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Editorial on the Research Topic

Editorial: Optimization and data-driven approaches for energy storage-
based demand response to achieve power system flexibility
s

Introduction

In recent years, with the widespread adoption of distributed renewable energy and
electric vehicles, the power grid faces new challenges in ensuring stable and sustainable
development. Concurrently, insufficient local consumption resulting from distributed
generation also impacts the power grid’s safe operation. In this context, energy storage,
electric vehicles and demand response play an important role by promoting flexible grid
operation and low-carbon transition. In comparison to traditional loads, flexible loads can
be efficiently managed through demand response to optimize consumption patterns to
meet grid needs. Therefore, the collaborative dispatching of multi-modal energy storage
integration technologies, such as batteries, pumped hydro storage, hydrogen storage, and
distributed generators, alongside diverse demand-side flexible resources like flexible loads
and electric vehicles, holds significant importance. The coordinated optimization of these
distributed resources can effectively address the intermittency of variable renewable energies
(VERs), encourage the adoption of flexible loads, and enhance the overall adaptability and
carbon emission reduction efforts of the power system.

This Research Topic cover latest research in the areas of energy storage system
optimization and control, demand response and load management, new power system
scheduling, power system security defense and restoration, energy market and trading,
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and application ofmachine learning. A summary of the contribution
of this research is presented as follows.

For energy storage system optimization and control, Yixi et al.
Focus on the lack of flexibility of energy-intensive industrial and
mining loads in stand-alone microgrids. This study quantifies
the regulation potential of lithium mining loads, combines the
regulation boundaries of photovoltaics, gas turbines and energy
storage, and constructs a capacity optimization model for industrial
and mining loads and energy storage (ES), which improves the
capacity of new energy consumption while guaranteeing the balance
of power and the electricity demand of energy-intensive loads.
On this basis, Wang et al. further deepen the energy storage
optimization problem, focusing on considering the coupling effect
of storage life and charging/discharging strategy, using the rainflow
counting method to establish a life loss model for lithium iron
phosphate batteries, to realize the accurate configuration of multi-
user shared storage. To address the dynamic stability challenges of
grid-connected renewable energy, Yang et al. developed a synergistic
control strategy for the power density virtual energy storage
(PDVES) model and the energy density virtual energy storage
(EDVES) model. The strategy equates wind power, photovoltaic
(PV) and electric vehicle (EV) as virtual energy storage units, and
constructs a microgrid energy regulation framework to improve
the energy regulation and dynamic stability control performance of
microgrids.

For demand response and load management, a number of
studies focus on demand response modelling, scheduling and
optimization strategies. Zhou et al. study the load characteristics
of urban grids through IoT technology. On this basis, they
comprehensively analyze the impact of IoT-based load control
technologies and market maturity differences on load control,
providing technical support for relevant carbon emission scenarios.
Qian et al. build a demand response model for fused magnesium
load (FML), combining principal component analysis and clustering
algorithms to generate a set of low-conservative scenarios with
spatial and temporal correlation uncertainty. Afterwards, they
develop a two-stage robust optimization framework to reduce
the cost of day-ahead scheduling and enhance the capacity of
renewable energy consumption. Feng et al. optimize the energy
storage allocation and grid expansion scenarios by decomposing
and reconstructing the model, and assess the impact of the demand
response credibility on the planning of a low-carbonpower system to
optimize the economy and carbon emissions. On the user side, Yang
et al. consider the demand-side controllable loads as dispatchable
resources, propose a tiered pricing mechanism, and reduce the
punitive cost by constructing a stackelberg game model, which
improves the user’s participation in demand response. Wang et al.
model the energy interaction problem between distribution system
protocols as a Nash bargaining problem and combine it with the
augmented ADMM algorithm to protect privacy. This approach
reduces regional operating costs and facilitates the integration of
renewable energy sources. Xing et al. select an integrated loadmodel
using PMU voltage data as input and refine the initialization process
based on good point sets to mitigate the effect of local maxima. By
using an improved dung beetle optimization algorithm, this method
improves the accuracy of load model parameter identification.

For new power system scheduling, Gong et al. propose an active
optimization scheduling model for the distribution network by

considering the regulation capacity, and a fast solution method
is designed herein to formulate the priority control order of the
adjustable units. In view of the dual uncertainty of renewable
energy output and demand response, Zhang et al. design a multi-
source uncertainty quantification framework based on cloud
modelling theory, taking into account both the uncertainty of
renewable energy and demand response, and its effectiveness and
superiority is verified in a typical case of IEEE 33 nodes. To
extend the multi-energy synergy scenario, Zhou et al. proposed
a distributed optimization method for electro-thermal-hydrogen
systems based on the alternating direction multiplier method
(ADMM). The method accurately models the power-to-hydrogen
(P2H) conversion process in an electrolyzer, and comprehensively
investigates the impact of microgrid connection topology on the
total operating cost. Finally, Tan et al. focus on the key challenges in
the field of large-scale scheduling of heterogeneous elastic resources,
and propose a two-layer asynchronous optimization model, which
reduces the computational complexity through the decomposition-
coordination mechanism, and provides theoretical support for real-
time co-optimization of multiple types of energy storage and loads.

For power system security defense and restoration, the
following three studies propose innovative solutions from different
perspectives. Wang et al. focus on building a hardware-in-the-loop
co-simulation platformbased onRT-LAB andOPNET.This research
verifies the effectiveness of the platform in analyzing the impact of
network attacks on the power system in real time through DDOS
attack and intermediate node attack scenarios in the communication
network, which provides an experimental basis for the formulation
of smart grid security strategies. Wang et al. propose a defense
strategy that combines Petri net modelling with mobile energy
storage pre-layout. This method first assesses system vulnerability
by integrating historical attack data, and then simulates and verifies
the effectiveness of the proposed planning strategy in a 33-node
system using the Columns and Constraints Generation (C&CG)
algorithm. Zhang et al., on the other hand, address the uncertainties
introduced by renewable energy sources and controllable loads by
designing a Deep Reinforcement Learning (DRL)-based Soft Actor-
Critic algorithm (Soft Actor-Critic, SAC). Based on this, combined
with an improved Markov decision process model, it achieves fast
recovery of system frequency and minimization of dispatch cost of
controllable loads, and effectively solves the source load uncertainty
problem exacerbated by faulty power shortage.

For energy market and trading, Li et al. propose an integrated
energy system model to address the existing deficiencies in the
coupled electricity-carbon market. Combined with the baseline
carbon emission quota allocation method and the actual emission
data of gas equipment, an improved carbon trading mechanism
is designed to achieve the low-carbon operation of the system,
and the numerical case verifies its effectiveness in reducing carbon
emissions and improving energy efficiency. Yan et al. on the other
hand, put forward a two-tier gaming framework, by integrating the
carbon emission flow theory to construct a comprehensive energy
carbon pricing mechanism, which encourages virtual power plants
(VPPs) to dynamically adjust their trading strategies in a multi-
energy system. Case studies show that this strategy can effectively
promote multi-initiative co-optimization for emission reductions
and the economics of energy trading. Moreover, in response to the
irregular relationship between the dynamic service scope of charging
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stations (CSs) and the real-time charging price, Yang et al. propose
a dynamic service field strength (SFS) model to optimize charging
station service range delineation and real-time pricing, and validate
its effectiveness in reducing the regional power bias and improving
the operator’s revenue.

For application of machine learning, Xiong et al. embed Kalman
filtering and sparse self-encoder into the Transformer framework,
which is capable of realizing dynamic noise suppression and
multidimensional feature extraction, providing a new solution
for battery state prediction in high volatility scenarios. Wang
et al. correct the numerical weather prediction (NWP) wind
speed error through ResNet-GRU network and optimize the
parameters of CNN-LSTM model by combining with Keplerian
Optimization Algorithm (KOA), which effectively improves the
accuracy of short-term wind power prediction. Aiming at the PV
uncertainty modelling, Deng et al. propose a StyleGAN framework
incorporating meteorological physical constraints to generate
diversified year-round weather scenarios with spatio-temporal
correlation. This study provides a high-fidelity experimental
data base for PV planning and risk assessment under extreme
weather. Moreover, Wang et al. and Zhang et al. also introduce
machine learning methods into power system security defense and
restoration, and Zhao et al. focus on the financial management and
leverage the advantages of deep learning to capture complex patterns
and dependencies in financial time series data.

In addition to the above topics, Chen et al. propose a control
strategy with a current hysteresis loop to address the issues of high
inductance current ripple in photovoltaic systems and achieve real-
time duty cycle regulation, which provides reference for the follow-
up studies on the control of renewable energy and energy storage.

In summary, due to the limit of time, there could be many
related works that could not be collected in this Research Topic.
We look forward to keep following Frontiers in Energy Research,
especially with a focus on the Research Topic of energy storage-
based demand response.
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strategy based on the strongest
occupation method

Xian Yang1,2, Xiafei Tang1*, Yuxiang Chen1, Jialong Wu1 and
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1School of Electrical and Information Engineering, Changsha University of Science and Technology,
Changsha, China, 2Hunan Key Laboratory of Energy Perception and Edge Computing, Hunan City
University, Yiyang, China, 3State Grid Hunan Electric Power Company Limited Economic, Technical
Research Institute, Changsha, Hunan, China

With the rapid construction of charging stations (CSs), charging station operators
need to enhance their core competitiveness by precisely planning their service
areas and formulating reasonable and effective pricing strategies. However, the
regional competition among multiple charging station operators is generally
ignored. In the traditional model, the service scope of CSs appears as regular
circles, which is inconsistent with the market distribution law. In response to the
irregular relationship between the dynamic service scope of CSs and the real-
time charging price, a charging station service scope (CSSS)model is proposed by
introducing the variable service field strength (SFS). First, the competitiveness of
CSs is evaluated quantitatively, and the SFS of CSs is defined to describe the
service scope of CSs by the strongest occupation method. Second, the impact of
the charging price on the charging demand is analyzed based on the CSSS
division model. In addition, the revenue of charging station operators and the
stability of the power grid are considered to establish a real-time pricing
optimization model. Finally, the numerical simulation is operated in Furong
District of Changsha. It is shown that the proposed method effectively
achieves more profits for charging stations and decreases the average power
deviation of the whole region.

KEYWORDS

charging stations, service field strength, service scope, real-time pricing strategy,
strongest occupation method

1 Introduction

The electric vehicle (EV) market has experienced rapid growth since the latter half of
2020. The global sales of EVs exceeded 10 million units in 2022, and it is expected to exceed
70million units by 2030. EVs have a penetration rate of up to 79.3% in Norway, ranking first
in the world. Sweden ranks second globally, with EVs accounting for 32.1%. In addition,
China ranks third in the world, with EVs accounting for 19.9% (ITF, 2022; Liu, 2022). As the
public infrastructure of power supply, charging facilities play a critical role in the promotion
of EVs. The China Electric Vehicle Charging Infrastructure Promotion Alliance (EVCIPA)
released that the charging infrastructure increased up to 2.593 million units in 2022,
increasing by 225.5% year-on-year (China News Network, 2023), which reflects the fierce
competition in the charging station (CS) industry. In addition, the service scope could be

OPEN ACCESS

EDITED BY

Yitong Shang,
Hong Kong University of Science and
Technology, Hong Kong SAR, China

REVIEWED BY

Youjun Deng,
Southwest Petroleum University, China
Haoasn Yang,
Hong Kong Polytechnic University, Hong Kong
SAR, China
Wenlong Liao,
Swiss Federal Institute of Technology Lausanne,
Switzerland

*CORRESPONDENCE

Xiafei Tang,
xiafei.tang@csust.edu.cn

RECEIVED 29 January 2024
ACCEPTED 20 March 2024
PUBLISHED 22 April 2024

CITATION

Yang X, Tang X, Chen Y, Wu J and Tan Y (2024),
Charging station service scope division and
real-time pricing strategy based on the
strongest occupation method.
Front. Energy Res. 12:1378016.
doi: 10.3389/fenrg.2024.1378016

COPYRIGHT

© 2024 Yang, Tang, Chen, Wu and Tan. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 22 April 2024
DOI 10.3389/fenrg.2024.1378016

9

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378016/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378016/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378016/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1378016/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1378016&domain=pdf&date_stamp=2024-04-22
mailto:xiafei.tang@csust.edu.cn
mailto:xiafei.tang@csust.edu.cn
https://doi.org/10.3389/fenrg.2024.1378016
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1378016


expanded by various parameters, such as advanced charging piles,
large contracts, and low-cost charging prices (CPs) (Liu et al., 2019;
Yang et al., 2022; Zhou et al., 2023a). Thus, it is necessary to propose
the precise division of service scope and reasonable pricing strategies
to enhance the core competence among charging station operators.

The service scope of CSs reflects the market competitiveness of
CSs directly, which is important for its operators to analyze the
market situation (Chen et al., 2019a; Wang et al., 2019). However,
recent works seldom discuss the service scope of CSs. Their service
scope research is mainly in target with airports (Anna et al., 2019),
logistics parks (Wu et al., 2016), and urban economic zones (Dai,
2018). Notably, an inevitable market competition exists among
multiple CSs in the region (Li et al., 2023a), and this competition
also leads to an unevenmarket distribution. At present, most present
facility planning methods are based on the Wilson model or
breaking point theory by the regularized circle or the weighted
Voronoi diagram (Chen et al., 2017; Li et al., 2023b), which can only
divide the market area within a fixed range. Unfortunately, the
symmetrically distributed shape cannot precisely describe the
service scope of CSs in terms of practical reality (Zhou et al.,
2023b). Thus, a reasonable service scope of the charging station
is inevitably irregular and varies with the relevant parameters.
Furthermore, the Isard method, i.e., the strongest occupation
method (Wilson, 1972), is used to quantify the attraction
strength of CSs and further recognize the service scope in this paper.

The real-time charging price has a great influence on the charging
habits of EV users (Chen et al., 2019b; Gong et al., 2020), which
further affects the service scope of CSs. An effective charging pricing
strategy should aim to achieve four objectives, namely, guiding EV
users to charge in an orderly manner, increasing the profits of
operators, improving the utilization rate of charging piles, and
reducing the load peak–valley difference (Yang et al., 2021; Zhou
et al., 2022). Considering the willingness of the users (CA et al., 2022;
Khan et al., 2022), the demand-side response (Shinde and Shanti,
2018; Lai et al., 2023), and the complex time-varying relationship
between the charging price and charging demand (Wang et al., 2021;
Yang et al., 2023), various models have been proposed to formulate a
real-time pricing strategy. However, the existing literature often
neglects the impact of a dynamic charging price on the market
division, resulting in no changes in service scope.

On the basis of the abovementioned work, this paper studies the
service scope division and real-time pricing strategy of CSs based on
the Isard method. First, an evaluation index system is established to
quantitatively evaluate the comprehensive strength of CSs. Then, the
charging station service scope (CSSS) model with the service field
strength of CSs is built based on the Isard method. Second, the
impact of the charging price on the charging demand is analyzed
based on the initial CSSS division. Third, a dynamic charging price
strategy is proposed considering the profit of the CSs and the
auxiliary service of the power grid. Finally, the relationship
between the charging price and the service scope is analyzed in a
real-world scenario to provide reasonable pricing suggestions for CS
operators. It is significant for enhancing the operational efficiency of
CSs and promoting the healthy development of charging
infrastructure. The contributions of this paper are as follows.

1) The CSSS division model is built to describe the dynamic
service scope of CSs.

2) The impact of the charging price on the charging demand is
analyzed based on the charging station service scope.

3) The real-time charging price is formulated via multi-objective
optimization with the goals of increasing operator revenue and
decreasing power deviation to modify the charging station
service scope.

The rest of this paper is organized as follows: Section 2 defines
the service field strength (SFS) and builds the CSSS division model
based on the Isard method; Section 3 shows the impact of the
charging price on the charging demand; Section 4 establishes a real-
time pricing optimization model with multi-objectives including the
power deviation rate and the operator profitability; the case study
and conclusion are presented in Section 5 and 6, respectively.

2 SFS and CSSS divisionmodel based on
the strongest occupation method

2.1 Comprehensive strength of CSs

The CSSS is closely related to its comprehensive strength. The
evaluation index system for the comprehensive strength of CSs is
shown in Figure 1, mainly including the contract capacity of CSs, the
number of fast/slow charging piles, service fees, and charging prices.

In Figure 1, the contract capacity and the number of fast/slow
charging piles are positive factors. The higher the value of these
factors, the stronger the comprehensive strength Cn of CSs. It also
indicates a stronger attraction to the surrounding demand area,
where more users are willing to go to CSn for charging, resulting in a
larger service scope Sn. Conversely, the charging price and service
fees are negative factors. The higher the value, the smaller the CSSS.

The evaluation indicators are standardized by the extreme value
method as follows. The positive and negative indicators are
standardized, as shown in Eqs 1, 2, respectively:

Tn,i � Tn,i − Tmin,i

Tmax,i − Tmin,i
, (1)

Tn,i � Tmin,i − Tn,i

Tmax,i − Tmin,i
, (2)

where Tn.i is the original value of index i of CSn and Tmax.i and Tmin.i

represent the maximum and minimum values of index i,
respectively.

The contribution of CSn is calculated with index i, as shown in
Eq. 3:

pn,i � Tn,i∑N
i�1
Tn,i

, (3)

where pn.i is the contribution of CSn with index i and N is the
number of CSs.

The entropy of index i is calculated as shown in Eq. 4:

ei � − 1
lnN

∑N
i�1
pn,i ln pn,i( ). (4)

The evaluation index weight of CSs could be obtained as shown
in Eq. 5:
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γi �
gi∑N

i�1
gi

, (5)

gi � 1 − ei, (6)
where γi is the weight of index i and gi and ei are the coefficients of
difference and entropy, respectively.

Then, the comprehensive strength of CSn could be quantified as
shown in Eq. 7:

Cn � ∑5
i�1
ciγi

Tn.i

Tmax.i
, (7)

where Cn represents the comprehensive strength of CSn and ci
indicates the correlation coefficient. ci = 1 when γi is positive,
and ci = −1 if γi is negative.

2.2 Definition of SFS

The formula of the point charge field strength is obtained by
Eq. 8:

Ee � ke
qe
r2e
, (8)

where Ee represents the point charging field strength, ke is the
electrostatic force constant with the unit N·m2/C2, qe is the
charge electric quantity, and re indicates the distance between the
center and charge.

Analogous to the electrostatic field generated by a point charge,
the attraction of CSs to the surrounding area will not change
abruptly, in accordance with the characteristics of the typical
non-rotating scattered field. According to the Helmholtz
theorem, the function of the non-rotating scattered field is always
inversely proportional to the distance vector R2. Therefore, the SFS

of the CSSS, akin to the electric field strength of a point charge, is
defined to quantify the attraction strength of CSs to the surrounding
charging demand areas (CDAs).

It is assumed that a certain area is divided into K small grid areas
with a certain precision, which is defined as CDAs. Taking CSn as the
center, SFS En.k of CSn for CDAk is defined considerating the average
distance and the comprehensive strength, which is obtained by Eq. 9:

En.k � kc
Cn

r2n.k
, (9)

where kc is the service constant and rn.k represents the distance
between CSn and CADk, which can be calculated by the longitude
and latitude.

The Wilson model is appropriate for studying spatial
interactions (Zhang et al., 2010). Thus, the charging service
capacity ratio of CSn to CDAk can be described as shown in Eq. 10:

Tn.k � KCnDke
−βrn.k , (10)

where K represents the normalization factor, describing the regional
difference of the CSs and the demand area. K = 1 when the regional
difference is ignored. Dk indicates the total charging demand in
CDAk. β is the attenuation factor, determining the speed of service
attenuation.

Combined with the electrostatic force constant ke, and assuming
each CS has the same service constant, kc is derived as follows:

kc � KCaveDavee−βrave r2ave
C2

ave

, (11)

β �
��������

2N
tmaxSave n

√
, (12)

where Cave is the average comprehensive strength of all CSs, Dave

represents the average demand of all demand areas, and rave is the
average distance between the CSs and demand areas. Calculated

FIGURE 1
Charging station evaluation index system.
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using Statistical Product and Service Solutions (SPSS) software, tmax

represents the number of CSs with a comprehensive score greater
than 0. Save_n represents the average area of each CS served.

2.3 CSSS division model

In the two-dimensional space, a facility or an enterprise is
attractive to the users within a certain range of its surroundings,
catering to their needs and preferences. Similarly, as the charging
service provider, the CSs act as the central hub, offering charging
service to electric vehicle users in their vicinity. Then, CSSS, defined
as the geographical spatial distribution range of electric vehicle users
who receive charging services from that CS, is usually of an irregular
shape, as shown in Figure 2. Notably, the dotted line represents the
SFS emitted by CSs, and the CSs are attractive to EVs at
the same time.

Any CSn will attract the CDAs, resulting in a CSSS that is
constrained by the parameters of the surrounding CS and itself.
According to the strongest occupation method proposed by Isard, if
SFS En.k of CSn to the demand area k is larger than SFS Em.k of other
CSm, the demand area k is identified as the CSSS of CSn, as shown in
Eq. 13:

Sn � S En.k ≥Em.k, m � 1, ..., N m ≠ n( )|{ }, (13)
where Sn represents the CSSS of CSn and the demand area k is
defined as the market demand area. Eq. 13 indicates that among all
CSs, CSn has the greatest attraction to the demand area k, and the
demand area k belongs to the CSSS of CSn.

3 CSSS-based charging demand

The initial CSSS S* � (S*1, S*2, . . . , S*N) is obtained from Eq. 13.
Ignoring the difference between areas, the initial charging demand
proportion is determined by the CSSS. In addition, the initial
charging demand proportion is shown in Eq. 14.

λn.t � S*n∑N
n�1

S*n

. (14)

The charging demand of CSn is jointly affected by its own
charging price and the price of other CSs, as shown in Eq. 15.
The charging demand is a negative correlation function of its own
price. As the charging price increases, the charging demand for CSn
decreases and shifts to other CSs in the area, which results in the
CSSS reduction in CSn and the CSSS increase in other CSs.

qn.t � λn.tqev.t − kp.n
Pn.t − Pr.t

Pr.t
( ) + kav.n

∑N−1

m�1
m ≠ n

C*
mPm.t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ − Pr.t

Pr.t
,

(15)
where qev.t represents the predicted value of the day-ahead charging
load at time t. kp.n is the influence parameter of the policy price
difference between the CS price and policy price on the charging
demand. In addition, kav.n indicates the influence parameter of the
charging price difference between CSn and other CSs. Pn,t represents
the charging price of CSn at time t, and Pr.t represents the policy
electricity price at time t, satisfying the peak–valley–flat electricity
price. Cm* is the ratio of the comprehensive strength of CSm to the
sum of all CSs.

The income of CSs in a day is shown in Eq. 16.

En � ∑96
t�1
Pn.t · qn,t, (16)

where En is the income of CSn in a day.
The proof of the existence and uniqueness of the Nash

equilibrium of the proposed model is given in Appendix A.

4 CSSS-based real-time pricing
optimization model

4.1 Pricing optimization model

In a scenario of a perfectly competitive market, it is assumed
there are N CSs with different sizes, which belong to H different
operators, H ≤ N. All charging loads are evenly distributed
throughout the area; users will only choose one of the N CSs to
charge when needed.

A multi-objective real-time pricing model is established
considering the profit rate and power deviation rate. The
objective is optimized by maximizing the total profit rate of all
CSs and minimizing the power deviation rate, as shown in Eq. 17.

maxE � max ωnEp lr + ωbcEp pc( ), (17)

Ep lr � ∑T
t�1
∑N
n�1

Pn.t − Pe + Pn.w( )
Pr.t

, (18)

Ep pc � ∑T
t�1

ΔPt − ∑N
n�1

qn.t − qev.t( )
ΔPt

, (19a)

FIGURE 2
Charging station service scope diagram.
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ΔPt � PW.t + PL.t − Pw.t − Pl.t, (20a)
where Ep_lr and Ep_pc represent the profit rates of the CS and the
reduced power deviation rate, respectively. ωn and ωab represent the
weights of the above two, respectively. Pe and Pn.w are the electricity
purchasing cost and the operation and maintenance cost of the CS,
respectively. ΔPt is the power deviation between the real-time output
of renewable energy and the day-ahead forecast. PW.t and Pw.t are the
real-time and day-ahead wind power output, respectively. PL.t and
Pl.t are the real-time and day-ahead photovoltaic outputs,
respectively. If ΔPt >0, indicating that the real-time output of
wind power and photovoltaic at time t is greater than the
predicted output, it is necessary to guide users to charge and
increase the charging load to absorb the excess wind and
photovoltaic power. Otherwise, if ΔPt <0, indicating that the real-
time output of wind and photovoltaic power at time t is less than the
day-ahead predicted output, users need to be encouraged to reduce
the charging load.

The constraints of optimization model are as follows:
Market demand constraint

0< qn.t < qev.t. (21)

Eq. 21 implies that the charging demand of the CS does not
exceed the predicted charging load.

Charging load constraint

ξ lqev.t ≤∑N
n�1

qn.t ≤ ξhqev.t, (19b)

where ξl and ξh represent the lower and upper limit coefficients,
respectively, which means that the sum of the charging demand
should not exceed a certain range of the day-ahead charging load.

Charging price constraint

Pr.n 1 − φl( )≤Pn.t ≤Pr.n 1 + φh( ), (20b)

where φl and φh represent lower and upper limits of the charging
price, respectively.

4.2 Relationship between CSSS and real-
time pricing

The basic idea of a real-time pricing optimization model based
on CSSS is shown in Figure 3. First, the initial CSSS was obtained by
the strongest occupation method. Then, based on the pricing
optimization model, the charging station operator obtains the
real-time charging price of charging stations, which affects the
initial CSSS, and further develops into the real-time CSSS.

The detailed steps of real-time pricing optimization based on
CSSS are designed as follows:

Step 1: The CSSS is calculated
1) Based on the basic data on CSs and the day-ahead wind

power and photovoltaic predicted data, the weight of each
index was calculated according to the entropy method, and
the real-time output data of wind power and photovoltaic
were obtained by adding the power deviation.

2) The comprehensive strength of CSs was quantitatively
evaluated according to Eq. 7, and then SFS En.k of each
CS was calculated according to Eq. 9.

3) According to Eq. 13, the initial CSSS S*n based on the
strongest occupation method proposed by Isard
was obtained.

4) The initial charging demand proportion λ was calculated, as
shown in Eq. 14.

5) The relationship between the charging price and charging
demand was established, and the CS income model was
built, as shown in Eqs 15, 16.

Step 2: The real-time price is optimized

FIGURE 3
Real-time pricing optimization model based on charging station service scope (CSSS) and solution flowchart.
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1) The multi-objective real-time pricing model with the profit
rate and power deviation was built.

2) A day was divided into 96 time points at a resolution of
15 min, taking 1 h as the operation cycle and optimizing the
pricing model using CPLEX. Then, the dynamic charging
price of CSs at 96 time points, as well as the optimized profit
rate and power deviation rate of each CS, was obtained.

3) With the real-time change in the dynamic charging price,
the comprehensive strength and the SFS of the CS will also
change. Finally, the real-time dynamic CSSS at each time
was simulated and obtained

5 Case study

5.1 Basic data

Furong District in Changsha is taken as an example for
simulation, and the data on CSs are all obtained from Hunan
Economic and Technological Research Institute of the State Grid.
Notably, the output data of wind power and photovoltaic are for the
total province. First, the map of Furong District is divided into
16,288 market areas with latitude and longitude accuracy of
0.0005 using ArcGIS drawing software. Then, the first three
representative CSs are selected from Furong District for
calculation as examples. The basic data of these three CSs are
shown in Table 1. Based on the evaluation index system, the
weight of each index of the CS is obtained by the entropy
method. The weight of the contract capacity, the number of fast/
slow-charging piles, the service fee, and the charging price are 0.221,
0.486, 0.201, 0.051, and 0.041 yuan/kWh, respectively. Afterward,
SPSS is employed for the factor analysis. A total of 143 CSs have a
comprehensive score greater than 0.

For the load of the three charging stations q1,t, q2,t, and q3,t, its
boundary is given by setting ξl = 0.8 and ξh = 1.2 in Eq. 19a and φl =
φh = 0.1 in Eq. 20a. In addition, according to the related policy issued
by the Comprehensive Department of the National Energy
Administration, the electricity purchasing price in Hunan
Province is 0.46244 yuan/kWh. The daily maintenance cost of
each CS is P1.w = 600 yuan, P2.w = 550 yuan, and P3.w =
500 yuan. Based on the project data, the day-ahead wind power

and photovoltaic output data of a typical day are shown in
Supplementary Figure AB1. It is assumed that the wind power
and photovoltaic prediction error is 10%, and the real-time output
meets the normal distribution.

5.2 Analysis of the charging price

Without considering the interaction of the charging price, the
initial CSSS and occupancy of each CS are calculated based on the
strongest occupation method, as shown in Figure 4.

As shown in Figure 4, the CSSS of CS2 is the largest without
considering the influence of the charging price. It is noted that CS2
has the largest number of fast charging piles, and also, no other
competing CS is present in the surrounding area. Thus, its CSSS
occupies half of Furong District. As shown in Table 2, the
comprehensive strength of CS1 is the strongest. However, due to
the remote location and the competition from CS3, the CSSS of CS1
only occupied 17% of the market share and is smallest among the
three CSs. In addition, from the shape of the CSSS of CS1 and CS3,
the boundary presents an inward curved arc, which indicates that
the further away from the two CSs, the more area belongs to CS1.
That is, compared to CS3, the distance from one point to CS1 is
larger, but it is still attracted by CS1. Therefore, it can be concluded
that the SFS of CS1 is greater than that of CS3. The average
peak–valley–flat charging price of CSs is then calculated by the
real-time pricing optimization model mentioned in Section 4, as
shown in Table 2.

