in navigation systems
are publicly known, with information modulated onto fixed
frequencies, rendering GNSS highly vulnerable to intentional
malicious interference. Table 1 gives a brief description of some
of the interference events that have occurred globally over the
past period.

From the past to the present, interference and anti-
interference in satellite navigation systems have been focal
points of electronic warfare worldwide, particularly evident
in military confrontations. Therefore, the necessity of anti-
interference and interference monitoring is self-evident. This
review primarily addresses malicious jamming interference. As
long as the emitted interference targets the GNSS frequency
bands or covers the entire system frequency spectrum with
sufficient power, it can achieve significant disruptive effects,
posing the greatest threat to user-end navigation receivers.
The principle of interference is that as the interference power
increases, the equivalent carrier-to-noise ratio (C/N0) at the
receiver output degrades, leading to prolonged acquisition times
or even loss of lock during signal capture, and reduced pseudo-
range accuracy during tracking [11]. This results in a decline

in the reliability of the GNSS system, manifesting as significant
positioning errors.

Anti-interference refers to the adoption of various technologies
and measures [12–17] to reduce or eliminate the impact of
interference on system performance. Interference monitoring,
on the other hand, involves the detection, identification, and
analysis of interference signals in the electromagnetic environment.
Specifically, it encompasses the localization of interference sources,
the identification of interference signal types and characteristics, and
the assessment of their impact. Anti-interference and interference
monitoring are complementary; interference monitoring provides
detailed information about the interference [18], which is the
foundation for implementing anti-interference techniques. Only
through effective interference monitoring can the sources and
characteristics of interference be accurately identified, enabling
targeted anti-interference measures to be taken. For instance, if
the interference is identified as frequency sweeping or continuous
wave interference, Infinite Impulse Response (IIR) adaptive
notch filters can be directly employed to suppress it [19]. When
interference is detected in the transform domain, adaptive
filters can be directly designed in that domain to suppress the
interference, after which the signal can be transformed back to
the time domain to accurately recover the original GNSS signal
[20–23].

In response to the challenges currently faced in interference
monitoring, this paper reviews the development process of GNSS
interference monitoring, focusing on the recent advancements
in key monitoring technologies. It summarizes and analyzes
the existing issues and identifies future research directions in
this field.

2 Interference monitoring system

2.1 General situation

The development of GPS by the United States in the 1970s was
primarily for military purposes, with early satellite interference
monitoring relying on military electronic equipment to ensure the
precision of weapon strikes.TheGulfWar and theKosovoWar in the
1990s highlighted the importance of satellite navigation interference
monitoring in electronic warfare environments, prompting
researchers to design specialized equipment for this purpose. As
GPS expanded into civilian use and became more globalized, fixed
ground-based satellite navigation interference monitoring systems
began to emerge. The development of digital signal processing
(DSP) technology and software-defined radio (SDR) enabled these
systems to identify various types of interference in complex signal
environments. In the 21st century, as satellite navigation systems
diversified into a quadripartite structure, there arose a need for
compatibility in interference monitoring systems. Monitoring
platforms have evolved from fixed ground-based systems towards
mobile air- and space-based systems, with nations working to
establish comprehensive, three-dimensional maritime, land, air, and
space interference monitoring systems. Table 2 provides an analysis
and comparison of the three types of interference monitoring
platforms.
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TABLE 2 Comparison of interference monitoring platforms.

Type of platform Function Characterization Typical monitoring system

Ground-based Establishing fixed or mobile radio
monitoring stations on the ground to
achieve surveillance of various signals
in the electromagnetic spectrum

Low cost, strong opera ability, easy
maintenance, high data quality, and
flexible equipment configuration
Limited coverage range, susceptible to
obstructions, poor mobility, and strong
dependence on ground infrastructure

The U.S. National RF monitoring
Network and the European Space
Agency’s ground-based GNSS receiver
network

Air-based Radio monitoring systems installed on
aircraft such as airplanes, drones, and
airships

Strong mobility, wide coverage range,
high efficiency, strong adaptability, and
high positioning accuracy
High cost, poor continuous surveillance
capability, low survive ability, complex
deployment and retrieval, and strict
limitations on the weight and size of
monitoring equipment

The U.S. EP-3E ARIES II electronic
reconnaissance aircraft, the Russian
Tu-214R reconnaissance aircraft, and
the Russian Luch/Blits series of satellites

Space-based Relying on artificial Earth satellites to
conduct global electromagnetic
spectrum monitoring activities from
orbit

Global coverage, high real-time
performance, sustainable and stable
operation, and high strategic value
High cost, complex technology, limited
resources, and weak survive ability

The U.S. Space-Based Space
Surveillance (SBSS) system, the Russian
Luch/Blits series of satellites, and the
U.S. HawkEye 360

FIGURE 1
Interference monitoring system.

2.2 The development status

2.2.1 General interference monitoring System
Before the advent of satellite navigation systems, many

non-navigation systems experienced disruptions due to radio
interference that prevented them from operating normally. This
was particularly evident in civil aviation systems, where radio
interference posed a significant threat to air traffic systems, causing
flight delays and even endangering personal safety. To effectively
address incidents of electromagnetic interference, the U.S. Federal
Aviation Administration (FAA) began constructing a nationwide
radio interference monitoring system at the end of the 20th century.
This system consists of multiple airborne, mobile, portable, and
fixed interference monitoring systems, ensuring the takeoff and
landing of flights at key airports and minimizing the impact of
radio interference [24]. The primary hardware for this system is
manufactured by Cubic Corporation in the United States and has
been adopted by many countries, playing a significant role in civil
aviation radio interference monitoring. The main modules included
in the FAA’s interference monitoring system are shown in Figure 1.

After years of development, in addition to the United States
and other countries have also been mature radio monitoring

technology. For instance, most provinces can now achieve
comprehensive monitoring of critical areas such as airports within
their jurisdictions. A large number of fixed monitoring stations,
mobile monitoring stations, and portable interference detection
devices have been established, forming a relatively complete radio
interference monitoring network [25]. Figure 2 [26] shows some of
the interference monitoring equipment in our country.

2.2.2 Dedicated GNSS interference monitoring
system

General-purpose radio interference monitoring networks
monitor the electromagnetic environment across the entire
frequency spectrum. In contrast, the frequency bands used by
GNSS systems are fixed, and the navigation signals reaching the
ground are extremely weak, often buried below the noise floor.
With the evolution of interference technology, the variety of
interference methods has increased, and different interference
techniques can produce varying effects [27]. Consequently, the
power required to achieve the same level of interference on
GNSS systems is decreasing. Traditional general-purpose radio
interferencemonitoring networks are no longer sufficient in terms of
sensitivity, accuracy, and speed tomeet themonitoring requirements
of GNSS systems. Recognizing the challenges faced by GNSS
interference monitoring, countries led by the United States began
constructing dedicated monitoring networks from the last century.

In 1994, the U.S. National Geodetic Survey began establishing
a national network of continuously operating reference stations
(CORS) for GPS, which later expanded globally. These CORS
receive GPS signals and provide high-precision positioning data for
applications such as geodesy and meteorological observations.any
GPS CORS are equipped with anti-interference devices and
can also assess the quality of received GPS signals. They utilize
various techniques, including radio monitoring and noise level
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FIGURE 2
Interference monitoring equipment. (A) Radio monitoring vehicle. (B) Radio monitoring direction finding system. (C) Radio monitoring direction finding
receiver. (D) Radio monitoring direction finding system.

measurements, to monitor and locate interference near the
base stations.

In 1997, the U.S. Congress directed a project involving Spawar
and Falon companies, which developed and demonstrated a
prototype system called “LOCO GPSI.” The demonstration results
showed that the system was effective and practical, with the
ability to locate interference sources. The entire system utilized a
short baseline interferometry approach, determining the source of
interference through triangulation methods [28].

The JLOC system (Joint Landaster Oriented Coordinate System)
is a system commissioned by the Joint Space Operations Center
under the U.S. Department of Defense and developed by NAVSYS
Corporation. The system was established in 2002 and primarily
provides precise geographical location information and time
standards. It can monitor abnormal changes in satellite navigation
signals and quickly locate the position of interference sources,
conducting comprehensive performance testing and evaluation of
satellite navigation systems to ensure their normal operation.

In 2009, CHRONO Technologies in the UK developed a
handheld interference monitoring device capable of monitoring
GPS signals and interference signals in the L1 frequency band
[29]. In addition, the U.S. FAA established a GPS interference
source monitoring and localization experimental system, which
includes a large number of interference sources and localization
systems, employing almost all interference source localization
technologies [30].

Currently, the American company HawkEye 360 is building
the world’s first commercial radio frequency (RF) signal mapping
system based on a low-orbit satellite constellation, with plans
to launch a total of 60 small satellites into low-earth orbit by
2025. Its products include RFGeo, RFIQ, and SEAker. RFGeo
is used to detect and locate RF signals on the Earth’s surface,
with Figure 3 [31] showing a precisely mapped image of Earth’s

FIGURE 3
Radio-frequency signal pattern.

RF signals. RFIQ is dedicated to space-based radio frequency
spectrum data collection, providing visualization of the spectrum
data gathered by the HawkEye 360 RF sensor satellite constellation,
as depicted in Figure 4 [31]. SEAker leverages sophisticated
algorithms to integrate automatic identification systems with
HawkEye 360 sensors, enhancing maritime awareness capabilities.
The entire systemprimarily focuses on spectrummapping and signal
source localization, offering comprehensive and timely interference
detection and early warning services [32].

2.3 Summary

Currently, the development of interference monitoring
systems faces numerous challenges: 1) Technical challenges. The
electromagnetic environment is becoming increasingly complex,
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FIGURE 4
Visual spectral data.

and the accuracy, sensitivity, and speed of traditional radio
interference monitoring systems are no longer sufficient for satellite
navigation system interference monitoring. Efforts to overcome key
technical bottlenecks within the system and promote technological
innovation and advancement are essential trends. 2) Construction
challenges. There are few dedicated satellite navigation interference
monitoring networks, and the coverage areas of these networks
are limited. Developing new systems and equipment for GNSS
interference monitoring, increasing the number of monitoring
stations, and expanding coverage areas are crucial for ensuring
reliable GNSS services globally. 3) International Cooperation
challenges. Satellite navigation monitoring involves the interests
of multiple countries. Strengthening international cooperation
and exchange, encouraging active participation in international
organizations and activities, and promoting the establishment of
multilateral cooperation mechanisms to jointly maintain space
security and stability remain challenging.

3 Key technologies for interference
monitoring

Interference monitoring refers to the process of detecting,
identifying, direction-finding, locating, and assessing interference
in the electromagnetic environment. Its purpose is to promptly
discover and identify interference sources, evaluate the nature
and intensity of the interference, and assess its impact on
communication and navigation systems, thereby enabling the
implementation of appropriate measures to mitigate or eliminate
these interference. Figure 5 illustrates the complete interference
monitoring process. Initially, specialized equipment and techniques
are used to continuously collect signal data from the electromagnetic
environment to detect the presence of interference. Subsequently,
the detected interference is analyzed to identify its type and
characteristics. Next, the impact of the interference on the system is
evaluated, and direction-finding is performed to locate the position
of the interference source. A monitoring report is then generated
and submitted to relevant departments to assist them in making
decisions regarding interference suppression [33].

Considering the importance of interference monitoring
technology in interference monitoring systems, this section

will detail three key technologies for suppression interference
monitoring: interference detection technology, interference
identification technology, and interference direction finding
technology. Simulations will be used to verify the implementation
of some of the algorithms involved, and the issues associated with
each technology will be pointed out. Based on recent technological
trends, the section will also summarize the research directions that
warrant further investigation.

3.1 Interference detection technology

3.1.1 Time-domain detection algorithms
The time-domain energy detection algorithm is suitable for

detecting high-power blanket interference. It does not require prior
information about the signal; it only needs to compare the energy of
the signal with a preset energy threshold to determine the presence
or absence of interference, regardless of the type of interference.
However, it cannot determine the specific frequency points of the
interference. The time-domain energy detection method is simple
to implement and uses the binary hypothesis testing theory from the
field of mathematical statistics.

The signal received by a satellite navigation receiver can be
modeled as Equation 1 [34]:

r(t) = s(t) + j(t) + n(t) (1)

In the model, s(t) denotes the true satellite navigation signal;
j(t) represents the interference in the GNSS; and n(t) is the additive
white Gaussian noise with power σ2.

The energy of the received signal can be expressed as
Equation 2 [35]:

e(n) =
K−1

∑
k=0

r(n− k)r∗(n− k) (2)

In the equation, r(n) represents the digital signal obtained
after analog-to-digital conversion, and (⋅)

∗
denotes the conjugation

operation applied to the signal.
The hypothesis testing problem can be simply

expressed as Equation 3:

{
{
{

H0:e(n) < λ, j(n) = 0

H1:e(n) ≥ λ, j(n) ≠ 0
(3)

In the equation, λ is the threshold value for energy detection;
H0 is the null hypothesis, indicating that the useful signal is not
interfered with, and at this point, the signal energy value is less
than the threshold value;H1 is the alternative hypothesis, indicating
that the useful signal is being interfered with, and at this point, the
signal energy is greater than the threshold value. According to the
above analysis, the key to the energy detection algorithm is how
to determine an appropriate detection threshold λ in a constantly
changing noise environment.

The energy detection algorithm is significantly affected by noise
uncertainty and has a low probability of detecting interference in low
SNR conditions. In practical environments, noise is time-varying,
and to improve detection probability, multi-node cooperative
detection algorithms have been developed. Reference [29] proposes
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FIGURE 5
Interference monitoring flow chart.

an adaptive multi-threshold energy detection method under time-
varying conditions by estimating the noise range.Thismethod offers
better detection performance compared to single-threshold energy
detection algorithms. Reference [10] suggests using a hard decision
strategy for dual-threshold energy detection at individual nodes.The
credibility weights are assigned based on the quality of the channel
environment at each node, and the final decision is made at the
fusion center. This approach achieves good detection performance
even under low interference-to-noise ratio (INR) conditions. Wu
Jin [36] derived the expression for the error probability in energy
detection algorithms and determined the optimal threshold value to
minimize this probability, thereby improving detection performance
to some extent. Wang Jing [37] adopted a segmented detection
method for interference detection in Beidou civilian signals. This
method is highly efficient and effective because it focuses on the
noise within each sub-band during detection, thereby reducing the
influence of noise from other bands and effectively improving the
INR during detection.

3.1.2 Frequency-domain detection algorithms
The principle of frequency-domain interference detection is

similar, although it may be slightly more complex in terms of
computation compared to the time-domain energy detection
method. However, it can not only detect the presence of
interference but also determine the specific frequency points of
the interference [38].

Frequency-domain interference detection often uses the
Consecutiveean Excision (CME) algorithm proposed by P. Henttu
and S. Aromaa [39]. This algorithm assumes that the initial
signal samples do not contain interference signals, and thus the
signal spectrum envelope follows a Rayleigh distribution with an
expected value as Equation 4:

E(A) = √2σ2Γ(1.5) (4)

In the equation, σ2 is the power of the Gaussian noise; and
Γ(x) is the Gamma function, which is also known as Euler’s second
integral. The distribution function of a Rayleigh random variable
F(A) is given by:

F(A) = 1− exp(− A
2

2σ2) (5)

Based on Equation 5, we can get Equation 6:

Ath = √2σ2 − ln (√1− F(Ath) (6)

Ath is the detection threshold for interference frequency points
under the false alarm probability Pfa (the probability of erroneously
detecting interference frequency points when no interference signal
exists) which is defined as Equation 7.

The threshold factor is defined as Equation 8:

P fa = 1− F(Ath) (7)

T =
Ath

E(A)
=
√− ln(1− F(Ath))

Γ(1.5)
= 2
√π
√− ln(P fa) (8)

The CME (Consecutiveean Excision) algorithm sets the size of
the false alarm probability in advance and obtains the corresponding
threshold factor. In each iteration, it calculates the spectral power of
the signal set for frequency points that do not contain interference,
multiplies this by the threshold factor to update the detection
threshold, and then compares the spectral envelope at each
frequency point with the detection threshold to classify them into
frequency points with and without interference.

Subsequently, P. Henttu et al. [40] proposed the forward
sequential mean excision algorithm, also known as the forward
consecutive mean excision (FCME) method, to address the problem
of impulse interference detection in radio systems. The algorithm
first reorders the signal spectra in ascending order according to
their energy values, selects a portion of the spectra to form a set of
interference-free signals, calculates their energy, and sets a threshold
value. If the energy value of the next frequency line is less than the
threshold value, this spectrum line is added to the initial signal set
to form a new signal set, and its energy is recalculated and a new
threshold value is set.Otherwise, the algorithmends, and the process
continues iteratively. Yang Chao et al. [41] proposed an improved
CME interference detection algorithm, which sorts the spectrum
lines in descending order and considers the mean of the latter half
of the spectrum lines as the mean in the absence of interference.
This mean is used to initialize the detection threshold, reducing the
number of iterations and accelerating the convergence rate of the
CME algorithm without decreasing the probability of interference
detection. Setting a single threshold has certain issues, such as the
possibility of an interference signal with a certain bandwidth having
energy below the threshold at a particular frequency point, leading
to themisidentification of a single interference signal as two separate
ones. Vartiainen et al. [42] addressed this issue by proposing
a dual-threshold-based interference frequency point localization
algorithm.Themain principle of the algorithm is to set high and low
detection thresholds. First, the adjacent frequency points of signal
samples exceeding the low threshold are clustered, and then the
maximum value of the signal spectra in each cluster is compared
with the high threshold. If it is greater than the high threshold
value, the frequency points belonging to that cluster are determined
to correspond to the same interference signal. Otherwise, they are
not. Based on this, the algorithm can estimate the bandwidth of the
interference.

In frequency-domain interference detection algorithms,
traditional Fourier transforms are used. Essentially, these transforms
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convert one-dimensional time functions into one-dimensional
frequency functions, which is a relatively simple transformation
method. Its disadvantages are quite apparent: it can only analyze the
time-domain characteristics and frequency-domain characteristics
of signals independently as a whole, and it cannot analyze the
frequency characteristics of signals at specific moments or the time
characteristics of signals at specific frequencies. Therefore, it is only
suitable for analyzing stationary signals.

3.1.3 Time-frequency detection algorithms
Indeed, whenGNSS signalsmixedwith interference are received

by the receiver, they become non-stationary signals. Therefore,
time-frequency analysis methods are more suitable for interference
detection and analysis. The purpose of time-frequency analysis
is to transform one-dimensional time signal functions into two-
dimensional joint distribution functions of time and frequency,
which can reflect the time-varying characteristics of non-stationary
signals [43]. Linear time-frequency analysis is typified by the
Short-Time Fourier Transform (STFT), proposed by Dennis Gabor
in 1946. The STFT is obtained by multiplying the signal by a
sliding time window and then performing a Fourier transform.
Due to its linearity and low complexity, the STFT has been
used in the development of interference mitigation algorithms,
such as those developed by Daniele Borio et al. [44], to estimate
the instantaneous frequency of interference. Wang Pai et al. [45]
have combined the time-frequency characteristics and statistical
properties of received GNSS signals to propose an interference
detection algorithm based on the STFT, improving the detection
performance of broadband and narrowband interference in low
signal-to-noise ratio environments. However, the STFT also has
limitations. Because of the windowing process, it is constrained
by the Heisenberg uncertainty principle, meaning that the time
resolution and frequency resolution cannot be simultaneously
optimized.

Comparing different time-frequency analysis methods,
quadratic time-frequency analysis based on the Fourier transform
of the instantaneous autocorrelation function provides almost
the best resolution [8]. Among these, the most commonly used
is the Wigner-Ville distribution (WVD), introduced to signal
processing in 1948. The WVD can achieve the lower bound of
the Heisenberg uncertainty principle and can address some of the
issues present in the STFT. However, when analyzing signals with
multiple components, the WVD produces cross-term interference,
causing the signal energy to spread over areas of the time-
frequency plane where there should be no energy, making it difficult
to accurately capture the signal features. Choosing appropriate
time-frequency analysis methods, such as adaptive kernel time-
frequency distributions or linear time-frequency distributions,
can suppress cross-terms, but this leads to a degradation in the
clustering property of the signal’s time-frequency distribution
and increases computational complexity [46]. To address these
issues, Sun Kewen et al. [47] analyzed the principles and problems
of STFT and WVD, proposing a new time-frequency analysis
method based on a reassigned spectrogram for detecting frequency-
sweeping interference. This method strikes a good balance
between suppressing cross-terms and maintaining time-frequency
resolution. Later, he [48] proposed using the Fractional Fourier
Transform (FRFT) for detecting satellite navigation interference.

The FRFT has excellent detection capabilities for linear frequency
modulation (LFM) interference. Xu Huifa [49] and colleagues
similarly proposed a new method based on the FRFT to solve the
detection and estimation problems of strong and weak LFM signals,
improving detection efficiency.

For the common frequency-sweeping interference in satellite
navigation systems, many scholars in Professor Sun Kewen’s
team have conducted extensive and in-depth research on its
detection [22, 50–52]. Their main work involves combining
various time-frequency transformation methods to leverage the
strengths of each method while compensating for their respective
weaknesses. ChenYuanyuan [50] used theRadon-Wigner transform
to detect frequency-sweeping interference and estimate interference
parameters. By combining the smoothed pseudo Wigner-Ville
distribution based on time-frequency reassignment with the Radon
transform, she validated the effectiveness of combining the Radon
transform with time-frequency analysis methods for interference
detection. Zhao Huizi [51] combined reassignment techniques and
wavelet transforms to effectively address issues related to energy
concentration, cross-terms, and resolution, thereby improving the
accuracy of interference detection. Sun Kewen [52] combined the
Hough transform with the Wigner-Ville distribution (WVD) to
eliminate cross-term interference and enhance detection sensitivity.
The detection performance remains excellent even at an INR of
−10 dB.

The FrFT uses a set of orthogonal chirp signals as basis
functions. By selecting an appropriate order, the FrFT transforms
the chirp signal into the transform domain, where the energy
of the chirp signal becomes concentrated, forming a peak. This
allows for accurate estimation of interference parameters. Zhang
Jun [22] improved the traditional method for determining the
optimal order of the FrFT by proposing a combination of
the bisection method and discrete polynomial algorithms. This
approach reduces the computational complexity of searching for
the optimal order while improving search accuracy, enabling the
detection of multi-component chirp signals. Zheng Yifei [23]
combined the FrFT with traditional time-frequency methods such
as the short-time Fourier transform (STFT) and WVD. Compared
to these traditionalmethods, the energy concentration of frequency-
sweeping interference is enhanced in the transform domain. At an
INR of −8 dB, the accuracy of parameter estimation for frequency-
sweeping interference is improved by two orders of magnitude.

In interference detection, time-domain energy detection,
frequency-domain energy detection, and time-frequency domain
detection primarily utilize the energy distribution characteristics
of interference signals in the time domain, frequency domain,
and time-frequency domain, respectively. Table 3 summarizes the
advantages and disadvantages of these three detection algorithms.

3.1.4 Full blind detection algorithms
In practical interference detection scenarios, the problem is

often non-cooperative, making it difficult to obtain sufficient
prior information. Therefore, researching fully blind interference
detection algorithms holds greater practical significance.

Blind interference detection algorithms based on random
matrix theory have been proposed. Two typical algorithms are
the Covarianceatrix-based All-Blind Detection (CAV) [53] and
the Eigenvalue-based All-Blind Detection (BDA) [54]. The CAV
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TABLE 3 Comparison of advantages and disadvantages of interference detection algorithms.

Interference detection algorithms Advantages Disadvantages

Time-domain Detection Simple implementation, intuitive principle, good
real-time performance, sensitive to impulsive signals,
no prior information required

Lack of frequency information, inability to handle
non-stationary interference, susceptibility to noise

Frequency-domain Detection Determination of interference frequency points, strong
noise suppression capability, suitable for analyzing
simple non-stationary interference signals

High computational complexity, transient response
lag, and high requirements for synchronization

Time-Frequency Detection Suitable for detecting complex non-stationary
interferences, capable of analyzing the local
time-frequency characteristics of interferences

High computational load, cross-term issues with some
methods, difficulty in interpreting time-frequency
graphs, and high sensitivity to parameters

algorithm constructs a test statistic as the ratio of the sum of the
absolute values of all elements in the covariance matrix of the
received signal to the sum of the absolute values of the diagonal
elements. The BDA algorithm constructs a test statistic as the
ratio of the maximum eigenvalue to the minimum eigenvalue.
These algorithms have detection thresholds that are independent
of noise information, thus completely overcoming the limitation of
energy detection algorithms being sensitive to noise uncertainty.
They also exhibit good detection performance even at low SNR.
Based on these foundations, many researchers have conductedmore
in-depth studies on all-blind detection algorithms [55–61]. Their
work includes developing new covariance-based decision statistics
to address the computational complexity of decision metrics and
thresholds, or combining these algorithms with cooperative sensing
to further improve detection performance and optimize network
overhead.GNSS interference detection can benefit from spectrum
sensing techniques. Wu Jin [36] has introduced all-blind detection
algorithms into the interference detection of the Beidou system
and proposed a weighted fusion detection (WFD) algorithm, which
enhances detection performance.

In recent years, with the rise of artificial intelligence,
machine learning has been increasingly applied in various
fields due to its excellent classification performance. In the
context of all-blind detection algorithms, interference detection
is essentially a binary classification problem, which aligns
well with machine learning algorithms. Based on this, many
scholars have introduced machine learning into full-blind
detection. Reference [62] combines the traditional K-Nearest
Neighbors (KNN) algorithm to achieve the detection task.
Yao Di [63] combines the Support Vectorachine (SVM) to
perform binary classification tasks for spectrum sensing.
These algorithms effectively address the issue of low detection
probability under low signal-to-noise ratio (SNR) conditions
and offer high detection efficiency. However, they require
manual construction of feature vectors, which can significantly
impact the classification results. Shi Haodong [64] uses a
Convolutional Neural Network (CNN) to achieve collaborative
spectrum sensing. Lu Huachao [65] directly inputs the normalized
covariance matrices of the combined I and Q signals from
each node into the neural network, allowing the network to
automatically extract useful features for detection. This approach
yields good detection performance.

3.1.5 Summary
Time-domain energy detection algorithms fall into the

category of semi-blind detection algorithms, as they require
prior information related to the noise. Due to this requirement,
their detection performance is poor at low INR and they are
highly susceptible to noise uncertainty. However, they are easy to
implement and do not require sophisticated detection equipment.
Improvements through multi-node cooperative energy detection
can somewhat alleviate these issues, but the enhancement is limited
and increases the overhead of the detection network.

Full-blind detection algorithms do not require any prior
information about the received signals and are independent of the
noise environment. They maintain good detection performance
even at low SNR.However, these algorithms are based on covariance
matrix decomposition, which involves significant computational
complexity. As a result, theymay not meet the real-time interference
detection requirements in practical applications.

The limitations of the aforementioned methods are evident;
they can only detect the presence of interference but provide
no information about the interference parameters, making
interference suppression challenging. Time-frequency detection
methods and frequency-domain detection methods, on the
other hand, can not only detect the presence of interference but
also estimate the interference parameters, thereby facilitating
interference suppression. Time-frequency detection methods are
particularly suitable for detecting non-stationary interference.
Combining various time-frequency transformation methods can
reduce parameter estimation errors. However, these methods
are computationally complex and the interpretation of the
transformation results is challenging.

3.2 Interference identification technology

Blanket interference can be classified in various ways. Based
on the time-domain characteristics of the interference, it can be
divided into pulse interference and continuous wave interference.
According to the stationarity of the interference, it can be categorized
into stationary interference and non-stationary interference.
Furthermore, it can be classified into broadband interference
and narrowband interference according to the spectral width.
Narrowband interference has a bandwidth narrower than the
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FIGURE 6
Pattern identification method flow chart.

GNSS signal, while broadband interference has a bandwidth wider
than the GNSS signal [66]. Taking the GPS L1 frequency band
with a spread spectrum code of CA as an example, common
interferences include matched spectrum interference [67], Gaussian
noise interference, linear frequency modulation (LFM) interference
[68], pulse interference [69], continuous wave interference [70], etc.

3.2.1 Traditional pattern recognition methods
Radio communication has a relatively long history, with

initial reliance on manual methods for identifying modulation
schemes of radio signals. However, these manual identifications
were significantly influenced by subjective factors and were
both time-consuming and labor-intensive. As communication
technology advanced, the advantages of automatic modulation
recognition became increasingly apparent, eventually evolving
into the mainstream approach for identification. Traditional
modulation recognition methods can be broadly categorized
into two types: decision-theoretic methods and statistical pattern
recognition methods [71]. While decision-theoretic methods
require substantial computational power and extensive prior
information, the relevant parameters associated with the signals
to be identified are often unknown. As a result, statistical pattern
recognition methods have gained wider acceptance and are more
commonly applied.

The pattern identification method includes three modules:
signal preprocessing, signal feature parameter extraction, and signal
identification classifier design, as shown in Figure 6. Firstly, the
received signal is preprocessed, including noise removal, data
normalization, unknown parameter estimation, etc.Then, the signal
set to be classified is analyzed in different signal domains such as
time domain and frequency domain, and the features that can clearly
distinguish the signal types in the set are extracted to form feature
vectors. This module mainly relies on machine learning methods
[72] and pattern identification theory [73], and finally the signal
samples to be tested are input into the classifier to realize signal
identification.

A good feature parameter should easily highlight the differences
between signals, significantly reducing the burden on subsequent
classifiers and facilitating the identification of different signals.
Azzouz, EE, and Nandi, Ak [74–76] published several papers
between 1995 and 1998 on extracting time-domain feature
parameters for analog and digital signals. Their work included
various typical algorithms for extracting signal instantaneous
features. Later scholars built upon this foundation to conduct
more research on automatic modulation identification. A good
identification classifier should achieve high signal identification
rates. Commonly used identification classifiers are based on
machine learning and include: decision tree (DT) classifier [77],
support vector machine (SVM) classifier [78] and neural network
(NN) classifier.

Some scholars in the field of satellite navigation interference
identification have drawn on the method of automatic signal
modulation identification to identify typical interference types
in satellite navigation systems. Huang Ting [30] analyzed
the characteristics of pulse interference and continuous wave
interference, and provided the results of typical suppression
interference characteristic analysis, which provided ideas for
selecting appropriate characteristic parameters. Lei Liang [79]
did similar work, and Li Jian et al. [80] extracted pulse width
estimates, bandwidth ratios, and frequency modulation slopes
to conduct identification simulation experiments on six typical
interferences. When the signal to noise ratio (SNR) is 3dB, the
identification rate reaches 90%. Zhu Pengcheng [10] analyzed the
typical interference of GPS and Beidou systems from the time
domain, frequency domain, time-frequency domain, and high-
order cumulants, extracted feature values composed of high-order
cumulants, normalized spectral bandwidth, and other parameters,
and used decision tree classifiers for identification. The simulation
results show that the identification effect is very good when the
INR is large. Some of the selected features are greatly affected by
noise, and when selecting a decision tree classifier, the classification
threshold is generally not changed once selected, which is not
adaptive. Therefore, when the INR is small, the identification effect
is not ideal.

Ye Rui [81] also did interference identification work, but he used
the KNN (K Nearest Neighbors) algorithm based on the traditional
decision tree to calculate the distance between the test samples and
the training sample eigenvalues for classification, eliminating the
subjective factors brought about by manually setting thresholds,
and the identification rate has been improved to a certain extent.
However, when the number of samples is large, the calculation of
this method is very large. Combining DTs and SVMs and directly
bringing test sample data into the maximum classification interval
function trained by the support vector machine can solve this
problem. The amount of computation and identification effect are
the best among these three methods.

The use of neural network classifiers is becoming more and
more common. Lu Dongsheng et al. [82] analyzed six types
of interference, extracted 13 characteristic parameters to obtain
feature vectors, and constructed a CNN (Convolutional Neural
Network) + LSTM (Long Short Termemory) double-layer network
model for training. Compared with the LSTM network in two
scenarios of strong signal interference and interference with
similar power, the accuracy, mean square error, and truthfulness
are all better.

Based on the research of previous scholars, the characteristics
of three commonly used identification classifiers are
summarized in Table 4.

In statistical pattern identification methods, the selection
of feature parameters and classifiers lacks a theoretical basis.
Generally, for a specific identification task to be completed, the
selection can only be made based on existing experience and
through multiple trials and errors. This leads to the method being
exceptionally sensitive to the selection of feature parameters, where
choosing different feature parameters may ultimately result in
different identification effects. This lack of flexibility results in poor
identification rates for interference signals.
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TABLE 4 Comparison of identification classifiers.

Identification Classifiers Advantages Disadvantages

DT Simple idea, easy to understand, small amount of calculation,
low complexity, real-time identification

Fixed threshold value, greatly influenced by human factors,
cascade structure, with more levels leading to poorer
identification accuracy

SVM Small sample size required, easy to handle nonlinear and
high-dimensional problems, can avoid local minimum problems

Reduced identification efficiency when the sample size is large,
supports binary classification but is not good at solving
multi-class classification problems.

NN Can solve any complex high-dimensional nonlinear problems,
good identification performance

Requires a large number of training samples; high
computational complexity, and poor real-time performance.

3.2.2 Interference recognition method based on
deep learning

In 2006, the concept of deep learning was officially proposed
[83]. Deep learning networks are composed of multiple layers
of neurons, each layer serving different functions and purposes.
Common types of layers include convolutional layers, pooling
layers, and fully connected layers. Convolutional layers are used
to extract local information features from the input data. Pooling
layers are used to down-sample the input feature maps, retaining
the most important features while reducing the computational load.
Fully connected layers learn high-level abstract features from the
input data and are typically used as the output layer to perform
classification tasks. During the training process of a deep learning
network, forward propagation and back-propagation algorithms are
utilized. Non-linear activation functions are used in each layer to
introduce non-linearity, enabling the network to learn complex
patterns and features. The trained model ultimately achieves
excellent performance in various tasks. Since then, Deep Neural
Networks (DNNs) have been increasingly used by scholars as end-
to-end systems for identification tasks. These networks can receive
raw data, automatically learn from it, and optimize themselves to
ultimately complete the identification task [84], thereby avoiding the
complex feature parameter extraction issues present in traditional
pattern identification methods.

In the field of recognition, converting one-dimensional
interference data into two-dimensional image data and combining
it with deep learning for classification has become a mainstream
approach in recent years. Li Xiangjun et al. [85] proposed an
interference type identification method relying on the SqueezeNet
CNNmodel and the smoothedWVT, aiming to address the problem
of low interference identification rates. Iman Ebrahimiehr et al.
[86] used the WVT and spectrogram to perform time-frequency
analysis on different types of chirp signals, utilizing the analysis
results to create an image dataset, part of which was used for
training the model and part for identification testing. Chen Xin
et al. [87] proposed an interference fingerprint spectrum (FPS)
consisting of time-frequency and time-power characteristics of
signals, and selected the GoogLeNet DNN architecture as the
training model to design the FPS-DNN interference classifier. This
classifier significantly improves the identification rate under low
interference power conditions and can be extended to solve more
complex interference classification problems. Reference [88] uses
the power spectral density (PSD) of the received signal as the input

feature for the network. Compared to algorithms such as Random
Forest and SVM, this approach improves recognition accuracy.

To improve recognition performance, new deep neural network
models have been continuously proposed [89]. established two
CNN networks that can share parameters, adding the Kullback-
Leibler (KL) divergence and Euclidean distance of extracted features
as new loss functions. This enables the network to learn the
relationships between interference signal categories, enhancing
generalization capability and recognition performance at low
interference-to-noise ratios (INRs) without increasing network
complexity [90]. constructed images from one-dimensional signals
and used residual networks to extract multi-semantic features,
followed by multi-semantic feature fusion. This approach helps
the deep learning network extract more distinctive signal features,
thereby improving interference recognition performance [91]. used
spectrograms as the training dataset and introduced multi-head
attention modules and residual convolutional modules to address
the different effects of varying window lengths on Short-Time
Fourier Transform (STFT) results. This resulted in improved
recognition performance [92]. proposed a new method based on
graph models, introducing graph signals and graph neural networks
to identify the modulation categories of unknown interference
signals. Their method enhances channel information interaction
and extracts both local and global features, significantly improving
recognition performance.

Deep learning-based recognition methods have several
advantages. They can automatically learn features from data,
reducing the dependence on expert knowledge. As the amount
of training data increases, the performance of the model
often improves significantly, demonstrating good generalization
capabilities and the ability to identify interference signals in
different environments and conditions. However, deep neural
network models are often very complex, requiring long training
times and consuming substantial network resources during
recognition tasks, which can sometimes lead to resource wastage.
To address these issues [93]: focused on the challenges of
GNSS interference recognition in low-resource environments,
emphasizing preprocessing. They proposed a method that combines
traditional statistical signal processing with machine learning,
effectively reducing model complexity and resource consumption
[94]. Introduced a time-frequency component-aware convolutional
neural network (TFC-CNN) that can determine the positions of
time-frequency components in time-frequency images and perform
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convolution operations at these positions. During network training,
an adaptive forward propagation algorithm is used to dynamically
decide the depth of forward propagation based on the samples,
improving the computational efficiency of interference classification
and reducing resource wastage [95]. Proposed a neural network
classification method that combines federated learning and transfer
learning. Federated learning is used to distribute data, enhancing
resource efficiency and privacy protection, while transfer learning
accelerates the model learning process. Compared to traditional
CNN models, this method improves classification accuracy by 8%.

3.2.3 Summary
Traditional pattern recognition methods have advantages

in computational efficiency and interpretability, but they have
limitations in feature engineering and data adaptability. In contrast,
deep learning-based recognition methods excel in automatic feature
extraction, generalization capabilities, and handling complex data,
but they face challenges in computational resource requirements
and interpretability.

Deep learning-based recognition adopts an end-to-end learning
approach, where raw data is fed into the network model to
directly obtain classification results. However, there is a wide variety
of deep learning network models, and no theoretical method
has been provided to guide the selection of models based on
specific recognition problems. Additionally, there is no quantitative
explanation for why the output results of a model are good or
bad. Instead, people rely on their experience to try different
network models iteratively to achieve better results. Improving the
interpretability of models to make the decision-making process
more transparent, understandable, and trustworthy is an area
worthy of further research in deep learning models.

Currently, most classifiers use supervised learning, which can
only recognize a few specific types of interference. When new types
of interference appear, the overall recognition performance may
deteriorate. This is a drawback of feature learning with labeled data.
Research on feature learning from unlabeled data and techniques
for automatically adding classification labels to unlabeled data [79]
is necessary.

3.3 Interference direction finding
technology

Accurately determining the direction of interference sources in
satellite navigation systems can help people quickly locate them.
Although the construction of satellite navigation systems started
relatively late and has had a shorter development time compared to
the advancement of radio technology, there are numerous methods
for radio direction finding. The principles of satellite navigation
interference direction finding and ordinary radio direction finding
techniques are consistent, with the difference lying in the specific
application scenarios. To address the issue of interference direction
finding in satellite navigation systems, inspiration can be drawn
from radio direction finding techniques.

3.3.1 Traditional direction finding algorithms
The main interference direction finding methods include

amplitude comparison direction finding, phase comparison

direction finding, and spatial spectrum estimation. The specific
algorithms are shown in Figure 7. Among them, the first two are
traditional direction finding methods, which are based on the
amplitude information or phase information of the interference
received by the antenna, respectively. These are the direction
finding methods adopted by scalar direction finding systems.
The latter benefits from the development of spatial spectrum
estimation technology, which is based on both the phase and
amplitude information of the interference received by the antenna.
It is the direction finding method adopted by vector direction
finding systems [96].

Interference direction finding can be performed using either
a single antenna or an antenna array. Figure 8 showcases three
commonly utilized antenna array models: linear arrays, circular
arrays, and planar arrays.

Amplitude comparison direction finding relies on differences
in signal amplitude, making it susceptible to noise and resulting in
suboptimal direction finding outcomes. Phase comparison direction
finding, also known as interferometer direction finding, relies on
phase variations that contain more precise directional information.
Due to its high accuracy and speed, it is widely used, including
in phase interferometer methods and correlative interferometer
methods. Phase interferometer-based direction finding utilizes the
phase difference of interference signals received by antenna elements
on a baseline. Taking single-baseline interferometer direction
finding as an example, its schematic diagram is shown in Figure 9.

Assuming there are two antennas with a baseline length of d,
they receive a far-field electromagnetic wave signal with an angle of
θ with respect to the line of sight, and the wavelength of the wave
is λ. The true phase difference of the signals received by the two
antennas is:

φ = 2π
λ
d sin θ (10)

When the signals received by the two receivers from the
antennas are fed as inputs to the phase discriminator, the output
of the phase discriminator is the phase difference ϕ between the
two signals. Since the phase discrimination range of the phase
discriminator is limited to [‐π,π], it follows that:

φ = ϕ+ 2kπ,k = 0,±1,±2, ... (11)

After undergoing an angle transformation, we can obtain
Equation 12:

θ = sin−1( λ
2πd

φ) = sin−1( λ
2πd
(ϕ+ 2kπ)) (12)

Upon observing Equations 10, 11, if we want to ensure
that for any angle θ, the true phase difference and the phase
difference measured by the phase discriminator are equal, the signal
wavelength λ and baseline length d must satisfy the following
condition as Equation 13:

d ≤ λ
2

(13)

Otherwise, there will be an integer multiple difference between
the two, which is known as the phase ambiguity problem in phase-
based direction finding methods. To obtain the correct angle of
arrival (AOA) of the signal, it is necessary to solve for the ambiguity
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FIGURE 7
Classification of direction finding algorithms.

FIGURE 8
Antenna array model. (A) Linear array. (B) Circular array. (C) Planar array.

FIGURE 9
Single baseline interferometer.

number. There are already many methods to resolve this ambiguity,
such as the long-short baseline method, the Chinese Remainder
Theorem method [97], and so on.

It is evident that the direction finding performance is influenced
by the baseline length. A longer baseline results in higher direction
finding accuracy but also introduces the issue of phase ambiguity.
On the other hand, a shorter baseline eliminates the phase ambiguity
problem, but it can lead to mutual coupling between antenna
elements, which reduces the direction finding accuracy and limits
the signal bandwidth.

The correlative interferometer direction finding method can
overcome the phase ambiguity problem. Its principle involves
selecting several antenna pairs to obtain the phase differences of
known incoming wave signals from all directions and frequencies
as the original phase samples. For an unknown incoming wave
signal to be measured, only the phase difference measured by the
antenna pair is required, and this is then correlated and interpolated
with the phase samples. The angle corresponding to the maximum
correlation value is determined as the angle of arrival [98].

3.3.2 Direction finding algorithms based on
spatial spectrum estimation

Although traditional direction finding technologies are mature,
they are constrained by factors such as array size, beamwidth, and
the direction finding environment. In practical applications, their
direction finding accuracy and spatial resolution sometimes fail
to meet requirements, especially in multipath environments where
direction finding performance is poor. Spatial spectrum estimation
techniques, developed in the 1960s and 1970s based on minimum
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variance spectral estimation, can address some of the issues with
traditional direction finding methods to a certain extent.

Spatial spectrum estimation can be categorized into subspace
fitting algorithms and subspace decomposition algorithms. The
former category is typically represented by the maximum likelihood
(ML) method, which constructs a logarithmic likelihood function
based on the signal model and solves for unknown parameters
to obtain the direction of arrival (DOA) of signals. This method
remains effective for coherent signal direction finding and performs
well even at low SNR, but its processing efficiency needs to be
improved [99]. The latter category is predominantly represented by
the MUSIC (Multiple Signal Classification) algorithm [100], which
works by performing an eigen decomposition on the array output
signals. The resulting noise eigenvectors and signal eigenvectors
span the noise subspace and signal subspace, respectively.The spatial
spectrum is estimated by utilizing the orthogonality between these
subspaces, and the DOA is estimated by searching for spectral
peaks. The MUSIC algorithm offers relatively lower complexity
and computational requirements while achieving high direction
finding accuracy. However, the actual electromagnetic environment
is much more complex than the theoretical assumptions, leading
to suboptimal direction finding results in some electromagnetic
conditions. For example, under the influence of multipath effects,
the presence of coherent signals can cause the array manifold
matrix to become rank-deficient, resulting in poor direction finding
performance. In such cases, decorrelation algorithms such as
spatial smoothing algorithms are first applied to restore the array
manifold matrix to a full-rank state [101]. The ESPRIT (Estimating
Signal Parameter via Rotational Invariance Techniques) algorithm,
proposed by Roy and Kailath [102], does not require spectral peak
searching and has a lower computational burden but may exhibit
reduced measurement accuracy compared to MUSIC.

We select an 8-element linear array and set up 3 incoming
wave signals with different DOA. These signals have similar
powers, and the INR is set to 10 dB for all of them. Among
these signals, two are coherent. We conduct simulations using the
MUSIC algorithm directly and after applying spatial smoothing
to the signals, respectively. The purpose of these simulations is
to verify the correctness of the analysis on the direction finding
performance of the MUSIC algorithm. The simulation results are
presented in Figure 10.

Table 5 summarizes the characteristics of the aforementioned
radio direction-finding techniques, which are currently being
applied in interference direction-finding for satellite navigation
systems. Interferometer-based direction finding methods offer fast
speed and high accuracy, and some researchers have specifically
designed GNSS interference direction finding antennas to address
issues such as phase ambiguity and reduce mutual coupling
effects between array elements [103]. A significant number of
satellite navigation interference direction finding and localization
equipment employ correlative interferometer direction finding
methods to achieve precise direction finding of interference signals
[104]. Scholars from Beijing Jiaotong University have conducted
simulations under ideal conditions, using a four-element rectangular
array and MUSIC and its improved algorithms to estimate the
DOA of typical incoherent narrowband interference, coherent
narrowband interference, and broadband interference signals in

BDS. Their results show good direction finding performance [29,
104, 105].

In practical engineering applications, however, direction finding
of interference signals must take into account the impact of
adverse factors such as mutual coupling between array elements
and boundary effects, which can lead to amplitude and phase
errors in the array elements that affect the accuracy of spatial
spectrum estimation-based direction finding. To achieve direction
finding results comparable to those under ideal conditions, active
calibration methods can be employed, where the gain patterns
of the antenna array elements are calibrated using specialized
equipment to estimate the amplitude-phase errormatrix andmutual
impedance matrix, which are then used to correct the obtained
spatial spectrum [105]. Alternatively, an error cost function can be
constructed to estimate the amplitude-phase error matrix, which is
then incorporated into a DOA error estimation model to achieve
real-time correction [106]. With the popularity of neural network
models, methods have gradually emerged that use CNN to perform
phase correction on direction-finding channels [107].

As the electromagnetic environment becomes increasingly
complex, it is essential to select the appropriate direction finding
algorithm for different scenarios. To fully leverage the advantages
of various direction finding methods and improve the results, a
trend is emerging towards combining multiple direction finding
techniques for interference direction finding. For instance, the
maximum signal method employs high-gain directional antennas,
offering high sensitivity but relatively low accuracy. In contrast, the
correlative interferometer uses omnidirectional antennas, providing
low sensitivity but high accuracy. By combining these two
methods, it is possible to simultaneously achieve high accuracy and
sensitivity in direction finding [108]. Additionally, the correlative
interferometer boasts fast direction finding speeds, while the
MUSIC algorithm excels in accuracy. By first using the correlative
interferometer to quickly determine the direction of the interference
signal, the search range of the MUSIC spatial spectrum can
be narrowed, significantly reducing the computational load. The
combination of these two techniques enables fast and high-precision
direction finding [109, 110].

3.3.3 Direction finding algorithms based on
timeodulated array

Although traditional direction-finding techniques have
demonstrated good performance in relatively simple scenarios,
they are increasingly showing limitations as the electromagnetic
environment becomes more complex. For example, traditional
methods struggle to address direction-finding issues in complex
situations such as weak signal strength, wide bandwidth, high
frequency bands, and the simultaneous presence of multiple
interference sources. As a result, their application scope in modern
complex electromagnetic environments is limited. Consequently,
researchers have begun exploring new direction-finding techniques
to overcome these challenges. In recent years, direction-finding
methods based on Time modulated Arrays (TMAs) have emerged,
offering new approaches to solving these problems.

A TMA is a novel type of antenna array that introduces
switches at the RF front-end of a traditional antenna array to
periodically time-modulate the incoming wave signals received by
each antenna element. The modulated signals are then processed
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FIGURE 10
Simulation of Direction Finding by MUSIC Algorithm. (A) Direct MUSIC Direction Finding. (B) MUSIC Direction Finding after Spatial Smoothing.

TABLE 5 Performance comparison of direction finding algorithms.

Direction finding
algorithms

Direction finding
sensitivity

Direction finding
accuracy

Direction finding
speed

Equipment
complexity

Amplitude comparisonethod Low Low Fast Low

Phase comparisonethod Relatively high Relatively high Relatively fast Relatively high

Spatial spectrum
estimationethod

High High Slow High

through a single channel by the signal processingmodule, extracting
harmonic components that contain DOA information. By analyzing
the relationships between these harmonic components, DOA
estimation can be achieved. Because it introduces the time variable
into the antenna array, TMA is also referred to as a four-dimensional
antenna array [111]. He Chong [112] used a binary TMA to
calculate the fundamental and first harmonic components of the
TMA output signals. The incident angle of the incoming wave
was estimated using the ratio of the harmonic component to the
fundamental component. Chen Jingfeng [113] proposed a direction-
finding technique based on multi-harmonic analysis, fully utilizing
the angle information contained in each harmonic component. The
generalized least squares estimationmethodwas used to estimate the
direction of the incoming wave signal, and selecting an appropriate
number of harmonics significantly improved direction-finding
performance even at low SNR. Compared to traditional algorithms
that rely on multiple channels to complete direction-finding tasks,
TMA uses a single channel, avoiding direction-finding errors
caused by inconsistencies between channels [114]. By integrating
techniques such asmulti-beam arrays and spectrum feature analysis,
TMA can achieve precise DOA estimation while reducing system
complexity and cost [115–117]. To address direction-finding for
broadband signals and potential phase ambiguity issues during
the direction-finding process [118], proposed applying different
periodic time modulation to different array elements. This approach
independentlymaps the amplitude information of each antenna unit
to different harmonic frequencies, avoiding phase ambiguity caused
by carrier frequency variations over a wide band, thus extending

the direction-finding bandwidth [119]. used channelization to
divide broadband signals into multiple sub-bands, converting the
broadband direction-finding problem into multiple narrowband
direction-finding problems. The DOA of the broadband signal
was then estimated through weighted integration [120]. introduced
virtual baseline technology into TMA, further enhancing its
direction-finding capabilities.

3.4 Summary

After years of development, traditional direction-finding
methods have been extensively studied and applied in various
fields such as communications, radar, and navigation. They have
a solid theoretical foundation and technical accumulation, and
for most conventional direction-finding tasks, their accuracy and
stability meet the requirements. However, their performance in
complex electromagnetic environments is not ideal. Direction-
finding algorithms based on TMA offer several advantages
through time modulation and spatial synthesis, including high
angular resolution, strong interference resistance, low hardware
complexity, and robustness. These features make TMA-based
methods particularly suitable for direction-finding in complex
electromagnetic environments.

Currently, TMA-based direction-finding methods, as a
new technology, are still not fully mature and are primarily
focused on theoretical research. Translating these methods into
practical applications requires overcoming many technical barriers,
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such as high-precision clock sources, complex control circuits,
and high-performance digital signal processing units. With
advancements in technology and cost reductions, TMA-based
methods are expected to see widespread application in complex
electromagnetic environments, representing an important direction
for the development of direction-finding technology. Meanwhile,
traditional direction-finding methods will continue to play an
irreplaceable role in mature fields.

4 Future development trends in
interference monitoring

Currently, the transmission of information is generally achieved
through the propagation of electromagnetic waves, where various
useful signals overlap with useless interference and noise present in
the space, posing significant challenges for interference monitoring.
Through theanalysis of key technologies for satellitenavigation system
interference monitoring, it can be anticipated that future interference
monitoring will face even more severe challenges, with a focus on the
development of interference monitoring technologies that offer high
precision, high sensitivity, and high real-time performance.

4.1 Highly sensitive real-time interference
detection

As interference technology advances, the power required
to generate the same interference effect on GNSS receivers is
decreasing.Moreover, whenmultiple interferenceswith significantly
different power levels coexist, the lower-power interference can be
overwhelmed by the higher-power interference, leading to a high
probability ofmissed detections during interferencemonitoring and
posing potential assessment risks. Detection equipment monitors
interference within its vicinity. Enhancing the sensitivity of
interference detection equipment can effectively detect low-power
interferences, expand the range of interference detection, reduce the
number of devices required for full-area monitoring, and lower the
cost of the monitoring system.

Furthermore, if interference detection equipment can quickly
identify interference, people can promptly take interference
suppression measures to reduce its harmful effects. This requires the
detection equipment to adopt low-complexity detection algorithms
while ensuring sensitivity. This requires the detection equipment to
ensure sensitivity while also maintaining real-time performance.

4.2 Intelligent automatic interference
identification

GNSS receivers are sometimes subjected to more than one
type of interference simultaneously, and the impacts of different
types of interference on them are generally different. Separating
and identifying these mixed interferences individually allows for an
analysis of the effects of each on the terminal equipment, facilitating
more informed decision-making. To achieve better interference
effects, new types of interference continue to emerge. For previously
identified interference types, rapid identification of their types

should be possible upon re-interference, which can be achieved by
establishing an interference library. For new types of interference
that have never been identified before, the monitoring system’s
identification should also possess a certain degree of generalization
ability, correctly identifying the new type of interference and adding
it to the interference library.

With technological advancements, satellite navigation
interferencemonitoring can integrate artificial intelligence,machine
learning, and other technologies. Through self-learning and
evolution, intelligent algorithms can continuously adapt to changing
interference characteristics, achieving automatic identification
and classification of interference signals with high accuracy.
Furthermore, they can even predict the occurrence of interference.
This deep integration of technologies can save significant human
resources and greatly enhance efficiency and accuracy.

4.3 High-precision interference direction
finding under complex conditions

Typically, the interference monitoring equipment and the
interfered terminals are not located at the same geographical
position, making the direction of interference arbitrary for the
monitoring equipment. In complex terrain conditions such as
“urban canyons,” mountainous regions, jungles, or in the presence
of moving obstructions or drastic meteorological changes, the
interference signals are prone to various physical phenomena during
propagation, including reflection and refraction, which can lead
to multipath effects. These effects can reduce the accuracy of
direction finding, cause ambiguity in direction finding, and result in
unstable direction finding outcomes. The precision of interference
direction finding directly impacts the results of interference source
localization. If the interference source is located far from the
monitoring equipment, even a slight deviation in the direction
finding angle can result in a significant discrepancy between the
localized position of the interference source and its actual location.

The premise of direction finding for multipath signals is to
extract the direct interference from the detected interference signals.
Improvements and optimizations to multipath resolution algorithms
can be made in terms of real-time performance, implementation
difficulty, and complexity. By integrating direction finding with
generative AI (Artificial Intelligence) technologies, an adaptable
direction finding model can be constructed that automatically adapts
to complex and dynamic propagation environments, enhancing the
intelligence level of the direction finding system. Furthermore, the
direction finding system can introduce multi-modality and perform
data fusion to address multipath interference issues.

4.4 Comprehensive and large-scale
interference monitoring

Currently, the development of the GNSS interference
monitoring network in China is still incomplete, and the capability
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for comprehensive interference monitoring across the entire region
remains inadequate. The evolution of the monitoring network
should target intelligence and automation, fully leveraging artificial
intelligence, big data, and cloud computing technologies to enable
real-time analysis of vast amounts of monitoring data.

Joint monitoring is a necessary means for interference
monitoring. On one hand, emphasizing multinational joint
monitoring on a global scale and strategically deploying interference
monitoring stations worldwide can ensure comprehensive coverage.
On the other hand, it is crucial to develop and integrate various
interference monitoring platforms, including ground-based, air-
based, space-based, and sea-based systems, to effectively tackle
complex monitoring environments.

5 Conclusion

Interference monitoring serves as an indispensable cornerstone
for maintaining the robust operation of various systems, playing
a crucial role in ensuring their performance. Focusing on
the domain of GNSS interference monitoring, the current
system faces unprecedented challenges in multiple aspects,
including technological iteration, infrastructure construction, and
international collaboration. To gain a profound understanding of the
essence of these challenges and explore effective strategies to address
them, this paper systematically traces the developmental history of
interference monitoring systems since their inception. It provides a
comprehensive and in-depth analysis of the intrinsic mechanisms
and unique characteristics of several core interference monitoring
technologies. Building on this foundation, the paper reviews the
breakthrough advancements in these key technologies over recent
years. It delves deeply into the enhanced understanding of technical
principles and broadly explores the continuous expansion and
innovation in application domains. Through detailed examination
and analysis, we gain insights into the significant potential of these
technologies in improving monitoring accuracy, enhancing system
robustness, and driving technological innovation. Through the
review and analysis presented in this paper, we aim to provide
scholars in the relevant fields with a comprehensive and in-depth
report on interference monitoring technologies. We hope to inspire

their innovative thinking and research enthusiasm, contributing
valuable wisdom and strength to the continuous advancement and
widespread application of interference monitoring technologies.
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Overview of satellite nav spoofing
and anti-spoofing techniques

Cheng Lu1, Zukun Lu1,2*, Zhe Liu1,2, Long Huang1,2 and
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1College of Electronic and Technology, National University of Defense Technology, Changsha, China,
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In recent years, satellite navigation systems have witnessed widespread adoption
across diverse fields, including military surveillance, precision agriculture, traffic
monitoring, resource exploration, and disaster assessment. However, navigation
signals are susceptible to interference, with deceptive interference posing themost
significant threat to navigation systems. This paper provides a comprehensive
overview of satellite navigation spoofing and anti-spoofing techniques. It
reviews the current state of spoofing and anti-spoofing technologies, analyzing
advancements in spoofing techniques and the evolution of countermeasures.
Furthermore, the paper elaborates on the impact of spoofing interference on
receiver performance, examining its effects on positioning, timing, and velocity
estimations. A detailed analysis of various anti-spoofing methods is presented,
categorizing them into detection, identification, suppression, and localization
techniques. This review aims to provide a thorough understanding of the
evolving landscape of satellite navigation spoofing and anti-spoofing
technologies, fostering further research and development efforts to ensure the
integrity and resilience of satellite navigation systems in the face of sophisticated
threats.

KEYWORDS

satellite navigation, generative spoofing jamming, induced deceptive jamming, induced
deceptive jamming monitoring, induced spoofing interference suppression

1 Introduction

Global navigation satellite systems (GNSSs) provide ground users with continuous, all-
weather, high-precision positioning, timing, and velocity information through navigation
signals transmitted from artificial satellites [1]. The remarkable performance of GNSSs has
led to their widespread adoption across civilian and military domains [2].

As shown in Figure 1, in the military domain, modern warfare increasingly relies on high-
precision positioning and velocity data for the precise control of precision-guided weapons,
aircraft, ships, and various vehicular equipment. Satellite navigation systems are thus a critical
enabler for land, sea, and air weapon systems, facilitating the construction of fully digitized
battlefields.

GNSS technology has permeated many industries in the civilian domain, including
providing precise timing for power systems, navigation for civil aviation and vehicles, and
high-precision positioning and timing services for ship navigation. It plays a crucial role in
disaster relief efforts and numerous aspects of daily life, becoming an indispensable
component of modern society’s infrastructure.

Navigation signals, typically transmitted from satellites to ground receivers, are
susceptible to various intentional and unintentional disruptions due to long-distance
propagation and low signal power at ground reception [3, 4]. Moreover, the
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information transparency and open signal characteristics of
navigation systems [5, 6], particularly the detailed specifications
and descriptions of civilian GNSS control interface documents
(ICDs) regarding carrier frequency, modulation schemes, and
navigation messages [7], make them highly vulnerable to
information tampering and deceptive spoofing attacks, posing
significant threats to navigation systems. Spoofing signals, with
power levels comparable to genuine navigation signals, exhibit
high stealthiness and efficiently disrupt navigation receivers,
resulting in inaccurate positioning and timing information and
potentially catastrophic consequences [8]. This is particularly
concerning in the case of drones, where spoofing interference can
manipulate the drone’s navigation system through pseudo-range
spoofing, leading to erroneous positioning results [9, 10].

This paper delves into the mechanisms of GNSS spoofing attacks
and explores a range of countermeasures. The paper begins by
examining the vulnerabilities of GNSS receivers to spoofing attacks,
highlighting the security threats they pose. It then analyzes the strategies
and mechanisms employed in spoofing attacks, providing a
comprehensive overview of different attack methodologies. The paper
further examines the impact of spoofing signals on targeted receivers,
delving into the underlying principles of induced spoofing attacks and
their rapid evolution in recent years. Subsequently, the paper explores
various anti-spoofing technologies tailored to counter different spoofing
attacks. This includes an analysis of five signal-level spoofing detection
techniques, examining advancements in deep learning-based spoofing
identification techniques and providing a summary of the application
scenarios and performance characteristics of various anti-spoofing
technologies. Finally, the paper concludes by presenting methods for
locating the source of spoofing interference.

