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Evaluating the computational complexity is critical for assessing the time-domain anti-jamming performance of GNSS receivers. The multiplier is the core component that contributes to the computational complexity in time-domain anti-jamming. However, current algorithms aimed at reducing the complexity of time-domain anti-jamming typically concentrate on shortening the filter length, which fails to address the high computational complexity introduced by the use of multipliers. This paper introduces a cascaded multiplier-free approach for implementing time-domain anti-jamming in navigation receivers. We propose a numerical power decomposition technique based on optimal Canonical Signed Digit coding and coefficient decomposition. By substituting the multiplier with minimal adder and shift operations, the computational complexity of the anti-jamming filter with a high quantization bit-width can be considerably decreased. An optimization strategy is presented, and the low-complexity multiplier-free technique is applied to the time-domain anti-jamming filter. Compared to the traditional Canonical Signed Digit multiplier-free technique, our method can reduce the components required for a 12-bit quantization anti-interference filter by one adder, 20 shift operations, and five coded word lengths, while maintaining a pseudo-range measurement deviation below 0.27 ns.
Keywords: GNSS receiver, time domain anti-interference, optimal CSD coding, numerical power decomposition, cascaded multiplier-free implementation

1 INTRODUCTION
The Global Navigation Satellite System (GNSS) offers precise spatial and temporal reference data, including three-dimensional positioning, velocity, and timing [1]. Due to the substantial distance between the satellites and the ground, and the limited satellite resources, the navigation signal is susceptible to being overwhelmed by jamming [2]. As various electronic systems have advanced, competition for electromagnetic frequency bands has become intense, leading to severe jamming [3]. Ensuring anti-jamming capabilities for GNSS receivers is crucial to navigate through complex electromagnetic and electronic warfare environments, ensuring the accuracy of positioning, navigation, and timing for navigational terminals [4].
Given the spectrum overlap, mutual interference occurs between satellite navigation, radar, and 5G systems [5]. The low cost of time-domain anti-jamming makes it a prevalent solution for fixed-band narrowband jamming suppression, and is crucial for assessing GNSS receiver performance. Researchers are developing cost-effective navigation receivers to keep pace with the evolving GNSS systems and the development of new features. Chien [6] presents a cost-effective cascaded IIR adaptive notch filter for interference suppression that significantly reduces complex computations resulting from Fourier Transforms (FFT), inverse FFT, or wavelet transformations. Ren et al. [7] proposes a subspace projection algorithm with a brief projection length for continuous wave and linear frequency-sweep interference, thereby reducing computational complexity. Wang et al. [8] introduces an adaptive narrowband interference (NBI) suppression technique utilizing coded-aid technology that obviates the need for FFT or matrix inversion. Additionally, variable tap-length LMS and sparse algorithms have seen extensive development [9–11]. Nonetheless, the multiplier continues to impact complexity. The multiplier is a pivotal component of DSP calculations within the navigation receiver [12]. Its complexity scales quadratically with the quantization bit width, thus necessitating considerable computational resources. Because multiplication operations influence the jamming suppression performance in hardware, a multiplier-less implementation has been adopted to reduce costs and accelerate convergence [13, 14].
Multiplier-less implementation replaces multipliers with other operations, such as the read-only memory (ROM) lookup table, distributed arithmetic (DA) algorithm, binary complement, Coordinate Rotation Digital Computer (CORDIC), multiple constant multiplication (MCM), and canonic signed digit (CSD) coding [15–17]. CSD coding components the filter coefficient as the sum or difference of the power of 2, replacing the multiplier by shift operation and adder [18]. The coefficient decomposition decomposes the coefficient into the product of several numbers by the lookup table, reducing the adder number by cascading. Methods can be used in conjunction to reduce the adder number and sampling bit width. There have been optimization studies on the implementation methods of various filters without multipliers [19–21].
However, the above multiplier-less implementation methods are limited in the practical GNSS receiver applications, which are usually used in fixed-coefficient filters. The anti-jamming filter coefficient of GNSS receivers is usually considerable, while the existing multiplication-less implementation scheme is limited by the quantization bit width, resulting in significant quantization errors. The anti-jamming filter multiplication-less implementation method should be further optimized to minimal adders and shift operations with easy implementation.
Building on previous work, this paper proposes a cascaded multiplier-free implementation method for GNSS receiver time-domain anti-jamming filters. This method is applied to the static time-domain anti-jamming of satellite navigation receivers, optimizing the design of high-gain filter coefficients without multipliers. It reduces the number of adders, shift operations, and the coding word length of filter coefficients, thereby decreasing the computational complexity of the anti-jamming filters.
2 SYSTEM MODEL
2.1 GNSS receiver model
The GNSS system consists of the space segment, ground segment, and user segment. Figure 1 illustrates the GNSS receiver structure. The user terminals process the received radio frequency (RF) signals in RF front-end (RFFE). The baseband digital signal processing (DSP) suppresses the unexpected interference after the digital down conversion (DDC), and applies the multiplier-free anti-jamming filter based on the LMS adaptive algorithm. After the anti-jamming data is captured and tracked, it finally enters terminal’s back-end (BE) for realizing positioning, navigation and timing (PNT) functions [22].
[image: Block diagram showing a signal processing flow. It starts with RFFE, connected to DDC, then to AJM Filter. The filter links to "Acquisition and Tracking" and "Multiplier-free Implementation" with LMS. The final output is labeled BE.]FIGURE 1 | GNSS receiver structure.
Satellite navigation signals include the carrier, pseudo-random (PRN) code, and message data. The satellite navigation signal can be expressed by the carrier modulated with the spread spectrum signal of PRN code and data in Eq. 1:
[image: The equation shown is a mathematical expression for a signal: \( s(t) = \sum \sqrt{2P_{i}} \, x(t) D(t) \sin(2\pi ft + \theta) \).]
where, [image: It seems there was an error in your request. Please upload an image or provide a URL so I can generate the appropriate alt text for you.] is the average power of navigation signal, [image: It seems there was an issue with displaying the image. Please upload the image file or provide a URL for it, and I will generate the alternate text.] is the PRN code level, [image: I'm sorry, but it seems you haven't uploaded an image. Please upload an image or provide a URL, and I can help generate alternate text for it.] is the satellite broadcast message data, [image: Please provide the image or its URL so I can generate the alternate text for it.] is the central frequency of RF signal, [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is the initial phase of the carrier.
Suppose that the receiver thermal noise is [image: The image displays a mathematical expression with the characters "u" and "[n]" in italics, commonly used in signal processing to denote a unit step function.], the interference signal is [image: The image contains the mathematical expression "j[n]" with lowercase j followed by n in brackets.], such as continuous wave interference or narrowband Gaussian noise interference. Continuous wave interference (CWI) aims at the central frequency of satellite navigation signals by the continuous high-power single-frequency signal [23]. Narrowband interference (NBI) is generated by band-limited Gaussian white noise [24]. The CWI and NBI can be expressed as Eqs 2, 3 respectively:
[image: The equation describes a cosine function: \(I_{\text{CWI}} = \sqrt{2P} \cos(2\pi f t + \varphi_0)\), labeled as equation (2), which likely represents a signal with amplitude, frequency, and phase components.]
[image: Sorry, I can't view or generate alternate text for the image based on the provided equation. Please upload the image or provide a URL for further assistance.]
where, [image: Please upload the image or provide a URL, and I will help you generate the alternate text for it.] is the interference power, [image: Please upload the image you would like me to generate alternate text for, or provide a URL to the image.] is the interference frequency, [image: It seems you've mentioned a symbol or equation rather than an image. If you have an image you'd like described, please upload it or provide a URL. If you need an explanation for "ϕ₀," it typically represents a variable or parameter in mathematical or scientific contexts. Let me know how I can assist further!] is the initial phase, [image: Please upload the image or provide a URL for me to generate alt text.] is the narrowband interference amplitude, [image: The image shows the mathematical notation \( G(t) \), representing a function \( G \) that depends on the variable \( t \).] is the Gaussian white noise, [image: I'm sorry, I can't generate alternate text from the provided image. Could you please describe the image or provide more context?] is convoluted with the finite band-pass gate function [image: The image displays the mathematical notation "S sub a of t", which typically represents a function or sequence depending on the variable \( t \) with a parameter \( a \).] to generate narrowband interference.
The resultant input signal before the anti-jamming module can be expressed in Eq. 4 [25]:
[image: The equation shows \( x[n] = s[n] + j[n] + u[n] \), where \( x[n] \) is the sum of \( s[n] \), \( j[n] \), and \( u[n] \). It is labeled as equation (4).]
2.2 Multiplier-free time-domain adaptive anti-jamming model
The time-domain anti-jamming algorithm utilizes the adaptive filter to suppress interference. The iterated filter coefficients should be implemented to be multiplier-free and then assigned to the weight storage module. Figure 2 illustrates the flow chart of the multiplier-free time-domain adaptive anti-jamming algorithm.
[image: Diagram of a digital filter architecture with seven delay elements labeled \(Z^{-1}\), connected to weights \(W_1\) to \(W_7\). A multiplier-free implementation is highlighted, with an output or error leading to weight \(W^{(i+1)}\).]FIGURE 2 | Anti-jamming flow chart with multiplier-free implementation.
Suppose that the input vector of the [image: It seems you might be trying to upload an image or there's an error with the image link. Please upload the image again or provide a correct URL. If there's additional context or a caption, feel free to include that as well.]-long filter at time [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.] is as Eq. 5:
[image: Mathematical expression showing a vector \( x \) equals the transpose of a sequence: \( x(n), x(n-1), \ldots, x(n-N+1) \). Equation labeled as (5).]
Suppose the filter quantization bit width is L. The filter weight vector is as Eq. 6:
[image: Mathematical expression depicting a formula where W is a function of the fixed norm of a vector with components omega one through omega N, multiplied by two squared, and set equal to a vector with components w one through w N. Equation number six is indicated at the end.]
where, [image: Text reads "fix" followed by a dot inside square brackets.] is the rounding function to round off the input signal, [image: The text "Norm[⋅]" is depicted, using a mathematical style font with a shaded vertical bracket enclosing a dot.] is the normalized function.
Define the multiplier-free implementation method as [image: Symbol consisting of the Greek letter Phi and a pair of brackets with a dot in between, often used in mathematical or programming contexts.]. With the iterated coefficients implemented multiplier-free, the anti-jamming output signal can be expressed as:
[image: Mathematical equation depicting \( y(n) = x \cdot W = \sum_{{k=1}}^N x(n-k+1) \Phi[w_k] \).]
The error signal [image: Mathematical expression depicting a lowercase letter "e" followed by "n" in parentheses, all italicized, representing a function or variable notation commonly used in mathematical or scientific contexts.] is defined as the difference between the anti-jamming output signal [image: The mathematical expression "y of n" is shown, where "y" is a function of "n".] and the desired signal [image: It seems there was a mistake in inputting the image. Please upload the image file or provide a link, and I will help generate the alternate text.], where the desired signal is generally considered to be navigational signal, as shown in Eq. 8:
[image: The equation shown is \( e(n) = d(n) - y(n) \approx s(n) - y(n) \), labeled as equation (8).]
The iterative formula of LMS algorithm can be expressed as Eq. 9 [26]:
[image: Mathematical equations for adaptive filter weights. The updated weight vector \( \mathbf{W}_{M}^{\text{H}} \) is expressed as the previous weight vector \( \mathbf{W}_{M}^{\text{H}} \) plus the product of \( \mu \mathbf{K}^{\ast}(n) \) and the error signal \( e(n) \). Further expanded, it equals the previous weight vector plus \( \mu \mathbf{K}^{\ast}(n)[s(n) - y(n)] \), approximately \( \mathbf{W}_{M}^{\text{H}} - \mu \mathbf{K}^{\ast}(n)y(n) \), with equation number (9).]
where [image: Mathematical notation showing square brackets with an asterisk to the upper right, indicating a repeated or extended operation, such as a Kleene star in formal language theory.] represent the conjugation.
The multiplier-free implementation of GNSS time-domain anti-jamming is applicable to satellite navigation receivers with limited hardware resources. For instance, mobile phones require the development of miniaturization capabilities and maintaining anti-interference capabilities, and spaceborne receivers’ functionality is expanded within the constraints of limited resources. Figure 3 depicts a ground-test module of a satellite-borne receiver in its practical application.
[image: Panel A shows a workstation with a rack of electronic equipment, including various devices and cables. Panel B displays a close-up of a circuit board with multiple components, wiring, and connections.]FIGURE 3 | Practical application: ground-test module of spaceborne receiver. (A) Ground testing architecture. (B) Hardware development board.
3 PROBLEM FORMULATION
3.1 CSD coding
The signed number is one of the essential non-standard fixed-point number in computer algorithm implementation, and its digital range is [image: It seems there wasn't an actual image uploaded. To generate alt text, please upload the image file or provide a URL.]. Since it is not unique, the system with the least nonzero elements is called the regular signed digit system.
The CSD coding expresses the filter coefficients as the sum or difference of the power of 2, which is realized by shift operation and adder. The optimal CSD coding can also reduce the adder number and the maximum encoding lord length [27].
The mathematical expression of the FIR-filter anti-jamming can be simplified as shown in Eq. 10 [28]:
[image: Mathematical equations showing the summation of products. The first equation defines \(y_i\) as the sum of \(h_{i,j} \times x_i\) from \(j = 0\) to \(N-1\), which simplifies to the sum of \(x_i\) times the sum of \(h_i(j)\). The second equation further expands the expression with terms like \(x_i \times (2^{M-i} \times h_i(M-1))\) and similar terms, ending with \(2^0 \times h_i(0)\). The equation is labeled as equation 10.]
where, [image: Mathematical notation showing the letter "h" with a subscript "i".] represents the [image: Certainly! Please upload the image or provide a URL so I can help generate the alternate text for it.] weight of the filter, [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the input data to the [image: Please upload an image or provide a URL, and I will generate the alternate text for you. If you have any additional context or a caption, feel free to include it.] weight, [image: The mathematical expression shows \( h_i(j) = 0, 1, -1 \).] represents the binary representation of the [image: Please upload the image file you'd like me to generate alt text for.] weight, [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL, and I will help generate the alternate text for it.] is the binary bit length.
CSD coding replaces all 1 sequences greater than 2 with [image: Mathematical expression showing the decimal number \(10.\overline{01}\), indicating the digits 0 and 1 repeat infinitely.] from the lowest bit, where [image: It seems there might have been an issue with uploading the image. Please try again and ensure the file is attached or include a URL.] represents the negative 1 bit. The best CSD coding has minor nonzero elements and the least subtraction times. Starting from the highest significant bit, replace [image: Stylized number "101" with an overline on the digits "0" and "1".] with [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL if available.] [29].
Suppose that the word length of the binary complement-on-two of value [image: Please upload the image or provide a URL for me to generate the alternate text.] is [image: It seems there was a missing or incomplete attachment for your request. Please upload the image or provide a URL, and I will help generate the alt text for you.] then the Binary expression is as Eq. 11:
[image: The image shows a mathematical expression for the binary representation of a number. It is denoted as \( A_{\text{bin}} = a_{\ell_{\text{bin}}}^{\prime} a_{\ell_{\text{bin}}-1}^{\prime} \cdots a_1^{\prime} a_0^{\prime} \), with a reference to equation (11).]
where, [image: Mathematical expression showing a series with variables \(a_i = 0, 1\) and \(i = 0, 1, \ldots, L_{\text{bin}} - 1\).]
The word length of CSD encoding of value A is [image: It seems there is no visible image. Please upload the image or provide a URL so I can assist you in generating the alternate text.] then the CSD expression is as Eq. 12:
[image: Mathematical equation showing the formula \( A_{\text{CSD}} = a^{'}_{62}a^{'}_{61}a^{'}_{60} \ldots a^{'}_{0} \), labeled as equation (12).]
where, [image: Mathematical expression showing \( a'_j = -1, 0, 1 \) for \( j = 0, 1, \ldots, L_{\text{CSD}} - 1 \).]. Usually, the relationship between CSD code word length and binary complement word length is as shown in Eq. 13:
[image: It seems there was an error displaying your image. Please try uploading the image again or ensure the URL is correct. If needed, you can also provide additional context or a caption.]
The binary complement is updated to CSD coding as shown from Eqs 14–16:
[image: Please upload the image or provide more context or a URL for it. Then I can help generate the alternate text for you!]
[image: Mathematical equation showing zeta subscript n is equal to zeta subscript n minus 1 times theta subscript n, followed by the number fifteen in parentheses.]
[image: Mathematical equation labeled as equation sixteen. The equation is a subscript j prime equals open parenthesis one minus two a subscript i close parenthesis multiplied by zeta subscript i.]
where, [image: Expression of a determinant with an adjugate or cofactor matrix symbol.] is the exclusive OR operation, the initial value can be expressed as [image: The image shows the mathematical expressions: \(a_{t-1} = 0\), \(\zeta_{i-1} = 0\), and \(a_n = a_{n-1}\).].
Then optimize the CSD coding that may have storage waste by Eq. 17:
[image: It seems there's no image provided. Please upload the image or provide a URL for it.]
where, [image: Mathematical expression showing a sub k equals negative one, zero, one. k ranges from zero, one, up to L minus one.]. Usually, the relationship between CSD code word length and binary complement word length is as shown in Eq. 18:
[image: It seems there is no image uploaded. Please provide the image or a URL to it, and I can help generate appropriate alt text. If there is any additional context or specific elements you want highlighted, feel free to include that as well.]
Its update process can be expressed from Eqs 19–21:
[image: Equation showing \(a_k\) is equal to the ceiling function of the sum of \(a_j\) and \(a_{j-2}\) divided by 2, labeled as equation 19.]
[image: Equation showing \( a_{k-1} = a'_j \oplus a_k \) with the reference number (20) on the right.]
[image: The equation shown is \( a_{k-2} = \left[ 1 - 2 \left( a'_{j-1} \circ a_{k-1} \right) \right] a'_{k-2} \), labeled as equation (21).]
where, [image: If you provide the image or a link to it, I can help create the alternate text. Please upload the image or share the URL.] is the logical AND operation.
The number of adders is expressed as Eq. 22:
[image: Mathematical formula showing S sub add equals the sum from k equals 0 to n minus 1 of the absolute value of a sub k, minus 1. This is equation 22.]
The number of shift operations is expressed as Eq. 23:
[image: The formula for \( S_{\text{shift}} \) is given as the summation from \( k = 0 \) to \( n - 1 \) of \( k \) multiplied by the indicator function \([a_k = 1]\). Equation labeled as 23.]
The figure shows the best CSD coding schematic. The value 211 is taken as an example in Figure 4, the multiplier-free design based on the optimal CSD coding is composed of 5 values of the power of 2, and the multiplication operation is realized by four adders and 18 shift operations.
[image: Flowchart illustrating a process for multiplying a variable \( x \) by 211. Triangular amplifiers multiply \( x \) by 2, 16, 64, and 128 respectively. The outputs are summed, indicated by circular nodes, to achieve the final product \( 211x \).]FIGURE 4 | Optimal CSD coding schematic.
3.2 Numerical power decomposition
Numerical power decomposition is achieved by cascading several values to reduce the hardware cost of multiplier-less implementation [30]. For example, the traditional binary encoding of the value 231 is [image: Binary number "11100111" with a subscript notation indicating it is in binary format.], the best CSD encoding is [image: The image shows a binary number pattern with the digits one, zero, zero, one, zero, one, zero, zero, one, with the zeros having an overline above them.], and the original multiplier implementation can be reduced from 5 adders to 3. If 231 is factorized into the [image: Blurred text showing the multiplication expression: Seven times thirty-three.] cascade, the adders’ number can be reduced to 2. Figure 5 is the example diagram of numerical power decomposition.
[image: Signal flow graph depicting a control system. The input passes through a summing point with a gain of thirty-two, then a second with a gain of eight. Feedback loops, each with a gain of one, connect to the summing points.]FIGURE 5 | Numerical power decomposition schematic.
The value [image: Please upload the image you would like me to generate alternate text for.] can be decomposed into the product of [image: A small, black and white symbol of two opposing black triangles pointing toward a central, smaller white circle, resembling an hourglass or bow tie shape.  ] values and realized by cascading [31] as shown in Eq. 24:
[image: Equation showing omega equals the product of Omega sub one, Omega sub two, up to Omega sub n. Labeled as equation twenty-four.]
where, [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] is the [image: Please upload the image you'd like me to generate alt text for. You can use the upload button or provide a URL.]-th power factor, which consists of the addition and subtraction of the power of 2 as shown in Eq. 25:
[image: Mathematical expression showing \(\Omega_P\) equals the sum of powers of two, from \(2^{k_1}\) to \(2^{k_s}\), with an equation number (25) on the right.]
The numerical value will affect the device cost of the filter. The total adder number can be expressed as the sum of the number of adders required for different decomposition factors, as shown from Eqs 26–28:
[image: Mathematical equation showing \( N_{\text{add}} = \sum_{p=1}^{\Theta} S_{\text{add}}^{p} \) with the equation number (26) on the right.]
[image: Mathematical equation showing \( N_{\text{shift}} = \sum_{p=1}^{\Theta} S_{\text{shift}}^{p} \) with an equation number (27) on the right.]
[image: Equation 28 shows \(N_{\text{bit}} = \max L_p\).]
where, [image: The image shows the mathematical expression "s subscript add superscript p" in a stylized font.], [image: Mathematical notation showing \( S_{\text{shift}}^p, L_p \).] are the number of adders, the number of shift operations, and the maximum word length required for the optimal CSD encoding of the decomposition factor [image: It seems like you've referenced a mathematical symbol instead of uploading an image. Please upload the image or provide a URL for me to generate the alternate text.], respectively.
3.3 Motivations and optimization object
Static anti-jamming filters are usually used in power-sensitive terminals, and computational complexity is one of the most critical design elements. The effect of CSD optimal coding to reduce complexity is limited, and the existing numerical power decomposition is mainly the lookup table method. The accessible decomposition results are limited, creating difficulties for the multiplier-less implementation of large values.
Based on the disadvantages of optimal CSD coding and coefficient decomposition, in order to solve the problem of high gain in the actual filter coefficients, this paper proposes a cascaded multiplier-less implementation. The multiplier-less filter is implemented with minimum adders, reducing the shift operation and memory word length. The optimization objective is shown in Eq. 29:
[image: Optimization problem showing the objective to minimize \( N_{\text{add}} \) subject to constraints: \( N_{\text{add}} \leq S_{\text{add}} \), \( N_{\text{shift}} \leq S_{\text{shift}} \), and \( N_{\text{tot}} \leq L \), numbered as equation (29).]
4 PROPOSED APPROACH
To design a multiplier-less anti-jamming filter, the numerical power decomposition of the filter coefficients is first performed to obtain each decomposition factor. The multiplier-less coding of all decomposition factors is designed according to the optimal CSD coding method. The flowchart is shown in Figure 6.
[image: Flowchart depicting a process starting with "Filter Coefficient," branching into four "Decomposition factors" labeled P1 to P4, each followed by "Optimal CSD Coding." Results go to "Complexity Computation," with a decision point "low complexity" leading to further "Complexity Computation" or a "Traditional Method."]FIGURE 6 | Cascaded multiplier-free implementation method flowchart.
Firstly, the numerical power decomposition of the filter coefficient [image: Lowercase letter "w" with a subscript lowercase letter "i", indicating the variable w sub i.] is carried out, and four kinds of decomposition factors are obtained. The decomposition matrix can be expressed as is shown in Eq. 30:
[image: It seems there was an attempt to share an image, but the image itself wasn't included. Please try uploading the image file again or provide a direct link to it. Optionally, you can add a caption for more context.]
where, [image: It seems there might be an error or missing image. Please upload the image or provide a link to it so I can help generate the alternate text.] is the i-th decomposition factor:
Assume that [image: It seems like there might have been an error in uploading the image. Please try uploading the image again, and I’ll be happy to help with the alt text.] is a zero-order power factor [image: Greek letter gamma with superscript j and subscript zero in a mathematical expression.], and the first type of decomposition factor [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will generate the alternate text for you.] is the divisor [image: A mathematical notation displaying the Greek letter gamma subscript zero, with a superscript j.] that can divide [image: Sorry, I can't provide a description without the image. Please upload the image or provide a URL, and I'll be happy to help.] at most. Divide [image: A lowercase letter "w" followed by a subscript lowercase letter "i".] by [image: Please upload the image or provide a URL so I can generate the alternate text for you.] to get [image: The expression "w" with subscript "i" and superscript "1".], as shown in Eqs 31, 32:
[image: Mathematical formula depicting the computation of P subscript 1, defined as the maximum value of Y subscript j raised to the power i, where the modulus of w subscript i and Y subscript j raised to the power i equals zero. The variable j ranges from one to the floor of B divided by two. Equation is labeled as thirty-one.]
[image: It seems like the text you provided is a mathematical expression. If you have an image you would like to describe, please upload it or provide a URL. If you intended to share this expression specifically, here is an alt text for the given equation:  Mathematical expression showing \( w' = w/P_1 \) followed by the number 32 in parentheses.]
where, [image: The image contains the mathematical notation "mod" with a dot inside parentheses, often used to denote the modulo operation.] is the residue function, [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] is the binary length of [image: The image contains the mathematical symbol for "w subscript i".], and [image: The mathematical function floor(x), depicted with the word "floor" followed by parentheses enclosing a central dot, representing an argument placeholder.] is the down-integer function. The cascade of the first type of decomposition factor is realized by a [image: It seems like there was an issue with the image upload. Please try uploading the image again or describe it so I can help create the alt text for you.]-th forward shift operation.
Assume that [image: Mathematical expression showing two raised to the power of one plus one.] or [image: Mathematical expression of two to the power of seven minus one.] is a one-order power factor [image: The image contains the mathematical symbol "gamma" (Γ) with a subscript "1" indicating a specific element or variable in mathematics or physics.], the second decomposition factor [image: It seems there is an issue with your image upload. Please try uploading the image file again, and I'll be happy to help with your request.] is the divisor [image: The image shows the Greek letter upsilon with two indexes: the subscript index is the number one, and the superscript index is the letter j.] that can divide [image: Mathematical notation of \( w_{i}' \), representing a modified or derived form of variable \( w \) with a subscript \( i \) and a prime symbol.] at most. Divide [image: Mathematical notation depicting a lowercase letter "w" with a subscript "i" and a superscript "one" on the right side.] by [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. You can also include a caption for additional context.] to get [image: A mathematical notation displaying "w" with subscript "i" raised to the power of two, indicating "w" sub "i" squared.] as shown in Eqs 33, 34:
[image: Mathematical expression defining \( p_1 \) as the maximum of \( Y_1^j \) given the condition \( \text{mod}(w_j, Y_j^i) = 0 \), with \( j \) ranging from one to the floor of \( \frac{B}{2} \), labeled as equation thirty-three.]
[image: The image shows a mathematical equation: \( w_i^2 = w_i' / \Pi \gamma_i' \), labeled as equation (34).]
where, [image: Please upload the image you would like me to describe, or provide a URL to the image.] is the binary length of [image: The image displays the mathematical notation "w" subscript "i" with a superscript "1".]. The second decomposition factor [image: Please upload the image or provide a URL so I can generate the alt text for you.] is realized by an l-bit forward shift operation and an adder.
Assume that [image: The image contains the mathematical expression: two raised to the power of m plus two raised to the power of n plus one.] or [image: Mathematical expression showing two to the power of m plus two to the power of n minus one.] or [image: Mathematical expression: two raised to the power of m minus two raised to the power of n plus one.] or [image: Expression showing the difference between two powers of two: two raised to the power of m minus two raised to the power of n, minus one.] is the second-order power factor [image: Mathematical expression showing the Greek letter gamma (γ) with subscript two and superscript j.] The third decomposition factor [image: A letter "P" with a subscript "3" in bold, serif font.] is the divisor [image: The mathematical expression shows the symbol gamma with a subscript of two and a superscript of j.] that can divide [image: It seems like there is no image provided. Please upload an image or provide a URL for me to generate the alternate text.] at most. Devide [image: It seems like you have included a mathematical expression rather than an image. If you have an image you'd like to describe, please upload it or provide a URL.] by [image: I'm unable to view images directly. Please upload the image or provide a URL, and I'll help you generate the alternate text.] to get [image: Greek letter gamma with subscript two and superscript j.], as shown in Eqs 35, 36:
[image: \( P_3 = \max \left( Y_1^m \mid \mod(w_i^2, Y_1^n) = 0 \right), \, m, n = 1, 2, \ldots, \text{floor}\left(\frac{B^n}{2}\right) \) equation noted as (35).]
[image: The image shows a mathematical equation: \( w'_i = w^3 / \prod \gamma^2 \), labeled as equation (36).]
where, [image: It seems like there was an error in uploading the image. Please try again by ensuring the image file is correctly attached or provide a URL if it is hosted online. Optionally, add a caption for additional context.] is the binary length of [image: If you upload the image or provide a URL, I can help generate the alternate text for you.]. The third type of decomposition factor is realized by 1 m displacement bit operation, 1 n displacement bit operation and 2 adders.
The fourth decomposition factor [image: A stylized letter "P" with a subscript number "4" in a serif font.] is the remainder [image: Expression with a lowercase "w" followed by a superscript "3" and subscript "i".] divided by the third decomposition factor as shown in Eq. 37:
[image: If you upload the image or provide a URL, I can help generate the alternate text for it!]
Define the multiplier-free implementation matrix is a cellular matrix as Eq. 38:
[image: Mathematical expression showing a matrix equation. Theta equals a set of four matrices, each arranged vertically. The matrices contain elements in the form a with subscripts 1, B, and varying numbers, indicating a pattern. The equation is labeled as expression 38.]
Based on complexity, a better multiplier-free implementation method is selected. In the decomposition process of any power factor [image: Please upload the image or provide its URL so I can generate the alternate text for you.], it should be ensured that the cumulative number of adders and the cumulative number of shift operations do not exceed the total number of CSD codes, as shown in Eqs 39, 40:
[image: The image shows a mathematical inequality. It sums from \( p = 1 \) to \( \Lambda \) of \( S_{\text{add}}^{p} \), which is less than or equal to \( S_{\text{add}} \). The expression is labeled as equation (39).]
[image: Summation formula, from p equals one to an unspecified upper limit, of \(S_{\text{shift}}^p\) is less than or equal to \(S_{\text{shift}}\), labeled as equation forty.]
When Eqs 39, 40 is violated in any numerical power decomposition process, the numerical decomposition should be stopped. The decomposition process takes the last decomposition factor as the penultimate factor, and the remainder divided by the penultimate factor is recorded as the last factor. When the complexity of the cascaded multiplier-less implementation is higher than that of the traditional optimal CSD coding, the optimal CSD coding method is still used to achieve multiplication-free coefficients.
According to Eqs 7, 38, the logic circuit flow of anti-jamming output signal is derived in Eq. 41:
[image: Mathematical equation showing \(y(n) = \sum_{k=1}^{N} \prod_{i=1}^{4} \sum_{j=1}^{M_i} x(n-k+1) \cdot 2^{B_j}\), labeled as equation 41.]
5 PERFORMANCE ANALYSIS
5.1 Algorithm complexity comparison
Table 1 presents the complexity comparison between the proposed method and the traditional multiplier-free implementation method, considering the number of adders, shift operations, and maximum word length. The table displays the number of devices for various values under both multiplier-free implementation methods, highlighting the less complex approach. Compared to the traditional optimal CSD coding, the proposed method significantly reduces complexity in multiplier-free implementation. The number of adders is reduced by 0 or 1, while the number of shift operations and the maximum word length are reduced significantly by 13 and 2, respectively.
TABLE 1 | Algorithm complexity comparison.
[image: A comparative table between traditional and proposed methods, showing coefficients, adder usage, shift operations, and maximum code lengths. The proposed method simplifies decomposition structures, using fewer adders and shift operations with shorter maximum code lengths for coefficients such as 14, 27, 38, and more, compared to traditional methods.]In order to verify the universal adaptability of the cascaded multiplier-less algorithm, the application rate and complexity optimization performance of the new algorithm with 1∼1,000 values is analyzed, respectively. Figure 7A shows the usage proportion of the proposed method. The total integer value of the coefficient is 1∼1,000, the smoothing point is set to 500, and the percentage of the cascade multiplier-less implementation is selected for each 400-point data calculation optimization method. The results show that as the coefficient increases, the optimization effect of the cascaded multiplier-less implementation method is better. Figure 7B demonstrates the smoothing result of the device reduction after using the proposed algorithm. Since the device complexity optimization results are relatively scattered, 59 is used as the smoothing unit to smooth the optimization data of adder, shift operation, and maximum coding word length, respectively. The results show that the cascade multiplier-free implementation method significantly reduces the number of the three devices on the graph. Among them, the number of shift operations decreases the most, and the maximum reduction reaches 19.
[image: Chart A shows adoption rate by coefficient, peaking around 65% near 300. Chart B displays device reduction across coefficients for adder, shift operation, and storage width, with varying area shades indicating data categories.]FIGURE 7 | Universal adaptability analysis. (A) Usage proportion of the proposed method. (B) Complexity optimization performance.
The digital filters with lengths of 31 and 59 are designed by software. The filter quantization bit width is 12, and the initially designed filter is quantized. The optimization effect of the proposed method on the device complexity is verified based on the designed anti-jamming filter to ensure the effectiveness of the cascaded multiplier-free method in the GNSS receiver. Figure 8 shows that the optimal CSD coding method based on cascaded multiplier-free implementation reduces the multiplier and shift operations compared with CSD coding. After filter coefficient decomposition, the number of adders optimized by CSD coding is reduced by 0–2, and the shift operation is reduced by 0–5.
[image: Two line graphs labeled A and B compare Adder and Shift values against Taps. Graph A shows 30 Taps with Adder values in red peaking at 2, and Shift values in blue. Graph B shows 50 Taps with similar patterns, peaking at Adder 2.]FIGURE 8 | Complexity optimization comparison of different CSD codes based on factor cascade. (A) 30-order filter. (B) 58-order filter.
Figure 9 compares the anti-jamming filter complexity based on the cascaded multiplier-free implementation and the traditional method to verify the method availability. The results show that the adder reduction of the proposed method is greater than 0 compared with the traditional method, and the complexity reduction of the shift operation and the maximum code length is more pronounced. When the middle tap coefficient of the 58-order filter is 1,024, the number of shift operations is reduced by 20, and the maximum code length is reduced by 5.
[image: Two line graphs labeled A and B displaying data across 60 taps. Graph A shows constant values for "Adder," variable values for "Shift," and "Width." Graph B shows peaks in "Adder," and variable trends in "Shift," and "Width."]FIGURE 9 | Comparison of device count between the proposed and traditional multiplier-free method. (A) 30-order filter. (B) 58-order filter.
Debugging and verification were performed on the test platform illustrated in Figure 3. By minimizing the number of effective operations, cascading multiplication-free processing was applied to the constant multiplier. The anti-jamming module achieved a 52% reduction in its effective circuit area.
5.2 Anti-jamming performance
The carrier-to-noise ratio (CNR) after interference mitigation is a quantitative assessment metric for evaluating time-domain interference resistance [32]. It is defined as the ratio of the carrier power to the power spectral density of the baseband signal noise. A too low carrier-to-noise ratio can severely affect the receiver’s ability to correctly capture and track. Carrier-to-noise ratio loss is the difference between the carrier-to-noise ratio under no-interference conditions and the carrier-to-noise ratio after interference mitigation defiened as Eq. 42.
[image: Mathematical equation describing the change in carrier-to-noise ratio (ΔCNR). It involves terms [C/N]₀, [C/N]ₐⱼₘ, integrals over frequency, system functions Sₓ(f), H(f), and interference metrics Bₙ. The equation is represented with logarithms and integrals, labeled equation 42.]
Where, [image: Mathematical expression consisting of the letter "s" with a subscript "s" followed by the function notation in parentheses "f".], [image: The mathematical expression depicts "S subscript n of f," where "S" is followed by a subscript "n" and a function "f" in parentheses.] and [image: A mathematical expression displaying \( S_y(f) \).] are the power spectral densities of navigation signal, noise signal and anti-interference signal respectively, [image: Equation displaying \( H(f) \), indicating a function \( H \) of the variable \( f \).] is the filter frequency response, and [image: Mathematical notation of the letter B with a subscript n in italics, suggesting a variable or sequence term labeled as B sub n.] is the noise bandwidth.
A static filter with the navigation signal frequency as the stopband center frequency is designed, and the filter quantization bit width is set to 12. The carrier-to-noise ratio (CNR) of the BD3 signal is set to 50 dB·Hz, the interference bandwidth is 2MHz, the jamming-to-signal ratio (JSR) is 40dB, and the sampling rate of the software receiver is 25 MHz. The narrowband interference suppression performance based on the BD3 signal is shown in Figure 10. Figure 10A shows the spectrum before and after anti-jamming. The results show that the cascaded multiplier-free method can achieve anti-interference. The adaptive filter forms a null at least 30 dB in the interference frequency band. Figure 10B shows the navigation signal CNR after suppressing interference. The maximum CNR loss is less than 2 dB·Hz.
[image: Two panels depict the effects of anti-jamming. Panel A shows a frequency vs. power graph, with blue lines indicating power before anti-jamming and red lines showing power after anti-jamming, highlighting reduced interference. Panel B is a 3D surface plot illustrating the relationship between CNR in decibels, interference bandwidth in megahertz, and JSR in decibels, showing variations in color from blue to red across the surface.]FIGURE 10 | Interference suppression performance. (A) Spectrum diagram before and after anti-jamming. (B) Anti-jamming output CNR.
Figure 11 analyzes the ranging accuracy of the cascaded multiplication-free anti-interference method. Figure 11A displays the correlation function between the anti-interference output and the local signals. By observing the 10 chips surrounding the correlation peak, the correlation function of the output signal remains symmetric with the local signal, and the correlation peak position shows no obvious distortion. Figure 11B measures the symmetry of the correlation peak by the SCB curve bias and quantitatively analyzes the ranging deviation of the receiver [30]. Control the convergence step to reduce the influence of the time-varying filter on the ranging accuracy. Under a 31-order anti-interference filter, the pseudo-range measurement deviation is kept within 0.27 ns, which can ensure the ranging accuracy.
[image: Panel A shows a graph of normalized correlation with two prominent peaks, indicating code phase values. An inset highlights the main peak's features. Panel B displays a scatter plot of code phase jitter against circular interval with a fitted trend line, illustrating the data distribution and variability.]FIGURE 11 | Measurement accuracy analysis. (A) The correlation function of the output and local signals. (B) SCB curve bias.
6 CONCLUSION
This paper introduces a cascaded multiplier-free implementation method and enhances the corresponding implementation scheme. This method is applied to the static time domain anti-jamming of GNSS receivers by replacing multipliers with a minimal number of adders and shift operations, utilizing optimal CSD coding and numerical power decomposition. Simulation results demonstrate that interference occupying 20% of the navigation signal bandwidth can be effectively suppressed, optimizing the anti-jamming filter structure. The number of adders, shift operations, and maximum code length are significantly reduced, with the maximum number of shift operations decreased by 20. The pseudo-range measurement accuracy has been verified to be within 0.27 ns, ensuring adequate ranging performance.
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The threat of spoofing interference has posed a severe challenge to the security application of Global Navigation Satellite System (GNSS). It is particularly urgent and critical to carry out in-depth defense research on spoofing interference. When combined with the inertial navigation system (INS), the GNSS/INS integrated navigation system offers distinct advantages in the field of anti-spoofing technology research, which has garnered significant attention in recent years. To summarize the current research achievements of GNSS/INS integrated navigation anti-spoofing technology, it is necessary to provide an overview of the three core technical aspects of spoofing attack principles and implementation strategies, spoofing detection, and spoofing mitigation. First, the principles and implementation strategies of spoofing interference attacks are introduced, and different classifications of spoofing interference attacks are given. Then, the performance characteristics and technical points of different spoofing detection and spoofing mitigation methods are compared and analyzed, and the shortcomings and challenges in the current development of GNSS/INS anti-spoofing technology are pointed out. Finally, based on the summary and shortcomings of the existing technology, a prospect for the future development of GNSS/INS integrated navigation anti-spoofing technology is discussed.
Keywords: anti-spoofing, GNSS/INS integrated navigation, spoofing interference, spoofing detection, spoofing mitigation

1 INTRODUCTION
With the continuous development of the Global Navigation Satellite System (GNSS), more and more military weapons equipment, critical civil facilities, location forensic application and life safety services rely on the high-precision location, velocity and time information provided by GNSS [1–4]. However, due to the weak landing level and open civil signal structure, satellite signals are vulnerable to intentional and unintentional electromagnetic interference during transmission, which makes it a severe challenge to the application of GNSS [5]. Compared with unintentional interference, intentional interference causes more harm to GNSS and mainly includes suppression jamming and spoofing interference [6]. Suppression jamming suppresses the GNSS navigation and positioning services by transmitting high-power noise to cover the satellite signal. There are already many mature anti-jamming technologies [7]. Different from suppression jamming, spoofing interference involves transmitting false satellite signals to target users, leading them to receive inaccurate navigation information. Notably, in December 2011, the Iranian military exploited falsified the Global Positioning System (GPS) signals in a UAV navigation system and successfully trapped a United States stealth reconnaissance drone RQ-170 [8]. Furthermore, between 22 and 24 June 2017, over 20 ships in the Black Sea fell victim to extensive deceptive jamming attacks [9]. The escalation of GPS jamming/spoofing incidents in the Israeli-Palestinian conflict of 2023 underscores the rising trend of such attacks, with spoofing assaults on satellite navigation systems now emblematic of modern warfare. Consequently, research into anti-spoofing technologies for satellite navigation assumes paramount importance in fortifying the security and dependability of GNSS.
Since the 1990s, with the establishment and deployment of GPS, international scholars have initiated research into electronic protection and anti-jamming techniques [10]. Following a comprehensive assessment by the United States Department of Transportation in 2001 [11], which highlighted the vulnerabilities and risks associated with GPS and identified the looming threat of spoofing attacks in satellite navigation, the pursuit of GNSS anti-spoofing technologies gained momentum. Subsequently, scholars have introduced a range of innovative anti-spoofing solutions, encompassing spoofing detection and spoofing mitigation techniques. These anti-spoofing methodologies can be categorized based on distinct technical principles:
	[image: A solid black circle on a white background.] Anti-spoofing methodologies reliant on navigation signal attributes, such as signal power [12], carrier-to-noise ratio [13], direction of arrival [14], and Doppler frequency [15]. While conceptually straightforward and independent of auxiliary data, these approaches may struggle to counter sophisticated spoofing tactics effectively.
	[image: A solid black circle on a white background.] Anti-spoofing methodologies grounded in signal encryption and authentication mechanisms. This category includes spread spectrum code authentication [16, 17], navigation data authentication [18, 19], and combined authentication techniques [20]. However, implementing encryption-based anti-spoofing measures necessitates modifications to satellite signals or navigation messages, which is a challenge in practical application.
	[image: A black circle on a white background.] Anti-spoofing methodologies leveraging auxiliary information [21]. Autonomous navigation systems like inertial navigation and visual navigation remain impervious to spoofing attacks, allowing for integration with GNSS to thwart spoofing attempts through the redundancy of auxiliary navigation data.

In recent years, scholars have focused extensively on the research and development of anti-spoofing technology based on GNSS/INS integrated Navigation System, supported by the Inertial Navigation System (INS). This heightened interest can be attributed to several key advantages of this approach compared to other technologies:
[image: A solid black circle centered on a white square background.] The seamless integration of INS and GNSS results in a highly complementary system, significantly enhancing navigation accuracy. As evidenced by the widespread adoption of GNSS/INS integrated navigation systems, these systems are capable of operating with local resources, ensuring operational flexibility.
[image: A solid black circle on a white background.] INS brings information redundancy. The redundancy provided by INS augments GNSS in Receiver autonomous integrity monitoring (RAIM), while also facilitating compatibility with other detection technologies.
	[image: A large, solid black circle centered on a white background.] INS can serve as an independent navigation system that operates autonomously, offering rapid and precise positioning without reliance on external information. In the event of GNSS failure, it can transition to pure INS mode, thereby demonstrating inherent resilience against interference.
	[image: A plain black circle on a white background. The circle is centered and creates a stark contrast with the surrounding area.] The residual data constructed for the relevant variables of the information fusion algorithm of the integrated navigation system is relatively diversified, which can be comprehensively utilized to improve the detection probability.

To leverage the anti-spoofing benefits offered by the GNSS/INS integrated navigation system and enhance its resilience against jamming attacks, this paper summarizes GNSS spoofing attacks and anti-spoofing measures. The remaining organization of this paper is as follows: in Section 2, the principal of spoofing attacks is introduced and the spoofing scenario of GNSS is analyzed; in Section 3, anti-spoofing technologies based on GNSS/INS integrated navigation system is described via two types of methods–spoofing detection and spoofing mitigation—and then the development status is introduced and analyzed respectively; in Section 4, the challenges and prospects of anti-spoofing based on GNSS/INS integrated navigation system are summarized. Finally, Section 5 summarizes the above discussion.
2 SPOOFING SCENARIO ANALYSIS
Spoofing and anti-spoofing are in a adversarial relationship. A profound comprehension of spoofing is pivotal for effective research in anti-spoofing measures. With the aim to better study anti-spoofing technologies in integrated navigation, it is necessary to elucidate the basic principles, implementation strategies, and classification of deception interference based on available literature.
2.1 Spoofing modeling
The fundamental principle underlying spoofing involves the transmission of a deceptive signal by the spoofer, characterized by a slightly amplified power level compared to the authentic navigation signal, directed towards the targeted receiver. This act disrupts the receiver’s ability to accurately capture and track the authentic satellite signal, leading it to erroneously lock onto the false satellite signal instead. Therefore, the spoofer must accurately replicate the carrier, PRN/spread spectrum, data code, and Doppler range of the real navigation signal. The conventional satellite navigation signal as perceived by the receiver can be represented by the expression Equation 1:
[image: Mathematical equation displaying \( y(t) = \text{Re} \left\{ \sum_{i=1}^{N} A_i D_i(t - \tau_i(t)) C_i(t - \tau_i(t)) e^{j[(\omega_0 - \omega_i)(t - \tau_i(t)) + \phi_i]} \right\} \). This expression is labeled as equation (1).]
where [image: Please upload the image or provide a URL for me to generate the alternate text.] is the number of visible satellites, the subscript [image: Please upload the image you'd like me to generate alternate text for.] indicates the [image: Please upload the image you would like me to generate alternate text for.]-th satellite, [image: It seems like there is an error with the image upload or link. Please try uploading the image again or provide a URL. If you have additional context, feel free to add a caption.] is the carrier amplitude of the satellite signal, [image: Please upload the image so I can generate the alt text for you. If you have any specific context to share, feel free to include that as well.] is the data code, [image: It looks like there was an issue with uploading the image. Please try again to upload the image or provide a URL. If you have any additional context or a caption, feel free to include that as well.] is the spread spectrum code, [image: It seems there was an issue with the image upload. Please try uploading the image again or provide the URL. If you would like, you can also add a caption for additional context.] is the code phase, [image: Please upload the image or provide a URL for me to generate the alternate text.] is the carrier frequency, [image: Please upload the image you'd like me to describe.] is the Doppler frequency, [image: Please upload the image you would like me to describe, and I will be happy to help generate the alternate text for it.] is the initial carrier phase. Therefore, a set of spoofing signals sent by the spoofer should be similar to the form shown in Equation 2:
[image: Mathematical equation representing the real part of a summation from 1 to N sub L. The terms include variables A, D, tau, C, and an exponential function with omega, tau, and phi.]
where [image: It seems there is no image provided. Please upload the image or provide a URL so that I can generate alt text for it.] indicates the number of spoofing signals, [image: It seems that your request is related to a mathematical or scientific formula or notation, rather than an image. To provide accurate guidance, kindly upload the image or describe it.], [image: It looks like there was an error in your request. Please upload the image or provide a URL so I can help you generate the alternate text.], [image: Sure, please upload the image or provide a URL so I can help generate the alt text for it.] and [image: Mathematical symbol theta with a subscript "si" in a serif font.] respectively correspond to the amplitude, code phase, Doppler frequency and initial carrier phase of the spoofing signal; [image: I'm sorry, it seems you've posted a mathematical expression instead of an image. If you have an image you'd like me to describe, please upload it or provide a URL.] represents the best estimate of the spoofed data code [image: Please upload the image you want me to generate alternate text for. If you have a URL, you can share it, or if you have the image on your device, you can upload it directly.]. The carrier phase of the spoofing signal is determined by the initial phase and the Doppler frequency. Typically, to circumvent the autonomous integrity monitoring capabilities of the receiver, the spoofer would generate a number of spoofing signals equivalent to the quantity of authentic signals transmitted by the visible satellite. Under the attack of spoofing interference, the target receiver will receive both authentic navigation signal and spoofing signal, which can be expressed as Equation 3:
[image: Equation showing \( y_{\text{tot}}(t) = y(t) + y_z(t) + n(t) \), labeled as equation (3).]
where, [image: Please upload the image or provide a URL so that I can generate the alt text for you.] denotes noise. The noise may also be affected by spoofing attacks. Thus, a simple model of a spoofing attacks is shown in Figure 1.
[image: Diagram illustrating a spoofing scenario with fake and genuine satellites. Fake satellites transmit signals to a spoofer, which then sends altered signals to a target receiver. Genuine satellites transmit directly to the target receiver. Arrows indicate signal paths, labeled as \(y_1\) and \(y_2\), with the terms "Equivalent" and "Spoofer" indicating the roles in the spoofing process.]FIGURE 1 | Spoofing attack model. The fake satellites are imaginary. The spoofed signals [image: It seems there was an error in providing an image. Please ensure to upload the image file or provide a valid URL so I can help generate the alternate text for it. You can also add a caption for additional context if needed.] emitted by the spoofing source and the real satellite signals [image: Please upload the image or provide a URL for me to generate the alternate text.] are simultaneously received by the target receiver.
The analysis above is based on the level of satellite navigation signals. When spoofing attack is directed towards the target receiver, its effects are most readily discernible at the information layer. Specifically, the influence on the pseudo-range information layer can be effectively modeled with Equation 4. Suppose that the true pseudo-range measurement model of the [image: Please provide the image by uploading it, and I'll generate the appropriate alt text for you.]-th satellite at time [image: Please upload the image or provide a URL for me to generate the alternate text.] is:
[image: The image contains a mathematical equation expressing a power series expansion: \(y^{(k)}(t) = C t^{k} + c ( (t + \delta t)^{k} - (t - \delta t)^{k} ) = c ( t^k + \delta t_{+} + \delta t_{-} )\), labeled as equation (4).]
where [image: It seems there’s no image provided. Please upload the image or provide a URL for me to generate the alt text.] is the true pseudo-range, [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the speed of light, [image: Please upload the image or provide a URL so I can assist you in generating the alternate text.] is the signal propagation delay, [image: Greek letter delta with subscript indicating time 't' and index 'u', often used to represent a small change or difference in a variable over time.] and [image: Mathematical notation displaying the Greek letter delta with a subscript "t" and a superscript "(i)".] is the receiver clock error and satellite clock error. Supposing [image: Sorry, I can't process the image. Could you please provide a description or a URL to the image?] represents the additional signal delay imposed by the spoofer at the target receiver, the formulation for the spoofed pseudo-range can be articulated by Equation 5:
[image: Equation showing fluid density update: \( \rho_{z}^{(1)} = \rho^{(0)} + \Delta \rho = \rho^{(0)} + c \Delta t \nabla_{z}^{(0)} \), labeled as equation (5).]
where [image: Please upload the image or provide a link to it, and I will help generate the alternate text for you.] is the additional pseudo-range. Supposing that the spoofing signal can be expressed as an M-order polynomial of [image: It appears you've uploaded a mathematical expression, not an image. If you meant to upload an image, please try doing so again. If you need assistance with something specific, feel free to ask!] after being captured and tracked, the following expression is given:
[image: Mathematical equation showing a piecewise function for \(\Delta \tau_{s}^{(i)}\). For \( t \geq t_{\text{Lock}} \), it sums from \( n = 1 \) to \( M \) of \( a_n (t - t_{\text{Lock}})^n \) plus \( b \). For \( t < t_{\text{Lock}} \), the value is zero. The equation is labeled as (6).]
where [image: I'm unable to view or describe specific images without them being uploaded. Please upload the image or provide a URL for me to assist you.] is the moment when the spoofing signal is captured and tracked, [image: Please upload the image or provide a URL for me to generate the alternate text.] is the polynomial coefficient, [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is the polynomial intercept. Generally, the polynomial order M is usually 1. Thus, based on Equation 6, the spoofing attack model at the measurement level can be derived as Equation 7.
[image: Equation showing delta phi equals c times delta tau sub s superscript v, defined piecewise as c times quantity a times quantity t minus t lock plus b for t greater than or equal to t lock, and zero for t less than t lock. Equation labeled as number seven.]
Here, when [image: It seems you attempted to provide an image, but it did not upload correctly. Please try uploading the image again or provide a description for assistance.] and [image: Please upload the image for which you need alternate text, and I will help you generate a description for it.], it is step spoofing. When [image: If you upload the image or provide a URL, I'd be happy to generate the alt text for you.] and [image: Please upload the image or provide a URL for me to generate the alternate text.], it is slowly varying spoofing.
2.2 Spoofing attack classification
There are two methods for spoofer to generate spoofing signals in the form of Equation 2, namely generative spoofing attack methods and forwarding spoofing attack methods [22, 23]. These two methods are discussed in detail below.
2.2.1 Generative spoofing attack
Generative spoofing attack device directly generates spoofing signals on the premise of known signal pseudo-code and navigation message parameters. Consequently, in the context of Generative spoofing attack, the spoofer can generate deceptive signals independently of the GNSS system. Besides, it is possible for a spoofer to allow for flexible adjustment of various parameters according to their own requirements. However, the implementation of this method entails relatively high costs and complexity. Generative spoofing attacks pose a significant threat to civilian receivers lacking anti-spoofing capabilities. Conversely, for military signals with undisclosed signal structures, the feasibility of generative spoofing attack is limited, thereby restricting its application scope. The general model generative spoofing attack is illustrated in Figure 2.
[image: Diagram illustrating spoofing of GPS signals. Satellites transmit legitimate signals to a target receiver. A spoofer generates false satellite signals using a transmitting antenna to mislead the receiver.]FIGURE 2 | The schematic of generative spoofing attack. Generative spoofing sources do not need to receive real satellite signals and can directly generate spoofed signals based on known signal structures.
2.2.2 Forwarding spoofing attack
In response to the inability of generative spoofing attack to tackle encrypted navigation signals like military codes, forwarding spoofing attack has emerged. Forwarding spoofing attack involves the deceptive jamming source receiving genuine satellite navigation signals through its own antenna and then, after appropriate delay and power amplification, transmitting them to the target receiver to achieve the spoofing effect. Therefore, a prominent feature of forwarding spoofing attack is that the time delay of the spoofing signal reaching the target receiver must be greater than that of the authentic signal. Obviously, this kind of spoofer do not needs to parse navigation signals but only requires power amplification and time delay. Consequently, compared to generative spoofer, forwarding spoofer has a simpler construction, mainly comprising receiving antennas, amplifiers, and transmitting antennas.
According to the different methods of receiving and processing satellite signals, forwarding spoofing attacks can be divided into two types as shown in Figure 3. The first type spoofer involves a single antenna, which is used to receive all available genuine satellite navigation signals within the area. These signals are then uniformly delayed and power-amplified before being retransmitted using a transmitting antenna. While the second type spoofer involves multi-antenna array, which utilizes lots of high-gain narrow-beam array antennas, with each receiving antenna corresponding to a specific satellite signal within the area. Different delays are applied to the various satellite signals before retransmission. Obviously, the first type of forwarding spoofing attack, due to the uniform delay, is more easily detectable by the receiver. The second type offers higher concealment and can deceive the receiver to a designated location, but it presents greater practical operational difficulty.
[image: Diagram showing two scenarios of forwarding spoofing.   a. Single receiving antenna forwarding spoofing: Signals from multiple satellites are received by a single antenna, pass through a unified delay power amplification, transmitted, and reach a target receiver.  b. Multi-antenna array forwarding spoofing: Signals from satellites follow a similar path, received by an antenna array, processed through a delay control network and amplification, then transmitted to a target receiver.]FIGURE 3 | The diagram of forwarding spoofing attack, which is drawn with reference to the literature [65]. (A) The forwarding spoofing based on single antenna. (B) The forwarding spoofing based on multi-antenna array.
To sum up, the classification characteristics of spoofing attack based on signal generation mode are summarized in Table 1.
TABLE 1 | The summary for forwarding spoofing and generative spoofing.
[image: Table comparing spoofing types, advantages, and shortcomings. Generative spoofing attack is highly covert and adjustable but difficult to realize and ineffective for encrypted signals. Forwarding spoofing attack is easy to realize and not restricted by encryption, but has a single spoofing effect and target for implementation.]2.3 Spoofing attack implementation policy
In the spoofing process, once the spoofing source successfully generates spoofing signals, it encounters the challenge of subtly injecting these signals into the tracking loop of the target receiver without detection.
Two strategies are employed to address the challenge: synchronous spoofing and asynchronous spoofing. Synchronous spoofing involves generating false signals that align with the real signal in terms of code phase and Doppler shift. Initially, the power of the spoofing signal is kept low to evade detection before entering the tracking loop. Subsequently, the power gradually increases upon entering the loop, prompting the receiver to lock onto the spoofing signal. The desired spoofing effect is achieved by adjusting the code phase and carrier phase. This strategy facilitates incremental spoofing and is depicted in Figure 4. Synchronous spoofing offers high concealment but presents technical complexities.
[image: Graph showing amplitude versus delay with two signal types: real signal (green line) and spoofing signal (red dashed line). Both have correlation peaks at increasing delays labeled as \( t_0 \), \( t_1 \), and \( t_2 \). Arrows indicate the progression of delay.]FIGURE 4 | The schematic diagram of Synchronous spoofing implementation process.The spoofer captures each receiver channel by aligning the spoofed signal with the true signal from each visible satellite. It starts with low power and then gradually increases the power until it captures the receiver’s tracking loop. Finally the receiver is slowly lured to a false localization result.
On the other hand, asynchronous spoofing disrupts the target receiver by employing high-power interference to cause it to lose lock. Subsequently, spoofing signals are transmitted to allow the target receiver to capture them during reacquisition. Unlike synchronous spoofing, asynchronous spoofing does not require the interference source to generate false signals mirroring the real signal in code phase and Doppler shift. While asynchronous spoofing incurs lower technical costs, it lacks effective concealment compared to synchronous spoofing.
3 DEVELOPMENT STATUS
From the perspective of the published literature, research on anti-spoofing technology for GNSS/INS-based integrated navigation systems primarily focuses on two key areas: spoofing detection and spoofing mitigation. Spoofing detection aims to identify the presence of spoofing interference, while spoofing mitigation works to mitigate or eliminate the impact of spoofing interference. According to the difference of processing layers, spoofing detection technology for satellite navigation systems can be categorized into signal layer-based and information layer-based approaches. Currently, the predominant focus in the research area is on enhancing GNSS resilience against spoofing at the information layer by leveraging auxiliary data provided by the INS. There is comparatively less emphasis on research related to anti-spoofing efforts at the signal layer.
3.1 Spoofing detection based on the integrated navigation
Spoofing detection is to determine whether there is a spoofing signal in the signal from the receiver. In addition to realizing the goal of detecting the spoofed signal, spoofing detection also hopes to achieve high detection accuracy and short detection time through algorithm design and setting the appropriate test statistics, with the purpose of reducing the effect of spoofed signals on the navigation system during the detection process. Based on existing literature, the spoofing detection algorithms based on the combined GNSS/INS navigation system can be further categorized according to the different test statistics: detection algorithms based on the measured values, detection algorithms based on the filtered innovation, and other spoofing detection algorithms.
3.1.1 Detection algorithms based on the measured values
The system measurement value refers to the direct measurement information resolved by the integrated navigation system and its subsystems such as position, velocity, acceleration, attitude, etc. Residual consistency detection method, which detect spoofing by utilizing the high positioning accuracy in a short period of time and independent characteristics of INS, is a typical example of this type of algorithm, e.g., position/velocity based residual consistency detection. The detection domain of literature [24] is position, and literature [25] investigates vehicle speed based spoofing detection. Figure 5 is the flow of the position/velocity consistency detection algorithm referring to [26].
[image: Flowchart illustrating contingency judgment in satellite signal processing. Inputs: GNSS and INS position/velocity vectors. Decision diamond asks if the error exceeds a threshold. If no, authentic satellite signals are used; if yes, spoofing signals are employed.]FIGURE 5 | The flow chart of position or velocity consistency detection algorithm. The consistency detection algorithm achieves spoofing detection by comparing the solved data from GNSS with the solved data from INS.
In addition, literature [27] describes a method for detecting GNSS spoofing signals using accelerometers. The method performs spoofing detection by comparing the acceleration estimated from the GNSS output with the acceleration output from the INS accelerometer. Literature [28] improves the detection performance by using both the residual acceleration and the north (or east) accelerometer error component as decision variables. Literature [29] detects the spoofing using pseudo-range rate, through comparing the constructed pseudo-range rate from INS and the pseudo-range rate solved by GNSS. Different from the pseudo-range detection, the pseudo-range rate detection is more sensitive to the slowly varying spoofing interference. For scenarios of spoofed attacks on selected satellites, literature [30] takes advantage of GNSS/INS tightly coupled integration that its navigation solving is possible even with only one visible satellite for spoofing detection. The traversal method is adopted to solve all visible satellites one by one, and then the results are compared with the receiver clock difference/clock drift equivalent distance deviation to detect spoofing. By this method, the influence of spoofed stars can be eliminated to ensure the positioning accuracy of the combination navigation system.
In the case of airborne vehicles, attitude can also play a role in spoofing detection. [31] conducted experimental tests using UAV platforms and discovered that spoofing attacks significantly impact pitch and roll angles, while minimally affecting heading angle. Additionally, [32] employed carrier phase double-difference observables for spoofing signal detection and integrated this with attitude data from the INS to successfully identify and counter forward spoofing interference.
However, the above-mentioned spoofing detection methods, focusing on a single dimension, may only address specific spoofing interferences and are susceptible to failure when attackers alter their tactics. By expanding the dimensionality of comparison information, these limitations can be overcome while enhancing detection performance. For instance, [33] employed a short-term pure inertial error propagation model to utilize position and velocity data from inertial guidance for predicting and estimating the guard’s pseudo-range and pseudo-range rate. They integrated actual system measurements to create pseudo-range and pseudo-range rate time series and conducted spoofing detection by parameter fitting of these time series. In another study referenced as [34], the impact of spoofing attacks on the navigation receiver’s time was leveraged, incorporating a consistent spoofing detection model in the time dimension alongside the position dimension.
Taken together, this type of detection algorithm is simple in principle and the test statistics are easy to obtain. However, this type of detection method is greatly affected by the accuracy of the inertial device, the higher the IMU accuracy, the better the detection performance. At the same time, it is affected by the cumulative effect of the inertial navigation device error. When the spoofing attacks exist for a longer period, this type of algorithm will no longer be applicable. Besides it cannot satisfy the detection requirement of induced slowly varying spoofing interference.
3.1.2 Detection algorithms based on filter innovation
Filter innovation is defined as the difference between the actual observed value of a system state variable and the predicted value of the Kalman filter algorithm, which is the new information added to the observed value at the current moment. The spoofing attack directly affect the system measurement information, which in turn will cause the filter innovation to be affected. Therefore, test statistic constructed by the statistical characteristics of the normalized filter innovation can be used for spoofing detection. [35] analyzed the impact of spoofing attack on the Kalman filtering process, and the summary of the conclusions can be obtained as follows:
	[image: A solid black circle on a white background.] the spoofing attack has a direct effect on the innovation of the current moment, and a cumulative effect on the innovation of the future moment;
	[image: A black circle on a white background.] the spoofing attack has a large effect on the expectation of the innovation and the error estimation of INS, and has no significant effect on the filtering error covariance array;
	[image: A black circle on a white background with smooth edges, centered within the frame.] the innovation is most affected in the initial stage of spoofing introduction; and
	[image: A solid black circle on a white background.] due to the effect of the feedback correction mechanism of the filter, the innovation is dynamically adjusted towards the expectation of zero.

Currently, spoofing detection with filter innovation can be categorized into snapshot and sequential methods [36]. Snapshot method is to construct the test statistic only with the current moment of the innovation, while sequential method is to construct the test statistic using the innovation sequences and their covariance matrices within a time window. Typical snapshot methods include the chi-square test based on innovation [37, 38], and the multiple solution separation [39]. The chi-square detection method based on innovation is only effective for step spoofing with large amplitude fluctuations. The multiple solution separation method can effectively detect slowly varying spoofing, but not for the full satellite spoofing scenario. One of the typical sequential methods is Autonomous Integrity Monitoring Extrapolation (AIME) [40], which utilizes the sequence of Kalman filtering innovation to construct a test statistic. Literature [41] states that, compared to the snapshot method of detection, the extrapolation method is more suitable for satellite slowly varying spoofing detection. Spoofing offsets of position and velocity are very small during the filtering period when facing slowly varying spoofing signal attack, leading to the filter slowly correcting the output of the inertial navigation with a small correction amount. This property gives the snapshot method a long detection time and a high rate of missed alarms [42]. Meanwhile, the error tracking and closed-loop correction mechanism of Kalman filter are also the reasons for long detection delay problem of AIME when detecting slowly varying spoofing [43].
To enhance the detection performance and reduce the detection delay associated with slowly varying spoofing detection methods, literature [44] introduced a spoofing detection algorithm based on adaptive sequential probability ratio detection (SPRT). Combined with Bayes parameter estimation theory, SPRT can adaptively adjust the test statistic by modifying the risk parameter, thereby enhancing both the detection speed and performance of the algorithm. In addition to optimizing the innovation sequence algorithm, [45] proposed the detection algorithm that utilizing the changing rate of innovation to construct the test statistic. Integration of SPRT with AIME has significantly improved the detection efficiency of slowly varying spoofing detection. Additionally, [46] put forward a spoofing detection algorithm based on innovation skewness. It is experimentally demonstrated that the algorithm can improve the detection delay performance of induced retardation spoofing attacks by more than 35% compared to the general continuous method.
Robust estimation is a class of estimation methods that minimize the influence of observations in the presence of anomalous observations [47]. Therefore, robust estimation can not only be used to solve the problem of residual influence of fake calendar elements in the past for deception suppression, but also can solve the problem of error tracking and closed-loop correction feedback mechanism to improve the performance of spoofing detection algorithms. The spoofing detection algorithm based on robust estimation are designed to attenuate the effect of spoofing interference by selecting a suitable equivalent weight function to compute the weights [48–52]. The model of the detection method is shown in Figure 6, where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] refers to the innovation sequence, [image: It seems like the image didn't upload correctly. Please try uploading the image again, and I'll be glad to help with the alt text.] is the test statistic and [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] denotes weight vector. Based on the robust estimation and detection window, [49] proposed an improved detection algorithm. To improve the detection performance and navigation accuracy, the algorithm calculated the weight factors by two suitable thresholds and could adaptively adjust the gain matrix to reduce the weight of the spoofed satellite measurements. [50] proposed a GNSS/INS tightly combined innovation optimized robust estimation spoofing detection algorithm, which further improved the detection efficiency and detection performance of induced retardation spoofing interference.
[image: Flowchart illustrating a process for updating robust estimation weights. It starts with an integrated navigation system, constructing a test statistic, and updating robust estimation weights. It branches based on conditions \( |T| \geq T_2 \) and \( |T| \leq T_1 \): if \( |T| \geq T_2 \), a spoofing attack exists; if \( |T| \leq T_1 \), updating weights; otherwise, performing weight reduction.]FIGURE 6 | The flowchart of spoofing detection algorithm based on robust estimation. The algorithm constructs the test statistic [image: It seems there was an issue with uploading the image. Please try uploading the image again, and I will be happy to help generate the alt text for it.] via filter innovation [image: If you upload an image, I can help generate the alternate text for it. Please try uploading the image again.], which is used to compare against the judgment thresholds [image: The image shows a mathematical expression with variables T and t, where T is raised to the power of one, and t is indicated by a subscript. The expression resembles a standard format used in mathematical equations.] and [image: Please upload the image you would like me to generate alternate text for.]. The corresponding weights [image: Please upload the image or provide a URL to generate alternate text.] are then adjusted according to the comparison results.
For the problem of high false alarm rate of the traditional innovation detection algorithms after the deception disappears, [53] established a mode adjustment criterion based on GNSS/INS tightly coupled system. Its core idea was employing sliding window detection to downgrade the innovation when the measurement value may be anomalous while other time remaining unchanged. By switching between the two modes, the computational burden of past observations and the detection delay were shortened. When subjected to intermittent spoofing attacks, the improved algorithm had higher detection sensitivity and could recover immediately after the spoofing disappeared. In addition, the response speed to the next spoofing attack was faster.
In order to avoid the effects of closed-loop correction mechanisms, other scholars have equivalently implemented closed-loop correction using an open-loop correction structure with cumulative error valuations [54]. Particularly, [55] combined the sliding window accumulation of chi-square detection based on innovation with the open-loop correction structure for spoofing detection of GNSS/INS tightly coupled system. Compared with the traditional chi-square detection method, this algorithm reduced the detection time for trap spoofing interference by 25% and improved the detection sensitivity for slowly varying spoofing interference.
Overall, the use of spoofing detection methods based on innovation can effectively identify trap spoofing. However, the detection time for slowly varying spoofing attacks may be prolonged due to error tracking and the negative feedback effect of Kalman filter. In some cases, the combined navigation system may already have been deceived by the spoofing attack before successful detection, allowing the spoofing to achieve its intended purpose. Additionally, many detection algorithms for slowly varying spoofing attacks may struggle to effectively detect when the deception disappears, potentially leading to harmful consequences.
3.1.3 Other detection algorithms based on integrated navigation
With the rapid development of artificial intelligence (AI) in recent years, many scholars explore the use of neural networks for deception detection problems. The Probabilistic Neural Network (PNN), whose model structure is shown in Figure 7, stands out for its rapid convergence, high classification accuracy, and effectiveness in pattern recognition and fault detection [56]. For instance, [57] developed a PNN model for detecting forwarding spoofing, ensuring real-time detection of such interference. Additionally, researchers have leveraged innovative approaches such as generative adversarial networks (GANs) to combat GNSS spoofing by learning and analyzing spoofed signal features [58]. Furthermore, in literature [59], spoofing attacks were detected by creating a feature vector that captures the differences in velocity estimates from GNSS receivers and IMUs on genuine and spoofed trajectories, followed by training a neural network for detection. These methods have yielded good detection results. However, it is evident that AI-based spoofing detection methods require the collection of data related to spoofed and real signals in advance, and the detection model is poorly migratable, which constrains the widespread use of the algorithms.
[image: Diagram of a neural network with three layers: an input layer with four nodes labeled x1 to x4, a sample layer, and an addition layer leading to an output node labeled y. Arrows indicate connections between nodes across layers.]FIGURE 7 | The model structure of PNN. PNN consists of input layer, sample layer, addition layer and output layer. The core of PNN is the sample layer. The sampple layer is used to calculate the pattern distance of the samples to be recognized and then the radial basis function is used as the activation function.
In addition to AI-based approaches, some researchers have tapped into redundant information from alternative navigation augmentation systems like visual odometry (VO) to assist spoofing detection [60]. VO can serve as a good supplement to GNSS positioning. This article first used an optimized coupling framework to fuse the measurement results of VO and INS, and then monitored the deviation between the fusion results and GNSS. After successfully detecting deception, the optimized estimation algorithm is modified to prevent the system from being affected by deceptive GNSS data and enable it to continue localization. However, it is important to note that this detection method may necessitate adjustments to the hardware system and is typically applicable only to combined navigation systems that already include visual odometry.
3.2 Spoofing mitigation based on the integrated navigation
Anti-spoofing technology not only needs to detect and identify the spoofing signals, but also needs to mitigate the effects of spoofing attacks as much as possible after spoofing detection.
Some scholars have proposed borrowing deception suppression methods from multipath suppression techniques. While the characteristics of multipath effects and deception attacks share similarities, there are key distinctions: (1) Signal delay difference: The multipath signal tends to lag behind the real satellite signals, while the deception signal may be ahead of the real signals; (2) Receiver Tracking Loop Impact: Multipath signals distort the correlation peaks of the tracking loop, affecting tracking accuracy. In contrast, deception signals can be separated from the correlation peaks of the spoofed signal using correlation strategies. This separation can lead the tracking loop to lock onto the spoofed signal, preventing the estimation of parameters for the genuine satellite signal by the Multipath Estimation Delay Locked Loop (MEDLL). Therefore, the spoofing suppression algorithm needs to control the receiver tracking loop according to the spoofing signal identification results to ensure that the receiver always locks on the real satellite signal. To deal with these distinctions, a spoofing mitigation algorithm must tailor the control of the receiver tracking loop based on the identified spoofing signals. This approach ensures that the receiver consistently locks onto the authentic satellite signal, mitigating the impact of deception attacks.
The utilization of MEDLL in a GNSS/INS integrated navigation system, as described in literature [61], represents a typical approach for spoofing mitigation. By leveraging INS information, this method can effectively identify and suppress spoofed signals. Furthermore, literature [62, 63] introduced the multi-correlator structure of MEDLL for the GNSS/INS integrated navigation system. When combined with the robust Kalman filtering algorithm, this structure resulted in an effective anti-spoofing algorithm. The algorithm reduced the position error under spoofing attacks from 600 m to 10.0 m [63]. However, it is important to note that while algorithms based on multipath suppression demonstrate strong spoofing detection and suppression capabilities, they are reliant on the presence of genuine satellite signals for their operation. In scenarios where genuine satellite signals are absent, these algorithms may not be effective. Therefore, further research and development may be necessary to address this limitation and ensure robust anti-spoofing capabilities in all operational conditions.
It is indeed well-recognized that integrating robust factor into filtering algorithms can effectively suppress the impact of spoofing attacks in combined navigation systems. Many contemporary research efforts focusing on spoofing mitigation algorithms within combined navigation systems have centered their improvements on the robust estimation algorithm. For instance, [64] analyzed the impact of spoofing attacks on GNSS/INS integration and explored an anti-spoofing method based on Adaptively Robust Kalman Filter. By this way, they succeeded in bolstering the system’s anti-spoofing interference capability and adaptive capacity.
Overall, current research on deception mitigation algorithms can be categorized into the following three types: a) Utilizing the MEDLL algorithm to recover genuine positioning results by distinguishing between authentic and spoofed signals; b) Incorporating the robust factor into filtering algorithms to mitigate the impact of spoofing on measurement information; c). The spoofing mitigation based on the relevant algorithms of AI. Generally speaking, the research on spoofing suppression algorithms is relatively small, and spoofing mitigation algorithms based on integrated navigation need to be studied deeper.
4 CHALLENGES AND FUTURE DEVELOPMENT TRENDS
Anti-spoofing technology based on GNSS/INS integrated navigation system has become increasingly important for navigation security. Although some research progress has been made in this area, there are still many problems and challenges that need to be further explored and investigated. The following section will analyze the problems encountered and provide an outlook on future development trends for the research area.
4.1 Focusing on technical research in spoofing mitigation
Currently, anti-spoofing techniques for combined navigation systems mainly focus on spoofing detection and identification. But it is indeed crucial to not only focus on spoofing detection and identification but also on spoofing mitigation to enhance the safety and reliability of integrated navigation systems. By developing effective spoofing mitigation algorithms, the normal operation of the navigation system and the maintenance of high accuracy under spoofing attacks will be ensured. Research that delves deeper into the characteristics of spoofing signals and their propagation mechanisms will be essential for the advancement of anti-spoofing technologies. This will ultimately contribute to the development of more robust and secure integrated navigation systems in the future.
4.2 Enhancing resilience to complex and volatile spoofing techniques
Existing anti-spoofing techniques often can only address a single type of spoofing attack and lack sufficient resistance to complex and variable spoofing methods. Therefore, future research will likely focus on improving the system’s ability to resist such attacks. With the continuous maturation of AI and machine learning algorithms, the GNSS/INS combined navigation system can integrate various anti-spoofing techniques, together with AI models to adaptively identify and cope with various spoofing attacks, thus achieving intelligent and adaptive anti-spoofing techniques. On the other hand, it is also necessary to strengthen research on spoofing interference techniques to provide support for feasibility testing of anti-spoofing techniques.
4.3 Optimize real-time performance and accuracy in highly dynamic environments
Under the dynamic environment, such as high-speed motion or complex terrain, anti-spoofing techniques are put to the test in terms of real-time and accuracy. The system must quickly and accurately distinguish between the real and spoofed signals, which places greater demands on the technique’s performance. To address this challenge, future research will focus on optimizing algorithms and data processing methods to improve the system’s real-time and accuracy. For instance, to reduce data processing time, one can use more efficient signal processing techniques. Additionally, to improve the system’s computational power and response speed, advanced hardware platforms and parallel computing techniques can be utilized.
4.4 Conduct anti-spoofing techniques based on deep GNSS/INS navigation system
Depending on the depth of information, the GNSS/INS integrated navigation system has three types of combined modes: loose integration, tight integration and deep integration. The performance and impact of these modes differ significantly when dealing with spoofing interference. There are few studies analyze the impact of spoofing and anti-spoofing research for deeply coupled systems. The existing literature primarily focuses more on anti-spoofing technology based on loosely coupled systems and tightly coupled systems. In recent years, with the continuous development of theoretical research and engineering practice in deeply coupled systems, the anti-spoofing need for deeply coupled systems has become increasingly prominent. Therefore, analyzing the impact of spoofing interference on the deep GNSS/INS integration system and developing appropriate anti-spoofing studies holds great theoretical significance and practical value.
5 CONCLUSION
This paper focuses on the anti-spoofing technology of GNSS/INS integrated navigation systems for enhancing the safety of integrated system. Firstly, the paper introduces the principle of spoofing interference technology and attack strategies, which have different classifications based on their generating modes, attack strategies, and manifestations. Secondly, the paper sorts out and summarizes the current research status of anti-spoofing technology of GNSS/INS combined navigation systems. This paper compares and analyzes the performance characteristics and technical aspects of detection methods based on the measured values, filter innovation, and other detection methods based on integrated navigation systems. Then, the paper sorts out the spoofing mitigation methods based on multipath suppression and robust estimation. Finally, with the purpose of providing solid technical support for the safe application of satellite navigation systems, this paper points out the difficulties faced by the development of GNSS/INS anti-spoofing technology and the future development direction.
AUTHOR CONTRIBUTIONS
LW: Conceptualization, Investigation, Methodology, Writing–original draft, Writing–review and editing. LC: Conceptualization, Investigation, Methodology, Writing–original draft, Writing–review and editing. BL: Funding acquisition, Supervision, Validation, Writing–review and editing. ZhL: Supervision, Writing–review and editing. ZoL: Validation, Writing–review and editing. ZuL: Funding acquisition, Methodology, Supervision, Writing–original draft, Writing–review and editing.
FUNDING
The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. National Natural Science Foundation of China under Grant U20A0193.
PUBLISHER’S NOTE
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
ABBREVIATIONS
GNSS, Global Navigation Satellite System; GPS, Global Positioning System; INS, Inertial Navigation System; RAIM, Receiver Autonomous Integrity Monitoring; PRN, Pseudo-Random Noise; IMU, Inertial Measurement Unit; AIME, Autonomous Integrity Monitoring Extrapolation; SPRT, Adaptive sequential probability ratio detection; AI, Artificial intelligence; PNN, Probabilistic Neural Network; GAN, Generative Adversarial Network; VO, Visual Odometry; MEDLL, Multipath Estimation Delay Locked Loop.