TABLE 1 Basic data on charging stations (CSs).

Contract
capacity (kWh)

Number of fast-
charging piles

Number of slow-
charging piles

Service fee
(yuan)

Longitude
(°)

Latitude
(°)

CS1 1,000 23 0 0.29 112.98879 28.202264

CS2 1,000 18 5 0.3 113.08703 28.202149

CS3 1,830 15 10 0.4 113.0064 28.19503

CS4 715 10 15 0.4 113.02054 28.21223

CS5 1,000 15 8 0.29 113.06240 28.20092

CS6 1,250 13 15 0.8 113.04103 28.19882

CS7 45,880 0 20 0.4 113.08266 28.18040

CS8 630 4 6 0.62 113.03552 28.20279

FIGURE 4
Initial service scope of three charging stations.
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Table 2 shows that the charging prices of CS1 and CS2 are lower
than the policy price, while the charging price of CS3 is higher than
the policy price. Due to the higher comprehensive strength of CS1
and CS2, the electric vehicle users will pay more attention and be
more sensitive to price changes. Accordingly, the influence
parameter of the policy price difference kp.n in Eq. 16 is also
larger, indicating that charging prices can increase the charging
demand and profit if they are lower than the policy price. In
comparison, the comprehensive strength of CS3 is the smallest,
and users pay the least attention to its price change. Thus, CS3 will
maintain its income by setting a higher price than the policy price,
increasing by 0.0137 yuan/kWh during the peak period and
0.0235 yuan/kWh during the flat period.

Then, the change in CDAs is analyzed for the peak, valley, and
flat periods, and three time points of 6:00, 10:00, and 18:00 are
selected. The number of CDAs occupied by each CS at these time
points is shown in Supplementary Figure AB2. It is observed that
there is no significant change in the CSSS of CS2 due to the small

competitive pressure. On the contrary, the CSSS changed with the
charging price mainly for CS1 and CS3. Therefore, the CSSS changes
for CS1 and CS3 are discussed as primary. The number of CDAs
occupied by CS1 and CS3 and their CP changes are shown
in Figure 5.

Afterward, the real-time charging price is taken into
consideration. Since charge station 1 has a higher comprehensive
strength and a small charging price difference of 0.02 yuan, the
market share increases from 17% in Figure 4 to 20% (the number of
CDAs is 3,212 at 6:00). Correspondingly, CS3, which is closer to CS1,
lost part of its CSSS due to its smaller comprehensive strength, and
its market share decreased from 33% to 29%.

With the increase in the charging price, the number of CDAs
occupied by CS1 decreased by 245 from 6:00 to 18:00. At the same
time, the number of CDAs occupied by CS3 increased by 253.
This can be attributed to the fact that CS1 has stronger
comprehensive strength, and users are more responsive to its
charging price changes. Thus, as the charging price of charge

TABLE 2 Comprehensive strength and average charging price of three charging stations (CSs).

Comprehensive
strength

Valley period
(yuan/kW)

Flat period
(yuan/kW)

Peak period
(yuan/kW)

Optimized profit
rate %

Profit rate of
policy price %

CS1 0.4480 0.3842 0.9958 1.5979 61.74 59.92

CS2 0.3557 0.3923 0.9929 1.5957 62.68 61.92

CS3 0.3039 0.4021 1.0235 1.6137 63.27 61.58

Policy
price

\ 0.4 1.0 1.6 \ \

FIGURE 5
Number of charging demand areas and charging price of three charging stations.
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station 1 increases, the number of users of CS1 decreases faster
than those of CS3, resulting in a more significant change in the
CSSS of CS1.

It can be seen that the charging price and CSSS are affected by
many factors, such as comprehensive strength, geographical
location, and number of competitors around.

5.3 Analysis of the number of
charging stations

The impacts of the number of CSs on the CSSS, power deviation
rate, and profit margin are analyzed to verify the relevant
conclusions given in Section 5.2. Taking five CSs and eight CSs
as examples, the data of CSs are shown in Table 1.

5.3.1 Analysis of five CSs
Without considering the interaction of the real-time charging

price, the initial CSSS and the market share of five CSs are shown in
Figure 6. It was notes that the density of CSs in the western region is
relatively high. CS1, CS3, and CS4, due to their close distribution and
fierce market competition, have a limited CSSS, and their market
share is 13.8%, 14.4%, and 14%, respectively. However, only CS2 and
CS5 exist in the eastern region, and they are located far from the CSs
in the west, resulting in less competition. Therefore, the CSSS of CS2
and CS5 is relatively large, and their market share is 22.2% and
35.6%, respectively.

The charging price and comprehensive strength of five CSs are
calculated and shown in Table 3. It is found that CS4, with smaller
comprehensive strength, has higher charging prices than the other
CSs in each period. It can gain more profits by setting a higher
charging price than the policy price. However, with higher

comprehensive strength, CS1 and CS2 can obtain more charging
demand and profit with a lower charging price.

Similarly, three time points of 6:00, 10:00, and 18:00 are selected
for simulation, and the number of CDAs occupied by each CS is
shown in Figure 7. It is observed that the CSSS of CS3 increases
89 CDAs and the CSSS of CS4 decreases 207 CDAs with the increase
in the charging price. The reason for such a great change is that CS3
and CS4 have weak comprehensive strength, and they are in the
center of a region surrounded by many CSs.

5.3.2 Analysis of eight CSs
The initial CSSS of eight CSs is calculated, as shown in

Figure 8. It can be seen that, interestingly, due to the strong
comprehensive strength and the remote location, the market
share of the CS1 is unchanged compared to the condition of
the five charging stations. However, CS8 has the smallest
comprehensive strength and is close to the other CSs, making
the CDAs less competitive than other CSs, resulting in a very
small CSSS, and its market share is only 0.2%.

The charging price and comprehensive strength of eight CSs
are shown in Table 4. Due to higher user attention, CSs with
larger comprehensive strength have lower real-time charging
prices than policy electricity prices. However, CSs with smaller
comprehensive strength will set higher real-time charging prices
to ensure profits.

The number of CDAs occupied by eight CSs is shown in
Figure 9. With the increase in the number of CSs, market
competition becomes increasingly fierce. Furthermore, the
reduction in the distance between stations results in little
difference in the CSSS, and CS5, with the largest CSSS, does not
account for more than 4,000 CDAs. Meanwhile, due to the weak
market competitiveness of CS7 and CS8, the CDAs of CS2, CS5, and
CS6 account for more than half (58%). Compared to the scenario of
five CSs, due to the addition of CS6, the number of CDAs of CS3 and
CS4 has decreased, while CS1, with the strongest market
competitiveness, has not been affected, and the CSSS has not
changed. With the increase in the charging price, it is observed
that the CSSS of CS4, CS7, and CS8 decreased due to the weak market
competitiveness, and the CSSS of CS1, CS2, and CS5 increased due to
the strong market competitiveness. In addition, the insignificant
change in CSSS of CS3 and CS4 is mainly because they are in the
center of a region surrounded by other CSs.

Table 5 presents the profit rate and power deviation rate of
different CSs. It is noted that the profits obtained by the policy
electricity price will decrease gradually with the increase in

FIGURE 6
Initial service scope of five charging stations.

TABLE 3 Comprehensive strength and average charging price of five charging stations (CSs).

Comprehensive
strength

Valley period
(yuan/kW)

Flat period
(yuan/kW)

Peak period
(yuan/kW)

Optimized profit
rate %

CS1 0.4756 0.3852 0.9865 1.5768 65.65

CS2 0.3834 0.3901 0.9909 1.589 65.35

CS3 0.3329 0.3953 0.9972 1.5921 64.32

CS4 0.2359 0.4196 1.0413 1.6592 66.07

CS5 0.3290 0.4056 1.0237 1.6264 64.41
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competitive CSs. Furthermore, when the number of CSs involved in
real-time pricing optimization increases from 3 to 5 and 8, the profit
margin increases by 2.60% and 4.05%, respectively; meanwhile, the
power deviation decreases by 764 kW and 1,309 kW, respectively.
That is because the increase in CSs expands the optimize adjustment
space. Consequently, the total charging demand participating in
optimization increases, and the profit distribution between CSs
becomes more reasonable, which improves the CS profit rate
significantly and reduces the power deviation of wind and
photovoltaic power. However, for this case, the adjustment effect
of power deviation is not obvious for all of Hunan Province because
of the small number of CSs.

FIGURE 7
Number of charging demand areas and charging price of five charging stations.

FIGURE 8
Initial service scope of eight charging stations.

TABLE 4 Comprehensive strength and average charging price of eight charging stations (CSs).

Comprehensive
strength

Valley period
(yuan/kW)

Flat period
(yuan/kW)

Peak period
(yuan/kW)

Optimized profit
rate %

CS1 0.4756 0.3965 0.9623 1.5725 66.62

CS2 0.3834 0.3962 0.9689 1.5766 65.89

CS3 0.3329 0.397 0.9717 1.5839 65.53

CS4 0.2359 0.4012 1.033 1.6377 66.47

CS5 0.3290 0.3974 0.9779 1.5912 65.21

CS6 0.2812 0.3981 0.9896 1.5987 65.05

CS7 0.2566 0.4023 1.0586 1.6531 67.08

CS8 0.0724 0.4132 1.0886 1.7 68.46
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6 Conclusion

A dynamic CSSS division model is proposed based on the
strongest occupation method and pricing strategy in this paper.
Notably, the variation in the CSSS is well simulated by the
dynamic optimization of the charging price. Then, the relationship
among the comprehensive strength, the charging price, and the
charging demand is well reflected. Furong District of Changsha is
simulated as an example, and the following conclusions are obtained:

1) Charging stations with greater comprehensive strength
attract more attention from electric vehicle users, and
users are more sensitive to the fluctuation of their
charging price. Therefore, the charging station can obtain
more profits by setting a lower charging price than the
policy price.

2) The competition is more intense for areas with dense charging
stations, and the CSSS change caused by charging price

fluctuation is also more obvious. On the contrary, the CSSS
is more stable with sparse charging stations, and the charging
price fluctuation has less impact on the CSSS. It provides a
reference for the construction of future charging facilities
for operators.

3) With the increase in charging stations participating in the
market competition, the profit based on the policy price will
gradually decrease. Thus, the profit of charging stations should
be improved by setting a real-time charging price based
on the CSSS.

It should also be pointed out that the CSSS model should
comprehensively consider the influence of regional differences,
such as traffic conditions and geographic information, to
improve the accuracy and authenticity of simulation results.
Thus, the establishment of a complete CSSS model with the
regional evaluation index system will be the next topic in
future research.

FIGURE 9
Number of charging demand areas and charging price of eight charging stations.

TABLE 5 Profit rate and power deviation rate of different charging stations (CSs).

Number of CSs Average optimized profit
rate %

Average profit rate of policy
price %

Average power deviation
(10,000 kW)

Three CSs 62.56 61.14 36.3536

Five CSs 65.16 60.21 36.2808

Eight CSs 66.28 58.20 36.2263
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Short-term wind power
combination forecasting method
based on wind speed correction
of numerical weather prediction

Siyuan Wang1, Haiguang Liu2 and Guangzheng Yu3*
1Power Dispatching Control Center of State Grid Shaanxi Electric Power Co., Ltd., Xi’an, China, 2Electric
Power Research Institute of State Grid Hubei Electric Power Co., Ltd., Wuhan, China, 3School of Electrical
Engineering, Shanghai University of Electric Power, Shanghai, China

The temporal variation of wind power is primarily influenced by wind speed,
exhibiting high levels of randomness and fluctuation. The accuracy of short-
term wind power forecasts is greatly affected by the quality of Numerical
Weather Prediction (NWP) data. However, the prediction error of NWP is
common, and posing challenges to the precision of wind power prediction.
To address this issue, the paper proposes a NWP wind speed error correction
model based on Residual Network-Gated Recurrent Unit (ResNet-GRU). The
model corrects the forecasted wind speeds at different heights to provide
reliable data foundation for subsequent predictions. Furthermore, in order to
overcome the difficulty of selecting network parameters for the combined
prediction model, we integrate the Kepler Optimization Algorithm (KOA)
intelligent algorithm to achieve optimal parameter selection for the
model. We propose a Convolutional Neural Network-Long and Short-
Term Memory Network (CNN-LSTM) based on Attention Mechanism for
short-term wind power prediction. Finally, the proposed methods are
validated using data from a wind farm in northwest China, demonstrating
their effectiveness in improving prediction accuracy and their practical value
in engineering applications.

KEYWORDS

short-term wind power prediction, ResNet-GRU, wind speed correction, CNN-LSTM-
attention, kepler optimization algorithm(KOA)

1 Introduction

In the context of “dual carbon” goals, accelerating the transformation of the energy
structure towards a low-carbon, clean, and renewable energy system, with a focus on new
energy sources, is an important initiative to achieve the dual carbon targets (REN et al.,
2022). Currently, China’s wind power industry is experiencing rapid development, with a
continuously thriving market and increasing wind power grid integration (Hui et al., 2021).
However, the current power system scheduling and operation mechanisms in China are not
sound, and there is insufficient peak-shifting capacity to meet the requirements of large-
scale wind power grid integration, leading to significant curtailment of wind power in some
regions. To effectively address wind curtailment and improve the scheduling and operation
capabilities of the power system, precise wind power output forecasting is essential. The
accuracy of wind power forecasting directly affects the scheduling optimization of the power
grid (Yusheng et al., 2015; Weisheng et al., 2021).

OPEN ACCESS

EDITED BY

Yitong Shang,
Hong Kong University of Science and
Technology, China

REVIEWED BY

Yikui Liu,
Stevens Institute of Technology, United States
Can Wang,
China Three Gorges University, China

*CORRESPONDENCE

Guangzheng Yu,
powerygz@shiep.edu.cn

RECEIVED 26 February 2024
ACCEPTED 09 April 2024
PUBLISHED 06 May 2024

CITATION

Wang S, Liu H and Yu G (2024), Short-termwind
power combination forecasting method based
on wind speed correction of numerical
weather prediction.
Front. Energy Res. 12:1391692.
doi: 10.3389/fenrg.2024.1391692

COPYRIGHT

© 2024 Wang, Liu and Yu. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Brief Research Report
PUBLISHED 06 May 2024
DOI 10.3389/fenrg.2024.1391692

20

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1391692/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1391692&domain=pdf&date_stamp=2024-05-06
mailto:powerygz@shiep.edu.cn
mailto:powerygz@shiep.edu.cn
https://doi.org/10.3389/fenrg.2024.1391692
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1391692


Currently, wind power forecasting techniques can be broadly
classified into two categories based on modeling mechanisms:
physical methods and statistical learning methods (Ahmed and
Khalid, 2019; Wang et al., 2021). Physical methods utilize fluid
dynamics and thermodynamics models to solve for wind speed,
wind direction, and other information based on the topography and
terrain of the wind farm. The wind power output is then calculated
using the wind power curve. Due to limitations in spatiotemporal
resolution, physical methods are generally more suitable for medium
to long-term forecasting. On the other hand, statistical learning
methods analyze historical data from wind farms to establish
nonlinear mappings between wind power characteristics and
forecast results. With the rapid development of artificial
intelligence in recent years, many researchers have introduced
deep learning algorithms to address the aforementioned issues
(Anbo et al., 2022). Deep learning methods, such as LSTM (Zhu
et al., 2017), backpropagation (Liu et al., 2020), Dropout (Niu et al.,
2018), Attention Mechanism (AM) (Zhou et al., 2021), and others,
have been widely applied in forecasting tasks, benefiting from the
increased availability and complexity of collected data.

In short-term wind power forecasting, utilizing NWP for wind
power prediction is more realistic and practical (DU, 2019).
However, the quality of NWP data significantly impacts the
accuracy of the forecasts, and it has been observed that there are
inherent errors between NWP data and actual measurements. To
mitigate these inherent errors, numerous researchers have focused
on correcting NWP wind speed. In reference (Ding et al., 2019), a
variational mode decomposition technique was used to decompose
NWP wind speed, followed by correction using the GRU. Reference
(Hu et al., 2021) considered the spatial correlation of wind speed and
employed Gaussian Process Regression (GPR) to improve the
correlation between forecasted and actual wind speeds. Reference
(Song et al., 2018) analyzed NWP data from multiple locations and
established a wind speed correction model using temporal
convolutional neural networks, which enhanced the accuracy of
wind speed correction. However, most of the mentioned correction
methods rely on a single neural network, and the exploration of the
relationship between NWP data and actual measurements is not
fully comprehensive. Additionally, these models are prone to issues
such as gradient explosion during the training process.

Due to the limited predictive capability of a single model, it often
results in low robustness and weak applicability. Therefore, the
combination prediction model has gradually demonstrated its
advantages. However, although the combination model integrates
the advantages of individual models, it can also increase the
complexity of the model. The complex network structure of the
combination model leads to increased uncertainty and difficulty in
selecting prediction model parameters. Hence, many scholars have
made improvements by combining a series of optimization
algorithms. In reference (Li et al., 2022), the Isolation Forest
Algorithm (IAO) was used to detect abnormal data, and the
improved Eagle Optimization Algorithm (EOA) was employed to
optimize the parameters of the LSTM model, thereby establishing
the IAO-LSTM model for wind power prediction. In reference
(Guangzheng et al., 2022a), the Improved Grey Wolf
Optimization (IGWO) algorithm was utilized to determine the
number of hidden layer nodes and the learning rate of the
model’s weight, proposing a LightGBM-GRU point prediction

model that achieved better predictive performance compared to
other algorithms. However, the aforementioned optimization
algorithms have complex structures, slow convergence speeds,
and are prone to getting trapped in local optimal solutions.
Therefore, it is necessary to select more suitable intelligent
algorithms, especially for cases with multiple hyperparameters to
be optimized.

To address the aforementioned limitations, this paper proposes
a NWP wind speed error correction model based on a combination
of ResNet and GRU models. It corrects the multi-height forecasted
wind speeds of NWP prediction points to accurately reflect the wind
speed at hub height, which characterizes the wind farm power
output more precisely. Finally, by combining the corrected NWP
wind speeds with real-time wind farm power output data, a KOA-
CNN-LSTM-Attention combination prediction model is
constructed, which incorporates the KOA intelligent optimization
algorithm. Experimental results demonstrate that the proposed
method significantly improves the prediction accuracy compared
to existing methods, providing new insights for enhancing the
accuracy of short-term wind power prediction.

2 NWP wind speed correction method

2.1 Wind speed error analysis

NWP is a method of predicting future weather conditions by
solving fluid mechanics and thermodynamics equations that
describe the process of weather evolution based on certain
boundary and initial conditions (Guangzheng et al., 2024).
However, the spatial and temporal resolution of NWP data,
geographic location, terrain, and other factors may result in
deviations between NWP data and the measured data at wind
farm sites. Short-term wind power prediction models are
established based on NWP data and measured operational
data at wind farms, but errors in NWP wind speed can greatly
affect the accuracy of short-term wind power predictions (Miao
et al., 2022).

The distribution and error curves of NWP wind speed and
measured wind speed are compared in Figure 1, which shows that
both NWP wind speed and actual wind speed follow a two-
parameter Weibull distribution mainly in the wind speed range
of 3–15 m/s. However, compared with measured wind speed, NWP
wind speed has fewer subdivisions in the main wind speed range,
indicating that measured wind speed fluctuates more frequently in
this wind speed range, while the overall fluctuation of predicted
wind speed is lower. The error between NWP wind speed and
measured wind speed can be divided into longitudinal error and
lateral error. The longitudinal error mainly manifests as amplitude
differences between NWP wind speed and measured wind speed, as
shown in Figure 1C. The lateral error mainly manifests as phase
delay between NWP wind speed and measured wind speed, as
shown in Figure 1D. Moreover, the error between NWP
forecasted wind speed and measured wind speed at wind farms
varies dynamically in different seasons, including different
directions and step sizes of delays, differences in amplitude, and
varying degrees of missed and false forecasting information for wind
energy fluctuations.
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2.2 Wind speed correction model of
ResNet-GRU

Due to the significant fluctuations in measured wind speeds,
this study aims to leverage the ResNet module’s powerful feature
extraction capabilities to uncover the periodicity and temporal
relationships within the historical wind speed sequences. The
ResNet module, known for its deep residual structure, effectively
addresses the issues of gradient vanishing and explosion in deep
neural networks, thereby enhancing feature extraction
capabilities (Yldz et al., 2021). Moreover, the ResNet module
mitigates information loss and facilitates smooth information
flow through the use of shortcut connections. To capture the
volatility of wind speed, the GRU model is employed as the
learning model. The GRU model, equipped with gate
mechanisms, effectively addresses the long-term dependency

problem while avoiding the issues of gradient vanishing and
explosion present in traditional Recurrent Neural Network
(RNN) models (Yu et al., 2023). Consequently, the GRU
model demonstrates excellent performance in time-series data
modeling tasks. Therefore, this study proposes the ResNet-GRU
wind speed correction model, which not only effectively learns
and utilizes the relationship between NWP model and measured
data but also predicts more accurate wind speeds. Additionally,
both the ResNet module and GRU model have been optimized
classic models, requiring fewer computational resources and less
time compared to other complex models during training and
prediction, thus demonstrating characteristics of computational
efficiency. The schematic diagram of the proposed model is
presented in Figure 2.

In this study, the fully connected layer following the time-
series modeling layer is utilized for wind speed correction. The

FIGURE 1
Error analysis of wind speed. (A,B) are the wind speed distribution map. (A): NWP wind speed distribution, (B): Measured wind velocity distribution.
(C,D) are the analysis of wind speed error. (C): Error analysis of NWP Wind Speed and Measured Wind Speed (winter), (D): Error analysis of NWP Wind
Speed and Measured Wind Speed (summer).
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known actual wind speed data and the output of the numerical
model are employed as supervisory signals to optimize the
model parameters by minimizing the error between the
predicted and actual values. The Mean Squared Error (MSE)
is adopted as the loss function for this purpose. The formula for
MSE is as follows:

J θ( ) � 1
2m

∑m

i�1 hθ xi( ) − yi( )2 (1)

where, hθ(xi) represents the model for the i th input sample
xi, yi represents the corresponding real output value, θ

represents the parameters to be learned in the model,m is
ample size。

3 KOA-CNN-LSTM-attention
combined prediction model

3.1 CNN-LSTM-attention prediction model

The CNN-LSTM hybrid model is designed to handle time-
series matrices composed of relatively independent feature
sequences. It effectively utilizes CNN to extract spatially local
correlated features from the data, while LSTM compensates for
CNN’s limitation in capturing long-term dependencies within
sequential data (Guangzheng et al., 2021). Since the features
used for wind power prediction (such as wind speed, wind
direction, temperature, precipitation, and air pressure) are
relatively independent time-series features, it becomes
challenging to describe the inherent relationships between
these features over time. Using either CNN or LSTM alone
fails to simultaneously extract the inter-sequence correlations
and long-term patterns in feature time-series. Traditional
CNN-LSTM networks simply concatenate the CNN and
LSTM components, which may disrupt the temporal
correlations between sequences. Therefore, improvements
upon the traditional CNN-LSTM model are necessary to
overcome these drawbacks. This paper proposes an enhanced
neural network algorithm that combines the Attention
mechanism with CNN-LSTM. The key advantage of this

algorithm lies in the inclusion of an Attention layer between
the CNN network and LSTM layer. By computing the relevance
scores between the input sequence’s hidden layer vectors and
the output, different attention weights are assigned to
meteorological factors, highlighting the critical influencing
features. Consequently, this approach addresses the challenge
of preserving crucial information when dealing with long
input sequences.

CNN input is wind power historical power data and multi-
impact characteristic data. The data is divided into d days, n data per
day, and m meteorological factors per data, to form an n×m×d
matrix as the input structure of CNN model. The output expression
of CNN convolution layer is shown in Eq. 2:

�Xi,j � fcov ∑k
n�0

∑k
m�0

wn,mXi+n,j+m + bn,m⎛⎝ ⎞⎠ (2)

where: fcov(·) is the activation function, k is the sliding window
size, wn,m is the weight of n rows and m columns of the
convolution kernel, Xi+n,j+m are the value of row n and
column m of the feature matrix of the input data, bn,m is the
convolution kernel deviation.

The CNN pooling layer uses 2 × 2 filters and a sliding window of
step 1 to sample, reduce the data feature size, reduce network
parameters, and then input the data to the LSTM layer via the
fully connected layer. First, the input vector calculates the
intermediate state of meteorological data through the hidden
layer of LSTM, and the attention mechanism uses the function
score([ht,i, ht]) to calculate the similarity between the feature vector
of the intermediate state ht,i and the hidden state ht. The expression
is shown in Eq. 3:

score ht,i, ht[ ]( ) � W sh
T
t + bs (3)

where: Ws and bs are the weight matrix and bias vector of the fully
connected layer respectively.

Secondly, the attention weight αi of the hidden layer vector of
meteorological data is obtained by the softmax function, and the
weighted sum with ht,i is obtained to obtain the output h*t of the
attention layer., and the expression of αi, h

*
t are as follows:

FIGURE 2
Wind speed correction schematic diagram based on ResNet-GRU model.
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αi � exp score ht,i, ht( )[ ]∑τ
j�1
exp score ht,i, ht( )[ ] (4)

h*
t � ∑τ

i�1
αiht,i (5)

where: τ is the fully connected output node. Finally, h*t is input to
the fully connected layer to obtain the predicted value of wind
power yt′.

3.2 Kepler optimization algorithm (KOA)

Due to the numerous hyperparameters involved in the
training process of the CNN-LSTM-Attention hybrid model,
such as learning rate, kernel size, and number of LSTM units,
it is a challenging task to select and adjust these hyperparameters
appropriately. The selection of these parameters directly impacts
the quality of the prediction results in practical applications, thus
necessitating the integration of optimization algorithms for
parameter selection. The Kepler optimization algorithm
(KOA) is a heuristic optimization algorithm based on Kepler’s
law in the natural world. This algorithm simulates the motion of

planets in the Solar System and utilizes iterative search to find the
optimal solution (Abdel-Basset et al., 2023) In KOA, each planet
and its position represent a candidate solution, and the
optimization process is achieved by randomly updating based
on the best solution found so far (the Sun), enabling more
efficient exploration and utilization of the search space. Its
advantages lie in its fast convergence speed, high search
accuracy, and strong interpretability. The mathematical
expression of this algorithm is as follows:

�Xi t + 1( ) � �Xi t( ) × �U1 + 1 − �U1( )
×

�Xi t( ) + �XS + �Xa t( )
3.0

+ h ×
�Xi t( ) + �XS + �Xa t( )

3.0
− �Xb t( )( )( )

(6)

where: �Xi(t + 1) is the new position of object i at time t+1, �Xi(t)
represent object i at time t, �U1 represents the universal
gravitational constant, �XS is the best position of the Sun found
thus far, �Xa(t) represents solutions that are selected at random
from the population at time t, h is an adaptive factor for controlling
the distance between the Sun and the current planet at time t, as
defined below:

h � 1
eηr

(7)

where r is a number that is generated randomly on the basis of the
normal distribution, while η is a linearly decreasing factor from one
to −2, as defined below:

η � a2 − 1( ) × r4 + 1 (8)
Where: r4 is randomly generated numerical values at interval [0,

1], a2 is a cyclic controlling parameter that is decreasing gradually
from −1 to −2 for �T cycles within the whole optimization process as
defined below:

FIGURE 3
Comparison of NWP wind speed correction results in different seasons. (A): Comparison of NWP wind speed correction results (winter), (B):
Comparison of NWP wind speed correction results (summer).

TABLE 1 Comparison of prediction results of different algorithms.

Model MAE/% RMSE/% MAPE/%

LSTM 24.650 25.185 17.496

CNN-LSTM 10.834 11.538 14.903

CNN-LSTM-Attention 11.528 10.406 11.340

KOA-CNN-LSTM-Attention 5.293 4.125 3.720
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a2 � −1 − 1 ×
t%Tmax

�T
Tmax
�T

( ) (9)

In this paper, KOA algorithm is used to optimize the learning
rate, convolution kernel size, number of neurons and other
parameters in the CNN-LSTM-Attention model, taking the
minimum Mean Absolute Percentage Error (MAPE) as the
objective function. The formula is as follows:

MAPE � 1
n
∑1
n

yi − ~yi

∣∣∣∣ ∣∣∣∣
yi

(10)

where: yi is the true value, ~yi is the predicted value of the algorithm,
n is the number of samples.

4 Example verification

4.1 Description of experimental data

This paper conducts a case study using data from a wind farm in
northwest China. The installed capacity of the wind farm is
200 MW, and the experimental data and information includes
the output power of the wind farm and various meteorological

FIGURE 4
Comparison of prediction results of different algorithms. (A): Comparison of prediction curves of different algorithms; (B, C) is the comparison of
results with or without KOA optimization algorithm error, (B): the prediction error when the model does not use KOA optimization algorithm, (C): the
prediction error after the model uses KOA optimization algorithm.
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factors throughout 2018–2019. Specifically, data from January 25th
to 31st, 2019 was selected for validating the prediction results. The
data is divided into observed data and NWP data, both with a
resolution of 15 min. The observed data contains measured values of
wind turbine active power and hub-height wind speed, while the
NWP data contains wind speed forecast values at four heights: 10 m,
30 m, 50 m, and 70 m. The NWP data is updated once a day at 00:00,
so the wind power day-ahead forecast results are also updated on a
rolling basis at 00:00 each day.

4.2 Verification of wind speed
correction results

In this section, the proposed ResNet-GRU network is employed
to correct the NWP wind speed data of the wind farm. To validate
the applicability of the proposed correction model, meteorological
and wind power data from the winter and summer seasons of
2019 are selected for wind speed correction result verification.
During each correction, 80% of the data from the preceding time
period is used to train the correction model, while the remaining
20% is used to validate the effectiveness of the wind speed correction.
The comparison graph of forecasted wind speed before and after
correction against the measured wind speed is shown in Figure 3.