To make it easier for readers to understand this survey, Table 1
lists some important abbreviations and their meanings. These
abbreviations apply only to this survey. Specific explanations are
given in Table 1.

2 Current status and case studies
of spoofing

The concept of spoofing interference in satellite navigation
systems, first detailed in 2003 by British researchers
D.J. Shepherd and M.G. Bitterlin [11], has transitioned from a
theoretical possibility to a demonstrable reality [12]. Early
research outlined the potential for such attacks and proposed
basic countermeasures, but advancements in technology and
increasing threats have spurred further investigation and a deeper
understanding of spoofing interference. The danger has manifested
in real-world scenarios, with notable examples including the capture
of American unmanned reconnaissance aircraft, “RQ-170” and
“Scan Eagle,” by Iranian forces in 2011 and 2012, respectively
[13, 14]. These operations reportedly employed spoofing
techniques to disrupt communication between the drones and
their satellites, transmitting deceptive signals that lured them to
land. Further experiments conducted by Professor Todd
Humphreys’ team in 2012 demonstrated the feasibility of
hijacking GPS-guided drones and manipulating their navigation
systems using spoofing signals [15]. Later that year, the team
successfully hijacked a civilian drone at the U.S. Army’s White
Sands Missile Range, highlighting the vulnerability of civilian drones
to spoofing attacks [16]. In 2013, the team demonstrated the
potential for spoofing attacks at sea by successfully diverting an
$80 million yacht from its course using a compact GPS spoofing
jammer [16]. These experiments, along with others conducted by
M.L. Psiakiand and T.E. Humphreys in 2017 [17], underscore the
susceptibility of GNSS receivers to spoofing attacks and the
challenge for users in detecting such interference.

In April 2013, at the Hack in the Box security conference in
Amsterdam, Hugo Teso, a commercial pilot and engineer from a
German cybersecurity company, unveiled the PlaneSploit
application, a tool capable of bypassing aircraft security systems

FIGURE 1
Role of satellites in civil navigation.
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and gaining control of the aircraft’s computer systems [18]. Teso
successfully demonstrated PlaneSploit’s capabilities by altering the
flight path, adjusting air conditioning settings, and even simulating a
crash landing, highlighting the significant risks posed by such attacks.
In 2017, the Unicorn Team, a hacking group affiliated with 360
company, further demonstrated the feasibility of spoofing civilian
GPS devices at the Def Con hacking conference in the United States.
Later that year, they showcased their ability to spoof the BeiDou
navigation system at the POC hacking conference, demonstrating the
global reach of spoofing capabilities. In 2018, the U.S. Navy conducted
a real-world spoofing attack simulation exercise named “Sea Lion
Father” in the Pacific Ocean. The exercise involved using false GPS
signals to disrupt the electronic equipment of their vessels, effectively
counteracting the real positioning capabilities of their location and
navigation systems. This exercise highlighted the potential for
spoofing to disrupt critical maritime operations, emphasizing the
urgent need for robust countermeasures.

3 Analysis of spoofing interferes

Satellite navigation signals employ direct sequence spread
spectrum modulation composed of three components: carrier,
pseudo-random code, and navigation message data code. The
carrier, residing at the bottom layer of the satellite navigation
signal, carries the pseudocode and navigation message. The
pseudo-random code is used primarily for spreading the data
code, and the data code stores the satellite ephemeris. The
specific signal can be represented by the following Equation 1:

S t( ) � A × C t( ) × D t( ) × cos ωt + φ( ). (1)
A represents the amplitude, C(t) represents pseudocode, D(t)
represents the data code, ω represents the carrier frequency, and
φ represents the carrier phase.

Spoofing operates by transmitting signals that mimic the format
of authentic satellite navigation signals with altered parameters,
targeting the receiver. The receiver, unaware of the manipulation,
captures and tracks these spoofed signals, resulting in erroneous
positioning and timing data. There are two primary categories of
spoofing interference: generative spoofing and forwarding spoofing.

3.1 Relay-based spoofing interference

Relay-based spoofing interference operates by forwarding
intercepted genuine satellite navigation signals, effectively
extending their propagation time and introducing inaccuracies into
positioning results [19, 20]. To ensure that the relayed spoofed signal
is captured and tracked by the receiver, it is typically transmitted with
a power approximately 2 dB higher than the genuine satellite signal
[21]. Relay-based spoofing interference can be categorized into two
types: single-antenna and multi-antenna. Single-antenna relay-based
spoofing utilizes a single omnidirectional antenna to receive, amplify,
delay, and forward signals from all satellites within its field of view. As
the interference device introduces the same additional delay to all
visible satellite signals, this method can induce deviations in the target
receiver’s positioning but cannot precisely control or set the final
position. Multi-antenna relay-based spoofing interference, however,
employs multiple omnidirectional antennas, each corresponding to a
visible satellite in its field of view. This allows for the introduction of
distinct delays and Doppler shifts to each visible satellite signal,
enabling precise control over the target receiver’s positioning and
even directing it to a predetermined false location. In terms of
effectiveness and covertness, multi-antenna relay-based spoofing
interference aligns better with the requirements of future
information warfare, such as navigation warfare and time warfare.
Its potential applications in these domains make it a valuable area of
ongoing research.

TABLE 1 Abbreviations table.

Abbreviation Meaning Abbreviation Meaning

AOA Angle of arrival BPNN Backpropagation neural network

CDMA Code division multiple access CNN Convolutional neural network

CNR Carrier-to-noise ratio CRPD Carrier-phase single difference

CSI Channel state information DLLS Delay-locked loops

FDOA Frequency difference of arrival FLLS Frequency-locked loops

FWHM Full width half maxima GNSS Global navigation satellite system

GSI Generative spoofing interference ICD Interface control document

IF Intermediate frequency INS Inertial navigation units

MIMO Multiple-input multiple-output PLLS Phase-locked loops

PRN Pseudo-random noise code PRDD Pseudo-range double differences

RAIM Receiver autonomous integrity monitoring RF Radio frequency

SNR Signal-to-noise ratio SQM Signal quality monitoring

SVM Support vector machines TDOA Time difference of arrival

TOA Time of arrival UAV Unmanned aerial vehicle
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Despite its advantages, current research has identified a
significant drawback of multi-antenna relay-based spoofing
interference. When the distance between the interference device
and the target receiver exceeds a certain range, it can cause abrupt
jumps in the clock bias calculated by the target receiver. The receiver
can successfully identify this type of spoofing by performing
integrity monitoring and analysis on the calculated clock bias
data. This limitation significantly restricts the operational range
of multi-antenna relay-based spoofing interference. The primary
solution proposed for this issue involves demodulating the satellite
signal and manipulating the code phase of the pseudo-random noise
code (PRN) sequence to compensate for the additional clock bias
introduced at the target receiver. However, demodulating the
satellite signal requires knowledge of the signal structure and
PRN sequence, making it unsuitable for military signals [22].
Figure 2 illustrates the architecture of a relay-based spoofing
interference system. Distributed relay-based spoofing interference
leverages natural or controllable propagation delays during signal
forwarding to disrupt receiver operations. Due to the confidential
nature of the M-code, relay-based spoofing has become a key focus
for targeting military codes.

Simultaneously, regional augmentation techniques based on
pseudo-satellites have matured [23]. Building upon this
foundation, literature [24] proposes a regional navigation and
spoofing interference integrated system based on pseudo-
satellites. This system consists of three components: a relay-based
interferer, a carrier platform, and a ground control station. The
relay-based interferer, positioned approximately 20 km above
ground, generates interference signals. The ground control station
controls the carrier platform’s location and transmits instructions to
the interferer, controlling the magnitude of the introduced delay in

the forwarded signal. This system utilizes controlled forwarding
delays to achieve regional mapping spoofing interference.
Concurrently, code division multiple access (CDMA) technology
is employed to superimpose the platform’s location information and
the introduced delay information onto the forwarded signal. As the
friendly spread spectrum signal is orthogonal to the forwarded
signal, the two signals act as noise to each other without mutual
interference. Enemy GPS receivers acquire erroneous delay
information, mapping the true location (R) to a virtual location
(F), achieving spoofing interference. Simultaneously, friendly
receivers obtain the carrier platform’s location information and
compensate for the delay, allowing for their navigation and
positioning. The system principle is illustrated in Figure 3.

3.2 Generative spoofing interference

Generative spoofing interference is created by a satellite signal
simulator that autonomously generates signals that mimic real
satellite navigation signals based on known signal characteristics,
including carrier frequency, C/A code, code phase, and modulation
scheme [25]. These spoofed signals are synchronized with genuine
signals to create a deceptive effect. Figure 4 illustrates the
architecture of a generative spoofing interference system.

Generative spoofing interference (GSI) can be categorized into
three levels based on its implementation complexity: primary,
intermediate, and advanced [26–28]. Primary GSI relies on
satellite signal simulators to generate spoofing signals without
synchronizing parameters with the genuine signal, resulting in
weak spoofing capabilities. Intermediate GSI, on the other hand,
estimates the genuine satellite signal parameters, such as power,

FIGURE 2
Schematic diagram of relay-based spoofing interference.
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code phase, carrier frequency, navigation message, and modulation
scheme. This enables the spoofing signal to mimic the genuine signal
in terms of signal structure, thus increasing the likelihood of
deceiving target receivers [29]. Advanced GSI builds upon
intermediate GSI by employing multiple intermediate GSI
sources for joint spoofing, overcoming the limitations of single-

antenna transmission. It further integrates beamforming techniques
to perfectly synchronize spoofing signals in parameters such as
arrival angle. Intermediate GSI is the most widely adopted and
successful technique, with the highest intrusion success rate. This
paper focuses on intermediate GSI. The core principle of
intermediate GSI lies in parameter synchronization with the

FIGURE 3
Schematic diagram of a GPS decoy jamming and regional navigation-integrated system [24].

FIGURE 4
Schematic diagram of generative spoofing interference.
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genuine signal, including power, carrier frequency, code phase,
modulation scheme, and navigation message synchronization.
This ensures the spoofing signal can successfully decouple the
genuine signal within the tracking loop of the satellite navigation
receiver, thus facilitating the receiver to track the spoofing signal and
achieve the spoofing effect. Figure 5 illustrates the general workflow
of intermediate GSI.

As illustrated in Figure 5, the implementation process of
intermediate generative spoofing interference can be described as
follows: Initially, the satellite signal receiver in the spoofing
interference module captures, tracks, and decodes the authentic
signal, obtaining the code phase, carrier phase, received power, and
navigation message of the authentic signal. Subsequently, the
obtained parameters are utilized to adjust the parameters of the
spoofed signal. Finally, the spoofed signal is modulated and
transmitted.

The spoofed signal arrives at the receiver alongside the authentic
signal. Generally, the power of the spoofed signal exceeds the power
of the authentic signal by 3 dB. Under the power advantage of the
spoofed signal, the receiver will abandon tracking the authentic
signal and switch to tracking the spoofed signal, effectively

completing the spoofing of the satellite navigation receiver. For
receivers already tracking the genuine signal, capturing other search
units will not affect the channel. Therefore, a corresponding phase
induction model is required to execute spoofing interference against
a receiver already in tracking mode while maintaining the lock. This
model employs phase induction to perform covert spoofing against
the receiver. This can be further categorized into synchronous
induction and asynchronous induction [30] based on the
different induction methods.

3.2.1 Induced spoofing interference analysis
The GPS radio frequency (RF) signal received by the antenna

cannot be directly processed at the user receiver. It first needs to
undergo down conversion by the RF front-end, followed by
necessary filtering and gain control to obtain the GPS
intermediate frequency (IF) signal. Finally, the IF signal is fed
into the receiver for signal processing and position calculation.

The signal structure of an induced spoofing signal is identical to
that of a genuine satellite signal. Therefore, the IF signal entering the
receiver can be represented by Equations 2, 3, respectively [31]:

xa t( ) � ∑Na

i�1

�����
Pi
a t( )

√
Di t − τ ia( )Ci t − τ ia( ) cos 2π f0 + fi

d,a( )t + ϕi
a( ),
(2)

xs t( ) � ∑Ns

i�1

�����
Pi
s t( )

√
Di t − τis( )Ci t − τis( ) cos 2π f0 + fi

d,s( )t + ϕi
s( ).
(3)

In this formula, xa(t) and xs(t) represent the real satellite signal
and the spoofing signal, Na and Ns represent the number of
satellites included, Pi

a and Pi
s represent the signal power, Di(t)

represents the navigation data message, Ci(t) represents the C/A
code, τia and τ

i
s represent the code phase of each signal, f0 represents

the intermediate frequency (IF), fi
d,a and f

i
d,s represent the Doppler

shift of the signals, and ϕia and ϕis represent the initial phase of the
carrier of the signals, respectively. Therefore, when induced spoofing
interference is present, the receiver mixed IF signal would have both
a real satellite signal and a spoofing signal:

x t( ) � xa t( ) + xs t( ) + n t( ), (4)
where n(t) represents Gaussian white noise with a mean value of 0.

The satellite signal must be captured before the receiver
performs the signal processing part. This process is a rough
estimate of the carrier frequency and code phase of the satellite
signal. The principle is to use the local end of the receiver to generate
a signal with a certain carrier frequency and code phase and then
correlate and mix the received signal with the local replication signal
to detect the correlation degree between the two. When the
correlation between the received signal and the local signal
exceeds the preset capture threshold, the carrier phase and code
phase of the local replicated signal can be roughly assumed to be the
same as that of the real satellite signal. However, the signal
acquisition is only a rough estimation of the parameters of the
received satellite signal, which is not enough to meet the
requirements of positioning and solving. Accurate estimation of
the satellite signal parameters also needs the receiver to enter the
tracking loop to be realized. Induced spoofing jamming is a kind of
covert spoofing jamming, which usually implements spoofing after

FIGURE 5
Intermediate generative deception interference flowchart.
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the receiver enters the tracking stage and cannot interrupt the
tracking state of the receiver’s tracking loop, so the impact of
induced spoofing jamming on the receiver is mainly reflected in
the tracking loop. Due to the continuous relative motion between the
receiver and the satellite, the pseudocode phase, carrier phase, and
carrier frequency of the receiver-received signal all change from time
to time. Signal tracking means that the receiver should accurately
always track these signal parameters. As shown in the figure, the
tracking loop of the receiver includes a code tracking loop and a
carrier tracking loop. Carrier tracking loops often include
frequency-locked loops (FLLs) and phase-locked loops (PLLs),
and delay-locked loops (DLLs) are often used in code tracking
loops. FLLs, PLLs, and DLLs are characterized by a feedback
adjustment mechanism that continuously corrects the carrier
frequency, phase, or code phase generated within it according to
the input signal to track the input GPS signal.

As shown in Figure 6, when the GPS IF signal enters the tracking
loop, the received IF signal is first mixed with the carrier copied by
the receiver’s carrier tracking loop, and the carrier stripping is
carried out to produce two data, in-phase (I) and quadrature
(Q). Then, the code tracking loop will generate three C/A codes
with a phase interval of d/2 in the lead (E), instant (P), and lag (L),
which are correlated with the I/Q signal to obtain a six-way
integration output. Among them, the recurrence codes
generated by the leading branch, the immediate branch, and the
lagging branch can be called the early code, the instant code, and
the late code, respectively. Subsequently, the correlation integral
values of the leading and lagging branches will be input to the code
ring discriminator, and the correlation values of the instant
branches will be input to the carrier ring discriminator. The
phase and frequency errors are then calculated by different
discrimination algorithms so that the carrier frequency, phase,
and code phase reproduced in the tracking loop are corrected. The
following is a detailed analysis of the impact of spoofing signals on
PLLs and DLLs.

When there is no spoofing, the received signal contains a real
satellite signal, and the correlation function between the real signal
pseudocode and the locally reproduced pseudocode can be
expressed as Equation 5 [31]:

Ra t, τ( ) � 1 − τ| |, τ| |≤ 1 0, others( ), (5)

where τ represents the code phase difference between the real
signal t and the locally reproduced signal. After the signal enters the
tracking loop, the real signal received after the carrier stripping and
correlation operation will obtain the output result of the six-way
correlator, which can be expressed as Equations 6–11 [31]:

IE t( ) � ��
Pa

√
Ra Δτ − d

2
( ) cos ϕa( ), (6)

QE t( ) � ��
Pa

√
Ra Δτ − d

2
( ) sin ϕa( ), (7)

Ip t( ) � ��
Pa

√
Ra Δτ( ) cos ϕa( ), (8)

Qp t( ) � ��
Pa

√
Ra Δτ( ) sin ϕa( ), (9)

IL t( ) � ��
Pa

√
Ra Δτ + d

2
( ) cos ϕa( ), (10)

QL t( ) � ��
Pa

√
Ra Δτ + d

2
( ) sin ϕa( ), (11)

where Pa indicates signal power, Ra(·) represents a correlation
function, Δτ represents the code phase difference between the
received signal and the locally copied signal, and φa represents
the carrier-phase difference between the received signal and the
locally copied signal. When there is induced spoofing interference,
the received signal contains a real signal and a spoofing signal, and
after the real signal pseudocode is correlated with the local
reproduction pseudocode, taking the real-time code as an
example, the outputs of the I and Q correlators are as follows
Equations 12, 13 [31, 32]:

FIGURE 6
General schematic diagram of the receiver tracking loop.
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Ip t( ) � �����
Pa t( )√

Ra t, τ( ) sin c Δfd,aT( ) cos φa( )
+ �����

Ps t( )√
Rs t, τ( ) sin c Δfd,sT( ) cos φs( ), (12)

Qp t( ) � �����
Pa t( )√

Ra t, τ( ) sin c Δfd,aT( ) sin φa( )
+ �����

Ps t( )√
Rs t, τ( ) sin c Δfd,sT( ) sin φs( ), (13)

where Pa(t) and Ps(t) represent the power of the real signal and the
spoofing signal, and Ra(t, τ) and Rs(t, τ) represent the correlation
functions between the real signal pseudocode and the spoofed signal
and the local pseudocode. Δfd,a and Δfd,s represent the carrier
frequency difference between the real and spoofed signals and the
local signal, respectively; φa and φs are the carrier-phase difference
between the real and spoofed signals and the local signal,
respectively. First, the output result of the instant branch
correlator is sent to the PLL discriminator, assuming that the
arctangent function phase discriminator is used, as shown in the
formula Δφ̂ � arctan(Qp/Ip). If there is no spoofing signal, the
output of the phase detector is Equation 14 [31]:

Δφ̂ � arctan

��
P

√
Ra Δτ( ) sin Δφa( )��

P
√

Ra Δτ( ) cos Δφa( )( ) � Δφa. (14)

At this time, the output result of the phase detector is that
the phase deviation between the real signal and the local signal
is Δφa. The PLL can then correct the local signal accordingly
so that the carrier phase of the received signal can be
continuously tracked.

However, when a spoofing signal is present, the output of the
phase detector is Equation 15 [32]:

Δφ̂� arctan�����
Pa t( )√

Ra t, τ( ) sin c Δfd,aT( ) sin φa( ) + �����
Ps t( )√

Rs t, τ( ) sin c Δfd,sT( ) sin φs( )�����
Pa t( )√

Ra t, τ( ) sin c Δfd,aT( ) cos φa( ) + �����
Ps t( )√

Rs t, τ( ) sin c Δfd,sT( ) cos φs( )( ).
(15)

From this formula, when there is a spoofed signal, the phase
identification result of the phase detector will be incorrect, and the
PLL will not be able to correct the carrier phase of the local signal
according to the phase identification result so that the carrier phase
of the real signal cannot be tracked. Similarly, in the case of DLL, it is
assumed that the DLL uses an incoherent leading hysteresis power
phase detector. When there is no spoofing signal, the phase detector
result is Equation 16 [32]:

ε � 1
2

I2E + Q2
E( ) − I2E + Q2

E( )[ ] � pa

2
R2 Δτ − d

2
( ) − R2 Δτ + d

2
( )[ ].

(16)
Because the autocorrelation function of the pseudocode is

symmetrical, R(Δτ − d
2) = R(Δτ + d

2). So, when the DLL keeps
track of the received signal, ε � 0.

When there is a spoofing signal, it is not difficult to conclude that
the correlation function between the received signal and the local
copy code will be distorted to different degrees, and the code phase
deviation of the spoofed signal relative to the real signal will lead to
the asymmetry of the relevant peaks, thus causing the phase
discrimination error of the DLL phase discriminator. For the
sake of simplicity, if the PLL has tracked the carrier phase of the
received signal at this time, the output result of this DLL phase
detector is Equation 17 [32]:

ε � ps

2
R Δτ − d

2
( ) − R Δτ + d

2
( )[ ]

+ P · Ps

4
R Δτs − d

2
( ) − R Δτs + d

2
( )[ ], (17)

where Δτs is the phase difference between the spoofed signal and the
real signal number.

In conjunction with GNSS positioning principles, errors in
the DLL and PLL discriminator tracking results can lead to
inaccurate estimations of the code phase, carrier Doppler, and
carrier phase of the received signal. This, in turn, introduces bias
in the subsequent user position calculation, resulting in
erroneous position and/or time information. However, the
tracking loop also incorporates protective mechanisms. When
the tracking loop is in a locked state and stably tracks the received
satellite signal, it is in a tracking state. When the received signal
fails to meet the tracking conditions, the tracking loop will cease
operation, indicating a tracking loop loss of lock. This can lead to
the receiver ceasing operation or attempting to reacquire the
satellite. Such a scenario would be easily detectable and not
conducive to covert spoofing. Therefore, spoofed signals must
strive to avoid triggering a tracking loop loss of lock while
gradually gaining control over the tracking loop to ensure it
continuously tracks the spoofed signal. Ultimately, this will result
in the receiver being misled by the spoofed signal.

3.2.2 Synchronous-induced spoofing model
Leveraging the receiver’s inherent inclination to prioritize

signals with greater power levels, the synchronous-induced
spoofing model operates as follows: Once the receiver has acquired
the authentic signal, the spoofing jamming platform utilizes the
decoded code phase of the authentic signal to generate a spoofed
signal with an identical code phase. This ensures that the authentic
signal and the spoofed signal align at their correlation peaks.
Subsequently, the spoofing jamming platform increases its
transmission power to achieve a power advantage over the
authentic signal, thereby causing the receiver to switch its tracking
to the spoofed signal. The code phase of the spoofed signal is then
gradually shifted away from the code phase of the authentic signal,
effectively decoupling the receiver from the authentic signal.

Based on the correlation peak shown in Figure 7A, the general
steps involved in the synchronous-induced spoofing model can be
outlined [33].

(1) Initialization: The navigation receiver initially tracks the
genuine signal. The spoofing jamming platform accurately
estimates the parameters of the genuine signal upon its arrival
at the receiver, including its code phase, carrier frequency, and
signal power. Subsequently, a spoofed signal with a code
phase aligned with the genuine signal is transmitted. At
this stage, the power of the spoofed signal is lower than
that of the genuine signal.

(2) Power enhancement: The power of the spoofed signal is
gradually increased until it surpasses the power of the
genuine signal. Upon achieving a power advantage, the
target receiver loses lock on the genuine signal and re-
locks onto the spoofed signal. The code loop and carrier
loop begin to track the spoofed signal.
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(3) Code phase shift: Once the receiver is tracking the spoofed
signal, its pseudo-random code rate is gradually adjusted,
causing a shift in its code phase away from the code phase of
the genuine signal. The target receiver then completely loses
lock on the genuine signal, and the spoofed signal gradually
replaces it entirely, effectively deceiving the receiver.

(4) Power reduction and completion: The transmission power of
the spoofed signal is reduced to match the power level of the
genuine signal, minimizing detection while completing the
synchronous-induced spoofing process.

3.2.3 Asynchronous-induced spoofing model
While synchronous-induced spoofing models require precise

alignment of the spoofed signal’s code phase with that of the
genuine signal, practical implementation faces challenges due to
inherent inaccuracies in range and velocity measurements by the
target receiver. The precision of parameter estimation, particularly
for code phase, carrier frequency, and their respective
compensations, often falls short of the requirements for
synchronous induction. This presents significant hurdles in
achieving synchronous spoofing. An asynchronous-induced
spoofing model can be built on the synchronous-induced
model. This model only necessitates a rough alignment between
the code phase of the spoofed signal and the genuine signal. The
spoofed signal then employs variable code rates to match the code
phase of the genuine signal, enabling the tracking loop to lock onto
the spoofed signal. The asynchronous-induced spoofing model

presents a less challenging implementation than its synchronous
counterpart. The correlation peak shown in Figure 7B illustrates
the process.

Based on the correlation peak variations, the asynchronous-
induced spoofing model can be divided into four steps [33].

(1) Initialization: The navigation receiver initially tracks the
genuine signal. The spoofing jamming platform accurately
estimates the parameters of the genuine signal upon its arrival
at the receiver, including its code phase, carrier frequency, and
signal power. Subsequently, a spoofed signal with a code
phase slightly lagging the genuine signal is transmitted.
Meanwhile, the spoofed signal maintains a power
advantage over the genuine signal.

(2) Code phase matching: The code rate of the spoofed signal is
gradually adjusted to bring its code phase closer to that of the
genuine signal. When the two code phases align, the code
loop, relying on the power advantage of the spoofed signal,
tracks the spoofed signal, thus successfully disrupting the
target receiver.

(3) Code phase shift: Once the receiver is tracking the spoofed
signal, its pseudo-random code rate is gradually adjusted
again, causing a shift in its code phase away from the code
phase of the genuine signal. The target receiver then
completely loses its lock on the genuine signal, and the
spoofed signal gradually replaces it entirely, effectively
deceiving the receiver.

FIGURE 7
Schematic diagram of the changes of related peaks in the synchronous induction model and the asynchronous induction model.
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(4) Power reduction and completion: The transmission power of
the spoofed signal is reduced to match the power level of the
genuine signal, along with adjustments to other parameters,
minimizing detection while completing the asynchronous-
induced spoofing process.

3.3 Summary

All the deception models mentioned above, as well as their
applicable scenarios, advantages, disadvantages, and limitations, are
shown in Table 2.

4 GNSS anti-spoofing jamming
technology

In recent years, significant progress has been made in the
development of spoofing interference countermeasure techniques,
with numerous constructive solutions proposed by researchers
from various countries. Current mainstream methods include
signal power detection [34–37], time-of-arrival analysis [38],
carrier and code phase consistency [39], carrier Doppler
analysis [40], clock difference and stability analysis [41], signal
arrival angle [42, 43], message verification [44], correlator output
statistical characteristics [45], signal quality detection [46], signal
spatial correlation [47], positioning results [48, 49], inertial
navigation assistance [50, 51], and array antenna nulling
techniques [52]. With the rapid development of machine
learning, spoofing interference countermeasure methods can
also be integrated with machine learning. Machine learning-
based spoofing interference detection methods utilize the
receiver to generate different types of feature values for
spoofing identification. The type of signal can be detected by
extracting these features, especially when the correlation peak of
the spoofing signal is close to the original signal’s correlation peak.
Based on the implementation objectives, spoofing interference
countermeasures can be broadly classified into four categories:
spoofing interference detection and identification, spoofing
interference suppression, and spoofing interference source
localization.

4.1 Spoofing interference detection and
identification

Spoofing interference detection and identification primarily
focus on the detection of spoofed signals. Upon detecting the
presence of such signals, the receiver’s normal operation is
halted, preventing it from being misled and mitigating potentially
severe consequences. In a battlefield scenario, for instance, this
would involve suspending the use of the receiver to prevent
accidental weapon activation. However, spoofing interference
detection alone is insufficient to effectively eliminate the spoofing
interference and restore the receiver system to its normal operating
state; further actions are required. The detection of spoofed signals is
typically performed at the signal level without requiring
modifications to the signal architecture, resulting in a
straightforward implementation. Based on the implementation
approach, various methods can be employed: (1) signal power
detection, (2) correlation peak detection, (3) antenna array
detection, (4) signal Doppler detection, (5) signal quality
monitoring (SQM), (6) deep learning-based interference
monitoring and identification, and (7) other methods of anti-
spoofing interference.

4.1.1 Signal power detection
Satellite signals arriving at the ground typically exhibit very low

power levels due to atmospheric attenuation caused by the
troposphere and ionosphere, as well as multipath propagation.
These signals are often masked by noise. Consequently, received
navigation signals have relatively low power. The introduction of
spoofing signals further exacerbates this issue, leading to a
significant change in the receiver’s signal-to-noise ratio, as
illustrated in Figure 8. However, to effectively achieve their
interference objectives, spoofing signal perpetrators typically
transmit spoofed signals with slightly higher power than
authentic signals. The signal power detection technique exploits
this principle by establishing a reasonable detection threshold to
identify the presence of spoofed signals within the receiver channel
[53]. In 2012, Dehghanian V [36] proposed an effective detection
method based on signal power. This method utilizes the output
signal power of the correlator following signal acquisition and
tracking to detect spoofing interference. It leverages the principle

TABLE 2 Characteristics of different methods of deception.

Types of
spoofing

Forwarding spoofing attack Generating spoofing attack

Synchronous-induced spoofing Asynchronous-induced spoofing

How it works Relays real satellite signals to increase
latency and appropriate power for

spoofing attacks

Imitate a satellite signal, increase the power from the
same code phase, and then slowly change the code
phase so that the receiver tracks the spoofing signal

Imitate the satellite signal, gradually approach the
real signal number phase from the place where the
code phase is different, and when the signal overlaps,
increase the power and gradually increase the code
phase so that the receiver tracks the deceptive signal

Merit There is no need to know the specific
parameters of the signal, and the

implementation is simple

It is highly concealed, has a good deception effect,
and is not easily detected by the receiver

It is highly concealed, has a good deception effect,
and does not need to know the exact phase of the real

letter number

Limitations Latency alone is easy to detect. The implementation is complex and also requires a
relatively accurate analysis of the real signal. Because
the military code data are not public, it is impossible

to replicate the military signal

The implementation is complex and also requires a
more accurate analysis of the real signal. Because the
military code data are not public, it is impossible to

replicate the military signal
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that spoofed signals typically exhibit higher power levels than
genuine signals. A power threshold is established, and signals
exceeding this threshold are classified as spoofed signals, while
those below are considered legitimate. However, determining the
appropriate spoofing interference judgment threshold for this
method poses a challenge, particularly for induced spoofing
interference, which can autonomously adjust its power level. This
poses a significant risk of misclassification and potentially severe
consequences. This algorithm requires no modifications to the
receiver structure, rendering it simple to implement. However, its
detection performance is compromised when the spoofed signal
power is close to that of the BeiDou signal.

In 2016, [54] proposed a spoofing interference detection
algorithm based on signal-to-noise ratio (SNR) measurement.
This algorithm exploits the high SNR anomaly generated during
spoofing signal intrusion to identify spoofed signals based on
correlator peak values. While simple to implement, this method
demonstrates limited effectiveness against highly concealed induced
spoofing interference. In 2018, Wesson K. D. et al. [55] proposed a
spoofing interference detection technique called the power
distortion detector. This technique categorizes received signals as
interference-free, multipath interference, or spoofing interference
based on observations of received signal power and correlator
function distortions. This technique effectively differentiates low-
power spoofed signals from multipath signals and requires no
modifications to the receiver hardware, making it straightforward
to implement.

In 2019, [56] investigated the detection statistics of power
detection methods based on the principles of power detection
techniques and provided specific detection thresholds. In the
same year, [57], recognizing the limitations of the carrier-to-
noise ratio (CNR) detection algorithm, proposed a spoofing
interference detection algorithm that combines the CNR
algorithm with the Doppler detection algorithm during the signal

tracking phase. This approach overcomes the shortcomings of
relying solely on the CNR algorithm for spoofing detection. In
2020, [58], acknowledging the limitations of using solely signal
power to detect spoofing interference, proposed a spoofing
interference detection algorithm based on power changes for
mobile terminals. This algorithm leverages the distinct power
variations exhibited by spoofed and genuine signals at the same
distance when the terminal is in motion to make spoofing
interference judgments. This algorithm demonstrates superior
performance when the interference source is less than 2000 m
from the terminal, and the terminal’s movement distance exceeds
200 m, but it also possesses certain limitations.

4.1.2 Correlation peak detection
Correlation peak detection techniques have demonstrated

remarkable effectiveness in detecting forwarding-based spoofing
interference. This effectiveness stems from the inherent time
delay present in forwarded spoofing signals compared to genuine
signals. This time delay inevitably results in a greater transmission
distance and time for the spoofing signal to reach the target receiver
than the genuine signal. Consequently, the received signal exhibits
anomalous correlation peaks during the acquisition or tracking
stages. The associated peak anomalies are shown in Figure 9.

In 2016, [59] proposed a detection algorithm that combines
correlation peak and power analysis for forwarding-based spoofing
interference. This algorithm determines the presence of spoofing
interference by analyzing the number of correlation peaks exceeding
the acquisition threshold and setting appropriate power detection
thresholds. While simple and effective, it suffers from detection
blind zones. Building upon Wang Zhiying’s work, [60] introduced
the full width half maxima (FWHM) algorithm as a supplementary
approach to the multi-peak algorithm for detecting short-delay
forwarding-based spoofing interference. This algorithm, which
requires no modification to the receiver structure, offers

FIGURE 8
Noise floor change before and after adding the spoofing signal.
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simplicity in implementation. However, it cannot effectively
distinguish between spoofing signals and multipath signals. To
address the shortcomings of the algorithms, [61] proposed a
novel joint detection algorithm for the acquisition stage in 2021.
This algorithm extends the previous two approaches by
incorporating a code phase difference consistency method,
effectively mitigating the influence of multipath signals. It further
refines the correlation function width threshold method [62],
thereby addressing the limitations of the previous algorithms.
This enhanced algorithm exhibits robust detection capabilities,
successfully detecting forwarding-based spoofing interference
with varying time delays.

The analysis presented above clearly demonstrates the efficacy of
correlation peak detection techniques in detecting forwarding-based
spoofing interference during the signal acquisition stage.
Consequently, this research will delve into signal correlation peak
detection techniques, exploring their integration with signal power
detection techniques to detect forwarding-based spoofing
interference. In 2022, [63] designed a receiver scheme
incorporating interference identification capabilities. This scheme
leverages the distinct correlation peak shapes generated by different
types of interference, employing deep learning to recognize and
classify these feature maps.

4.1.3 Antenna array detection
Array antenna detection techniques leverage the spatial

characteristics of spoofing signals and BeiDou signals to identify
the presence of interference. Due to implementation constraints,
spoofing signals currently received by array antennas typically
originate from a single direction [64, 65], while satellite signals
arrive from multiple directions. These detection techniques
demonstrate excellent performance but often require additional
hardware implementation, resulting in high algorithmic costs.

In 2016, [66] proposed an algorithm for spoofing signal
detection using the carrier-phase difference between two
antennas. This algorithm utilizes the precise location of the
tracked satellite as prior information to determine the carrier-
phase difference of the true signal on the known antenna array.
It further analyzes various error sources in the carrier-phase
difference calculation to detect spoofing signals. This algorithm
exhibits superior detection performance when the baseline of the
antenna array is longer and the incident azimuth angle is smaller.
However, it has limitations, as it is suitable for navigation receivers
with fixed antenna installations. In 2018, [67] proposed a blind
adaptive array signal processing method based on array antennas.
This method not only adaptively forms deep nulls in non-periodic,
periodic, and generative spoofing interference direction of arrival
(DOA) estimation but also mitigates in-band spoofing signals and
enhances the useful signal. In the same year, [68] proposed a
spoofing interference detection method based on baseline data
statistical analysis. This method considers three scenarios: single
fixed baseline, fixed independent baseline, and dual independent
baseline models. It analyzes the impact of baseline values on
detection performance. However, this method may fail when the
two antennas are not synchronized. Addressing this issue, [69]
proposed a pseudo-range and carrier-phase measurement
asynchronous model and spoofing interference detection method
based on dual antenna power measurements. This method can
detect spoofing interference under asynchronous conditions.
Furthermore, many researchers [70, 71] have proposed
corresponding multi-antenna spoofing interference detection
techniques. In 2019, [72] proposed a blind detection method for
spoofing signals using antenna array spatial diversity. This method is
implemented in a snapshot receiver and evaluated using open data
recorded by a six-element array. It exhibits a high detection rate but
has high complexity. To address the challenge of detecting spoofing

FIGURE 9
Schematic diagram of peak changes related to ultra-low delay.
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signals from different emitters, [73] proposed an anti-spoofing
method. This method uses pseudo-range double differences
(PRDD) measurements from two receivers to detect this type of
spoofing interference. Spoofing signals are identified by analyzing
the difference between PRDD measurements and estimated PRDD
values. This algorithm exhibits good detection performance when
the two receivers are placed at an appropriate distance. However, it
may fail if the platform is too small. In 2020, [74] proposed an
algorithm for detecting spoofing interference using carrier-phase
single difference (CPSD) measurements from a linear array.
Compared to the method in [73], this algorithm has less
stringent platform size requirements and can be applied to a
wider range of scenarios.

In 2021, [75] addressed the limitation of traditional spoofing
interference detection algorithms, which are unable to locate
spoofing interference. They proposed a spoofing interference
detection method based on carrier-phase difference
measurement using array multi-antenna received signals. This
method can estimate the arrival direction of the received signal
using the direction-finding principle of the correlation
interferometer without requiring prior knowledge. Spoofing
interference can be determined by comparing this estimate with
the satellite direction obtained from ephemeris calculations. This
algorithm exhibits excellent detection performance and can
identify the arrival direction of multiple spoofing signals from
different satellites. However, it has high algorithmic complexity. In
2022, Wang Xiaoyu [76] utilized the difference between real
satellite navigation signals, which arrive at the array antenna
from multiple directions in the upper hemisphere space, and
spoofing interference signals, which arrive from a single
direction. The MUSIC algorithm is used to estimate the
incident direction of each satellite, and spatial consistency is
employed for spoofing interference determination. This
algorithm has good detection performance but has high
computational complexity due to the need to measure the
arrival direction of each satellite.

In 2023, [77] proposed a novel six-element array spoofing
interference detection array antenna, as shown in Figure 10.
Spoofing interference can be detected and identified by
monitoring the relevant peak values and combining spatial
capture algorithms. Additionally, they used the long and short
baseline algorithm to quickly search the entire cycle ambiguity,
enabling high-precision detection of spoofing interference sources.
This method exhibits high detection accuracy but requires many
antenna elements, leading to higher costs.

4.1.4 Signal Doppler detection technology
For single-antenna spoofing interference, the Doppler data

dispersion between two real satellite signals exhibits non-linearity
in the time domain when the receiver is moving randomly.
Conversely, the Doppler data dispersion between two single-
antenna spoofing signals displays linearity. Additionally, the
Doppler frequency shift range of the satellite signals received by
the target receiver expands when spoofing interference is present.
Therefore, monitoring Doppler frequency shift variations can
effectively identify the presence of spoofing interference.
Figure 11 shows the nominal recorded carrier frequency error for
the four space vehicles (SVs) used in this article. As expected, the
carrier frequency of each SV varies approximately linearly with time.
The longer the transmission time, the greater the offset of the SV
from the original carrier frequency. The slope of the line correlates
with the expected Doppler shift of approximately ±5 kHz modeled
in this study.

In 2014, [78] proposed an adaptive tracking algorithm for
forwarding-based spoofing interference, combining a power
threshold detector with a Doppler frequency shift detector. This
algorithm is suitable for forwarding-based spoofing interference but
less effective against other types. In 2018, [79] presented a GNSS
anti-spoofing algorithm based on Doppler frequency shift. This
algorithm derives a Doppler frequency difference model and
transforms the spoofing interference detection problem into a
sequence linear detection problem. While simple, effective, and
demonstrating good detection performance, this algorithm may
exhibit reduced effectiveness against more sophisticated spoofing
interference. [82] proposed a joint detection of code and carrier
Doppler that can detect and identify spoofing signals. This method is
implemented on the GNSS acquisition module and requires no
additional hardware. It exhibits good detection performance in static
and uniform motion scenarios, but the detection effect is inferior
when the receiver’s acceleration is significant. In the same year, [83]
proposed a spoofing interference detection algorithm based on the
consistency of Doppler positioning repair and pseudo-range
positioning repair. The algorithm effectively improves the
performance of Doppler positioning methods and detection
methods through an improved Doppler smoothing technique
based on alpha filtering. In 2019, [80] proposed a spoofing
interference detection algorithm for medium-level spoofing
interference based on frequency-domain double peaks and
relative velocity residuals. This technique employs a fast Fourier
transform (FFT)-based approach to detect double peaks and extract
their Doppler difference. It then calculates the relative velocity
residuals based on the Doppler difference. This algorithm not
only detects spoofing signals but also distinguishes them from
multipath signals. In the same year, [81] proposed a detection

FIGURE 10
Schematic diagram of the arrangement of six array elements
antenna elements [77].
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method that jointly utilizes the carrier Doppler frequency shift caused
by the vertical reciprocating motion of the receiving antenna and the
navigation information conveyed by the received signal. [84]
proposed a spoofing detection method that utilizes the amplitude
difference and frequency difference between the superposition
composite signal containing interference and the normal signal
unaffected by spoofing in the tracking loop as the basis for
interference detection. This method can effectively detect spoofing
signals in BeiDou satellite navigation signals by setting signal power
anomaly thresholds and Doppler frequency shift detection thresholds.
In 2022, [85] proposed a spoofing interference detection technique

based on Doppler frequency difference correlation. This method
calculates the Fréchet distance between two satellites by using the
least-squares fitting of Doppler measurements within a window when
the receiver is moving. After obtaining the similarity evaluation value
between them, it is used to detect spoofing interference. This method
has low computational complexity and requires less additional
information, but its application scenarios are limited. In 2024, [86]
proposed an unmanned aerial vehicle (UAV) GNSS spoofing
detection method based on signal characteristics: Doppler
frequency shift carrier-to-noise ratio density and deep learning.
After training, the detection probability can reach 95%.

4.1.5 Signal quality monitoring (SQM)
Signal quality monitoring (SQM) technology is widely employed

in satellite navigation systems. The advantage of SQM lies in its
simple structure, enabling the detection of spoofing interference
without altering the receiver’s original design. This is achieved by
analyzing the correlator output peaks of the satellite navigation
receiver. Typically, the GNSS receiver correlator output exhibits a
characteristic red inverted triangle shape, as depicted in Figure 7.
The early code correlator output and the late code correlator output
are always symmetrical with respect to the prompt code correlator
output. When the correlator spacing is 0.5 chips, the prompt code
correlator output is twice the sum of the early code correlator output
and the late code correlator output at the same time. In the presence
of interference, the outputs of the early code, prompt code, and late
code correlators become abnormal, and their symmetry is disrupted.
For example, under normal circumstances, the output power of the
early code and the late code should be equal, ideally zero, but after
the injection of deception, the output power difference between the
early code and the late code will exhibit a significant abnormal
change, as shown in Figure 12.

FIGURE 11
Carrier frequency error due to Doppler shift [85].

FIGURE 12
Schematic diagram of the change of early code power and late code power.
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Numerous algorithms have emerged from SQM. [87]
introduced the delta metric (detecting correlation peak distortion
by comparing the in-phase outputs of the early and late code) and
the ratio metric (detecting correlation peak distortion by observing
the ratio of early and late codes to the prompt code in-phase
outputs). Subsequently, [88] proposed the S-curve-bias (SCB)
algorithm. Induced spoofing interference can affect the correlator
output. This algorithm utilizes the difference between the outputs of
the early code correlator and the late code correlator to detect
induced spoofing interference. [89] introduced a joint metric
approach for SQM, constructing a joint detection metric based
on code delay and carrier phase to enhance detection algorithm
performance. Prisiavash et al. [90] presented a two-dimensional
SQM detection algorithm based on code delay and Doppler
frequency. While this algorithm improves detection performance,
it significantly increases computational complexity. [91] applied
sliding window variance and sliding window averaging to existing
SQM methods, significantly improving detection performance in
static spoofing interference environments. [92] applied sliding
window variance processing to the SCB method and proposed a
detection algorithm based on SCB variance.

The target receiver obtains the corresponding code phase value
through the zero-crossing point of the code discriminator curve
(i.e., the S-curve) in the code tracking loop. In the absence of
interference and noise, the code phase value corresponding to the
zero-crossing point of the S-curve is zero. However, due to the
channel transmission distortion and non-linear effects of power
amplifiers, the code phase value fluctuates near zero. The SCB value,
which measures the code tracking error, serves as a criterion for
detecting spoofing attacks.

[93] proposed a method based on weighted second-order
moments (WSCM) to detect induced spoofing interference,
targeting the gradual dynamic adjustment process where spoofing
and genuine signals interact during the tracking stage, leading to
correlation peak symmetry distortion. Specifically, a weighted
criterion for the time-domain transient response values of
multiple correlators is established by expanding the second-order
central moment (SCM) [94] of the navigation signal waveform. A
WSCM test statistic is then constructed, accurately quantifying
correlation peak symmetry. [95] combined radio power detection
metrics with automatic gain control and C/N0 measurements, along
with the multi-correlation of signal distortion, to construct new
SQM thresholds for detecting and identifying spoofing interference.
This method introduces a novel metric to SQM. This SQM metric
requires additional correlators, which expands the investigation area
but accurately identifies spoofing interference among various
interference attacks.

[96] proposed a robust spoofing interference detection method
for GNSS instruments using the Q-channel signal quality
monitoring metric. This method utilizes and measures the
abnormal energy in the Q-channel of the tracking loop for
spoofing interference detection. This SQM metric overcomes the
challenge of constantly changing relative carrier phases between real
and spoofing signals, achieving higher detection probability while
being cost-effective and highly practical. It only requires minimal
modifications to the traditional receiver’s baseband correlator and
firmware. [97] proposed a spoofing detection algorithm based on a
combination of SQM and tracking parameters. This method

leverages the complementarity between different SQM metrics,
proposing an “OR” rule that combines various SQM parameters
and determines the corresponding optimal detection threshold.
Compared to a single SQM measure, SQM measure fusion based
on the “OR” principle exhibits significant performance
improvements in detection. [98] proposed a spoofing detection
algorithm based on a vector tracking structure using SQM. This
method overcomes the limitation of traditional SQM algorithms,
which become ineffective when correlation peaks do not overlap. It
utilizes existing observations in tracking to detect spoofing attacks
on the pseudocode and carrier. [99] addressed the low detection
accuracy and susceptibility to the power advantage and carrier phase
drift of spoofing signals in traditional SQM techniques. They
proposed an innovative SQM method that employs the
Kolmogorov–Smirnov (KS) test for detecting receiver correlator
output. This method overcomes the performance limitations of
traditional SQM techniques, effectively detecting subtle symmetry
distortion of the correlation function and signal power changes
caused by spoofing signals. It serves as a potential reliable
application solution for spoofing attacks with different frequency
locking modes and power consumption advantages. It also avoids
changes to the receiver hardware structure and has low
computational complexity.

4.1.6 Deep learning-based spoofing interference
detection and identification

Given the rapid advancement of deep learning, its application in
spoofing interference detection and identification has become
inevitable. Deep learning approaches for interference signal
detection and identification involve processing and analyzing
received signals to isolate interference signals and determine their
types and parameters. Interference signal identification typically
involves analyzing signal characteristics such as feature parameters,
time-domain characteristics, frequency-domain characteristics, and
phase characteristics. Deep learning methods utilize signal feature
parameters when spoofing is present and absent as network inputs
for training, resulting in a network capable of rapidly distinguishing
spoofing based on different features.

Preprocessing is usually required to identify the type of
interference in the received signal. One such method is
normalization or zero-mean normalization [100], transforming
the signal into a standard form to minimize differences. Signal
feature parameters, such as power spectral density, frequency,
amplitude, and phase, are extracted by analyzing the time-
domain, frequency-domain, and phase characteristics of the
signal. The type of interference signal can be determined by
further analyzing these feature parameters, such as narrowband
interference, broadband interference, or pulsed interference [101].
Common classification algorithms include decision trees (DT) [102,
103], support vector machines (SVM), and backpropagation (BP)
neural networks [104, 105].

[106] investigated the types and methods of interference signals
in satellite navigation systems. Time-domain cross-correlation
features of the received signal were extracted, considering the
localization and identification of multiple interference signals.
The SVM was then used to classify and identify the interference
signals. To enhance the system’s noise resistance, a convolutional
neural network (CNN) was used for interference signal recognition,
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significantly improving recognition performance at low
interference-to-noise ratios. A backpropagation neural network
(BPNN) is a neural network model trained using the error
backpropagation algorithm. It consists of an input layer, hidden
layers, and an output layer, where hidden layers can have multiple
layers. The BPNN algorithm computes the network’s output value
through forward propagation and then compares the output value
with the actual value to calculate the error value. Next, the error
value is backpropagated to the network, adjusting the weights of
each layer to minimize the error. The key to the BPNN algorithm is
the error backpropagation algorithm, which utilizes the chain rule to
propagate errors from the output layer to the input layer, calculating
the error of each layer and then adjusting the weights of each layer to
minimize the error.

[107] investigated BPNN identification algorithms, but BPNN
algorithms have issues, such as becoming stuck in local optima and
slow training speed. In classification and recognition problems,
decision trees classify input variables into a predefined category
through a series of decision nodes. In regression problems, decision
trees use a series of decision nodes to ultimately produce a
continuous output value. The basic principle of decision tree
classification algorithms is to construct a tree-like structure based
on different values of input features, assigning different input
samples to different categories. The process of constructing a
decision tree can use recursive partitioning, and [108] designed a
stable classifier using the decision tree approach. It was implemented
and tested on a hardware platform. Residual networks (ResNet) are a
type of deep neural network architecture that addresses the problem
of training deep neural networks by introducing residual blocks.
Residual networks allow information to propagate directly across
layers, enabling deep networks to better capture the relationship
between input and output, thus improving the efficiency and
accuracy of training deep networks. [109] simulated and analyzed
deep learning-based recognition algorithms by constructing real and
complex residual networks with CNNs. The study found that the
main advantage of a ResNet is that it can further improve the
network performance by adding more layers while maintaining
model accuracy. The gravitational search algorithm (GSA) is an
optimization algorithm based on Newton’s law of universal
gravitation and Newton’s second law, simulating the interaction
between celestial bodies. It searches for the optimal solution by
simulating parameters such as gravity, mass, and velocity. The basic
idea of the algorithm is to view the optimization problem as a
celestial system, where each solution is considered a celestial body,
its mass being proportional to the fitness value and its position
representing the parameters of the solution. During the search
process, each solution is affected by the universal gravitational
force and centripetal force of other solutions. The centripetal
force moves the solution toward the direction of the historical
optimal position, while gravity moves the solution toward a
better position.

Based on the GSA algorithm, [110] optimized the parameters of
SVM for identifying audio interference in terrestrial-to-space
communication. Simulation results show that GSA has
advantages such as being simple to implement, having a strong
global search capability, and fast convergence speed. SVM is a binary
classification algorithm, but it can be used for multi-class
recognition through various methods. [111] used the one-vs.-all

method for multi-class recognition. This algorithm has high
recognition efficiency and high classification accuracy. [112]
proposed a deep learning spoofing detection method based on
representation learning. This method addresses the problem of
deep learning methods being limited by training data and can be
trained using a single dataset. This lightweight critic-model-based
score detector can be seamlessly integrated into GNSS receivers
through firmware updates once trained offline, thus reducing
additional overhead.

4.1.7 Other methods of anti-spoofing interference
Beyond signal-level detection and identification of spoofing

interference, techniques involving modification of signal
structures, such as spread spectrum code encryption and message
encryption, can also be employed for spoofing interference
monitoring and identification. However, these approaches alter
the GNSS signal structure, limiting their practical applicability.
Simultaneously, anti-spoofing technologies combined with
external auxiliary techniques are also emerging, such as
integration with inertial navigation units, other radio navigation
systems, and other sensors. Among these, the combination of a
GNSS with inertial navigation units (INS) is the most widely used
anti-spoofing approach. INS positioning solutions are unaffected by
external interference, providing auxiliary information for the
detection and suppression of GNSS spoofing interference.
Existing INS/GNSS integrated navigation anti-spoofing
techniques mainly include spoofing detection algorithms based
on Kalman filter innovations and innovation rate [113, 114],
spoofing detection algorithms based on the comparison of INS
and GNSS raw measurements [115], and INS-assisted GNSS
carrier-phase spoofing detection [116].

4.2 Spoofing interference suppression

Spoofing interference suppression aims to eliminate spoofed
signals after detection and identification, thereby restoring the
normal operation of the navigation system. The most prevalent
approach for spoofing interference suppression is the use of array
antenna nulling. This technique encompasses two methods: spatial
[117] and spatiotemporal [118] processing. The core principle
involves generating nulls in the direction of the interfering signal
to suppress the interference. Array antenna nulling can be
categorized into pre-despreading and post-despreading spoofing
interference suppression. Pre-despreading methods have a smaller
computational load and leverage the characteristic of spoofing
interference power superposition in the spatial domain. They
estimate the spoofing signal steering vector or signal subspace to
achieve spoofing interference suppression. However, the
suppression performance of this method is significantly affected
by the spoofing signal power. Higher spoofing signal power
generally leads to better interference suppression performance.
Conversely, post-despreading spoofing interference suppression
techniques first identify the spoofing interference signal and then
calculate the steering vector and weights specifically for the
spoofing signal.

Pre-despreading spoofing interference suppression methods
typically leverage the power advantage of spoofing interference to
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estimate the steering vector and spatial information. Based on this
information, weights are calculated for weighting, achieving
spoofing interference suppression. However, the accuracy of
spoofing interference spatial information estimation is
significantly influenced by the power level due to the lower
signal-to-noise ratio before despreading. The suppression
performance deteriorates under low spoofing interference power
conditions. Nonetheless, because despreading is not required, the
computational load is smaller than post-despread interference
suppression methods. Despreading improves the signal-to-noise
ratio for post-despreading spoofing interference suppression
methods, leading to more accurate signal spatial characteristics. It
also allows for obtaining carrier phase information that can be used
to identify spoofing signals based on other characteristics, further
enabling interference suppression. In addition to these methods,
signal reconstruction can be employed for spoofing interference
suppression in single-antenna receivers, as illustrated in Figure 13.
This approach involves detecting spoofing interference and
extracting its code delay, Doppler frequency, carrier phase, and
signal amplitude to reconstruct the spoofing signal. The
reconstructed signal is then subtracted from the original
intermediate frequency (IF) navigation signal, effectively
eliminating the spoofing interference and yielding a spoofing-free
navigation signal.

[119] proposed a spoofing signal classification module to
distinguish between spoofed and genuine signals, reconstructing
and eliminating the spoofed signal based on its characteristics. The
processed signal is then re-examined, and if spoofing interference is
detected, the process of reconstruction and elimination is repeated.
[120] estimated the amplitude and phase of the spoofing signal to
reconstruct it, subtracting the reconstructed signal from the delayed
original signal. The performance was evaluated using the
interference cancellation ratio (ICR). Simulation results from
these studies indicate that signal reconstruction exhibits excellent
suppression performance, but it necessitates continuous and
accurate acquisition of spoofing signal information, leading to
significant complexity and implementation challenges.

The difficulty and computational complexity of accurately
estimating all parameters of spoofed signals significantly limit the
application of signal reconstruction methods [121]. HANS et al.
[122] proposed a subspace projection method that estimates the
carrier frequency and code phase of spoofed signals through capture
tracking. A signal subspace of the forged signal is constructed by
exploiting the near orthogonality of their PRN codes. The received
signal is then orthogonally projected onto this subspace, suppressing

the spoofed signal and enabling the capture and tracking of the true
signal. Compared with signal reconstruction methods, this method
requires less information about the spoofed signal and exhibits
better robustness. However, if the phase difference between the
spoofed and true signals is less than one chip, the suppression
function will be lost, indicating that this method cannot detect
spoofed signals with small deviations.

[123] proposed an adaptive beamforming algorithm for
spoofing interference suppression in GNSS receivers. Adaptive
beamforming can control the radiation pattern of the antenna
array, suppressing spoofed signals from the direction of the
spoofing interference source and enhancing the true navigation
signals from the direction of navigation satellites. Beamforming
technology is used simultaneously with spoofing interference
detection technology based on antenna arrays. First, baseband
signals are acquired through the antenna array, and a circulant
matrix is established. Spoofing interference detection is achieved
based on eigenvalue testing. Subsequently, spoofing interference is
suppressed, and the true signal is enhanced through beamforming
technology. Adaptive beamforming has many applications in the
suppression of jamming interference, and the algorithm is
relatively mature. It can be directly applied to spoofing
interference suppression and can simultaneously suppress both
jamming and spoofing interference. However, with the increase in
the number of interference directions, the antenna array needs to
further increase the number of antenna elements, making the
complexity and high cost of the equipment the main reasons
limiting its widespread application. Introducing a multi-
correlator structure in the receiver allows for simultaneous
capture and tracking of both the true signal and spoofed
signals. Subsequently, a decision method confirms the true
signal and eliminates spoofed signals, enabling the detection
and suppression of spoofing signals. When multiple signals
exist in the received signal, multi-signal tracking is performed
using multiple correlators without prior knowledge of the spoofed
signal. The multipath estimating delay lock loop (MEDLL)
technique is used to process the baseband signal, obtaining the
signal’s amplitude, propagation delay, and carrier phase, denoted
as [124]. Subsequently, based on the estimated amplitude,
propagation delay, and carrier phase of the signal, one set of
signals is removed from the original baseband signal and
tracked separately, thereby obtaining the tracking results of the
other set of signals.

In combined navigation-based spoofing interference detection
methods, if the satellite navigation receiver is determined to be

FIGURE 13
Block diagram of the signal reconstruction deception jamming suppression method.
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spoofed, non-satellite navigation systems are used for navigation,
achieving spoofing interference suppression. The essence of this
method is to discard untrustworthy satellite navigation results and
select other reliable navigation results. The disadvantage of this method
is that it requires multiple navigation systems, which increases costs.
Moreover, the positioning accuracy after suppression depends on the
performance of the other navigation methods.

Receiver autonomous integrity monitoring (RAIM) is also an
effective spoofing interference suppression method. This method
can effectively eliminate faulty satellites. In cases with fewer spoofing
interference signals, they can be eliminated from the received
signals, ensuring the authenticity and validity of the navigation
positioning results. However, in general, to obtain reliable
positioning solutions from the receiver, spoofing interference
often requires the simultaneous transmission of false signals from
multiple satellites with a higher power level than the true signal. This
may lead to the receiver completely capturing and tracking the
spoofed signal, rendering the RAIM algorithm ineffective. Table 3
below summarizes the complexity, performance, and limitations of
various methods.

4.3 Spoofing interferer location

Detecting, identifying, and suppressing spoofing signals are
challenging tasks, often requiring the addition and upgrade of
receiving equipment, significantly increasing the cost of spoofing
interference suppression. Another approach to spoofing interference
suppression is to focus on high-precision strikes against the spoofing
interference source, eliminating its impact by destroying it. Existing
methods for locating satellite navigation spoofing sources employ a
two-step localization approach. In the first step, the receiver
intercepts the spoofing interference signals and performs initial
signal processing to estimate parameters such as time of arrival
(TOA), time difference of arrival (TDOA), frequency difference of
arrival (FDOA), and angle of arrival (AOA). The second step
establishes an equation relating these intermediate parameters to
the spoofing source location, and solving this equation yields the
location information. Angle of arrival (AOA) analysis based on
antenna arrays is currently the most practical method for locating
spoofing sources. The algorithm principle is illustrated in Figure 14.
Given that spoofing sources are typically fixed, the direction of

TABLE 3 Summary table of different spoofing interference suppression methods.

Method Complexity Performance Limitations

Signal reconstruction High Medium It is necessary to obtain spoofing signal information continuously and accurately

Subspace projection Medium High Fails when the phase difference between the deception signal and the real signal is less than
one chip

Beamforming Medium High Requires array antennas with element spacing less than half the wavelength

Multi-correlator method Low Medium It will fail when the amount of computation is large, and the power of the spoofing signal is
large

Integrated navigation method Medium Medium Requires additional hardware or sensors

Direct positioning method Medium Medium Has poor performance at medium to low signal-to-noise ratios

Receiver autonomous integrity
monitoring

Medium Medium Spoofing signal power is required, and there are multiple satellites

FIGURE 14
Schematic diagram of the signal angle of arrival measurement [125].
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arrival of the spoofing signals remains constant. Therefore, the AOA
can be determined by measuring the different phases of the same
spoofing signal arriving at different antennas in a uniform linear
array. [125, 126] were the first to achieve sub-meter localization
accuracy, reaching 0.7 m. Subsequently, University College London
leveraged multiple-input multiple-output (MIMO) technology and
channel state information (CSI) to measure AOA, achieving a
remarkable localization accuracy of 23 cm [127].

The accuracy of the two-step localization method is highly
dependent on the accuracy of the parameter estimation. The
location calculation and parameter estimation are inseparable,
limiting the effective utilization of correlations between signals
received at different stations, leading to information loss,
difficulties correlating localization parameters, and high system
sensitivity requirements. Clock offset, however, contains
information about the location of the spoofing interference
source relative to the receiver. Utilizing the clock offset measured
at different receiver locations under both genuine and spoofing
interference signal conditions allows for calculating the distance
difference between the spoofing interference source and the two
receivers. The location of the spoofing interference source can be
estimated using hyperbolic intersection localization by employing
multiple sets of receivers to measure these distance differences.