REFERENCES
	 1. Zhang H, Yang X, Liang J, Xu X, Sun X. Gps path tracking control of military unmanned vehicle based on preview variable universe fuzzy sliding mode control. Machines (2021) 9:304. doi:10.3390/machines9120304
	 2. Wang X, Zhao Q, Xi R, Li C, Li G, Li LA. Review of bridge structural health monitoring based on gnss: from displacement monitoring to dynamic characteristic identification. IEEE Access (2021) 9:80043–65. doi:10.1109/ACCESS.2021.3083749
	 3. Zhu H, Chen K, Chai H, Ye Y, Liu W. Characterizing extreme drought and wetness in guangdong, China using global navigation satellite system and precipitation data. Satellite Navigation (2024) 5:1. doi:10.1186/s43020-023-00121-6
	 4. Chen Q, Zhang Q, Niu X, Liu J. Semi-analytical assessment of the relative accuracy of the gnss/ins in railway track irregularity measurements. Satellite Navigation (2021) 2:25. doi:10.1186/s43020-021-00057-9
	 5. Li X, Chen L, Lu Z, Wang F, Liu W Xiao W, et al. Overview of jamming technology for satellite navigation. Machines (2023) 11:768. doi:10.3390/machines11070768
	 6. Gao Y, Li G, Lv Z. Current situation and prospect of satellite navigation interference technology. Geomatics and Spat Inf Technol (2022) 45:13–8. doi:10.3969/j.issn.1672-5867.2022.06.005
	 7. Song J, Lu Z, Liu Z, Xiao Z, Dang C Wang Z, et al. Review on the time-domain interference suppression of navigation receiver. Syst Eng and Electron (2023) 45:1164–76. doi:10.12305/i.issn.1001-506X.2023.04.25
	 8. Zhang L, Zhang C, Gao Y. Gnss spoofing and detection (i): typical events and development of spoofing technology. J Navigation Positioning (2021) 9:1–7. doi:10.16547/j.cnki.10-1096.20210301
	 9. Jones M. Spoofing in the black sea: what really happened? (2017). p. 11. GPS World. 
	 10. Tang B, Zheng C, Zhang L, Wang Z. New progress and implication of United States navigation warfare. Navigation Positioning and Timing (2020) 7:110–6. doi:10.19306/i.cnki.2095-8110.2020.04.014
	 11. Volpe JA. Vulnerability assessment of the transportation infrastructure relying on the global positioning system (2001). 
	 12. Dehghanian V, Nielsen J, Lachapelle G. Gnss spoofing detection based on signal power measurements: statistical analysis. Int J Navigation Observation (2012) 2012:1–8. doi:10.1155/2012/313527
	 13. Nielsen J, Dehghanian V, Lachapelle G. Effectiveness of gnss spoofing countermeasure based on receiver cnr measurements. Int J Navigation Observation (2012) 2012:1–9. doi:10.1155/2012/501679
	 14. Zhang X, Ding C, Chen S. Spoofing detection technique using carrier phase double difference of spin dual-antenna. Navigation Positioning and Timing (2023) 10:32–8. doi:10.19306/i.cnki.2095-8110.2023.02.005
	 15. Li J, Zhu X, Ouyang M, Shen D, Chen Z, Dai Z. Gnss spoofing detection technology based on Doppler frequency shift difference correlation. Meas Sci Technol (2022) 33:095109. doi:10.1088/1361-6501/ac672a
	 16. Wang S, Liu H, Tang Z, Ye B. Binary phase hopping based spreading code authentication technique. Satellite Navigation (2021) 2:4–9. doi:10.1186/s43020-021-00037-z
	 17. Kuhn MG. An asymmetric security mechanism for navigation signals. In: International workshop on information hiding;  (23-25 May 2004); Toronto, ON, Canada. Springer (2004). p. 239–52.
	 18. Kerns AJ, Wesson KD, Humphreys TE. A blueprint for civil gps navigation message authentication. In: 2014 IEEE/ION Position, Location and Navigation Symposium-PLANS 2014;  (05-08 May 2014); Monterey, CA, USA. IEEE (2014). p. 262–9.
	 19. Ghorbani K, Orouji N, Mosavi MR. Navigation message authentication based on one-way hash chain to mitigate spoofing attacks for gps l1. Wireless Personal Commun (2020) 113:1743–54. doi:10.1007/s11277-020-07289-z
	 20. Wu Z, Zhang Y, Liu R. Bd-ii nma&ssi: an scheme of anti-spoofing and open beidou ii d2 navigation message authentication. IEEE Access (2020) 8:23759–75. doi:10.1109/ACCESS.2020.2970203
	 21. Zhang L, Zhang C, Gao Y. Gnss spoofing and detection (iii): spoofing detection technology based on auxiliary information. J Navigation Positioning (2021) 9:13–9. doi:10.16547/j.cnki.10-1096.20210502
	 22. Li X, Lu Z, Yuan M, Liu W, Wang F Yu y., et al. Tradeoff of code estimation error rate and terminal gain in scer attack. IEEE Trans Instrumentation Meas (2024) 73:1–12. doi:10.1109/TIM.2024.3406807
	 23. Gao Y, Lv Z, Zhou P, Jia Z, Zhang L, Cong D. Current status and prospects of satellite navigation deception interference technology. Geomatics and Spat Inf Technol (2019) 42:116–20. doi:10.3969/j.issn.1672-5867.2019.10.034
	 24. Broumandan A, Lachapelle G. Spoofing detection using gnss/ins/odometer coupling for vehicular navigation. Sensors (2018) 18:1305. doi:10.3390/s18051305
	 25. Curran JT, Broumendan A. On the use of low-cost imus for gnss spoofing detection in vehicular applications. In: International Technical Symposium on Navigation and Timing (ITSNT 2017);  (14-17 Nov 2017); Toulouse, France (2017). p. 1–8. 
	 26. Wu Z. Research on inertial assisted detection algorithm for induced GNSS deception. Master’s thesis. Changsha: National University of Defense Technology (2018). 
	 27. Lee JH, Kwon KC, An DS, Shim DS. Gps spoofing detection using accelerometers and performance analysis with probability of detection. Int J Control Automation Syst (2015) 13:951–9. doi:10.1007/s12555-014-0347-2
	 28. Kwon K-C, Shim D-S. Performance analysis of direct gps spoofing detection method with ahrs/accelerometer. Sensors (2020) 20:954. doi:10.3390/s20040954
	 29. Chang H, Pang C, Zhang L, Guo Z, Lv M, Wu Q. An ins-assisted bds pseudorange rate consistency deception signal detection method. J Air Force Eng Univ (2022) 23:51–7. doi:10.3969/i.issn.2097-1915.2022.04.008
	 30. Liu K. Research on GNSS spoofing detection algorithm and experimental verification methods. Ph.D. thesis. Changsha: National University of Defense Technology (2019). 
	 31. Guo Y. Research on covert spoofing algorithm of UAV based on INS/GNSS integrated navigation. Ph.D. thesis. Changsha: National University of Defense Technology (2019). 
	 32. Li S, Liu y., Zhang H, Zhang X. Inertial measurements aided gnss spoofing detection technique. J Chin Inertial Technol (2013) 21:336–40+353. doi:10.13695/j.cnki.12-1222/o3.2013.03.006
	 33. Wu Z, Wu W, Liu K. Research on algorithm of gradually induced spoofing detection based on tightly coupled ins/gnss integration. Navigation Positioning and Timing (2019) 6:7–13. doi:10.19306/j.cnki.2095-8110.2019.01.002
	 34. Liu Y, Li S, Fu Q, Zhou Q. Chip-scale atomic clock aided ins/gnss integrated navigation system spoofing detection method. J Chin Inertial Technol (2019) 27:654–60. doi:10.13695/j.cnki.12-1222/o3.2019.05.014
	 35. Liu Y, Li S, Fu Q, Liu Z. Impact assessment of gnss spoofing attacks on ins/gnss integrated navigation system. Sensors (2018) 18:1433. doi:10.3390/s18051433
	 36. Liu Y, Li S, Fu Q, Liu Z, Zhou Q. Analysis of kalman filter innovation-based gnss spoofing detection method for ins/gnss integrated navigation system. IEEE Sensors J (2019) 19:5167–78. doi:10.1109/JSEN.2019.2902178
	 37. Abuhashim TS, Abdel-Hafez MF, Al-Jarrah MA. Building a robust integrity monitoring algorithm for a low cost gps-aided-ins system. Int J Control Automation Syst (2010) 8:1108–22. doi:10.1007/s12555-010-0520-1
	 38. Yang C, Mohammadi A, Chen Q-W. Multi-sensor fusion with interaction multiple model and chi-square test tolerant filter. Sensors (2016) 16:1835. doi:10.3390/s16111835
	 39. Liu H, Yue Y, Yang Y, Jiang D. Integrity monitoring for gnss/inertial based on multiple solution separation. J Chin Inertial Technol (2012) 20:63–8. doi:10.13695/j.cnki.12-1222/o3.2012.01.007
	 40. Ye Q, Gu Y, Li L, Du F, Li R. Integrity monitoring for gnss/ins integrated navigation based on improved aime. In: China satellite navigation conference . Springer (2023). p. 533–44. doi:10.1007/978-981-99-6944-9_46
	 41. Bhatti UI, Ochieng WY, Feng S. Integrity of an integrated gps/ins system in the presence of slowly growing errors. part i: a critical review. Gps Solutions (2007) 11:173–81. doi:10.1007/s10291-006-0048-2
	 42. Zhong L, Liu J, Li R, Wang R. Approach for detecting soft faults in gps/ins integrated navigation based on ls-svm and aime. The J Navigation (2017) 70:561–79. doi:10.1017/S037346331600076X
	 43. Wang S, Zhan X Pan W, et al. Gnss/ins tightly coupling system integrity monitoring by robust estimation. J Aeronautics, Astronautics Aviation (2018) 50:61–80. doi:10.6125/JoAAA.201803_50(1).06
	 44. Zhong L, Liu J, Yu L, Zhang Z. Slowly varying spoofing interference detection algorithm based on adaptive sprt. J Signal Process (2022) 38:2144–54. doi:10.16798/j.issn.1003-0530.2022.10.015
	 45. Bhatti UI, Ochieng WY, Feng S. Performance of rate detector algorithms for an integrated gps/ins system in the presence of slowly growing error. GPS solutions (2012) 16:293–301. doi:10.1007/s10291-011-0231-y
	 46. Xie F, Lin H, Yu J, Mou W. Research on spoofing detection of gnss/ins tightly coupled system based on skewness test. In: 2023 5th International Conference on Electronic Engineering and Informatics (EEI);  (30 June 2023 - 02 July 2023); Wuhan, China. IEEE (2023). p. 254–61. doi:10.1109/EEI59236.2023.10212511
	 47. Zhou J. Classical error theory and robust estimation. Acta Geodaetica et Cartographica Sinica (1989) 18:115–20. 
	 48. Jiang Y, Pan S, Ye F, Gao W, Ma C, Wang H. Approach for detection of slowly growing fault based on robust estimation and improved alme. Syst Eng Electron (2022) 44:2894–902. doi:10.12305/i.issn.1001-506x.2022.09.24
	 49. Zhang C, Zhao X, Pang C, Wang Y, Zhang L, Feng B. Improved fault detection method based on robust estimation and sliding window test for ins/gnss integration. J Navigation (2020) 73:776–96. doi:10.1017/S0373463319000778
	 50. Ke Y, Lv Z, Zhou M, Deng X, Zhou S, Ai H. Innovation optimal robust estimation spoofing detection algorithm of tightly coupled gnss/ins integration. J Chin Inertial Technol (2022) 30:272–80. doi:10.13695/j.cnki.12-1222/o3.2022.02.020
	 51. Zhang C, Lv Z, Zhang L, Gao Y. A spoofing detection algorithm for ins/gnss integrated navigation system based on innovation rate and robust estimation. J Chin Inertial Technol (2021) 29:328–33. doi:10.13695/j.cnki.12-1222/o3.2021.03.008
	 52. Ke Y, Lv Z, Zhang C, Deng X, Zhou W, Song D. Tightly coupled gnss/ins integration spoofing detection algorithm based on innovation rate optimization and robust estimation. IEEE Access (2022) 10:72444–57. doi:10.1109/ACCESS.2022.3186305
	 53. Ren L, Zhao X, Pang C, Zhang C, Zhang L. Improved integrity monitoring method based on robust estimation of gnss/ins integrated navigation. Aerospace Control (2021) 39:21–6. doi:10.16804/j.cnki.issn1006-3242.2021.05.004
	 54. Zou S, Zhang Q, Ding Z. Using accumulated errors to realize close-loop rectification of integrated navigation system. Acta Electronica Sinica (2001) 29:1221–4. 
	 55. Zhong L, Liu J. Research on spoofing attacks detection technology based on tightly integrated navigationt. In: The 5th Chinese aeronautics science and technology conference . Jiaxing, China: Beihang University Press (2021). p. 418–23. doi:10.26914/c.cnkihy.2021.064888
	 56. Zhang Y, Jia Y, Wu W, Su X, Shi X. Application of probabilistic neural network to typical fault diagnosis of vehicle gearbox. Automotive Eng (2020) 42:972–7. doi:10.19562/j.chinasae.qegc.2020.07.018
	 57. Pang C, Guo Z, Lv M, Zhang L, Zhai D, Zhang C. Bds against repeater deception iamming detection algorithm based on pnn. J Chin Inertial Technol (2021) 29:554–60. doi:10.13695/j.cnki.12-1222/o3.2021.04.021
	 58. Li J, Zhu X, Ouyang M, Li W, Chen Z, Fu Q. Gnss spoofing jamming detection based on generative adversarial network. IEEE Sensors J (2021) 21:22823–32. doi:10.1109/JSEN.2021.3105404
	 59. Guizzaro C, Formaggio F, Tomasin S. Gnss spoofing attack detection by imu measurements through a neural network. In: 2022 10th Workshop on Satellite Navigation Technology (NAVITEC);  (05-07 April 2022); Noordwijk, Netherlands. IEEE (2022). p. 1–6. doi:10.1109/NAVITEC53682.2022.9847562
	 60. Gu N, Xing F, You Z. Gnss spoofing detection based on coupled visual/inertial/gnss navigation system. Sensors (2021) 21:6769–90. doi:10.3390/s21206769
	 61. Xu R, Ding M, Meng Q, Liu J. Spoofing interference identification technique of medll aided gnss/ins system. J Chin Inertial Technol (2018) 26:223–30. doi:10.13695/j.cnki.12-1222/o3.2018.02.013
	 62. Shang X, Sun F, Zhang L, Wang D, Ke Y. Ins aided gnss spoofing identification and suppression method. J Chin Inertial Technol (2022) 30:181–7. doi:10.13695/j.cnki.12-1222/o3.2022.02.007
	 63. Shang X, Sun F, Zhang L, Cui J, Zhang Y. Detection and mitigation of gnss spoofing via the pseudorange difference between epochs in a multicorrelator receiver. GPS solutions (2022) 26:37. doi:10.1007/s10291-022-01224-4
	 64. Hao Y, Shi C, Xu A, Sui X, Xia M. Revealing methods of gnss spoofing mitigation through analyzing the spoofing impacts on adaptively robust estimation-based rtk/ins tightly coupled integration. IEEE Sensors J (2023) 23:25165–78. doi:10.1109/JSEN.2023.3303199
	 65. Wang J, Guo Y, Tang K, He X. Development trend of spoofing jamming technology for satellite navigation. Navigation and Control (2022) 21:13–24. doi:10.3969/i.issn.1674-5558.2022.01.002

Conflict of interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Copyright © 2024 Wang, Chen, Li, Liu, Li and Lu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
		REVIEW
published: 12 December 2024
doi: 10.3389/fphy.2024.1487384


[image: image2]
Overview of the development of satellite navigation blanket interference monitoring
Yinhui He1,2, Baiyu Li1,2, Jinping Chen3, Zhi Wang4, Wei Xiao1,2 and Zukun Lu1,2*
1College of Electronic Science and Technology, National University of Defense, Changsha, China
2Key Laboratory of Satellite Navigation Technology, Changsha, China
3Beijing Satellite Navigation Center, Beijing, China
4Transcom (Shanghai) Technology Co., Ltd., Shanghai, China
Edited by:
David Ruffolo, Mahidol University, Thailand
Reviewed by:
Sampad Kumar Panda, K L University, India
Zhu Xiao, Hunan University, China
* Correspondence: Zukun Lu, luzukun@nudt.edu.cn
Received: 28 August 2024
Accepted: 25 November 2024
Published: 12 December 2024
Citation: He Y, Li B, Chen J, Wang Z, Xiao W and Lu Z (2024) Overview of the development of satellite navigation blanket interference monitoring. Front. Phys. 12:1487384. doi: 10.3389/fphy.2024.1487384

Satellite navigation interference monitoring is an important means to effectively evaluate interference and ensure the normal operation of global navigation satellite system (GNSS). Once interference is detected, this monitoring can identify the type of it, perform direction-finding and localization, evaluate its impact on GNSS, and guide the implementation of effective countermeasures. With the continuous progress of interference technology, the power required to cause the same jamming effect to the navigation system is getting smaller and smaller. Traditional radio monitoring system has been unable to meet the needs of the current satellite navigation monitoring in terms of sensitivity and accuracy. It is of great significance to develop and improve the dedicated satellite navigation monitoring system. This paper introduces the basic concept of satellite navigation interference monitoring and the composition of the system, analyzes the key technologies and finally gives an outlook on the development trends in this field.
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1 INTRODUCTION
The Global Navigation Satellite System (GNSS) is a generic term for satellite navigation systems that provide all-weather, continuous, global coverage for positioning, navigation, and timing services. Currently, the world has seen the formation of four major global satellite navigation systems: the United States’ Global Positioning System (GPS) [1–3], the European Union’s Galileo Satellite Navigation System (Galileo) [1–3], Russia’s Global Navigation Satellite System (GLONASS) [1, 3], and China’s BeiDou Navigation Satellite System (BDS) [3, 4]. In addition, India and Japan have respectively constructed the Indian Regional Navigation Satellite System (IRNSS) [1, 3, 5] and the Quasi-Zenith Satellite System (QZSS) [1, 3, 6].
Satellite navigation systems have become fundamental spatiotemporal reference infrastructures. The development of navigation technology profoundly impacts various sectors of society including economy, surveying, power, transportation, and military affairs. An increasing number of infrastructures have developed a strong reliance on satellite navigation systems. Should these systems suffer a breakdown, it could lead to severe consequences, thereby making the enhancement of GNSS system stability increasingly critical.
However, the GNSS system is inherently vulnerable [7] and is highly susceptible to various types of interference [8]. Interference can be broadly categorized into natural and anthropogenic types. Anthropogenic interference can be further subdivided into unintentional and intentional categories. Given the finite nature of the electromagnetic spectrum, GNSS systems are particularly susceptible to out-of-band interference from harmonics and inter-modulation products, as well as in-band interference from co-channel operations [9]. A notable example occurred at a U.S. port where GPS receivers were disrupted for several hours each evening following the workday, eventually traced back to unintentional interference from active TV antennas atop nearby residents’ homes after months of investigation [3].Satellite navigation signals, originating from satellites orbiting approximately 20,000 km above the Earth’s surface, arrive at ground level with powers as low as −130 dBm which is over a billion times weaker than typical broadcast television signals. Civilian signal formats used in navigation systems are publicly known, with information modulated onto fixed frequencies, rendering GNSS highly vulnerable to intentional malicious interference. Table 1 gives a brief description of some of the interference events that have occurred globally over the past period.
TABLE 1 | Some malicious interference incidents [10].
[image: Table showing interference incidents by year, location, and details: 1990, Persian Gulf - Electronic countermeasures in the Gulf War. 1999, Yugoslavia - Jamming signals in the Kosovo War. 2011, Iran - Decoy signal to capture US drone. 2017, The Black Sea - Ships' GPS spoofed, mislocating a ship. 2020, Point Reyes - GPS crop circles spoofed.]From the past to the present, interference and anti-interference in satellite navigation systems have been focal points of electronic warfare worldwide, particularly evident in military confrontations. Therefore, the necessity of anti-interference and interference monitoring is self-evident. This review primarily addresses malicious jamming interference. As long as the emitted interference targets the GNSS frequency bands or covers the entire system frequency spectrum with sufficient power, it can achieve significant disruptive effects, posing the greatest threat to user-end navigation receivers. The principle of interference is that as the interference power increases, the equivalent carrier-to-noise ratio (C/N0) at the receiver output degrades, leading to prolonged acquisition times or even loss of lock during signal capture, and reduced pseudo-range accuracy during tracking [11]. This results in a decline in the reliability of the GNSS system, manifesting as significant positioning errors.
Anti-interference refers to the adoption of various technologies and measures [12–17] to reduce or eliminate the impact of interference on system performance. Interference monitoring, on the other hand, involves the detection, identification, and analysis of interference signals in the electromagnetic environment. Specifically, it encompasses the localization of interference sources, the identification of interference signal types and characteristics, and the assessment of their impact. Anti-interference and interference monitoring are complementary; interference monitoring provides detailed information about the interference [18], which is the foundation for implementing anti-interference techniques. Only through effective interference monitoring can the sources and characteristics of interference be accurately identified, enabling targeted anti-interference measures to be taken. For instance, if the interference is identified as frequency sweeping or continuous wave interference, Infinite Impulse Response (IIR) adaptive notch filters can be directly employed to suppress it [19]. When interference is detected in the transform domain, adaptive filters can be directly designed in that domain to suppress the interference, after which the signal can be transformed back to the time domain to accurately recover the original GNSS signal [20–23].
In response to the challenges currently faced in interference monitoring, this paper reviews the development process of GNSS interference monitoring, focusing on the recent advancements in key monitoring technologies. It summarizes and analyzes the existing issues and identifies future research directions in this field.
2 INTERFERENCE MONITORING SYSTEM
2.1 General situation
The development of GPS by the United States in the 1970s was primarily for military purposes, with early satellite interference monitoring relying on military electronic equipment to ensure the precision of weapon strikes. The Gulf War and the Kosovo War in the 1990s highlighted the importance of satellite navigation interference monitoring in electronic warfare environments, prompting researchers to design specialized equipment for this purpose. As GPS expanded into civilian use and became more globalized, fixed ground-based satellite navigation interference monitoring systems began to emerge. The development of digital signal processing (DSP) technology and software-defined radio (SDR) enabled these systems to identify various types of interference in complex signal environments. In the 21st century, as satellite navigation systems diversified into a quadripartite structure, there arose a need for compatibility in interference monitoring systems. Monitoring platforms have evolved from fixed ground-based systems towards mobile air- and space-based systems, with nations working to establish comprehensive, three-dimensional maritime, land, air, and space interference monitoring systems. Table 2 provides an analysis and comparison of the three types of interference monitoring platforms.
TABLE 2 | Comparison of interference monitoring platforms.
[image: Table comparing radio monitoring platforms: Ground-based systems have low cost, strong operability, but limited coverage, using networks like the U.S. National RF monitoring. Air-based systems, installed on aircraft, offer wide coverage and high efficiency, but are costly, using aircraft like the U.S. EP–3E ARIES II. Space-based systems provide global coverage from satellites, such as the U.S. SBSS, with high strategic value but limited resources.]2.2 The development status
2.2.1 General interference monitoring System
Before the advent of satellite navigation systems, many non-navigation systems experienced disruptions due to radio interference that prevented them from operating normally. This was particularly evident in civil aviation systems, where radio interference posed a significant threat to air traffic systems, causing flight delays and even endangering personal safety. To effectively address incidents of electromagnetic interference, the U.S. Federal Aviation Administration (FAA) began constructing a nationwide radio interference monitoring system at the end of the 20th century. This system consists of multiple airborne, mobile, portable, and fixed interference monitoring systems, ensuring the takeoff and landing of flights at key airports and minimizing the impact of radio interference [24]. The primary hardware for this system is manufactured by Cubic Corporation in the United States and has been adopted by many countries, playing a significant role in civil aviation radio interference monitoring. The main modules included in the FAA’s interference monitoring system are shown in Figure 1.
[image: Diagram showing an Interference Monitoring System with connected modules. On the left: Interference Analysis Module, Signal Reception and Acquisition Module, and Signal Processing Module. On the right: Data Recording and Report Generation Module, and Early Warning Module. Arrows indicate the flow of information between modules.]FIGURE 1 | Interference monitoring system.
After years of development, in addition to the United States and other countries have also been mature radio monitoring technology. For instance, most provinces can now achieve comprehensive monitoring of critical areas such as airports within their jurisdictions. A large number of fixed monitoring stations, mobile monitoring stations, and portable interference detection devices have been established, forming a relatively complete radio interference monitoring network [25]. Figure 2 [26] shows some of the interference monitoring equipment in our country.
[image: (A) A van equipped with antennas parked on a grassy area. (B) A tall communication tower against a blue sky. (C) A white electronic device with a digital display. (D) A handheld device with a blue handle and black framework.]FIGURE 2 | Interference monitoring equipment. (A) Radio monitoring vehicle. (B) Radio monitoring direction finding system. (C) Radio monitoring direction finding receiver. (D) Radio monitoring direction finding system.
2.2.2 Dedicated GNSS interference monitoring system
General-purpose radio interference monitoring networks monitor the electromagnetic environment across the entire frequency spectrum. In contrast, the frequency bands used by GNSS systems are fixed, and the navigation signals reaching the ground are extremely weak, often buried below the noise floor. With the evolution of interference technology, the variety of interference methods has increased, and different interference techniques can produce varying effects [27]. Consequently, the power required to achieve the same level of interference on GNSS systems is decreasing. Traditional general-purpose radio interference monitoring networks are no longer sufficient in terms of sensitivity, accuracy, and speed to meet the monitoring requirements of GNSS systems. Recognizing the challenges faced by GNSS interference monitoring, countries led by the United States began constructing dedicated monitoring networks from the last century.
In 1994, the U.S. National Geodetic Survey began establishing a national network of continuously operating reference stations (CORS) for GPS, which later expanded globally. These CORS receive GPS signals and provide high-precision positioning data for applications such as geodesy and meteorological observations.any GPS CORS are equipped with anti-interference devices and can also assess the quality of received GPS signals. They utilize various techniques, including radio monitoring and noise level measurements, to monitor and locate interference near the base stations.
In 1997, the U.S. Congress directed a project involving Spawar and Falon companies, which developed and demonstrated a prototype system called “LOCO GPSI.” The demonstration results showed that the system was effective and practical, with the ability to locate interference sources. The entire system utilized a short baseline interferometry approach, determining the source of interference through triangulation methods [28].
The JLOC system (Joint Landaster Oriented Coordinate System) is a system commissioned by the Joint Space Operations Center under the U.S. Department of Defense and developed by NAVSYS Corporation. The system was established in 2002 and primarily provides precise geographical location information and time standards. It can monitor abnormal changes in satellite navigation signals and quickly locate the position of interference sources, conducting comprehensive performance testing and evaluation of satellite navigation systems to ensure their normal operation.
In 2009, CHRONO Technologies in the UK developed a handheld interference monitoring device capable of monitoring GPS signals and interference signals in the L1 frequency band [29]. In addition, the U.S. FAA established a GPS interference source monitoring and localization experimental system, which includes a large number of interference sources and localization systems, employing almost all interference source localization technologies [30].
Currently, the American company HawkEye 360 is building the world’s first commercial radio frequency (RF) signal mapping system based on a low-orbit satellite constellation, with plans to launch a total of 60 small satellites into low-earth orbit by 2025. Its products include RFGeo, RFIQ, and SEAker. RFGeo is used to detect and locate RF signals on the Earth’s surface, with Figure 3 [31] showing a precisely mapped image of Earth’s RF signals. RFIQ is dedicated to space-based radio frequency spectrum data collection, providing visualization of the spectrum data gathered by the HawkEye 360 RF sensor satellite constellation, as depicted in Figure 4 [31]. SEAker leverages sophisticated algorithms to integrate automatic identification systems with HawkEye 360 sensors, enhancing maritime awareness capabilities. The entire system primarily focuses on spectrum mapping and signal source localization, offering comprehensive and timely interference detection and early warning services [32].
[image: A colorful map visualization displays terrain data with a focus on elevation. The map highlights variations in elevation using a spectrum of colors, with higher elevations in shades of green and brown. There are labels and a grid overlay for reference.]FIGURE 3 | Radio-frequency signal pattern.
[image: Spectrogram analysis displaying four vertical bands with varying color intensities from blue to red, indicating frequency and amplitude of sound over time. Left panel shows textual data and settings.]FIGURE 4 | Visual spectral data.
2.3 Summary
Currently, the development of interference monitoring systems faces numerous challenges: 1) Technical challenges. The electromagnetic environment is becoming increasingly complex, and the accuracy, sensitivity, and speed of traditional radio interference monitoring systems are no longer sufficient for satellite navigation system interference monitoring. Efforts to overcome key technical bottlenecks within the system and promote technological innovation and advancement are essential trends. 2) Construction challenges. There are few dedicated satellite navigation interference monitoring networks, and the coverage areas of these networks are limited. Developing new systems and equipment for GNSS interference monitoring, increasing the number of monitoring stations, and expanding coverage areas are crucial for ensuring reliable GNSS services globally. 3) International Cooperation challenges. Satellite navigation monitoring involves the interests of multiple countries. Strengthening international cooperation and exchange, encouraging active participation in international organizations and activities, and promoting the establishment of multilateral cooperation mechanisms to jointly maintain space security and stability remain challenging.
3 KEY TECHNOLOGIES FOR INTERFERENCE MONITORING
Interference monitoring refers to the process of detecting, identifying, direction-finding, locating, and assessing interference in the electromagnetic environment. Its purpose is to promptly discover and identify interference sources, evaluate the nature and intensity of the interference, and assess its impact on communication and navigation systems, thereby enabling the implementation of appropriate measures to mitigate or eliminate these interference. Figure 5 illustrates the complete interference monitoring process. Initially, specialized equipment and techniques are used to continuously collect signal data from the electromagnetic environment to detect the presence of interference. Subsequently, the detected interference is analyzed to identify its type and characteristics. Next, the impact of the interference on the system is evaluated, and direction-finding is performed to locate the position of the interference source. A monitoring report is then generated and submitted to relevant departments to assist them in making decisions regarding interference suppression [33].
[image: Flowchart depicting a signal process: Signal leads to interference detection, recognition, evaluation, direction finding, positioning, and finally a decision. Each step is represented by a rectangle connected with arrows.]FIGURE 5 | Interference monitoring flow chart.
Considering the importance of interference monitoring technology in interference monitoring systems, this section will detail three key technologies for suppression interference monitoring: interference detection technology, interference identification technology, and interference direction finding technology. Simulations will be used to verify the implementation of some of the algorithms involved, and the issues associated with each technology will be pointed out. Based on recent technological trends, the section will also summarize the research directions that warrant further investigation.
3.1 Interference detection technology
3.1.1 Time-domain detection algorithms
The time-domain energy detection algorithm is suitable for detecting high-power blanket interference. It does not require prior information about the signal; it only needs to compare the energy of the signal with a preset energy threshold to determine the presence or absence of interference, regardless of the type of interference. However, it cannot determine the specific frequency points of the interference. The time-domain energy detection method is simple to implement and uses the binary hypothesis testing theory from the field of mathematical statistics.
The signal received by a satellite navigation receiver can be modeled as Equation 1 [34]:
[image: Mathematical equation illustrating a function \( r(t) = s(t) + j(t) + n(t) \), where \( r(t) \) is the result of adding three functions of time: \( s(t) \), \( j(t) \), and \( n(t) \).]
In the model, [image: It looks like you attempted to include an image, but it is not visible. Please try uploading the image again or provide a URL.] denotes the true satellite navigation signal; [image: Sure, please upload the image you would like me to describe.] represents the interference in the GNSS; and [image: The image shows the mathematical expression "n(t)" in italicized font, commonly used to denote a function of time.] is the additive white Gaussian noise with power [image: Please upload the image or provide a URL for me to generate accurate alt text.].
The energy of the received signal can be expressed as Equation 2 [35]:
[image: Mathematical expression showing \( e(n) = \sum_{k=0}^{K-1} r(n-k)r^*(n-k) \), equation number (2).]
In the equation, [image: It appears there was an issue with the image upload. Please try uploading the image again or provide a URL for me to access it. If there is any additional context or caption, feel free to include that as well.] represents the digital signal obtained after analog-to-digital conversion, and [image: A basketball traveling towards a hoop at the moment it hits the backboard, producing visible sparks or light effects. The moment captures the intensity of the play.] denotes the conjugation operation applied to the signal.
The hypothesis testing problem can be simply expressed as Equation 3:
[image: Equation with two conditions. Condition one: \( H_0 : e(n) < \lambda, j(n) = 0 \). Condition two: \( H_1 : e(n) \geq \lambda, j(n) \neq 0 \). Equation number (3) on the right.]
In the equation, [image: Please upload the image you'd like me to generate alt text for.] is the threshold value for energy detection; H0 is the null hypothesis, indicating that the useful signal is not interfered with, and at this point, the signal energy value is less than the threshold value; H1 is the alternative hypothesis, indicating that the useful signal is being interfered with, and at this point, the signal energy is greater than the threshold value. According to the above analysis, the key to the energy detection algorithm is how to determine an appropriate detection threshold [image: Please provide the image you want the alt text for by uploading it or sharing a URL.] in a constantly changing noise environment.
The energy detection algorithm is significantly affected by noise uncertainty and has a low probability of detecting interference in low SNR conditions. In practical environments, noise is time-varying, and to improve detection probability, multi-node cooperative detection algorithms have been developed. Reference [29] proposes an adaptive multi-threshold energy detection method under time-varying conditions by estimating the noise range. This method offers better detection performance compared to single-threshold energy detection algorithms. Reference [10] suggests using a hard decision strategy for dual-threshold energy detection at individual nodes. The credibility weights are assigned based on the quality of the channel environment at each node, and the final decision is made at the fusion center. This approach achieves good detection performance even under low interference-to-noise ratio (INR) conditions. Wu Jin [36] derived the expression for the error probability in energy detection algorithms and determined the optimal threshold value to minimize this probability, thereby improving detection performance to some extent. Wang Jing [37] adopted a segmented detection method for interference detection in Beidou civilian signals. This method is highly efficient and effective because it focuses on the noise within each sub-band during detection, thereby reducing the influence of noise from other bands and effectively improving the INR during detection.
3.1.2 Frequency-domain detection algorithms
The principle of frequency-domain interference detection is similar, although it may be slightly more complex in terms of computation compared to the time-domain energy detection method. However, it can not only detect the presence of interference but also determine the specific frequency points of the interference [38].
Frequency-domain interference detection often uses the Consecutiveean Excision (CME) algorithm proposed by P. Henttu and S. Aromaa [39]. This algorithm assumes that the initial signal samples do not contain interference signals, and thus the signal spectrum envelope follows a Rayleigh distribution with an expected value as Equation 4:
[image: The equation shows: \(E(A) = \sqrt{2\pi} \Gamma(1.5)\).]
In the equation, [image: Please upload the image or provide a URL so I can generate accurate alt text for you.] is the power of the Gaussian noise; and [image: The Greek letter Gamma followed by the variable x in parentheses, representing the Gamma function, a concept in mathematics frequently used in complex analysis and statistics.] is the Gamma function, which is also known as Euler’s second integral. The distribution function of a Rayleigh random variable [image: Certainly! Please upload the image or provide a URL, and I’ll generate the alt text for you.] is given by:
[image: Equation showing the function \( F(A) = 1 - \exp\left(-\frac{A^2}{2\sigma^2}\right) \).]
Based on Equation 5, we can get Equation 6:
[image: Equation for \( A_{n} \) is shown as a formula: \( A_{n} = \sqrt{2\sigma^{2}} - \ln(\sqrt{1 - F(A_{n})}) \) with reference number \( (6) \).]
Ath is the detection threshold for interference frequency points under the false alarm probability Pfa (the probability of erroneously detecting interference frequency points when no interference signal exists) which is defined as Equation 7.
The threshold factor is defined as Equation 8:
[image: Equation showing probability of a false alarm, denoted as \(P_{fa}\), equals one minus the cumulative distribution function \(F(A_{th})\), labeled as equation 7.]
[image: Equation showing \( T = \frac{A_{th}}{E(A)} = \frac{\sqrt{-\ln(1-F(A_{th}))}}{\Gamma(1.5)} = \frac{2}{\sqrt{\pi}} \sqrt{-\ln(P_{f_{a}})} \), numbered as equation (8).]
The CME (Consecutiveean Excision) algorithm sets the size of the false alarm probability in advance and obtains the corresponding threshold factor. In each iteration, it calculates the spectral power of the signal set for frequency points that do not contain interference, multiplies this by the threshold factor to update the detection threshold, and then compares the spectral envelope at each frequency point with the detection threshold to classify them into frequency points with and without interference.
Subsequently, P. Henttu et al. [40] proposed the forward sequential mean excision algorithm, also known as the forward consecutive mean excision (FCME) method, to address the problem of impulse interference detection in radio systems. The algorithm first reorders the signal spectra in ascending order according to their energy values, selects a portion of the spectra to form a set of interference-free signals, calculates their energy, and sets a threshold value. If the energy value of the next frequency line is less than the threshold value, this spectrum line is added to the initial signal set to form a new signal set, and its energy is recalculated and a new threshold value is set. Otherwise, the algorithm ends, and the process continues iteratively. Yang Chao et al. [41] proposed an improved CME interference detection algorithm, which sorts the spectrum lines in descending order and considers the mean of the latter half of the spectrum lines as the mean in the absence of interference. This mean is used to initialize the detection threshold, reducing the number of iterations and accelerating the convergence rate of the CME algorithm without decreasing the probability of interference detection. Setting a single threshold has certain issues, such as the possibility of an interference signal with a certain bandwidth having energy below the threshold at a particular frequency point, leading to the misidentification of a single interference signal as two separate ones. Vartiainen et al. [42] addressed this issue by proposing a dual-threshold-based interference frequency point localization algorithm. The main principle of the algorithm is to set high and low detection thresholds. First, the adjacent frequency points of signal samples exceeding the low threshold are clustered, and then the maximum value of the signal spectra in each cluster is compared with the high threshold. If it is greater than the high threshold value, the frequency points belonging to that cluster are determined to correspond to the same interference signal. Otherwise, they are not. Based on this, the algorithm can estimate the bandwidth of the interference.
In frequency-domain interference detection algorithms, traditional Fourier transforms are used. Essentially, these transforms convert one-dimensional time functions into one-dimensional frequency functions, which is a relatively simple transformation method. Its disadvantages are quite apparent: it can only analyze the time-domain characteristics and frequency-domain characteristics of signals independently as a whole, and it cannot analyze the frequency characteristics of signals at specific moments or the time characteristics of signals at specific frequencies. Therefore, it is only suitable for analyzing stationary signals.
3.1.3 Time-frequency detection algorithms
Indeed, when GNSS signals mixed with interference are received by the receiver, they become non-stationary signals. Therefore, time-frequency analysis methods are more suitable for interference detection and analysis. The purpose of time-frequency analysis is to transform one-dimensional time signal functions into two-dimensional joint distribution functions of time and frequency, which can reflect the time-varying characteristics of non-stationary signals [43]. Linear time-frequency analysis is typified by the Short-Time Fourier Transform (STFT), proposed by Dennis Gabor in 1946. The STFT is obtained by multiplying the signal by a sliding time window and then performing a Fourier transform. Due to its linearity and low complexity, the STFT has been used in the development of interference mitigation algorithms, such as those developed by Daniele Borio et al. [44], to estimate the instantaneous frequency of interference. Wang Pai et al. [45] have combined the time-frequency characteristics and statistical properties of received GNSS signals to propose an interference detection algorithm based on the STFT, improving the detection performance of broadband and narrowband interference in low signal-to-noise ratio environments. However, the STFT also has limitations. Because of the windowing process, it is constrained by the Heisenberg uncertainty principle, meaning that the time resolution and frequency resolution cannot be simultaneously optimized.
Comparing different time-frequency analysis methods, quadratic time-frequency analysis based on the Fourier transform of the instantaneous autocorrelation function provides almost the best resolution [8]. Among these, the most commonly used is the Wigner-Ville distribution (WVD), introduced to signal processing in 1948. The WVD can achieve the lower bound of the Heisenberg uncertainty principle and can address some of the issues present in the STFT. However, when analyzing signals with multiple components, the WVD produces cross-term interference, causing the signal energy to spread over areas of the time-frequency plane where there should be no energy, making it difficult to accurately capture the signal features. Choosing appropriate time-frequency analysis methods, such as adaptive kernel time-frequency distributions or linear time-frequency distributions, can suppress cross-terms, but this leads to a degradation in the clustering property of the signal’s time-frequency distribution and increases computational complexity [46]. To address these issues, Sun Kewen et al. [47] analyzed the principles and problems of STFT and WVD, proposing a new time-frequency analysis method based on a reassigned spectrogram for detecting frequency-sweeping interference. This method strikes a good balance between suppressing cross-terms and maintaining time-frequency resolution. Later, he [48] proposed using the Fractional Fourier Transform (FRFT) for detecting satellite navigation interference. The FRFT has excellent detection capabilities for linear frequency modulation (LFM) interference. Xu Huifa [49] and colleagues similarly proposed a new method based on the FRFT to solve the detection and estimation problems of strong and weak LFM signals, improving detection efficiency.
For the common frequency-sweeping interference in satellite navigation systems, many scholars in Professor Sun Kewen’s team have conducted extensive and in-depth research on its detection [22, 50–52]. Their main work involves combining various time-frequency transformation methods to leverage the strengths of each method while compensating for their respective weaknesses. Chen Yuanyuan [50] used the Radon-Wigner transform to detect frequency-sweeping interference and estimate interference parameters. By combining the smoothed pseudo Wigner-Ville distribution based on time-frequency reassignment with the Radon transform, she validated the effectiveness of combining the Radon transform with time-frequency analysis methods for interference detection. Zhao Huizi [51] combined reassignment techniques and wavelet transforms to effectively address issues related to energy concentration, cross-terms, and resolution, thereby improving the accuracy of interference detection. Sun Kewen [52] combined the Hough transform with the Wigner-Ville distribution (WVD) to eliminate cross-term interference and enhance detection sensitivity. The detection performance remains excellent even at an INR of −10 dB.
The FrFT uses a set of orthogonal chirp signals as basis functions. By selecting an appropriate order, the FrFT transforms the chirp signal into the transform domain, where the energy of the chirp signal becomes concentrated, forming a peak. This allows for accurate estimation of interference parameters. Zhang Jun [22] improved the traditional method for determining the optimal order of the FrFT by proposing a combination of the bisection method and discrete polynomial algorithms. This approach reduces the computational complexity of searching for the optimal order while improving search accuracy, enabling the detection of multi-component chirp signals. Zheng Yifei [23] combined the FrFT with traditional time-frequency methods such as the short-time Fourier transform (STFT) and WVD. Compared to these traditional methods, the energy concentration of frequency-sweeping interference is enhanced in the transform domain. At an INR of −8 dB, the accuracy of parameter estimation for frequency-sweeping interference is improved by two orders of magnitude.
In interference detection, time-domain energy detection, frequency-domain energy detection, and time-frequency domain detection primarily utilize the energy distribution characteristics of interference signals in the time domain, frequency domain, and time-frequency domain, respectively. Table 3 summarizes the advantages and disadvantages of these three detection algorithms.
TABLE 3 | Comparison of advantages and disadvantages of interference detection algorithms.
[image: Table comparing interference detection algorithms. Three types are listed: Time-domain, Frequency-domain, and Time-Frequency Detection. Time-domain Detection advantages include simplicity and real-time performance, but has frequency information limitations. Frequency-domain Detection offers noise suppression but has high computational complexity. Time-Frequency Detection handles complex interferences but faces high computational load and parameter sensitivity.]3.1.4 Full blind detection algorithms
In practical interference detection scenarios, the problem is often non-cooperative, making it difficult to obtain sufficient prior information. Therefore, researching fully blind interference detection algorithms holds greater practical significance.
Blind interference detection algorithms based on random matrix theory have been proposed. Two typical algorithms are the Covarianceatrix-based All-Blind Detection (CAV) [53] and the Eigenvalue-based All-Blind Detection (BDA) [54]. The CAV algorithm constructs a test statistic as the ratio of the sum of the absolute values of all elements in the covariance matrix of the received signal to the sum of the absolute values of the diagonal elements. The BDA algorithm constructs a test statistic as the ratio of the maximum eigenvalue to the minimum eigenvalue. These algorithms have detection thresholds that are independent of noise information, thus completely overcoming the limitation of energy detection algorithms being sensitive to noise uncertainty. They also exhibit good detection performance even at low SNR. Based on these foundations, many researchers have conducted more in-depth studies on all-blind detection algorithms [55–61]. Their work includes developing new covariance-based decision statistics to address the computational complexity of decision metrics and thresholds, or combining these algorithms with cooperative sensing to further improve detection performance and optimize network overhead.GNSS interference detection can benefit from spectrum sensing techniques. Wu Jin [36] has introduced all-blind detection algorithms into the interference detection of the Beidou system and proposed a weighted fusion detection (WFD) algorithm, which enhances detection performance.
In recent years, with the rise of artificial intelligence, machine learning has been increasingly applied in various fields due to its excellent classification performance. In the context of all-blind detection algorithms, interference detection is essentially a binary classification problem, which aligns well with machine learning algorithms. Based on this, many scholars have introduced machine learning into full-blind detection. Reference [62] combines the traditional K-Nearest Neighbors (KNN) algorithm to achieve the detection task. Yao Di [63] combines the Support Vectorachine (SVM) to perform binary classification tasks for spectrum sensing. These algorithms effectively address the issue of low detection probability under low signal-to-noise ratio (SNR) conditions and offer high detection efficiency. However, they require manual construction of feature vectors, which can significantly impact the classification results. Shi Haodong [64] uses a Convolutional Neural Network (CNN) to achieve collaborative spectrum sensing. Lu Huachao [65] directly inputs the normalized covariance matrices of the combined I and Q signals from each node into the neural network, allowing the network to automatically extract useful features for detection. This approach yields good detection performance.
3.1.5 Summary
Time-domain energy detection algorithms fall into the category of semi-blind detection algorithms, as they require prior information related to the noise. Due to this requirement, their detection performance is poor at low INR and they are highly susceptible to noise uncertainty. However, they are easy to implement and do not require sophisticated detection equipment. Improvements through multi-node cooperative energy detection can somewhat alleviate these issues, but the enhancement is limited and increases the overhead of the detection network.
Full-blind detection algorithms do not require any prior information about the received signals and are independent of the noise environment. They maintain good detection performance even at low SNR. However, these algorithms are based on covariance matrix decomposition, which involves significant computational complexity. As a result, they may not meet the real-time interference detection requirements in practical applications.
The limitations of the aforementioned methods are evident; they can only detect the presence of interference but provide no information about the interference parameters, making interference suppression challenging. Time-frequency detection methods and frequency-domain detection methods, on the other hand, can not only detect the presence of interference but also estimate the interference parameters, thereby facilitating interference suppression. Time-frequency detection methods are particularly suitable for detecting non-stationary interference. Combining various time-frequency transformation methods can reduce parameter estimation errors. However, these methods are computationally complex and the interpretation of the transformation results is challenging.
3.2 Interference identification technology
Blanket interference can be classified in various ways. Based on the time-domain characteristics of the interference, it can be divided into pulse interference and continuous wave interference. According to the stationarity of the interference, it can be categorized into stationary interference and non-stationary interference. Furthermore, it can be classified into broadband interference and narrowband interference according to the spectral width. Narrowband interference has a bandwidth narrower than the GNSS signal, while broadband interference has a bandwidth wider than the GNSS signal [66]. Taking the GPS L1 frequency band with a spread spectrum code of CA as an example, common interferences include matched spectrum interference [67], Gaussian noise interference, linear frequency modulation (LFM) interference [68], pulse interference [69], continuous wave interference [70], etc.
3.2.1 Traditional pattern recognition methods
Radio communication has a relatively long history, with initial reliance on manual methods for identifying modulation schemes of radio signals. However, these manual identifications were significantly influenced by subjective factors and were both time-consuming and labor-intensive. As communication technology advanced, the advantages of automatic modulation recognition became increasingly apparent, eventually evolving into the mainstream approach for identification. Traditional modulation recognition methods can be broadly categorized into two types: decision-theoretic methods and statistical pattern recognition methods [71]. While decision-theoretic methods require substantial computational power and extensive prior information, the relevant parameters associated with the signals to be identified are often unknown. As a result, statistical pattern recognition methods have gained wider acceptance and are more commonly applied.
The pattern identification method includes three modules: signal preprocessing, signal feature parameter extraction, and signal identification classifier design, as shown in Figure 6. Firstly, the received signal is preprocessed, including noise removal, data normalization, unknown parameter estimation, etc. Then, the signal set to be classified is analyzed in different signal domains such as time domain and frequency domain, and the features that can clearly distinguish the signal types in the set are extracted to form feature vectors. This module mainly relies on machine learning methods [72] and pattern identification theory [73], and finally the signal samples to be tested are input into the classifier to realize signal identification.
[image: Flowchart depicting a three-step signal processing system. The first box is labeled "Signal Preprocessing," the second box is "Signal Feature Parameter Extraction," and the third box is "Signal Identification Classifier." Arrows connect each step sequentially, showing the process flow.]FIGURE 6 | Pattern identification method flow chart.
A good feature parameter should easily highlight the differences between signals, significantly reducing the burden on subsequent classifiers and facilitating the identification of different signals. Azzouz, EE, and Nandi, Ak [74–76] published several papers between 1995 and 1998 on extracting time-domain feature parameters for analog and digital signals. Their work included various typical algorithms for extracting signal instantaneous features. Later scholars built upon this foundation to conduct more research on automatic modulation identification. A good identification classifier should achieve high signal identification rates. Commonly used identification classifiers are based on machine learning and include: decision tree (DT) classifier [77], support vector machine (SVM) classifier [78] and neural network (NN) classifier.
Some scholars in the field of satellite navigation interference identification have drawn on the method of automatic signal modulation identification to identify typical interference types in satellite navigation systems. Huang Ting [30] analyzed the characteristics of pulse interference and continuous wave interference, and provided the results of typical suppression interference characteristic analysis, which provided ideas for selecting appropriate characteristic parameters. Lei Liang [79] did similar work, and Li Jian et al. [80] extracted pulse width estimates, bandwidth ratios, and frequency modulation slopes to conduct identification simulation experiments on six typical interferences. When the signal to noise ratio (SNR) is 3dB, the identification rate reaches 90%. Zhu Pengcheng [10] analyzed the typical interference of GPS and Beidou systems from the time domain, frequency domain, time-frequency domain, and high-order cumulants, extracted feature values composed of high-order cumulants, normalized spectral bandwidth, and other parameters, and used decision tree classifiers for identification. The simulation results show that the identification effect is very good when the INR is large. Some of the selected features are greatly affected by noise, and when selecting a decision tree classifier, the classification threshold is generally not changed once selected, which is not adaptive. Therefore, when the INR is small, the identification effect is not ideal.
Ye Rui [81] also did interference identification work, but he used the KNN (K Nearest Neighbors) algorithm based on the traditional decision tree to calculate the distance between the test samples and the training sample eigenvalues for classification, eliminating the subjective factors brought about by manually setting thresholds, and the identification rate has been improved to a certain extent. However, when the number of samples is large, the calculation of this method is very large. Combining DTs and SVMs and directly bringing test sample data into the maximum classification interval function trained by the support vector machine can solve this problem. The amount of computation and identification effect are the best among these three methods.
The use of neural network classifiers is becoming more and more common. Lu Dongsheng et al. [82] analyzed six types of interference, extracted 13 characteristic parameters to obtain feature vectors, and constructed a CNN (Convolutional Neural Network) + LSTM (Long Short Termemory) double-layer network model for training. Compared with the LSTM network in two scenarios of strong signal interference and interference with similar power, the accuracy, mean square error, and truthfulness are all better.
Based on the research of previous scholars, the characteristics of three commonly used identification classifiers are summarized in Table 4.
TABLE 4 | Comparison of identification classifiers.
[image: Table comparing identification classifiers. DT is simple, low complexity, and real-time but has accuracy issues with more levels. SVM handles high-dimensional problems well but struggles with large samples and multi-class classification. NN excels in complex problems but requires many samples and has high computational complexity.]In statistical pattern identification methods, the selection of feature parameters and classifiers lacks a theoretical basis. Generally, for a specific identification task to be completed, the selection can only be made based on existing experience and through multiple trials and errors. This leads to the method being exceptionally sensitive to the selection of feature parameters, where choosing different feature parameters may ultimately result in different identification effects. This lack of flexibility results in poor identification rates for interference signals.
3.2.2 Interference recognition method based on deep learning
In 2006, the concept of deep learning was officially proposed [83]. Deep learning networks are composed of multiple layers of neurons, each layer serving different functions and purposes. Common types of layers include convolutional layers, pooling layers, and fully connected layers. Convolutional layers are used to extract local information features from the input data. Pooling layers are used to down-sample the input feature maps, retaining the most important features while reducing the computational load. Fully connected layers learn high-level abstract features from the input data and are typically used as the output layer to perform classification tasks. During the training process of a deep learning network, forward propagation and back-propagation algorithms are utilized. Non-linear activation functions are used in each layer to introduce non-linearity, enabling the network to learn complex patterns and features. The trained model ultimately achieves excellent performance in various tasks. Since then, Deep Neural Networks (DNNs) have been increasingly used by scholars as end-to-end systems for identification tasks. These networks can receive raw data, automatically learn from it, and optimize themselves to ultimately complete the identification task [84], thereby avoiding the complex feature parameter extraction issues present in traditional pattern identification methods.
In the field of recognition, converting one-dimensional interference data into two-dimensional image data and combining it with deep learning for classification has become a mainstream approach in recent years. Li Xiangjun et al. [85] proposed an interference type identification method relying on the SqueezeNet CNN model and the smoothed WVT, aiming to address the problem of low interference identification rates. Iman Ebrahimiehr et al. [86] used the WVT and spectrogram to perform time-frequency analysis on different types of chirp signals, utilizing the analysis results to create an image dataset, part of which was used for training the model and part for identification testing. Chen Xin et al. [87] proposed an interference fingerprint spectrum (FPS) consisting of time-frequency and time-power characteristics of signals, and selected the GoogLeNet DNN architecture as the training model to design the FPS-DNN interference classifier. This classifier significantly improves the identification rate under low interference power conditions and can be extended to solve more complex interference classification problems. Reference [88] uses the power spectral density (PSD) of the received signal as the input feature for the network. Compared to algorithms such as Random Forest and SVM, this approach improves recognition accuracy.
To improve recognition performance, new deep neural network models have been continuously proposed [89]. established two CNN networks that can share parameters, adding the Kullback-Leibler (KL) divergence and Euclidean distance of extracted features as new loss functions. This enables the network to learn the relationships between interference signal categories, enhancing generalization capability and recognition performance at low interference-to-noise ratios (INRs) without increasing network complexity [90]. constructed images from one-dimensional signals and used residual networks to extract multi-semantic features, followed by multi-semantic feature fusion. This approach helps the deep learning network extract more distinctive signal features, thereby improving interference recognition performance [91]. used spectrograms as the training dataset and introduced multi-head attention modules and residual convolutional modules to address the different effects of varying window lengths on Short-Time Fourier Transform (STFT) results. This resulted in improved recognition performance [92]. proposed a new method based on graph models, introducing graph signals and graph neural networks to identify the modulation categories of unknown interference signals. Their method enhances channel information interaction and extracts both local and global features, significantly improving recognition performance.
Deep learning-based recognition methods have several advantages. They can automatically learn features from data, reducing the dependence on expert knowledge. As the amount of training data increases, the performance of the model often improves significantly, demonstrating good generalization capabilities and the ability to identify interference signals in different environments and conditions. However, deep neural network models are often very complex, requiring long training times and consuming substantial network resources during recognition tasks, which can sometimes lead to resource wastage. To address these issues [93]: focused on the challenges of GNSS interference recognition in low-resource environments, emphasizing preprocessing. They proposed a method that combines traditional statistical signal processing with machine learning, effectively reducing model complexity and resource consumption [94]. Introduced a time-frequency component-aware convolutional neural network (TFC-CNN) that can determine the positions of time-frequency components in time-frequency images and perform convolution operations at these positions. During network training, an adaptive forward propagation algorithm is used to dynamically decide the depth of forward propagation based on the samples, improving the computational efficiency of interference classification and reducing resource wastage [95]. Proposed a neural network classification method that combines federated learning and transfer learning. Federated learning is used to distribute data, enhancing resource efficiency and privacy protection, while transfer learning accelerates the model learning process. Compared to traditional CNN models, this method improves classification accuracy by 8%.
3.2.3 Summary
Traditional pattern recognition methods have advantages in computational efficiency and interpretability, but they have limitations in feature engineering and data adaptability. In contrast, deep learning-based recognition methods excel in automatic feature extraction, generalization capabilities, and handling complex data, but they face challenges in computational resource requirements and interpretability.
Deep learning-based recognition adopts an end-to-end learning approach, where raw data is fed into the network model to directly obtain classification results. However, there is a wide variety of deep learning network models, and no theoretical method has been provided to guide the selection of models based on specific recognition problems. Additionally, there is no quantitative explanation for why the output results of a model are good or bad. Instead, people rely on their experience to try different network models iteratively to achieve better results. Improving the interpretability of models to make the decision-making process more transparent, understandable, and trustworthy is an area worthy of further research in deep learning models.
Currently, most classifiers use supervised learning, which can only recognize a few specific types of interference. When new types of interference appear, the overall recognition performance may deteriorate. This is a drawback of feature learning with labeled data. Research on feature learning from unlabeled data and techniques for automatically adding classification labels to unlabeled data [79] is necessary.
3.3 Interference direction finding technology
Accurately determining the direction of interference sources in satellite navigation systems can help people quickly locate them. Although the construction of satellite navigation systems started relatively late and has had a shorter development time compared to the advancement of radio technology, there are numerous methods for radio direction finding. The principles of satellite navigation interference direction finding and ordinary radio direction finding techniques are consistent, with the difference lying in the specific application scenarios. To address the issue of interference direction finding in satellite navigation systems, inspiration can be drawn from radio direction finding techniques.
3.3.1 Traditional direction finding algorithms
The main interference direction finding methods include amplitude comparison direction finding, phase comparison direction finding, and spatial spectrum estimation. The specific algorithms are shown in Figure 7. Among them, the first two are traditional direction finding methods, which are based on the amplitude information or phase information of the interference received by the antenna, respectively. These are the direction finding methods adopted by scalar direction finding systems. The latter benefits from the development of spatial spectrum estimation technology, which is based on both the phase and amplitude information of the interference received by the antenna. It is the direction finding method adopted by vector direction finding systems [96].
[image: Flowchart showing traditional interference direction finding methods divided into three categories: Amplitude Comparison, Phase Comparison, and Spatial Spectrum Estimation. Each category features specific methods, such as Maximum Signal, Phase-Interferometer, and Subspace Decomposition Algorithms.]FIGURE 7 | Classification of direction finding algorithms.
Interference direction finding can be performed using either a single antenna or an antenna array. Figure 8 showcases three commonly utilized antenna array models: linear arrays, circular arrays, and planar arrays.
[image: Three types of arrays are illustrated: (A) Linear Array with dots aligned in a straight line, (B) Circular Array with dots arranged in a circle, and (C) Planar Array with dots forming a grid pattern.]FIGURE 8 | Antenna array model. (A) Linear array. (B) Circular array. (C) Planar array.
Amplitude comparison direction finding relies on differences in signal amplitude, making it susceptible to noise and resulting in suboptimal direction finding outcomes. Phase comparison direction finding, also known as interferometer direction finding, relies on phase variations that contain more precise directional information. Due to its high accuracy and speed, it is widely used, including in phase interferometer methods and correlative interferometer methods. Phase interferometer-based direction finding utilizes the phase difference of interference signals received by antenna elements on a baseline. Taking single-baseline interferometer direction finding as an example, its schematic diagram is shown in Figure 9.
[image: Diagram showing a system with two receivers labeled "Receiver 1" and "Receiver 2" separated by distance \(d\). Signals are received at angles \(\theta\). Outputs are processed by a "Phase Discriminator" to produce an angle change \(\phi\).]FIGURE 9 | Single baseline interferometer.
Assuming there are two antennas with a baseline length of [image: Please upload the image you'd like me to generate alt text for.], they receive a far-field electromagnetic wave signal with an angle of [image: Please upload the image or provide a URL for me to generate the alternate text.] with respect to the line of sight, and the wavelength of the wave is [image: Please upload the image or provide a URL for me to generate the alternate text.]. The true phase difference of the signals received by the two antennas is:
[image: Equation showing the expression for \(\beta\) as \( \frac{2\pi}{\lambda} d \sin \theta \), labeled as equation (10).]
When the signals received by the two receivers from the antennas are fed as inputs to the phase discriminator, the output of the phase discriminator is the phase difference [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] between the two signals. Since the phase discrimination range of the phase discriminator is limited to [image: Mathematical expression showing the interval from negative pi to pi, enclosed in square brackets.], it follows that:
[image: A mathematical equation is shown: \(\varphi = \phi + 2k\pi\), where \(k = 0, \pm 1, \pm 2, \ldots\).]
After undergoing an angle transformation, we can obtain Equation 12:
[image: Equation showing \(\theta\) equals the inverse sine of \(\frac{\phi}{2\pi d}\), which is also expressed as the inverse sine of \(\frac{\phi + 2k\pi}{2\pi d}\), labeled as equation twelve.]
Upon observing Equations 10, 11, if we want to ensure that for any angle [image: Please upload the image you would like me to describe. You can do this by clicking on the "Upload" button to share the image file.], the true phase difference and the phase difference measured by the phase discriminator are equal, the signal wavelength [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and baseline length [image: Please upload the image or provide a URL for me to generate the alternate text.] must satisfy the following condition as Equation 13:
[image: Mathematical expression showing "d is less than or equal to lambda over two", labeled equation 13.]
Otherwise, there will be an integer multiple difference between the two, which is known as the phase ambiguity problem in phase-based direction finding methods. To obtain the correct angle of arrival (AOA) of the signal, it is necessary to solve for the ambiguity number. There are already many methods to resolve this ambiguity, such as the long-short baseline method, the Chinese Remainder Theorem method [97], and so on.
It is evident that the direction finding performance is influenced by the baseline length. A longer baseline results in higher direction finding accuracy but also introduces the issue of phase ambiguity. On the other hand, a shorter baseline eliminates the phase ambiguity problem, but it can lead to mutual coupling between antenna elements, which reduces the direction finding accuracy and limits the signal bandwidth.
The correlative interferometer direction finding method can overcome the phase ambiguity problem. Its principle involves selecting several antenna pairs to obtain the phase differences of known incoming wave signals from all directions and frequencies as the original phase samples. For an unknown incoming wave signal to be measured, only the phase difference measured by the antenna pair is required, and this is then correlated and interpolated with the phase samples. The angle corresponding to the maximum correlation value is determined as the angle of arrival [98].
3.3.2 Direction finding algorithms based on spatial spectrum estimation
Although traditional direction finding technologies are mature, they are constrained by factors such as array size, beamwidth, and the direction finding environment. In practical applications, their direction finding accuracy and spatial resolution sometimes fail to meet requirements, especially in multipath environments where direction finding performance is poor. Spatial spectrum estimation techniques, developed in the 1960s and 1970s based on minimum variance spectral estimation, can address some of the issues with traditional direction finding methods to a certain extent.
Spatial spectrum estimation can be categorized into subspace fitting algorithms and subspace decomposition algorithms. The former category is typically represented by the maximum likelihood (ML) method, which constructs a logarithmic likelihood function based on the signal model and solves for unknown parameters to obtain the direction of arrival (DOA) of signals. This method remains effective for coherent signal direction finding and performs well even at low SNR, but its processing efficiency needs to be improved [99]. The latter category is predominantly represented by the MUSIC (Multiple Signal Classification) algorithm [100], which works by performing an eigen decomposition on the array output signals. The resulting noise eigenvectors and signal eigenvectors span the noise subspace and signal subspace, respectively. The spatial spectrum is estimated by utilizing the orthogonality between these subspaces, and the DOA is estimated by searching for spectral peaks. The MUSIC algorithm offers relatively lower complexity and computational requirements while achieving high direction finding accuracy. However, the actual electromagnetic environment is much more complex than the theoretical assumptions, leading to suboptimal direction finding results in some electromagnetic conditions. For example, under the influence of multipath effects, the presence of coherent signals can cause the array manifold matrix to become rank-deficient, resulting in poor direction finding performance. In such cases, decorrelation algorithms such as spatial smoothing algorithms are first applied to restore the array manifold matrix to a full-rank state [101]. The ESPRIT (Estimating Signal Parameter via Rotational Invariance Techniques) algorithm, proposed by Roy and Kailath [102], does not require spectral peak searching and has a lower computational burden but may exhibit reduced measurement accuracy compared to MUSIC.
We select an 8-element linear array and set up 3 incoming wave signals with different DOA. These signals have similar powers, and the INR is set to 10 dB for all of them. Among these signals, two are coherent. We conduct simulations using the MUSIC algorithm directly and after applying spatial smoothing to the signals, respectively. The purpose of these simulations is to verify the correctness of the analysis on the direction finding performance of the MUSIC algorithm. The simulation results are presented in Figure 10.
[image: Two graphs labeled A and B show amplitude versus angle in degrees. Both graphs feature prominent peaks around 50 to 60 degrees, with B displaying additional smaller peaks. The graphs illustrate the angular distribution of amplitude in a comparative study.]FIGURE 10 | Simulation of Direction Finding by MUSIC Algorithm. (A) Direct MUSIC Direction Finding. (B) MUSIC Direction Finding after Spatial Smoothing.
Table 5 summarizes the characteristics of the aforementioned radio direction-finding techniques, which are currently being applied in interference direction-finding for satellite navigation systems. Interferometer-based direction finding methods offer fast speed and high accuracy, and some researchers have specifically designed GNSS interference direction finding antennas to address issues such as phase ambiguity and reduce mutual coupling effects between array elements [103]. A significant number of satellite navigation interference direction finding and localization equipment employ correlative interferometer direction finding methods to achieve precise direction finding of interference signals [104]. Scholars from Beijing Jiaotong University have conducted simulations under ideal conditions, using a four-element rectangular array and MUSIC and its improved algorithms to estimate the DOA of typical incoherent narrowband interference, coherent narrowband interference, and broadband interference signals in BDS. Their results show good direction finding performance [29, 104, 105].
TABLE 5 | Performance comparison of direction finding algorithms.
[image: Comparison table of direction finding algorithms: Amplitude comparison method has low sensitivity, low accuracy, fast speed, and low complexity. Phase comparison method has relatively high sensitivity, accuracy, relatively fast speed, and relatively high complexity. Spatial spectrum estimation method has high sensitivity, high accuracy, slow speed, and high complexity.]In practical engineering applications, however, direction finding of interference signals must take into account the impact of adverse factors such as mutual coupling between array elements and boundary effects, which can lead to amplitude and phase errors in the array elements that affect the accuracy of spatial spectrum estimation-based direction finding. To achieve direction finding results comparable to those under ideal conditions, active calibration methods can be employed, where the gain patterns of the antenna array elements are calibrated using specialized equipment to estimate the amplitude-phase error matrix and mutual impedance matrix, which are then used to correct the obtained spatial spectrum [105]. Alternatively, an error cost function can be constructed to estimate the amplitude-phase error matrix, which is then incorporated into a DOA error estimation model to achieve real-time correction [106]. With the popularity of neural network models, methods have gradually emerged that use CNN to perform phase correction on direction-finding channels [107].
As the electromagnetic environment becomes increasingly complex, it is essential to select the appropriate direction finding algorithm for different scenarios. To fully leverage the advantages of various direction finding methods and improve the results, a trend is emerging towards combining multiple direction finding techniques for interference direction finding. For instance, the maximum signal method employs high-gain directional antennas, offering high sensitivity but relatively low accuracy. In contrast, the correlative interferometer uses omnidirectional antennas, providing low sensitivity but high accuracy. By combining these two methods, it is possible to simultaneously achieve high accuracy and sensitivity in direction finding [108]. Additionally, the correlative interferometer boasts fast direction finding speeds, while the MUSIC algorithm excels in accuracy. By first using the correlative interferometer to quickly determine the direction of the interference signal, the search range of the MUSIC spatial spectrum can be narrowed, significantly reducing the computational load. The combination of these two techniques enables fast and high-precision direction finding [109, 110].
3.3.3 Direction finding algorithms based on timeodulated array
Although traditional direction-finding techniques have demonstrated good performance in relatively simple scenarios, they are increasingly showing limitations as the electromagnetic environment becomes more complex. For example, traditional methods struggle to address direction-finding issues in complex situations such as weak signal strength, wide bandwidth, high frequency bands, and the simultaneous presence of multiple interference sources. As a result, their application scope in modern complex electromagnetic environments is limited. Consequently, researchers have begun exploring new direction-finding techniques to overcome these challenges. In recent years, direction-finding methods based on Time modulated Arrays (TMAs) have emerged, offering new approaches to solving these problems.
A TMA is a novel type of antenna array that introduces switches at the RF front-end of a traditional antenna array to periodically time-modulate the incoming wave signals received by each antenna element. The modulated signals are then processed through a single channel by the signal processing module, extracting harmonic components that contain DOA information. By analyzing the relationships between these harmonic components, DOA estimation can be achieved. Because it introduces the time variable into the antenna array, TMA is also referred to as a four-dimensional antenna array [111]. He Chong [112] used a binary TMA to calculate the fundamental and first harmonic components of the TMA output signals. The incident angle of the incoming wave was estimated using the ratio of the harmonic component to the fundamental component. Chen Jingfeng [113] proposed a direction-finding technique based on multi-harmonic analysis, fully utilizing the angle information contained in each harmonic component. The generalized least squares estimation method was used to estimate the direction of the incoming wave signal, and selecting an appropriate number of harmonics significantly improved direction-finding performance even at low SNR. Compared to traditional algorithms that rely on multiple channels to complete direction-finding tasks, TMA uses a single channel, avoiding direction-finding errors caused by inconsistencies between channels [114]. By integrating techniques such as multi-beam arrays and spectrum feature analysis, TMA can achieve precise DOA estimation while reducing system complexity and cost [115–117]. To address direction-finding for broadband signals and potential phase ambiguity issues during the direction-finding process [118], proposed applying different periodic time modulation to different array elements. This approach independently maps the amplitude information of each antenna unit to different harmonic frequencies, avoiding phase ambiguity caused by carrier frequency variations over a wide band, thus extending the direction-finding bandwidth [119]. used channelization to divide broadband signals into multiple sub-bands, converting the broadband direction-finding problem into multiple narrowband direction-finding problems. The DOA of the broadband signal was then estimated through weighted integration [120]. introduced virtual baseline technology into TMA, further enhancing its direction-finding capabilities.
3.4 Summary
After years of development, traditional direction-finding methods have been extensively studied and applied in various fields such as communications, radar, and navigation. They have a solid theoretical foundation and technical accumulation, and for most conventional direction-finding tasks, their accuracy and stability meet the requirements. However, their performance in complex electromagnetic environments is not ideal. Direction-finding algorithms based on TMA offer several advantages through time modulation and spatial synthesis, including high angular resolution, strong interference resistance, low hardware complexity, and robustness. These features make TMA-based methods particularly suitable for direction-finding in complex electromagnetic environments.
Currently, TMA-based direction-finding methods, as a new technology, are still not fully mature and are primarily focused on theoretical research. Translating these methods into practical applications requires overcoming many technical barriers, such as high-precision clock sources, complex control circuits, and high-performance digital signal processing units. With advancements in technology and cost reductions, TMA-based methods are expected to see widespread application in complex electromagnetic environments, representing an important direction for the development of direction-finding technology. Meanwhile, traditional direction-finding methods will continue to play an irreplaceable role in mature fields.
4 FUTURE DEVELOPMENT TRENDS IN INTERFERENCE MONITORING
Currently, the transmission of information is generally achieved through the propagation of electromagnetic waves, where various useful signals overlap with useless interference and noise present in the space, posing significant challenges for interference monitoring. Through the analysis of key technologies for satellite navigation system interference monitoring, it can be anticipated that future interference monitoring will face even more severe challenges, with a focus on the development of interference monitoring technologies that offer high precision, high sensitivity, and high real-time performance.
4.1 Highly sensitive real-time interference detection
As interference technology advances, the power required to generate the same interference effect on GNSS receivers is decreasing. Moreover, when multiple interferences with significantly different power levels coexist, the lower-power interference can be overwhelmed by the higher-power interference, leading to a high probability of missed detections during interference monitoring and posing potential assessment risks. Detection equipment monitors interference within its vicinity. Enhancing the sensitivity of interference detection equipment can effectively detect low-power interferences, expand the range of interference detection, reduce the number of devices required for full-area monitoring, and lower the cost of the monitoring system.
Furthermore, if interference detection equipment can quickly identify interference, people can promptly take interference suppression measures to reduce its harmful effects. This requires the detection equipment to adopt low-complexity detection algorithms while ensuring sensitivity. This requires the detection equipment to ensure sensitivity while also maintaining real-time performance.
4.2 Intelligent automatic interference identification
GNSS receivers are sometimes subjected to more than one type of interference simultaneously, and the impacts of different types of interference on them are generally different. Separating and identifying these mixed interferences individually allows for an analysis of the effects of each on the terminal equipment, facilitating more informed decision-making. To achieve better interference effects, new types of interference continue to emerge. For previously identified interference types, rapid identification of their types should be possible upon re-interference, which can be achieved by establishing an interference library. For new types of interference that have never been identified before, the monitoring system’s identification should also possess a certain degree of generalization ability, correctly identifying the new type of interference and adding it to the interference library.
With technological advancements, satellite navigation interference monitoring can integrate artificial intelligence, machine learning, and other technologies. Through self-learning and evolution, intelligent algorithms can continuously adapt to changing interference characteristics, achieving automatic identification and classification of interference signals with high accuracy. Furthermore, they can even predict the occurrence of interference. This deep integration of technologies can save significant human resources and greatly enhance efficiency and accuracy.
4.3 High-precision interference direction finding under complex conditions
Typically, the interference monitoring equipment and the interfered terminals are not located at the same geographical position, making the direction of interference arbitrary for the monitoring equipment. In complex terrain conditions such as “urban canyons,” mountainous regions, jungles, or in the presence of moving obstructions or drastic meteorological changes, the interference signals are prone to various physical phenomena during propagation, including reflection and refraction, which can lead to multipath effects. These effects can reduce the accuracy of direction finding, cause ambiguity in direction finding, and result in unstable direction finding outcomes. The precision of interference direction finding directly impacts the results of interference source localization. If the interference source is located far from the monitoring equipment, even a slight deviation in the direction finding angle can result in a significant discrepancy between the localized position of the interference source and its actual location.
The premise of direction finding for multipath signals is to extract the direct interference from the detected interference signals. Improvements and optimizations to multipath resolution algorithms can be made in terms of real-time performance, implementation difficulty, and complexity. By integrating direction finding with generative AI (Artificial Intelligence) technologies, an adaptable direction finding model can be constructed that automatically adapts to complex and dynamic propagation environments, enhancing the intelligence level of the direction finding system. Furthermore, the direction finding system can introduce multi-modality and perform data fusion to address multipath interference issues.
4.4 Comprehensive and large-scale interference monitoring
Currently, the development of the GNSS interference monitoring network in China is still incomplete, and the capability for comprehensive interference monitoring across the entire region remains inadequate. The evolution of the monitoring network should target intelligence and automation, fully leveraging artificial intelligence, big data, and cloud computing technologies to enable real-time analysis of vast amounts of monitoring data.
Joint monitoring is a necessary means for interference monitoring. On one hand, emphasizing multinational joint monitoring on a global scale and strategically deploying interference monitoring stations worldwide can ensure comprehensive coverage. On the other hand, it is crucial to develop and integrate various interference monitoring platforms, including ground-based, air-based, space-based, and sea-based systems, to effectively tackle complex monitoring environments.
5 CONCLUSION
Interference monitoring serves as an indispensable cornerstone for maintaining the robust operation of various systems, playing a crucial role in ensuring their performance. Focusing on the domain of GNSS interference monitoring, the current system faces unprecedented challenges in multiple aspects, including technological iteration, infrastructure construction, and international collaboration. To gain a profound understanding of the essence of these challenges and explore effective strategies to address them, this paper systematically traces the developmental history of interference monitoring systems since their inception. It provides a comprehensive and in-depth analysis of the intrinsic mechanisms and unique characteristics of several core interference monitoring technologies. Building on this foundation, the paper reviews the breakthrough advancements in these key technologies over recent years. It delves deeply into the enhanced understanding of technical principles and broadly explores the continuous expansion and innovation in application domains. Through detailed examination and analysis, we gain insights into the significant potential of these technologies in improving monitoring accuracy, enhancing system robustness, and driving technological innovation. Through the review and analysis presented in this paper, we aim to provide scholars in the relevant fields with a comprehensive and in-depth report on interference monitoring technologies. We hope to inspire their innovative thinking and research enthusiasm, contributing valuable wisdom and strength to the continuous advancement and widespread application of interference monitoring technologies.
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In recent years, satellite navigation systems have witnessed widespread adoption across diverse fields, including military surveillance, precision agriculture, traffic monitoring, resource exploration, and disaster assessment. However, navigation signals are susceptible to interference, with deceptive interference posing the most significant threat to navigation systems. This paper provides a comprehensive overview of satellite navigation spoofing and anti-spoofing techniques. It reviews the current state of spoofing and anti-spoofing technologies, analyzing advancements in spoofing techniques and the evolution of countermeasures. Furthermore, the paper elaborates on the impact of spoofing interference on receiver performance, examining its effects on positioning, timing, and velocity estimations. A detailed analysis of various anti-spoofing methods is presented, categorizing them into detection, identification, suppression, and localization techniques. This review aims to provide a thorough understanding of the evolving landscape of satellite navigation spoofing and anti-spoofing technologies, fostering further research and development efforts to ensure the integrity and resilience of satellite navigation systems in the face of sophisticated threats.
Keywords: satellite navigation, generative spoofing jamming, induced deceptive jamming, induced deceptive jamming monitoring, induced spoofing interference suppression