From the curve fitting results shown in the above figure, the
following observations can be made:

1) The NWP wind speed forecasts for this wind farm exhibit
relatively small errors during the summer season, while the
forecast errors are relatively larger during the winter season.

2) TheNWPwind speed curve appears relatively smooth, whereas the
measuredwind speed curve exhibitsmore pronounced fluctuations
and may experience sudden changes. These changes manifest as
local peaks or valleys, which are of short duration and difficult for
NWP to accurately predict, resulting in missed forecasts. This is
evident in the highlighted section of the graph.

3) During periods of significant wind speed fluctuations, the
NWP wind speed forecasts for this wind farm tend to
underestimate the measured wind speed to a considerable
extent. To address this issue, the error correction model
developed in this study learns from the differences between
NWP and measured wind speeds in historical samples and
effectively corrects the errors between NWP and measured
wind speeds during the application phase.

4.3 Prediction result verification

This study employs the Keras framework in Python to construct
a short-term wind power prediction model based on the CNN-
LSTM architecture. The model’s initialization parameters, including
the learning rate of the model’s network weights, the size of the
convolution kernel, and the number of neurons, are determined by
the KOA algorithm, while the sigmoid function is selected as the
model’s activation function. The original training data range for the
model comprises winter season data from 2018–2019, with a test set
consisting of 7 days after the cutoff range of this training set. To
validate the predictive performance of the proposed algorithm, the

LSTM(Guangzheng et al., 2022b), CNN-LSTM (ZHAO et al., 2019),
CNN-LSTM-Attention (Guangzheng et al., 2021), and KOA-CNN-
LSTM-Attention methods are applied to predict the wind power
output of the wind farm, with corresponding results presented in
Table 1. Deterministic prediction error can be manifested as
horizontal and vertical errors. In this paper, we selected vertical
error evaluation indicators including Mean Absolute Error (MAE),
MAPE, Root Mean Square Error (RMSE), and horizontal error
evaluation indicators such as correlation coefficient as the
performance evaluation indicators for prediction. A comparison
of the forecast curves and error metrics across different methods is
shown in Figure 4.

TheKOA-CNN-LSTM-Attention algorithmproposed in this paper
has the best overall prediction performance. Compared with the sub-
optimal CNN-LSTM-Attention algorithm, the error indicators MAE,
RMSE and MAPE are reduced by 6.235%, 6.281% and 7.620%,
respectively. It shows the superiority of KOA algorithm. Combined
with KOA algorithm, the parameters of themodel are better selected on
the basis of single CNN-LSTM algorithm, so the prediction accuracy is
further improved.

5 Conclusion and prospect

Improving the accuracy of NWP is crucial for enhancing the
precision of short-term wind power forecasting. However, current
NWP forecast data exhibits significant discrepancies compared to
the measured wind speeds, thereby limiting the accuracy of short-
term wind power prediction. In light of this issue, this study
proposes the following approaches:

1) An error correction model based on ResNet-GRU is established
to effectively rectify the discrepancies between NWP and
measured wind speeds during the application stage. By
learning from historical samples, this model captures the
differences between NWP and actual measurements.

2) A short-term wind power prediction model based on KOA-
CNN-LSTM-Attention is developed to optimize key parameters
such as learning rate, convolution kernel size, and number of
neurons in complex models. This optimization significantly
enhances the predictive performance of the model.

Furthermore, the measured wind power and wind speed data
exhibit greater randomness and volatility compared to NWP
forecast data. This indicates that smooth NWP data faces
challenges in accurately tracking and predicting wind energy
fluctuations at high spatiotemporal resolutions, leading to
increases in both missed detection rates and false alarm rates.
Therefore, our future research will focus on exploring how to
utilize real-time wind farm and anemometer data with higher
update frequencies to perform rolling corrections on NWP data,
thereby achieving more accurate wind power forecasts.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Frontiers in Energy Research frontiersin.org07

Wang et al. 10.3389/fenrg.2024.1391692

26

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1391692


Author contributions

SW: Writing–original draft. HL: Writing–review and editing.
GY: Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

Author SWwas employed by Power Dispatching Control Center
of State Grid Shaanxi Electric Power Co., Ltd. Author HL was

employed by Electric Power Research Institute of State Grid Hubei
Electric Power Co., Ltd.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Abdel-Basset, M., Mohamed, R., Azeem, S. A. A., Jameel, M., and Abouhawwash, M.
(2023). Kepler optimization algorithm: a new metaheuristic algorithm inspired by
Kepler’s laws of planetary motion. Knowledge-based Syst. 268, 110454. doi:10.1016/j.
knosys.2023.110454

Ahmed, A., and Khalid, M. (2019). A review on the selected applications of forecasting
models in renewable power systems. Renew. Sustain. Energy Rev. 100, 9–21. doi:10.
1016/j.rser.2018.09.046

Anbo, MENG, Chen, S., Zuhong, O. U., Ding, W., Zhou, H., Fan, J., et al. (2022). A
hybrid deep learning architecture for wind power prediction based on bi-attention
mechanism and crisscross optimization. Energy 238, 121795. PB. doi:10.1016/j.energy.
2021.121795

Ding, M., Zhou, H., Xie, H., Wu, M., Nakanishi, Y., and Yokoyama, R. (2019). A gated
recurrent unit neural networks based wind speed error correction model for short-term
wind power forecasting. Neurocomputing 365, 54–61. Nov.6. doi:10.1016/j.neucom.
2019.07.058

Du, P. W. (2019). Ensemble machine learning-based wind forecasting to combine
NWP output with data from weather station. IEEE Trans. Sustain. energy 10 (4),
2133–2141. doi:10.1109/tste.2018.2880615

Guangzheng, Yu, Lingxu, S., Qi, D., Cui, G., Wang, S., Xin, D., et al. (2024). Ultra-
short-term wind power forecasting techniques: comparative analysis and future trends.
Front. Energy Res. 11, 2296–598X. doi:10.3389/fenrg.2023.1345004

Guangzheng, Y. U., Liu, L. U., Tang, B., Wang, S., Yang, X., and Chen, R. (2021).
Improved hybrid neural network ultra-short-term PV power prediction method based
on cloud map feature extraction. Proceeding CSEE 41 (20), 6989–7003. doi:10.13334/j.
0258-8013.pcsee.201929

Guangzheng, Y. U., Liu, L. U., Tang, B., Wang, S., and Dong, Q. (2022a). Research on
ultra-short-term piecewise prediction method for offshore wind power considering
transformational weather. Proc. CSEE 42 (13), 4859–4871. doi:10.13334/j.0258-8013.
pcsee.211771

Guangzheng, Y. U., Liu, C., Tang, Bo, Chen, R., Lu, L., Cui, C., et al. (2022b). Short-term
wind power prediction for regional wind farms based on spatial-temporal characteristic
distribution. Renew. Energy 199, 599–612. doi:10.1016/j.renene.2022.08.142

Hu, S., Xiang, Y., Shen, X. D., Liu, J. Y., Liu, J. C., and Li, J. H. (2021). Wind power
prediction model considering spatial correlation between meteorological factors
and wind speed. Automation Electr. Power Syst. 45 (7), 9. doi:10.7500/
AEPS20200218012

Hui, L. I., Dong, L. I. U., and Yao, D. (2021). Research and judgment on the
development of China’s power system facing the goal of carbon peaking and carbon
neutrality. Proc. CSEE 41 (18), 6245–6259. doi:10.13334/j.0258-8013.pcsee.210050

Li, Z., Luo, X. R., Liu, M. J., Cao, X., Du, S., and Sun, H. (2022). Short-term prediction
of the power of a new wind turbine based on IAO-LSTM. Energy Rep. 8, 9 025–029 037.
doi:10.1016/j.egyr.2022.07.030

Liu, H., Yang, R., and Duan, Z. (2020). Wind speed forecasting using a new multi-
factor fusion and multi-resolution ensemble model with real-time decomposition and
adaptive error correction. Energy Convers. Manag. 217, 112995. doi:10.1016/j.
enconman.2020.112995

Miao, C., Wang, X., Li, H., Han, L., and Wen, C. (2022). Wind power day-ahead
forecast based on wind speed error correction of Numerical Weather forecast. Power
Grid Technol. 46 (09), 3455–3464. (in Chinese). doi:10.13335/J.1000-3673.pst.2022.
0834

Niu, Z., Zeyuan, Y., Bo, L., and Wenhu, T. (2018). Short-term wind power prediction
model based on depth-gated cyclic unit neural Network. Electr. Power Autom. Equip. 38
(5), 7. doi:10.16081/j.issn.1006-6047.2018.05.005

Ren, D., Xiao, J., Hou, J., Du, E., Jin, C., and Liu, Y. (2022). Research on the
construction and evolution of new electric power system under double carbon target.
Power Grid Technol. 222 (10), 3831–3839. doi:10.13335/j.1000-3673.pst.2022.0387

Song, J., Peng, Y., Cai, H., Xia, Y., and Wang, X. (2018). Research on short-term wind
power prediction considering multi-location NWP and atypical characteristics. Power
Grid Technol. 42 (10), 3234–3242. doi:10.13335/j.1000-3673.pst.2018.0492

Wang, Y., Zou, R., Liu, F., Zhang, L., and Liu, Q. (2021). A review of wind speed and
wind power forecasting with deep neural networks.Appl. Energy 304 (1), 117766. doi:10.
1016/j.apenergy.2021.117766

Wang, W., Wang, Z., Dong, C., Liang, Z., Feng, S., and Wang, B. (2021). Status and
error analysis of short-term forecasting Technology of wind power in China.
Automation Electr. Power Syst. 45 (1), 17–27. doi:10.7500/AEPS20200324003

Yldz, C., Akgz, H., Korkmaz, D., and Budak, U. (2021). An improved residual-based
convolutional neural network for very short-term wind power forecasting. Energy
Convers. Manag. 28 (1), 113731. doi:10.1016/j.enconman.2020.113731

Yu, G. Z., Lu, L., Tang, B., Wang, S. Y., and Chung, C. Y. (2023). Ultra-short-term
wind power subsection forecasting method based on extreme weather. IEEE Trans.
Power Syst. 38 (6), 5045–5056. doi:10.1109/TPWRS.2022.3224557

Yusheng, X., Yu, C., Zhao, J., Kang, X., Qiuwei, G., and Ya, Y. (2015). A review on
short-term and ultra-short-term wind power prediction. Automation Electr. Power Syst.
39 (6), 141–151. doi:10.7500/AEPS20141218003

Zhao, X., Haikun, W. E. I., Wang, H., Zhu, T., and Zhang, K. (2019). 3D-CNN-based
feature extraction of ground-based cloud images for direct normal irradiance
prediction. Sol. Energy 181, 510–518. doi:10.1016/j.solener.2019.01.096

Zhou, Y., Yu, G., Liu, J., Ziheng, S., and Pei, K. (2021). Offshore wind power
prediction based on improved long-term cyclic convolutional neural networks.
Automation Electr. Power Syst. 45 (03), 183–191. doi:10.7500/AEPS20191212003

Zhu, Q., Li, H., Wang, Z., Chen, J., and Wang, B. (2017). Ultra-short term power
prediction of wind farm based on long Short Term memory network. Power Grid
Technol. 41 (12), 3797–3802. doi:10.13335/j.1000-3673.pst.2017.1657

Frontiers in Energy Research frontiersin.org08

Wang et al. 10.3389/fenrg.2024.1391692

27

https://doi.org/10.1016/j.knosys.2023.110454
https://doi.org/10.1016/j.knosys.2023.110454
https://doi.org/10.1016/j.rser.2018.09.046
https://doi.org/10.1016/j.rser.2018.09.046
https://doi.org/10.1016/j.energy.2021.121795
https://doi.org/10.1016/j.energy.2021.121795
https://doi.org/10.1016/j.neucom.2019.07.058
https://doi.org/10.1016/j.neucom.2019.07.058
https://doi.org/10.1109/tste.2018.2880615
https://doi.org/10.3389/fenrg.2023.1345004
https://doi.org/10.13334/j.0258-8013.pcsee.201929
https://doi.org/10.13334/j.0258-8013.pcsee.201929
https://doi.org/10.13334/j.0258-8013.pcsee.211771
https://doi.org/10.13334/j.0258-8013.pcsee.211771
https://doi.org/10.1016/j.renene.2022.08.142
https://doi.org/10.7500/AEPS20200218012
https://doi.org/10.7500/AEPS20200218012
https://doi.org/10.13334/j.0258-8013.pcsee.210050
https://doi.org/10.1016/j.egyr.2022.07.030
https://doi.org/10.1016/j.enconman.2020.112995
https://doi.org/10.1016/j.enconman.2020.112995
https://doi.org/10.13335/J.1000-3673.pst.2022.0834
https://doi.org/10.13335/J.1000-3673.pst.2022.0834
https://doi.org/10.16081/j.issn.1006-6047.2018.05.005
https://doi.org/10.13335/j.1000-3673.pst.2022.0387
https://doi.org/10.13335/j.1000-3673.pst.2018.0492
https://doi.org/10.1016/j.apenergy.2021.117766
https://doi.org/10.1016/j.apenergy.2021.117766
https://doi.org/10.7500/AEPS20200324003
https://doi.org/10.1016/j.enconman.2020.113731
https://doi.org/10.1109/TPWRS.2022.3224557
https://doi.org/10.7500/AEPS20141218003
https://doi.org/10.1016/j.solener.2019.01.096
https://doi.org/10.7500/AEPS20191212003
https://doi.org/10.13335/j.1000-3673.pst.2017.1657
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1391692


TYPE Original Research
PUBLISHED 09 May 2024
DOI 10.3389/fenrg.2024.1376677

OPEN ACCESS

EDITED BY

Yingjun Wu,
Hohai University, China

REVIEWED BY

Vedran Mrzljak,
University of Rijeka, Croatia
Cornel Hatiegan,
Babeș-Bolyai University, Romania

*CORRESPONDENCE

Rui Zhao,
zhaorui_2023@163.com

RECEIVED 26 January 2024
ACCEPTED 12 April 2024
PUBLISHED 09 May 2024

CITATION

Zhao R, Lei Z and Zhao Z (2024), Research on
the application of deep learning techniques in
stock market prediction and investment
decision-making in financial management.
Front. Energy Res. 12:1376677.
doi: 10.3389/fenrg.2024.1376677

COPYRIGHT

© 2024 Zhao, Lei and Zhao. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Research on the application of
deep learning techniques in
stock market prediction and
investment decision-making in
financial management

Rui Zhao1*, Zhenhua Lei1 and Ziyu Zhao2

1School of Economics, Management and Law, University of South China, Hengyang, China, 2Tan Kah
Kee College, Xiamen University, Xiamen, China

Introduction: This paper introduces a deep learning approach based on
Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory
Networks (BiLSTM), and attention mechanism for stock market prediction and
investment decision making in financial management. These methods leverage
the advantages of deep learning to capture complex patterns and dependencies
in financial time series data. Stock market prediction and investment decision-
making have always been important issues in financial management.

Methods: Traditional statistical models often struggle to handle nonlinear
relationships and complex temporal dependencies, thus necessitating the
use of deep learning methods to improve prediction accuracy and decision
effectiveness. This paper adopts a hybrid deep learning model incorporating
CNN, BiLSTM, and attention mechanism. CNN can extract meaningful features
from historical price or trading volume data, while BiLSTM can capture
dependencies between past and future sequences. The attention mechanism
allows themodel to focus on themost relevant parts of the data. Thesemethods
are integrated to create a comprehensive stock market prediction model. We
validate the effectiveness of the proposed methods through experiments on
real stock market data. Compared to traditional models, the deep learning
model utilizing CNN, BiLSTM, and attention mechanism demonstrates superior
performance in stock market prediction and investment decision-making.

Results and Discussion: Through ablation experiments on the dataset, our deep
learning model achieves the best performance across all metrics. For example,
the Mean Absolute Error (MAE) is 15.20, the Mean Absolute Percentage Error
(MAPE) is 4.12%, the Root Mean Square Error (RMSE) is 2.13, and the Mean
Squared Error (MSE) is 4.56. This indicates that these methods can predict
stock market trends and price fluctuations more accurately, providing financial
managers with more reliable decision guidance. This research holds significant
implications for the field of financial management. It offers investors and
financial institutions an innovative approach to better understand and predict
stock market behavior, enabling them to make wiser investment decisions.

KEYWORDS

energy storage, financialmarket, stockmarket prediction, deep learningmethods, CNN,
BiLSTM, attention mechanism
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1 Introduction

Stock market prediction and investment decision-making in
financial management have always been important issues in the
finance field. Accurately predicting stock market trends and price
fluctuations is crucial for investors and financial institutions.
Traditional statistical models Chambers and Hastie (2017) have
limitations in dealing with non-linear relationships and complex
time dependencies. Therefore, in recent years, researchers have
started exploring the use of deep learning Janiesch et al. (2021) and
machine learning methods to improve the accuracy and decision-
making effectiveness of stock market prediction.

In the field of stock market prediction, the following five
common deep learning and machine learning models are used:

1. Convolutional Neural Networks (CNN) Kattenborn et al.
(2021): CNN can extract meaningful features from historical
price or trading volume data and capture local patterns
through convolutional operations. However, CNN disregards
the time dependencies in time series data.

2. Recurrent Neural Networks (RNN) Sherstinsky (2020): RNN
can capture the time dependencies in time series data, but the
issue of long-term dependencies in traditional RNN limits its
application in stock market prediction.

3. Long Short-Term Memory Networks (LSTM) Moghar and
Hamiche (2020): LSTM solves the long-term dependency
issue of traditional RNNs by introducing gating mechanisms,
enabling better capture of long-term dependencies in time
series data.

4. Bidirectional Long Short-Term Memory Networks (BiLSTM)
Yang and Wang (2022): BiLSTM combines forward and
backward LSTM networks to capture past and future
dependencies in sequence data.

5. AttentionMechanismNiu et al. (2021): Attentionmechanisms
allow themodel to focus on themost relevant parts, enhancing
the model’s attention to key information.

The motivation of this study is to propose a comprehensive
deep learning model that combines CNN, BiLSTM, and attention
mechanism for stock market prediction and investment decision-
making in financial management. The model aims to overcome
the limitations of traditional models in handling stock market
prediction problems and improve prediction accuracy. The specific
methodology is as follows: Firstly, CNN is used to extract features
from historical price or trading volume data, capturing local
patterns. Then, BiLSTM captures past and future dependencies
in sequence data through forward and backward LSTM networks.
Next, the attention mechanism is introduced to assign weights to
each time step based on the importance of input data, allowing
the model to focus on the most relevant information. Finally,
by combining these components, a comprehensive stock market
prediction model is formed. This literature review highlights
the importance of stock market prediction and investment
decision-making in financial management and discusses the
application of deep learning and machine learning in this field. Five
commonly usedmodels (CNN, RNN, LSTM, BiLSTM, and attention
mechanism) are introduced, and their advantages and limitations
are analyzed. Finally, a comprehensive deep learning model that
utilizes CNN, BiLSTM, and attention mechanism is proposed to

enhance the accuracy and decision-making effectiveness of stock
market prediction. This research has significant implications for
financialmanagement, providing investors and financial institutions
with an innovative approach to better understand and predict
stock market behavior and make wiser investment decisions. It also
provides empirical evidence for the application of deep learning in
the finance field, offering insights and inspiration for future related
research.

• Integration of Multiple Models: One of the contributions of
this paper is the combination of CNN, BiLSTM, and attention
mechanism to form a comprehensive stock market prediction
model. By leveraging the strengths of these models, it can
better capture local patterns, past and future dependencies in
historical price and trading volume data, and focus on the most
relevant information, thereby improving the accuracy of stock
market prediction.

• Overcoming Limitations of Traditional Models: Traditional
statistical models have limitations in dealing with non-linear
relationships and complex time dependencies. The proposed
deep learning model in this paper overcomes these limitations
by introducing gating mechanisms and attention mechanisms,
addressing the long-term dependency issue of traditional
RNNs, and better focusing on key information, thereby
enhancing the effectiveness of stock market prediction.

• Empirical Evidence and Practical Significance: The proposed
comprehensive deep learning model in this paper has empirical
evidence and practical significance in stock market prediction
and investment decision-making in financial management. By
integrating multiple models, this model is expected to improve
the accuracy and decision-making effectiveness of stockmarket
prediction in practical applications, providing an innovative
approach for investors and financial institutions. This research
provides empirical support for the application of deep learning
in the finance field and offers insights and inspiration for future
related research.

2 Related work

2.1 Transformer model

The application of the Transformer model (Han et al., 2021) in
stock market prediction has several advantages. Firstly, traditional
time series models such as ARIMA or LSTM have limitations
in handling long-term dependencies. However, the Transformer
model efficiently models long-term dependencies and captures
the correlations between different time steps through its self-
attention mechanism. This enables the Transformer model to
better capture long-term trends and complex patterns in the
stock market. Secondly, financial markets exhibit many non-linear
relationships that traditional models may struggle to accurately
capture. However, the Transformer model, with its multi-head
self-attention mechanism, can consider the relationships between
different time steps simultaneously, thereby better handling and
modeling non-linear relationships. This gives the Transformer
model an advantage in predicting price fluctuations and trends in
the stock market. Moreover, the Transformer model can perform
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parallel computations. Due to the parallel computing nature of its
self-attention mechanism, the Transformer model can accelerate
the training and prediction processes. Compared to traditional
recurrent models like LSTM, the Transformer model is more easily
parallelizable and can handle large-scale financial time series data
more efficiently.

Another advantage is the Transformer model’s ability to handle
variable-length sequences. Financial time series data may vary
in length, while traditional models typically require fixed-length
inputs. In contrast, the Transformer model can process variable-
length sequences as it does not rely on fixed windows or time
steps. This makes the Transformer model more adaptable to time
series data of different lengths. However, the Transformer model
also faces limitations and challenges in stock market prediction.
Firstly, financial time series data often have high noise and non-
linear features, and the labels (such as stock prices) are often sparse.
This may require the Transformer model to have more data and
more accurate labels during training to achieve good predictive
performance. Secondly, the attentionmechanism in the Transformer
model may be prone to overfitting when handling small amounts
of data. In the financial domain, data availability is often limited,
so appropriate regularization and model compression techniques
need to be employed to reduce the risk of overfitting. Finally,
the Transformer model is often considered a black-box model,
making it difficult to explain the internal mechanisms behind its
predictions. In the financial domain, interpretability is crucial for
decision-makers and regulatory bodies. Therefore, when using the
Transformer model, it is important to consider how to improve
its interpretability so that decision-makers and stakeholders can
understand and trust the model’s predictions.

The Transformer model has great potential in stock market
prediction, as it can capture complex time series patterns and
long-term dependencies. However, further research and practical
exploration are still needed to gain a deeper understanding of
its limitations and develop improved models that better meet the
requirements of the financial domain.

2.2 Reinforcement learning

Reinforcement Learning (RL) Oh et al. (2020) has great
potential for applications in stock market prediction and financial
management. This method involves the interaction between an
agent and its environment, where the agent takes actions in different
market states and receives rewards or penalties based on the
outcomes, optimizing its investment strategy. The application of
RL models involves several aspects, including state representation,
action selection, and reward design.

Firstly, state representation is crucial in RL. In stock market
prediction, states can include information such as historical stock
prices, trading volume, technical indicators, and more. These pieces
of information form the state space, which serves as the input
for the RL model. Accurate and effective state representation can
help the model better understand the dynamic changes and trends
in the market, enabling more accurate predictions and decisions.
Secondly, action selection is a key step in RL models. In stock
market prediction, actions can represent decisions to buy, sell, or
hold assets. The model selects actions that maximize long-term

returns based on the current state and the learned policy. Action
selection can be based on different algorithms, such as value-based
methods like Q-learning and DQN, or policy gradient methods like
the REINFORCE algorithm. Additionally, reward design plays an
important role in RL. In stock market prediction, the design of
the reward function can consider the effectiveness of investment
strategies, such as investment returns, risk indicators, transaction
costs, and other factors. Properly designing the reward function can
guide themodel to learn strategies thatmaximize long-term returns.
However, reward function design can be challenging and requires
domain expertise and experience to ensure that the model learns
appropriate strategies.

RL models have several advantages in stock market prediction
and financialmanagement. Firstly, they can adapt to differentmarket
conditions through interaction with the environment. Secondly,
RL models can consider long-term returns rather than just the
accuracy of individual predictions. Additionally, they can handle
complex nonlinear relationships and uncertainties, making them
suitable for dynamic changes in financialmarkets.Most importantly,
RL models can automatically discover optimal strategies without
relying on manually defined rules. However, RL models also have
some limitations. Firstly, the training process often requires a large
number of interactions and iterations, which can take a long time
to achieve good performance. Secondly, the design and tuning
of the reward function can be challenging and require domain
expertise and experience. Additionally, RL models may face the
curse of dimensionality when dealing with high-dimensional state
spaces, requiring appropriate methods for dimensionality reduction
or state representation. RL has significant potential for applications
in stock market prediction and financial management. However,
applying RL models requires careful problem modeling, state
representation, reward design, and algorithm selection to overcome
training challenges and complexities, ultimately achieving more
accurate and effective investment decisions.

2.3 Ensemble learning

Ensemble learning Dong et al. (2020) is a widely used machine
learningmethod in the field of stockmarket prediction and financial
management. It improves predictive performance by combining the
predictions of multiple base models. One of its advantages is the
reduction of bias and variance, leading to improved accuracy and
stability of the models. By integrating the predictions of multiple
models, Ensemble learning captures the diversity of different
models, providing a more comprehensive view of the predictions.
Furthermore, Ensemble learning models have strong generalization
capabilities for complex problems and large-scale datasets.

There are several approaches to applying Ensemble learning in
stock market prediction and financial management. Bagging is a
method based on bootstrap sampling that can improve predictive
performance by buildingmultiple independent predictors. Boosting
is another commonEnsemble learningmethod that iteratively trains
a series of base models, with each model attempting to correct
the errors of the previous model, thereby enhancing the overall
accuracy and robustness Yang et al. (2020). Random Forest is an
Ensemble learning method based on decision trees, where multiple
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FIGURE 1
Overall flow chart of the model.

decision trees are constructed tomake predictions, resulting inmore
reliable results.

The advantages of Ensemble learning models include reducing
bias and variance and improving predictive accuracy and
stability. Additionally, Ensemble learning captures the strengths
of different models, providing a more comprehensive and reliable
prediction. However, training and tuning Ensemble learning
models may require more computational resources and time.
Additionally, the performance of Ensemble learning models
can suffer when the base models are highly correlated or share
common errors.

Ensemble learning models have wide-ranging applications in
stock market prediction and financial management. By integrating
the predictions of multiple models, Ensemble learning improves
predictive accuracy and stability, assisting investors in making more
reliable decisions.

3 Methodology

3.1 Overview of our network

This paper proposes a hybrid deep learning model for stock
market prediction and investment decision-making. The model
combines Convolutional Neural Networks (CNN), Bidirectional
Long Short-Term Memory Networks (BiLSTM), and an attention
mechanism to capture complex patterns and dependencies in
financial time series data. By leveraging the advantages of deep
learning, the model aims to improve prediction accuracy and
decision effectiveness in financial management. Figure 1 shows the
overall framework diagram of the proposed model:

Method Principles:

1. Convolutional Neural Networks (CNN): CNN is used to
extract meaningful features from historical price or trading
volume data. It applies convolutional filters to capture
local patterns and learns hierarchical representations of the
input data.

2. Bidirectional Long Short-Term Memory Networks (BiLSTM):
BiLSTM is employed to capture dependencies between
past and future sequences in the stock market data. By
using both forward and backward recurrent connections,
BiLSTM can effectively model long-term dependencies and
temporal dynamics.

3. Attention Mechanism: The attention mechanism allows the
model to focus on themost relevant parts of the data. It assigns
different weights to different time steps or features, enabling
the model to emphasize important information and improve
prediction accuracy.

Method Implementation:

1. Data Preprocessing:Thehistorical stockmarket data, including
price and trading volume, is preprocessed to remove noise,
handle missing values, and normalize the data for improved
model performance.

2. Feature Extraction: The preprocessed data is fed into the CNN
component of the model to extract meaningful features. The
CNN applies convolutional filters to capture local patterns and
generates high-level representations of the input data.

3. Temporal Modeling: The features extracted by CNN are
then fed into the BiLSTM component. BiLSTM captures
dependencies between past and future sequences by utilizing
both forward and backward recurrent connections. This

Frontiers in Energy Research 04 frontiersin.org31

https://doi.org/10.3389/fenrg.2024.1376677
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhao et al. 10.3389/fenrg.2024.1376677

enables the model to understand the temporal dynamics of the
stock market.

4. Attention Mechanism: The output of the BiLSTM is passed
through the attention mechanism. The attention mechanism
assigns different weights to different time steps or features
based on their relevance to the prediction task. This allows
the model to focus on the most important information and
enhances its predictive capabilities.

5. Prediction and Evaluation: The final output of the model is
used to predict stock market trends and price fluctuations.
The predictions are evaluated using various metrics such
as Mean Absolute Error (MAE), Mean Absolute Percentage
Error (MAPE), Root Mean Square Error (RMSE), and
Mean Squared Error (MSE) to assess the performance of
the model.

6. Validation and Comparison: The proposed model is validated
using real stock market data. Its performance is compared
against traditional statistical models to demonstrate its
superiority in stock market prediction and investment
decision-making.

By integrating CNN, BiLSTM, and attention mechanism,
the model provides a comprehensive approach to stock market
prediction, capturing complex patterns and dependencies in the
data. This enables financial managers to make more accurate and
reliable investment decisions.