4.4 Summary

This article summarizes the scenarios to which the commonly
used anti-spoofing methods of various receivers are applicable, what
kind of spoofing signal characteristics apply, and what functions the
receiver needs to have, as shown in Table 4 below.

5 Opportunities and challenges

As satellite navigation systems continue to evolve, dependence
on these systems will inevitably increase, making the threat of
satellite navigation spoofing interference increasingly prominent.
Consequently, intensifying research and preventative measures,
along with developing more intelligent and advanced anti-
interference technologies, are crucial. Several challenges persist in
the field of anti-spoofing interference:

First, the quality of spoofed signals continues to improve,
resulting in enhanced concealment, increased positional and
velocity accuracy, higher generation frequencies, and a closer
resemblance to genuine signals. This allows spoofed signals to
seamlessly and covertly integrate into receivers, posing significant
challenges for anti-spoofing measures. Second, the maturation of
multi-spoofing interference platform technologies has introduced a
paradigm shift from single-platform spoofed signals. These multi-
platform systems generate interference signals from multiple
directions and utilize diverse interference types simultaneously,
demanding higher anti-interference capabilities from receivers.
Third, current experimental conditions for spoofing interference
are overly idealized, primarily conducted in open, sparsely
populated areas with minimal radio signal interference. Limited
research has been conducted in complex terrain, such as
mountainous regions and urban areas. The lack of experimental
materials for such scenarios significantly hinders the development of
effective anti-spoofing interference technologies. Meanwhile,
spoofing techniques are constantly evolving. Attack methods such
as security code estimation and replay (SCER), which differ from
traditional spoofing methods, are becoming increasingly cost-
effective [128]. With multiple spoofing methods working in

TABLE 4 Positioning methods and receiver requirements.

Targeting method Spoofing interference feature Receiver requirements

Multi-receiver detection Spoofing jamming is emitted by the same interferer Multiple satellite nav receivers in different locations

Integrated navigation detection Only one GNSS system is spoofed Inertial navigation and satellite navigation combined

Clock error detection The deception jamming clock is inconsistent with the real
clock difference

——

Signal reconstruction (residual signal
detection)

Real signals can be detected. Multiple signal reception channels

Spoofing interferer location Multiple spoofing signals come from the same interferer. Multiple receivers in different locations

Message verification Unencrypted Encryption verification

Power detection Absolute power detection The receiver has a power detection function that can distinguish higher
signal amplitudes

Relative power detection

Automatic gain control (AGC) detection The receiver is equipped with a carrier-to-noise ratio detection
function

Power rate of change detection

Arrival time detection There is a delay in spoofing signals Arrival time analysis

Correlation detection Multiple spoofing signals come from the same direction Measure the correlation coefficient of the output of different tracking
channels

Signal quality checking The true signal-related peaks are distorted Multiple correlators

Airspace/space-time detection The on-road signal is coming from the same direction Multiple receiving antennas
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tandem, receivers face a significant challenge in handling scenarios
where multiple spoofing attacks coexist.

To address these challenges, future satellite navigation receivers
must adopt a combined approach to anti-interference detection. This
approach should leverage machine learning, consistency checks, and
array testing to enable more effective and robust spoofing interference
detection [129]. Additionally, by combining the performance
advantages of multiple research projects, a multi-faceted aerial
defense system could be developed using unmanned aerial vehicle
(UAV) clusters, ships, and aircraft. This system would encompass
target identification and tracking, radio countermeasures, and multi-
target strikes. Finally, compact anti-interference platforms should be
developed to enhance the stability of anti-spoofing measures by making
anti-interference receivers portable, miniaturized, and cost-effective.
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Low Earth Orbit (LEO) communication satellites offer reduced signal loss,
fast movement, multi-beam, typically providing single coverage. This paper
introduces a novel multi-beam power positioning method for low-orbit single-
satellite, addressing the slow convergence and low accuracy of Doppler
positioning. It establishes a power observation equation system, initializes with
the nearest neighbor algorithm, and refines with the least squares method.
Monte Carlo simulations indicate that with good initial values, the method
converges in under 10 iterations, achieving 88.06% availability at 20° elevation
with errors of 5,331 m (vertical) and 8,798 m (horizontal), and a timing error of
205 μs. At 70° elevation, all users converge with errors of 1,614 m and 1,088 m,
and a timing error of 31.3 μs, demonstrating high power positioning availability.
The statistical results show that power positioning users can obtain the
positioning accuracy of kilometers and the timing accuracy of microseconds,
which meets initial timing needs under strong confrontation, enhancing the
medium and high orbit satellite navigation.

KEYWORDS

LEO satellites, multi-beam, power positioning, positioning accuracy, positioning
availability

1 Introduction

Low Earth Orbit (LEO) communication satellites, as an emerging navigation
enhancement method, possess many unique advantages. Their orbital altitude is relatively
low, and the signal power is high, with the ground power being about 30 dB higher than that
of Global Navigation Satellite System (GNSS), resulting in high signal quality and strong
anti-interference capabilities, enabling services to be provided indoors and in obstructed
areas [1, 2]. The greatest advantage of LEO satellites is their fast movement speed, which
can greatly reduce the correlation between adjacent observation epochs, achieving rapid
convergence in positioning [3], and the large Doppler shift, which offers good Doppler
observation [4].

Based on the characteristics of LEO satellites, with a sufficient number of satellites, LEO
navigation constellations can perform independent positioning and timing, or combined
positioning and timing with GNSS, using traditional positioning algorithms such as
pseudorange positioning and carrier phase positioning to achieve navigation enhancement
[5–7]. The analysis of the combined positioning effects of LEO satellites with different
orbital heights and GNSS constellations [8] shows that LEO satellites have low orbits and
fast geometric motion speeds, with the geometric dilution of precision (GDOP) value
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changing rapidly, effectively shortening the convergence time for
GPS/BDS positioning. The enhancement effect of different numbers
of LEO satellites on GNSS is significantly different, with more
satellites leading to more noticeable enhancement effects.

However, for LEO satellite constellations, if the GNSS
pseudorange-based time difference positioning method is still
used, the system’s requirement for time synchronization is very
high, which will greatly increase the system construction cost [9].
When the number of visible satellites is insufficient, and users do
not meet the conditions for multiple coverage, both pseudorange
positioning and carrier phase positioning are not available. In
this case, single-satellite Doppler positioning requires a relatively
long observation time for the satellite, using integrated Doppler
for positioning solution, which is not real-time [10], has a long
convergence time, and low precision, and has certain application
limitations. In LEO-based Doppler positioning, the pioneering
TRANSIT navigation system was the first satellite-based Doppler
positioning system [11]. Launched in 1964 for military applications,
it was later released for public use in 1968 to provide positioning
and navigation services [12]. The system operated with over 10
satellites in polar orbits at an altitude of approximately 1,100 km.
Typically, a receiver could only track one satellite at a time. Using
about 2 min of Doppler shift observations, the point positioning
accuracy was about 100–200 m. With the advent of the Global
Positioning System (GPS) and its superior performance, TRANSIT
was decommissioned in 1996.

To meet the rapid positioning needs of LEO users, the power
measurements of multi-beam signals can be utilized to calculate the
user’s approximate location. Due to the beam scanning broadcast
method used by LEO communication satellites [13], there are
variations in received power for receivers at different locations on
the Earth’s surface at various times during the satellite’s motion. The
magnitude of these variations is related to the beamwidth and the
antenna pattern. Current research on power matching positioning
is focused on indoor positioning, where multiple WiFi access points
can be detected indoors and their signals are easily measured,
making WiFi received signal strength indication based fingerprint
positioning one of the most popular positioning technologies
today [14]. This method typically consists of two stages: offline
and online [15, 16]. In the offline stage, reference points in the
positioning area are surveyed to collect received signal strength
as a fingerprint database [17, 18]; in the online stage, real-time
positioning data are matched with the fingerprint database to obtain
the estimated location [19].

For the first time in the context of LEO satellite scenarios,
this paper proposes the use of multi-beam signal power
measurements for positioning and timing. Based on traditional
satellite navigation system algorithms, the nearest neighbor
algorithm [20, 21] is used to solve for initial values, and the least
squares method [22] is used for iterative solution, including the
linearization of nonlinear equation systems, solution of linear
equation systems, updating the roots of nonlinear equation
systems, and judging the convergence of iterations. It is possible
to use power measurements for single-point rapid positioning of
users under a single LEO satellite scenario, with the expectation
that some users will achieve better positioning and timing
performance.

2 Materials and methods

2.1 Multi-beam signal power observation
model

According to the classic Friis transmission equation, the power
measurement of the multi-beam satellite signal received by the
satellite azimuth angle β, the satellite elevation angle γ and the
distance between the user and the satellite d, which can be
expressed as:

Pk(γ,β,d) = Ek(γ,β) − L(d) +G(γ) (1)

Among them, the multi-beam number k = 1,⋯,M representing
the signal transmitted by the satellite. Ek(γ,β) represents the EIRP
value of the satellite transmitted signal, L(d) represents the spatial
transmission loss of the satellite signal, and G(α) represents the gain
value of the user’s receiving antenna, which is solely related to the
user’s elevation angle α and can be calculated using the satellite
elevation angle γ.

The EIRP value of the satellite transmitted beam signal and the
gain value of the user’s received antenna Ek(γ,β), G(γ) can usually
be obtained by antenna simulation or actual measurement, and it
is assumed that the accurate modeling of both has been completed,
and the modeling error is ignored.

When the satellite position is known, the user’s position can be
determined by the satellite elevation angle γ, the satellite azimuth
angle β and the distance d between the user and the satellite, and
when the three-dimensional position of the satellite in the ECEF
coordinate system is known, the three-dimensional position of the
user in the ECEF coordinate system can be obtained by using the
geometric relation. Figure 1 below shows the geometric relationship
between the user and the satellite, where R is the radius of the earth,
H is the orbital height of the satellite, h is the geodetic height of
the user, and d is the distance between the user and the satellite.
Firstly, the relationship between the elevation angle of the user and
the expansion angle of the satellite beam is derived.

The geometric relationship shown in the figure above, according
to the sinusoidal theorem, can be obtained:

(R+H) sin γ = (R+ h) sin(α+ π
2
) (2)

Therefore, it is possible to derive the satellite beam tension angle
γ as Equation 3:

γ = sin−1( R+ h
R+H

cos α) (3)

When the elevation angle of the user is valued between 0° and
90°, it is not difficult to conclude that the elevation angle of the user
corresponds to the value of the satellite elevation angle from the
function relationship.

The space transmission loss of satellite signals L(α,h) is deduced
below, and the distance from the satellite to the user is calculated
first. According to the geometric relationship shown in Figure 1, and
according to the cosine theorem, we can get:

(R+H)2 = (R+ h)2 + d2 − 2d(R+ h)cos(α+ π
2
) (4)
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FIGURE 1
Geometry of the user’s received satellite signal.

Further, the distance from the user to the satellite d can be
calculated as:

d = √(R+H)2 − (R+ h)2 cos2 α− (R+ h) sin α (5)

According to Friis transmission equation, the power in the fixed
solid angle remains the same.Therefore, the spatial transmission loss
of signal power at a point on the spherical surface with a radial of the
transmitting antenna is Equation 6:

L(α,h) = L(d) = 20 lg (4πd) − 20 lg (λ) (6)

where λ refers to the wavelength.
Thus, Equation 1 can be written in a more detailed form as

Equation 7:

Pk(α,γ,β,h) = Ek(γ,β) − L(α,h) +G(α) (7)

2.2 Power perception measurement error
model

After receiving the signal from the satellite, the user usually
measures the power of the received signal bymatching the reception.
Assuming that the user has completed the time and frequency
synchronization of the satellite signal, and stripped away the
possible pseudo-random codes and Doppler frequencies that may
be modulated on the signal, while ignoring the influence of the

transmitted message symbol, the user’s received signal can be
expressed as Equation 8:

s(t) = A+ n(t) (8)

where the amplitude of the received signal is denoted by A =
√2Pk(α,γ,β,h), the thermal noise error of the power is denoted by
n(t) which generally obeys a normal distribution [23].

Considering that the thermal motion of charged particles
in a circuit forms thermal noise, the noise power N is usually
expressed as the noise temperature T corresponding to the thermal
noise power of the same magnitude, and the relationship between
them is as Equation 9:

N = kTBn (9)

The unit of N is Watts(W), the unit of T is Kelvin (K) and the
unit of noise bandwidth Bn is Hertz (Hz). The Boltzmann constant
k is equal to 1.38× 10−23 J/K, which T is taken as 290 K at room
temperature.

When the duration of the signal power measurement is TP, it
is advisable to assume that the user takes the coherent integration
method to estimate the signal amplitude, then there are:

Â = 1
TP
∫
TP

0
s(t)dt = A+ n′(t) (10)

where Â is the measured value of the amplitude of the received
signal. n′(t) is the coherent integrated noise, and its equivalent noise
bandwidth Bn is taken 1/TP. Before and after coherent integration,
the signal power, amplitude, and noise power spectral density do
not change, but because the noise bandwidth before the correlator
is Bpd, and the filtering bandwidth of the coherent integrator can be
regarded as Bn , the narrowing of the noise bandwidth must cause
a decrease in the noise power, so the noise power after coherent
integration is reduced to N/BpdTP.

2.3 A system of equations for power
observations

When the user receives multiple beamed satellite signals and
measures the signal power, the equation is as follows:

{{{{{{{
{{{{{{{
{

E1(γ,β) + L(d) +G(α) +N
T
1 = ̂P1

E2(γ,β) + L(d) +G(α) +N
T
2 = ̂P2

⋮

EM(γ,β) + L(d) +G(α) +N
T
M = ̂PM

(11)

Among them, ̂P1, ̂P2,⋯, ̂PM are the power measurement of
different beams, andNT

1 ,N
T
2 ,⋯,N

T
M are the power observation noise

of different beams.
The power observation equation for the other beams is different

from the observation equation for beam 1, the difference between
other beams and beam 1 is calculated by:

{{{{{{{
{{{{{{{
{

ΔE2(γ,β) +N
T
2 −N

T
1 = Δ ̂P2

ΔE3(γ,β) +N
T
3 −N

T
1 = Δ ̂P3

⋮

ΔEM(γ,β) +N
T
M −N

T
1 = Δ ̂PM

(12)
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where, take ∆Ek(α,β) = Ek(α,β) −E1(α,β), ∆ ̂Pk = ̂Pk − ̂P1.
Assuming that the initial values of γ and β are γ0 and β0 ,where

the system of equations is linearized and expanded, then there is:

{{{{{{{{{{{
{{{{{{{{{{{
{

ΔE2(γ0,β0) + (γ− γ0)
∂ΔE2

∂γ
|
(γ0,β0)
+ (β− β0)

∂ΔE2

∂β
|
(γ0,β0)
+ΔNT

2 = Δ ̂P2

ΔE3(γ0,β0) + (γ− γ0)
∂ΔE3

∂γ
|
(γ0,β0)
+ (β− β0)

∂ΔE3

∂β
|
(γ0,β0)
+ΔNT

3 = Δ ̂P3

⋮

ΔEM(γ0,β0) + (γ− γ0)
∂ΔEM
∂γ
|
(γ0,β0)
+ (β− β0)

∂ΔEM
∂β
|
(γ0,β0)
+ΔNT

M = Δ ̂PM

(13)

where ∆NT
k = N

T
k −N

T
1 , and cause:

X =
[[[[[

[

∂ΔE2

∂γ
|
(γ0,β0)

∂ΔE3
∂γ |(γ0,β0)

⋯ ∂ΔEM
∂γ |(γ0,β0)

∂ΔE2

∂β
|
(γ0,β0)

∂ΔE3
∂β |(γ0,β0)

⋯ ∂ΔEM
∂β |(γ0,β0)

]]]]]

]

T

(14)

y = [Δ ̂P2 −ΔE2(γ0,β0),Δ ̂P3 −ΔE3(γ0,β0),⋯,Δ ̂PM −ΔEM(γ0,β0)]
T

(15)

n = [NT
1 −N

T
2 ,N

T
1 −N

T
3 ,⋯,N

T
1 −N

T
M]

T (16)

Then the above equation can be rewritten as:

X ⋅ [γ− γ0,β− β0]
T = y + n (17)

Further, it can be solved that:

[γ,β]T = [γ0,β0]
T +X−1 ⋅ (y + n) (18)

Equations 11–18 are the derivation process of the least squares
algorithm for power positioning. According to the properties of the
least squares solution for linear systems of equations, the number
of equations should be greater than or equal to the number of
unknowns. Considering the unknowns are the satellite elevation
angle γ and the satellite azimuth angle β, the number of equations
should be at least 2. Furthermore, since the linear system of
equations is derived from the differentiation of different beams, the
minimum number of satellite beams required by the algorithm is 3.

2.4 Power positioning algorithm solution
process

Since multi-beam power positioning is applied to low-orbit
satellite scenarios, the quality of the received signal is poor when
the user’s elevation angle is too low, thus eliminating the data
with low user elevation angles. In addition, according to the
general specification for BeiDou/GlobalNavigation Satellite Systems
(GNSS) geodetic receivers [24], typical values for navigation receiver
acquisition and tracking sensitivities are generally below−130 dB m,
thus the simulation parameters are set as Table 1:

The input required for the power positioning least squares
algorithm is the initial value of the satellite elevation angle γ0, the
initial value of the azimuth angle β0, the ERIP value of k beams of
prior information Ek(γ,β) , and the user gainG(α).Figure 2 gives the
flowchart of the algorithm.

The least-squares algorithm itself outputs the satellite tension
angle and azimuth angle, however, we need to obtain the user’s

TABLE 1 Simulation parameters.

Parameter type Parameter value

Earth radius R 6371 km

Satellite orbital altitude H 1,200 km

User elevation angle α [10°,90°]

Satellite elevation angle γ can be calculated by α

satellite azimuth angle β [1°,360°]

Total number of satellite beams 52

User geodetic height h 0 m

User receive gain G(α) 0 dB

Noise bandwidth Bn 1,000 Hz

Noise temperature T 290 K

Least squares iterations N 10

Receiver sensitivity −160 dB W, −190 dB W

vertical and horizontal information. It is worth noticing that in the
process of calculating the elevation angle of the user, h = 0 is first
assumed, which is due to the negligible altitude of the user’s geodetic
altitude in relation to the radius of the Earth and the orbital height
of the satellite. The h after the least squares solution is obtained by
a series of calculations such as link loss, and the two values are not
contradictory, and the analysis of the error in the following is based
on the h of the least squares solution.

Substituting Equation 2, we can get the elevation angle from the
user to the satellite as Equation 19:

α = cos−1{R+H
R+ h

sin γ} (19)

According to Equation 4, the user’s geodetic height can be
calculated as Equation 20:

h = −R− d sin α+√(R+H)2 − d2 cos2α (20)

where d can be calculated by Equation 5, and the user vertical
information is Equation 21:

x = d
sin γ

sin (α+ γ)
(21)

In order to facilitate the subsequent analysis of the power
positioning and timing performance, the evaluation index of the
positioning and timing result error is defined here, assuming that
the true value of the satellite elevation angle is γr and the solution
value is γ ,then the elevation angle error is ∆γ = γ− γr.

If there are n users in different locations, the statistical
positioning performance of these users can be given by the
error deviation and the standard deviation, which is defined as
Equations 22, 23:

E(|Δγ|) = 1
n
∑
n
|γ− γr| (22)
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FIGURE 2
Flowchart of the power positioning least squares algorithm.

std(Δγ) = √D(Δγ) = √ 1
n− 1
∑
n
(Δγ−E(Δγ))2 (23)

Satellite azimuth error, user horizontal error, user vertical error
and their deviation are defined as above.

Assuming the true distance between the user and the satellite is
dr, and the distance calculated by the power positioning algorithm
between the user and the satellite is d, then the timing error is
defined as Equation 24:

Δt = |
dr − d
c
| (24)

where c is the speed of light, which is approximately taken as 3×
108m · s−1.

3 Results

3.1 The requirements and acquisition of
initial values in the least squares method

In the process of power positioning solution, the initial
conditions have a great influence on the results, and the better
initial conditions can make the iteration converge quickly, and
the poor initial conditions will greatly reduce the iteration speed,
and even the convergence results cannot be obtained in the end.
Due to the characteristics of planar phased array antennas, ground
users may have the same receiving power in different areas, and if
the gap between the initial position and the user’s position is too
large, the solution is easy to fall into the local optimal solution,
resulting in a large positioning error.

3.1.1 Requirements for initial values in the least
squares method

When the initial values are set close to the true values,
the iteration tends to converge; when the initial values are set
far from the true values, the least squares iteration diverges.
Consequently, the power positioning least squares scheme has certain
requirements for initial values.

To determine these requirements, it is assumed that the true

elevation and azimuth angles of the satellite are [

[

γr
βr
]

]
, the initial

value [

[

γr ± a

βr ± b
]

]
is set to a certain value below the true value, and

the positioning results [

[

γ

β
]

]
of multiple Monte Carlo simulations

are required to converge to within the range of the true value of 1°,

that is[

[

γr ± 0.5°

βr ± 0.5°
]

]
, the initial value requirements of the least squares

method at this time are required a and b, where a is the initial value
requirement of the satellite elevation angle, and b is the initial value
requirement of the satellite azimuth angle.

In the simulation, users with poor observation quality due to low
elevation angles are excluded. By iterating over user elevation angles
α in the range [10°, 90°] (which corresponds to satellite elevation
angles γ in the range [0°, 55.8°]), and satellite azimuth angles β in
the range [1°, 360°], we can statistically determine the initial value
requirements a and b for the power matching least squares method.

The statistical results of the initial value of least squares solution
requirements are shown in Figure 3:

It is not difficult to see that when the initial values of elevation
angle and azimuth angle are below the true value of 2°, it can be
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FIGURE 3
The proportion of users with different initial values required by the least squares algorithm.

FIGURE 4
The Nearest Neighbor algorithm: (A) Satellite elevation angle errors (B) Satellite azimuth angle errors.

considered that the vast majority of users (94.5% and 93.2%) can
use power matching positioning to perform least squares solution
and obtain a convergence solution. The solution to meet the initial
value requirements can be obtained by using user prior information
or other algorithms.

3.1.2 Acquisition of initial values by the nearest
neighbor algorithm

This section introduces the method of obtaining the initial value
that satisfies the convergence condition of least squares solution,
and briefly explains the nearest neighbor algorithm (K value takes
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FIGURE 5
Monte Carlo results of γ,β,∆h,∆x.

1 in KNN) as an example, and then considers different fingerprint
database frameworks and parameters.

According to the system of power measurement Equation 10,
based on the EIRP information of each beam (E1,E2,⋯,EM) known
on the satellite side, the theoretical received power values of users
at different locations (P1,P2,⋯,PM) can be solved through the
link budget, and in fact, for a single user, the received power of
up to M beams ( ̂P1, ̂P2,⋯, ̂PM) can be obtained. When the user’s
fingerprint location information is the real user location, there will
only be one noise deviation between the theoretical received power
value of M and the actual received power value of a single user,
which is very small and negligible in most cases, which is called
positioning matching. However, when the user location fingerprint
is different from the real user location, there will always be a large
difference between the theoretical received power value and the
actual received power value of some beams of a single user, which
is called mismatch.

Considering the processing time of the nearest neighbor
algorithm and the actual user situation, the power fingerprint
database in this paper traverses the elevation angles of different
users and takes a certain azimuth interval to establish it. In the
matching process, the azimuth interval can be initialized by a
priori known information, and then the azimuth search interval
can be gradually narrowed to achieve more accurate and robust
matching results.

In the simulation, we traverse the user’s elevation angle
αϵ[10°,90°] (converted to a satellite elevation angle of γϵ[0,55.8°]),
the satellite azimuth angle βϵ[1°,360°], and the user’s ground
height are all set to 0 m. Assuming that the user’s elevation
angle is unknown and the azimuth uncertainty is 5°, there

are 72 different fingerprint databases, each of which contains
all the user’s elevation angle information and a certain
azimuth information. In order to reduce the influence of
noise on the nearest neighbor algorithm, the width of the
fingerprint library is taken as 10 beams, which are the 10
largest beam points among the M received power obtained
by each user.

The simulation results of the nearest neighbor algorithm power
matching localization are as Figure 4.

The colorbar depth of the above two graphs represents the
azimuth and vertical error of the satellite, and the darker the color,
the smaller the error. It can be seen that the error of satellite
elevation angle is small, generally below 0.5°, while the azimuth
error of satellite is large, generally above 0.5°, and the error under
the condition of high user elevation angle is significantly increased,
which is mainly due to the fact that the beam receiving power of
users with high elevation angle is generally large, and it is difficult to
distinguish the difference of beam between different users, resulting
in some misjudgments in the algorithm. In general, the power
matching positioning of the nearest neighbor algorithm can meet
the requirements of the least-squares algorithm for the initial value
of convergence.

3.2 Analysis of the single user positioning
error

Assumed the satellite angle errors are [

[

∆γ

∆β
]

]
, the

power calculation error is ∆p,if error terms are taken into
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FIGURE 6
Normal distribution fits of Monte Carlo results.

FIGURE 7
When receiver sensitivity is −160 dB W: (A) User vertical errors in different locations. (B) User horizontal errors in different locations.

account as Equation 25:

X[

[

γ+Δγ

β+Δβ
]

]
= y+ n+Δp (25)

From the previous Newtonian iterative process, it can be
deduced that the relationship between the elevation angle

and azimuth angle of the two satellites directly related to
the user’s position and the power calculation error is as
Equation 26:

[

[

Δγ

Δβ
]

]
= (XTX)−1XTΔp (26)
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FIGURE 8
Vertical and horizontal bias of different user elevation angles.

Assuming that the parameters remain unchanged during the
receiver receiving the satellite signal, and each observation value
is independent of each other, the observation error ∆p obeys the
standard normal distribution, the mean value is 0, and the variance

is σ2. So the covariance of [

[

∆γ

∆β
]

]
can be expressed as Equation 27:

Cov([

[

Δγ

Δβ
]

]
) = (XTX)−1σ2 (27)

Taking the user’s elevation angle of 60° (converted to a satellite
elevation angle of 24.882°), the satellite azimuth angle of 30°, and the
geodetic height of 0 m as an example, the receiver sensitivity is set to
−160 dB W, and the results of multiple Monte Carlo simulations are
as follows.

As can be seen from the Figure 5, the satellite tension angle and
azimuth results of multiple Monte Carlo simulations are around the
true value, and their statistical mean values can converge to within
the range of 0.5° of the true value.The vertical and horizontal error of
a single Monte Carlo simulation is less than 40 km, and its statistical
average value can converge to within the range of 50 km of the
true value, and the power positioning algorithm tends to converge,
so the user can use the power positioning timing method to
performmultiple positioning solutions to achieve better positioning
performance. The results of 1,000 Monte Carlo simulations are
statistically analyzed, and the probability distribution functions of
each parameter are fitted as follows in Figure 6.

The normal fitting of satellite azimuth angle β, user vertical
difference Δh, and horizontal difference Δx is good. The solved
satellite azimuth angle β is approximately normally distributed
as N(30.05,0.1426), and the elevation angle γ is approximately
normally distributed as N(24.90,0.0976), with deviations of
0.03° and 0.038°, respectively. The user vertical difference Δh is
approximately normally distributed as N(595.18,1.25× 108), and
the horizontal difference Δx is approximately normally distributed

as N(93.86,6.57× 107). The power positioning accuracy of the user
at this point is at the kilometer level.

4 Discussion

4.1 Different user locations

From Section 3.1, it is known that when the initial value of the
least squares solution is taken to be less than 2° from the true value,
it is difficult for some users to obtain a convergent solution. For such
cases, the solution diverges, and the result should be taken as the
uncertainty of the initial value. Furthermore, since the convergence

of the least squares is defined as [

[

γr ± 0.5°

βr ± 0.5°
]

]
, when the solution

angle error deviation is greater than 0.5°, the deviation should be 1°,
and when the solution angle error deviation is less than −0.5°, the
deviation should be −1°. Similarly, for user vertical and horizontal
information, when the solution distance error deviation is greater
than 50 km, the deviation should be 100 km, and when the solution
distance error deviation is less than −50 km, the deviation should be
−100 km.

According to the above definition and the initial value limit
of the algorithm, the user elevation angle αϵ[10°,90°] (converted
to the satellite elevation angle is γϵ[0,55.8°]) and azimuth angle
are traversed βϵ[1°,360°], while the receiver sensitivity is set to
−160 dB W.The effects of different user elevation angles and satellite
azimuth angles on user vertical errors and horizontal errors are
discussed as follows in Figure 7.

It is not difficult to see that when the user is at a low elevation
angle, the vertical and horizontal errors deviation of the users are
generally large, and the convergence is not good. When the user is
at a higher elevation angle, the horizontal and vertical errors of the
user significantly decrease.

The following results in Figure 8 are obtained from the statistical
analysis of user errors at different user elevation angles.

The numerical results of the aforementioned image can be
further analyzed. First, by discussing the situation for all users, i.e.,
users with elevation angles αϵ[10°,90°], the overall performance of
power positioning can be obtained. Then, by separately discussing
the two major parts of low user elevation angles αϵ[10°,30°] and
high user elevation angles αϵ[30°,90°], the positioning and timing
performance of users in different elevation angle regions can be
obtained as follows in Table 2.

According to Equation 23, timing errors of the power
positioning can be calculated by the difference between the true
value and solution value. The timing errors affected by different user
locations as follows in Figure 9.

The maximum timing error is 10.1 ms, and the statistical mean
is 123 μs. When the user’s elevation angle is below 30°, the average
timing error is 305.8 μs; when the user’s elevation angle is above 30°,
the average timing error is 62.3 μs. Therefore, power positioning can
provide users with microsecond-level timing accuracy.

When the user’s horizontal or vertical difference exceeds
the convergence condition of 50 km, the algorithm is judged to
diverge, and the availability of power positioning is poor. By
statistically analyzing the results for different user elevation angles,
the positioning availability can be obtained as shown in Figure 10.
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TABLE 2 Satellite and user error table when receiver sensitivity is −160 dB W.

User elevation
angle range

Evaluation
criteria

Elevation angle
error ∆γ/°

Azimuth angle
error ∆β/°

Vertical error
∆h/m

Horizontal error
∆x/m

[10°,90°]
Bias 0.1038 0.1239 7,093.5 7,009.3

Standard deviation 0.5016 1.1811 31,720 53,403

[10°,30°]
Bias 0.1683 0.0996 15,546 17,180

Standard deviation 0.9562 1.9617 74,503 165,260

[30°,90°]
Bias 0.0817 0.1316 4,231.2 3,567.1

Standard deviation 0.3455 0.8340 17,385 15,062

FIGURE 9
Timing errors of power positioning.

FIGURE 10
Availability of power positioning.

It can be seen that when the user’s elevation angle is less
than 40°, the proportion of divergent users is generally more
than 10%, and the availability of power positioning is about 90%;
when the elevation angle is higher than 40°, the proportion of
divergent users is generally within 5%, and the availability of
power positioning is above 95%. In summary, power positioning
allows some users, especially those with high elevation angles,
to have the potential to achieve better positioning and timing
performance.

4.2 Different receiver sensitivity

The simulation is set with a certain receiving power sensitivity
threshold. When the received power exceeds this threshold,
the power measurements are processed; otherwise, the power
value is considered to be significantly affected by noise and
is not subjected to least squares iteration processing. Previous
simulations were all conducted under the condition of a threshold
of −160 dB W, which has high requirements for data quality. In
this section, the receiver sensitivity is lowered to −190 dB W
to explore the impact of receiving power sensitivity on power
positioning.

As with section 4.1, the angle conditions are as the same.
However, the receiver sensitivity is set to −190 dB W. Figure 11
illustrates the impact of the user’s elevation angle and azimuth
angle on the vertical and horizontal error biases in power
positioning.

It can be observed that when the user’s elevation angle is low, for
example, below 30°, the receiver with −190 dB W sensitivity exhibits
more divergence in power positioning compared to the receiver
with −160 dB W sensitivity. This indicates that while increasing the
receiver sensitivity makes it easier to receive signals from different
beams, the power positioning algorithm becomes more challenging
to converge due to noise interference. Therefore, to enable more
users to achieve better performance with power positioning, it is
necessary to reduce the receiver sensitivity to a certain extent,
in order to mitigate the impact of noise on the solution. As
with subsection 4.1, by statistically analyzing the error biases for
users with different elevation angles, the following results can
be obtained.
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FIGURE 11
When receiver sensitivity is −190 dB W: (A)User vertical errors in different locations (B) User horizontal errors in different locations.

FIGURE 12
Vertical and horizontal deviations of different user elevation angles
when receiver sensitivity is −190 dB W.

The resulting error table is as follows.
From Figure 12 and Table 3, it can be seen that the standard

deviations of user vertical difference and horizontal difference
obtained by the high-sensitivity receiver are comparable to those
under low-sensitivity conditions. However, the error biases of
satellite elevation angle and satellite azimuth angle have increased
by 0.0311° and 0.0789°, respectively, and the biases of user vertical
and horizontal errors have increased by 3,556.5 m and 3,859.7 m,
respectively. Under low user elevation angles, the biases of vertical
difference and horizontal difference have increased by 8,506 m and
10,975 m, respectively, while under high user elevation angles, the

biases have increased by 1,790.9 m and 1,343.2 m, respectively. It is
not difficult to find that high sensitivity has a very significant impact
on users with low elevation angles, while the impact on users with
high elevation angles is relatively small.

5 Conclusion

In scenarios where the number of LEO satellites in view is
limited, pseudorange and carrier phase positioning are not available,
and single-satellite Doppler positioning has poor applicability,
ground users can utilize the received power measurements from
different beams of LEO satellites to calculate their own position
and time, thereby quickly obtaining positioning and timing results.
Based on the multi-beam interrogation characteristics of LEO
satellites, this paper employs the nearest neighbor algorithm for
power matching to obtain convergent initial values and uses the
least squares iteration to solve for the user’s horizontal and vertical
information. Experimental results show that the nearest neighbor
algorithm can achieve initial values for satellite elevation and
azimuth angles within 2° when the fingerprint library interval
uncertainty is 5°; under the condition of initial values within 2°, the
least squares solution can achieve convergence for the vast majority
of users (94.5%, 93.2%).

For the least squares algorithm solution, multiple Monte
Carlo simulation results indicate that the satellite elevation and
azimuth angles, as well as user vertical and horizontal differences
obtained from power positioning calculations, follow a normal
distribution and have a good normal fitting relationship. There is
a significant difference in power positioning results for users at
different locations. For a receiver with −160 dB W sensitivity, the
statistical error biases for horizontal and vertical positioning are
approximately 7,000 m, and the average timing error is 123 μs. Users
with low elevation angles (below 30°) generally have error biases
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TABLE 3 Satellite and user error table when receiver sensitivity is −190 dB W.

User elevation
angle range

Evaluation
criteria

Elevation angle
error ∆γ/°

Azimuth angle
error ∆β/°

Vertical error
∆h/m

Horizontal error
∆x/m

[10°,90°]
Bias 0.1349 0.2028 10,650 10,869

Standard deviation 0.3724 0.6374 28,955 33,410

[10°,30°]
Bias 0.1639 0.1556 24,052 28,155

Standard deviation 0.5325 0.4881 65,283 90,783

[30°,90°]
Bias 0.1239 0.2177 6,022.1 4,910.3

Standard deviation 0.3174 0.6847 16,740 13,961

higher than the average, at 1,5546 m and 17,180 m respectively,
with a timing error of 305.8 μs, and power positioning availability
of about 90%. In contrast, users with high elevation angles (above
30°) generally have error biases lower than the average, at 4,231.2 m
and 3,567.1 m respectively, with a timing error of 62.3 μs, and
availability about 95%.Under high receiver sensitivity at −190 dB W,
affected by noise, the average error bias is about 10,000 m, with low
elevation angle users being particularly affected, with an average
bias worsening to over 20,000 m, and availability worsening to
70%. For high elevation angle users, the average bias only worsens
to about 6,000 m, and power positioning availability is basically
maintained above 90%.

In summary, the positioning accuracy of low Earth orbit multi-
beam power positioning technology is at the kilometer level, and the
timing accuracy is at the microsecond level, which can meet users'
needs for real-time approximate position and time information.

As the technology of LEO power positioning evolves, future
research will delve into the performance of the Least Squares
algorithm and the K-Nearest Neighbors algorithm in this domain.
By conducting a meticulous analysis of these two algorithms, we
aim to uncover their respective advantages in various application
scenarios, thereby providing theoretical foundations and technical
support for achieving more accurate navigation and timing
performance. In this process, our focus will extend beyond
the mathematical properties and computational efficiency of the
algorithms to encompass their adaptability andflexibility in practical
applications. We are confident that through a comprehensive
comparison and optimization of these algorithms, we can offer
more reliable solutions for LEO power positioning technology in
the complex and dynamic environments of its applications. Looking
ahead, we anticipate that these research outcomes will propel the
advancement of LEO power positioning technology and contribute
new momentum to the development of LEO navigation systems.
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Attitude determination of rotary-wing unmanned aerial vehicles (RUAVs) is
crucial for grasping their motion state and is a necessary condition to ensure
the correct execution of flight missions. With the continuous development and
the constant enhancement of measurement accuracy related to the Global
Navigation Satellite System (GNSS), attitude determination based on GNSS have
become the mainstream high-precision attitude measurement approach. This
paper mainly discusses the relevant theories of using GNSS for RUAV’s attitude
determination, and introduces the relevent key aspects that determine attitude
accuracy in the attitude resolution process, such as integer ambiguity fixing,
attitude solution algorithms, and integrated attitude measurement. It especially
elaborates on the challenges that faced to be solved for current RUAVs to use
the GNSS system for real-time and guarded attitude measurement.

KEYWORDS

satellite navigation, attitude determination, integer ambiguity, Kalman filtering,
navigation interference

1 Introduction

Unmanned Aerial Vehicles (UAVs), characterized by their high controllability, low
production costs, and the separation of human operators from the vehicle, are widely
used across various civilian and military domains. In the civilian sector, UAVs can be
employed for applications such as topographic surveys, disaster detection, power line
inspections, search and rescue operations, target tracking, and the establishment of wireless
networks [1–4]. In the military sphere, their low cost, high mobility, compact size, and
difficulty to detect make them ideal for battlefield reconnaissance, supply transportation,
information confrontation, communication relay, and firepower engagement [5]. Conflicts
such as those in Syria, the Nagorno-Karabakh region, and the Russia-Ukraine war have
seen the emergence of various types of UAVs, including integrated reconnaissance-strike,
surveillance, and suicide attack drones [6–8].

Rotor Unmanned Aerial Vehicles (RUAVs), a type of UAV, are relatively small in size
and rely on the rotation of multiple wing propellers to lift and move. They possess the
capability for vertical takeoff and landing and omnidirectional flight, exhibiting higher
maneuverability and flexibility at a negligible cost compared to fixed-wing UAVs [9]. As
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FIGURE 1
Classic drone. (A) “Gyroplane No.1”. (B) “Oehmichen No.2”. (C) “STARMAC-2”. (D) “MD4-1000”. (E) “Inspire 1”. (F) “Phantom 4”.

shown in Figure 1, the earliest RUAVs appeared in 1907 with
the “Gyroplane No.1″designed by Professors Jacques Breguet and
“Oehmichen No.2″invented by Etienne Oehmichen [10]. With the
advent of the 21st century, the development level of rotor UAVs
has been greatly enhanced by the invention of new controllers and
sensors [11]. Stanford University designed the multi-autonomous
platform control testbed STARMAC, capable of precise flight control
and equipped with some obstacle avoidance capabilities [12, 13].
The German classic multi-rotor UAV, MD4-1000, equipped with
a camera gimbal, can achieve autonomous navigation using image
capture. In recent years, Dajiang UAV has rapidly occupied the
RUAV Market, typical products like the Inspire 1, Mavic 2, and
Phantom 4 can enhance obstacle avoidance capabilities using a
visual processing unit [14].

The flight attitude information of a RUAV is a crucial
parameter for describing its motion state, equally important
as its position and velocity information. Attitude angles can
provide data support for attitude control in the flight control
system, assist the flight control system in making adjustments,
ensuring that the drone maintains balance during flight, which
is crucial for flight safety [15]; In the context of multi-drone
systems or collaborative missions, accurate attitude measurement
is crucial for maintaining formation flight and coordinated
operations [16]; Attitude also helps drones avoid collisions and
obstacles, especially when visual obstacle avoidance systems are
combined with data from attitude sensors. The angular information
obtained from attitude measurements assists the flight control
system in calculating the necessary adjustments for obstacle
avoidance [17]; The heading and attitude information of a UAV,
is also a powerful basis for the UAV to counteract directional
interference [18].

Initially, the attitude determination of the carrier relied on
the Inertial Navigation System (INS), which, as a navigation
system capable of independently outputting positioning and
attitude, has the characteristics of working independently

without the need for external equipment. It can effectively resist
external interference, offering good autonomy, concealment,
and continuity [19]. However, as the working time of INS
increases, the measurement errors caused by mechanical
devices will accumulate over time, leading to a decrease in
measurement accuracy [20]. High-precision inertial navigation
equipment is usually bulky and costly, making it unsuitable for
small and low-cost RUAVs.

The Global Navigation Satellite System (GNSS), is fully applied
in the fields of navigation, timekeeping, positioning, and attitude
determination due to its all-weather, global, high-precision, and
high-real-time characteristics. It has the advantages of low cost,
small size, low power consumption, short initialization time, and no
error accumulation effect [21]. Small RUAVs widely adopt satellite
navigation to obtain state information such as position, velocity, and
attitude [22].The carrier phase differential as an observationmethod
helps to minimize the impact of clock differences and atmospheric
delays under short baselines, and when obtaining the right integer
ambiguity, the phase observation is two orders of magnitude more
accurate than pseudo-range observation, which helps UAVs achieve
high-precision attitude determination [23]. Attitude measurement
uses the changes in the short baseline in different coordinate systems
to obtain the attitude angle, involving a series of key issues such as
the flight integer ambiguity and attitude angle solution algorithm
[24, 25].

The attitude determination of RUAVs is a critical step in
grasping their motion state information and a necessary condition
to ensure their own safety. Therefore, focusing on the UAV attitude
determination based on GNSS, this paper elaborates on the relevant
theories of attitude determination in recent years, concentrating
on key technologies in the attitude determination process, such
as the determination of integer ambiguity and attitude resolution
algorithms. At the same time, it analyzes the security challenges
faced when using GNSS for UAV attitude determination in complex
electromagnetic environments.
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2 Current research status of RUAV
attitude measurement based on GNSS

2.1 Existing GNSS attitude measurement
products

The application of GNSS was initially for precise positioning
and navigation. As the navigation system evolved and the
use of carrier phase differential observation became more
mature, its high-precision measurement capabilities gradually
extended to the field of attitude measurement [26, 27]. In
1978, Coumselma [28] proposed the use of GPS carrier phase
differential measurement for attitude determination, designing
a full link attitude measurement system from the satellite to
the receiver. Hermann [29] tested the software receiver TI-
AGR for attitude measurement, proving that GPS signals can
achieve millimeter-level attitude measurement on long baselines.
Trimble Navigation Limited used a three-antenna two-baseline
attitude determination device on a U.S. Navy cruiser for dynamic
determination experiments, verifying that GPS can provide attitude
information for low-dynamic motion carriers [30]. Entering the
21st century, more mature GNSS-based attitude measurement
systems have emerged abroad, such as the 3DF system by Ashtech
[31], the Tans Vector system by Trimble [32], and the JNSGyro-
2T and JNSGyro-4T systems by Javad [33]; the Beeline system
by NovAtel [34].

Currently, the ZH6000A, developed by Zihang Electronic
Technology, is a three-antenna GNSS full-attitude measurement
and positioning GNSS-INS combined system, capable of precisely
calculating attitude angles with an accuracy of 0.05° (4-meter
baseline); meanwhile, the built-in IMU can perform real-time
high-precision GNSS/INS combined solutions [35]. The SIN-
INS3000 system, developed by Xi’an Sine Wave Measurement
and Control Technology, utilizes a combination of GNSS and
fiber optic inertial navigation to achieve a roll and pitch accuracy
of 0.02° [36]. The GNSS/INS integrated navigation system,
developed by Airic Co. Inertial Technology, provides continuous
and high-precision information. Employing a dual-antenna GNSS
module in conjunction with an INS system, the system offers
combined attitude determination with roll and pitch accuracies
of 0.01° and 0.004° post-processing, respectively. The heading
accuracy can reach 0.05°, with post-processing accuracy achievable
up to 0.01° [37].

There are also products that use multiple satellite navigation
system signals for attitude measurement, such as the MTi-
G-710 sensor, developed by Xsens [38], aided by INS and
utilizing signals from navigation systems such as GLONASS
and Beidou. It outputs GNSS-enhanced 3D orientation and
is capable of achieving pitch, roll, and yaw angle accuracies
of 0.2°, 0.3°, and 1.0°, respectively. The 3DM-GX5-GNSS/INS
system, developed by MicroStrain Sensing Systems, utilizes
global navigation satellite systems such as GPS and GLONASS
to provide precise 3D attitude determination. By integrating
GNSS data with INS data through an Extended Kalman Filter
and a Complementary Kalman Filter, the system achieves
roll and pitch angle accuracies of 0.25°, with a heading
accuracy of 0.8° [39].

2.2 Unique aspects of RUAVs attitude
determination

RUAVs, due to limitations of their own platform, are equipped
with a limited number of receiver antennas, and the baseline
length formed by the antennas is of the short-baseline type,
which is different from the medium to long-baseline issues
present in platforms like vehicles and ships (greater than 1 m)
[40]. Attitude determination often benefits from longer baseline
lengths.Therefore, the attitude determination of RUAVs differs from
conventional circumstances, it is conducted under short-baseline
conditions [41]. Besides, the limitation on the number of baselines
due to the size constraints of their own platform is also a special issue
that needs to be considered.

Secondly, during the flight of rotary-wing unmanned aerial
vehicles, especially in swarm operations, when directional changes
are flexible and diverse, and angular velocity changes are rapid,
the refresh rate of satellite navigation measurements is low and
cannot match the high-dynamic angle change requirements of
the RUAVs. Therefore, it is common to combine the attitude
determination with the inertial navigation system. However, due to
the low-cost requirements of the UAVs themselves, the accuracy
of low-cost inertial navigation devices is low, and there is an
accumulation of errors that require correction by the satellite
navigation system [15]. In addition to relying on satellite navigation
signals for determination, it is also necessary to study the fusion data
algorithms in integrated navigation to complement the advantages
of satellite navigation and inertial navigation, thereby improving the
precision of the measurements.

Since UAVs are often in complex electromagnetic environments,
when using satellite navigation for positioning and attitude
determination, the satellite navigation signals are relativelyweakwhen
reaching the ground, generally at −160dBW, and the navigation signal
system is often semi-public.The rotary-wing unmanned aerial vehicle
has a relatively low speed of movement, making it susceptible to
jamming and spoofing interference [42]. At the same time, due to the
load restrictions of rotary-wing UAVs, with limited anti-interference
capabilities without the support of facilities such as null steering
antenna, the accuracy of positioning and attitude determination
results is seriously affected by interference, and the UAV’s own
motion state faces safety issues. For example, during UAV swarm
performances, unknown interference can lead to loss of control of
the swarm [43]; To ensure the normal flight of UAVs in complex
electromagnetic environments and ensure their survivability, it is
necessary to considering the UAV’s anti-interference capabilities,
which is the particularity of RUAV attitude measurement [44].

3 Knowledge of UAV attitude
measurement

Using satellite navigation for attitudemeasurement, the accuracy
of the attitude angles depends on factors such as observation
quality, antenna configuration, and solving methods [39]. The
attitude determination process using GNSS often involves two
steps: coordinate conversion and baseline solution. Research
is often conducted to improve the accuracy and reliability of
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FIGURE 2
Common RUAV and navigation receiver antenna.

TABLE 1 Common description methods for attitude angles.

Description method Features Usage scenarios

Euler Angles Intuitively reflect the direction angles; have singularity
issues

GNSS measurement systems

Quaternions No singularity issues; have more parameters; not
intuitive

INS measurement systems

Direction Cosines Meet orthogonality constraint conditions; complex
construction; large computational load

GNSS measurement systems; INS measurement
systems; Optical Measurement System

attitude calculation [45]. Key points of which integer ambiguity
determination and attitude angle solution attract numerous
researchers to study [46–48].

3.1 Basic principles of attitude
determination

During the flight of an RUAV, the flight control system
continuously receives real-time position and heading information
from sensors such as GNSS receivers and gyroscopes. It then
calculates the yaw distance and heading control quantities based on
remote control commands, causing the aircraft wings to rotate to
varying degrees, thereby steering the UAV in the correct direction
[1]. As shown in Figure 2, attitude determination using satellite
navigation generally involves the relative changes in the positions
of multiple antennas fixed on the carrier in different coordinate
systems. Key points related to the carrier’s attitude include the
description method of attitude angles, coordinate systems, and the
transformation matrices between coordinate systems.

As shown in Table 1, there are three common ways to describe
attitude angles: Euler angles, quaternions, and direction cosines,
which can be converted from one to another [49, 50]. In UAV
attitude measurement, the Euler angle method is often used, that
is, heading angle, pitch angle, and roll angle, which can intuitively
reflect the attitude information of the carrier.

In addition, attitude measurement often involves three
coordinate systems, as shown in Figure 3, namely the Earth-
centered Earth-fixed coordinate system (ECEF), the local horizontal

coordinate system (LHCS), and the vehicle coordinate system
(VCS). The ECEF coordinate system, as shown in Figure 3A, rotates
with the Earth and is used to describe the position calculated
according to navigation messages; the local horizontal coordinate
system in Figure 3B, has its origin at the center of the carrier
and describes the coordinates of a point in space relative to a
selected reference point, also known as the East North Up (ENU)
coordinate system; the vehicle coordinate system is fixed on the
carrier and changes with the carrier’s motion and attitude, which
is shown in Figure 3C.TheY-axis generally points in the direction of
the carrier’s heading, the Z-axis points towards the zenith direction,
and the X-axis, together with the X-axis and Z-axis, forms a
right-handed coordinate system.

In Figure 3D, taking a single baseline formed by dual antennas
as an example, antennas u and r fixed on the carrier constuct
a baseline, whose coordinates in VCS are determined when the
antennas are installed, that is xb = [xb yb zb]T. Their positions
in the LHCS are xl = [xl yl zl]T, and in the ECEF, the positions
are xe = [xe ye ze]T. By performing coordinate transformations
of this baseline in different coordinate systems, primarily from the
local horizontal coordinate system to the carrier coordinate system,
the attitude angles can be obtained.

A. From ECEF to LHCS:

xl = R
l
e · xe⇔
[[[[

[

xl
yl
zl

]]]]

]

=
[[[[

[

− sin α cos α 0

−cos α sin β − sin α sin β cos β

cos α cos β sin α cos β sin β

]]]]

]

· xur

(1)
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FIGURE 3
Coordinate system used for attitude determination. (A) Earth-centered earth-fixed coordinate system. (B) Local coordinate system. (C) Body
coordinate system. (D) Rotation diagram.

where α and β are respectively the longitude and latitude of
antenna u in Figure 3D after positioning calculation; xur is the
baseline vector composed of antenna u and antenna r, also denoted
as xe.

B. From LHCS to VCS:
The common rotation sequence of the coordinate systems,

according to the right-hand rule, involves rotating the local
horizontal coordinate system successively around the Z-axis by
angle ψ, around the X-axis by angle θ, and around the Y-axis
by angle ϕ, to align with the vehicle coordinate system. ψ, θ,
ϕ, correspond to the heading angle, pitch angle, and roll angle,
respectively, as shown in Figure 3D. The corresponding rotation
matrix is shown in Equation 2:

Rb
l = RY(ϕ) ⋅RX(θ) ⋅RZ(ψ) (2)

where RZ(ψ), RX(θ), and RY(ϕ) are the rotation matrices
for rotations about the Z-axis, X-axis, and Y-axis,
respectively. These rotation matrices can be defined
individually as:

RZ =
[[[[

[

0 0 1

cos ψ sin ψ 0

− sin ψ cos ψ 0

]]]]

]

,RX =
[[[[

[

1 0 0

0 cos θ sin θ

0 − sin θ cos θ

]]]]

]

,

RY =
[[[[

[

cos ϕ 0 − sin ϕ

0 1 0

sin ϕ 0 cos ϕ

]]]]

]

(3)
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FIGURE 4
Schematic diagram of UAV navigation antenna and baseline. (A) Single-antenna. (B) Dual-antenna. (C) Multi-antenna.

Equation 4 represents the transformation of the
baseline using Equation 3.

xb = R
b
l ⋅ xl⇔
[[[[

[

xb
yb
zb

]]]]

]

= RY ⋅RX ⋅RZ ⋅
[[[[

[

xl
yl
zl

]]]]

]

(4)

In Equation 3, the attitude angle information is contained in
the rotation matrix. By solving Equation 4, the rotation matrix is
obtained, and then the attitude angle is obtained. At least two
non-collinear baselines are required to solve for the complete
set of angles ψ, θ, ϕ,. The more baselines used, the higher
the measurement redundancy, and consequently, the higher the
measurement accuracy.

3.2 GNSS-based observation model

GNSS attitude measurement systems can be categorized
based on the number of antennas deployed into single-antenna
measurement, single-baseline (dual-antenna) measurement, and
multi-baseline measurement [51, 52], as shown in Figure 4.

As shown in Figure 4A, single-antenna attitude measurement
refers to an unmanned aerial vehicle (UAV) equipped with a single
satellite navigation receiver antenna. The single antenna primarily
relies on received signal strength for measurement, which has low
precision. Multi-antenna attitude measurement refers to a UAV
using two or more satellite navigation receiver antennas. Due to
the size constraints of the UAV, the baseline length formed by the
receiving antennas is generally less than 1 meter, belonging to the
short-baseline category, which is different from themedium to long-
baseline types formed by antenna arrangements on vehicles, where
lengths typically range from 1.5 to 2 m [40]. The dual antenna
constitutes a single baseline, as depicted in Figure 4B, which can
only obtain limited attitude angle information [41], while three or
more antennas formmultiple baselines in Figure 4C. Table 2 lists the
GNSS based attitude determinationmethods divided by the number
of antennas or baselines, the principles and characteristics of each
method, and typical application scenarios.

In Table 2, it can be observed that while single-antenna
measurement is simple to deploy and has the lowest cost, it relies
on signal strength and thus has low and unreliable accuracy,
especially considering the inherently low power of navigation
signals upon ground reception. Multi-baseline measurement can
provide redundant information and obtain complete attitude angle
data, but it requires a larger number of antennas, leading to
higher hardware costs [53]. For low-cost RUAVs, which already
equipped with gyroscopes and other inertial navigation devices,
dual-antenna systems although not providing complete attitude
angle information, can be integrated with inertial navigation
devices, achieving complete information acquisitionwhile balancing
hardware costs and information retrieval capabilities. Additionally,
dual-antenna systems can implement RTK, enabling precise
positioning of UAVs [54].Therefore, current RUAVs primarily carry
dual antennas for positioning and attitude determination under
short-baseline conditions.

Regarding the selection of the observation model, since the
precision of carrier phase observation is more than two orders
of magnitude higher than that of pseudo-range observation,
carrier phase differential methods are commonly used for attitude
determination [55]. For the short baseline measurement of UAVs,
the use of carrier phase differential technology can largely eliminate
satellite and receiver clock differences and mitigate the propagation
delays caused by the ionosphere and troposphere.

The carrier observation equation of the receiver for the satellite
is shown in Equation 5

φiu = ρ
i
u + cδtu − cδt

i − Iiu +T
i
u − λN

i
u + ε

i
u (5)

Where φiu is the carrier phase observation value of the receiver u
for the satellite i; ρiu is the pseudo-range observation value from the
receiver u to the satellite i; δtu is the clock error of the receiver uwith
cbeing the speed of light; δti is the clock error of the satellite i; Iiu is the
ionospheric delay along the propagation path; Ti

u is the tropospheric
delay along the propagation path; Ni

u is the integer ambiguity in
the phase observation, representing the unknown number of whole
cycles; εiu is the sum of all other errors in the observation.

The carrier phase differential method, based on the number
of receivers and observed satellites, as shown in Figure 4, can be
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TABLE 2 GNSS attitude determination model.

Measurement basis Measurement basis Features Applicable scenarios

Single antenna Derive the direction and angle of
acceleration from the signal strength

Lower accuracy, simple layout Spacecraft system

Multiple Antennas
Single Baseline

Reflect the change in attitude angle by the
change in the position of the baseline vector

Failed to obtain full attitude angle Small-sized aircraft

Multiple Baselines Measure complete attitude angles Large-sized aircraft

divided into single difference (SD), double difference (DD), and
triple difference (TD), which can eliminate satellite clock differences,
receiver clock differences, and integer ambiguities [56, 57].

In the three differential observation schematics shown in
Figure 5, SD involves taking the difference between measurements
of the same satellite by two receivers at the same observation
time [58]. DD makes difference between two receivers for
single difference observation of different satellites; TD involves
differencing the double differences at two different times. Table 3
shows mathematical model of the common differential methods,
which illustrates the observation equations, main error terms,
ambiguities, and differential observation noise corresponding to the
three types of differential methods [21].

Where, φiur represents the difference between the carrier phase
measurements of receiveru to satellite i and receiver r to satellite i; ρiur
represents the difference between the pseudo-range measurements
of receiver u to satellite i and receiver r to satellite i; δtur represents
the difference in clock biases between receiver u and receiver r; Iiur
represents the difference in ionospheric errors between receiver u
and receiver r receiving signals from satellite i; Ti

ur represents the
difference in tropospheric errors between receiver u and receiver
r receiving signals from satellite i; Ni

ur represents the difference in
integer ambiguities between receiver u and receiver r relative to
satellite i, and εiur represents the difference in observation noise
between receiver u and receiver r relative to satellite i; φijur, ρ

ij
ur,

Iijur, T
ij
ur, N

ij
ur, ε

ij
ur represent the differences in single-differences of

the corresponding observations from receiver u and receiver r
relative to satellite i and satellite j; Δφijur,n, Δρ

ij
ur,n, ΔI

ij
ur,n, ΔT

ij
ur,n, Δε

ij
ur,n

represent the differences in double-differences of the corresponding
observations from receiver u and receiver r relative to satellite i and
satellite j at the n+ 1-th epoch and the n-th epoch.

From Table 3, it can be observed that SD completely eliminates
satellite clock errors and approximately eliminates ionospheric and
tropospheric delays when the two receivers are in close proximity.
However, after single-differencing, receiver clock biases δtur, integer
ambiguities Ni

ur, and phase observation noise εiur still persist, even
increasing to the original εiu√2 times.DD further eliminates receiver
clock errors and reduces ionospheric and tropospheric delays, but
integer ambiguities still exist, and the phase observation noise is
doubled. TD not only eliminates satellite and receiver clock errors
but also the integer ambiguities, but the phase observation noise is
increased to the original εiu 2√2 times.

As it is shown, although each time of differencing can further
reduce the clock bias and other errors, the root mean square of
the measurement noise will also increase to the √2 times the
original, which is about 0.05 of the carrier for L1, that is, 1 cm [21].

Therefore double difference measurements are the most common
observation method. Because it can both reduce certain errors and
avoid excessively large measurement variance, and only needs to
solve for the carrier integer ambiguity.

3.3 Analysis of influence factors of attitude
determination

Based on the content of the previous two sections, attitude
determination using satellite navigation involves coordinate
transformations and the solution of navigation signal observations.
From Equations 1, 4, it can be seen that to solve for the attitude
angles, the essence is to solve for the baseline vector. Since the
UAV’s receiving antennas form a short baseline, the ionospheric
delay errors and tropospheric delay errors have already been
differentially eliminated in the single-difference process. The
observation equations shown in Table 3 are then converted to be
represented by the baseline vector, as shown in Table 4.

Where I ir indicates the observation direction of the receiver
r to the satellite i; I jr indicates the observation direction of the
receiver r to the satellite j; ΔI ir,n indicates the difference between the
direction of observation of satellite i by receiver u at n-th epoch and
the direction of observation at n+ 1-th epoch; and ΔI jr,n indicates
the difference between the direction of observation of satellite j
by receiver u at n-th epoch and the direction of observation at
n+ 1-th epoch.

In the attitude determination of RUAVs, as discussed in
the previous sections, attitude solutions can be divided into
observation solutions and coordinate solutions. When using carrier
phase observations for solving, the choice of observation method
will affect the factors influencing the baseline vector solution
process differently. SD observations are affected by receiver clock
biases, integer ambiguities, and observation noise; DD observations
are affected by integer ambiguities and observation noise; TD
observations are only affected by observation noise. Receiver clock
biases can cause phase misalignment, integer ambiguities can lead
to errors in the distance measurement between the receiver and
the satellite, directly affecting the reliability of the baseline vector;
observation noise affects the accuracy of the baseline vector.