1 INTRODUCTION
Global navigation satellite systems (GNSSs) provide ground users with continuous, all-weather, high-precision positioning, timing, and velocity information through navigation signals transmitted from artificial satellites [1]. The remarkable performance of GNSSs has led to their widespread adoption across civilian and military domains [2].
As shown in Figure 1, in the military domain, modern warfare increasingly relies on high-precision positioning and velocity data for the precise control of precision-guided weapons, aircraft, ships, and various vehicular equipment. Satellite navigation systems are thus a critical enabler for land, sea, and air weapon systems, facilitating the construction of fully digitized battlefields.
[image: Satellite and ground control station diagram illustrating data flow. The satellite sends information to ground stations, which then manage position and timing for planes, ships, and cars, and timing for power and wind power.]FIGURE 1 | Role of satellites in civil navigation.
GNSS technology has permeated many industries in the civilian domain, including providing precise timing for power systems, navigation for civil aviation and vehicles, and high-precision positioning and timing services for ship navigation. It plays a crucial role in disaster relief efforts and numerous aspects of daily life, becoming an indispensable component of modern society’s infrastructure.
Navigation signals, typically transmitted from satellites to ground receivers, are susceptible to various intentional and unintentional disruptions due to long-distance propagation and low signal power at ground reception [3, 4]. Moreover, the information transparency and open signal characteristics of navigation systems [5, 6], particularly the detailed specifications and descriptions of civilian GNSS control interface documents (ICDs) regarding carrier frequency, modulation schemes, and navigation messages [7], make them highly vulnerable to information tampering and deceptive spoofing attacks, posing significant threats to navigation systems. Spoofing signals, with power levels comparable to genuine navigation signals, exhibit high stealthiness and efficiently disrupt navigation receivers, resulting in inaccurate positioning and timing information and potentially catastrophic consequences [8]. This is particularly concerning in the case of drones, where spoofing interference can manipulate the drone’s navigation system through pseudo-range spoofing, leading to erroneous positioning results [9, 10].
This paper delves into the mechanisms of GNSS spoofing attacks and explores a range of countermeasures. The paper begins by examining the vulnerabilities of GNSS receivers to spoofing attacks, highlighting the security threats they pose. It then analyzes the strategies and mechanisms employed in spoofing attacks, providing a comprehensive overview of different attack methodologies. The paper further examines the impact of spoofing signals on targeted receivers, delving into the underlying principles of induced spoofing attacks and their rapid evolution in recent years. Subsequently, the paper explores various anti-spoofing technologies tailored to counter different spoofing attacks. This includes an analysis of five signal-level spoofing detection techniques, examining advancements in deep learning-based spoofing identification techniques and providing a summary of the application scenarios and performance characteristics of various anti-spoofing technologies. Finally, the paper concludes by presenting methods for locating the source of spoofing interference.
To make it easier for readers to understand this survey, Table 1 lists some important abbreviations and their meanings. These abbreviations apply only to this survey. Specific explanations are given in Table 1.
TABLE 1 | Abbreviations table.
[image: Table displaying abbreviations and their meanings. On the left: AOA (Angle of arrival), CDMA (Code division multiple access), CNR (Carrier-to-noise ratio), CSI (Channel state information), FDOA (Frequency difference of arrival), FWHM (Full width half maxima), GSI (Generative spoofing interference), IF (Intermediate frequency), MIMO (Multiple-input multiple-output), PRN (Pseudo-random noise code), RAIM (Receiver autonomous integrity monitoring), SNR (Signal-to-noise ratio), SVM (Support vector machines), TOA (Time of arrival). On the right: BPNN (Backpropagation neural network), CNN (Convolutional neural network), CRPD (Carrier-phase single difference), DLLS (Delay-locked loops), FLLS (Frequency-locked loops), GNSS (Global navigation satellite system), ICD (Interface control document), INS (Inertial navigation units), PLLS (Phase-locked loops), PRDD (Pseudo-range double differences), RF (Radio frequency), SQM (Signal quality monitoring), TDOA (Time difference of arrival), UAV (Unmanned aerial vehicle).]2 CURRENT STATUS AND CASE STUDIES OF SPOOFING
The concept of spoofing interference in satellite navigation systems, first detailed in 2003 by British researchers D.J. Shepherd and M.G. Bitterlin [11], has transitioned from a theoretical possibility to a demonstrable reality [12]. Early research outlined the potential for such attacks and proposed basic countermeasures, but advancements in technology and increasing threats have spurred further investigation and a deeper understanding of spoofing interference. The danger has manifested in real-world scenarios, with notable examples including the capture of American unmanned reconnaissance aircraft, “RQ-170” and “Scan Eagle,” by Iranian forces in 2011 and 2012, respectively [13, 14]. These operations reportedly employed spoofing techniques to disrupt communication between the drones and their satellites, transmitting deceptive signals that lured them to land. Further experiments conducted by Professor Todd Humphreys’ team in 2012 demonstrated the feasibility of hijacking GPS-guided drones and manipulating their navigation systems using spoofing signals [15]. Later that year, the team successfully hijacked a civilian drone at the U.S. Army’s White Sands Missile Range, highlighting the vulnerability of civilian drones to spoofing attacks [16]. In 2013, the team demonstrated the potential for spoofing attacks at sea by successfully diverting an $80 million yacht from its course using a compact GPS spoofing jammer [16]. These experiments, along with others conducted by M.L. Psiakiand and T.E. Humphreys in 2017 [17], underscore the susceptibility of GNSS receivers to spoofing attacks and the challenge for users in detecting such interference.
In April 2013, at the Hack in the Box security conference in Amsterdam, Hugo Teso, a commercial pilot and engineer from a German cybersecurity company, unveiled the PlaneSploit application, a tool capable of bypassing aircraft security systems and gaining control of the aircraft’s computer systems [18]. Teso successfully demonstrated PlaneSploit’s capabilities by altering the flight path, adjusting air conditioning settings, and even simulating a crash landing, highlighting the significant risks posed by such attacks. In 2017, the Unicorn Team, a hacking group affiliated with 360 company, further demonstrated the feasibility of spoofing civilian GPS devices at the Def Con hacking conference in the United States. Later that year, they showcased their ability to spoof the BeiDou navigation system at the POC hacking conference, demonstrating the global reach of spoofing capabilities. In 2018, the U.S. Navy conducted a real-world spoofing attack simulation exercise named “Sea Lion Father” in the Pacific Ocean. The exercise involved using false GPS signals to disrupt the electronic equipment of their vessels, effectively counteracting the real positioning capabilities of their location and navigation systems. This exercise highlighted the potential for spoofing to disrupt critical maritime operations, emphasizing the urgent need for robust countermeasures.
3 ANALYSIS OF SPOOFING INTERFERES
Satellite navigation signals employ direct sequence spread spectrum modulation composed of three components: carrier, pseudo-random code, and navigation message data code. The carrier, residing at the bottom layer of the satellite navigation signal, carries the pseudocode and navigation message. The pseudo-random code is used primarily for spreading the data code, and the data code stores the satellite ephemeris. The specific signal can be represented by the following Equation 1:
[image: Mathematical equation showing \( S(t) = A \times C(t) \times D(t) \times \cos(\omega t + \varphi) \).]
[image: It appears there was an error or missing image file. Please try uploading the image again, and I will help generate alternate text for it.] represents the amplitude, [image: Please upload the image or provide a URL for me to generate the alternative text.] represents pseudocode, [image: It seems there is no image uploaded. Please try uploading the image again or provide a URL.] represents the data code, [image: Please upload the image or provide a URL so I can generate the alternate text for you.] represents the carrier frequency, and [image: Please upload the image or provide a URL to the image you would like me to generate alternate text for.] represents the carrier phase.
Spoofing operates by transmitting signals that mimic the format of authentic satellite navigation signals with altered parameters, targeting the receiver. The receiver, unaware of the manipulation, captures and tracks these spoofed signals, resulting in erroneous positioning and timing data. There are two primary categories of spoofing interference: generative spoofing and forwarding spoofing.
3.1 Relay-based spoofing interference
Relay-based spoofing interference operates by forwarding intercepted genuine satellite navigation signals, effectively extending their propagation time and introducing inaccuracies into positioning results [19, 20]. To ensure that the relayed spoofed signal is captured and tracked by the receiver, it is typically transmitted with a power approximately 2 dB higher than the genuine satellite signal [21]. Relay-based spoofing interference can be categorized into two types: single-antenna and multi-antenna. Single-antenna relay-based spoofing utilizes a single omnidirectional antenna to receive, amplify, delay, and forward signals from all satellites within its field of view. As the interference device introduces the same additional delay to all visible satellite signals, this method can induce deviations in the target receiver’s positioning but cannot precisely control or set the final position. Multi-antenna relay-based spoofing interference, however, employs multiple omnidirectional antennas, each corresponding to a visible satellite in its field of view. This allows for the introduction of distinct delays and Doppler shifts to each visible satellite signal, enabling precise control over the target receiver’s positioning and even directing it to a predetermined false location. In terms of effectiveness and covertness, multi-antenna relay-based spoofing interference aligns better with the requirements of future information warfare, such as navigation warfare and time warfare. Its potential applications in these domains make it a valuable area of ongoing research.
Despite its advantages, current research has identified a significant drawback of multi-antenna relay-based spoofing interference. When the distance between the interference device and the target receiver exceeds a certain range, it can cause abrupt jumps in the clock bias calculated by the target receiver. The receiver can successfully identify this type of spoofing by performing integrity monitoring and analysis on the calculated clock bias data. This limitation significantly restricts the operational range of multi-antenna relay-based spoofing interference. The primary solution proposed for this issue involves demodulating the satellite signal and manipulating the code phase of the pseudo-random noise code (PRN) sequence to compensate for the additional clock bias introduced at the target receiver. However, demodulating the satellite signal requires knowledge of the signal structure and PRN sequence, making it unsuitable for military signals [22]. Figure 2 illustrates the architecture of a relay-based spoofing interference system. Distributed relay-based spoofing interference leverages natural or controllable propagation delays during signal forwarding to disrupt receiver operations. Due to the confidential nature of the M-code, relay-based spoofing has become a key focus for targeting military codes.
[image: Diagram depicting a satellite spoofing system. Multiple satellites transmit signals to a forwarded spoofing generator. The generator sends altered signals to a satellite navigation receiver via a receiving antenna. Arrows indicate signal flow.]FIGURE 2 | Schematic diagram of relay-based spoofing interference.
Simultaneously, regional augmentation techniques based on pseudo-satellites have matured [23]. Building upon this foundation, literature [24] proposes a regional navigation and spoofing interference integrated system based on pseudo-satellites. This system consists of three components: a relay-based interferer, a carrier platform, and a ground control station. The relay-based interferer, positioned approximately 20 km above ground, generates interference signals. The ground control station controls the carrier platform’s location and transmits instructions to the interferer, controlling the magnitude of the introduced delay in the forwarded signal. This system utilizes controlled forwarding delays to achieve regional mapping spoofing interference. Concurrently, code division multiple access (CDMA) technology is employed to superimpose the platform’s location information and the introduced delay information onto the forwarded signal. As the friendly spread spectrum signal is orthogonal to the forwarded signal, the two signals act as noise to each other without mutual interference. Enemy GPS receivers acquire erroneous delay information, mapping the true location (R) to a virtual location (F), achieving spoofing interference. Simultaneously, friendly receivers obtain the carrier platform’s location information and compensate for the delay, allowing for their navigation and positioning. The system principle is illustrated in Figure 3.
[image: Diagram illustrating four satellites, labeled S1 to S4, each communicating with corresponding jets J1 to J4. A control station manages the interaction, connecting with a forward station (F) and a remote station (R).]FIGURE 3 | Schematic diagram of a GPS decoy jamming and regional navigation-integrated system [24].
3.2 Generative spoofing interference
Generative spoofing interference is created by a satellite signal simulator that autonomously generates signals that mimic real satellite navigation signals based on known signal characteristics, including carrier frequency, C/A code, code phase, and modulation scheme [25]. These spoofed signals are synchronized with genuine signals to create a deceptive effect. Figure 4 illustrates the architecture of a generative spoofing interference system.
[image: Diagram showing five satellites transmitting signals to a receiving antenna. Signals are also manipulated by a spoofing device, redirecting altered signals to a satellite navigation receiver. Blue arrows indicate the signal paths.]FIGURE 4 | Schematic diagram of generative spoofing interference.
Generative spoofing interference (GSI) can be categorized into three levels based on its implementation complexity: primary, intermediate, and advanced [26–28]. Primary GSI relies on satellite signal simulators to generate spoofing signals without synchronizing parameters with the genuine signal, resulting in weak spoofing capabilities. Intermediate GSI, on the other hand, estimates the genuine satellite signal parameters, such as power, code phase, carrier frequency, navigation message, and modulation scheme. This enables the spoofing signal to mimic the genuine signal in terms of signal structure, thus increasing the likelihood of deceiving target receivers [29]. Advanced GSI builds upon intermediate GSI by employing multiple intermediate GSI sources for joint spoofing, overcoming the limitations of single-antenna transmission. It further integrates beamforming techniques to perfectly synchronize spoofing signals in parameters such as arrival angle. Intermediate GSI is the most widely adopted and successful technique, with the highest intrusion success rate. This paper focuses on intermediate GSI. The core principle of intermediate GSI lies in parameter synchronization with the genuine signal, including power, carrier frequency, code phase, modulation scheme, and navigation message synchronization. This ensures the spoofing signal can successfully decouple the genuine signal within the tracking loop of the satellite navigation receiver, thus facilitating the receiver to track the spoofing signal and achieve the spoofing effect. Figure 5 illustrates the general workflow of intermediate GSI.
[image: Flowchart illustrating a GPS spoofing process. It starts with receiving GPS signals, leading to information extraction, followed by an analysis of signal power, pseudo-code phase, and carrier phase. The process generates a GPS spoofing signal aimed at the target receiver. A decision point assesses if tracking spoofing signals are captured. If yes, deception is complete.]FIGURE 5 | Intermediate generative deception interference flowchart.
As illustrated in Figure 5, the implementation process of intermediate generative spoofing interference can be described as follows: Initially, the satellite signal receiver in the spoofing interference module captures, tracks, and decodes the authentic signal, obtaining the code phase, carrier phase, received power, and navigation message of the authentic signal. Subsequently, the obtained parameters are utilized to adjust the parameters of the spoofed signal. Finally, the spoofed signal is modulated and transmitted.
The spoofed signal arrives at the receiver alongside the authentic signal. Generally, the power of the spoofed signal exceeds the power of the authentic signal by 3 dB. Under the power advantage of the spoofed signal, the receiver will abandon tracking the authentic signal and switch to tracking the spoofed signal, effectively completing the spoofing of the satellite navigation receiver. For receivers already tracking the genuine signal, capturing other search units will not affect the channel. Therefore, a corresponding phase induction model is required to execute spoofing interference against a receiver already in tracking mode while maintaining the lock. This model employs phase induction to perform covert spoofing against the receiver. This can be further categorized into synchronous induction and asynchronous induction [30] based on the different induction methods.
3.2.1 Induced spoofing interference analysis
The GPS radio frequency (RF) signal received by the antenna cannot be directly processed at the user receiver. It first needs to undergo down conversion by the RF front-end, followed by necessary filtering and gain control to obtain the GPS intermediate frequency (IF) signal. Finally, the IF signal is fed into the receiver for signal processing and position calculation.
The signal structure of an induced spoofing signal is identical to that of a genuine satellite signal. Therefore, the IF signal entering the receiver can be represented by Equations 2, 3, respectively [31]:
[image: The equation presented is a mathematical expression for \( x_a(t) \). It involves a summation from \( i = 1 \) to \( N_a \). The terms inside the summation include the square root of \( P_a^i(t) \), and \( D(t - \tau_d) \), multiplied by \( C(t - \tau_d) \). This is further multiplied by the cosine of \( 2\pi(f_0 + f_{d,a})t + \phi_{d,a}^i \). The equation is labeled as equation (2).]
[image: Mathematical equation showing \( x(t) = \sum_{n=1}^{N} \sqrt{P_n(t)} D'(t - \tau'_n) C'(t - \tau'_n) \cos(2\pi(f_0 + f^i_{d,s}) + \phi^i_n) \), labeled as equation (3).]
In this formula, [image: It seems there's no image provided. Please upload the image or provide a URL, and I can help generate the alt text for it.] and [image: It seems like you included a text snippet or formula instead of an image. Please upload an image or provide a URL for which you'd like the alternate text generated.] represent the real satellite signal and the spoofing signal, [image: Please upload the image or provide a URL for me to generate the alternate text.] and [image: It seems there is no image provided. Please upload the image directly, or share a URL to the image, so I can generate the alternate text for you.] represent the number of satellites included, [image: An image shows the mathematical notation "P" with two subscripts, "a" at the bottom and an "i" with a dot above it, indicating a specific element or variable relationship.] and [image: It seems like there might have been an error in uploading the image. Please try again to ensure the image is attached properly, and I can help create the alternate text for you.] represent the signal power, [image: The expression consists of the variable \( D^i(t) \), representing a function or value dependent on time \( t \), with \( i \) as an index or exponent.] represents the navigation data message, [image: Mathematical expression \( C^i(t) \) in italic font, indicating a function of time, possibly representing a variable in a mathematical or scientific context.] represents the C/A code, [image: Stylized mathematical expression showing the variable \( t \) with superscript \( i \) and subscript \( a \).] and [image: The image shows a mathematical expression with 't' as the base, 's' as the subscript, and 'i' as the superscript, written in italicized font.] represent the code phase of each signal, [image: Please upload the image or provide a URL, and I will be happy to generate the alternate text for you.] represents the intermediate frequency (IF), [image: Mathematical notation showing the subscript expression \( f^{i}_{d, a} \).] and [image: Mathematical notation depicting the formula with variables: \( f^1_{d_s} \).] represent the Doppler shift of the signals, and [image: Mathematical expression featuring the Greek letter phi raised to the power of i, with subscript a.] and [image: A mathematical symbol represented by the Greek letter phi, with an upper index "i" and a lower index "s".] represent the initial phase of the carrier of the signals, respectively. Therefore, when induced spoofing interference is present, the receiver mixed IF signal would have both a real satellite signal and a spoofing signal:
[image: Mathematical equation showing \( x(t) = x_s(t) + x_r(t) + n(t) \), labeled as Equation (4).]
where [image: Please upload the image, and I can help generate the alternate text for it.] represents Gaussian white noise with a mean value of 0.
The satellite signal must be captured before the receiver performs the signal processing part. This process is a rough estimate of the carrier frequency and code phase of the satellite signal. The principle is to use the local end of the receiver to generate a signal with a certain carrier frequency and code phase and then correlate and mix the received signal with the local replication signal to detect the correlation degree between the two. When the correlation between the received signal and the local signal exceeds the preset capture threshold, the carrier phase and code phase of the local replicated signal can be roughly assumed to be the same as that of the real satellite signal. However, the signal acquisition is only a rough estimation of the parameters of the received satellite signal, which is not enough to meet the requirements of positioning and solving. Accurate estimation of the satellite signal parameters also needs the receiver to enter the tracking loop to be realized. Induced spoofing jamming is a kind of covert spoofing jamming, which usually implements spoofing after the receiver enters the tracking stage and cannot interrupt the tracking state of the receiver’s tracking loop, so the impact of induced spoofing jamming on the receiver is mainly reflected in the tracking loop. Due to the continuous relative motion between the receiver and the satellite, the pseudocode phase, carrier phase, and carrier frequency of the receiver-received signal all change from time to time. Signal tracking means that the receiver should accurately always track these signal parameters. As shown in the figure, the tracking loop of the receiver includes a code tracking loop and a carrier tracking loop. Carrier tracking loops often include frequency-locked loops (FLLs) and phase-locked loops (PLLs), and delay-locked loops (DLLs) are often used in code tracking loops. FLLs, PLLs, and DLLs are characterized by a feedback adjustment mechanism that continuously corrects the carrier frequency, phase, or code phase generated within it according to the input signal to track the input GPS signal.
As shown in Figure 6, when the GPS IF signal enters the tracking loop, the received IF signal is first mixed with the carrier copied by the receiver's carrier tracking loop, and the carrier stripping is carried out to produce two data, in-phase (I) and quadrature (Q). Then, the code tracking loop will generate three C/A codes with a phase interval of d/2 in the lead (E), instant (P), and lag (L), which are correlated with the I/Q signal to obtain a six-way integration output. Among them, the recurrence codes generated by the leading branch, the immediate branch, and the lagging branch can be called the early code, the instant code, and the late code, respectively. Subsequently, the correlation integral values of the leading and lagging branches will be input to the code ring discriminator, and the correlation values of the instant branches will be input to the carrier ring discriminator. The phase and frequency errors are then calculated by different discrimination algorithms so that the carrier frequency, phase, and code phase reproduced in the tracking loop are corrected. The following is a detailed analysis of the impact of spoofing signals on PLLs and DLLs.
[image: Block diagram illustrating a signal processing system for satellite navigation. It includes modules like IF signal input, Sin and Cos mapping, Carrier NCO, PRN code generator, integrator-reset blocks, loop discriminators, and loop filters. Arrows indicate data flow between components.]FIGURE 6 | General schematic diagram of the receiver tracking loop.
When there is no spoofing, the received signal contains a real satellite signal, and the correlation function between the real signal pseudocode and the locally reproduced pseudocode can be expressed as Equation 5 [31]:
[image: It seems there's an error in the image upload or link. Please try uploading the image again or provide a URL. If there's a caption or additional context, feel free to include that as well.]
where [image: Please upload the image or provide a URL for me to generate the alt text.] represents the code phase difference between the real signal t and the locally reproduced signal. After the signal enters the tracking loop, the real signal received after the carrier stripping and correlation operation will obtain the output result of the six-way correlator, which can be expressed as Equations 6–11 [31]:
[image: Equation representing a mathematical expression: \(I_E(t) = \sqrt{P_t} R_d \left(\Delta \tau - \frac{d}{2}\right) \cos(\phi_c)\), labeled as equation (6).]
[image: The equation shows \( Q_e(t) = \sqrt{P_t R_d} \left( \Delta \tau - \frac{d}{2} \right) \sin(\phi_e) \), labeled as equation (7).]
[image: The formula displayed is: \( I_{p}(t) = \sqrt{P_{r} R_{e}(\Delta \tau)} \cos(\phi_{l}) \) with equation number (8) on the right.]
[image: Mathematical equation: \( Q_q(t) = \sqrt{P_q R_i(\Delta t)} \sin(\phi_q) \), labeled as equation (9).]
[image: Mathematical expression with the equation \( I_L(t) = \sqrt{P_l R_a} \left( \Delta \tau + \frac{d}{2} \right) \cos(\phi_a) \), labeled as equation (10).]
[image: The equation shown is \( Q_L(t) = \sqrt{P_s}R_d\left(\Delta \tau + \frac{d}{2}\right)\sin(\phi_d) \), labeled as equation (11).]
where [image: A lowercase letter 'a' is positioned as a subscript to an uppercase letter 'P', typically used to denote pressure in subscripts in physics or engineering contexts.] indicates signal power, [image: It seems like there is an issue with the image upload. Please try uploading the image again, and I will be happy to help with the alternate text.] represents a correlation function, [image: It looks like there's a reference to a mathematical or scientific notation involving a change in a variable over time, represented by the Greek letter delta (Δ) followed by the Greek letter tau (τ). If there's an image you need described, please upload it.] represents the code phase difference between the received signal and the locally copied signal, and [image: Please upload the image or provide a URL for it so I can generate the alternate text.] represents the carrier-phase difference between the received signal and the locally copied signal. When there is induced spoofing interference, the received signal contains a real signal and a spoofing signal, and after the real signal pseudocode is correlated with the local reproduction pseudocode, taking the real-time code as an example, the outputs of the I and Q correlators are as follows Equations 12, 13 [31, 32]:
[image: Mathematical equation showing I sub rho of t equals the square root of P sub a of t times R sub a t comma tau, multiplied by sinc of Delta f sub d comma a times T, times cosine of phi sub a, plus the square root of P sub r of t times R sub r t comma tau, multiplied by sinc of Delta f sub d comma r times T, times cosine of phi sub r, labeled as equation 12.]
[image: The equation \( Q_{e}(t) = \sqrt{P_{a}(t)} R_{a}(t, \tau) \, \text{sinc} (\Delta f_{d,a} T) \sin(\varphi_{a}) + \sqrt{P_{b}(t)} R_{b}(t, \tau) \, \text{sinc} (\Delta f_{d,b} T) \sin(\varphi_{b}) \) is labeled as equation (13).]
where [image: The image shows a mathematical expression represented as \( P_a(t) \).] and [image: I'm unable to view the image. Please provide a description or upload the image so I can help create the alternate text for it.] represent the power of the real signal and the spoofing signal, and [image: I'm unable to process the image you mentioned. Please upload the image directly, and I'll help generate the alternate text for it.] and [image: It seems like there's an issue with the image upload. Please try uploading the image again, and provide a caption if you have additional context to share.] represent the correlation functions between the real signal pseudocode and the spoofed signal and the local pseudocode. [image: It seems like you provided text related to a mathematical expression, not an image. If you have an image you would like to upload, please do so, and I can generate the alternate text for it.] and [image: It seems you've provided a mathematical expression instead of an image. Please upload the image directly or provide a URL for an accurate alt text description.] represent the carrier frequency difference between the real and spoofed signals and the local signal, respectively; [image: If you upload an image or provide a URL, I can generate the alt text for you.] and [image: It seems there is no image visible or uploaded. Please upload the image or provide a URL so I can generate the alternate text for it.] are the carrier-phase difference between the real and spoofed signals and the local signal, respectively. First, the output result of the instant branch correlator is sent to the PLL discriminator, assuming that the arctangent function phase discriminator is used, as shown in the formula [image: Δϕ equals arctan of the ratio Q sub p over I sub p.]. If there is no spoofing signal, the output of the phase detector is Equation 14 [31]:
[image: The image shows a mathematical equation: Δφ̂ equals arctan of the fraction with numerator square root of PRs(Δτ) times sine of Δφs and denominator square root of PRs(Δτ) times cosine of Δφs, which equals Δφs. It is labeled as equation 14.]
At this time, the output result of the phase detector is that the phase deviation between the real signal and the local signal is [image: The symbol "Δφₐ" is depicted, representing the change in the variable φ with a subscript a, commonly used in scientific and mathematical contexts.]. The PLL can then correct the local signal accordingly so that the carrier phase of the received signal can be continuously tracked.
However, when a spoofing signal is present, the output of the phase detector is Equation 15 [32]:
[image: The image shows an equation labeled as equation fifteen. It is an arctangent function involving square roots, sinusoidal functions, and parameters such as \( P_a(t) \), \( R_a(t, \tau) \), \( \Delta f_d \), \( T \), \( \phi_a \), and \( \phi_r \). The structure includes fractions and trigonometric functions in both the numerator and denominator, indicating a complex mathematical expression.]
From this formula, when there is a spoofed signal, the phase identification result of the phase detector will be incorrect, and the PLL will not be able to correct the carrier phase of the local signal according to the phase identification result so that the carrier phase of the real signal cannot be tracked. Similarly, in the case of DLL, it is assumed that the DLL uses an incoherent leading hysteresis power phase detector. When there is no spoofing signal, the phase detector result is Equation 16 [32]:
[image: The image shows an equation: \( x = \frac{1}{2}((l_{E}^{2} + Q_{E}^{2}) - (l_{e}^{2} + Q_{e}^{2})) = \frac{p_a}{2} \left[ R^2 \left( \Delta \pi - \frac{d}{2} \right) - R^2 \left( \Delta \pi + \frac{d}{2} \right) \right] \). Equation number 16 is noted below the expression.]
Because the autocorrelation function of the pseudocode is symmetrical, [image: Mathematical expression showing capital R followed by open parenthesis, Delta tau minus d over two, close parenthesis.] = [image: Mathematical expression showing R multiplied by the sum of Δτ and d divided by 2.]. So, when the DLL keeps track of the received signal, [image: Please upload the image or provide a URL for me to generate the alternate text.].
When there is a spoofing signal, it is not difficult to conclude that the correlation function between the received signal and the local copy code will be distorted to different degrees, and the code phase deviation of the spoofed signal relative to the real signal will lead to the asymmetry of the relevant peaks, thus causing the phase discrimination error of the DLL phase discriminator. For the sake of simplicity, if the PLL has tracked the carrier phase of the received signal at this time, the output result of this DLL phase detector is Equation 17 [32]:
[image: The image shows a mathematical equation labeled as equation 17. It expresses a formula involving epsilon, P sub s divided by two, and a difference of functions R evaluated at Δτ minus d over two and Δτ plus d over two. The equation includes additional terms with P times P sub s over four, involving similar functions with Δτ sub s.]
where [image: I can't view or analyze images directly. Please upload the image or provide a URL, and I can help generate alt text for it.] is the phase difference between the spoofed signal and the real signal number.
In conjunction with GNSS positioning principles, errors in the DLL and PLL discriminator tracking results can lead to inaccurate estimations of the code phase, carrier Doppler, and carrier phase of the received signal. This, in turn, introduces bias in the subsequent user position calculation, resulting in erroneous position and/or time information. However, the tracking loop also incorporates protective mechanisms. When the tracking loop is in a locked state and stably tracks the received satellite signal, it is in a tracking state. When the received signal fails to meet the tracking conditions, the tracking loop will cease operation, indicating a tracking loop loss of lock. This can lead to the receiver ceasing operation or attempting to reacquire the satellite. Such a scenario would be easily detectable and not conducive to covert spoofing. Therefore, spoofed signals must strive to avoid triggering a tracking loop loss of lock while gradually gaining control over the tracking loop to ensure it continuously tracks the spoofed signal. Ultimately, this will result in the receiver being misled by the spoofed signal.
3.2.2 Synchronous-induced spoofing model
Leveraging the receiver’s inherent inclination to prioritize signals with greater power levels, the synchronous-induced spoofing model operates as follows: Once the receiver has acquired the authentic signal, the spoofing jamming platform utilizes the decoded code phase of the authentic signal to generate a spoofed signal with an identical code phase. This ensures that the authentic signal and the spoofed signal align at their correlation peaks. Subsequently, the spoofing jamming platform increases its transmission power to achieve a power advantage over the authentic signal, thereby causing the receiver to switch its tracking to the spoofed signal. The code phase of the spoofed signal is then gradually shifted away from the code phase of the authentic signal, effectively decoupling the receiver from the authentic signal.
Based on the correlation peak shown in Figure 7A, the general steps involved in the synchronous-induced spoofing model can be outlined [33].
	(1) Initialization: The navigation receiver initially tracks the genuine signal. The spoofing jamming platform accurately estimates the parameters of the genuine signal upon its arrival at the receiver, including its code phase, carrier frequency, and signal power. Subsequently, a spoofed signal with a code phase aligned with the genuine signal is transmitted. At this stage, the power of the spoofed signal is lower than that of the genuine signal.
	(2) Power enhancement: The power of the spoofed signal is gradually increased until it surpasses the power of the genuine signal. Upon achieving a power advantage, the target receiver loses lock on the genuine signal and re-locks onto the spoofed signal. The code loop and carrier loop begin to track the spoofed signal.
	(3) Code phase shift: Once the receiver is tracking the spoofed signal, its pseudo-random code rate is gradually adjusted, causing a shift in its code phase away from the code phase of the genuine signal. The target receiver then completely loses lock on the genuine signal, and the spoofed signal gradually replaces it entirely, effectively deceiving the receiver.
	(4) Power reduction and completion: The transmission power of the spoofed signal is reduced to match the power level of the genuine signal, minimizing detection while completing the synchronous-induced spoofing process.

[image: Graphs labeled (a) and (b) illustrate signal processing with real and spoofing signals over time intervals T0 to T3. The black lines represent real signals, dotted lines represent spoofing signals, and colored circles, including red, green, and yellow, denote trace loops. Red arrows indicate signal movement direction.]FIGURE 7 | Schematic diagram of the changes of related peaks in the synchronous induction model and the asynchronous induction model.
3.2.3 Asynchronous-induced spoofing model
While synchronous-induced spoofing models require precise alignment of the spoofed signal’s code phase with that of the genuine signal, practical implementation faces challenges due to inherent inaccuracies in range and velocity measurements by the target receiver. The precision of parameter estimation, particularly for code phase, carrier frequency, and their respective compensations, often falls short of the requirements for synchronous induction. This presents significant hurdles in achieving synchronous spoofing. An asynchronous-induced spoofing model can be built on the synchronous-induced model. This model only necessitates a rough alignment between the code phase of the spoofed signal and the genuine signal. The spoofed signal then employs variable code rates to match the code phase of the genuine signal, enabling the tracking loop to lock onto the spoofed signal. The asynchronous-induced spoofing model presents a less challenging implementation than its synchronous counterpart. The correlation peak shown in Figure 7B illustrates the process.
Based on the correlation peak variations, the asynchronous-induced spoofing model can be divided into four steps [33].
(1) Initialization: The navigation receiver initially tracks the genuine signal. The spoofing jamming platform accurately estimates the parameters of the genuine signal upon its arrival at the receiver, including its code phase, carrier frequency, and signal power. Subsequently, a spoofed signal with a code phase slightly lagging the genuine signal is transmitted. Meanwhile, the spoofed signal maintains a power advantage over the genuine signal.
	(2) Code phase matching: The code rate of the spoofed signal is gradually adjusted to bring its code phase closer to that of the genuine signal. When the two code phases align, the code loop, relying on the power advantage of the spoofed signal, tracks the spoofed signal, thus successfully disrupting the target receiver.
	(3) Code phase shift: Once the receiver is tracking the spoofed signal, its pseudo-random code rate is gradually adjusted again, causing a shift in its code phase away from the code phase of the genuine signal. The target receiver then completely loses its lock on the genuine signal, and the spoofed signal gradually replaces it entirely, effectively deceiving the receiver.
	(4) Power reduction and completion: The transmission power of the spoofed signal is reduced to match the power level of the genuine signal, along with adjustments to other parameters, minimizing detection while completing the asynchronous-induced spoofing process.

3.3 Summary
All the deception models mentioned above, as well as their applicable scenarios, advantages, disadvantages, and limitations, are shown in Table 2.
TABLE 2 | Characteristics of different methods of deception.
[image: A table compares three types of spoofing attacks: Forwarding, Synchronous-induced, and Asynchronous-induced. Each type is described by three criteria: "How it works," "Merit," and "Limitations." Forwarding involves relaying real signals, is simple to implement, but easily detected. Synchronous-induced imitates signals and gradually changes the code phase, offering high concealment but complex implementation. Asynchronous-induced gradually approaches and overlaps with real signals, also highly concealed and complex to implement. Both synchronous and asynchronous methods require military data, which are not public, making replication difficult.]4 GNSS ANTI-SPOOFING JAMMING TECHNOLOGY
In recent years, significant progress has been made in the development of spoofing interference countermeasure techniques, with numerous constructive solutions proposed by researchers from various countries. Current mainstream methods include signal power detection [34–37], time-of-arrival analysis [38], carrier and code phase consistency [39], carrier Doppler analysis [40], clock difference and stability analysis [41], signal arrival angle [42, 43], message verification [44], correlator output statistical characteristics [45], signal quality detection [46], signal spatial correlation [47], positioning results [48, 49], inertial navigation assistance [50, 51], and array antenna nulling techniques [52]. With the rapid development of machine learning, spoofing interference countermeasure methods can also be integrated with machine learning. Machine learning-based spoofing interference detection methods utilize the receiver to generate different types of feature values for spoofing identification. The type of signal can be detected by extracting these features, especially when the correlation peak of the spoofing signal is close to the original signal’s correlation peak. Based on the implementation objectives, spoofing interference countermeasures can be broadly classified into four categories: spoofing interference detection and identification, spoofing interference suppression, and spoofing interference source localization.
4.1 Spoofing interference detection and identification
Spoofing interference detection and identification primarily focus on the detection of spoofed signals. Upon detecting the presence of such signals, the receiver’s normal operation is halted, preventing it from being misled and mitigating potentially severe consequences. In a battlefield scenario, for instance, this would involve suspending the use of the receiver to prevent accidental weapon activation. However, spoofing interference detection alone is insufficient to effectively eliminate the spoofing interference and restore the receiver system to its normal operating state; further actions are required. The detection of spoofed signals is typically performed at the signal level without requiring modifications to the signal architecture, resulting in a straightforward implementation. Based on the implementation approach, various methods can be employed: (1) signal power detection, (2) correlation peak detection, (3) antenna array detection, (4) signal Doppler detection, (5) signal quality monitoring (SQM), (6) deep learning-based interference monitoring and identification, and (7) other methods of anti-spoofing interference.
4.1.1 Signal power detection
Satellite signals arriving at the ground typically exhibit very low power levels due to atmospheric attenuation caused by the troposphere and ionosphere, as well as multipath propagation. These signals are often masked by noise. Consequently, received navigation signals have relatively low power. The introduction of spoofing signals further exacerbates this issue, leading to a significant change in the receiver’s signal-to-noise ratio, as illustrated in Figure 8. However, to effectively achieve their interference objectives, spoofing signal perpetrators typically transmit spoofed signals with slightly higher power than authentic signals. The signal power detection technique exploits this principle by establishing a reasonable detection threshold to identify the presence of spoofed signals within the receiver channel [53]. In 2012, Dehghanian V [36] proposed an effective detection method based on signal power. This method utilizes the output signal power of the correlator following signal acquisition and tracking to detect spoofing interference. It leverages the principle that spoofed signals typically exhibit higher power levels than genuine signals. A power threshold is established, and signals exceeding this threshold are classified as spoofed signals, while those below are considered legitimate. However, determining the appropriate spoofing interference judgment threshold for this method poses a challenge, particularly for induced spoofing interference, which can autonomously adjust its power level. This poses a significant risk of misclassification and potentially severe consequences. This algorithm requires no modifications to the receiver structure, rendering it simple to implement. However, its detection performance is compromised when the spoofed signal power is close to that of the BeiDou signal.
[image: Line graph showing \( C/N_0 \) in decibels over time in seconds. The red line represents no spoofing signal, remaining mostly stable around 50 dB. The blue line, indicating a spoofing signal, dips sharply between 150 and 250 seconds, reaching about 20 dB.]FIGURE 8 | Noise floor change before and after adding the spoofing signal.
In 2016, [54] proposed a spoofing interference detection algorithm based on signal-to-noise ratio (SNR) measurement. This algorithm exploits the high SNR anomaly generated during spoofing signal intrusion to identify spoofed signals based on correlator peak values. While simple to implement, this method demonstrates limited effectiveness against highly concealed induced spoofing interference. In 2018, Wesson K. D. et al. [55] proposed a spoofing interference detection technique called the power distortion detector. This technique categorizes received signals as interference-free, multipath interference, or spoofing interference based on observations of received signal power and correlator function distortions. This technique effectively differentiates low-power spoofed signals from multipath signals and requires no modifications to the receiver hardware, making it straightforward to implement.
In 2019, [56] investigated the detection statistics of power detection methods based on the principles of power detection techniques and provided specific detection thresholds. In the same year, [57], recognizing the limitations of the carrier-to-noise ratio (CNR) detection algorithm, proposed a spoofing interference detection algorithm that combines the CNR algorithm with the Doppler detection algorithm during the signal tracking phase. This approach overcomes the shortcomings of relying solely on the CNR algorithm for spoofing detection. In 2020, [58], acknowledging the limitations of using solely signal power to detect spoofing interference, proposed a spoofing interference detection algorithm based on power changes for mobile terminals. This algorithm leverages the distinct power variations exhibited by spoofed and genuine signals at the same distance when the terminal is in motion to make spoofing interference judgments. This algorithm demonstrates superior performance when the interference source is less than 2000 m from the terminal, and the terminal’s movement distance exceeds 200 m, but it also possesses certain limitations.
4.1.2 Correlation peak detection
Correlation peak detection techniques have demonstrated remarkable effectiveness in detecting forwarding-based spoofing interference. This effectiveness stems from the inherent time delay present in forwarded spoofing signals compared to genuine signals. This time delay inevitably results in a greater transmission distance and time for the spoofing signal to reach the target receiver than the genuine signal. Consequently, the received signal exhibits anomalous correlation peaks during the acquisition or tracking stages. The associated peak anomalies are shown in Figure 9.
[image: Line graph titled "Correlator-related peak distortion" showing three lines: blue for spoofing signals, red for real signals, and yellow for distortion of relevant peaks. The x-axis ranges from 0 to 4, and the y-axis ranges from 0 to 1.8.]FIGURE 9 | Schematic diagram of peak changes related to ultra-low delay.
In 2016, [59] proposed a detection algorithm that combines correlation peak and power analysis for forwarding-based spoofing interference. This algorithm determines the presence of spoofing interference by analyzing the number of correlation peaks exceeding the acquisition threshold and setting appropriate power detection thresholds. While simple and effective, it suffers from detection blind zones. Building upon Wang Zhiying’s work, [60] introduced the full width half maxima (FWHM) algorithm as a supplementary approach to the multi-peak algorithm for detecting short-delay forwarding-based spoofing interference. This algorithm, which requires no modification to the receiver structure, offers simplicity in implementation. However, it cannot effectively distinguish between spoofing signals and multipath signals. To address the shortcomings of the algorithms, [61] proposed a novel joint detection algorithm for the acquisition stage in 2021. This algorithm extends the previous two approaches by incorporating a code phase difference consistency method, effectively mitigating the influence of multipath signals. It further refines the correlation function width threshold method [62], thereby addressing the limitations of the previous algorithms. This enhanced algorithm exhibits robust detection capabilities, successfully detecting forwarding-based spoofing interference with varying time delays.
The analysis presented above clearly demonstrates the efficacy of correlation peak detection techniques in detecting forwarding-based spoofing interference during the signal acquisition stage. Consequently, this research will delve into signal correlation peak detection techniques, exploring their integration with signal power detection techniques to detect forwarding-based spoofing interference. In 2022, [63] designed a receiver scheme incorporating interference identification capabilities. This scheme leverages the distinct correlation peak shapes generated by different types of interference, employing deep learning to recognize and classify these feature maps.
4.1.3 Antenna array detection
Array antenna detection techniques leverage the spatial characteristics of spoofing signals and BeiDou signals to identify the presence of interference. Due to implementation constraints, spoofing signals currently received by array antennas typically originate from a single direction [64, 65], while satellite signals arrive from multiple directions. These detection techniques demonstrate excellent performance but often require additional hardware implementation, resulting in high algorithmic costs.
In 2016, [66] proposed an algorithm for spoofing signal detection using the carrier-phase difference between two antennas. This algorithm utilizes the precise location of the tracked satellite as prior information to determine the carrier-phase difference of the true signal on the known antenna array. It further analyzes various error sources in the carrier-phase difference calculation to detect spoofing signals. This algorithm exhibits superior detection performance when the baseline of the antenna array is longer and the incident azimuth angle is smaller. However, it has limitations, as it is suitable for navigation receivers with fixed antenna installations. In 2018, [67] proposed a blind adaptive array signal processing method based on array antennas. This method not only adaptively forms deep nulls in non-periodic, periodic, and generative spoofing interference direction of arrival (DOA) estimation but also mitigates in-band spoofing signals and enhances the useful signal. In the same year, [68] proposed a spoofing interference detection method based on baseline data statistical analysis. This method considers three scenarios: single fixed baseline, fixed independent baseline, and dual independent baseline models. It analyzes the impact of baseline values on detection performance. However, this method may fail when the two antennas are not synchronized. Addressing this issue, [69] proposed a pseudo-range and carrier-phase measurement asynchronous model and spoofing interference detection method based on dual antenna power measurements. This method can detect spoofing interference under asynchronous conditions. Furthermore, many researchers [70, 71] have proposed corresponding multi-antenna spoofing interference detection techniques. In 2019, [72] proposed a blind detection method for spoofing signals using antenna array spatial diversity. This method is implemented in a snapshot receiver and evaluated using open data recorded by a six-element array. It exhibits a high detection rate but has high complexity. To address the challenge of detecting spoofing signals from different emitters, [73] proposed an anti-spoofing method. This method uses pseudo-range double differences (PRDD) measurements from two receivers to detect this type of spoofing interference. Spoofing signals are identified by analyzing the difference between PRDD measurements and estimated PRDD values. This algorithm exhibits good detection performance when the two receivers are placed at an appropriate distance. However, it may fail if the platform is too small. In 2020, [74] proposed an algorithm for detecting spoofing interference using carrier-phase single difference (CPSD) measurements from a linear array. Compared to the method in [73], this algorithm has less stringent platform size requirements and can be applied to a wider range of scenarios.
In 2021, [75] addressed the limitation of traditional spoofing interference detection algorithms, which are unable to locate spoofing interference. They proposed a spoofing interference detection method based on carrier-phase difference measurement using array multi-antenna received signals. This method can estimate the arrival direction of the received signal using the direction-finding principle of the correlation interferometer without requiring prior knowledge. Spoofing interference can be determined by comparing this estimate with the satellite direction obtained from ephemeris calculations. This algorithm exhibits excellent detection performance and can identify the arrival direction of multiple spoofing signals from different satellites. However, it has high algorithmic complexity. In 2022, Wang Xiaoyu [76] utilized the difference between real satellite navigation signals, which arrive at the array antenna from multiple directions in the upper hemisphere space, and spoofing interference signals, which arrive from a single direction. The MUSIC algorithm is used to estimate the incident direction of each satellite, and spatial consistency is employed for spoofing interference determination. This algorithm has good detection performance but has high computational complexity due to the need to measure the arrival direction of each satellite.
In 2023, [77] proposed a novel six-element array spoofing interference detection array antenna, as shown in Figure 10. Spoofing interference can be detected and identified by monitoring the relevant peak values and combining spatial capture algorithms. Additionally, they used the long and short baseline algorithm to quickly search the entire cycle ambiguity, enabling high-precision detection of spoofing interference sources. This method exhibits high detection accuracy but requires many antenna elements, leading to higher costs.
[image: Diagram showing a linear arrangement of six antennas. Antenna 1 is red, Antennas 2 and 3 are light blue, and Antennas 4, 5, and 6 are green. Distances between antennas are labeled as lambda over 2 or three lambda over 2.]FIGURE 10 | Schematic diagram of the arrangement of six array elements antenna elements [77].
4.1.4 Signal Doppler detection technology
For single-antenna spoofing interference, the Doppler data dispersion between two real satellite signals exhibits non-linearity in the time domain when the receiver is moving randomly. Conversely, the Doppler data dispersion between two single-antenna spoofing signals displays linearity. Additionally, the Doppler frequency shift range of the satellite signals received by the target receiver expands when spoofing interference is present. Therefore, monitoring Doppler frequency shift variations can effectively identify the presence of spoofing interference. Figure 11 shows the nominal recorded carrier frequency error for the four space vehicles (SVs) used in this article. As expected, the carrier frequency of each SV varies approximately linearly with time. The longer the transmission time, the greater the offset of the SV from the original carrier frequency. The slope of the line correlates with the expected Doppler shift of approximately ±5 kHz modeled in this study.
[image: Graph showing the carrier frequency error over time for four signals labeled SV1 to SV4. The x-axis represents time in seconds, ranging from zero to 0.1, and the y-axis shows frequency error in megahertz, ranging from negative 0.15 to 0.15. Each signal follows a distinct pattern, starting with oscillations and stabilizing toward the end.]FIGURE 11 | Carrier frequency error due to Doppler shift [85].
In 2014, [78] proposed an adaptive tracking algorithm for forwarding-based spoofing interference, combining a power threshold detector with a Doppler frequency shift detector. This algorithm is suitable for forwarding-based spoofing interference but less effective against other types. In 2018, [79] presented a GNSS anti-spoofing algorithm based on Doppler frequency shift. This algorithm derives a Doppler frequency difference model and transforms the spoofing interference detection problem into a sequence linear detection problem. While simple, effective, and demonstrating good detection performance, this algorithm may exhibit reduced effectiveness against more sophisticated spoofing interference. [82] proposed a joint detection of code and carrier Doppler that can detect and identify spoofing signals. This method is implemented on the GNSS acquisition module and requires no additional hardware. It exhibits good detection performance in static and uniform motion scenarios, but the detection effect is inferior when the receiver’s acceleration is significant. In the same year, [83] proposed a spoofing interference detection algorithm based on the consistency of Doppler positioning repair and pseudo-range positioning repair. The algorithm effectively improves the performance of Doppler positioning methods and detection methods through an improved Doppler smoothing technique based on alpha filtering. In 2019, [80] proposed a spoofing interference detection algorithm for medium-level spoofing interference based on frequency-domain double peaks and relative velocity residuals. This technique employs a fast Fourier transform (FFT)-based approach to detect double peaks and extract their Doppler difference. It then calculates the relative velocity residuals based on the Doppler difference. This algorithm not only detects spoofing signals but also distinguishes them from multipath signals. In the same year, [81] proposed a detection method that jointly utilizes the carrier Doppler frequency shift caused by the vertical reciprocating motion of the receiving antenna and the navigation information conveyed by the received signal. [84] proposed a spoofing detection method that utilizes the amplitude difference and frequency difference between the superposition composite signal containing interference and the normal signal unaffected by spoofing in the tracking loop as the basis for interference detection. This method can effectively detect spoofing signals in BeiDou satellite navigation signals by setting signal power anomaly thresholds and Doppler frequency shift detection thresholds. In 2022, [85] proposed a spoofing interference detection technique based on Doppler frequency difference correlation. This method calculates the Fréchet distance between two satellites by using the least-squares fitting of Doppler measurements within a window when the receiver is moving. After obtaining the similarity evaluation value between them, it is used to detect spoofing interference. This method has low computational complexity and requires less additional information, but its application scenarios are limited. In 2024, [86] proposed an unmanned aerial vehicle (UAV) GNSS spoofing detection method based on signal characteristics: Doppler frequency shift carrier-to-noise ratio density and deep learning. After training, the detection probability can reach 95%.
4.1.5 Signal quality monitoring (SQM)
Signal quality monitoring (SQM) technology is widely employed in satellite navigation systems. The advantage of SQM lies in its simple structure, enabling the detection of spoofing interference without altering the receiver’s original design. This is achieved by analyzing the correlator output peaks of the satellite navigation receiver. Typically, the GNSS receiver correlator output exhibits a characteristic red inverted triangle shape, as depicted in Figure 7. The early code correlator output and the late code correlator output are always symmetrical with respect to the prompt code correlator output. When the correlator spacing is 0.5 chips, the prompt code correlator output is twice the sum of the early code correlator output and the late code correlator output at the same time. In the presence of interference, the outputs of the early code, prompt code, and late code correlators become abnormal, and their symmetry is disrupted. For example, under normal circumstances, the output power of the early code and the late code should be equal, ideally zero, but after the injection of deception, the output power difference between the early code and the late code will exhibit a significant abnormal change, as shown in Figure 12.
[image: Graph depicting the injection spoofing signal's S-curve over time. The x-axis represents time in seconds, and the y-axis shows dB power in GPS L1 at 30 nanoseconds per sample. A notable dip and spikes are annotated as "Inject spoofing signals" around 2.5 seconds.]FIGURE 12 | Schematic diagram of the change of early code power and late code power.
Numerous algorithms have emerged from SQM. [87] introduced the delta metric (detecting correlation peak distortion by comparing the in-phase outputs of the early and late code) and the ratio metric (detecting correlation peak distortion by observing the ratio of early and late codes to the prompt code in-phase outputs). Subsequently, [88] proposed the S-curve-bias (SCB) algorithm. Induced spoofing interference can affect the correlator output. This algorithm utilizes the difference between the outputs of the early code correlator and the late code correlator to detect induced spoofing interference. [89] introduced a joint metric approach for SQM, constructing a joint detection metric based on code delay and carrier phase to enhance detection algorithm performance. Prisiavash et al. [90] presented a two-dimensional SQM detection algorithm based on code delay and Doppler frequency. While this algorithm improves detection performance, it significantly increases computational complexity. [91] applied sliding window variance and sliding window averaging to existing SQM methods, significantly improving detection performance in static spoofing interference environments. [92] applied sliding window variance processing to the SCB method and proposed a detection algorithm based on SCB variance.
The target receiver obtains the corresponding code phase value through the zero-crossing point of the code discriminator curve (i.e., the S-curve) in the code tracking loop. In the absence of interference and noise, the code phase value corresponding to the zero-crossing point of the S-curve is zero. However, due to the channel transmission distortion and non-linear effects of power amplifiers, the code phase value fluctuates near zero. The SCB value, which measures the code tracking error, serves as a criterion for detecting spoofing attacks.
[93] proposed a method based on weighted second-order moments (WSCM) to detect induced spoofing interference, targeting the gradual dynamic adjustment process where spoofing and genuine signals interact during the tracking stage, leading to correlation peak symmetry distortion. Specifically, a weighted criterion for the time-domain transient response values of multiple correlators is established by expanding the second-order central moment (SCM) [94] of the navigation signal waveform. A WSCM test statistic is then constructed, accurately quantifying correlation peak symmetry. [95] combined radio power detection metrics with automatic gain control and C/N0 measurements, along with the multi-correlation of signal distortion, to construct new SQM thresholds for detecting and identifying spoofing interference. This method introduces a novel metric to SQM. This SQM metric requires additional correlators, which expands the investigation area but accurately identifies spoofing interference among various interference attacks.
[96] proposed a robust spoofing interference detection method for GNSS instruments using the Q-channel signal quality monitoring metric. This method utilizes and measures the abnormal energy in the Q-channel of the tracking loop for spoofing interference detection. This SQM metric overcomes the challenge of constantly changing relative carrier phases between real and spoofing signals, achieving higher detection probability while being cost-effective and highly practical. It only requires minimal modifications to the traditional receiver’s baseband correlator and firmware. [97] proposed a spoofing detection algorithm based on a combination of SQM and tracking parameters. This method leverages the complementarity between different SQM metrics, proposing an “OR” rule that combines various SQM parameters and determines the corresponding optimal detection threshold. Compared to a single SQM measure, SQM measure fusion based on the “OR” principle exhibits significant performance improvements in detection. [98] proposed a spoofing detection algorithm based on a vector tracking structure using SQM. This method overcomes the limitation of traditional SQM algorithms, which become ineffective when correlation peaks do not overlap. It utilizes existing observations in tracking to detect spoofing attacks on the pseudocode and carrier. [99] addressed the low detection accuracy and susceptibility to the power advantage and carrier phase drift of spoofing signals in traditional SQM techniques. They proposed an innovative SQM method that employs the Kolmogorov–Smirnov (KS) test for detecting receiver correlator output. This method overcomes the performance limitations of traditional SQM techniques, effectively detecting subtle symmetry distortion of the correlation function and signal power changes caused by spoofing signals. It serves as a potential reliable application solution for spoofing attacks with different frequency locking modes and power consumption advantages. It also avoids changes to the receiver hardware structure and has low computational complexity.
4.1.6 Deep learning-based spoofing interference detection and identification
Given the rapid advancement of deep learning, its application in spoofing interference detection and identification has become inevitable. Deep learning approaches for interference signal detection and identification involve processing and analyzing received signals to isolate interference signals and determine their types and parameters. Interference signal identification typically involves analyzing signal characteristics such as feature parameters, time-domain characteristics, frequency-domain characteristics, and phase characteristics. Deep learning methods utilize signal feature parameters when spoofing is present and absent as network inputs for training, resulting in a network capable of rapidly distinguishing spoofing based on different features.
Preprocessing is usually required to identify the type of interference in the received signal. One such method is normalization or zero-mean normalization [100], transforming the signal into a standard form to minimize differences. Signal feature parameters, such as power spectral density, frequency, amplitude, and phase, are extracted by analyzing the time-domain, frequency-domain, and phase characteristics of the signal. The type of interference signal can be determined by further analyzing these feature parameters, such as narrowband interference, broadband interference, or pulsed interference [101]. Common classification algorithms include decision trees (DT) [102, 103], support vector machines (SVM), and backpropagation (BP) neural networks [104, 105].
[106] investigated the types and methods of interference signals in satellite navigation systems. Time-domain cross-correlation features of the received signal were extracted, considering the localization and identification of multiple interference signals. The SVM was then used to classify and identify the interference signals. To enhance the system’s noise resistance, a convolutional neural network (CNN) was used for interference signal recognition, significantly improving recognition performance at low interference-to-noise ratios. A backpropagation neural network (BPNN) is a neural network model trained using the error backpropagation algorithm. It consists of an input layer, hidden layers, and an output layer, where hidden layers can have multiple layers. The BPNN algorithm computes the network’s output value through forward propagation and then compares the output value with the actual value to calculate the error value. Next, the error value is backpropagated to the network, adjusting the weights of each layer to minimize the error. The key to the BPNN algorithm is the error backpropagation algorithm, which utilizes the chain rule to propagate errors from the output layer to the input layer, calculating the error of each layer and then adjusting the weights of each layer to minimize the error.
[107] investigated BPNN identification algorithms, but BPNN algorithms have issues, such as becoming stuck in local optima and slow training speed. In classification and recognition problems, decision trees classify input variables into a predefined category through a series of decision nodes. In regression problems, decision trees use a series of decision nodes to ultimately produce a continuous output value. The basic principle of decision tree classification algorithms is to construct a tree-like structure based on different values of input features, assigning different input samples to different categories. The process of constructing a decision tree can use recursive partitioning, and [108] designed a stable classifier using the decision tree approach. It was implemented and tested on a hardware platform. Residual networks (ResNet) are a type of deep neural network architecture that addresses the problem of training deep neural networks by introducing residual blocks. Residual networks allow information to propagate directly across layers, enabling deep networks to better capture the relationship between input and output, thus improving the efficiency and accuracy of training deep networks. [109] simulated and analyzed deep learning-based recognition algorithms by constructing real and complex residual networks with CNNs. The study found that the main advantage of a ResNet is that it can further improve the network performance by adding more layers while maintaining model accuracy. The gravitational search algorithm (GSA) is an optimization algorithm based on Newton’s law of universal gravitation and Newton’s second law, simulating the interaction between celestial bodies. It searches for the optimal solution by simulating parameters such as gravity, mass, and velocity. The basic idea of the algorithm is to view the optimization problem as a celestial system, where each solution is considered a celestial body, its mass being proportional to the fitness value and its position representing the parameters of the solution. During the search process, each solution is affected by the universal gravitational force and centripetal force of other solutions. The centripetal force moves the solution toward the direction of the historical optimal position, while gravity moves the solution toward a better position.
Based on the GSA algorithm, [110] optimized the parameters of SVM for identifying audio interference in terrestrial-to-space communication. Simulation results show that GSA has advantages such as being simple to implement, having a strong global search capability, and fast convergence speed. SVM is a binary classification algorithm, but it can be used for multi-class recognition through various methods. [111] used the one-vs.-all method for multi-class recognition. This algorithm has high recognition efficiency and high classification accuracy. [112] proposed a deep learning spoofing detection method based on representation learning. This method addresses the problem of deep learning methods being limited by training data and can be trained using a single dataset. This lightweight critic-model-based score detector can be seamlessly integrated into GNSS receivers through firmware updates once trained offline, thus reducing additional overhead.
4.1.7 Other methods of anti-spoofing interference
Beyond signal-level detection and identification of spoofing interference, techniques involving modification of signal structures, such as spread spectrum code encryption and message encryption, can also be employed for spoofing interference monitoring and identification. However, these approaches alter the GNSS signal structure, limiting their practical applicability. Simultaneously, anti-spoofing technologies combined with external auxiliary techniques are also emerging, such as integration with inertial navigation units, other radio navigation systems, and other sensors. Among these, the combination of a GNSS with inertial navigation units (INS) is the most widely used anti-spoofing approach. INS positioning solutions are unaffected by external interference, providing auxiliary information for the detection and suppression of GNSS spoofing interference. Existing INS/GNSS integrated navigation anti-spoofing techniques mainly include spoofing detection algorithms based on Kalman filter innovations and innovation rate [113, 114], spoofing detection algorithms based on the comparison of INS and GNSS raw measurements [115], and INS-assisted GNSS carrier-phase spoofing detection [116].
4.2 Spoofing interference suppression
Spoofing interference suppression aims to eliminate spoofed signals after detection and identification, thereby restoring the normal operation of the navigation system. The most prevalent approach for spoofing interference suppression is the use of array antenna nulling. This technique encompasses two methods: spatial [117] and spatiotemporal [118] processing. The core principle involves generating nulls in the direction of the interfering signal to suppress the interference. Array antenna nulling can be categorized into pre-despreading and post-despreading spoofing interference suppression. Pre-despreading methods have a smaller computational load and leverage the characteristic of spoofing interference power superposition in the spatial domain. They estimate the spoofing signal steering vector or signal subspace to achieve spoofing interference suppression. However, the suppression performance of this method is significantly affected by the spoofing signal power. Higher spoofing signal power generally leads to better interference suppression performance. Conversely, post-despreading spoofing interference suppression techniques first identify the spoofing interference signal and then calculate the steering vector and weights specifically for the spoofing signal.
Pre-despreading spoofing interference suppression methods typically leverage the power advantage of spoofing interference to estimate the steering vector and spatial information. Based on this information, weights are calculated for weighting, achieving spoofing interference suppression. However, the accuracy of spoofing interference spatial information estimation is significantly influenced by the power level due to the lower signal-to-noise ratio before despreading. The suppression performance deteriorates under low spoofing interference power conditions. Nonetheless, because despreading is not required, the computational load is smaller than post-despread interference suppression methods. Despreading improves the signal-to-noise ratio for post-despreading spoofing interference suppression methods, leading to more accurate signal spatial characteristics. It also allows for obtaining carrier phase information that can be used to identify spoofing signals based on other characteristics, further enabling interference suppression. In addition to these methods, signal reconstruction can be employed for spoofing interference suppression in single-antenna receivers, as illustrated in Figure 13. This approach involves detecting spoofing interference and extracting its code delay, Doppler frequency, carrier phase, and signal amplitude to reconstruct the spoofing signal. The reconstructed signal is then subtracted from the original intermediate frequency (IF) navigation signal, effectively eliminating the spoofing interference and yielding a spoofing-free navigation signal.
[image: Flowchart showing the process of converting an IF signal to a location result. It starts with the IF signal leading to a cache, followed by reverse addition, capture trace, and ending in location result. Signal reconstruction uses estimated parameters \(\hat{p}\), \(\hat{r}\), \(\hat{\phi}\), \(\hat{f}\).]FIGURE 13 | Block diagram of the signal reconstruction deception jamming suppression method.
[119] proposed a spoofing signal classification module to distinguish between spoofed and genuine signals, reconstructing and eliminating the spoofed signal based on its characteristics. The processed signal is then re-examined, and if spoofing interference is detected, the process of reconstruction and elimination is repeated. [120] estimated the amplitude and phase of the spoofing signal to reconstruct it, subtracting the reconstructed signal from the delayed original signal. The performance was evaluated using the interference cancellation ratio (ICR). Simulation results from these studies indicate that signal reconstruction exhibits excellent suppression performance, but it necessitates continuous and accurate acquisition of spoofing signal information, leading to significant complexity and implementation challenges.
The difficulty and computational complexity of accurately estimating all parameters of spoofed signals significantly limit the application of signal reconstruction methods [121]. HANS et al. [122] proposed a subspace projection method that estimates the carrier frequency and code phase of spoofed signals through capture tracking. A signal subspace of the forged signal is constructed by exploiting the near orthogonality of their PRN codes. The received signal is then orthogonally projected onto this subspace, suppressing the spoofed signal and enabling the capture and tracking of the true signal. Compared with signal reconstruction methods, this method requires less information about the spoofed signal and exhibits better robustness. However, if the phase difference between the spoofed and true signals is less than one chip, the suppression function will be lost, indicating that this method cannot detect spoofed signals with small deviations.
[123] proposed an adaptive beamforming algorithm for spoofing interference suppression in GNSS receivers. Adaptive beamforming can control the radiation pattern of the antenna array, suppressing spoofed signals from the direction of the spoofing interference source and enhancing the true navigation signals from the direction of navigation satellites. Beamforming technology is used simultaneously with spoofing interference detection technology based on antenna arrays. First, baseband signals are acquired through the antenna array, and a circulant matrix is established. Spoofing interference detection is achieved based on eigenvalue testing. Subsequently, spoofing interference is suppressed, and the true signal is enhanced through beamforming technology. Adaptive beamforming has many applications in the suppression of jamming interference, and the algorithm is relatively mature. It can be directly applied to spoofing interference suppression and can simultaneously suppress both jamming and spoofing interference. However, with the increase in the number of interference directions, the antenna array needs to further increase the number of antenna elements, making the complexity and high cost of the equipment the main reasons limiting its widespread application. Introducing a multi-correlator structure in the receiver allows for simultaneous capture and tracking of both the true signal and spoofed signals. Subsequently, a decision method confirms the true signal and eliminates spoofed signals, enabling the detection and suppression of spoofing signals. When multiple signals exist in the received signal, multi-signal tracking is performed using multiple correlators without prior knowledge of the spoofed signal. The multipath estimating delay lock loop (MEDLL) technique is used to process the baseband signal, obtaining the signal’s amplitude, propagation delay, and carrier phase, denoted as [124]. Subsequently, based on the estimated amplitude, propagation delay, and carrier phase of the signal, one set of signals is removed from the original baseband signal and tracked separately, thereby obtaining the tracking results of the other set of signals.
In combined navigation-based spoofing interference detection methods, if the satellite navigation receiver is determined to be spoofed, non-satellite navigation systems are used for navigation, achieving spoofing interference suppression. The essence of this method is to discard untrustworthy satellite navigation results and select other reliable navigation results. The disadvantage of this method is that it requires multiple navigation systems, which increases costs. Moreover, the positioning accuracy after suppression depends on the performance of the other navigation methods.
Receiver autonomous integrity monitoring (RAIM) is also an effective spoofing interference suppression method. This method can effectively eliminate faulty satellites. In cases with fewer spoofing interference signals, they can be eliminated from the received signals, ensuring the authenticity and validity of the navigation positioning results. However, in general, to obtain reliable positioning solutions from the receiver, spoofing interference often requires the simultaneous transmission of false signals from multiple satellites with a higher power level than the true signal. This may lead to the receiver completely capturing and tracking the spoofed signal, rendering the RAIM algorithm ineffective. Table 3 below summarizes the complexity, performance, and limitations of various methods.
TABLE 3 | Summary table of different spoofing interference suppression methods.
[image: A table comparing different methods based on complexity, performance, and limitations. Methods include Signal Reconstruction, Subspace Projection, Beamforming, Multi-correlator, Integrated Navigation, Direct Positioning, and Receiver Autonomous Integrity Monitoring. Complexity ranges from low to high, performance from medium to high. Limitations detail specific challenges like signal accuracy, phase differences, antenna requirements, computational limits, additional hardware needs, poor performance in low signal-to-noise ratios, and dependence on spoofing signal power.]4.3 Spoofing interferer location
Detecting, identifying, and suppressing spoofing signals are challenging tasks, often requiring the addition and upgrade of receiving equipment, significantly increasing the cost of spoofing interference suppression. Another approach to spoofing interference suppression is to focus on high-precision strikes against the spoofing interference source, eliminating its impact by destroying it. Existing methods for locating satellite navigation spoofing sources employ a two-step localization approach. In the first step, the receiver intercepts the spoofing interference signals and performs initial signal processing to estimate parameters such as time of arrival (TOA), time difference of arrival (TDOA), frequency difference of arrival (FDOA), and angle of arrival (AOA). The second step establishes an equation relating these intermediate parameters to the spoofing source location, and solving this equation yields the location information. Angle of arrival (AOA) analysis based on antenna arrays is currently the most practical method for locating spoofing sources. The algorithm principle is illustrated in Figure 14. Given that spoofing sources are typically fixed, the direction of arrival of the spoofing signals remains constant. Therefore, the AOA can be determined by measuring the different phases of the same spoofing signal arriving at different antennas in a uniform linear array. [125, 126] were the first to achieve sub-meter localization accuracy, reaching 0.7 m. Subsequently, University College London leveraged multiple-input multiple-output (MIMO) technology and channel state information (CSI) to measure AOA, achieving a remarkable localization accuracy of 23 cm [127].
[image: Diagram showing an incident signal arriving at an antenna array. The array consists of multiple antennas, labeled 1 through M, spaced by distance d. The signal arrives at an angle θ, introducing a phase difference represented as d sinθ.]FIGURE 14 | Schematic diagram of the signal angle of arrival measurement [125].
The accuracy of the two-step localization method is highly dependent on the accuracy of the parameter estimation. The location calculation and parameter estimation are inseparable, limiting the effective utilization of correlations between signals received at different stations, leading to information loss, difficulties correlating localization parameters, and high system sensitivity requirements. Clock offset, however, contains information about the location of the spoofing interference source relative to the receiver. Utilizing the clock offset measured at different receiver locations under both genuine and spoofing interference signal conditions allows for calculating the distance difference between the spoofing interference source and the two receivers. The location of the spoofing interference source can be estimated using hyperbolic intersection localization by employing multiple sets of receivers to measure these distance differences.
4.4 Summary
This article summarizes the scenarios to which the commonly used anti-spoofing methods of various receivers are applicable, what kind of spoofing signal characteristics apply, and what functions the receiver needs to have, as shown in Table 4 below.
TABLE 4 | Positioning methods and receiver requirements.
[image: Table comparing various targeting methods, spoofing interference features, and corresponding receiver requirements. Examples include multi-receiver detection, integrated navigation detection, and power detection. Spoofing features cover aspects like inconsistent clocks and unencrypted messages. Receiver requirements involve multiple satellite receivers, encryption verification, and signal reception channels.]5 OPPORTUNITIES AND CHALLENGES
As satellite navigation systems continue to evolve, dependence on these systems will inevitably increase, making the threat of satellite navigation spoofing interference increasingly prominent. Consequently, intensifying research and preventative measures, along with developing more intelligent and advanced anti-interference technologies, are crucial. Several challenges persist in the field of anti-spoofing interference:
First, the quality of spoofed signals continues to improve, resulting in enhanced concealment, increased positional and velocity accuracy, higher generation frequencies, and a closer resemblance to genuine signals. This allows spoofed signals to seamlessly and covertly integrate into receivers, posing significant challenges for anti-spoofing measures. Second, the maturation of multi-spoofing interference platform technologies has introduced a paradigm shift from single-platform spoofed signals. These multi-platform systems generate interference signals from multiple directions and utilize diverse interference types simultaneously, demanding higher anti-interference capabilities from receivers. Third, current experimental conditions for spoofing interference are overly idealized, primarily conducted in open, sparsely populated areas with minimal radio signal interference. Limited research has been conducted in complex terrain, such as mountainous regions and urban areas. The lack of experimental materials for such scenarios significantly hinders the development of effective anti-spoofing interference technologies. Meanwhile, spoofing techniques are constantly evolving. Attack methods such as security code estimation and replay (SCER), which differ from traditional spoofing methods, are becoming increasingly cost-effective [128]. With multiple spoofing methods working in tandem, receivers face a significant challenge in handling scenarios where multiple spoofing attacks coexist.
To address these challenges, future satellite navigation receivers must adopt a combined approach to anti-interference detection. This approach should leverage machine learning, consistency checks, and array testing to enable more effective and robust spoofing interference detection [129]. Additionally, by combining the performance advantages of multiple research projects, a multi-faceted aerial defense system could be developed using unmanned aerial vehicle (UAV) clusters, ships, and aircraft. This system would encompass target identification and tracking, radio countermeasures, and multi-target strikes. Finally, compact anti-interference platforms should be developed to enhance the stability of anti-spoofing measures by making anti-interference receivers portable, miniaturized, and cost-effective.
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Low Earth Orbit (LEO) communication satellites offer reduced signal loss, fast movement, multi-beam, typically providing single coverage. This paper introduces a novel multi-beam power positioning method for low-orbit single-satellite, addressing the slow convergence and low accuracy of Doppler positioning. It establishes a power observation equation system, initializes with the nearest neighbor algorithm, and refines with the least squares method. Monte Carlo simulations indicate that with good initial values, the method converges in under 10 iterations, achieving 88.06% availability at 20° elevation with errors of 5,331 m (vertical) and 8,798 m (horizontal), and a timing error of 205 μs. At 70° elevation, all users converge with errors of 1,614 m and 1,088 m, and a timing error of 31.3 μs, demonstrating high power positioning availability. The statistical results show that power positioning users can obtain the positioning accuracy of kilometers and the timing accuracy of microseconds, which meets initial timing needs under strong confrontation, enhancing the medium and high orbit satellite navigation.
Keywords: LEO satellites, multi-beam, power positioning, positioning accuracy, positioning availability