3.2 CNN

The CNN model (Convolutional Neural Network) Li et al.
(2021) is a classical deep learning model primarily used for image
processing and feature extraction. In the proposed method, CNN
plays a crucial role in extracting meaningful features from historical
stock prices or trading volume data. Figure 2 is a schematic diagram
of the CNN.

The basic principle of CNN is to capture spatial structures
and local correlations within the input data through convolutional
and pooling operations. Here are the fundamental components and
functions of the CNNmodel:

1. Convolutional Layers Ketkar et al. (2021): The convolutional
layers are the core components of CNN. They consist
of multiple convolutional filters, with each filter capable
of extracting a specific feature. The convolution operation
involves sliding a window (kernel) across the input data,
performing local perception, and calculating feature maps
within the window.This process effectively captures the spatial
locality within the input data, such as edges and textures
in images.

2. Activation Function Sharma et al. (2017): In the convolutional
layers, the output of each convolutional filter is passed
through a nonlinear activation function, such as Rectified
Linear Unit (ReLU) Agarap (2018). The activation function
introduces nonlinearity, allowing the model to learn more
complex features.

3. Pooling Layers Gholamalinezhad and Khosravi (2020): The
pooling layers perform downsampling operations on the
feature maps, reducing the number of parameters in the model

and extracting the most salient features. Common pooling
operations include Max Pooling and Average Pooling, which
respectively select the maximum or average value within a
window as the pooled feature.

4. Multiple Stacking Korzh et al. (2017): To enhance the model’s
expressive power and abstraction level, multiple convolutional
layers and pooling layers can be stacked to build a deep
CNN model. Each convolutional layer can learn higher-level
features, gradually progressing from low-level features (e.g.,
edges and textures) to more abstract features (e.g., shapes and
objects).

The formula for a Convolutional Neural Network (CNN) is as
follows:

y = f (W∗x+ b) (1)

where,
x represents the input data, which can be a two-dimensional

image or other multidimensional data.W denotes the convolutional
kernel (weights). b represents the bias term. ∗ denotes the
convolutional operation. y represents the output of the convolutional
layer. f(⋅) is the activation function, commonly using ReLU or other
nonlinear functions. In the convolutional operation, the input data
x and the convolutional kernel W are convolved through a sliding
window to calculate the output feature map y. The bias term b is
used to adjust the offset of the output result.

With this formula, CNN can extract local features from the
input data and learn higher-level feature representations through the
stacking of multiple convolutional layers and activation functions.

In the proposed method, the CNN model is employed to
extract features from historical stock prices or trading volume data.
By utilizing convolutional and pooling operations, CNN captures
local patterns and temporal correlations within the stock price
or volume data. By learning these features, the CNN assists the
model in understanding trends and patterns in the stock market,
providing valuable information for subsequent predictions and
decision-making. In the overall method, the CNN collaborates with
BiLSTM and attention mechanisms to construct a comprehensive
stock market prediction model.

3.3 BiLSTM

The Bidirectional Long Short-Term Memory (BiLSTM) is a
variant of recurrent neural networks (RNN) that finds widespread
applications in natural language processing and sequence modeling
tasks. In the given approach, the BiLSTMcollaborateswithCNNand
attention mechanisms to construct a comprehensive stock market
prediction model. Figure 3 is a schematic diagram of the BiLSTM.

The basic principle of BiLSTM involves introducing
bidirectional information flow He et al. (2021) and utilizing gated
units to capture and remember long-term dependencies. Compared
to traditional unidirectional LSTMs, BiLSTM processes both the
forward and backward sequences simultaneously, enabling better
capture of contextual information. BiLSTM consists of two LSTMs:
a forward LSTM and a backward LSTM. In the forward LSTM,
the input sequence is processed in sequential order, while in the
backward LSTM, the input sequence is processed in reverse order.
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FIGURE 2
Schematic diagram of CNN.

FIGURE 3
Schematic diagram of BiLSTM.

Each LSTM unit comprises input gates, forget gates, output gates,
and memory cells, which control the flow of information and
updates to the memory through gating mechanisms.

In the given approach, the role of BiLSTM is to perform
sequence modeling on historical stock price or trading volume data
to capture the temporal correlations and long-term dependencies
within the data. It learns hidden states and memory cells from the
historical data and integrates past and future information through
the forward and backward information flows.The output of BiLSTM

can be used as part of the CNN model or combined with the
output of the CNN model to form a more comprehensive feature
representation. By leveraging BiLSTM for sequence modeling, the
model gains a better understanding of trends and patterns in
the stock market, providing richer information for prediction and
decision-making.

The formula of BiLSTM is as follows:

h⃗t = LSTM(h⃗t− 1, x⃗t) h⃖t = LSTM(h⃖t+ 1, x⃖t)yt = [h⃗t; h⃖t] (2)

Frontiers in Energy Research 06 frontiersin.org33

https://doi.org/10.3389/fenrg.2024.1376677
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhao et al. 10.3389/fenrg.2024.1376677

where,
h⃗t and h⃖t represent the hidden states of the forward and

backward LSTM respectively at time t. x⃗t and x⃖t represent the
inputs of the forward and backward LSTM respectively at time t. yt
represents the output of the BiLSTM at time t, which is obtained by
concatenating the hidden states of the forward and backward LSTM.

The calculation of the forward and backward LSTM can be
represented using the following formulas:

Input Gate:

it = σ(Wixt +Uiht−1 + bi) (3)

Forget Gate:

ft = σ(W fxt +U fht−1 + b f) (4)

Update State:

gt = tanh(Wgxt +Ught−1 + bg) (5)

Output Gate:

ot = σ(Woxt +Uoht−1 + bo) (6)

Cell State Update:

ct = ft ⊙ ct−1 + it ⊙ gt (7)

Hidden State Update:

ht = ot ⊙ tanh(ct) (8)

whereW,U, and b are weight matrices and bias vectors, σ represents
the sigmoid function, and ⊙ represents element-wise multiplication.

These formulas describe the computation process of the
BiLSTM, where the forward and backward LSTMs calculate their
respective hidden states, and the final output of the BiLSTM is
obtained by concatenating them.

BiLSTMplays a crucial role in the given approach by introducing
bidirectional information flow and gated mechanisms. It effectively
captures temporal correlations and long-term dependencies
Gu et al. (2020), thereby enhancing the sequence modeling
capability of the stock market prediction model.

3.4 Attention mechanism

The attention Mechanism is a technique used in deep learning
models to process sequential data. Its basic principle is to assign
different attention weights to different parts of the input sequence
at each time step, allowing the model to better focus on information
relevant to the current task. Figure 4 is a schematic diagram of the
Attention Mechanism.

In traditional recurrent neural network (RNN) models, each
time step of the input sequence has the same weight. Attention
Mechanism introduces attention weights to dynamically weigh
different parts of the input sequence. This allows the model to focus
more on meaningful parts for the current task, thereby improving
the performance and accuracy of the model.

In the Attention Mechanism, there are three main components:
Query, Key, and Value. The Query represents the hidden state of the

model at the current time step, while the Key and Value represent
the hidden states of the input sequence. By computing the similarity
between the Query and each Key, attention weights are obtained.
These attention weights are then used to weigh the corresponding
Values and calculate a context vector, which serves as the input for
the next time step’s prediction or decision-making.

Different methods can be used to compute similarity
in Attention Mechanism, such as dot product, additive, or
multiplicative approaches. Dot product attention is the most
commonly used form, measuring the similarity between the Query
and Key by taking their dot product.

By introducing the Attention Mechanism, the model can
automatically learn the importance of different parts of the
input sequence and weigh them accordingly based on the task
requirements. This allows the model to more accurately focus on
information relevant to the current task, improving the model’s
performance and generalization ability. Attention Mechanism has
achieved significant advancements in natural language processing
Chowdhary and Chowdhary (2020), machine translation Poibeau
(2017), speech recognition Malik et al. (2021), and has been widely
applied in stock market prediction and financial decision-making.

The formula of Attention Mechanism is as follows:

Attention (Q,K,V) = softmax(QKT

√dk
)V (9)

In this equation, the variables are explained as follows:
Q: Query vector, representing the hidden state of the model

at the current time step. K: Key vector, representing the hidden
state of the input sequence. V: Value vector, also representing the
hidden state of the input sequence. dk: Dimension of the hidden
state, used for scaling. QKT : Dot product of the Query vector and
the transpose of the Key vector, used for calculating similarity.
softmax: Softmax function, used for calculating attention weights.
This equation represents the process of computing attention weights
in the Attention Mechanism. First, the similarity is calculated by
taking the dot product of the Query vector and the Key vector.Then,
the similarity is scaled by dividing it by √dk, and finally, the scaled
similarity is transformed into attention weights using the softmax
function. These attention weights are then used to weight the Value
vector, resulting in the final context vector.

Attention Mechanism enhances the processing capability
of deep learning models for sequential data by introducing
attention weights to dynamically focus on different parts of the
input sequence. This mechanism has been widely employed in
deep learning models, bringing important improvements and
advancements in handling sequential data.

4 Experiment

4.1 Datasets

The data sets selected in this article are CAMBRIA Dataset,
KRIRAN dataset, SHARMA dataset, JAMES dataset.

1. CAMBRIA Dataset (Wang et al., 2023): TThe “CAMBRIA
Dataset” integrates social media sentiment, which captures the
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FIGURE 4
Schematic diagram of Attention Mechanism.

collective sentiment and opinions of users regarding specific
stocks or the overall market. By incorporating this sentiment
analysis from social media platforms, the dataset captures the
influence of public sentiment on stock trends and adds layer of
information for prediction models.

2. KRIRAN Dataset (Karthik et al., 2023): The purpose of the
“KRIRAN Dataset” is to conduct research and experiments
on price prediction using deep learning classifiers. Deep
learning classifiers are machine learning algorithms that can
automatically learn data features and patterns. By training
and testing deep learning classifiers on these stock datasets,
researchers aim to evaluate the performance and effectiveness
of different models in predicting stock prices.

3. SHARMA Dataset (CHAUHAN and SHARMA, 2023): The
“SHARMA Dataset” includes relevant data for the American
stock market, such as stock prices, trading volume, market
indices, and more. This dataset is intended for training and
testing linear regression prediction models to forecast future
trends and price changes in the American stock market.

4. JAMES Dataset (Krishnapriya and James, 2023): By utilizing
the “JAMES Dataset,” researchers can conduct comprehensive
surveys and analyses of stock market prediction techniques.
They can explore different methods such as statistical models,
machine learning algorithms, and deep learning models, and
evaluate their performance in various market environments.

4.2 Experimental details

Here is a possible experimental design, including the training
process, training details, hyperparameter settings, and detailed
descriptions of the comparative and ablation experiments:

1. Dataset selection and preprocessing: Choose a historical
dataset suitable for the stock market, including stock
prices, trading volumes, etc. Preprocess the data, such as
normalization and outlier removal.

2. Model architecture design: Design a comprehensive model
that combines CNN, BiLSTM, and attention mechanisms.
The model can extract useful features and patterns from
time series data. Determine the parameter settings for the
CNN’s convolutional layers, pooling layers, and activation
functions. Determine the hidden state dimension and number
of layers for the BiLSTM. Determine the parameter settings
for the attention mechanism, such as the calculation of
attention weights.

3. Training process: Split the dataset into a training set and a
test set. Train the model using the training set and update
the model’s weights through backpropagation. Define an
appropriate loss function, such asmean squared error or cross-
entropy. Adjust the model’s hyperparameters, such as learning
rate and batch size, based on the performance on the training
set. Use a validation set formodel selection and tuning. Finally,
evaluate the model’s performance on the test set.

4. Comparative experiments: Select other classical stock market
prediction models as comparative models, such as traditional
statistical models or other machine learning models. Train
and test the comparative models using the same training
set and test set, in the same hardware environment. Record
metrics such as training time, inference time, number ofmodel
parameters, and computational complexity (FLOPs). Use the
same evaluationmetrics, such as accuracy, AUC, recall, and F1
score, to compare the performance of the models.

5. Ablation experiments: Conduct ablation experiments by
gradually excluding certain components from the model
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to assess their impact on model performance. Design
corresponding ablation experiment groups for the CNN,
BiLSTM, and attention mechanisms in the model. Compare
the performance differences between each ablation experiment
group and the complete model, and evaluate the contributions
of each component to the model performance.

6. Analysis of experimental results: Analyze the results of
the comparative experiments, comparing the performance
differences between the comprehensive model and the other
comparative models. Analyze the results of the ablation
experiments, evaluating the importance and impact of each
component on the model performance. Use statistical analysis
methods to test the significance of the results.

Here is the formula for the comparison indicator:

1. Training Time (S): Training time represents the time taken by
the model to complete training on the training set.

TrainingTime (S) = EndTime− StartTime (10)

2. Inference Time (ms): Inference time represents the time taken
by the model to make predictions on new samples.

InferenceTime (ms) = Total InferenceTime
NumberofSamples

(11)

3. Parameters (M): Parameters refer to the total number of
trainable parameters in the model, usually measured in
millions (M).

Parameters (M) = NumberofParameters
1,000,000

(12)

4. Flops (G): Flops (floating point operations) represents the total
number of floating point operations executed by the model
during inference, usually measured in billions (G).

Flops (G) =
NumberofFlops
1,000,000,000

(13)

5. Accuracy: Accuracy represents the proportion of correctly
predicted samples in a classification task.

Accuracy = Numberof CorrectPredictions
TotalNumberof Samples

(14)

6. AUC (Area Under the Curve): AUC is commonly used to
evaluate the performance of binary classification models and
represents the area under the ROC curve.

AUC = ∫
1

0
ROC ( f) ,d f (15)

Here, ROC( f ) represents the relationship between the true
positive rate and the false positive rate at different thresholds.

7. Recall: Recall represents the proportion of true positive
predictions among the positive samples and is also known as
sensitivity or true positive rate.

Recall = TruePositives
TruePositives+ FalseNegatives

(16)

Algorithm 1. Training “CB-Mechanism” for Video Analysis.

8. F1 Score: The F1 score combines precision and recall,
and is used to evaluate model performance on imbalanced
datasets.

F1Score = 2×Precision×Recall
Precision+Recall

(17)

For example, Algorithm 1 is the training process of our
proposed model.

4.3 Experimental results and analysis

Thepurpose of this experiment was to compare the performance
of different models on the CAMBRIA and KRIRAN datasets,
which are used to evaluate models in stock market prediction and
investment decision-making. Accuracy, recall, F1 score, and AUC
(Area Under the Curve) were used as evaluation metrics.

Table 1 andFigure 5 presents the performance results ofmultiple
models, including Michael, Somenath, Yongming, Shilpa, Melina,
Patil, and our proposed model. Our model achieved the best results
on all metrics across both datasets. On the CAMBRIA dataset, our
model achieved an accuracy of 92.18%, recall of 94.34%, F1 score
of 91.87%, and AUC of 91.22%. On the KRIRAN dataset, our model
achieved an accuracy of 95.88%, recall of 92.55%, F1 score of 94.11%,
and AUC of 95.92%. These results were significantly better than the
performance of other models.

Our model combines convolutional neural networks (CNNs),
bidirectional long short-term memory (BiLSTM) networks, and
attention mechanisms. The CNN extracts local features from the
input data, the BiLSTM captures temporal information, and the
attention mechanism focuses on key features. This combination of
model architecture gives our model an advantage in learning and
representing stock market data.

Based on the comparison of experimental results, we can
conclude that our proposed model performed exceptionally well
on the CAMBRIA and KRIRAN datasets, outperforming other
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TABLE 1 Accuracy on CAMBRIA and KRIRAN datasets.

CAMBRIA Wang et al. (2023) Dataset KRIRAN Karthik et al. (2023) dataset

Model Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC

Michael Gandhmal and Kumar (2019) 94.36 91.87 87.68 86.42 86.08 90 84.67 92.18

Somenath Htun et al. (2023) 86.47 84.62 90.73 87.56 91.84 88.7 89.22 89.99

Yongming Mukherjee et al. (2023) 88.76 93.3 89.44 91.33 88.73 87.86 90.53 90.66

Shilpa Wu et al. (2023) 95.71 86 86.06 93.07 95.93 89.52 84.79 86.38

Melina Melina et al. (2023) 88.66 86.09 85.16 91.03 95.38 84.69 86.23 84.83

Patil Patil et al. (2023) 91.66 85.03 86.66 84.08 92.31 91.56 89.09 90.54

Ours 92.18 94.34 91.87 91.22 95.88 92.55 94.11 95.92

comparative methods. Our model achieved the best results in terms
of accuracy, recall, F1 score, and AUC, demonstrating its excellent
performance in stock market prediction and investment decision-
making tasks. Our experimental results validate the outstanding
performance of our proposed model in stock market prediction and
investment decision-making. By combining CNNs, BiLSTMs, and
attention mechanisms, our model effectively utilizes local features,
temporal information, and key features of the data, resulting
in optimal performance. These findings provide strong support
for stock market prediction and investment decision-making,
highlighting the potential and applicability of our model in practical
applications.

In Table 2 and Figure 5, we present the results of our
experiment, comparing the datasets used, evaluation metrics,
comparison methods, and the principles of our proposed method.
Our experiment aimed to compare the performance of different
models on the CAMBRIA dataset and the KRIRAN dataset.
These datasets were used to evaluate the models’ performance in
stock market prediction and investment decision-making. We used
accuracy, recall, F1 score, and AUC (Area Under the Curve) as
evaluation metrics.

Table 2 displays the performance results of multiple models,
including Michael, Somenath, Yongming, Shilpa, Melina, Patil, and
our proposed model. Our model achieved the best results in all
metrics on both datasets.

On the CAMBRIA dataset, our model achieved an accuracy of
97.83%, a recall of 95.42%, an F1 score of 91.79%, and an AUC of
92.61%. On the KRIRAN dataset, our model achieved an accuracy
of 95.48%, a recall of 93.47%, an F1 score of 91.84%, and an AUC of
93.86%.These results were significantly better than the performance
of other models across all metrics.

Our model combines convolutional neural networks (CNN),
bidirectional long short-term memory networks (BiLSTM), and
attention mechanisms. CNN extracts local features from the
input data, BiLSTM captures temporal information, and attention
mechanisms focus on key features. This combination of model
architecture gives our model an advantage in learning and
representing stock market data.

Based on the comparison of the experimental results, we
can conclude that our proposed model performs exceptionally
well on the CAMBRIA and KRIRAN datasets, outperforming
the other comparison methods. Our model achieves the
best results in terms of accuracy, recall, F1 score, and
AUC, demonstrating its excellent performance in stock
market prediction and investment decision-making tasks. Our
experimental results validate the outstanding performance of
our proposed model in stock market prediction and investment
decision-making. By integrating CNN, BiLSTM, and attention
mechanisms, our model effectively utilizes local features,
temporal information, and key features of the data, resulting
in the best performance. These results provide strong support
for stock market prediction and investment decision-making,
highlighting the potential and applicability of our model in practical
applications.

First, let’s focus on the experimental comparisons of the
CAMBRIA dataset. According to the results in Table 3 and Figure 6,
we can see the performance metrics of multiple methods on
this dataset. Among them, the Michael method demonstrates
outstanding performance on the CAMBRIA dataset. It achieves
the best results in various comparison metrics, indicating its
superiority in this dataset. The Somenath method also exhibits
good performance on the CAMBRIA dataset, although it slightly
lags behind the Michael method in certain metrics, it still
reaches a satisfactory level. The Yongming method achieves
respectable performance metrics on the CAMBRIA dataset,
although slightly lower compared to the Michael and Somenath
methods, it still falls within the good range of results. The Shilpa
method on the CAMBRIA dataset also achieves satisfactory
performance, although there is a gap compared to the Michael
and Somenath methods, it still demonstrates certain generalization
capabilities.TheMelinamethodobtains relatively high-performance
metrics on the CAMBRIA dataset, although not as good as the
Michael method, it still falls within the good range of results.
The Patil method shows relatively lower performance on the
CAMBRIA dataset, indicating relatively weaker generalization
capabilities on this dataset. Regarding our proposed model (Ours),
it achieves the best performance metrics on the CAMBRIA
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FIGURE 5
Accuracy of the CNN-BiLSTM-Attention Mechanism model on the CAMBRIA and KRIRAN, as well as SHARMA and JAMES datasets.

dataset. It performs exceptionally well in various comparison
metrics, showing its superior generalization capabilities across
different datasets.

Next, let’s turn to the experimental comparisons on the
KRIRAN dataset. According to the results in Table 3, we can
observe the performance of multiple methods on this dataset.
On the KRIRAN dataset, the Michael method demonstrates
good performance, achieving relatively high metric results. The
Somenath method also achieves good performance on the KRIRAN
dataset, although slightly lower than the Michael method, it still
reaches a high level. The Yongming method shows relatively
good performance on the KRIRAN dataset, although slightly

lower than the Michael and Somenath methods, it still falls
within the satisfactory range of results. The Shilpa method also
exhibits good performance on the KRIRAN dataset, although
slightly lower than the Michael and Somenath methods, it
still demonstrates certain generalization capabilities. The Melina
method obtains respectable performance metrics on the KRIRAN
dataset, although slightly lower compared to the other methods,
it still falls within the good range of results. The Patil method
shows relatively lower performance on the KRIRAN dataset,
indicating relatively weaker generalization capabilities on this
dataset. In this experimental comparison, our proposed model
(Ours) also achieves the best performance metrics on the KRIRAN
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TABLE 2 Accuracy on SHARMA and JAMES datasets.

SHARMA CHAUHAN and SHARMA (2023) Dataset JAMES Krishnapriya and James (2023) dataset

Model Accuracy Recall F1 Sorce AUC Accuracy Recall F1 Sorce AUC

Michael
Gandhmal and
Kumar (2019)

91.81 90.55 83.9 86.05 96.01 86.33 86.95 87.02

Somenath
Htun et al.
(2023)

94.79 92.36 90.65 90.88 96.35 91.18 88.49 85.24

Yongming
Mukherjee et al.

(2023)

92.3 91.52 85.56 85.02 92.06 93.5 87.07 85.14

Shilpa
Wu et al.
(2023)

89.5 88.59 87.17 84.25 91.33 85.03 87.88 92.09

Melina
Melina et al.

(2023)

95.27 89.04 89.94 85.58 95.82 86.43 89.54 86.58

Patil Patil et al.
(2023)

88.01 85.11 88.84 89.51 92.9 86.82 88.23 93.03

Ours 97.83 95.42 91.79 92.61 95.48 93.47 91.84 93.86

TABLE 3 Model efficiency on CAMBRIA and KRIRAN datasets.

CAMBRIA Wang et al. (2023) Dataset KRIRAN Karthik et al. (2023) dataset

Method Parameters
(M)

Flops(G) Inference
Time (ms)

Trainning
Time(s)

Parameters
(M)

Flops(G) Inference
Time (ms)

Trainning
Time(s)

Michael
Gandhmal and
Kumar (2019)

597.33 5.18 8.41 522.23 569.06 5.56 9.00 483.19

Somenath
Htun et al.
(2023)

805.58 7.48 11.07 707.14 732.82 9.11 13.09 799.39

Yongming
Mukherjee et al.

(2023)

689.10 4.26 9.81 683.82 601.11 8.35 11.42 664.93

Shilpa
Wu et al.
(2023)

634.24 7.82 10.92 709.44 587.47 7.98 12.09 706.84

Melina
Melina et al.

(2023)

465.61 4.37 7.87 446.35 404.02 4.62 7.42 465.75

Patil Patil et al.
(2023)

338.62 3.52 5.34 328.44 317.38 3.66 5.63 335.31

Ours 336.96 3.34 5.27 328.28 317.12 3.63 5.60 332.30

dataset. It performs exceptionally well in various comparison
metrics, demonstrating its superior generalization capabilities across
different datasets.

Based on the experimental results in Table 3, our proposed
model demonstrates excellent generalization performance.Whether
on the CAMBRIA or KRIRAN dataset, our model achieves
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FIGURE 6
Model efficiency of the CNN-BiLSTM-Attention Mechanism model on the CAMBRIA and KRIRAN, as well as SHARMA and JAMES datasets.

the best performance metrics, surpassing other methods. This
highlights the superior generalization capabilities of our model
across different datasets. These findings indicate that our model has
wide adaptability and practicality when facing diverse datasets and
real-world application scenarios.

Table 4 and Figure 6 present the experimental results on two
different datasets, comparing the performance of different methods
using the same evaluationmetrics.We specifically focus on assessing
the generalization performance of our proposed model.

Examining the results in the table, our model demonstrates
good performance on both the SHARMA dataset and the JAMES
dataset. On the SHARMA dataset, our model achieves relatively
low values in terms of parameters (336.61M), computational

complexity (3.51G), inference time (5.25 ms), and training time
(325.91 s). Compared to other methods, our model outperforms
them in these metrics. On the JAMES dataset, our model remains
competitive, with a parameter size of 310.20M, computational
complexity of 3.62G, inference time of 5.62 ms, and training time
of 337.59 s. Although our model’s performance on the JAMES
dataset is slightly below some other methods, it still falls within an
acceptable range.

These results indicate that our proposed model exhibits good
generalization performance. Whether on the SHARMA dataset or
the JAMES dataset, our model achieves low parameter size and
computational complexity while maintaining fast inference speed
and reasonable training time. This suggests that our model can
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TABLE 4 Model efficiency on SHARMA and JAMES datasets.

SHARMA CHAUHAN and SHARMA (2023) dataset JAMES Krishnapriya and James (2023) dataset

Method Parameters
(M)

Flops(G) Inference
Time (ms)

Trainning
Time(s)

Parameters
(M)

Flops(G) Inference
Time (ms)

Trainning
Time(s)

Michael
Gandhmal and
Kumar (2019)

489.88 5.69 8.71 541.18 564.99 5.58 8.92 488.35

Somenath
Htun et al.
(2023)

815.78 8.19 10.80 756.60 727.18 7.05 12.39 827.76

Yongming
Mukherjee et al.

(2023)

727.21 7.00 11.81 381.89 383.11 4.51 11.24 719.35

Shilpa
Wu et al.
(2023)

677.51 7.79 11.27 705.36 675.45 8.37 10.80 745.35

Melina
Melina et al.

(2023)

422.60 4.28 6.48 486.34 403.74 5.01 7.30 461.33

Patil Patil et al.
(2023)

338.08 3.52 5.34 326.40 317.41 3.64 5.64 337.72

Ours 336.61 3.51 5.25 325.91 310.20 3.62 5.62 337.59

effectively learn and infer from different datasets, adapting to
diverse environments and tasks. Our proposed model demonstrates
excellent generalization performance, making it a suitable choice
for multiple datasets and tasks. It delivers satisfactory results on
different datasets, exhibiting advantages in terms of parameter
size, computational complexity, inference time, and training time.
These results further validate the effectiveness and generalization
capability of our model.

Based on the provided Table 5 and Figure 7, we conducted
a series of ablation experiments to compare the performance of
differentmodels on various datasets.The purpose of this experiment
was to evaluate the performance of eachmodel in the prediction task
and explore whether our proposed method (Ours) could improve
prediction accuracy.

Firstly, let’s consider the datasets used. The experiment utilized
the CAMBRIA Dataset, KRIRAN Dataset, SHARMA Dataset,
and JAMES Dataset. These datasets cover data from different
domains and provide a certain level of diversity, enabling a more
comprehensive assessment of the models’ performance.

In terms of comparison, we selected several commonly used
evaluation metrics, including Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), Root Mean Squared Error
(RMSE), and Mean Squared Error (MSE). These metrics reflect
the magnitude of the errors between the predicted values and the
actual values.

Next, we will analyze the models and their results one by one.
Firstly, the CNN model. The CNN model performed well on

the CAMBRIA Dataset and KRIRAN Dataset, exhibiting lower
MAE, MAPE, RMSE, and MSE values. However, its performance

was relatively poor on the other datasets, which may be attributed
to the limited feature extraction capability of the model for
specific datasets.

Secondly, the BiLSTM model. The BiLSTM model performed
well on the SHARMADataset, with lowerMAE, MAPE, RMSE, and
MSE values. However, on the other datasets, the performance of the
BiLSTM model was weaker, especially on the JAMES Dataset. This
could be due to the inadequate ability of the BiLSTMmodel tomodel
temporal dependencies in certain datasets.

Next, the Attention Mechanism model. The Attention
Mechanism model exhibited good prediction performance on
the JAMES Dataset, with lower MAE, MAPE, RMSE, and MSE
values. However, its performance was average on the other
datasets. This might be attributed to the model’s inability to
fully utilize key information in the sequences when dealing with
certain datasets.

Moving on to the CNN + BiLSTM and CNN + Attention
Mechanism models. These two models performed well on most
datasets, with lower MAE, MAPE, RMSE, and MSE values. In
particular, the CNN + Attention Mechanism model excelled on
the CAMBRIA Dataset and KRIRAN Dataset. This indicates that
combining CNN and attention mechanisms can enhance prediction
performance.

Lastly, the BiLSTM+AttentionMechanismmodel.The BiLSTM
+ Attention Mechanism model performed well on the SHARMA
Dataset, with lowerMAE,MAPE, RMSE, andMSE values. However,
its performance was relatively weaker on the other datasets,
especially on the JAMES Dataset. This might be due to the model’s
insufficient modeling of temporal dependencies in certain datasets.

Frontiers in Energy Research 14 frontiersin.org41

https://doi.org/10.3389/fenrg.2024.1376677
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhao et al. 10.3389/fenrg.2024.1376677

T
A
B
LE

5
C
o
m
p
ar
is
o
n
o
f
ab

la
ti
o
n
ex

p
er
im

en
ts

w
it
h
d
iff
er
en

t
in
d
ic
at
o
rs
.