In coordinate calculation, it can be observed that the coordinate
transformation in Equation 1 requires the longitude and latitude
obtained from the receiver’s positioning solution, meaning that
the accuracy of positioning affects the accuracy of the baseline
coordinate transformation. Additionally, in Table 4, the direction of
the receiver’s observations to the satellites also affects the accuracy
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FIGURE 5
Schematic diagram of three differential observations. (A) Single difference observation. (B) Double difference observation. (C) Triple difference
observation.

TABLE 3 Common differential methods.

Differential observation Equation Error Ambiguity Ni
r Observation noise

Single differenced φi
ur = ρ

i
ur + cδtur − I

i
ur +Ti

ur − λNi
ur + εiur δtr ✓ √2σφ

Double differenced φij
ur = ρ

ij
ur − I

ij
ur +T

ij
ur − λN

ij
ur + ε

ij
ur – ✓ 2σφ

Triple difference Δφij
ur,n = Δρ

ij
ur,n −ΔI

ij
ur,n +ΔT

ij
ur,n +Δε

ij
ur,n – – 2√2σφ
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TABLE 4 Observation equation expressed by baseline.

Differential observation Equation

Single differenced φi
ur = − I

i
r ⋅ xur + cδtur − λNi

ur + εiur

Double differenced φij
ur = − (I ir − I

j
r) ⋅ xur + λN

ij
ur + ε

ij
ur

Triple differenced Δφij
ur,n = −Δ(I ir,n − I

j
r,n) ⋅ xur +Δε

ij
ur,n

of the baseline vector solution. Furthermore, since it is necessary to
solve the rotation matrix in Equation 4, when using Euler angles,
singularity issues arise during high-dynamic complex motions of
the UAV, making solutions unattainable. In such cases, quaternions
must be used for representation, but this increases computational
complexity. Therefore, the method of attitude representation also
affects the solution of attitude angles [59].

The redundancy of baselines also affects measurement
accuracy. When the number of baselines increases, the amount of
observational information increases, which enhances the precision
of baseline solutions. Additionally, redundancy is beneficial for
adding prior constraints to the baselines, which in turn improves the
success rate of ambiguity resolution, thereby affecting the precision
of baseline measurements.

Since satellite navigation measurements rely on signals emitted
by satellites in space, the geometric configuration of the satellite
constellation also affects observation accuracy [60]; moreover, due
to the inherent vulnerability of satellite navigation, when a UAV
encounters navigation interference, it cannot receive navigation
signals, and thus cannot measure the carrier phase, which means it
cannot complete baseline solutions [61].

4 Key technologies for GNSS-Based
UAV attitude measurement

Figure 6 illustrates the common solution steps for attitude
determination of UAVs using the GNSS system. According to the
fixed method of ambiguity, it can be divided into solution based on
location domain and solution based on observation domain. When
necessary, attitude determination should also be combined with an
inertial navigation system.

The positioning domain solution requires the fixing of integer
ambiguities first to obtain accurate baseline vectors, and then
to determine the attitude angles, which is straightforward to
implement, and obtaining accurate baseline vectors is a prerequisite
for obtaining high-accuracy attitude angles. The accuracy of the
baseline vectors directly determines the precision of the attitude
angle solution [62], while the baseline vector accuracy, in turn,
depends heavily on the accuracy with the fixed ambiguity [63].
This method solves sequentially and ignores the correlation
between each baseline, reducing the redundancy of the attitude
solution, especially when the integer ambiguities are difficult to fix
successfully, leading the affection to the determining performance.
The observation domain solution solves for the integer ambiguities
and the attitude angles simultaneously [64]. It is more complex
to implement, although it can solve the integer ambiguities and

attitude angles simultaneously, it ignores the correlation between
ambiguity resolution and attitude calculation, which can also affect
the reliability of the attitude [65].

Whether it is a positioning domain or observation domain
solution, the key lies in the solution of integer ambiguities and
the attitude calculation algorithm. The determination of integer
ambiguities is essential to ensure the accuracy of the baseline vector
position solution for UAVs. Given the limited number and length
of baselines on RUAVs, the search space for integer ambiguities
is large, leading to low search efficiency. The search space is also
constrained by the length of the baselines. Therefore, how to achieve
fast and effective fixing of ambiguities under the constraints of the
UAV’s own conditions is one of the important issues in the attitude
determination of RUAVs.

Attitude determination algorithms, after obtaining
observational values, use these values to calculate the attitude angle
information. The accuracy of the determined attitude angles is often
affected by the inherent accuracy of the observational values and
observational noise. How to improve the calculation accuracy is
also a key issue in attitude determination.

Furthermore, for low-cost RUAVs, dual antennas and low-
cost inertial navigation devices are commonly used to achieve
the integrity of attitude determination. This not only assists in
determining integer ambiguities in GNSS observation solutions
but also allows the INS to continue navigation when GNSS fails.
The error accumulation phenomenon in the inertial navigation
system can also be periodically corrected by GNSS measurement
values [66]. In integrated navigation, data fusion processing is
crucial. Rotary-wing UAVs are highly dynamic, inertial navigation
devices have large measurement noise, and the precision of
output measurement values is low. Moreover, the update rate of
satellite navigation measurement values is much lower than that of
inertial navigation. How to fuse measurement values of different
rates is also a key issue that needs to be addressed. A high
success rate of ambiguity fixing and efficient attitude calculation
are necessary conditions for obtaining real-time high-precision
attitude angles [67].

4.1 Integer ambiguity resolution algorithms

The challenge of fixing integer ambiguities lies in the planning
of the search space. While reducing the search space and improving
search efficiency, it is essential to ensure the correctness of the
ambiguity fixing. Faced with the continuous change of the UAV’s
spatial position between epochs, a robust On The Fly (OTF) integer
ambiguity determination algorithm is required. Based on different
ambiguity search spaces, they can be categorized into observation
domain-based, coordinate domain-based, and ambiguity domain-
based ambiguity resolution [68], with common integer ambiguity
resolution methods shown in Table 5.

Table 5 shows that among the three types of integer ambiguity
resolution, the observation domain-based method is the simplest to
implement. It relies on the linear combination of carrier frequencies
of different wavelengths to obtain a shorter wavelength, thereby
reducing the ambiguity fixing error. The TCAR method, based on
wide and narrow lanes, uses pseudo-range to assist in ambiguity
determination. Since there is no ambiguity search problem, the

Frontiers in Physics 09 frontiersin.org88

https://doi.org/10.3389/fphy.2025.1487136
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Zeng et al. 10.3389/fphy.2025.1487136

FIGURE 6
Drone attitude solution flowchart.

TABLE 5 Common algorithms for solving integer ambiguity.

Classification Typical algorithm Features

Based on observation domain

Combinatorial Solution for Broad-Narrow Lane
Configuration [21]

Improving stability while enhancing resolution, but
the large wavelength variation is not conducive to

real-time processing

Three-carrier Ambiguity Resolution (TCAR) [69, 70] Incrementally fixing the variables allows for a rapid
resolution of ambiguities, which enhances the

real-time performance

Based on positioning domain Ambiguity function method (AFM) [71] Insensitive to cycle slips, yet the search time is
prolonged and there is the issue of multiple peak values

Based on the fuzzy domain Least-squares ambiguity decorrelation adjustment
(LAMBDA) [72]

Strong applicability, determination can be made with
short time series

calculation speed is fast. However, in a dynamic environment,
the measurement accuracy decreases due to the influence of
receiver performance and observation conditions [69]. Auxiliary
information can be used to improve the calculation accuracy
in a high-dynamic environment, such as the geometry-free and

ionospheric-free TCAR (GIF-TCAR) [70] and the TCAR method
assisted by INS (iTCAR) [71].

The positioning domain-based solution method first obtains the
initial coordinate position, constructs an ambiguity function around
the initial coordinate position, and traverses the global space to
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get the optimal estimate of the ambiguity function. In response
to the long search time and multi-peak problem of AFM, there
are also different solutions. For example, Han [73] uses multi-
frequency combinations to determine the search step in AFM,
reducing the search time; Zhao [74] uses multi-baseline constraints
to solve the multi-peak problem of AFM; Wang [75] proposes the
AFM under the initial pitch angle constraint (Pitch-constrained
Ambiguity FunctionMethod, PCAFM),which can reduce the search
range but is very sensitive to the search step size. Since it takes
the positioning coordinates as the search basis, the accuracy of
the final fixed integer ambiguity is largely limited by the initial
positioning accuracy.

The ambiguity domain-based solution is a more commonly
used method in practice. The LAMBDA method proposed by
Professor Teunissen [76] is the most widely used and effective
method in engineering practice. It can solve the integer ambiguity in
observationmethods such as single-frequency, dual-frequency, non-
differential, and single-dual differences. By continuously observing
over a short period, the ambiguity can be fixed [77, 78]. The core of
the algorithm is based on the Integer Least-Squares principle (ILS)
shown in Equation 6 [79]. The integer solution of the ambiguity
is the integer least-squares solution of Equation 7. By using the
Z-transform in Equation 8, the search space is decorrelated, and
finally, a sequential search method is used to obtain the integer
solution, and then the inverse transformation is used to obtain the
expected solution [72].

min
a,b
‖y−Aa−Bb‖2

Qy

witha ∈ ℤn,b ∈ ℝ3 (6)

min
a∈Zn
(a− ̂a)TQ−1̂a (a− ̂a) (7)

z = ZTa, ̂z = ZT ̂a, Q ̂z = Z
TQ ̂aZ with  Z ∈ ℤn×n (8)

Where y represents the phase observations; a denotes the float
solution of the ambiguities, b denote the baseline vector; ‖⋅‖2Qy

=
(⋅)∗Q−1y (⋅); Qy is the covariance matrix of the carrier phase
observations; ℤn represents the n-dimensional integer space; ℝn

denotes the n-dimensional real number space; ̂a is the expected
integer solution to be obtained;Q ̂a is the covariancematrix of ̂a;Zn×n

is the transformationmatrix for the n-dimensional space; ̂z and z are
the transformed integer solution and float solution obtained from
the search, respectively.

The traditional LAMBDA algorithm has high computational
complexity and wastes a lot of time during the variance reordering
process. The generated search space is inappropriate, leading to low
search efficiency, and it cannot utilize the known prior conditions of
the baseline to reduce the search space. To address the shortcomings
of the traditional LAMBDAalgorithm,many scholars have proposed
improvements in the decorrelation processing of the covariance
matrix, the determination of the integer solution search space,
and the search method for the integer solution in the general
LAMBDA algorithm. This has led to the evolution of various
improved LAMBDA algorithms, continuously enhancing the search
efficiency and fixing success rate of the integer ambiguities,
as shown in Table 6.

In Table 6, introducing constraint conditions is the main
direction for the improvement of the LAMBDA method. Especially
when the floating-point solution and the covariance matrix are

not accurate enough, constraint conditions can improve the search
efficiency and the success rate of fixing [81]. Common constraint
methods include baseline constraints [82], triangular constraints
[83], affine constraints [84], and so on. Teunissen used the
LAMBDA method with constraint conditions to calculate the
integer ambiguities and verified the advantages of the algorithm
in terms of calculation stability and success rate through on-
board dynamic experiments [85]. Shao [86] combines the M-
LAMBDA algorithm with the C-LAMBDA algorithm, improving
the success rate while reducing computational complexity and
ensuring computational efficiency.

In response to the challenge of ambiguity fixing in low satellite
visibility environments, there has been considerable research. Chen
[87] adopts a spherical constraint on the ambiguity space to improve
the success rate of integer ambiguity fixing, while also employing a
joint search strategy in both the coordinate domain and ambiguity
domain to achieve attitude determination under low satellite
visibility. Giorgi [88] proposes an attitude solution method based
onmultivariate constraints in the observation domain (multivariate-
constrained LAMBDA, MC-LAMBDA), which is not limited by
the number of antennas, GNSS system combination methods, or
kinematic prior information, and can solve for integer ambiguities
and attitude angles simultaneously, significantly improving the
success rate of ambiguity fixing. However, due to the consideration
of multiple constraint conditions, the computational complexity
increases. Liu [89] and Douik [90] improve MC-LAMBDA by
using Riemannian optimization to solve nonlinear least squares
constraints, reducing computational complexity while ensuring the
reliability of ambiguities and the accuracy of attitude.

4.2 Attitude determination algorithms

The attitude determination algorithms are another significant
factor affecting the accuracy of attitude angles. The challenge in
calculation lies in achieving a solution with low time complexity
while ensuring the accuracy of the solution. Additionally, for
scenarios with multiple baselines, how to utilize redundant
information to enhance the calculation accuracy is also a hot topic
commonly researched by scholars.

Table 7 presents several common attitude determination
algorithms. The TRIAD algorithm directly solves for the attitude
angles based on the observation matrix without the need for
iterative optimization, making it simple to implement with low
computational complexity. However, it is limited by the baseline
layout, cannot utilize redundant information, and thus has lower
solution accuracy.

The least squares method solves for the attitude angles or
attitude matrix using the classical principle of least squares. It is
computationally efficient and can accurately approximate actual
data. The least squares method can significantly improve the
accuracy of the heading angle, but its improvement on the pitch and
roll angles is not significant [94]. Liu [95] uses antenna arrays and
the integer property of ambiguities to constrain the least squares
solution, allowing for direct calculation of attitude angles, especially
in challenging environments with single-system, single-frequency,
and single-epoch conditions, further enhancing computational
efficiency. Due to the constant state vector, the least squares method
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TABLE 6 Least-squares ambiguity decorrelation adjustment.

Algorithm Principles Algorithm features

Moddified-LAMBDA [80] Introducing symmetric permutation and adopting
greedy search strategy during covariance

decomposition

Improved computational efficiency without affecting
the success rate of fixing ambiguity

Constrained-LAMBDA [81] Adjust the search space using constraint conditions Improve the success rate of fuzzy search or enhance
search efficiency

TABLE 7 Common pose solving methods.

Method Representative algorithm Features

Direct method Triple vector attitude determination (TRIAD) [91] Simple and fast, without prior conditions for baseline
length, low accuracy

Least square method Attitude matrix (attitude angle) least squares method;
constraint least squares method

Good accuracy, high computational efficiency, and
good precision in static positioning

Optimal estimation method Quaternion estimation method [92]; rotation matrix
method [93]

The calculation accuracy is good, but the time cost is
high

is suitable for static or low-dynamic attitude determination but
performs poorly in high-dynamic conditions typical of UAVs.

The optimal estimation method transforms the attitude angle
solution into a Wahba problem [96], taking into account the noise
and uncertainty of the observational data, and adopts an iterative
strategy to find the optimal solution or a non-iterative method
to find a suboptimal solution. It establishes a cost function based
on a large amount of observational data to achieve the estimation
of attitude elements. Among them, the quaternion estimation
(QUEST) algorithm, proposed by Shuster, uses quaternions to
transform the process of solving the rotation matrix into the process
of minimizing the cost function. This algorithm does not require
initial values and is flexible in processing, but can only estimate the
optimal value based on the current state. To address the limitations
of the QUEST method, Bar-Itzha [97] proposed the REQUST
algorithm, which uses historical state information for recursive
solution, further improving the accuracy and robustness of the
estimated values.

4.3 GNSS/INS integrated attitude
determination

Utilizing GNSS for attitude determination can yield high-
precision, cost-effective measurement outcomes. However, in
complex environments where signals may be obstructed or
interfered with, relying solely on the GNSS system for attitude
determination becomes challenging. RUAVs, which are limited by
the number of equipped antennas, use a two-antenna single-baseline
setup allows for the measurement of only two attitude angles:
the heading and pitch angles. Therefore, to ensure the integrity
of the attitude determination system under various conditions
and to obtain complete attitude information, multi-sensor fusion
for attitude determination is an effective approach to achieving
cost-effective and high-precision measurement [98].

As depicted in Figure 7, the combination of satellite navigation
and inertial navigation for attitude determination leverages the
inertial navigation system to assist the GNSS system, providing
backup navigation for a short period during GNSS signal
interruptions [99]. The Inertial Measurement Unit (IMU), which
includes accelerometers and gyroscopes, provides rawmeasurement
data [100]. The measurement values or states output by the GNSS
component and the INS component are fused to varying degrees
through a composite filter to jointly obtain the vehicle’s attitude
information. The IMU can detect the drone’s attitude and balance
status in real-time during flight and feedback to the control center,
making up for the low rate of GNSS output measurement [101].

Integrated navigation is generally divided into three categories
based on the degree of data fusion: loose integration, tight
integration, and ultra-tight integration [102]. Loose integration
fuses the output results of the GNSS system (position, velocity,
attitude angles) with the output of the INS system, where the
two systems work independently, making it simple to implement
with good redundancy [103]. Tight integration fuses the GNSS
observations such as pseudo-range and carrier phase with the state
values of the INS system’s gyroscopes and accelerometers, achieving
bettermeasurement accuracy under low signal-to-noise ratios [104].
Ultra-tight integration deeply integrates the GNSS receiver with the
components of the INS system, starting the fusion from the satellite
tracking loop [105], using the INS system information to adjust
the GNSS tracking loop bandwidth, and improving the signal-to-
noise ratio, which has superior calculation accuracy and robustness
under interference conditions. The high cost of implementing ultra-
tight integration does not meet the low-cost requirements of UAVs,
so UAVs often adopt loose or tight integration of gyroscopes,
accelerometers with the GNSS system.

The key to combination navigation is the data fusion model and
the filtering update algorithm, which combines and smooths the
output values of the two systems to reduce measurement errors.
Common filtering fusion algorithms are shown in Table 8.
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FIGURE 7
GPS/INS integrated navigation structure.

TABLE 8 Typical filtering algorithm.

Types Principles Advantages Shortcomings

Kalman filter (KF) Predicts the value of the next epoch
based on the existing observations

Real time update state estimation;
Dynamic adjustment of parameters to

adapt to system variation

Linear system model only;
Sensitive to initial state

Extended Kalman filter (EKF) Nonlinear observation equation and
state of the system

Simple algorithm implementation Covariance tends to diverge under high
nonlinearity;

Accuracy depends too much on initial
error

Unscented Kalman filter (UKF) Uses a selected set of minimum sample
points to approximate the true model

probability distribution

Accurately capture the statistical
characteristics of nonlinear functions

Higher computational complexity;
Highly sensitive to noise, and the
generation of sigma points may

introduce additional noise

Particle filter (PF) Use weighted random samples to
statistically calculate the posterior

probability

Applicable to nonlinear and non
Gaussian problems

Particle degradation

Complementary filter (CF) Weighted average of different sensor
data

Balance short-term noise and
long-term drift

High requirements for rationality of
weight factor

As shown in Table 8, the KF is an optimal regression data
processing method that reasonably and has been applied in various
fields such as multi-system data processing and fusion, space
orbit prediction, and wireless positioning [106, 107]. However, the
Kalman filter is only suitable for linear systems. To apply it to
the baseline solution of GNSS nonlinear observation equations,
the Kalman filter needs to be improved, resulting in the Extended
Kalman Filter (EKF) [108], Unscented Kalman Filtering (UKF)
[109], Particle Filter (PF) [110], Complementary Kalman Filter
(CKF) [111], and so on. The Extended Kalman Filter (EKF) is
the simplest to implement, but its accuracy depends on the initial
error and the degree of approximation to the true model [112].
The Unscented Kalman Filter (UKF) uses a set of sigma points to
approximate the true model, while the Particle Filter (PF) weights
these sampling points to further enhance accuracy and eliminate
the impact of multipath errors in the signal [110]. However, the
Particle Filter suffers from the problem of particle degradation, and
it is common to combine the Particle Filter with other types of
nonlinear Kalman filters to improve particle distribution [112–114].

Complementary filtering can leverage the short-term accuracy of the
gyroscope and the long-term stability of the accelerometer to achieve
accurate attitude estimation.

The filtering algorithm in integrated navigation can effectively
reduce the data error of attitude measurement between different
sensors, reduce the impact of measurement noise on the final
measured value, and use different sensor data to complement each
other to improve the accuracy and reliability of attitude angle.
Jwo [25] uses EKF for filtering the attitude estimation represented
by quaternions, which can eliminate the noise of the quaternion
itself and improve the attitude accuracy. The baseline can also be
used to assist the Kalman filter using high-precision baseline prior
length information to constrain the Kalman filter iteration process,
thereby improving accuracy and robustness [115],. Dong [116]
uses sequential adaptive Unscented Kalman filtering, estimating the
measurement noise covariance matrix of the heading angle change
in real-time, mitigating the problem of drastic noise changes in
integrated attitude determination caused by object movement, and
providing a stable and accurate heading angle.
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In the loose or tight integration navigation of RUAV, different
filtering algorithms are used to achieve different degrees of
data fusion to obtain reliable and accurate attitude angle For
loose integration, Ding [117] constructs an Error State Kalman
(ESKF) filter, fusing inertial navigation sensors and GNSS data,
continuously integrating the gyroscopic measured angular rate
to propagate attitude, and compensating for cumulative errors
through measurement updates, achieving combined attitude
determination of MEMS systems and low-cost GNSS receivers.
For tight integration, Wang [101] combines dual-antenna GNSS
and MEMS, verifying that the inertial navigation device can stably
measure the heading angle under brief GNSS signal loss. Yan [118]
uses dual-rate filtering based on EKF, fusing high-rate high-noise
observations and low-rate low-noise observations into an optimal
estimation system, achieving real-time attitude determination in
complex noise environments.

In addition to filtering out noise through combination,
combined navigation attitude determination also helps to fix the
integer ambiguity. Xiao [119] proposes a three-frequency differential
GNSS/INS tight integration, using three-frequency solutions to
improve the speed of measurement values and integer ambiguity
fixing, and using tight integration to weaken the impact of TCAR
algorithm instability on the results. Gao [120] proposes a new tight
integration GNSS/MEMS model, using a single filter to achieve
optimal estimation of attitude drift, gyro zero bias, and ambiguity,
effectively improving the ambiguity fixing rate and reducing attitude
error compared to a single GNSS system.

The integration of satellite navigation and inertial navigation
can combine the advantages of the two systems to achieve
complementary performance. The high-precision measurement
values provided by the satellite navigation system help to reduce the
cumulative error of the inertial navigation system, while the inertial
navigation system does not require external signal input and can
act as a backup navigation in the event of GNSS signal occlusion
or interference, taking over the navigation task for a short period
[121, 122].

5 Challenges

5.1 Real-time attitude determination under
high dynamics

Currently, the use of GNSS for attitude determination is often
aimed at the attitude determination of vehicle platforms, where the
main change in the vehicle’s attitude angles is in the heading angle,
and the change is relatively slow. In contrast, rotary-wing UAVs
have high dynamics, and during complexmotion processes,multiple
attitude angles change within a short period of time. Existing
research is better for the attitude determination of vehicles or low-
dynamic aircraft, but there is less research on the high dynamics
of rotary-wing UAVs. However, the attitude determination of UAVs
under high dynamics is crucial, as only by accurately grasping the
real-time motion state of the UAV can the safe execution of tasks
be ensured.

The high-dynamic flight of UAVs will lead to rapid changes
in the baseline vectors formed by the receiving machinery, posing
certain difficulties for baseline calculation. Since the premise

of accurate baseline calculation is the determination of integer
ambiguities, most existing ambiguity determination methods rely
on searching in the ambiguity domain. Under high dynamics, the
ambiguity space range is large, so how to constrain the ambiguity
space, reduce the size of the search space, and thereby improve the
fixing rate is a challenge [123].The relatively effectiveMC-LAMBDA
method, described in Section 4.1, can effectively reduce the search
space by relying on multiple variables for constraints, but due to the
consideration of multiple constraint conditions at the same time, it
leads to increased algorithm complexity and to some extent, reduced
search efficiency.Therefore, how to consider the accuracy of baseline
calculation under high dynamics, especially the rapid determination
of integer ambiguities under high dynamics, is a current major
challenge.

High-precision attitude determination under high dynamics
requires not only the method of solution but also the reliability of
the solution results. Since the fixing of integer ambiguities is a key
link affecting attitude determination, existing inspection methods
mainly inspect the accuracy and stability of ambiguity fixing, thereby
reflecting the reliability of attitude determination. Commonly used
methods are based on positioning domain judgment, and under the
premise of baseline constraints, the selected judgment threshold is
largely related to the length of the baseline [124, 125]. For the attitude
determination of RUAVs with short baselines, the requirements for
the judgment threshold may be more stringent. Therefore, whether
a method for attitude determination integrity inspection suitable for
UAVswith short baseline systems can be developed, which canmake
judgments on attitude determination integrity without the need for
prior conditions of baseline length, or relying on a small amount of
baseline redundancy information, is a challenge.

5.2 Effective response to navigation
interferences

Using GNSS signals for UAV attitude determination often faces
the issue of navigation interference, where jamming and spoofing
are the most common types of satellite navigation interference.
The integrity of navigation services determines whether the UAV
can work properly [126]. Especially for UAVs that require high-
precision positioning and attitude determination equipment, once
they encounter navigation interference, as depicted in Section 3.3,
they will obtain incorrect position and attitude information, lose
control of the UAV’s motion state, and thus affect its operational
effectiveness.

Jamming interference is low-cost, reliable, easy to implement,
has a wide coverage range, and is widely used in various
scenarios. A 1W jamming interference source can interfere with the
maximum distance of about 16.96 km under ideal conditions [42].
Although the probability of successful implementation of jamming
interference has been reduced with the application of frequency
domain filtering technology, anti-jamming antenna technology,
pseudo-satellite technology, and integrated navigation, etc., for small
aircraft such as rotary-wing UAVs, it is still difficult to effectively
resist jamming interference without external assistance. Although
small inertial navigation devices can be equipped to take over
the satellite navigation equipment and continue navigation in the
face of interference, due to the serious accumulation of errors
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and low accuracy of small inertial navigation devices, the overall
system navigation error increases without the error correction of
the satellite navigation system, which still reduces the operational
effectiveness of the UAV.

Compared to jamming interference, spoofing interference is
characterized by its strong concealment, high threat, and low cost,
and can deceive the UAV into flying along a specified trajectory
[127]. With a low-cost spoofing device, a certain spoofing effect can
be achieved [128, 129]. Generally, when the deceptive signal power is
3dB higher than the real signal power, the jammer can be deceived.
The interferer fuses and calculates high-precision spoofing signals
based on the UAV’s position, speed, and other status information,
making the spoofing signals highly similar to the real signals, thereby
completing covert deception [130]. Especially for UAVs using public
service navigation signals, due to the openness of the signal system
and the use of less encryption and authentication, they are more
susceptible to spoofing [131]. From randomposition spoofing [132],
fixed-point position spoofing [133], delayedmessage spoofing [134],
to state estimation value spoofing [135], different types of spoofing
interference can severely affect the normal flight of UAVs. The
implementation approaches also vary, such as adding interference
to the receiver’s phase-locked loop [136], and gradually guiding with
trajectories of different Doppler shifts and delays [137], etc.

Addressing the diverse and complex satellite navigation
interference methods of today, designing anti-satellite navigation
interference systems suitable for rotary-wing UAVs is an urgent
problem that needs to be solved.When facing jamming interference,
the challenge is to ensure the normal operation of the UAV
navigation receiver and to mitigate the effects of jamming signals.
When facing spoofing interference, the system should be able to
autonomously and effectively detect spoofing according to the
abnormal receiving phenomena without adding extra weight or
hardware requirements to the UAV. Compared with the mature
deception detection without too many hardware requirements,
the existing UAV is more difficult to suppress the suppression
interference. Improving the survival rate of UAV under suppression
jamming is the key problem to be solved. Existing anti-jamming
methods often employ array antennas, but these can introduce
significant phase pattern changes that affect the quality of
observations [138]. Moreover, array antennas can only counteract
interference from a limited number of directions, and their
anti-jamming performance is limited in complex environments
with multi-directional interference. At the same time, the use
of array antenna will increase the hardware overhead and load.
Therefore, achieving low-cost navigation anti-jamming in complex
environments while ensuring the UAV’s positioning and attitude
determination is a significant challenge for rotary-wing UAVs.

5.3 Intelligent response to Multi-GNSS
system integration

The current GNSS systems have been developed and refined,
with each navigation system capable of independently performing
positioning, navigation, and timing tasks. Utilizing multi-system
GNSS can significantly increase the number of observable satellites,
improve the geometric configuration of the satellite constellation,
as depicted in Section 3.3, reduce reception costs, and obtain

FIGURE 8
Beidou Satellite Communication System’s receiving antennas specially
used for small unmanned aerial vehicle. (A) HX-CH3602A. (B)
HX-CH5601A.

higher quality observational data, thereby enhancing measurement
accuracy. Especially in challenging environments where satellite
access is limited, when one system fails or is unavailable, another
system can provide operational redundancy [139].

Due to the low cost of current navigation equipment, multiple
satellite navigation systems can be implemented on small-sized
devices. As shown in Figure 8, theHX-CH3602A andHX-CH6601A
from Beidou Xingtong are two receiver antennas specifically
designed for small UAVs. They can respectively achieve triple-
system tri-frequency reception for GPS L1, BDS B1, and GLONASS
L1, and triple-system six-frequency reception for GPS L1/L2,
GLONASS L1/L2, and BDS B1/B2.

The current attitude determination using multi-system GNSS
is mainly focused on the combination of different systems
on a single frequency. Teunissen [139] conducted simulation
studies on the attitude determination of Galileo and GPS single-
frequency combined data, obtaining relatively stable expected
results, which verified the ability to use backup satellite data for
instantaneous attitude determination in a disturbed environment.
Zamanpardaz [140, 141] compared and analyzed the Indian
Regional Navigation Satellite System (IRNSS) and GPS Block
IIF on the L5 frequency point. When the two systems were
combined for attitude determination, the ambiguity dilution of
precision (ADOP) was significantly improved, and both the integer
ambiguity fixing success rate and attitude accuracywere significantly
enhanced [142]. Zhao [143] confirmed the improvement in attitude
determination performance when GPS/BDS/GALILEO were used
in a tight combination, with the percentages of pitch error, yaw
error, and roll error within 2° in a complex environment increasing
by 6.1%, 8.07%, and 13.43%, respectively, and the ambiguity
fixing rate increased by 14.78%. Shu [144] conducted attitude
determination with the combination of GPS, BDS, Galileo, and
GLONASS, confirming that the combined attitude determination
can significantly improve attitude accuracy on a moving vehicle
platform. Yang [145] propose GPS/BDS dual-antenna attitude
determinationmodel which obviously improve the fixing rates, such
as 16.0% improved in the static experiment and 23.6% in dynamic
experiment. Although the aforementioned research can enhance the
attitude measurement performance by utilizing GNSS signals at the
same frequency point, they did not focus on attitude determination
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using different frequency point signal combinations under multi-
GNSS systems.

In addition, common jamming and spoofing interferences are
usually targeted at a specific system within the GNSS, making it
difficult to interfere with the entire GNSS system simultaneously.
By leveraging the mutual backup among navigation systems, it
is possible to continue navigation using another system when
faced with interference targeting a particular satellite navigation
system. Therefore, under the current conditions where GNSS
systems are increasingly refined, how to better utilizemultiple GNSS
systems to complete integrated attitude determination, mutual
integration, and backup to enhance attitude determination accuracy
in complex environments and resist navigation interference is a
challenge.

Several factors need to be considered, such as the performance
comparison of different navigation systems in UAV positioning and
attitude determination applications; the basis for selecting signal
combinations from different navigation system frequency points;
the selection of integer ambiguity fixing methods and attitude
determination algorithms under multi-system GNSS integrated
attitude determination; the ability of different navigation systems
to counteract jamming and spoofing interference; ensuring the
continuity and accuracy of positioning and attitude determination
results during system switching, etc. Moreover, when performing
integrated attitude determination with multiple GNSS systems, the
issue of inter-system bias (ISB) between systems also needs to be
addressed [139, 146].

6 Conclusion

The article primarily discusses the current state and challenges
of attitude determination for rotary-wing UAVs based on the GNSS.
Attitude information is a necessary condition for the safe flight of
UAVs. The article focuses on three main aspects of UAV attitude
determination: integer ambiguity resolution, attitude calculation,
and integrated navigation. The determination of integer ambiguities
is a key factor affecting the accuracy ofUAVcarrier phase differential
measurements. Only by obtaining accurate and reliable ambiguities
can the precise baseline be calculated, which in turn determines the
attitude angles. While integer ambiguity resolution has been proven
to be reliable and accurate when searching within the ambiguity
domain constrained by baselines, further constraints are needed for
the high-dynamic mobile carrier. The attitude calculation method
requires further improvement in computational complexity to meet
the real-time attitude acquisition requirements of UAVs. Integrated
navigation is the current development trend for achieving low-cost
attitude measurement, and the integration of data from integrated
navigation is an important direction for research. Filtering different
navigation systems’ data to reduce the impact of observation noise

on attitude calculation and enhance the performance of integrated
navigation is essential.

At the same time, due to the vulnerability of satellite navigation,
using GNSS for attitude measurement is susceptible to common
navigation interferences. Once interference occurs, UAVs may
lose directional control, posing a significant safety risk. Therefore,
further research is needed to enhance the anti-interference
capabilities of rotary-wing UAV navigation. Given that current
GNSS systems havematured and various satellite navigation systems
can be used for attitude measurement, integrating multiple systems
could be a potential approach to improving anti-interference
capabilities. This not only enhances the accuracy of UAV attitude
measurement but also improves the UAV’s ability to continue
navigation when encountering interference.
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The Gaussian sum cubature Kalman filter (GSCKF) based on Gaussian mixture
model (GMM) is a critical nonlinear non-Gaussian filter for data fusion of global
navigation satellite system/strapdown inertial navigation systems (GNSS/SINS)
tightly coupled integrated navigation system. However, the stochastic model of
non-Gaussian noise in practical operating environments is not static, but rather
time-varying. So if the GMM of GSCKF cannot be adjusted adaptively, it will
lead to a decrease in estimation accuracy. To address this issue, we propose a
novel adaptive GSCKF (AGSCKF) based on the dynamic adjustment of GMM. By
analyzing the impact of GMM displacement parameter on the fitting accuracy
of non-Gaussian noise, a novel algorithm for GMM displacement parameter
adaptive adjustment is proposed using a cost function. Then this novel algorithm
is applied to overcome the limitations of GSCKF under time-varying non-
Gaussian noise environment, thereby improving the filtering performance. The
simulation and experimental results indicate that the proposed AGSCKF exhibits
significant advantage in changeable environments affected by time-varying
non-Gaussian noise, which is applied to GNSS/SINS tightly coupled integrated
navigation system data fusion can improve estimation accuracy and adaptability
without sacrificing significant computational complexity.

KEYWORDS

GNSS/SINS tightly coupled integrated navigation system, adaptive filter (ADF), cubature
Kalman filter (CKF), Gaussian mixture model (GMM), non-Gaussian noise, time-varying
noise

1 Introduction

The global navigation satellite system and strapdown inertial navigation system
(GNSS/SINS) tightly coupled integrated navigation system data fusion is one of the key
technologies in many fields, including unmanned aerial vehicles (UAVs), which enables
precise navigation, guidance, and control capabilities (Grewal et al., 2020; Gyagenda et al.,
2022; Boguspayev et al., 2023). The mathematical model for GNSS/SINS tightly coupled
integrated navigation system data fusion is inherently nonlinear, and despite advances
in navigation technology, its nonlinear characteristics cannot be eliminated. Therefore,
the nonlinear filter remains a crucial technique in the field of GNSS/SINS tightly
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coupled integrated navigation system data fusion for UAVs (Groves,
2008; Li and Chen, 2022; Xiao et al., 2024).

1.1 Nonlinear filter

Extended Kalman filter (EKF) is a widely used nonlinear filter for
GNSS/SINS tightly coupled integrated navigation systemsdata fusion,
but its engineering application is limited by linearization errors and
complex updating processes of Jacobian matrix (Wang et al., 2018).
Thus, Unscented Kalman filter (UKF) is proposed to approximate the
state estimation and its covariance through a set of sampling points
by unscented transforms (UT). Compared to EKF, UKF does not
require updating Jacobian matrix, and its accuracy can reach second-
orderTaylor series expansionor evenhigher.However, the parameters
of UKF do not have deterministic values, and the computation
increases dramatically with the increase of the dimension of state
estimation (Rhudy et al., 2011; Hu et al., 2020). Quadrature Kalman
filter (QKF) using Gaussian Hermitian quadrature rule can achieve
high estimation accuracy. But as the number of state parameters
increases, the required quadrature points will exponentially increase,
resulting in that the computational complexity of QKF is higher
than that of EKF and UKF (Monfort et al., 2015). To address the
dimensionality curse in QKF, researchers have devised cubature
Kalman Filter (CKF). Within the CKF framework, the utilization of
the third-order spherical cubature rule not only possesses a more
rigorous mathematical foundation compared to the UT employed in
UKF, but also demonstrates a reduction in computational resources
and an increase in computational efficiency during state estimation
under comparable conditions, as compared to both UKF and QKF.
Additionally, by integrating a square-root filtering approach, CKF
exhibits superior numerical stability when confronted with nonlinear
challenges, incontrast totheUKF.Currently,CKFhasbeenwidelyused
in fields such as navigation positioning, target tracking, and guidance
and control system due to its advantages of superior estimation
accuracy, remarkable numerical stability, andminimal computational
requirements (Arasaratnam and Haykin, 2009; Sindhuja et al., 2023).
And yet CKF assumes that the random model in the filter is white
Gaussian noise. In practical application, it is common for the random
model to deviate from the assumption of white Gaussian noise, which
inevitably affects the accuracy of filtering estimation (Sun et al., 2022;
Tang et al., 2023; Wang et al., 2023). Therefore, mitigating the impact
of non-Gaussian noise on the estimation accuracy of CKF has been
a prominent research topic in the field of GNSS/SINS tightly coupled
integrated navigation data fusion.

1.2 Mproved cubature Kalman filter

In recent years, various optimized algorithms for CKF have
been proposed to address the issue of non-Gaussian noise in
states estimation. A strong tracking CKF with multiple sub-
optimal fading factor is introduced to tackle the discrepancy
between theoretical and practical models of measurement noise
in GNSS/SINS tightly coupled integrated navigation systems,
which significantly enhances the accuracy of navigation estimation

(Huang et al., 2016). Furthermore, a robust CKF based on M-
estimation is presented, which can reduce the impact of non-
Gaussian measurement noise interference. This filter redefines the
innovation sequence using the M-estimate of Huber’s equivalent
weight function, enhancing the robustness of the GNSS/SINS tightly
coupled integrated navigation system data fusion (Wang et al.,
2020). Additionally, an adaptive CKF based on Mahalanobis
distance is designed to address the unknown noise statistics. By
employing the Mahalanobis distance of innovations to determine
the random model of filter, this filter improves the positioning
accuracy of GNSS/SINS tightly coupled integrated navigation
systems (Zhang et al., 2021). However, these above optimized
algorithms for CKF approximate the true distribution of non-
Gaussian through the Gaussian distribution approximation method
with a larger variance, which may result in inaccurate estimated
variance for state estimation (Legin et al., 2023; Dong et al., 2023).

Lately, the Gaussian mixture model (GMM) derived from the
multimodal approximation method has emerged as a promising
approach to solve non-Gaussian noise problems. Compared to the
Gaussian distribution approximation method with a larger variance,
the GMM offers higher accuracy in this regard (Alspach and
Sorenson, 1972; George et al., 2022). By decomposing the probability
density function (PDF) of non-Gaussian noise intomultiple Gaussian
components using GMM, Gauss-Hermite sum filter can be derived.
Combining GMM with CKF yields the Gaussian sum CKF (GSCKF),
which has been applied to GNSS/SINS tightly coupled integrated
navigation data fusion, thereby contributing to improved navigation
positioningaccuracy(Baietal., 2022).Since2023,numerous improved
algorithms forGSCKFhave emerged in rapid succession, finding their
applications within the domain of non-Gaussian nonlinear systems.
These refined algorithms encompass: CredibleGSCKF,Observability-
Based GSCKF, quaternion constrained GSCKF, and so on (Ge et al.,
2024; Jiang et al., 2024; Dai et al., 2024; Li et al., 2020). However,
due to the non-stationary nature of practical operation environments
of GNSS/SINS tightly coupled integrated navigation systems, the
statistical characteristics of non-Gaussian noise also change over time
(Zhou et al., 2024; Lin et al., 2023; Chen et al., 2023). Although the
above researchhas to someextent improved theestimationaccuracyof
GNSS/SINS tightly coupled integrated navigation systems data fusion
using GSCKF affected by non-Gaussian noises, the GMM modeling
parameters inGSCKFcannotchangewith thestatistical characteristics
of non-Gaussian noise, and this limitation will lead to a decrease in
estimation accuracy, which may seriously cause divergence.

1.3 Motivation and contributions

The motivation for this study stems from the intricate and
dynamic nature of practical operating environments in GNSS/SINS
tightly coupled integrated navigation system. These environments
introduce time-varying non-Gaussian noise characteristics that
exhibit stochastic behavior. Consequently, the inability of the
GMM employed within GSCKF to adapt dynamically results in
a degradation of estimation accuracy. Addressing the challenges
posed by such time-varying non-Gaussian noise is crucial for
maintaining the performance of GSCKF. Therefore, inspired by
the research in reference (George et al., 2022; Dai et al., 2024;
Lin et al., 2023; Panda et al., 2024a; Panda et al., 2024b), we
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propose a novel Adaptive GSCKF(AGSCKF), specifically designed
to mitigate the adverse effects of time-varying non-Gaussian noise,
thereby enhancing the performance of GNSS/SINS tightly coupled
integrated navigation system.

The contributions of this work are concisely summarized
as follows.

1) A novel AGSCKF is proposed, building upon the framework of
GSCKF. This filter specifically targets the statistical properties
of time-varying non-Gaussian noise, mitigating the adverse
effects on the estimation accuracy of GSCKF.

2) The innovation of AGSCKF lies in its integration of a
cost function-based adaptation algorithm. This algorithm
dynamically optimizes the displacement parameter of GMM
in real-time, ensuring precise tracking of the statistical
characteristics of time-varying non-Gaussian noise.

3) Simulation and experimental analyses have been conducted to
demonstrate the superior performance of AGSCKF, particularly
in enhancing the estimation accuracy and adaptability of the
GNSS/SINStightlycoupledintegratednavigationsystemintime-
varying non-Gaussian noise scenarios.

Collectively, these contributions highlight the superior
performance of AGSCKF compared to CKF and GSCKF in
addressing data fusion for GNSS/SINS tightly coupled integrated
navigation systems in challenging environments.

2 Background and problem
formulation

2.1 Mathematical models for GNSS/SINS
tightly coupled integrated navigation
system

The GNSS/SINS tightly coupled integrated navigation
system exhibits excellent navigation accuracy and robustness
against interference. Nevertheless, in the presence of high
maneuvering, conventional linearized models tend to compromise
the accuracy of estimation, necessitating the nonlinear
mathematical model (Groves, 2008). The nonlinear mathematical
model for GNSS/SINS tightly coupled integrated navigation system
includes the state-space model and the measurement model.

The state estimation xk−1|k−1 at epoch k-1 encompasses attitude,
velocity, position, gyroscope drift, accelerometer drift, GNSS
clock bias, and GNSS clock drift. The state-space model can be
mathematically expressed by Equation 1.

xk|k−1 = f(xk−1|k−1 ) + gkwk (1)

where f(⋅) is a nonlinear function, gk is the noise coefficient matrix,
wk is the process noise, Assuming that wk is characterized as white
Gaussian noise, it can be representedmathematically aswk ∼ (0,Qk).

The measurement model is expressed by Equation 2.

zk = h(xk|k−1 ) + vk (2)

where zk is the measurement composed of pseud-orange and
pseud-orange rate corrected by satellite clock bias, ionospheric
delay, and tropospheric delay. h(⋅) is a nonlinear function. vk

is the measurement noise caused by GNSS receiver, multipath
effects, and orbit prediction residuals. Since vk does not conform
to white Gaussian noise, it is classified as non-Gaussian noise.
Its distribution can be closely approximated by two Gaussian
components (Bai et al., 2022).

P(vk) = (1− ε)N(v
A
k ;μ

A
k ,R

A
k ) + εN(v

B
k ;μ

B
k ,R

B
k) (3)

where N(vAk ;μ
A
k ,R

A
k ) is the Gaussian component of mean μAk

and variance RA
k at epoch k, N(vBk ;μ

B
k ,R

B
k) denotes the Gaussian

component of mean μBk and variance RB
k , and ε represents a factor

with unmeasurable and time-varying characteristics, setting ε ∈ [0,1].

2.2 Cubature Kalman filter

CKF is a Gaussian filter that enables the approximation of the
PDF of nonlinear functions through a set of cubature points. This
approach avoids the need for linearization of the nonlinear function,
thereby enhancing the accuracy and reliability of states estimation.
By utilizing this method, the CKF offers significant advantages over
traditional linearized filters in terms of its ability to handle non-
linear systems with high dimensional states estimation. The specific
implementation steps of CKF are as follows.

Step 1: Initialization.

Set x0|0 ∼N(x0|0 ,P0|0 ), x0|0 = E(x0|0 ) and S0|0 = chol(P0|0 ),
where E(⋅) is the expected value, chol(⋅) represents the Cholesky
decomposition, and P0|0 = S0|0 S

T
0|0 .

Step 2: Calculate the sampling points.

Let state estimation at epoch k− 1 expressed as xk−1|k−1 , and its
covariance is computed as

Pk−1|k−1 = Sk−1|k−1 S
T
k−1|k−1 (4)

The third-order spherical phase diameter cubature rule is
employed to generate a set of cubature points ξc

ξc = √
m
2
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⋮
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(5)

In Equation 5, xc,k−1|k−1 denotes the total number of cubature
points, c = 1,2,⋯m, m = 2n. xc,k−1|k−1 is the dimension of the state
estimation. In other words, the total number of cubature points is
twice the dimension xc,k−1|k−1 of the state estimation.

Step 3: Prediction.

The estimation of cubature points χc,k−1|k−1 and propagation
cubature points x

∗
c,k−1|k−1 are calculated separately.

χc,k−1|k−1 = Sk−1|k−1 ξc + xk−1|k−1 (6)

x∗c,k|k−1 = f(χc,k−1|k−1 ) (7)

Calculate the state prediction xk|k −1 and its covariance Pk|k−1

xk|k −1 =
1
m

m

∑
c=1

x∗c,k|k−1 (8)
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Pk|k−1 =
1
m

m

∑
c=1
(x∗c,k|k−1 − χc,k−1|k−1 )(x

∗
c,k|k−1 − χc,k−1|k−1 )

T
+Qk−1

(9)

where Qk−1 is the covariance of process noise.

Step 4: Update.

Calculate measurement prediction zk|k−1 , its corresponding
covariance Pzz,k|k−1 , and cross-covariance Pxz,k|k−1 , respectively.

zk|k−1 =
1
m

m

∑
c=1

z∗c,k|k−1 (10)

Pzz,k|k−1 =
1
m

m

∑
c=1
(z∗c,k|k−1 − zk|k−1 )(z

∗
c,k|k−1 − zk|k−1 )

T
+Rk (11)

Pxz,k|k−1 =
1
m

m

∑
c=1
(x∗c,k|k−1 − χc,k−1|k−1 )(z

∗
c,k|k−1 − zk|k−1 )

T
(12)

where z
∗
c,k|k−1 = h(xc,k|k−1 ), xc,k|k−1 = Sk|k−1 χc + xk|k−1 , Pk|k−1 =

Sk|k−1 S
T
k|k−1 .

Update the filter gainKk, state estimation xk|k , and its covariance
Pk|k separately.

Kk = Pxz,k|k−1P
−1
zz,k|k−1 (13)

xk|k = xk|k−1 +Kk(zk − zk|k−1 ) (14)

Pk|k = Pk|k−1 −KkPzz,k|k−1K
T
k (15)

2.3 Gaussian sum cubature Kalman filter

CKF is a nonlinear filter that assumes the random model is
white Gaussian noise. However, in practical operating environments,
the measurement noise encountered in GNSS/SINS tightly coupled
integrated navigation systems exhibits non-Gaussian characteristics.
Consequently, it becomes imperative to combine CKF with GMM to
develop states estimation of the GSCKF. The GSCKF enables CKF
to effectively address the challenges posed by non-Gaussian noise,
thereby enhancing the accuracy and reliability of state estimation for
GNSS/SINS tightly coupled integratednavigationsystemsdata fusion.

The distribution of measurement noise is depicted as non-
Gaussian noise in Equation 3. However, due to the unmeasurable
and time-varying characteristics of the factor ε, P(vk) is often
decomposed into two Gaussian distributions with equidistant
distributions as illustrated below:

P(vk) ≈ 0.5N(v
1
k;μ

1
k,R

1
k) + 0.5N(v

2
k;μ

2
k,R

2
k) (16)

where N(v1
k;μ

1
k,R

1
k) represents a Gaussian component characterized

by its mean μ1
k and variance R1

k. Similarly, N(v2
k;μ

2
k,R

2
k) denotes

another Gaussian component defined by its mean μ2
k and variance

R2
k.

{{{{
{{{{
{

μ1
k = μk + d√λu

μ2
k = μk − d√λu

R1
k = R

2
k = Rk − d

2λuuT

(17)

FIGURE 1
The decomposition process of GMM.

where λ and u correspond to the maximum eigenvalue and
the corresponding eigenvector of Rk, respectively. d is the GMM
displacement parameter that influences the mean distance between
the two Gaussian components, d ∈ [0,1]. In practical computations,
d is typically set to 0.5 (Sun et al., 2020; Yu et al., 2023).
As depicted in Figure 1, the decomposition process of GMM
is illustrated as below.

In Figure 1, the blue solid line p represents the PDF of non-
Gaussian noise, while the brown solid lines p(1) and brown
dotted lines p(2) represent the two Gaussian components obtained
through GMM decomposition respectively, with displacement
parameter d = 0.5. It can be seen that the probability density
distribution after decomposition by GMM is close to the non-
Gaussian noise in Equation 3. Therefore, GSCKF has better filtering
performance than CKF owing to its accuracy random model under
non-Gaussian noises scenarios.

The general implementation procedures of GSCKF can be
described as follows. Firstly, based on GMM, the decomposition of
non-Gaussian noise is performed using Equations 16, 17.Then, CKF
is performed by employing Equations 4–15, and the state estimation
of two components at the next epoch can be gotten separately.
Finally, based on the weights of different components, a weighted
combination is carried out to obtain the final state estimation and
its covariance as outputs.

2.4 Flaws and shortcomings

The Allan variance analysis reveals that the measurement
noise of GNSS/SINS tightly coupled integrated navigation systems
is non-Gaussian in nature, rather than white Gaussian noise.
Additionally, the mathematical statistical characteristics of non-
Gaussian noise exhibit time-varying behavior due to changes in
the practical operation environment over time (Tang et al., 2023;
Zhang et al., 2020; Elmezayen and El-Rabbany, 2021; Taghizadeh
and Safabakhsh, 2023). Although non-Gaussian noise can be
approximated by Equation 17, the dynamic nature of the practical
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operation environment of GNSS/SINS tightly coupled integrated
navigation systems introduces uncertainties in the factor, which
makes the time-varying characteristics of P(v). Therefore, it limits
the optimality of the GMM displacement parameter when setting,
as shown in Equation 17. In other words, if the GSCKF based on
GMMwith a fixed GMMdisplacement parameter is directly applied
to GNSS/SINS tightly coupled integrated navigation systems data
fusion, it may not effectively cope with time-varying non-Gaussian
noise, resulting in random model mismatches, reduced estimation
accuracy, and even divergence in severe cases.

3 Gaussian sum cubature Kalman filter
with time-varying Non-Gaussian noise

To address the challenge of deteriorating estimation accuracy
of GSCKF, where in the measurement noise is time-varying non-
Gaussian noise, this section proposes a novel adaptive GSCKF
(AGSCKF) based on the adaptively adjustment of the GMM
displacement parameter. According to the impact analysis of GMM
displacement parameter on the accuracy of GMM modeling, the
AGSCKF employs an adaptive algorithm to select the optimal GMM
displacement parameter between twoGaussian components to track
changes in the statistical characteristics of non-Gaussian noise. As a
result, the derivation of the AGSCKF for GNSS/SINS tightly coupled
navigation system data fusion is achieved when measurement noise
becomes time-varying non-Gaussian noise.

3.1 Analysis of the GMM displacement
parameter on the accuracy of GMM
modeling

The GSCKF decomposes non-Gaussian noise through GMM
to obtain an approximate model by Equation 17, which makes
the decomposed mixed model close to the non-Gaussian noise
model in Equation 3. However, the time-varying ε in Equation 3
also introduces uncertainty for P(vk) in Equation 17. And in the
decomposition process of GMM, Equation 17 typically determines
the GMM displacement parameter as d = 0.5, which is not optimal.
If d > 0.5, the effect of εN(vBk ;μ

B
k ,R

B
k) is stronger than that of

(1− ε)N(vAk ;μ
A
k ,R

A
k ); while d > 0.5, the effect of εN(vBk ;μ

B
k ,R

B
k) is

smaller than that of (1− ε)N(vAk ;μ
A
k ,R

A
k ). So, it is required that when

non-Gaussian noise varies, the GMM displacement parameter can
be adjusted adaptively.

In Figure 2, p represents non-Gaussian noise in Equation 3,
while p(A) and p(B) represent the two components in Equation 3.
As shown in Figure 2A, when d < 0.5, the GMM modeling result
of Equation 17 is represented by the area enclosed by p(1), p(2)
and the x-axis. The overlap between this area and the area
enclosed by p(A), p(B) and the x-axis is the actual estimation
result, denoted as M. The higher the overlap, the higher the
estimation accuracy. On the other hand, when d > 0.5, the actual
estimation result, denoted as N in Figure 2A. Comparing M
and N, it can be observed that the degree of overlap of M is
lower than that of N, indicating that the estimation result shown
in Figure 3D is better than that shown in Figure 3A.

Further, as the effect of εN(vB;μB,ΣB) weakens (ε changes from
0.20 to 0.10), the mean centers of p(A) and p(B) shift towards
each other. The estimation result repressed as M′ when d < 0.5 in
Figure 3C, and the estimation result repressed as N′ when d > 0.5 in
Figure 3F. It is observed that the overlap degree of M′ is higher than
that of N′, indicating that the estimation accuracy in Figure 3C is
superior to that in Figure 3F when d < 0.5.

This demonstrates that when non-Gaussian noise varies,
adaptive adjustments in the GMM displacement parameter d can
effectively track the time-varying nature of non-Gaussian noise,
resulting in a more reasonable GMM decomposition process and
a closer fit to the actual non-Gaussian noise. By incorporating this
approach into the GSCKF, more accurate stochastic models can be
obtained, thereby enhancing the accuracy of GSCKF estimation.

3.2 Adaptive algorithm for the GMM
displacement parameter

An adaptive algorithm is devised to address the real-time
estimation challenge of the GMM displacement parameter under
time-varying non-Gaussian noise condition. This algorithm
employs the maximum value of the cost function as the optimal
criterion and adaptively selects the optimal parameter within a
specified range. The cost function is defined as follows:

p(zk|zk−1,d ) =
1
√2πσ2

exp(−1
2
(
zk − zk|k−1

σ
)

2
) (18)

Subsequently, the corresponding value of the GMM
displacement parameter d within its range of variation [dmin,dmax]
can be calculated. The GMM displacement parameter that
corresponds to the maximum value p(zk|zk−1,d ) is identified as
the optimal parameter value ̂d by Equation 19.

̂d = arg max   ̂p(zk|zk−1,d ) (19)

where d ∈ [dmin,dmax].

3.3 The process of AGSCKF

The proposed AGSCKF is derived by incorporating the adaptive
algorithm for the GMM displacement into GSCKF. The specific
implementation steps of the AGSCKF are as follows.

Step 1: Set the step size of displacement parameter’s changes
sl = 0.1 and displacement parameter’s range of variation
[dmin,dmax].

The choice of step size has a significant impact on the accuracy
of proposed AGSCKF. A smaller step size generally leads to higher
accuracy, albeit at the cost of increased computational complexity.

Step 2: Let d = dmin, and the maximum likelihood function is given
by max LH = 0.

Step 3: The state prediction xk|k−1,d , measurement prediction
zk|k−1,d , and its corresponding covariance Pk|k−1,d ,
cross-covariance Pzz,k|k−1,d are computed utilizing
Equations 4–12.
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FIGURE 2
Relationship between the GMM displacement parameter and GMM modeling. (A) ε = 0.20 (B) ε = 0.15 (C) ε = 0.10. (D) ε = 0.20 (E) ε = 0.15 (F) ε = 0.10.

Step 4: To determine whether GMM decomposition is necessary,
the nonlinearity η is calculated by Equation 20.

η = 1
2n

2n

∑
c=1

ηc (20)

where ηc =
1
2
‖z
∗
c,k|k−1 − h(xk|k−1 )‖

2
. Set γ is threshold. If ηc >

γ, it is hypothesized that the high nonlinearity is exhibited
in the presence of non-Gaussian noise, necessitating GMM
decomposition. Consequently, the algorithm proceeds to the
iteration of step 5. In contrast, if ηc < γ, GMM decomposition is
not performed, the state estimation xk|k and its corresponding
covariance Pk|k at the subsequent epoch can be obtained using
Equations 13–15.

Step 5: The following iteration (sub-step 1 to sub-step 5) is executed
until d > dmax.

Sub-step 1: The state prediction x1
k|k−1,d , the measurement

prediction z1
k|k−1,d , and its corresponding

covariance P1
k|k−1,d and P1

zz,k|k−1,d are calculated
by Equations 4–15.

Sub-step 2: The state prediction x2
k|k−1,d , the measurement

prediction z2
k|k−1,d , and its corresponding

covariance P2
k|k−1,d and P2

zz,k|k−1,d are obtained
by Equations 4–15.

Sub-step 3: In the presence of two Gaussian components,
the cost function in Equation 18 is modified by
Equation 21.

pg(zk|zk−1,d ) = w
1 1

√2πσ2
1

exp(−1
2
(
zk − ̂z

1
k|k−1

σ1
)

2

)

+w2 1

√2πσ2
2

exp(−1
2
(
zk − ̂z

2
k|k−1

σ2
)

2

) (21)

where w is the weight of components, and σ is the covariance of
measurement noise, superscript represent different components.

Sub-step 4: If pg(zk|zk−1,d ) ≥max LH, reset max LH =
pg(zk|zk−1,d ), and ̂d = d.

Sub-step 5: Update the GMM displacement parameter d by
Equation 22.

d = d+ ST (22)

Step 6: Based on the weights of components, calculate the state
estimation xk|k and its covariance Pk|k by Equations 23–26.

xk|k = xk|k, ̂d =
2

∑
g=1

wg, ̂d
k xgk|k (23)

Pk|k = Pk|k, ̂d =
2

∑
g=1

wg, ̂d
k [P

g
k|k + (x

g
k|k − xk|k )(x

g
k|k − xk|k )

T
]

(24)

ωi
k = ω

i
k−1β

i
k/

2

∑
i=1

ωi
k−1β

i
k (25)
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FIGURE 3
The flowchart of the proposed AGSCKF.

βik ≈N(Lk −AkXk,AkΣXk
AT
k +Σ

i
k) (26)

Through the aforementioned calculation procedures, it becomes
evident that the GMM displacement parameter can be adaptively
adjusted, thereby bringing the non-Gaussian noise model shown
in Equation 17 closer to that shown in Equation 3. This approach
effectively addresses the limitations of GMM modeling inherent in
the GSCKF. Consequently, the AGSCKF proposed in this section
is theoretically expected to exhibit superior estimation accuracy
compared to the GSCKF. The flowchart for the proposed AGSCKF
is illustrated in Figure 3.

4 Performance evaluation and
discussions

The proposed AGSCKF has been thoroughly assessed through
simulations and experiments for GNSS/SINS tightly coupled
integrated navigation system data fusion. In this section, the
comparison and analysis of the proposed AGSCKF with CKF and
GSCKF are discussed.

4.1 Simulations and analysis

The proposed AGSCKF is assessed for the data fusion of an
UAV utilizing a GNSS/SINS tightly coupled integrated navigation
system. The simulate trajectory of UAV flight, which includes
various maneuvering states such as climbing, level flight, turning,
and descending, is depicted in Figure 4. The initial attitude of UAV
is all 0° in pitch, row and yaw respectively; the initial velocities
are set as 0 m/s, 120 m/s and 0 m/s in the east, north and up
respectively; the initial position is set as 110.20°, 34.00° and 2,000 m
in longitude, latitude and altitude respectively. The simulated
sensor’s parameters for the GNSS/SINS tightly coupled integrated
navigation system are listed in Table 1. The GNSS measurement
utilized in the simulation was derived from satellite constellations
and epoch information obtained on 28 July 2023. Simulation
duration is 1,000 s. Computer utilized in simulations encompasses
an Intel Core i7-12700 CPU, 128 GB DDR4 memory, and Matlab
R2020b software.