1 INTRODUCTION
Low Earth Orbit (LEO) communication satellites, as an emerging navigation enhancement method, possess many unique advantages. Their orbital altitude is relatively low, and the signal power is high, with the ground power being about 30 dB higher than that of Global Navigation Satellite System (GNSS), resulting in high signal quality and strong anti-interference capabilities, enabling services to be provided indoors and in obstructed areas [1, 2]. The greatest advantage of LEO satellites is their fast movement speed, which can greatly reduce the correlation between adjacent observation epochs, achieving rapid convergence in positioning [3], and the large Doppler shift, which offers good Doppler observation [4].
Based on the characteristics of LEO satellites, with a sufficient number of satellites, LEO navigation constellations can perform independent positioning and timing, or combined positioning and timing with GNSS, using traditional positioning algorithms such as pseudorange positioning and carrier phase positioning to achieve navigation enhancement [5–7]. The analysis of the combined positioning effects of LEO satellites with different orbital heights and GNSS constellations [8] shows that LEO satellites have low orbits and fast geometric motion speeds, with the geometric dilution of precision (GDOP) value changing rapidly, effectively shortening the convergence time for GPS/BDS positioning. The enhancement effect of different numbers of LEO satellites on GNSS is significantly different, with more satellites leading to more noticeable enhancement effects.
However, for LEO satellite constellations, if the GNSS pseudorange-based time difference positioning method is still used, the system’s requirement for time synchronization is very high, which will greatly increase the system construction cost [9]. When the number of visible satellites is insufficient, and users do not meet the conditions for multiple coverage, both pseudorange positioning and carrier phase positioning are not available. In this case, single-satellite Doppler positioning requires a relatively long observation time for the satellite, using integrated Doppler for positioning solution, which is not real-time [10], has a long convergence time, and low precision, and has certain application limitations. In LEO-based Doppler positioning, the pioneering TRANSIT navigation system was the first satellite-based Doppler positioning system [11]. Launched in 1964 for military applications, it was later released for public use in 1968 to provide positioning and navigation services [12]. The system operated with over 10 satellites in polar orbits at an altitude of approximately 1,100 km. Typically, a receiver could only track one satellite at a time. Using about 2 min of Doppler shift observations, the point positioning accuracy was about 100–200 m. With the advent of the Global Positioning System (GPS) and its superior performance, TRANSIT was decommissioned in 1996.
To meet the rapid positioning needs of LEO users, the power measurements of multi-beam signals can be utilized to calculate the user’s approximate location. Due to the beam scanning broadcast method used by LEO communication satellites [13], there are variations in received power for receivers at different locations on the Earth’s surface at various times during the satellite’s motion. The magnitude of these variations is related to the beamwidth and the antenna pattern. Current research on power matching positioning is focused on indoor positioning, where multiple WiFi access points can be detected indoors and their signals are easily measured, making WiFi received signal strength indication based fingerprint positioning one of the most popular positioning technologies today [14]. This method typically consists of two stages: offline and online [15, 16]. In the offline stage, reference points in the positioning area are surveyed to collect received signal strength as a fingerprint database [17, 18]; in the online stage, real-time positioning data are matched with the fingerprint database to obtain the estimated location [19].
For the first time in the context of LEO satellite scenarios, this paper proposes the use of multi-beam signal power measurements for positioning and timing. Based on traditional satellite navigation system algorithms, the nearest neighbor algorithm [20, 21] is used to solve for initial values, and the least squares method [22] is used for iterative solution, including the linearization of nonlinear equation systems, solution of linear equation systems, updating the roots of nonlinear equation systems, and judging the convergence of iterations. It is possible to use power measurements for single-point rapid positioning of users under a single LEO satellite scenario, with the expectation that some users will achieve better positioning and timing performance.
2 MATERIALS AND METHODS
2.1 Multi-beam signal power observation model
According to the classic Friis transmission equation, the power measurement of the multi-beam satellite signal received by the satellite azimuth angle [image: If you have an image you want me to describe, please upload it. If this text includes specific details or context you want to mention, please provide the image or more information.], the satellite elevation angle [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and the distance between the user and the satellite [image: It seems there's no image provided. Please upload the image or provide a URL for me to generate the alternate text.], which can be expressed as:
[image: Mathematical equation shown as: \( L(x, y, \beta, d) = E_{x}(y, \beta) - L(d) + G(y) \) aligned with Equation 1.]
Among them, the multi-beam number [image: It seems there might have been a mistake or a formatting issue in your message, causing unintended text to appear. To generate alternate text for an image, please upload the image or provide a URL to it. If you like, include a caption or context for further detail.] representing the signal transmitted by the satellite. [image: Mathematical expression \( E_k(\gamma, \beta) \) with variables gamma and beta included within parentheses.] represents the EIRP value of the satellite transmitted signal, [image: The image shows the mathematical expression "L(d)" in italicized text.] represents the spatial transmission loss of the satellite signal, and [image: Text shows a function notation, "G(alpha)," where "G" is a function applied to the Greek letter alpha in parentheses.] represents the gain value of the user’s receiving antenna, which is solely related to the user’s elevation angle [image: Please upload the image or provide a URL so I can generate the alt text for you.] and can be calculated using the satellite elevation angle [image: Please upload an image or provide a URL so I can generate the appropriate alt text for you.].
The EIRP value of the satellite transmitted beam signal and the gain value of the user’s received antenna [image: Mathematical notation showing \( E_k(\gamma, \beta) \), where \( E \) is a function dependent on parameters \( \gamma \) and \( \beta \), with subscript \( k \).], [image: Certainly! Please upload the image or provide a URL so I can generate the alternate text for it.] can usually be obtained by antenna simulation or actual measurement, and it is assumed that the accurate modeling of both has been completed, and the modeling error is ignored.
When the satellite position is known, the user’s position can be determined by the satellite elevation angle [image: Please upload the image or provide a URL, and I can help generate the alternate text for it.], the satellite azimuth angle [image: Please upload the image or provide a URL for the image you would like me to describe.] and the distance [image: Please upload the image or provide a URL so I can generate the alternate text for it.] between the user and the satellite, and when the three-dimensional position of the satellite in the ECEF coordinate system is known, the three-dimensional position of the user in the ECEF coordinate system can be obtained by using the geometric relation. Figure 1 below shows the geometric relationship between the user and the satellite, where [image: It seems like there's no image attached. Please upload the image or provide a URL for me to generate the alternate text.] is the radius of the earth, [image: It seems there’s no image provided. Please upload the image or share its URL, and I'll help generate the alternate text for it.] is the orbital height of the satellite, [image: It seems there might be an issue with the image link or upload. Please try uploading the image again or provide a different link. Additionally, if you have any specific context or details, feel free to share them.] is the geodetic height of the user, and [image: Please upload the image or provide a URL so I can generate the alternate text for you. If needed, you may also include a caption for additional context.] is the distance between the user and the satellite. Firstly, the relationship between the elevation angle of the user and the expansion angle of the satellite beam is derived.
[image: Diagram showing a geometric representation of a satellite above the Earth. The Earth is depicted as a circle with radius \( R \). A point labeled "User" with coordinates \( (v, \beta, \alpha) \) is shown on the Earth's surface. A line extends from the User to a satellite in space, marked with angles \(\alpha\) and \(\beta\), and distances \( d \) and \( H \) are noted.]FIGURE 1 | Geometry of the user’s received satellite signal.
The geometric relationship shown in the figure above, according to the sinusoidal theorem, can be obtained:
[image: Mathematical equation showing \((R + H) \sin \gamma = (R + h) \sin \left( \alpha + \frac{\pi}{2} \right)\), labeled as equation (2).]
Therefore, it is possible to derive the satellite beam tension angle [image: Please upload the image or provide a URL so I can generate the alt text for you.] as Equation 3:
[image: Equation depicting y equals the arcsin of the fraction with numerator R plus h and denominator R plus H multiplied by cosine of alpha.]
When the elevation angle of the user is valued between 0° and 90°, it is not difficult to conclude that the elevation angle of the user corresponds to the value of the satellite elevation angle from the function relationship.
The space transmission loss of satellite signals [image: The image displays the mathematical expression \( L(\alpha, h) \), indicating a function of two variables, alpha (\(\alpha\)) and h.] is deduced below, and the distance from the satellite to the user is calculated first. According to the geometric relationship shown in Figure 1, and according to the cosine theorem, we can get:
[image: The image contains a mathematical equation: \((R+H)^2 = (R+h)^2 + d^2 - 2d(R+h)\cos\left(\alpha + \frac{\pi}{2}\right)\). The equation is labeled as equation (4).]
Further, the distance from the user to the satellite [image: Please upload the image or provide a URL so I can generate the alt text for you.] can be calculated as:
[image: Mathematical equation showing \(d = \sqrt{(R+H)^2 - (R+h)^2 \cos^2 \alpha} - (R+h) \sin \alpha\), labeled as equation five.]
According to Friis transmission equation, the power in the fixed solid angle remains the same. Therefore, the spatial transmission loss of signal power at a point on the spherical surface with a radial of the transmitting antenna is Equation 6:
[image: Mathematical formula depicted: \( L(\alpha, h) = L(d) = 20 \log(4 \pi d) - 20 \log(\lambda) \), denoted as equation (6).]
where [image: Please upload the image or provide a URL so I can generate the alternate text for it.] refers to the wavelength.
Thus, Equation 1 can be written in a more detailed form as Equation 7:
[image: Mathematical equation displayed in LaTeX format: P sub i of x, y, beta, h equals E sub k of gamma, beta minus I of alpha, h plus G of alpha. The equation is labeled as number seven.]
2.2 Power perception measurement error model
After receiving the signal from the satellite, the user usually measures the power of the received signal by matching the reception. Assuming that the user has completed the time and frequency synchronization of the satellite signal, and stripped away the possible pseudo-random codes and Doppler frequencies that may be modulated on the signal, while ignoring the influence of the transmitted message symbol, the user’s received signal can be expressed as Equation 8:
[image: Please upload the image or provide a URL so I can generate the alternate text for you.]
where the amplitude of the received signal is denoted by [image: Equation depicting a variable \( A \) as the square root of \( 2 P_k(\alpha, \gamma, \beta, h) \), involving parameters \(\alpha\), \(\gamma\), \(\beta\), and \(h\).], the thermal noise error of the power is denoted by [image: Italic lowercase letter "n" followed by "(t)", representing a mathematical function notation.] which generally obeys a normal distribution [23].
Considering that the thermal motion of charged particles in a circuit forms thermal noise, the noise power [image: Please upload the image so I can help generate the alternate text for it.] is usually expressed as the noise temperature [image: To generate the alt text, please upload the image or provide a URL to it. If you wish, you can also include a caption for more context.] corresponding to the thermal noise power of the same magnitude, and the relationship between them is as Equation 9:
[image: If you provide an image or a URL to the image, I can help generate the alt text for it.]
The unit of [image: Please upload the image or provide a URL so I can generate the alternate text for it.] is Watts(W), the unit of [image: A stylized, three-dimensional letter "T" with a reflective metallic surface. The lighting highlights the top and front edges, creating a glossy and polished appearance with soft shadows.] is Kelvin (K) and the unit of noise bandwidth [image: Mathematical notation showing an uppercase italicized 'B' followed by a subscript 'n'.] is Hertz (Hz). The Boltzmann constant [image: It looks like there was an error in uploading your image. Please try again by ensuring the image is properly attached. You can also add a caption for additional context if needed.] is equal to [image: Scientific notation showing the number \(1.38 \times 10^{-23}\), often used to denote very small quantities in physics, such as Boltzmann's constant.] J/K, which [image: It seems there was an issue with uploading the image. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] is taken as 290 K at room temperature.
When the duration of the signal power measurement is [image: It seems you mentioned an image, but no image was uploaded. Please try uploading the image again.], it is advisable to assume that the user takes the coherent integration method to estimate the signal amplitude, then there are:
[image: Mathematical equation displaying \(\bar{A} = \frac{1}{T_p} \int_{0}^{T_p} s(t)dt = A + n'(t)\), labeled as equation (10).]
where [image: Please upload the image or provide a link to it so I can generate the appropriate alt text.] is the measured value of the amplitude of the received signal. [image: The image shows the mathematical expression "n prime of t" written as \( n'(t) \).] is the coherent integrated noise, and its equivalent noise bandwidth [image: A mathematical expression showing the letter "B" with the subscript "n" in italics.] is taken [image: It seems there was a misunderstanding. Please provide an image or a URL, and I can help generate the alternate text for it.]. Before and after coherent integration, the signal power, amplitude, and noise power spectral density do not change, but because the noise bandwidth before the correlator is [image: Equation representation with the mathematical term \( B_{pd} \), where "B" is capitalized and the subscript consists of "p" and "d".], and the filtering bandwidth of the coherent integrator can be regarded as [image: The expression "B" followed by the subscript "n" is shown in a serif font, indicating a mathematical notation.] , the narrowing of the noise bandwidth must cause a decrease in the noise power, so the noise power after coherent integration is reduced to [image: Mathematical expression displaying \( N / B_{pd} T^p \).].
2.3 A system of equations for power observations
When the user receives multiple beamed satellite signals and measures the signal power, the equation is as follows:
[image: A mathematical expression showing a system of equations. Each equation follows the format: \(E_i(y, \beta) + L(d) + G(\alpha) + N_i^T = \hat{P}_i\), where \(i\) ranges from 1 to \(M\). The equations are labeled from \(E_1\) to \(E_M\), indicating a repetitive structure. Equation number (11) is displayed beside the system.]
Among them, [image: Mathematical notation showing a sequence of estimated probabilities: \( \hat{P}_1, \hat{P}_2, \ldots, \hat{P}_M \). Each term includes a hat symbol indicating an estimate.] are the power measurement of different beams, and [image: Mathematical notation showing a sequence \( N_1^T, N_2^T, \ldots, N_M^T \) with superscript T, representing a transformation or transpose operation.] are the power observation noise of different beams.
The power observation equation for the other beams is different from the observation equation for beam 1, the difference between other beams and beam 1 is calculated by:
[image: A set of equations representing changes in variables over multiple iterations. Each equation follows the format: \(\Delta E_i(y, \beta) + N_i^T - N_1^T = \Delta \bar{P}_i\). The index \(i\) ranges from 2 to \(M\), indicating a sequence. Equation (12) is referenced.]
where, take [image: The equation shown is: ΔEₖ(α, β) equals Eₖ(α, β) minus E₁(α, β).], [image: The formula shows that the change in probability estimate for index k (delta P̂_k) is equal to the probability estimate at k (P̂_k) minus the probability estimate at index one (P̂_1).].
Assuming that the initial values of [image: Please upload the image for which you would like the alternate text.] and [image: Please upload the image or provide a URL for it, and I can generate the alternate text for you.] are [image: It seems there's an issue with displaying the image. Please upload the image directly or provide a link to it, and I'll create the alternate text for you.] and [image: It seems there might have been a misunderstanding. Please provide the actual image or a URL, and I can help generate the alternate text for it.] ,where the system of equations is linearized and expanded, then there is:
[image: A mathematical expression with a system of equations labeled as equation 13. It highlights partial derivatives and differences in variables, with subscripts and notations for changes in certain parameters, represented by symbols such as ΔE, γ, β, and ΔN.]
where [image: The formula shows the change in \( N_k^T \) expressed as \(\Delta N_k^T = N_k^T - N_1^T\).], and cause:
[image: Matrix expression \( \mathbf{X} \) is given, where each element is a partial derivative. The first row consists of partial derivatives \( \frac{{\partial \Delta E_{2}}}{\partial y} \), \( \frac{{\partial \Delta E_{2}}}{\partial \beta} \), up to \( \frac{{\partial \Delta E_{M}}}{\partial \beta} \), with respect to parameters \( (y_{0}, \rho, \theta) \). The second row follows a similar pattern. This expression is transposed. Equation (14) is referenced.]
[image: Equation showing the vector y formed by differences: y equals a vector of Δp_1 minus ΔE_1(y_0, β_0) through Δp_M minus ΔE_M(y_0, β_0), transposed.]
[image: Mathematical expression illustrating a vector \( \mathbf{n} \) composed of elements \( [N_{1}^{-}, N_{2}^{-}, \dots, N_{M}^{-}]^T \). Equation is labeled as number 16.]
Then the above equation can be rewritten as:
[image: Mathematical equation showing: X times the inverse of the sum of the product of gamma and beta minus beta prime equals Y plus n. Equation number seventeen.]
Further, it can be solved that:
[image: Equation showing an expression: \( y_t, \beta_t \) is equal to \([y_t, \beta_t^-]'\) plus \( X^{-1} \) multiplied by \((y + n)\), referenced as equation (18).]
Equations 11–18 are the derivation process of the least squares algorithm for power positioning. According to the properties of the least squares solution for linear systems of equations, the number of equations should be greater than or equal to the number of unknowns. Considering the unknowns are the satellite elevation angle [image: Please upload the image you'd like me to describe, or provide a URL where I can view it.] and the satellite azimuth angle [image: Please provide an image or a URL to generate the alternate text.], the number of equations should be at least 2. Furthermore, since the linear system of equations is derived from the differentiation of different beams, the minimum number of satellite beams required by the algorithm is 3.
2.4 Power positioning algorithm solution process
Since multi-beam power positioning is applied to low-orbit satellite scenarios, the quality of the received signal is poor when the user’s elevation angle is too low, thus eliminating the data with low user elevation angles. In addition, according to the general specification for BeiDou/Global Navigation Satellite Systems (GNSS) geodetic receivers [24], typical values for navigation receiver acquisition and tracking sensitivities are generally below −130 dB m, thus the simulation parameters are set as Table 1:
TABLE 1 | Simulation parameters.
[image: Table displaying satellite system parameters. Earth radius: 6371 km; Satellite orbital altitude: 1200 km; User elevation angle: 10 to 90 degrees; Satellite azimuth angle: 1 to 360 degrees; Satellite elevation angle calculated by user elevation; 52 satellite beams; User geodetic height: 0 m; User receive gain: 0 dB; Noise bandwidth: 1000 Hz; Noise temperature: 290 K; Least squares iterations: 10; Receiver sensitivity: negative 160 and negative 190 dB W.]The input required for the power positioning least squares algorithm is the initial value of the satellite elevation angle [image: It seems there is no image provided. Please upload the image or provide a URL, and I can help generate the alternate text for it.], the initial value of the azimuth angle [image: Please upload the image or provide a URL, and I will create the alt text for you.], the ERIP value of k beams of prior information [image: Mathematical expression displaying \(E_k(\gamma, \beta)\), indicating a function or equation involving the variables \(\gamma\) and \(\beta\) with subscript \(k\).] , and the user gain [image: The image displays a mathematical expression: capital G followed by alpha in parentheses, symbolizing a function G of alpha.].Figure 2 gives the flowchart of the algorithm.
[image: Flowchart displaying a process involving data input and calculations. It starts with input parameters, then diverges based on a condition M=1000, leading to calculations of statistical error bias and power positioning analysis. If the condition S=10^7 is met, the process continues to obtain a new elevation angle using baseline and election information, otherwise performs additional calculations.]FIGURE 2 | Flowchart of the power positioning least squares algorithm.
The least-squares algorithm itself outputs the satellite tension angle and azimuth angle, however, we need to obtain the user’s vertical and horizontal information. It is worth noticing that in the process of calculating the elevation angle of the user, [image: Text showing the mathematical expression \( h = 0 \).] is first assumed, which is due to the negligible altitude of the user’s geodetic altitude in relation to the radius of the Earth and the orbital height of the satellite. The h after the least squares solution is obtained by a series of calculations such as link loss, and the two values are not contradictory, and the analysis of the error in the following is based on the h of the least squares solution.
Substituting Equation 2, we can get the elevation angle from the user to the satellite as Equation 19:
[image: The mathematical expression shows \( x = \cos^{-1} \left( \frac{R+H}{R+h} \sin \gamma \right) \), with the equation labeled as (19).]
According to Equation 4, the user’s geodetic height can be calculated as Equation 20:
[image: Mathematical equation: \( y = -R - d \sin \alpha + \sqrt{(R + H)^2 - d^2 \cos^2 \alpha} \). The equation is labeled as equation (20).]
where [image: Please upload the image you want the alternate text for. You can do this by clicking the image upload button.] can be calculated by Equation 5, and the user vertical information is Equation 21:
[image: Equation for calculating \( x \), given by \( x = d \frac{\sin \gamma}{\sin (\alpha + \gamma)} \), labeled as equation 21.]
In order to facilitate the subsequent analysis of the power positioning and timing performance, the evaluation index of the positioning and timing result error is defined here, assuming that the true value of the satellite elevation angle is [image: Please upload the image or provide a URL so I can generate the alternate text for you. If you would like, add a caption for additional context.] and the solution value is [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] ,then the elevation angle error is [image: The formula represents a change in gamma, where delta gamma equals gamma minus gamma sub r.].
If there are [image: Please upload the image you want me to generate alternate text for.] users in different locations, the statistical positioning performance of these users can be given by the error deviation and the standard deviation, which is defined as Equations 22, 23:
[image: Mathematical formula for expected value, denoted as E of absolute difference between y and y_h, equals one over n times the sum from one to n of the absolute difference between y and y_h. Equation numbered twenty-two.]
[image: Standard deviation of delta psi, denoted as std(Δψ), equals the square root of D(Δψ). It is calculated using the formula: sqrt(1/(n-1) * sum((Δψ - E(Δψ))^2)) for n terms, equation 23.]
Satellite azimuth error, user horizontal error, user vertical error and their deviation are defined as above.
Assuming the true distance between the user and the satellite is [image: Please upload the image or provide a URL for me to generate the alt text.], and the distance calculated by the power positioning algorithm between the user and the satellite is d, then the timing error is defined as Equation 24:
[image: Mathematical equation showing the time difference, Delta t, is equal to the absolute value of the difference between \(d_s\) and \(d\) divided by \(c\). Equation number 24.]
where [image: Please upload the image so I can help generate the appropriate alternate text for it.] is the speed of light, which is approximately taken as [image: The image contains a mathematical expression written in LaTeX, representing the speed of light: \(3 \times 10^{8} \, \text{m} \cdot \text{s}^{-1}\).].
3 RESULTS
3.1 The requirements and acquisition of initial values in the least squares method
In the process of power positioning solution, the initial conditions have a great influence on the results, and the better initial conditions can make the iteration converge quickly, and the poor initial conditions will greatly reduce the iteration speed, and even the convergence results cannot be obtained in the end. Due to the characteristics of planar phased array antennas, ground users may have the same receiving power in different areas, and if the gap between the initial position and the user’s position is too large, the solution is easy to fall into the local optimal solution, resulting in a large positioning error.
3.1.1 Requirements for initial values in the least squares method
When the initial values are set close to the true values, the iteration tends to converge; when the initial values are set far from the true values, the least squares iteration diverges. Consequently, the power positioning least squares scheme has certain requirements for initial values.
To determine these requirements, it is assumed that the true elevation and azimuth angles of the satellite are [image: Mathematical expression showing a column matrix with two entries: gamma sub r on top and beta sub r on the bottom.], the initial value [image: Mathematical expression in brackets showing gamma subscript r plus-minus a and beta subscript r plus-minus b.] is set to a certain value below the true value, and the positioning results [image: A vertical column matrix containing the Greek letters gamma on top and beta below.] of multiple Monte Carlo simulations are required to converge to within the range of the true value of 1[image: Blurry image with indistinguishable content, primarily grayscale. The center is brighter, fading to darker shades toward the edges, creating a vignette effect.], that is [image: Mathematical notation showing gamma sub r plus or minus zero point five degrees, and beta sub r plus or minus zero point five degrees, enclosed in square brackets.], the initial value requirements of the least squares method at this time are required a and b, where a is the initial value requirement of the satellite elevation angle, and b is the initial value requirement of the satellite azimuth angle.
In the simulation, users with poor observation quality due to low elevation angles are excluded. By iterating over user elevation angles [image: Please upload the image or provide a URL so I can generate the alt text for you.] in the range [10°, 90°] (which corresponds to satellite elevation angles [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL. If you have a caption for additional context, feel free to include it.] in the range [0°, 55.8°]), and satellite azimuth angles [image: It seems there was an error in your request. Please upload the image or provide a valid URL for me to generate the alternate text.] in the range [1°, 360°], we can statistically determine the initial value requirements a and b for the power matching least squares method.
The statistical results of the initial value of least squares solution requirements are shown in Figure 3:
[image: Two bar charts showing probability distributions. The left chart, titled "initial requirement a for γ," has probabilities increasing towards range 5. The right chart, titled "initial requirement b for β," also shows probabilities increasing significantly at range 5. Both charts have range values from 0 to 5.]FIGURE 3 | The proportion of users with different initial values required by the least squares algorithm.
It is not difficult to see that when the initial values of elevation angle and azimuth angle are below the true value of 2°, it can be considered that the vast majority of users (94.5% and 93.2%) can use power matching positioning to perform least squares solution and obtain a convergence solution. The solution to meet the initial value requirements can be obtained by using user prior information or other algorithms.
3.1.2 Acquisition of initial values by the nearest neighbor algorithm
This section introduces the method of obtaining the initial value that satisfies the convergence condition of least squares solution, and briefly explains the nearest neighbor algorithm (K value takes 1 in KNN) as an example, and then considers different fingerprint database frameworks and parameters.
According to the system of power measurement Equation 10, based on the EIRP information of each beam [image: The expression contains mathematical elements, represented as a sequence \( (E_1, E_2, \ldots, E_M) \), indicating a series or set of components labeled from \( E_1 \) to \( E_M \).] known on the satellite side, the theoretical received power values of users at different locations [image: It seems like you provided a mathematical expression, not an image. If you have an image, please upload it, and I can help generate the alternate text for it.] can be solved through the link budget, and in fact, for a single user, the received power of up to M beams [image: A sequence of symbols representing estimated probability values: P-hat sub 1, P-hat sub 2, through to P-hat sub M, enclosed in parentheses.] can be obtained. When the user’s fingerprint location information is the real user location, there will only be one noise deviation between the theoretical received power value of M and the actual received power value of a single user, which is very small and negligible in most cases, which is called positioning matching. However, when the user location fingerprint is different from the real user location, there will always be a large difference between the theoretical received power value and the actual received power value of some beams of a single user, which is called mismatch.
Considering the processing time of the nearest neighbor algorithm and the actual user situation, the power fingerprint database in this paper traverses the elevation angles of different users and takes a certain azimuth interval to establish it. In the matching process, the azimuth interval can be initialized by a priori known information, and then the azimuth search interval can be gradually narrowed to achieve more accurate and robust matching results.
In the simulation, we traverse the user’s elevation angle [image: Greek letter alpha is an element of the interval from ten degrees to ninety degrees.] (converted to a satellite elevation angle of [image: Mathematical notation depicting the variable gamma, with a range from zero to fifty-five point eight degrees.]), the satellite azimuth angle [image: Mathematical expression with the symbol beta belonging to the interval from one degree to three hundred sixty degrees.], and the user’s ground height are all set to 0 m. Assuming that the user’s elevation angle is unknown and the azimuth uncertainty is 5[image: A grayscale image with a circular radial gradient, transitioning from dark gray on the outside to bright white at the center, creating a tunnel-like effect.], there are 72 different fingerprint databases, each of which contains all the user’s elevation angle information and a certain azimuth information. In order to reduce the influence of noise on the nearest neighbor algorithm, the width of the fingerprint library is taken as 10 beams, which are the 10 largest beam points among the M received power obtained by each user.
The simulation results of the nearest neighbor algorithm power matching localization are as Figure 4.
[image: Two heatmaps labeled (a) and (b) compare relative residuals Δα and Δβ against user elevation and azimuth angles. Both show a color gradient from blue to yellow, representing values from negative to positive.]FIGURE 4 | The Nearest Neighbor algorithm: (A) Satellite elevation angle errors (B) Satellite azimuth angle errors.
The colorbar depth of the above two graphs represents the azimuth and vertical error of the satellite, and the darker the color, the smaller the error. It can be seen that the error of satellite elevation angle is small, generally below 0.5[image: A grayscale, blurred circular gradient with a bright center fading towards darker edges.], while the azimuth error of satellite is large, generally above 0.5[image: Blurry and undefined image with no distinguishable features or objects visible.], and the error under the condition of high user elevation angle is significantly increased, which is mainly due to the fact that the beam receiving power of users with high elevation angle is generally large, and it is difficult to distinguish the difference of beam between different users, resulting in some misjudgments in the algorithm. In general, the power matching positioning of the nearest neighbor algorithm can meet the requirements of the least-squares algorithm for the initial value of convergence.
3.2 Analysis of the single user positioning error
Assumed the satellite angle errors are [image: Mathematical expression with a vertical line of two symbols: delta y over delta beta.], the power calculation error is [image: It appears there's no image to describe. Please upload the image or provide a URL for it, and I'll help generate the alternate text.],if error terms are taken into account as Equation 25:
[image: Matrix equation showing a two-row vector on the left inside brackets, consisting of gamma plus delta gamma in the first row, and beta plus delta beta in the second row, equals y plus n plus delta rho on the right. It is labeled equation twenty-five.]
From the previous Newtonian iterative process, it can be deduced that the relationship between the elevation angle and azimuth angle of the two satellites directly related to the user’s position and the power calculation error is as Equation 26:
[image: Mathematical equation displaying a vector for changes in y and beta on the left, equated to the product of the inverse of X transposed times X, X transposed, and the change in rho vector on the right, labeled as equation twenty-six.]
Assuming that the parameters remain unchanged during the receiver receiving the satellite signal, and each observation value is independent of each other, the observation error [image: Please upload the image or provide a URL so I can generate the alternate text for you.] obeys the standard normal distribution, the mean value is 0, and the variance is [image: Please upload the image or provide a URL so I can help generate the alternate text for it.]. So the covariance of [image: Greek letters Delta y divided by Delta beta, enclosed in parentheses.] can be expressed as Equation 27:
[image: Covariance matrix equation showing the covariance of a matrix with elements Δy and Δβ. It is equal to the inverse of the product of X transpose and X, multiplied by sigma squared, denoted as equation 27.]
Taking the user’s elevation angle of 60[image: A grayscale gradient with a bright center fading to a darker edge, forming a soft circular pattern resembling an unfocused light source.] (converted to a satellite elevation angle of 24.882[image: If you upload an image or provide a URL, I can help generate the alternate text for it.]), the satellite azimuth angle of 30[image: A grayscale gradient background with a bright circular light in the center fading to darker shades toward the edges.], and the geodetic height of 0 m as an example, the receiver sensitivity is set to −160 dB W, and the results of multiple Monte Carlo simulations are as follows.
As can be seen from the Figure 5, the satellite tension angle and azimuth results of multiple Monte Carlo simulations are around the true value, and their statistical mean values can converge to within the range of 0.5[image: Abstract grayscale radial gradient with a bright center transitioning to darker edges, creating a tunnel or vortex-like effect.] of the true value. The vertical and horizontal error of a single Monte Carlo simulation is less than 40 km, and its statistical average value can converge to within the range of 50 km of the true value, and the power positioning algorithm tends to converge, so the user can use the power positioning timing method to perform multiple positioning solutions to achieve better positioning performance. The results of 1,000 Monte Carlo simulations are statistically analyzed, and the probability distribution functions of each parameter are fitted as follows in Figure 6.
[image: Two graphs analyze simulation results. The top graph shows solution values τ and β compared to actual values, with τ in blue and β in orange, as simulations increase. The bottom graph depicts elevation error Δh and horizontal error Δx, with Δh in blue and Δx in red, fluctuating around the zero line over the number of simulations up to one thousand.]FIGURE 5 | Monte Carlo results of [image: Greek letters gamma and beta, followed by delta h and delta x.].
[image: Four plots display cumulative distribution functions (CDFs). Each plot correlates samples and a fitting function, denoted by blue dots and a red line respectively. The top-left plot is labeled "CDF of γ" with values around 24.5. The top-right plot is "CDF of β" centered around 30. The bottom-left is "CDF of Δh" with values spanning from -4 to 4. The bottom-right is "CDF of Δx" with values from -2 to 2. Each plot shares a vertical axis labeled "probability."]FIGURE 6 | Normal distribution fits of Monte Carlo results.
The normal fitting of satellite azimuth angle [image: Please upload the image or provide the URL so I can generate the alt text for you.], user vertical difference [image: Please upload the image or provide a URL so that I can generate accurate alt text for you.], and horizontal difference [image: The symbol "Delta x" indicating a change or difference in the variable x.] is good. The solved satellite azimuth angle [image: Please upload the image or provide a URL for me to generate the alternate text.] is approximately normally distributed as [image: A mathematical expression depicts a normal distribution denoted as \( N(30.05, 0.1426) \), where the mean is 30.05 and the standard deviation is 0.1426.], and the elevation angle [image: Please upload the image you would like me to describe, and I will generate the alternate text for you.] is approximately normally distributed as [image: A mathematical expression representing a normal distribution with a mean of 24.90 and a standard deviation of 0.0976.], with deviations of 0.03° and 0.038°, respectively. The user vertical difference [image: Delta h symbol representing a change in height or elevation.] is approximately normally distributed as [image: Normal distribution notation indicating a mean of five hundred ninety-five point one eight and a variance of one point two five times ten to the eighth power.], and the horizontal difference [image: Delta x symbol, representing a change or difference in the variable x.] is approximately normally distributed as [image: I can't generate alternate text for content that is not visible. Please upload the image you're referring to, and I'll be glad to help!]. The power positioning accuracy of the user at this point is at the kilometer level.
4 DISCUSSION
4.1 Different user locations
From Section 3.1, it is known that when the initial value of the least squares solution is taken to be less than 2° from the true value, it is difficult for some users to obtain a convergent solution. For such cases, the solution diverges, and the result should be taken as the uncertainty of the initial value. Furthermore, since the convergence of the least squares is defined as [image: Mathematical expression in brackets showing two rows: first row is "gamma sub r plus or minus zero point five degrees," and second row is "beta sub r plus or minus zero point five degrees."], when the solution angle error deviation is greater than 0.5°, the deviation should be 1°, and when the solution angle error deviation is less than −0.5°, the deviation should be −1°. Similarly, for user vertical and horizontal information, when the solution distance error deviation is greater than 50 km, the deviation should be 100 km, and when the solution distance error deviation is less than −50 km, the deviation should be −100 km.
According to the above definition and the initial value limit of the algorithm, the user elevation angle [image: The image shows the mathematical expression "alpha is an element of the interval from ten degrees to ninety degrees," indicating a range for the variable alpha.] (converted to the satellite elevation angle is [image: Sorry, I can't provide any information from that image.]) and azimuth angle are traversed [image: Mathematical expression depicting a variable beta within a range of angles from one degree to three hundred sixty degrees, inclusive.], while the receiver sensitivity is set to −160 dB W. The effects of different user elevation angles and satellite azimuth angles on user vertical errors and horizontal errors are discussed as follows in Figure 7.
[image: Two graphs comparing satellite steering angles versus user elevation angles. Both graphs use a color gradient from blue to yellow. Graph (a) shows more frequent and varied color transitions, indicating more dynamic changes. Graph (b) shows fewer transitions with more concentration in blue, indicating fewer significant changes. Color scales next to each graph range from zero to ten to the power of minus fifteen.]FIGURE 7 | When receiver sensitivity is −160 dB W: (A) User vertical errors in different locations. (B) User horizontal errors in different locations.
It is not difficult to see that when the user is at a low elevation angle, the vertical and horizontal errors deviation of the users are generally large, and the convergence is not good. When the user is at a higher elevation angle, the horizontal and vertical errors of the user significantly decrease.
The following results in Figure 8 are obtained from the statistical analysis of user errors at different user elevation angles.
[image: Line graph showing variations of two metrics \(|\Delta\kappa|\) and \(E\{|\Delta\kappa|\}\) against user elevation angle (degrees). The y-axis represents \(|\Delta\kappa|\) in units of \(10^{4}\), and the x-axis shows elevation angle from 0 to 90 degrees. The orange and blue lines depict the data, with a red constant line \(E\{|\Delta\kappa|\}\) at approximately 0.5 across the graph. A dashed purple line \(E\{\Delta x\}\) follows the \(x\)-axis at zero.]FIGURE 8 | Vertical and horizontal bias of different user elevation angles.
The numerical results of the aforementioned image can be further analyzed. First, by discussing the situation for all users, i.e., users with elevation angles [image: Text showing "alpha is an element of the interval from ten degrees to ninety degrees" in mathematical notation.], the overall performance of power positioning can be obtained. Then, by separately discussing the two major parts of low user elevation angles [image: The formula shows the angle alpha within the range of ten degrees to thirty degrees, inclusive.] and high user elevation angles [image: The mathematical expression shows the Greek letter alpha (α) followed by the range in degrees from thirty to ninety, denoted by the interval notation [30°, 90°].], the positioning and timing performance of users in different elevation angle regions can be obtained as follows in Table 2.
TABLE 2 | Satellite and user error table when receiver sensitivity is −160 dB W.
[image: Table displaying user elevation angle range with corresponding evaluation criteria like bias and standard deviation. Columns show errors in elevation angle, azimuth angle, vertical, and horizontal measurements for angles [10°, 90°], [10°, 30°], and [30°, 90°]. Numerical values are detailed for each criterion and angle range.]According to Equation 23, timing errors of the power positioning can be calculated by the difference between the true value and solution value. The timing errors affected by different user locations as follows in Figure 9.
[image: Heatmap showing azimuth angles from 0 to 360 degrees against elevation angles from 10 to 90 degrees. The color scale ranges from dark blue to yellow, indicating data values from 0 to 450.]FIGURE 9 | Timing errors of power positioning.
The maximum timing error is 10.1 ms, and the statistical mean is 123 μs. When the user’s elevation angle is below 30°, the average timing error is 305.8 μs; when the user’s elevation angle is above 30°, the average timing error is 62.3 μs. Therefore, power positioning can provide users with microsecond-level timing accuracy.
When the user’s horizontal or vertical difference exceeds the convergence condition of 50 km, the algorithm is judged to diverge, and the availability of power positioning is poor. By statistically analyzing the results for different user elevation angles, the positioning availability can be obtained as shown in Figure 10.
[image: Line graph depicting the proportion of different users versus user elevation angle. The vertical axis represents the proportion of users, ranging from zero to twenty percent, while the horizontal axis shows elevation angles from zero to ninety degrees. The line fluctuates significantly at lower angles, peaking around fifteen percent, then gradually decreases with smaller fluctuations towards higher angles, eventually nearing zero.]FIGURE 10 | Availability of power positioning.
It can be seen that when the user’s elevation angle is less than 40°, the proportion of divergent users is generally more than 10%, and the availability of power positioning is about 90%; when the elevation angle is higher than 40°, the proportion of divergent users is generally within 5%, and the availability of power positioning is above 95%. In summary, power positioning allows some users, especially those with high elevation angles, to have the potential to achieve better positioning and timing performance.
4.2 Different receiver sensitivity
The simulation is set with a certain receiving power sensitivity threshold. When the received power exceeds this threshold, the power measurements are processed; otherwise, the power value is considered to be significantly affected by noise and is not subjected to least squares iteration processing. Previous simulations were all conducted under the condition of a threshold of −160 dB W, which has high requirements for data quality. In this section, the receiver sensitivity is lowered to −190 dB W to explore the impact of receiving power sensitivity on power positioning.
As with section 4.1, the angle conditions are as the same. However, the receiver sensitivity is set to −190 dB W. Figure 11 illustrates the impact of the user’s elevation angle and azimuth angle on the vertical and horizontal error biases in power positioning.
It can be observed that when the user’s elevation angle is low, for example, below 30°, the receiver with −190 dB W sensitivity exhibits more divergence in power positioning compared to the receiver with −160 dB W sensitivity. This indicates that while increasing the receiver sensitivity makes it easier to receive signals from different beams, the power positioning algorithm becomes more challenging to converge due to noise interference. Therefore, to enable more users to achieve better performance with power positioning, it is necessary to reduce the receiver sensitivity to a certain extent, in order to mitigate the impact of noise on the solution. As with subsection 4.1, by statistically analyzing the error biases for users with different elevation angles, the following results can be obtained.
The resulting error table is as follows.
From Figure 12 and Table 3, it can be seen that the standard deviations of user vertical difference and horizontal difference obtained by the high-sensitivity receiver are comparable to those under low-sensitivity conditions. However, the error biases of satellite elevation angle and satellite azimuth angle have increased by 0.0311° and 0.0789°, respectively, and the biases of user vertical and horizontal errors have increased by 3,556.5 m and 3,859.7 m, respectively. Under low user elevation angles, the biases of vertical difference and horizontal difference have increased by 8,506 m and 10,975 m, respectively, while under high user elevation angles, the biases have increased by 1,790.9 m and 1,343.2 m, respectively. It is not difficult to find that high sensitivity has a very significant impact on users with low elevation angles, while the impact on users with high elevation angles is relatively small.
[image: Two color-coded heatmaps labeled (a) and (b) depict user elevation angle against azimuth steering angle. Both maps range from blue to yellow, indicating data values from approximately zero to almost seven times ten to the negative fifth power. The color scale on the right side of each plot shows data density variations across angles.]FIGURE 11 | When receiver sensitivity is −190 dB W: (A)User vertical errors in different locations (B) User horizontal errors in different locations.
[image: Line graph illustrating user elevation angle versus relative error (Re) for four different models: LM, EQ, IA, and EQ exact. Each model is represented by a different line style and color. The graph shows varying levels of relative error across elevation angles ranging from ten to sixty degrees.]FIGURE 12 | Vertical and horizontal deviations of different user elevation angles when receiver sensitivity is −190 dB W.
TABLE 3 | Satellite and user error table when receiver sensitivity is −190 dB W.
[image: Table detailing user elevation angle range from ten to ninety degrees and its impact on errors. It shows bias and standard deviation for elevation angle error, azimuth angle error, vertical error, and horizontal error, with varying values for specified ranges.]5 CONCLUSION
In scenarios where the number of LEO satellites in view is limited, pseudorange and carrier phase positioning are not available, and single-satellite Doppler positioning has poor applicability, ground users can utilize the received power measurements from different beams of LEO satellites to calculate their own position and time, thereby quickly obtaining positioning and timing results. Based on the multi-beam interrogation characteristics of LEO satellites, this paper employs the nearest neighbor algorithm for power matching to obtain convergent initial values and uses the least squares iteration to solve for the user’s horizontal and vertical information. Experimental results show that the nearest neighbor algorithm can achieve initial values for satellite elevation and azimuth angles within 2° when the fingerprint library interval uncertainty is 5°; under the condition of initial values within 2°, the least squares solution can achieve convergence for the vast majority of users (94.5%, 93.2%).
For the least squares algorithm solution, multiple Monte Carlo simulation results indicate that the satellite elevation and azimuth angles, as well as user vertical and horizontal differences obtained from power positioning calculations, follow a normal distribution and have a good normal fitting relationship. There is a significant difference in power positioning results for users at different locations. For a receiver with −160 dB W sensitivity, the statistical error biases for horizontal and vertical positioning are approximately 7,000 m, and the average timing error is 123 μs. Users with low elevation angles (below 30°) generally have error biases higher than the average, at 1,5546 m and 17,180 m respectively, with a timing error of 305.8 μs, and power positioning availability of about 90%. In contrast, users with high elevation angles (above 30°) generally have error biases lower than the average, at 4,231.2 m and 3,567.1 m respectively, with a timing error of 62.3 μs, and availability about 95%. Under high receiver sensitivity at −190 dB W, affected by noise, the average error bias is about 10,000 m, with low elevation angle users being particularly affected, with an average bias worsening to over 20,000 m, and availability worsening to 70%. For high elevation angle users, the average bias only worsens to about 6,000 m, and power positioning availability is basically maintained above 90%.
In summary, the positioning accuracy of low Earth orbit multi-beam power positioning technology is at the kilometer level, and the timing accuracy is at the microsecond level, which can meet users' needs for real-time approximate position and time information.
As the technology of LEO power positioning evolves, future research will delve into the performance of the Least Squares algorithm and the K-Nearest Neighbors algorithm in this domain. By conducting a meticulous analysis of these two algorithms, we aim to uncover their respective advantages in various application scenarios, thereby providing theoretical foundations and technical support for achieving more accurate navigation and timing performance. In this process, our focus will extend beyond the mathematical properties and computational efficiency of the algorithms to encompass their adaptability and flexibility in practical applications. We are confident that through a comprehensive comparison and optimization of these algorithms, we can offer more reliable solutions for LEO power positioning technology in the complex and dynamic environments of its applications. Looking ahead, we anticipate that these research outcomes will propel the advancement of LEO power positioning technology and contribute new momentum to the development of LEO navigation systems.
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Attitude determination of rotary-wing unmanned aerial vehicles (RUAVs) is crucial for grasping their motion state and is a necessary condition to ensure the correct execution of flight missions. With the continuous development and the constant enhancement of measurement accuracy related to the Global Navigation Satellite System (GNSS), attitude determination based on GNSS have become the mainstream high-precision attitude measurement approach. This paper mainly discusses the relevant theories of using GNSS for RUAV’s attitude determination, and introduces the relevent key aspects that determine attitude accuracy in the attitude resolution process, such as integer ambiguity fixing, attitude solution algorithms, and integrated attitude measurement. It especially elaborates on the challenges that faced to be solved for current RUAVs to use the GNSS system for real-time and guarded attitude measurement.
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1 INTRODUCTION
Unmanned Aerial Vehicles (UAVs), characterized by their high controllability, low production costs, and the separation of human operators from the vehicle, are widely used across various civilian and military domains. In the civilian sector, UAVs can be employed for applications such as topographic surveys, disaster detection, power line inspections, search and rescue operations, target tracking, and the establishment of wireless networks [1–4]. In the military sphere, their low cost, high mobility, compact size, and difficulty to detect make them ideal for battlefield reconnaissance, supply transportation, information confrontation, communication relay, and firepower engagement [5]. Conflicts such as those in Syria, the Nagorno-Karabakh region, and the Russia-Ukraine war have seen the emergence of various types of UAVs, including integrated reconnaissance-strike, surveillance, and suicide attack drones [6–8].
Rotor Unmanned Aerial Vehicles (RUAVs), a type of UAV, are relatively small in size and rely on the rotation of multiple wing propellers to lift and move. They possess the capability for vertical takeoff and landing and omnidirectional flight, exhibiting higher maneuverability and flexibility at a negligible cost compared to fixed-wing UAVs [9]. As shown in Figure 1, the earliest RUAVs appeared in 1907 with the “Gyroplane No.1″designed by Professors Jacques Breguet and “Oehmichen No.2″invented by Etienne Oehmichen [10]. With the advent of the 21st century, the development level of rotor UAVs has been greatly enhanced by the invention of new controllers and sensors [11]. Stanford University designed the multi-autonomous platform control testbed STARMAC, capable of precise flight control and equipped with some obstacle avoidance capabilities [12, 13]. The German classic multi-rotor UAV, MD4-1000, equipped with a camera gimbal, can achieve autonomous navigation using image capture. In recent years, Dajiang UAV has rapidly occupied the RUAV Market, typical products like the Inspire 1, Mavic 2, and Phantom 4 can enhance obstacle avoidance capabilities using a visual processing unit [14].
[image: (A) A drone with multiple rotors in a star pattern. (B) A drone with stacked rotor levels and a streamlined design. (C) A drone in a protective frame. (D) A quadcopter with a front-facing camera. (E) A drone with adjustable arms and attached gimbal camera. (F) A quadcopter with an integrated camera and stabilization features.]FIGURE 1 | Classic drone. (A) “Gyroplane No.1”. (B) “Oehmichen No.2”. (C) “STARMAC-2”. (D) “MD4-1000”. (E) “Inspire 1”. (F) “Phantom 4”.
The flight attitude information of a RUAV is a crucial parameter for describing its motion state, equally important as its position and velocity information. Attitude angles can provide data support for attitude control in the flight control system, assist the flight control system in making adjustments, ensuring that the drone maintains balance during flight, which is crucial for flight safety [15]; In the context of multi-drone systems or collaborative missions, accurate attitude measurement is crucial for maintaining formation flight and coordinated operations [16]; Attitude also helps drones avoid collisions and obstacles, especially when visual obstacle avoidance systems are combined with data from attitude sensors. The angular information obtained from attitude measurements assists the flight control system in calculating the necessary adjustments for obstacle avoidance [17]; The heading and attitude information of a UAV, is also a powerful basis for the UAV to counteract directional interference [18].
Initially, the attitude determination of the carrier relied on the Inertial Navigation System (INS), which, as a navigation system capable of independently outputting positioning and attitude, has the characteristics of working independently without the need for external equipment. It can effectively resist external interference, offering good autonomy, concealment, and continuity [19]. However, as the working time of INS increases, the measurement errors caused by mechanical devices will accumulate over time, leading to a decrease in measurement accuracy [20]. High-precision inertial navigation equipment is usually bulky and costly, making it unsuitable for small and low-cost RUAVs.
The Global Navigation Satellite System (GNSS), is fully applied in the fields of navigation, timekeeping, positioning, and attitude determination due to its all-weather, global, high-precision, and high-real-time characteristics. It has the advantages of low cost, small size, low power consumption, short initialization time, and no error accumulation effect [21]. Small RUAVs widely adopt satellite navigation to obtain state information such as position, velocity, and attitude [22]. The carrier phase differential as an observation method helps to minimize the impact of clock differences and atmospheric delays under short baselines, and when obtaining the right integer ambiguity, the phase observation is two orders of magnitude more accurate than pseudo-range observation, which helps UAVs achieve high-precision attitude determination [23]. Attitude measurement uses the changes in the short baseline in different coordinate systems to obtain the attitude angle, involving a series of key issues such as the flight integer ambiguity and attitude angle solution algorithm [24, 25].
The attitude determination of RUAVs is a critical step in grasping their motion state information and a necessary condition to ensure their own safety. Therefore, focusing on the UAV attitude determination based on GNSS, this paper elaborates on the relevant theories of attitude determination in recent years, concentrating on key technologies in the attitude determination process, such as the determination of integer ambiguity and attitude resolution algorithms. At the same time, it analyzes the security challenges faced when using GNSS for UAV attitude determination in complex electromagnetic environments.
2 CURRENT RESEARCH STATUS OF RUAV ATTITUDE MEASUREMENT BASED ON GNSS
2.1 Existing GNSS attitude measurement products
The application of GNSS was initially for precise positioning and navigation. As the navigation system evolved and the use of carrier phase differential observation became more mature, its high-precision measurement capabilities gradually extended to the field of attitude measurement [26, 27]. In 1978, Coumselma [28] proposed the use of GPS carrier phase differential measurement for attitude determination, designing a full link attitude measurement system from the satellite to the receiver. Hermann [29] tested the software receiver TI-AGR for attitude measurement, proving that GPS signals can achieve millimeter-level attitude measurement on long baselines. Trimble Navigation Limited used a three-antenna two-baseline attitude determination device on a U.S. Navy cruiser for dynamic determination experiments, verifying that GPS can provide attitude information for low-dynamic motion carriers [30]. Entering the 21st century, more mature GNSS-based attitude measurement systems have emerged abroad, such as the 3DF system by Ashtech [31], the Tans Vector system by Trimble [32], and the JNSGyro-2T and JNSGyro-4T systems by Javad [33]; the Beeline system by NovAtel [34].
Currently, the ZH6000A, developed by Zihang Electronic Technology, is a three-antenna GNSS full-attitude measurement and positioning GNSS-INS combined system, capable of precisely calculating attitude angles with an accuracy of 0.05° (4-meter baseline); meanwhile, the built-in IMU can perform real-time high-precision GNSS/INS combined solutions [35]. The SIN-INS3000 system, developed by Xi’an Sine Wave Measurement and Control Technology, utilizes a combination of GNSS and fiber optic inertial navigation to achieve a roll and pitch accuracy of 0.02° [36]. The GNSS/INS integrated navigation system, developed by Airic Co. Inertial Technology, provides continuous and high-precision information. Employing a dual-antenna GNSS module in conjunction with an INS system, the system offers combined attitude determination with roll and pitch accuracies of 0.01° and 0.004° post-processing, respectively. The heading accuracy can reach 0.05°, with post-processing accuracy achievable up to 0.01° [37].
There are also products that use multiple satellite navigation system signals for attitude measurement, such as the MTi-G-710 sensor, developed by Xsens [38], aided by INS and utilizing signals from navigation systems such as GLONASS and Beidou. It outputs GNSS-enhanced 3D orientation and is capable of achieving pitch, roll, and yaw angle accuracies of 0.2°, 0.3°, and 1.0°, respectively. The 3DM-GX5-GNSS/INS system, developed by MicroStrain Sensing Systems, utilizes global navigation satellite systems such as GPS and GLONASS to provide precise 3D attitude determination. By integrating GNSS data with INS data through an Extended Kalman Filter and a Complementary Kalman Filter, the system achieves roll and pitch angle accuracies of 0.25°, with a heading accuracy of 0.8° [39].
2.2 Unique aspects of RUAVs attitude determination
RUAVs, due to limitations of their own platform, are equipped with a limited number of receiver antennas, and the baseline length formed by the antennas is of the short-baseline type, which is different from the medium to long-baseline issues present in platforms like vehicles and ships (greater than 1 m) [40]. Attitude determination often benefits from longer baseline lengths. Therefore, the attitude determination of RUAVs differs from conventional circumstances, it is conducted under short-baseline conditions [41]. Besides, the limitation on the number of baselines due to the size constraints of their own platform is also a special issue that needs to be considered.
Secondly, during the flight of rotary-wing unmanned aerial vehicles, especially in swarm operations, when directional changes are flexible and diverse, and angular velocity changes are rapid, the refresh rate of satellite navigation measurements is low and cannot match the high-dynamic angle change requirements of the RUAVs. Therefore, it is common to combine the attitude determination with the inertial navigation system. However, due to the low-cost requirements of the UAVs themselves, the accuracy of low-cost inertial navigation devices is low, and there is an accumulation of errors that require correction by the satellite navigation system [15]. In addition to relying on satellite navigation signals for determination, it is also necessary to study the fusion data algorithms in integrated navigation to complement the advantages of satellite navigation and inertial navigation, thereby improving the precision of the measurements.
Since UAVs are often in complex electromagnetic environments, when using satellite navigation for positioning and attitude determination, the satellite navigation signals are relatively weak when reaching the ground, generally at −160dBW, and the navigation signal system is often semi-public. The rotary-wing unmanned aerial vehicle has a relatively low speed of movement, making it susceptible to jamming and spoofing interference [42]. At the same time, due to the load restrictions of rotary-wing UAVs, with limited anti-interference capabilities without the support of facilities such as null steering antenna, the accuracy of positioning and attitude determination results is seriously affected by interference, and the UAV’s own motion state faces safety issues. For example, during UAV swarm performances, unknown interference can lead to loss of control of the swarm [43]; To ensure the normal flight of UAVs in complex electromagnetic environments and ensure their survivability, it is necessary to considering the UAV’s anti-interference capabilities, which is the particularity of RUAV attitude measurement [44].
3 KNOWLEDGE OF UAV ATTITUDE MEASUREMENT
Using satellite navigation for attitude measurement, the accuracy of the attitude angles depends on factors such as observation quality, antenna configuration, and solving methods [39]. The attitude determination process using GNSS often involves two steps: coordinate conversion and baseline solution. Research is often conducted to improve the accuracy and reliability of attitude calculation [45]. Key points of which integer ambiguity determination and attitude angle solution attract numerous researchers to study [46–48].
3.1 Basic principles of attitude determination
During the flight of an RUAV, the flight control system continuously receives real-time position and heading information from sensors such as GNSS receivers and gyroscopes. It then calculates the yaw distance and heading control quantities based on remote control commands, causing the aircraft wings to rotate to varying degrees, thereby steering the UAV in the correct direction [1]. As shown in Figure 2, attitude determination using satellite navigation generally involves the relative changes in the positions of multiple antennas fixed on the carrier in different coordinate systems. Key points related to the carrier’s attitude include the description method of attitude angles, coordinate systems, and the transformation matrices between coordinate systems.
[image: Three drones equipped with GNSS antennas hover in a triangular formation. Lines connect the drones to a central point labeled "GNSS antenna," indicating a network or communication setup. Each drone has a visible antenna highlighted with a red circle.]FIGURE 2 | Common RUAV and navigation receiver antenna.
As shown in Table 1, there are three common ways to describe attitude angles: Euler angles, quaternions, and direction cosines, which can be converted from one to another [49, 50]. In UAV attitude measurement, the Euler angle method is often used, that is, heading angle, pitch angle, and roll angle, which can intuitively reflect the attitude information of the carrier.
TABLE 1 | Common description methods for attitude angles.
[image: Table comparing description methods for direction estimation, including Euler Angles, Quaternions, and Direction Cosines. Features include intuitiveness and complexity. Usage scenarios mentioned are GNSS, INS, and Optical Measurement Systems.]In addition, attitude measurement often involves three coordinate systems, as shown in Figure 3, namely the Earth-centered Earth-fixed coordinate system (ECEF), the local horizontal coordinate system (LHCS), and the vehicle coordinate system (VCS). The ECEF coordinate system, as shown in Figure 3A, rotates with the Earth and is used to describe the position calculated according to navigation messages; the local horizontal coordinate system in Figure 3B, has its origin at the center of the carrier and describes the coordinates of a point in space relative to a selected reference point, also known as the East North Up (ENU) coordinate system; the vehicle coordinate system is fixed on the carrier and changes with the carrier’s motion and attitude, which is shown in Figure 3C. The Y-axis generally points in the direction of the carrier’s heading, the Z-axis points towards the zenith direction, and the X-axis, together with the X-axis and Z-axis, forms a right-handed coordinate system.
[image: Diagram with four sections labeled A to D. A and B depict coordinate systems with spherical structures and axes labeled \(X_e\), \(Y_e\), \(Z_e\), \(X_i\), \(Y_i\), and \(Z_i\). C shows a drone with four rotors and axes \(X_b\), \(Y_b\), and \(Z_b\). D illustrates drone orientation angles—pitch, heading, and roll—with the same axes.]FIGURE 3 | Coordinate system used for attitude determination. (A) Earth-centered earth-fixed coordinate system. (B) Local coordinate system. (C) Body coordinate system. (D) Rotation diagram.
In Figure 3D, taking a single baseline formed by dual antennas as an example, antennas u and r fixed on the carrier constuct a baseline, whose coordinates in VCS are determined when the antennas are installed, that is [image: Vector equation displayed as \( \mathbf{x}_b = \begin{bmatrix} x_b & y_b & z_b \end{bmatrix}^\mathrm{T} \), representing a column vector with components \( x_b \), \( y_b \), and \( z_b \).]. Their positions in the LHCS are [image: Vector expression showing a column vector \(\mathbf{x}_l\) as the transpose of a row vector containing the elements \(x_l\), \(y_l\), and \(z_l\).], and in the ECEF, the positions are [image: The image depicts a mathematical vector notation: \( \mathbf{x}_e = \begin{bmatrix} x_e & y_e & z_e \end{bmatrix}^T \). This represents a three-dimensional vector with components \( x_e \), \( y_e \), and \( z_e \), transposed as column vector.]. By performing coordinate transformations of this baseline in different coordinate systems, primarily from the local horizontal coordinate system to the carrier coordinate system, the attitude angles can be obtained.
A. From ECEF to LHCS:
[image: Equation showing a transformation matrix in a three-dimensional space. On the left are coordinates \( x_i, y_i, z_i \). The matrix includes trigonometric functions of \(\alpha\) and \(\beta\), such as \(-\sin \alpha\), \(\cos \alpha\), and \(\cos \beta\). The matrix is multiplied by coordinates \( x_w, y_w, z_w \) on the right. The equation is labeled as (1).]
where [image: Please upload the image so I can help generate the alternate text for it.] and [image: It seems there was an error in your request as the image isn't provided. Please upload the image or provide a URL for me to generate the alternate text.] are respectively the longitude and latitude of antenna u in Figure 3D after positioning calculation; [image: Please upload the image or provide a URL so I can generate the alt text for you.] is the baseline vector composed of antenna u and antenna r, also denoted as [image: Please upload the image or provide a URL, and I will help you generate the alternate text.].
B. From LHCS to VCS:
The common rotation sequence of the coordinate systems, according to the right-hand rule, involves rotating the local horizontal coordinate system successively around the Z-axis by angle [image: Please upload the image you would like me to generate alt text for, or provide a URL to the image.], around the X-axis by angle [image: Please upload the image you would like me to create alt text for.], and around the Y-axis by angle [image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL.], to align with the vehicle coordinate system. [image: It seems there was an error in uploading the image. Please try uploading it again, or provide a URL or description for further assistance.], [image: Please upload the image, and I will help generate the appropriate alt text for it.], [image: Please provide the image by uploading it so I can generate the appropriate alt text for you.], correspond to the heading angle, pitch angle, and roll angle, respectively, as shown in Figure 3D. The corresponding rotation matrix is shown in Equation 2:
[image: Mathematical equation showing that a rotation matrix \( R^n \) can be expressed as the product of three matrices: \( R_z(\phi) \), \( R_x(\theta) \), and \( R_z(\psi) \).]
where [image: The mathematical notation "R sub Z of psi" represents the Z-axis rotation operator often used in quantum mechanics or quantum computing.], [image: Text depicting the mathematical notation \( R_X(\theta) \), which represents a rotation matrix or transformation function parameterized by the angle theta.], and [image: The expression \( R_Y(\phi) \) is shown, representing a mathematical rotation operator around the Y-axis by an angle \(\phi\).] are the rotation matrices for rotations about the Z-axis, X-axis, and Y-axis, respectively. These rotation matrices can be defined individually as:
[image: Rotation matrices are displayed for three axes. \(R_z\) shows rotation about the z-axis: \( \begin{bmatrix} 0 & 0 & 1 \\ \cos \psi & \sin \psi & 0 \\ -\sin \psi & \cos \psi & 0 \end{bmatrix} \). \(R_x\) indicates rotation about the x-axis: \( \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & \sin \theta \\ 0 & -\sin \theta & \cos \theta \end{bmatrix} \). \(R_y\) represents rotation about the y-axis: \( \begin{bmatrix} \cos \phi & 0 & -\sin \phi \\ 0 & 1 & 0 \\ \sin \phi & 0 & \cos \phi \end{bmatrix} \).]
Equation 4 represents the transformation of the baseline using Equation 3.
[image: Equation shows a transformation of coordinates \( \mathbf{x}_b = R^{b}_f \mathbf{x}_f \). On the left, \( \mathbf{x}_b \) is represented by a column vector \([x_b, y_b, z_b]^T \). On the right, \( \mathbf{x}_f \) is a column vector \([x_f, y_f, z_f]^T \) multiplied by the product of rotation matrices \( R_y \cdot R_x \cdot R_z \).]
In Equation 3, the attitude angle information is contained in the rotation matrix. By solving Equation 4, the rotation matrix is obtained, and then the attitude angle is obtained. At least two non-collinear baselines are required to solve for the complete set of angles [image: Please upload the image or provide a URL for me to generate the alternate text.], [image: Please upload the image or provide a URL so I can generate the alternate text for you.], [image: Please upload the image you want me to describe, or provide a URL.],. The more baselines used, the higher the measurement redundancy, and consequently, the higher the measurement accuracy.
3.2 GNSS-based observation model
GNSS attitude measurement systems can be categorized based on the number of antennas deployed into single-antenna measurement, single-baseline (dual-antenna) measurement, and multi-baseline measurement [51, 52], as shown in Figure 4.
[image: Three drones are shown with different configurations. (A) features a quadcopter hovering above a single sensor on a platform. (B) shows a hexacopter over two sensors on a platform. (C) displays a quadcopter above three sensors on a platform.]FIGURE 4 | Schematic diagram of UAV navigation antenna and baseline. (A)Single-antenna. (B)Dual-antenna. (C)Multi-antenna.
As shown in Figure 4A, single-antenna attitude measurement refers to an unmanned aerial vehicle (UAV) equipped with a single satellite navigation receiver antenna. The single antenna primarily relies on received signal strength for measurement, which has low precision. Multi-antenna attitude measurement refers to a UAV using two or more satellite navigation receiver antennas. Due to the size constraints of the UAV, the baseline length formed by the receiving antennas is generally less than 1 meter, belonging to the short-baseline category, which is different from the medium to long-baseline types formed by antenna arrangements on vehicles, where lengths typically range from 1.5 to 2 m [40]. The dual antenna constitutes a single baseline, as depicted in Figure 4B, which can only obtain limited attitude angle information [41], while three or more antennas form multiple baselines in Figure 4C. Table 2 lists the GNSS based attitude determination methods divided by the number of antennas or baselines, the principles and characteristics of each method, and typical application scenarios.
TABLE 2 | GNSS attitude determination model.
[image: Table comparing measurement methods based on antennas. A single antenna derives direction and angle from signal strength, featuring lower accuracy for spacecraft systems. Multiple antennas with single baselines adjust attitude angle but fail to obtain full angles, ideal for small-sized aircraft. Multiple baselines measure complete angles, applicable to large-sized aircraft.]In Table 2, it can be observed that while single-antenna measurement is simple to deploy and has the lowest cost, it relies on signal strength and thus has low and unreliable accuracy, especially considering the inherently low power of navigation signals upon ground reception. Multi-baseline measurement can provide redundant information and obtain complete attitude angle data, but it requires a larger number of antennas, leading to higher hardware costs [53]. For low-cost RUAVs, which already equipped with gyroscopes and other inertial navigation devices, dual-antenna systems although not providing complete attitude angle information, can be integrated with inertial navigation devices, achieving complete information acquisition while balancing hardware costs and information retrieval capabilities. Additionally, dual-antenna systems can implement RTK, enabling precise positioning of UAVs [54]. Therefore, current RUAVs primarily carry dual antennas for positioning and attitude determination under short-baseline conditions.
Regarding the selection of the observation model, since the precision of carrier phase observation is more than two orders of magnitude higher than that of pseudo-range observation, carrier phase differential methods are commonly used for attitude determination [55]. For the short baseline measurement of UAVs, the use of carrier phase differential technology can largely eliminate satellite and receiver clock differences and mitigate the propagation delays caused by the ionosphere and troposphere.
The carrier observation equation of the receiver for the satellite is shown in Equation 5
[image: An equation displaying economic variables: \( Y_t^L \) denotes real output, \( P_t^e \) is expected price level, \( c \delta f_1 \) represents some factors, \( \delta f_2 \) adjusts them, \( R_t \) is interest rate, \( T_t \) is taxes, \( \lambda N_t \) indicates employment, and \( c_t^f \) is a correction term.]
Where [image: Greek letter phi with subscript "u" and superscript "i".] is the carrier phase observation value of the receiver [image: Please upload the image or provide a URL. Alternatively, you can also add a caption for additional context.] for the satellite [image: It seems there's an issue with displaying the image. Please try uploading the image again, and I'll be happy to help generate alt text for it.]; [image: Mathematical expression showing the symbol rho, with superscript i and subscript u.] is the pseudo-range observation value from the receiver [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] to the satellite [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help you generate the alternate text.]; [image: Greek letter delta with subscript "t" and subscript "u" in italic font.] is the clock error of the receiver [image: Please upload the image you'd like me to generate alt text for.] with [image: It seems there was an issue with uploading the image. Please try again by clicking the image upload button and ensure the file is properly selected.] being the speed of light; [image: Mathematical expression featuring a lowercase delta symbol with a superscript "t."] is the clock error of the satellite [image: It seems there is an issue with viewing the image. Please upload the image or provide a URL so I can help generate the alternate text for it.]; [image: Mathematical expression consisting of a capital letter "I" with two subscripts, "u" and superscript "i."] is the ionospheric delay along the propagation path; [image: The image portrays a mathematical symbol \( T^i_u \) with 'T' as the main variable, 'i' as the superscript, and 'u' as the subscript.] is the tropospheric delay along the propagation path; [image: The image shows a mathematical expression with the letter "N" in italic font. It has a superscript lowercase "i" with a tilde above it and a subscript lowercase "u".] is the integer ambiguity in the phase observation, representing the unknown number of whole cycles; [image: Stylized mathematical symbol with an epsilon (ε) followed by a superscript 'i' and a subscript 'u'.] is the sum of all other errors in the observation.
The carrier phase differential method, based on the number of receivers and observed satellites, as shown in Figure 4, can be divided into single difference (SD), double difference (DD), and triple difference (TD), which can eliminate satellite clock differences, receiver clock differences, and integer ambiguities [56, 57].
In the three differential observation schematics shown in Figure 5, SD involves taking the difference between measurements of the same satellite by two receivers at the same observation time [58]. DD makes difference between two receivers for single difference observation of different satellites; TD involves differencing the double differences at two different times. Table 3 shows mathematical model of the common differential methods, which illustrates the observation equations, main error terms, ambiguities, and differential observation noise corresponding to the three types of differential methods [21].
Where, [image: Mathematical expression showing the Greek letter phi with two subscripts "u" and "r" and one superscript "i".] represents the difference between the carrier phase measurements of receiver [image: Please upload the image you'd like me to describe.] to satellite [image: It seems there was an issue with uploading the image. Please try uploading the image again or provide a URL if it is hosted online. Let me know if you need any assistance!] and receiver [image: Please upload the image or provide a URL, and I will generate the alternate text for you.] to satellite [image: It seems there is no image uploaded. Please upload an image or provide a URL so I can help generate the alternate text.]; [image: Mathematical expression showing the symbol for density, \( \rho \), raised to the power of \( i \) with subscripts \( l \), \( u \), and \( r \).] represents the difference between the pseudo-range measurements of receiver [image: Please upload the image or provide the URL so I can generate the appropriate alt text for you.] to satellite [image: It seems like there was an issue with uploading the image. Please try uploading it again or provide a URL. If there is any context or description you would like to add, feel free to include that as well.] and receiver [image: Please upload the image or provide a URL so I can generate the alternate text for you.] to satellite [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a URL if it's hosted online. You can also add a caption if context is needed.]; [image: Greek letter delta followed by "t" with the subscript "tur".] represents the difference in clock biases between receiver [image: Please upload the image so I can assist you in generating the appropriate alt text.] and receiver [image: Please upload the image or provide a URL for me to generate the alternate text.]; [image: The image shows a mathematical expression with a subscript and superscript. The main symbol is an uppercase italicized "I" with a subscript "u" and "r" and a superscript "i".] represents the difference in ionospheric errors between receiver [image: Please upload the image you'd like me to generate alternate text for.] and receiver [image: Please upload the image or provide a URL so I can generate the alternate text for you.] receiving signals from satellite [image: It seems there was an issue with uploading the image. Please try again, ensuring the file is correctly attached or provide a link to the image.]; [image: Mathematical expression showing the variable \( T_{ur} \) with a tilde accent over the letter T.] represents the difference in tropospheric errors between receiver [image: Please upload the image or provide a URL so I can generate the alt text for you.] and receiver [image: Please upload the image or provide a URL to the image you want me to describe.] receiving signals from satellite [image: It looks like there was an error or a placeholder instead of an actual image. Please upload the image again or provide a URL where it can be accessed.]; [image: Mathematical notation showing "N subscript tur" with a superscript i.] represents the difference in integer ambiguities between receiver [image: Please upload the image or provide a URL for me to generate the alt text.] and receiver [image: Please upload the image or provide a URL so I can generate the alt text for you.] relative to satellite [image: Please upload the image or provide a URL so I can generate the alternate text for you.], and [image: Mathematical expression showing the letter "i" as a superscript above the Greek letter "epsilon" with the subscript "itr".] represents the difference in observation noise between receiver [image: Please upload the image or provide a URL so I can generate the alternate text for you.] and receiver [image: Please upload the image for which you need alternate text, and I'll be happy to help describe it for you.] relative to satellite [image: Please upload the image or provide a URL so I can generate the alternate text for you.]; [image: Mathematical expression with phi subscript u n, and superscripts i j.], [image: Mathematical notation showing the symbol ρ with superscript i, j and subscript u, r.], [image: Mathematical notation showing an uppercase "R" with subscript "uvr" and superscript "ij".], [image: Mathematical expression showing uppercase T with subscripts "tur" and superscripts "ij".], [image: Mathematical notation displaying "N" with subscript "i j" and superscript "u r".], [image: Mathematical expression featuring epsilon with subscript "ij" and superscript "ur".] represent the differences in single-differences of the corresponding observations from receiver [image: It seems there's no image attached. Please try uploading the image again, and I'll help generate the alternate text for it.] and receiver [image: Please upload the image or provide a URL so I can generate the appropriate alt text for it.] relative to satellite [image: It seems there was an issue with the image upload. Please try uploading the image again or ensure the URL is correct. Optionally, you can add a caption for additional context.] and satellite [image: Please upload the image or provide a URL so that I can generate the alt text for you.]; [image: Mathematical expression showing Delta phi with superscripts i and j, and subscripts u, r, n.], [image: Mathematical expression featuring delta symbol, D, indicating change, followed by Greek letter rho, ρ, with superscripts i and j. Subscripts u, r, n.], [image: Mathematical expression displaying the symbol delta followed by uppercase R with superscripts i and j and subscripts u r comma n.], [image: Delta T superscript i j subscript u r comma n.], [image: Mathematical expression showing Delta epsilon with superscripts i and j, and subscripts u, r, and n.] represent the differences in double-differences of the corresponding observations from receiver [image: Please upload the image or provide a URL for me to generate the alternate text.] and receiver [image: Please upload the image or provide a URL so that I can help generate the alternate text for it.] relative to satellite [image: Please upload the image or provide a URL for me to generate the alternate text.] and satellite [image: It seems there was an issue with the image upload. Please try uploading the image again or provide a description or URL so I can help generate alt text.] at the [image: Please upload the image so I can generate the alternate text for you.]-th epoch and the [image: Please upload the image or provide a URL so I can generate the alternate text for you.]-th epoch.
[image: Diagram illustrating satellite-receiver communication scenarios. (A) Single satellite communicating with two receivers. (B) Two satellites communicating with two receivers. (C) Three satellites, each connecting to two receivers, with added notations and dashed lines indicating signal paths and angles.]FIGURE 5 | Schematic diagram of three differential observations. (A) Single difference observation. (B) Double difference observation. (C) Triple difference observation.
TABLE 3 | Common differential methods.
[image: Table comparing differential observations: Single differenced, Double differenced, and Triple difference. It includes columns for Equation, Error, Ambiguity \(N^i_r\), and Observation noise. Single differenced includes error \(\delta t_r\), ambiguity marked, and noise \(\sqrt{2}\sigma_\phi\). Double differenced has ambiguity marked and noise \(2\sigma_\phi\). Triple difference has no ambiguity and noise \(2\sqrt{2}\sigma_\phi\).]From Table 3, it can be observed that SD completely eliminates satellite clock errors and approximately eliminates ionospheric and tropospheric delays when the two receivers are in close proximity. However, after single-differencing, receiver clock biases [image: The image shows a mathematical notation featuring the Greek letter delta (δ) followed by a subscript with the letters "t" and "u," which may denote a change or difference related to variables t and u.], integer ambiguities [image: Formula depicting \( N^{i}_{t} \), where \( N \) is in a large italicized font and the subscripts and superscripts are smaller.], and phase observation noise [image: Mathematical expression showing the Greek letter epsilon (ε) with a subscript "utr" and a superscript "i".] still persist, even increasing to the original [image: The mathematical expression shows a Greek letter epsilon with a superscript i and subscript u.] [image: If you upload the image or provide a URL, I can help generate the alt text for it.] times. DD further eliminates receiver clock errors and reduces ionospheric and tropospheric delays, but integer ambiguities still exist, and the phase observation noise is doubled. TD not only eliminates satellite and receiver clock errors but also the integer ambiguities, but the phase observation noise is increased to the original [image: The mathematical expression epsilon raised to the power of i over u, denoted as \(\epsilon^{i/u}\).] [image: Mathematical expression showing the number two multiplied by the square root of two.] times.
As it is shown, although each time of differencing can further reduce the clock bias and other errors, the root mean square of the measurement noise will also increase to the [image: It seems like there might be an error in the image upload. Please try uploading the image again or provide a description or context for the image you want the alt text for.] times the original, which is about 0.05 of the carrier for L1, that is, 1 cm [21]. Therefore double difference measurements are the most common observation method. Because it can both reduce certain errors and avoid excessively large measurement variance, and only needs to solve for the carrier integer ambiguity.
3.3 Analysis of influence factors of attitude determination
Based on the content of the previous two sections, attitude determination using satellite navigation involves coordinate transformations and the solution of navigation signal observations. From Equations 1, 4, it can be seen that to solve for the attitude angles, the essence is to solve for the baseline vector. Since the UAV’s receiving antennas form a short baseline, the ionospheric delay errors and tropospheric delay errors have already been differentially eliminated in the single-difference process. The observation equations shown in Table 3 are then converted to be represented by the baseline vector, as shown in Table 4.
Where [image: Please provide the image by uploading it or providing a URL. Then I can generate the appropriate alt text for it.] indicates the observation direction of the receiver [image: Please upload the image so I can help generate the alternate text for it.] to the satellite [image: Please upload the image or provide a URL so I can help generate the alternate text.]; [image: Please upload an image or provide a URL so that I can generate the alternate text for it.] indicates the observation direction of the receiver [image: Please upload the image or provide a URL, and I will help generate the alt text for it.] to the satellite [image: Please upload the image you would like me to provide alternate text for.]; [image: Mathematical notation displaying the change in the variable \( I \) with superscript \( i \) and subscript \( r,n,l \).] indicates the difference between the direction of observation of satellite [image: It looks like there was a problem uploading the image. Could you please try uploading it again? Once you do, I can help generate the alternate text.] by receiver [image: Please upload the image or provide a URL so I can generate the alternate text for you.] at [image: Please upload the image or provide a URL, and I will help generate the alt text for you.]-th epoch and the direction of observation at [image: Please upload the image or provide a URL for me to generate the alternate text.]-th epoch; and [image: Delta I subscript r, n, l superscript j.] indicates the difference between the direction of observation of satellite [image: Please upload the image or provide a URL, and I'll help generate the alternate text for it.] by receiver [image: It seems there's no image attached. Please upload the image, and I will be happy to help with the alt text.] at [image: Please upload the image you'd like me to generate alt text for.]-th epoch and the direction of observation at [image: Please upload the image or provide a URL so I can generate the alt text for you.]-th epoch.
TABLE 4 | Observation equation expressed by baseline.
[image: Table displaying differential observations and corresponding equations. The columns are titled "Differential observation" and "Equation." Single differenced equation: φᵢᵤᵣ = - Iᵢᵤʳ * xᵤʳ + cδtᵤʳ - λNᶦⱼᵤᵣ + εᵢᵤᵣ. Double differenced equation: φᶦʲᵤᵣ = - ( Iᵢᶜʲ - Iᵢᶜᵣ ) * xᵤʳ + λNᶦⱼᵤᵣ + εᶦʲᵤᵣ. Triple differenced equation: Δφᶦʲᵤᵣⁿ = - Δ( Iᵣⁿ - Iʳⁿʳ ) * xᵤʳ + Δεᶦʲᵤᵣⁿ.]In the attitude determination of RUAVs, as discussed in the previous sections, attitude solutions can be divided into observation solutions and coordinate solutions. When using carrier phase observations for solving, the choice of observation method will affect the factors influencing the baseline vector solution process differently. SD observations are affected by receiver clock biases, integer ambiguities, and observation noise; DD observations are affected by integer ambiguities and observation noise; TD observations are only affected by observation noise. Receiver clock biases can cause phase misalignment, integer ambiguities can lead to errors in the distance measurement between the receiver and the satellite, directly affecting the reliability of the baseline vector; observation noise affects the accuracy of the baseline vector.
In coordinate calculation, it can be observed that the coordinate transformation in Equation 1 requires the longitude and latitude obtained from the receiver’s positioning solution, meaning that the accuracy of positioning affects the accuracy of the baseline coordinate transformation. Additionally, in Table 4, the direction of the receiver’s observations to the satellites also affects the accuracy of the baseline vector solution. Furthermore, since it is necessary to solve the rotation matrix in Equation 4, when using Euler angles, singularity issues arise during high-dynamic complex motions of the UAV, making solutions unattainable. In such cases, quaternions must be used for representation, but this increases computational complexity. Therefore, the method of attitude representation also affects the solution of attitude angles [59].
The redundancy of baselines also affects measurement accuracy. When the number of baselines increases, the amount of observational information increases, which enhances the precision of baseline solutions. Additionally, redundancy is beneficial for adding prior constraints to the baselines, which in turn improves the success rate of ambiguity resolution, thereby affecting the precision of baseline measurements.
Since satellite navigation measurements rely on signals emitted by satellites in space, the geometric configuration of the satellite constellation also affects observation accuracy [60]; moreover, due to the inherent vulnerability of satellite navigation, when a UAV encounters navigation interference, it cannot receive navigation signals, and thus cannot measure the carrier phase, which means it cannot complete baseline solutions [61].
4 KEY TECHNOLOGIES FOR GNSS-BASED UAV ATTITUDE MEASUREMENT
Figure 6 illustrates the common solution steps for attitude determination of UAVs using the GNSS system. According to the fixed method of ambiguity, it can be divided into solution based on location domain and solution based on observation domain. When necessary, attitude determination should also be combined with an inertial navigation system.
[image: Flowchart illustrating a dual-domain approach for solving positioning systems. It starts with acquiring satellite signals, calculating coordinates, and splits into two paths: observation and positioning domains. The observation domain involves establishing phase equations and solving for integer ambiguities, leading to attitude angle determination. The positioning domain includes fixed ambiguity, IMU data fusion, and attitude solving, ending with integrated attitude determination.]FIGURE 6 | Drone attitude solution flowchart.
The positioning domain solution requires the fixing of integer ambiguities first to obtain accurate baseline vectors, and then to determine the attitude angles, which is straightforward to implement, and obtaining accurate baseline vectors is a prerequisite for obtaining high-accuracy attitude angles. The accuracy of the baseline vectors directly determines the precision of the attitude angle solution [62], while the baseline vector accuracy, in turn, depends heavily on the accuracy with the fixed ambiguity [63]. This method solves sequentially and ignores the correlation between each baseline, reducing the redundancy of the attitude solution, especially when the integer ambiguities are difficult to fix successfully, leading the affection to the determining performance. The observation domain solution solves for the integer ambiguities and the attitude angles simultaneously [64]. It is more complex to implement, although it can solve the integer ambiguities and attitude angles simultaneously, it ignores the correlation between ambiguity resolution and attitude calculation, which can also affect the reliability of the attitude [65].
Whether it is a positioning domain or observation domain solution, the key lies in the solution of integer ambiguities and the attitude calculation algorithm. The determination of integer ambiguities is essential to ensure the accuracy of the baseline vector position solution for UAVs. Given the limited number and length of baselines on RUAVs, the search space for integer ambiguities is large, leading to low search efficiency. The search space is also constrained by the length of the baselines. Therefore, how to achieve fast and effective fixing of ambiguities under the constraints of the UAV’s own conditions is one of the important issues in the attitude determination of RUAVs.
Attitude determination algorithms, after obtaining observational values, use these values to calculate the attitude angle information. The accuracy of the determined attitude angles is often affected by the inherent accuracy of the observational values and observational noise. How to improve the calculation accuracy is also a key issue in attitude determination.
Furthermore, for low-cost RUAVs, dual antennas and low-cost inertial navigation devices are commonly used to achieve the integrity of attitude determination. This not only assists in determining integer ambiguities in GNSS observation solutions but also allows the INS to continue navigation when GNSS fails. The error accumulation phenomenon in the inertial navigation system can also be periodically corrected by GNSS measurement values [66]. In integrated navigation, data fusion processing is crucial. Rotary-wing UAVs are highly dynamic, inertial navigation devices have large measurement noise, and the precision of output measurement values is low. Moreover, the update rate of satellite navigation measurement values is much lower than that of inertial navigation. How to fuse measurement values of different rates is also a key issue that needs to be addressed. A high success rate of ambiguity fixing and efficient attitude calculation are necessary conditions for obtaining real-time high-precision attitude angles [67].
4.1 Integer ambiguity resolution algorithms
The challenge of fixing integer ambiguities lies in the planning of the search space. While reducing the search space and improving search efficiency, it is essential to ensure the correctness of the ambiguity fixing. Faced with the continuous change of the UAV’s spatial position between epochs, a robust On The Fly (OTF) integer ambiguity determination algorithm is required. Based on different ambiguity search spaces, they can be categorized into observation domain-based, coordinate domain-based, and ambiguity domain-based ambiguity resolution [68], with common integer ambiguity resolution methods shown in Table 5.
TABLE 5 | Common algorithms for solving integer ambiguity.
[image: A table with three columns titled: Classification, Typical algorithm, and Features. Under Classification: "Based on observation domain" includes Combinatorial Solution for Broad-Narrow Lane Configuration and Three-carrier Ambiguity Resolution (TCAR) with features of stability, resolution, and real-time performance improvement. "Based on positioning domain" lists Ambiguity function method (AFM), focusing on cycle slip insensitivity and search time. "Based on the fuzzy domain" includes Least-squares ambiguity decorrelation adjustment (LAMBDA), highlighting strong applicability and short time series determination.]Table 5 shows that among the three types of integer ambiguity resolution, the observation domain-based method is the simplest to implement. It relies on the linear combination of carrier frequencies of different wavelengths to obtain a shorter wavelength, thereby reducing the ambiguity fixing error. The TCAR method, based on wide and narrow lanes, uses pseudo-range to assist in ambiguity determination. Since there is no ambiguity search problem, the calculation speed is fast. However, in a dynamic environment, the measurement accuracy decreases due to the influence of receiver performance and observation conditions [69]. Auxiliary information can be used to improve the calculation accuracy in a high-dynamic environment, such as the geometry-free and ionospheric-free TCAR (GIF-TCAR) [70] and the TCAR method assisted by INS (iTCAR) [71].
The positioning domain-based solution method first obtains the initial coordinate position, constructs an ambiguity function around the initial coordinate position, and traverses the global space to get the optimal estimate of the ambiguity function. In response to the long search time and multi-peak problem of AFM, there are also different solutions. For example, Han [73] uses multi-frequency combinations to determine the search step in AFM, reducing the search time; Zhao [74] uses multi-baseline constraints to solve the multi-peak problem of AFM; Wang [75] proposes the AFM under the initial pitch angle constraint (Pitch-constrained Ambiguity Function Method, PCAFM), which can reduce the search range but is very sensitive to the search step size. Since it takes the positioning coordinates as the search basis, the accuracy of the final fixed integer ambiguity is largely limited by the initial positioning accuracy.
The ambiguity domain-based solution is a more commonly used method in practice. The LAMBDA method proposed by Professor Teunissen [76] is the most widely used and effective method in engineering practice. It can solve the integer ambiguity in observation methods such as single-frequency, dual-frequency, non-differential, and single-dual differences. By continuously observing over a short period, the ambiguity can be fixed [77, 78]. The core of the algorithm is based on the Integer Least-Squares principle (ILS) shown in Equation 6 [79]. The integer solution of the ambiguity is the integer least-squares solution of Equation 7. By using the Z-transform in Equation 8, the search space is decorrelated, and finally, a sequential search method is used to obtain the integer solution, and then the inverse transformation is used to obtain the expected solution [72].
[image: Minimize the expression \(\|y - Aa - Bb\|^2_{Q_i}\) where \(a\) belongs to the integers \(\mathbb{Z}^l\) and \(b\) belongs to the real numbers \(\mathbb{R}^3\).]
[image: Mathematical expression showing minimization of the quadratic form: minimize over set \( \mathcal{C} \) of \((a - \hat{a})^T Q_1 (a - \hat{a})\).]
[image: Mathematical equation displaying multiple variables and expressions. It includes variables \( z \), \( \hat{z} \), \( Q_z \), matrices \( Z \) and other elements, with constraints and definitions involving transposes and products of matrices.]
Where [image: Please upload the image for which you need the alternate text.] represents the phase observations; [image: Please upload the image or provide a URL so I can generate the alternate text for it.] denotes the float solution of the ambiguities, [image: It seems there was a mistake in your request. Please upload the image or provide a URL so I can generate the alt text for you.] denote the baseline vector; [image: Mathematical expression showing the square of the norm with subscript Qy equals an unspecified term transposed, multiplied by Q sub y inverse, times the unspecified term.]; [image: It seems like there's an issue with the image upload. Please try uploading the image again or provide a URL to the image, and I will help generate the alternate text for you.] is the covariance matrix of the carrier phase observations; [image: The mathematical notation "Z^n" represents the set of n-tuples of integers, often used in algebra and linear algebra to denote n-dimensional integer lattices or spaces.] represents the n-dimensional integer space; [image: The image contains a mathematical notation representing the real number space \(\mathbb{R}^n\), indicating an n-dimensional Euclidean space.] denotes the n-dimensional real number space; [image: It seems there is an issue with the image upload. Please try uploading the image again, and I will be happy to help generate the alternate text for it.] is the expected integer solution to be obtained; [image: An equation displaying \( Q_{\overline{a}} \).] is the covariance matrix of [image: It seems like there might have been an error in uploading the image. Please try uploading the image again or provide a URL. You can also add a caption for additional context if needed.]; [image: Mathematical expression showing \( \mathbb{Z}^{n \times n} \), indicating an n by n integer matrix, where \( \mathbb{Z} \) represents the set of all integers.] is the transformation matrix for the n-dimensional space; [image: No image was provided. Please upload the image or provide a URL, and I will generate the alt text for you.] and [image: It seems there was an issue with uploading the image. Please try again to upload the image, and I will help generate the alternate text for it.] are the transformed integer solution and float solution obtained from the search, respectively.
The traditional LAMBDA algorithm has high computational complexity and wastes a lot of time during the variance reordering process. The generated search space is inappropriate, leading to low search efficiency, and it cannot utilize the known prior conditions of the baseline to reduce the search space. To address the shortcomings of the traditional LAMBDA algorithm, many scholars have proposed improvements in the decorrelation processing of the covariance matrix, the determination of the integer solution search space, and the search method for the integer solution in the general LAMBDA algorithm. This has led to the evolution of various improved LAMBDA algorithms, continuously enhancing the search efficiency and fixing success rate of the integer ambiguities, as shown in Table 6.
TABLE 6 | Least-squares ambiguity decorrelation adjustment.
[image: Table displaying two algorithms. Modified-LAMBDA introduces symmetric permutation and a greedy search strategy for covariance decomposition, improving computational efficiency without affecting ambiguity resolution. Constrained-LAMBDA adjusts the search space using constraint conditions to enhance fuzzy search success rate or efficiency.]In Table 6, introducing constraint conditions is the main direction for the improvement of the LAMBDA method. Especially when the floating-point solution and the covariance matrix are not accurate enough, constraint conditions can improve the search efficiency and the success rate of fixing [81]. Common constraint methods include baseline constraints [82], triangular constraints [83], affine constraints [84], and so on. Teunissen used the LAMBDA method with constraint conditions to calculate the integer ambiguities and verified the advantages of the algorithm in terms of calculation stability and success rate through on-board dynamic experiments [85]. Shao [86] combines the M-LAMBDA algorithm with the C-LAMBDA algorithm, improving the success rate while reducing computational complexity and ensuring computational efficiency.
In response to the challenge of ambiguity fixing in low satellite visibility environments, there has been considerable research. Chen [87] adopts a spherical constraint on the ambiguity space to improve the success rate of integer ambiguity fixing, while also employing a joint search strategy in both the coordinate domain and ambiguity domain to achieve attitude determination under low satellite visibility. Giorgi [88] proposes an attitude solution method based on multivariate constraints in the observation domain (multivariate-constrained LAMBDA, MC-LAMBDA), which is not limited by the number of antennas, GNSS system combination methods, or kinematic prior information, and can solve for integer ambiguities and attitude angles simultaneously, significantly improving the success rate of ambiguity fixing. However, due to the consideration of multiple constraint conditions, the computational complexity increases. Liu [89] and Douik [90] improve MC-LAMBDA by using Riemannian optimization to solve nonlinear least squares constraints, reducing computational complexity while ensuring the reliability of ambiguities and the accuracy of attitude.
4.2 Attitude determination algorithms
The attitude determination algorithms are another significant factor affecting the accuracy of attitude angles. The challenge in calculation lies in achieving a solution with low time complexity while ensuring the accuracy of the solution. Additionally, for scenarios with multiple baselines, how to utilize redundant information to enhance the calculation accuracy is also a hot topic commonly researched by scholars.
Table 7 presents several common attitude determination algorithms. The TRIAD algorithm directly solves for the attitude angles based on the observation matrix without the need for iterative optimization, making it simple to implement with low computational complexity. However, it is limited by the baseline layout, cannot utilize redundant information, and thus has lower solution accuracy.
TABLE 7 | Common pose solving methods.
[image: Table listing three attitude determination methods: Direct method uses the Triple vector attitude determination (TRIAD) algorithm, is simple and fast but has low accuracy. Least square method utilizes attitude matrix and least squares method, offering good accuracy and precision. Optimal estimation method employs quaternion estimation and rotation matrix, with good accuracy but high time cost.]The least squares method solves for the attitude angles or attitude matrix using the classical principle of least squares. It is computationally efficient and can accurately approximate actual data. The least squares method can significantly improve the accuracy of the heading angle, but its improvement on the pitch and roll angles is not significant [94]. Liu [95] uses antenna arrays and the integer property of ambiguities to constrain the least squares solution, allowing for direct calculation of attitude angles, especially in challenging environments with single-system, single-frequency, and single-epoch conditions, further enhancing computational efficiency. Due to the constant state vector, the least squares method is suitable for static or low-dynamic attitude determination but performs poorly in high-dynamic conditions typical of UAVs.
The optimal estimation method transforms the attitude angle solution into a Wahba problem [96], taking into account the noise and uncertainty of the observational data, and adopts an iterative strategy to find the optimal solution or a non-iterative method to find a suboptimal solution. It establishes a cost function based on a large amount of observational data to achieve the estimation of attitude elements. Among them, the quaternion estimation (QUEST) algorithm, proposed by Shuster, uses quaternions to transform the process of solving the rotation matrix into the process of minimizing the cost function. This algorithm does not require initial values and is flexible in processing, but can only estimate the optimal value based on the current state. To address the limitations of the QUEST method, Bar-Itzha [97] proposed the REQUST algorithm, which uses historical state information for recursive solution, further improving the accuracy and robustness of the estimated values.
4.3 GNSS/INS integrated attitude determination
Utilizing GNSS for attitude determination can yield high-precision, cost-effective measurement outcomes. However, in complex environments where signals may be obstructed or interfered with, relying solely on the GNSS system for attitude determination becomes challenging. RUAVs, which are limited by the number of equipped antennas, use a two-antenna single-baseline setup allows for the measurement of only two attitude angles: the heading and pitch angles. Therefore, to ensure the integrity of the attitude determination system under various conditions and to obtain complete attitude information, multi-sensor fusion for attitude determination is an effective approach to achieving cost-effective and high-precision measurement [98].
As depicted in Figure 7, the combination of satellite navigation and inertial navigation for attitude determination leverages the inertial navigation system to assist the GNSS system, providing backup navigation for a short period during GNSS signal interruptions [99]. The Inertial Measurement Unit (IMU), which includes accelerometers and gyroscopes, provides raw measurement data [100]. The measurement values or states output by the GNSS component and the INS component are fused to varying degrees through a composite filter to jointly obtain the vehicle’s attitude information. The IMU can detect the drone’s attitude and balance status in real-time during flight and feedback to the control center, making up for the low rate of GNSS output measurement [101].
[image: Flowchart of an integrated navigation system. It includes three sections: Satellite navigation, Inertial navigation, and Data fusion. The Satellite section handles GNSS signal reception and processing. The Inertial section deals with IMU state value acquisition and processing. The Data fusion section incorporates GNSS and INS values into an integrated filtering system, providing an optimized navigation output. Arrows indicate the flow of data and error correction between sections.]FIGURE 7 | GPS/INS integrated navigation structure.
Integrated navigation is generally divided into three categories based on the degree of data fusion: loose integration, tight integration, and ultra-tight integration [102]. Loose integration fuses the output results of the GNSS system (position, velocity, attitude angles) with the output of the INS system, where the two systems work independently, making it simple to implement with good redundancy [103]. Tight integration fuses the GNSS observations such as pseudo-range and carrier phase with the state values of the INS system’s gyroscopes and accelerometers, achieving better measurement accuracy under low signal-to-noise ratios [104]. Ultra-tight integration deeply integrates the GNSS receiver with the components of the INS system, starting the fusion from the satellite tracking loop [105], using the INS system information to adjust the GNSS tracking loop bandwidth, and improving the signal-to-noise ratio, which has superior calculation accuracy and robustness under interference conditions. The high cost of implementing ultra-tight integration does not meet the low-cost requirements of UAVs, so UAVs often adopt loose or tight integration of gyroscopes, accelerometers with the GNSS system.
The key to combination navigation is the data fusion model and the filtering update algorithm, which combines and smooths the output values of the two systems to reduce measurement errors. Common filtering fusion algorithms are shown in Table 8.
TABLE 8 | Typical filtering algorithm.
[image: Table comparing types of filters: Kalman (KF), Extended Kalman (EKF), Unscented Kalman (UKF), Particle (PF), and Complementary (CF). Each type's principles, advantages, and shortcomings are listed. KF predicts using existing observations; advantages include real-time state estimation, but is limited to linear models. EKF handles nonlinear systems with simple implementation, but is sensitive to initial errors. UKF captures nonlinear statistics but has high complexity and noise sensitivity. PF uses weighted samples for non-Gaussian problems, facing particle degradation. CF averages sensor data, balancing noise and drift, but requires rational weight factors.]As shown in Table 8, the KF is an optimal regression data processing method that reasonably and has been applied in various fields such as multi-system data processing and fusion, space orbit prediction, and wireless positioning [106, 107]. However, the Kalman filter is only suitable for linear systems. To apply it to the baseline solution of GNSS nonlinear observation equations, the Kalman filter needs to be improved, resulting in the Extended Kalman Filter (EKF) [108], Unscented Kalman Filtering (UKF) [109], Particle Filter (PF) [110], Complementary Kalman Filter (CKF) [111], and so on. The Extended Kalman Filter (EKF) is the simplest to implement, but its accuracy depends on the initial error and the degree of approximation to the true model [112]. The Unscented Kalman Filter (UKF) uses a set of sigma points to approximate the true model, while the Particle Filter (PF) weights these sampling points to further enhance accuracy and eliminate the impact of multipath errors in the signal [110]. However, the Particle Filter suffers from the problem of particle degradation, and it is common to combine the Particle Filter with other types of nonlinear Kalman filters to improve particle distribution [112–114]. Complementary filtering can leverage the short-term accuracy of the gyroscope and the long-term stability of the accelerometer to achieve accurate attitude estimation.
The filtering algorithm in integrated navigation can effectively reduce the data error of attitude measurement between different sensors, reduce the impact of measurement noise on the final measured value, and use different sensor data to complement each other to improve the accuracy and reliability of attitude angle. Jwo [25] uses EKF for filtering the attitude estimation represented by quaternions, which can eliminate the noise of the quaternion itself and improve the attitude accuracy. The baseline can also be used to assist the Kalman filter using high-precision baseline prior length information to constrain the Kalman filter iteration process, thereby improving accuracy and robustness [115],. Dong [116] uses sequential adaptive Unscented Kalman filtering, estimating the measurement noise covariance matrix of the heading angle change in real-time, mitigating the problem of drastic noise changes in integrated attitude determination caused by object movement, and providing a stable and accurate heading angle.
In the loose or tight integration navigation of RUAV, different filtering algorithms are used to achieve different degrees of data fusion to obtain reliable and accurate attitude angle For loose integration, Ding [117] constructs an Error State Kalman (ESKF) filter, fusing inertial navigation sensors and GNSS data, continuously integrating the gyroscopic measured angular rate to propagate attitude, and compensating for cumulative errors through measurement updates, achieving combined attitude determination of MEMS systems and low-cost GNSS receivers. For tight integration, Wang [101] combines dual-antenna GNSS and MEMS, verifying that the inertial navigation device can stably measure the heading angle under brief GNSS signal loss. Yan [118] uses dual-rate filtering based on EKF, fusing high-rate high-noise observations and low-rate low-noise observations into an optimal estimation system, achieving real-time attitude determination in complex noise environments.
In addition to filtering out noise through combination, combined navigation attitude determination also helps to fix the integer ambiguity. Xiao [119] proposes a three-frequency differential GNSS/INS tight integration, using three-frequency solutions to improve the speed of measurement values and integer ambiguity fixing, and using tight integration to weaken the impact of TCAR algorithm instability on the results. Gao [120] proposes a new tight integration GNSS/MEMS model, using a single filter to achieve optimal estimation of attitude drift, gyro zero bias, and ambiguity, effectively improving the ambiguity fixing rate and reducing attitude error compared to a single GNSS system.
The integration of satellite navigation and inertial navigation can combine the advantages of the two systems to achieve complementary performance. The high-precision measurement values provided by the satellite navigation system help to reduce the cumulative error of the inertial navigation system, while the inertial navigation system does not require external signal input and can act as a backup navigation in the event of GNSS signal occlusion or interference, taking over the navigation task for a short period [121, 122].
5 CHALLENGES
5.1 Real-time attitude determination under high dynamics
Currently, the use of GNSS for attitude determination is often aimed at the attitude determination of vehicle platforms, where the main change in the vehicle’s attitude angles is in the heading angle, and the change is relatively slow. In contrast, rotary-wing UAVs have high dynamics, and during complex motion processes, multiple attitude angles change within a short period of time. Existing research is better for the attitude determination of vehicles or low-dynamic aircraft, but there is less research on the high dynamics of rotary-wing UAVs. However, the attitude determination of UAVs under high dynamics is crucial, as only by accurately grasping the real-time motion state of the UAV can the safe execution of tasks be ensured.
The high-dynamic flight of UAVs will lead to rapid changes in the baseline vectors formed by the receiving machinery, posing certain difficulties for baseline calculation. Since the premise of accurate baseline calculation is the determination of integer ambiguities, most existing ambiguity determination methods rely on searching in the ambiguity domain. Under high dynamics, the ambiguity space range is large, so how to constrain the ambiguity space, reduce the size of the search space, and thereby improve the fixing rate is a challenge [123]. The relatively effective MC-LAMBDA method, described in Section 4.1, can effectively reduce the search space by relying on multiple variables for constraints, but due to the consideration of multiple constraint conditions at the same time, it leads to increased algorithm complexity and to some extent, reduced search efficiency. Therefore, how to consider the accuracy of baseline calculation under high dynamics, especially the rapid determination of integer ambiguities under high dynamics, is a current major challenge.
High-precision attitude determination under high dynamics requires not only the method of solution but also the reliability of the solution results. Since the fixing of integer ambiguities is a key link affecting attitude determination, existing inspection methods mainly inspect the accuracy and stability of ambiguity fixing, thereby reflecting the reliability of attitude determination. Commonly used methods are based on positioning domain judgment, and under the premise of baseline constraints, the selected judgment threshold is largely related to the length of the baseline [124, 125]. For the attitude determination of RUAVs with short baselines, the requirements for the judgment threshold may be more stringent. Therefore, whether a method for attitude determination integrity inspection suitable for UAVs with short baseline systems can be developed, which can make judgments on attitude determination integrity without the need for prior conditions of baseline length, or relying on a small amount of baseline redundancy information, is a challenge.
5.2 Effective response to navigation interferences
Using GNSS signals for UAV attitude determination often faces the issue of navigation interference, where jamming and spoofing are the most common types of satellite navigation interference. The integrity of navigation services determines whether the UAV can work properly [126]. Especially for UAVs that require high-precision positioning and attitude determination equipment, once they encounter navigation interference, as depicted in Section 3.3, they will obtain incorrect position and attitude information, lose control of the UAV’s motion state, and thus affect its operational effectiveness.
Jamming interference is low-cost, reliable, easy to implement, has a wide coverage range, and is widely used in various scenarios. A 1W jamming interference source can interfere with the maximum distance of about 16.96 km under ideal conditions [42]. Although the probability of successful implementation of jamming interference has been reduced with the application of frequency domain filtering technology, anti-jamming antenna technology, pseudo-satellite technology, and integrated navigation, etc., for small aircraft such as rotary-wing UAVs, it is still difficult to effectively resist jamming interference without external assistance. Although small inertial navigation devices can be equipped to take over the satellite navigation equipment and continue navigation in the face of interference, due to the serious accumulation of errors and low accuracy of small inertial navigation devices, the overall system navigation error increases without the error correction of the satellite navigation system, which still reduces the operational effectiveness of the UAV.
Compared to jamming interference, spoofing interference is characterized by its strong concealment, high threat, and low cost, and can deceive the UAV into flying along a specified trajectory [127]. With a low-cost spoofing device, a certain spoofing effect can be achieved [128, 129]. Generally, when the deceptive signal power is 3dB higher than the real signal power, the jammer can be deceived. The interferer fuses and calculates high-precision spoofing signals based on the UAV’s position, speed, and other status information, making the spoofing signals highly similar to the real signals, thereby completing covert deception [130]. Especially for UAVs using public service navigation signals, due to the openness of the signal system and the use of less encryption and authentication, they are more susceptible to spoofing [131]. From random position spoofing [132], fixed-point position spoofing [133], delayed message spoofing [134], to state estimation value spoofing [135], different types of spoofing interference can severely affect the normal flight of UAVs. The implementation approaches also vary, such as adding interference to the receiver’s phase-locked loop [136], and gradually guiding with trajectories of different Doppler shifts and delays [137], etc.
Addressing the diverse and complex satellite navigation interference methods of today, designing anti-satellite navigation interference systems suitable for rotary-wing UAVs is an urgent problem that needs to be solved. When facing jamming interference, the challenge is to ensure the normal operation of the UAV navigation receiver and to mitigate the effects of jamming signals. When facing spoofing interference, the system should be able to autonomously and effectively detect spoofing according to the abnormal receiving phenomena without adding extra weight or hardware requirements to the UAV. Compared with the mature deception detection without too many hardware requirements, the existing UAV is more difficult to suppress the suppression interference. Improving the survival rate of UAV under suppression jamming is the key problem to be solved. Existing anti-jamming methods often employ array antennas, but these can introduce significant phase pattern changes that affect the quality of observations [138]. Moreover, array antennas can only counteract interference from a limited number of directions, and their anti-jamming performance is limited in complex environments with multi-directional interference. At the same time, the use of array antenna will increase the hardware overhead and load. Therefore, achieving low-cost navigation anti-jamming in complex environments while ensuring the UAV’s positioning and attitude determination is a significant challenge for rotary-wing UAVs.
5.3 Intelligent response to Multi-GNSS system integration
The current GNSS systems have been developed and refined, with each navigation system capable of independently performing positioning, navigation, and timing tasks. Utilizing multi-system GNSS can significantly increase the number of observable satellites, improve the geometric configuration of the satellite constellation, as depicted in Section 3.3, reduce reception costs, and obtain higher quality observational data, thereby enhancing measurement accuracy. Especially in challenging environments where satellite access is limited, when one system fails or is unavailable, another system can provide operational redundancy [139].
Due to the low cost of current navigation equipment, multiple satellite navigation systems can be implemented on small-sized devices. As shown in Figure 8, the HX-CH3602A and HX-CH6601A from Beidou Xingtong are two receiver antennas specifically designed for small UAVs. They can respectively achieve triple-system tri-frequency reception for GPS L1, BDS B1, and GLONASS L1, and triple-system six-frequency reception for GPS L1/L2, GLONASS L1/L2, and BDS B1/B2.
[image: Two cylindrical objects are shown. Image (a) displays one standing upright, while image (b) shows another tilted, revealing an opening with an orange interior. Both objects are black.]FIGURE 8 | Beidou Satellite Communication System’s receiving antennas specially used for small unmanned aerial vehicle. (A) HX-CH3602A. (B) HX-CH5601A.
The current attitude determination using multi-system GNSS is mainly focused on the combination of different systems on a single frequency. Teunissen [139] conducted simulation studies on the attitude determination of Galileo and GPS single-frequency combined data, obtaining relatively stable expected results, which verified the ability to use backup satellite data for instantaneous attitude determination in a disturbed environment. Zamanpardaz [140, 141] compared and analyzed the Indian Regional Navigation Satellite System (IRNSS) and GPS Block IIF on the L5 frequency point. When the two systems were combined for attitude determination, the ambiguity dilution of precision (ADOP) was significantly improved, and both the integer ambiguity fixing success rate and attitude accuracy were significantly enhanced [142]. Zhao [143] confirmed the improvement in attitude determination performance when GPS/BDS/GALILEO were used in a tight combination, with the percentages of pitch error, yaw error, and roll error within 2° in a complex environment increasing by 6.1%, 8.07%, and 13.43%, respectively, and the ambiguity fixing rate increased by 14.78%. Shu [144] conducted attitude determination with the combination of GPS, BDS, Galileo, and GLONASS, confirming that the combined attitude determination can significantly improve attitude accuracy on a moving vehicle platform. Yang [145] propose GPS/BDS dual-antenna attitude determination model which obviously improve the fixing rates, such as 16.0% improved in the static experiment and 23.6% in dynamic experiment. Although the aforementioned research can enhance the attitude measurement performance by utilizing GNSS signals at the same frequency point, they did not focus on attitude determination using different frequency point signal combinations under multi-GNSS systems.
In addition, common jamming and spoofing interferences are usually targeted at a specific system within the GNSS, making it difficult to interfere with the entire GNSS system simultaneously. By leveraging the mutual backup among navigation systems, it is possible to continue navigation using another system when faced with interference targeting a particular satellite navigation system. Therefore, under the current conditions where GNSS systems are increasingly refined, how to better utilize multiple GNSS systems to complete integrated attitude determination, mutual integration, and backup to enhance attitude determination accuracy in complex environments and resist navigation interference is a challenge.
Several factors need to be considered, such as the performance comparison of different navigation systems in UAV positioning and attitude determination applications; the basis for selecting signal combinations from different navigation system frequency points; the selection of integer ambiguity fixing methods and attitude determination algorithms under multi-system GNSS integrated attitude determination; the ability of different navigation systems to counteract jamming and spoofing interference; ensuring the continuity and accuracy of positioning and attitude determination results during system switching, etc. Moreover, when performing integrated attitude determination with multiple GNSS systems, the issue of inter-system bias (ISB) between systems also needs to be addressed [139, 146].
6 CONCLUSION
The article primarily discusses the current state and challenges of attitude determination for rotary-wing UAVs based on the GNSS. Attitude information is a necessary condition for the safe flight of UAVs. The article focuses on three main aspects of UAV attitude determination: integer ambiguity resolution, attitude calculation, and integrated navigation. The determination of integer ambiguities is a key factor affecting the accuracy of UAV carrier phase differential measurements. Only by obtaining accurate and reliable ambiguities can the precise baseline be calculated, which in turn determines the attitude angles. While integer ambiguity resolution has been proven to be reliable and accurate when searching within the ambiguity domain constrained by baselines, further constraints are needed for the high-dynamic mobile carrier. The attitude calculation method requires further improvement in computational complexity to meet the real-time attitude acquisition requirements of UAVs. Integrated navigation is the current development trend for achieving low-cost attitude measurement, and the integration of data from integrated navigation is an important direction for research. Filtering different navigation systems’ data to reduce the impact of observation noise on attitude calculation and enhance the performance of integrated navigation is essential.
At the same time, due to the vulnerability of satellite navigation, using GNSS for attitude measurement is susceptible to common navigation interferences. Once interference occurs, UAVs may lose directional control, posing a significant safety risk. Therefore, further research is needed to enhance the anti-interference capabilities of rotary-wing UAV navigation. Given that current GNSS systems have matured and various satellite navigation systems can be used for attitude measurement, integrating multiple systems could be a potential approach to improving anti-interference capabilities. This not only enhances the accuracy of UAV attitude measurement but also improves the UAV’s ability to continue navigation when encountering interference.
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The Gaussian sum cubature Kalman filter (GSCKF) based on Gaussian mixture model (GMM) is a critical nonlinear non-Gaussian filter for data fusion of global navigation satellite system/strapdown inertial navigation systems (GNSS/SINS) tightly coupled integrated navigation system. However, the stochastic model of non-Gaussian noise in practical operating environments is not static, but rather time-varying. So if the GMM of GSCKF cannot be adjusted adaptively, it will lead to a decrease in estimation accuracy. To address this issue, we propose a novel adaptive GSCKF (AGSCKF) based on the dynamic adjustment of GMM. By analyzing the impact of GMM displacement parameter on the fitting accuracy of non-Gaussian noise, a novel algorithm for GMM displacement parameter adaptive adjustment is proposed using a cost function. Then this novel algorithm is applied to overcome the limitations of GSCKF under time-varying non-Gaussian noise environment, thereby improving the filtering performance. The simulation and experimental results indicate that the proposed AGSCKF exhibits significant advantage in changeable environments affected by time-varying non-Gaussian noise, which is applied to GNSS/SINS tightly coupled integrated navigation system data fusion can improve estimation accuracy and adaptability without sacrificing significant computational complexity.
Keywords: GNSS/SINS tightly coupled integrated navigation system, adaptive filter (ADF), cubature Kalman filter (CKF), Gaussian mixture model (GMM), non-Gaussian noise, time-varying noise