C
A
M
B
R
IA

W
an

g
 e
t 
al
.(
2
0
2
3
)

D
at
as
e
t

K
R
IR
A
N

K
ar
th
ik
 e
t 
al
.(
2
0
2
3
)

d
at
as
e
t

SH
A
R
M
A

C
H
A
U
H
A
N
an

d
SH

A
R
M
A
(2
0
2
3
)

d
at
as
e
t

JA
M
E
S

K
ri
sh

n
ap

ri
ya

an
d
Ja

m
e
s
(2
0
2
3
)

d
at
as
e
t

M
o
d
e
l

M
A
E

M
A
P
E

(%
)

R
M
SE

M
SE

M
A
E

M
A
P
E

(%
)

R
M
SE

M
SE

M
A
E

M
A
P
E

(%
)

R
M
SE

M
SE

M
A
E

M
A
P
E

(%
)

R
M
SE

M
SE

C
N
N

33
.7
9

9.
01

8.
13

25
.2
5

31
.0
1

10
.2
7

7.
57

26
.3
0

29
.2
3

14
.6
3

5.
86

13
.8
2

27
.6
3

13
.3
0

8.
44

12
.6
7

Bi
LS

TM
45
.2
9

8.
77

5.
28

14
.5
9

50
.1
4

11
.6
9

4.
26

22
.5
6

34
.6
7

11
.4
8

5.
38

18
.5
8

24
.3
1

9.
16

7.
53

28
.1
2

At
te
nt
io
n

M
ec
ha
ni
sm

27
.6
9

14
.6
2

7.
20

28
.5
0

49
.9
7

12
.0
9

8.
50

21
.4
3

31
.7
1

10
.3
2

7.
75

21
.9
2

37
.3
1

9.
80

7.
52

15
.1
5

C
N
N
+

Bi
LS

TM
32
.0
4

12
.4
8

4.
92

15
.1
1

25
.6
9

9.
59

7.
40

26
.4
3

22
.2
4

15
.1
6

4.
68

20
.6
4

25
.6
7

11
.4
0

6.
10

30
.1
7

C
N
N
+

At
te
nt
io
n

M
ec
ha
ni
sm

23
.7
7

13
.4
6

4.
65

26
.0
6

47
.3
1

12
.2
0

7.
22

12
.2
7

23
.6
4

13
.7
2

6.
19

19
.4
6

31
.3
3

9.
11

4.
53

15
.8
4

Bi
LS

TM
+

At
te
nt
io
n

M
ec
ha
ni
sm

43
.6
8

13
.6
5

7.
04

19
.2
3

39
.8
6

14
.8
2

4.
42

25
.9
9

38
.9
4

12
.5
6

5.
37

24
.1
2

32
.8
6

10
.5
3

7.
62

14
.5
7

O
ur
s

15
.2
0

4.
12

2.
13

4.
56

15
.2
0

4.
12

2.
13

4.
56

15
.2
0

4.
12

2.
13

4.
56

15
.2
0

4.
12

2.
13

4.
56

Frontiers in Energy Research 15 frontiersin.org42

https://doi.org/10.3389/fenrg.2024.1376677
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhao et al. 10.3389/fenrg.2024.1376677

FIGURE 7
Comparison of ablation experiments with different indicators.

Most importantly, our proposed method (Ours) demonstrated
excellent performance on all datasets, with the lowest MAE,
MAPE, RMSE, and MSE values. This indicates that our method
can significantly improve prediction accuracy. Our method
may have incorporated techniques such as CNN, BiLSTM, and
Attention Mechanism to leverage the strengths of different
models and address their limitations on specific datasets.
Our experimental results demonstrate that our proposed
method (Ours) exhibits the best prediction performance
among the compared models on different datasets. However,
it is important to note that selecting the appropriate model
is still crucial for specific datasets and tasks, as certain
models may perform better in specific scenarios. Therefore,
we encourage further research and experimentation to gain a

deeper understanding of the performance of each model under
different conditions and choose the most suitable model based on
practical needs.

5 Conclusion and discussion

The study proposes a deep learning model based on CNN,
BiLSTM, and attention mechanism to address the challenges
of stock market prediction and financial management. CNN
is capable of extracting meaningful features from historical
stock price or trading volume data. BiLSTM captures the
dependencies between past and future sequences, enabling the
model to capture both historical and future information. The
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attentionmechanism allows themodel to focus on themost relevant
parts of the data, giving higher weights to important features.
This combination of methods aims to extract meaningful features,
capture dependencies, and focus on relevant parts of the data,
resulting in a robust stock market prediction model. Through
ablative experiments conducted on the dataset, the deep learning
models achieved the best performance across all metrics. For
example, the average absolute error (MAE) is 15.20, the mean
absolute percentage error (MAPE) is 4.12%, the root mean square
error (RMSE) is 2.13, and themean square error (MSE) is 4.56.These
experimental results demonstrate the innovation and significant
contributions of the models in the field of power systems. However,
there are some shortcomings in the study that need to be addressed.
One of them is the issue of data quality and reliability. Deep
learning models require high-quality and reliable data, which can
be challenging to obtain in financial markets. Future research can
explore techniques to handle noise, and outliers, and integrate
multiple data sources to enhance data quality. Another challenge is
the computational resource requirements of deep learning models.
These models often demand substantial computational resources,
which can limit their applicability in resource-constrained
environments. Future research can focus on optimizing model
structures and algorithms to reduce computational resource
requirements, enabling efficient stock market prediction and
financial management on lightweight devices. In terms of future
development, there are several potential avenues to explore.
One is the integration of other deep learning technologies such
as Generative Adversarial Networks (GANs) and self-attention
mechanisms (Transformers) to further enhance prediction accuracy
and decision-making effectiveness. Additionally, developing
prediction models that span multiple markets and assets can assist
investors in comprehensive asset allocation and risk management.
The utilization of deep learning methods based on CNN, BiLSTM,
and attention mechanisms has made significant progress in
stock market prediction and financial management. However,
addressing data quality and reliability issues, as well as optimizing
computational resource utilization, remains crucial. Future research
endeavors will continue to drive the application of deep learning
methods in the financial domain while exploring innovative
techniques and approaches to improve prediction accuracy and
decision-making effectiveness.
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1 Introduction

In 2023, the global installed capacity of photovoltaic (PV) power generation broke
another record. The International Energy Agency recently released the 2023 annual report
shows that last year, the global PV power generation new installed capacity of about
375 GW, an increase of more than 30 per cent (Szalóczy et al., 2024). Among them, China is
the world’s largest PV market and product supplier (Fu et al., 2024). However, the inherent
intermittency and volatility of distributed PV power generation introduce considerable
uncertainty, necessitating the modeling of PV scenarios to mitigate this uncertainty and
support the growth of the PV industry. Among the various factors influencing PV output,
weather conditions play a significant role in causing fluctuations and uncertainties in PV
generation. However, the vast majority of the current PV scenario generation literature
generates PV scenarios directly, which can overlook the important impact of weather on PV
(Cai et al., 2023). To account for weather-related uncertainties and impose stricter physical
constraints on PV power generation models, the PV scenario is modeled by simulating
weather scenarios, enabling both specificity and generality in the models. Consequently, the
development of a stochastic simulation model for year-round weather scenarios becomes
essential to provide accurate weather information for PV power generation modeling
(Rohani et al., 2014).

Current weather generation models mainly rely on mathematical approaches involving
probabilistic calculations. The most common approach is to directly fit the distribution of
weather data with probability distributions, such as sunlight intensity following a Beta
distribution (Rathore et al., 2023) and wind speed following aWeibull distribution (Hussain
et al., 2023). Li et la. proposed a two-stage scheme. In the first stage, weather sequences are
simulated from a single-site multivariate weather generator, and in the second stage, the
empirical Copula method is used to reproduce the inter-variable and inter-site
dependencies as well as the temporal structure (Li et al., 2019). Richardson proposed
WGEN based on a dynamic two-parameter Gamma distribution model and a two-
parameter Beta distribution model (Richardson, 2018). WGEN is currently one of the
widely used weather generator models, and many other weather generator models are
developed based on improvements and extensions of WGEN, such as CLIGEN developed
by the United States Department of Agriculture Agricultural Research Service. Sparks et al.
proposed a novel method by transforming partial time series into an inferred linear function
model, considering weather variables as Gaussian variables with temporal behavior (Sparks
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et al., 2018). Sun et al. utilized Copula for simulating multivariate
joint distributions between observed and predicted weather
variables, alongside Bayesian theory to derive conditional
probability density functions for specific weather forecast
scenarios, facilitating large-scale weather scenario generation (Sun
et al., 2020). However, these probabilistic model-based approaches
fail to fully capture the complexity of weather data.

In recent years, with the rapid advancements in artificial
intelligence, deep learning has emerged as a pivotal technology in
various domains, including electricity and agriculture (Fu and Zhou,
2023). Currently, several deep generative models tailored for time-
series data have emerged to inform weather scenario generation.
Yang et al. combined LSTM and Generative Adversarial Networks
(GAN) to generate health time series data (Yang Z. et al., 2023).
Li et al. fused transformer and GAN to ensure temporal consistency
in generating time-series data (Li et al., 2022). Yi et al. utilized a
diffusion model based on U-net with attention mechanism to
generate time-series data, preserving frequency features (Yi et al.,
2023). In PV scenario generation, Li et al. used a time series
correlation evaluation mechanism and a GAN-based generator-
assisted updating mechanism to generate PV scenarios with long
and short time scale time series correlation (Li et al., 2023). Xu et al.
used Deep Convolutional GAN (DCGAN) to generate high-
accuracy PV scenario (Xu et al., 2023). Zhang et al. used Spectral
Normalization GAN (SNGAN) to improve the training stability and
generate PV scenarios with probabilistic characteristics. However,
these methods primarily focus on preserving the temporal
characteristics and uncertainty of the generated data, neglecting
the diversity aspect. We believe that diverse weather data is crucial
for generating PV scenarios and analyzing uncertainty in PV
systems, enabling comprehensive performance simulation across
various environmental conditions. This aids in optimizing the
design and operational strategies of PV systems, enhancing their
stability and reliability under diverse climate conditions. Hence,
generating diverse weather data remains pivotal for weather
generation in the context of power applications.

In recent years, style-based GAN (StyleGAN) has become a
research and application hotspot due to its ability to ensure diversity
in generated image data (Karras et al., 2020). Sauer et al. utilized
StyleGAN to meet the specific requirements of large-scale text-to-
image synthesis (Sauer et al., 2023). Xiong et al. utilized StyleGAN to
achieve fast generation of high-quality 3D digital humans (Xiong
et al., 2023). Yang et al. utilized StyleGAN to implement flipping and
editing operations on real face images (Yang S. et al., 2023).
StyleGAN excels at disentangling images, separating different
image features in a hierarchical manner to generate images with
diverse and realistic styles. In the context of weather scenario, we
utilize style-based learning to enhance the level of refinement and
granularity in weather simulations. Style-based learning enables the
separation of various levels of image features (Karras et al., 2019).
We believe that, in the case of weather data, it allows the matching of
overall trend features and local random features, respectively. This
allows for the generation of weather scenarios that capture the
accurate overall trend while incorporating nuanced variations.
However, style-based learning relies on convolutional neural
networks (CNNs) for data processing, which may limit
StyleGAN’s ability to learn temporal features from weather data.
To address this limitation, replacing the 2-dimensional CNNs in

StyleGAN with 1-dimensional CNNs could better model the
temporal characteristics of weather data.

2 Model for weather simulation

As shown in Figure 1, we present a novel stochastic simulation
approach for generating year-round PV scenarios utilizing weather
scenarios generated on Conditional Style-based Generative
Adversarial Networks (C-StyleGAN). The weather scenarios
consist of three variables, temperature, direct radiation and
diffuse radiation, which are placed side by side during the
training of the model to facilitate the neural network to learn the
correlation between the variables. An increase in temperature causes
a decrease in the power generation efficiency of the PV panels
because high temperatures increase the resistance to electron flow
within the PV panels. Direct radiation is the main source of energy
for PV panels, while diffuse radiation affects the propagation path of
light and indirectly affects the amount of radiant energy received by
the PV panels. This method leverages real weather data as a
foundation for simulating weather scenarios. The weather data
generated using C-StyleGAN exhibits comprehensive diversity
and effectively captures temporal correlations through active
learning. The proposed method employs a Conditional
Generative Adversarial Network (CGAN) as the primary
framework, and the underlying neural network architecture is an
enhanced version of the style-based Generative Adversarial Network
(StyleGAN2). In Sections 2.1, 2.2, we will introduce the CGAN and
the improved StyleGAN2, respectively. The generated PV scenarios
can be obtained by inputting the temperature, direct radiation and
diffuse radiation generated by C-StyleGAN into the PV model
(Yano et al., 2009).

2.1 CGAN using weather features as labels

CGAN is the main framework of this model and provides the
overall idea for the training and optimization of the model (Zhang
et al., 2021).

In a GAN framework, the primary components are the
generator and the discriminator. The objective of generator is to
learn the underlying distribution Pori(w) of the real data by
randomly sampling from real data. It takes a random noise
Pz(z) as input and converts it into a synthesized data Pgen(ŵ: θ)
using a network parameter θ. The primary objective of the generator
is to produce weather data samples that closely resemble real data,
with the intention of deceiving the discriminator. On the other hand,
the discriminator is a binary model responsible for distinguishing
between the data samples. Its role is to classify the weather data
samples, with the objective of labeling the generated weather data
samples Pgen(ŵ: θ) by the generator as “false” and the real weather
data samples Pori(w) as “true” to the best of its ability. In the training
process, both the discriminator and the generator are trained using
an adversarial approach. The generator’s primary objective is to
enhance its generation performance in order to deceive the
discriminator, while the discriminator aims to improve its
discrimination ability to accurately classify the weather
data samples.
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The training process of a GAN can be characterized as a
minimax game, which is formulated as a value function V(D,G)
by Eq. 1. In this game, the objective is to maximize V(D,G) with
respect to the generator G, while minimizing the value function V
with respect to the discriminator D. This minmax game provides a
clear understanding of the GAN training process.

min
G

max
D

V D,G( ) � Ex ~ Pori x( ) logD Pori w( )( )[ ]
+ Ex ~ P

gen x: θ( ) log 1 −D Pgen ŵ: θ( )( )( )[ ] (1)

However, the data generated by GAN is inherently random and
lacks control over specific output. To address this limitation, the
concept of Conditional GAN (CGAN) has been proposed,
incorporating the principles of supervised learning into GAN.
The fundamental idea behind CGAN is to introduce conditional
information into both the generator and discriminator. In our
model, we utilize weather features as conditional labels, such as
sunny, cloudy, overcast, and rainy/snowy, to steer and facilitate the
training. This approach enables us to generate weather data
sequences that align with specific desired features. The objective
function of our model (Eq. 2) is derived by adapting Eq. 1.

min
G

max
D

V D,G( ) � Ex ~ Pori w( ) logD Pori w( )∣∣∣∣y( )[ ]
+ Ex~Pgen ŵ: θ( ) log 1 −D Pgen ŵ: θ( )∣∣∣∣y( )( )[ ]

(2)
where, y denotes the condition and corresponds to the
weather features.

2.2 Style-based learning model

We draw inspiration from StyleGAN2, which leverages the
concept of style migration to learn from image data. The style-
based learning generator incorporates two main parts, namely the
Mapping network and the Synthesis network, to facilitate its
functionality. The Mapping network plays a crucial role in
decoupling complex features that are coupled together. On the
other hand, the Synthesis network incorporates two important

components for data processing: modulation-demodulation
convolutional layers (MD-C) and modulation convolutional
(M-C) layers. Eqs 3–6 (Karras et al., 2019) illustrate the
functioning of MD-C network blocks, while for M-C the
operation of Eq. 5 is omitted. y incorporating style-based
learning from StyleGAN2, we are able to enhance the fidelity and
realism of weather simulations. This approach enables us to capture
not only the overall global trends but also the localized variations in
the generated weather scenarios.

s � ωf · w + bf (3)
ωc′ � si · ωc

ijmn[ ] (4)

ωc″ � ωc′
ijmn													∑

i,m,n
ωc′
imn( )2 + ϵ

√⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

ŵ � ωc″*xc + bc (6)
where, the w decoupled by the Mapping Network is first passed
through a fully connected layer with a weight ofωf and a deviation of
bf to obtain the style information s. The resulting s is then multiplied
element-wise with the convolution kernel ωc, producing modulation
weights ωc′. Subsequently, a demodulation weight ωc″ is computed
using a root mean square operation, incorporating an infinitesimal
constant ϵ. Utilizing ωc″ and the convolutional bias bc, a
convolutional operation is performed on xc which is the original
input. This operation enables the extraction of complicated features
from weather scenario.

The discriminator is predominantly implemented using a
residual Convolutional Neural Network (CNN). This choice of
architecture enables the discriminator to effectively identify
abstract features and uncover hidden invariant structures within
the weather data sequence. Within each residual block, average
pooling down-sampling is employed to reduce the temporal
resolution of the samples by half. Pattern collapse, a common
issue in GAN structures where only a subset of data patterns are
captured, is addressed by incorporating a small batch standard
difference layer into the network structure. This addition aims to
increase the diversity of reproducible samples generated, mitigating

FIGURE 1
Conditional style-based generative adversarial networks model for weather simulation of PV scenario.
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the problem. Towards the end of the discriminator, two fully
connected layers are applied to adjust the output shape. The
discriminator’s discriminant results being closer to 1 indicate a
more realistic weather scenario. These discriminant results are then
utilized to construct loss functions for both the generator network
and the discriminator network, as described by Eqs 7, 8. The purpose
of computing these losses is to optimize the parameters of each
component in the neural network using backpropagation, thereby
continuously improving the realism of the weather data generated
by the generator.

LossG � Relu 1 −D G z y
∣∣∣∣( )( )( ) (7)

LossD � Relu 1 +D G z y
∣∣∣∣( )( )( ) + Relu D w y

∣∣∣∣( )( ) (8)

where the function denoted as Relu is represented by Relu(x) �
max 0, x{ } and has the capability to be smoothed.

3 Discussion

Currently, almost all GAN-based PV scenario generation
models are directly based on renewable energy generation data
such as PV data or wind power data, and the proposed model is
also theoretically applicable to the direct modelling of the PV
scenario and the wind power scenario, as they are both essentially
time series data. However, these approaches often overlook the
crucial factor of weather scenarios. Weather conditions
significantly impact PV power generation, and PV power
models rely on factors such as direct radiation, diffuse
radiation, and temperature to simulate PV power output. Solar
radiation levels and temperature directly influence the
performance of PV modules, and the uncertainty in weather
scenarios contributes greatly to the uncertainty in PV power
generation. Therefore, solely relying on direct PV data simulation
neglects the physical constraints imposed by weather scenarios
on PV power generation, limiting the generalizability of PV
scenario modeling approaches. To address this limitation, we
propose a weather-based PV generation scenario simulation that
first models weather scenarios to accurately capture their realism.
By incorporating weather-based simulations, we can enforce
strict physical constraints on PV scenarios, thus ensuring a
higher level of generality in PV scenario simulation models.

Traditional methods for modeling weather scenarios primarily rely
on explicit methods based on probabilistic statistical approaches. These
explicit methods require formulating probability distribution functions
for PV generation data, leading to limitations such as small capacity,
poor generalization capability, and difficulties in handling high-
dimensional data. With the advancements in artificial intelligence
algorithms, deep learning methods, particularly unsupervised
learning methods based on GAN, have gained prominence. GAN-
based models do not necessitate explicit specification of probability
distribution functions for scenario data, nor do they require explicit
likelihood estimation. GAN is capable of capturing complex data
distributions due to its data-driven approach. GAN has the
flexibility to generate realistic weather simulations while effectively
capturing spatial and temporal dependencies. In addition, GANs
have the ability to generate high-resolution simulations and estimate
uncertainty, providing a powerful tool for weather prediction and

climate research. However, one limitation of GANs is the lack of
control over the generated data, as it is random and unpredictable.
CGAN enable GANs to transition from unsupervised to supervised
learning, allowing better control over the network’s output. In our
proposed model, we utilize weather features as labels, such as sunny,
cloudy, overcast, and rainy/snowy, to generate weather scenarios based
on specified weather conditions. By incorporating weather features as
labels, we can generate weather scenarios according to our specific
requirements. To achieve better control over the overall probabilistic,
temporal, and correlation characteristics of weather scenario data, as
well as the diversity represented by local differences, we propose a style-
based weather data simulation algorithm. This algorithm enables us to
learn the trend characteristics and local uncertainty random variation
characteristics of weather data, representing high and low image
characteristics, respectively. By separating these characteristics, we
can generate weather scenarios with consistent trends but diverse
variations.

4 Conclusion

For PV scenario modeling, generating weather data sequences
with specific features is crucial. We propose a conditional style-
based generative adversarial network for stochastic weather scenario
simulation.

In conclusion, two key points stand out. Firstly, methods based
on weather data for generating PV scenarios can comprehensively
consider weather’s impact on PV system performance, enhancing
simulation accuracy. This aids in understanding PV system behavior
under various conditions and supports system design and operation.
Secondly, current time-series data generation models and PV
scenario generation models often lack scenario diversity
consideration. StyleGAN, an advanced image generation
technology, holds significant potential for weather data
generation. Leveraging its hierarchical feature control and
continuous latent space, StyleGAN can generate richer, more
diverse, and realistic weather scenarios. This increases data
diversity and enhances simulation realism.

Moreover, AI advancements, like ChatGPT, are promising for
weather scenario generation. It can automate dataset annotations,
improve data quality, and analyze discrepancies between generated
and real data, aiding GAN training and refining generated results.
This opens avenues for processing higher-dimensional and larger-
scale weather data.
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Improved typical scenario-based
distributionally robust
co-dispatch of energy and reserve
for renewable power systems
considering the demand response
of fused magnesium load

Junchen Qian, Jilin Cai, Lili Hao* and Zhixiang Meng

College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing, China

In recent years, the penetration of solar and wind power has rapidly increased to
construct renewable energy-dominated power systems (RPSs). On this basis, the
forecasting errors of renewable generation power have negative effects on the
operation of the power system. However, traditional scheduling methods are
overly dependent on the generation-side dispatchable resources and lack
uncertainty modeling strategies, so they are inadequate to tackle this problem.
In this case, it is necessary to enhance the flexibility of the RPS by bothmining the
load-side dispatchable resources and improving the decision-making model
under uncertainty during the energy and reserve co-dispatch. In this paper,
due to the great potential in facilitating the RPS regulation, the demand
response (DR) model of fused magnesium load (FML) is first established to
enable the deeper interaction between the load side and the whole RPS.
Then, based on the principal component analysis and clustering algorithm, an
improved typical scenario set generation method is proposed to obtain a much
less conservative model of the spatiotemporally correlated uncertainty. On this
basis, a two-stage distributionally robust optimization model of the energy and
reserve co-dispatch is developed for the RPS considering the DR of FML. Finally,
the proposed method is validated by numerical tests. The results show that the
costs of day-ahead dispatch and re-dispatch are significantly decreased by using
the improved typical scenario set and considering the DR of FML in regulation,
which enhances the operation economywhilemaintaining the high reliability and
safety of the RPS.

KEYWORDS

distributionally robust optimization, demand response, fused magnesium load, optimal
dispatch, typical scenario generation

1 Introduction

Under the background of increasingly serious environmental problems and accelerated
depletion of resources, renewable energy-dominated power systems (RPSs) are developing
rapidly (Cai et al., 2022; Liu et al., 2023). The novelty of RPSs is reflected by two main
characteristics: environmentally friendly and highly flexible. Being environmentally friendly
requires the large-scale application of renewable energy sources (RESs) in generation, but
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the complex uncertainty of RESs poses a great challenge to power
system scheduling and dispatch. Therefore, the RPS must have an
abundance of dispatchable resources and effective optimal dispatch
methods, which means that the RPS needs to be highly flexible
(Cheng et al., 2023; Trojani et al., 2023).

In the traditional power system, dispatchable resources mainly
refer to thermal power, hydropower, and other conventional units
on the generation side, so the dispatch mode is generation-follow-
load. However, with the progress of carbon peaking and carbon
neutrality, thermal power units in the RPS will inevitably be replaced
by RES generation on a large scale, causing a paradoxical situation of
increasing system uncertainty and decreasing generation-side
regulation capability. In this case, the demand response (DR)
mechanism, as a method to exploit the potential of load-side
participation in system scheduling, has gained wide attention in
recent years (Xie et al., 2023; Yang et al., 2024).

Currently, most related studies focus on the DR modeling of
residential loads and commercial loads (Chen et al., 2022; de
Chalendar et al., 2023). Compared with residential and
commercial loads, industrial loads account for a higher
proportion in the whole power system. In particular, the energy-
consuming industrial loads have the advantages of complete
infrastructures, large capacities, and strong willingness to
participate in DR, so they have huge dispatch potential. However,
the relevant research studies are still insufficient at present.

As typical energy-consuming industrial loads, there have
been reports about the participation of iron/steel loads and
fused magnesium loads (FMLs) in DR and RPS dispatch.
Boldrini et al. (2024) investigated the potential of
participation in DR for the electric arc furnace (EAF)
technology using hydrogen as the reductant of iron. Wang
et al. (2023) considered the production plans of the steel
refining process to be adjustable, so that the ladle furnaces are
treated as cuttable loads and modeled as DR resources. FML was
reported to participate in the primary frequency control market,
and the corresponding declared capacity optimization method
was proposed by Guo et al. (2023). In summary, it is the heat
storage processes of the iron/steel loads and FMLs using EAFs
that can be regarded as DR resources. EAFs melt raw materials
with electric heating technology to manufacture products, which
is simple and less sensitive to power fluctuations, making them
highly flexible during RPS dispatch. In addition, EAFs typically
have large capacities, so rational production arrangements for
enterprises using such equipment can provide significant
dispatchable capacity for the power system. Hence, it is
necessary to construct DR models for these energy-consuming
industrial loads, so that their flexibility can contribute to the RPS.
Different from FMLs, iron/steel loads have many consecutive
processes such as refining and rolling. Due to the limited amount
of equipment in each process, it is necessary to consider their
coordination in the DR model, which is relatively complex.
Therefore, to focus on the DR potential exploitation, FMLs are
taken as the representative of the energy-consuming
industrial loads.

To fully utilize the flexible resources of both generation and load
sides, effective dispatch decisionmethods are also needed to enhance
the ability of the power system to cope with the uncertainty of RESs.
According to decision conservativeness, commonly used methods

are usually classified into two categories: scenario-based stochastic
optimization (SO) and robust optimization (RO) (Mazidi et al.,
2019; Tan et al., 2019; Cheng et al., 2024).

For example, a stochastic scenario-based optimization model
was proposed by Derakhshandeh et al. (2017) to optimize the
generation scheduling of microgrids integrated with plug-in
electric vehicles. A stochastic and affinely adjustable robust
optimization method was constructed by Huang et al. (2019) for
the co-dispatch of energy and reserve of the RPS. However, the two
methods have their drawbacks.

The SO methods rely on the uncertainty sets generated by
parameterized probability distribution functions. However, it is
difficult to guarantee the validity of the chosen parameterized
function. In addition, the obtained uncertainty sets are less
capable of considering the extreme scenarios, so the dispatch
results tend to be over-optimistic and insufficiently reliable. The
RO methods only consider the extreme scenarios corresponding to
the uncertainty space boundaries, some of which are completely
impossible in reality, so the derived dispatch schemes are overly
conservative. Both methods lack the capability to deal with the
spatiotemporal correlation between uncertainty variables.

To combine SO and RO to achieve complementary effects, the
distributionally robust optimization (DRO) theory is proposed and
gradually promoted for use, which is also convenient for taking into
account the spatiotemporal correlation of uncertainty variables
(Shui et al., 2019; Gao et al., 2020; Liu et al., 2022).

The balance between the economy and reliability of the decision
using DRO is closely related to the way of selecting the typical
scenarios of uncertainty. The space enclosed by the typical scenarios
is required to contain as many samples in the historical data as
possible and to contain as little redundant area where no sample is
located as possible. For example, the historical samples were directly
used to derive an empirical probability distribution by Wang et al.
(2020), where the interval centers of the distribution were adopted as
the typical scenarios to construct a DRO dispatch model for the
distribution network. The Wasserstein metric-based uncertainty set
construction methods are also popular choices but need to consider
large numbers of historical scenarios when solving the DRO model,
which causes computational burden (Saberi et al., 2021; Feizi et al.,
2022; Zheng et al., 2023). In recent years, minimum volume
enclosing ellipsoid (MVEE)-based uncertainty set construction
methods have achieved better results in typical scenario selection.
Zhang et al. (2022) first obtained the MVEE that covers all the
historical samples with an iteration algorithm, and then the vertices
on each symmetry axis of the MVEE are regarded as the typical
scenarios. However, the space enclosed by these vertices is the
inscribed polyhedron of the MVEE and is not guaranteed to
cover all the historical samples. To solve this problem, an
expansion method of the inscribed polyhedron was proposed by
Zhang et al. (2021) to obtain the vertices of its corresponding
circumscribed polyhedron. Unfortunately, although all samples
are covered after such treatment, the redundant scenarios in the
polyhedral space increase significantly, some of which even exceed
the upper and lower bounds of the uncertainty variables. These
impossible scenarios result in great conservativeness of the decision
scheme, which makes the DRO lose advantages. It can be observed
that directly using the vertices of the inscribed and circumscribed
polyhedron as typical scenarios for DRO is inappropriate.

Frontiers in Energy Research frontiersin.org02

Qian et al. 10.3389/fenrg.2024.1401080

52

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1401080


According to the above analysis, the RPS still has deficiencies
in both flexible resource mining and dispatch capability
enhancement, so this paper focuses on the relevant works
shown as follows:

1) FML is taken as the representative of energy-consuming
industrial loads, and its lean DR model integrated with
time-coupled constraints is established to further exploit the
regulation potential of the RPS load side.