The initial parameters for three different algorithms (CKF,
GSCKF and AGSCKF) are given in Table 2. The measurement non-
Gaussian noise is generated by Equation 27.

p(vk) ≈ 0.9N(0,ΣA) + 0.1N(0.5,ΣB) (27)
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FIGURE 4
UAV flight trajectory.

TABLE 1 Sensor’s parameters.

Parameter Value

Gyroscope
Constant drift 0.1∘  /h

Random walk coefficient 0.01∘  /h

Accelerometers

Zero bias 0.001 g

Random walk coefficient 0.001 g · √s

Sampling frequency 50 Hz

GNSS receiver
Pseudo range observation error 15 m

Sampling frequency 1 Hz

where ΣA = 3ΣB = diag(0.3
2⋯0.32). In order to evaluate the

performance of three different algorithms in terms of time-varying
non-Gaussian noise, two different changes were implemented to the
measurement non-Gaussian noise, respectively. During the epoch
period from 401 s to 500 s and the epoch period from 601 s to 800 s,
the measurement non-Gaussian noise is generated by Equation 28.

p(vk) ≈ 0.7N(0,ΣA) + 0.3N(0.5,ΣB) (28)

where ΣA = 3ΣB = diag(0.5
2⋯0.52).

The attitude error curves and positioning error curves of various
algorithms (CKF, GSCKF, and AGSCKF) are illustrated in Figure 5.
As can be observed from it, prior to the occurrence of changes for
non-Gaussian noise statistical properties (0 s–400 s), the estimation
error of CKF is highest of the three, while the estimation accuracies
of GSCKF and AGSCKF are nearly equal and superior to that of
CKF. This phenomenon can be attributed to the fact that GSCKF
and AGSCKF employ GMM to model non-Gaussian noise, thereby
mitigating its impact on estimation accuracy and ensuring enhanced
attitude and positioning accuracy of GNSS/SINS tightly coupled
integrated navigation systems operating in non-Gaussian noise
environments.

However, upon the occurrence of changes for non-
Gaussian noise statistical properties (401 s–500 s, and 601 s–

TABLE 2 Initial parameters for the algorithms.

Parameter Value

Attitude error

Yaw 1.5′

Pitch 1′

Roll 1′

Velocity error

East 0.5 m/s

North 0.5 m/s

Up 0.5 m/s

Position error

Longitude 10 m

Latitude 10 m

Altitude 15 m

FIGURE 5
Estimation errors by the CKF, GSCKF and proposed AGSCKF for
simulations. (A) Attitude (B) Position.
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TABLE 3 (a): RMSEs of attitude errors (′). (b) RMSEs of position errors (′).

Algorithm Attitude 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF

Roll 0.292 0.318 0.313 0.297

Pitch 0.288 0.294 0.304 0.286

Yaw 0.365 0.388 0.389 0.365

GSCKF

Roll 0.223 0.258 0.253 0.222

Pitch 0.218 0.244 0.244 0.212

Yaw 0.317 0.343 0.342 0.311

AGSCKF

Roll 0.218 0.235 0.238 0.213

Pitch 0.213 0.228 0.224 0.200

Yaw 0.298 0.308 0.308 0.298

Algorithm Position 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF

Longitude 5.589 5.787 5.782 5.585

Latitude 5.591 5.634 5.739 5.593

Altitude 7.998 8.102 8.103 7.993

GSCKF

Longitude 4.521 4.872 4.875 4.522

Latitude 4.519 4.611 4.612 4.514

Altitude 5.654 6.361 6.366 5.658

AGSCKF

Longitude 4.327 4.623 4.625 4.326

Latitude 4.340 4.467 4.467 4.337

Altitude 5.537 5.793 5.866 5.493

TABLE 4 The average time spent per epoch (ms).

Algorithm 0 s–400 s 401 s–500 s 601 s–800 s 801 s–1,000 s

CKF 5.79 5.65 5.84 5.92

GSCKF 8.28 8.32 7.92 8.52

AGSCKF 13.73 16.73 16.61 13.68

800 s), a significant increase in estimation error is observed
for GSCKF as compared to AGSCKF. The discrepancy
is caused by the change of non-Gaussian noise and the
inability of the GMM displacement parameter of GSCKF to
adapt accordingly, which leads to deterioration of estimation
accuracy due to inaccurate GMM modeling for GSCKF. In
contrast, the AGSCKF employs adaptive corrected GMM
displacement parameter to achieve real-time tracking of time-
varying non-Gaussian noise, thereby achieving more stable
estimation performance than GSCKF.

In order to exemplify the impartiality of algorithm comparison,
the root mean square error (RMSE) with 100 Monte-Carlo
simulations is used to quantify the estimation accuracy of all the
algorithms, which is defined by Equation 29.

RMSE = √ 1
N

I

∑
i=1
(X i −X i)

2 (29)

where N is the total number of Monte Carlo simulations; X i is the
reference; X i is the state estimation. And the time consumption
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FIGURE 6
Relative computational complexity of the three different algorithms.

TABLE 5 Parameters of GNSS/SINS tightly coupled navigation system.

Sensors Parameter Value

SINS

Gyroscope constant drift 10∘  /h

Gyroscope random walk coefficient 0.6∘  /√h

Accelerometer zero bias 40 μg

Accelerometer random walk coefficient 80 μg ⋅ √h

Sampling rate 100/Hz

GNSS
Positioning errors 15/m

Sampling rate 10/Hz

TABLE 6 Statistical characteristics analysis of G22 pseudo-range noise.

Epoch
periods

Pseudo-range noise

Mean/(m) Covariance/(m) Kurtosis

[201 s, 300 s] 0.997 0.881 0.90

[801 s, 900 s] 0.156 0.225 3.06

[1,101 s, 1,200 s] 0.178 0.264 2.89

[1,301 s, 1,400 s] 0.823 0.732 1.34

per epoch is calculated for the quantitative comparison of the
computational complexity of various algorithms.

As shown in Table 3, the yaw is taken as an example. Prior to the
occurrence of changes for non-Gaussian noise statistical properties
(0 s–400 s), the estimation accuracy of GSCKF and AGSCKF are
relatively close (0.317′ and 0.298′), both of which are higher than
that of CKF (0.365′). When the first occurrence of changes for
non-Gaussian noise statistical properties (401 s–500 s), AGSCKF
achieves higher estimation accuracy due to real-time correction of
GMM displacement parameter by AGSCKF. Compared to GSCKF

and CKF, it has increased by 0.035′ and 0.080′, respectively. When
the second occurrence of changes (601 s–800 s), the accuracy
advantage of AGSCKF estimation is significant, with AGSCKF
improving 0.034′ and 0.081′ compared to GSCKF and CKF,
respectively.

As depicted in Table 4 and Figure 6, it reveals that the changes
of computation time for all three algorithms are relatively similar
in all different epoch periods. Take epochs 601 s–800 s as example,
the analysis of the average time spent per epoch reveals that CKF has
the shortest computational time (5.84 ms) among all the algorithms.
In contrast, the computational time of GSEKF is significantly larger
than that of CKF by at least 135.66% times (7.92 ms). This is
due to the complex computational process of GSCKF involved in
distributed filtering and global point estimation at each epoch.
Furthermore, the computational time of AGSCKF is at least 284.42%
longer (16.61 ms) than that of CKF because AGSCKF needs to
update the GMM displacement parameter by iteration.

4.2 Experiments and analysis

This section presents the analysis and verification of the
performance of the proposed AGSCKF through experiments. The
experimental data was collected from a GNSS/SINS tightly coupled
integrated navigation system mounted on UAVs. The experiment
was conducted on 18 Oct 2023, at Zhengzhou, China. Table 5
shows the parameters of the SINS device and GNSS receiver in the
GNSS/SINS tightly coupled integrated navigation system.

The initial position of the UAVwas at latitude 34.654°, longitude
109.193°, and altitude 3,783 m, with initial velocities of 180 m/s,
60 m/s, and 40 m/s in the east, north, and up directions, respectively.
The other initial parameters were consistent with those utilized in
the simulations. A continuous data collection was conducted for
a duration of 3,000 s, encompassing various maneuvering states
such as climbing, level flight, turning, and descending. To ensure
accurate results, a GNSS reference station was placed on the ground
within a maximum distance of 20 km from the UAV. The differential
data calculation result between the GNSS receiver on the UAV
and the GNSS reference station served as the reference value.
Subsequent post-processing yielded a differential positioning result
with an accuracy better than 0.1 m. Three different algorithms
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FIGURE 7
Position errors by CKF, GSCKF and proposed AGSCKF for experiment case.

TABLE 7 Comparison of estimation results with different datasets.

Algorithms 1,500 sets data 3,000 sets data The average
time spent
per epoch
(ms)

Longitude
(m)

Latitude (m) Altitude (m) Longitude
(m)

Latitude (m) Altitude (m)

CKF 3.835 3.945 7.043 4.067 4.186 7.557 8.7

GSCKF 3.245 3.294 4.154 3.384 3.433 4.366 13.4

AGSCKF 2.854 2.975 3.583 2.953 3.076 3.735 16.9

same with simulation were employed for data fusion (CKF, GSCKF,
and AGSCKF).

To assess the non-Gaussian and time-varying nature of GNSS
measurement noise in experimental data, the statistical analysis
was conducted on the pseudo-range noise of GNSS. The non-
Gaussian nature of noise was measured using kurtosis. When
K = 3, the noise follows a Gaussian distribution; otherwise, it
can be concluded that the noise does not follow a Gaussian
distribution. When K > 3, the noise obeys a super-Gaussian
distribution or a thick-tailed distribution; when K < 3, the noise
obeys a sub-Gaussian distribution (Celikoglu and Tirnakli, 2018;
Hatem et al., 2022). Table 6 presents the statistical characteristics
of pseudo-range noise for the G22 satellite during different
epoch periods.

As depicted in Table 6, the kurtosis of the pseudo-range noise
generated by the G22 satellite is noticeably less than 3 within the
epoch intervals of [201,300] (s) and [1,301, 1,400] (s), indicating

a negative kurtosis. This suggests that the G22 pseudo-range
noise exhibits significant non-Gaussian characteristics. Conversely,
the kurtosis of satellite’s pseudo-range noise within the epoch
intervals of [801, 900] (s) and [1,101, 1,200] (s) are close to 3.
As such, the G22 pseudo-range noise exhibits relatively weak non-
Gaussian characteristics. This observation highlights the temporal
variation in the statistical characteristics of non-Gaussian noise
from measurement, which can be characterized as time-varying
non-Gaussian noise.

The positioning error curves of different algorithms (CKF,
GSCKF, and AGSCKF) during the epoch period of [0, 1,500] (s) are
depicted in Figure 7. As observed from it, the range of changes for
the CKF positioning error curve is significantly higher than that of
GSCKF and AGSCKF. This can be attributed to the fact that CKF
is unable to effectively counteract the influence of non-Gaussian
noise, resulting in a larger positioning error. However, due to the
use of GMM in GSCKF to accurately process the random model,
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the impact of non-Gaussian noise is mitigated. Consequently, the
positioning accuracy of GSCKF has been enhanced. Furthermore,
the maximum value of the positioning error curve variation range
of AGSCKF is smaller than that of GSCKF. The main reason is
that AGSCKF takes into account the time-varying non-Gaussian
noise and employs the adaptive algorithm of GMM displacement
parameter to improve the accuracy of GMM modeling, thereby
minimizing the positioning error of AGSCKF.

To further validate the performance of the proposed AGSCKF,
Table 7 presents a quantitative comparison of the RMSEs of different
algorithms (CKF, GSCKF, and AGSCKF) for both 1,500 sets
data and 3,000 sets data. As observed from it, an increase in
navigation duration leads to a decrease in estimation accuracy for
all algorithms. Specifically, when considering longitude positioning
error as an example, CKF exhibits a reduction from 3.835 m
to 4.067 m (about 5.70%), GSCKF shows a reduction from
3.245 m to 3.384 m (about 4.10%), and AGSCKF experiences a
reduction from 2.854 m to 2.953 m (about 3.35%). It is evident
that the estimation accuracy of AGSCKF consistently surpasses
that of CKF and GSCKF. This highlights that AGSCKF not only
possesses robust processing capabilities for time-varying non-
Gaussian noise but also significantly enhances the GNSS/SINS
tightly coupled integrated navigation positioning accuracy of UAVs
in challenge environments. Furthermore, it maintains excellent
stability of GNSS/SINS tightly coupled integrated positioning in
long-sailing missions.

The computational complexity of AGSCKF is analyzed. It
is observed that AGSCKF slightly increases the computation
time per epoch, but does not result in a significant decrease
in computational efficiency. This can be attributed to the fact
that although AGSCKF requires iterative calculation of the GMM
displacement parameter, relatively high-accuracy estimation can
reduce the initial sensitivity of GMMand accelerate the convergence
speed of GMM displacement parameter estimation.

In conclusion, the experiment confirms the same conclusion
as the simulations, namely, that AGSCKF outperforms the other
two algorithms (CKF and GSCKF) in terms of estimation accuracy
and adaptability ofGNSS/SINS tightly coupled integrated navigation
data fusion.

5 Conclusion

The limitations of the GSCKF in the context of time-varying
non-Gaussian noise of GNSS/SINS tightly coupled integrated
navigation systems is analyzed theoretically. It is revealed that the
GMM displacement parameter between Gaussian components
significantly impact the accuracy of GMM fitting. To address
this issue, a novel adaptive adjustment method for GMM
displacement parameter is presented, which dynamically modifies
this parameter through the cost function, thereby enhancing the
rationality of the GMM decomposition process. This approach
is incorporated into GSCKF to improve filtering accuracy, and
effectively addresses the challenges posed by time-varying non-
Gaussian noise, providing a viable solution to achieve high-accuracy
estimation for GNSS/SINS tightly coupled integrated navigation
systems operating in maneuvering states within challenging
environments. Simulations and experiments demonstrate that

the proposed AGSCKF enhances the estimation accuracy and
adaptability of GSCKF in non-Gaussian noise condition, and
exhibites superior stability in long-sailing missions. The research
findings have significant implications for both nonlinear non-
Gaussian filtering theory and GNSS/SINS tightly coupled integrated
navigation systems data fusion algorithms for engineering
applications.

While the proposed AGSCKF proves to be effective in modeling
time-varying non-Gaussian noise in GNSS/SINS tightly coupled
integrated navigation systems, it disregards the undefined noise
scenarios, rendering the random model unable to adapt to the
statistical characteristics of undefined noise. This limitation impairs
the ability of AGSCKF proposed in this paper to effectively address
undefined noise, potentially leading to a decline in estimation
accuracy under severe conditions. So, the real-time dynamic GMM
modeling techniques for undefined noise are very meaningful
research points in the future.
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Signal-of-Opportunity (SOP) positioning based on Low-Earth-Orbit (LEO)
constellations has gradually become a research hotspot. LEO satellite SOP
positioning possess strong anti-jamming capabilities due to their large quantity,
wide spectral coverage, and high signal power. However, few studies have
deeply investigated their anti-jamming performance, particularly regarding
the most common interference type faced by ground receivers - Periodic
Frequency Modulation (PFM) interference. The downlink signals of LEO satellites
differ significantly from those of Global Navigation Satellite Systems (GNSS)
based on Medium-Earth-Orbit (MEO) or Geostationary-Earth-Orbit (GEO)
satellites, making traditional interference suppression methods inapplicable.
In this paper, we utilize the generalized periodicity of PFM interference
signals and the characteristics of LEO constellation signals to propose an
Adaptive Signal Iterative Projection and Interference Suppression (ASIPIS)
algorithm. This algorithm concentrates the energy of PFM interference, which
is dispersed over a wide bandwidth, into a few frequency points, enhancing
the concentration of the interference and its separation from the LEO satellite
signals. This effectively reduces the overlap between LEO satellite signals
and interference. The algorithm then uses subspace projection to map the
interference and the desired signal into different subspaces, eliminating the
interference components and thus reducing the damage to the desired signal
during the interference suppression process. Simulations and experiments
demonstrate that compared to conventional methods, ASIPIS effectively
eliminates single/multi-component PFM interference, improves suppression
performance under narrow-bandwidth/high-power conditions, and overcomes
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limitations of traditional PFM interference suppression approaches for single-
antenna LEO signal reception. The significant performance improvement in LEO
anti-jamming scenarios against PFM interference confirms the algorithm's value.

KEYWORDS

signal of Opportunity, low-earth-orbit satellite, PFM, anti-jamming, adaptive signal
iterative, subspace projection

1 Introduction

With the development of the Global Navigation Satellite
System (GNSS), GNSS has become an important infrastructure
for a country’s information construction. It provides Positioning,
Navigation, and Timing (PNT) services for a wide range of
applications [1–5]. However, with the deepening of GNSS
applications, its own shortcomings have gradually become apparent.
These drawbacks primarily include: low signal power at the ground,
limited frequency points, high construction and maintenance costs,
and vulnerability to malicious interference, which can lead to
service unavailability, especially in times of conflict or crisis [6–8].
Overcoming and addressing these GNSS shortcomings, particularly
the ability to independently provide reliable and high-precision PNT
services in environments where GNSS services are unavailable, has
become a key focus for future development [9, 10].

Currently, nations are actively developing resilient PNT systems
to ensure that military equipment can achieve accurate positioning
even when GNSS performance is degraded or denied. Notably, the
U.S. Department of Defense’s 2020 PNT technology development
roadmap highlighted the use of Signals of Opportunity (SOP)
for absolute positioning, thereby supplementing GPS functionality
and enhancing its availability and robustness. SOP positioning is
a technology that utilizes any detectable non-navigation signals,
such as acoustic, optical, electrical, magnetic, and force-based
information, for positioning purposes. Given the abundance of
radio signals from various applications in space, current research
primarily focuses on radio-based SOP. SOP typically includes
terrestrial and space-based radio signals of opportunity. However,
terrestrial SOP has limited coverage and struggles to achieve
seamless global coverage in areas such as deserts, oceans, and
polar regions. Space-based SOP mainly refers to signals transmitted
by non-navigation/non-cooperative satellites. With the recent
significant development and deployment of Low-Earth-Orbit (LEO)
satellites by various countries, space-based LEO satellite SOP
(LEO-SOP) has emerged as a primary space-based SOP and is
increasingly being applied in navigation and positioning [11, 12].
Compared to traditional GNSS-based navigation, SOP positioning
using LEO satellites mainly relies on the downlink signals from
communication satellites as the radiation source for positioning
ground terminals. The positioning methods include instantaneous
Doppler, instantaneous Doppler combined with pseudorange, and
carrier phase differential techniques [13–15]. Additionally, with
the rapid development of emerging satellite constellations such as
Starlink and OneWeb, the large number of LEO satellites provides
abundant radiation sources for space-based SOP positioning [16].
Against this backdrop, exploring SOP positioning based on LEO
constellations has become a current research hotspot. Numerous
studies have introduced cases where various research teams have

used LEO satellites for positioning, and the research outcomes
generally achieve positioning accuracy on the order of tens ofmeters
[17–25].

At present, there is limited research on anti-jamming
technologies for positioning using LEO satellite SOP. To date, only
one study has been conducted on anti-narrowband interference for
Iridium satellite SOP under single-antenna reception conditions
[35]. Particularly for Periodic Frequency Modulation (PFM)
interference, such as Periodic Linear Frequency Modulation
(PLFM) and Periodic Sinusoidal Frequency Modulation (PSFM)
interference signals. Currently, there has been limited in-depth
research on these types of interference both domestically and
internationally. PFM interference is one of the most common types
of interference faced by LEO satellites SOP positioning receivers.
PFM interference signals are a typical dynamic interference pattern
characterized by concentrated energy, wide bandwidth, ease of
implementation, and high interference efficiency. This type of
interference is highly effective and relies on mature technology,
making it widely used. Such interference is typically generated
by malicious jammers, radar systems, or civilian radio stations
and is commonly distributed across the frequency bands used by
LEO satellites SOP signals [26–28]. According to surveys, over
80% of commercially available jammers utilize PFM signals as
their interference source [39]. Previous research on suppressing
PFM interference has primarily focused on GNSS and similar
areas, with the general approach being to utilize the differences
between GNSS signals and interference in the time-frequency
(TF) domain, spatial domain, or spatiotemporal domain, and to
propose corresponding interference suppression methods [29,
30]. Among these, using the spatial resolution of the receiver’s
antenna array for spatiotemporal joint processing can effectively
suppress various types of interference. However, considering the
high cost and complexity of terminal hardware, this method has
limited applicability. In contrast, single-antenna systems, due to
their small size, low cost, and low power consumption, are widely
used. Therefore, detection and suppression methods for PFM
interference suitable for single-antenna receivers remain a research
hotspot. Currently, the most effective method is to transform the
received signal into the TF domain for interference detection.
Based on the different energy distribution characteristics of the
received signal and interference after transformation into the TF
domain, typical TF analysis methods include Short-Time Fourier
Transform (STFT) [31], Wavelet Packet Transform (WPT) [32],
Wigner-Ville Distribution (WVD) [33], and Fractional Fourier
Transform (FrFT) [34], among others. However, STFT cannot
effectively accumulate signal energy and suffers from insufficient
resolution due to the fixed window width; discrete WPT is prone
to spectral aliasing and amplitude distortion; WVD and other
nonlinear transforms generate cross-terms that affect the parameter

Frontiers in Physics 02 frontiersin.org113

https://doi.org/10.3389/fphy.2025.1557330
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


Yao et al. 10.3389/fphy.2025.1557330

estimation accuracy of multi-component interference; and the non-
orthogonality of discrete FrFT distorts the desired signal, with better
performance only for linear frequency modulation interference.
Most importantly, while these methods offer some suppression
capabilities for frequency modulation (FM) interference, due to the
significant overlap between the interference and the desired signal
in the TF or FrFT domains, the desired signal inevitably suffers
considerable damage when the interference is eliminated. This
issue is further exacerbated by recent advancements in electronics,
as modern small jammers can generate interference containing
multiple FM components, which increases the damage to the desired
signal during interference elimination.

This type of interference suppression process can be tolerated
when processing downlink GNSS signals with bandwidths generally
on the order of tens of MHz. However, due to the relatively narrow
downlink bandwidth of LEO satellite signals (the Iridium system
has a bandwidth of 500 kHz, and the Orbcomm system only
25 kHz), the signal quality degradation caused by interference
suppression can severely impact the subsequent positioning
accuracy. Therefore, directly applying traditional TF analysis-based
interference suppression methods to PFM interference suppression
in LEO satellite systems is not very effective.

This paper proposes an Adaptive Signal Iterative Projection
and Interference Suppression (ASIPIS) algorithm, utilizing the
characteristics of PFM interference signals and LEO constellation
signals. The algorithm concentrates the energy of PFM interference,
which is spread over a wide bandwidth, into a few frequency
points, thereby enhancing the interference’s concentration and its
separation from the LEO satellite signals. This effectively reduces
the overlap between the LEO satellite signals and interference. The
algorithm then uses subspace projection to map the interference
and desired signals into different projection subspaces, eliminating
the interference components and minimizing the damage to
the desired signal during the interference suppression process.
Finally, simulations and experiment results validate the enhanced
performance of the proposed algorithm. The results demonstrate
that the method can effectively eliminate single/multiple-
component PFM interference, causing minimal damage to SOP
signals, and is applicable to high-precision positioning receivers.

2 LEO satellite signal and PFM
interference signal model

In an interference environment, the signal model at the input of
the LEO satellite downlink receiver can be represented as:

x(t) =
N

∑
i
si(t) +

M

∑
m
jm(t) + n(t) (1)

Where si(t) represents the signal received from the i-th LEO
satellite (i = 1,2,3,…N), N represents the number of LEO satellites
visible during the signal reception period, and jm(t) represents the
interference signal of the mth component received by the receiver
(m=1,2,3,…,M).M represents the number of interferences received,
and n(t) denotes the Additive White Gaussian Noise (AWGN) with
a mean of zero.

When considering the received signal of a single LEO satellite,
the reception signal of the i-th satellite can be expressed as

Equation 2 [40]:

si(t) = AD(t)cos(ω0t+φ) (2)

Where A is the signal amplitude, D(t) is the data code level value
broadcasted by the satellite,ω0 is the signal broadcast frequency, and
φ is the broadcast phase.

jm(t) is PFM interference, and its instantaneous frequency f(t)
varies periodically over time, represented as:

f(t) = f0m +Δ fm · sin(
2πt
Tm
) (3)

Where f0m is the carrier frequency of the PFM interference
signal, Δ fm is the modulation amplitude of its frequency, Tm is
the modulation period (MP) of the interference, sin( 2πt

Tm
) is the

periodic modulation function, and the instantaneous frequency
f(t) of the interference oscillates periodically within the range of
[ f0m −Δ fm, f0m +Δ fm).

Then, the phase function ϕ(t) can be expressed by
Equation 3 as Equation 4:

ϕ(t) = 2π
t

∫
0
f(τ)dτ = 2π

t

∫
0
( f0m +Δ fm · sin(

2πτ
Tm
))dτ

= 2π f0mt−
Δ fmTm

2 · cos(
2πt
Tm
)

(4)

So, the PFM interference signal jm(t) can be expressed as:

jm(t) = Am exp[2π f0mt−
Δ fmTm

2
· cos(2πt

Tm
)+φm] (5)

Where Am is the carrier amplitude of the PFM interference
signal, φm represents the initial carrier phase of the PFM
interference, which is a random variable uniformly distributed
within the range of [−π,+π). 2π f0mt is the linear phase term of
the interference, which determines the central frequency of the
signal; Δ fmTm

2
· cos( 2πt

Tm
) is the nonlinear phase term, representing

the periodic variation of the frequency with time, with a period of
Tm.

3 The adaptive signal iterative
projection and interference
suppression (ASIPIS) algorithm

This section proposes the ASIPIS algorithm based on the
characteristics of PFM interference signals and LEO constellation
signals. The algorithm eliminates the influence of LEO satellite
signals in the input signal, isolates the PFM interference signal, and
reconstructs the observationmatrix by themodulation period of the
interference. It concentrates the energy, originally spread over a wide
bandwidth, into a single frequency point in the rearranged data,
thereby enhancing the interference’s concentration. Furthermore,
a spatial projection method is used to construct the interference
subspace and the noise subspace. Finally, the LEO satellite signals
and PFM interference signals in the original observation matrix
are mapped into the newly constructed subspaces to eliminate the
interference components. This algorithm effectively overcomes the
challenges that traditional anti-PFM interference algorithms based
on single-antenna reception of LEO satellite signals cannot resolve.
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3.1 Signal adaptive iterative cancellation

Due to the high signal-to-noise ratio (SNR) of LEO satellite
signals on the ground (typically 15–30 dB), directly performing
subspace decomposition would cause serious impacts and
misjudgments in the division of the interference space. Therefore,
before performing subspace decomposition, high-power LEO
satellite signals need to be eliminated, and PFM interference should
be isolated, to facilitate the subsequent division of the interference
space. The ASIPIS algorithm eliminates the LEO satellite signals
using the approach proposed in Ref. [35], which utilizes the SCCI
algorithm. This method adaptively iterates to approximate and fit
the power spectrum of the LEO satellite signals, thereby eliminating
the impact of the LEO satellite signal power from the input signal.

Through analysis, it is found that the power spectrum of the
input signal (signal and noise) in the LEO satellite signal reception
scenario follows a chi-square distribution [41]. Based on this, a first-
order expression for the relationship between the input signal power
spectrum and the signal power spectral density is derived, and an
approximation model is constructed.

Ye( f) = aGs( f) + b (6)

Where Ye( f) is the estimated value of the input signal power
spectrum, and Gs( f) is the signal power spectrum.

Let the error between the input signal power spectrum P( f) and
the model estimate Ye( f) be Equation 7:

e(a,b) =
N

∑
f=1
(aGs( f) + b− P( f)) (7)

Where N is the number of FFT points, the mean square
error (MSE) is Equation 8:

e(a,b)2 =
N

∑
f=1
(aGs( f) + b− P( f))2 = a2

N

∑
f=1

Gs2( f) +Nb2 + 2ab
N

∑
f=1

Gs( f)

+
N

∑
f=1

P2( f) − 2a
N

∑
f=1

Gs( f)P( f) − 2b
N

∑
f=1

P( f)
(8)

Using the gradient descent method, the criterion of minimizing
MSE between P( f) and the model estimate Ye( f) is adopted.
Through multiple rounds of adaptive iterations, in each iteration,
the portion of interference higher than the model power spectrum
estimate in that round is eliminated, thereby achieving the goal
where the final estimated signal power spectrum in the iterative
process is nearly identical to the true value. The parameter estimates
a and b in Equation 6 are obtained, and then the input signal power
spectrum mean Ye( f) is derived. The next step is to subtract the
estimated power spectrum mean Ye( f) from the input signal power
spectrum P( f). This subtraction can be considered as removing
the power spectrum value of the LEO satellite signal contained in
the input signal, leaving approximately only the noise and PFM
interference signals. At this point, the next step is to construct the
interference subspace.

3.2 Construct subspace

After the previous step of adaptive iterative cancellation of the
signal, the input signal approximately only contains noise and PFM

interference signals, which can be derived from Equation 1:

̂x(t) ≐
M

∑
m
jm(t) + n(t) (9)

For the multi-component PFM interference in Equation 9, let
the periods of the m PFM interference signals be T1,T2,…,Tm, then
their least common multiple is TM, that is Equation 10:

TM = n1T1 = n2T2 =⋯nmTm (10)

Where n1,n2,…,nm are positive integer.
Using nTM (n as a positive integer) as the interval to truncate the

input signal data in Equation 9, forming the observation datamatrix:

X̂ =
[[[[

[

̂x(1) ̂x(2) ⋯ ̂x(c) ⋯ ̂x(nTM)
̂x(nTM + 1) ̂x(nTM + 2) ⋯ ̂x(nTM + c) ⋯ ̂x(2nTM)
⋮ ⋮ ⋱ ⋮ ⋱ ⋮

̂x((R− 1)nTM + 1) ̂x((R− 1)nTM + 2) ⋯ ̂x((R− 1)nTM + c) ⋯ ̂x(RnTM)

]]]]

]

=
[[[[

[

̂x1,1 ̂x1,2 ⋯ ̂x1,c ⋯ ̂x1,nTM

̂x2,1 ̂x2,2 ⋯ ̂x2,c ⋯ ̂x2,nTM

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
̂xR,1 ̂xR,2 ⋯ ̂xR,c ⋯ ̂xR,nTM

]]]]

]
= [ ̂x1 ̂x2 ⋯ ̂xc ⋯ ̂xnTM]

(11)

Where R = ⌊Ls/nTM⌋, ⌊·⌋ denotes the integer floor, Ls
is the total length of the sampled data, ̂xc is a column
vector, ̂xc = [ ̂x1,c ̂x2,c ⋯ ̂xR,c]T, ̂xr,c = ̂x((r− 1)nTM + c) =
j((r− 1)nTM + c) + n((r− 1)nTM + c), r represents the number of
rows of the matrix, r = 1,2,…,R, and c represents the number
of columns of the matrix, c = 1,2,…,nTM. For PFM interference
jm(t), from Equation 5, the expression at time t+ nTM can be
written as Equation 12:

jm(t+ nTM) = Am exp[2π f0m(t+ nTM) −
Δ fmTM

2 · cos(
2π
TM
(t+ nTM)) +φm]

= Am exp[2π f0mt+ 2π f0mnTM −
Δ fmTM

2 · cos(
2π
TM

t)+φm]

= Am exp[2π f0mt−
Δ fmTM

2 · cos(
2π
TM

t)+φm]exp(2π f0mnTM)

= jm(t)exp(2π f0mnTM)
(12)

As can be seen from the above equation, when the time interval
is nTM, the PFM interference data differ only by a scaling factor.
Therefore, the observationmatrix of the PFM interference signal can
be expressed as:

J =
[[[[

[

j (1) j (2) ⋯ j (nTM)
j (nTM + 1) j (nTM + 2) ⋯ j (2nTM)
⋮ ⋮ ⋱ ⋮

j ((R− 1) ⁢nTM + 1) j ((R− 1) ⁢nTM + 2) ⋯ j (RnTM)

]]]]

]

=
[[[[

[

j (1) j (2) ⋯ j (nTM)
j (1)exp (2π f0 ⁢nTM) j (2)exp (2π f0 ⁢nTM) ⋯ j (nTM)exp (2π f0 ⁢nTM)

⋮ ⋮ ⋱ ⋮
j (1)exp (2π f0 ⁢ (R− 1) ⁢nTM) j (2)exp (2π f0 ⁢ (R− 1) ⁢nTM) ⋯ j (nTM)exp (2π f0 ⁢ (R− 1) ⁢nTM)

]]]]

]
(13)

From Equation 13, it can be seen that each element in the
observation matrix is obtained by multiplying the corresponding
element in the first row by a constant. Therefore, by multiplying
each element of the first row by −exp(2π f0(r− 1)nTM) and adding
it to the rth row, and performing elementary row transformations,
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the interference signal observation matrix in Equation 13 can be
transformed into:

J =

[[[[[[[

[

j(1) j(2) ⋯ j(c) ⋯ j(nTM)

0 0 ⋯ 0 ⋯ 0

⋮ ⋮ ⋱ ⋮ ⋱ ⋮

0 0 ⋯ 0 ⋯ 0

]]]]]]]

]R×nTM

= [j1 j2 ⋯ jc ⋯ jnTM
]
1×nTM

(14)

Where jc is a column vector, represented as: jc =
[j(c) 0 ⋯ 0]T

Through matrix calculations, the eigenvalue matrix of matrix J ·
JH is obtained as Equation 15:

Λ = diag(j(1) × j(1) + j(2) × j(2) +⋯+ j(nTM) × j(nTM),0,⋯,0)
(15)

The singular value matrix of matrix J is Equation 16:

ΣJ = diag(√j(1) × j(1) + j(2) × j(2) +⋯+ j(nTM) × j(nTM),0,⋯,0)

(16)

That is, perform subspace decomposition on the data matrix
truncated with a period of nTM, and the interference is concentrated
in the subspace corresponding to the first singular value.

Therefore, the periodic truncated data matrix X̂ of Equation 11
can be subjected to subspace decomposition, that is:

X̂ = UΣVT = [U1 U2 ⋯]
[[[[

[

λ1 0 0

0 λ2 0

0 0 ⋱

]]]]

]

[[[[

[

V1

V2

⋮

]]]]

]

(17)

Where U = [U1 U2 ⋯] and V = [V1 V2 ⋯] represent
the left singular matrix and the right singular matrix, respectively,
Σ represents the singular value matrix, and the subscript λ indicates
the order of the main diagonal, with λ1 ≥ λ2 ≥… ≥ 0.

From Equations 13, 14, it can be seen that the interference
components in each column of the matrix have the same
frequency, which corresponds to a single-frequency interference.
According to Ref. [36], if the data in each column only differ in
phase, the rank of the corresponding matrix is 1. If there is only
PFM interference, the rank of matrix X̂ is 1, i.e., λ = 0. In other
words, by performing subspace decomposition on the data matrix
formed by truncating with a period of nTM, the PFM interference
can be concentrated in the subspace corresponding to the first
singular value. When there are other signal components (such as
desired signals and noise) unrelated to the interference, the above
conclusion still holds, and the desired signals and noise will be
spread across the entire space, thus enabling the construction of the
interference subspace.

Equation 17 can be rewritten as Equation 18:

X̂ = UΣVT = [Uj Un][

[

Σj 0

0 Σn

]

]

[

[

Vj

Vn

]

]
(18)

Where Σj corresponds to λ1, Σn corresponds to
diag{λ2 λ3 ⋯}, the right singular vector corresponding to

Σj is Vj, Vj = V1, and the corresponding left singular vector is
Uj, Uj = U1; Σn corresponds to the right singular vector Vn,
Vn = [V2 V3 ⋯], and the corresponding left singular vector
is Un, Un = [U2 U3 ⋯]. The interference subspace PAJ

and
noise subspace P⊥AJ

are constructed separately as follows by
Equations 19, 20:

PAJ
= VjVj

T (19)

P⊥AJ
= VnVn

T (20)

Truncate the original input signal data of Equation 1 (including
LEO satellite signals) with nTM as the interval, forming the observed
datamatrix X.Then, project X onto the subspaces constructed in the
previous step as Equation 21.

U−1X(V−1)T = X′ (21)

Extract the corresponding part Σn from the newly obtained data
matrix X′, i.e., remove the data corresponding to the first row and
first column of matrix X′ to obtain the data matrix X″. Multiply
matrix X″ by the corresponding left and right singular vectors Vn
and Un, respectively, and then the data matrix with the interference
components eliminated can be restored as Equation 22.

Xafter_AJ = UnX
″Vn

T (22)

Unfold the data in matrix Xafter_AJ sequentially to obtain the
interference-suppressed signal y(t).

3.3 Estimation of modulation period (MP)

Thenext step is to discuss the estimation of the PFM interference
modulation period when forming the data matrix in the previous
step. Since the interference and noise components in the received
signal are statistically uncorrelated, their cross-correlation function
theoretically approaches zero and can be ignored. Therefore, the
following will estimate the period of the periodic component in the
received signal through autocorrelation processing.

From Equation 9, the autocorrelation function of ̂x(t) can be
expressed as:

Rx(τ) =
M

∑
m=1

Rjm(τ) +Rn(τ) = Rj(τ) +Rn(τ) (23)

WhereRjm(τ) andRn(τ) are the autocorrelation functions of jm(t)
and n(t), respectively. Then,

|Rj(τ)| = |
M

∑
m=1

Rjm
(τ)|

= |

|

M

∑
m=1

A2
m

2
exp(2π f0mτ) limT→∞

1
T

T

∫
−T

exp{
Δ fmTm

2
cos( 2π

Tm
t)−
Δ fmTm

2
cos[ 2π

Tm
(t− τ)]}dt|

|
(24)

From Equation 24, it can be seen that:

|Rj(τ)| ≤
M

∑
m=1

A2
m

2
(25)
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FIGURE 1
ASIPIS algorithm flowchart.

TABLE 1 Step of ASIPIS algorithm.

ASIPIS algorithm specific steps

Step 1: Start signal adaptive iterative cancellation on the original received signal
to eliminate the power spectral value of LEO satellite signals, obtaining noise and
interference signals

Step 2: Perform autocorrelation processing on the noise and interference signals
obtained in the first step to obtain the modulation period estimate Tm

Step 3: Using the obtained modulation period to perform periodic truncation on
the noise and interference mixed signal obtained in the first step, forming the
observation matrix X̂

Step 4: Perform subspace decomposition on the observation matrix X̂ to
construct the interference subspace

Step 5: Periodically truncate the original received signal using the modulation
period to form the observation matrix X

Step 6: Project X onto the subspace constructed in Step 4, eliminate the
interference components, and obtain the interference-suppressed signal

Δ fmTm

2
· cos( 2πt

Tm
) is a periodic function with Tm as its modulation

period, so Equation 25 holds true if and only if t = nTm. That is,
|Rj(τ)| reaches amaximum at nTm.Therefore, by detecting the peaks
of |Rx(τ)|, the estimated value of the PFM interference modulation
period Tm can be obtained.

At this point, the ASIPIS algorithm process can be summarized
as shown in Figure 1:

The specific steps of the ASIPIS algorithm can be summarized
as shown in Table 1.

4 Simulation and test verification

To verify the effectiveness of the proposed algorithm, relevant
simulations and experiments were conducted. Without loss of

generality, the Iridium system, a LEO constellation, was selected
as the signal radiation source. The Iridium system consists
of Polar-Earth-Orbit satellites at an altitude of 780 km, evenly
distributed across six orbits in approximately the north-south
direction. Each orbit contains 12 satellites (including one backup
satellite), with an orbital inclination of 86.4° and an orbital period
of 100.13 min, enabling global coverage. The user link adopts
FDMA/TDMA/SDMA/TDD multiple access methods, grouping 12
adjacent beams from the 48-point beams of each satellite into a
set for frequency reuse (SDMA) of the total available frequency
band. Within each beam, the frequency band is divided into
multiple TDMA channels by FDMA. In each TDMA channel, time
division duplex (TDD) is applied for the uplink and downlink of
the same user, meaning the uplink and downlink share the same
TDMA carrier and frame but occupy different time slots. The total
bandwidth allocated to Iridium is 1,616.0 MHz–1,626.5 MHz, with
1,616.0 MHz–1,626.0 MHz used for duplex channels as business
channels, and 1,626.0 MHz–1,626.5 MHz used for downlink
simplex channels as signaling channels [37, 38].

4.1 Simulation test

In the simulation experiment, the signal used was a
downconverted Iridium intermediate frequency (IF) simulated
signal with a center frequency of 270,833 Hz.The interference signal
was set with a modulation type of Gaussian band-limited, having a
mean of zero and a variance of one.

To validate the performance of the proposed algorithm, its
anti-jamming capability was compared with other algorithms
under different interference scenarios. In the interference scenario
settings,multi-component PFM interference can be divided into two
cases based on whether the carrier frequencies are consistent. The
single-component PFM interference scenario can be considered
a special case of multi-component PFM interference where the
carrier frequencies are identical. Therefore, two interference
scenarios were designed, with parameter settings as shown
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TABLE 2 Interference scenarios parameter settings.

Interference scenario Carrier frequency (kHz) Modulation period (μs) Bandwidth (kHZ)

Dual-component PFM interference scenario 1 270 360; 420 400; 250

Dual-component PFM interference scenario 2 270; 280 360; 420 400; 250

FIGURE 2
Verification of interference performance of various algorithms under interference scenarios. (a) NMSE of the Iridium signal after interference
suppression. (b) the output SINR after interference suppression.

FIGURE 3
Hardware connection diagram.

in Table 2. The comparison algorithms include the Adaptive
Wavelet Packet Coefficient Thresholding (WPCT) method [32]
and the Time-Domain Combined Fractional Fourier Transform
(FrFT) method [34]. For WPCT, the “Dmey” mother wavelet
function was used, with five levels of wavelet decomposition,
and soft thresholding was employed for interference detection
and suppression. For FrFT, to search for the optimal order of
the interference signal, the scanning points were set to 2000,

and parameter estimation was performed only once for each
batch of data.

When the input jamming-to-signal ratio (JSR) varies from
5 to 30 dB, Figures 2A, B respectively show the normalized mean
square error (NMSE) of the Iridium signal after interference
suppression processing and the output signal-to-interference-
plus-noise ratio (SINR) under different interference scenarios,
based on 50 Monte Carlo experiments.
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FIGURE 4
Actual experimental scenario. (a) Experimental test scenario. (b) Constellation map during the satellite visibility period.

TABLE 3 Experiment scenarios parameter setting.

Interference scenario Carrier frequency (MHz) Modulation period (μs) Bandwidth (kHZ)

Dual-component PFM interference scenario 1 1,626.25 360; 420 400; 250

Dual-component PFM interference scenario 2 1,626.25; 1,626.26 360; 420 400; 250

As shown in Figure 2, the ASIPIS algorithm outperforms the
other compared algorithms in terms of anti-jamming performance.
Its output SINR and NMSE degrade only slightly as the input JSR
increases, ensuring the successful acquisition of Iridium signals.
The superior anti-jamming performance of the ASIPIS algorithm
stems from its pre-subspace decomposition process, where high-
power Iridium signals are removed to isolate PFM interference. This
step eliminates the influence of Iridium signals on the interference
detection process. Furthermore, the algorithm’s performance is only
marginally affected by increasing interference energy due to its
periodic truncation and rearrangement method, which effectively
concentrates the interference components into a single frequency.
Subspace decomposition then projects the interference into a
single subspace, achieving high interference concentration, reducing
overlap between the desired signal and interference, and preventing
the interference from spreading as its energy increases.

In contrast, the WPCT and FrFT algorithms show overall
inferior anti-jamming performance. This is because, in the LEO
satellite anti-jamming scenarios, the presence of high-power LEO
signals significantly affects interference detection and suppression,
leading to severe misjudgments. Traditional time-frequency-based
interference suppressionmethods applied directly to these scenarios
yield poor results. Their anti-jamming performance deteriorates
rapidly with an increasing JSR due to the growing overlap between
the desired signal and interference in theTFdomain or FrFTdomain
as the number or energy of interference signals increases. This
overlap results in damage to the desired signal during interference
suppression, with more severe overlap causing greater signal loss.
Specifically, theWPCT algorithm suffers from limited TF resolution,

and higher interference energy leads to greater energy diffusion
in the TF domain, negatively affecting the desired signal. While
the FrFT algorithm improves the energy concentration of PFM
interference to some extent, it is affected by spectral leakage inherent
in digital FrFT implementations. Consequently, its interference
suppression performance also degrades with increasing interference
energy, though it remains superior to the WPCT algorithm.

4.2 Actual experimental verification

In the above simulation experiments, the ASIPIS algorithm’s
improved interference suppression performance has been verified.
To further evaluate the effectiveness of proposed algorithm, a
hardware platform was set up on the roof of the New Main Building
at Beihang University, and real-signal anti-jamming experiments
were conducted. The hardware platform is shown in Figure 3. This
system uses a dedicated Iridium antenna to capture its signals.
Gaussian interference signals generated by a signal source are
combined with Iridium signals using a combiner. The combined
signals are then frequency-shifted to IF through a down-converter.
The system captures the signals at a sampling rate of 25 MHz,
after which the signal reception and processing platform applies
the anti-jamming algorithm for performance comparison. The
experimental test scenario is shown in Figure 4A. During the test
period, a total of four Iridium satelliteswere visible.The constellation
map corresponding to the visible epoch of the Iridium satellites
is shown in Figure 4B.
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FIGURE 5
Comparison of positioning results in different scenarios. (a) Positioning result without interference. (b) Positioning result after anti-jamming (JSR is
15dB). (c) Positioning result without anti-jamming algorithm (JSR is 15dB). (d) Positioning result after anti-jamming (JSR is 30dB). (e) Positioning result
without anti-jamming algorithm (JSR is 30dB)

Similarly, by configuring the signal source to generate
interference scenarios of different intensities (with JSR of 15 dB
and 30 dB, respectively), the ASIPIS algorithm was applied for anti-
jamming processing. The positioning results after anti-jamming
were compared with those obtained without activating the anti-
jamming algorithm and under interference-free conditions. The
interference scenario parameters are shown in Table 3.

The positioning results are statistically analyzed in the East-
North-Up (ENU) coordinate system, comparing the positioning
errors in the East-West, North-South, and Upward directions with
the reference point coordinates. During the result analysis, the
average of 50 positioning results is considered as one trial, and a total
of 10 trials are conducted.Theobtained results are shown in Figure 5.

The positioning results indicate that, compared to the
positioning results under interference-free conditions, the
positioning accuracy after interference suppression in interference
scenarios shows a certain degree of decline. However, it still
successfully retrieves Doppler information and achieves effective
positioning. In contrast to interference scenarios where the
interference suppression algorithm is not applied, activating the
ASIPIS algorithm significantly improves positioning accuracy. The
experimental results further validate the effectiveness of the ASIPIS
algorithm and its interference suppression performance in LEO
satellite PFM interference scenarios.

5 Conclusion

This paper proposes the ASIPIS algorithm, addressing the
characteristics of narrow downlink bandwidth, high ground SNR
in LEO constellation signals, and the generalized periodicity of
PFM interference signals. The algorithm concentrates the dispersed
PFM interference energy over a wide bandwidth into a few
frequency points, enhancing the clustering of interference and its
separation from LEO satellite signals. This effectively reduces the
overlap between LEO satellite signals and interference. Additionally,
subspace projection is employed to map the interference and
desired signals into different subspaces, eliminating interference
components and minimizing damage to the desired signal during
anti-jamming processing.The algorithm comprehensively considers
the effects of parameters such as PFM interference bandwidth,
carrier frequency, modulation period, and intensity. Simulation
and real data tests were conducted using Iridium signals from
LEO systems for anti-jamming verification. Results show that,
compared to traditional algorithms, this method effectively
suppresses single/multi-component PFM interference, improving
interference suppression performance under conditions such as
narrow bandwidth and high power. It demonstrates significant
enhancements in mitigating PFM interference in LEO satellite
anti-jamming scenarios.
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Positioning, Navigation, and Timing (PNT) services are essential for supporting
various aspects of modern society. Fields such as communications,
transportation, and military operations heavily rely on accurate and reliable
PNT services, with this dependence expected to grow. However, the
limitations of the predominant Global Navigation Satellite System (GNSS) in
complex environments have become increasingly apparent. As an effective
supplementary approach, space-based signals of opportunity (SOPs) from Low
Earth Orbit (LEO) have garnered significant attention. This paper begins by
introducing the principle of Doppler location and analyzing its error sources.
It then discusses in detail the methods of observation extraction, including
cognitive-based and blind-based methods. Focusing on major domestic and
international LEO constellations (such as Iridium, Orbcomm, Globalstar, Starlink,
OneWeb, etc.), this paper summarizes their signal characteristics and the
current status of positioning research, and discusses the latest advancements
in observable estimation algorithms. Finally, the paper proposes key research
directions for the future, including breakthroughs in satellite recognition
technology, optimization of positioning algorithms, development of multi-
source fusion positioning technology, and observation extraction in complex
environments.

KEYWORDS

LEO, PNT, signal of opportunity, doppler positioning, observational estimation

1 Introduction

Since the advent of the Global Navigation Satellite System (GNSS), it has played a
pivotal role in both military and civilian domains, making irreplaceable contributions
to national defense and economic construction. As its application scope continues to
expand, the demands on GNSS have far exceeded the initial design specifications. The
most prominent issue is the inability of traditional satellite navigation receivers to meet
positioning requirements in complex environments [1]. Firstly, the signal strength of
satellite signals diminishes with increasing propagation distance during space transmission,
resulting in weak signal power reaching the ground and limiting its application in urban
areas and canyons. Secondly, GNSS operates on a single, transparent frequency point,
making it vulnerable to malicious interference and deception, which can lead to service
unavailability. The limitations of Global Navigation Satellite Systems have been significantly
exacerbated in recent battlefield scenarios observed during the Russia-Ukraine conflict,
where such systems have demonstrated critical vulnerabilities and operational unreliability
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in combat environments. In stark contrast, LEO satellite
constellations exemplified by Starlink have emerged as resilient
alternatives. These advanced LEO systems not only maintain
robust communication capabilities but also demonstrate enhanced
positioning potential in complex battlefield conditions, presenting
a paradigm shift in tactical navigation solutions. Over the past
decade, an increasing number of researchers have demonstrated
the potential of signals of Opportunity (SOPs) in Positioning,
Navigation, and Timing (PNT), which can effectively compensate
for the shortcomings of GNSS.

SOPs positioning technology offers a viable alternative for
positioning services when GNSS signals are unavailable or denied.
SOPs encompass all potential radio signals in the environment
from which location and time information can be extracted for
navigation purposes. These signals are categorized into land-based
and space-based SOPs. Ground-based SOPs, such as radio, mobile
communication, and WIFI signals, primarily cover urban areas but
lack coverage in deserts, oceans, and remote regions. In contrast,
space-based SOPs utilize Earth-orbiting satellites as radiation
sources, including non-cooperative/non-navigation satellite signals,
non-cooperative navigation satellite signals, and cooperative non-
navigation signals. Compared to ground-based SOPs, space-based
signals offer the advantage of extensive coverage, enabling seamless
global positioning. Among these, Low Earth Orbit (LEO) satellite
signals are a typical example of space-based SOPs emitters.
Compared with GNSS satellites in Medium Earth Orbit (MEO),
LEO satellites exhibit significant advantages, such as rapid geometric
changes, stronger received signal strength, and larger Doppler
frequency shifts [2]. Additionally, many LEO constellations possess
rich spectral resources and strong anti-interference capabilities.
Moreover, Two-Line Element (TLE) data for LEO satellites is
readily available, allowing for precise satellite position calculations
through models like the Simplified General Perturbations No. 4
(SGP4). These advantageous properties ensure the PNT capabilities
of LEO satellites in GNSS-denied environments. Consequently,
LEO constellations are considered a promising alternative for PNT
services. Currently, numerous countries are planning or have already
launched a large number of LEO satellites, providing abundant
radiation sources for space-based SOPs [2–4]. Table 1 lists the main
LEO satellite constellations that have been deployed or are planned
both domestically and internationally.

The first satellite navigation systemwas the U.S. Navy’sMeridian
Satellite Navigation System (TRANSIT), which was the first
positioning system based on satellite Doppler. It was introduced for
military applications in 1964 and then disclosed for positioning and
navigation services in 1968. The TRANSIT system used the Doppler
frequency shift of LEO satellite signals to achieve a positioning
accuracy of about 70 m [5, 6].This system demonstrated themethod
of using LEO satellites for positioning within the framework of
SOPs navigation. The advantages of opportunistic LEO positioning
technology are evident [7]:

1. A large number of satellites can provide signals globally,
making opportunistic LEO satellites a potential global
PNT system.

2. Almost no additional infrastructure is required, and
positioning can be achieved using existing receivers.

3. The satellite system does not need to be adjusted, and it can be
used without special navigation functions for LEO satellites.

4. User-side positioning can be realized, and the user’s location
will not be disclosed to constellation operators, thus protecting
user privacy.

Despite the many advantages of opportunistic LEO positioning
technology, it also faces several challenges. Most of these challenges
stem from the fact that satellite systems or transmitted signals are
not designed for PNT purposes. This leads to two main issues [8]:

1. Non-navigation signals may lack broadband pseudo-
random codes for satellite identification and pseudo-range
measurement.Themodulation format of the signal is unknown
or partially unknown, making it difficult to extract navigation
observations from satellite signals.

2. Weak space-time reference: Most LEO satellites are not
equipped with high-precision atomic clocks like those in
traditional GNSS systems. Therefore, they lack precise clocks,
making it difficult to meet the requirements for high-precision
pseudo-range measurement. Additionally, there is a lack of
strict clock synchronization between satellites, and most
broadcast ephemeris data are not available. The published TLE
data and the Simplified General Perturbations No. 4 (SGP4)
model can be used, but this introduces significant systemerrors
into the positioning algorithm.

The solutions to these problems will be described in the main
part of the article.

Given the challenges associated with space-based LEO signals of
opportunity, this paper reviews the development process of space-
based SOPs positioning, focusing on the extraction of mesoscopic
measurements and the correction of systematic errors. We first
describe the principle of Doppler positioning. Then, we analyze the
Doppler positioning performance and main error sources of LEO
satellites, summarize the existing LEO-based navigation systems,
their observation extraction methods, and determine the future
research direction in this field.

2 Doppler positioning

2.1 Positioning principle

Benefiting from the rapid movement of LEO satellites, there
is a significant difference in relative motion speeds between
satellites and the ground, resulting in an obvious Doppler effect.
Therefore, LEO satellites generally use Doppler frequency shift
information for positioning, typically employing integratedDoppler
and instantaneous Doppler as observation measurements [9, 10].
Generally, the integrated Doppler measurement value is used as
the navigation observation value and then converted into a range
difference bi-curve. Through the accumulation of measurements at
multiple different times, the intersection of multiple hyperboloids
determines the position. When there are many visible satellites,
instantaneous Doppler positioning, i.e., single epoch positioning,
can be used. Generally, at least four satellites are required for
instantaneous Doppler positioning, and instantaneous Doppler
measurement information can be used to achieve real-time
positioning.
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TABLE 1 Major domestic and international LEO constellations.

Constellation Country Plan Downlink frequency/bandwidth

Iridium United States 66 L: 1626–1626.5 MHz

Orbcomm United States 36 VHF: 137–138 MHz

Globalstar United States 48 S: 2483.5–2500 MHz

Starlink United States 42,000 Ku: 10.7–12.7 GHz, Ka/V/Q: 37.5–42.5 GHz

OneWeb United States, United Kingdom 720 Ku: 10.7–12.7 GHz

Kuiper United States 3,236 X/Ku: 10.7–12.7 GHz

Telesat Canada 298 Ka: 17.8–20.2 GHz

LeoSat United States 108 Ka: 17.7–20.2 GHz

Tianqi China 38 UHF: 318–320 MHz

Xingwang China 12,992 K: 17.7–20.2 GHz, Ka/V/Q: 37.5–42.5 GHz

Xiaozhizhuwang China 650 K: 17.7–20.2 GHz

The Doppler frequency is a function of satellite speed and
position, which can be obtained through auxiliary information.
According to the satellite’s velocity and position, and the measured
Doppler shift, a circular conical surface with equal Doppler can
be determined. For static receivers, since the receiver’s coordinates
remain constant over time, Doppler measurements from the same
or different satellites at different times can be used for positioning.
When a user receives a satellite signal, the Doppler shift value of
the signal can be measured, and the user must be on the equivalent
Doppler circular conical surface (EDCCS) with the satellite as the
apex. The Doppler shift value is the same for all points on this
surface and equals the measured Doppler shift value. When signals
from multiple satellites are received, multiple equivalent Doppler
circular conical surfaces are formed. These surfaces intersect at a
point, which is calculated as the user’s position. Figure 1 illustrates
the principle of Doppler positioning.

2.2 Measurement equation

The Doppler effect, caused by the relative motion between
the satellite signal transmitter and the ground receiver, can be
expressed as:

fd = fR − fT =
νrv
c
. fT =

νrv
λ fT

(1)

In the Equation 1, fd represents the Doppler frequency shift, fR
denotes the received carrier wave frequency, fT is the transmitted
carrier frequency, c is the speed of light, λ fT is the wavelength of the
transmitted signal, and νrv is the relative speed in the line-of-sight
direction between the receiver and transmitter. If the transmitter and
receiver are approaching each other, the Doppler frequency shift is
positive; if they are moving away from each other, the Doppler shift

is negative. Additionally, νrv is also referred to as the pseudo-range
rate, which can be expressed as:

νrv = (vr − v
s).

xs − xr
∥ xs − xr ∥

= ρ̇ (2)

In the Equation 2, vs = [vsx vsy vsz] and vr = [vrx vry vrz]
are the velocity vectors of the satellite and the receiver, respectively.
Similarly, xs = [xs ys zs]T and xr = [xr yr zr]T are their
respective position vectors in 3-dimensional space. The term ρ̇
represents the pseudo-range rate, which is the first derivative of the
pseudo-range with respect to time. The measurement equation for
the pseudo-range can be expressed as [11]:

ρ=∥xs − xr∥ +c · (δtr − δt
s) + c · dRs

r +T
s
r + I

s
r, f + dE

s
r + ερ (3)

In the Equation 3, ρ represents the pseudo-range, δtr and δts

respectively represent clock bias of receiver and satellite, Ts
r and Isr, f

are tropospheric and ionospheric delay, dRs
r is the satellite clock

offset correction due to the relativistic effect, dEsr is the error caused
by the Sagnac effect due to Earth rotation, and ερ represents other
modeling errors. The measurement equation for pseudo-range rate
can be expressed as:

fd · λ fr = ρ̇ = (vr − v
s).

xs − xr
∥ xs − xr ∥

+ c · (δ ̇tr − δ ̇t
s) + c · dṘs

r + Ṫ
s
r + ̇I

s
r, f + dĖ

s
r + ερ̇

(4)

In the Equation 4, δ ̇tr and δ ̇ts represent the clock drift of the
receiver and satellite, respectively. Ṫs

r and ̇I
s
r, f represent the delay rates

caused by the troposphere and ionosphere, respectively. ερ̇ represents
measurement noise errors and other unmodeled noise errors. dṘs

r is
the clock drift correction caused by relativistic effects, and dĖsr is the
rate of distance change caused by the Sagnac effect due to Earth’s
rotation. They can be obtained from literature [12]:

dṘs
r =
−2
c2
(ẋs · vs + xs · v̇s) (5)
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FIGURE 1
Schematic diagram of Doppler positioning.

dĖsr =
ωe

c
(νsx · yr + νry · x

s − νsy · xr − νrx · y
s) (6)

In the Equation 6, ωe is the angular velocity of rotation.