1 INTRODUCTION
The global navigation satellite system and strapdown inertial navigation system (GNSS/SINS) tightly coupled integrated navigation system data fusion is one of the key technologies in many fields, including unmanned aerial vehicles (UAVs), which enables precise navigation, guidance, and control capabilities (Grewal et al., 2020; Gyagenda et al., 2022; Boguspayev et al., 2023). The mathematical model for GNSS/SINS tightly coupled integrated navigation system data fusion is inherently nonlinear, and despite advances in navigation technology, its nonlinear characteristics cannot be eliminated. Therefore, the nonlinear filter remains a crucial technique in the field of GNSS/SINS tightly coupled integrated navigation system data fusion for UAVs (Groves, 2008; Li and Chen, 2022; Xiao et al., 2024).
1.1 Nonlinear filter
Extended Kalman filter (EKF) is a widely used nonlinear filter for GNSS/SINS tightly coupled integrated navigation systems data fusion, but its engineering application is limited by linearization errors and complex updating processes of Jacobian matrix (Wang et al., 2018). Thus, Unscented Kalman filter (UKF) is proposed to approximate the state estimation and its covariance through a set of sampling points by unscented transforms (UT). Compared to EKF, UKF does not require updating Jacobian matrix, and its accuracy can reach second-order Taylor series expansion or even higher. However, the parameters of UKF do not have deterministic values, and the computation increases dramatically with the increase of the dimension of state estimation (Rhudy et al., 2011; Hu et al., 2020). Quadrature Kalman filter (QKF) using Gaussian Hermitian quadrature rule can achieve high estimation accuracy. But as the number of state parameters increases, the required quadrature points will exponentially increase, resulting in that the computational complexity of QKF is higher than that of EKF and UKF (Monfort et al., 2015). To address the dimensionality curse in QKF, researchers have devised cubature Kalman Filter (CKF). Within the CKF framework, the utilization of the third-order spherical cubature rule not only possesses a more rigorous mathematical foundation compared to the UT employed in UKF, but also demonstrates a reduction in computational resources and an increase in computational efficiency during state estimation under comparable conditions, as compared to both UKF and QKF. Additionally, by integrating a square-root filtering approach, CKF exhibits superior numerical stability when confronted with nonlinear challenges, in contrast to the UKF. Currently, CKF has been widely used in fields such as navigation positioning, target tracking, and guidance and control system due to its advantages of superior estimation accuracy, remarkable numerical stability, and minimal computational requirements (Arasaratnam and Haykin, 2009; Sindhuja et al., 2023). And yet CKF assumes that the random model in the filter is white Gaussian noise. In practical application, it is common for the random model to deviate from the assumption of white Gaussian noise, which inevitably affects the accuracy of filtering estimation (Sun et al., 2022; Tang et al., 2023; Wang et al., 2023). Therefore, mitigating the impact of non-Gaussian noise on the estimation accuracy of CKF has been a prominent research topic in the field of GNSS/SINS tightly coupled integrated navigation data fusion.
1.2 Mproved cubature Kalman filter
In recent years, various optimized algorithms for CKF have been proposed to address the issue of non-Gaussian noise in states estimation. A strong tracking CKF with multiple sub-optimal fading factor is introduced to tackle the discrepancy between theoretical and practical models of measurement noise in GNSS/SINS tightly coupled integrated navigation systems, which significantly enhances the accuracy of navigation estimation (Huang et al., 2016). Furthermore, a robust CKF based on M-estimation is presented, which can reduce the impact of non-Gaussian measurement noise interference. This filter redefines the innovation sequence using the M-estimate of Huber’s equivalent weight function, enhancing the robustness of the GNSS/SINS tightly coupled integrated navigation system data fusion (Wang et al., 2020). Additionally, an adaptive CKF based on Mahalanobis distance is designed to address the unknown noise statistics. By employing the Mahalanobis distance of innovations to determine the random model of filter, this filter improves the positioning accuracy of GNSS/SINS tightly coupled integrated navigation systems (Zhang et al., 2021). However, these above optimized algorithms for CKF approximate the true distribution of non-Gaussian through the Gaussian distribution approximation method with a larger variance, which may result in inaccurate estimated variance for state estimation (Legin et al., 2023; Dong et al., 2023).
Lately, the Gaussian mixture model (GMM) derived from the multimodal approximation method has emerged as a promising approach to solve non-Gaussian noise problems. Compared to the Gaussian distribution approximation method with a larger variance, the GMM offers higher accuracy in this regard (Alspach and Sorenson, 1972; George et al., 2022). By decomposing the probability density function (PDF) of non-Gaussian noise into multiple Gaussian components using GMM, Gauss-Hermite sum filter can be derived. Combining GMM with CKF yields the Gaussian sum CKF (GSCKF), which has been applied to GNSS/SINS tightly coupled integrated navigation data fusion, thereby contributing to improved navigation positioning accuracy (Bai et al., 2022). Since 2023, numerous improved algorithms for GSCKF have emerged in rapid succession, finding their applications within the domain of non-Gaussian nonlinear systems. These refined algorithms encompass: Credible GSCKF, Observability-Based GSCKF, quaternion constrained GSCKF, and so on (Ge et al., 2024; Jiang et al., 2024; Dai et al., 2024; Li et al., 2020). However, due to the non-stationary nature of practical operation environments of GNSS/SINS tightly coupled integrated navigation systems, the statistical characteristics of non-Gaussian noise also change over time (Zhou et al., 2024; Lin et al., 2023; Chen et al., 2023). Although the above research has to some extent improved the estimation accuracy of GNSS/SINS tightly coupled integrated navigation systems data fusion using GSCKF affected by non-Gaussian noises, the GMM modeling parameters in GSCKF cannot change with the statistical characteristics of non-Gaussian noise, and this limitation will lead to a decrease in estimation accuracy, which may seriously cause divergence.
1.3 Motivation and contributions
The motivation for this study stems from the intricate and dynamic nature of practical operating environments in GNSS/SINS tightly coupled integrated navigation system. These environments introduce time-varying non-Gaussian noise characteristics that exhibit stochastic behavior. Consequently, the inability of the GMM employed within GSCKF to adapt dynamically results in a degradation of estimation accuracy. Addressing the challenges posed by such time-varying non-Gaussian noise is crucial for maintaining the performance of GSCKF. Therefore, inspired by the research in reference (George et al., 2022; Dai et al., 2024; Lin et al., 2023; Panda et al., 2024a; Panda et al., 2024b), we propose a novel Adaptive GSCKF(AGSCKF), specifically designed to mitigate the adverse effects of time-varying non-Gaussian noise, thereby enhancing the performance of GNSS/SINS tightly coupled integrated navigation system.
The contributions of this work are concisely summarized as follows.
	1) A novel AGSCKF is proposed, building upon the framework of GSCKF. This filter specifically targets the statistical properties of time-varying non-Gaussian noise, mitigating the adverse effects on the estimation accuracy of GSCKF.
	2) The innovation of AGSCKF lies in its integration of a cost function-based adaptation algorithm. This algorithm dynamically optimizes the displacement parameter of GMM in real-time, ensuring precise tracking of the statistical characteristics of time-varying non-Gaussian noise.
	3) Simulation and experimental analyses have been conducted to demonstrate the superior performance of AGSCKF, particularly in enhancing the estimation accuracy and adaptability of the GNSS/SINS tightly coupled integrated navigation system in time-varying non-Gaussian noise scenarios.

Collectively, these contributions highlight the superior performance of AGSCKF compared to CKF and GSCKF in addressing data fusion for GNSS/SINS tightly coupled integrated navigation systems in challenging environments.
2 BACKGROUND AND PROBLEM FORMULATION
2.1 Mathematical models for GNSS/SINS tightly coupled integrated navigation system
The GNSS/SINS tightly coupled integrated navigation system exhibits excellent navigation accuracy and robustness against interference. Nevertheless, in the presence of high maneuvering, conventional linearized models tend to compromise the accuracy of estimation, necessitating the nonlinear mathematical model (Groves, 2008). The nonlinear mathematical model for GNSS/SINS tightly coupled integrated navigation system includes the state-space model and the measurement model.
The state estimation [image: The expression "x subscript k minus one vertical bar k minus one" is shown.] at epoch k-1 encompasses attitude, velocity, position, gyroscope drift, accelerometer drift, GNSS clock bias, and GNSS clock drift. The state-space model can be mathematically expressed by Equation 1.
[image: Equation showing \( x_{k|k-1} = f(x_{k-1|k-1}) + g_k w_k \).]
where [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is a nonlinear function, [image: It appears there was an error in your request. Please upload the image or provide a direct URL, and I will generate appropriate alt text for it.] is the noise coefficient matrix, [image: Subscript notation with the letter "w" followed by a smaller letter "k" positioned below it.] is the process noise, Assuming that [image: The image shows the mathematical notation "w" with a subscript "k".] is characterized as white Gaussian noise, it can be represented mathematically as [image: Mathematical notation displaying a random variable \( w_k \) that follows a normal distribution with a mean of zero and a covariance \( Q_k \).].
The measurement model is expressed by Equation 2.
[image: Mathematical equation showing \( z_k = h(x_{k|k-1}) + v_k \), with the equation labeled as (2).]
where [image: I'm sorry, I can't generate alt text for the image without being able to see it. Please upload the image file or provide a URL so I can assist you further.] is the measurement composed of pseud-orange and pseud-orange rate corrected by satellite clock bias, ionospheric delay, and tropospheric delay. [image: Mathematical expression depicting a function notation, "h" with an input placeholder denoted by a dot inside parentheses.] is a nonlinear function. [image: A lowercase v is followed by a subscript k. The characters are italicized, suggesting a mathematical or scientific context.] is the measurement noise caused by GNSS receiver, multipath effects, and orbit prediction residuals. Since [image: Text displaying a letter "v" in bold followed by a subscript "k" in a smaller font size.] does not conform to white Gaussian noise, it is classified as non-Gaussian noise. Its distribution can be closely approximated by two Gaussian components (Bai et al., 2022).
[image: Mathematical expression for probability \( p(v_k) \): \((1 - \epsilon)N(v_k^A; \mu_k^A, R_k^A) + \epsilon N(v_k^B; \mu_k^B, R_k^B)\), marked as equation (3).]
where [image: Mathematical expression of a multivariate normal distribution with parameters: vector \( \mathbf{v}_k^A \), mean \( \mu_k^A \), and covariance matrix \( \mathbf{R}_k^A \).] is the Gaussian component of mean [image: The image shows the mathematical notation "\(\mu_k^A\)".] and variance [image: Mathematical notation showing the letter "R" with subscript "k" and superscript "A".] at epoch [image: It seems there was an issue with uploading the image. Please try again to ensure it is visible, and I will help generate the alternate text for you.], [image: Expression showing a multivariate normal distribution with parameters: \( \mathbf{v}_k^B \) as the variable, \( \boldsymbol{\mu}_k^B \) as the mean vector, and \( \mathbf{R}_k^B \) as the covariance matrix.] denotes the Gaussian component of mean [image: Mathematical expression showing the Greek letter mu with subscript k and superscript B.] and variance [image: Mathematical expression showing the symbol "R" with superscript "B" and subscript "k".], and [image: Please upload the image so I can generate the alt text for you.] represents a factor with unmeasurable and time-varying characteristics, setting [image: Mathematical notation showing epsilon belongs to the closed interval from zero to one, indicating that the value of epsilon ranges between zero and one, inclusive.].
2.2 Cubature Kalman filter
CKF is a Gaussian filter that enables the approximation of the PDF of nonlinear functions through a set of cubature points. This approach avoids the need for linearization of the nonlinear function, thereby enhancing the accuracy and reliability of states estimation. By utilizing this method, the CKF offers significant advantages over traditional linearized filters in terms of its ability to handle non-linear systems with high dimensional states estimation. The specific implementation steps of CKF are as follows.
	Step 1: Initialization.

Set [image: Mathematical expression representing a normal distribution: \( \mathbf{x}_{0|0} \sim \mathcal{N}(\mathbf{x}_{0|0}, \mathbf{P}_{0|0}) \).], [image: Mathematical expression showing "x subscript 0 given 0 equals the expectation of x subscript 0 given 0", representing conditional expectation.] and [image: Mathematical equation: \( S_{0|0} = \text{chol}(P_{0|0}) \).], where [image: Please provide the image by uploading it or give a URL, and I'd be happy to help with the alt text!] is the expected value, [image: The image shows the mathematical notation for the Cholesky decomposition function, represented as "chol(·)".] represents the Cholesky decomposition, and [image: Mathematical equation showing \( P_{0|0} = S_{0|0} S_{0|0}^{\text{T}} \), where \( S_{0|0}^{\text{T}} \) denotes the transpose of matrix \( S_{0|0} \).].
	Step 2: Calculate the sampling points.

Let state estimation at epoch [image: The mathematical expression "k minus 1" is shown, where "k" is a variable and "1" is subtracted from it.] expressed as [image: I'm sorry, I can't assist with that.], and its covariance is computed as
[image: Mathematical equation for prediction error: \( P_{k+1|k+1}^{-1} = \epsilon S_{k+1|k}^{-1} - S_k^{-1|k+1} \).]
The third-order spherical phase diameter cubature rule is employed to generate a set of cubature points [image: A lowercase Greek letter xi (ξ) followed by the subscript letter c.]
[image: Equation showing a vector \( \xi \) equal to the square root of \( \frac{m}{2} \) times a column vector composed of sub-vectors. The sub-vectors are vertically arranged ellipses containing elements: the first with elements 1 at the top and 0 at the bottom, the second with 0 at the top and 1 at the bottom, the third with -1 at the top and 0 at the bottom, and the last with 0 at the top and -1 at the bottom. The equation is labeled as equation (5).]
In Equation 5, [image: I cannot generate alt text without an actual image to analyze. Please upload the image or provide a URL for me to assist you accurately.] denotes the total number of cubature points, [image: It seems like there might be an issue with the image upload. Please try uploading the image again, and optionally add a caption for additional context.], [image: The equation shows \( m = 2n \) in italicized mathematical notation.]. [image: Mathematical notation representing the state vector \(\mathbf{x}_{c,k-1|k-1}\), indicating the estimated value at time step \(k-1\) given information up to \(k-1\).] is the dimension of the state estimation. In other words, the total number of cubature points is twice the dimension [image: Sorry, I can't assist with identifying or generating alternate text for this image.] of the state estimation.
	Step 3: Prediction.

The estimation of cubature points [image: Mathematical expression with capital X subscript c, k-1, vertical bar k-1.] and propagation cubature points [image: Mathematical expression showing \( \mathbf{x}_{c,k-1|k-1}^{*} \).] are calculated separately.
[image: Mathematical equation showing \( X_{k+1|k} = S_{k|k-1} \cdot \xi_{k} + X_{k|k-1} \). It is labeled as equation (6).]
[image: Mathematical equation showing \( x_{k+1|k}^* = f(x_{k|k-1}) \), labeled as equation (7).]
Calculate the state prediction [image: The image shows mathematical notation featuring \( x_{k|k-1} \), which typically represents a predicted state estimate in the context of Kalman filtering, where \( x \) is the state, \( k \) is the current time step, and \( k-1 \) is the previous time step.] and its covariance [image: Mathematical notation displaying \( P_{k|k-1} \).]
[image: Equation for the average: \( x_{U,k-1} = \frac{1}{m} \sum_{i=1}^{m} x_{i,k-1}^{*} \), labeled as equation eight.]
[image: Equation for \( P_{k-1|k-1} \) involving a summation, with terms \(\frac{1}{m} \sum_{c=1}^{m} (x^*_{c,k|k-1} - \bar{x}_{c,k-1|k-1})(x^*_{c,k|k-1} - \bar{x}_{c,k-1|k-1})^T + Q_{k-1}\), representing a calculation used in estimation or filtering contexts.]
where [image: The image shows the mathematical expression "Q subscript k minus one".] is the covariance of process noise.
	Step 4: Update.

Calculate measurement prediction [image: Mathematical notation showing "z sub k given k minus one," often used in contexts like signal processing or control systems to indicate a state estimate.], its corresponding covariance [image: The image shows the mathematical notation \( P_{zz,k|k-1} \).], and cross-covariance [image: Mathematical expression showing \( P_{xz, k | k-1} \).], respectively.
[image: Mathematical equation showing \( z_{k-1} = -\frac{1}{m} \sum_{c=1}^{m} z_{c,k-1}^2 \) labeled as equation (10).]
[image: Mathematical equation displaying \( P_{z,k|k-1} = \frac{1}{m} \sum_{c=1}^{m} (\tilde{z}_{c,k|k-1} - z_{u,k-1}) (\tilde{z}_{c,k|k-1} - z_{u,k-1})^T + R_k \).]
[image: Equation showing the calculation of \( p_{x_k z_k | k-1} \), marked as equation 12. It involves a sum of \( x_{c, k|k-1}^i \) terms subtracted by their mean, multiplied by \( z_{c, k|k-1}^i \) terms subtracted by their mean transposed, over \( m \).]
where [image: Equation displaying \( \mathbf{z}^*_{c,k|k-1} = h(\mathbf{x}_{c,k|k-1}) \).], [image: Mathematical equation displaying the formula: \( \mathbf{x}_{c,k|k-1} = \mathbf{S}_{k|k-1} \chi_c + \mathbf{x}_{k|k-1} \).], [image: Mathematical equation showing \( \mathbf{P}_{k|k-1} = \mathbf{S}_{k|k-1} \mathbf{S}_{k|k-1}^{\mathbf{T}} \), relating matrices with indices denoting time steps.].
Update the filter gain [image: Mathematical notation showing \( K_k \), with "K" as a capital letter in italics, subscripted by a lowercase "k".], state estimation [image: The image shows the mathematical notation "x subscript k vertical line k".], and its covariance [image: A mathematical expression displaying the symbol "P" with a subscript "k" and a double vertical bar followed by another subscript "k".] separately.
[image: Equation showing Kalman gain, \( K_k = P_{zz,k|k-1} P_{xz,k|k-1}^{-1} \), with reference number (13).]
[image: Certainly! Please upload the image or provide a URL, and I will generate the alt text for you.]
[image: Mathematical equation displayed: \( P_{k|k} = P_{k|k-1} - K P_{z,k|k-1} K^T \). The equation is labeled as number 15.]
2.3 Gaussian sum cubature Kalman filter
CKF is a nonlinear filter that assumes the random model is white Gaussian noise. However, in practical operating environments, the measurement noise encountered in GNSS/SINS tightly coupled integrated navigation systems exhibits non-Gaussian characteristics. Consequently, it becomes imperative to combine CKF with GMM to develop states estimation of the GSCKF. The GSCKF enables CKF to effectively address the challenges posed by non-Gaussian noise, thereby enhancing the accuracy and reliability of state estimation for GNSS/SINS tightly coupled integrated navigation systems data fusion.
The distribution of measurement noise is depicted as non-Gaussian noise in Equation 3. However, due to the unmeasurable and time-varying characteristics of the factor [image: It seems there is no image uploaded. Please try uploading the image again, and I will be happy to help generate the alternate text for it.], [image: Mathematical expression representing the probability function \( P(v_k) \), where \( v_k \) is a variable or vector.] is often decomposed into two Gaussian distributions with equidistant distributions as illustrated below:
[image: Mathematical equation displaying a probability function \( P(v_{t}) \). It is expressed as a weighted sum of two normal distributions \( N \), each with their own mean \((\mu_{1}, \mu_{2})\) and variance \((R_{1}, R_{2})\). Each term is weighted by \(0.5\).]
where [image: Normal distribution formula notation: capital N, left parenthesis, v sub k superscript l, semicolon, mu sub k superscript l, comma, R sub k superscript l, right parenthesis.] represents a Gaussian component characterized by its mean [image: The expression shows the Greek letter mu with a superscript one and a subscript k.] and variance [image: The image shows the mathematical notation \( R_k^1 \).]. Similarly, [image: Mathematical expression representing a normal distribution with parameters \( v^2_k \), \( \mu^2_k \), and \( R^2_k \).] denotes another Gaussian component defined by its mean [image: Mathematical expression showing the Greek letter mu squared over k.] and variance [image: The mathematical expression shows the letter "R" with superscript "2" and subscript "k".].
[image: Mathematical equations are presented as follows: mu_k^1 equals mu_k plus d square root of lambda u. Mu_k^2 equals mu_k minus d square root of lambda u. R_k^1 equals R_k^2 equals R_k minus d squared lambda u u transpose.]
where [image: Please upload the image you'd like me to describe.] and [image: It seems there was an issue with uploading the image. Please try uploading it again, and I will help you generate the alternate text.] correspond to the maximum eigenvalue and the corresponding eigenvector of [image: The image shows the mathematical notation "R" with a subscript "k".], respectively. [image: Please upload the image you'd like me to generate alt text for. If you need help with how to upload it, let me know!] is the GMM displacement parameter that influences the mean distance between the two Gaussian components, [image: It seems like you're referencing a mathematical expression. If you'd like to describe an image related to this concept, please provide more context or upload the image.]. In practical computations, [image: It seems you tried to reference an image, but it did not come through. Please upload the image or provide a link to it so I can generate the alternate text for you.] is typically set to 0.5 (Sun et al., 2020; Yu et al., 2023). As depicted in Figure 1, the decomposition process of GMM is illustrated as below.
[image: Graph illustrating overlapping probability density functions. The light blue curve represents the overall distribution \( p \), the brown solid line is \( p(x) \), and the brown dashed line is \( p(x') \). Both \( p(x) \) and \( p(x') \) are nested under the broader \( p \) curve, with x-axis ranging from -3 to 3 and y-axis up to 0.4.]FIGURE 1 | The decomposition process of GMM.
In Figure 1, the blue solid line [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] represents the PDF of non-Gaussian noise, while the brown solid lines [image: It seems like there's an error with the uploaded content. Please provide the image file or a URL, and I can help generate the alternate text.] and brown dotted lines [image: Please upload the image or provide a URL so I can generate accurate alt text for you.] represent the two Gaussian components obtained through GMM decomposition respectively, with displacement parameter [image: Please upload the image or provide a URL so I can assist you with generating the alternate text.]. It can be seen that the probability density distribution after decomposition by GMM is close to the non-Gaussian noise in Equation 3. Therefore, GSCKF has better filtering performance than CKF owing to its accuracy random model under non-Gaussian noises scenarios.
The general implementation procedures of GSCKF can be described as follows. Firstly, based on GMM, the decomposition of non-Gaussian noise is performed using Equations 16, 17. Then, CKF is performed by employing Equations 4–15, and the state estimation of two components at the next epoch can be gotten separately. Finally, based on the weights of different components, a weighted combination is carried out to obtain the final state estimation and its covariance as outputs.
2.4 Flaws and shortcomings
The Allan variance analysis reveals that the measurement noise of GNSS/SINS tightly coupled integrated navigation systems is non-Gaussian in nature, rather than white Gaussian noise. Additionally, the mathematical statistical characteristics of non-Gaussian noise exhibit time-varying behavior due to changes in the practical operation environment over time (Tang et al., 2023; Zhang et al., 2020; Elmezayen and El-Rabbany, 2021; Taghizadeh and Safabakhsh, 2023). Although non-Gaussian noise can be approximated by Equation 17, the dynamic nature of the practical operation environment of GNSS/SINS tightly coupled integrated navigation systems introduces uncertainties in the factor, which makes the time-varying characteristics of [image: Stylized lowercase letter "v" enclosed within parentheses, denoting a variable in a mathematical expression, with the uppercase letter "P" representing a function or probability related to "v".]. Therefore, it limits the optimality of the GMM displacement parameter when setting, as shown in Equation 17. In other words, if the GSCKF based on GMM with a fixed GMM displacement parameter is directly applied to GNSS/SINS tightly coupled integrated navigation systems data fusion, it may not effectively cope with time-varying non-Gaussian noise, resulting in random model mismatches, reduced estimation accuracy, and even divergence in severe cases.
3 GAUSSIAN SUM CUBATURE KALMAN FILTER WITH TIME-VARYING NON-GAUSSIAN NOISE
To address the challenge of deteriorating estimation accuracy of GSCKF, where in the measurement noise is time-varying non-Gaussian noise, this section proposes a novel adaptive GSCKF (AGSCKF) based on the adaptively adjustment of the GMM displacement parameter. According to the impact analysis of GMM displacement parameter on the accuracy of GMM modeling, the AGSCKF employs an adaptive algorithm to select the optimal GMM displacement parameter between two Gaussian components to track changes in the statistical characteristics of non-Gaussian noise. As a result, the derivation of the AGSCKF for GNSS/SINS tightly coupled navigation system data fusion is achieved when measurement noise becomes time-varying non-Gaussian noise.
3.1 Analysis of the GMM displacement parameter on the accuracy of GMM modeling
The GSCKF decomposes non-Gaussian noise through GMM to obtain an approximate model by Equation 17, which makes the decomposed mixed model close to the non-Gaussian noise model in Equation 3. However, the time-varying [image: Please upload the image or provide a URL, and I can help generate alt text for you.] in Equation 3 also introduces uncertainty for [image: Italicized letter P followed by an open parenthesis, italicized letter v subscript k, and a closing parenthesis.] in Equation 17. And in the decomposition process of GMM, Equation 17 typically determines the GMM displacement parameter as [image: It seems there was an issue displaying the image. Please upload the image file or provide a URL so I can generate the alt text for you.], which is not optimal. If [image: It seems like there was an error in the image upload. Please try uploading the image again or provide a URL, and I'll help generate the alternate text for it.], the effect of [image: Mathematical expression showing epsilon belonging to a normal distribution with mean vector \(\boldsymbol{v_k^B};\boldsymbol{\mu_k^B}\) and covariance matrix \(\boldsymbol{R_k^B}\).] is stronger than that of [image: Mathematical notation showing \((1 - \epsilon)N(\mathbf{v}_k^A; \boldsymbol{\mu}_k^A, \mathbf{R}_k^A)\), indicating a scaled multivariate normal distribution with mean \(\boldsymbol{\mu}_k^A\) and covariance matrix \(\mathbf{R}_k^A\).]; while [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help create the alternate text for you.], the effect of [image: Mathematical expression showing epsilon belonging to a normal distribution with vector v sub k superscript B, mean mu sub k superscript B, and covariance matrix R sub k superscript B.] is smaller than that of [image: Mathematical expression includes \((1 - \varepsilon)\) times a normal distribution \(N\) with parameters \( \mathbf{v}_k^A \), \(\boldsymbol{\mu}_k^A\), and \(\mathbf{R}_k^A\).]. So, it is required that when non-Gaussian noise varies, the GMM displacement parameter can be adjusted adaptively.
In Figure 2, [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] represents non-Gaussian noise in Equation 3, while [image: It seems you tried to upload an image or specify its content, but I cannot see the image. Please try uploading it again, or provide a URL or description of the image, and I will help generate the alternate text for it.] and [image: Mathematical expression in italic script showing the probability of event B, represented as "p(B)".] represent the two components in Equation 3. As shown in Figure 2A, when [image: Please upload the image or provide the URL, and if you like, add a caption for additional context.], the GMM modeling result of Equation 17 is represented by the area enclosed by [image: It appears there was an issue displaying the image. Please upload the image file directly or provide a URL.], [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] and the x-axis. The overlap between this area and the area enclosed by [image: A mathematical expression illustrating the probability of event A, denoted as p(A), with italicized characters and symbols.], [image: Sorry, I cannot see the image. Please upload the image or provide a URL for me to generate the alt text.] and the x-axis is the actual estimation result, denoted as M. The higher the overlap, the higher the estimation accuracy. On the other hand, when [image: Please upload the image or provide a URL for me to generate the alt text.], the actual estimation result, denoted as N in Figure 2A. Comparing M and N, it can be observed that the degree of overlap of M is lower than that of N, indicating that the estimation result shown in Figure 3D is better than that shown in Figure 3A.
[image: Six graphs showing probability density functions with varying parameters. Each row compares distributions where \( d < 0.5 \) and \( d > 0.5 \). Colored curves represent different distributions and their overlaps in shaded areas. Top row: graphs (a) \( \epsilon=0.20 \), (b) \( \epsilon=0.15 \), (c) \( \epsilon=0.10 \). Bottom row: (d) \( \epsilon=0.20 \), (e) \( \epsilon=0.15 \), (f) \( \epsilon=0.10 \). Each graph depicts blue, red, and orange curves, correlated with different functions and their intersections.]FIGURE 2 | Relationship between the GMM displacement parameter and GMM modeling. (A) [image: I'm unable to see the image. Please upload the image or provide a URL, and I will help generate the alternate text for it.] (B) [image: I'm unable to see the image you attached. Could you please upload it again or provide a description?] (C) [image: It seems there might be an issue with displaying the image. Please ensure you upload the image file or provide a correct URL.]. (D) [image: It seems there was an issue with the image upload. Please try uploading the image again, and I will be happy to help you generate the alternate text for it.] (E) [image: Looks like there was an issue uploading the image. Please try uploading it again or provide a URL to the image. You can also add a caption for additional context if you like.] (F) [image: It seems there was an issue with displaying the image. Please try uploading the image file again, and I can help create the alt text for you.].
[image: Flowchart detailing a process for state estimation using GMM decomposition. Steps include setting parameters, using maximum likelihood functions, prediction, calculation of state estimations, iterations with computational loops, and final output of state estimation and covariance. Steps are numbered and organized with conditional branches for decision points.]FIGURE 3 | The flowchart of the proposed AGSCKF.
Further, as the effect of [image: Mathematical expression representing epsilon multiplied by a normal distribution function with variables v sub B, mean mu sub B, and covariance matrix sigma sub B.] weakens ([image: Please upload the image or provide a URL for me to generate the alternate text.] changes from 0.20 to 0.10), the mean centers of [image: The image shows a mathematical expression with the probability notation \( p(A) \), indicating the probability of event A occurring.] and [image: The image shows a mathematical expression: \( p(B) \).] shift towards each other. The estimation result repressed as M′ when [image: Please upload the image so I can generate the alternate text for it.] in Figure 3C, and the estimation result repressed as N′ when [image: It seems there might have been an error with the image upload, as I am only seeing a text string. Please try uploading the image again or provide a URL where it can be accessed.] in Figure 3F. It is observed that the overlap degree of M′ is higher than that of N′, indicating that the estimation accuracy in Figure 3C is superior to that in Figure 3F when [image: It seems there was an error in your message. Please upload an image or provide a URL so I can generate the appropriate alternate text for you.].
This demonstrates that when non-Gaussian noise varies, adaptive adjustments in the GMM displacement parameter [image: Please upload the image or provide a URL for me to generate the alternate text.] can effectively track the time-varying nature of non-Gaussian noise, resulting in a more reasonable GMM decomposition process and a closer fit to the actual non-Gaussian noise. By incorporating this approach into the GSCKF, more accurate stochastic models can be obtained, thereby enhancing the accuracy of GSCKF estimation.
3.2 Adaptive algorithm for the GMM displacement parameter
An adaptive algorithm is devised to address the real-time estimation challenge of the GMM displacement parameter under time-varying non-Gaussian noise condition. This algorithm employs the maximum value of the cost function as the optimal criterion and adaptively selects the optimal parameter within a specified range. The cost function is defined as follows:
[image: Equation depicting a probability density function:   \( \rho(z_k|z_{k-1}, d) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2} \left(\frac{z_k - z_{k-1}}{\sigma}\right)^2\right) \).   The equation is labeled as (18).]
Subsequently, the corresponding value of the GMM displacement parameter [image: Please upload the image or provide a URL so I can generate the appropriate alt text for you.] within its range of variation [image: \[ [d_{\text{min}}, d_{\text{max}}] \] represents a mathematical interval with minimum value \( d_{\text{min}} \) and maximum value \( d_{\text{max}} \).] can be calculated. The GMM displacement parameter that corresponds to the maximum value [image: Mathematical expression representing the probability of \( z_k \) given \( z_{k-1} \) and \( d \).] is identified as the optimal parameter value [image: Please upload the image that you want the alternate text for.] by Equation 19.
[image: Mathematical equation showing a formula for determining the optimal index \( \tilde{\imath} \). The equation involves the maximization of the probability \( \hat{P}(z_{\tilde{\imath}} | z_{t-1}, d ) \), referenced as equation (19).]
where [image: Mathematical expression showing a variable \( d \) belonging to the range between \( d_{\text{min}} \) and \( d_{\text{max}} \).].
3.3 The process of AGSCKF
The proposed AGSCKF is derived by incorporating the adaptive algorithm for the GMM displacement into GSCKF. The specific implementation steps of the AGSCKF are as follows.
	Step 1: Set the step size of displacement parameter’s changes [image: It appears there was an issue with the image upload. Could you please try again? Make sure to attach the image file or provide a URL. If you have any additional context, feel free to include it.] and displacement parameter’s range of variation [image: \[ [d_{\text{min}}, d_{\text{max}}] \] represents a mathematical expression denoting an interval with a minimum value \(d_{\text{min}}\) and a maximum value \(d_{\text{max}}\).].

The choice of step size has a significant impact on the accuracy of proposed AGSCKF. A smaller step size generally leads to higher accuracy, albeit at the cost of increased computational complexity.
	Step 2: Let [image: The mathematical expression shows "d equals d sub min," indicating that the value of d is equal to its minimum value, denoted as d with a subscript "min."], and the maximum likelihood function is given by [image: The image shows the mathematical expression "max LH equals 0." The letters "L" and "H" are in italics, and the equation is presented in a horizontal format, commonly used in mathematical contexts.].
	Step 3: The state prediction [image: Mathematical expression showing a vector or variable \( \mathbf{x}_{k|k-1,d} \), indicating a subscripted relationship with indices \( k \), \( k-1 \), and \( d \).], measurement prediction [image: Mathematical notation showing a variable \( z_{k|k-1,d} \), indicating it is conditioned on previous variables with subscripts \( k-1 \) and \( d \).], and its corresponding covariance [image: Mathematical expression displaying \( P_{k | k-1, d} \), with subscripts indicating indices and conditions related to the variable \( P \).], cross-covariance [image: Mathematical expression displaying \( P_{zz,k|k-1,d} \) in bold, with subscripts \( zz, k \) and \( k-1,d \).] are computed utilizing Equations 4–12.
	Step 4: To determine whether GMM decomposition is necessary, the nonlinearity [image: Greek letter eta in italic style on a white background.] is calculated by Equation 20.

[image: The formula depicts an equation for \( \gamma \), which is calculated by taking the sum of \( n_c \) from 1 to 2n, divided by 2n. It is represented as \( \gamma = \frac{1}{2n} \sum_{c=1}^{2n} n_c \).]
where [image: The image shows a mathematical equation: η subscript c equals one half times the norm squared of z subscript c, k vertical bar k minus one star minus h of x subscript k vertical bar k minus one.]. Set [image: Please upload an image or provide a URL so I can generate the alternate text for you.] is threshold. If [image: It seems there is an issue with displaying the image. Please upload the image file directly, or provide more context or a URL if applicable.], it is hypothesized that the high nonlinearity is exhibited in the presence of non-Gaussian noise, necessitating GMM decomposition. Consequently, the algorithm proceeds to the iteration of step 5. In contrast, if [image: It seems there was a formatting issue or an incorrect upload. Please try uploading the image again or provide a URL. If you have a caption or any context, feel free to include that as well for a more accurate description.], GMM decomposition is not performed, the state estimation [image: Mathematical expression showing 'x' with subscripts 'k' and a vertical bar followed by 'k'.] and its corresponding covariance [image: "Mathematical expression showing 'P' subscript 'k' given 'k', often used in probability and statistics to denote conditional probabilities."] at the subsequent epoch can be obtained using Equations 13–15.
Step 5: The following iteration (sub-step 1 to sub-step 5) is executed until [image: The image shows a mathematical inequality: \(d > d_{\text{max}}\).].

	Sub-step 1: The state prediction [image: Mathematical expression showing \( x^{l}_{k \mid k-1, d} \).], the measurement prediction [image: Mathematical notation showing \( z^{1}_{k \mid k-1, d} \).], and its corresponding covariance [image: Mathematical notation depicting \( p_{k \mid k-1, d}^{1} \).] and [image: Equation showing the symbol "p" raised to the power of one, followed by the subscript "zz,k" with a vertical bar separating "k minus one" and "d".] are calculated by Equations 4–15.
	Sub-step 2: The state prediction [image: Mathematical expression showing \( x^{2} \) with subscript \( k \mid k - 1, d \).], the measurement prediction [image: Mathematical expression: z subscript k vertical bar k minus one comma d, all enclosed in superscript two.], and its corresponding covariance [image: Mathematical notation showing "p" with a superscript of "2" and subscript "k vertical bar k minus 1 comma d".] and [image: Mathematical notation displaying P raised to the power of two with subscripts zz, comma, k, pipe symbol, k minus one, comma, d.] are obtained by Equations 4–15.
	Sub-step 3: In the presence of two Gaussian components, the cost function in Equation 18 is modified by Equation 21.


[image: Probability density function \( p_{g}(z_{k}|z_{k-1}, d) \) is expressed as a weighted sum of two Gaussian distributions with weights \( w^{1} \) and \( w^{2} \). Each distribution has a standard deviation denoted by \( \sigma_{1} \) and \( \sigma_{2} \), respectively. The terms \( z_{k} \) and \( z_{k|k-1} \) represent the variables involved in the equation. Equation number (21) is marked on the right.]
where [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the weight of components, and [image: It seems there is a mistake with your request, and no image has been provided. Please upload the image you want described, and I can help generate the alternate text for it.] is the covariance of measurement noise, superscript represent different components.

	Sub-step 4: If [image: Mathematical expression showing the probability \( p_g(z_k | z_{k-1}, d) \) is greater than or equal to the maximum likelihood \( LH \).], reset [image: The equation shows "max LH equals p subscript s of z subscript k given z subscript k minus 1 and d."], and [image: Equation showing a mathematical expression with a variable \(\hat{d}\) is equal to another variable \(d\).].
	Sub-step 5: Update the GMM displacement parameter [image: It seems there was an error in your request. Please upload the image or provide a URL along with any specific details you would like included in the alt text.] by Equation 22.


[image: It appears you haven't uploaded an image. Please upload the image you want me to generate alternate text for, and I will be glad to help!]

	Step 6: Based on the weights of components, calculate the state estimation [image: The image contains the mathematical notation \(x_{k|k}\).] and its covariance [image: Mathematical notation showing "P" with the subscript "k" and a vertical bar followed by "k", often used in the context of conditional probability or filtering processes.] by Equations 23–26.

[image: Equation showing \( x_{k,k} = x_{k,k}^a = \sum_{g=1}^{2} w_{k}^{g,k} x_{k,k}^{g} \), with equation number (23) on the right.]
[image: Mathematical equation for expected value: \( \mu_{ik} = P_{i|k,d} = \sum_{s=1}^{2} w_k^s \left[ P_{i|k}^s + (x^s_{ik} - x_{ik}) (x^s_{ik} - x_{ik})^T \right] \). It is labeled as equation (24).]
[image: Equation showing \( x_k^i = \omega_{k-1}^\beta \left( \sum_{j=1}^2 \omega_{k-1,j}^\beta \right)^{-1} \), labeled as equation 25.]
[image: Mathematical equation expressing \(\beta^{*}_{k}\) as normally distributed with mean \(L_{k} - A_{k}X_{k}A_{k}\Sigma_{X}^{-1}A_{k}^{T}X_{k}\) and variance \( \Sigma_{k} \), labeled as equation (26).]
Through the aforementioned calculation procedures, it becomes evident that the GMM displacement parameter can be adaptively adjusted, thereby bringing the non-Gaussian noise model shown in Equation 17 closer to that shown in Equation 3. This approach effectively addresses the limitations of GMM modeling inherent in the GSCKF. Consequently, the AGSCKF proposed in this section is theoretically expected to exhibit superior estimation accuracy compared to the GSCKF. The flowchart for the proposed AGSCKF is illustrated in Figure 3.
4 PERFORMANCE EVALUATION AND DISCUSSIONS
The proposed AGSCKF has been thoroughly assessed through simulations and experiments for GNSS/SINS tightly coupled integrated navigation system data fusion. In this section, the comparison and analysis of the proposed AGSCKF with CKF and GSCKF are discussed.
4.1 Simulations and analysis
The proposed AGSCKF is assessed for the data fusion of an UAV utilizing a GNSS/SINS tightly coupled integrated navigation system. The simulate trajectory of UAV flight, which includes various maneuvering states such as climbing, level flight, turning, and descending, is depicted in Figure 4. The initial attitude of UAV is all 0° in pitch, row and yaw respectively; the initial velocities are set as 0 m/s, 120 m/s and 0 m/s in the east, north and up respectively; the initial position is set as 110.20°, 34.00° and 2,000 m in longitude, latitude and altitude respectively. The simulated sensor’s parameters for the GNSS/SINS tightly coupled integrated navigation system are listed in Table 1. The GNSS measurement utilized in the simulation was derived from satellite constellations and epoch information obtained on 28 July 2023. Simulation duration is 1,000 s. Computer utilized in simulations encompasses an Intel Core i7-12700 CPU, 128 GB DDR4 memory, and Matlab R2020b software.
[image: A 3D line graph illustrating the relationship between altitude, latitude, and longitude. The altitude ranges from 2000 to 6000 meters, with latitude between 34.00 and 34.80 degrees, and longitude between 110.00 and 113.00 degrees. A blue line represents data points in the graph.]FIGURE 4 | UAV flight trajectory.
TABLE 1 | Sensor’s parameters.
[image: Table detailing parameters and values for gyroscopes, accelerometers, and GNSS receivers. Gyroscope: constant drift 0.1 degrees per hour, random walk coefficient 0.01 degrees per square root hour, zero bias 0.001 g. Accelerometers: random walk coefficient 0.001 g per square root second, sampling frequency 50 Hz. GNSS receiver: pseudo range observation error 15 m, sampling frequency 1 Hz.]The initial parameters for three different algorithms (CKF, GSCKF and AGSCKF) are given in Table 2. The measurement non-Gaussian noise is generated by Equation 27.
[image: It appears the content provided is a mathematical equation or formula rather than an image. The equation describes a probability distribution, \( p(v_t) = 0.9 \mathcal{N}(0, \Sigma_A) + 0.1 \mathcal{N}(0.5, \Sigma_B) \), indicating a mixture of two normal distributions with different means and covariance matrices.]
where [image: The formula depicts the relationship Σ subscript A equals three Σ subscript B equals diag open parenthesis 0.3 squared to 0.3 squared close parenthesis.]. In order to evaluate the performance of three different algorithms in terms of time-varying non-Gaussian noise, two different changes were implemented to the measurement non-Gaussian noise, respectively. During the epoch period from 401 s to 500 s and the epoch period from 601 s to 800 s, the measurement non-Gaussian noise is generated by Equation 28.
[image: Equation displaying a Gaussian mixture model probability density function \( p(x) = 0.7 \mathcal{N}(0, \Sigma_A) + 0.3 \mathcal{N}(0.5, \Sigma_B) \).]
where [image: Mathematical expression showing Sigma sub A equals three times Sigma sub B, which equals the diagonal matrix of values 0.5 squared.].
TABLE 2 | Initial parameters for the algorithms.
[image: Table showing errors in three categories: Attitude error, Velocity error, and Position error. Attitude errors: Yaw 1.5 minutes, Pitch 1 minute, Roll 1 minute. Velocity errors: East, North, Up each 0.5 meters per second. Position errors: Longitude 10 meters, Latitude 10 meters, Altitude 15 meters.]The attitude error curves and positioning error curves of various algorithms (CKF, GSCKF, and AGSCKF) are illustrated in Figure 5. As can be observed from it, prior to the occurrence of changes for non-Gaussian noise statistical properties (0 s–400 s), the estimation error of CKF is highest of the three, while the estimation accuracies of GSCKF and AGSCKF are nearly equal and superior to that of CKF. This phenomenon can be attributed to the fact that GSCKF and AGSCKF employ GMM to model non-Gaussian noise, thereby mitigating its impact on estimation accuracy and ensuring enhanced attitude and positioning accuracy of GNSS/SINS tightly coupled integrated navigation systems operating in non-Gaussian noise environments.
[image: Line graphs comparing CKF, GSGKF, and AGSGKF across epochs for altitude and position. Altitude graph shows measurements like pitch, yaw, and roll. Position graph includes latitude, longitude, and altitude.]FIGURE 5 | Estimation errors by the CKF, GSCKF and proposed AGSCKF for simulations. (A) Attitude (B) Position.
However, upon the occurrence of changes for non-Gaussian noise statistical properties (401 s–500 s, and 601 s–800 s), a significant increase in estimation error is observed for GSCKF as compared to AGSCKF. The discrepancy is caused by the change of non-Gaussian noise and the inability of the GMM displacement parameter of GSCKF to adapt accordingly, which leads to deterioration of estimation accuracy due to inaccurate GMM modeling for GSCKF. In contrast, the AGSCKF employs adaptive corrected GMM displacement parameter to achieve real-time tracking of time-varying non-Gaussian noise, thereby achieving more stable estimation performance than GSCKF.
In order to exemplify the impartiality of algorithm comparison, the root mean square error (RMSE) with 100 Monte-Carlo simulations is used to quantify the estimation accuracy of all the algorithms, which is defined by Equation 29.
[image: The formula shown is for the Root Mean Square Error (RMSE), given as RMSE equals the square root of the sum from i equals 1 to N of the squared difference between X subscript i and X bar, divided by N.]
where [image: Please upload the image or provide a URL so I can generate the alternate text for you.] is the total number of Monte Carlo simulations; [image: If you upload an image, I can help generate alternate text for it. Please provide the image or a URL to it.] is the reference; [image: It seems like there's no image provided. Please upload the image or provide a URL, and I can help you generate the alternate text for it.] is the state estimation. And the time consumption per epoch is calculated for the quantitative comparison of the computational complexity of various algorithms.
As shown in Table 3, the yaw is taken as an example. Prior to the occurrence of changes for non-Gaussian noise statistical properties (0 s–400 s), the estimation accuracy of GSCKF and AGSCKF are relatively close (0.317′ and 0.298′), both of which are higher than that of CKF (0.365′). When the first occurrence of changes for non-Gaussian noise statistical properties (401 s–500 s), AGSCKF achieves higher estimation accuracy due to real-time correction of GMM displacement parameter by AGSCKF. Compared to GSCKF and CKF, it has increased by 0.035′ and 0.080′, respectively. When the second occurrence of changes (601 s–800 s), the accuracy advantage of AGSCKF estimation is significant, with AGSCKF improving 0.034′ and 0.081′ compared to GSCKF and CKF, respectively.
TABLE 3 | (a): RMSEs of attitude errors (′). (b) RMSEs of position errors (′).
[image: A table presents data on the performance of three algorithms, CKF, GSCKF, and AGSCKF, divided into attitude and position categories over time intervals of 0 to 400 seconds, 401 to 500 seconds, 601 to 800 seconds, and 801 to 1,000 seconds. For attitude, measured in roll, pitch, and yaw, the values are provided for each time segment. Similarly, position data include longitude, latitude, and altitude, with respective values over the same intervals. Each algorithm displays fluctuating performance metrics across these time periods.]As depicted in Table 4 and Figure 6, it reveals that the changes of computation time for all three algorithms are relatively similar in all different epoch periods. Take epochs 601 s–800 s as example, the analysis of the average time spent per epoch reveals that CKF has the shortest computational time (5.84 ms) among all the algorithms. In contrast, the computational time of GSEKF is significantly larger than that of CKF by at least 135.66% times (7.92 ms). This is due to the complex computational process of GSCKF involved in distributed filtering and global point estimation at each epoch. Furthermore, the computational time of AGSCKF is at least 284.42% longer (16.61 ms) than that of CKF because AGSCKF needs to update the GMM displacement parameter by iteration.
TABLE 4 | The average time spent per epoch (ms).
[image: Table comparing algorithm performance over time intervals. Algorithms: CKF, GSCKF, and AGSCKF. CKF values: 5.79, 5.65, 5.84, 5.92. GSCKF values: 8.28, 8.32, 7.92, 8.52. AGSCKF values: 13.73, 16.73, 16.61, 13.68. Time intervals: 0 to 400 seconds, 401 to 500 seconds, 601 to 800 seconds, 801 to 1,000 seconds.][image: Bar chart comparing CXF, GSCXF, and AGSCXF at four different sections. CXF is green, GSCXF is blue, and AGSCXF is red. Values increase significantly in the AGSCXF group across sections, with a peak at 296.11% for 401 to 500 units.]FIGURE 6 | Relative computational complexity of the three different algorithms.
4.2 Experiments and analysis
This section presents the analysis and verification of the performance of the proposed AGSCKF through experiments. The experimental data was collected from a GNSS/SINS tightly coupled integrated navigation system mounted on UAVs. The experiment was conducted on 18 Oct 2023, at Zhengzhou, China. Table 5 shows the parameters of the SINS device and GNSS receiver in the GNSS/SINS tightly coupled integrated navigation system.
TABLE 5 | Parameters of GNSS/SINS tightly coupled navigation system.
[image: Table displaying sensor parameters and values for SINS and GNSS. For SINS: gyroscope constant drift is ten degrees per hour, gyroscope random walk coefficient is zero point six degrees per square root hour, accelerometer zero bias is forty micrograms, accelerometer random walk coefficient is eighty micrograms times square root hour, sampling rate is one hundred per second. For GNSS: positioning errors are fifteen meters, sampling rate is ten per second.]The initial position of the UAV was at latitude 34.654°, longitude 109.193°, and altitude 3,783 m, with initial velocities of 180 m/s, 60 m/s, and 40 m/s in the east, north, and up directions, respectively. The other initial parameters were consistent with those utilized in the simulations. A continuous data collection was conducted for a duration of 3,000 s, encompassing various maneuvering states such as climbing, level flight, turning, and descending. To ensure accurate results, a GNSS reference station was placed on the ground within a maximum distance of 20 km from the UAV. The differential data calculation result between the GNSS receiver on the UAV and the GNSS reference station served as the reference value. Subsequent post-processing yielded a differential positioning result with an accuracy better than 0.1 m. Three different algorithms same with simulation were employed for data fusion (CKF, GSCKF, and AGSCKF).
To assess the non-Gaussian and time-varying nature of GNSS measurement noise in experimental data, the statistical analysis was conducted on the pseudo-range noise of GNSS. The non-Gaussian nature of noise was measured using kurtosis. When [image: If you upload an image or provide a URL, I can help generate the alternate text. Let me know if you need guidance on how to do that!], the noise follows a Gaussian distribution; otherwise, it can be concluded that the noise does not follow a Gaussian distribution. When [image: It seems like you've entered a text snippet rather than an image. To generate alternate text, please upload an image or provide a URL. If this text relates to the content you want to be described, kindly provide more details or context.], the noise obeys a super-Gaussian distribution or a thick-tailed distribution; when [image: It seems there might have been an issue with the image upload. Please try uploading the image again or provide a URL if possible.], the noise obeys a sub-Gaussian distribution (Celikoglu and Tirnakli, 2018; Hatem et al., 2022). Table 6 presents the statistical characteristics of pseudo-range noise for the G22 satellite during different epoch periods.
TABLE 6 | Statistical characteristics analysis of G22 pseudo-range noise.
[image: Table showing pseudo-range noise metrics for different epoch periods. For [201 s, 300 s]: Mean is 0.997, Covariance is 0.881, Kurtosis is 0.90. For [801 s, 900 s]: Mean is 0.156, Covariance is 0.225, Kurtosis is 3.06. For [1,101 s, 1,200 s]: Mean is 0.178, Covariance is 0.264, Kurtosis is 2.89. For [1,301 s, 1,400 s]: Mean is 0.823, Covariance is 0.732, Kurtosis is 1.34.]As depicted in Table 6, the kurtosis of the pseudo-range noise generated by the G22 satellite is noticeably less than 3 within the epoch intervals of [201,300] (s) and [1,301, 1,400] (s), indicating a negative kurtosis. This suggests that the G22 pseudo-range noise exhibits significant non-Gaussian characteristics. Conversely, the kurtosis of satellite’s pseudo-range noise within the epoch intervals of [801, 900] (s) and [1,101, 1,200] (s) are close to 3. As such, the G22 pseudo-range noise exhibits relatively weak non-Gaussian characteristics. This observation highlights the temporal variation in the statistical characteristics of non-Gaussian noise from measurement, which can be characterized as time-varying non-Gaussian noise.
The positioning error curves of different algorithms (CKF, GSCKF, and AGSCKF) during the epoch period of [0, 1,500] (s) are depicted in Figure 7. As observed from it, the range of changes for the CKF positioning error curve is significantly higher than that of GSCKF and AGSCKF. This can be attributed to the fact that CKF is unable to effectively counteract the influence of non-Gaussian noise, resulting in a larger positioning error. However, due to the use of GMM in GSCKF to accurately process the random model, the impact of non-Gaussian noise is mitigated. Consequently, the positioning accuracy of GSCKF has been enhanced. Furthermore, the maximum value of the positioning error curve variation range of AGSCKF is smaller than that of GSCKF. The main reason is that AGSCKF takes into account the time-varying non-Gaussian noise and employs the adaptive algorithm of GMM displacement parameter to improve the accuracy of GMM modeling, thereby minimizing the positioning error of AGSCKF.
[image: Three line graphs display the longitude, latitude, and altitude over time in epochs. Each graph includes three color-coded lines representing CKF, GSCKF, and AGSCKF. Longitude ranges from -20 to 20 meters, latitude from 0 to 20 meters, and altitude from -30 to 30 meters. Epochs range from 0 to 1500 seconds.]FIGURE 7 | Position errors by CKF, GSCKF and proposed AGSCKF for experiment case.
To further validate the performance of the proposed AGSCKF, Table 7 presents a quantitative comparison of the RMSEs of different algorithms (CKF, GSCKF, and AGSCKF) for both 1,500 sets data and 3,000 sets data. As observed from it, an increase in navigation duration leads to a decrease in estimation accuracy for all algorithms. Specifically, when considering longitude positioning error as an example, CKF exhibits a reduction from 3.835 m to 4.067 m (about 5.70%), GSCKF shows a reduction from 3.245 m to 3.384 m (about 4.10%), and AGSCKF experiences a reduction from 2.854 m to 2.953 m (about 3.35%). It is evident that the estimation accuracy of AGSCKF consistently surpasses that of CKF and GSCKF. This highlights that AGSCKF not only possesses robust processing capabilities for time-varying non-Gaussian noise but also significantly enhances the GNSS/SINS tightly coupled integrated navigation positioning accuracy of UAVs in challenge environments. Furthermore, it maintains excellent stability of GNSS/SINS tightly coupled integrated positioning in long-sailing missions.
TABLE 7 | Comparison of estimation results with different datasets.
[image: Table comparing three algorithms: CKF, GSCKF, and AGSCKF. For 1,500 sets of data, CKF has longitude 3.835, latitude 3.945, altitude 7.043; GSCKF has longitude 3.245, latitude 3.294, altitude 4.154; AGSCKF has longitude 2.854, latitude 2.975, altitude 3.583. For 3,000 sets of data, CKF has longitude 4.067, latitude 4.186, altitude 7.557; GSCKF has longitude 3.384, latitude 3.433, altitude 4.366; AGSCKF has longitude 2.953, latitude 3.076, altitude 3.735. Average time per epoch: CKF 8.7 ms, GSCKF 13.4 ms, AGSCKF 16.9 ms.]The computational complexity of AGSCKF is analyzed. It is observed that AGSCKF slightly increases the computation time per epoch, but does not result in a significant decrease in computational efficiency. This can be attributed to the fact that although AGSCKF requires iterative calculation of the GMM displacement parameter, relatively high-accuracy estimation can reduce the initial sensitivity of GMM and accelerate the convergence speed of GMM displacement parameter estimation.
In conclusion, the experiment confirms the same conclusion as the simulations, namely, that AGSCKF outperforms the other two algorithms (CKF and GSCKF) in terms of estimation accuracy and adaptability of GNSS/SINS tightly coupled integrated navigation data fusion.
5 CONCLUSION
The limitations of the GSCKF in the context of time-varying non-Gaussian noise of GNSS/SINS tightly coupled integrated navigation systems is analyzed theoretically. It is revealed that the GMM displacement parameter between Gaussian components significantly impact the accuracy of GMM fitting. To address this issue, a novel adaptive adjustment method for GMM displacement parameter is presented, which dynamically modifies this parameter through the cost function, thereby enhancing the rationality of the GMM decomposition process. This approach is incorporated into GSCKF to improve filtering accuracy, and effectively addresses the challenges posed by time-varying non-Gaussian noise, providing a viable solution to achieve high-accuracy estimation for GNSS/SINS tightly coupled integrated navigation systems operating in maneuvering states within challenging environments. Simulations and experiments demonstrate that the proposed AGSCKF enhances the estimation accuracy and adaptability of GSCKF in non-Gaussian noise condition, and exhibites superior stability in long-sailing missions. The research findings have significant implications for both nonlinear non-Gaussian filtering theory and GNSS/SINS tightly coupled integrated navigation systems data fusion algorithms for engineering applications.
While the proposed AGSCKF proves to be effective in modeling time-varying non-Gaussian noise in GNSS/SINS tightly coupled integrated navigation systems, it disregards the undefined noise scenarios, rendering the random model unable to adapt to the statistical characteristics of undefined noise. This limitation impairs the ability of AGSCKF proposed in this paper to effectively address undefined noise, potentially leading to a decline in estimation accuracy under severe conditions. So, the real-time dynamic GMM modeling techniques for undefined noise are very meaningful research points in the future.
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Signal-of-Opportunity (SOP) positioning based on Low-Earth-Orbit (LEO) constellations has gradually become a research hotspot. LEO satellite SOP positioning possess strong anti-jamming capabilities due to their large quantity, wide spectral coverage, and high signal power. However, few studies have deeply investigated their anti-jamming performance, particularly regarding the most common interference type faced by ground receivers - Periodic Frequency Modulation (PFM) interference. The downlink signals of LEO satellites differ significantly from those of Global Navigation Satellite Systems (GNSS) based on Medium-Earth-Orbit (MEO) or Geostationary-Earth-Orbit (GEO) satellites, making traditional interference suppression methods inapplicable. In this paper, we utilize the generalized periodicity of PFM interference signals and the characteristics of LEO constellation signals to propose an Adaptive Signal Iterative Projection and Interference Suppression (ASIPIS) algorithm. This algorithm concentrates the energy of PFM interference, which is dispersed over a wide bandwidth, into a few frequency points, enhancing the concentration of the interference and its separation from the LEO satellite signals. This effectively reduces the overlap between LEO satellite signals and interference. The algorithm then uses subspace projection to map the interference and the desired signal into different subspaces, eliminating the interference components and thus reducing the damage to the desired signal during the interference suppression process. Simulations and experiments demonstrate that compared to conventional methods, ASIPIS effectively eliminates single/multi-component PFM interference, improves suppression performance under narrow-bandwidth/high-power conditions, and overcomes limitations of traditional PFM interference suppression approaches for single-antenna LEO signal reception. The significant performance improvement in LEO anti-jamming scenarios against PFM interference confirms the algorithm's value.
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1 INTRODUCTION
With the development of the Global Navigation Satellite System (GNSS), GNSS has become an important infrastructure for a country’s information construction. It provides Positioning, Navigation, and Timing (PNT) services for a wide range of applications [1–5]. However, with the deepening of GNSS applications, its own shortcomings have gradually become apparent. These drawbacks primarily include: low signal power at the ground, limited frequency points, high construction and maintenance costs, and vulnerability to malicious interference, which can lead to service unavailability, especially in times of conflict or crisis [6–8]. Overcoming and addressing these GNSS shortcomings, particularly the ability to independently provide reliable and high-precision PNT services in environments where GNSS services are unavailable, has become a key focus for future development [9, 10].
Currently, nations are actively developing resilient PNT systems to ensure that military equipment can achieve accurate positioning even when GNSS performance is degraded or denied. Notably, the U.S. Department of Defense’s 2020 PNT technology development roadmap highlighted the use of Signals of Opportunity (SOP) for absolute positioning, thereby supplementing GPS functionality and enhancing its availability and robustness. SOP positioning is a technology that utilizes any detectable non-navigation signals, such as acoustic, optical, electrical, magnetic, and force-based information, for positioning purposes. Given the abundance of radio signals from various applications in space, current research primarily focuses on radio-based SOP. SOP typically includes terrestrial and space-based radio signals of opportunity. However, terrestrial SOP has limited coverage and struggles to achieve seamless global coverage in areas such as deserts, oceans, and polar regions. Space-based SOP mainly refers to signals transmitted by non-navigation/non-cooperative satellites. With the recent significant development and deployment of Low-Earth-Orbit (LEO) satellites by various countries, space-based LEO satellite SOP (LEO-SOP) has emerged as a primary space-based SOP and is increasingly being applied in navigation and positioning [11, 12]. Compared to traditional GNSS-based navigation, SOP positioning using LEO satellites mainly relies on the downlink signals from communication satellites as the radiation source for positioning ground terminals. The positioning methods include instantaneous Doppler, instantaneous Doppler combined with pseudorange, and carrier phase differential techniques [13–15]. Additionally, with the rapid development of emerging satellite constellations such as Starlink and OneWeb, the large number of LEO satellites provides abundant radiation sources for space-based SOP positioning [16]. Against this backdrop, exploring SOP positioning based on LEO constellations has become a current research hotspot. Numerous studies have introduced cases where various research teams have used LEO satellites for positioning, and the research outcomes generally achieve positioning accuracy on the order of tens of meters [17–25].
At present, there is limited research on anti-jamming technologies for positioning using LEO satellite SOP. To date, only one study has been conducted on anti-narrowband interference for Iridium satellite SOP under single-antenna reception conditions [35]. Particularly for Periodic Frequency Modulation (PFM) interference, such as Periodic Linear Frequency Modulation (PLFM) and Periodic Sinusoidal Frequency Modulation (PSFM) interference signals. Currently, there has been limited in-depth research on these types of interference both domestically and internationally. PFM interference is one of the most common types of interference faced by LEO satellites SOP positioning receivers. PFM interference signals are a typical dynamic interference pattern characterized by concentrated energy, wide bandwidth, ease of implementation, and high interference efficiency. This type of interference is highly effective and relies on mature technology, making it widely used. Such interference is typically generated by malicious jammers, radar systems, or civilian radio stations and is commonly distributed across the frequency bands used by LEO satellites SOP signals [26–28]. According to surveys, over 80% of commercially available jammers utilize PFM signals as their interference source [39]. Previous research on suppressing PFM interference has primarily focused on GNSS and similar areas, with the general approach being to utilize the differences between GNSS signals and interference in the time-frequency (TF) domain, spatial domain, or spatiotemporal domain, and to propose corresponding interference suppression methods [29, 30]. Among these, using the spatial resolution of the receiver’s antenna array for spatiotemporal joint processing can effectively suppress various types of interference. However, considering the high cost and complexity of terminal hardware, this method has limited applicability. In contrast, single-antenna systems, due to their small size, low cost, and low power consumption, are widely used. Therefore, detection and suppression methods for PFM interference suitable for single-antenna receivers remain a research hotspot. Currently, the most effective method is to transform the received signal into the TF domain for interference detection. Based on the different energy distribution characteristics of the received signal and interference after transformation into the TF domain, typical TF analysis methods include Short-Time Fourier Transform (STFT) [31], Wavelet Packet Transform (WPT) [32], Wigner-Ville Distribution (WVD) [33], and Fractional Fourier Transform (FrFT) [34], among others. However, STFT cannot effectively accumulate signal energy and suffers from insufficient resolution due to the fixed window width; discrete WPT is prone to spectral aliasing and amplitude distortion; WVD and other nonlinear transforms generate cross-terms that affect the parameter estimation accuracy of multi-component interference; and the non-orthogonality of discrete FrFT distorts the desired signal, with better performance only for linear frequency modulation interference. Most importantly, while these methods offer some suppression capabilities for frequency modulation (FM) interference, due to the significant overlap between the interference and the desired signal in the TF or FrFT domains, the desired signal inevitably suffers considerable damage when the interference is eliminated. This issue is further exacerbated by recent advancements in electronics, as modern small jammers can generate interference containing multiple FM components, which increases the damage to the desired signal during interference elimination.
This type of interference suppression process can be tolerated when processing downlink GNSS signals with bandwidths generally on the order of tens of MHz. However, due to the relatively narrow downlink bandwidth of LEO satellite signals (the Iridium system has a bandwidth of 500 kHz, and the Orbcomm system only 25 kHz), the signal quality degradation caused by interference suppression can severely impact the subsequent positioning accuracy. Therefore, directly applying traditional TF analysis-based interference suppression methods to PFM interference suppression in LEO satellite systems is not very effective.
This paper proposes an Adaptive Signal Iterative Projection and Interference Suppression (ASIPIS) algorithm, utilizing the characteristics of PFM interference signals and LEO constellation signals. The algorithm concentrates the energy of PFM interference, which is spread over a wide bandwidth, into a few frequency points, thereby enhancing the interference’s concentration and its separation from the LEO satellite signals. This effectively reduces the overlap between the LEO satellite signals and interference. The algorithm then uses subspace projection to map the interference and desired signals into different projection subspaces, eliminating the interference components and minimizing the damage to the desired signal during the interference suppression process. Finally, simulations and experiment results validate the enhanced performance of the proposed algorithm. The results demonstrate that the method can effectively eliminate single/multiple-component PFM interference, causing minimal damage to SOP signals, and is applicable to high-precision positioning receivers.
2 LEO SATELLITE SIGNAL AND PFM INTERFERENCE SIGNAL MODEL
In an interference environment, the signal model at the input of the LEO satellite downlink receiver can be represented as:
xt=∑iNsit+∑mMjmt+nt(1)
Where sit represents the signal received from the i-th LEO satellite (i = 1,2,3,…N), N represents the number of LEO satellites visible during the signal reception period, and jmt represents the interference signal of the mth component received by the receiver (m = 1,2,3,…,M). M represents the number of interferences received, and n(t) denotes the Additive White Gaussian Noise (AWGN) with a mean of zero.
When considering the received signal of a single LEO satellite, the reception signal of the i-th satellite can be expressed as Equation 2 [40]:
sit=ADtcosω0t+φ(2)
Where A is the signal amplitude, D(t) is the data code level value broadcasted by the satellite, ω0 is the signal broadcast frequency, and φ is the broadcast phase.
jmt is PFM interference, and its instantaneous frequency ft varies periodically over time, represented as:
ft=f0m+Δfm·⁡sin2πtTm(3)
Where f0m is the carrier frequency of the PFM interference signal, Δfm is the modulation amplitude of its frequency, Tm is the modulation period (MP) of the interference, sin2πtTm is the periodic modulation function, and the instantaneous frequency ft of the interference oscillates periodically within the range of f0m−Δfm,f0m+Δfm.
Then, the phase function ϕt can be expressed by Equation 3 as Equation 4:
ϕt=2π∫0tfτdτ=2π∫0tf0m+Δfm·⁡sin2πτTmdτ=2πf0mt−ΔfmTm2·⁡cos2πtTm(4)
So, the PFM interference signal jmt can be expressed as:
jmt=Am⁡exp2πf0mt−ΔfmTm2·⁡cos2πtTm+φm(5)
Where Am is the carrier amplitude of the PFM interference signal, φm represents the initial carrier phase of the PFM interference, which is a random variable uniformly distributed within the range of −π,+π. 2πf0mt is the linear phase term of the interference, which determines the central frequency of the signal; ΔfmTm2·⁡cos2πtTm is the nonlinear phase term, representing the periodic variation of the frequency with time, with a period of Tm.
3 THE ADAPTIVE SIGNAL ITERATIVE PROJECTION AND INTERFERENCE SUPPRESSION (ASIPIS) ALGORITHM
This section proposes the ASIPIS algorithm based on the characteristics of PFM interference signals and LEO constellation signals. The algorithm eliminates the influence of LEO satellite signals in the input signal, isolates the PFM interference signal, and reconstructs the observation matrix by the modulation period of the interference. It concentrates the energy, originally spread over a wide bandwidth, into a single frequency point in the rearranged data, thereby enhancing the interference’s concentration. Furthermore, a spatial projection method is used to construct the interference subspace and the noise subspace. Finally, the LEO satellite signals and PFM interference signals in the original observation matrix are mapped into the newly constructed subspaces to eliminate the interference components. This algorithm effectively overcomes the challenges that traditional anti-PFM interference algorithms based on single-antenna reception of LEO satellite signals cannot resolve.
3.1 Signal adaptive iterative cancellation
Due to the high signal-to-noise ratio (SNR) of LEO satellite signals on the ground (typically 15–30 dB), directly performing subspace decomposition would cause serious impacts and misjudgments in the division of the interference space. Therefore, before performing subspace decomposition, high-power LEO satellite signals need to be eliminated, and PFM interference should be isolated, to facilitate the subsequent division of the interference space. The ASIPIS algorithm eliminates the LEO satellite signals using the approach proposed in Ref. [35], which utilizes the SCCI algorithm. This method adaptively iterates to approximate and fit the power spectrum of the LEO satellite signals, thereby eliminating the impact of the LEO satellite signal power from the input signal.
Through analysis, it is found that the power spectrum of the input signal (signal and noise) in the LEO satellite signal reception scenario follows a chi-square distribution [41]. Based on this, a first-order expression for the relationship between the input signal power spectrum and the signal power spectral density is derived, and an approximation model is constructed.
Yef=aGsf+b(6)
Where Yef is the estimated value of the input signal power spectrum, and Gsf is the signal power spectrum.
Let the error between the input signal power spectrum Pf and the model estimate Yef be Equation 7:
ea,b=∑f=1NaGsf+b−Pf(7)
Where N is the number of FFT points, the mean square error (MSE) is Equation 8:
ea,b2=∑f=1NaGsf+b−Pf2=a2∑f=1NGs2f+Nb2+2ab∑f=1NGsf+∑f=1NP2f−2a∑f=1NGsfPf−2b∑f=1NPf(8)
Using the gradient descent method, the criterion of minimizing MSE between Pf and the model estimate Yef is adopted. Through multiple rounds of adaptive iterations, in each iteration, the portion of interference higher than the model power spectrum estimate in that round is eliminated, thereby achieving the goal where the final estimated signal power spectrum in the iterative process is nearly identical to the true value. The parameter estimates a and b in Equation 6 are obtained, and then the input signal power spectrum mean Yef is derived. The next step is to subtract the estimated power spectrum mean Yef from the input signal power spectrum Pf. This subtraction can be considered as removing the power spectrum value of the LEO satellite signal contained in the input signal, leaving approximately only the noise and PFM interference signals. At this point, the next step is to construct the interference subspace.
3.2 Construct subspace
After the previous step of adaptive iterative cancellation of the signal, the input signal approximately only contains noise and PFM interference signals, which can be derived from Equation 1:
x^t≐∑mMjmt+nt(9)
For the multi-component PFM interference in Equation 9, let the periods of the m PFM interference signals be T1,T2,…,Tm, then their least common multiple is TM, that is Equation 10:
TM=n1T1=n2T2=⋯nmTm(10)
Where n1,n2,…,nm are positive integer.
Using nTM (n as a positive integer) as the interval to truncate the input signal data in Equation 9, forming the observation data matrix:
X^=x^1x^2⋯x^c⋯x^nTMx^nTM+1x^nTM+2⋯x^nTM+c⋯x^2nTM⋮⋮⋱⋮⋱⋮x^R−1nTM+1x^R−1nTM+2⋯x^R−1nTM+c⋯x^RnTM=x^1,1x^1,2⋯x^1,c⋯x^1,nTMx^2,1x^2,2⋯x^2,c⋯x^2,nTM⋮⋮⋱⋮⋱⋮x^R,1x^R,2⋯x^R,c⋯x^R,nTM=x^1x^2⋯x^c⋯x^nTM(11)
Where R=⌊Ls/nTM⌋, ⌊·⌋ denotes the integer floor, Ls is the total length of the sampled data, x^c is a column vector, x^c=x^1,cx^2,c⋯x^R,cT, x^r,c=x^r−1nTM+c=jr−1nTM+c+nr−1nTM+c, r represents the number of rows of the matrix, r=1,2,…,R, and c represents the number of columns of the matrix, c=1,2,…,nTM. For PFM interference jmt, from Equation 5, the expression at time t+nTM can be written as Equation 12:
jmt+nTM=Am⁡exp2πf0mt+nTM−ΔfmTM2·⁡cos2πTMt+nTM+φm=Am⁡exp2πf0mt+2πf0mnTM−ΔfmTM2·⁡cos2πTMt+φm=Am⁡exp2πf0mt−ΔfmTM2·⁡cos2πTMt+φmexp2πf0mnTM=jmtexp2πf0mnTM(12)
As can be seen from the above equation, when the time interval is nTM, the PFM interference data differ only by a scaling factor. Therefore, the observation matrix of the PFM interference signal can be expressed as:
J=j⁡1j⁡2⋯j⁡nTMj⁡nTM+1j⁡nTM+2⋯j⁡2nTM⋮⋮⋱⋮j⁡R−1⁢nTM+1j⁡R−1⁢nTM+2⋯j⁡RnTM=j⁡1j⁡2⋯j⁡nTMj⁡1exp⁡2πf0⁢nTMj⁡2exp⁡2πf0⁢nTM⋯j⁡nTMexp⁡2πf0⁢nTM⋮⋮⋱⋮j⁡1exp⁡2πf0⁢R−1⁢nTMj⁡2exp⁡2πf0⁢R−1⁢nTM⋯j⁡nTMexp⁡2πf0⁢R−1⁢nTM(13)
From Equation 13, it can be seen that each element in the observation matrix is obtained by multiplying the corresponding element in the first row by a constant. Therefore, by multiplying each element of the first row by −exp2πf0r−1nTM and adding it to the rth row, and performing elementary row transformations, the interference signal observation matrix in Equation 13 can be transformed into:
J=j1j2⋯jc⋯jnTM00⋯0⋯0⋮⋮⋱⋮⋱⋮00⋯0⋯0R×nTM=j1j2⋯jc⋯jnTM1×nTM(14)
Where jc is a column vector, represented as: jc=jc0⋯0T
Through matrix calculations, the eigenvalue matrix of matrix J·JH is obtained as Equation 15:
Λ=diagj1×j1¯+j2×j2¯+⋯+jnTM×jnTM¯,0,⋯,0(15)
The singular value matrix of matrix J is Equation 16:
ΣJ=diagj1×j1¯+j2×j2¯+⋯+jnTM×jnTM¯,0,⋯,0(16)
That is, perform subspace decomposition on the data matrix truncated with a period of nTM, and the interference is concentrated in the subspace corresponding to the first singular value.
Therefore, the periodic truncated data matrix X^ of Equation 11 can be subjected to subspace decomposition, that is:
X^=UΣVT=U1U2⋯λ1000λ2000⋱V1V2⋮(17)
Where U=U1U2⋯ and V=V1V2⋯ represent the left singular matrix and the right singular matrix, respectively, Σ represents the singular value matrix, and the subscript λ indicates the order of the main diagonal, with λ1≥λ2≥…≥0.
From Equations 13, 14, it can be seen that the interference components in each column of the matrix have the same frequency, which corresponds to a single-frequency interference. According to Ref. [36], if the data in each column only differ in phase, the rank of the corresponding matrix is 1. If there is only PFM interference, the rank of matrix X^ is 1, i.e., λ=0. In other words, by performing subspace decomposition on the data matrix formed by truncating with a period of nTM, the PFM interference can be concentrated in the subspace corresponding to the first singular value. When there are other signal components (such as desired signals and noise) unrelated to the interference, the above conclusion still holds, and the desired signals and noise will be spread across the entire space, thus enabling the construction of the interference subspace.
Equation 17 can be rewritten as Equation 18:
X^=UΣVT=UjUnΣj00ΣnVjVn(18)
Where Σj corresponds to λ1, Σn corresponds to diagλ2λ3⋯, the right singular vector corresponding to Σj is Vj, Vj=V1, and the corresponding left singular vector is Uj, Uj=U1; Σn corresponds to the right singular vector Vn, Vn=V2V3⋯, and the corresponding left singular vector is Un, Un=U2U3⋯. The interference subspace PAJ and noise subspace PAJ⊥ are constructed separately as follows by Equations 19, 20:
PAJ=VjVjT(19)
PAJ⊥=VnVnT(20)
Truncate the original input signal data of Equation 1 (including LEO satellite signals) with nTM as the interval, forming the observed data matrix X. Then, project X onto the subspaces constructed in the previous step as Equation 21.
U−1XV−1T=X′(21)
Extract the corresponding part Σn from the newly obtained data matrix X′, i.e., remove the data corresponding to the first row and first column of matrix X′ to obtain the data matrix X″. Multiply matrix X″ by the corresponding left and right singular vectors Vn and Un, respectively, and then the data matrix with the interference components eliminated can be restored as Equation 22.
Xafter_AJ=UnX″VnT(22)
Unfold the data in matrix Xafter_AJ sequentially to obtain the interference-suppressed signal y(t).
3.3 Estimation of modulation period (MP)
The next step is to discuss the estimation of the PFM interference modulation period when forming the data matrix in the previous step. Since the interference and noise components in the received signal are statistically uncorrelated, their cross-correlation function theoretically approaches zero and can be ignored. Therefore, the following will estimate the period of the periodic component in the received signal through autocorrelation processing.
From Equation 9, the autocorrelation function of x^t can be expressed as:
Rxτ=∑m=1MRjmτ+Rnτ=Rjτ+Rnτ(23)
Where Rjmτ and Rnτ are the autocorrelation functions of jmt and nt, respectively. Then,
Rjτ=∑m=1MRjmτ=∑m=1MAm22exp2πf0mτlimT→∞1T∫−TTexpΔfmTm2cos2πTmt−ΔfmTm2cos2πTmt−τdt(24)
From Equation 24, it can be seen that:
Rjτ≤∑m=1MAm22(25)
ΔfmTm2·⁡cos2πtTm is a periodic function with Tm as its modulation period, so Equation 25 holds true if and only if t=nTm. That is, Rjτ reaches a maximum at nTm. Therefore, by detecting the peaks of Rxτ, the estimated value of the PFM interference modulation period Tm can be obtained.
At this point, the ASIPIS algorithm process can be summarized as shown in Figure 1:
[image: Flowchart illustrating a six-step process for signal processing. Step 1: Signal adaptive iterative cancellation produces \(x'(t)\). Step 2: Periodic truncation forms a data matrix for estimation of autopowerspectral density (APD). Step 3: Subspace decomposition occurs. Step 4: Generate interference subspace. Step 5: Subspace projection and interference cancellation lead to signal reconstruction. Step 6: Signal reconstruction results in \(y(t)\). Steps are color-coded and labeled at the bottom.]FIGURE 1 | ASIPIS algorithm flowchart.The specific steps of the ASIPIS algorithm can be summarized as shown in Table 1.
TABLE 1 | Step of ASIPIS algorithm.	ASIPIS algorithm specific steps
	Step 1: Start signal adaptive iterative cancellation on the original received signal to eliminate the power spectral value of LEO satellite signals, obtaining noise and interference signals
	Step 2: Perform autocorrelation processing on the noise and interference signals obtained in the first step to obtain the modulation period estimate Tm
	Step 3: Using the obtained modulation period to perform periodic truncation on the noise and interference mixed signal obtained in the first step, forming the observation matrix X^
	Step 4: Perform subspace decomposition on the observation matrix X^ to construct the interference subspace
	Step 5: Periodically truncate the original received signal using the modulation period to form the observation matrix X
	Step 6: Project X onto the subspace constructed in Step 4, eliminate the interference components, and obtain the interference-suppressed signal