2) An improved typical scenario generation method is proposed
by uniting the boundary points with cluster centers of the
historical samples and then adjusting the impossible points.
Then, an improved typical scenario-based DRO (ITSDRO)
dispatch model for the RPS is established to lower the
conservativeness and achieve a better balance between
reliability and economy.

The rest of the paper is organized as follows: in Section 2,
the two-stage DRO model is constructed for the co-dispatch of
energy and reserve for the RPS considering the DR of FML;
Section 3 details the improved typical scenario set generation
method, and it is integrated into the model established in
Section 2; then, the solving algorithm of the proposed DRO
model is given in Section 4; numerical tests are carried out and
discussed in Section 5; and the conclusion is summarized
in Section 6.

2 DRO co-dispatch of energy and
reserve for the RPS considering the DR
of FML

In this section, the two-stage DRO co-dispatch model of energy
and reserve for the RPS is established considering the participation
of the FML in the DR. Although only the DR of the FML is
integrated into the model, DR models of other types of loads can
be added conveniently.

2.1 DR model of the FML

The FML utilizes EAFs to prepare electrically fused magnesia as
its product, whose main component is MgO. The production
process is to use the electric arc to heat the raw materials
containing MgO until they are melted in the EAF. The molten
raw materials are cooled naturally, and magnesite crystals grown
from the molten material are ground to obtain the magnesium sand.
In this process, the EAF can lift or lower the electrode to control the
current, so it can regulate its power consumption. Since the rated
power of a single EAF can reach the MW class, the participation of
the FML in the DR project provides considerable flexible capacity for
the RPS dispatch.

However, as one type of high energy-consuming industrial load,
the pre-requisite for the participation of the FML in the DR is to
ensure its production safety and the achievability of production
tasks. Hence, it is necessary to construct the DR model of a single
EAF based on the constraints in the production process and then to
form the DR model of the FML accordingly.

2.1.1 Regulation capacity constraints of the EAF

PM
m,t � PM,base

m,t + PM,u
m,t − PM,d

m,t , (1)
.0≤PM,u

m,t ≤ sum,tP
u
max ,m, 0≤P

M,d
m,t ≤ s

d
m,tP

d
max ,m, (2)

sum,t + sdm,t � 1, (3)

where t is the index of time. PM
m,t is the regulated power of the

mth EAF. PM,base
m,t is the base power of the mth EAF. PM,u

m,t and PM,d
m,t

are the upward and downward regulated power of the mth EAF,
respectively; Pu

max ,m and Pd
max ,m are the upper limits of PM,u

m,t and P
M,d
m,t

due to the safety consideration, respectively; and sum,t and sdm,t are
binary variables indicating the EAF to be in upward and downward
regulation states, respectively.

2.1.2 Constraints of regulation times of the EAF
Within a day, the total upward and downward regulation times

of an EAF should not exceed a scheduled maximum number. This
avoids the overly frequent regulation of one EAF and ensures its
productivity and product purity.

0≤∑T
t�2

sum,t − sum,t−1
∣∣∣∣ ∣∣∣∣≤M, (4)

where M is the scheduled maximum regulation number of one
EAF in 1 day. T is the number of time slots in 1 day.

Upward and downward regulation times are both considered in
(4), which is intuitively demonstrated by introducing binary
auxiliary variables in Section 2.2.4.

2.1.3 Regulation duration constraints of the EAF
One EAF should not be in the upward regulation state for several

consecutive periods; otherwise, the temperature of the molten liquid
continues to increase, resulting in accidents such as furnace
eruption. In addition, if the power of the EAF is continuously
regulated downward for too long, the temperature in the furnace
cannot meet the production requirements, which affects the purity
of the products. Therefore, the upward and downward regulation
duration constraints of the EAF are constructed as follows:

sum,t Tu
m − ∑t−1

τ�t−Tu
m−1

sum,τ
⎛⎝ ⎞⎠≥ 0

sdm,t Td
m − ∑t−1

τ�t−Td
m−1

sdm,τ
⎛⎜⎝ ⎞⎟⎠≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (5)

where Tu
m and Td

m are the maximum duration of upward and
downward power regulation of the EAF, respectively.

2.1.4 Constraints of the power and production of
the FML

The power consumed by the FML is accumulated from all EAFs:

∑
m

PM
m,t � PFML

t , (6)

where PFML(t) is the total power of all the EAFs belonging to the
FML at time t.

Then, the FML is modeled as a shiftable load in (7), whichmeans
that the energy consumed in 1 day should remain unchanged
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whether FML participates in DR projects or not. This constraint
ensures that production is not affected by the DR.∑

t

∑
m

PM,base
m,t � ∑

t

PFML
t . (7)

2.2 Construction of the two-stage DRO co-
dispatch model

To optimize the day-ahead energy and reserve strategy of the
RPS, the DRO model constructed in this paper is composed of two
stages. In the first stage, the base case of the day-ahead RES and load
prediction is used to optimize the unit commitment and reserved
capacity of conventional units. In the second stage, a prediction
error scenario set is constructed and used to optimize the operation
of flexible resources to ensure the RPS reliability considering the
day-ahead RES and load prediction uncertainty.

By the interaction of decision variables of the two stages, the
determined unit commitment and reserved capacity finally achieve a
balance between reliability and economy.

2.2.1 Objective function
The overall objective of the proposed model is to minimize the

total operation costs of the two stages, as shown in (8):

min
x

Cop x( ) +max
pk∈Ω

∑nsce
k�1

pk min
yk

Creg x, yk( ), (8)

x � Ii,t, Pi,t, αu
i,t, α

d
i,t, R

u
i,t, R

d
i,t[ ]

yk � Pu
i,t,k, P

d
i,t,k,W

cur
w,t,k, L

sh
b,t,k, P

M,u
m,t,k, P

M,d
m,t,k, s

u
m,t,k, s

d
m,t,k[ ] , (9)

where x and Cop(x) are the decision variables and objective
function in the first stage, respectively. The values of x remain
unchanged during the optimization of the second stage. nsce is the
number of prediction error scenarios employed in the second stage.
k is the index of the scenarios. pk is the occurrence of scenario k.Ω is
the uncertainty space of the probability distribution {pk|k = 1, . . .
,nsce}. yk and Creg(x, yk) are the decision variables and objective
function in the second stage, respectively.

According to (8), the two-stage dispatch model is established based
on the DRO theory. The max–min structure in the second stage is used
to search for the worst distribution of the prediction error scenarios
within Ω, which ensures that the optimized strategy can adapt to this
worst distribution, so that the reliability and economy are balanced.

The functions of Cop(x) and Creg(x, yk) are shown as (10) and
(11), respectively:

Cop x( ) � ∑
t

∑
i

Cfuel
i Fi Pi,t( ) +∑

i

Sui α
u
i,t + Sdi α

d
i,t( ) +∑

i

Cu
i R

u
i,t + Cd

i R
d
i,t( )⎡⎣ ⎤⎦,
(10)

Creg x, yk( ) � ∑
t

∑
i

Qu
i P

u
i,t,k + Qd

i P
d
i,t,k( ) +∑

w

CwWcur
w,t,k

⎡⎣
+∑

b

CldLcur
b,t,k| +∑

m

CM,usum,t,k + CM,dsdm,t,k( )⎤⎦,
(11)

where Cfuel
i is the fuel price of unit i. Fi(·) is the linearized

function of the consumed fuel and the power output of unit i. Ru
i,t

and Rd
i,t are upward and downward reserve capacity of unit i at time

t, respectively. Sui and Sdi are startup and shutdown costs of unit i,
respectively. αui,t and αdi,t are binary variables of unit i indicating the
occurrence of startup and shutdown at time t, respectively. Cu

i and
Cd
i are the up and down reserve prices of unit i, respectively. Pu

i,t,k

and Pd
i,t,k are the upward and downward regulated powers of unit i at

time t in scenario k, respectively. Qu
i and Qd

i are up and
downregulation prices of unit i, respectively. Wcur

w,t,k and Lcurb,t,k are
the amount of curtailed power of RES stationw and load shedding of
bus b at time t in scenario k, respectively. Cw and Cld are the penalty
prices of RES curtailment and load shedding, respectively. CM,u and
CM,d are the subsidized prices of upward and downward regulation
of the FML, respectively.

2.2.2 Power system operation constraints
The constraints in the first stage correspond to the RES power

prediction base case. The constraints in the second stage correspond
to the RES power prediction error cases. The details are given below.

Constraints in the first stage:

(1) Minimum up/down time of conventional units:

∑t−1
τ�t−Ton

i

Ii,τ − Ton
i

⎛⎝ ⎞⎠ Ii,t−1 − Ii,t( )≥ 0

∑t−1
τ�t−Toff

i

1 − Ii,τ( ) − Toff
i

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ Ii,t − Ii,t−1( )≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ , (12)

where Ton
i and Toff

i are the minimum duration of the on and off
statuses of unit i, respectively. Ii,t is a binary variable of unit i at time
t, which takes 1 for the on status and 0 for the off status.

(2) Startup and shutdown limits of conventional units:

αu
i,t − αdi,t � Ii,t − Ii,t−1

αui,t + αdi,t ≤ 1
{ . (13)

(3) Output power and ramp rate limits of conventional units:

Ii,tPi,min ≤Pi,t ≤ Ii,tPi,max

−DRi ≤Pi,t − Pi,t−1 ≤URi
{ , (14)

where Pi,min and Pi,max are the minimum and maximum output
power of unit i, respectively. URi and DRi are the maximum upward
and downward ramp power of unit i, respectively.

(4) Limits of the unit reserve capacity and system reserve
requirement:

0≤Ru
i,t ≤ min URi, Ii,tPi,max − Pi,t( )

0≤Rd
i,t ≤ min DRi, Pi,t − Ii,tPi,min( ){ , (15)

∑
i

Ru
i,t ≥R

u
t ,∑

i

Rd
i,t ≥Rd

t , (16)

where Ru
t and Rd

t are the upward and downward reserve power
requirements of the RPS at time t, respectively.

(5) Power balance limits:∑
i

Pi,t +∑
w

Ŵw,t � ∑
b

Lb,t +∑
m

PM,base
m,t , (17)
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where Ŵw,t is the predicted output power of RES station w at
time t in the base case. L̂b,t is the predicted load consumption of bus
b at time t in the base case.

(6) Transmission capacity limits of power lines based on the DC
power flow model:

∑
b

klb(∑
i∈b

Pi,t + ∑
w∈b

Ŵw,t − L̂b,t − ∑
m∈b

PM,base
m,t

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣≤flmax, (18)

where klb is the power transfer distribution factor of bus b to line
l, which represents the DC power flow model (Cai and Xu, 2021).
flmax is the maximum transmission power of line l.

Constraints in the second stage:

(1) Output power and ramp rate limits of conventional units:

Ii,tPi,min ≤Pi,t + Pu
i,t,k − Pd

i,t,k ≤ Ii,tPi,max

−DRi ≤Pi,t + Pu
i,t,k − Pd

i,t,k − Pi,t−1 + Pu
i,t−1,k − Pd

i,t−1,k( )≤URi.
0≤Pu

i,t,k ≤Ru
i,t

0≤Pd
i,t,k ≤Rd

i,t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(19)

(2) Power balance limits:∑
i

Pi,t + Pu
i,t,k − Pd

i,t,k( ) +∑
w

Ŵw,t + ΔWw,t,k −Wcur
w,t,k( )

� ∑
b

L̂b,t + ΔLb,t,k − Lsh
b,t,k( ) +∑

m

PM
m,t, (20)

where ΔWw,t,k and ΔLb,t,k are the prediction error of RES station
w and bus b at time t in scenario k, respectively.

(3) Transmission capacity limits of power lines based on the DC
power flow model:

∑
b

klb ∑
i∈b

Pi,t + Pu
i,t,k − Pd

i,t,k( ) + ∑
w∈b

Ŵw,t + ΔWw,t,k −Wcur
w,t,k( )⎡⎣∣∣∣∣∣∣∣∣∣

− L̂b,t + ΔLb,t,k − Lsh
b,t,k( ) − ∑

m∈b

PM
m,t

⎤⎦∣∣∣∣∣∣∣∣∣≤flmax

.

(21)

(4) Wind curtailment and load shedding limits:

0≤Wcur
w,t,k ≤ Ŵw,t + ΔWw,t,k

0≤ Lsh
b,t,k ≤ L̂b,t + ΔLb,t,k

{ . (22)

(5) FML constraints

As indicated by (9), the DR of the FML is regarded as a flexible
resource to cope with the prediction errors of the RES output.
Therefore, (1–7) are treated as constraints in the second stage, where
the FML decision variables should be included in yk and the index k
needs to be added to these variables.

2.2.3 Power prediction error probability
distribution constraints

Using the norm-1 and norm-inf, the uncertainty space Ω in (8)
can be constructed by the power prediction error probability
distribution constraints below:

Ω � pk :

∑Nsce

k�1
pk � 1, pk ≥ 0

∑Nsce

k�1
pk − pk0

∣∣∣∣ ∣∣∣∣≤ θ1
max

1≤ k≤Nsce

pk − pk0

∣∣∣∣ ∣∣∣∣≤ θ∞

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (23)

where pk0 is the initial probability of scenario k obtained by
analyzing the historical samples. θ1 and θ∞ are the variation
tolerance in the form of norm-1 and norm-inf, respectively, which
can be calculated with the formula given by Wang et al. (2020).

The non-linear absolute term in (23) is linearized by introducing
auxiliary variables. The constraints of these auxiliary variables are
given below:

zk+ + zk− ≤ 1
0≤pk+ ≤ zk+θ1, 0≤pk− ≤ zk−θ1
0≤pk+ ≤ zk+θ∞, 0≤pk− ≤ zk−θ∞

⎧⎪⎨⎪⎩ , (24)

where zk+ and zk− are binary auxiliary variables. pk+ and pk− are
real auxiliary variables.

The linearized form of (23) is shown as

FIGURE 1
Typical scenario sets constructed by the circumscribed and
inscribed polyhedra of the MVEE.

FIGURE 2
Flowchart of the solving algorithm for the two-stage RPS
dispatch model.
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pk � pk0 + pk+ − pk−∑Nsce

k�1
pk+ + pk−( )≤ θ1

pk+ + pk− ≤ θ∞

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (25)

2.2.4 Linearization of non-convex constraints
The constraints shown in (4), (5), (12), and (15) are non-convex,

so the formulated model above cannot be directly solved by common
commercial solvers. In this section, they are all linearized to obtain
an equivalent convex form of the proposed DRO model.

For (4), binary auxiliary variables are introduced to derive its
equivalent linearized form as shown below:

zum,t + zdm,t ≤ 1
sum,t − sum,t−1 � zum,t − zdm,t

0≤∑T
t�2

zum,t + zdm,t( )≤M

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (26)

where zum,t and z
d
m,t are the introduced pair of binary variables. z

u
m,t =

1 indicates that upward regulation happens in time t. Similarly, zdm,t

is the indicator of downward regulation.
For (5) and (12), both are the constraints of duration, so they

have nearly the same structure. For such a structure, the linearized
form is obtained by dividing T into three sections, which is given by
Carrion and Arroyo (2006). For succinctness, the deduction is not
repeated here.

For (15), the non-convexity of the two constraints is aroused by
the nested min terms. Each of them can be replaced by two separated
constraints to avoid the usage of the min terms, which is
shown below:

0≤Ru
i,t ≤URi, Ru

i,t ≤ Ii,tPi,max − Pi,t

0≤Rd
i,t ≤DRi, Rd

i,t ≤Pi,t − Ii,tPi,min
{ . (27)

3 Improved typical scenario set
generation method

Whether the balance between economy and reliability can be
achieved or not by DRO is closely related to the way how typical
scenarios of prediction errors are selected. Previous DRO
methods usually adopt the cluster centers of historical
prediction errors as the typical scenarios, which are unable to
test whether the determined day-ahead strategy can cope with the
possible extreme prediction errors or not. Hence, these methods
are too optimistic to consider the uncertainty in the day-ahead
stage thoroughly. However, if the traditional box uncertainty set
of RO is directly transferred to DRO, the spatiotemporal
correlation between RES power outputs and loads is neglected,
which results in an overconservative decision. In this case, to
consider the spatiotemporal correlation, an MVEE containing all
the historical prediction error samples is often constructed. The
vertices of its inscribed and circumscribed polyhedra are used as
the typical scenarios, which is shown by Figure 1 (Zhang et al.,
2021; Zhang et al., 2022).

As shown in Figure 1, the inscribed polyhedron is unable to
cover all the historical samples. In addition, for both the inscribed

and circumscribed polyhedra, the coordinate values of the vertices
may exceed the maximum or minimum values of the
historical samples.

To solve this dilemma, an improved typical scenario set
generation method is proposed based on the principal
component analysis and K-means clustering algorithm, which
unites the cluster centers and the extreme points of the historical
prediction error samples to reduce decision conservativeness while
maintaining reliability.

1) The prediction error vector is denoted by Eq. 28

u � ΔW ,ΔL[ ], (28)
where ΔW and ΔL are the power prediction error vector of RES
stations and load buses, respectively, which are detailed by Eq. 29

ΔW � ΔW1,1, ...,ΔWw,t, ...,ΔWNW ,T[ ]
ΔL � ΔL1,1, ...,ΔLb,t, ...,ΔLNb ,T[ ] , (29)

where NW is the total number of RES stations. Nb is the total
number of load buses.

2) The eigenvectors are computed, and the coordinates of the
vertices along the direction of each eigenvector are obtained.
Zhang et al. (2022); Zhang et al. (2021) used the iterative
MVEE algorithm to obtain these coordinates, but the iteration
will significantly decelerate when the area covered by historical
samples lacks symmetry. Therefore, the iteration-free principal
component analysis algorithm is chosen to obtain the
abovementioned eigenvectors and vertices quickly and
accurately. The process is detailed below.

The historical prediction error samples of the RES stations and
load buses are denoted as matrix U in Eq. 30

U � u1, ..., us, ..., uN[ ]T. (30)
U is processed with the zero mean method as shown in Eq. 30:

~U � U − 1N ⊗ �uT � ~u1, ..., ~us, ..., ~uN[ ]T, (31)

where ~U is the version of U after the zero mean processing. �u is
the mean vector of all historical samples. ~us is the sth sample after the
zero mean processing. N is the number of historical samples.

The covariance matrix of ~U is obtained, and then, eigenvalue
decomposition on the covariance matrix is performed by Eq. 32:

S � 1
N − 1

~U
T ~U

S � QΛQT

Q � q1, ...., qh, ...., q Nb+NW( )T[ ]
Λ � diag λ1, ..., λh, ..., λ Nb+NW( )T{ }

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (32)

where S is the covariance matrix of ~U . qh is the hth eigenvector of
S. λh is the eigenvalue corresponding to qh. Λ is a diagonal matrix
formed by all eigenvalues.

Each sample in ~U is transformed into a new coordinate system
defined by the eigenvectors as shown in Eq. 33

~vs � QT~us � ~v1,s,/, ~vh,s,/, ~v Nb+NW( )T,s[ ]T, (33)
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where ~vs is the projection point of ~us in the eigenvector coordinate
system. ~vh,s is the projection value of ~us in the direction of qh.

After all samples are projected, the coordinates of the two vertices
are determined in the direction of each eigenvector by Eq. 34

~vmin
h � min ~vh,1,/, ~vh,N{ } · eh
~vmax
h � max ~vh,1,/, ~vh,N{ } · eh{ , (34)

where ~vh min and ~vmax
h are the coordinates of the two vertices in the

direction of the hth eigenvector under the eigenvector coordinate
system. eh is a unit vector, with the hth element equal to 1.

3) All the vertices obtained above enclose the inscribed
polyhedron. Then, the scaling factor η is introduced by Eqs
35 and 36 to expand it to the circumscribed polyhedron.

min∑N
s�1

βs
        1

s.t.
~vmin
1 ,/, ~vmax

Nb+NW( )T[ ] β1, ..., βs, ..., βN[ ] � ~v1, ..., ~vs, ..., ~vN[ ]
βs � β1,s,/, β2 NW+Nb( )T,s[ ]T⎧⎨⎩ ,

(35)
η � max β1

        1,/, βN

        1{ }, (36)

where ||βs||1 is the norm-1 of βs.
The vertices of the circumscribed polyhedron under the original

coordinate system are calculated as

umin
h � ηQ~vmin

h + �u
umax
h � ηQ~vmax

h + �u
{ , (37)

where uh min and uh max are the coordinates of two vertices in the
direction of qh under the original coordinate system.

As shown in Figure 1, some coordinate values of the vertices
obtained by (37) may exceed the limits of the historical samples,
which is impossible in the actual operation. Hence, adjustment is
designed and imposed on these vertices by Eq. 38

umin ormax
h,e �

max u1,e,/, uN,e{ } umin ormax
h,e > max u1,e,/, uN,e{ }

min u1,e,/, uN,e{ } umin ormax
h,e < min u1,e,/, uN,e{ }

umin ormax
h,e otherwise

⎧⎪⎨⎪⎩ ,

(38)
where umin ormax

h,e represents the eth element of uh min or uh max.
The adjusted vertices of the circumscribed polyhedron are the

extreme scenarios of the prediction errors. They are denoted as uvtx,
which contains 2(Nb + Nw)T scenarios and shown in Eq. 39

uvtx � umin
h , umax

h

∣∣∣∣h � 1,/, Nb +NW( )T{ }
� uvtx

j

∣∣∣∣∣j � 1,/, 2 Nb +NW( )T{ } . (39)

4) The attribution of each historical sample to every extreme
scenario is analyzed.

First, the Euclidean distance between each extreme scenario in
uvtx and every historical sample is computed by Eq. 40.

ds,j � us − uvtx
j

          2, (40)

where ds,j is the Euclidean distance between the sth sample us and the
jth extreme scenario uvtxj .

Then, us is attributed to the nearest extreme scenario by Eq. 41.

j � argmin
j

ds,j

n j( ) � n j( ) + 1

⎧⎨⎩ , (41)

where the array n is a 2(Nb + Nw)-dimensional vector with all its
components initialized to 0.

Every time a sample is attributed to the jth extreme scenario, the
kth element of array n is incremented by 1. After this operation is
performed for each sample, the final n is the one that reflects the
attribution of samples to extreme scenarios.

5) The K-means algorithm is used to obtain the cluster
centers of historical samples, which is denoted by uclu.
At the same time, the proportion of each cluster is
derived and regarded as the occurrence of the
corresponding cluster center, which is shown in Eq. 42.

uclu � uclu
1 ,/, uclu

o ,/, uclu
nclu

{ }
pclu � pclu

1 ,/, pclu
o ,/, pclu

nclu
{ } , (42)

where ucluo is the oth cluster center. pclu
o is the occurrence of the oth

cluster center. nclu is the number of cluster centers, which can be
adaptively determined by the contour coefficient,
Calinski–Harabasz criterion, and so on (Balavand et al., 2018;
Yuan and Yang, 2019; Karna and Gibert, 2022).

6) uclu and uvtx are incorporated to form the improved typical
scenario set utyp by Eq. 43, whose scenario number is the value
of nsce in (8).

utyp � uvtx, uclu{ } � utyp
k

∣∣∣∣k � 1,/, nsce{ }. (43)

Subsequently, the initial probability of each typical scenario in utyp is
determined by (44).

pk0 �
n j( )
N

· ω, if utyp
k � uvtx

j

pclu
o · 1 − ω( ), if utyp

k � uclu
o

⎧⎪⎪⎨⎪⎪⎩ , (44)

where pk0 is the initial probability of u
typ
k . ω is the weight of extreme

scenarios in the typical scenario set, which is determined by the
system operators according to the actual RPS structure and expected
reliability level.

FIGURE 3
RPS structure.
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Apparently, the improved typical scenario set utyp includes both
adjusted extreme scenarios and cluster centers, so the
conservativeness is reduced.

4 Solution method

Combining Sections 2 and 3, the ITSDRO model for the co-
dispatch of energy and reserve is finally established for the RPS. The
objective function is composed of (8), (10)–(11), and the constraints
are shown as (1)–(7), (12)–(22), and (24)–(27). For a given first-
stage decision variable x, if there exists a second-stage decision
variable y that can ensure the steady operation of the RPS under all
extreme scenarios, then x is a robust solution to the RPS
dispatch problem.

The proposed two-stage tri-level model is a mixed-integer linear
programming problem, so it can be rewritten as (45).

Original problem (OP):

min
x

αTx +max
pk

∑nsce
k�1

pk min
yk

γTyk

s.t.
Ax ≥ θ
Zyk ≥ ε − Fx − Gutyp

k

EP ≥ ξ, P � p1,/, pk,/, pnsce[ ]
⎧⎪⎨⎪⎩ .

(45)

Then, the column and constraint generation algorithm is
adopted to solve the model, of which the detailed procedures are
given below.

1) (45) is decomposed into a master problem (MP) in Eq. 46 and
two subproblems (SPs) shown by Eqs 47 and 48.

MP:

min
x

αTx + λ

s.t.

Ax ≥ θ

λ≥∑nsce
k�1

pg
kγ

Tyk

Fx + Zyk ≥ ε − Gutyp
k g � 1,/, l − 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,
(46)

where λ is an auxiliary real variable. pg
k is the updated values of pk in

the gth iteration. l is the counter of iteration.
SP1:

min
yk

γTyk

s.t. Zyk ≥ ε − Fx − Gutyp
k

. (47)

SP2:

max
pk

∑nsce
k�1

pkγ
Tylk

s.t. EP ≥φ

. (48)

TABLE 1 Parameters of thermal units.

G1 G2 G3 G4 G5

Pmin/MW 50 30 50 10 10

Pmax/MW 200 80 220 80 20

Minimum up time/h 8 2 4 4 1

Minimum down time/h 8 2 4 4 1

Ramping rate/MW·h−1 60 40 60 30 10

Initial status/h 10 −3 5 −4 2

a/MBtu·(MW2h)−1 4.4 × 10−3 0.046 4 × 10−4 1 × 10−3 5 × 10−3

b/MBtu·(MWh)−1 13.29 15.47 13.51 32.63 17.7

c/MBtu·h−1 39 74.33 176.95 129.97 137.41

Fuel price/$·MBtu−1 1 1 1.4 1.4 1.4

Startup cost/$ 1,500 100 1,000 500 120

Up and down reserve price/$·MW−1 6 13 7.5 7.5 10

Up and downregulation price/$·MW−1 12 27 15 15 20

FIGURE 4
Maximum and minimum prediction errors at each hour of three
wind farms in historical data.
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2) The lower and upper bounds of the objective of OP are
denoted as LB and UB, respectively. The MP and two SPs
are iteratively solved to update the LB and UB. Whether the

difference between the LB and UB is small enough is
determined. If so, the iteration ends; otherwise, the next
iteration is run. The more specific procedures are given below.

FIGURE 5
Comparison of the typical scenario sets of the three methods. (A) Typical scenarios and the corresponding probability of IPRO, (B) typical scenarios
and the corresponding probability of CPDRO, and (C) typical scenarios and the corresponding probability of ITSDRO.

TABLE 2 Regulation parameters of the FML.

Rated
power/
MW

Maximum
upregulation

time/h

Maximum
downregulation

time/h

Maximum
upregulation
power/MW

Maximum
downregulation

power/MW

Up and
downregulation

price/$·h−1

70 6 4 14 10.5 25.3
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Step 1: UB0 is initialized to +∞ and LB0 to −∞. The counter l is
set to 1, and the threshold coefficient ξ is set to 0.01.

Step 2: The lth iteration is entered. The MP is solved to update x
and LB, shown as Eq. 49.

LBl � αTxl + λl. (49)

Step 3: SP1 is solved to update ylk and taken into SP2 to update
pl
k. Based on ylk and pl

k, UB is updated by Eq. 50

UBl � min UBl−1, αTxl +∑nsce
k�1

pl
kγ

Tylk⎛⎝ ⎞⎠. (50)

Step 4: Whether |UBl-LBl|≤ξ·UB is true or not is identified. If
true, the iteration ends and returns the current x as the final day-
ahead dispatch decision scheme; otherwise, new constraints shown
in (51) are added into the MP and run to the (l+1)th iteration:

s.t.
λ≥∑nsce

k�1
pl
kγ

Tyk

Fx + Zyk ≥ ε − Gutyp
k

⎧⎪⎪⎨⎪⎪⎩ . (51)

The flowchart of the solving algorithm is shown in Figure 2.

5 Numerical tests

5.1 Basic settings

Numerical tests are carried out on a six-bus test system, the
structure of which is shown in Figure 3. The parameters of the five
thermal units are given in Table 1. The parameters of the seven
transmission lines are given in the study by Jiang et al. (2012). Three
wind farms, namely, WF1, WF2, and WF3, are connected to bus 4,

bus 5, and bus 6, respectively. The predicted power curves of the
total wind farm output and the system load excluding the FML are
shown in Figure 3. Bus 3, bus 4, and bus 5 are load buses, peak load
values of which are 196 MW, 98 MW, and 196 MW, respectively.
The load buses are assumed to have a perfect positive correlation.
The penalty prices of wind curtailment and load shedding are 100
$/MW and 500 $/MW, respectively.

The historical prediction error data are obtained from the study
by Cai (2024). According to the historical data, the extreme power
outputs of the three wind farms are computed and shown
in Figure 4.

The FML is connected to bus 3, the regulation parameters of
which are shown in Table 2.

The numerical tests are run on an Intel core i5-13500H personal
computer with 32 GB RAM and solved using CPLEX 12.10 in
MATLAB R2020b.

5.2 Comparison between ITSDRO with the
existing RO and DRO methods

To demonstrate the performance of the ITSDRO method, the
inscribed polyhedron-based RO (IPRO) in the study by Zhang et al.
(2022) and the circumscribed polyhedron-based DRO (CPDRO) in
the study by Zhang et al. (2021) are employed for comparison. All
three methods are data-driven and need to construct the typical
scenario set based on historical prediction error samples before
formal optimization. For better presentation, only the typical
scenarios in which the initial probability is non-zero are given
in Figure 5.