2.3 Location model

In traditional GNSS pseud-orange positioning, an initial
estimate is typically provided to the user, and the Newton iteration
method is employed for iterative calculation. The final convergence
value is utilized as the positioning result. Doppler-based positioning
systems generally utilize two models. One is a positioning model
based on the least squares method, and the other is a positioning
model based on the extended Kalman filter. In the currently
published literature, the least squares method is suitable for static
receivers, while the extended Kalman filter (EKF) is suitable for
both static and dynamic receivers. Both methods require an initial
estimated solution X0 = [x

0
r ,y

0
r ,z

0
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0
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0
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0
rz ,δ ̇tr,0]

T
for the receiver,

and then linearize the pseudo-range rate observation equation:

ρ̇i ≈ ρ̇
0
i +

∂ρ̇i
∂xr
‖
xr=x

0
r

· Δxr +
∂ρ̇i
∂yr
‖
yr=y

0
r

· Δyr +
∂ρ̇i
∂zr
‖
zr=z

0
r

· Δzr

+
∂ρ̇i
∂νrx
‖
vrx=ν

0
rx

· Δνrx +
∂ρ̇i
∂νry
‖
vry=v

0
ry

· Δνry +
∂ρ̇i
∂νrz
‖
vrz=v

0
rz

· Δνrz

+
∂ρ̇i
∂δ ̇tr
‖
δ ̇tr=δ ̇tr,0

· Δδ ̇tr + ερ̇i

(7)

∂ρ̇i
∂xr
‖
xr=x

0
r

= [
visx − v

0
rx

‖pis − p
0
r‖
+ (x0

r − x
i
s)(v

i
s − v

0
r ).

pis − p
0
r

‖pis − p
0
r‖

3 ]

∂ρ̇i
∂yr
‖
yr=y

0
r

= [

[

visy − v
0
ry

‖pis − p
0
r‖
+ (y0r − y

i
s)(v

i
s − v

0
r ).

pis − p
0
r

‖pis − p
0
r‖

3
]

]
∂ρ̇i
∂zr
‖
zr=z

0
r

= [
visz − v

0
rz

‖pis − p
0
r‖
+ (z0r − z

i
s)(v

i
s − v

0
r ).

pis − p
0
r

‖pis − p
0
r‖

3]

∂ρ̇i
∂vrx
‖
vrx=v

0
rx

=
(xis − x

0
r )

‖pis − p
0
r‖

∂ρ̇i
∂vry
‖
vry=v

0
ry

=
(yis − y

0
r )

‖pis − p
0
r‖

∂ρ̇i
∂vrz
‖
vrz=v

0
rz

=
(zis − z

0
r )

‖pis − p
0
r‖

∂ρ̇i
∂δ ̇tr
‖
δ ̇tr=δ ̇tr,0

= c

(8)

In the Equations 7, 8, pis = [x
i
s,y

i
s,z

i
s]
T and vis = [v

i
sx ,v

i
sy ,v

i
sx]

T

represent the satellite position and velocity at that moment,
respectively. p0

r = [x
0
r ,y

0
r ,z

0
r ]

T and v0
r = [v

0
rx ,v

0
ry ,v

0
rz]

T
represent the

receiver position and velocity at the initial moment. ΔXr =
[Δxr,Δyr,Δzr,Δνrx ,Δνry ,Δνrx ,Δδtr]

T
is a correction to the initial

value. For the positioning model based on the least squares method,
when the receiver receives signals of opportunity from N satellites,
the least squares iterative equation can be obtained from multiple
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observation equations:
Δṗ = G · ΔXr + ε
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(9)

In the Equation 9, Δṗ represents the difference vector between
the observed and predicted values of the Doppler frequency shift
of the satellite signal received by the receiver, and ε denotes the
observed noise vector. According to the principle of least squares,
the solution can be determined as follows:

ΔXr = (G
T ·W ·G)−1GT ·W · Δρ̇ (10)

In the Equation 10, W represents the weight matrix, typically
the inverse of the Doppler measurement error covariance matrix.
If the errors of different measurement values are uncorrelated, W
becomes a diagonal matrix. By correcting the initial value X0 with
the calculated ΔXr, the updated estimated solution is obtained as
X0 +ΔXr. This updated solution is then carried over to the next
iteration. The process continues until ΔXr converges to a predefined
threshold. At this point, the iteration stops, and the final estimated
value is obtained as Xk = Xk−1 +ΔXr.

The positioning models based on the least squares method are
not robust to erroneous data, but they are simple and offer high
computational efficiency [31]. Psiaki et al. [33] demonstrated single
epoch positioning simulations using the Doppler frequency shift
from eight or more measurements through least squares fitting.
Khalife et al. [34] employed the weighted least squares method to
achieve multi-epoch positioning using the Doppler frequency shift
of Starlink satellites. For positioning models based on the extended
Kalman filter (EKF), in addition to utilizing the aforementioned
linearized observation model, the state model of the receiver is
also required. The accuracy of the state model directly impacts the
positioning performance of the receiver. Singh et al. [35] introduced
the use of the EKF to fuse information from multiple satellites for
positioning and evaluated the algorithm’s performance. In addition
to the initial state, an initial error covariance matrix must be
provided when using the EKF. Currently, there is no explanation in
the published literature on how to determine the initial covariance
matrix. Beyond its application in positioning models, the EKF
is also frequently used in observation extraction. Stock et al. [7]
summarized examples of EKF usage in existing literature and
explained its feasibility with the navigation system.

3 Error source analysis

The measurement errors can be categorized into three types
based on their sources: satellite-related errors, signal propagation-
related errors, and receiver-related errors. Satellite-related errors
primarily consist of satellite clock errors and satellite ephemeris
errors. These errors are caused by the inability of the satellite ground
monitoring system to make absolutely accurate measurements and

TABLE 2 Major error sources in opportunistic LEO-PNT.

Error source Significance Mitigation
techniques

Orbital Errors Highly Significant - Enhanced precision orbit
determination

- Differential positioning

Clock Errors Significant - Highly stable receiver
clocks

- Receiver clock state
estimation

Atmospheric error Significant - Applying atmospheric
models

- Dual-frequency
observations

- Signals with higher
frequencies

predictions of the satellite orbit and the frequency drift of the satellite
clock. Signal propagation-related errors refer to the atmospheric
delay caused by the impact of satellite signals as they pass through
the atmosphere. Receiver-related errors are caused by the multipath
effect and the clock error of the receiver. The following sections
analyze the impacts on Doppler-based positioning in LEO systems
and present corresponding mitigation strategies. Table 2 provides
a fundamental overview of error sources and their associated
mitigation techniques, with generalized indications of each error
source’s relative significance. However, when considering specific
opportunistic LEO-PNT implementations, the actual relevance of
these error sources may diverge substantially from the tabular
representations. This discrepancy arises because error source
impacts are fundamentally contingent upon multiple system-
specific parameters including (but not limited to) constellation size,
signal frequency allocation, observation duration characteristics,
and orbital data provenance.

3.1 Satellite orbit error

Therapidmovement of LEO satellites results in frequent changes
in their position and elevation,making LEO-based positioningmore
sensitive to satellite-related errors, such as satellite position and
velocity errors. The orbit determination of GNSS satellites has been
extensively studied, achieving accuracy at the centimeter level or
higher. However, for LEO satellites without GNSS receivers and
atomic clocks, this poses a challenging problem [12]. A precise
Positioning, Navigation, and Timing (PNT) receiver needs to know
the position and velocity of the satellite at the time of signal
transmission. Typically, this information is obtained using a set
of parameter data called ephemeris, such as the TLE file format
published online by Celestrak [13]. TLE files are published once or
twice a day, including the status of satellites at specific past times,
and then the SGP4 propagation algorithm is used to predict the
satellite’s position and velocity during signal transmission [14, 15].
Since the estimated orbit observation data andmodel contain errors,
and the orbit recurrencemethod also introduces errors, the assumed
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satellite state of the receiver differs from the actual state, resulting in
positioning errors of the receiver.

The accuracy of satellite orbits has always been a focal point
for space-based signals of opportunity (SOP). Currently, the only
available online resource is the Two-Line Element (TLE) file
released by the North American Aerospace Defense Command
(NORAD). However, the accuracy of these orbits at the epoch time
is approximately 3 km [16], and the accuracy is further reduced due
to the recurrence of orbits. In this context, satellite orbit error is
typically considered the primary error source for space-based SOP
positioning. Qinhonglei et al. [17] used a geometric analysismethod
to analyze the impact of orbit error on Doppler positioning error
from a geometric perspective. For a stationary ground receiver, the
relative operating speed between the transmitter and the receiver is
primarily caused by the satellite’s speed, which can be expressed as:

vrv = vsat cos θ (11)

In the Equation 11, vsat represents the speed of the satellite, and
θ is the angle between the direction of satellite motion and the line-
of-sight direction, also known as the field-of-view angle

When an error exists in the satellite speed, the field-of-view angle
will change accordingly. This relationship can be expressed as:

θobs = θ+Δθ = arccos(
fdReal

νsat +Δνsat
· λ fT) (12)

In the Equation 12, fdReal represents the true Doppler frequency
shift, and Δνsat represents the satellite speed error.

The impact of velocity error onpositioning is shown in Figure 2A.
The effect of satellite velocity error on the equivalent Doppler
circular conical surface is to alter the field-of-view angle. When
the receiver uses this satellite and other satellites for positioning,
due to the presence of satellite velocity error, the actual intersection
should be located on the inaccurate equivalent Doppler circular
conical surface, rather than the true equivalent Doppler circular
conical surface. Consequently, the positioning solution is at point
B rather than the true position A. In reality, Δθ is not a constant.
Assuming that the equal Doppler circular conical surface 2 and the
equal Doppler circular conical surface 1 correspond to the boundary
value of velocity error, the equal Doppler circular conical surface
obtained by the receiver lies between the equal Doppler circular
conical surface 1 and the Doppler circular conical surface 2, sharing
the same vertex.Therefore, the influence of velocity error transforms
the equal Doppler circular conical surface into a special geometric
shape, with its base forming a ring.

When considering the influence of satellite motion direction
error, let Δβ denote the deviation of satellite motion direction.
The impact of this error on positioning is depicted in Figure 2B.
The equivalent Doppler circular conical surface with error deviates
from the real equivalent Doppler circular conical surface by Δβ.
Consequently, the position solution should be at point B, rather
than point A. Given that the error is random, its magnitude and
corresponding direction are uncertain.Assuming that the equivalent
Doppler circular conical surface with velocity direction error rotates
around the real line of sight direction while the field angle Δβ
remains unchanged, the equivalent Doppler circular conical surface
transforms into a special geometric shape. It can be observed that the
influence of the direction error of satellite velocity on the equivalent
Doppler circular conical surface is analogous to that of satellite
velocity error.

For the satellite position error, the field angle of the equivalent
Doppler conical surface is independent of the satellite’s position.The
impact of this error on positioning is depicted in Figure 2C. The
satellite position with error is located inside or on the surface of a
sphere centered at the true satellite position, with a radius equal to
the maximum error Lmax.

Therefore, the satellite position error transforms the normal
equivalent Doppler circular conical surface into an irregular
geometry. Generally, the sensitivity of Doppler positioning to
satellite position error is less than that to satellite velocity error.
This is because the former only changes the position of the
equivalent Doppler circular conical surface, while the latter changes
the field angle, and the positioning error is related to the line of
sight. For a specific satellite, the influence of orbit error on the
equivalent Doppler circular conical surface is the combination of
all effects of satellite positioning error, satellite velocity error, and
velocity direction error. When the orbit error exists, the satellite
velocity error will change the contour of the equivalent Doppler
circular conical surface, while the satellite position error will change
the position of the equivalent Doppler circular conical surface,
resulting in an irregular geometry of the equivalent Doppler circular
conical surface.

Shi et al. [10] conducted a simulation analysis by adding random
errors of varying magnitudes to the satellite position or velocity.
The results indicate that the positioning results are less sensitive
to satellite position errors than to satellite velocity errors. The
positioning accuracy will be reduced if the satellite position error
is at the meter level and the velocity error is at the centimeter level
per second. When the satellite orbit error increases by one order of
magnitude, the positioning error will also increase by one order of
magnitude. The positioning results are presented in Table 3, where
RMS, N, E, and U represent the root mean square, north, east, and
up directions, respectively.

In order to address the impact of satellite orbit errors, Ardito
et al. [18] proposed a Simultaneous Tracking and Navigation
(STAN) framework, which solves this issue by tightly integrating
an Inertial Navigation System (INS) with Doppler and pseudo-
range measurements. Khalife et al. [19] proposed a differential
framework to tackle this problem. Qinhonglei et al. [20] targeted
the traditional long baseline model, arguing that the assumption
of parallel sight vectors between the two receivers in the basic
differential positioning model is untenable. They proposed a
Doppler differential positioning algorithm based on sight vector
correction. By determining the sight vectors, the projection of
the baseline in this direction becomes a pseudorange difference,
thereby reducing positioning errors under long baselines. Zhao
et al. [21] analyzed the error elimination method in the differential
Doppler positioning system based on the differential framework
and proposed a signal transmission time algorithm based on
Maximum Likelihood Estimation (MLE) to mitigate the impact
of orbit errors. In addition to the differential method requiring
additional reference stations, Wang et al. [22] reduced the impact of
satellite position errors by introducing a coarse time compensation
term. Although this compensates for errors along the satellite
motion direction, it cannot compensate for radial direction errors.
Furthermore, positioning accuracy can also be improved by
obtaining high-precision tracking data. Khairallah and Kassas
et al. [16] conducted experiments on Doppler and carrier phase
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FIGURE 2
Impact analysis of orbital errors [16]. (A) Velocity errors (B) velocity direction errors (C) Position errors.

ephemeris tracking, providing precise ephemeris for positioning
another static receiver. To address the challenge that traditional orbit
determination methods are difficult to apply to non-cooperative
LEO satellites, Deng et al. [23] proposed a multi-receiver Doppler
orbit determination scheme and introduced a Search Least Squares
(SLS) algorithm for initial orbit determination, offering a reliable
initial value method for accurate orbit determination. However, this
method is overly dependent on prior orbit parameters. With the
advancement of artificial intelligence, machine learning methods
are gradually being applied to the orbit determination of LEO
satellites.

3.2 Clock error

Because most LEO satellites are not designed for navigation
purposes, the on-board clock of LEO satellites is not necessarily
an atomic clock, nor is it necessarily precisely synchronized. In
addition, the receiver typically uses a lower-quality oscillator.
Therefore, the offset and drift of the satellite and receiver clocks may
be quite significant. Although LEO opportunistic signal positioning
is not affected by the clock offset between the satellite and the
receiver as in the pseudorange positioning of the GNSS system, the

clock drift between the satellite and the receiver will seriously impact
the measured Doppler frequency shift.

Mortlock et al. [24] conducted a simulation-based comparative
analysis through two controlled experimental scenarios:1.
Fixed receiver clock with variable satellite clock parameters; 2.
Fixed satellite clock with variable receiver clock specifications.
Their investigation systematically quantified how positioning
performance responds to receiver clock quality variations
and transmitter clock imperfections in LEO constellations.
Notably, the study revealed that positioning accuracy exhibits
remarkable insensitivity to LEO transmitter clock quality
regardless of constellation size. In a complementary approach,
Cassel et al. [25] implemented synchronized clock variation
simulations where both transmitters and receivers employed
identical clock architectures. Their results demonstrated that
simultaneous adoption of next-generation atomic clocks at
both ends enhances Doppler-based positioning precision by
approximately an order of magnitude compared to conventional
oscillators. These findings collectively establish that receiver
clock characteristics exert critical influence on LEO-PNT
performance–while transmitter clock quality shows limited
impact, receiver clock advancements yield substantial system-
level improvements.
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To mitigate the impact of clock errors, several methods have
been proposed. Wang et al. [26] addressed the impact of receiver
clock errors on LEOpositioning performance by proposing amutual
feedback positioning algorithm based on the LSTM model and
the error state Kalman filter (ESKF) model, which can compensate
for clock errors and reduce their impact on positioning accuracy.
To enhance the accuracy of the receiver clock model, Cassel
et al. [25] utilized a more complex three-state model instead of
the conventional dual-state model, thereby improving positioning
accuracy. In addition to reducing the impact of receiver clock errors,
this approach can also enhance the accuracy of LEO clocks. Yang
et al. [27] proposed a real-time estimation method for low Earth
orbit (LEO) satellite clock errors based on ground tracking stations,
and the feasibility of this method was verified through simulations.
Wang et al. [28] investigated two typical types of satellite clocks
and proposed a LEO satellite clock prediction model based on
GNSS accurate clock estimation. The model considered systematic
effects and was compared with a simple polynomial fitting model.
Khairallah et al. [29] proposed a method for adaptive estimation
of satellite clock state noise covariance for positioning filtering.
Compared with the Kalman filter with mismatched measurement
covariance, this method can improve positioning accuracy.

3.3 Atmospheric error

Atmospheric errors can be categorized into ionospheric and
tropospheric errors. Ionospheric delay is inversely proportional to
the square of the frequency and directly proportional to the total
number of free electrons in the signal path. Small-scale irregularities
in electron density lead to rapid fluctuations in amplitude (fading)
and carrier phase (scintillation). Due to the group delay effect of
the ionosphere, pseudo-range and phasemeasurements deviate, and
since frequency is the rate of phase change over time, Doppler
measurements are also affected. The impact of ionospheric delay on
positioning accuracy is highly dependent on the signal frequency.
For Doppler-based positioning systems, the ionospheric effect is
primarily reflected in the change of delay rate. The ionospheric
delay rate for VHF/L-band signals cannot be ignored in LEO
positioning, as it is inversely proportional to the square of the
frequency. In the VHF band, ionospheric delay rate can cause
positioning errors based on Doppler frequency shift of up to
several kilometers [30]; in the L-band, the error is tens of meters
[10]; in the K-band, the error is far less than 1 m and can be
neglected [10]. For dual-frequency receivers, ionospheric delay
rate can be eliminated by using ionosphere-free combinations of
pseudo-range rate measurements. However, this method is not
suitable for space-based LEO opportunistic signals. Nonetheless, the
ionospheric effect can be mitigated by using signals with higher
carrier frequencies.

In addition to the ionospheric effect, the tropospheric effect
must also be considered. Since the troposphere is non-dispersive,
it introduces a non-frequency-selective delay to the signal,
which depends on factors such as temperature, atmospheric
pressure, humidity, water vapor, and elevation [31]. Similar to
the ionosphere, the troposphere also introduces a delay rate.
For Doppler positioning, a high delay rate may lead to Doppler
positioning errors as large as tens of meters [10]. If the tropospheric

error is not corrected, the positioning accuracy will deteriorate
significantly. Tropospheric error can be corrected through
modeling. Khalife et al. [32] studied the impact of tropospheric
delay on carrier phase and differential measurements using the
typical Hopfield model and concluded that the longer the baseline
length, the greater the residual delay, and the greater the impact on
positioning accuracy.

4 Advances in observable extraction
and positioning using LEO
opportunistic signals

At present, the number of LEO satellites in orbit is the largest,
and tens of thousands of LEO satellites will be launched in the
next few years, providing a large number of radiation sources for
space-based signals of opportunity positioning. In recent years,
low Earth orbit satellite systems (such as Orbcomm, Starlink,
OneWeb, etc.) have developed rapidly. Many scholars regard them
as signals of opportunity sources to study and explore the possibility
of their positioning. Table 4 summarizes the information of the
five LEO constellations that have been widely studied at present.
In this paper, the LEO constellations in the following table will
be introduced in detail, and their current research status will be
summarized.

4.1 Location based on iridium
opportunistic signal

The Iridium system, proposed by Motorola, is a global satellite
mobile communication system. It comprises 66 LEO satellites,
distributed across 6 orbital planes, with each plane consisting of 11
operational satellites and 1 backup satellite. The orbital inclination
is 86.4°, and the altitude is approximately 780 km, enabling global
coverage. After undergoing bankruptcy and reorganization, the
system was redesigned as the second-generation Iridium Next to
provide Satellite Timing and Location (STL) services. These services
are intended to serve as a backup to the Global Positioning System
(GPS) and represent a dedicated low Earth orbit positioning system.
Iridium Next employs Time Division Multiple Access (TDMA)
for signal transmission. The downlink frequency band allocated
to Iridium is 1616–1626.5 MHz, of which 1616–1626 MHz are
duplex channels used as traffic channels, divided into 30 sub-bands.
Each sub-band is further divided into 8 channels, resulting in a
bandwidth of 41.67 kHz per channel. The 1626–1626.5 MHz band
is a simplex channel, divided into 12 subchannels, each with a
bandwidth of 41.67 kHz. This bandwidth is further divided into
a working bandwidth of 31.50 kHz and a protection bandwidth
of 10.17 kHz [36]. Five simplex downlink channels are utilized,
including Ring Alert signal and four other signals. The Medium
Quaternary Message Channel is also used for the Satellite Time
and Location service, which is only accessible to authorized users.
The remaining seven simplex downlink channels serve as protection
bands [37]. The downlink frequency band distribution of the system
is illustrated in Figure 3.

The frame length of Iridium Next is 90 ms, and the Ring Alert
signal has high availability and wide coverage, which meets the
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TABLE 3 Impact of different orbital errors on Doppler positioning accuracy [9].

Satellite position error (m) Satellite velocity error (cm/s) RMS-N (m) RMS-E (m) RMS-U (m) RMS-3D (m)

0 0 1.379 2.920 4.070 5.195

0 0 1.379 2.920 4.070 5.195

0.03 0 1.378 2.921 4.070 5.196

0 0.3 1.384 2.950 4.091 5.230

3 0 1.602 3.516 4.364 5.829

0 3 1.749 3.934 5.109 6.681

30 0 8.196 18.773 18.261 27.444

0 30 10.953 25.828 29.017 40.361

300 0 80.279 178.167 183.805 268.277

0 300 108.827 255.685 286.723 399.285

3000 0 790.073 1865.394 1773.159 2692.212

0 3000 1085.340 2561.022 2842.690 3977.145

FIGURE 3
Iridium system user link frequency band allocation [43].

requirements for positioning. Users can receive the Ring Alert
signal in simplex channel 7 every 4.32 s, with a time slot length
of 20.32 ms for the simplex channel. Each Ring Alert signal
consists of three parts: an unmodulated single-tone signal; a unique
word modulated using Binary Phase Shift Keying (BPSK), whose
modulation information is a 12-bit baseband data represented
as “789” in hexadecimal; and data information modulated using
Differential Quadrature Phase Shift Keying (DQPSK) [38]. The
structure of the Iridium Next burst signal is shown in Figure 4.
The single-tone signal is located at the front of the signal with a
duration of 2.6 ms; the unique word has a duration of 0.48 ms; the
data information is located at the end of the signal and has a duration
of 3.42–17.24 ms [39], depending on the duration of the transmitted
data. The duration of the Iridium Next signal ranges from 6.5 ms

to 20.32 ms, with most signals lasting approximately 7 ms, and its
spectrum is shown in Figure 5.

The Iridium Next signal is a discontinuous signal with a burst
structure. Currently, most methods for its localization are based
on the burst signal. A clear single-tone signal is transmitted at the
front of each burst signal to facilitate signal acquisition, enabling
the estimation of the Doppler frequency shift. The traditional
Doppler measurement method for Iridium Next signals is typically
implemented in the frequency domain. Khalife et al. [40] proposed
a method that involves raising the signal to the Mth power to
eliminate the influence ofmodulation information, then performing
a Fast Fourier Transform (FFT) on the Mth power signal, and
searching for the FFT peak as the Doppler measurement value
to obtain the Doppler frequency shift of Iridium Next. Based
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FIGURE 4
Iridium next burst signal structure.

FIGURE 5
Power spectrum of Iridium-next [67].

on the unique structure of the Iridium Next signal, the existing
Doppler measurement methods can be summarized as follows:
first, coarse Doppler estimation is obtained by FFT for the single-
tone (pilot) signal in the burst signal. Then, precise Doppler
measurement is achieved through frequency-domain maximum
likelihood estimation [17, 41]. Although the frequency-domain
Doppler measurement algorithm is effective and relatively simple,
its performance is limited by the frequency resolution. The
traditional time-domainDopplermeasurementmethod is generated
by carrier phase difference. However, since the Iridium Next
signal is modulated by QPSK and the modulation information
is unknown, it is difficult to estimate the carrier phase, and this
method is affected by noise in baseband signal processing. Wei
et al. [42] proposed a method of fitting the phase of explicit and
implicit pilots to obtain Doppler measurements. This method is
limited to the simulation phase and is only applicable to signals
with known implicit pilots. For signals without known implicit
pilots, this method cannot further improve Doppler accuracy.
Huang et al. [39] proposed the phase time method, which can
utilize the complete Iridium Next signal, including pilot and
modulation signals, without requiring prior information. This
method can obtain more accurate Doppler measurements in static

receivers and improve the stability and reliability of positioning,
but it lacks verification in dynamic scenarios. To address the
localization accuracy limitations of the Doppler-based method,
Liang et al. [43] proposed a localization method based on Doppler-
compensated pseudorange by decoding the Iridium signal. This
method obtains the pseudorange and pseudorange rate by jointly
estimating the time delay and Doppler, and uses this information
for positioning. This method solves the problem of inconsistency
between the epoch time of the Iridium signal and the assumed
signal time. By estimating the epoch time error and compensating
the pseudorange, the positioning error is significantly reduced.
However, this method has the issue of high complexity and
difficulty in adapting to rapidly changing signal environments.
Tan et al. [44] studied the positioning method using Iridium signals
in weak signal environments, analyzed the signal characteristics of
Iridium in detail, and proposed a QSA-IDE algorithm to estimate
its Doppler frequency shift in weak signal environments. This
novel approach enhances weak-signal Doppler estimation through
two-stage processing:1. Quadratic square accumulation processing
boosts signal-to-noise ratio (SNR); 2. Full-duration Iridium signals
are utilized for maximum likelihood estimation (MLE) to achieve
precise Doppler frequency shift estimation.
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FIGURE 6
Orbcomm satellite downlink frequency band allocation [46].

4.2 Location based on Orbcomm
opportunistic signals

The Orbcomm system is a two-way communication system
that utilizes a low Earth orbit satellite constellation to provide
global geographic coverage. There are 42 satellites distributed across
7 orbital planes labeled a through g [45]. Each of the a, b, c,
and d planes contains 8 satellites, with an inclination of 45°
and an orbital altitude of approximately 815 km. Plane e has an
inclination of 0°, includes 6 satellites, and has an orbital altitude
of 975 km. Plane f has an inclination of 70° and contains two
satellites in a near-polar circular orbit at an altitude of 740 km.
Plane g has an inclination of 108° and contains two satellites in
a near-polar elliptical orbit, with the orbital altitude varying from
785 km to 875 km. Orbcomm completed the deployment of the
second-generation satellite (OG2) constellation in 2014. The OG2
constellation is a Walker constellation, with its satellites evenly
distributed across four orbital planes at an inclination of 47°. The
orbital altitude and period of the OG2 satellite are approximately
710 km and 97 min, respectively. Currently, positioning research
based on theOrbcommsatellite is conducted using theOG2 satellite.

The Orbcomm system employs Frequency Division Multiple
Access (FDMA) to transmit downlink signals, which occupy the
Very High Frequency (VHF) band of 137–138 MHz, as illustrated
in Figure 6 [46].

The downlink channel of the Orbcomm system includes 12
channels designated for user transmission and one gateway channel
for ground station transmission. Each satellite broadcasts signals

in two specific channels through spectrum sharing, employing
symmetric differential quadrature phase shift keying (SD-QPSK)
modulation, with a symbol rate of 4,800 bps. Currently, only the
VHF signal of the downlink channel is utilized for opportunistic
localization.

The expression of SD-QPSK modulation signal is:

s(t) =
∞

∑
i=−∞
 g(t− iTsym)exp[j(2π frt+φr +φi)] (13)

In the Equation 13, g(t) represents the pulse function, where t >
0 denotes the time elapsed since the signal was received, fr is the
carrier frequency of the received signal, φr is the initial phase of
reception, Tsym is the symbol period, and φi is the phase of the i-th
symbol, which can be expressed as:

{
{
{

φi = φi−1 +
π
2
bi

φ0 = 0, i = ⌈(t+ τr)/Tsym⌉ 
(14)

In the Equation 14, bi = ± 1 represents unknown baseband data,
and τr ∈ (0,Tsym) is an unkown symbol delay.The spectrumdiagram
of the received signal is shown in Figure 7.

The power of the Orbcomm satellite signal reaching the ground
is generally higher than that of the noise. Due to its SD-QPSK
modulation, it is unable to directly obtain the Dopplermeasurement
value through its spectrum. When using the Maximum Likelihood
Estimation (MLE) method for accurate Doppler measurement, the
correlation between the local carrier generated by theDoppler rough
measurement value and the Orbcomm signal affects the relevant
peak, which is influenced by the data bits. Qinhonglei et al. [46]

Frontiers in Physics 11 frontiersin.org133

https://doi.org/10.3389/fphy.2025.1592447
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


He et al. 10.3389/fphy.2025.1592447

FIGURE 7
Power spectrum of Orbcomm [67].

found that after square processing of their signals, peak spectral
lines appeared symmetrically on the left and right sides of the
center frequency of the signal spectrum. Zhao et al. [41] detected
the Orbcomm signal according to the spectral characteristics and
estimated the coarse Doppler by calculating the center frequency
of the bispectral line. Khalife et al. [47] used a phase-locked loop
to achieve positioning of the Orbcomm opportunity signal and
employed a Costas loop based on the maximum likelihood phase
discriminator. However, the symbol period limits the coherent
integration time, which reduces the input signal-to-noise ratio of
the ML phase detector and makes the ML Costas loop unstable.
Xie et al. [48] designed a carrier tracking loop based on square
sum code phase assistance, which eliminates the disadvantage of
the symbol period limiting the coherent integration time and
obtains accurate carrier phase measurement under a low carrier-to-
noise ratio.

4.3 Location based on Globalstar
opportunistic signals

The Globalstar second-generation constellation, operational
since 2013, consists of 32 satellites distributed in 8 orbital planes
(4 satellites per plane) at an altitude of 1,414 km. This system
employs Wideband Code Division Multiple Access (WCDMA)
technology with QPSK modulation for its communication signals,
as specified in. The user link facilitates bidirectional ground-to-
satellite communication through a transparent payload architecture:
user terminals receive signals relayed from ground stations via
satellites, defined as the forward link. Specifically, the downlink
operates in the S-band at 2,483.5–2,500 MHz, which constitutes the
forward link’s frequency allocation. To date, all published studies
exclusively utilize the forward link’s pilot signal for positioning
purposes, whose modulation structure (including chip rate, symbol

mapping, and pseudorandom noise sequence design) is analytically
illustrated in Figure 8.

Each pilot signal employs three distinct pseudo-random noise
(PN) sequences for QPSK modulation, namely, the short PN
sequence, inner PN sequence, and outer PN sequence. These
sequences are used to distinguish between satellites, orbits, and
beams. In summary, the Globalstar downlink pilot signal can be
expressed as:

s(t) = AP(t)O(t)I(t)cos(2π( f0 + fd)t+φ)

+AP(t)O(t)Q(t) sin(2π( f0 + fd)t+φ) + n(t)
(15)

In the Equation 15, A represents the signal amplitude; P(t) is
short PN sequence;O(t) is the outer PN sequence; I(t) is the inner PN
sequence used by QPSK modulation in the in-phase branch; Q(t) is
the inner PN sequence used by QPSK modulation in the quadrature
branch; f0 is the carrier fundamental frequency; fd is Doppler shift;
φ is the initial phase of the carrier; n(t) is the noise.

Doppler compensation is the most challenging issue in
opportunistic positioning using Globalstar satellites. In the
Globalstar system, Doppler is compensated to a nominal value
at the satellite or ground station [49]. When Doppler compensation
is applied, the Doppler measured by the ground receiver differs
from the true Doppler, making the measured Doppler unsuitable
for opportunistic localization. Neinavaie et al. [50] confirmed
the presence of Doppler compensation through experiments and
found discrepancies between the received Doppler and theoretical
calculations. They proposed a method to recover the Doppler
frequency by exploiting spectral distortion, enabling the retrieval
of the true Doppler frequency even when compensation is applied.
Zhang et al. [51] analyzed the modulation process of Globalstar
signals, processed the Quadrature Phase Shift Keying (QPSK) pilot
signal to the fourth power, selected an appropriate Fast Fourier
Transform (FFT) time, extracted the Doppler observation value,
and discovered that the pilot signal of the Globalstar forward link
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FIGURE 8
Forward link QPSK spread spectrum modulation.

in Beijing did not pre-compensate for Doppler. Due to the low
signal-to-noise ratio of the Globalstar signal, traditional quartic
despreading severely degrades the signal-to-noise ratio, leading to
the failure of Doppler frequency extraction. Qinhonglei et al. [52]
proposed that the acquisition of the Globalstar pilot signal
is achieved by decoding the square cross-harmonic term and
conducting parallel code phase frequency searches. The decoded
local spread spectrum sequence is not affected by the degradation of
the signal-to-noise ratio, thereby overcoming the challenge of low
signal-to-noise ratio to a certain extent.

4.4 Location based on Starlink
opportunistic signals

Starlink, a low Earth orbit (LEO) satellite constellation launched
by SpaceX, aims to provide high-speed Internet services globally
[53]. The system comprises thousands of satellites operating at
different altitudes, with the majority located in LEO at an altitude
of 550 km. To date, over 7,000 satellites have been launched, with
4,748 currently in service, primarily distributed across five distinct
orbital shells to achieve global coverage. The detailed format of
Starlink’s downlink signals is not publicly available. The only known
information about these signals is their carrier frequency and
bandwidth. The downlink signals occupy a 250 MHz bandwidth in
the Ku band to provide high-speed broadband connections. Nine

single-tone signals are broadcast at the center of this bandwidth,
spaced approximately 43.9 kHz apart [4].

Neinavaie et al. [54] analyzed the spectrum of the received
Starlink signal after Doppler compensation and found that, in
addition to the central single-tone signal, the Starlink downlink
signal spectrum contains subcarriers similar to those used in
Orthogonal Frequency Division Multiplexing (OFDM), as shown
in Figure 9. Humphreys et al. provided a blind identification
technology for the downlink signal of the satellite link in the
10.7–12.7 GHz band, given its OFDM format. This technology is
an extension of the existing blind orthogonal frequency division
multiplexing signal recognition method [55]. Using this method,
the structure of the Starlink downlink signal in the 10.7–12.7 GHz
band is described in detail, and the parameters within the signal
are estimated and identified, as shown in Table 5. Currently, the
published literature indicates that Starlink is primarily used to
extract observations by utilizing its beacon signals located at the
center of the user’s downlink signal channel, i.e., a single-tone signal
or by assuming that there is a periodic reference sequence in the
frame of the OFDM signal.

For the single-tone signal in the spectrum, Khalife et al. [56]
observed the beacon signal at 11.325 GHz of the Starlink satellite
and used a carrier phase tracking algorithm based on the Adaptive
Kalman filter to extract the Doppler frequency shift, achieving a
three-dimensional positioning error of 33.5 m and a horizontal
positioning error of 25.9 m. Jardak et al. [57] explored the feasibility
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FIGURE 9
Spectrum of Starlink downlink signals after Doppler rate wipe-off [54].

TABLE 4 Comparison of LEO constellation parameters.

Parameter Iridium Orbcomm Globalstar Starlink OneWeb

Bandwidth 31.5 kHz 25 kHz 1.23 MHz 240 MHz 230 MHz

Beacon Length 90 ms 1s 0.24s 4/3 ms 10 ms

Modulation Type DE-QPSK SD-QPSK QPSK OFDM OFDM

Frequency Band L VHF S Ku, Ka Ku

Downlink Frequency 1.616–1.626 GHz 137–138 MHz 2483.5MHz–2500 MHz 10.7–12.7 GHz 10.7–12.7 GHz

Number of Channels 240 13 13 8 8

Number of Beams 48 Unkown 16 48 16

Orbital Height 780 km 750 km 1414 km 550 km 1200 km

of receiving Starlink downlink signals for positioning without using
a parabolic reflector and proposed a signal detection and tracking
method using a general low noise block down converter and
software-defined radio, which aggregated the Doppler frequency
shift of multiple subcarriers of the beacon signal, reducing the
impact of measurement noise. Yang et al. [58] proposed a baseband
signal processing scheme without prior information of receiver
position and time. Through a two-step method, it is challenging
to determine the signal source of the Starlink signal in the
presence of multiple satellites, and simple single-tone tracking
cannot accurately estimate the carrier center frequency, which
introduces ambiguity to Doppler estimation. Nonetheless, this
method realizes the effective utilization of the Starlink signal
and accurate Doppler and Doppler rate estimation. Qinhonglei
et al. [59] used the beacon signals located at 11.325 GHz and
11.575 GHz simultaneously for positioning, employed the short-
time Fourier transform for coarse Doppler extraction, and then
used maximum likelihood estimation for accurate measurement.
With the aid of elevation data, the horizontal positioning error of
the results was 15 m. Yuanyiping et al. [60] designed a lightweight
modular universal receiving device and observed the beacon signal

(11.95 GHz/12.45 GHz) at the interval center between the downlink
signal channels of the satellite link for the first time. Based on
the beacon signal, a frequency-domain sliding window estimation
algorithm was proposed, which successfully realized the estimation
of Doppler frequency shift.

In addition to utilizing existing beacon signals, some scholars
assume that the downlink signals of satellite link users contain
periodic reference signals and use the characteristics of these periodic
signals to extract the Doppler frequency shift. Khalife et al. [61]
hypothesized that thedownlink signal of the satellite linkuser contains
periodic reference signals. Based on this assumption, they constructed
a matching subspace detection method to detect the unknown
reference signal of Starlink and estimate the unknown period and
Doppler frequency.They alsoproposed a linear frequencymodulation
parameter estimator to track the Doppler frequency of the unknown
Starlink signal by using the Wigner distribution to estimate the
parametersof the linear frequencymodulationsignal.Buildingonthis,
the team developed an algorithm based on the Kalman filter to track
theDoppler frequency of the unknown Starlink signal [34]. Neinavaie
et al. [54] combined the beacon-basedmethodwith theOFDM-based
reference signal method to significantly reduce the positioning error,
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TABLE 5 Starlink downlink signal parameters [55].

Name Parameter Value Unit

Channel Bandwidth Fs 240 MHz

Number of Subcarriers in bandwidth N 1,024

Number of cyclic prefic intervals Ng 32

Frame Period T f 1/750 s

Frame guard interval T fg 68/15 = 4.533 μs

Number of non-zero symbols in a frame Ns f 302

Number of data symbols in a frame Ns fd 298

Useful OFDM symbol interval T = N/Fs 64/15 = 4.266 μs

Symbol guard interval Tg = Ng/Fs 2/15 = 0.133 μs

OFDM symbol duration Tsym = T+Tg 4.4 μs

Subcarrier spacing F = Fs/N 234,375 Hz

Center frequency of i th channel Fci 10.7+F/2+0.25 (i-1/2) GHz

Channel spacing Fδ 250 MHz

Width of guard band between channels Fg 10 MHz

decreasing the horizontal positioning error from 10 m to 6.5 m and
thereby improving positioning accuracy. Shadramet al. [62] proposed
a sequentialmethodbasedon the classical linearmodel to estimate the
numberof Starlink satellites and their corresponding reference signals.
Thismethoduses thegeneralizedlikelihoodratiodetectortodesignthe
Doppler tracking algorithm, establishes the equivalence between the
generalized linear model and the matched subspace detector for the
first time, and employs differential Doppler positioning technology
to simultaneously receive satellite link beacon signals through two
receivers separated by 1 km. The horizontal positioning error of the
result is 5.6 m. Kozhaya et al. [63] proposed a blindDoppler spectrum
method from the perspective of the frequency domain. This method
uses a blind Doppler discriminator based on the frequency domain
and a Doppler tracking algorithm based on the Kalman filter to
achieve Doppler tracking accuracy at the Hertz level and a 2-D
positioning error of 4.3 m.

4.5 Location based on OneWeb
opportunistic signals

One of the goals of the OneWeb constellation is to create
a navigation system independent of the Galileo system. The
constellation plans to have 720 satellites, distributed across 18 orbital
planes, with an orbital altitude of approximately 1,200 km and an
orbital inclination of 87.9°. Satellites are evenly distributed within
each plane and travel along the north-south direction. Satellites in
adjacent planes are offset by half a satellite in latitude. OneWeb users’
downlink signals are transmitted in the Ku band (10.7–12.7 GHz),
and the downlink band is divided into eight consecutive 250 MHz

channels [64]. The OneWeb constellation typically provides users
with one of the 16 downlink beams at any given time, and each
beam transmits on only one of the eight channels. Therefore, each
OneWeb satellite multiplexes multiple users through frequency
division (8 × 250 MHz channels) and spatial division (16 beams),
as illustrated in Figure 10.

At present, the public literature indicates that research
on positioning using the OneWeb constellation is limited.
Kozhaya et al. [65] conducted the first study on OneWeb LEO
satellite signals. Given the acquisition challenges such as high
Doppler frequency and large search grid, they proposed a
Doppler search algorithm based on two-step sampling to reduce
computational complexity. A Kalman filter tracking loop combined
with a phase-locked loop and delay locked loop was utilized
to track satellite signals, generate code phase and carrier phase
observations, and achieve positioning based on nine OneWeb
satellites. Additionally, no other literature on OneWeb constellation
positioning has been found.

4.6 Observation estimation algorithm

Before opportunistic low Earth orbit (LEO) positioning,
navigation, and timing (PNT) processing, observations must be
estimated as accurately as possible. However, the acquisition and
frequency estimation of LEO signals are very challenging. Firstly, due
to thehighandrapidlychangingrelative speedbetweenthe transmitter
and receiver, the transmission channel imposes a significant Doppler
frequency shift on the signal. In addition, if the exact signal
structure is not known, signal acquisition and frequency estimation
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FIGURE 10
Diagram showing OneWeb’s Ku-band downlink signal allocation [65].

TABLE 6 Comparative analysis of positioning performance across satellite constellations.

Constellation Receiver state Observation Positioning Error(m) Ref

Iridium Static Doppler 22 m (2D) [16]

Orbcomm Static Carrier Phase 77.5 m (3D) [47]

Globalstar Static Doppler ≤100 m (2D) [51]

Starlink Static Doppler 4.3 m (2D)
19.4 m (3D)

[62]

OneWeb Static Carrier Phase 30.4 m (2D)
30.4 m (2D)

[64]

will be hindered, requiring more complex algorithms. While the
aforementioned challenges pose significant difficulties in observable
extraction, thereby adversely affecting positioning accuracy. The
current positioning results derived from major constellations have
yielded surprisingly encouraging outcomes. A comparative analysis of
these results is presented in Table 6, as detailed below. As illustrated
in the table, opportunistic signals typically rely on either Doppler
frequency shift measurements or carrier phase observations as
primary observables. Currently, the published signal acquisition and
observation estimation algorithms can be divided into two categories:
one is a cognitive-based method, which uses the least available prior
information about the LEO satellite signal structure; the other is the
blind method, which does not assume that the Doppler frequency,
modulation type, length, and symbol of the beacon signal are known,
but only knows its bandwidth, and uses a cognitive decoding method
to obtain this information [66].

4.6.1 Cognitive based approach
These methodologies typically necessitate prior knowledge of

the satellite signal architecture, including modulation schemes,
timing characteristics, and protocol-specific features, to enable
effective observable extraction and parameter estimation.

4.6.1.1 Mth-power algorithm
The Mth-power algorithm is specifically designed for M-ary

Phase Shift Keying (MPSK)modulated satellite signals.Thismethod
operates by raising the received signal to the Mth power to eliminate
modulation symbol effects, followed by spectral analysis via Fast
Fourier Transform (FFT). In reference [47], it is deduced that the

carrier phase or Doppler frequency shift of multiple different carrier
frequency multiplexed signals is used. An independent Phase-
Locked Loop (PLL) is employed to track the LEO satellite signal
of each channel, and a maximum likelihood phase discriminator is
used to obtain the phase error. Reference [40] proposed a receiver
architecture suitable for processing Time Division Multiple Access
(TDMA) and Frequency Division Multiple Access (FDMA) signals
fromOrbcomm and Iridium next-generation satellites.The received
signals are down-converted and partitioned to generate Doppler
frequency measurements of multi-constellation LEO satellites.
However, when processing TDMA signals, it is necessary to use
an energy detector to obtain the burst start time during its
initialization phase and assume that the initial Doppler frequency
is known. Reference [67] designed a multi-constellation software-
defined receiver capable of processing QPSK modulated signals
from Orbcomm and Iridium next satellites. The received signals
are processed to the fourth power, the power spectral density
(PSD) is analyzed using the Welch method, the PSD peak is found
through a search window to determine the Doppler frequency,
and the Doppler frequency shift of the detected signals is tracked
using the classic Costas loop. Literature [41, 68] proposed a
Doppler fusion positioning model based on the Helmert variance
component estimation (HVCE) algorithm, analyzing the above
Doppler frequency shift extraction methods of Orbcomm and
Iridium signals, which improved positioning accuracy.

4.6.1.2 Code phase search acquisition algorithm
The Code Phase Search Acquisition Algorithm can be employed

to extract Doppler observables from opportunistic signals. Its
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fundamental principle lies in extracting the PN code sequences
utilized in LEO satellite pilot signals or exploiting known pilot
sequences, followed by correlation processing with the intermediate
frequency signals acquired by receivers to estimate observation
parameters. As demonstrated in literature [51], this methodology
has been successfully applied to extract Doppler observables
from GlobalStar downlink pilot signals, achieving horizontal
positioning accuracy better than 100 m. The implementation
procedure involves: Firstly, obtaining squared cross-harmonic terms
through squaring processing. Owing to the strict orthogonality
between the quadrature-phase and in-phase PN code sequences
embedded in pilot signals, their coupled sequences maintain
orthogonal characteristics while preserving identical code period
and chip rate as the original PN sequences [51]. This inherent
property facilitates periodic superposition operations, thereby
enabling effective estimation of spread spectrum codes. Reference
[69] studies the problem of joint synchronization and positioning
using signals with known pulse shapes and modulation schemes
and proposes a bandwidth-efficient algorithm for estimating the
time difference of arrival (TDOA) and frequency difference
(FDOA) between two receivers without exchanging original signals.
Reference [71] proposed a Doppler frequency shift estimation
algorithm based on correlation, but this algorithm assumes that the
synchronization sequence is known.

4.6.1.3 Matched subspace detector
The matched subspace algorithm constitutes a Doppler

observable extraction methodology rooted in binary hypothesis
testing andmaximum likelihood estimation principles.Thematched
subspace detector has been widely used to address the detection
problem of signal sources with unknown parameters in the presence
of other interference sources [72, 73]. In the Starlink satellite, there
are always-on and on-demand OFDM signals [70]. Certain LEO
satellite synchronization signals exhibit inherent periodicity in
their transmission characteristics, as exemplified by the Starlink
constellation’s synchronization signal architecture. In OFDM-based
transmission, each OFDM frame contains periodic signals that are
always-on and on-demand, which are used for synchronization and
channel estimation. The period of these signals is typically equal to
the frame length of the OFDM signals. However, in most cases, the
synchronization sequence and its length are unknown. References
[34, 61, 62] utilize thematched subspace algorithm to detect received
opportunistic signals to provide initial estimates of unknown
parameters. These parameters include: 1. The unknown number
of satellites, 2. The corresponding periodic signal, and 3. Linear
frequency modulation parameters (Doppler and Doppler rate).
This method detects satellite signals in the environment by solving
hypothesis testing problems at different stages. Compared with
reference [90], a constant Doppler subspace is used to distinguish
different satellites, and the matched subspace is defined based on
the LFM parameters of each satellite. At each stage, a hypothesis
test is conducted to detect the strongest satellite signal, and the
LFM subspace of the previously detected satellite periodic signal is
set to zero. A generalized likelihood ratio detector is used in each
stage of the sequential detection algorithm. In the first stage of the
sequential algorithm, it detectswhether there is the strongest satellite
signal. If the null hypothesis is accepted, it means that no satellite
signal is detected in the received signal. If the null hypothesis is

rejected, it indicates that there is at least one satellite signal, and if
the detected satellite signal exists, hypothesis testing is carried out
to detect the presence of other satellite signals, and the unknown
LFM parameters and periodic sequence of each satellite signal are
estimated at each stage.

4.6.2 Blind based approach
The core capability of a blind receiver lies in its ability to

cognitively decode partially transmitted signals, estimate and track
them, and ultimately generate navigation observables.

4.6.2.1 Blind beacon estimation algorithm
This algorithm postulates the existence of periodically

transmitted beacon signals and performs blind estimation through
coherent integration of subsequent signal transmissions. The
methodology proves applicable during online navigation operations
or pre-navigation calibration phases, enabling subsequent utilization
in formal navigation processes. As beacon signals become a
priori known (or estimated) during navigation phases, such
receiver architectures typically achieve concurrent estimation of
carrier phase, Doppler shift, and code phase parameters through
adaptive tracking loops. Currently, most communication systems
incorporate periodic reference signals, which can thus be leveraged
for opportunistic navigation [74, 75]. Reference [76] proposed
a blind opportunistic navigation (BON) framework, which can
decode and utilize signals of opportunity for navigation without
fully understanding the prior knowledge of the signals. The
framework primarily comprises three key steps: blind Doppler
frequency estimation, coherent integration, and beacon signal
decoding. The blind Doppler frequency estimation algorithm is
employed to estimate the Doppler frequency of the opportunity
signal, thereby mitigating the impact of high dynamic effects on the
coherent integration time. Building on this foundation, reference
[77] introduced a blind channel equalization step to compensate for
channel distortion, focusing on the blind detection and tracking of
M-PSK modulated signals. A chirp parameter estimation algorithm
based on the Wigner distribution was proposed to estimate and
track the time-varying Doppler frequency, achieving long-term
coherent integration of the signal and enhancing the signal-to-
noise ratio. Drawing on the aforementioned two articles, reference
[78] presented a navigation framework with high computational
efficiency, concentrating on the detection of constrained unknown
beacon signals. Low-complexity beacon detection and blind
Doppler frequency shift estimation algorithms were proposed,
addressing detection challenges under conditions of unknown
beacon signals and low SNR. Literatures [79–81] concentrate on
extracting navigation information from orthogonal frequency
division multiplexing (OFDM) signals with unknown signal
structures. Particularly for OFDM signals transmitted by low Earth
orbit (LEO) satellites, the importance of blind signal processing
at the receiver end is emphasized. That is, without knowledge of
the specific signal structure, navigation information within the
signal is detected, tracked, and utilized through cognitive decoding
techniques. Reference [79] proposed a computationally efficient
blind Doppler frequency estimation algorithm and discussed
solving the ambiguity problem in Doppler estimation using
polynomial curve fitting. Reference [80] also proposed a blind
Doppler estimation algorithm, focusing more on reducing the
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impact of Doppler frequency through preprocessing and employing
a difference framework to resolve the ambiguity problem in
Doppler estimation, thereby obtaining more accurate navigation
observations. The aforementioned algorithms are all designed for a
single signal source. Literature [81] proposed a receiver architecture
for signal detection and tracking in both static and high dynamic
Doppler rate scenarios, capable of jointly estimating the unknown
reference signals of multiple signal sources. This architecture can
detect and track the “always-on” and “on-demand” signals of 5G NR
and Starlink satellites. Reference [82] do not assume any specific
modulation scheme but only assume the presence of a periodic
reference signal in the received signal and proposed a general
receiver architecture, highligh ting the versatility and adaptability of
the receiver to different signals.

4.6.2.2 Frequency-domain estimation methodology
This approach initiates analysis through spectral decomposition

of received signals, leveraging distinctive spectral signatures to
construct optimized estimator configurations. References [83, 84]
both employ blind Doppler discriminators based on spectral cross-
correlation and Kalman filter (KF) for Doppler tracking. However,
literature [83] focuses on the design of a three-stage blind receiver,
while literature [84] focuses on the estimation framework of blind
periodic sequences, estimating LEO satellite repeat sequences
without knowledge of the signal structure and proposing a solution
to the ambiguity of Doppler estimation. As demonstrated in
literature [59], spectral analysis of Starlink beacon signals revealed
three critical subcarrier characteristics: (1) an approximate linear
correlation between spectral bandwidth and integration time,
(2) constant signal power characteristics, and (3) individual
subcarriers exhibiting frequency-modulated (FM) signal behavior.
This fundamental insight enables the transformation of Doppler
extraction challenges into parameter estimation problems for
short-duration linear frequency-modulated (LFM) signals. Based
on this framework, the authors developed a frequency-domain
sliding-window estimation algorithm that successfully achieved
Doppler shift estimation through adaptive spectral tracking
and phase continuity maintenance across consecutive window
intervals.

In observable extraction, cognitive-based and blind-based
approaches leverage the characteristics of opportunistic signals in
the time and frequency domains, respectively. Table 7 summarizes
the advantages and disadvantages of these algorithms. Cognitive-
based methods are more suitable for scenarios with known signal
structures, such as commercial satellites, offering high accuracy but
limited flexibility. In contrast, blind-based approaches are ideal for
unknown or dynamic signals, like emerging LEO constellations,
providing robustness but requiring solutions for ambiguity and
computational complexity issues.

5 Future research directions

The preceding research has demonstrated that LEO
opportunistic positioning can function effectively in GNSS-denied
environments. However, most of these achievements have been
realized through data post-processing, which is still far from
practical application. In addition to the error sources that impact the

opportunistic positioning system, there are still several issues that
require further investigation to facilitate the eventual application
of the opportunistic positioning system. The following section
summarizes the key issues that warrant further exploration.

5.1 Satellite identification

The receiver in both GNSS systems and opportunistic
positioning systemsmust know the satellite’s position and velocity of
the transmitted signal, which is essential for the receiver to achieve
positioning. It is relatively easy for GNSS systems to obtain such
information, but it is challenging for opportunistic positioning
systems. For existing opportunistic signal receivers, it is common to
track a specific satellite and receive signals from only one satellite
at a time. In practical positioning tasks, the opportunistic receiver
often does not know which satellite the received signal is from.
It must match the observed signal with one of the thousands of
candidate satellites to identify and obtain its orbital information.
This can be achieved by searching for the most matching satellite
from all possible satellite ephemerides using the measured Doppler
curve and the receiver’s prior position information [58]. However,
when the receiver’s prior position information is unavailable or the
satellite orbits are very close, this method may fail. Therefore, it is
urgent to find a new technology that allows the receiver to recognize
satellites through satellite signals.

5.2 Optimization of location algorithm

For receivers in both GNSS and opportunistic positioning
systems, receiver initialization is required when performing a
positioning solution, meaning an initial solution must be provided.
In GNSS positioning, each coordinate component of the receiver’s
initial position can be simply set to zero. By using the Newton
iteration method, a convergent solution can be obtained within
just a few iteration cycles. In Doppler-based LEO positioning, an
appropriate initial value must be given. When using a least squares-
based positioning solution, the epoch solution will fail if the initial
value error exceeds 200 km [10]. In the Extended Kalman Filter
(EKF) method, a larger error in the initial iteration value will lead
to a larger velocity error [85]. In low dynamic scenarios, this issue
can be resolved by introducing a Tikhonov regularization term [86].
However, this method fails in high dynamic scenarios. Therefore, it
is of great significance to study the sensitivity of initial values in LEO
Doppler positioning and to obtain accurate initial values without
relying on additional prior information.

5.3 Multi source fusion location

For positioning in GNSS-denied environments, multi-sensor
data fusion can compensate for PNT services by utilizing other
navigation sources when GNSS is unavailable. Currently, the
multi-source fusion of LEO opportunistic signals includes: multi-
constellation fusion [84], fusion with inertial navigation systems
[87], or fusion with altimeters [88]. Additionally, fusion with
other sensors, such as LiDAR or ground-based opportunistic
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TABLE 7 Comparison of different extraction methods.

Approach Algorithm Advantages Disadvantages

Cognitive-based

Mth-power Computationally efficient, suitable for
MPSK signals

Limited to specific modulations,
requires initial frequency offset

assumptions

Code phase search High precision, strong noise resistance Depends on PN code orthogonality,
high computational load

Matching subspace Multi-satellite joint detection, high
dynamic parameter estimation

High complexity, assumes periodic
signals

Blind-based

Blind beacon estimation No prior knowledge required, adaptable
to low SNR

Depends on periodicity, limited
integration time

Frequency-Domain Estimation Robust performance Low spectral resolution, Doppler
ambiguity requires resolution

PNT, may also be beneficial [82]. In general, sensor fusion
enhances the positioning accuracy and availability of opportunistic
systems by incorporating additional information. Although multi-
source fusion offers numerous advantages, the complexity of
the receiver increases due to the fusion processing of multi-
source data. Moreover, under multi-source fusion, each data
source is interconnected and influences the others. If one of
them is erroneous, it will also impact the final positioning result.
Therefore, it is necessary to study localization algorithms with
low complexity and various fusion strategies that can identify
and eliminate abnormal data, leveraging the benefits of multi-
source data.

5.4 Observation extraction in complex
environment

At present,most of the published experiments on lowEarth orbit
(LEO) opportunistic positioning are conducted in simple scenarios,
where there is an absence of obstructions from surrounding
buildings or trees.The received signals in these experiments typically
have a high signal-to-noise ratio (SNR) and are less affected
by multipath effects. To date, only a limited number of studies
have specifically considered signals with low SNR in complex
environments [44, 57, 89]. Low-cost or small antennas are unable
to provide significant antenna gain, and interference and occlusion
in complex environments further reduce the SNR of the signals.
A low SNR makes signal detection more challenging, leading to
difficulties in observation extraction and reducing the accuracy
and availability of the estimated observations. Therefore, it is
urgent to investigate observation extraction methods in complex
environments, with a focus on the performance of observable signal
estimation algorithms.

6 Conclusion

This paper reviews the current state, key technologies,
and future research directions in positioning using terrestrial

low-orbit opportunistic signals. As the limitations of Global
Navigation Satellite Systems (GNSS) in complex environments
become increasingly evident, terrestrial low-orbit opportunistic
signal positioning has emerged as a promising complementary
approach. We delve into the principles of Doppler positioning,
analyze error sources, and explore observable extraction methods
while summarizing major technological advancements to date.
The accuracy and reliability of observable extraction are critical
to positioning performance. Existing methods are introduced
and compared, and challenges in positioning algorithms—such
as sensitivity to initial values and the complexity of multi-
source data fusion—are highlighted. Cognitive-based methods
rely on prior signal knowledge, while blind approaches offer
greater adaptability; both face accuracy challenges from
multipath effects and low signal-to-noise ratios in complex
environments.

Future development in terrestrial low-orbit opportunistic
signal positioning is likely to focus on several key areas: 1)
Advancing satellite recognition technology and developing
efficient signal feature extraction and matching algorithms;
2) Refining positioning algorithms to create robust methods
that minimize dependence on prior information; 3) Promoting
multi-source fusion positioning technology to enhance accuracy
and availability; 4) Designing signal processing algorithms for
complex environments to improve the availability and reliability of
observables.

In conclusion, terrestrial low-orbit opportunistic signal
positioning holds significant potential. However, breakthroughs
are still needed in observable extraction, algorithm optimization,
multi-source fusion, and adaptability to complex environments.
These advancements will pave the way for practical
applications and provide reliable PNT services in GNSS-denied
environments.
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Integrity monitoring is crucial in applications closely related to the safety of
human life and property, such as aviation, maritime navigation, autonomous
driving, and rail transportation. Receiver autonomous integrity monitoring
(RAIM) has attracted significant attention due to its comprehensive monitoring
coverage and fast alerting capability. The paper provides a comprehensive
review of RAIM algorithms for global navigation satellite system (GNSS)
positioning applications. The parameters related to integrity assessment and
typical fault detection and exclusion methods are reviewed, and RAIM is
categorized into three types of methods: error probability distribution model-
based, set representation-based, and machine learning-based. The latest state-
of-the-art research, along with the strengths and shortcomings of each type
of method, is presented for each type. The opportunities for the future
development of RAIM are analyzed in the light of current challenges and existing
results, aiming to promote further research and provide effective assurance for
GNSS integrity.

KEYWORDS

global navigation satellite system, integrity, receiver autonomous integrity monitoring,
fault detection and exclusion, protection level

1 Introduction

The global navigation satellite system (GNSS) offers many advantages, such as all-
weather, all-time, and global coverage, providing accurate and extensive positioning,
navigation, and timing services for aviation [1], maritime navigation [2], railway transport
[3], and autonomous driving [4]. Among these, integrity is one of the key criteria for
evaluating GNSS performance. It is used to assess the trustworthiness of the navigation
system, and its concept originally came from the field of aviation, aiming to provide highly
reliable navigation and positioning information for civil aviation users.With the widespread
application of GNSS in fields closely related to the safety of human lives and property, the
concept of integrity has been expanded to other areas and has attracted much attention.

Integrity is defined as the ability to alert the user in a timely manner when the
performance of the navigation information provided by GNSS fails to meet specified
requirements [5, 6]. In January 2024, two ship groundings occurred in the Israeli ports
of Haifa and Ashdod, as a result of excessive global positioning system (GPS) positioning
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FIGURE 1
Faults or anomalies that may threaten integrity.

deviation but the receivers did not warn the crews in time [7],
which shows that safeguarding GNSS integrity is crucial for the
safety of human lives and property. On the other hand, due to
the vulnerability of the GNSS signals themselves, they are highly
susceptible to jamming and spoofing. On 6 September 2024,
OPSGROUP, an organization of aviation practitioners, compiled
statistics on GPS spoofing in civil aviation, and the data showed
that in the first three-quarters of 2024, an average of up to 1,500
flights were subjected to GPS spoofing every day [8]. The frequent
occurrence of jamming and spoofing events will seriously weaken
GNSS integrity, at the same time, ephemeris and clock failures,
ionospheric and tropospheric fluctuations, and common multipath
and non-line-of-sight (NLOS) signals in urban canyons may pose
a threat to GNSS integrity, leading users to incorrectly believe
and adopt navigation information with excessive errors, which
can jeopardize the safety of human life and property. Therefore,
providing accurate and reliable integrity services for GNSS users is
an urgent issue, and integrity monitoring of GNSS is crucial and
irreplaceable.