4 SIMULATION AND TEST VERIFICATION
To verify the effectiveness of the proposed algorithm, relevant simulations and experiments were conducted. Without loss of generality, the Iridium system, a LEO constellation, was selected as the signal radiation source. The Iridium system consists of Polar-Earth-Orbit satellites at an altitude of 780 km, evenly distributed across six orbits in approximately the north-south direction. Each orbit contains 12 satellites (including one backup satellite), with an orbital inclination of 86.4° and an orbital period of 100.13 min, enabling global coverage. The user link adopts FDMA/TDMA/SDMA/TDD multiple access methods, grouping 12 adjacent beams from the 48-point beams of each satellite into a set for frequency reuse (SDMA) of the total available frequency band. Within each beam, the frequency band is divided into multiple TDMA channels by FDMA. In each TDMA channel, time division duplex (TDD) is applied for the uplink and downlink of the same user, meaning the uplink and downlink share the same TDMA carrier and frame but occupy different time slots. The total bandwidth allocated to Iridium is 1,616.0 MHz–1,626.5 MHz, with 1,616.0 MHz–1,626.0 MHz used for duplex channels as business channels, and 1,626.0 MHz–1,626.5 MHz used for downlink simplex channels as signaling channels [37, 38].
4.1 Simulation test
In the simulation experiment, the signal used was a downconverted Iridium intermediate frequency (IF) simulated signal with a center frequency of 270,833 Hz. The interference signal was set with a modulation type of Gaussian band-limited, having a mean of zero and a variance of one.
To validate the performance of the proposed algorithm, its anti-jamming capability was compared with other algorithms under different interference scenarios. In the interference scenario settings, multi-component PFM interference can be divided into two cases based on whether the carrier frequencies are consistent. The single-component PFM interference scenario can be considered a special case of multi-component PFM interference where the carrier frequencies are identical. Therefore, two interference scenarios were designed, with parameter settings as shown in Table 2. The comparison algorithms include the Adaptive Wavelet Packet Coefficient Thresholding (WPCT) method [32] and the Time-Domain Combined Fractional Fourier Transform (FrFT) method [34]. For WPCT, the “Dmey” mother wavelet function was used, with five levels of wavelet decomposition, and soft thresholding was employed for interference detection and suppression. For FrFT, to search for the optimal order of the interference signal, the scanning points were set to 2000, and parameter estimation was performed only once for each batch of data.
TABLE 2 | Interference scenarios parameter settings.	Interference scenario	Carrier frequency (kHz)	Modulation period (μs)	Bandwidth (kHZ)
	Dual-component PFM interference scenario 1	270	360; 420	400; 250
	Dual-component PFM interference scenario 2	270; 280	360; 420	400; 250


When the input jamming-to-signal ratio (JSR) varies from 5 to 30 dB, Figures 2A, B respectively show the normalized mean square error (NMSE) of the Iridium signal after interference suppression processing and the output signal-to-interference-plus-noise ratio (SINR) under different interference scenarios, based on 50 Monte Carlo experiments.
[image: Two line graphs. (a) Shows NMSE of the Iridium signal after interference suppression, with varying JSR in dB. Different methods are compared, showing increasing NMSE values. (b) Displays output SINR after interference suppression, again comparing methods over JSR, with decreasing SINR values. Both graphs include legends for multiple methods and scenarios.]FIGURE 2 | Verification of interference performance of various algorithms under interference scenarios. (a) NMSE of the Iridium signal after interference suppression. (b) the output SINR after interference suppression.As shown in Figure 2, the ASIPIS algorithm outperforms the other compared algorithms in terms of anti-jamming performance. Its output SINR and NMSE degrade only slightly as the input JSR increases, ensuring the successful acquisition of Iridium signals. The superior anti-jamming performance of the ASIPIS algorithm stems from its pre-subspace decomposition process, where high-power Iridium signals are removed to isolate PFM interference. This step eliminates the influence of Iridium signals on the interference detection process. Furthermore, the algorithm’s performance is only marginally affected by increasing interference energy due to its periodic truncation and rearrangement method, which effectively concentrates the interference components into a single frequency. Subspace decomposition then projects the interference into a single subspace, achieving high interference concentration, reducing overlap between the desired signal and interference, and preventing the interference from spreading as its energy increases.
In contrast, the WPCT and FrFT algorithms show overall inferior anti-jamming performance. This is because, in the LEO satellite anti-jamming scenarios, the presence of high-power LEO signals significantly affects interference detection and suppression, leading to severe misjudgments. Traditional time-frequency-based interference suppression methods applied directly to these scenarios yield poor results. Their anti-jamming performance deteriorates rapidly with an increasing JSR due to the growing overlap between the desired signal and interference in the TF domain or FrFT domain as the number or energy of interference signals increases. This overlap results in damage to the desired signal during interference suppression, with more severe overlap causing greater signal loss. Specifically, the WPCT algorithm suffers from limited TF resolution, and higher interference energy leads to greater energy diffusion in the TF domain, negatively affecting the desired signal. While the FrFT algorithm improves the energy concentration of PFM interference to some extent, it is affected by spectral leakage inherent in digital FrFT implementations. Consequently, its interference suppression performance also degrades with increasing interference energy, though it remains superior to the WPCT algorithm.
4.2 Actual experimental verification
In the above simulation experiments, the ASIPIS algorithm’s improved interference suppression performance has been verified. To further evaluate the effectiveness of proposed algorithm, a hardware platform was set up on the roof of the New Main Building at Beihang University, and real-signal anti-jamming experiments were conducted. The hardware platform is shown in Figure 3. This system uses a dedicated Iridium antenna to capture its signals. Gaussian interference signals generated by a signal source are combined with Iridium signals using a combiner. The combined signals are then frequency-shifted to IF through a down-converter. The system captures the signals at a sampling rate of 25 MHz, after which the signal reception and processing platform applies the anti-jamming algorithm for performance comparison. The experimental test scenario is shown in Figure 4A. During the test period, a total of four Iridium satellites were visible. The constellation map corresponding to the visible epoch of the Iridium satellites is shown in Figure 4B.
[image: Diagram illustrating an Iridium Signal processing system. It includes labeled components: Iridium Signal, LNA (Low Noise Amplifier), Combiner, Down Converter, and AD & Signal Process. Each component is connected by arrows indicating signal flow from left to right.]FIGURE 3 | Hardware connection diagram.[image: Image (c) shows a 3D illustration of a city with lines indicating satellite paths under "Iridium Next," representing experimental test scenarios. Image (b) is a constellation map displaying satellite visibility with curved colored lines against compass degrees.]FIGURE 4 | Actual experimental scenario. (a) Experimental test scenario. (b) Constellation map during the satellite visibility period.Similarly, by configuring the signal source to generate interference scenarios of different intensities (with JSR of 15 dB and 30 dB, respectively), the ASIPIS algorithm was applied for anti-jamming processing. The positioning results after anti-jamming were compared with those obtained without activating the anti-jamming algorithm and under interference-free conditions. The interference scenario parameters are shown in Table 3.
TABLE 3 | Experiment scenarios parameter setting.	Interference scenario	Carrier frequency (MHz)	Modulation period (μs)	Bandwidth (kHZ)
	Dual-component PFM interference scenario 1	1,626.25	360; 420	400; 250
	Dual-component PFM interference scenario 2	1,626.25; 1,626.26	360; 420	400; 250


The positioning results are statistically analyzed in the East-North-Up (ENU) coordinate system, comparing the positioning errors in the East-West, North-South, and Upward directions with the reference point coordinates. During the result analysis, the average of 50 positioning results is considered as one trial, and a total of 10 trials are conducted. The obtained results are shown in Figure 5.
[image: Five line graphs depicting positioning results under various conditions. Graph (a) shows results without interference. Graph (b) displays results after applying an anti-jamming algorithm at fifteen decibels. Graph (c) illustrates results without the algorithm at fifteen decibels. Graph (d) shows results after the algorithm at thirty decibels. Graph (e) presents results without the algorithm at thirty decibels. Horizontal and vertical axes represent solution times and position errors, respectively.]FIGURE 5 | Comparison of positioning results in different scenarios. (a) Positioning result without interference. (b) Positioning result after anti-jamming (JSR is 15dB). (c) Positioning result without anti-jamming algorithm (JSR is 15dB). (d) Positioning result after anti-jamming (JSR is 30dB). (e) Positioning result without anti-jamming algorithm (JSR is 30dB)The positioning results indicate that, compared to the positioning results under interference-free conditions, the positioning accuracy after interference suppression in interference scenarios shows a certain degree of decline. However, it still successfully retrieves Doppler information and achieves effective positioning. In contrast to interference scenarios where the interference suppression algorithm is not applied, activating the ASIPIS algorithm significantly improves positioning accuracy. The experimental results further validate the effectiveness of the ASIPIS algorithm and its interference suppression performance in LEO satellite PFM interference scenarios.
5 CONCLUSION
This paper proposes the ASIPIS algorithm, addressing the characteristics of narrow downlink bandwidth, high ground SNR in LEO constellation signals, and the generalized periodicity of PFM interference signals. The algorithm concentrates the dispersed PFM interference energy over a wide bandwidth into a few frequency points, enhancing the clustering of interference and its separation from LEO satellite signals. This effectively reduces the overlap between LEO satellite signals and interference. Additionally, subspace projection is employed to map the interference and desired signals into different subspaces, eliminating interference components and minimizing damage to the desired signal during anti-jamming processing. The algorithm comprehensively considers the effects of parameters such as PFM interference bandwidth, carrier frequency, modulation period, and intensity. Simulation and real data tests were conducted using Iridium signals from LEO systems for anti-jamming verification. Results show that, compared to traditional algorithms, this method effectively suppresses single/multi-component PFM interference, improving interference suppression performance under conditions such as narrow bandwidth and high power. It demonstrates significant enhancements in mitigating PFM interference in LEO satellite anti-jamming scenarios.
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Positioning, Navigation, and Timing (PNT) services are essential for supporting various aspects of modern society. Fields such as communications, transportation, and military operations heavily rely on accurate and reliable PNT services, with this dependence expected to grow. However, the limitations of the predominant Global Navigation Satellite System (GNSS) in complex environments have become increasingly apparent. As an effective supplementary approach, space-based signals of opportunity (SOPs) from Low Earth Orbit (LEO) have garnered significant attention. This paper begins by introducing the principle of Doppler location and analyzing its error sources. It then discusses in detail the methods of observation extraction, including cognitive-based and blind-based methods. Focusing on major domestic and international LEO constellations (such as Iridium, Orbcomm, Globalstar, Starlink, OneWeb, etc.), this paper summarizes their signal characteristics and the current status of positioning research, and discusses the latest advancements in observable estimation algorithms. Finally, the paper proposes key research directions for the future, including breakthroughs in satellite recognition technology, optimization of positioning algorithms, development of multi-source fusion positioning technology, and observation extraction in complex environments.
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1 INTRODUCTION
Since the advent of the Global Navigation Satellite System (GNSS), it has played a pivotal role in both military and civilian domains, making irreplaceable contributions to national defense and economic construction. As its application scope continues to expand, the demands on GNSS have far exceeded the initial design specifications. The most prominent issue is the inability of traditional satellite navigation receivers to meet positioning requirements in complex environments [1]. Firstly, the signal strength of satellite signals diminishes with increasing propagation distance during space transmission, resulting in weak signal power reaching the ground and limiting its application in urban areas and canyons. Secondly, GNSS operates on a single, transparent frequency point, making it vulnerable to malicious interference and deception, which can lead to service unavailability. The limitations of Global Navigation Satellite Systems have been significantly exacerbated in recent battlefield scenarios observed during the Russia-Ukraine conflict, where such systems have demonstrated critical vulnerabilities and operational unreliability in combat environments. In stark contrast, LEO satellite constellations exemplified by Starlink have emerged as resilient alternatives. These advanced LEO systems not only maintain robust communication capabilities but also demonstrate enhanced positioning potential in complex battlefield conditions, presenting a paradigm shift in tactical navigation solutions. Over the past decade, an increasing number of researchers have demonstrated the potential of signals of Opportunity (SOPs) in Positioning, Navigation, and Timing (PNT), which can effectively compensate for the shortcomings of GNSS.
SOPs positioning technology offers a viable alternative for positioning services when GNSS signals are unavailable or denied. SOPs encompass all potential radio signals in the environment from which location and time information can be extracted for navigation purposes. These signals are categorized into land-based and space-based SOPs. Ground-based SOPs, such as radio, mobile communication, and WIFI signals, primarily cover urban areas but lack coverage in deserts, oceans, and remote regions. In contrast, space-based SOPs utilize Earth-orbiting satellites as radiation sources, including non-cooperative/non-navigation satellite signals, non-cooperative navigation satellite signals, and cooperative non-navigation signals. Compared to ground-based SOPs, space-based signals offer the advantage of extensive coverage, enabling seamless global positioning. Among these, Low Earth Orbit (LEO) satellite signals are a typical example of space-based SOPs emitters. Compared with GNSS satellites in Medium Earth Orbit (MEO), LEO satellites exhibit significant advantages, such as rapid geometric changes, stronger received signal strength, and larger Doppler frequency shifts [2]. Additionally, many LEO constellations possess rich spectral resources and strong anti-interference capabilities. Moreover, Two-Line Element (TLE) data for LEO satellites is readily available, allowing for precise satellite position calculations through models like the Simplified General Perturbations No. 4 (SGP4). These advantageous properties ensure the PNT capabilities of LEO satellites in GNSS-denied environments. Consequently, LEO constellations are considered a promising alternative for PNT services. Currently, numerous countries are planning or have already launched a large number of LEO satellites, providing abundant radiation sources for space-based SOPs [2–4]. Table 1 lists the main LEO satellite constellations that have been deployed or are planned both domestically and internationally.
TABLE 1 | Major domestic and international LEO constellations.	Constellation	Country	Plan	Downlink frequency/bandwidth
	Iridium	United States	66	L: 1626–1626.5 MHz
	Orbcomm	United States	36	VHF: 137–138 MHz
	Globalstar	United States	48	S: 2483.5–2500 MHz
	Starlink	United States	42,000	Ku: 10.7–12.7 GHz, Ka/V/Q: 37.5–42.5 GHz
	OneWeb	United States, United Kingdom	720	Ku: 10.7–12.7 GHz
	Kuiper	United States	3,236	X/Ku: 10.7–12.7 GHz
	Telesat	Canada	298	Ka: 17.8–20.2 GHz
	LeoSat	United States	108	Ka: 17.7–20.2 GHz
	Tianqi	China	38	UHF: 318–320 MHz
	Xingwang	China	12,992	K: 17.7–20.2 GHz, Ka/V/Q: 37.5–42.5 GHz
	Xiaozhizhuwang	China	650	K: 17.7–20.2 GHz


The first satellite navigation system was the U.S. Navy’s Meridian Satellite Navigation System (TRANSIT), which was the first positioning system based on satellite Doppler. It was introduced for military applications in 1964 and then disclosed for positioning and navigation services in 1968. The TRANSIT system used the Doppler frequency shift of LEO satellite signals to achieve a positioning accuracy of about 70 m [5, 6]. This system demonstrated the method of using LEO satellites for positioning within the framework of SOPs navigation. The advantages of opportunistic LEO positioning technology are evident [7]:
	1. A large number of satellites can provide signals globally, making opportunistic LEO satellites a potential global PNT system.
	2. Almost no additional infrastructure is required, and positioning can be achieved using existing receivers.
	3. The satellite system does not need to be adjusted, and it can be used without special navigation functions for LEO satellites.
	4. User-side positioning can be realized, and the user’s location will not be disclosed to constellation operators, thus protecting user privacy.

Despite the many advantages of opportunistic LEO positioning technology, it also faces several challenges. Most of these challenges stem from the fact that satellite systems or transmitted signals are not designed for PNT purposes. This leads to two main issues [8]:
	1. Non-navigation signals may lack broadband pseudo-random codes for satellite identification and pseudo-range measurement. The modulation format of the signal is unknown or partially unknown, making it difficult to extract navigation observations from satellite signals.
	2. Weak space-time reference: Most LEO satellites are not equipped with high-precision atomic clocks like those in traditional GNSS systems. Therefore, they lack precise clocks, making it difficult to meet the requirements for high-precision pseudo-range measurement. Additionally, there is a lack of strict clock synchronization between satellites, and most broadcast ephemeris data are not available. The published TLE data and the Simplified General Perturbations No. 4 (SGP4) model can be used, but this introduces significant system errors into the positioning algorithm.

The solutions to these problems will be described in the main part of the article.
Given the challenges associated with space-based LEO signals of opportunity, this paper reviews the development process of space-based SOPs positioning, focusing on the extraction of mesoscopic measurements and the correction of systematic errors. We first describe the principle of Doppler positioning. Then, we analyze the Doppler positioning performance and main error sources of LEO satellites, summarize the existing LEO-based navigation systems, their observation extraction methods, and determine the future research direction in this field.
2 DOPPLER POSITIONING
2.1 Positioning principle
Benefiting from the rapid movement of LEO satellites, there is a significant difference in relative motion speeds between satellites and the ground, resulting in an obvious Doppler effect. Therefore, LEO satellites generally use Doppler frequency shift information for positioning, typically employing integrated Doppler and instantaneous Doppler as observation measurements [9, 10]. Generally, the integrated Doppler measurement value is used as the navigation observation value and then converted into a range difference bi-curve. Through the accumulation of measurements at multiple different times, the intersection of multiple hyperboloids determines the position. When there are many visible satellites, instantaneous Doppler positioning, i.e., single epoch positioning, can be used. Generally, at least four satellites are required for instantaneous Doppler positioning, and instantaneous Doppler measurement information can be used to achieve real-time positioning.
The Doppler frequency is a function of satellite speed and position, which can be obtained through auxiliary information. According to the satellite’s velocity and position, and the measured Doppler shift, a circular conical surface with equal Doppler can be determined. For static receivers, since the receiver’s coordinates remain constant over time, Doppler measurements from the same or different satellites at different times can be used for positioning. When a user receives a satellite signal, the Doppler shift value of the signal can be measured, and the user must be on the equivalent Doppler circular conical surface (EDCCS) with the satellite as the apex. The Doppler shift value is the same for all points on this surface and equals the measured Doppler shift value. When signals from multiple satellites are received, multiple equivalent Doppler circular conical surfaces are formed. These surfaces intersect at a point, which is calculated as the user’s position. Figure 1 illustrates the principle of Doppler positioning.
[image: Two satellites above Earth transmit signals to a ground receiver, creating intersecting conical surfaces indicative of Doppler effects. The setup illustrates satellite communication and signal triangulation.]FIGURE 1 | Schematic diagram of Doppler positioning.2.2 Measurement equation
The Doppler effect, caused by the relative motion between the satellite signal transmitter and the ground receiver, can be expressed as:
fd=fR−fT=νrvc.fT=νrvλfT(1)
In the Equation 1, fd represents the Doppler frequency shift, fR denotes the received carrier wave frequency, fT is the transmitted carrier frequency, c is the speed of light, λfT is the wavelength of the transmitted signal, and νrv is the relative speed in the line-of-sight direction between the receiver and transmitter. If the transmitter and receiver are approaching each other, the Doppler frequency shift is positive; if they are moving away from each other, the Doppler shift is negative. Additionally, νrv is also referred to as the pseudo-range rate, which can be expressed as:
νrv=vr−vs.xs−xr∥xs−xr∥=ρ˙(2)
In the Equation 2, vs=vxsvysvzs and vr=vrxvryvrz are the velocity vectors of the satellite and the receiver, respectively. Similarly, xs=xsyszsT and xr=xryrzrT are their respective position vectors in 3-dimensional space. The term ρ˙ represents the pseudo-range rate, which is the first derivative of the pseudo-range with respect to time. The measurement equation for the pseudo-range can be expressed as [11]:
ρ=∥xs−xr∥+c·δtr−δts+c·dRrs+Trs+Ir,fs+dErs+ερ(3)
In the Equation 3, ρ represents the pseudo-range, δtr and δts respectively represent clock bias of receiver and satellite, Trs and Ir,fs are tropospheric and ionospheric delay, dRrs is the satellite clock offset correction due to the relativistic effect, dErs is the error caused by the Sagnac effect due to Earth rotation, and ερ represents other modeling errors. The measurement equation for pseudo-range rate can be expressed as:
fd·λfr=ρ˙=vr−vs.xs−xr∥xs−xr∥+c·δt˙r−δt˙s+c·dR˙rs+T˙rs+I˙r,fs+dE˙rs+ερ˙(4)
In the Equation 4, δt˙r and δt˙s represent the clock drift of the receiver and satellite, respectively. T˙rs and I˙r,fs represent the delay rates caused by the troposphere and ionosphere, respectively. ερ˙ represents measurement noise errors and other unmodeled noise errors. dR˙rs is the clock drift correction caused by relativistic effects, and dE˙rs is the rate of distance change caused by the Sagnac effect due to Earth’s rotation. They can be obtained from literature [12]:
dR˙rs=−2c2x˙s·vs+xs·v˙s(5)
dE˙rs=ωecνxs·yr+νry·xs−νys·xr−νrx·ys(6)
In the Equation 6, ωe is the angular velocity of rotation.
2.3 Location model
In traditional GNSS pseud-orange positioning, an initial estimate is typically provided to the user, and the Newton iteration method is employed for iterative calculation. The final convergence value is utilized as the positioning result. Doppler-based positioning systems generally utilize two models. One is a positioning model based on the least squares method, and the other is a positioning model based on the extended Kalman filter. In the currently published literature, the least squares method is suitable for static receivers, while the extended Kalman filter (EKF) is suitable for both static and dynamic receivers. Both methods require an initial estimated solution X0=xr0,yr0,zr0,vrx0,vry0,vrz0,δt˙r,0T for the receiver, and then linearize the pseudo-range rate observation equation:
ρ˙i≈ρ˙i0+∂ρ˙i∂xr‖xr=xr0·Δxr+∂ρ˙i∂yr‖yr=yr0·Δyr+∂ρ˙i∂zr‖zr=zr0·Δzr+∂ρ˙i∂νrx‖vrx=νrx0·Δνrx+∂ρ˙i∂νry‖vry=vry0·Δνry+∂ρ˙i∂νrz‖vrz=vrz0·Δνrz+∂ρ˙i∂δt˙r‖δt˙r=δt˙r,0·Δδt˙r+ερ˙i(7)
∂ρ˙i∂xr‖xr=xr0=vsxi−vrx0psi−pr0+xr0−xsivsi−vr0.psi−pr0psi−pr03∂ρ˙i∂yr‖yr=yr0=vsyi−vry0psi−pr0+yr0−ysivsi−vr0.psi−pr0psi−pr03∂ρ˙i∂zr‖zr=zr0=vszi−vrz0psi−pr0+zr0−zsivsi−vr0.psi−pr0psi−pr03∂ρ˙i∂vrx‖vrx=vrx0=xsi−xr0psi−pr0∂ρ˙i∂vry‖vry=vry0=ysi−yr0psi−pr0∂ρ˙i∂vrz‖vrz=vrz0=zsi−zr0psi−pr0∂ρ˙i∂δt˙r‖δt˙r=δt˙r,0=c(8)
In the Equations 7, 8, psi=xsi,ysi,zsiT and vsi=vsxi,vsyi,vsxiT represent the satellite position and velocity at that moment, respectively. pr0=xr0,yr0,zr0T and vr0=vrx0,vry0,vrz0T represent the receiver position and velocity at the initial moment. ΔXr=Δxr,Δyr,Δzr,Δνrx,Δνry,Δνrx,ΔδtrT is a correction to the initial value. For the positioning model based on the least squares method, when the receiver receives signals of opportunity from N satellites, the least squares iterative equation can be obtained from multiple observation equations:
Δp˙=G·ΔXr+εG=∂ρ˙1∂xr∂ρ˙1∂yr∂ρ˙1∂zr∂ρ˙1∂vrx∂ρ˙1∂vry∂ρ˙1∂vrzc∂ρ˙2∂xr∂ρ˙2∂yr∂ρ˙2∂zr∂ρ˙2∂vrx∂ρ˙2∂vry∂ρ˙2∂vrzc⋮⋮⋮⋮⋮⋮⋮∂ρ˙n∂xr∂ρ˙n∂yr∂ρ˙n∂zr∂ρ˙n∂vrx∂ρ˙n∂vry∂ρ˙n∂vrzcN×7(9)
In the Equation 9, Δp˙ represents the difference vector between the observed and predicted values of the Doppler frequency shift of the satellite signal received by the receiver, and ε denotes the observed noise vector. According to the principle of least squares, the solution can be determined as follows:
ΔXr=GT·W·G−1GT·W·Δρ˙(10)
In the Equation 10, W represents the weight matrix, typically the inverse of the Doppler measurement error covariance matrix. If the errors of different measurement values are uncorrelated, W becomes a diagonal matrix. By correcting the initial value X0 with the calculated ΔXr, the updated estimated solution is obtained as X0+ΔXr. This updated solution is then carried over to the next iteration. The process continues until ΔXr converges to a predefined threshold. At this point, the iteration stops, and the final estimated value is obtained as Xk=Xk−1+ΔXr.
The positioning models based on the least squares method are not robust to erroneous data, but they are simple and offer high computational efficiency [31]. Psiaki et al. [33] demonstrated single epoch positioning simulations using the Doppler frequency shift from eight or more measurements through least squares fitting. Khalife et al. [34] employed the weighted least squares method to achieve multi-epoch positioning using the Doppler frequency shift of Starlink satellites. For positioning models based on the extended Kalman filter (EKF), in addition to utilizing the aforementioned linearized observation model, the state model of the receiver is also required. The accuracy of the state model directly impacts the positioning performance of the receiver. Singh et al. [35] introduced the use of the EKF to fuse information from multiple satellites for positioning and evaluated the algorithm’s performance. In addition to the initial state, an initial error covariance matrix must be provided when using the EKF. Currently, there is no explanation in the published literature on how to determine the initial covariance matrix. Beyond its application in positioning models, the EKF is also frequently used in observation extraction. Stock et al. [7] summarized examples of EKF usage in existing literature and explained its feasibility with the navigation system.
3 ERROR SOURCE ANALYSIS
The measurement errors can be categorized into three types based on their sources: satellite-related errors, signal propagation-related errors, and receiver-related errors. Satellite-related errors primarily consist of satellite clock errors and satellite ephemeris errors. These errors are caused by the inability of the satellite ground monitoring system to make absolutely accurate measurements and predictions of the satellite orbit and the frequency drift of the satellite clock. Signal propagation-related errors refer to the atmospheric delay caused by the impact of satellite signals as they pass through the atmosphere. Receiver-related errors are caused by the multipath effect and the clock error of the receiver. The following sections analyze the impacts on Doppler-based positioning in LEO systems and present corresponding mitigation strategies. Table 2 provides a fundamental overview of error sources and their associated mitigation techniques, with generalized indications of each error source’s relative significance. However, when considering specific opportunistic LEO-PNT implementations, the actual relevance of these error sources may diverge substantially from the tabular representations. This discrepancy arises because error source impacts are fundamentally contingent upon multiple system-specific parameters including (but not limited to) constellation size, signal frequency allocation, observation duration characteristics, and orbital data provenance.
TABLE 2 | Major error sources in opportunistic LEO-PNT.	Error source	Significance	Mitigation techniques
	Orbital Errors	Highly Significant	- Enhanced precision orbit
determination
- Differential positioning
	Clock Errors	Significant	- Highly stable receiver
clocks
- Receiver clock state
estimation
	Atmospheric error	Significant	- Applying atmospheric
models
- Dual-frequency
observations
- Signals with higher
frequencies


3.1 Satellite orbit error
The rapid movement of LEO satellites results in frequent changes in their position and elevation, making LEO-based positioning more sensitive to satellite-related errors, such as satellite position and velocity errors. The orbit determination of GNSS satellites has been extensively studied, achieving accuracy at the centimeter level or higher. However, for LEO satellites without GNSS receivers and atomic clocks, this poses a challenging problem [12]. A precise Positioning, Navigation, and Timing (PNT) receiver needs to know the position and velocity of the satellite at the time of signal transmission. Typically, this information is obtained using a set of parameter data called ephemeris, such as the TLE file format published online by Celestrak [13]. TLE files are published once or twice a day, including the status of satellites at specific past times, and then the SGP4 propagation algorithm is used to predict the satellite’s position and velocity during signal transmission [14, 15]. Since the estimated orbit observation data and model contain errors, and the orbit recurrence method also introduces errors, the assumed satellite state of the receiver differs from the actual state, resulting in positioning errors of the receiver.
The accuracy of satellite orbits has always been a focal point for space-based signals of opportunity (SOP). Currently, the only available online resource is the Two-Line Element (TLE) file released by the North American Aerospace Defense Command (NORAD). However, the accuracy of these orbits at the epoch time is approximately 3 km [16], and the accuracy is further reduced due to the recurrence of orbits. In this context, satellite orbit error is typically considered the primary error source for space-based SOP positioning. Qinhonglei et al. [17] used a geometric analysis method to analyze the impact of orbit error on Doppler positioning error from a geometric perspective. For a stationary ground receiver, the relative operating speed between the transmitter and the receiver is primarily caused by the satellite’s speed, which can be expressed as:
vrv=vsat⁡cos⁡θ(11)
In the Equation 11, vsat represents the speed of the satellite, and θ is the angle between the direction of satellite motion and the line-of-sight direction, also known as the field-of-view angle
When an error exists in the satellite speed, the field-of-view angle will change accordingly. This relationship can be expressed as:
θobs=θ+Δθ=arccosfdRealνsat+Δνsat·λfT(12)
In the Equation 12, fdReal represents the true Doppler frequency shift, and Δνsat represents the satellite speed error.
The impact of velocity error on positioning is shown in Figure 2A. The effect of satellite velocity error on the equivalent Doppler circular conical surface is to alter the field-of-view angle. When the receiver uses this satellite and other satellites for positioning, due to the presence of satellite velocity error, the actual intersection should be located on the inaccurate equivalent Doppler circular conical surface, rather than the true equivalent Doppler circular conical surface. Consequently, the positioning solution is at point B rather than the true position A. In reality, Δθ is not a constant. Assuming that the equal Doppler circular conical surface 2 and the equal Doppler circular conical surface 1 correspond to the boundary value of velocity error, the equal Doppler circular conical surface obtained by the receiver lies between the equal Doppler circular conical surface 1 and the Doppler circular conical surface 2, sharing the same vertex. Therefore, the influence of velocity error transforms the equal Doppler circular conical surface into a special geometric shape, with its base forming a ring.
[image: Diagram with three panels showing satellite trajectory and data. Panel (A) shows a satellite with estimated and true locations, satellite velocity, and line of sight. Panel (B) illustrates changing velocity, orientation, and coordinates labeled EDCCS1 and EDCCS2. Panel (C) combines elements detailing the satellite's position and velocity, connecting true and estimated locations.]FIGURE 2 | Impact analysis of orbital errors [16]. (A) Velocity errors (B) velocity direction errors (C) Position errors.When considering the influence of satellite motion direction error, let Δβ denote the deviation of satellite motion direction. The impact of this error on positioning is depicted in Figure 2B. The equivalent Doppler circular conical surface with error deviates from the real equivalent Doppler circular conical surface by Δβ. Consequently, the position solution should be at point B, rather than point A. Given that the error is random, its magnitude and corresponding direction are uncertain. Assuming that the equivalent Doppler circular conical surface with velocity direction error rotates around the real line of sight direction while the field angle Δβ remains unchanged, the equivalent Doppler circular conical surface transforms into a special geometric shape. It can be observed that the influence of the direction error of satellite velocity on the equivalent Doppler circular conical surface is analogous to that of satellite velocity error.
For the satellite position error, the field angle of the equivalent Doppler conical surface is independent of the satellite’s position. The impact of this error on positioning is depicted in Figure 2C. The satellite position with error is located inside or on the surface of a sphere centered at the true satellite position, with a radius equal to the maximum error Lmax.
Therefore, the satellite position error transforms the normal equivalent Doppler circular conical surface into an irregular geometry. Generally, the sensitivity of Doppler positioning to satellite position error is less than that to satellite velocity error. This is because the former only changes the position of the equivalent Doppler circular conical surface, while the latter changes the field angle, and the positioning error is related to the line of sight. For a specific satellite, the influence of orbit error on the equivalent Doppler circular conical surface is the combination of all effects of satellite positioning error, satellite velocity error, and velocity direction error. When the orbit error exists, the satellite velocity error will change the contour of the equivalent Doppler circular conical surface, while the satellite position error will change the position of the equivalent Doppler circular conical surface, resulting in an irregular geometry of the equivalent Doppler circular conical surface.
Shi et al. [10] conducted a simulation analysis by adding random errors of varying magnitudes to the satellite position or velocity. The results indicate that the positioning results are less sensitive to satellite position errors than to satellite velocity errors. The positioning accuracy will be reduced if the satellite position error is at the meter level and the velocity error is at the centimeter level per second. When the satellite orbit error increases by one order of magnitude, the positioning error will also increase by one order of magnitude. The positioning results are presented in Table 3, where RMS, N, E, and U represent the root mean square, north, east, and up directions, respectively.
TABLE 3 | Impact of different orbital errors on Doppler positioning accuracy [9].	Satellite position error (m)	Satellite velocity error (cm/s)	RMS-N (m)	RMS-E (m)	RMS-U (m)	RMS-3D (m)
	0	0	1.379	2.920	4.070	5.195
	0	0	1.379	2.920	4.070	5.195
	0.03	0	1.378	2.921	4.070	5.196
	0	0.3	1.384	2.950	4.091	5.230
	3	0	1.602	3.516	4.364	5.829
	0	3	1.749	3.934	5.109	6.681
	30	0	8.196	18.773	18.261	27.444
	0	30	10.953	25.828	29.017	40.361
	300	0	80.279	178.167	183.805	268.277
	0	300	108.827	255.685	286.723	399.285
	3000	0	790.073	1865.394	1773.159	2692.212
	0	3000	1085.340	2561.022	2842.690	3977.145


In order to address the impact of satellite orbit errors, Ardito et al. [18] proposed a Simultaneous Tracking and Navigation (STAN) framework, which solves this issue by tightly integrating an Inertial Navigation System (INS) with Doppler and pseudo-range measurements. Khalife et al. [19] proposed a differential framework to tackle this problem. Qinhonglei et al. [20] targeted the traditional long baseline model, arguing that the assumption of parallel sight vectors between the two receivers in the basic differential positioning model is untenable. They proposed a Doppler differential positioning algorithm based on sight vector correction. By determining the sight vectors, the projection of the baseline in this direction becomes a pseudorange difference, thereby reducing positioning errors under long baselines. Zhao et al. [21] analyzed the error elimination method in the differential Doppler positioning system based on the differential framework and proposed a signal transmission time algorithm based on Maximum Likelihood Estimation (MLE) to mitigate the impact of orbit errors. In addition to the differential method requiring additional reference stations, Wang et al. [22] reduced the impact of satellite position errors by introducing a coarse time compensation term. Although this compensates for errors along the satellite motion direction, it cannot compensate for radial direction errors. Furthermore, positioning accuracy can also be improved by obtaining high-precision tracking data. Khairallah and Kassas et al. [16] conducted experiments on Doppler and carrier phase ephemeris tracking, providing precise ephemeris for positioning another static receiver. To address the challenge that traditional orbit determination methods are difficult to apply to non-cooperative LEO satellites, Deng et al. [23] proposed a multi-receiver Doppler orbit determination scheme and introduced a Search Least Squares (SLS) algorithm for initial orbit determination, offering a reliable initial value method for accurate orbit determination. However, this method is overly dependent on prior orbit parameters. With the advancement of artificial intelligence, machine learning methods are gradually being applied to the orbit determination of LEO satellites.
3.2 Clock error
Because most LEO satellites are not designed for navigation purposes, the on-board clock of LEO satellites is not necessarily an atomic clock, nor is it necessarily precisely synchronized. In addition, the receiver typically uses a lower-quality oscillator. Therefore, the offset and drift of the satellite and receiver clocks may be quite significant. Although LEO opportunistic signal positioning is not affected by the clock offset between the satellite and the receiver as in the pseudorange positioning of the GNSS system, the clock drift between the satellite and the receiver will seriously impact the measured Doppler frequency shift.
Mortlock et al. [24] conducted a simulation-based comparative analysis through two controlled experimental scenarios:1. Fixed receiver clock with variable satellite clock parameters; 2. Fixed satellite clock with variable receiver clock specifications. Their investigation systematically quantified how positioning performance responds to receiver clock quality variations and transmitter clock imperfections in LEO constellations. Notably, the study revealed that positioning accuracy exhibits remarkable insensitivity to LEO transmitter clock quality regardless of constellation size. In a complementary approach, Cassel et al. [25] implemented synchronized clock variation simulations where both transmitters and receivers employed identical clock architectures. Their results demonstrated that simultaneous adoption of next-generation atomic clocks at both ends enhances Doppler-based positioning precision by approximately an order of magnitude compared to conventional oscillators. These findings collectively establish that receiver clock characteristics exert critical influence on LEO-PNT performance–while transmitter clock quality shows limited impact, receiver clock advancements yield substantial system-level improvements.
To mitigate the impact of clock errors, several methods have been proposed. Wang et al. [26] addressed the impact of receiver clock errors on LEO positioning performance by proposing a mutual feedback positioning algorithm based on the LSTM model and the error state Kalman filter (ESKF) model, which can compensate for clock errors and reduce their impact on positioning accuracy. To enhance the accuracy of the receiver clock model, Cassel et al. [25] utilized a more complex three-state model instead of the conventional dual-state model, thereby improving positioning accuracy. In addition to reducing the impact of receiver clock errors, this approach can also enhance the accuracy of LEO clocks. Yang et al. [27] proposed a real-time estimation method for low Earth orbit (LEO) satellite clock errors based on ground tracking stations, and the feasibility of this method was verified through simulations. Wang et al. [28] investigated two typical types of satellite clocks and proposed a LEO satellite clock prediction model based on GNSS accurate clock estimation. The model considered systematic effects and was compared with a simple polynomial fitting model. Khairallah et al. [29] proposed a method for adaptive estimation of satellite clock state noise covariance for positioning filtering. Compared with the Kalman filter with mismatched measurement covariance, this method can improve positioning accuracy.
3.3 Atmospheric error
Atmospheric errors can be categorized into ionospheric and tropospheric errors. Ionospheric delay is inversely proportional to the square of the frequency and directly proportional to the total number of free electrons in the signal path. Small-scale irregularities in electron density lead to rapid fluctuations in amplitude (fading) and carrier phase (scintillation). Due to the group delay effect of the ionosphere, pseudo-range and phase measurements deviate, and since frequency is the rate of phase change over time, Doppler measurements are also affected. The impact of ionospheric delay on positioning accuracy is highly dependent on the signal frequency. For Doppler-based positioning systems, the ionospheric effect is primarily reflected in the change of delay rate. The ionospheric delay rate for VHF/L-band signals cannot be ignored in LEO positioning, as it is inversely proportional to the square of the frequency. In the VHF band, ionospheric delay rate can cause positioning errors based on Doppler frequency shift of up to several kilometers [30]; in the L-band, the error is tens of meters [10]; in the K-band, the error is far less than 1 m and can be neglected [10]. For dual-frequency receivers, ionospheric delay rate can be eliminated by using ionosphere-free combinations of pseudo-range rate measurements. However, this method is not suitable for space-based LEO opportunistic signals. Nonetheless, the ionospheric effect can be mitigated by using signals with higher carrier frequencies.
In addition to the ionospheric effect, the tropospheric effect must also be considered. Since the troposphere is non-dispersive, it introduces a non-frequency-selective delay to the signal, which depends on factors such as temperature, atmospheric pressure, humidity, water vapor, and elevation [31]. Similar to the ionosphere, the troposphere also introduces a delay rate. For Doppler positioning, a high delay rate may lead to Doppler positioning errors as large as tens of meters [10]. If the tropospheric error is not corrected, the positioning accuracy will deteriorate significantly. Tropospheric error can be corrected through modeling. Khalife et al. [32] studied the impact of tropospheric delay on carrier phase and differential measurements using the typical Hopfield model and concluded that the longer the baseline length, the greater the residual delay, and the greater the impact on positioning accuracy.
4 ADVANCES IN OBSERVABLE EXTRACTION AND POSITIONING USING LEO OPPORTUNISTIC SIGNALS
At present, the number of LEO satellites in orbit is the largest, and tens of thousands of LEO satellites will be launched in the next few years, providing a large number of radiation sources for space-based signals of opportunity positioning. In recent years, low Earth orbit satellite systems (such as Orbcomm, Starlink, OneWeb, etc.) have developed rapidly. Many scholars regard them as signals of opportunity sources to study and explore the possibility of their positioning. Table 4 summarizes the information of the five LEO constellations that have been widely studied at present. In this paper, the LEO constellations in the following table will be introduced in detail, and their current research status will be summarized.
TABLE 4 | Comparison of LEO constellation parameters.	Parameter	Iridium	Orbcomm	Globalstar	Starlink	OneWeb
	Bandwidth	31.5 kHz	25 kHz	1.23 MHz	240 MHz	230 MHz
	Beacon Length	90 ms	1s	0.24s	4/3 ms	10 ms
	Modulation Type	DE-QPSK	SD-QPSK	QPSK	OFDM	OFDM
	Frequency Band	L	VHF	S	Ku, Ka	Ku
	Downlink Frequency	1.616–1.626 GHz	137–138 MHz	2483.5MHz–2500 MHz	10.7–12.7 GHz	10.7–12.7 GHz
	Number of Channels	240	13	13	8	8
	Number of Beams	48	Unkown	16	48	16
	Orbital Height	780 km	750 km	1414 km	550 km	1200 km


4.1 Location based on iridium opportunistic signal
The Iridium system, proposed by Motorola, is a global satellite mobile communication system. It comprises 66 LEO satellites, distributed across 6 orbital planes, with each plane consisting of 11 operational satellites and 1 backup satellite. The orbital inclination is 86.4°, and the altitude is approximately 780 km, enabling global coverage. After undergoing bankruptcy and reorganization, the system was redesigned as the second-generation Iridium Next to provide Satellite Timing and Location (STL) services. These services are intended to serve as a backup to the Global Positioning System (GPS) and represent a dedicated low Earth orbit positioning system. Iridium Next employs Time Division Multiple Access (TDMA) for signal transmission. The downlink frequency band allocated to Iridium is 1616–1626.5 MHz, of which 1616–1626 MHz are duplex channels used as traffic channels, divided into 30 sub-bands. Each sub-band is further divided into 8 channels, resulting in a bandwidth of 41.67 kHz per channel. The 1626–1626.5 MHz band is a simplex channel, divided into 12 subchannels, each with a bandwidth of 41.67 kHz. This bandwidth is further divided into a working bandwidth of 31.50 kHz and a protection bandwidth of 10.17 kHz [36]. Five simplex downlink channels are utilized, including Ring Alert signal and four other signals. The Medium Quaternary Message Channel is also used for the Satellite Time and Location service, which is only accessible to authorized users. The remaining seven simplex downlink channels serve as protection bands [37]. The downlink frequency band distribution of the system is illustrated in Figure 3.
[image: Diagram showing dual channels labeled as Duplex and Simplex, each with a bandwidth allocation and numbered sections. The Duplex channel connects to multiple sub-nodes labeled from 0 to 3 with specific bandwidths. The Simplex channel connects to different data processes: Channel Management functions, Delay Management, and Monitoring function.]FIGURE 3 | Iridium system user link frequency band allocation [43].The frame length of Iridium Next is 90 ms, and the Ring Alert signal has high availability and wide coverage, which meets the requirements for positioning. Users can receive the Ring Alert signal in simplex channel 7 every 4.32 s, with a time slot length of 20.32 ms for the simplex channel. Each Ring Alert signal consists of three parts: an unmodulated single-tone signal; a unique word modulated using Binary Phase Shift Keying (BPSK), whose modulation information is a 12-bit baseband data represented as “789” in hexadecimal; and data information modulated using Differential Quadrature Phase Shift Keying (DQPSK) [38]. The structure of the Iridium Next burst signal is shown in Figure 4. The single-tone signal is located at the front of the signal with a duration of 2.6 ms; the unique word has a duration of 0.48 ms; the data information is located at the end of the signal and has a duration of 3.42–17.24 ms [39], depending on the duration of the transmitted data. The duration of the Iridium Next signal ranges from 6.5 ms to 20.32 ms, with most signals lasting approximately 7 ms, and its spectrum is shown in Figure 5.
[image: Diagram showing a TDM frame structure for data transmission. It includes a tone section (BPSK) lasting 2.6 ms, a unique word (BPSK) of 0.48 ms, and a data section (QPSK) lasting 3.42 ms to 17.24 ms, followed by another section with a total of 8.28 ms. A simplex channel slot is 90 ms, comprising up-link and down-link time slots of 1.4 each, with guard times of 0.22 ms and 0.1 ms, respectively. Guard periods of 1 ms and 1.24 ms are shown.]FIGURE 4 | Iridium next burst signal structure.[image: A graph displays frequency (MHz) versus magnitude (dB). On the left, a broader frequency range is shown, magnified on the right to detail peaks labeled "Quaternary message" and "Ring alert."]FIGURE 5 | Power spectrum of Iridium-next [67].The Iridium Next signal is a discontinuous signal with a burst structure. Currently, most methods for its localization are based on the burst signal. A clear single-tone signal is transmitted at the front of each burst signal to facilitate signal acquisition, enabling the estimation of the Doppler frequency shift. The traditional Doppler measurement method for Iridium Next signals is typically implemented in the frequency domain. Khalife et al. [40] proposed a method that involves raising the signal to the Mth power to eliminate the influence of modulation information, then performing a Fast Fourier Transform (FFT) on the Mth power signal, and searching for the FFT peak as the Doppler measurement value to obtain the Doppler frequency shift of Iridium Next. Based on the unique structure of the Iridium Next signal, the existing Doppler measurement methods can be summarized as follows: first, coarse Doppler estimation is obtained by FFT for the single-tone (pilot) signal in the burst signal. Then, precise Doppler measurement is achieved through frequency-domain maximum likelihood estimation [17, 41]. Although the frequency-domain Doppler measurement algorithm is effective and relatively simple, its performance is limited by the frequency resolution. The traditional time-domain Doppler measurement method is generated by carrier phase difference. However, since the Iridium Next signal is modulated by QPSK and the modulation information is unknown, it is difficult to estimate the carrier phase, and this method is affected by noise in baseband signal processing. Wei et al. [42] proposed a method of fitting the phase of explicit and implicit pilots to obtain Doppler measurements. This method is limited to the simulation phase and is only applicable to signals with known implicit pilots. For signals without known implicit pilots, this method cannot further improve Doppler accuracy. Huang et al. [39] proposed the phase time method, which can utilize the complete Iridium Next signal, including pilot and modulation signals, without requiring prior information. This method can obtain more accurate Doppler measurements in static receivers and improve the stability and reliability of positioning, but it lacks verification in dynamic scenarios. To address the localization accuracy limitations of the Doppler-based method, Liang et al. [43] proposed a localization method based on Doppler-compensated pseudorange by decoding the Iridium signal. This method obtains the pseudorange and pseudorange rate by jointly estimating the time delay and Doppler, and uses this information for positioning. This method solves the problem of inconsistency between the epoch time of the Iridium signal and the assumed signal time. By estimating the epoch time error and compensating the pseudorange, the positioning error is significantly reduced. However, this method has the issue of high complexity and difficulty in adapting to rapidly changing signal environments. Tan et al. [44] studied the positioning method using Iridium signals in weak signal environments, analyzed the signal characteristics of Iridium in detail, and proposed a QSA-IDE algorithm to estimate its Doppler frequency shift in weak signal environments. This novel approach enhances weak-signal Doppler estimation through two-stage processing:1. Quadratic square accumulation processing boosts signal-to-noise ratio (SNR); 2. Full-duration Iridium signals are utilized for maximum likelihood estimation (MLE) to achieve precise Doppler frequency shift estimation.
4.2 Location based on Orbcomm opportunistic signals
The Orbcomm system is a two-way communication system that utilizes a low Earth orbit satellite constellation to provide global geographic coverage. There are 42 satellites distributed across 7 orbital planes labeled a through g [45]. Each of the a, b, c, and d planes contains 8 satellites, with an inclination of 45° and an orbital altitude of approximately 815 km. Plane e has an inclination of 0°, includes 6 satellites, and has an orbital altitude of 975 km. Plane f has an inclination of 70° and contains two satellites in a near-polar circular orbit at an altitude of 740 km. Plane g has an inclination of 108° and contains two satellites in a near-polar elliptical orbit, with the orbital altitude varying from 785 km to 875 km. Orbcomm completed the deployment of the second-generation satellite (OG2) constellation in 2014. The OG2 constellation is a Walker constellation, with its satellites evenly distributed across four orbital planes at an inclination of 47°. The orbital altitude and period of the OG2 satellite are approximately 710 km and 97 min, respectively. Currently, positioning research based on the Orbcomm satellite is conducted using the OG2 satellite.
The Orbcomm system employs Frequency Division Multiple Access (FDMA) to transmit downlink signals, which occupy the Very High Frequency (VHF) band of 137–138 MHz, as illustrated in Figure 6 [46].
[image: Channel allocation diagram for satellite-to-user and satellite-to-gateway stations. Channels S-1 to S-12, spanning 137.2000 MHz to 137.5375 MHz, are for user downlink. Channel S-13 at 137.500 MHz is for the gateway station.]FIGURE 6 | Orbcomm satellite downlink frequency band allocation [46].The downlink channel of the Orbcomm system includes 12 channels designated for user transmission and one gateway channel for ground station transmission. Each satellite broadcasts signals in two specific channels through spectrum sharing, employing symmetric differential quadrature phase shift keying (SD-QPSK) modulation, with a symbol rate of 4,800 bps. Currently, only the VHF signal of the downlink channel is utilized for opportunistic localization.
The expression of SD-QPSK modulation signal is:
st=∑i=−∞∞ gt−iTsymexpj2πfrt+φr+φi(13)
In the Equation 13, gt represents the pulse function, where t>0 denotes the time elapsed since the signal was received, fr is the carrier frequency of the received signal, φr is the initial phase of reception, Tsym is the symbol period, and φi is the phase of the i-th symbol, which can be expressed as:
φi=φi−1+π2biφ0=0,i=⌈t+τr/Tsym⌉(14)
In the Equation 14, bi=±1 represents unknown baseband data, and τr∈0,Tsym is an unkown symbol delay. The spectrum diagram of the received signal is shown in Figure 7.
[image: Graph showing power spectral density with frequency on the x-axis (ranging from 137 to 138 MHz) and magnitude in decibels on the y-axis (ranging from -36 to -20 dB). Two prominent peaks are visible near the center.]FIGURE 7 | Power spectrum of Orbcomm [67].The power of the Orbcomm satellite signal reaching the ground is generally higher than that of the noise. Due to its SD-QPSK modulation, it is unable to directly obtain the Doppler measurement value through its spectrum. When using the Maximum Likelihood Estimation (MLE) method for accurate Doppler measurement, the correlation between the local carrier generated by the Doppler rough measurement value and the Orbcomm signal affects the relevant peak, which is influenced by the data bits. Qinhonglei et al. [46] found that after square processing of their signals, peak spectral lines appeared symmetrically on the left and right sides of the center frequency of the signal spectrum. Zhao et al. [41] detected the Orbcomm signal according to the spectral characteristics and estimated the coarse Doppler by calculating the center frequency of the bispectral line. Khalife et al. [47] used a phase-locked loop to achieve positioning of the Orbcomm opportunity signal and employed a Costas loop based on the maximum likelihood phase discriminator. However, the symbol period limits the coherent integration time, which reduces the input signal-to-noise ratio of the ML phase detector and makes the ML Costas loop unstable. Xie et al. [48] designed a carrier tracking loop based on square sum code phase assistance, which eliminates the disadvantage of the symbol period limiting the coherent integration time and obtains accurate carrier phase measurement under a low carrier-to-noise ratio.
4.3 Location based on Globalstar opportunistic signals
The Globalstar second-generation constellation, operational since 2013, consists of 32 satellites distributed in 8 orbital planes (4 satellites per plane) at an altitude of 1,414 km. This system employs Wideband Code Division Multiple Access (WCDMA) technology with QPSK modulation for its communication signals, as specified in. The user link facilitates bidirectional ground-to-satellite communication through a transparent payload architecture: user terminals receive signals relayed from ground stations via satellites, defined as the forward link. Specifically, the downlink operates in the S-band at 2,483.5–2,500 MHz, which constitutes the forward link’s frequency allocation. To date, all published studies exclusively utilize the forward link’s pilot signal for positioning purposes, whose modulation structure (including chip rate, symbol mapping, and pseudorandom noise sequence design) is analytically illustrated in Figure 8.
[image: Diagram of a communication system showing signal processing flow. It includes elements like Inner PN Sequence, Pilot Short PN Sequence, and Outer PN Sequence Generator. The signal splits into I and Q components, each passing through baseband filters and mixed with cosine and sine functions to produce the final output \(s(t)\). Arrows indicate data flow.]FIGURE 8 | Forward link QPSK spread spectrum modulation.Each pilot signal employs three distinct pseudo-random noise (PN) sequences for QPSK modulation, namely, the short PN sequence, inner PN sequence, and outer PN sequence. These sequences are used to distinguish between satellites, orbits, and beams. In summary, the Globalstar downlink pilot signal can be expressed as:
st=APtOtItcos2πf0+fdt+φ+ APtOtQtsin2πf0+fdt+φ+nt(15)
In the Equation 15, A represents the signal amplitude; Pt is short PN sequence; Ot is the outer PN sequence; It is the inner PN sequence used by QPSK modulation in the in-phase branch; Qt is the inner PN sequence used by QPSK modulation in the quadrature branch; f0 is the carrier fundamental frequency; fd is Doppler shift; φ is the initial phase of the carrier; nt is the noise.
Doppler compensation is the most challenging issue in opportunistic positioning using Globalstar satellites. In the Globalstar system, Doppler is compensated to a nominal value at the satellite or ground station [49]. When Doppler compensation is applied, the Doppler measured by the ground receiver differs from the true Doppler, making the measured Doppler unsuitable for opportunistic localization. Neinavaie et al. [50] confirmed the presence of Doppler compensation through experiments and found discrepancies between the received Doppler and theoretical calculations. They proposed a method to recover the Doppler frequency by exploiting spectral distortion, enabling the retrieval of the true Doppler frequency even when compensation is applied. Zhang et al. [51] analyzed the modulation process of Globalstar signals, processed the Quadrature Phase Shift Keying (QPSK) pilot signal to the fourth power, selected an appropriate Fast Fourier Transform (FFT) time, extracted the Doppler observation value, and discovered that the pilot signal of the Globalstar forward link in Beijing did not pre-compensate for Doppler. Due to the low signal-to-noise ratio of the Globalstar signal, traditional quartic despreading severely degrades the signal-to-noise ratio, leading to the failure of Doppler frequency extraction. Qinhonglei et al. [52] proposed that the acquisition of the Globalstar pilot signal is achieved by decoding the square cross-harmonic term and conducting parallel code phase frequency searches. The decoded local spread spectrum sequence is not affected by the degradation of the signal-to-noise ratio, thereby overcoming the challenge of low signal-to-noise ratio to a certain extent.
4.4 Location based on Starlink opportunistic signals
Starlink, a low Earth orbit (LEO) satellite constellation launched by SpaceX, aims to provide high-speed Internet services globally [53]. The system comprises thousands of satellites operating at different altitudes, with the majority located in LEO at an altitude of 550 km. To date, over 7,000 satellites have been launched, with 4,748 currently in service, primarily distributed across five distinct orbital shells to achieve global coverage. The detailed format of Starlink’s downlink signals is not publicly available. The only known information about these signals is their carrier frequency and bandwidth. The downlink signals occupy a 250 MHz bandwidth in the Ku band to provide high-speed broadband connections. Nine single-tone signals are broadcast at the center of this bandwidth, spaced approximately 43.9 kHz apart [4].
Neinavaie et al. [54] analyzed the spectrum of the received Starlink signal after Doppler compensation and found that, in addition to the central single-tone signal, the Starlink downlink signal spectrum contains subcarriers similar to those used in Orthogonal Frequency Division Multiplexing (OFDM), as shown in Figure 9. Humphreys et al. provided a blind identification technology for the downlink signal of the satellite link in the 10.7–12.7 GHz band, given its OFDM format. This technology is an extension of the existing blind orthogonal frequency division multiplexing signal recognition method [55]. Using this method, the structure of the Starlink downlink signal in the 10.7–12.7 GHz band is described in detail, and the parameters within the signal are estimated and identified, as shown in Table 5. Currently, the published literature indicates that Starlink is primarily used to extract observations by utilizing its beacon signals located at the center of the user’s downlink signal channel, i.e., a single-tone signal or by assuming that there is a periodic reference sequence in the frame of the OFDM signal.
[image: Graph showing the IFFT of a signal with frequency on the x-axis in megahertz and amplitude on the y-axis. It features central tones at the center and Starlink OFDM-like subcarriers on both sides. Central tones span 1 megahertz.]FIGURE 9 | Spectrum of Starlink downlink signals after Doppler rate wipe-off [54].TABLE 5 | Starlink downlink signal parameters [55].	Name	Parameter	Value	Unit
	Channel Bandwidth	Fs	240	MHz
	Number of Subcarriers in bandwidth	N	1,024	
	Number of cyclic prefic intervals	Ng	32	
	Frame Period	Tf	1/750	s
	Frame guard interval	Tfg	68/15 = 4.533¯	μs
	Number of non-zero symbols in a frame	Nsf	302	
	Number of data symbols in a frame	Nsfd	298	
	Useful OFDM symbol interval	T=N/Fs	64/15 = 4.266¯	μs
	Symbol guard interval	Tg=Ng/Fs	2/15 = 0.133¯	μs
	OFDM symbol duration	Tsym=T+Tg	4.4	μs
	Subcarrier spacing	F=Fs/N	234,375	Hz
	Center frequency of i th channel	Fci	10.7+F/2+0.25 (i-1/2)	GHz
	Channel spacing	Fδ	250	MHz
	Width of guard band between channels	Fg	10	MHz


For the single-tone signal in the spectrum, Khalife et al. [56] observed the beacon signal at 11.325 GHz of the Starlink satellite and used a carrier phase tracking algorithm based on the Adaptive Kalman filter to extract the Doppler frequency shift, achieving a three-dimensional positioning error of 33.5 m and a horizontal positioning error of 25.9 m. Jardak et al. [57] explored the feasibility of receiving Starlink downlink signals for positioning without using a parabolic reflector and proposed a signal detection and tracking method using a general low noise block down converter and software-defined radio, which aggregated the Doppler frequency shift of multiple subcarriers of the beacon signal, reducing the impact of measurement noise. Yang et al. [58] proposed a baseband signal processing scheme without prior information of receiver position and time. Through a two-step method, it is challenging to determine the signal source of the Starlink signal in the presence of multiple satellites, and simple single-tone tracking cannot accurately estimate the carrier center frequency, which introduces ambiguity to Doppler estimation. Nonetheless, this method realizes the effective utilization of the Starlink signal and accurate Doppler and Doppler rate estimation. Qinhonglei et al. [59] used the beacon signals located at 11.325 GHz and 11.575 GHz simultaneously for positioning, employed the short-time Fourier transform for coarse Doppler extraction, and then used maximum likelihood estimation for accurate measurement. With the aid of elevation data, the horizontal positioning error of the results was 15 m. Yuanyiping et al. [60] designed a lightweight modular universal receiving device and observed the beacon signal (11.95 GHz/12.45 GHz) at the interval center between the downlink signal channels of the satellite link for the first time. Based on the beacon signal, a frequency-domain sliding window estimation algorithm was proposed, which successfully realized the estimation of Doppler frequency shift.
In addition to utilizing existing beacon signals, some scholars assume that the downlink signals of satellite link users contain periodic reference signals and use the characteristics of these periodic signals to extract the Doppler frequency shift. Khalife et al. [61] hypothesized that the downlink signal of the satellite link user contains periodic reference signals. Based on this assumption, they constructed a matching subspace detection method to detect the unknown reference signal of Starlink and estimate the unknown period and Doppler frequency. They also proposed a linear frequency modulation parameter estimator to track the Doppler frequency of the unknown Starlink signal by using the Wigner distribution to estimate the parameters of the linear frequency modulation signal. Building on this, the team developed an algorithm based on the Kalman filter to track the Doppler frequency of the unknown Starlink signal [34]. Neinavaie et al. [54] combined the beacon-based method with the OFDM-based reference signal method to significantly reduce the positioning error, decreasing the horizontal positioning error from 10 m to 6.5 m and thereby improving positioning accuracy. Shadram et al. [62] proposed a sequential method based on the classical linear model to estimate the number of Starlink satellites and their corresponding reference signals. This method uses the generalized likelihood ratio detector to design the Doppler tracking algorithm, establishes the equivalence between the generalized linear model and the matched subspace detector for the first time, and employs differential Doppler positioning technology to simultaneously receive satellite link beacon signals through two receivers separated by 1 km. The horizontal positioning error of the result is 5.6 m. Kozhaya et al. [63] proposed a blind Doppler spectrum method from the perspective of the frequency domain. This method uses a blind Doppler discriminator based on the frequency domain and a Doppler tracking algorithm based on the Kalman filter to achieve Doppler tracking accuracy at the Hertz level and a 2-D positioning error of 4.3 m.
4.5 Location based on OneWeb opportunistic signals
One of the goals of the OneWeb constellation is to create a navigation system independent of the Galileo system. The constellation plans to have 720 satellites, distributed across 18 orbital planes, with an orbital altitude of approximately 1,200 km and an orbital inclination of 87.9°. Satellites are evenly distributed within each plane and travel along the north-south direction. Satellites in adjacent planes are offset by half a satellite in latitude. OneWeb users’ downlink signals are transmitted in the Ku band (10.7–12.7 GHz), and the downlink band is divided into eight consecutive 250 MHz channels [64]. The OneWeb constellation typically provides users with one of the 16 downlink beams at any given time, and each beam transmits on only one of the eight channels. Therefore, each OneWeb satellite multiplexes multiple users through frequency division (8 × 250 MHz channels) and spatial division (16 beams), as illustrated in Figure 10.
[image: Diagram showing a 3D representation of frequency bands and timeslots. Frequency axis (GHz) ranges from 10.935 to 12.572. The range is divided into sixteen segments labeled 1 to 16. Time axis indicates 250 MHz spacing, with two rows labeled CH1 and CH3. Space (Beam) axis runs vertically.]FIGURE 10 | Diagram showing OneWeb’s Ku-band downlink signal allocation [65].At present, the public literature indicates that research on positioning using the OneWeb constellation is limited. Kozhaya et al. [65] conducted the first study on OneWeb LEO satellite signals. Given the acquisition challenges such as high Doppler frequency and large search grid, they proposed a Doppler search algorithm based on two-step sampling to reduce computational complexity. A Kalman filter tracking loop combined with a phase-locked loop and delay locked loop was utilized to track satellite signals, generate code phase and carrier phase observations, and achieve positioning based on nine OneWeb satellites. Additionally, no other literature on OneWeb constellation positioning has been found.
4.6 Observation estimation algorithm
Before opportunistic low Earth orbit (LEO) positioning, navigation, and timing (PNT) processing, observations must be estimated as accurately as possible. However, the acquisition and frequency estimation of LEO signals are very challenging. Firstly, due to the high and rapidly changing relative speed between the transmitter and receiver, the transmission channel imposes a significant Doppler frequency shift on the signal. In addition, if the exact signal structure is not known, signal acquisition and frequency estimation will be hindered, requiring more complex algorithms. While the aforementioned challenges pose significant difficulties in observable extraction, thereby adversely affecting positioning accuracy. The current positioning results derived from major constellations have yielded surprisingly encouraging outcomes. A comparative analysis of these results is presented in Table 6, as detailed below. As illustrated in the table, opportunistic signals typically rely on either Doppler frequency shift measurements or carrier phase observations as primary observables. Currently, the published signal acquisition and observation estimation algorithms can be divided into two categories: one is a cognitive-based method, which uses the least available prior information about the LEO satellite signal structure; the other is the blind method, which does not assume that the Doppler frequency, modulation type, length, and symbol of the beacon signal are known, but only knows its bandwidth, and uses a cognitive decoding method to obtain this information [66].
TABLE 6 | Comparative analysis of positioning performance across satellite constellations.	Constellation	Receiver state	Observation	Positioning Error(m)	Ref
	Iridium	Static	Doppler	22 m (2D)	[16]
	Orbcomm	Static	Carrier Phase	77.5 m (3D)	[47]
	Globalstar	Static	Doppler	≤100 m (2D)	[51]
	Starlink	Static	Doppler	4.3 m (2D)
19.4 m (3D)	[62]
	OneWeb	Static	Carrier Phase	30.4 m (2D)
30.4 m (2D)	[64]


4.6.1 Cognitive based approach
These methodologies typically necessitate prior knowledge of the satellite signal architecture, including modulation schemes, timing characteristics, and protocol-specific features, to enable effective observable extraction and parameter estimation.
4.6.1.1 Mth-power algorithm
The Mth-power algorithm is specifically designed for M-ary Phase Shift Keying (MPSK) modulated satellite signals. This method operates by raising the received signal to the Mth power to eliminate modulation symbol effects, followed by spectral analysis via Fast Fourier Transform (FFT). In reference [47], it is deduced that the carrier phase or Doppler frequency shift of multiple different carrier frequency multiplexed signals is used. An independent Phase-Locked Loop (PLL) is employed to track the LEO satellite signal of each channel, and a maximum likelihood phase discriminator is used to obtain the phase error. Reference [40] proposed a receiver architecture suitable for processing Time Division Multiple Access (TDMA) and Frequency Division Multiple Access (FDMA) signals from Orbcomm and Iridium next-generation satellites. The received signals are down-converted and partitioned to generate Doppler frequency measurements of multi-constellation LEO satellites. However, when processing TDMA signals, it is necessary to use an energy detector to obtain the burst start time during its initialization phase and assume that the initial Doppler frequency is known. Reference [67] designed a multi-constellation software-defined receiver capable of processing QPSK modulated signals from Orbcomm and Iridium next satellites. The received signals are processed to the fourth power, the power spectral density (PSD) is analyzed using the Welch method, the PSD peak is found through a search window to determine the Doppler frequency, and the Doppler frequency shift of the detected signals is tracked using the classic Costas loop. Literature [41, 68] proposed a Doppler fusion positioning model based on the Helmert variance component estimation (HVCE) algorithm, analyzing the above Doppler frequency shift extraction methods of Orbcomm and Iridium signals, which improved positioning accuracy.
4.6.1.2 Code phase search acquisition algorithm
The Code Phase Search Acquisition Algorithm can be employed to extract Doppler observables from opportunistic signals. Its fundamental principle lies in extracting the PN code sequences utilized in LEO satellite pilot signals or exploiting known pilot sequences, followed by correlation processing with the intermediate frequency signals acquired by receivers to estimate observation parameters. As demonstrated in literature [51], this methodology has been successfully applied to extract Doppler observables from GlobalStar downlink pilot signals, achieving horizontal positioning accuracy better than 100 m. The implementation procedure involves: Firstly, obtaining squared cross-harmonic terms through squaring processing. Owing to the strict orthogonality between the quadrature-phase and in-phase PN code sequences embedded in pilot signals, their coupled sequences maintain orthogonal characteristics while preserving identical code period and chip rate as the original PN sequences [51]. This inherent property facilitates periodic superposition operations, thereby enabling effective estimation of spread spectrum codes. Reference [69] studies the problem of joint synchronization and positioning using signals with known pulse shapes and modulation schemes and proposes a bandwidth-efficient algorithm for estimating the time difference of arrival (TDOA) and frequency difference (FDOA) between two receivers without exchanging original signals. Reference [71] proposed a Doppler frequency shift estimation algorithm based on correlation, but this algorithm assumes that the synchronization sequence is known.
4.6.1.3 Matched subspace detector
The matched subspace algorithm constitutes a Doppler observable extraction methodology rooted in binary hypothesis testing and maximum likelihood estimation principles. The matched subspace detector has been widely used to address the detection problem of signal sources with unknown parameters in the presence of other interference sources [72, 73]. In the Starlink satellite, there are always-on and on-demand OFDM signals [70]. Certain LEO satellite synchronization signals exhibit inherent periodicity in their transmission characteristics, as exemplified by the Starlink constellation’s synchronization signal architecture. In OFDM-based transmission, each OFDM frame contains periodic signals that are always-on and on-demand, which are used for synchronization and channel estimation. The period of these signals is typically equal to the frame length of the OFDM signals. However, in most cases, the synchronization sequence and its length are unknown. References [34, 61, 62] utilize the matched subspace algorithm to detect received opportunistic signals to provide initial estimates of unknown parameters. These parameters include: 1. The unknown number of satellites, 2. The corresponding periodic signal, and 3. Linear frequency modulation parameters (Doppler and Doppler rate). This method detects satellite signals in the environment by solving hypothesis testing problems at different stages. Compared with reference [90], a constant Doppler subspace is used to distinguish different satellites, and the matched subspace is defined based on the LFM parameters of each satellite. At each stage, a hypothesis test is conducted to detect the strongest satellite signal, and the LFM subspace of the previously detected satellite periodic signal is set to zero. A generalized likelihood ratio detector is used in each stage of the sequential detection algorithm. In the first stage of the sequential algorithm, it detects whether there is the strongest satellite signal. If the null hypothesis is accepted, it means that no satellite signal is detected in the received signal. If the null hypothesis is rejected, it indicates that there is at least one satellite signal, and if the detected satellite signal exists, hypothesis testing is carried out to detect the presence of other satellite signals, and the unknown LFM parameters and periodic sequence of each satellite signal are estimated at each stage.
4.6.2 Blind based approach
The core capability of a blind receiver lies in its ability to cognitively decode partially transmitted signals, estimate and track them, and ultimately generate navigation observables.
4.6.2.1 Blind beacon estimation algorithm
This algorithm postulates the existence of periodically transmitted beacon signals and performs blind estimation through coherent integration of subsequent signal transmissions. The methodology proves applicable during online navigation operations or pre-navigation calibration phases, enabling subsequent utilization in formal navigation processes. As beacon signals become a priori known (or estimated) during navigation phases, such receiver architectures typically achieve concurrent estimation of carrier phase, Doppler shift, and code phase parameters through adaptive tracking loops. Currently, most communication systems incorporate periodic reference signals, which can thus be leveraged for opportunistic navigation [74, 75]. Reference [76] proposed a blind opportunistic navigation (BON) framework, which can decode and utilize signals of opportunity for navigation without fully understanding the prior knowledge of the signals. The framework primarily comprises three key steps: blind Doppler frequency estimation, coherent integration, and beacon signal decoding. The blind Doppler frequency estimation algorithm is employed to estimate the Doppler frequency of the opportunity signal, thereby mitigating the impact of high dynamic effects on the coherent integration time. Building on this foundation, reference [77] introduced a blind channel equalization step to compensate for channel distortion, focusing on the blind detection and tracking of M-PSK modulated signals. A chirp parameter estimation algorithm based on the Wigner distribution was proposed to estimate and track the time-varying Doppler frequency, achieving long-term coherent integration of the signal and enhancing the signal-to-noise ratio. Drawing on the aforementioned two articles, reference [78] presented a navigation framework with high computational efficiency, concentrating on the detection of constrained unknown beacon signals. Low-complexity beacon detection and blind Doppler frequency shift estimation algorithms were proposed, addressing detection challenges under conditions of unknown beacon signals and low SNR. Literatures [79–81] concentrate on extracting navigation information from orthogonal frequency division multiplexing (OFDM) signals with unknown signal structures. Particularly for OFDM signals transmitted by low Earth orbit (LEO) satellites, the importance of blind signal processing at the receiver end is emphasized. That is, without knowledge of the specific signal structure, navigation information within the signal is detected, tracked, and utilized through cognitive decoding techniques. Reference [79] proposed a computationally efficient blind Doppler frequency estimation algorithm and discussed solving the ambiguity problem in Doppler estimation using polynomial curve fitting. Reference [80] also proposed a blind Doppler estimation algorithm, focusing more on reducing the impact of Doppler frequency through preprocessing and employing a difference framework to resolve the ambiguity problem in Doppler estimation, thereby obtaining more accurate navigation observations. The aforementioned algorithms are all designed for a single signal source. Literature [81] proposed a receiver architecture for signal detection and tracking in both static and high dynamic Doppler rate scenarios, capable of jointly estimating the unknown reference signals of multiple signal sources. This architecture can detect and track the “always-on” and “on-demand” signals of 5G NR and Starlink satellites. Reference [82] do not assume any specific modulation scheme but only assume the presence of a periodic reference signal in the received signal and proposed a general receiver architecture, highligh ting the versatility and adaptability of the receiver to different signals.
4.6.2.2 Frequency-domain estimation methodology
This approach initiates analysis through spectral decomposition of received signals, leveraging distinctive spectral signatures to construct optimized estimator configurations. References [83, 84] both employ blind Doppler discriminators based on spectral cross-correlation and Kalman filter (KF) for Doppler tracking. However, literature [83] focuses on the design of a three-stage blind receiver, while literature [84] focuses on the estimation framework of blind periodic sequences, estimating LEO satellite repeat sequences without knowledge of the signal structure and proposing a solution to the ambiguity of Doppler estimation. As demonstrated in literature [59], spectral analysis of Starlink beacon signals revealed three critical subcarrier characteristics: (1) an approximate linear correlation between spectral bandwidth and integration time, (2) constant signal power characteristics, and (3) individual subcarriers exhibiting frequency-modulated (FM) signal behavior. This fundamental insight enables the transformation of Doppler extraction challenges into parameter estimation problems for short-duration linear frequency-modulated (LFM) signals. Based on this framework, the authors developed a frequency-domain sliding-window estimation algorithm that successfully achieved Doppler shift estimation through adaptive spectral tracking and phase continuity maintenance across consecutive window intervals.
In observable extraction, cognitive-based and blind-based approaches leverage the characteristics of opportunistic signals in the time and frequency domains, respectively. Table 7 summarizes the advantages and disadvantages of these algorithms. Cognitive-based methods are more suitable for scenarios with known signal structures, such as commercial satellites, offering high accuracy but limited flexibility. In contrast, blind-based approaches are ideal for unknown or dynamic signals, like emerging LEO constellations, providing robustness but requiring solutions for ambiguity and computational complexity issues.
TABLE 7 | Comparison of different extraction methods.	Approach	Algorithm	Advantages	Disadvantages
	Cognitive-based	Mth-power	Computationally efficient, suitable for MPSK signals	Limited to specific modulations, requires initial frequency offset assumptions
	Code phase search	High precision, strong noise resistance	Depends on PN code orthogonality, high computational load
	Matching subspace	Multi-satellite joint detection, high dynamic parameter estimation	High complexity, assumes periodic signals
	Blind-based	Blind beacon estimation	No prior knowledge required, adaptable to low SNR	Depends on periodicity, limited integration time
	Frequency-Domain Estimation	Robust performance	Low spectral resolution, Doppler ambiguity requires resolution