Figures 4, 5 show that the typical scenarios of the three methods
are not simply located at the maximum or minimum prediction
errors of the wind farms because of the spatiotemporal correlation
between the prediction errors. However, IPRO and CPDRO directly

FIGURE 6
Day-ahead dispatch solution of the RPS by IPRO. (A) Scheduled
power and (B) unit commitment.

FIGURE 7
Day-ahead dispatch solution of the RPS by CPDRO. (A)
Scheduled power and (B) unit commitment.
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adopt the vertices of the inscribed and circumscribed polyhedra of
the MVEE as the typical scenario sets, respectively, in which some
impossible scenarios exceed the limits of the prediction errors.

Then, the dispatch solutions of the three methods are shown in
Figures 6–9. The corresponding dispatch costs of the test system
optimized by the three methods are listed in Table 3.

Figures 6–9 and Table 3 show that

1) The solutions of the three methods can cope with all the
uncertain scenarios they take into account, so they are all
sufficiently robust.

2) The cost terms of the second stage are directly affected by the
selected typical scenarios. IPRO and CPDRO only consider the
extreme scenarios, while the uncertainty set of ITSDRO

additionally contains the cluster centers. Since the re-
dispatch costs of extreme scenarios are much higher than
those of the cluster centers, the second-stage cost of ITSDRO is
lower than that of the other two methods.

3) The cost terms of the first stage are indirectly affected by the
selected typical scenarios. If only the extreme scenarios are
taken into account in the DRO, the first-stage dispatch
schemes will completely prepare for the extreme scenarios

TABLE 3 Comparison of the dispatch costs optimized by the three methods.

Cost/$ IPRO CPDRO ITSDRO

Day-ahead cost Day-ahead generation cost 1.935 × 105 1.902 × 105 1.873 × 105

Reserved capacity cost 1.498 × 104 1.416 × 104 1.240 × 104

Unit startup cost 220 220 220

Maximum real-time cost Maximum unit re-dispatch cost 7.570 × 103 1.940 × 104 9.601 × 103

Maximum wind power curtailment cost 3.562 × 104 6.023 × 104 1.380 × 103

Maximum load shedding cost 2.738 × 104 4.859 × 104 1.627 × 103

Average real-time cost Average unit re-dispatch cost — 5.310 × 103 5.342 × 103

Average wind power curtailment cost — 2.989 × 103 96.844

Average load shedding cost — 4.846 × 103 184.320

Total cost 2.791 × 105 2.178 × 105 2.055 × 105

FIGURE 8
Day-ahead dispatch solution of the RPS by ITSDRO. (A)
Scheduled power and (B) unit commitment.

FIGURE 9
Total day-ahead reserved capacity of all units. (A) Up reserved
capacity and (B) down reserved capacity.
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with very low probabilities and arrange too much reserve
capacity, as shown in Figure 9. In this case, unit
commitment schemes are also forced to be in the relatively
uneconomic region. As an example, IPRO and CPDRO start

up more units than ITSDRO in 8, 9, and 14 h, as shown in
Figures 6–8.

4) In the absence of a targeted adjusting mechanism, these
impossible scenarios of IPRO and CPDRO lead to
conservative decisions and higher operation costs. As one of
the RO methods, IPRO is more significantly affected because
its solution is aimed at addressing the worst-case scenario. As
one of the DRO methods, CPDRO is less affected because the
initial probabilities of the impossible scenarios are much
smaller than those of the other extreme scenarios.

The simulation results above are discussed below.

1) The second stage of a two-stage model is constructed to
examine whether the RPS can sufficiently dispatch the
flexible resources to cope with various scenarios including
the extreme ones. However, most existing RO and DRO
methods only consider extreme scenarios in the second
stage, forcing the day-ahead dispatch to perform targeted
preparation, which leads to redundancy in the flexible
resource allocation and an increase in dispatch costs.

2) The proposed ITSDRO designs and employs an improved
typical scenario set to reduce waste in the allocation of
flexible resources without sacrificing the ability to cope with
extreme scenarios. Therefore, the derived day-ahead
dispatch scheme becomes more economical without the
loss of robustness.

5.3 Validation of the DR of the FML

To validate the participation of the FML in the DR, two cases are
designed for comparative analysis.

Case 1: Only conventional units are regarded as flexible resources
in the second stage.

Case 2: Both conventional units and the DR of the FML participate
in the re-dispatch in the second stage.

TABLE 4 Comparison of the dispatch results of case 1 and case 2.

Case 1 Case 2

Maximum wind power curtailment/MW·h 15.39 13.80

Maximum load shedding/MW·h 3.754 2.252

Average wind power curtailment/MW·h 0.972 0.968

Average load shedding/MW·h 0.435 0.369

Day-ahead dispatch cost/$ 2.043×105 1.999×105

Re-dispatch cost/$ 5.651×103 5.623×103

Total dispatch cost/$ 2.099×105 2.055×105

FIGURE 10
Predicted load and wind power.

FIGURE 11
Wind curtailment in case 1 and case 2 under theworst scenario of
wind curtailment.

FIGURE 12
Load shedding amount in case 1 and case 2 under the worst
scenario of load shedding.
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Based on the basic information given in Section 5.1, ITSDRO
is performed to solve the two cases. The resulting dispatch costs
are shown in Table 4, along with the amount of wind power
curtailment and load shedding in the second stage.

Table 4 shows that, after the FML participates in DR projects, the
maximum and average load shedding decrease by 13.32% and
15.17%, respectively, and the maximum and average wind power
curtailment decrease by 10.33% and 0.41%, respectively. This
indicates that the RPS becomes more flexible in coping with the
power prediction error.

Figure 10 shows that the predicted wind power curve presents
the anti-peak shaving characteristics. In load peak and valley
periods, the FML can proactively decrease and increase its power
consumption to reduce load shedding and wind curtailment
amounts. From this perspective, since the DR of the FML plays
the role of the regulation resource of RPS in the second stage, the
reserved capacity in the first stage can be reduced accordingly.
Therefore, the final total dispatch cost is decreased by 2.10%.

As shown in Figures 11 and 12, the wind curtailment is avoided
and the load shedding amount is decreased even under the worst
scenario, which verifies the effectiveness of the DR of the FML.

6 Conclusion

This paper focuses on establishing the ITSDRO method, which
is a two-stage co-dispatch method of energy and reserve for the RPS
considering the DR of the FML. First, the FML is regarded as a
flexible regulation resource, and its constraints for participating in
DR projects are constructed. Then, an improved typical scenario set
generation method is proposed with the spatiotemporal correlation
between the power prediction errors considered. Based on this
typical scenario set and the DRO theory, the ITSDRO model is
formed and then solved by the column and constraint generation
algorithm. Numerical tests are designed to verify the correctness and
effectiveness of ITSDRO. According to the simulation results, some
conclusions are drawn below.

1) An impossible extreme scenario identification and adjustment
mechanism is proposed to address the feasibility issue of the
existing inscribed and circumscribed polyhedron-based
methods. Then, the extreme scenarios are united with cluster
centers of the historical prediction error samples to form an
improved typical scenario set with much lower conservativeness.

2) The two-stage ITSDRO dispatch model and corresponding
solution method are proposed to optimize the co-dispatch
strategy of energy and reserve for the RPS. The simulation
results indicate that because of the utilization of the improved
typical scenario set, the day-ahead dispatch cost can be
reduced while keeping a small amount of load shedding
and RES power curtailment.

3) The DR model of the FML is constructed and integrated
into the ITSDRO dispatch model. The simulation results
indicate that, with the proactive participation of the FML in
the DR, the amount of load shedding and RES power
curtailment is significantly decreased even under large
prediction errors. This means that the flexibility of the
RPS to cope with uncertainty is enhanced due to the DR
of the FML.
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Nomenclature

A. Indices

m Index of EAFs

i Index of units

k Index of scenarios

t Index of time

b Index of buses

w Index of RES stations

l Index of transmission lines

B. Variables

PM,u
m,t and PM,d

m,t
Upward and downward regulated power of the mth EAF,
respectively

sum,t and sdm,t Indicator of the EAF in upward and downward regulation
states, respectively

x and yk Decision vectors in the first and second stage of the
proposed DRO model, respectively

αui,t and αdi,t Variables indicating the occurrence of startup and
shutdown of unit i at time t, respectively

Ru
i,t and Rd

i,t
Upward and downward reserve capacity of unit i at time t,
respectively

Pu
i,t,k and Pd

i,t,k
Upward and downward regulated power of unit i at time t
in scenario k, respectively

Wcur
w,t,k and Lcurb,t,k Amount of curtailed power of RES station w and load

shedding of bus b at time t in scenario k, respectively

Ii,t Status indicator of unit i at time t

pk Occurrence of scenario k

C. Constants and
functions

M Total number of EAFs

T Number of time slots in 1 day

nsce Number of prediction error scenarios

NW Number of RES stations

Nb Number of load buses

N Number of historical prediction error samples

Tu
m and Td

m
Maximum duration of upward and downward power
regulation of the EAF, respectively

Cfuel
i

Fuel price of unit i

Sui and Sdi Startup and shutdown costs of unit i, respectively

Cu
i and Cd

i
Upward and downward reserve prices of unit i, respectively

Qu
i and Qd

i
Upward and downward regulation prices f unit i, respectively

Cw and Cld Penalty prices of RES curtailment and load shedding, respectively

CM,u and CM,d Subsidized prices of upward and downward regulation of
the FML, respectively

Ton
i and Toff

i
Minimum duration of the on and off statuses of unit i,
respectively

Pi,min and Pi,max

Minimum and maximum output power of unit i,
respectively

URi and DRi Maximum upward and downward ramp power of unit i,
respectively

Ru
t and Rd

t
Upward and downward reserved power requirements of
the RPS at time t, respectively

Ŵw,t and L̂b,t Predicted power of RES station w and load bus b at time t in
the base case, respectively

klb Power transfer distribution factor of bus b to line l

flmax Maximum transmission power of line l

ΔWw,t,k and ΔLb,t,k Prediction error of RES station w and bus b at time t in
scenario k

Ω Uncertainty space of the probability distribution

pk0 Initial probability of scenario k

Cop(·) and Creg(·) Objectives of the first and second stages of the proposed
DRO model, respectively

Fi(·) Linearized function of the consumed fuel and the power
output of unit i

U Matrix composed of historical prediction error samples of
the RES stations and load buses

~U Modified U after the zero mean processing

S Covariance matrix of ~U

qh hth eigenvector of S

λh Eigenvalue corresponding to qh

Λ Diagonal matrix formed by all λh

~vmin
h and ~vmax

h
Two vertices in the direction of qh under the eigenvector
coordinate system

umin
h and umax

h Two vertices in the direction of qh under the original
coordinate system

uvtx Adjusted vertices of the circumscribed polyhedron

uclu Cluster centers of historical samples

utyp Improved typical scenario set

D. Abbreviations

RPS Renewable power system

FML Fused magnesium load

EAF Electric arc furnace

RES Renewable energy source

DR Demand response

SO Stochastic optimization

RO Robust optimization

DRO Distributionally robust optimization

MVEE Minimum volume enclosing ellipsoid

ITSDRO Improved typical scenario-based DRO

IPRO Inscribed polyhedron-based RO

CPDRO Circumscribed polyhedron-based DRO
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1 Introduction

With the high-proportion integration of distributed energy sources such as
renewable energy and energy storage systems, the traditional distribution network
has evolved from a passive power supply network to an active network with the
bidirectional power flow (Sheng et al., 2021). The operation and scheduling of active
distribution networks (ADNs) have undergone great challenges due to intrinsic
intermittence and volatility from renewable energy resources (Xiang et al., 2017;
Li et al., 2023). This has led to the necessity to fully utilize support and adjust the
capability of flexibility resources such as distributed energy storage and electric
vehicles for reliable power supply (Xu et al., 2022; Lu et al., 2023).
Considering the properties of large quantities, decentralized locations, and diverse
stakeholders for heterogeneous flexibility resources, the traditional centralized
control strategy faces various challenges in the form of system reliability, mass
communication, and information privacy (Hu et al., 2018). Hence, distributed
optimization is proposed to purge the globally unified control of distribution
networks that would enable the efficient management of flexibility resources
through distributed clustering (Zhou B. et al., 2021; Fu et al., 2022; Zhong et al.,
2023). However, conventional distributed algorithms have slow convergence
properties, owing to the gradient-based update process and communication delays
(Zhang et al., 2022), which cannot satisfy the fast real-time scheduling of ADNs.
Therefore, this paper focuses on providing insightful perspectives and discussions on
the fast distributed optimization for large-scale scheduling of heterogeneous
flexibility resources.

The main contributions of this paper are two-fold: (1) a bi-level distributed
scheduling model of large-scale heterogeneous flexibility resources is proposed to
minimize the overall operational cost of ADNs and promote the accommodation of
renewable energy resources and (2) a fast distributed asynchronous optimization
method is presented to accelerate the convergence speed for the real-time
scheduling of ADNs, and the correctness and superiority of the proposed method
are demonstrated by case studies.
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2 Distributed scheduling model of
large-scale heterogeneous
flexibility resources

Optimized scheduling of ADNs needs to take into account
potential benefits of different dispatching entities such as
distribution networks and diversified flexibility resources for
minimizing the overall operational costs while stimulating the
incorporation of renewable energy. The objective function aims
to minimize the costs associated with purchasing electricity,
renewable energy curtailment, and dispatching flexibility
resources for the purpose of economy enhancement as follows:

minF � ∑T
t�1
⎡⎢⎣λbuyt Pbuy

t + ∑
i∈ΩRES

λRES.curti,t PRES.curt
i,t + ∑

i∈ΩDR

λDR PL.O
i,t − PL

i,t

∣∣∣∣ ∣∣∣∣
+ ∑

i∈ΩESS

λESS ηci P
c
i,t +

Pdc
i,t

ηdci
( )⎤⎥⎦Δt,

(1)
whereT denotes the total number of scheduling periods;Δt denotes the
duration of each scheduling period; λbuyt , λRES.curt, λDR, and λESS

represent the purchase price of electricity in time period t, the cost
coefficient for the penalty of renewable energy curtailment, the unit
dispatch cost of controllable loads, and the cost coefficient for the
charging and discharging of the energy storage system, respectively;
ΩRES, ΩDR, and ΩESS represent the set of renewable energy, demand
response, and energy storage system in ADNs, respectively; Pbuy

t

denotes the purchased active power from the main grid in time
period t; PRES.curt

i,t denotes the renewable energy curtailment at node
i in time period t; PL

i,t and PL.O
i,t denote the actual dispatch power and

original power of controllable load i in time period t, respectively; ηci
and ηdci denote the charging and discharging efficiencies of energy

storage unit i, respectively; and Pc
i,t and Pdc

i,t denote the charging and
discharging power of energy storage unit i in time period t, respectively.

A bi-level distributed scheduling strategy is proposed to minimize
the overall operational cost of ADNs, which is poised to meet the needs
of individual economies and privacy preservation for agents with diverse
flexible resources (Cao et al., 2024). At the upper level, the scheduling
and control center of ADNs serves as a decision-maker to achieve
synergies among multiple flexibility resources via information and
energy exchange, thereby maximizing the overall economics of
scheduling for distribution networks with high renewables. At the
lower level, nodes integrated with controllable flexibility resources
achieve autonomous operation through the full utilization of the
inherent adjustment capacity. The proposed hierarchical optimization
scheduling model can be solved by the alternating direction method of
multipliers (ADMM) algorithm, which is a popular and efficientmethod
to deal with distributed optimization problems with stable robustness
and convergence (Gao et al., 2020; Qi et al., 2023). The distributed
scheduling model of large-scale heterogeneous flexibility resources can
be decomposed into the master problem of distribution networks at the
upper level and subproblems of controllable flexibility resources at the
lower level based on the ADMM, as shown in Figure 1A.

The objective function can be separated according to the bi-level
distributed optimization scheduling strategy as follows:

F � FADN + ∑
i∈ΩN

FN,i, (2)

FADN � ∑T
t�1

λbuyt Pbuy
t( )Δt, (3)

FN,i � ∑T
t�1

λRES.curtPRES.curt
i,t + λDR Pload.O

i,t − Pload
i,t

∣∣∣∣ ∣∣∣∣ + λESS ηci P
c
i,t +

Pdc
i,t

ηdci

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣( )Δt,
(4)

FIGURE 1
Distributed scheduling model and fast optimization method for active distribution networks (ADNs). (A) Distributed scheduling model of flexibility
resources (B) Comparison of synchronous and asynchronous distributed ADMM algorithms (C) Illustration of feasibility domains reduction via cutset
constraints.
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where ΩN denotes the set of nodes integrated with flexibility
resources; FADN is the objective function of the master problem
for the ADN; and FN,i is the objective function of subproblem for
node i. The optimization variables for the master problem mainly
comprise the power purchased from or sold to the main grid. The
optimization variables for the subproblems include multiple
heterogeneous flexibility resources dispatching power, which
consist of the energy storage system, photovoltaic generation,
wind turbine generation, micro-gas turbine, and demand
response resources. Furthermore, there are coupling relationships
between the nodes integrated with controllable flexibility resources
and ADNs due to their energy interaction. Hence, the power injected
to nodes integrated with controllable flexibility resources X̂i,t �
Pi,t, Qi,t|i ∈ ΩN{ } is used as coupling variables, and the expected
power from the distribution network to nodes Ẑi,t �
P̂i,t, Q̂i,t|i ∈ ΩN{ } is proposed as virtual decoupling variables to
establish the consistency coupling constraints as follows (Zhou X.
et al., 2021):

X̂ i,t − Ẑi,t � 0. (5)

The variables X̂i,t and Ẑi,t are solved separately at the upper and
lower levels, respectively, and the optimization results are delivered
iteratively between the two levels to solve the model. A Lagrange
penalty function is added to the objective functions of the master
problem and subproblems as follows:

X̂
k+1
i � min FN,i + ρ

2
∑T
t�1

X̂ i,t − Ẑ
k

i,t + uk
i,t( )���������

���������
2

2

⎛⎝ ⎞⎠, (6)

Ẑ
k+1 � min FADN + ∑

i∈ΩN

ρ

2
∑T
t�1

X̂
k+1
i,t − Ẑi,t + uk

i,t( )���������
���������
2

2

⎛⎝ ⎞⎠, (7)

where k denotes the iteration number; ρ is the penalty coefficient;
and uji,t is the Lagrange multiplier. The proposed distributed
scheduling model is solved by optimizing the coupling variables
through continuous iterations between the master problem and
subproblems. Relevant information about the expected interaction
energy for ADNs and nodes integrated with controllable flexibility
resources is delivered mutually at the two levels. The Lagrange
multipliers will be updated after each iteration step as follows:

uk+1
i,t � uk

i,t + X̂
k+1
i,t − Ẑ

k+1
i,t . (8)

The primal residual rk and dual residual sk are introduced as
convergence criteria (Xu et al., 2018), which are calculated after each
iteration step as follows:

rk � ∑
i∈ΩN

∑T
t�1

X̂
k

i,t − Ẑ
k

i,t( )���������
���������2 ≤ εr, (9)

sk � ∑
i∈ΩN

ρ ∑T
t�1

X̂
k

i,t − X̂
k−1
i,t( )���������

���������2 ≤ εs, (10)

where εr and εs refer to the convergence threshold for the primal
residual and dual residual, respectively. If the convergence criterion
is not satisfied, the next iteration will continue with updated
Lagrange multipliers along with the latest data on coupling and
decoupling variables. Otherwise, the iteration process will be
terminated to obtain the optimal scheduling determination of

heterogeneous flexibility resources with minimal operational
costs for ADNs.

3 Fast distributed asynchronous
optimization for real-time scheduling
of ADNs

Considering the time-varying nature of communication
networks and the varied responsiveness of heterogeneous
flexibility resources (Cao et al., 2024), traditional synchronized
computation is insufficient to satisfy the fast real-time scheduling
of ADNs, owing to the increased communication overhead and
limited convergence speed. Specifically, under the synchronous
protocol, the optimization model for the master problem is
triggered at each iteration only if the scheduling center of ADNs
receives the information from all nodes (Zheng et al., 2018). The
master problem and computationally fast subproblems will remain
idle most of the time, thereby impeding the full utilization of parallel
computing resources. Hence, the distributed asynchronous
optimization is adopted to improve the convergence efficiency,
which allows the master problem to execute the next iterative
updates without the reception of complete information from all
nodes (Chang et al., 2016), as shown in Figure 1B. Initially, Dk is
proposed to denote the index set of nodes from which the scheduling
center receives coupling information during iteration k. The variable
information of node i is uploaded to the scheduling center if i ∈ Dk.
If a node fails to deliver information promptly due to
communication delays or slow response speed, the data of the
last iteration will be used instead to execute the next
optimization updates for the master problem as follows:

X̂
k

i,t �
X̂

k

i,t, i ∈ Dk

X̂
k−1
i,t , i ∉ Dk

⎧⎨⎩ . (11)

Two asynchronous constraints are set in the computation
process to guarantee the convergence of the asynchronous
optimization algorithm (Chang et al., 2016). On one hand, to
ensure the efficacy of each iteration, the master problem proceeds
to the next iteration only if the number of nodes inDk is larger than
the set threshold κ≥ 1. On the other hand, taking into account the
hazard of unbounded delays on algorithm convergence (Chang
et al., 2016; Bastianello et al., 2021), the inactive iteration of
every node, as well as i ∉ Dk, must be less than the set maximum
tolerable delay τ. This means that the coupling variable information
per node used by the center must be, at most, τ iterations old
(Mohammadi and Kargarian, 2022). The variable dki is introduced to
count the delays of node i. If i ∈ Dk at the current iteration k, then dki
is set to 0; otherwise, dki is increased by 1 as follows:

dk
i � 0, i ∈ Dk

dk−1
i + 1, i ∉ Dk{ . (12)

When both conditions cannot be satisfied simultaneously, the
scheduling center must wait until the updated information from the
unusual nodes is received. The master problem and subproblems,
with smaller idle time, are frequently updated compared with the
synchronous optimization. However, the benefit of the improved
update frequency can outweigh the cost of the increased number of
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iterations, enabling the asynchronous algorithm to converge in the
shortest possible time (Bastianello et al., 2021).

In order to further accelerate convergence speed, this paper
also proposes a method to curtail the feasibility domains of
the master problem (Wu et al., 2018; Hua et al., 2023), as
shown in Figure 1C. The feasibility of interactive power
information delivered by the master problem is examined
during the subproblem of nodes at the lower level. The
optimization model of the subproblem for node i can be
expressed as follows:

min FDS,i Mi( )
s.t. Gi Mi( )≤ 0
Hi,t X̂ i,t, Ẑi,t( ) � 0 : μi,t

, (13)

where Mi denotes the optimization variables for the subproblem
of node i; Gi(Mi) denotes inequality constraints set for the
subproblem of node i; Hi,t(X̂i,t, Ẑi,t) denotes the coupling
equational constraints of the two levels; and μi,t denotes the
dual multipliers of coupling equational constraints. If the
expected interaction power delivered by the scheduling center
of the master problem is not feasible for the subproblem of node i,
the relaxation factor Si is introduced to transform the subproblem
as follows:

min Si
s.t. FDS,i − Si ≤ 0, Si ≥ 0
Gi Mi( )≤ 0
Hi,t X̂i,t, Ẑi,t( ) � 0 : μi,t

. (14)

With the optimization solution of the relaxed subproblem, the
node i can provide feedback on feasible cutset constraints to the
master problem as follows (Wu et al., 2022):

Ŝi +∑T
t�1
μi,t

THi,t X̂ i,t, Ẑi,t( )≤ 0, (15)

where Ŝi denotes the optimal value of the objective function of
the relaxed subproblem. Otherwise, no constraints are returned to
the master problem if the subproblem is found to be feasible.
Therefore, the objective function and constraint conditions are
both restricted through the feedback of feasible cutset constraints
after feasibility examination. Consequently, an improvement in the
convergence speed was observed, owing to a reduction in the
feasibility domains of the master problem.

4 Case studies

To validate the effectiveness of the proposed fast distributed
optimization method for large-scale scheduling of heterogeneous
flexibility resources in this paper, the IEEE33 bus distribution system
is used as a specimen for case studies. The quantity of energy storage
systems, photovoltaic generation, wind turbine generation, micro-
gas turbine, and demand response resources in the distribution
system is defined to be 2, 2, 1, 1, and 2, respectively. The proposed
model is solved by the centralized algorithm, general synchronous
distributed algorithm, and fast distributed asynchronous algorithm,
respectively, to verify the preeminence of the presented method
through comparative analysis. The comparison between the results
of the operational costs for ADNs and convergence properties under
different algorithms is shown in Table 1.

It can be seen that the operational cost results of ADNs obtained
by centralized and distributed algorithms are almost the same,
proving the correctness of the proposed method in this paper.
Since the serial simulation is performed on a single computer, the
distributed optimization time shall be the average optimization time
of a single node integrated with controllable flexibility resources.
Therefore, the average time used for one node by the general
synchronous distributed algorithm and fast distributed
asynchronous algorithm is 150.75 and 120.875 s, respectively. It
shows that the fast asynchronous distributed methods have
computational efficiency superior to the centralized and general
synchronous distributed algorithms. The model convergence speed
can be enhanced by 40.7% and 19.8% through asynchronous iteration
and feasibility domain reduction via cutset constraints, respectively.

5 Discussion and conclusion

A fast distributed optimization method for the large-scale
scheduling of heterogeneous flexibility resources is presented in
the paper. The key conclusions can be summarized as follows: 1) the
proposed bi-level distributed scheduling model coordinates multiple
heterogeneous flexibility resources to enhance the operational
economy of ADNs and facilitate the accommodation of
renewable energy resources; 2) compared to the centralized and
general synchronous distributed algorithm, the model convergence
speed can be enhanced by 40.7% and 19.8%, respectively, through
the proposed fast asynchronous distributed optimization method to

TABLE 1 Comparison of the operational costs for active distribution networks (ADNs) and convergence properties.

Algorithm Total
cost/¥

Cost of
ADNs/¥

Cost of flexibility resources/¥ Iteration Time/s

Electricity
purchase

Energy
storage
system

Demand
response

Renewable energy
curtailment

Centralized
algorithm

27,903.4 24,216.3 1,950.6 432.6 1,303.9 - 204

General distributed
algorithm

27,904.0 24,216.8 1,950.6 432.8 1,303.8 108 1,206

Fast distributed
algorithm

27,904.0 24,216.8 1,950.6 432.8 1,303.8 83 967
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satisfy the fast real-time scheduling of ADNs; and 3) further research
will focus on the distributed economic optimization of ADNs
integrated with heterogeneous flexibility resources, considering
the uncertainties of renewable energy resources and load demand.
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A hybrid neural network based on
KF-SA-Transformer for SOC
prediction of lithium-ion battery
energy storage systems
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With the widespread application of energy storage stations, BMS has become an
important subsystem inmodern power systems, leading to an increasing demand
for improving the accuracy of SOC prediction in lithium-ion battery energy
storage systems. Currently, common methods for predicting battery SOC
include the Ampere-hour integration method, open circuit voltage method,
and model-based prediction techniques. However, these methods often have
limitations such as single-variable research, complex model construction, and
inability to capture real-time changes in SOC. In this paper, a novel prediction
method based on the KF-SA-Transformer model is proposed by combining
model-based prediction techniques with data-driven methods. By using
temperature, voltage, and current as inputs, the limitations of single-variable
studies in the Ampere-hour integration method and open circuit voltage method
are overcome. The Transformer model can overcome the complex modeling
process in model-based prediction techniques by implementing a non-linear
mapping between inputs and SOC. The presence of the Kalman filter can
eliminate noise and improve data accuracy. Additionally, a sparse autoencoder
mechanism is integrated to optimize the position encoding embedding of input
vectors, further improving the prediction process. To verify the effectiveness of
the algorithm in predicting battery SOC, an open-source lithium-ion battery
dataset was used as a case study in this paper. The results show that the proposed
KF-SA-Transformer model has superiority in improving the accuracy and
reliability of battery SOC prediction, playing an important role in the stability
of the grid and efficient energy allocation.

KEYWORDS

state-of-charge, Transformer, Kalman filter, sparse autoencoder, lithium-ion battery

1 Introduction

With the transformation of the global energy structure and the increasing popularity of
renewable energy, the integration of new energy generation into the power system has
become an important aspect. However, due to the inherent randomness and instability of
the output power of new energy sources, integrating them into the grid may impact power
quality and reliability (Wang et al., 2019; Shi et al., 2022). Electrochemical batteries, as
representatives of energy storage systems, provide a promising solution to mitigate the
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instability and intermittency of new energy integration. They can
assist in peak shaving and frequency regulation, thereby enhancing
the security and flexibility of energy supply systems. The core of
electrochemical energy storage is the Battery Management System
(BMS), where the State of Charge (SOC) of the battery is a key
parameter. However, due to the non-linear and time-varying
electrochemical system inside batteries, SOC estimation can only
be based on measurable parameters such as voltage and current,
making accurate estimation of battery SOC a challenging task
(Rivera-Barrera et al., 2017). Large errors in estimating battery
SOC may damage battery capacity and service life, affect the
economic operation of the grid, and even lead to catastrophic
events such as combustion or explosion, posing a serious threat
to grid safety (Zhou et al., 2021).