Depending on the stage of implementation of integrity
monitoring, it can be divided into system-level and user-level
methods. System-level methods rely on integrity information
broadcast by satellite-based or ground-based monitoring stations.
User-level methods, on the other hand, do not rely on external
information or facilities, but only utilize their own redundant
measurement information for integrity monitoring [9], and their
main means of implementation is receiver autonomous integrity
monitoring (RAIM). As shown in Figure 1, RAIM is theoretically
able tomonitor faults and abnormalities in the space segment, signal
propagation segment, and user segment, with a comprehensive
monitoring scope. Additionally, because RAIM is directly deployed
at the user terminal, it can respond quickly to all kinds of faults and
alert the user in time, and the response speed is usually much better
than that of system-level integrity monitoring methods.

Several review works have summarized the research progress of
RAIM. For instance [5], focuses on the advancements of RAIM in
aviation [6], summarizes the integrity detection algorithms used in
urban canyon environments [9], systematically reviews the integrity
monitoring methods in GNSS and inertial navigation system (INS)

FIGURE 2
Navigation performance pyramid [6].

integrated navigation for autonomous driving applications, and [10]
highlights the progress in autonomous integrity monitoring within
multi-source fusion navigation. However, these works do not
provide a systematic overview of the more novel machine learning
(ML)-based and set representation-based RAIM algorithms.
Furthermore, many innovative developments in traditional RAIM
have emerged, which are not covered in the existing reviews.

Therefore, this paper systematically describes the state-of-
the-art RAIM algorithms for GNSS positioning applications. The
remaining chapters are organized as follows: Section 2 reviews the
parameters related to integrity assessment and typical fault detection
and exclusion (FDE)methods. Section 3 introduces the state-of-the-
art of three types of RAIMs: those based on the error probability
distribution models, set representation, and ML, respectively, and
analyzes the strengths and weaknesses of each. Section 4 examines
the future development opportunities for RAIM by considering
current challenges and existing research results. Finally, Section 5
provides conclusions and future outlooks.

2 Basic definition and theory

2.1 Integrity performance evaluation and
related parameters

Four metrics—accuracy, integrity, continuity, and
availability—are usually used to evaluate GNSS navigation
performance, and the relationship between them can be represented
by the navigation performance pyramid [6], as shown in Figure 2.

Among them, integrity is used to assess the trustworthiness of
GNSS, which ismeasured by a series of parameters such as alert limit
(AL), time to alert (TTA), integrity risk (IR), protection level (PL),
etc. [6, 11], taking the positioning application as an example, these
parameters are defined as follows:

AL: The maximum tolerable position error (PE), usually preset
according to user requirements. Different requirements often exist
in the horizontal and vertical directions, so it can be further divided
into horizontal alert limit (HAL) and vertical alert limit (VAL).
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TTA: The maximum tolerable time from when the PE exceeds
the AL to when the user receives an alert.

IR: The maximum tolerable probability that the PE exceeds the
AL but the user is not alerted within the TTA.This is usually given in
terms of per hour or per mile [9]. Alternatively, IR can be defined as
the maximum tolerable probability that RAIM fails to alert the user
in time in case of a position failure.

PL: Since PE is often difficult to calculate directly, PL is used to
represent the statistical bounds of PE. PL should fulfill the following
condition: when PE exceeds AL, the probability that PL is less than
AL should not exceed the specified IR, as shown in Equation 1.

P(PE > AL&PL < AL) ≤ IR (1)

PL is usually calculated by the user to determine the availability
of the navigation system, declaring the navigation system available
when PL < AL, and declaring the navigation system unavailable
and alerting the user when PL ≥ AL. Similar to AL, PL can be
further classified into horizontal protection level (HPL) and vertical
protection level (VPL) [6].

The relationship between the integrity parameters can be
more intuitively understood by using the Stanford Diagram [12],
as shown in Figure 3. When the system is working normally, PE <
PL < AL, corresponding to region ① in the figure. When PL ≥ AL,
RAIM will declare the navigation system unavailable and issue an
alert that the user should not trust the current navigation system,
corresponding to regions ③, ④, and ⑤ in the figure, where the
events in region ③ unnecessarily declares the navigation system
unavailable and reduces the availability.When the actual PE exceeds
PL, the navigation system provides misleading information to the
user, and the probability of its occurrence is called the probability
of misleading information PMI, corresponding to regions ②, ⑤,
and ⑥ in the figure. The events in regions ② and ⑤, only provide
misleading information and the system is not in a dangerous state,
but the events in region⑥, in which the PE still exceeds AL despite
the declaration of the navigation system’s availability, results in the
user mistakenly trusting the wrong navigation information and is
in a dangerous state, and its occurrence probability is called the
hazardous misinformation probability PHMI.

The RAIM algorithm should minimize the probability of events
in region ③ to improve system availability; and minimize PMI and
PHMI so that they do not exceed at least the preset IR to guarantee
integrity.

2.2 Typical fault detection and exclusion
method

RAIM usually requires fault detection, identification, and
exclusion based on redundant measurement information. This
subsection introduces several typical FDE methods to set the stage
for the subsequent introduction of RAIM algorithms.

2.2.1 χ2 test
The χ2 test [13], which is the most typical fault detection

method, constructs the residual in the least squares (LS) algorithm
or the innovation in the Kalman filter (KF) as a test statistic tk,
as shown in Equation 2:

tk = r
T
kS
−1
k rk (2)

FIGURE 3
Stanford Diagram [12].

In the equation, rk is the residual or innovation, Sk is its
covariance matrix, and k is the index of the measurement epoch,
assuming that themeasurement noise follows a zero-meanGaussian
distribution, tk will obey a central χ2 distribution under the fault-free
hypothesis H0 (fault-free case), and a non-central χ2 distribution
under the fault hypothesisH1 (faulty case), as shown in Equation 3:

tk ∼
{
{
{

χ2(d f) H0

χ2(d f,λ) H1

(3)

where d f is the degree of freedom of the χ2 distribution, depending
on the number of visible satellites, and λ is the non-centrality
parameter.

When tk is greater than the detection threshold Tk, the fault
hypothesis H1 is accepted to alert the user, and vice versa, the
fault-free hypothesis H0 is accepted. The false alarm rate PFA
and the missed detection rate PMD are usually set according
to the application requirements, and their relationship with Tk
is shown in Figure 4.

After a fault is detected by the χ2 test, the fault can be further
identified by the subset χ2 test [14], a method that recalculates the
test statistic by removing one satellite measurements in turn, and
ultimately selects the set of satellite measurements that passes the χ2

test with the smallest test statistic.

2.2.2 W-test
The w-test [15, 16] implements the FDE by performing

a mean-shifted Gaussian test on each component of the
normalized residual or innovation, and its test statistic is calculated
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FIGURE 4
Principle of the χ2 test.

as shown in Equation 4:

w(i)k =
||||

|

r(i)k

√S(i,i)k

||||

|

(4)

where r(i)k is the i-th component in the residual or innovation
rk, and S(i,i)k is the i-th diagonal element in its covariance matrix
Sk. If w(i)k exceeds the detection threshold N1−PFA/2(0,1), the i-th
satellite measurement is considered to be possibly faulty, and after
completing the test for all satellite measurements, the maximum
value exceeding the detection threshold is usually considered faulty
and excluded, after which the w-test is re-run to verify that no other
faulty measurements still exist. Typically, the w-test is used for fault
identification and exclusion when a fault is detected in the χ2 test.

2.2.3 Solution separation
The solution separation (SS) [17, 18] method is no longer

carried out in the range domain but directly implements fault
detection on the position domain and is able to synchronize fault
identification and exclusion. The computation process of its test
statistics is shown in Figure 5, It accepts the fault hypothesis Hi and
excludes the corresponding faultmeasurementwhen the test statistic
d(i)k exceeds the corresponding detection threshold D(i)k .

2.2.4 Likelihood ratio test
The likelihood ratio test [11] is able to give the optimal result

for hypothesis testing, using the ratio of the likelihood function of
themeasurement vector under opposing hypotheses to construct the
test statistic, as shown in Equation 5:

lk = ln(
p(yk ∣Hm)
p(yk ∣H0)

) (5)

In the equation, p(yk ∣H0) is the likelihood function under the
fault-free hypothesis H0, and p(yk ∣Hm) is the likelihood function
under the fault hypothesis Hm. In practical RAIM applications,
p(yk ∣Hm) is usually computed after excluding the measurement

under the corresponding fault hypothesis [19, 20], and this approach
is similar to the SS method, which can also be synchronized to
achieve FDE.

3 RAIM algorithms

RAIM algorithm usually consists of two modules: the FDE
module and the error bounding module. The FDE module
detects, identifies and excludes faulty measurements based on
the consistency checking principle using redundant measurement
information. For a single-constellation receiver, at least five visible
satellites are required to perform fault detection, and at least six
visible satellites are required to perform fault exclusion [6]. The
error bounding module is usually realized by calculating the PL,
which is calculated by the user according to the requirements of
the IR and other parameters, and compared with the preset al to
discriminate the availability of the navigation system in real time.
Currently, there are two main ways of calculating PL, one is to
quantify the PE caused by undetected faults in the FDE module, and
the other is to try to directly characterize the PE and then calculate
its statistical bounds. Figure 6 provides a typical flow of RAIM, and
it should be noted that not all RAIM algorithms strictly follow this
general flow, and some algorithms may include additional steps or
omit specific steps.

Initially, traditional RAIM algorithms relied on prior modeling
of the probability distribution of measurement errors or state
estimation errors, which in turn led to the derivation of the
probability distribution model of the test statistic for constructing
hypothesis tests and calculating PL. However, since error probability
distribution models are often difficult to build and validate
accurately, the performance of RAIM based on these models is
limited by the accuracy of the models, while RAIM based on
set representation sidesteps this challenge by no longer treating
errors as random quantities, but as unknown deterministic values.
In addition, the data-driven ML approach provides another way
of thinking for integrity monitoring, showing great potential and
advantages in complex scenarios that are difficult to handle with
traditional RAIM.

3.1 RAIM based on error probability
distribution model

RAIM based on the error probability distribution model is the
most widely used, which has the advantages of clear mathematical
expression and the detection threshold can be calculated by the
preset PFA. Many studies have further divided the RAIM into
snapshot scheme and filtering scheme, according to the number
of measurement epochs used. The snapshot scheme is based on
the current single-epoch measurement data only, and usually
employs the LS algorithm for navigation solution calculation; The
filtering scheme is based on current and historical measurement
data, and usually employs the filtering methods such as the KF,
extended KF (EKF), unscented KF (UKF) and the particle filter
(PF), among other estimation methods for navigation solution
calculation.
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FIGURE 5
Calculation flowchart of the SS method.

FIGURE 6
General RAIM algorithm flow [10].

3.1.1 Classic LS RAIM
The classic LS RAIM is one of the most typical snapshot

schemes. It models the pseudo-range error as a zero-mean Gaussian
distribution in the fault-free case, introduces a mean deviation for
the error distribution in the faulty case, and considers only the
single fault case. The classic LS RAIM includes the pseudo-range
comparisonmethod [21], the least squares residualmethod [22], and
the parity vectormethod [23].The equivalence of thesemethodswas
theoretically demonstrated by [24], where the parity vector method
employs an orthogonal transformation to convert residual vectors

into parity vectors, providing computational simplicity and high
efficiency in calculating test statistics [25].

In the FDE module, the classic LS RAIM employs the χ2

test for fault detection, which constructs the normalized sum of
squares of the pseudo-range residual vectors as a test statistic
as shown in Equation 2; after a fault has been detected, the w-test
is usually used to further identify and exclude fault.

In the error bounding module, Brown et al [26] pioneered the
approximated radial protection (ARP) algorithm for calculating the
PL, whose computational principle is shown in Figure 7 [13]; if the
measurement noise is ignored, there is a linear relationship between
the test statistic t and the horizontal PE (HPE), and different satellites
i have their own characteristic slope SLOPEi [27], assuming that
the HPE caused by the failure of a single satellite is certain, the
corresponding test statistic t is the smallest when the failure occurs
on the satellite with the largest characteristic slope SLOPEMAX,
making the failure most difficult to be detected. Based on this
assumption, the calculation method of HPL is given as shown in
Equations 6, 7:

HPL = SLOPEMAX · √λmin · σ (6)

PMD =
Tk

∫
0

fχ2(n−4,λmin)
(x)dx (7)

In the equation, σ is the standard deviation of the measurement
noise, and λmin is the minimum non-centrality parameter required
to satisfy the specified PFA and PMD. This parameter can be can be
calculated according to Equation 7, where n is the number of visible
satellites.

Since the ARP algorithm ignores the effect of measurement
noise, in this regard, Sang and Kubik [28] proposed an improved
ARP algorithm by incorporating a term related to measurement
noise to the PL calculation.The calculation principle is also shown in
Figure 7 [13], when themeasurement noise is ignored, theminimum
detectable fault corresponds to point A in the figure, when the
measurement noise is taken into account, the distribution of the
test statistic t and the HPE will be elliptical, and the center of the
ellipse corresponds to point B in the figure. The HPL is thus divided
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FIGURE 7
Principle of PL calculation in classic LS RAIM [13].

into bias term and noise term, as shown in Equations 8, 9. The bias
term is calculated using the typical ARP algorithm, and the noise
term is calculated by multiplying the expansion factor k and the
standard deviation σH of the HPE, which is borrowed from the
kSigma algorithm commonly used in themonitoring of system-level
integrity [29].

HPL = SLOPEMAX · pbias + k · σH (8)

pbias = √λmin · σ (9)

In the equation, k is the expansion factor related to PMD, and σ
is the standard deviation of the measurement noise.

3.1.2 Advanced RAIM and relative RAIM
Classic LS RAIM is unable to meet the high integrity

requirements of the precision approach phase of civil aviation.
In response, the GNSS Evolutionary Architecture Study (GEAS)
Panel developed advanced RAIM (ARAIM) algorithm [30–34].
Compared with the classic LS RAIM algorithm, ARAIM has several
advantages, including the ability to detect and recognize multi-
faults, applicability to multi-constellation GNSS, the ability to
monitor integrity in the vertical direction, and the capability to
eliminate the first-order ionospheric delay using dual-frequency
measurements.

ARAIM employs the Multiple Hypothesis Solution Separation
(MHSS) [35, 36] algorithm for FDE, which allows for multi-faults
detection by additionally considering multi-faults scenarios on top
of the traditional SS method. In addition, ARAIM assigns a specific
PFA and PHMI values to each fault hypothesis, performs independent
hypothesis testing and PL computation, and assigns a specific PHMI
to the fault-free hypothesisH0 for the computation of PL in the case
of fault-free. Ultimately, it takes the maximum value as the final PL.
The detailed algorithm of ARAIM can be found in [37].

The ARAIM algorithm relies on periodically received integrity
support messages (ISM) [38]. To guarantee integrity over longer
reception intervals, relative RAIM (RRAIM) has been proposed
[30, 39]. The RRAIM algorithm employs a time-differenced carrier
phase measurement, defining the epoch of the received ISM as the
initial time, and defines the interval from the current epoch back
to the initial time as the coasting time. The algorithm combines the
pseudo-range of the initial time and the variation of the carrier phase
within the coasting time to construct a new measurement model,
which employs a residual-based χ2 test for fault detection. Similar to
ARAIM, PL is calculated under each hypothesis separately, and the
maximum of all results is taken as the final PL [40]. pointed out that
system availability is closely related to the length of the coasting time,
with the best availability achieved when the coasting time is around
1 min; after this, availability gradually decreases with the extension
of the coasting time.

So far, there are still ongoing research efforts aimed at
improving to the ARAIM algorithm to improve its performance,
and these improvements are mainly focused on the following
four aspects:

1) When the number of visible satellites is large and the
maximum number of faults (the hypothesis that the number
of faults is greater than this value is ignored) is large, the
computational burden of ARAIM increases significantly, so
there are researches aiming to improve its computational
efficiency.

2) The traditional ARAIM algorithm assigns PFA and PHMI fixed
to each fault hypothesis Hi, and simply averages them for the
same type of fault hypotheses, in this regard, some studies
have proposed to optimize the allocation of PFA and PHMI to
improve the availability.

3) ARAIM also models the measurement errors as Gaussian
distributions and obtains parameters such as the mean and
variance of the error model based on the ISM parameters, and
some studies aim to improve the performance of ARAIM by
accurately calculating the model parameters or improving the
error model.

4) The traditional ARAIM is based on pseudo-range only, in
view of the high accuracy advantage of carrier phase, some
studies have adopted carrier phase measurement on the basis
of ARAIM framework.

This paper summarizes the latest ARAIM improvement studies
in the above four aspects as shown in Table 1.

3.1.3 KF-based RAIM
The above two types of methods belong to the category of

snapshot scheme, which only uses single-epoch measurements, and
can quickly detect step errors, but the detection ability of slowly
growing errors (SGEs) is seriously insufficient; in addition, they are
only applicable to receivers that use the LS algorithm for navigation
solving, and can not be applied to the real time kinematic (RTK) or
precise point positioning (PPP) receivers that have to use filtering
methods such as KF. The KF-based RAIM (KF-RAIM) algorithm
introduced next can well solve the above problems. Traditional KF-
RAIM borrows from the classic LS RAIM and employs residuals or
innovations for FDE, such as autonomous integrity monitoring by
extrapolation (AIME) [52, 53], extended RAIM (ERAIM) [54, 55],
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TABLE 1 Status of ARAIM improvement research.

Category of improvement Overview of the approach Comment References

Improve computational efficiency

Since satellites in the same orbital plane
are subject to similar disturbing force,
using the orbital plane as a unit instead
of satellites in MHSS can effectively

reduce the number of subsets

Since measurement errors are not only
related to the orbital plane, they can

affect the FDE capability

[41]

A feedback structure with probability
Accumulation scheme is proposed to
synchronize hypothesis testing and

error bounding so as to avoid
redundant subset computation

Reduced computation time by nearly
40% and was able to increase system

availability somewhat

[42]

By solving for the subset error
covariance matrices upper bounds, it

avoids the need to compute each subset
one by one

Reduce computation by more than 95% [43]

Propose a fault grouping strategy to
merge a larger number of double fault
subsets into a constellation fault subset.

Reduce computation by more than 90% [44]

Optimize PFA and PHMI allocation

The problem is transformed into an
optimization problem under

constraints, and a search algorithm for
the optimal configuration is provided

based on sequential quadratic
programming

Availability is effectively improved, at
some computational cost

[45]

Solving optimal allocation
configurations using dynamic particle

swarm optimization algorithm

Availability is effectively improved, but
computationally expensive

[46]

Assign larger PHMI directly to fault
hypotheses with suboptimal satellite

geometry

Availability is improved with little or no
computational cost

[47]

Optimization error model

The non-Gaussian and correlation
components of the measurement errors

are taken into account, and the
position-domain Gaussian

overbounding method is used to model
the PE.

Availability is improved [48]

Calculation of residual tropospheric
delay variance using the general

extreme value (GEV) analysis method
for accurate calculation of pseudo-range

variance parameters in the ISM.

Availability is improved [49]

Estimating receiver noise variance
using least square variance component

estimation (LS-VCE) method

Availability is improved, but results in
increased PMI

[50]

Introducing carrier phase Applying ARAIM algorithm in
single-epoch precise point positioning
based on real-time kinematic networks

(PPP-RTK) framework

PL reach meter and even sub-meter
level, with significant increase in

availability

[51]

and other typical algorithms. AIME constructs the normalized sum
of squares of the innovations rk as the test statistic s2k, and to improve
the detection of SGEs, performs a weighted average within a sliding
time window, as shown in Equations 10–12:

s2k = (r
T
avg)(S

−1
avg)(ravg) (10)

ravg = (S
−1
avg)
−1

k

∑
j=k−τ+1

S−1j rj (11)

S−1avg =
k

∑
j=k−τ+1

S−1j (12)
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where τ is the time window length, rj is the innovation, and Sj is
its covariance matrix. The detection delay of the AIME algorithm
for the SGEs is inversely proportional to its growth rate, in order
to further reduce the detection delay, Bhatti and Ochieng [56]
proposed a rate detection method, which adds a KF based on the
AIME algorithm to monitor the rate of change of s2k, reducing the
SGEs detection delay by more than 33%.The ERAIM algorithm
[54, 55], on the other hand, combines the predicted state vectors
and measurement vectors in the KF, constructs a new measurement
model and calculates the residuals, which in turn is used for the
FDE using the χ2 test and the w-test. In addition, the correlation
coefficients between the test statistics are also calculated by ERAIM,
which is used to analyze the separability of the faults.

Carrier phase measurements are usually several orders of
magnitude more accurate and more robust to noise compared to
code measurements. Therefore, Feng et al. [57] developed carrier
phase-based RAIM (CRAIM) using innovations to guarantee the
integrity of relative positioning, and Schuster et al. [58] further
utilized CRAIM for RTK positioning. The CRAIM algorithm uses
the double difference of pseudo-range, wide lane, and carrier phase
measurements as the EKF measurements, estimating the ambiguity
of whole cycles as states to assist in ambiguity resolution. In addition,
CRAIM can use the carrier phase measurements to construct a
specialized test statistic for detecting cycle slip faults. Addressing
the lack of fault identification capability in the CRAIM algorithm,
Liu et al. [59] further proposed an extended w-test method with
multi-fault detection and identification capability.

In addition to the KF-RAIM based on residuals or innovations,
the KF-RAIM based on SS is also widely used [17]. Its test statistics
are computed as shown in Figure 4, featuring the unique capability
of using both main filter and sub-filters to compute the full solution
x̂(0)k and sub-solution x̂(i)k in parallel. However, the method proposed
in [17] lacks multi-fault detection capability and cannot detect INS
fault in GNSS/INS integrated navigation. To address this problem,
Bhatti et al. [60] proposed a FDE method using a multi-stage
parallel subset filter based on the MHSS, which can detect and
identify double faults, including INS fault. Zhang et al. [61] further
improved the filter bank scheme so that it can be applied to carrier
phases for integrity monitoring in PPP, and noting that periodic
initialization of the filters can reduce the maximum number of
faults that need to be considered, thereby effectively reducing the
computational burden.Meng et al. [62], instead of adopting the filter
bank scheme, consider the new measurement model constructed
in ERAIM as a “pseudo-snapshot” model, and then use the least
squares form of the SS method to compute the full solution x̂(0)k
and the sub-solution x̂(i)k , which reduces the computational burden
to some extent. Gao et al [63] further applied this method to
integrity monitoring in RTK positioning and used it to detect fault
ambiguity solution.

In terms of error bounding, the innovation or residual-based
KF-RAIM divides the PL into a noise term and a bias term [64],
where the noise term represents the upper bound of the PE caused
by the noise, and the bias term represents the upper bound of the PE
caused by measurement bias. In contrast, the SS-based KF-RAIM
directly takes the detection threshold D(i)k in each fault hypothesis
Hi as a bias term, as shown in Equation 13:

PLk =max
i
{a(i)k +D

(i)
k } (13)

where the noise term a(i)k can be solved based on PMD and the state
covariance matrix of each sub-filter. Tanil et al. [65] compared the
above two types of methods in GNSS/INS integrated navigation
in an urban environment, and the results showed that when the
number of visible satellites is more than four, the KF-RAIM based
on the SS method has a smaller PHMI, but the computational burden
is heavier.

In view of the high accuracy of carrier phase measurements,
the PL calculated by KF-RAIM with the introduction of carrier
phase is significantly smaller, reaching meter or even sub-meter
level. This improvement enhances the availability of the system, and
the experimental results of Schuster et al. [58] show that the HPL
calculated by the CRAIM algorithm is in the range of 0.5 m in the
case of fault-free. In addition, since carrier phase measurements
usually require a ratio test [66] to verify whether the ambiguity of
whole cycles is correctly fixed, Li et al. [67] introduced the concept of
completeness to the ambiguity validation by defining an ambiguity
protection level. When the ambiguity protection level exceeds the
ambiguity alarm threshold, the ambiguity validation is considered
to have failed, and an alarm is generated.

Since KF and EKF are always limited by Gaussian error
models, the actual measurement error and state estimation error
are affected by various factors such as receiver motion, linearization
modeling errors of nonlinear models, and residual tropospheric
and ionospheric errors. As a result, the Gaussian assumption is
not appropriate, leading to inherent limitations in KF-RAIM [68].
In response to this challenge, some studies have begun to explore
KF-RAIM based on non-Gaussian error models.

Madrid et al. [69] proposed an integrity monitoring scheme
called Kalman integrated protection level (KIPL) based on the
isotropy assumption (the residual vector points in any directionwith
equal probability over the measurement space) [70]. The approach
models the measurement error as a Student’s t-distribution, which
in turn leads to the derivation of a Student’s t-distribution model
for the state estimation error, which ultimately allows for the
computation of the PL based on the preset IR. Validation results
from Gottschalg et al. [71] show that the HPL calculated by KIPL is
smaller compared to that calculated by traditional KF-RAIM under
the same IR requirement. Wang et al. [72] further extended this
algorithm for application in PPP. Similarly, Shao et al. [68] used
a robust KF based on the Student’s t distribution [73] for state
estimation, which models both measurement and process noises as
student’s t-distributions. This method uses a variational Bayesian
approach to approximate the state estimation error as a Gaussian
distribution for calculating the PL [68]. also discusses multi-faults
detection and identification schemes accordingly.

3.1.4 PF-based RAIM
PF allows better state estimation in nonlinear systems and

non-Gaussian noise conditions, eliminating the Gaussian noise
assumption restriction found in traditional KF-RAIM. Moreover,
the posteriori particle ensemble of PF provides a new approach for
error bounding.

Li and Kadirkamanathan [74] were the first to propose the
introduction of the likelihood ratio test in PF to achieve fault
detection. Based on this, some studies [20, 75, 76] borrowed the
concept of the SS method and used the likelihood ratio test for
integrity monitoring by constructing a parallel filter bank. They
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calculated the cumulative log-likelihood ratio LLR(i)k in the time
window under different fault hypothesis Hi as a test statistic, as
shown in Equation 14:

LLR(i)k =
k

∑
j=k−τ+1

ln(
∑N

r=1
p(z j|x

(i)
j (r))

∑N
r=1

p(z j|x
(0)
j (r))
) (14)

where τ is the time window length, k denotes the current epoch, i
is the fault hypothesis index, r is the particle index, N is the total
number of particles, p(z j|x

(i)
j (r)) and p(z j|x

(0)
j (r)) are the likelihood

functions under the fault hypothesisHi and the fault-free hypothesis
H0, respectively.Themaximumvalue of LLR(i)k is usually taken as the
test statistic. The fault detection threshold of this method typically
needs to be selected empirically, for this problem, He et al [77]
proposed to optimize the computation of the detection threshold
using a genetic algorithm.

The above fault detection methods require several parallel PFs,
which can impose a significant computational burden in the case
of a large number of visible satellites. To address this, Han et al.
[78] proposed constructing the test statistic using the measurement
residuals vector corresponding to the particle of maximum weight,
pointing out that the correlation between the residual vector
and the satellite projection vector can be used to identify faulty
satellites. Hafez et al. [79] proposed constructing the test statistic
using the weighted average measurement predicted value of the
particle ensemble.

The error bounding method of PF-RAIM is more special,
evaluating the actual IR based on the a posteriori set of particles
to achieve error bounding, known as Bayesian RAIM (BRAIM)
[80]. BRAIM calculates the error of each particle state with respect
to the a posteriori estimation and accumulates the weights of
the particles whose errors exceed the AL to obtain the estimated
integrity risk. This risk is then compared with the preset IR to
determine availability, as illustrated in Figure 8 [81]. Gabela et al.
[82, 83] further improved this scheme by introducing spatial feature
constraint information to assist the weight update step in PF.
Empirical results show that with the HAL set to 5 m and the IR
requirement specified, the navigation system’s availability exceeds
99%, regardless of whether the measurement noise is modeled
as a Gaussian model or a three-component Gaussian mixture
model (GMM).

However, the integrity risk estimated by BRAIM is only the
empirical risk based on the set of particles, which has limitations.
Because the number of particles in the PF is always limited, it
does not fully reflect the state posterior distribution, leading to
some underestimation of the estimated integrity risk. Regarding
this problem, Gupta et al [81, 84] proposed an improved BRAIM
algorithmbased on probably approximately correct- Bayesian (PAC-
Bayesian) theory, which introduces the divergence risk to quantify
the uncertainty caused by the above problem, and derives a
method for calculating the upper bound on IR, which is also
schematically shown in Figure 8 [81]. Additionally, this study
models the measurement noise as a GMM while employing the
expectation-maximization (EM) algorithm to determine the model
parameters, thereby reducing the difficulty of model parameter
estimation.

On the other hand, the particle impoverishment problem, i.e.,
reduced particle diversity, arises from the resampling operation in

PF, which affects the performance of PF-RAIM. In this regard,
several studies have proposed improvements to address particle
impoverishment, including: introducing a Markov chain Monte
Carlo (MCMC) moving step for each particle [75, 85], utilizing
selection, crossover, and mutation operations in genetic algorithms
to replace the traditional resampling method [86], employing
backpropagation neural network (BPNN) to adjust the particle
weights [87], and using chaotic particle swarm optimization
algorithms to increase particle diversity [20].

3.1.5 Brief summary
Table 2 provides a comparative analysis of different RAIM

algorithms based on the error probability distribution model.
Among them, the snapshot scheme can quickly detect step errors;
however, due to its reliance on only a single epoch measurement,
its detection capability is seriously insufficient for SGEs caused by
aging satellite equipment or clock drift. In this regard, some studies
[88, 89] have improved the snapshot scheme by averaging the test
statistics within a sliding time window to enhance SGEs detection
capability. Additionally, the filtering scheme can be easily integrated
with the INS, and the additional redundant information provided
by the INS can effectively improve the system’s availability. However,
the introduction of the INS also brings an additional source of
integrity risk.

3.2 RAIM based on set representation

Traditional RAIM always assumes that the error probability
distribution model is known, but in practice, there are significant
challenges in the accurate construction and validation of the error
probability distribution model. RAIM based on set representation is
able to get rid of the limitation of traditional statistical distribution
models, and this type of approach treats the error as an unknown
deterministic value, aiming to construct the set characterizing the
state estimation error by determining the uncertainty intervals of the
error, which is used for further FDE and error bounding.

3.2.1 FDE module
In the FDE module [90], proposes an innovative fault detection

strategy based on set representation theory, converts the navigation
problem into a convex polytope solving problem by applying the
uncertainty interval [−e,e] of the observation error to the observed-
minus-computed values (OMC) vector y as shown in Equation 15.

y − e ≤ Aδx ≤ y + e (15)

In the above equation, A is the design matrix and δx is the
state estimation vector. It has been shown that the volume of the
polytope is negatively correlated with the degree of consistency of
the measurements, therefore, a decrease in the volume predicts an
increase in the probability of the existence of fault measurements,
which in turn leads to the proposal of a new inconsistency metric
that warns the user when it exceeds a threshold value. In addition,
when the fault value is large, the polytope will be the empty set, so
some studies also directly achieve fault detection by determining
whether the set of polytope characterizing the state estimation error
is empty [91, 92], it is worth noting that [91] compares this method
with the traditional classical LSRAIMandARAIMalgorithms based
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FIGURE 8
Braim and improved BRAIM Schematics [81].

on the SS method, under the assumption of Gaussian noise were
compared, but found to be inferior to the traditional methods in
terms of fault detection rate and PHMI metrics [92]. further proposed
a corresponding fault identification and exclusion scheme based on
the SS idea on the basis of this method.

3.2.2 Error bounding module
The advantage of RAIM based on set representation is reflected

in the error bounding module, which can compute the set
characterizing the state estimation errors in real time. Among many
studies, a special polytope, namely, the zonotope, has been widely
chosen as a set representation of the state estimation errors due
to its favorable mathematical properties (e.g., Minkowski sum,
linear transformation) [93]. The zonotope ℤ was first used by
Combastel [94] to characterize the state estimation errors δx, which
is defined as:

ℤ =< c,H >= {δx ∈ ℝn ∣ δx = c+Hb|‖b‖∞ ≤ 1} (16)

in Equation 16, c ∈ ℝn is called the center vector,H ∈ ℝn×m is called
the generation matrix, and m is the order of the zonotope ℤ.
By adjusting the order m, the number of faces and the shape of
ℤ can be changed, making it more flexible in characterizing the
state estimation errors. Usually, zonotope is used in combination
with filter estimation methods. Liu et al. [93] used zonotope for
error bounding and PL calculation in tightly coupled GNSS/INS
navigation systems, and pioneered the use of the extendedH-infinity
filter (EHF), which treats the noise as an unknown deterministic
quantity instead of a random quantity, to replace the traditional
EKF for state estimation. And the validation results show that the

proposed method has higher system availability and lower PMI than
the traditional KF-RAIM.

Referring to the [93, 95], this paper summarizes the generalized
flowchart of error bounding based on zonotope set representation
at the k-th epoch in Figure 9. It is worth noting that, as epoch
k advances, the order of the zonotope set characterizing the
state estimation error will increase, which will generate a huge
computational burden and affect the real-time performance of the
algorithm, in this regard [93], proposes an order limitation scheme
based on the zonotope reductionmethod, with the upper limit of the
order being customized by the user, and experimentally explores the
effect of the order on the computational time and PL.

In addition to the above studies using the standard zonotope set,
there have been some studies using variants of the zonotope for error
bounding.Ashraf et al. [95] proposed to use constrained zonotope to
characterize the state estimation error, whichmakes the geometry of
the set more closely match the actual state space and further reduces
the conservatism of error bounding. Shetty et al. [96], on the other
hand, chose to adopt probabilistic zonotopes as a set representation
tool while still assuming that the measurement errors and process
errors follow aGaussian distribution.This allows the state estimation
error set to be solved according to the preset confidence level;
however, there are some limitations, as the Gaussian distribution
assumption is not strictly valid. Additionally [96], employs urban
3D maps and ray-tracing to determine multipath errors uncertainty
intervals, in turn, the uncertainty interval of the measurement
errors is determined. Su et al [92, 97], on the other hand, proposed
an extended point confidence region for characterizing the state-
domain error set, which uses a zonotope set to quantify the impact
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TABLE 2 Comparative Analysis of RAIM based on error probability distribution model.

Category Algorithm Input data FDE method Advantages Disadvantages Ref.

Snapshot Scheme

Classic LS RAIM GNSS Code χ2-test, w-test Low computational
burden

Single-constellation
only; no multi-fault

detection and
identification
capability

[21–23, 26, 28]

ARAIM GNSS Code
ISM

MHSS Suitable for
multi-constellation,

can detect and
identify multi-fault

High computational
burden when the
maximum number
of faults is large

[30–34]

RRAIM GNSS Code,
Time-Differenced

Carrier Phase

χ2-test Can ensuring the
integrity of ARAIM
in the ISM reception

interval

Performance is
limited by the length

of coasting time

[30, 39]

Filtering Scheme

AIME GNSS Code χ2-test, rate
detection method,

w-test

Strong detection
capability for SGEs

Performance is
strongly correlated
with the length of
the time window

[52, 53]

ERAIM GNSS Code, INS χ2-test, w-test Can detect and
identify multi-fault

INS measurements
must be required

[54, 55]

CRAIM GNSS Code, Carrier
Phase

χ2-test, extended
w-test

System availability is
very high

Need to consider the
ambiguity of whole

cycles

[57, 58]

SS KF-RAIM GNSS Code
(optional: Carrier

Phase, INS)

MHSS Can detect and
identify multi-fault

Multiple parallel
filters are often
required, high
computational

burden

[17, 60–63]

KIPL GNSS Code
(optional: Carrier

Phase, INS)

N/A Error probability
distribution is

modeled as Student’s
t-distribution, high

availability

No ability to detect
and identify fault

[69, 71, 72]

PF-RAIM GNSS Code
(optional: INS)

likelihood ratio test Can escape the
limitation of the
Gaussian noise
assumption

Performance is
limited by the

number of particles,
high computational

burden

[20, 75, 76, 80–83]

caused by systematic errors, and at the same time uses the traditional
confidence ellipsoid or ellipsoid set to quantify the impact caused by
stochastic errors, and finally take the Minkowski sum of the two sets
as the final set of state estimation errors.

3.2.3 Brief summary
At present, there are not many studies on RAIM based on set

representation. Theoretically, this approach does not rely on the
error probability distribution model; however, many studies still
use the traditional Gaussian distribution assumption to determine
the error uncertainty interval based on the preset confidence
level. Only some studies have discussed the determination of
measurement error intervals, such as those for multipath errors [92,
96] and residual tropospheric and ionospheric errors [98]. These
studies cover only part of the measurement errors and lack the

determination of process error intervals. There have been studies
using ML methods to estimate pseudo-range errors [99, 100],
suggesting that attempts could be made to predict the uncertainty
intervals of pseudo-range errors with the help of ML, which may be
a direction for further research in the future.

3.3 ML-based RAIM

ML-based RAIM (ML-RAIM) has great potential and
advantages, as it can effectively address the challenges posed by
nonlinear systems and non-Gaussian noise, and it supports integrity
monitoring in complex scenarios where it is difficult to model error
probability distributions in traditional RAIM (e.g., urban canyon).
In addition, sinceML-RAIMmostly follow the idea of characterizing
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FIGURE 9
Generalized flowchart of error bounding based on zonotope set representation.

the PE in calculating the PL, it makes the two modules of FDE and
error bounding relatively independent of the study.

3.3.1 FDE module
According to whether the training data need labels, ML

algorithms can be classified into two main categories: supervised
learning and unsupervised learning. Supervised learning relies on
labeled datasets for training, while unsupervised learning does not
require data labels.

In terms of supervised learning research, it can be categorized
as traditional pattern recognition, traditional neural networks, and
deep learning based on theML algorithms employed in the research.
Traditional pattern recognition methods with inherent advantages
such as high interpretability and fast training speed are widely used
to detect and identify faulty measurements, especially for NLOS
signals [101]. used support vector machine (SVM) algorithm to
classify LOS signals and NLOS signals, and six commonly used
features were analyzed, and it was found that the feature of pseudo-
range residuals had no significant contribution [102]. systematically
evaluated the detection effectiveness of various ML algorithms
under different fault thresholds and found that the k-nearest
neighbor (KNN) algorithm exhibits an optimal fault detection rate.

Compared to single models, ensemble learning has good
robustness and stability by combining the prediction results of
multiple base learners. Comparative studies in [103] have shown
that boosting and bagging ensemble learning algorithms exhibit

better performance in NLOS signal detection compared to single
models such as support vector regression (SVR), KNN and gradient
boosting decision tree (GBDT). Among them, the random forest
(RF) algorithm with Bagging strategy performs most prominently.
Based on RF algorithm [104], used factor analysis to aggregate
the original features into three more interpretable common factors,
which improved computational efficiency by about 30%. While the
base learner of the above two types of ensemble learning is limited
to the same class of models [105], innovatively detects NLOS signals
based on the stacking ensemble learning (SEL) algorithm, which
supports the use of different classes of models as the base learner.
It achieves better generalization ability in different scenarios such as
static, low-speed, and high-speed dynamic.

Many studies have also used traditional neural network (NN)
algorithms with relatively simple structures for FDE [106]. directly
predicts the receiver fault rate based on multi-layer perceptron
(MLP) algorithm and alerts the user when the prediction exceeds a
specified threshold [107], proposes a NLOS signal detection scheme
based on the MLP algorithm, which effectively improves the PPP-
RTK positioning accuracy.

Among the traditional NN algorithms, radial basis function
neural network (RBFNN) has received a lot of attention from
researchers due to its fast training speed and applicability to
small sample datasets. Zheng et al. [108] used probabilistic neural
network (PNN), which is an RBFNN integrated with Bayesian
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theory, to propose a fault detection scheme that employs a
particle swarm optimization algorithm to compute a specific fitness
function, ensuring the preset PFA and PMD [108]. also proposed
a novel dataset acquisition method to generate training data
by sampling the position error distribution in fault and fault-
free modes according to the variance inflation model. Huang
et al. [109] also used a similar method to acquire training data,
employing nonparametric estimation-based neural network (NE-
NN) for fault detection and combining it with the SS method for
fault identification. Wu et al. [110] similarly proposed a PNN-based
fault detection and identification method characterized by the use
of single-satellite multi-epoch pseudo-range residuals as feature
vectors, which has higher sensitivity compared to classic LS RAIM.

Deep learning algorithms consist of multi-layer NNs that
can automatically learn and extract higher-order features from
the data and have high generalization ability. Zhu et al [111]
enriched and enhanced one-dimensional features within a time
window into two-dimensional features and proposed an NLOS
signal detection scheme based on convolutional neural network
(CNN). Sun et al [112] used a long short-term memory (LSTM) for
fault detection, and specially designed a loss function to synthesize
the advantages of the snapshot scheme and the filtering scheme,
thus improving the detection performance for small magnitude
step errors and SGEs [113]. used Hopfield network for NLOS
signals detection, and the experimental results show that accuracy is
effectively improved compared with traditional SVM and gradient
boost machine (GBM) algorithms.

In addition, it has been found that the emergence of NLOS
signals has obvious spatiotemporal correlation [114–116], and the
self-attention mechanism is able to capture long-range dependence
and global contextual information by calculating the relational
weights between any two elements in the sequence. Therefore [116],
proposed a dual self-attentionmechanism (DSN)model to construct
two self-attention channels to extract spatial environment features
and signal time features, respectively; the former inputs the feature
data of allmeasurements, while the latter inputs the historical feature
data of the target measurement, which significantly improves the
detection effect of NLOS signals.

On the other hand, in order to cope with the difficulty of
adapting the trained model to new environments, and to further
improve the model generalization ability [115], further introduced
the Siamese neural network architecture based on DSN model, so
that the model can be quickly adapted to new environments under
the condition of few-shot labeled data. Similarly, Sun et al [117, 118]
also proposed a continuous learning-based NLOS detection scheme
based on LSTM model, and the experimental results show that
the proposed method improves the NLOS signal detection rate by
5%–12% in new environments compared with the traditional model
fine-tuning scheme. Table 3 summarizes the above supervised
learning-based FDE studies for comparison.

Compared to supervised learning, FDE methods based on
unsupervised learning do not rely on acquiring difficult labeled
data and are able to cope with fault types that do not occur
during training. The current research can be divided into two
categories, one method is based on traditional clustering or single
classification algorithms, and the other method is based on deep
learning reconstructed models.

In the field of research based on traditional clustering or
one-class classification algorithms, Xia et al [119] used the
hierarchical density-based spatial clustering of applications with
noise (HDBSCAN) algorithm to cluster and identify fault [120,
121]. compared three clustering algorithms, k-means, Gaussian
mixed clustering and fuzzy c-means, and found that the k-means
algorithm has the optimal performance in identifyingNLOS signals.
Wang et al. [122] proposed a fault detection scheme based on the
one-class support vector machine (OCSVM) algorithm, which uses
only the data from the fault-free case as the training dataset. A fault
is detected when the similarity measure of the OCSVM outputs is
less than a specified threshold.

Another type of fault detection principle based on deep learning
reconstruction model is: using the data in the fault-free case
to train the model with data reconstruction ability, when the
difference between the model output and the real sample is too
large, it indicates that there is a fault. Kim et al. [123] utilized a
time-delayed neural network (TDNN) to make predictions based
on historical test statistics and compared them with the current
test statistics for fault detection. Gogliettino et al. [106] proposed
an autoencoder-based fault detection scheme by calculating the
difference between the input data and the reconstruction results
from the autoencoder, determining that it is a faulty case when
the difference exceeds a specified threshold. Shen et al. [124]
proposed a combination of a generative adversarial network (GAN)
and a recurrent neural network (RNN) for GNSS/INS integrated
navigation integrity monitoring. The verification results show that
the detection performance for small magnitude step errors and
SGEs is improved compared to traditional KF-RAIM; however,
this method assumes that the INS is always fault-free and ignores
the potential fault risk of the INS. Table 4 summarizes the above
unsupervised learning-based FDE studies for comparison.

3.3.2 Error bounding module
In terms of error bounding studies [109], borrowed the idea of

PL calculation from the classical LSRAIMalgorithm, i.e., to quantify
the effect of undetected faults on PE, and proposed to calculate the
maximum PE caused by undetected faults in the FDE module based
on the search strategy, and then obtain the PL.

In addition, some studies have chosen to use ML algorithms to
directly predict PL. Mendonca et al [125] proposed to use decision
tree (DT) and NN algorithms to directly predict PL respectively,
both of which have smaller PHMI compared to the traditional
KF-RAIM. The conformal regression algorithm has the ability to
output the confidence interval of the prediction result under the
specified confidence level. Kuratomi et al [126] combined conformal
regression with RF algorithm and proposed conformal regression
forests (CRF) for predicting PE intervals at specified confidence
levels, which provides insights for PL calculation. The confidence
level was set to 99.999% in the paper, and the prediction is
considered successful if the actual PE falls within the prediction
interval. Unfortunately, the optimal set of experimental results in the
paper only achieved a 99.99%prediction success rate, which requires
further research.

Probabilistic regression ML algorithms provide the credibility
or probability distribution model of the prediction results along
with the output of the prediction results, so some researchers
have tried to use probabilistic regression ML algorithms to predict
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TABLE 3 FDE based on supervised learning.

Category Advantages Disadvantages ML model Dataset type and
labeling

Ref

Traditional pattern
recognition

High interpretability;
support small-scale data;

fast training speed;
real-time FDE ability

Poor generalization
ability; reliance on
artificially designed
normative features

SVM Real measurement,
UrbanLoco open source
dataset, labeling based

on fisheye camera

[101]

KNN Real measurement,
labeling inferred from
actual pseudo-range

error and fault threshold

[102]

RF Real measurement, open
dataset from Chemnitz

University of
Technology, labeling
inferred from actual
pseudo-range error

[103]

SEL Real measurement,
labeling based on fisheye

camera and 3D map

[105]

Traditional neural
network

Fast training speed,
especially for RBFNN
algorithm; real-time

FDE ability

Poor generalization
ability; poor

interpretability; medium
data scale requirement

MLP Real measurement, open
source dataset, labeling
based on fisheye camera

[107]

NE-NN, PNN Simulation, dynamically
sampling the position
error distribution and

get labels

[108, 109]

PNN Simulation, add
simulated fault and

obtain labels

[110]

Deep learning

Support continuous
learning; high

generalization ability;
can automatically extract

higher-order features
from data

Very poor
interpretability; require
large-scale data; low
training speed; poor

real-time performance

CNN Real measurement,
labeling based on 3D

map

[111]

LSTM Real measurement, add
simulated faults and

obtain label

[112]

Hopfield network Real measurement,
labeling based on fisheye

camera

[113]

DSN, Siamese neural
network

Real measurement,
labeling based on fisheye

camera

[115, 116]

LSTM, continual
learning

Real measurement,
UrbanNav open source
dataset, labeling based

on 3D map

[117, 118]

the statistical characteristics of PE, thus realizing error bounding.
Geragersian et al. [127] proposed the use of a Bayesian-LSTM
algorithm to predict PE, and since the parameters of the Bayesian
neural network are random quantities, the PE standard deviation
can be estimated using Monte Carlo methods, and then obtain
the PL. Isik et al. [128] proposed a scheme for PL calculation
based on natural gradient boosting (NGBoost). The NGBoost

algorithm is capable of predicting a probability distribution model
that matches the input samples, but it requires pre-determination
of the type of the probability distribution model. In this study, PE
is assumed to be Gaussian distributed, and the mean and variance
are predicted separately, which can be combined with a predefined
confidence level to calculate the PL. The experimental results
show that system availability is significantly improved in simulated
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TABLE 4 FDE based on unsupervised learning.

Category Advantages Disadvantages ML model Dataset type Ref

Traditional clustering or
single classification

High interpretability;
support small-scale data;

fast training speed;
real-time FDE ability

Poor generalization
ability

k-means Real measurement [119]

HDBSCAN Real measurement [120, 121]

OCSVM Simulation, add
simulated faults

[122]

Reconstruction models
based on deep learning

High generalization
ability; can handle fault
situations that have not

been encountered during
the training process

Poor interpretability;
require large-scale data;
low training speed; poor
real-time performance

TDNN Combination of
simulated and real data

[123]

Autoencoder Simulation, add
simulated faults

[106]

GAN, RNN Real measurement, add
simulated faults

[124]

TABLE 5 ML-based error bounding studies.

Category Characteristic ML model Dataset type and
labeling

Ref.

Quantifying the effect of
undetected faults on PE

Based on Gaussian
distribution; search for the
minimum detectable fault

variance expansion factor and
fault deviation value,

respectively

NE-NN Simulation, dynamically
sampling the position error
distribution and get labels

[109]

Direct predicting PL based on
ML algorithm

no need to predetermine the
type of probability distribution

model

DT, NN Real measurement, labeling
based on RTK high-precision

positioning results

[125]

CRF 132 land-vehicle challenging
urban kinematic GNSS

datasets

[126]

Based on probabilistic
regression ML algorithm

predicting the probability
distribution of PE; need to

predetermine the type of the
probability distribution model

Bayesian -LSTM Simulation, the actual PE is
known

[127]

NGBoost Simulation, the actual PE is
known

[128]

suburban, urban, and urban canyon environments compared to
classic LS RAIM. Table 5 summarizes and compares the above
availability discriminative studies in ML-RAIM.

3.3.3 Brief summary
Currently, there have been many ML-based GNSS jamming and

spoofing detection studies [129–131], but relatively few studies have
been applied to integrity monitoring. Although there are similarities
between the two, the additional IR requirements of RAIM itself,
along have made ML-RAIM studies relatively challenging. Firstly,
the datasets used in existing studies are usually limited to a single
scenario, failing to comprehensively reflect multiple factors such as
satellite faults, ionospheric fluctuations, multipath effects, spoofing,
and jamming. This results in flaws in the generalization ability of
the trainedmodels. Secondly,most currentML-based FDE strategies
lack corresponding error bounding module studies, and in the few

studies of error bounding, it is still limited to the traditionalGaussian
distribution assumption. Thirdly, there is a lack of relevant research
dedicated to feature extraction and selection.

3.4 Comparison and summary

The advantages and disadvantages of the above three types of
RAIM algorithms are shown in Table 6.

4 Challenges and opportunities of
RAIM research

With the wide application of GNSS, existing RAIM research
faces the following challenges: Firstly, due to the vulnerability of
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TABLE 6 Characteristics of the three types of RAIM.

Category Advantage Disadvantage

RAIM based on error probability distribution model Mathematical expression is clear, IR and PMD can be
estimated analytically

Commonly used Gaussian models have limitations, it
is often difficult to establish and validate error

probability distribution models in complex scenarios

RAIM based on set representation Avoiding the difficult task of modeling error
probability distributions, the set of state estimation

errors that can be characterized

Performance is limited by the accuracy of determining
the measurement and process error uncertainty

intervals

ML-RAIM Better cope with non-linear systems, non-Gaussian
noise environment, support for integrity monitoring in

complex scenarios

Dependence on reliable datasets, poor generalization
ability, insufficient research on the error bounding

module

the GNSS signals themselves, it is very susceptible to jamming and
spoofing [132]. Additionally, for the vast number of urban users,
multipath and even NLOS signals are very common, which leads
RAIM to operate in a more complex and harsh electromagnetic
environment. Secondly, in key applications such as assisted driving,
autonomous driving, and low-altitude unmanned aerial vehicles
(UAVs), the required PL is usually small, often in the meter or
even sub-meter level [9]. However, the PL calculated by existing
RAIM is often overly conservative (reaching up to tens of meters
or even hundreds of meters), resulting in seriously inadequate
system availability. Thirdly, most existing RAIM algorithms are
based on the Gaussian error model, but the study by [133]
have shown that actual measurement and position error often
exhibit characteristics of heavy-tailed distributions, making the
Gaussian assumption that do not hold strictly. In addition to
considering the multipath effects, jamming and spoofing, etc., it is
even more difficult for the actual error to follow the assumption
of the Gaussian distribution, and at this time, if the Gaussian
distribution is still used for modeling errors, an excessively
large variance is required to ensure that the estimation of the
error is conservative enough, thus seriously reducing the system
availability [134].

Considering the current challenges and existing results, future
opportunities for RAIM development lie in the following areas:
the development and application of adaptive non-Gaussian error
probability distributions; the application of more flexible and tight
error bounding techniques; and the improvement of the ML-RAIM
methods’ generalization ability.

4.1 Adaptive non-Gaussian error
probability distributions

Firstly, there have been studies using student’s t-distribution
[68] and GMM [84, 135] for modeling measurement or process
errors and for integrity monitoring, with experimental results
showing superior performance compared to traditional Gaussian
model-based approaches. In addition, several other models have
been employed to discuss error modeling, including the Rayleigh
distribution and the generalized Pareto distribution (GPD) [136],
the Dirichlet process mixture (DPM) model [137, 138], and
the generalized extreme value (GEV) distribution [133]. Among

these, the GPD and GEV distribution are based on extreme
value theory and are specifically designed to analyze rare but
potentially severe extreme events, focusing on the tail distribution
properties of random variables. This aligns well with the needs of
integrity studies and has been used for integrity risk assessment
and validation [139]. The use of these non-Gaussian error
models in conjunction with non-Gaussian noise estimators, such
as PF, is expected to effectively improve integrity monitoring
performance.

Secondly, almost all existing RAIM systems ignore the
temporal correlation of measurement noise. However, colored
noise is unavoidable and cannot be overlooked due to
hardware noise, multipath effects, and unmodeled errors [140].
Gao et al. [141, 142] exploited the temporal correlation of
colored noise by modeling it as a first-order Gaussian-Markov
process. The proposed colored Kalman filter outperforms
the traditional KF-RAIM in integrity monitoring. Therefore,
studying and utilizing the temporal correlation of errors for
error modeling will be an important opportunity for the future
development of RAIM.

Finally, the error model will change with time, electromagnetic
environment, and receiver type, making it a challenge to adaptively
select the appropriate error model. This challenge can be improved
or even solved by using artificial intelligence (AI) methods to
automatically recognize receiver electromagnetic environment [143]
(e.g., suburban, urban, and urban canyon) and then automatically
and intelligently select the appropriate types and parameters of
error models.

4.2 More flexible and tight error bounding

In terms of error bounding module, most RAIM algorithms are
usually given in the scalar form of HPL and VPL. It is assumed
that the maximum PE in the horizontal plane and vertical line
does not exceed the HPL and VPL in each direction, respectively,
with the properties of isotropy and symmetry about the origin.
However, in complex applications, users often have different AL
requirements in different directions, e.g., autonomous driving
usually has different AL requirements in the longitudinal and
lateral directions [144], and the traditional HPL discriminative
method instead constrains the system availability. In view of
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the above limitations of the traditional scalar form of PL,
opening up and applying more flexible error bounding techniques
such as ellipsoid or ellipsoid models constructed based on
matrix quadratic [145], zonotope sets [93], and extended point
confidence region [92, 97] can help to improve navigation system
availability.

On the other hand, existing error bounding techniques have
the problem of being too conservative, constructing error bounds
that are much larger than the actual PEs, leading to a significant
increase in the number of events that unnecessarily declare the
system unavailable, which seriously reduces the availability. In this
regard, the nominal information metric proposed by [125] based
on the quantity of information theory, and the average bound gap
(ABG) metric proposed by [128] can better assess this issue. The
former nominal information metric quantifies the reference value
of the information provided by the error bounds, and its larger value
implies the stronger ability of the error bounds to envelope the actual
PE. The latter ABG is defined as:

ABG = 1
NALL
∑
k
(PLk − PEk)When PLk > PEk (17)

in Equation 17, where NALL is the total number of epochs, and
PLk and PEk are the PL and actual PE for the k-th epoch.
Minimizing the ABG of the RAIM algorithm while ensuring that
it does not increase the PMI can further improve the availability
of the navigation system. By developing a more appropriate error
probability distribution model, applying a more flexible error
bounding form, and integrating advanced AI algorithms, a tighter
error bounding technique can be developed with the goal of
optimizing nominal information and ABG, under the premise of
guaranteeing that the core integrity related indexes of PMI and PHMI
meet the standards. This will be another development opportunity
for RAIM algorithm in the future.

4.3 Improvement of ML-RAIM
generalization ability

The current ML-RAIM research generally overly relies on
training data from specific regions or scenarios, and performs
poorly in the face of changes in the region as well as brand
new measurement anomalies, and the generalization ability is
still insufficient. For this problem, comprehensive and reliable
datasets should be constructed first. Current datasets for integrity
monitoring often rely on simulated faults and lack realistic
anomalies such as satellite failures, ionospheric and tropospheric
fluctuations, spoofing and jamming. Therefore, efforts should be
made to collect data under various application scenarios (e.g.,
civil aviation, automobiles, personal cell phones, etc.) and to
incorporate various types of anomalous conditions. And the
dataset should be expanded and enhanced by combining it with
AI methods, such as GANs. In addition, the dataset features
should be rich enough to cover pre-correlation domain features
(e.g., radio frequency fingerprint), spatial domain features (e.g.,
angle of arrival), and correlation domain features (e.g., carrier to
noise density) prior to the navigation solving phase, in addition to
the widely used measurement domain features. The constructed
dataset is also important for error probability distribution
modeling and validation, RAIM algorithm testing and validation,

in addition to effectively improving the generalization ability
of ML-RAIM.

On the other hand, by introducing advanced training strategies
such as incremental learning [117], continuous learning [118],
and transfer learning [143], ML-RAIM is able to quickly adapt
to data in brand new regions and scenarios, and improve the
model generalization ability. Meanwhile, automatic identification
of receiver electromagnetic environment based on AI technology
[143, 146], so as to target the selection of appropriate trainedmodels,
may be a further development opportunity forML-RAIM algorithm
in the future.

5 Conclusion

Integrity monitoring is crucial to safeguard the lives and
properties of GNSS users, and RAIM has always attracted
significant attention due to its advantages of comprehensive
monitoring range and fast alerting. With the wide application
of GNSS, existing RAIM algorithms are facing a more complex
electromagnetic environment and higher demands for integrity. To
assist scholars in related fields in exploring and developing more
advanced RAIM algorithms, this paper systematically describes
the basic principles of RAIM algorithms and the current status
of research in GNSS. The advantages and shortcomings of three
types of methods are analyzed: RAIM based on error probability
distribution model, RAIM based on set representation, and ML-
RAIM. Additionally, the paper discusses the opportunities for future
development in light of the latest research on RAIM and the
challenges faced.

Finally, although the research onRAIM algorithms in the field of
GNSS hasmade great progress, there are still deficiencies in integrity
standard, hardware implementation and algorithm testing, which
are outlooked in this paper:

1) At present, the GNSS integrity standard in the civil aviation
field has been relatively mature, but for ground applications
such as autonomous driving and low-altitude UAVs, the
formulation of the corresponding GNSS integrity standard is
still an urgent problem to be solved.

2) Almost all RAIM algorithms are developed based on software
platforms and offline datasets, and how to implement these
RAIM algorithms in hardware while taking into account
computational efficiency and real-time performance still needs
to be explored in depth.

3) Integrity monitoring strategies usually require performance
testing and evaluation, but given the extremely low probability
of integrity event, it remains a challenge to effectively,
quickly and cost-effectively verify that the performance meets
the standard.
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Signal-of-Opportunity (SOP)navigationbasedonLow-Earth-Orbit (LEO)satellite
constellations has increasingly become a research hotspot. Due to the large
number of LEO satellites, wide spectrum coverage, and strong signal power,
LEO satellite Signal-of-Opportunity (LEO-SOP) inherently possess strong anti-
jamming capabilities. However, there has been limited in-depth research on the
overall system-level anti-jamming capability of LEO-SOP. This paper reviews the
current stateof researchonLEO-SOPandanti-jammingtechnologies, introduces
the principles of LEO-SOP Doppler-based positioning and receiver operation,
and analyzes the system-level anti-jamming capability of LEO-SOP. Additionally,
it explores the key challenges in the development of LEO-SOP anti-jamming
technologies and discusses future research directions. This study aims to provide
insights into thedevelopmentprospectsof LEO-SOPanti-jamming technologies,
promote further researchanddevelopment efforts, andestablish a solid technical
foundation for the secure application of LEO-SOP. Ultimately, ensuring the
integrity and resilience of LEO-SOP systems against complex threats.

KEYWORDS

signal of opportunity, low-Earth-orbit satellite, system-level anti-jamming capability,
anti-jamming, GNSS, PNT

1 Introduction

The acquisition of location information based on satellite navigation plays an extremely
important role in today’s technological development and social progress. Among these,
positioning technology based on the Global Navigation Satellite System (GNSS) is the
primary method for obtaining location information via satellite navigation. The current
major GNSS systems include the United States’ Global Positioning System (GPS), Russia’s
GLONASS, Europe’s Galileo, and China’s BeiDou Navigation Satellite System (BDS).
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With the development of GNSS, it is becoming a crucial
infrastructure for national informatization construction, providing
Positioning, Navigation, and Timing (PNT) service information for
a variety of applications [1–5]. It plays a significant role in daily
life, scientific research, and military applications. However, as the
use of GNSS deepens, its inherent shortcomings have gradually
become apparent, including low signal power upon reaching the
ground, single frequency points, high construction andmaintenance
costs, and significant risks such as susceptibility to malicious
interference leading to service unavailability during peacetime
or tense situations [6–8]. How to overcome and compensate for
these GNSS shortcomings, especially in environments where GNSS
services fail, and still independently provide reliable and high-
precision PNT services has become a focus of future development
[9, 10]. Currently, countries are actively building resilient PNT
systems to ensure that military equipment can still achieve accurate
positioning when GNSS performance is degraded or denied. In
the PNT technology development roadmap released by the U.S.
Department of Defense in 2020, it mentioned the use of Signal-of-
Opportunity (SOP) for absolute positioning, thereby supplementing
GPS positioning functions and enhancing GPS availability and
robustness.