5 FUTURE RESEARCH DIRECTIONS
The preceding research has demonstrated that LEO opportunistic positioning can function effectively in GNSS-denied environments. However, most of these achievements have been realized through data post-processing, which is still far from practical application. In addition to the error sources that impact the opportunistic positioning system, there are still several issues that require further investigation to facilitate the eventual application of the opportunistic positioning system. The following section summarizes the key issues that warrant further exploration.
5.1 Satellite identification
The receiver in both GNSS systems and opportunistic positioning systems must know the satellite’s position and velocity of the transmitted signal, which is essential for the receiver to achieve positioning. It is relatively easy for GNSS systems to obtain such information, but it is challenging for opportunistic positioning systems. For existing opportunistic signal receivers, it is common to track a specific satellite and receive signals from only one satellite at a time. In practical positioning tasks, the opportunistic receiver often does not know which satellite the received signal is from. It must match the observed signal with one of the thousands of candidate satellites to identify and obtain its orbital information. This can be achieved by searching for the most matching satellite from all possible satellite ephemerides using the measured Doppler curve and the receiver’s prior position information [58]. However, when the receiver’s prior position information is unavailable or the satellite orbits are very close, this method may fail. Therefore, it is urgent to find a new technology that allows the receiver to recognize satellites through satellite signals.
5.2 Optimization of location algorithm
For receivers in both GNSS and opportunistic positioning systems, receiver initialization is required when performing a positioning solution, meaning an initial solution must be provided. In GNSS positioning, each coordinate component of the receiver’s initial position can be simply set to zero. By using the Newton iteration method, a convergent solution can be obtained within just a few iteration cycles. In Doppler-based LEO positioning, an appropriate initial value must be given. When using a least squares-based positioning solution, the epoch solution will fail if the initial value error exceeds 200 km [10]. In the Extended Kalman Filter (EKF) method, a larger error in the initial iteration value will lead to a larger velocity error [85]. In low dynamic scenarios, this issue can be resolved by introducing a Tikhonov regularization term [86]. However, this method fails in high dynamic scenarios. Therefore, it is of great significance to study the sensitivity of initial values in LEO Doppler positioning and to obtain accurate initial values without relying on additional prior information.
5.3 Multi source fusion location
For positioning in GNSS-denied environments, multi-sensor data fusion can compensate for PNT services by utilizing other navigation sources when GNSS is unavailable. Currently, the multi-source fusion of LEO opportunistic signals includes: multi-constellation fusion [84], fusion with inertial navigation systems [87], or fusion with altimeters [88]. Additionally, fusion with other sensors, such as LiDAR or ground-based opportunistic PNT, may also be beneficial [82]. In general, sensor fusion enhances the positioning accuracy and availability of opportunistic systems by incorporating additional information. Although multi-source fusion offers numerous advantages, the complexity of the receiver increases due to the fusion processing of multi-source data. Moreover, under multi-source fusion, each data source is interconnected and influences the others. If one of them is erroneous, it will also impact the final positioning result. Therefore, it is necessary to study localization algorithms with low complexity and various fusion strategies that can identify and eliminate abnormal data, leveraging the benefits of multi-source data.
5.4 Observation extraction in complex environment
At present, most of the published experiments on low Earth orbit (LEO) opportunistic positioning are conducted in simple scenarios, where there is an absence of obstructions from surrounding buildings or trees. The received signals in these experiments typically have a high signal-to-noise ratio (SNR) and are less affected by multipath effects. To date, only a limited number of studies have specifically considered signals with low SNR in complex environments [44, 57, 89]. Low-cost or small antennas are unable to provide significant antenna gain, and interference and occlusion in complex environments further reduce the SNR of the signals. A low SNR makes signal detection more challenging, leading to difficulties in observation extraction and reducing the accuracy and availability of the estimated observations. Therefore, it is urgent to investigate observation extraction methods in complex environments, with a focus on the performance of observable signal estimation algorithms.
6 CONCLUSION
This paper reviews the current state, key technologies, and future research directions in positioning using terrestrial low-orbit opportunistic signals. As the limitations of Global Navigation Satellite Systems (GNSS) in complex environments become increasingly evident, terrestrial low-orbit opportunistic signal positioning has emerged as a promising complementary approach. We delve into the principles of Doppler positioning, analyze error sources, and explore observable extraction methods while summarizing major technological advancements to date. The accuracy and reliability of observable extraction are critical to positioning performance. Existing methods are introduced and compared, and challenges in positioning algorithms—such as sensitivity to initial values and the complexity of multi-source data fusion—are highlighted. Cognitive-based methods rely on prior signal knowledge, while blind approaches offer greater adaptability; both face accuracy challenges from multipath effects and low signal-to-noise ratios in complex environments.
Future development in terrestrial low-orbit opportunistic signal positioning is likely to focus on several key areas: 1) Advancing satellite recognition technology and developing efficient signal feature extraction and matching algorithms; 2) Refining positioning algorithms to create robust methods that minimize dependence on prior information; 3) Promoting multi-source fusion positioning technology to enhance accuracy and availability; 4) Designing signal processing algorithms for complex environments to improve the availability and reliability of observables.
In conclusion, terrestrial low-orbit opportunistic signal positioning holds significant potential. However, breakthroughs are still needed in observable extraction, algorithm optimization, multi-source fusion, and adaptability to complex environments. These advancements will pave the way for practical applications and provide reliable PNT services in GNSS-denied environments.
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Integrity monitoring is crucial in applications closely related to the safety of human life and property, such as aviation, maritime navigation, autonomous driving, and rail transportation. Receiver autonomous integrity monitoring (RAIM) has attracted significant attention due to its comprehensive monitoring coverage and fast alerting capability. The paper provides a comprehensive review of RAIM algorithms for global navigation satellite system (GNSS) positioning applications. The parameters related to integrity assessment and typical fault detection and exclusion methods are reviewed, and RAIM is categorized into three types of methods: error probability distribution model-based, set representation-based, and machine learning-based. The latest state-of-the-art research, along with the strengths and shortcomings of each type of method, is presented for each type. The opportunities for the future development of RAIM are analyzed in the light of current challenges and existing results, aiming to promote further research and provide effective assurance for GNSS integrity.
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1 INTRODUCTION
The global navigation satellite system (GNSS) offers many advantages, such as all-weather, all-time, and global coverage, providing accurate and extensive positioning, navigation, and timing services for aviation [1], maritime navigation [2], railway transport [3], and autonomous driving [4]. Among these, integrity is one of the key criteria for evaluating GNSS performance. It is used to assess the trustworthiness of the navigation system, and its concept originally came from the field of aviation, aiming to provide highly reliable navigation and positioning information for civil aviation users. With the widespread application of GNSS in fields closely related to the safety of human lives and property, the concept of integrity has been expanded to other areas and has attracted much attention.
Integrity is defined as the ability to alert the user in a timely manner when the performance of the navigation information provided by GNSS fails to meet specified requirements [5, 6]. In January 2024, two ship groundings occurred in the Israeli ports of Haifa and Ashdod, as a result of excessive global positioning system (GPS) positioning deviation but the receivers did not warn the crews in time [7], which shows that safeguarding GNSS integrity is crucial for the safety of human lives and property. On the other hand, due to the vulnerability of the GNSS signals themselves, they are highly susceptible to jamming and spoofing. On 6 September 2024, OPSGROUP, an organization of aviation practitioners, compiled statistics on GPS spoofing in civil aviation, and the data showed that in the first three-quarters of 2024, an average of up to 1,500 flights were subjected to GPS spoofing every day [8]. The frequent occurrence of jamming and spoofing events will seriously weaken GNSS integrity, at the same time, ephemeris and clock failures, ionospheric and tropospheric fluctuations, and common multipath and non-line-of-sight (NLOS) signals in urban canyons may pose a threat to GNSS integrity, leading users to incorrectly believe and adopt navigation information with excessive errors, which can jeopardize the safety of human life and property. Therefore, providing accurate and reliable integrity services for GNSS users is an urgent issue, and integrity monitoring of GNSS is crucial and irreplaceable.
Depending on the stage of implementation of integrity monitoring, it can be divided into system-level and user-level methods. System-level methods rely on integrity information broadcast by satellite-based or ground-based monitoring stations. User-level methods, on the other hand, do not rely on external information or facilities, but only utilize their own redundant measurement information for integrity monitoring [9], and their main means of implementation is receiver autonomous integrity monitoring (RAIM). As shown in Figure 1, RAIM is theoretically able to monitor faults and abnormalities in the space segment, signal propagation segment, and user segment, with a comprehensive monitoring scope. Additionally, because RAIM is directly deployed at the user terminal, it can respond quickly to all kinds of faults and alert the user in time, and the response speed is usually much better than that of system-level integrity monitoring methods.
[image: Illustration showing GPS signal propagation issues. Three segments are depicted: space, signal propagation, and user. Satellites transmit signals to buildings and a moving car. Challenges include ionospheric and tropospheric fluctuations, ephemeris and satellite clock faults, and interference like jamming and spoofing.]FIGURE 1 | Faults or anomalies that may threaten integrity.
Several review works have summarized the research progress of RAIM. For instance [5], focuses on the advancements of RAIM in aviation [6], summarizes the integrity detection algorithms used in urban canyon environments [9], systematically reviews the integrity monitoring methods in GNSS and inertial navigation system (INS) integrated navigation for autonomous driving applications, and [10] highlights the progress in autonomous integrity monitoring within multi-source fusion navigation. However, these works do not provide a systematic overview of the more novel machine learning (ML)-based and set representation-based RAIM algorithms. Furthermore, many innovative developments in traditional RAIM have emerged, which are not covered in the existing reviews.
Therefore, this paper systematically describes the state-of-the-art RAIM algorithms for GNSS positioning applications. The remaining chapters are organized as follows: Section 2 reviews the parameters related to integrity assessment and typical fault detection and exclusion (FDE) methods. Section 3 introduces the state-of-the-art of three types of RAIMs: those based on the error probability distribution models, set representation, and ML, respectively, and analyzes the strengths and weaknesses of each. Section 4 examines the future development opportunities for RAIM by considering current challenges and existing research results. Finally, Section 5 provides conclusions and future outlooks.
2 BASIC DEFINITION AND THEORY
2.1 Integrity performance evaluation and related parameters
Four metrics—accuracy, integrity, continuity, and availability—are usually used to evaluate GNSS navigation performance, and the relationship between them can be represented by the navigation performance pyramid [6], as shown in Figure 2.
[image: Pyramid diagram illustrating levels of data quality. The base labeled "Accuracy" supports "Integrity," followed by "Continuity," and the apex labeled "Availability," with arrows indicating upward progression.]FIGURE 2 | Navigation performance pyramid [6].
Among them, integrity is used to assess the trustworthiness of GNSS, which is measured by a series of parameters such as alert limit (AL), time to alert (TTA), integrity risk (IR), protection level (PL), etc. [6, 11], taking the positioning application as an example, these parameters are defined as follows:
AL: The maximum tolerable position error (PE), usually preset according to user requirements. Different requirements often exist in the horizontal and vertical directions, so it can be further divided into horizontal alert limit (HAL) and vertical alert limit (VAL).
TTA: The maximum tolerable time from when the PE exceeds the AL to when the user receives an alert.
IR: The maximum tolerable probability that the PE exceeds the AL but the user is not alerted within the TTA. This is usually given in terms of per hour or per mile [9]. Alternatively, IR can be defined as the maximum tolerable probability that RAIM fails to alert the user in time in case of a position failure.
PL: Since PE is often difficult to calculate directly, PL is used to represent the statistical bounds of PE. PL should fulfill the following condition: when PE exceeds AL, the probability that PL is less than AL should not exceed the specified IR, as shown in Equation 1.
[image: It seems there is an issue with the image upload. Please try uploading the image again or provide a URL. Optionally, you can add a caption for additional context.]
PL is usually calculated by the user to determine the availability of the navigation system, declaring the navigation system available when [image: The image shows a mathematical expression with "PL" on the left, a less than or equal to symbol in the center, and "AL" on the right.], and declaring the navigation system unavailable and alerting the user when [image: Text depicting the mathematical inequality "PL is greater than or equal to AL".]. Similar to AL, PL can be further classified into horizontal protection level (HPL) and vertical protection level (VPL) [6].
The relationship between the integrity parameters can be more intuitively understood by using the Stanford Diagram [12], as shown in Figure 3. When the system is working normally, [image: The image shows the inequality: PE is less than or equal to PL, which is less than AL.], corresponding to region ① in the figure. When [image: Text reads "PL ≥ AL" with a large greater than or equal sign between the letters.], RAIM will declare the navigation system unavailable and issue an alert that the user should not trust the current navigation system, corresponding to regions ③, ④, and ⑤ in the figure, where the events in region ③ unnecessarily declares the navigation system unavailable and reduces the availability. When the actual PE exceeds PL, the navigation system provides misleading information to the user, and the probability of its occurrence is called the probability of misleading information [image: It appears you uploaded a small mathematical symbol. The symbol "P" with a subscript "MI" likely represents a specific term in mathematics or physics, potentially related to probability or another function.], corresponding to regions ②, ⑤, and ⑥ in the figure. The events in regions ② and ⑤, only provide misleading information and the system is not in a dangerous state, but the events in region ⑥, in which the PE still exceeds AL despite the declaration of the navigation system’s availability, results in the user mistakenly trusting the wrong navigation information and is in a dangerous state, and its occurrence probability is called the hazardous misinformation probability [image: The image shows the mathematical notation "P" with a superscript "HMI". It appears to be related to a formula or equation.].
[image: Graph depicting a coordinate system divided into four quadrants by position error (PE) and protection level (PL). Quadrant 1, in blue, shows system unavailability. Quadrant 2, in red, indicates hazardously misleading information. Quadrant 3, in green, represents nominal operations. Quadrant 4, in light blue, describes misleading information. Dashed lines indicate alert limits. Boundaries highlight conditions of alert and operational states.]FIGURE 3 | Stanford Diagram [12].
The RAIM algorithm should minimize the probability of events in region ③ to improve system availability; and minimize [image: I'm unable to view the image you are referring to. Please upload the image file or provide a URL so I can assist you further.] and [image: The text shows the mathematical term "P" with a superscript "HMI."] so that they do not exceed at least the preset IR to guarantee integrity.
2.2 Typical fault detection and exclusion method
RAIM usually requires fault detection, identification, and exclusion based on redundant measurement information. This subsection introduces several typical FDE methods to set the stage for the subsequent introduction of RAIM algorithms.
2.2.1 [image: Mathematical notation of the chi-squared symbol: a lowercase Greek letter chi (χ) followed by the superscript number two.] test
The [image: Greek lowercase letter chi, raised to the power of two, indicating "chi-squared" commonly used in statistical analysis.] test [13], which is the most typical fault detection method, constructs the residual in the least squares (LS) algorithm or the innovation in the Kalman filter (KF) as a test statistic [image: To generate alt text, please upload the image or provide a URL. You can also include a caption for additional context.], as shown in Equation 2:
[image: Mathematical equation: \( x_k = r_k^\top S_k^{-1} r_k \).]
In the equation, [image: It seems there's an issue with the image upload. Please try to upload the image again or provide a URL if it is hosted online. Additionally, you can add a caption to give more context.] is the residual or innovation, [image: It seems there is an issue with the image upload. Please try uploading the image again, and ensure it is in a supported format like JPEG, PNG, or GIF. You can also provide a URL to the image or add a caption for context.] is its covariance matrix, and [image: Please upload the image you would like me to describe, and I'll generate the alternate text for you.] is the index of the measurement epoch, assuming that the measurement noise follows a zero-mean Gaussian distribution, [image: If you provide the image or a URL to the image, I can help you generate the alternate text for it. Let me know if you need any assistance with uploading it!] will obey a central [image: A lowercase Greek letter chi followed by the superscript number two, representing the chi-squared distribution or chi-squared statistic commonly used in statistical analysis.] distribution under the fault-free hypothesis [image: I'm sorry, I can't access or view the image directly. Please provide a description or upload the image.] (fault-free case), and a non-central [image: Greek letter chi, squared, represented as "χ²".] distribution under the fault hypothesis [image: Please upload the image, and I can help generate the alternate text for you.] (faulty case), as shown in Equation 3:
[image: Chi-squared distribution equation showing \(\xi \sim \chi^2(df)\) under the null hypothesis \(H_0\), and \(\xi \sim \chi^2(df, \lambda)\) under the alternative hypothesis \(H_1\), labeled as equation (3).]
where [image: Sure, please upload the image you'd like me to describe.] is the degree of freedom of the [image: Chi-squared symbol (\( \chi^2 \)) used in statistics to represent a chi-squared distribution, commonly involved in hypothesis testing and categorical data analysis.] distribution, depending on the number of visible satellites, and [image: Please upload the image or provide a URL so I can help you generate the alternate text.] is the non-centrality parameter.
When [image: It seems there was an issue with the image upload. Please try uploading the image again so I can help generate the alt text for you.] is greater than the detection threshold [image: It appears there is no image provided. Please upload the image or share a URL, and I can help generate the alternate text for it.], the fault hypothesis [image: It seems there might have been an issue with the image upload. Please try again by attaching the image or providing a URL. You can also add a caption for context if needed.] is accepted to alert the user, and vice versa, the fault-free hypothesis [image: A stylized capital letter "H" followed by a subscript zero.] is accepted. The false alarm rate [image: It seems there might be an issue in displaying the image. Please upload the image directly or provide a link to the image for me to generate the alternate text.] and the missed detection rate [image: It appears the input doesn't include a visible image. Please upload the image directly or provide a URL for me to generate the alternate text.] are usually set according to the application requirements, and their relationship with [image: Please upload the image or provide a URL for me to generate the alternate text.] is shown in Figure 4.
[image: Graph showing two probability density functions, with a vertical axis labeled "Probability Density Function" and a horizontal axis labeled "test statistic." The blue curve represents the null hypothesis, H0, while the red curve represents the alternative hypothesis, H1. A vertical dashed line indicates a critical value, with shaded regions highlighting type I and type II errors.]FIGURE 4 | Principle of the [image: Sorry, I cannot generate alt text for this image without being able to view it. Please upload the image or provide a URL so I can assist you.] test.
After a fault is detected by the [image: Chi-squared symbol, a Greek letter χ with a superscript 2, often used in statistical formulas and hypothesis testing.] test, the fault can be further identified by the subset [image: The image shows the Greek letter chi-squared, represented by the lowercase chi (χ) followed by a superscript two. It typically symbolizes the chi-squared statistic used in statistical tests.] test [14], a method that recalculates the test statistic by removing one satellite measurements in turn, and ultimately selects the set of satellite measurements that passes the [image: Mathematical symbol "chi-squared" denoted as the Greek letter chi (χ) with a superscript two (²).] test with the smallest test statistic.
2.2.2 W-test
The w-test [15, 16] implements the FDE by performing a mean-shifted Gaussian test on each component of the normalized residual or innovation, and its test statistic is calculated as shown in Equation 4:
[image: The equation depicts \( w_k^{(i)} = \frac{r_k^{(i)}}{\sqrt{S_k^{(ii)}}} \) with a reference to equation (4) on the right side.]
where [image: Mathematical expression with a lowercase "r" subscript "k" and superscript "(i)".] is the [image: It seems like there's an issue with the image upload or link. Please try uploading the image again, and I will help generate the alternate text for you.]-th component in the residual or innovation [image: Please upload the image you'd like me to generate alternate text for.], and [image: Mathematical expression with variable \( s \) subscript \( k \) and superscript \( (i,j) \).] is the [image: It seems there's no image uploaded. Please try uploading the image again, and I'll help generate the appropriate alt text for you.]-th diagonal element in its covariance matrix [image: Please upload the image you would like described.]. If [image: Mathematical notation showing \(w_k^{(i)}\), where \(k\) and \(i\) are subscripts and superscripts, respectively.] exceeds the detection threshold [image: Mathematical expression depicting a normal distribution: \( N_{1-P_{FA}/2}(0, 1) \).], the [image: Please upload the image so I can help generate the alternate text for it.]-th satellite measurement is considered to be possibly faulty, and after completing the test for all satellite measurements, the maximum value exceeding the detection threshold is usually considered faulty and excluded, after which the w-test is re-run to verify that no other faulty measurements still exist. Typically, the w-test is used for fault identification and exclusion when a fault is detected in the [image: A mathematical symbol depicting the Greek letter chi followed by a superscript number two, representing chi-squared.] test.
2.2.3 Solution separation
The solution separation (SS) [17, 18] method is no longer carried out in the range domain but directly implements fault detection on the position domain and is able to synchronize fault identification and exclusion. The computation process of its test statistics is shown in Figure 5, It accepts the fault hypothesis [image: It seems like you've referenced an image, but I can't view the image directly. Could you please upload the image or provide a link to it? Then I can help generate the alternate text for it.] and excludes the corresponding fault measurement when the test statistic [image: Mathematical expression showing "d" subscript "k" superscript "(i)".] exceeds the corresponding detection threshold [image: Mathematical expression showing the variable \( D_k^{(i)} \).].
[image: Flowchart illustrating the process of calculating full and sub-solutions from measurements. It starts with all measurements, leading to the full solution \(x_0\). Each measurement exclusion leads to sub-solutions \(x_1', x_2', ..., x_m'\), followed by calculation of differences \(a_k\), represented as \(|x_0 - x_k'|\).]FIGURE 5 | Calculation flowchart of the SS method.
2.2.4 Likelihood ratio test
The likelihood ratio test [11] is able to give the optimal result for hypothesis testing, using the ratio of the likelihood function of the measurement vector under opposing hypotheses to construct the test statistic, as shown in Equation 5:
[image: Equation showing \( k = \ln \left( \frac{\rho(y_t \mid H_m)}{\rho(y_t \mid H_0)} \right) \), with the equation labeled as number (5).]
In the equation, [image: Equation showing conditional probability: \( p(y_k \mid \mathcal{H}_0) \).] is the likelihood function under the fault-free hypothesis [image: It seems like you're referencing a mathematical symbol, likely for the null hypothesis denoted as "H sub zero" or "H naught" in statistics. If you meant to upload an image, please try re-uploading it. If you have a different request, feel free to provide more information!], and [image: The image shows a mathematical expression: lowercase p, followed by an opening parenthesis. Inside the parenthesis, there is a lowercase y subscript k, a vertical bar, and script capital H subscript m, followed by a closing parenthesis.] is the likelihood function under the fault hypothesis [image: It appears there is no image present. Please upload an image or provide a URL for me to generate the alternate text.]. In practical RAIM applications, [image: Mathematical expression displaying the conditional probability \( p(y_k \mid \mathcal{H}_m) \).] is usually computed after excluding the measurement under the corresponding fault hypothesis [19, 20], and this approach is similar to the SS method, which can also be synchronized to achieve FDE.
3 RAIM ALGORITHMS
RAIM algorithm usually consists of two modules: the FDE module and the error bounding module. The FDE module detects, identifies and excludes faulty measurements based on the consistency checking principle using redundant measurement information. For a single-constellation receiver, at least five visible satellites are required to perform fault detection, and at least six visible satellites are required to perform fault exclusion [6]. The error bounding module is usually realized by calculating the PL, which is calculated by the user according to the requirements of the IR and other parameters, and compared with the preset al to discriminate the availability of the navigation system in real time. Currently, there are two main ways of calculating PL, one is to quantify the PE caused by undetected faults in the FDE module, and the other is to try to directly characterize the PE and then calculate its statistical bounds. Figure 6 provides a typical flow of RAIM, and it should be noted that not all RAIM algorithms strictly follow this general flow, and some algorithms may include additional steps or omit specific steps.
[image: Flowchart illustrating a navigation system process. It starts with measurement data leading to state estimation. The Fault Detection and Exclusion (FDE) box calculates test statistics and thresholds, checking integrity-related parameters. Paths include checking measurement sufficiency, error bounding with PL calculations, and system availability outcomes, with loops for fault identification and system status updates.]FIGURE 6 | General RAIM algorithm flow [10].
Initially, traditional RAIM algorithms relied on prior modeling of the probability distribution of measurement errors or state estimation errors, which in turn led to the derivation of the probability distribution model of the test statistic for constructing hypothesis tests and calculating PL. However, since error probability distribution models are often difficult to build and validate accurately, the performance of RAIM based on these models is limited by the accuracy of the models, while RAIM based on set representation sidesteps this challenge by no longer treating errors as random quantities, but as unknown deterministic values. In addition, the data-driven ML approach provides another way of thinking for integrity monitoring, showing great potential and advantages in complex scenarios that are difficult to handle with traditional RAIM.
3.1 RAIM based on error probability distribution model
RAIM based on the error probability distribution model is the most widely used, which has the advantages of clear mathematical expression and the detection threshold can be calculated by the preset [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.]. Many studies have further divided the RAIM into snapshot scheme and filtering scheme, according to the number of measurement epochs used. The snapshot scheme is based on the current single-epoch measurement data only, and usually employs the LS algorithm for navigation solution calculation; The filtering scheme is based on current and historical measurement data, and usually employs the filtering methods such as the KF, extended KF (EKF), unscented KF (UKF) and the particle filter (PF), among other estimation methods for navigation solution calculation.
3.1.1 Classic LS RAIM
The classic LS RAIM is one of the most typical snapshot schemes. It models the pseudo-range error as a zero-mean Gaussian distribution in the fault-free case, introduces a mean deviation for the error distribution in the faulty case, and considers only the single fault case. The classic LS RAIM includes the pseudo-range comparison method [21], the least squares residual method [22], and the parity vector method [23]. The equivalence of these methods was theoretically demonstrated by [24], where the parity vector method employs an orthogonal transformation to convert residual vectors into parity vectors, providing computational simplicity and high efficiency in calculating test statistics [25].
In the FDE module, the classic LS RAIM employs the [image: Greek letter chi squared symbol, often used in statistics to represent the chi-squared distribution in hypothesis testing and data analysis.] test for fault detection, which constructs the normalized sum of squares of the pseudo-range residual vectors as a test statistic as shown in Equation 2; after a fault has been detected, the w-test is usually used to further identify and exclude fault.
In the error bounding module, Brown et al [26] pioneered the approximated radial protection (ARP) algorithm for calculating the PL, whose computational principle is shown in Figure 7 [13]; if the measurement noise is ignored, there is a linear relationship between the test statistic [image: I cannot view the image directly. Please upload the image or provide a URL so I can generate the alt text for you.] and the horizontal PE (HPE), and different satellites [image: Please upload the image you would like me to generate alt text for.] have their own characteristic slope [image: Text reads "SLOPE" with a subscript "i".] [27], assuming that the HPE caused by the failure of a single satellite is certain, the corresponding test statistic t is the smallest when the failure occurs on the satellite with the largest characteristic slope [image: The text "SLOPE" is displayed with the subscript "MAX" next to it, indicating a mathematical or statistical term related to the maximum slope.], making the failure most difficult to be detected. Based on this assumption, the calculation method of HPL is given as shown in Equations 6, 7:
[image: Mathematical equation showing HPL equals SLOPE sub E MAX times the square root of lambda sub min times sigma, labeled as equation six.]
[image: Mathematical equation representing the probability \( P_{\text{MD}} \) as an integral from \( n \) to \( T_{x} \) of the function \( f_{x(n-a_{\text{max}})}(x) \) with respect to \( x \), labeled as equation (7).]
[image: Graph depicting test statistics \( p_{\text{MTT}} \) versus HPE with a main line labeled "SLOPE\(_{\text{RCC}}\)" and other slope lines. Points A and B are indicated, with labels for Noise Term and Bias Term. Arrows and shaded areas provide additional context.]FIGURE 7 | Principle of PL calculation in classic LS RAIM [13].
In the equation, [image: Please upload the image or provide a URL for me to generate the alternate text.] is the standard deviation of the measurement noise, and [image: I'm sorry, I cannot view or interpret the image you mentioned. If you can, please describe the visual content or provide a link to the image.] is the minimum non-centrality parameter required to satisfy the specified [image: It seems like there's no image provided. Please upload an image or provide a URL for me to generate the alt text.] and [image: Certainly! Please upload the image or provide a URL for it, and I will help generate the alternate text for you.]. This parameter can be can be calculated according to Equation 7, where [image: Please upload the image you would like me to describe.] is the number of visible satellites.
Since the ARP algorithm ignores the effect of measurement noise, in this regard, Sang and Kubik [28] proposed an improved ARP algorithm by incorporating a term related to measurement noise to the PL calculation. The calculation principle is also shown in Figure 7 [13], when the measurement noise is ignored, the minimum detectable fault corresponds to point A in the figure, when the measurement noise is taken into account, the distribution of the test statistic t and the HPE will be elliptical, and the center of the ellipse corresponds to point B in the figure. The HPL is thus divided into bias term and noise term, as shown in Equations 8, 9. The bias term is calculated using the typical ARP algorithm, and the noise term is calculated by multiplying the expansion factor [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] and the standard deviation [image: Sure, please upload the image or provide a URL, and I can help generate the alternate text for you.] of the HPE, which is borrowed from the kSigma algorithm commonly used in the monitoring of system-level integrity [29].
[image: A mathematical equation labeled as Equation 8, showing: "HPL equals SLOPE E sub max dot p sub limit plus k dot sigma sub H."]
[image: Formula depicting the calculation of peak photon flux: \( P_{peak} = \sqrt{N_{min}} \times \sigma \), labeled as equation nine.]
In the equation, [image: It seems there was an issue with the image upload. Please try uploading the image again, or provide a URL or description if possible.] is the expansion factor related to [image: Formula showing "P" with a subscript "MD".], and [image: Please upload the image or provide its URL so I can generate the appropriate alternate text for it.] is the standard deviation of the measurement noise.
3.1.2 Advanced RAIM and relative RAIM
Classic LS RAIM is unable to meet the high integrity requirements of the precision approach phase of civil aviation. In response, the GNSS Evolutionary Architecture Study (GEAS) Panel developed advanced RAIM (ARAIM) algorithm [30–34]. Compared with the classic LS RAIM algorithm, ARAIM has several advantages, including the ability to detect and recognize multi-faults, applicability to multi-constellation GNSS, the ability to monitor integrity in the vertical direction, and the capability to eliminate the first-order ionospheric delay using dual-frequency measurements.
ARAIM employs the Multiple Hypothesis Solution Separation (MHSS) [35, 36] algorithm for FDE, which allows for multi-faults detection by additionally considering multi-faults scenarios on top of the traditional SS method. In addition, ARAIM assigns a specific [image: It seems like there was no image uploaded. Please upload the image or provide a URL, and I will help generate the alternate text for it.] and [image: Symbol "P" with a superscript letter "H" and subscript "MI" in serif font.] values to each fault hypothesis, performs independent hypothesis testing and PL computation, and assigns a specific [image: The image shows the mathematical expression \( P^{\text{HMI}} \) in italicized font.] to the fault-free hypothesis [image: Stylized illustration of the null hypothesis symbol, 𝐻₀, commonly used in statistical testing to represent the default assumption that there is no effect or relationship in the population.] for the computation of PL in the case of fault-free. Ultimately, it takes the maximum value as the final PL. The detailed algorithm of ARAIM can be found in [37].
The ARAIM algorithm relies on periodically received integrity support messages (ISM) [38]. To guarantee integrity over longer reception intervals, relative RAIM (RRAIM) has been proposed [30, 39]. The RRAIM algorithm employs a time-differenced carrier phase measurement, defining the epoch of the received ISM as the initial time, and defines the interval from the current epoch back to the initial time as the coasting time. The algorithm combines the pseudo-range of the initial time and the variation of the carrier phase within the coasting time to construct a new measurement model, which employs a residual-based χ2 test for fault detection. Similar to ARAIM, PL is calculated under each hypothesis separately, and the maximum of all results is taken as the final PL [40]. pointed out that system availability is closely related to the length of the coasting time, with the best availability achieved when the coasting time is around 1 min; after this, availability gradually decreases with the extension of the coasting time.
So far, there are still ongoing research efforts aimed at improving to the ARAIM algorithm to improve its performance, and these improvements are mainly focused on the following four aspects:
	1) When the number of visible satellites is large and the maximum number of faults (the hypothesis that the number of faults is greater than this value is ignored) is large, the computational burden of ARAIM increases significantly, so there are researches aiming to improve its computational efficiency.
	2) The traditional ARAIM algorithm assigns [image: It seems there was an issue displaying the image. Please upload the image or provide a URL for it, and I will create the alternate text for you.] and [image: The text "P superscript HMI" is shown in a stylized serif font, indicating emphasis or technical notation.] fixed to each fault hypothesis [image: It appears there was an issue with the image upload or link. Please ensure that the image file is uploaded or provide a correct URL. If you have additional context or a description, feel free to include that as well.], and simply averages them for the same type of fault hypotheses, in this regard, some studies have proposed to optimize the allocation of [image: Please upload the image or provide its URL so I can generate the alt text for you.] and [image: Mathematical notation showing the letter "P" with a superscript and subscript, where the superscript is not visible and the subscript is "HMI."] to improve the availability.
	3) ARAIM also models the measurement errors as Gaussian distributions and obtains parameters such as the mean and variance of the error model based on the ISM parameters, and some studies aim to improve the performance of ARAIM by accurately calculating the model parameters or improving the error model.
	4) The traditional ARAIM is based on pseudo-range only, in view of the high accuracy advantage of carrier phase, some studies have adopted carrier phase measurement on the basis of ARAIM framework.

This paper summarizes the latest ARAIM improvement studies in the above four aspects as shown in Table 1.
TABLE 1 | Status of ARAIM improvement research.
[image: A table detailing various categories of GPS improvement approaches, including computational efficiency, allocation optimization, error model optimization, and carrier phase introduction. It outlines methods such as using orbital planes, feedback structures, and optimization algorithms. The table includes comments on effectiveness and computational impact, with references numbered from forty-one to fifty-one.]3.1.3 KF-based RAIM
The above two types of methods belong to the category of snapshot scheme, which only uses single-epoch measurements, and can quickly detect step errors, but the detection ability of slowly growing errors (SGEs) is seriously insufficient; in addition, they are only applicable to receivers that use the LS algorithm for navigation solving, and can not be applied to the real time kinematic (RTK) or precise point positioning (PPP) receivers that have to use filtering methods such as KF. The KF-based RAIM (KF-RAIM) algorithm introduced next can well solve the above problems. Traditional KF-RAIM borrows from the classic LS RAIM and employs residuals or innovations for FDE, such as autonomous integrity monitoring by extrapolation (AIME) [52, 53], extended RAIM (ERAIM) [54, 55], and other typical algorithms. AIME constructs the normalized sum of squares of the innovations [image: It seems like there is an issue with the input. Please try uploading the image again, and I'll be happy to help with the alt text!] as the test statistic [image: Mathematical notation expressing the variance of a sample, represented by \( s^2_k \).], and to improve the detection of SGEs, performs a weighted average within a sliding time window, as shown in Equations 10–12:
[image: Equation displaying the sum of squares of differences between individual values and the average, divided by the product of the standard deviation and the average, used for statistical analysis.]
[image: Mathematical expression showing \( x_{\text{avg}} = (S_{\text{avg}}^{-1})^{-1} \sum_{j=k-r+1}^{k} S_{j}^{-1} r_{j} \). Numbered as equation (11).]
[image: Equation displaying the inverse of the average symbol \( S^{-1}_{\text{avg}} \) equals the sum from \( j = r+1 \) to \( k \) of \( S^{-1}_j \). The equation is labeled as equation (12).]
where [image: To generate alt text for an image, please upload the image file or share the link to it. If you have a caption or specific details you want included, feel free to add that information as well.] is the time window length, [image: To generate alternate text, please upload the image or provide a URL.] is the innovation, and [image: It seems like there was an issue with the image upload. Please try uploading the image again, or provide a URL or description for additional context.] is its covariance matrix. The detection delay of the AIME algorithm for the SGEs is inversely proportional to its growth rate, in order to further reduce the detection delay, Bhatti and Ochieng [56] proposed a rate detection method, which adds a KF based on the AIME algorithm to monitor the rate of change of [image: The image shows a mathematical expression with a variable "s" raised to the power of two, and a subscript "k."], reducing the SGEs detection delay by more than 33%.The ERAIM algorithm [54, 55], on the other hand, combines the predicted state vectors and measurement vectors in the KF, constructs a new measurement model and calculates the residuals, which in turn is used for the FDE using the [image: Greek letter chi-squared in a stylized font.] test and the w-test. In addition, the correlation coefficients between the test statistics are also calculated by ERAIM, which is used to analyze the separability of the faults.
Carrier phase measurements are usually several orders of magnitude more accurate and more robust to noise compared to code measurements. Therefore, Feng et al. [57] developed carrier phase-based RAIM (CRAIM) using innovations to guarantee the integrity of relative positioning, and Schuster et al. [58] further utilized CRAIM for RTK positioning. The CRAIM algorithm uses the double difference of pseudo-range, wide lane, and carrier phase measurements as the EKF measurements, estimating the ambiguity of whole cycles as states to assist in ambiguity resolution. In addition, CRAIM can use the carrier phase measurements to construct a specialized test statistic for detecting cycle slip faults. Addressing the lack of fault identification capability in the CRAIM algorithm, Liu et al. [59] further proposed an extended w-test method with multi-fault detection and identification capability.
In addition to the KF-RAIM based on residuals or innovations, the KF-RAIM based on SS is also widely used [17]. Its test statistics are computed as shown in Figure 4, featuring the unique capability of using both main filter and sub-filters to compute the full solution [image: Mathematical notation depicting "x-hat sub k superscript zero,” indicating an estimated or predicted value of x indexed by k at an initial state or step.] and sub-solution [image: Mathematical expression showing \(\hat{x}_k^{(i)}\), where \( \hat{x} \) represents an estimated value with subscript \( k \) and superscript \( (i) \).] in parallel. However, the method proposed in [17] lacks multi-fault detection capability and cannot detect INS fault in GNSS/INS integrated navigation. To address this problem, Bhatti et al. [60] proposed a FDE method using a multi-stage parallel subset filter based on the MHSS, which can detect and identify double faults, including INS fault. Zhang et al. [61] further improved the filter bank scheme so that it can be applied to carrier phases for integrity monitoring in PPP, and noting that periodic initialization of the filters can reduce the maximum number of faults that need to be considered, thereby effectively reducing the computational burden. Meng et al. [62], instead of adopting the filter bank scheme, consider the new measurement model constructed in ERAIM as a “pseudo-snapshot” model, and then use the least squares form of the SS method to compute the full solution [image: Mathematical expression showing the variable \(\hat{x}_k^{(0)}\).] and the sub-solution [image: Mathematical notation showing \(\hat{x}_k^{(i)}\), where \(\hat{x}\) is indexed by \(k\) and superscripts \(i\).], which reduces the computational burden to some extent. Gao et al [63] further applied this method to integrity monitoring in RTK positioning and used it to detect fault ambiguity solution.
In terms of error bounding, the innovation or residual-based KF-RAIM divides the PL into a noise term and a bias term [64], where the noise term represents the upper bound of the PE caused by the noise, and the bias term represents the upper bound of the PE caused by measurement bias. In contrast, the SS-based KF-RAIM directly takes the detection threshold [image: Mathematical expression showing \( D_k^{(i)} \), where \( D \) is subscripted with \( k \) and superscripted with \( i \) in parentheses.] in each fault hypothesis [image: It seems there was a mix-up with your request. If you meant to upload an image or share a URL, please do so. Alternatively, you can provide a description for me to assist you with.] as a bias term, as shown in Equation 13:
[image: Mathematical expression showing the formula for \( PL_k \), defined as the maximum value between zero and the sum of \( a_k^{(o)} \) and \( D_k^{(o)} \), labeled as equation thirteen.]
where the noise term [image: Mathematical notation showing a subscript "k" and a superscript "i" in parentheses next to the letter "a".] can be solved based on [image: I'm sorry, I cannot generate the alternate text without seeing the image. Please upload the image or provide a URL, and I'll be happy to help!] and the state covariance matrix of each sub-filter. Tanil et al. [65] compared the above two types of methods in GNSS/INS integrated navigation in an urban environment, and the results showed that when the number of visible satellites is more than four, the KF-RAIM based on the SS method has a smaller [image: Apologies, I cannot help identify or generate alternate text for this image since it seems to be missing or not properly referenced. Please provide the image or a URL for assistance.], but the computational burden is heavier.
In view of the high accuracy of carrier phase measurements, the PL calculated by KF-RAIM with the introduction of carrier phase is significantly smaller, reaching meter or even sub-meter level. This improvement enhances the availability of the system, and the experimental results of Schuster et al. [58] show that the HPL calculated by the CRAIM algorithm is in the range of 0.5 m in the case of fault-free. In addition, since carrier phase measurements usually require a ratio test [66] to verify whether the ambiguity of whole cycles is correctly fixed, Li et al. [67] introduced the concept of completeness to the ambiguity validation by defining an ambiguity protection level. When the ambiguity protection level exceeds the ambiguity alarm threshold, the ambiguity validation is considered to have failed, and an alarm is generated.
Since KF and EKF are always limited by Gaussian error models, the actual measurement error and state estimation error are affected by various factors such as receiver motion, linearization modeling errors of nonlinear models, and residual tropospheric and ionospheric errors. As a result, the Gaussian assumption is not appropriate, leading to inherent limitations in KF-RAIM [68]. In response to this challenge, some studies have begun to explore KF-RAIM based on non-Gaussian error models.
Madrid et al. [69] proposed an integrity monitoring scheme called Kalman integrated protection level (KIPL) based on the isotropy assumption (the residual vector points in any direction with equal probability over the measurement space) [70]. The approach models the measurement error as a Student’s t-distribution, which in turn leads to the derivation of a Student’s t-distribution model for the state estimation error, which ultimately allows for the computation of the PL based on the preset IR. Validation results from Gottschalg et al. [71] show that the HPL calculated by KIPL is smaller compared to that calculated by traditional KF-RAIM under the same IR requirement. Wang et al. [72] further extended this algorithm for application in PPP. Similarly, Shao et al. [68] used a robust KF based on the Student’s t distribution [73] for state estimation, which models both measurement and process noises as student’s t-distributions. This method uses a variational Bayesian approach to approximate the state estimation error as a Gaussian distribution for calculating the PL [68]. also discusses multi-faults detection and identification schemes accordingly.
3.1.4 PF-based RAIM
PF allows better state estimation in nonlinear systems and non-Gaussian noise conditions, eliminating the Gaussian noise assumption restriction found in traditional KF-RAIM. Moreover, the posteriori particle ensemble of PF provides a new approach for error bounding.
Li and Kadirkamanathan [74] were the first to propose the introduction of the likelihood ratio test in PF to achieve fault detection. Based on this, some studies [20, 75, 76] borrowed the concept of the SS method and used the likelihood ratio test for integrity monitoring by constructing a parallel filter bank. They calculated the cumulative log-likelihood ratio [image: Mathematical expression representing the likelihood ratio, denoted as LLR with superscripts \(i\) and subscript \(k\).] in the time window under different fault hypothesis [image: It seems like there was an error in uploading the image. Please try uploading the image again, and I will be happy to help generate alt text for it.] as a test statistic, as shown in Equation 14:
[image: Equation LLR superscript theta subscript k equals the sum from j equals k minus tau plus one to k of the natural logarithm of a fraction. The numerator is the sum from n equals one to N of p of z sub j given x sub n superscript theta of r. The denominator is the sum from n equals one to N of p of z sub j given x sub n superscript theta not of r. This is equation 14.]
where [image: Please upload the image or provide a URL, and I will help generate the alternate text for it.] is the time window length, [image: It seems there was an error in uploading the image. Please try uploading it again, or check to ensure the image file is correctly attached. Let me know if you need any help with the process!] denotes the current epoch, [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] is the fault hypothesis index, [image: Please upload the image you'd like me to generate alternate text for.] is the particle index, [image: Please upload the image you would like me to generate alternate text for.] is the total number of particles, [image: Mathematical expression representing the conditional probability of \(z_j\) given \(x_j^{(i)}\), denoted as \(p(z_j \mid x_j^{(i)})(r)\).] and [image: Mathematical expression showing the conditional probability \( p(z_j \mid x_j^{(0)})(r) \).] are the likelihood functions under the fault hypothesis [image: Please upload the image or provide a URL so I can help generate the alternate text for it.] and the fault-free hypothesis [image: Stylized script letter "H" with subscript "0," often representing the null hypothesis in statistics.], respectively. The maximum value of [image: Mathematical notation showing the expression \( LLR^{(i)}_k \), which represents a log-likelihood ratio indexed by \( k \) and \( i \).] is usually taken as the test statistic. The fault detection threshold of this method typically needs to be selected empirically, for this problem, He et al [77] proposed to optimize the computation of the detection threshold using a genetic algorithm.
The above fault detection methods require several parallel PFs, which can impose a significant computational burden in the case of a large number of visible satellites. To address this, Han et al. [78] proposed constructing the test statistic using the measurement residuals vector corresponding to the particle of maximum weight, pointing out that the correlation between the residual vector and the satellite projection vector can be used to identify faulty satellites. Hafez et al. [79] proposed constructing the test statistic using the weighted average measurement predicted value of the particle ensemble.
The error bounding method of PF-RAIM is more special, evaluating the actual IR based on the a posteriori set of particles to achieve error bounding, known as Bayesian RAIM (BRAIM) [80]. BRAIM calculates the error of each particle state with respect to the a posteriori estimation and accumulates the weights of the particles whose errors exceed the AL to obtain the estimated integrity risk. This risk is then compared with the preset IR to determine availability, as illustrated in Figure 8 [81]. Gabela et al. [82, 83] further improved this scheme by introducing spatial feature constraint information to assist the weight update step in PF. Empirical results show that with the HAL set to 5 m and the IR requirement specified, the navigation system’s availability exceeds 99%, regardless of whether the measurement noise is modeled as a Gaussian model or a three-component Gaussian mixture model (GMM).
[image: Diagram illustrating the process of posterior state distribution with Bayesian Risk Allocation (BRAM and improved BRAM). It features a bell curve marking the posterior state distribution and highlights particles within and outside the Acceptance Level (AL). A legend explains symbols: red star for posterior state estimation, orange star for particles within AL, and blue dots for those outside. The process transitions through empirical risk, cumulative particle weights within AL, divergent risk, and PAC-Bayesian theory to determine ultimate integrity risk. Arrows connect these stages, showcasing the methodological flow.]FIGURE 8 | Braim and improved BRAIM Schematics [81].
However, the integrity risk estimated by BRAIM is only the empirical risk based on the set of particles, which has limitations. Because the number of particles in the PF is always limited, it does not fully reflect the state posterior distribution, leading to some underestimation of the estimated integrity risk. Regarding this problem, Gupta et al [81, 84] proposed an improved BRAIM algorithm based on probably approximately correct- Bayesian (PAC-Bayesian) theory, which introduces the divergence risk to quantify the uncertainty caused by the above problem, and derives a method for calculating the upper bound on IR, which is also schematically shown in Figure 8 [81]. Additionally, this study models the measurement noise as a GMM while employing the expectation-maximization (EM) algorithm to determine the model parameters, thereby reducing the difficulty of model parameter estimation.
On the other hand, the particle impoverishment problem, i.e., reduced particle diversity, arises from the resampling operation in PF, which affects the performance of PF-RAIM. In this regard, several studies have proposed improvements to address particle impoverishment, including: introducing a Markov chain Monte Carlo (MCMC) moving step for each particle [75, 85], utilizing selection, crossover, and mutation operations in genetic algorithms to replace the traditional resampling method [86], employing backpropagation neural network (BPNN) to adjust the particle weights [87], and using chaotic particle swarm optimization algorithms to increase particle diversity [20].
3.1.5 Brief summary
Table 2 provides a comparative analysis of different RAIM algorithms based on the error probability distribution model. Among them, the snapshot scheme can quickly detect step errors; however, due to its reliance on only a single epoch measurement, its detection capability is seriously insufficient for SGEs caused by aging satellite equipment or clock drift. In this regard, some studies [88, 89] have improved the snapshot scheme by averaging the test statistics within a sliding time window to enhance SGEs detection capability. Additionally, the filtering scheme can be easily integrated with the INS, and the additional redundant information provided by the INS can effectively improve the system’s availability. However, the introduction of the INS also brings an additional source of integrity risk.
TABLE 2 | Comparative Analysis of RAIM based on error probability distribution model.
[image: A table compares various GNSS fault detection and exclusion algorithms. It includes categories such as Snapshot and Filtering Schemes. Details cover algorithm names, input data, FDE methods, advantages, disadvantages, and references. Examples include Classic LS RAIM and ARAIM. Advantages note low computational burden and strong detection capability, while disadvantages highlight limitations like high computational burden and inability to identify faults. References are numbered.]3.2 RAIM based on set representation
Traditional RAIM always assumes that the error probability distribution model is known, but in practice, there are significant challenges in the accurate construction and validation of the error probability distribution model. RAIM based on set representation is able to get rid of the limitation of traditional statistical distribution models, and this type of approach treats the error as an unknown deterministic value, aiming to construct the set characterizing the state estimation error by determining the uncertainty intervals of the error, which is used for further FDE and error bounding.
3.2.1 FDE module
In the FDE module [90], proposes an innovative fault detection strategy based on set representation theory, converts the navigation problem into a convex polytope solving problem by applying the uncertainty interval [image: Mathematical expression showing an interval from negative e to e, including both endpoints, represented as [-e, e].] of the observation error to the observed-minus-computed values (OMC) vector [image: It seems there was an error displaying the image. Please try uploading the image again or provide a URL. If you have a caption, you can include that as well for context.] as shown in Equation 15.
[image: Mathematical expression showing an inequality: \( y - \epsilon \leq A \Delta x \leq y + \epsilon \).]
In the above equation, [image: It seems there is an issue with the image upload or link. Please try uploading the image again or provide a URL. If you have any additional context or caption, feel free to include it.] is the design matrix and [image: Please upload the image you want me to create alternate text for.] is the state estimation vector. It has been shown that the volume of the polytope is negatively correlated with the degree of consistency of the measurements, therefore, a decrease in the volume predicts an increase in the probability of the existence of fault measurements, which in turn leads to the proposal of a new inconsistency metric that warns the user when it exceeds a threshold value. In addition, when the fault value is large, the polytope will be the empty set, so some studies also directly achieve fault detection by determining whether the set of polytope characterizing the state estimation error is empty [91, 92], it is worth noting that [91] compares this method with the traditional classical LS RAIM and ARAIM algorithms based on the SS method, under the assumption of Gaussian noise were compared, but found to be inferior to the traditional methods in terms of fault detection rate and [image: The image shows a mathematical expression with a letter 'P' followed by the subscript 'HMI', all in italic font.] metrics [92]. further proposed a corresponding fault identification and exclusion scheme based on the SS idea on the basis of this method.
3.2.2 Error bounding module
The advantage of RAIM based on set representation is reflected in the error bounding module, which can compute the set characterizing the state estimation errors in real time. Among many studies, a special polytope, namely, the zonotope, has been widely chosen as a set representation of the state estimation errors due to its favorable mathematical properties (e.g., Minkowski sum, linear transformation) [93]. The zonotope [image: It seems there's a mistake with the image upload or link. Please try uploading the image again or provide a URL, and I’ll help generate the alternate text for it.] was first used by Combastel [94] to characterize the state estimation errors [image: Greek letter delta followed by the letter x.], which is defined as:
[image: Mathematical expression showing a set \( Z = \langle c, H \rangle = \{ \delta x \in \mathbb{R}^n | \delta x = c + Hb, \| b \|_{\infty} \leq 1 \} \).]
in Equation 16, [image: Mathematical notation showing "c" as an element of R superscript "n," representing a vector "c" in n-dimensional real space.] is called the center vector, [image: Mathematical expression showing "H" belongs to the set of real numbers with dimensions \(n \times m\).] is called the generation matrix, and [image: To generate alt text, please upload the image you would like described.] is the order of the zonotope [image: It seems there may have been an error in uploading the image. Please try again by attaching the image file directly, and I will help generate the alternate text for you.]. By adjusting the order [image: Please upload the image you would like me to describe.], the number of faces and the shape of [image: Sure, please upload the image you'd like me to generate alt text for.] can be changed, making it more flexible in characterizing the state estimation errors. Usually, zonotope is used in combination with filter estimation methods. Liu et al. [93] used zonotope for error bounding and PL calculation in tightly coupled GNSS/INS navigation systems, and pioneered the use of the extended H-infinity filter (EHF), which treats the noise as an unknown deterministic quantity instead of a random quantity, to replace the traditional EKF for state estimation. And the validation results show that the proposed method has higher system availability and lower [image: The expression shows a mathematical symbol: the letter "P" followed by a subscript "MI".] than the traditional KF-RAIM.
Referring to the [93, 95], this paper summarizes the generalized flowchart of error bounding based on zonotope set representation at the [image: Please upload the image or provide a URL so I can generate the alt text for you.]-th epoch in Figure 9. It is worth noting that, as epoch [image: I’m unable to see or describe the image. Please upload it or provide a URL for me to generate the alt text.] advances, the order of the zonotope set characterizing the state estimation error will increase, which will generate a huge computational burden and affect the real-time performance of the algorithm, in this regard [93], proposes an order limitation scheme based on the zonotope reduction method, with the upper limit of the order being customized by the user, and experimentally explores the effect of the order on the computational time and PL.
[image: Flowchart illustrating a state estimation process with error bounding. It starts with measurement data leading to EHF time and measurement updates, resulting in the state estimation vector. It involves calculating standard deviations, deriving zonotopes, and taking dimension intervals to finally calculate the PI. The process is guided by probability distribution models and confidence levels.]FIGURE 9 | Generalized flowchart of error bounding based on zonotope set representation.
In addition to the above studies using the standard zonotope set, there have been some studies using variants of the zonotope for error bounding. Ashraf et al. [95] proposed to use constrained zonotope to characterize the state estimation error, which makes the geometry of the set more closely match the actual state space and further reduces the conservatism of error bounding. Shetty et al. [96], on the other hand, chose to adopt probabilistic zonotopes as a set representation tool while still assuming that the measurement errors and process errors follow a Gaussian distribution. This allows the state estimation error set to be solved according to the preset confidence level; however, there are some limitations, as the Gaussian distribution assumption is not strictly valid. Additionally [96], employs urban 3D maps and ray-tracing to determine multipath errors uncertainty intervals, in turn, the uncertainty interval of the measurement errors is determined. Su et al [92, 97], on the other hand, proposed an extended point confidence region for characterizing the state-domain error set, which uses a zonotope set to quantify the impact caused by systematic errors, and at the same time uses the traditional confidence ellipsoid or ellipsoid set to quantify the impact caused by stochastic errors, and finally take the Minkowski sum of the two sets as the final set of state estimation errors.
3.2.3 Brief summary
At present, there are not many studies on RAIM based on set representation. Theoretically, this approach does not rely on the error probability distribution model; however, many studies still use the traditional Gaussian distribution assumption to determine the error uncertainty interval based on the preset confidence level. Only some studies have discussed the determination of measurement error intervals, such as those for multipath errors [92, 96] and residual tropospheric and ionospheric errors [98]. These studies cover only part of the measurement errors and lack the determination of process error intervals. There have been studies using ML methods to estimate pseudo-range errors [99, 100], suggesting that attempts could be made to predict the uncertainty intervals of pseudo-range errors with the help of ML, which may be a direction for further research in the future.
3.3 ML-based RAIM
ML-based RAIM (ML-RAIM) has great potential and advantages, as it can effectively address the challenges posed by nonlinear systems and non-Gaussian noise, and it supports integrity monitoring in complex scenarios where it is difficult to model error probability distributions in traditional RAIM (e.g., urban canyon). In addition, since ML-RAIM mostly follow the idea of characterizing the PE in calculating the PL, it makes the two modules of FDE and error bounding relatively independent of the study.
3.3.1 FDE module
According to whether the training data need labels, ML algorithms can be classified into two main categories: supervised learning and unsupervised learning. Supervised learning relies on labeled datasets for training, while unsupervised learning does not require data labels.
In terms of supervised learning research, it can be categorized as traditional pattern recognition, traditional neural networks, and deep learning based on the ML algorithms employed in the research. Traditional pattern recognition methods with inherent advantages such as high interpretability and fast training speed are widely used to detect and identify faulty measurements, especially for NLOS signals [101]. used support vector machine (SVM) algorithm to classify LOS signals and NLOS signals, and six commonly used features were analyzed, and it was found that the feature of pseudo-range residuals had no significant contribution [102]. systematically evaluated the detection effectiveness of various ML algorithms under different fault thresholds and found that the k-nearest neighbor (KNN) algorithm exhibits an optimal fault detection rate.
Compared to single models, ensemble learning has good robustness and stability by combining the prediction results of multiple base learners. Comparative studies in [103] have shown that boosting and bagging ensemble learning algorithms exhibit better performance in NLOS signal detection compared to single models such as support vector regression (SVR), KNN and gradient boosting decision tree (GBDT). Among them, the random forest (RF) algorithm with Bagging strategy performs most prominently. Based on RF algorithm [104], used factor analysis to aggregate the original features into three more interpretable common factors, which improved computational efficiency by about 30%. While the base learner of the above two types of ensemble learning is limited to the same class of models [105], innovatively detects NLOS signals based on the stacking ensemble learning (SEL) algorithm, which supports the use of different classes of models as the base learner. It achieves better generalization ability in different scenarios such as static, low-speed, and high-speed dynamic.
Many studies have also used traditional neural network (NN) algorithms with relatively simple structures for FDE [106]. directly predicts the receiver fault rate based on multi-layer perceptron (MLP) algorithm and alerts the user when the prediction exceeds a specified threshold [107], proposes a NLOS signal detection scheme based on the MLP algorithm, which effectively improves the PPP-RTK positioning accuracy.
Among the traditional NN algorithms, radial basis function neural network (RBFNN) has received a lot of attention from researchers due to its fast training speed and applicability to small sample datasets. Zheng et al. [108] used probabilistic neural network (PNN), which is an RBFNN integrated with Bayesian theory, to propose a fault detection scheme that employs a particle swarm optimization algorithm to compute a specific fitness function, ensuring the preset [image: It seems there is no image attached. Please ensure you upload the image or provide the URL so I can generate appropriate alt text.] and [image: Please upload the image or provide a URL for me to generate the alternate text.] [108]. also proposed a novel dataset acquisition method to generate training data by sampling the position error distribution in fault and fault-free modes according to the variance inflation model. Huang et al. [109] also used a similar method to acquire training data, employing nonparametric estimation-based neural network (NE-NN) for fault detection and combining it with the SS method for fault identification. Wu et al. [110] similarly proposed a PNN-based fault detection and identification method characterized by the use of single-satellite multi-epoch pseudo-range residuals as feature vectors, which has higher sensitivity compared to classic LS RAIM.
Deep learning algorithms consist of multi-layer NNs that can automatically learn and extract higher-order features from the data and have high generalization ability. Zhu et al [111] enriched and enhanced one-dimensional features within a time window into two-dimensional features and proposed an NLOS signal detection scheme based on convolutional neural network (CNN). Sun et al [112] used a long short-term memory (LSTM) for fault detection, and specially designed a loss function to synthesize the advantages of the snapshot scheme and the filtering scheme, thus improving the detection performance for small magnitude step errors and SGEs [113]. used Hopfield network for NLOS signals detection, and the experimental results show that accuracy is effectively improved compared with traditional SVM and gradient boost machine (GBM) algorithms.
In addition, it has been found that the emergence of NLOS signals has obvious spatiotemporal correlation [114–116], and the self-attention mechanism is able to capture long-range dependence and global contextual information by calculating the relational weights between any two elements in the sequence. Therefore [116], proposed a dual self-attention mechanism (DSN) model to construct two self-attention channels to extract spatial environment features and signal time features, respectively; the former inputs the feature data of all measurements, while the latter inputs the historical feature data of the target measurement, which significantly improves the detection effect of NLOS signals.
On the other hand, in order to cope with the difficulty of adapting the trained model to new environments, and to further improve the model generalization ability [115], further introduced the Siamese neural network architecture based on DSN model, so that the model can be quickly adapted to new environments under the condition of few-shot labeled data. Similarly, Sun et al [117, 118] also proposed a continuous learning-based NLOS detection scheme based on LSTM model, and the experimental results show that the proposed method improves the NLOS signal detection rate by 5%–12% in new environments compared with the traditional model fine-tuning scheme. Table 3 summarizes the above supervised learning-based FDE studies for comparison.
TABLE 3 | FDE based on supervised learning.
[image: A table comparing different machine learning approaches for fault detection, divided into three categories: traditional pattern recognition, traditional neural networks, and deep learning. Each category lists advantages, disadvantages, machine learning models, dataset types, labeling methods, and references. Traditional pattern recognition includes models like SVM and KNN, emphasizing high interpretability and fast training speed but struggling with generalization. Traditional neural networks highlight fast training speed with models like MLP and PNN but face poor interpretability. Deep learning benefits from continuous learning and high-generalization ability, using models like CNN and LSTM while requiring large-scale data.]Compared to supervised learning, FDE methods based on unsupervised learning do not rely on acquiring difficult labeled data and are able to cope with fault types that do not occur during training. The current research can be divided into two categories, one method is based on traditional clustering or single classification algorithms, and the other method is based on deep learning reconstructed models.
In the field of research based on traditional clustering or one-class classification algorithms, Xia et al [119] used the hierarchical density-based spatial clustering of applications with noise (HDBSCAN) algorithm to cluster and identify fault [120, 121]. compared three clustering algorithms, k-means, Gaussian mixed clustering and fuzzy c-means, and found that the k-means algorithm has the optimal performance in identifying NLOS signals. Wang et al. [122] proposed a fault detection scheme based on the one-class support vector machine (OCSVM) algorithm, which uses only the data from the fault-free case as the training dataset. A fault is detected when the similarity measure of the OCSVM outputs is less than a specified threshold.
Another type of fault detection principle based on deep learning reconstruction model is: using the data in the fault-free case to train the model with data reconstruction ability, when the difference between the model output and the real sample is too large, it indicates that there is a fault. Kim et al. [123] utilized a time-delayed neural network (TDNN) to make predictions based on historical test statistics and compared them with the current test statistics for fault detection. Gogliettino et al. [106] proposed an autoencoder-based fault detection scheme by calculating the difference between the input data and the reconstruction results from the autoencoder, determining that it is a faulty case when the difference exceeds a specified threshold. Shen et al. [124] proposed a combination of a generative adversarial network (GAN) and a recurrent neural network (RNN) for GNSS/INS integrated navigation integrity monitoring. The verification results show that the detection performance for small magnitude step errors and SGEs is improved compared to traditional KF-RAIM; however, this method assumes that the INS is always fault-free and ignores the potential fault risk of the INS. Table 4 summarizes the above unsupervised learning-based FDE studies for comparison.
TABLE 4 | FDE based on unsupervised learning.
[image: Comparison table of machine learning models. Categories: "Traditional clustering or single classification" with k-means, HDBSCAN, OCSVM. Advantages include high interpretability and fast training. Disadvantages involve poor generalization. "Reconstruction models based on deep learning" with TDNN, Autoencoder, GAN, RNN. Advantages include high generalization, handling new faults. Disadvantages involve poor interpretability, requiring large-scale data. Dataset types vary between real measurements and simulations, with references from [106] to [124].]3.3.2 Error bounding module
In terms of error bounding studies [109], borrowed the idea of PL calculation from the classical LS RAIM algorithm, i.e., to quantify the effect of undetected faults on PE, and proposed to calculate the maximum PE caused by undetected faults in the FDE module based on the search strategy, and then obtain the PL.
In addition, some studies have chosen to use ML algorithms to directly predict PL. Mendonca et al [125] proposed to use decision tree (DT) and NN algorithms to directly predict PL respectively, both of which have smaller [image: Text depicting the variable \( P_{\text{HMI}} \) in a mathematical or scientific context, using italicized font for emphasis.] compared to the traditional KF-RAIM. The conformal regression algorithm has the ability to output the confidence interval of the prediction result under the specified confidence level. Kuratomi et al [126] combined conformal regression with RF algorithm and proposed conformal regression forests (CRF) for predicting PE intervals at specified confidence levels, which provides insights for PL calculation. The confidence level was set to 99.999% in the paper, and the prediction is considered successful if the actual PE falls within the prediction interval. Unfortunately, the optimal set of experimental results in the paper only achieved a 99.99% prediction success rate, which requires further research.
Probabilistic regression ML algorithms provide the credibility or probability distribution model of the prediction results along with the output of the prediction results, so some researchers have tried to use probabilistic regression ML algorithms to predict the statistical characteristics of PE, thus realizing error bounding. Geragersian et al. [127] proposed the use of a Bayesian-LSTM algorithm to predict PE, and since the parameters of the Bayesian neural network are random quantities, the PE standard deviation can be estimated using Monte Carlo methods, and then obtain the PL. Isik et al. [128] proposed a scheme for PL calculation based on natural gradient boosting (NGBoost). The NGBoost algorithm is capable of predicting a probability distribution model that matches the input samples, but it requires pre-determination of the type of the probability distribution model. In this study, PE is assumed to be Gaussian distributed, and the mean and variance are predicted separately, which can be combined with a predefined confidence level to calculate the PL. The experimental results show that system availability is significantly improved in simulated suburban, urban, and urban canyon environments compared to classic LS RAIM. Table 5 summarizes and compares the above availability discriminative studies in ML-RAIM.
TABLE 5 | ML-based error bounding studies.
[image: Table comparing different approaches under categories: quantifying effects of faults on PE, predicting PL using ML algorithms, and using probabilistic regression. Includes characteristics, ML models, dataset labeling types, and references.]3.3.3 Brief summary
Currently, there have been many ML-based GNSS jamming and spoofing detection studies [129–131], but relatively few studies have been applied to integrity monitoring. Although there are similarities between the two, the additional IR requirements of RAIM itself, along have made ML-RAIM studies relatively challenging. Firstly, the datasets used in existing studies are usually limited to a single scenario, failing to comprehensively reflect multiple factors such as satellite faults, ionospheric fluctuations, multipath effects, spoofing, and jamming. This results in flaws in the generalization ability of the trained models. Secondly, most current ML-based FDE strategies lack corresponding error bounding module studies, and in the few studies of error bounding, it is still limited to the traditional Gaussian distribution assumption. Thirdly, there is a lack of relevant research dedicated to feature extraction and selection.
3.4 Comparison and summary
The advantages and disadvantages of the above three types of RAIM algorithms are shown in Table 6.
TABLE 6 | Characteristics of the three types of RAIM.
[image: Table comparing three RAIM categories:   1. "RAIM based on error probability distribution model": Advantage is clear mathematical expression and analytical estimation of IR and P_MD. Disadvantage involves limitations of Gaussian models in complex scenarios.  2. "RAIM based on set representation": Advantage of avoiding difficult error probability modeling. Disadvantage is accuracy limits in determining error uncertainty intervals.  3. "ML-RAIM": Advantage is handling non-linear systems and non-Gaussian environments with support for complex scenario monitoring. Disadvantage includes reliance on datasets and poor generalization.]4 CHALLENGES AND OPPORTUNITIES OF RAIM RESEARCH
With the wide application of GNSS, existing RAIM research faces the following challenges: Firstly, due to the vulnerability of the GNSS signals themselves, it is very susceptible to jamming and spoofing [132]. Additionally, for the vast number of urban users, multipath and even NLOS signals are very common, which leads RAIM to operate in a more complex and harsh electromagnetic environment. Secondly, in key applications such as assisted driving, autonomous driving, and low-altitude unmanned aerial vehicles (UAVs), the required PL is usually small, often in the meter or even sub-meter level [9]. However, the PL calculated by existing RAIM is often overly conservative (reaching up to tens of meters or even hundreds of meters), resulting in seriously inadequate system availability. Thirdly, most existing RAIM algorithms are based on the Gaussian error model, but the study by [133] have shown that actual measurement and position error often exhibit characteristics of heavy-tailed distributions, making the Gaussian assumption that do not hold strictly. In addition to considering the multipath effects, jamming and spoofing, etc., it is even more difficult for the actual error to follow the assumption of the Gaussian distribution, and at this time, if the Gaussian distribution is still used for modeling errors, an excessively large variance is required to ensure that the estimation of the error is conservative enough, thus seriously reducing the system availability [134].
Considering the current challenges and existing results, future opportunities for RAIM development lie in the following areas: the development and application of adaptive non-Gaussian error probability distributions; the application of more flexible and tight error bounding techniques; and the improvement of the ML-RAIM methods’ generalization ability.
4.1 Adaptive non-Gaussian error probability distributions
Firstly, there have been studies using student’s t-distribution [68] and GMM [84, 135] for modeling measurement or process errors and for integrity monitoring, with experimental results showing superior performance compared to traditional Gaussian model-based approaches. In addition, several other models have been employed to discuss error modeling, including the Rayleigh distribution and the generalized Pareto distribution (GPD) [136], the Dirichlet process mixture (DPM) model [137, 138], and the generalized extreme value (GEV) distribution [133]. Among these, the GPD and GEV distribution are based on extreme value theory and are specifically designed to analyze rare but potentially severe extreme events, focusing on the tail distribution properties of random variables. This aligns well with the needs of integrity studies and has been used for integrity risk assessment and validation [139]. The use of these non-Gaussian error models in conjunction with non-Gaussian noise estimators, such as PF, is expected to effectively improve integrity monitoring performance.
Secondly, almost all existing RAIM systems ignore the temporal correlation of measurement noise. However, colored noise is unavoidable and cannot be overlooked due to hardware noise, multipath effects, and unmodeled errors [140]. Gao et al. [141, 142] exploited the temporal correlation of colored noise by modeling it as a first-order Gaussian-Markov process. The proposed colored Kalman filter outperforms the traditional KF-RAIM in integrity monitoring. Therefore, studying and utilizing the temporal correlation of errors for error modeling will be an important opportunity for the future development of RAIM.
Finally, the error model will change with time, electromagnetic environment, and receiver type, making it a challenge to adaptively select the appropriate error model. This challenge can be improved or even solved by using artificial intelligence (AI) methods to automatically recognize receiver electromagnetic environment [143] (e.g., suburban, urban, and urban canyon) and then automatically and intelligently select the appropriate types and parameters of error models.
4.2 More flexible and tight error bounding
In terms of error bounding module, most RAIM algorithms are usually given in the scalar form of HPL and VPL. It is assumed that the maximum PE in the horizontal plane and vertical line does not exceed the HPL and VPL in each direction, respectively, with the properties of isotropy and symmetry about the origin. However, in complex applications, users often have different AL requirements in different directions, e.g., autonomous driving usually has different AL requirements in the longitudinal and lateral directions [144], and the traditional HPL discriminative method instead constrains the system availability. In view of the above limitations of the traditional scalar form of PL, opening up and applying more flexible error bounding techniques such as ellipsoid or ellipsoid models constructed based on matrix quadratic [145], zonotope sets [93], and extended point confidence region [92, 97] can help to improve navigation system availability.
On the other hand, existing error bounding techniques have the problem of being too conservative, constructing error bounds that are much larger than the actual PEs, leading to a significant increase in the number of events that unnecessarily declare the system unavailable, which seriously reduces the availability. In this regard, the nominal information metric proposed by [125] based on the quantity of information theory, and the average bound gap (ABG) metric proposed by [128] can better assess this issue. The former nominal information metric quantifies the reference value of the information provided by the error bounds, and its larger value implies the stronger ability of the error bounds to envelope the actual PE. The latter ABG is defined as:
[image: Formula for ABG is shown: ABG equals one over N sub ALL times the sum from k of (PL sub k minus PE sub k), applicable when PL sub k is greater than PE sub k, equation number seventeen.]
in Equation 17, where [image: I am unable to view the image. Please upload the image or provide a URL for it.] is the total number of epochs, and [image: It seems there was a problem with uploading the image. Could you please try uploading it again? If you need guidance, let me know!] and [image: It seems like you've pasted part of an image equation rather than uploading an image. Please upload the image file, and I'll help generate the alternate text.] are the PL and actual PE for the [image: It seems there might be an issue with the image upload. Please try uploading the image again or provide a description or URL so I can assist you with generating the alternate text.]-th epoch. Minimizing the ABG of the RAIM algorithm while ensuring that it does not increase the [image: The image shows the mathematical expression \( P_{\text{MI}} \), indicating a parameter or variable with the subscript "MI". The font is in a serif style.] can further improve the availability of the navigation system. By developing a more appropriate error probability distribution model, applying a more flexible error bounding form, and integrating advanced AI algorithms, a tighter error bounding technique can be developed with the goal of optimizing nominal information and ABG, under the premise of guaranteeing that the core integrity related indexes of [image: Certainly! Please upload the image or provide a URL for me to generate the alternate text.] and [image: Mathematical notation showing the term "P" with a superscript capital "HMI".] meet the standards. This will be another development opportunity for RAIM algorithm in the future.
4.3 Improvement of ML-RAIM generalization ability
The current ML-RAIM research generally overly relies on training data from specific regions or scenarios, and performs poorly in the face of changes in the region as well as brand new measurement anomalies, and the generalization ability is still insufficient. For this problem, comprehensive and reliable datasets should be constructed first. Current datasets for integrity monitoring often rely on simulated faults and lack realistic anomalies such as satellite failures, ionospheric and tropospheric fluctuations, spoofing and jamming. Therefore, efforts should be made to collect data under various application scenarios (e.g., civil aviation, automobiles, personal cell phones, etc.) and to incorporate various types of anomalous conditions. And the dataset should be expanded and enhanced by combining it with AI methods, such as GANs. In addition, the dataset features should be rich enough to cover pre-correlation domain features (e.g., radio frequency fingerprint), spatial domain features (e.g., angle of arrival), and correlation domain features (e.g., carrier to noise density) prior to the navigation solving phase, in addition to the widely used measurement domain features. The constructed dataset is also important for error probability distribution modeling and validation, RAIM algorithm testing and validation, in addition to effectively improving the generalization ability of ML-RAIM.
On the other hand, by introducing advanced training strategies such as incremental learning [117], continuous learning [118], and transfer learning [143], ML-RAIM is able to quickly adapt to data in brand new regions and scenarios, and improve the model generalization ability. Meanwhile, automatic identification of receiver electromagnetic environment based on AI technology [143, 146], so as to target the selection of appropriate trained models, may be a further development opportunity for ML-RAIM algorithm in the future.
5 CONCLUSION
Integrity monitoring is crucial to safeguard the lives and properties of GNSS users, and RAIM has always attracted significant attention due to its advantages of comprehensive monitoring range and fast alerting. With the wide application of GNSS, existing RAIM algorithms are facing a more complex electromagnetic environment and higher demands for integrity. To assist scholars in related fields in exploring and developing more advanced RAIM algorithms, this paper systematically describes the basic principles of RAIM algorithms and the current status of research in GNSS. The advantages and shortcomings of three types of methods are analyzed: RAIM based on error probability distribution model, RAIM based on set representation, and ML-RAIM. Additionally, the paper discusses the opportunities for future development in light of the latest research on RAIM and the challenges faced.
Finally, although the research on RAIM algorithms in the field of GNSS has made great progress, there are still deficiencies in integrity standard, hardware implementation and algorithm testing, which are outlooked in this paper:
	1) At present, the GNSS integrity standard in the civil aviation field has been relatively mature, but for ground applications such as autonomous driving and low-altitude UAVs, the formulation of the corresponding GNSS integrity standard is still an urgent problem to be solved.
	2) Almost all RAIM algorithms are developed based on software platforms and offline datasets, and how to implement these RAIM algorithms in hardware while taking into account computational efficiency and real-time performance still needs to be explored in depth.
	3) Integrity monitoring strategies usually require performance testing and evaluation, but given the extremely low probability of integrity event, it remains a challenge to effectively, quickly and cost-effectively verify that the performance meets the standard.
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Signal-of-Opportunity (SOP) navigation based on Low-Earth-Orbit (LEO) satellite constellations has increasingly become a research hotspot. Due to the large number of LEO satellites, wide spectrum coverage, and strong signal power, LEO satellite Signal-of-Opportunity (LEO-SOP) inherently possess strong anti-jamming capabilities. However, there has been limited in-depth research on the overall system-level anti-jamming capability of LEO-SOP. This paper reviews the current state of research on LEO-SOP and anti-jamming technologies, introduces the principles of LEO-SOP Doppler-based positioning and receiver operation, and analyzes the system-level anti-jamming capability of LEO-SOP. Additionally, it explores the key challenges in the development of LEO-SOP anti-jamming technologies and discusses future research directions. This study aims to provide insights into the development prospects of LEO-SOP anti-jamming technologies, promote further research and development efforts, and establish a solid technical foundation for the secure application of LEO-SOP. Ultimately, ensuring the integrity and resilience of LEO-SOP systems against complex threats.
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1 INTRODUCTION
The acquisition of location information based on satellite navigation plays an extremely important role in today’s technological development and social progress. Among these, positioning technology based on the Global Navigation Satellite System (GNSS) is the primary method for obtaining location information via satellite navigation. The current major GNSS systems include the United States’ Global Positioning System (GPS), Russia’s GLONASS, Europe’s Galileo, and China’s BeiDou Navigation Satellite System (BDS). With the development of GNSS, it is becoming a crucial infrastructure for national informatization construction, providing Positioning, Navigation, and Timing (PNT) service information for a variety of applications [1–5]. It plays a significant role in daily life, scientific research, and military applications. However, as the use of GNSS deepens, its inherent shortcomings have gradually become apparent, including low signal power upon reaching the ground, single frequency points, high construction and maintenance costs, and significant risks such as susceptibility to malicious interference leading to service unavailability during peacetime or tense situations [6–8]. How to overcome and compensate for these GNSS shortcomings, especially in environments where GNSS services fail, and still independently provide reliable and high-precision PNT services has become a focus of future development [9, 10]. Currently, countries are actively building resilient PNT systems to ensure that military equipment can still achieve accurate positioning when GNSS performance is degraded or denied. In the PNT technology development roadmap released by the U.S. Department of Defense in 2020, it mentioned the use of Signal-of-Opportunity (SOP) for absolute positioning, thereby supplementing GPS positioning functions and enhancing GPS availability and robustness.
SOP positioning refers to a technology that utilizes all perceivable non-navigation and non-positioning application information such as sound, light, electricity, magnetism, and force for positioning. Due to the abundant presence of various radio signals in space, the current research primarily focuses on radio SOP. SOP typically includes terrestrial and space-based radio Signal-of-Opportunity. Terrestrial SOP has limited coverage and struggles to achieve global seamless coverage in areas such as deserts, oceans, and polar regions [11–13]. Space-based SOP mainly refers to signals transmitted by non-navigation/non-cooperative satellites. With the recent vigorous development and construction of Low-Earth-Orbit (LEO) satellites by various countries, space-based LEO satellite SOP (LEO-SOP) has gradually been applied in navigation and positioning as a primary space-based SOP [14]. Unlike GNSS, LEO satellites orbit at altitudes between 500 km and 2,000 km, resulting in higher signal power upon reaching the ground [15]. Additionally, the large number of LEO satellites means their signals cover a wide range of frequencies, with many available frequency points. Currently, the published satellite signal frequency bands can cover from 100 MHz to 40 GHz [16]. These characteristics ensure that LEO satellite signals have stronger anti-jamming capabilities compared to GNSS. Finally, using LEO-SOP for positioning does not require additional construction, resulting in lower costs. Therefore, positioning technology based on LEO-SOP leverages existing satellite resources and requires only minimal financial investment to meet positioning service needs, providing an effective backup to GNSS.
Currently, LEO constellations can be categorized into three types based on their construction maturity: ① Traditional LEO constellations that have been completed and networked, primarily consisting of narrowband communication satellite constellations. Examples include the United States’ Iridium, Globalstar, Swarm SpaceBEE, France’s Argos, and the jointly constructed Orbcomm satellites by the United States and Canada. These operate in frequency ranges from VHF to L-band and mainly provide narrowband communication services to the ground [17–19]. ② LEO constellations that have been planned and have undergone significant satellite launches, primarily broadband internet satellite systems, mainly using Ku-band and higher frequency signals. The main goal is to provide broadband internet access services to the ground through large-scale LEO constellations, achieving global seamless coverage through satellite networking. Currently under construction are the UK’s OneWeb and the United States’ Starlink constellations. OneWeb has completed the launch and networking of its first-generation internet constellation, with 618 satellites in orbit at an operational altitude of 1,200 km. As of March 2025, Starlink has successfully launched over 6,000 satellites, with 5,614 still operational in orbit, making it the largest LEO internet constellation currently in service. These satellites are primarily deployed to build a global LEO satellite internet network, providing coverage for fixed, mobile, maritime, and aeronautical users. By the end of 2024, the system had delivered satellite internet services to over 4 million users across nearly 100 countries. SpaceX is accelerating Starlink satellite deployment through its Starship program. On 6 March 2025, the eighth test flight of Starship was completed, successfully validating its payload deployment capability, including the release of four Starlink satellite simulators. The test also demonstrated upgraded atmospheric re-entry technology and propulsion systems, laying the groundwork for future large-scale satellite deployment [20]. ③ Constellations that have been planned but have only launched a small number of satellites, with functions and frequency bands similar to the aforementioned broadband internet constellations. These include Canada’s Telesat and China’s StarNet, Xingyun Project, Tianqi Satellites, and Galaxy Aerospace, among others. Additionally, some independent LEO satellite navigation and timing systems are being constructed to enhance the anti-jamming capabilities of traditional GNSS, including China’s Weili Space and the United States’ Pulsar. According to the UCS satellite database, LEO satellites account for nearly 90% of all operational satellites in orbit. In the coming years, the number of global LEO satellites in orbit is expected to exceed 22,000, providing a vast number of radiation sources for LEO satellite positioning, making it a key research subject for signal of opportunity positioning [21]. The current major LEO satellite constellations domestically are shown in Table 1.
TABLE 1 | Current status and future plans of LEO satellite development (as of January 2025).	Constellation name	Country/Company	Planning/Current quantity	Downlink frequency/Bandwidth
	Starlink	USA/SpaceX	40,000+/7,516	10.7∼12.7 GHz
37.5∼42.5 GHz
	OneWeb	Bharti Global	6,372/648	10.7∼12.7 GHz
	Kuiper	USA/Amazon	3,236/2	10.7∼12.7 GHz
	Telesat	Canada/Telesat	298/6	17.8∼20.2 GHz
	Globalstar	USA/Loral&
Qualcomm, etc.	24/33 (Including Spare)	2.4835∼2.5 GHz
	Iridium	USA/mortorola	66/75 (Including Spare)	1.626∼1.6265 GHz
	Orbcomm	USA/Orbcomm	40/36 (Including Failure)	0.137∼0.138 GHz
	GW	China	12992/10	—
	Spacesail Constellation	China	15000+/54	Ku, Q/V


This paper reviews the research on LEO-SOP and anti-jamming technologies and analyzes the system-level anti-jamming capability of LEO-SOP while exploring its future development challenges. The remainder of this paper is structured as follows: Section 2 reviews the current research status of LEO-SOP and anti-jamming technologies. Section 3 introduces the Doppler-based positioning principle of LEO-SOP and the receiver operation process. Section 4 analyzes the system-level anti-jamming capability of LEO-SOP. Section 5 discusses the challenges and prospects of LEO-SOP anti-jamming development. Finally, Section 6 summarizes the discussions above.
To facilitate the reader’s understanding, Table 2 lists some important abbreviations involved in this paper, with specific explanations provided in Table 2.
TABLE 2 | Abbreviations table.	Abbreviation	Meaning
	GNSS	Global Navigation Satellite System
	GPS	Global Positioning System
	BDS	BeiDou Satellite Navigation Sytem
	PNT	Positioning, Navigation and Timing
	SOP	Signals of Opportunity
	LEO	Low Earth Orbit
	VHF	Very high frequency
	INS	Inertial Navigation System
	SGP4	Simplified General Perturbations 4
	TLE	Two-Line Elements
	CNR	Carrier to Noise Ratio
	STL	Satellites Time and Location
	EKF	Extended Kalman Filter
	VLEO	Very Low Earth Orbit
	GDOP	Geometric Dilution of Precision


2 CURRENT RESEARCH STATUS OF RELATED TECHNOLOGIES IN DOMESTIC AND INTERNATIONAL CONTEXTS
This section reviews and summarizes national-level plans for space-based SOP positioning, the development of LEO-SOP positioning technology, and the current state of anti-jamming research. This provides a theoretical foundation for the subsequent analysis of anti-jamming capabilities.
2.1 National PNT strategy
The current national plans that have been announced for positioning using SOP mainly include the United States’ All Source Positioning and Navigation (ASPN) project, the United Kingdom’s Navigation Signal of Opportunity (NavSOP) system, the European Space Agency’s Navigation Innovation Support Program (NAVISP), and the Future Navigation (FutureNAV) plan.
①ASPN Project: In 2010, the Defense Advanced Research Projects Agency (DARPA) of the United States proposed a research plan to combine inertial navigation systems (INS) with non-navigation SOP from satellites, broadcasts, and other sources to achieve positioning. This project has achieved significant results in both military and civilian fields. In 2021, the United States released its Space Policy Directive-7 (SPD-7), also known as the U.S. National Space-Based Positioning, Navigation, and Timing (PNT) Policy. The policy focuses on improving GPS performance while reiterating concerns about over-reliance on PNT data systems. It emphasizes the need for multi-source PNT that can supplement or replace GPS when necessary. The policy also highlights the future development of LEO communication constellations, which will be integrated into the PNT system to enhance the robustness and reliability of GNSS signals, contributing to the establishment of an integrated PNT system. In April and November 2021, the U.S. Air Force, in collaboration with the Naval Surface Warfare Center, successfully completed flight tests of a new type of PNT “agile pod.” The signal sources included SOP, which validated the ability to provide PNT capabilities in GPS-denied environments. In June 2021, the U.S. Army signed a contract with Iridium to develop payloads that can be hosted on LEO satellites for broadcasting timing or positioning signals. This initiative is considered a backup solution for the GPS system.
②NavSOP System: In 2012, BAE Systems developed a new type of positioning system that does not rely on GNSS, aiming to provide an alternative solution for positioning in complex environments. The core of this system is to utilize SOP such as mobile phone signals, Wi-Fi, broadcast signals, and TV tower signals to achieve a positioning system that is highly resistant to interference, low-cost, and flexible in application. In October 2020, the UK Space Agency proposed the Space-Based Positioning, Navigation, and Timing Program (SBPP). This program is based on a space-based PNT system composed of multiple satellites, aiming to build a system with independent PNT capabilities. It provides high-precision and highly reliable positioning and timing services for various fields such as defense, infrastructure, intelligent transportation, and emergency rescue, reducing dependence on existing GNSS.
③NAVISP Plan: In 2016, the European Space Agency (ESA) introduced the NAVISP plan, aiming to provide better solutions for Europe’s PNT systems by supporting new technologies, research, and applications. The plan includes enhancing the satellite navigation services of the Galileo system using LEO satellites. In October 2021, an ESA-funded project known as “Next-Generation Network-Aided PNT Assurance” utilized encrypted signals from Iridium, LTE/5G, and GNSS as potential SOPs to enhance PNT functionality. In February 2024, a machine learning-based SOP navigation plan was proposed. This plan integrates terrestrial SOP signals such as 5G or Wi-Fi with space-based SOP signals from LEO satellites and GNSS signals to overcome the limitations of traditional GNSS.
④FutureNAV Plan: In 2022, ESA introduced the FutureNAV plan, building on the foundation of the NAVISP program. The FutureNAV plan aims to address the increasingly complex needs for PNT and to enhance Europe’s independence and technological innovation capabilities in the global navigation domain. The plan promotes advancements in PNT systems through the application of LEO satellites, innovative navigation signal design, and enhanced anti-jamming and security features, providing support for applications across multiple industries.
All of the aforementioned national plans have incorporated space-based SOP based on LEO satellites into the research of new-generation PNT systems. Corresponding experiments with weapons and equipment have been conducted, as well as performance validation in typical environmental scenarios. These efforts have demonstrated the viability and feasibility of positioning technology using space-based LEO satellite SOP. After several years of research by relevant institutions both domestically and internationally, a large number of phased achievements have been made in the field of LEO-SOP positioning. The following section will summarize the current research status in this field both domestically and internationally.
2.2 Current research status of LEO-SOP positioning technology
The signals from LEO satellites are generally non-navigation/non-cooperative signals, which either do not contain or make it difficult to extract navigation information. Therefore, the current research on LEO-SOP positioning technology mainly focuses on analyzing the signal structure of LEO satellites to extract Doppler measurements for positioning.
The earliest research on positioning using LEO satellites appeared in 1998. This study used one or two Globalstar satellites to determine the location of a user terminal, achieving instantaneous user positioning with a horizontal position accuracy better than 10 km [22]. In 1999, Levanon N from Tel Aviv University in Israel proposed an instantaneous positioning method using a single LEO satellite. This method measured the distance between the satellite and the user terminal, as well as the Doppler frequency, and assumed that the user terminal was on the Earth’s surface to achieve instantaneous user positioning [23]. The concept of SOP positioning and related research began after 2000. The term SOP first appeared in a 2005 graduate thesis from the Air Force Institute of Technology at the United States Air Force University. This thesis primarily focused on the study of ground-based SOP for positioning, such as AM, FM, WiFi, and OFDM [24].
Traditional LEO-SOP positioning primarily relies on single-constellation LEO-SOP positioning technology. Since LEO satellites are not designed for navigation purposes, their visibility and constellation configurations are generally poor. In recent years, to further enhance positioning accuracy and system availability, various positioning technologies developed based on single-constellation LEO-SOP positioning have been extensively studied. These newly developed technologies reduce errors generated during the positioning process through different approaches, such as: multi-constellation LEO-SOP positioning technology, which integrates multiple constellations to overcome the limitations of single-constellation satellite selection; LEO-SOP differential positioning technology, which eliminates orbital errors caused by extrapolation using the Simplified General Perturbations 4 (SGP4) model and Two-Line Elements (TLE) in traditional techniques through differential methods; and LEO-SOP/INS integrated positioning technology, which combines LEO-SOP with INS to ensure real-time dynamic positioning, as the low output rate of LEO-SOP navigation measurements makes it difficult to meet real-time dynamic positioning requirements. Below, we will summarize the research status at home and abroad from four aspects: single-constellation LEO-SOP positioning technology, multi-constellation LEO-SOP joint positioning technology, LEO-SOP differential positioning technology, and LEO-SOP/INS integrated positioning technology.
2.2.1 Single-constellation LEO-SOP positioning technology
In the field of single-constellation LEO-SOP positioning technology, the main research institutions include the team of Qin H from Beihang University in China and the team of Kassas Z from the University of California in the United States. In the early stages of research, the focus was primarily on the Iridium and Orbcomm constellations, which are typical LEO constellations. In recent years, with the development of the Starlink and Globalstar constellations, research on these systems has also garnered widespread attention.
In 2019, the team of Qin H from Beihang University first established a receiving and positioning system based on Iridium satellite signals. By combining TLE orbital information with Doppler measurements, the system achieved positioning. The experimental results showed that after accumulating Doppler measurements from 7 Iridium satellites over 30 min, the positioning accuracy was better than 200 m with the aid of elevation information [25]. In 2020, building on their previous research, the team further developed positioning technology for Iridium signals in weak signal environments. They proposed a secondary square cumulative instantaneous Doppler estimation algorithm to enhance the Doppler estimation capability of weak Iridium signals. The experimental results indicated that the proposed method could improve positioning performance in weak signal environments, thereby enhancing the environmental adaptability of Iridium positioning [26]. In 2023, the team of Qin H established an orbital error equivalent Doppler measurement error model for LEO satellites. Based on the model analysis, they proposed a two-step improved positioning method using orbital error compensation and weighting to suppress the impact of orbital errors. The method was validated using real signals from Iridium and Orbcomm satellites, and the results showed that the positioning accuracy of the proposed method was significantly higher than that of existing methods [27]. In the same year, the team analyzed the pilot signal structure of Globalstar and obtained Doppler measurements through fourth-order processing for despreading. The experiments demonstrated that static positioning with a horizontal error of less than 300 m could be achieved using signals from two Globalstar satellites [28]. In 2024, addressing the issue of receiver hardware limitations that prevent the full utilization of all visible satellite information, the team proposed a fast clustering satellite selection algorithm. This algorithm aims to achieve higher performance positioning results with a limited number of satellites. The method was validated using real Starlink signals, and the results showed that compared to traditional methods, the positioning error was stably reduced by more than 45% [29].
In 2019, the Kassas Z team at the University of California, USA, developed a positioning system based on Orbcomm satellites and proposed a receiver architecture for acquisition and tracking using an Extended Kalman Filter (EKF). Experimental results demonstrated that the static positioning accuracy, utilizing Doppler measurements from two Orbcomm satellites, could reach 360 m [30]. In 2021, the team established a Starlink signal model and introduced an adaptive carrier phase tracking algorithm to track Starlink signals. The experiment successfully extracted carrier phase measurements from six Starlink satellites, achieving a static positioning accuracy of 33.5 m [31]. In 2023, the Kassas Z team proposed a blind receiver architecture that captures satellite measurements through sequential generalized likelihood ratio testing. The experiment tracked six Starlink satellites, with three transmitting single-tone signals and the other three transmitting OFDM-like signals. The results showed a static positioning horizontal error of 6.5 m [32].
2.2.2 Multi-constellation LEO-SOP positioning technology
When using a single LEO satellite constellation for positioning, issues such as insufficient visible satellites and poor satellite geometry may arise. These problems can be effectively addressed through multi-constellation LEO-SOP joint positioning. In the field of multi-constellation LEO-SOP joint positioning technology, the main research institutions include the Farhangian F team at the University of Quebec in Canada, the Kassas Z team at the University of California in the United States, and the Qin H team at Beihang University in China. Current practical testing has primarily focused on Iridium/Orbcomm joint positioning. Figure 1 illustrates the schematic diagram of multi-constellation LEO-SOP integrated positioning.
[image: Satellites labeled ORBCOMM and Iridium are depicted in space communicating with ground infrastructure. Lines indicate signal paths to a central antenna in a cityscape below, illustrating satellite communication networks.]FIGURE 1 | Schematic diagram of multi-constellation LEO-SOP integrated positioning.In 2020, the Farhangian F team at the University of Quebec in Canada pioneered the design of a multi-constellation software receiver to extract Doppler measurements from LEO satellites. By tracking and collecting Doppler data from one Iridium satellite and two Orbcomm satellites, and utilizing EKF for positioning, the results demonstrated that the dual-constellation positioning accuracy reached 132 m. This represented a 72% improvement compared to single-constellation positioning accuracy [33].
In 2021, the Kassas Z team at the University of California, USA, proposed a receiver architecture suitable for processing signals from Orbcomm and Iridium satellites. By collecting data from one Orbcomm satellite and four Iridium satellites over a period of 7 min and using EKF for positioning, they achieved a horizontal positioning accuracy of 22.7 m [34]. In 2023, the team introduced a novel blind spectral estimation method for blind beacon estimation, Doppler tracking, and SOP positioning. Utilizing signals from two OneWeb satellites, four Starlink satellites, one Iridium satellite, and one Orbcomm satellite, they achieved a three-dimensional positioning error of 5.8 m and a two-dimensional positioning error of 5.1 m within 560 s [35, 36].
In the aforementioned multi-constellation joint positioning studies, the differences in measurement noise between different constellations were not taken into account, which could potentially degrade positioning performance to some extent. To address this issue, in 2022, the Qin H team at Beihang University proposed an Iridium/Orbcomm dual-constellation fusion positioning scheme based on the Helmert variance component weight estimation algorithm. This approach effectively improves the accuracy of weight allocation between different constellations. Experimental results demonstrate that the proposed method significantly enhances the performance of multi-constellation fusion positioning [37].
2.2.3 LEO-SOP differential positioning technology
LEO satellites face challenges in obtaining precise orbital parameter information, and atmospheric delay errors also significantly impact LEO satellite positioning. Differential positioning technology can mitigate the effects of orbital errors and atmospheric delay errors on positioning, thereby further enhancing the accuracy of LEO satellite SOP positioning. Figure 2 illustrates the schematic diagram of the LEO-SOP differential positioning process.
[image: Diagram showing GNSS satellite error correction. The satellite transmits data with orbit/satellite clock, ionospheric, and tropospheric errors to a base station. The base applies error correction and sends corrected data to a rover vehicle on Earth.]FIGURE 2 | Schematic diagram of LEO-SOP differential positioning process.In 2019, the Kassas Z team at the University of California proposed a differential positioning framework based on carrier phase and validated it using Orbcomm signals. The results showed a positioning accuracy of 11.93 m, representing a significant improvement over single-point positioning [38]. In 2020, the team further introduced a differential carrier phase navigation framework utilizing signals from massive LEO satellite constellations. They derived the joint probability density function of LEO satellite azimuth and elevation angles to enhance navigation performance. Experimental results demonstrated that the Root Mean Square Error (RMSE) reached 14.8 m within 2 min [39, 40]. By 2022, the team developed a receiver capable of capturing and tracking the Doppler frequency of Starlink satellites. They designed a Kalman filter-based chirp parameter tracking algorithm and performed differential positioning using Doppler frequency. With baselines of 1 km and 9 m, the positioning errors were 5.6 m and 2.6 m, respectively [41].
In 2022, the Qin H team at Beihang University proposed a LEO-SOP Doppler differential positioning framework. To address the issue of reduced positioning accuracy caused by inconsistent spatiotemporal references in long-baseline differential positioning, the team introduced a signal transmission time estimation algorithm based on Maximum Likelihood Estimation (MLE), which further improved the accuracy of static differential positioning [42]. In 2023, to enhance the performance of long-baseline differential positioning, the team proposed a space-based SOP long-baseline differential positioning algorithm based on baseline projection vector geometric model correction. This algorithm mitigates the impact of baseline length on positioning performance and significantly improves the accuracy of long-baseline differential positioning. Experimental results demonstrate that, with a baseline length of 20 km, a positioning accuracy of 30 m can be achieved using 20 min of Iridium satellite signals, representing an improvement of over 70% compared to non-differential positioning accuracy [43]. In 2024, the team addressed the issue of significant errors in traditional Doppler differential positioning under long baselines by proposing a Doppler differential positioning algorithm based on line-of-sight vector correction. Experimental results show that, with a baseline length of 50 km, the positioning accuracy using Iridium satellite signals is better than 10 m [44].
2.2.4 LEO-SOP/INS integrated positioning technology
The output rate of LEO satellite SOP navigation measurements is relatively low, making it difficult to meet the requirements for real-time dynamic positioning. Additionally, the limited number of mature LEO satellite constellations available for navigation results in insufficient instantaneous visibility for the carrier, preventing instantaneous positioning. Therefore, integrating LEO-SOP with INS is necessary to ensure the real-time performance of dynamic positioning, thereby enhancing the system’s availability.
In 2019, the Kassas Z team at the University of California utilized Orbcomm Doppler measurements to assist INS for positioning. Experimental results showed that, when using two Orbcomm satellites for positioning, the final positioning error after 30 s of GNSS unavailability was reduced from 31.7 m to 8.9 m [45]. In the same year, the Benzerrouk team in Canada proposed a multivariate orthogonal Kalman filtering method to integrate Iridium Doppler measurements with INS and tested it using airborne data. The experimental results indicated that the dynamic positioning accuracy ranged between 200 m and 1,000 m [46].
In 2022, researchers at the University of Quebec in Canada combined LEO satellite measurements with INS using a second-order EKF. They conducted vehicle-based experiments using actual Iridium and Orbcomm signals, as well as simulated Globalstar Doppler measurements, integrated with an INS with a drift rate of 10°/h. The results demonstrated that the positioning accuracy was better than 10 m within 150 s [47].
In 2023, the Qin H team at Beihang University proposed an Iridium/INS integrated positioning method based on adaptive robust filtering, validated using actual vehicle data. When using low-precision Micro Electro Mechanical Systems (MEMS), the positioning accuracy was better than 300 m over 15 min. In 2024, the same team addressed the issue of significant tangential errors in LEO satellite orbits by proposing a Doppler measurement model based on equivalent transmission time, effectively reducing the impact of orbital errors. They also developed an integrated positioning framework for LEO satellite SOP and INS based on adaptive federated Kalman filtering. Real-world vehicle data demonstrated that the positioning accuracy could reach 200 m [48].
2.3 Development of anti-jamming technology
Currently, there is no research on anti-jamming technology specifically targeting LEO-SOP positioning, either domestically or internationally. Previous achievements in anti-jamming technology have primarily focused on GNSS and similar systems. Based on the number of receiver array elements, anti-jamming technologies can be classified into two categories: single-antenna anti-jamming technology and antenna array anti-jamming technology [49, 50]. The former, due to having only a single array element, lacks spatial resolution capabilities and mainly relies on time-domain, frequency-domain, and other transform-domain interference suppression techniques. Its interference suppression capability is limited, making it suitable for navigation receivers operating in general non-malicious electromagnetic interference environments with high positioning accuracy requirements [50–53]. The latter, by incorporating spatial domain information, can distinguish between interference sources and useful signals arriving from different directions. It primarily employs spatial domain interference suppression techniques and is less sensitive to the type of interference. The maximum interference suppression capability depends on the number of array elements and the specific interference scenario, offering stronger interference suppression capabilities [54–58]. Below, we will summarize the research status at home and abroad from four aspects: time-domain, frequency-domain, transform-domain, and spatial-domain anti-jamming technologies.
2.3.1 Time-domain anti-jamming
In single-antenna receivers, time-domain and frequency-domain anti-jamming algorithms are the most widely used. Among these, the primary approach of time-domain anti-jamming technology is to analyze the time-domain characteristics of the signal and process it under specific constraints to reduce or eliminate the impact of interference on the signal.
Since the spectra of narrowband interference, continuous wave interference, and strong out-of-band interference differ significantly from that of navigation signals, they can be filtered using FIR or IIR bandpass filters to selectively process signals in the frequency domain. Narrowband interference signals exhibit high correlation between sampled values, making them predictable and estimable. In contrast, desired signals are typically broadband with low correlation, making them difficult to predict. Therefore, the difference in predictability between these signals can be exploited to suppress interference [59].
Currently, pulse blanking technology and time-domain adaptive filtering technology are the most commonly used time-domain anti-jamming techniques. Pulse blanking technology can effectively eliminate pulsed interference, but this method can lead to distortion of the desired signal and is only applicable to anti-pulsed interference [60]. Time-domain adaptive filtering technology involves designing a filter in the time domain that meets user requirements. By using adaptive algorithms to perform real-time weighting on data at the current moment, this technology can predict the desired signal to achieve the goal of countering narrowband interference [61]. This technology has been commonly used in GPS terminal applications since the late 20th century. For example, the adaptive time-domain filter chip developed by Mayflower Communications Company can enhance the GPS terminal’s narrowband interference resistance by 30 dB [62]. In recent years, many scholars have conducted further research on time-domain adaptive filtering technology. In 2017, the team led by Chien Y R from National Ilan University in Taiwan proposed a time-domain adaptive filter composed of multiple sub-filters in parallel, which can process input data in parallel. By properly designing the starting frequencies and convergence ranges of each filter, this filter can detect and suppress multiple continuous wave interferences (CWI). However, its performance is reduced in mixed interference scenarios, and it has a certain attenuation effect on GNSS signals [63]. In 2020, the team led by Qin H from Beihang University proposed a cascaded second-order direct-form IIR notch filter, which can provide better anti-jamming capabilities in mixed scenarios where CWI and narrowband interference coexist. However, it performs poorly in suppressing broadband interference and has a higher computational complexity for the system [64]. In 2016, the team led by Mosavi M R from Iran University of Science and Technology combined neural networks with adaptive notch filters. By leveraging the parallel processing and strong adaptability of neural network technology, they reduced the computational complexity during interference suppression and improved the output performance of the notch filter [65]. However, the aforementioned time-domain anti-jamming techniques, although effective in suppressing narrowband mixed interference, perform poorly in suppressing broadband interference and can attenuate the desired signal to some extent [66].
2.3.2 Frequency-domain anti-jamming
Compared with time-domain anti-jamming algorithms, frequency-domain anti-jamming algorithms have the following advantages: they can simultaneously suppress multiple single-frequency interferences; when the interference bandwidth is greater than 5%, the performance of frequency-domain anti-jamming algorithms is better; with sufficient quantization word length, they have a larger dynamic range; the principle is simple and can take advantage of the well-established Fast Fourier Transform (FFT) algorithm, making it easy to implement in engineering; they have good adaptability for segmenting data processing. Therefore, frequency-domain anti-jamming algorithms are the most commonly used anti-jamming algorithms in engineering [66, 67].
Davidovici et al. proposed an implementation method for frequency-domain anti-jamming algorithms using windowing and overlap-add techniques, and they conducted a detailed analysis of the signal-to-noise ratio (SNR) loss associated with the algorithm [67–69]. In 2000, the team led by Li C from Shanghai Jiao Tong University improved the overlapping transform-domain algorithm, decoupling the system performance from the interference frequency and thereby enhancing the system’s robustness [70]. In 2005, Sun Z from Harbin Engineering University summarized the advantages and disadvantages of traditional adaptive time-domain and frequency-domain algorithms and proposed improvements based on this analysis [71]. In 2004, the team led by Zeng X from the National University of Defense Technology derived in detail the time-domain windowing effects on the overlap-add frequency-domain anti-jamming algorithm and analyzed the carrier-to-noise ratio (CNR) loss caused by time-domain windowing [72]. Through continuous exploration, the implementation of frequency-domain anti-jamming in engineering has evolved into a windowing overlap-add approach, the specific process of which is shown in Figure 3.
[image: Flowchart of a signal processing system with two parallel paths. Both paths start with an input \(x(n)\). The top path includes Windowing, FFT, Interference Suppression, IFFT, and Delay before summation. The bottom path includes Delay, Windowing, FFT, Interference Suppression, IFFT, then joins the final summation. The output is \(y(n)\).]FIGURE 3 | Flowchart of frequency-domain anti-jamming implementation.The detailed implementation process of interference suppression in Figure 3 is illustrated in Figure 4. The interference suppression component is the core of frequency-domain anti-jamming, which is divided into FFT-based power spectral density estimation, anti-jamming threshold generation, frequency-domain weight generation, and weighting. Among these, threshold generation is the key to interference suppression. In other words, a reasonable interference detection threshold is crucial for frequency-domain anti-jamming, and whether the threshold is set appropriately largely determines the performance of the frequency-domain anti-jamming algorithm.
[image: A flowchart diagram showing signal processing. Input \(X(n)\) undergoes FFT, leading to power spectral density estimation. From this, anti-interference threshold generation occurs, followed by frequency domain weight generation. The process continues to frequency domain weighting and then IFFT, resulting in output \(Y(n)\).]FIGURE 4 | Interference suppression process flowchart.In recent years, many scholars have further investigated frequency-domain adaptive filtering techniques. In 2016, the Rezaei M J team at Iran University of Science and Technology employed a frequency-domain transformation method based on multi-scale short-time Fourier transform (STFT), enhancing the signal’s aggregation in the frequency domain and improving the filter’s anti-jamming capability. However, this method came at the cost of increased computational complexity [73]. In the same year, the Chang C L team at National Pingtung University of Science and Technology in Taiwan combined compressed sensing with frequency-domain processing techniques, reducing the system sampling rate and thereby decreasing the computational complexity of anti-jamming processing. Nevertheless, the performance in suppressing wideband interference remained suboptimal [74]. In 2017, the Chien Y R team utilized wavelet packet transform (WPT), which offers higher time-frequency resolution than wavelet transform (WT), to detect interference parameters and estimate the current waveform of the interference, thereby suppressing it. This further enhanced the signal’s aggregation in the frequency domain, but the method still struggled when dealing with a large number of wideband interferences [75]. In 2024, the Ding M team at Hong Kong Polytechnic University introduced a Signal Prediction-Assisted Reference Spectrum Model (SPRSM) to mitigate the loss of desired signals during frequency-domain filtering. The introduced SPRSM equalizer leverages GNSS signal prediction to compensate for distortion, reducing signal degradation and quality loss caused by signal distortion during frequency-domain filtering [76].
In summary, frequency-domain anti-jamming techniques are only suitable for dealing with multiple narrowband interferences and broadband interferences that have certain spectral energy aggregation. When it comes to broadband interferences with poor energy distribution aggregation or a large number of broadband interferences, the interference suppression capability of frequency-domain anti-jamming techniques still falls short.
2.3.3 Transformation-domain anti-jamming
Transformation-domain anti-jamming technology involves mapping the received signal into a transformation domain (such as the frequency domain or time-frequency domain). By exploiting the differences in characteristics between the interference and the desired signal in the transformation domain, interference detection algorithms are used to estimate the parameters of the interference. The interference signal can then be removed using pulse blanking methods or filters. The processed signal is subsequently inverse-transformed back to the time domain. Alternatively, the interference signal waveform can be reconstructed based on the estimated parameters and then eliminated from the received signal [75, 77].
The choice of transform domain or transformation method can lead to differences in the obtained interference distribution characteristics. Therefore, the transform domain and method need to be selected or optimized based on the types of interference in the receiving environment. The frequency domain is the earliest and most commonly used transform domain. Stationary narrowband interference signals exhibit high aggregation in the frequency domain, and frequency-domain data can be quickly obtained through FFT, offering strong practicality [75]. With the continuous development of interference technology, non-stationary time-varying interference has become increasingly prominent in adversarial environments. As a result, cyclic spectrum analysis and time-frequency (TF) analysis methods have been introduced into the field of anti-jamming. Typical TF transformation methods include Short-Time Fourier Transform (STFT), Wavelet Transform (WT), Wigner-Ville Distribution (WVD), and Fractional Fourier Transform (FrFT), among others. To further enhance the aggregation of interference signals in the transform domain and achieve more accurate detection results, several new transformation methods have been proposed and applied in the field of GNSS interference detection and suppression. In 2015, the Sun K team at Hefei University of Technology combined reassignment techniques with the Smoothed Pseudo Wigner-Ville Distribution (SPWVD) to propose the Reassigned Smoothed Pseudo Wigner-Ville Distribution (RSPWVD). This method enhanced the aggregation of interference signals in the TF domain, improved TF resolution, and reduced cross-term interference [78]. In 2016, the Rezaei M J team at Iran University of Science and Technology employed multi-scale STFT, achieving improved TF aggregation of interference signals at the cost of a slight increase in computational complexity [73]. In the same year, the Li J team at Tianjin University of Technology used Time-Modulated Windowed All-Phase Discrete Fourier Transform (TMWAP-DFT) to detect the frequency parameters of pulse signals emitted by Distance Measurement Equipment (DME) [77]. In 2017, the Chien Y R team utilized WPT to detect the TF parameters of fast-varying interference signals and predict their waveforms [75]. Also in 2017, the Mosavi M R team at Iran University of Science and Technology demonstrated that WPT could suppress narrowband and chirp interference with a capability of up to 55 dB [79]. With the gradual maturation of compressed sensing theory, in 2016, the Chang C L team at National Pingtung University of Science and Technology in Taiwan introduced compressed sensing theory into the field of GNSS anti-jamming to reduce the sampling rate and the computational complexity of interference detection and suppression [74]. In 2024, the Sun K team at Hefei University of Technology proposed a Generalized Time-Fractional Bandwidth Product (GTFrBP) search model based on FrFT combined with a notch filter. Experimental results demonstrated that this model achieved high precision in detecting the optimal FrFT order [80].
The efficiency of transformation-domain anti-jamming techniques is independent of the number of interferences and is suitable for scenarios with multiple narrowband interferences. Moreover, these techniques can effectively handle non-stationary broadband interference signals such as linear frequency-modulated (LFM) signals. Therefore, they are considered a very promising anti-jamming strategy. However, these algorithms are only applicable to narrowband interferences and broadband interferences with strong TF energy distribution aggregation. They are powerless in the case of complex forms of broadband interferences or a large number of broadband interferences.
2.3.4 Spatial anti-jamming
Spatial filtering is one of the most effective methods for suppressing spatial interference signals. It employs adaptive null-steering antennas to achieve adaptive filtering functions. The working principle involves using adaptive weighting coefficients to control the antenna pattern, thereby filtering out interference signals in the spatial domain without degrading the gain of the desired signal [81]. The structure is shown in Figure 5.
[image: Block diagram of an adaptive signal processing system. Multiple inputs \(x_1(t)\), \(x_2(t)\), ..., \(x_M(t)\) pass through weight factors \(\omega_1\), \(\omega_2\), ..., \(\omega_M\). Outputs are summed at \(\Sigma\) to form \(y(t)\). An adaptive algorithm adjusts the weights based on feedback.]FIGURE 5 | Spatial anti-jamming structure.Classic spatial anti-jamming algorithms include the Power-Inversion (PI) method [82], Minimum Variance Distortionless Response (MVDR) method [83, 84], and Minimum Power Distortionless Response (MPDR) method [85]. The PI algorithm does not require prior information about the jamming and desired signals; it can form nulls in the direction of strong jamming to suppress it. This method has low computational complexity and is easy to implement. However, its suppression performance against weak jamming (JNR <20 dB) is not satisfactory [86], and it lacks constraints on the desired signal, making it unable to guarantee the gain of the desired signal. The MVDR and MPDR algorithms impose constraints on the beam response in the direction of the desired signal, enabling the spatial filter to have a distortionless response to the desired signal while suppressing jamming from other directions. However, the MVDR algorithm requires estimating the covariance of interference and noise without the desired signal, whereas the MPDR leverages the characteristic that the GNSS signal power at the navigation receiver is significantly lower than that of the jammer noise, directly using the covariance of the received signal to solve for the spatial filter weights. Since these methods were introduced into the field of GNSS receiver anti-jamming in the 1990s, they have been successfully applied in practical equipment. For example, Boeing developed a four-element antenna array anti-jamming receiver that can adaptively adjust the nulls in the antenna beam pattern, enhancing the anti-jamming capability of satellite navigation equipment on Joint Direct Attack Munitions (JDAM) [87]. Similarly, NovAtel developed a miniaturized GNSS Anti-Jam Technology (GAJT) antenna, employing a seven-element antenna array, capable of countering up to six strong jamming sources [88].
To enhance the capability of spatial filters to counter complex jamming environments, multi-antenna-based spatial anti-jamming technologies have been further researched. Regarding the selection of reference elements in the PI algorithm, in 2016, Chen F’s team from the National University of Defense Technology analyzed the impact of the relative position of reference elements on anti-jamming performance under different interference conditions [89]. In the same year, the team proposed an optimal element selection method based on joint acquisition results, adaptively selecting reference elements based on optimal acquisition outcomes [90, 91]. In 2017, Lu Z’s team from the National University of Defense Technology suggested that selecting appropriate reference elements can reduce the impact of channel mismatch and proposed choosing the optimal reference element based on output power to improve interference suppression performance [92]. Addressing the issue where blind adaptive beamforming algorithms (such as the PI algorithm) do not constrain the desired signal, leading to distortion in satellite navigation signals, in 2012, Zhang Y D’s team from Villanova University proposed a method to estimate the steering vector based on the autocorrelation characteristics of navigation signals, thereby estimating the carrier error introduced by blind adaptive beamforming and compensating for it [93]. In 2016, Daneshmand S’s team from the University of Calgary utilized the symmetry in symmetric arrays to estimate the signal distortion parameters introduced by adaptive filters, subsequently calculating compensation weight vectors [94]. In high-dynamic application scenarios, where rapid changes in interference direction over short periods lead to performance degradation in conventional algorithms, besides typical null broadening strategies [95], in 2016, Chen L W’s team from Wuhan University proposed using a Hidden Markov Process to detect interference characteristics within sub-bands, then employing a multi-constraint PI algorithm to eliminate interference, thereby enhancing the efficiency of processing rapidly changing interference [96]. In 2014, Wang W’s team from the Civil Aviation University of China proposed leveraging the sparsity of the spatial spectrum of interference signals, using short snapshot (single snapshot) Direction of Arrival (DOA) estimation methods to estimate interference directions, quickly constructing interference subspaces, and then suppressing interference through orthogonal subspace projection algorithms. This method can rapidly update spatial filter weights based on the instantaneous DOA information of interference sources, thus exhibiting high robustness in high-dynamic environments [97]. Regarding spatially proximal interference (interference incident within the main beam) causing a decrease in the output SNR of spatial filters, in 2017, Gong Y’s team from Northwestern Polytechnical University proposed a covariance matrix reconstruction method. This approach first eliminates spatially proximal interference from the covariance matrix to achieve the suppression of other interferences, and then uses an eigenvalue protection matrix to eliminate spatially proximal interference [98]. Addressing the drawback of uniform linear arrays being unable to distinguish between desired and interference signals located on the same ambiguity cone, in 2013, Wang X’s team from the University of New South Wales analyzed the relationship between spatial correlation coefficients [99] among signals and array orientation, proposing to rotate the linear array to obtain optimal anti-jamming performance by optimizing the spatial correlation coefficient [100]. In certain jamming scenarios, where high spatial correlation between interference and desired signals leads to reduced interference suppression effectiveness in fixed-array-based spatial filtering algorithms, in 2016, Wang X’s team from the University of New South Wales and Amin M G’s team from Villanova University respectively researched reconfigurable array technologies. These methods improve anti-jamming performance without increasing RF channels by selecting appropriate elements in redundant antenna arrays to reduce the correlation between interference and desired signals [101, 102].
3 PRINCIPLE OF LEO-SOP POSITIONING
LEO satellites signals are generally non-navigation/non-cooperative signals, which either do not contain or make it difficult to extract navigation information. Therefore, it is challenging to obtain pseudorange measurements, and positioning is usually achieved by extracting Doppler shifts. This section introduces the principle model of LEO-SOP Doppler positioning and the working process of the receiver. The details are as follows.
3.1 LEO-SOP Doppler positioning principle model
By measuring the instantaneous Doppler frequency of LEO satellites, positioning can be achieved. The principle is based on the Doppler effect caused by the high-speed motion of satellites relative to the ground. The change in Doppler frequency reflects the relationship between the satellite’s position and the navigation terminal’s position. The relative velocity between the receiver and the satellite can be obtained using the carrier Doppler measurements of the satellite signal and its wavelength. This constrains the receiver’s position to the surface of a cone with the satellite’s position as the origin, the satellite’s velocity direction as the axis, and the opening angle determined by the relative velocity. When a sufficient number of LEO satellites are received, the receiver’s position can be determined by the intersection of multiple conical surfaces calculated from the measurements. A schematic diagram of the multi-satellites Doppler positioning principle is shown in Figure 6. When LEO satellite visibility is insufficient, multiple measurements from a single satellite can also be used. Similarly, the intersection of multiple conical surfaces calculated from these measurements can determine the receiver’s position. The basic principle is the same as that of multi-satellites Doppler positioning. A schematic diagram of the single-satellite Doppler positioning principle is shown in Figure 7.
[image: Illustration of Earth with three satellites orbiting it. Each satellite emits beams represented by dashed lines in different colors: yellow, blue, and green. The beams converge at a red star on Earth's surface. Each satellite is connected to a labeled angle: theta subscript one, theta subscript two, and theta subscript three.]FIGURE 6 | Schematic diagram of multi-satellites doppler positioning algorithm principle.[image: Three illustrations show different configurations of a conical satellite signal area, labeled (a), (b), and (c). Each cone has a labeled satellite at the tip and a receiver at the base on a grid plane, depicting signal transmission paths. Differences in cone orientation and angle are visible, illustrating varied satellite coverage.]FIGURE 7 | Schematic Diagram of Single-Satellite Doppler Positioning Principle. (a) First measurement, (b) Second measurement, (c) Third measurement.Below, the Doppler positioning equation is derived from the pseudorange positioning equation. Taking a single satellite as an example, the traditional pseudorange positioning equation is:
δρ=HδX+ε(1)
In the equation, δρ represents the residual between the measured pseudorange and the back-calculated pseudorange; δX=δrx,δry,δrz,δ∂tcT, where δrx, δry and δrz are position errors; δ∂tc is the receiver clock bias error; ε is the measurement error; H is the measurement equation, which takes the form of Equation 2:
H=−e11v1⋮⋮⋮−eK1vK(2)
In the equation, K represents the Kth satellite received, eK is the unit line-of-sight vector from the receiver to satellite K, and vK is the pseudorange rate.
Taking the derivative of both sides of Equation 1 yields:
δρ˙=∂δρ∂t=∂HX∂t+ε˙=H∂X∂t+∂H∂tX+ε˙(3)
In the Equation 3, δρ˙ represents the residual between the measured Doppler shift and the back-calculated Doppler shift. The polynomial on the right-hand side of the equation can be calculated using the following formula. Specifically, the first polynomial H∂X∂t can be obtained from the classical linear equation of the receiver’s velocity:
H∂X∂t=H∂∂tδrx,δry,δrz,δ∂tcT=Hδr˙x,δr˙y,δr˙z,δ∂fcT(4)
Where, δr˙x, δr˙y and δr˙z represent the velocity errors, while δ∂fc denotes the receiver frequency bias.
The second term ∂H∂tX represents the relationship between the Doppler measurement and the position:
∂H∂tX=∂∂t−e11⋮⋮−eK1δrx,δry,δrz,δ∂tcT=−∂e1/∂t0⋮⋮−∂eK/∂t0δrx,δry,δrz,δ∂tcT(5)
By combining Equations 4, 5, we obtain:
δρ˙=Hδr˙x,δr˙y,δr˙z,δ∂fcT+−∂e1/∂t⋮−∂eK/∂tδrx,δry,δrz+ε˙(6)
The above equation is the Doppler positioning equation, which establishes a linear relationship between seven states (receiver position, velocity, and frequency bias) and the instantaneous Doppler shift. If the receiver is stationary, the number of unknowns in the equation reduces to four, namely, δrx,δry,δrz,δ∂fcT. In this case, positioning can be directly performed using the instantaneous Doppler measurements from four satellites. Equation 6 then becomes:
δρ˙=−∂e1/∂t1⋮⋮−∂eK/∂t1δrx,δry,δrz,δ∂fcT+ε˙(7)
Before solving the navigation Equation 7, the expression for the three-dimensional vector −∂ek/∂t must be derived, which is:
∂ek∂t=∂∂txk−xxyz0xk−xxyz0(8)
Where, xk represents the position of satellite k, and xxyz0 is the prior position information of the receiver. For the sake of simplifying the description below, the superscript (k) can be omitted, and the variable r can be used to represent the distance from the satellite to the receiver, that is Equation 9:
r=xk−xxyz0(9)
Therefore, Equation 8 can be written as:
∂e∂t=∂∂tx−xxyz0r=∂x−xxyz0∂t·r−x−xxyz0·∂r∂t1r2=∂x∂t·r−x−xxyz0·e·v1r2=∂x∂t·r−r·e·e·v1r2=∂x∂t−e·e·v1r(10)
From Equation 10, the physical meaning of the three-dimensional vector expression −∂ek/∂t in Equation 7 can be understood, which is: the ratio of the difference between the satellite’s velocity and its velocity component in the line-of-sight direction to the distance.
3.2 LEO-SOP receiver operation process
Since LEO satellites are generally not designed for navigation purposes, it is difficult to obtain traditional navigation observation information such as pseudoranges. Therefore, LEO-SOP receivers typically need to analyze the characteristics of LEO satellite signals, such as signal structure and signal power, to extract navigation observation information. Additionally, they rely on external ephemeris data to assist in obtaining satellite position and velocity parameters. These steps are essential for the receiver to complete its own positioning and obtain PNT status. By substituting TLE parameters into the SGP4 model, the satellite’s position and velocity at a specific moment can be calculated.
Generally, after the antenna of a LEO-SOP receiver completes the acquisition of the SOP signal, it uses a down-conversion device to shift the frequency of the collected signal to an intermediate frequency. Subsequently, the SOP signal is detected, and navigation observation information is analyzed and extracted. Finally, the receiver estimates its own PNT status using the observation information and external ephemeris data. The operation process of the LEO-SOP receiver is shown in Figure 8.
[image: Flowchart depicting signal processing. LEO signals enter the system, followed by filtering and downconversion, resulting in I/Q data. Signal detection occurs next, leading to observable estimation. Inputs from ephemerides contribute to PNT processing, which outputs PNT.]FIGURE 8 | Flowchart of LEO-SOP receiver operation.4 ANALYSIS OF THE SYSTEM-LEVEL ANTI-JAMMING CAPABILITY OF LEO-SOP
This section analyzes the system-level anti-jamming capability of the LEO-SOP. It first provides a detailed introduction to the constellation characteristics of the Iridium, Orbcomm, and Starlink satellites within the LEO system. The analysis of system-level anti-jamming capabilities is then conducted from several aspects, including GDOP (Geometric Dilution of Precision) values, satellite visibility, SNR at the receiver, and downlink user frequencies. Without loss of generality, the GPS system from the GNSS is selected as a representative for comparative analysis with the LEO system.
4.1 Characteristics of LEO constellations
This subsection selects the relatively mature Iridium and Obrcomm satellites, as well as the rapidly developing Starlink satellites, as representatives of the LEO system. It provides a detailed introduction to the constellation characteristics of each representative satellite, laying the theoretical foundation and technical support for subsequent analysis of anti-jamming capabilities. The details are as follows.
4.1.1 Iridium system
The Iridium system is a global satellite mobile communication network developed by Motorola and others, consisting of 66 LEO satellites. In January 2017, the first batch of 10 Iridium NEXT satellites was successfully launched. On 20 May 2023, an additional five backup satellites were launched aboard SpaceX’s Falcon 9 rocket [103–105]. Currently, the Iridium NEXT constellation has 80 satellites in orbit (66 of which are actively transmitting signals, with the remaining 14 serving as backups). A schematic diagram of the Iridium NEXT system constellation is shown in Figure 9a.
[image: (a) Illustration of Earth surrounded by satellites in orbit, indicating a global communication network. (b) Diagram showing frequency band allocation for duplex and simplex channels ranging from 1616 MHz to 1626.5 MHz, with details on working and guard bands, and messaging services.]FIGURE 9 | Basic satellite orbit distribution and signal system of the iridium system. (a) Constellation orbit, (b) L-band frequency allocation.The Iridium system’s satellites have an orbital inclination of 86.4° and an orbital period of 100.13 min, enabling global coverage. The user link employs a combination of FDMA/TDMA/SDMA/TDD multiple access techniques. The 48 spot beams of each satellite are grouped into sets of 12 adjacent beams, which spatially reuse the total available frequency band (SDMA). Within each beam, the frequency band is further divided into multiple TDMA channels using FDMA. For the same user, the uplink and downlink within each TDMA channel are time-division multiplexed (TDD), meaning the uplink and downlink occupy different time slots within the same frame of the same TDMA carrier [106–110].
The total bandwidth allocated to Iridium is 1,616.0 MHz–1,626.5 MHz. Specifically, 1,616.0 MHz - 1,626.0 MHz is used for full-duplex channels as the service channels, while 1,626.0 MHz - 1,626.5 MHz is designated for the downlink simplex channel, used as the signaling channel. The 0.5 MHz bandwidth of the downlink channel is divided into 12 channels, each with a bandwidth of 41.67 kHz. The FDMA frequency allocation for the user links of the Iridium system is shown in Figure 9b; [111–114].
4.1.2 Orbcomm system
Orbcomm satellites are a joint project between Orbital Sciences Corporation of the United States and Teleglobe of Canada. This satellite system offers several advantages, including low investment, short development cycles, dual capabilities in communication and positioning, lightweight satellites, mobile phone user terminals, high levels of system automation, and strong autonomous functionality. Utilizing the Orbcomm system, users can engage in applications such as remote data collection, system monitoring, tracking of vehicles, vessels, and mobile facilities, as well as sending and receiving emails. In 2008, Orbcomm announced the deployment of its second-generation satellite (OG2) constellation. Currently, there are 12 OG2 satellites in orbit, evenly distributed across four primary orbital planes. The OG2 satellites operate at an altitude of 620 km with an orbital inclination of 47° and an orbital period of 97 min. A schematic diagram of the Orbcomm constellation is shown in Figure 10a; [115–118].
[image: (a) Illustration of Earth with satellite trajectories in teal lines encircling the planet. (b) Diagram showing frequency bands for user uplink (148 to 150 MHz) and subscriber link downlink (137 to 138 MHz) with segments marked in kilohertz.]FIGURE 10 | Orbcomm Satellite orbital distribution and signal System. (a) Constellation orbit, (b) downlink allocation.The downlink of Orbcomm satellites occupies the frequency band of 137–138 MHz, which includes 13 channels. Twelve channels, each with a bandwidth of 25 kHz, are used for communication with user terminals (employing FDMA multiple access), while the remaining channel, with a bandwidth of 50 kHz, is used for communication with gateway stations. All Orbcomm satellites share the 12 user downlink channels. The user downlink employs SDPSK modulation. The downlink allocation of the Orbcomm constellation is illustrated in Figure 10b; [119, 120].
4.1.3 Starlink system
Starlink is a Non-Geostationary Orbit (NGSO) satellite system being developed by SpaceX, an American space services company. It boasts numerous advantages, including extensive coverage, high signal strength, and a large number of satellites. The system consists of two sub-constellations: a LEO constellation at an altitude of 550 km and a Very Low Earth Orbit (VLEO) constellation at an altitude of 340 km. Although the Starlink constellation is not yet fully deployed, the number of satellites already in orbit far surpasses that of other LEO constellations. By November 2024, the number of Starlink satellites in orbit had exceeded 6,000, significantly more than any other existing LEO constellation. The system is projected to grow into a mega-constellation of nearly 12,000 satellites to provide satellite internet services. Figure 11 illustrates the schematic diagram of the deployed constellation [121–123].
[image: Earth surrounded by a network of bright blue lines, forming a grid-like structure. The lines create an interconnected web around the planet, set against the dark backdrop of space.]FIGURE 11 | Schematic diagram of starlink constellation deployment.The constellation design of Starlink has gone through two phases. As early as April 2020, SpaceX adjusted the orbital altitudes of all satellites in the LEO constellation from 1,150 km to 550 km to a range of 540–570 km in the first phase configuration. The modified configuration of the first phase of the Starlink constellation is shown in Table 3; [124, 125].
TABLE 3 | Configuration of the first phase of the starlink constellation.	Constellation type	Orbital altitude/km	Orbital inclination/(°)	Number of orbital planes	Number of satellites in the orbital plane	Total number of satellites
	LEO	550	53	72	22	1,584
	540	53.2	72	22	1,584
	570	70	36	20	720
	560	97.6	6	58	348
	560	97.6	4	43	172
	VLEO	345.6	53			2,547
	340.8	48			2,748
	335.9	42			2,493


In May 2020, SpaceX submitted the constellation design for its second-generation Starlink system (Gen2), which includes 30,000 satellites.
The Starlink system features inter-satellite communication capabilities. Network users will utilize the V and Ku bands, while the V and Ka bands will primarily be used for connecting gateways and for tracking, telemetry, and control. The LEO sub-constellation satellites will operate in the Ku, Ka, and V bands, with the Ku band used for downlink operations. The VLEO sub-constellation satellites will only use the V band. The frequency bands used by the Starlink system are shown in Table 4.
TABLE 4 | Frequency bands of the starlink system.	Uplink/Downlink	Ku	Ka	V
	DownlinkUplink	10.7∼12.7	—	37.5∼42.5
	14.0∼14.5	—	47.2∼50.2
			50.4∼52.4


4.2 Analysis of the system-level anti-jamming capability
LEO-SOP demonstrates a significant improvement in the system-level anti-jamming capability due to the numerous inherent advantages of LEO constellations compared to traditional GNSS navigation constellations. The following analysis will focus on GDOP values, satellite visibility, SNR at the receiver, and downlink user frequency. During the analysis, four currently well-established LEO-SOP positioning scenarios will be considered: Iridium single-constellation positioning, Orbcomm single-constellation positioning, Starlink single-constellation positioning, Iridium/Orbcomm dual constellation joint positioning, as well as a comparative scenario with GPS positioning.
4.2.1 GDOP value
Using STK software, the GDOP values of various constellations under five scenarios in the Asia-Pacific region over a 24-h period were simulated. The horizontal axis represents the latitude values, while the vertical axis represents the corresponding GDOP values. The results are shown in Figure 12.
[image: Five line graphs labeled (a) to (e) display "FOM Value" against "Latitude (degrees)" for the Civil Air Patrol. Each graph shows varying trends in FOM values across latitudes, with (a) and (e) showing relatively stable lines, (b) displaying more fluctuations, (c) peaking at the edges, and (d) having mid-range variations.]FIGURE 12 | Gdop values of various constellations. (a) Iridium single constellation, (b) orbcomm single constellation, (c) Starlink single constellation, (d) Iridium/orbcomm dual constellation, (e) GPS satellites.As can be seen from Figure 12, the GDOP value of the Orbcomm single-constellation performs relatively the worst. This is because Orbcomm is a Walker constellation with only 12 available satellites. In contrast, the GDOP value of the Iridium single constellation is better than that of GPS satellites. Although Iridium has a polar orbit type, its constellation consists of 66 satellites, which is a relatively large number, resulting in better GDOP performance. Moreover, when combined with Orbcomm to form a dual constellation, the GDOP value improves significantly, effectively enhancing the satellite geometry. The Starlink constellation, with the largest number of satellites, exhibits the best GDOP performance.
4.2.2 Satellite visibility
Similarly, using STK software to simulate the satellite visibility of each constellation in the five scenarios in Beijing area over a 24-h period, the results are shown in Figure 13.
[image: Five line graphs showing "FOM Value" over time, labeled as figures (a) to (e). Each graph spans from 5th to 6th January 2023, marked with "Civil Air Patrol Use Only." Graphs show varying data trends, with figure (a) having varied peaks up to 7, figures (b) and (c) showing lower peaks, and figures (d) and (e) displaying moderate fluctuations.]FIGURE 13 | Satellite visibility of various constellations. (a) Iridium single constellation, (b) orbcomm single constellation, (c) Starlink single constellation, (d) Iridium/orbcomm dual constellation, (e) GPS satellites.It can be observed that the satellite visibility of each constellation follows a similar trend to their GDOP performance. The Starlink constellation boasts the best visibility. Although the Iridium constellation has a relatively large number of satellites, its orbital configuration is suboptimal, while the Orbcomm constellation suffers from a limited number of available satellites. However, in the case of dual-constellation combinations, the satellite geometry can be effectively improved.
4.2.3 Received signal power
The GPS constellation employs satellites in Medium-Earth-Orbit (MEO). The high orbital altitude results in significant signal attenuation during the transmission of navigation signals, leading to low received power (typically between −160 dBW and −155 dBW). The signals are often submerged in noise, resulting in a low SNR, generally ranging from −20 dB to −30 dB.In contrast, LEO satellites, with their lower orbital altitudes (typically between 700 km and 900 km), experience less signal attenuation during propagation. This results in a higher received SNR (commonly between 15 dB and 30 dB). In terms of received signal power, LEO satellite signals have a significant advantage over GPS signals in terms of anti-jamming capability.
4.2.4 Downlink user frequency
Compared with the user downlink spectrum of GNSS applications, which are mostly concentrated in the L-band, LEO satellites have a wide range of available frequency bands due to the numerous applications from various LEO systems. These bands (100 MHz - 42.5 GHz) provide extensive coverage and greater flexibility in terms of anti-jamming capabilities. Unlike current GNSS systems, most LEO satellites operate at very high frequencies, which also enhances their resilience to interference. Detailed parameters of the downlink frequencies and bandwidths of major domestic and international LEO satellites, refer to Table 1. Figure 14 illustrates the downlink spectrum of GNSS navigation systems and selected LEO systems, including Orbcomm, Tianqi, StarNet, Iridium, Globalstar, Starlink, and OneWeb constellations.
[image: Diagram showing various satellite communication frequencies and networks. Orbcomm is at 100 MHz in red, Tian Qi at 300 MHz in green, GNSS at 1000 MHz in blue, GW in orange, Iridium at 1600 MHz in green, Globalstar at 2000 MHz in dark blue. Starlink and OneWeb are depicted at 10 GHz and 35 GHz in blue and orange shades.]FIGURE 14 | Spectrum range illustration of LEO satellites and GNSS satellites.In summary, LEO-SOP systems have significant advantages over GNSS systems in terms of received signal power and downlink user frequencies, which contribute to better anti-jamming capability. Regarding GDOP values and satellite visibility, LEO-SOP systems also show clear advantages over GNSS, except for some constellations with fewer satellites and less favorable orbital configurations. Moreover, adopting a dual-constellation system can greatly mitigate potential deficiencies in satellite numbers and orbital configurations that may exist in a single constellation.
5 FUTURE CHALLENGES
Although LEO-SOP systems have significant advantages over GNSS systems in terms of anti-jamming capability, in everyday positioning scenarios, they are still often affected by various adverse electromagnetic environments, such as urban multipath interference and malicious human-made interference. Therefore, researching anti-jamming algorithms specifically for LEO-SOP positioning holds extremely high application value. In addition, there are still several anti-jamming-related challenges that deserve attention.
5.1 Anti-broadband interference under single-antenna reception and mitigation of desired signal loss
Due to the relatively narrow downlink signal bandwidth of LEO satellites (e.g., the Iridium system has a bandwidth of 500 kHz, while the Orbcomm system has only 25 kHz), and the fact that single-antenna receivers remain the preferred choice for most LEO satellite receptions, the available anti-jamming measures are limited when facing wideband or severe interference environments. Moreover, the signal quality degradation caused by anti-jamming measures is more severe given the already narrow signal bandwidth. To address this challenge, future research on single-antenna anti-jamming will focus on how to counteract the effects of wideband interference and mitigate the loss of desired signals during the anti-jamming process, thereby reducing signal distortion and quality degradation caused by signal distortion.
5.2 Measurement estimation in low SNR environments
Currently, the majority of research on LEO-SOP positioning is based on the calculation and estimation of observations under relatively high SNR conditions. However, in most usage scenarios, various factors can lead to a lower SNR of the received LEO-SOP signals. For example, low-cost or small-sized antennas inherently cannot provide high antenna gain; rain fade or other path losses particularly affect the energy of high-frequency band signals, resulting in a lower SNR of the received signals; and harsh interference environments can further reduce the signal SNR. A low SNR makes signal detection more challenging and decreases the accuracy of observation estimation. Therefore, future research needs to further explore how to achieve precise estimation of observations in low SNR environments.
5.3 Interference scenarios from other satellites
With the construction and deployment of mega-constellations represented by Starlink, interference among different satellites within the same system will become increasingly common. Under such conditions, the receiving environment will be more challenging, as the receiving end often faces signals from other satellites that have similar frequencies and power levels. Therefore, future research needs to further explore how to accurately receive and estimate the target signals in scenarios with interference from other satellites.
6 CONCLUSION
This paper provides a comprehensive review of LEO-SOP and anti-jamming technology research, and analyzes the anti-jamming capability of the LEO-SOP system. Firstly, the current research status of LEO-SOP and anti-jamming technologies is summarized, including the Doppler positioning principle model of LEO-SOP and the workflow of the receiver. Secondly, the anti-jamming capabilities of the LEO-SOP system are analyzed. Finally, the challenges and future development directions of LEO-SOP anti-jamming technologies are discussed, aiming to provide a solid technical foundation for the secure application of LEO-SOP.
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Catego Advantages Disadvantages L model ataset type Ref
k-means Real measurement [119]
High interpretability;
‘Traditional clustering or support small-scale data; Poor generalization HDBSCAN Real measurement (120,121]
single classification fast training speed; ability
real-time FDE ability 0CSVM Simulation, add (221
simulated faults
TDNN Combination of (123
- —_— simulated and real data
b.lfg}f O handle e Poor interpretability;
Reconstruction models Sbiis can handlc require large-scale data; Autoencoder Simulation, add [106]
. situations that have not -~ N
based on deep learning ) low training speed; poor simulated faults
been encountered during Ny
= real-time performance
the training process
GAN, RNN Real measurement, add [124]

simulated faults






OPS/images/fphy-13-1487136/inline_77.gif





OPS/images/fphy-13-1567301/fphy-13-1567301-t003.jpg
Category

Advantages

Disadvantages

Dataset type and

labeling

Traditional pattern
recognition

High interpretability;
support small-scale data;
fast training speed;
real-time FDE ability

Poor generalization
ability; reliance on
artificially designed
normative features

SVM

RE

SEL

Real measurement,
UrbanLoco open source
dataset, labeling based
on fisheye camera

Real measurement,
labeling inferred from
actual pseudo-range
error and fault threshold

Real measurement, open
dataset from Chemnitz
University of
Technology, labeling
inferred from actual
pseudo-range error

Real measurement,
labeling based on fisheye
camera and 3D map

[101]

(102

(103)

[105]

‘Traditional neural
network

Fast training speed,
especially for RBENN
algorithm; real-time
FDE ability

Poor generalization
ability; poor
interpretability; medium
data scale requirement

MLP

NE-NN, PNN

PNN

Real measurement, open
source dataset, labeling
based on fisheye camera

Simulation, dynamically
sampling the position
error distribution and

get labels

Simulation, add
simulated fault and
obtain labels

[107)

(108, 109]

(110]

Deep learning

Support continuous
learning high
generalization ability;
can automatically extract
higher-order features
from data

Very poor
interpretability; require
large-scale data; low
training speed; poor
real-time performance

LSTM

Hopfield network

DSN, Siamese neural
network

LSTM, continual
learning

Real measurement,
labeling based on 3D
map

Real measurement, add
simulated faults and
obtain label

Real measurement,
labeling based on fisheye
camera

Real measurement,
labeling based on fisheye
camera

Real measurement,

UrbanNav open source

dataset, labeling based
on 3D map

{111

(2]

(113

(115, 116]

(117, 118)
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ypes

Kalman filter (KF)

Extended Kalman filter (EKF)

Principles

Predicts the value of the next epoch
based on the existing observations

Nonlinear observation equation and
state of the system

Advantages
Real time update state estimation;
Dynamic adjustment of parameters to

adapt to system variation

Simple algorithm implementation

ortcomings

Linear system model only;
Sensitive to initial state

Covariance tends to diverge under high
nonlinearity;
Accuracy depends too much on initial
error

Unscented Kalman filter (UKF)

Particle filter (PF)

Complementary filter (CF)

Uses a selected set of minimum sample
points to approximate the true model
probability distribution

Use weighted random samples to
statistically calculate the posterior
probability

‘Weighted average of different sensor
data

Accurately capture the statistical
characteristics of nonlinear functions

Applicable to nonlinear and non
Gaussian problems

Balance short-term noise and
long-term drift

Higher computational complexity;
Highly sensitive to noise, and the
generation of sigma points may
introduce additional noise

Particle degradation

High requirements for rationality of
weight factor
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Representative algorithm Features

Direct method “Triple vector attitude determination (TRIAD) [91] Simple and fast, without prior conditions for baseline
length, low accuracy

Least square method Attitude matrix (attitude angle) least squares method; Good accuracy, high computational efficiency, and
constraint least squares method good precision in static positioning
Optimal estimation method Quaternion estimation method [92]; rotation matrix ‘The calculation accuracy is good, but the time cost is

method (93] high
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Measurement basis Measurement basis Features Applicable scenarios

Single antenna Derive the direction and angle of Lower aceuracy, simple layout Spacecraft system
acceleration from the signal strength

Single Baseline Failed to obtain full attitude angle Small-sized aircraft

Reflect the change in attitude angle by the

Multiple Ant
ultiple Antennas change in the position of the baseline vector

Multiple Baselines Measure complete attitude angles Large-sized aircraft
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Description method Features Usage scenarios

Euler Angles Intuitively reflect the direction angles; have singularity GNSS measurement systems
issues
Quaternions No singularity issues; have more parameters; not INS measurement systems
intuitive
Direction Cosines Meet orthogonality constraint conditions; complex GNSS measurement systems; INS measurement

construction; large computational load systems; Optical Measurement System





OPS/images/fspas-12-1436270/inline_51.gif
b
u,





OPS/images/fphy-13-1567301/inline_96.gif
P





OPS/images/fphy-13-1487136/fphy-13-1487136-g008.gif
(@)

(b)





OPS/images/fspas-12-1436270/inline_50.gif
N(v};u.,R})





OPS/images/fphy-13-1567301/inline_95.gif
Py





OPS/images/fphy-13-1487136/fphy-13-1487136-g007.gif





OPS/images/fspas-12-1436270/inline_5.gif





OPS/images/fphy-13-1567301/inline_94.gif





OPS/images/fphy-13-1487136/fphy-13-1487136-g006.gif
USoiingbasedon
Ipositoning domaip_

Saiving based on
absersation domain

trmoon]





OPS/images/fspas-12-1436270/inline_49.gif





OPS/images/fphy-13-1567301/inline_93.gif





OPS/images/fphy-13-1487136/fphy-13-1487136-g005.gif
Saselltie

’\ \X/ : %&






OPS/images/fspas-12-1436270/inline_48.gif





OPS/images/fphy-13-1567301/inline_92.gif





OPS/images/fspas-12-1436270/inline_47.gif
g klk





OPS/images/fphy-13-1567301/inline_91.gif





OPS/images/fspas-12-1436270/inline_46.gif
A klk





OPS/images/fphy-13-1567301/inline_90.gif





OPS/images/fphy-13-1567301/inline_9.gif





OPS/images/fphy-13-1567301/inline_89.gif





OPS/images/fphy-13-1487136/fphy-13-1487136-t006.jpg
Algorithm Principles Algorithm features

Moddified-LAMBDA [80] Introducing symmetric permutation and adopting Improved computational efficiency without affecting
greedy search strategy during covariance the success rate of fixing ambiguity
decomposition
Constrained-LAMBDA (81] Adjust the search space using constraint conditions Improve the success rate of fuzzy search or enhance

search efficiency
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Based on observation domain

Based on positioning domain

Based on the fuzzy domain

Typical algorithm
Combinatorial Solution for Broad-Narrow Lane

Configuration [21]

‘Three-carrier Ambiguity Resolution (TCAR) [69, 70]

Ambiguity function method (AFM) (71]

Least-squares ambiguity decorrelation adjustment
(LAMBDA) [72]

Features

Improving stability while enhancing resolution, but
the large wavelength variation is not conducive to
real-time processing

Incrementally fixing the variables allows for a rapid
resolution of ambiguities, which enhances the
real-time performance

Insensitive to cycle slips, yet the search time is
prolonged and there s the issue of multiple peak values

Strong applicability, determination can be made with
short time series
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Differential observation Equation Ambiguity N; Observation noise

Single differenced
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Double differenced
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User elevation Evaluation Elevation angle Azimuth angle Vertical error Horizontal error

angle range criteria error Ay/° error AB/® Ax/m
Bias 01349 02028 10,650 10869

[10°,90°]
Standard deviation 03724 0.6374 28,955 33410
Bias 01639 0.1556 24052 28,155

[10°30°] |

Standard deviation 05325 0.4881 65,283 90,783
Bias 01239 02177 6,022.1 49103

[30°90°)
Standard deviation 03174 0.6847 16,740 13961
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User elevation Evaluation Elevation angle Azimuth angle Vertical error Horizontal error

angle range criteria error Ay/° error AB/® Ax/m
Bias 01038 01239 7,093.5 7,009.3

[10°,90°]
Standard deviation 05016 L1811 31,720 53,403
Bias 0.1683 0.0996 15,546 17,180

[10°30°] |

Standard deviation 09562 1.9617 74,503 165,260
Bias 00817 0.1316 42312 3,567.1

[30°90°)
Standard deviation 03455 0.8340 17,385 15,062
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arameter type rameter value

Earth radius R 6371 km
Satellite orbital altitude H 1,200 km
User elevation angle & [10°90°]
Satellite elevation angle y ‘ can be calculated by «
satellite azimuth angle § [1°360°]
Total number of satellite beams 52
User geodetic height 1 v om
User receive gain G(a) 0dB
Noise bandwidth B, 1,000 Hz
Noise temperature T 290K
Least squares iterations N ' 10
Receiver sensitivity ‘ ~160 dB W, ~190 dB W
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Category

Advantage Disadvantage

RAIM based on error probability distribution model

RAIM based on set representation

ML-RAIM

Mathematical expression is clear, IR and Py, can be
estimated analytically

Commonly used Gaussian models have limitations, it
is often difficult to establish and validate error
probability distribution models in complex scenarios

Avoiding the difficult task of modeling error
probability distributions, the set of state estimation
errors that can be characterized

Performance is limited by the accuracy of determining
the measurement and process error uncertainty
intervals

Better cope with non-linear systems, non-Gaussian
noise environment, support for integrity monitoring in
complex scenarios

Dependence on reliable datasets, poor generalization
ability, insufficient research on the error bounding
module
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Category

Characteristic

Dataset type and
labeling

Quantifying the effect of
undetected faults on PE

Direct predicting PL based on
ML algorithm

Based on probabilistic
regression ML algorithm

Based on Gaussian
distribution; search for the
‘minimum detectable fault

variance expansion factor and
fault deviation value,
respectively

no need to predetermine the
type of probability distribution
model

predicting the probability
distribution of PE; need to
predetermine the type of the
probability distribution model

NE-NN

DT, NN

CRF

Bayesian -LSTM

NGBoost

Simulation, dynamically
sampling the position error
distribution and get labels

Real measurement, labeling
based on RTK high-precision
positioning results

132 land-vehicle challenging
urban kinematic GNSS
datasets

Simulation, the actual PE is
known

Simulation, the actual PE is
known

[109)

[125)

[126)

1127)

[128)
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Algorithms 00 sets data 3,000 sets data The average

time spent
ude Latitude (m) = Altitude (m) = Longitude Latitude (m) = Altitude (m) per epoch
(m) (ms)
CKF 3.835 3.945 7.043 4.067 4.186 7.557 87

GSCKE 3245 3294 4.154 3384 3433 4366 134

AGSCKF 2854 2975 3583 2953 3.076 3735 169
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Epoch Pseudo-range noise
periods

Covariance/(m) Kurtosis

[2015,3005] 0997 0.881 0.90
[8015,9005] 0.156 0225 3.06

[1,1015,1,200'5] 0178 0.264 289

0823 0732 134

[1,301 5, 1,4005]
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Sensors Parameter Value
Gyroscope constant drift 10'/h
Gyroscope random walk coefficient 0.6/Vi
SINS Accelerometer zero bias 10 pg
Accelerometer random walk coefficient 80 ug-Vh
Sampling rate 100/Hz
Positioning errors 15/m
GNss
Sampling rate 10/Hz
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Algorithm 401s-500s 601s-800s 801s-1,000s

CKF 579 5.65 5.84 592

GSCKE 828 832 792 852

AGSCKF 13.73 16.73 16.61 13.68
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Algorithm Attitude 0s-400s 401s-500s 601s-800s 01s-1,000s
Roll 0292 0318 0313 0297
CKF Pitch 0288 0294 0304 0.286
Yaw 0.365 0388 0389 0.365
Roll 0223 0258 0253 0222
GSCKE Pitch 0218 0244 0244 0212
Yaw 0317 0343 0342 0311
Roll 0218 0235 0238 0213
AGSCKF Pitch 0213 0228 0224 0.200
Yaw 0.298 0308 0308 0298

Algorithm Position 0s-400s 4015-500s 601s5-800s 801s-1,000s
Longitude 5589 5787 5782 5.585
CKF Latitude 5591 5.634 5.739 5.593
Altitude 7.998 8.102 8.103 7.993
Longitude 4521 4872 4875 4522
GSCKF Latitude 4519 4611 4612 4514
Altitude 5654 6.361 6.366 5.658
Longitude 4327 4623 4625 4326
AGSCKF Latitude 4340 4467 4467 4337
Altitude 5537 5793 5.866 5493
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Value

Yaw 15
Attitude error Pitch 1
Roll i
East 0.5m/s
Velocity error North 0.5m/s
Up 0.5m/s
Longitude 10m
Position error Latitude 10m
Altitude 15m
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Parametel Value

Constant drift 0.1°/h
Gyroscope
Random walk coefficient 0.01°/h
Zero bias 0.001g
Accelerometers Random walk coefficient 0.001g-+§
Sampling frequency 50 Hz
Pseudo range observation error 15m
GNSS receiver
Sampling frequency 1Hz
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Direction finding Direction finding Direction finding Direction finding Equipment
algorithms sensitivity accuracy speed complexity
Amplitude comparisonethod Low Low Fast Low
Phase comparisonethod Relatively high Relatively high Relatively fast Relatively high
Spatial spectrum High High Slow High

estimationethod
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Identification Classifiers

Advantages

Disadvantages

DT Simple idea, easy to understand, small amount of calculation, Fixed threshold value, greatly influenced by human factors,
low complexity, real-time identification cascade structure, with more levels leading to poorer
identification accuracy
sVM Small sample size required, easy to handle nonlinear and Reduced identification efficiency when the sample size is large,
high-dimensional problems, can avoid local minimum problems | supports binary classification but is not good at solving
‘multi-class classification problems.
NN Can solve any complex high-dimensional nonlinear problems, | Requires a large number of training samples; high

good identification performance

computational complexity, and poor real-time performance.
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Interference detection algorithms = Advantages Disadvantages

Time-domain Detection Simple implementation, intuitive principle, good Lack of frequency information, inability to handle
real-time performance, sensitive to impulsive signals, non-stationary interference, susceptibility to noise
no prior information required

Frequency-domain Detection Determination of interference frequency points, strong | High computational complexity, transient response
noise suppression capability suitable for analyzing lag, and high requirements for synchronization
simple non-stationary interference signals

‘Time-Frequency Detection Suitable for detecting complex non-stationary High computational load, cross-term issues with some
interferences, capable of analyzing the local ‘methods, difficulty in interpreting time-frequency
time-frequency characteristics of interferences graphs, and high sensitivity to parameters
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ype of platform

Ground-based

Air-based

Space-based

Funct

Establishing fixed or mobile radio
monitoring stations on the ground to
achieve surveillance of various signals
in the electromagnetic spectrum

Radio monitoring systems installed on
aircraft such as airplanes, drones, and
airships

Relying on artificial Earth satellites to
conduct global electromagnetic
spectrum monitoring activities from
orbit

Characteriza

Low cost, strong opera ability, easy
‘maintenance, high data quality, and
flexible equipment configuration
Limited coverage range, susceptible to
obstructions, poor mobility, and strong
dependence on ground infrastructure

Strong mobility, wide coverage range,
high efficiency, strong adaptability, and
high positioning accuracy

High cost, poor continuous surveillance
capability,low survive ability, complex
deployment and retrieval, and strict
limitations on the weight and size of
‘monitoring equipment

Global coverage, high real-time
performance, sustainable and stable
operation, and high strategic value
High cost, complex technology, limited
resources, and weak survive ability

Typical monitoring system

‘The U.S. National RF monitoring.
Network and the European Space
Agency's ground-based GNSS receiver
network

‘The U.S. EP-3E ARIES I electronic
reconnaissance aircraft, the Russian
Tu-214R reconnaissance aircraft, and
the Russian Luch/Blits series of satellites

‘The USS. Space-Based Space
Surveillance (SBSS) system, the Russian
Luch/Blits series of satellites, and the
US. HawkEye 360
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Location Interference incidents

1990 Persian Gulf | In the Gulf War, the US, Iraq and other adversaries
electronic countermeasure

1999 Yugoslavia | In the Kosovo War, the two sides send out
jamming signals to reduce navigation accuracy or
to mislead the enemy

2011 Iran Iranian forces have beamed a decoy signal to
capture a US RQ-170 Sentinel drone

2017 | TheBlackSea | The GPS systems of ships operating in the Black
Sea were attacked with spoofing and jamming, and
the ship was located at an airport several miles
away

2020 | PointReyes | GPScrop circles in Point Reyes are deliberately
GPS spoofed
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Signal reconstruction (residual signal

Targeting method Spoofing interference feature

Multi-receiver detection Spoofing jamming is emitted by the same interferer

Integrated navigation detection Only one GNSS system is spoofed

Clock error detection ‘The deception jamming clock is inconsistent with the real

clock difference

Real signals can be detected.
detection)
Spoofing interferer location Multiple spoofing signals come from the same interferer.
Message verification Unencrypted
Power detection Absolute power detection
Relative power detection

Automatic gain control (AGC) detection

Power rate of change detection
Arrival time detection There is a delay in spoofing signals

Correlation detection Multiple spoofing signals come from the same direction

Signal quality checking ‘The true signal-related peaks are distorted

Airspace/space-time detection ‘The on-road signal is coming from the same direction

Multiple satellite nav receivers in different locations

Inertial navigation and satellite navigation combined

Multiple signal reception channels

Multiple receivers in different locations
Encryption verification
‘The receiver has a power detection function that can distinguish higher

signal amplitudes

‘The receiver is equipped with a carrier-to-noise ratio detection
function
Arrival time analysis

Measure the correlation coefficient of the output of different tracking
channels

Multiple correlators

Multiple receiving antennas
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Method

Complexity Performance

Limitations

Signal reconstruction High Medium It is necessary to obtain spoofing signal information continuously and accurately
Subspace projection Medium High Fails when the phase difference between the deception signal and the real signal is less than
one chip
Beamforming Medium High Requires array antennas with clement spacing less than half the wavelength
Multi-correlator method Low Medium It will fail when the amount of computation is large, and the power of the spoofing signal is.
large
Integrated navigation method Medium Medium Requires additional hardware or sensors
Direct positioning method Medium Medium Has poor performance at medium to low signal-to-noise ratios
Receiver autonomous integrity Medium Medium Spoofing signal power is required, and there are multiple satellites

monitoring
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Types of
spoofing

Forwarding spoofing attack

Generating spoofing attack

Synchronous-induced spoofing

Asynchronous-induced spoofing

How it works | Relays real satellite signals to increase
latency and appropriate power for

spoofing attacks

Merit There is no need to know the specific
parameters of the signal, and the
implementation is simple

Limitations Latency alone is easy to detect.

Imitate a satellite signal, increase the power from the
same code phase, and then slowly change the code
phase so that the receiver tracks the spoofing signal

It is highly concealed, has a good deception effect,
and is not casily detected by the receiver

‘The implementation is complex and also requires a

relatively accurate analysis of the real signal. Because

the military code data are not public, it is impossible
to replicate the military signal

Imitate the satellite signal, gradually approach the
real signal number phase from the place where the
code phase is different, and when the signal overlaps,
increase the power and gradually increase the code
phase so that the receiver tracks the deceptive signal

It is highly concealed, has a good deception effect,
and does not need to know the exact phase of the real
letter number

‘The implementation is complex and also requires a

more accurate analysis of the real signal. Because the

military code data are not public, it is impossible to
replicate the military signal
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AOA

Meaning

Angle of arrival

BPNN

Meaning

Backpropagation neural network

CDMA

CNR

cst

FDOA

FWHM

GSI

1F

MIMO

PRN

Code division multiple access
Carrier-to-noise ratio
Channel state information
Frequency difference of arrival
Full width half maxima
Generative spoofing interference
Intermediate frequency
Multiple-input multiple-output

Pseudo-random noise code

CNN
CRPD
DLLS
FLLS
GNSS
ICD
INS
PLLS
PRDD

Convolutional neural network
Carrier-phase single difference
Delay-locked loops
Frequency-locked loops
Global navigation satellite system
Interface control document
Inertial navigation units
Phase-locked loops

Pseudo-range double differences

RAIM

SNR

SVM

TOA

Receiver autonomous integrity monitoring
Signal-to-noise ratio
Support vector machines

Time of arrival

sQm
TDOA

UAv

Radio frequency
Signal quality monitoring
Time difference of arrival

‘Unmanned aerial vehicle
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