SOP positioning refers to a technology that utilizes all
perceivable non-navigation and non-positioning application
information such as sound, light, electricity, magnetism, and force
for positioning. Due to the abundant presence of various radio
signals in space, the current research primarily focuses on radio
SOP. SOP typically includes terrestrial and space-based radio
Signal-of-Opportunity. Terrestrial SOP has limited coverage and
struggles to achieve global seamless coverage in areas such as
deserts, oceans, and polar regions [11–13]. Space-based SOPmainly
refers to signals transmitted by non-navigation/non-cooperative
satellites. With the recent vigorous development and construction
of Low-Earth-Orbit (LEO) satellites by various countries, space-
based LEO satellite SOP (LEO-SOP) has gradually been applied in
navigation and positioning as a primary space-based SOP [14].
Unlike GNSS, LEO satellites orbit at altitudes between 500 km
and 2,000 km, resulting in higher signal power upon reaching
the ground [15]. Additionally, the large number of LEO satellites
means their signals cover a wide range of frequencies, with many
available frequency points. Currently, the published satellite signal
frequency bands can cover from 100 MHz to 40 GHz [16]. These
characteristics ensure that LEO satellite signals have stronger anti-
jamming capabilities compared to GNSS. Finally, using LEO-SOP
for positioning does not require additional construction, resulting
in lower costs. Therefore, positioning technology based on LEO-
SOP leverages existing satellite resources and requires only minimal
financial investment to meet positioning service needs, providing
an effective backup to GNSS.

Currently, LEO constellations can be categorized into three
types based on their construction maturity: ① Traditional LEO
constellations that have been completed and networked, primarily
consisting of narrowband communication satellite constellations.
Examples include the United States’ Iridium, Globalstar, Swarm
SpaceBEE, France’s Argos, and the jointly constructed Orbcomm
satellites by the United States and Canada.These operate in frequency
ranges from VHF to L-band and mainly provide narrowband
communication services to the ground [17–19].②LEOconstellations

that have been planned and have undergone significant satellite
launches, primarily broadband internet satellite systems, mainly
using Ku-band and higher frequency signals. The main goal is to
provide broadband internet access services to the ground through
large-scale LEO constellations, achieving global seamless coverage
through satellite networking. Currently under construction are the
UK’s OneWeb and the United States’ Starlink constellations. OneWeb
has completed the launch and networking of its first-generation
internet constellation, with 618 satellites in orbit at an operational
altitude of 1,200 km. As of March 2025, Starlink has successfully
launched over 6,000 satellites, with 5,614 still operational in orbit,
making it the largest LEO internet constellation currently in service.
These satellites are primarily deployed to build a global LEO satellite
internet network, providing coverage for fixed, mobile, maritime, and
aeronautical users. By the end of 2024, the system had delivered
satellite internet services to over 4 million users across nearly 100
countries. SpaceX is accelerating Starlink satellite deployment through
its Starship program. On 6 March 2025, the eighth test flight of
Starshipwascompleted, successfullyvalidating itspayloaddeployment
capability, including the release of four Starlink satellite simulators.
Thetest alsodemonstratedupgradedatmospheric re-entry technology
and propulsion systems, laying the groundwork for future large-scale
satellitedeployment [20].③Constellations thathavebeenplannedbut
have only launched a small number of satellites, with functions and
frequency bands similar to the aforementioned broadband internet
constellations. These include Canada’s Telesat and China’s StarNet,
Xingyun Project, Tianqi Satellites, and Galaxy Aerospace, among
others. Additionally, some independent LEO satellite navigation and
timing systems are being constructed to enhance the anti-jamming
capabilities of traditional GNSS, including China’s Weili Space and
the United States’ Pulsar. According to the UCS satellite database,
LEO satellites account for nearly 90% of all operational satellites in
orbit. In the coming years, the number of global LEO satellites in orbit
is expected to exceed 22,000, providing a vast number of radiation
sources for LEO satellite positioning, making it a key research subject
for signal of opportunity positioning [21]. The current major LEO
satellite constellations domestically are shown in Table 1.

This paper reviews the research on LEO-SOP and anti-jamming
technologies and analyzes the system-level anti-jamming capability
of LEO-SOP while exploring its future development challenges. The
remainder of this paper is structured as follows: Section 2 reviews the
current research status of LEO-SOP and anti-jamming technologies.
Section 3 introduces the Doppler-based positioning principle of
LEO-SOP and the receiver operation process. Section 4 analyzes
the system-level anti-jamming capability of LEO-SOP. Section 5
discusses the challenges and prospects of LEO-SOP anti-jamming
development. Finally, Section 6 summarizes the discussions above.

To facilitate the reader’s understanding, Table 2 lists some
important abbreviations involved in this paper, with specific
explanations provided in Table 2.

2 Current research status of related
technologies in domestic and
international contexts

This section reviews and summarizes national-level plans
for space-based SOP positioning, the development of LEO-SOP
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TABLE 1 Current status and future plans of LEO satellite development (as of January 2025).

Constellation name Country/Company Planning/Current quantity Downlink frequency/Bandwidth

Starlink USA/SpaceX 40,000+/7,516 10.7∼12.7 GHz
37.5∼42.5 GHz

OneWeb Bharti Global 6,372/648 10.7∼12.7 GHz

Kuiper USA/Amazon 3,236/2 10.7∼12.7 GHz

Telesat Canada/Telesat 298/6 17.8∼20.2 GHz

Globalstar USA/Loral&
Qualcomm, etc.

24/33 (Including Spare) 2.4835∼2.5 GHz

Iridium USA/mortorola 66/75 (Including Spare) 1.626∼1.6265 GHz

Orbcomm USA/Orbcomm 40/36 (Including Failure) 0.137∼0.138 GHz

GW China 12992/10 —

Spacesail Constellation China 15000+/54 Ku, Q/V

TABLE 2 Abbreviations table.

Abbreviation Meaning

GNSS Global Navigation Satellite System

GPS Global Positioning System

BDS BeiDou Satellite Navigation Sytem

PNT Positioning, Navigation and Timing

SOP Signals of Opportunity

LEO Low Earth Orbit

VHF Very high frequency

INS Inertial Navigation System

SGP4 Simplified General Perturbations 4

TLE Two-Line Elements

CNR Carrier to Noise Ratio

STL Satellites Time and Location

EKF Extended Kalman Filter

VLEO Very Low Earth Orbit

GDOP Geometric Dilution of Precision

positioning technology, and the current state of anti-jamming
research. This provides a theoretical foundation for the subsequent
analysis of anti-jamming capabilities.

2.1 National PNT strategy

The current national plans that have been announced
for positioning using SOP mainly include the United States’
All Source Positioning and Navigation (ASPN) project, the
United Kingdom’s Navigation Signal of Opportunity (NavSOP)
system, the European Space Agency’s Navigation Innovation
Support Program (NAVISP), and the Future Navigation
(FutureNAV) plan.
①ASPN Project: In 2010, the Defense Advanced Research

Projects Agency (DARPA) of the United States proposed a research
plan to combine inertial navigation systems (INS) with non-
navigation SOP from satellites, broadcasts, and other sources to
achieve positioning. This project has achieved significant results
in both military and civilian fields. In 2021, the United States
released its Space Policy Directive-7 (SPD-7), also known as the U.S.
National Space-Based Positioning, Navigation, and Timing (PNT)
Policy. The policy focuses on improving GPS performance while
reiterating concerns about over-reliance on PNT data systems. It
emphasizes the need for multi-source PNT that can supplement
or replace GPS when necessary. The policy also highlights the
future development of LEO communication constellations, which
will be integrated into the PNT system to enhance the robustness
and reliability of GNSS signals, contributing to the establishment
of an integrated PNT system. In April and November 2021, the
U.S. Air Force, in collaboration with the Naval Surface Warfare
Center, successfully completed flight tests of a new type of PNT
“agile pod.” The signal sources included SOP, which validated the
ability to provide PNT capabilities in GPS-denied environments. In
June 2021, the U.S. Army signed a contract with Iridium to develop
payloads that can be hosted on LEO satellites for broadcasting
timing or positioning signals. This initiative is considered a backup
solution for the GPS system.
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②NavSOP System: In 2012, BAE Systems developed a new type
of positioning system that does not rely on GNSS, aiming to provide
an alternative solution for positioning in complex environments.
The core of this system is to utilize SOP such as mobile phone
signals, Wi-Fi, broadcast signals, and TV tower signals to achieve a
positioning system that is highly resistant to interference, low-cost,
and flexible in application. In October 2020, the UK Space Agency
proposed the Space-Based Positioning, Navigation, and Timing
Program (SBPP). This program is based on a space-based PNT
system composed of multiple satellites, aiming to build a system
with independent PNT capabilities. It provides high-precision and
highly reliable positioning and timing services for various fields such
as defense, infrastructure, intelligent transportation, and emergency
rescue, reducing dependence on existing GNSS.
③NAVISP Plan: In 2016, the European Space Agency (ESA)

introduced the NAVISP plan, aiming to provide better solutions
for Europe’s PNT systems by supporting new technologies,
research, and applications. The plan includes enhancing the satellite
navigation services of the Galileo system using LEO satellites. In
October 2021, an ESA-funded project known as “Next-Generation
Network-Aided PNT Assurance” utilized encrypted signals from
Iridium, LTE/5G, and GNSS as potential SOPs to enhance PNT
functionality. In February 2024, a machine learning-based SOP
navigation plan was proposed. This plan integrates terrestrial SOP
signals such as 5G or Wi-Fi with space-based SOP signals from
LEO satellites and GNSS signals to overcome the limitations of
traditional GNSS.
④FutureNAV Plan: In 2022, ESA introduced the FutureNAV

plan, building on the foundation of the NAVISP program.
The FutureNAV plan aims to address the increasingly complex
needs for PNT and to enhance Europe’s independence and
technological innovation capabilities in the global navigation
domain. The plan promotes advancements in PNT systems through
the application of LEO satellites, innovative navigation signal
design, and enhanced anti-jamming and security features, providing
support for applications across multiple industries.

All of the aforementioned national plans have incorporated
space-based SOP based on LEO satellites into the research of new-
generation PNT systems. Corresponding experiments with weapons
and equipment have been conducted, as well as performance
validation in typical environmental scenarios. These efforts have
demonstrated the viability and feasibility of positioning technology
using space-based LEO satellite SOP. After several years of research
by relevant institutions both domestically and internationally, a large
number of phased achievements have beenmade in the field of LEO-
SOP positioning. The following section will summarize the current
research status in this field both domestically and internationally.

2.2 Current research status of LEO-SOP
positioning technology

The signals from LEO satellites are generally non-
navigation/non-cooperative signals, which either do not contain
or make it difficult to extract navigation information. Therefore,
the current research on LEO-SOP positioning technology mainly
focuses on analyzing the signal structure of LEO satellites to extract
Doppler measurements for positioning.

The earliest research on positioning using LEO satellites
appeared in 1998. This study used one or two Globalstar satellites to
determine the location of a user terminal, achieving instantaneous
user positioning with a horizontal position accuracy better than
10 km [22]. In 1999, Levanon N from Tel Aviv University in Israel
proposed an instantaneous positioning method using a single LEO
satellite. This method measured the distance between the satellite
and the user terminal, as well as the Doppler frequency, and
assumed that the user terminal was on the Earth’s surface to achieve
instantaneous user positioning [23].The concept of SOP positioning
and related research began after 2000.The termSOPfirst appeared in
a 2005 graduate thesis from the Air Force Institute of Technology at
the United States Air Force University. This thesis primarily focused
on the study of ground-based SOP for positioning, such as AM, FM,
WiFi, and OFDM [24].

Traditional LEO-SOP positioning primarily relies on single-
constellation LEO-SOP positioning technology. Since LEO satellites
are not designed for navigation purposes, their visibility and
constellation configurations are generally poor. In recent years,
to further enhance positioning accuracy and system availability,
various positioning technologies developed based on single-
constellation LEO-SOP positioning have been extensively studied.
These newly developed technologies reduce errors generated during
the positioning process through different approaches, such as:multi-
constellation LEO-SOP positioning technology, which integrates
multiple constellations to overcome the limitations of single-
constellation satellite selection; LEO-SOP differential positioning
technology, which eliminates orbital errors caused by extrapolation
using the Simplified General Perturbations 4 (SGP4) model
and Two-Line Elements (TLE) in traditional techniques through
differential methods; and LEO-SOP/INS integrated positioning
technology, which combines LEO-SOP with INS to ensure real-
time dynamic positioning, as the low output rate of LEO-SOP
navigation measurements makes it difficult to meet real-time
dynamic positioning requirements. Below, we will summarize the
research status at home and abroad from four aspects: single-
constellation LEO-SOP positioning technology, multi-constellation
LEO-SOP joint positioning technology, LEO-SOP differential
positioning technology, and LEO-SOP/INS integrated positioning
technology.

2.2.1 Single-constellation LEO-SOP positioning
technology

In the field of single-constellation LEO-SOP positioning
technology, the main research institutions include the team of Qin
H from Beihang University in China and the team of Kassas Z from
the University of California in the United States. In the early stages
of research, the focus was primarily on the Iridium and Orbcomm
constellations, which are typical LEO constellations. In recent years,
with the development of the Starlink and Globalstar constellations,
research on these systems has also garnered widespread attention.

In 2019, the team of Qin H from Beihang University first
established a receiving and positioning system based on Iridium
satellite signals. By combiningTLEorbital informationwithDoppler
measurements, the system achieved positioning. The experimental
results showed that after accumulating Doppler measurements
from 7 Iridium satellites over 30 min, the positioning accuracy
was better than 200 m with the aid of elevation information
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[25]. In 2020, building on their previous research, the team
further developed positioning technology for Iridium signals in
weak signal environments. They proposed a secondary square
cumulative instantaneous Doppler estimation algorithm to enhance
the Doppler estimation capability of weak Iridium signals. The
experimental results indicated that the proposed method could
improve positioning performance in weak signal environments,
thereby enhancing the environmental adaptability of Iridium
positioning [26]. In 2023, the team of Qin H established an
orbital error equivalent Doppler measurement error model for LEO
satellites. Based on the model analysis, they proposed a two-step
improved positioningmethod using orbital error compensation and
weighting to suppress the impact of orbital errors. The method was
validated using real signals from Iridium and Orbcomm satellites,
and the results showed that the positioning accuracy of the proposed
method was significantly higher than that of existing methods [27].
In the same year, the team analyzed the pilot signal structure of
Globalstar and obtained Doppler measurements through fourth-
order processing for despreading. The experiments demonstrated
that static positioning with a horizontal error of less than 300 m
could be achieved using signals from two Globalstar satellites [28].
In 2024, addressing the issue of receiver hardware limitations that
prevent the full utilization of all visible satellite information, the
team proposed a fast clustering satellite selection algorithm. This
algorithm aims to achieve higher performance positioning results
with a limited number of satellites. The method was validated
using real Starlink signals, and the results showed that compared
to traditional methods, the positioning error was stably reduced by
more than 45% [29].

In 2019, the Kassas Z team at the University of California,
USA, developed a positioning system based on Orbcomm satellites
and proposed a receiver architecture for acquisition and tracking
using an Extended Kalman Filter (EKF). Experimental results
demonstrated that the static positioning accuracy, utilizing Doppler
measurements from two Orbcomm satellites, could reach 360 m
[30]. In 2021, the team established a Starlink signal model and
introduced an adaptive carrier phase tracking algorithm to track
Starlink signals. The experiment successfully extracted carrier
phase measurements from six Starlink satellites, achieving a static
positioning accuracy of 33.5 m [31]. In 2023, the Kassas Z
team proposed a blind receiver architecture that captures satellite
measurements through sequential generalized likelihood ratio
testing. The experiment tracked six Starlink satellites, with three
transmitting single-tone signals and the other three transmitting
OFDM-like signals. The results showed a static positioning
horizontal error of 6.5 m [32].

2.2.2 Multi-constellation LEO-SOP positioning
technology

When using a single LEO satellite constellation for positioning,
issues such as insufficient visible satellites and poor satellite
geometry may arise. These problems can be effectively addressed
through multi-constellation LEO-SOP joint positioning. In the
field of multi-constellation LEO-SOP joint positioning technology,
the main research institutions include the Farhangian F team at
the University of Quebec in Canada, the Kassas Z team at the
University of California in the United States, and the Qin H team at
Beihang University in China. Current practical testing has primarily

FIGURE 1
Schematic diagram of multi-constellation LEO-SOP integrated
positioning.

focused on Iridium/Orbcomm joint positioning. Figure 1 illustrates
the schematic diagram of multi-constellation LEO-SOP integrated
positioning.

In 2020, the Farhangian F team at the University of Quebec
in Canada pioneered the design of a multi-constellation software
receiver to extract Doppler measurements from LEO satellites. By
tracking and collecting Doppler data from one Iridium satellite
and two Orbcomm satellites, and utilizing EKF for positioning,
the results demonstrated that the dual-constellation positioning
accuracy reached 132 m. This represented a 72% improvement
compared to single-constellation positioning accuracy [33].

In 2021, the Kassas Z team at the University of California,
USA, proposed a receiver architecture suitable for processing signals
from Orbcomm and Iridium satellites. By collecting data from
one Orbcomm satellite and four Iridium satellites over a period of
7 min and using EKF for positioning, they achieved a horizontal
positioning accuracy of 22.7 m [34]. In 2023, the team introduced a
novel blind spectral estimation method for blind beacon estimation,
Doppler tracking, and SOP positioning. Utilizing signals from two
OneWeb satellites, four Starlink satellites, one Iridium satellite,
and one Orbcomm satellite, they achieved a three-dimensional
positioning error of 5.8 m and a two-dimensional positioning error
of 5.1 m within 560 s [35, 36].

In the aforementioned multi-constellation joint positioning
studies, the differences in measurement noise between different
constellations were not taken into account, which could potentially
degrade positioning performance to some extent. To address this
issue, in 2022, the Qin H team at Beihang University proposed
an Iridium/Orbcomm dual-constellation fusion positioning scheme
based on the Helmert variance component weight estimation
algorithm.This approach effectively improves the accuracy of weight
allocation between different constellations. Experimental results
demonstrate that the proposed method significantly enhances the
performance of multi-constellation fusion positioning [37].

2.2.3 LEO-SOP differential positioning
technology

LEO satellites face challenges in obtaining precise orbital
parameter information, and atmospheric delay errors also
significantly impact LEO satellite positioning. Differential
positioning technology can mitigate the effects of orbital errors and
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FIGURE 2
Schematic diagram of LEO-SOP differential positioning process.

atmospheric delay errors on positioning, thereby further enhancing
the accuracy of LEO satellite SOPpositioning. Figure 2 illustrates the
schematic diagram of the LEO-SOP differential positioning process.

In 2019, the Kassas Z team at the University of California
proposed a differential positioning framework based on carrier
phase and validated it using Orbcomm signals. The results showed
a positioning accuracy of 11.93 m, representing a significant
improvement over single-point positioning [38]. In 2020, the team
further introduced a differential carrier phase navigation framework
utilizing signals from massive LEO satellite constellations. They
derived the joint probability density function of LEO satellite
azimuth and elevation angles to enhance navigation performance.
Experimental results demonstrated that the RootMean Square Error
(RMSE) reached 14.8 m within 2 min [39, 40]. By 2022, the team
developed a receiver capable of capturing and tracking the Doppler
frequency of Starlink satellites. They designed a Kalman filter-based
chirp parameter tracking algorithm and performed differential
positioning using Doppler frequency. With baselines of 1 km and
9 m, the positioning errors were 5.6 m and 2.6 m, respectively [41].

In 2022, the Qin H team at Beihang University proposed a
LEO-SOP Doppler differential positioning framework. To address
the issue of reduced positioning accuracy caused by inconsistent
spatiotemporal references in long-baseline differential positioning,
the team introduced a signal transmission time estimation algorithm
based on Maximum Likelihood Estimation (MLE), which further
improved the accuracy of static differential positioning [42]. In
2023, to enhance the performance of long-baseline differential
positioning, the team proposed a space-based SOP long-baseline
differential positioning algorithm based on baseline projection
vector geometric model correction. This algorithm mitigates
the impact of baseline length on positioning performance and
significantly improves the accuracy of long-baseline differential
positioning. Experimental results demonstrate that, with a
baseline length of 20 km, a positioning accuracy of 30 m can be
achieved using 20 min of Iridium satellite signals, representing an
improvement of over 70% compared to non-differential positioning
accuracy [43]. In 2024, the team addressed the issue of significant

errors in traditional Doppler differential positioning under long
baselines by proposing a Doppler differential positioning algorithm
based on line-of-sight vector correction. Experimental results show
that, with a baseline length of 50 km, the positioning accuracy using
Iridium satellite signals is better than 10 m [44].

2.2.4 LEO-SOP/INS integrated positioning
technology

The output rate of LEO satellite SOP navigation measurements
is relatively low, making it difficult to meet the requirements for
real-time dynamic positioning. Additionally, the limited number of
mature LEO satellite constellations available for navigation results
in insufficient instantaneous visibility for the carrier, preventing
instantaneous positioning. Therefore, integrating LEO-SOP with
INS is necessary to ensure the real-time performance of dynamic
positioning, thereby enhancing the system’s availability.

In 2019, theKassas Z team at theUniversity of California utilized
Orbcomm Doppler measurements to assist INS for positioning.
Experimental results showed that, when using two Orbcomm
satellites for positioning, the final positioning error after 30 s
of GNSS unavailability was reduced from 31.7 m to 8.9 m [45].
In the same year, the Benzerrouk team in Canada proposed
a multivariate orthogonal Kalman filtering method to integrate
Iridium Doppler measurements with INS and tested it using
airborne data. The experimental results indicated that the dynamic
positioning accuracy ranged between 200 m and 1,000 m [46].

In 2022, researchers at the University of Quebec in Canada
combined LEO satellite measurements with INS using a second-
order EKF. They conducted vehicle-based experiments using actual
Iridium and Orbcomm signals, as well as simulated Globalstar
Doppler measurements, integrated with an INS with a drift rate of
10°/h. The results demonstrated that the positioning accuracy was
better than 10 m within 150 s [47].

In 2023, the Qin H team at Beihang University proposed
an Iridium/INS integrated positioning method based on adaptive
robust filtering, validated using actual vehicle data. When using
low-precision Micro Electro Mechanical Systems (MEMS), the
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positioning accuracywas better than 300 mover 15 min. In 2024, the
same team addressed the issue of significant tangential errors in LEO
satellite orbits by proposing a Doppler measurement model based
on equivalent transmission time, effectively reducing the impact
of orbital errors. They also developed an integrated positioning
framework for LEO satellite SOP and INS based on adaptive
federated Kalman filtering. Real-world vehicle data demonstrated
that the positioning accuracy could reach 200 m [48].

2.3 Development of anti-jamming
technology

Currently, there is no research on anti-jamming technology
specifically targeting LEO-SOP positioning, either domestically or
internationally. Previous achievements in anti-jamming technology
have primarily focused on GNSS and similar systems. Based on
the number of receiver array elements, anti-jamming technologies
can be classified into two categories: single-antenna anti-jamming
technology and antenna array anti-jamming technology [49, 50].
The former, due to having only a single array element, lacks
spatial resolution capabilities and mainly relies on time-domain,
frequency-domain, and other transform-domain interference
suppression techniques. Its interference suppression capability is
limited, making it suitable for navigation receivers operating in
general non-malicious electromagnetic interference environments
with high positioning accuracy requirements [50–53]. The latter,
by incorporating spatial domain information, can distinguish
between interference sources and useful signals arriving from
different directions. It primarily employs spatial domain interference
suppression techniques and is less sensitive to the type of
interference. The maximum interference suppression capability
depends on the number of array elements and the specific
interference scenario, offering stronger interference suppression
capabilities [54–58]. Below, we will summarize the research status
at home and abroad from four aspects: time-domain, frequency-
domain, transform-domain, and spatial-domain anti-jamming
technologies.

2.3.1 Time-domain anti-jamming
In single-antenna receivers, time-domain and frequency-

domain anti-jamming algorithms are the most widely used.
Among these, the primary approach of time-domain anti-jamming
technology is to analyze the time-domain characteristics of the
signal and process it under specific constraints to reduce or eliminate
the impact of interference on the signal.

Since the spectra of narrowband interference, continuous wave
interference, and strong out-of-band interference differ significantly
from that of navigation signals, they can be filtered using FIR
or IIR bandpass filters to selectively process signals in the
frequency domain. Narrowband interference signals exhibit high
correlation between sampled values, making them predictable and
estimable. In contrast, desired signals are typically broadband with
low correlation, making them difficult to predict. Therefore, the
difference in predictability between these signals can be exploited
to suppress interference [59].

Currently, pulse blanking technology and time-domain adaptive
filtering technology are the most commonly used time-domain

anti-jamming techniques. Pulse blanking technology can effectively
eliminate pulsed interference, but this method can lead to
distortion of the desired signal and is only applicable to anti-
pulsed interference [60]. Time-domain adaptive filtering technology
involves designing a filter in the time domain that meets user
requirements. By using adaptive algorithms to perform real-time
weighting on data at the current moment, this technology can
predict the desired signal to achieve the goal of countering
narrowband interference [61]. This technology has been commonly
used in GPS terminal applications since the late 20th century.
For example, the adaptive time-domain filter chip developed
by Mayflower Communications Company can enhance the GPS
terminal’s narrowband interference resistance by 30 dB [62]. In
recent years, many scholars have conducted further research on
time-domain adaptive filtering technology. In 2017, the team led
by Chien Y R from National Ilan University in Taiwan proposed
a time-domain adaptive filter composed of multiple sub-filters in
parallel, which can process input data in parallel. By properly
designing the starting frequencies and convergence ranges of
each filter, this filter can detect and suppress multiple continuous
wave interferences (CWI). However, its performance is reduced
in mixed interference scenarios, and it has a certain attenuation
effect on GNSS signals [63]. In 2020, the team led by Qin H
from Beihang University proposed a cascaded second-order direct-
form IIR notch filter, which can provide better anti-jamming
capabilities in mixed scenarios where CWI and narrowband
interference coexist. However, it performs poorly in suppressing
broadband interference and has a higher computational complexity
for the system [64]. In 2016, the team led by Mosavi M R
from Iran University of Science and Technology combined neural
networks with adaptive notch filters. By leveraging the parallel
processing and strong adaptability of neural network technology,
they reduced the computational complexity during interference
suppression and improved the output performance of the notch
filter [65].However, the aforementioned time-domain anti-jamming
techniques, although effective in suppressing narrowband mixed
interference, perform poorly in suppressing broadband interference
and can attenuate the desired signal to some extent [66].

2.3.2 Frequency-domain anti-jamming
Compared with time-domain anti-jamming algorithms,

frequency-domain anti-jamming algorithms have the following
advantages: they can simultaneously suppress multiple single-
frequency interferences; when the interference bandwidth is greater
than 5%, the performance of frequency-domain anti-jamming
algorithms is better; with sufficient quantization word length,
they have a larger dynamic range; the principle is simple and
can take advantage of the well-established Fast Fourier Transform
(FFT) algorithm, making it easy to implement in engineering;
they have good adaptability for segmenting data processing.
Therefore, frequency-domain anti-jamming algorithms are themost
commonly used anti-jamming algorithms in engineering [66, 67].

Davidovici et al. proposed an implementation method for
frequency-domain anti-jamming algorithms using windowing and
overlap-add techniques, and they conducted a detailed analysis of
the signal-to-noise ratio (SNR) loss associated with the algorithm
[67–69]. In 2000, the team led by Li C from Shanghai Jiao Tong
University improved the overlapping transform-domain algorithm,
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FIGURE 3
Flowchart of frequency-domain anti-jamming implementation.

FIGURE 4
Interference suppression process flowchart.

decoupling the system performance from the interference frequency
and thereby enhancing the system’s robustness [70]. In 2005,
Sun Z from Harbin Engineering University summarized the
advantages and disadvantages of traditional adaptive time-domain
and frequency-domain algorithms and proposed improvements
based on this analysis [71]. In 2004, the team led by Zeng X from
the National University of Defense Technology derived in detail
the time-domain windowing effects on the overlap-add frequency-
domain anti-jamming algorithm and analyzed the carrier-to-noise
ratio (CNR) loss caused by time-domain windowing [72]. Through
continuous exploration, the implementation of frequency-domain
anti-jamming in engineering has evolved into a windowing overlap-
add approach, the specific process of which is shown in Figure 3.

Thedetailed implementation process of interference suppression
in Figure 3 is illustrated in Figure 4. The interference suppression
component is the core of frequency-domain anti-jamming, which
is divided into FFT-based power spectral density estimation,
anti-jamming threshold generation, frequency-domain weight
generation, and weighting. Among these, threshold generation is
the key to interference suppression. In other words, a reasonable
interference detection threshold is crucial for frequency-domain
anti-jamming, and whether the threshold is set appropriately largely
determines the performance of the frequency-domain anti-jamming
algorithm.

In recent years, many scholars have further investigated
frequency-domain adaptive filtering techniques. In 2016, the
Rezaei M J team at Iran University of Science and Technology
employed a frequency-domain transformation method based on
multi-scale short-time Fourier transform (STFT), enhancing the
signal’s aggregation in the frequency domain and improving the
filter’s anti-jamming capability. However, this method came at
the cost of increased computational complexity [73]. In the same
year, the Chang C L team at National Pingtung University of
Science and Technology in Taiwan combined compressed sensing
with frequency-domain processing techniques, reducing the system
sampling rate and thereby decreasing the computational complexity

of anti-jamming processing. Nevertheless, the performance in
suppressing wideband interference remained suboptimal [74]. In
2017, the Chien Y R team utilized wavelet packet transform
(WPT), which offers higher time-frequency resolution than wavelet
transform (WT), to detect interference parameters and estimate
the current waveform of the interference, thereby suppressing it.
This further enhanced the signal’s aggregation in the frequency
domain, but the method still struggled when dealing with a large
number of wideband interferences [75]. In 2024, the DingM team at
Hong Kong Polytechnic University introduced a Signal Prediction-
Assisted Reference Spectrum Model (SPRSM) to mitigate the
loss of desired signals during frequency-domain filtering. The
introduced SPRSM equalizer leverages GNSS signal prediction
to compensate for distortion, reducing signal degradation and
quality loss caused by signal distortion during frequency-domain
filtering [76].

In summary, frequency-domain anti-jamming techniques
are only suitable for dealing with multiple narrowband
interferences and broadband interferences that have certain
spectral energy aggregation. When it comes to broadband
interferences with poor energy distribution aggregation or a large
number of broadband interferences, the interference suppression
capability of frequency-domain anti-jamming techniques still
falls short.

2.3.3 Transformation-domain anti-jamming
Transformation-domain anti-jamming technology involves

mapping the received signal into a transformation domain (such
as the frequency domain or time-frequency domain). By exploiting
the differences in characteristics between the interference and the
desired signal in the transformation domain, interference detection
algorithms are used to estimate the parameters of the interference.
The interference signal can then be removed using pulse
blanking methods or filters. The processed signal is subsequently
inverse-transformed back to the time domain. Alternatively, the
interference signal waveform can be reconstructed based on the
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estimated parameters and then eliminated from the received
signal [75, 77].

The choice of transform domain or transformation method
can lead to differences in the obtained interference distribution
characteristics. Therefore, the transform domain and method need
to be selected or optimized based on the types of interference
in the receiving environment. The frequency domain is the
earliest and most commonly used transform domain. Stationary
narrowband interference signals exhibit high aggregation in the
frequency domain, and frequency-domain data can be quickly
obtained through FFT, offering strong practicality [75]. With
the continuous development of interference technology, non-
stationary time-varying interference has become increasingly
prominent in adversarial environments. As a result, cyclic
spectrum analysis and time-frequency (TF) analysis methods
have been introduced into the field of anti-jamming. Typical TF
transformation methods include Short-Time Fourier Transform
(STFT), Wavelet Transform (WT), Wigner-Ville Distribution
(WVD), and Fractional Fourier Transform (FrFT), among others.
To further enhance the aggregation of interference signals in the
transform domain and achieve more accurate detection results,
several new transformation methods have been proposed and
applied in the field of GNSS interference detection and suppression.
In 2015, the Sun K team at Hefei University of Technology
combined reassignment techniques with the Smoothed Pseudo
Wigner-Ville Distribution (SPWVD) to propose the Reassigned
Smoothed Pseudo Wigner-Ville Distribution (RSPWVD). This
method enhanced the aggregation of interference signals in the
TF domain, improved TF resolution, and reduced cross-term
interference [78]. In 2016, the Rezaei M J team at Iran University
of Science and Technology employed multi-scale STFT, achieving
improved TF aggregation of interference signals at the cost of a slight
increase in computational complexity [73]. In the same year, the Li
J team at Tianjin University of Technology used Time-Modulated
Windowed All-Phase Discrete Fourier Transform (TMWAP-DFT)
to detect the frequency parameters of pulse signals emitted by
Distance Measurement Equipment (DME) [77]. In 2017, the Chien
Y R team utilized WPT to detect the TF parameters of fast-varying
interference signals and predict their waveforms [75]. Also in 2017,
the Mosavi M R team at Iran University of Science and Technology
demonstrated that WPT could suppress narrowband and chirp
interference with a capability of up to 55 dB [79]. With the gradual
maturation of compressed sensing theory, in 2016, the Chang C L
team at National Pingtung University of Science and Technology in
Taiwan introduced compressed sensing theory into the field ofGNSS
anti-jamming to reduce the sampling rate and the computational
complexity of interference detection and suppression [74]. In 2024,
the Sun K team at Hefei University of Technology proposed a
Generalized Time-Fractional Bandwidth Product (GTFrBP) search
model based on FrFT combined with a notch filter. Experimental
results demonstrated that this model achieved high precision in
detecting the optimal FrFT order [80].

The efficiency of transformation-domain anti-jamming
techniques is independent of the number of interferences and
is suitable for scenarios with multiple narrowband interferences.
Moreover, these techniques can effectively handle non-stationary
broadband interference signals such as linear frequency-modulated

(LFM) signals.Therefore, they are considered a very promising anti-
jamming strategy. However, these algorithms are only applicable to
narrowband interferences and broadband interferences with strong
TF energy distribution aggregation. They are powerless in the case
of complex forms of broadband interferences or a large number of
broadband interferences.

2.3.4 Spatial anti-jamming
Spatial filtering is one of the most effective methods for

suppressing spatial interference signals. It employs adaptive null-
steering antennas to achieve adaptive filtering functions. The
working principle involves using adaptive weighting coefficients to
control the antenna pattern, thereby filtering out interference signals
in the spatial domain without degrading the gain of the desired
signal [81]. The structure is shown in Figure 5.

Classic spatial anti-jamming algorithms include the Power-
Inversion (PI) method [82], Minimum Variance Distortionless
Response (MVDR) method [83, 84], and Minimum Power
Distortionless Response (MPDR) method [85]. The PI algorithm
does not require prior information about the jamming and desired
signals; it can form nulls in the direction of strong jamming to
suppress it. This method has low computational complexity and is
easy to implement. However, its suppression performance against
weak jamming (JNR <20 dB) is not satisfactory [86], and it lacks
constraints on the desired signal, making it unable to guarantee
the gain of the desired signal. The MVDR and MPDR algorithms
impose constraints on the beam response in the direction of the
desired signal, enabling the spatial filter to have a distortionless
response to the desired signal while suppressing jamming from
other directions.However, theMVDRalgorithm requires estimating
the covariance of interference and noise without the desired signal,
whereas theMPDR leverages the characteristic that the GNSS signal
power at the navigation receiver is significantly lower than that
of the jammer noise, directly using the covariance of the received
signal to solve for the spatial filter weights. Since these methods
were introduced into the field of GNSS receiver anti-jamming in the
1990s, they have been successfully applied in practical equipment.
For example, Boeing developed a four-element antenna array
anti-jamming receiver that can adaptively adjust the nulls in the
antenna beam pattern, enhancing the anti-jamming capability of
satellite navigation equipment on Joint Direct Attack Munitions
(JDAM) [87]. Similarly, NovAtel developed a miniaturized GNSS
Anti-Jam Technology (GAJT) antenna, employing a seven-element
antenna array, capable of countering up to six strong jamming
sources [88].

To enhance the capability of spatial filters to counter complex
jamming environments, multi-antenna-based spatial anti-jamming
technologies have been further researched. Regarding the selection
of reference elements in the PI algorithm, in 2016, Chen F’s team
from the National University of Defense Technology analyzed the
impact of the relative position of reference elements on anti-
jamming performance under different interference conditions [89].
In the same year, the team proposed an optimal element selection
method based on joint acquisition results, adaptively selecting
reference elements based on optimal acquisition outcomes [90, 91].
In 2017, Lu Z’s team from the National University of Defense
Technology suggested that selecting appropriate reference elements
can reduce the impact of channel mismatch and proposed choosing
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FIGURE 5
Spatial anti-jamming structure.

the optimal reference element based on output power to improve
interference suppression performance [92]. Addressing the issue
where blind adaptive beamforming algorithms (such as the PI
algorithm) do not constrain the desired signal, leading to distortion
in satellite navigation signals, in 2012, Zhang Y D’s team from
Villanova University proposed a method to estimate the steering
vector based on the autocorrelation characteristics of navigation
signals, thereby estimating the carrier error introduced by blind
adaptive beamforming and compensating for it [93]. In 2016,
Daneshmand S’s team from the University of Calgary utilized the
symmetry in symmetric arrays to estimate the signal distortion
parameters introduced by adaptive filters, subsequently calculating
compensation weight vectors [94]. In high-dynamic application
scenarios, where rapid changes in interference direction over
short periods lead to performance degradation in conventional
algorithms, besides typical null broadening strategies [95], in 2016,
Chen L W’s team from Wuhan University proposed using a Hidden
Markov Process to detect interference characteristics within sub-
bands, then employing a multi-constraint PI algorithm to eliminate
interference, thereby enhancing the efficiency of processing rapidly
changing interference [96]. In 2014, Wang W’s team from the
Civil Aviation University of China proposed leveraging the sparsity
of the spatial spectrum of interference signals, using short
snapshot (single snapshot) Direction of Arrival (DOA) estimation
methods to estimate interference directions, quickly constructing
interference subspaces, and then suppressing interference through
orthogonal subspace projection algorithms.Thismethod can rapidly
update spatial filter weights based on the instantaneous DOA
information of interference sources, thus exhibiting high robustness
in high-dynamic environments [97]. Regarding spatially proximal
interference (interference incident within the main beam) causing
a decrease in the output SNR of spatial filters, in 2017, Gong
Y’s team from Northwestern Polytechnical University proposed

a covariance matrix reconstruction method. This approach first
eliminates spatially proximal interference from the covariance
matrix to achieve the suppression of other interferences, and
then uses an eigenvalue protection matrix to eliminate spatially
proximal interference [98]. Addressing the drawback of uniform
linear arrays being unable to distinguish between desired and
interference signals located on the same ambiguity cone, in 2013,
Wang X’s team from the University of New South Wales analyzed
the relationship between spatial correlation coefficients [99] among
signals and array orientation, proposing to rotate the linear array to
obtain optimal anti-jamming performance by optimizing the spatial
correlation coefficient [100]. In certain jamming scenarios, where
high spatial correlation between interference and desired signals
leads to reduced interference suppression effectiveness in fixed-
array-based spatial filtering algorithms, in 2016,WangX’s team from
the University of New South Wales and Amin M G’s team from
Villanova University respectively researched reconfigurable array
technologies. These methods improve anti-jamming performance
without increasing RF channels by selecting appropriate elements
in redundant antenna arrays to reduce the correlation between
interference and desired signals [101, 102].

3 Principle of LEO-SOP positioning

LEO satellites signals are generally non-navigation/non-
cooperative signals, which either do not contain or make it difficult
to extract navigation information. Therefore, it is challenging to
obtain pseudorange measurements, and positioning is usually
achieved by extracting Doppler shifts. This section introduces the
principle model of LEO-SOP Doppler positioning and the working
process of the receiver. The details are as follows.
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FIGURE 6
Schematic diagram of multi-satellites doppler positioning algorithm principle.

3.1 LEO-SOP Doppler positioning principle
model

By measuring the instantaneous Doppler frequency of LEO
satellites, positioning can be achieved. The principle is based on
the Doppler effect caused by the high-speed motion of satellites
relative to the ground. The change in Doppler frequency reflects
the relationship between the satellite’s position and the navigation
terminal’s position.The relative velocity between the receiver and the
satellite can be obtained using the carrier Doppler measurements of
the satellite signal and its wavelength. This constrains the receiver’s
position to the surface of a cone with the satellite’s position as
the origin, the satellite’s velocity direction as the axis, and the
opening angle determined by the relative velocity. When a sufficient
number of LEO satellites are received, the receiver’s position can
be determined by the intersection of multiple conical surfaces
calculated from the measurements. A schematic diagram of the
multi-satellites Doppler positioning principle is shown in Figure 6.
When LEO satellite visibility is insufficient, multiple measurements
from a single satellite can also be used. Similarly, the intersection of
multiple conical surfaces calculated from these measurements can
determine the receiver’s position. The basic principle is the same as
that of multi-satellites Doppler positioning. A schematic diagram
of the single-satellite Doppler positioning principle is shown in
Figure 7.

Below, the Doppler positioning equation is derived from
the pseudorange positioning equation. Taking a single satellite

as an example, the traditional pseudorange positioning
equation is:

δρ =HδX+ ε (1)

In the equation, δρ represents the residual between the
measured pseudorange and the back-calculated pseudorange; δX =
[δrx,δry,δrz,δ(∂tc)]

T, where δrx, δry and δrz are position errors;
δ(∂tc) is the receiver clock bias error; ε is the measurement error;
H is the measurement equation, which takes the form of Equation 2:

H =
[[[[

[

−e(1) 1 v(1)

⋮ ⋮ ⋮

−e(K) 1 v(K)

]]]]

]

(2)

In the equation, K represents the Kth satellite received, e(K) is the
unit line-of-sight vector from the receiver to satellite K, and v(K) is
the pseudorange rate.

Taking the derivative of both sides of Equation 1 yields:

δρ̇ =
∂δρ
∂t
=

∂(HX)
∂t
+ ̇ε =H

∂(X)
∂t
+

∂(H)
∂t

X+ ̇ε (3)

In theEquation3,δρ̇ represents the residualbetween themeasured
Doppler shift and the back-calculated Doppler shift. The polynomial
on the right-hand side of the equation can be calculated using the
following formula. Specifically, the first polynomial H ∂(X)

∂t
can be

obtained from the classical linear equation of the receiver’s velocity:

H
∂(X)
∂t
=H ∂

∂t
[δrx,δry,δrz,δ(∂tc)]

T =H[δ ̇rx,δ ̇ry,δ ̇rz,δ(∂ fc)]
T (4)
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FIGURE 7
Schematic Diagram of Single-Satellite Doppler Positioning Principle. (a) First measurement, (b) Second measurement, (c) Third measurement.

FIGURE 8
Flowchart of LEO-SOP receiver operation.

FIGURE 9
Basic satellite orbit distribution and signal system of the iridium system. (a) Constellation orbit, (b) L-band frequency allocation.

FIGURE 10
Orbcomm Satellite orbital distribution and signal System. (a) Constellation orbit, (b) downlink allocation.
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FIGURE 11
Schematic diagram of starlink constellation deployment.

Where, δ ̇rx, δ ̇ry and δ ̇rz represent the velocity errors, while δ(∂ fc)
denotes the receiver frequency bias.

The second term ∂(H)
∂t

X represents the relationship between the
Doppler measurement and the position:

∂(H)
∂t

X = ∂
∂t
[[[[

[

−e(1) 1

⋮ ⋮

−e(K) 1

]]]]

]

[δrx,δry,δrz,δ(∂tc)]
T

=
[[[[

[

−∂e(1)/∂t 0

⋮ ⋮

−∂e(K)/∂t 0

]]]]

]

[δrx,δry,δrz,δ(∂tc)]
T

(5)

By combining Equations 4, 5, we obtain:

δρ̇ =H[δ ̇rx,δ ̇ry,δ ̇rz,δ(∂ fc)]
T +
[[[[

[

−∂e(1)/∂t

⋮

−∂e(K)/∂t

]]]]

]

[δrx,δry,δrz] + ̇ε (6)

The above equation is the Doppler positioning equation,
which establishes a linear relationship between seven states
(receiver position, velocity, and frequency bias) and the
instantaneous Doppler shift. If the receiver is stationary, the
number of unknowns in the equation reduces to four, namely,
[δrx,δry,δrz,δ(∂ fc)]

T. In this case, positioning can be directly
performed using the instantaneous Doppler measurements from
four satellites. Equation 6 then becomes:

δρ̇ =
[[[[

[

−∂e(1)/∂t 1

⋮ ⋮

−∂e(K)/∂t 1

]]]]

]

[δrx,δry,δrz,δ(∂ fc)]
T + ̇ε (7)

Before solving the navigation Equation 7, the expression for the
three-dimensional vector −∂e(k)/∂t must be derived, which is:

∂e(k)

∂t
= ∂

∂t
(

x(k) − xxyz0
|x(k) − xxyz0|

) (8)

Where, x(k) represents the position of satellite k, and xxyz0 is the
prior position information of the receiver. For the sake of simplifying
the description below, the superscript (k) can be omitted, and the
variable r can be used to represent the distance from the satellite to
the receiver, that is Equation 9:

r = |x(k) − xxyz0| (9)

Therefore, Equation 8 can be written as:

∂e
∂t
= ∂

∂t
(
x− xxyz0

r
)

= (
∂(x− xxyz0)

∂t
· r− (x− xxyz0) ·

∂r
∂t
) 1
r2

= (∂x
∂t
· r− (x− xxyz0) · (e · v))

1
r2

= (∂x
∂t
· r− (r · e) · (e · v)) 1

r2

= (∂x
∂t
− e · (e · v))1

r

(10)

From Equation 10, the physical meaning of the three-
dimensional vector expression −∂e(k)/∂t in Equation 7 can be
understood, which is: the ratio of the difference between the
satellite’s velocity and its velocity component in the line-of-sight
direction to the distance.

3.2 LEO-SOP receiver operation process

Since LEO satellites are generally not designed for navigation
purposes, it is difficult to obtain traditional navigation observation
information such as pseudoranges. Therefore, LEO-SOP receivers
typically need to analyze the characteristics of LEO satellite
signals, such as signal structure and signal power, to extract
navigation observation information. Additionally, they rely on
external ephemeris data to assist in obtaining satellite position and
velocity parameters. These steps are essential for the receiver to
complete its own positioning and obtain PNT status. By substituting
TLE parameters into the SGP4 model, the satellite’s position and
velocity at a specific moment can be calculated.

Generally, after the antenna of a LEO-SOP receiver completes
the acquisition of the SOP signal, it uses a down-conversion device
to shift the frequency of the collected signal to an intermediate
frequency. Subsequently, the SOP signal is detected, and navigation
observation information is analyzed and extracted. Finally, the
receiver estimates its own PNT status using the observation
information and external ephemeris data. The operation process of
the LEO-SOP receiver is shown in Figure 8.

4 Analysis of the system-level
anti-jamming capability of LEO-SOP

This section analyzes the system-level anti-jamming capability
of the LEO-SOP. It first provides a detailed introduction to the
constellation characteristics of the Iridium, Orbcomm, and Starlink
satellites within the LEO system. The analysis of system-level
anti-jamming capabilities is then conducted from several aspects,
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TABLE 3 Configuration of the first phase of the starlink constellation.

Constellation
type

Orbital
altitude/km

Orbital
inclination/(°)

Number of
orbital planes

Number of
satellites in the
orbital plane

Total number of
satellites

LEO

550 53 72 22 1,584

540 53.2 72 22 1,584

570 70 36 20 720

560 97.6 6 58 348

560 97.6 4 43 172

VLEO

345.6 53 2,547

340.8 48 2,748

335.9 42 2,493

TABLE 4 Frequency bands of the starlink system.

Uplink/Downlink Ku Ka V

DownlinkUplink

10.7∼12.7 — 37.5∼42.5

14.0∼14.5 — 47.2∼50.2

50.4∼52.4

including GDOP (Geometric Dilution of Precision) values, satellite
visibility, SNR at the receiver, and downlink user frequencies.
Without loss of generality, the GPS system from theGNSS is selected
as a representative for comparative analysis with the LEO system.

4.1 Characteristics of LEO constellations

This subsection selects the relatively mature Iridium and
Obrcomm satellites, as well as the rapidly developing Starlink
satellites, as representatives of the LEO system. It provides
a detailed introduction to the constellation characteristics of
each representative satellite, laying the theoretical foundation
and technical support for subsequent analysis of anti-jamming
capabilities. The details are as follows.

4.1.1 Iridium system
The Iridium system is a global satellite mobile communication

network developed by Motorola and others, consisting of 66 LEO
satellites. In January 2017, the first batch of 10 Iridium NEXT
satellites was successfully launched. On 20 May 2023, an additional
five backup satellites were launched aboard SpaceX’s Falcon 9
rocket [103–105]. Currently, the Iridium NEXT constellation has 80
satellites in orbit (66 of which are actively transmitting signals, with
the remaining 14 serving as backups). A schematic diagram of the
Iridium NEXT system constellation is shown in Figure 9a.

The Iridium system’s satellites have an orbital inclination of 86.4°
and an orbital period of 100.13 min, enabling global coverage. The
user link employs a combination of FDMA/TDMA/SDMA/TDD

multiple access techniques. The 48 spot beams of each satellite are
grouped into sets of 12 adjacent beams, which spatially reuse the
total available frequency band (SDMA). Within each beam, the
frequency band is further divided into multiple TDMA channels
using FDMA. For the same user, the uplink and downlink within
eachTDMAchannel are time-divisionmultiplexed (TDD),meaning
the uplink and downlink occupy different time slots within the same
frame of the same TDMA carrier [106–110].

The total bandwidth allocated to Iridium is 1,616.0
MHz–1,626.5 MHz. Specifically, 1,616.0 MHz - 1,626.0 MHz is used
for full-duplex channels as the service channels, while 1,626.0 MHz
- 1,626.5 MHz is designated for the downlink simplex channel, used
as the signaling channel. The 0.5 MHz bandwidth of the downlink
channel is divided into 12 channels, each with a bandwidth of
41.67 kHz. The FDMA frequency allocation for the user links of
the Iridium system is shown in Figure 9b; [111–114].

4.1.2 Orbcomm system
Orbcomm satellites are a joint project between Orbital Sciences

Corporation of the United States and Teleglobe of Canada. This
satellite system offers several advantages, including low investment,
short development cycles, dual capabilities in communication and
positioning, lightweight satellites,mobile phone user terminals, high
levels of system automation, and strong autonomous functionality.
Utilizing the Orbcomm system, users can engage in applications
such as remote data collection, system monitoring, tracking of
vehicles, vessels, and mobile facilities, as well as sending and
receiving emails. In 2008, Orbcomm announced the deployment of
its second-generation satellite (OG2) constellation. Currently, there
are 12 OG2 satellites in orbit, evenly distributed across four primary
orbital planes. The OG2 satellites operate at an altitude of 620 km
with an orbital inclination of 47° and an orbital period of 97 min.
A schematic diagram of the Orbcomm constellation is shown in
Figure 10a; [115–118].

The downlink of Orbcomm satellites occupies the frequency
band of 137–138 MHz, which includes 13 channels. Twelve
channels, each with a bandwidth of 25 kHz, are used for
communication with user terminals (employing FDMA multiple
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FIGURE 12
Gdop values of various constellations. (a) Iridium single constellation,
(b) orbcomm single constellation, (c) Starlink single constellation, (d)
Iridium/orbcomm dual constellation, (e) GPS satellites.

access), while the remaining channel, with a bandwidth of 50 kHz,
is used for communication with gateway stations. All Orbcomm
satellites share the 12 user downlink channels. The user downlink
employs SDPSK modulation. The downlink allocation of the
Orbcomm constellation is illustrated in Figure 10b; [119, 120].

4.1.3 Starlink system
Starlink is a Non-Geostationary Orbit (NGSO) satellite system

being developed by SpaceX, an American space services company.
It boasts numerous advantages, including extensive coverage,
high signal strength, and a large number of satellites. The
system consists of two sub-constellations: a LEO constellation

at an altitude of 550 km and a Very Low Earth Orbit (VLEO)
constellation at an altitude of 340 km. Although the Starlink
constellation is not yet fully deployed, the number of satellites
already in orbit far surpasses that of other LEO constellations.
By November 2024, the number of Starlink satellites in orbit
had exceeded 6,000, significantly more than any other existing
LEO constellation. The system is projected to grow into a mega-
constellation of nearly 12,000 satellites to provide satellite internet
services. Figure 11 illustrates the schematic diagram of the deployed
constellation [121–123].

The constellation design of Starlink has gone through two
phases. As early as April 2020, SpaceX adjusted the orbital altitudes
of all satellites in the LEO constellation from 1,150 km to 550 km to
a range of 540–570 km in the first phase configuration.Themodified
configuration of the first phase of the Starlink constellation is shown
in Table 3; [124, 125].

In May 2020, SpaceX submitted the constellation design for its
second-generation Starlink system (Gen2), which includes 30,000
satellites.

The Starlink system features inter-satellite communication
capabilities. Network users will utilize the V and Ku bands,
while the V and Ka bands will primarily be used for connecting
gateways and for tracking, telemetry, and control. The LEO
sub-constellation satellites will operate in the Ku, Ka, and V
bands, with the Ku band used for downlink operations. The
VLEO sub-constellation satellites will only use the V band.
The frequency bands used by the Starlink system are shown
in Table 4.

4.2 Analysis of the system-level
anti-jamming capability

LEO-SOP demonstrates a significant improvement in the
system-level anti-jamming capability due to the numerous
inherent advantages of LEO constellations compared to
traditional GNSS navigation constellations. The following analysis
will focus on GDOP values, satellite visibility, SNR at the
receiver, and downlink user frequency. During the analysis,
four currently well-established LEO-SOP positioning scenarios
will be considered: Iridium single-constellation positioning,
Orbcomm single-constellation positioning, Starlink single-
constellation positioning, Iridium/Orbcomm dual constellation
joint positioning, as well as a comparative scenario with GPS
positioning.

4.2.1 GDOP value
Using STK software, the GDOP values of various constellations

under five scenarios in the Asia-Pacific region over a 24-h period
were simulated. The horizontal axis represents the latitude values,
while the vertical axis represents the corresponding GDOP values.
The results are shown in Figure 12.

As can be seen fromFigure 12, theGDOPvalue of theOrbcomm
single-constellation performs relatively the worst. This is because
Orbcomm is a Walker constellation with only 12 available satellites.
In contrast, the GDOP value of the Iridium single constellation is
better than that of GPS satellites. Although Iridium has a polar
orbit type, its constellation consists of 66 satellites, which is a
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FIGURE 13
Satellite visibility of various constellations. (a) Iridium single constellation, (b) orbcomm single constellation, (c) Starlink single constellation, (d)
Iridium/orbcomm dual constellation, (e) GPS satellites.

relatively large number, resulting in better GDOP performance.
Moreover, when combined with Orbcomm to form a dual
constellation, the GDOP value improves significantly, effectively

enhancing the satellite geometry. The Starlink constellation,
with the largest number of satellites, exhibits the best GDOP
performance.
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FIGURE 14
Spectrum range illustration of LEO satellites and GNSS satellites.

4.2.2 Satellite visibility
Similarly, using STK software to simulate the satellite visibility

of each constellation in the five scenarios in Beijing area over a 24-h
period, the results are shown in Figure 13.

It can be observed that the satellite visibility of each constellation
follows a similar trend to their GDOP performance. The Starlink
constellation boasts the best visibility. Although the Iridium
constellation has a relatively large number of satellites, its orbital
configuration is suboptimal, while the Orbcomm constellation
suffers from a limited number of available satellites. However, in the
case of dual-constellation combinations, the satellite geometry can
be effectively improved.

4.2.3 Received signal power
The GPS constellation employs satellites in Medium-Earth-

Orbit (MEO). The high orbital altitude results in significant signal
attenuation during the transmission of navigation signals, leading to
low received power (typically between −160 dBW and −155 dBW).
The signals are often submerged in noise, resulting in a low SNR,
generally ranging from −20 dB to −30 dB.In contrast, LEO satellites,
with their lower orbital altitudes (typically between 700 km and
900 km), experience less signal attenuation during propagation.This
results in a higher received SNR (commonly between 15 dB and
30 dB). In terms of received signal power, LEO satellite signals have
a significant advantage over GPS signals in terms of anti-jamming
capability.

4.2.4 Downlink user frequency
Compared with the user downlink spectrum of GNSS

applications, which are mostly concentrated in the L-band, LEO
satellites have a wide range of available frequency bands due to the
numerous applications from various LEO systems. These bands
(100 MHz - 42.5 GHz) provide extensive coverage and greater
flexibility in terms of anti-jamming capabilities. Unlike current
GNSS systems, most LEO satellites operate at very high frequencies,
which also enhances their resilience to interference. Detailed
parameters of the downlink frequencies and bandwidths of major
domestic and international LEO satellites, refer to Table 1. Figure 14
illustrates the downlink spectrum of GNSS navigation systems
and selected LEO systems, including Orbcomm, Tianqi, StarNet,
Iridium, Globalstar, Starlink, and OneWeb constellations.

In summary, LEO-SOP systems have significant advantages
over GNSS systems in terms of received signal power and
downlink user frequencies, which contribute to better anti-jamming
capability. Regarding GDOP values and satellite visibility, LEO-
SOP systems also show clear advantages over GNSS, except for
some constellations with fewer satellites and less favorable orbital

configurations. Moreover, adopting a dual-constellation system can
greatly mitigate potential deficiencies in satellite numbers and
orbital configurations that may exist in a single constellation.

5 Future challenges

Although LEO-SOP systems have significant advantages over
GNSS systems in terms of anti-jamming capability, in everyday
positioning scenarios, they are still often affected by various adverse
electromagnetic environments, such as urbanmultipath interference
and malicious human-made interference. Therefore, researching
anti-jamming algorithms specifically for LEO-SOP positioning
holds extremely high application value. In addition, there are still
several anti-jamming-related challenges that deserve attention.

5.1 Anti-broadband interference under
single-antenna reception and mitigation of
desired signal loss

Due to the relatively narrow downlink signal bandwidth of LEO
satellites (e.g., the Iridium system has a bandwidth of 500 kHz, while
the Orbcomm system has only 25 kHz), and the fact that single-
antenna receivers remain the preferred choice for most LEO satellite
receptions, the available anti-jamming measures are limited when
facing wideband or severe interference environments. Moreover,
the signal quality degradation caused by anti-jamming measures is
more severe given the already narrow signal bandwidth. To address
this challenge, future research on single-antenna anti-jamming will
focus on how to counteract the effects of wideband interference and
mitigate the loss of desired signals during the anti-jamming process,
thereby reducing signal distortion and quality degradation caused
by signal distortion.

5.2 Measurement estimation in low SNR
environments

Currently, the majority of research on LEO-SOP positioning
is based on the calculation and estimation of observations under
relatively high SNR conditions. However, in most usage scenarios,
various factors can lead to a lower SNR of the received LEO-SOP
signals. For example, low-cost or small-sized antennas inherently
cannot provide high antenna gain; rain fade or other path losses
particularly affect the energy of high-frequency band signals,
resulting in a lower SNR of the received signals; and harsh
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interference environments can further reduce the signal SNR. A low
SNR makes signal detection more challenging and decreases the
accuracy of observation estimation.Therefore, future research needs
to further explore how to achieve precise estimation of observations
in low SNR environments.

5.3 Interference scenarios from other
satellites

With the construction and deployment of mega-constellations
represented by Starlink, interference among different satellites
within the same system will become increasingly common.
Under such conditions, the receiving environment will be more
challenging, as the receiving end often faces signals from other
satellites that have similar frequencies and power levels. Therefore,
future research needs to further explore how to accurately receive
and estimate the target signals in scenarios with interference from
other satellites.

6 Conclusion

This paper provides a comprehensive review of LEO-SOP and
anti-jamming technology research, and analyzes the anti-jamming
capability of the LEO-SOP system. Firstly, the current research
status of LEO-SOP and anti-jamming technologies is summarized,
including the Doppler positioning principle model of LEO-SOP
and the workflow of the receiver. Secondly, the anti-jamming
capabilities of the LEO-SOP system are analyzed. Finally, the
challenges and future development directions of LEO-SOP anti-
jamming technologies are discussed, aiming to provide a solid
technical foundation for the secure application of LEO-SOP.
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