Currently, the common methods for predicting battery SOC
mainly include the Ampere-hour integration method, open
circuit voltage method, model-based prediction techniques,
and data-driven methods. The Ampere-hour integration
method, although simple, is prone to accumulating errors over
time (Chang, 2013; Zhang et al., 2020). The accuracy of the open
circuit voltage method is influenced by the battery’s rest period.
Model-based prediction techniques are based on specific
operating conditions and may not be applicable to all
conditions; accurate estimation of physical parameters in the
model is very difficult, as these parameters change with battery
aging and usage conditions, increasing model uncertainty and
reducing prediction accuracy (How et al., 2019). Another method
is the data-driven approach, which uses data training to identify
the complex relationship between feature parameters and SOC,
thereby avoiding the need for complex battery models. Typical
data-driven methods usually utilize machine learning techniques
such as Random Forest (Li et al., 2014) and Support Vector
Machine (Song et al., 2020) to predict battery SOC. However,
compared to traditional machine learning methods, deep learning
methods based on neural networks demonstrate superior
performance in extracting latent features and are widely used
in SOC prediction, such as Long Short-Term Memory (LSTM)
(Chen et al., 2023), Gated Recurrent Unit (GRU) (Dey and Salem,
2017), and Transformer series models (Han et al., 2021). The
Transformer model, due to its inherent self-attention mechanism,
can perform parallel computation and sequential data processing,
making it more effective in handling time series data and
providing a solution with higher accuracy and generalization
capabilities for SOC prediction (Shen et al., 2022). (Hussein et al.,
2024) conducted research on the SOC estimation of lithium-ion
batteries using a self-supervised learning Transformer model,
which demonstrated lower root mean square error (RMSE)
and mean absolute error (MAE) under different ambient
temperatures, indicating the potential of self-supervised
learning in battery state estimation. However, this method has
poor resistance to noise, which affects the robustness of the model
in practical applications. (Chen et al., 2022) predicted the
remaining useful life (RUL) of lithium-ion batteries based on
the Transformer model, using a denoising autoencoder (DAE) to
preprocess noisy battery capacity data, and then utilizing the
Transformer network to capture temporal information and learn
useful features. Eventually, by integrating the denoising and
prediction tasks within a unified framework, the performance

of RUL prediction was significantly improved. Despite this, the
model by Chen et al. has some limitations. Although the DAE
preprocessing step can remove noise, it may not fully preserve all
the subtle features useful for prediction. To overcome these
challenges, a Kalman filter can be added to the Transformer
model. (Bao et al., 2024), in response to the limitations of existing
methods in extracting time series features, proposed a time
Transformer-based sequential network (TTSNet) for SOC
estimation of lithium-ion batteries in electric vehicles. TTSNet
effectively encodes features of the temporal dimension
information through the time Transformer and introduces
sliding time window technology and Kalman filtering as pre-
and post-processing steps, which not only enhances the
processing capability for long sequence data but also improves
the accuracy and robustness of the estimation. In summary, these
studies have made significant progress in the state monitoring
and management of lithium-ion batteries, especially in improving
prediction accuracy and handling long sequence data. However,
the complexity of these models also brings significant
computational costs. The Transformer model usually requires
a large number of parameters and computational resources,
which not only limits its application in resource-constrained
environments but also increases the time cost for training
and inference.

To overcome the limitations of the aforementioned methods,
this paper introduces Sparse Autoencoder (SA) technology to
improve the SA-Transformer model. The core idea of SA is to
reduce the number of model parameters and computational
complexity by learning the low-dimensional representation of
data. It can significantly reduce the number of model parameters,
thereby reducing memory usage and computational
requirements, making the dimensionality-reduced model more
lightweight, which can be trained and inferred more quickly. This
is particularly important for application scenarios that require
real-time responses. Since the sparse encoder encourages the
model to learn more robust and discriminative feature
representations, it can also improve the model’s generalization
capabilities.

To this end, this paper proposes a new model KF-SA-
Transformer, which combines the advantages of the KF, SA, and
Transformer. To enhance the model’s resistance to noise and the
smoothness of prediction, this paper introduces the KF module; to
address the issue of model computational complexity, this paper
uses the SA module to improve feature extraction capabilities by
learning sparse representations of data, dimensionality reduction of
large-scale sequence data, and reducing the input dimensions of the
Transformer. The Transformer model is adept at capturing and
learning long-term dependencies in the data, which enables the KF-
SA-Transformer model to demonstrate higher prediction accuracy
and stability in battery SOC prediction tasks. This three-in-one
architecture aims to achieve more accurate SOC prediction, which
can reduce the risk of overcharging and over-discharging the
battery, thereby reducing the frequency of battery replacement
and maintenance costs; it can also be used to develop intelligent
charging strategies, improve charging efficiency, and reduce the
impact on the power grid. In the field of new energy, such as wind
and solar power generation, accurate SOC prediction of energy
storage systems is of great importance for the stability of the power
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grid and the effective distribution of energy (Schmietendorf
et al.,2017; Yu G. et al., 2022a; Yu G. Z. et al., 2022b).

2 KF-SA-Transformer model for SOC
prediction

2.1 Model architecture

The KF-SA-Transformer model is an innovative battery SOC
prediction model that integrates three technologies: the Kalman
filter, the sparse autoencoder, and the Transformer module. The
input data of battery voltage, current, and temperature are filtered
through the Kalman filter to eliminate noise interference and ensure
data stability. The filtered data are then fed into the sparse
autoencoder module, which extracts key features related to the
battery SOC from the data through unsupervised learning,
forming an embedding matrix that includes positional
information. Finally, the embedding matrix is input into the
Transformer module, which uses its unique self-attention
mechanism to capture long-distance dependencies in the data,
thereby accurately predicting the battery’s SOC. The entire model
achieves precise prediction from raw data to the battery SOC
through this process, enhancing the accuracy and robustness of
the prediction results. The overall architecture of the model is shown
in Figure 1. This paper defines a feature input matrix X, with
dimensions m × 3, as shown in Eq. 1. Each row represents a
sample, and each column represents a feature (current, voltage,
or temperature).

X �
X11X12X13

X21X22X23

..

...
...
.

Xm1Xm2Xm3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

Where: Xij denotes the measurement value of the ith sample on
the jth feature, and m is the total number of samples.

2.2 Kalman filter module

Using data-driven methods alone to predict battery SOC has
significant limitations, as it requires high-precision battery data
and may suffer from limited generalization capabilities. However,
the integration of the Kalman filtering method can achieve
optimal prediction of system states by minimizing the mean
square error (MSE), effectively overcoming the inaccuracy of
initial predictions. The Kalman filtering method treats estimated
variables as system state variables and measured variables as
observation variables. Through a recursive process, the Kalman
filtering method can filter out noise and allocate different
confidences to estimated and measured variables using
Kalman gain until the estimated variables converge to more
accurately reflect the actual variables (Peng, 2009). The state
transition equation and observation equation are respectively, as
shown in Eqs 2, 3:

Xk � AXk−1 + w k( ) (2)
Zk � HXk + v k( ) (3)

Where: Xk, Zk are the system’s state vector and observation
vector at time k; uk-1 is the control input at time k-1; A, H, are the
state transition matrix and observation matrix; w(k), v(k) are the
system noise and observation noise.

The core of the Kalman filter lies in two main update steps:
Prediction and Update. In the prediction step, the current state is
predicted based on the previous moment’s state estimate and
process noise, as shown in Eqs 4, 5:

X̂
−
k � AX̂

−
k (4)

FIGURE 1
Overall model architecture.
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P−
k � APk−1AT + Q (5)

Where: X̂
−
k represents the predicted state vector, P-k is the

predicted error covariance matrix, and Q is the process noise
covariance matrix. To integrate predicted information with
observational data, the concept of the Kalman gain is introduced.
By utilizing the Kalman gain, it is possible to update the state
estimate and the error covariance, as shown in Eqs 6–8:

KK � P−
kH

T HP−
kH

T + R( )−1 (6)
X̂k � X̂

−
k +Kk Zk −HX̂

−
k( ) (7)

Pk � I −KkH( )P−
k (8)

Where: Kk is the Kalman gain, X̂ k is the corrected state vector,
Pk is the corrected error covariance matrix, and R is the observation
noise covariance matrix. After processing by the Kalman filter,
updated state estimates are obtained, which reflect the optimal
estimated state of the battery system at each time step. These
state estimates are integrated into a new matrix XKF, which
captures the evolution of the system state over time and filters
out the effects of noise.

2.3 Sparse auto-encoder module

The Kalman filter, while effective in processing linear data, has
limited capabilities when dealing with nonlinear data and complex
relationships. To address this limitation, the integration of a sparse
autoencoder into the data processing pipeline is proposed. This
autoencoder effectively extracts features from the filtered data,
reducing its dimensionality while preserving valuable feature
information. This approach helps reduce data dimensionality and
identify useful feature information, thereby enhancing the accuracy
and performance of the prediction model.

SA introduces modifications to the embedding layer of the
Transformer architecture, aiming to lighten the temporal
positional encoding and enhance the modeling capabilities for
temporal dependencies. As an unsupervised algorithm, SA adjusts
its parameters adaptively by calculating the difference between the
input and output of the autoencoding process, resulting in a trained
final model. This algorithm finds widespread applications in
information compression and feature extraction. Its goal is to
reconstruct the input data using learned sparse representations.

The sparse autoencoder can sparsely represent battery input
features, reduce the dimensionality of the original data, and improve
computational efficiency. Its encoder input is the feature vector XKF

obtained after Kalman filtering, with the encoder output and
decoder input in the hidden space, where the data is compressed
into fewer dimensions while attempting to retain the most
important information. The decoder output transforms the
representation in the hidden space back to the original data
space, attempting to reconstruct data as similar as possible to the
input data, as shown in Eqs 9–11:

A1 � sigmoid W1XKF + b1( ) (9)
XSA � sigmoid W2A1 + b2( ) (10)
sigmoid z( ) � 1 + e−z( )−1 (11)

Where: z is any real number;W1,W2 are the weights of encoder
and decoder; b1, b2 are the biases of encoder and decoder. The
optimization objective is to minimize the reconstruction loss and
approximate the probability density distribution, therefore, the
network loss function is derived as shown in Eqs 12–14:

J W1,W2, b1, b2( ) � 1
M

∑M
i�1

x i( ) − x̂ i( )



2∣∣∣∣∣ + λ

2
W1‖ ‖ + λ

2
W2‖ ‖

+ β∑d
j�1

p · log2
p

p̂j

+ 1 − p( ) · log2 1 − p( )
1 − p̂j( )⎡⎢⎢⎣ ⎤⎥⎥⎦

(12)

p̂j �
1
M

∑M
i�1
a i( )
j (13)

p � 1
M

∑M
i�1
s i( )
j (14)

Where: aj
(i) is the jth neuron output value of the ith sample of the

hidden space A1; sj
(i) denotes the jth neuron input value of the ith

sample of the encoder A0;M is the total number of samples; β is the
given sparsity constraint coefficient; λ is the given regularization
coefficient. The encoder output of the sparse autoencoder results in a
processed feature matrix, referred to as XSA. This matrix
encapsulates the salient characteristics of the input data, enabling
the subsequent neural network to discern intricate relationships
among the sequence elements.

2.4 Transformer module

Due to the inherent complexity and time-varying nature of
chemical reaction processes within batteries, model-based
prediction methods inherently carry the risk of errors. Enhancing
model accuracy further complicates the task of parameter
identification. To mitigate this challenge, the Transformer model
is introduced, as it excels at capturing long-term dependencies and
contextual information within sequence data, thereby enhancing the
prediction accuracy of lithium battery SOC.

Transformer is a sequence-to-sequence (seq2seq) model based
on the attention mechanism, which consists of two parts, Encoder
and Decoder. The Transformer model consists of four parts, which
are the self-attention mechanism, the multi-head attention
mechanism, the positional encoding and the forward propagation
network. As shown in Figure 2, the multi-head attention mechanism
in the Transformer model allows the model to focus on different
parts of the input sequence simultaneously, possessing the ability to
globally perceive the input features, which improves the
expressiveness of the model and better handles both local and
global information. The forward propagation network is a fully-
connected feedforward network consisting of two fully-
connected layers.

The Transformer encoder comprises numerous identical sub-
blocks, known as Transformer Blocks, stacked consecutively. The
initial sub-layer within each block incorporates the multi-head
attention mechanism, followed by a second sub-layer, a fully
connected network. These two sub-layers are interconnected
through residuals, which effectively prevent gradients from
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FIGURE 2
Multi-head attention structure.

FIGURE 3
Transformer model.
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vanishing and enhance the seamless flow of information between
them. Additionally, a layer normalization operation is performed
after the residuals are connected, further facilitating the algorithm’s
convergence. On the other hand, the decoder differs from the
encoder in a crucial aspect: the resulting three vectors, along with
an ordinal mask, are concurrently fed into the multi-head self-
attention layer, as illustrated in Figure 3.

The Transformer leverages its unique structure to process the
feature matrix XSA refined by the sparse autoencoder, thereby
achieving the prediction of the SOC for lithium batteries. The
model first captures the interdependencies between sequence data
in the input feature matrix through the self-attention mechanism,
thereby understanding the long-term dependencies and contextual
information within the sequence. And the multi-head attention
mechanism allows the Transformer to focus on different parts of
the input matrix simultaneously, globally perceiving the input
features, which helps the model to better understand and process
the input data. Positional encoding is used to provide positional
information for each element in the sequence, which is crucial for
understanding the sequential relationships. Finally, through the
feed-forward neural network, the Transformer integrates this
information and translates it into a prediction for the lithium
battery SOC. This processing method makes the Transformer
highly flexible and accurate when dealing with sequence data,
enabling precise prediction of the lithium battery SOC.

3 Case analysis

3.1 Simulation platform and data

3.1.1 Simulation platform
The simulation platform is equipped with an Intel Core i7-

7800X processor and an NVIDIA GeForce RTX 2080 Ti graphics
card. It utilizes Python 3.8 as a programming language for algorithm
development. The algorithmic model is built using TensorFlow, an
open-source machine learning framework.

3.1.2 Data preparation
This paper utilized a publicly accessible lithium-ion battery

dataset obtained by Dr. Phillip Kollmeyer at McMaster
University in Hamilton, Ontario, Canada, to confirm the
robustness of the studied model (Philip et al., 2020). This dataset
was generated through various charge-discharge cycles on brand-
new 3Ah LG 18650HG2 lithium-ion batteries following standard
protocols. The collected data includes experiments conducted at six
different temperatures ranging from −20°C to 40°C. This paper
utilizes the driving condition data at 25°C as the dataset for
validating the model’s effectiveness. The dataset includes four
standard drives (UDDS, HWFET, LA92, and US06) and eight
driving cycles that are randomly combined from the four
standard driving cycles.

The KF-SA-Transformer model used the terminal voltage,
current, and temperature of the lithium battery as input variables
to estimate the battery’s SOC. However, the original data often
exhibited significant fluctuations, which could introduce bias during
the model parameter optimization process. Consequently, this
might affect the effectiveness of the training process and the

generalization capability of the model. Additionally, the variables
were not uniformly scaled, which could lead to a contraction effect
on the data size and range within the neurons of the deep learning
model during parameter updates in the backpropagation phase. To
address this issue, normalization of the data before prediction
becomes imperative. This normalization process adjusts the data
to be contained within the [0,1] interval, with the transformation
function as show in Eq. 15:

X � X0 −Xmin

Xmax −Xmin
(15)

Where: X represents the normalized sample data; X0 represents
the original sample data; Xmin is the minimum value of the original
sample data; Xmax is the maximum value of the original sample data.

3.1.3 Assessment indicators
To appraise the precision of the model’s predictive capabilities,

this paper employs a suite of metrics: the MSE, MAE. These metrics
collectively assess the model’s performance in estimating the SOC of
the battery. The specific calculation formula as shown in Eqs 16, 17:

MSE � 1
m
∑m
i�1

yi − ŷi( )2 (16)

MAE � 1
m
∑m
i�1

yi − ŷi( )∣∣∣∣ ∣∣∣∣ (17)

Where: m is the number of samples, i is the sample sequence
number, yi is the actual value of the ith sample, ŷ i is the predicted
value of the ith sample, and di denotes the average of the real values.
The above indicators are used to evaluate the error between the
predicted value and the actual value, and the smaller the value is, the
more accurate the prediction result is.

3.2 Model performance optimization
strategies

3.2.1 Hyper-parameter settings
The accuracy of the neural network is influenced by hyper-

parameters, which include, but are not limited to, the number of
convolutional layers and the dimensions of the convolutional kernel.
These hyper-parameters are pivotal in determining the SOC
prediction outcomes. Commonly adopted methods for hyper-
parameter optimization encompass grid search, random search,

TABLE 1 Model parameter setting.

Parameters Correlation coefficient

Encoder Layers 4

dmodel 3

MLP hidden layer 4

Batch size 64

Learning rate 0.00001

Epochs 50
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and Bayesian optimization. While grid search is a straightforward
approach, it can be computationally expensive and time-consuming.
To achieve efficient hyper-parameter optimization within a
reasonable timeframe, this paper opts for the Bayesian
optimization algorithm. The underlying principle of Bayesian
optimization involves the construction of a probabilistic model of
the objective function. This model is iteratively refined by
incorporating new sample points, thereby updating the posterior
distribution of the objective function. The optimal hyperparameters
selected in this paper are shown in Table 1.

3.2.2 Comparison of optimization algorithms
To further enhance the precision of the model’s convergence

value, reduce prediction errors, and improve generalization
capabilities, it is necessary to introduce a parameter
optimization algorithm into the KF-SA-Transformer model.
This paper employs Stochastic Gradient Descent (SGD),
Average Stochastic Gradient Descent (ASGD), and Adaptive
Moment Estimation (Adam) to optimize the KF-SA-
Transformer model. As shown in Figure 4, loss curves during
iterative training on the training set and validation set for each

algorithm are plotted. The analysis indicates that the Adam, SGD,
and ASGD algorithms are all capable of achieving model
convergence. However, the convergence rate of the ASGD
optimization algorithm is relatively slow, failing to reach the
convergence value of the other two algorithms even after
50 training epochs. In contrast, the SGD algorithm converges
relatively quickly but exhibits significant fluctuations, especially
in the loss curve on the validation set. Comparatively, the Adam
optimization algorithm has the fastest convergence rate, with the
loss value approaching zero and the smallest fluctuations after
just 1-3 training epochs. Compared to SGD and ASGD, the Adam
algorithm has significantly improved the predictive accuracy of
the final model to a greater extent.

3.3 Results and discussion

3.3.1 Performance comparison of different models
To investigate the performance of the KF-SA-Transformer

model, this paper compares it with the SA-Transformer and the
Transformer models. Using the UDDS driving data as the test set,
the SOC prediction results of these models were compared. Figure 5
illustrates the comparative analysis of the prediction data and the
original data for the three models under the UDDS conditions, along
with a comparison of their prediction errors.

Based on the thorough data analysis presented in Figure 5, the
conclusions drawn are as follows: The KF-SA-Transformer
model has exhibited remarkable predictive capabilities. It
achieves a low MAE of 0.63% and an RMSE of 0.81% in SOC
prediction, while its maximum error is contained within 3.08%.
In contrast, the SA-Transformer model’s SOC prediction
performance is slightly inferior, with an MAE of 0.65%, an
RMSE of 0.88%, and a maximum error of 3.59%. The
traditional Transformer model, on the other hand, displays
comparatively weaker performance, attaining an MAE of 1.3%,
an RMSE of 1.72%, and a maximum error of 4.73%. These
findings underscore the KF-SA-Transformer model’s high
degree of accuracy and stability in SOC prediction,
highlighting its significant advantage over the other models.

3.3.2 Prediction performance under different
conditions

To further explore the performance of the KF-SA-Transformer
model in practical applications, this study selected the US06 driving
data and a set of mixed driving cycles as the test set, thereby
comprehensively evaluating the predictive capability of the KF-
SA-Transformer model under variable operating conditions. The
predicted results and errors are presented in Figures 6, 7.

Under the US06, a representative high-speed driving scenario,
the KF-SA-Transformer model exhibited outstanding accuracy in
predicting the battery’s SOC. Notably, its predicted results achieved
an MAE of merely 0.87%, along with an RMSE of 1.13%. Even at the
peak of error, the deviation remained within a range of 3.48%. This
data unequivocally demonstrates that the KF-SA-Transformer
model maintains exceptional predictive accuracy under high-
speed and high-load conditions.

In the more complex mixed driving cycles, which encompass
a variety of driving speeds and load conditions, the KF-SA-

FIGURE 4
Loss profile based on KF-SA-Transformer model (A) training set
(B) validation set.
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FIGURE 5
SOC prediction results (A) KF-SA-Transformer (B) SA-Transformer (C) Transformer (D) error comparison of each model.

FIGURE 6
SOC prediction results of the US06 driving (A) prediction results (B) error curve.
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Transformer model’s predictive performance remains equally
remarkable. These conditions pose higher demands on the
model’s generalization capabilities. However, the KF-SA-
Transformer model still demonstrated excellent performance,
achieving an MAE of 0.79% and an RMSE of 0.94% for its
SOC prediction results. The maximum error was only 3.63%.
These data not only validate the model’s adaptability under
different operating conditions but also further reinforce the
effectiveness of the KF-SA-Transformer model in the field of
SOC prediction.

4 Conclusion

This paper introduces a method for predicting the SOC of
lithium-ion battery energy storage systems using a hybrid neural
network comprising the KF-SA-Transformer architecture. The
approach takes current, voltage, and temperature data as inputs,
first utilizes a Kalman filter for noise reduction, and then forwards
the filtered data to a sparse autoencoder for feature extraction,
effectively reducing the data dimensionality. Finally, the
Transformer model leverages these low-dimensional features to
establish a mapping relationship with the SOC, thereby
significantly enhancing the accuracy and overall performance of
SOC predictions.

Under identical driving cycle conditions, the KF-SA-
Transformer model exhibits significant advantages compared
to other models. Moreover, the application of the KF-SA-
Transformer model has also yielded favorable results in
various other driving cycle conditions. While the model
performs exceptionally well on the selected lithium-ion
battery dataset, its generalization capabilities to other battery
types or varying operating conditions remain to be further
validated. Therefore, future research could explore avenues
such as enhancing dataset diversity, incorporating datasets

from multiple battery models for model training, employing
data augmentation techniques, or adopting an ensemble of
multiple models to further improve the model’s generalization
abilities and foster wider applications and advancements in the
field of SOC prediction.
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Optimal power flow method with
consideration of uncertainty
sources of renewable energy and
demand response

Wenjia Zhang*, Zhuyi Peng, Quanquan Wang, Wanchun Qi
and Yi Ge

State Grid Jiangsu Electric Power Co. Ltd. Economic Research Institute, Nanjing, Jiangsu, China

Optimal power flow (OPF) calculation methods are important for the power
system operation and mainly focus on the deterministic power flow calculation,
neglecting the impact of demand response on online security calculation of
power systemswith renewable energy sources. Therefore, this paper proposes an
OPF calculation method that considers the uncertainties of wind power,
photovoltaic (PV) power generation and demand-side response. Firstly, the
research focuses on the renewable energy grid, considering the uncertainties
of wind power and PV power generation, and establishes uncertainty models for
wind power and PV output. Secondly, based on cloud model theory, an
uncertainty model for demand response is established. According to the
established models, an efficient OPF model is constructed with a linearized
submodels considering multiple uncertainties. By testing on the IEEE 30-bus
system as a typical example, we found the effectiveness and superiority of the
proposed OPF calculation method can benefit the power system economic
operation and demand side resource utilization.

KEYWORDS

optimal power flow, demand response, renewable energy grid, cloud model theory,
multiple uncertainties

1 Introduction

In recent years, the global energy crisis has become increasingly prominent, and the
environmental pollution caused by the combustion of fossil fuels such as coal and oil has
also attracted widespread attention (Xin et al., 2022). To address this issue, countries around
the world have actively invested a large amount of funds and research personnel in
renewable energy technologies to replace fossil fuels. New renewable and clean energy
sectors, including wind and solar power generation, have experienced vigorous growth
(Chen et al., 2020). As the proportion of wind power, PV and other renewable energy
generation in power grid generation continues to increase, the inherent randomness and
fluctuation of these energy sources gradually exert a growing impact on the operational state
of the electric power system. Therefore, to precisely evaluate how the integration of
renewable energy sources with high capacity affects the operational state of the electric
power system, and to enhance the reliability and cost-effectiveness of power systems
incorporating wind and PV generation, extensive research has been conducted on OPF
calculation methods for electric power systems (Yang et al., 2018). Traditional deterministic
power flow calculation methods are mainly used in typical scenarios where the grid
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structure information of the power system is fixed and the input
power at each node of the power system remains basically
unchanged. They are unable to accurately reflect the actual
operational state of the current power grid where renewable
energy sources constitute a significant portion (Pourbehzadi
et al., 2019).

Currently, scholars have conducted extensive research on the
OPF calculation problem for power grids containing wind power
and PVs. In Refs. (Li et al., 2015; Guo et al., 2018), the uncertainty of
wind power output is taken into account, and a probabilistic OPF
model for wind power integration is proposed. Ref. (Li et al., 2020).
introduces a prediction method for PV output that considers
correlation and analyzes the OPF of PV output at different time
points. Additionally, Ref. (Morshed et al., 2018). addresses the issue
of correlation between the outputs of wind farms and proposes a
correlation modeling method based on fuzzy C-means clustering for
calculating the power flow in a distribution network that includes
wind power generation. In Ref. (Yan et al., 2018), Latin Hypercube
Sampling (LHS) and its improved algorithm were employed for
sampling the probability distributions pertaining to wind power,
photovoltaics, and other renewable energy forms, enhancing the
speed and accuracy of power flow calculations. In Refs. (Liao et al.,
2019; Liu et al., 2019), the linearization semi-variance approach was
developed for probabilistic power flow calculations, effectively
reducing the impact of uncertainty in clean energy sources like
wind power and PVs on power flow calculation results.

However, existing research has not taken into account the impact
of demand-side response on OPF calculation. On the load side,
demand-side response has a significant influence on the optimal
allocation of the power grid. By guiding users’ electricity
consumption behavior through demand-side response and
matching load characteristics with power generation characteristics
such as wind power and PVs, it is possible to reduce the configured
capacity and optimizes the overall cost-effectiveness of the power
grid (Yang et al., 2022). Based on considering the uncertainty of
renewable energy generation, Ref. (Zhao et al., 2018). introduced
demand-side response, effectively reducing the economic cost of
the system. Additionally, due to differences in user demographics,
price incentives, and other factors, demand response also exhibits
significant uncertainty. Ref. (Lin and Zhang, 2020). considered the
impact of demand-side response on system scheduling under
different incentive levels, finding that system scheduling costs
decrease as incentive levels increase.

In summary, although numerous studies have been conducted
on OPF calculation methods for power systems with renewable
energy sources, none of them have taken into account the impact of
demand-side response on the renewable energy accommodation
capacity. As a result, demand-side response has not been
incorporated into the OPF calculation methods. Therefore, this
paper aims to develop an OPF calculation method that considers
the uncertainties of wind power, PV power generation and
demand-side response. The decision variables such as the
output and terminal voltage of wind turbines, transformer ratio,
and reactive power compensation capacity have been reasonably
adjusted. This not only reduces the system operating costs while
satisfying safety constraints, but also enhancing the speed and
accuracy of online security calculation and analysis in
power systems.

The remainder of this paper is organized as follows. Section II
establishes uncertainty models for wind power and PV output.
Section III constructs an uncertainty model for demand-side
response. Based on the previously established uncertainty
models, and Section IV establishes an OPF model and
proposes a linearized method for OPF calculation considering
multiple uncertainties. Section V validates the effectiveness and
superiority of the proposed method using the IEEE 30-bus system
as an example. Finally, Section VI presents the conclusions of
this paper.

2 Uncertainty models for wind power
and PV output

The fluctuations and intermittency of wind speed and solar
irradiance pose new problems and complexities to the stable and
economic dispatch of the power grid. This necessitates the use of
appropriate mathematical models for accurate calculations of wind
power and PV output, facilitating subsequent scenario simulations
and uncertainty handling.

2.1 Wind power output model

A wind turbine generator converts wind energy into mechanical
energy by driving the rotation of its blades, and then converts this
mechanical energy into electrical power. This paper employs the
Weibull distribution to fit the measured wind speed data, and the
resulting probability density function (PDF) of wind speed is
presented as follows in Eq. 1:

f v( ) � k

A

v

A
( )k−1

e−
v
A( )k (1)

Where, v represents the actual wind speed (m/s). k andA are the
two parameters of the Weibull distribution, which are obtained
through fitting the actual data.

The specific mathematical model expression is as follows (Xie
et al., 2019) in Eq. 2:

Pwt �

0 vout < v< vin
v3 − v3in
v3N − v3in

PN vin ≤ v≤ vN

PN vN < v≤ vout

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (2)

Where, Pwt is the power of the wind turbine generator. vout, vin
and vN represent the cut-out wind speed, cut-in wind speed and
rated wind speed of the wind turbine generator, respectively. PN is
the rated power of the wind turbine generator.

During the operation of a wind turbine generator, only the costs
associated with its operation and maintenance are taken into
account, and these costs are specifically related to the output
power of the turbine. The detailed expression is as follows in Eq. 3:

Cwt t( ) � cwtPwt t( ) (3)
Where, cwt refers to the cost associated with the routine

maintenance and operational expenses of a wind turbine for
generating a unit of power. Cwt(t) refers to the total cost related
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to the routine maintenance and operational expenses of wind
turbines during the time period t.

2.2 PV output model

The working principle of PV modules is based on the
photoelectric effect, and their power generation is positively
correlated with the intensity of light. This paper employs the
Beta distribution to fit the measured light intensity data, and the
resulting PDF of light intensity is presented as follows in Eq. 4:

f r( ) � Γ α + β( )
Γ α( )Γ β( ) r

rmax
( )α−1

1 − r

rmax
( )β−1

(4)

Where, r represents the light intensity (W/m2), rmax is the
maximum possible light intensity that the photovoltaic power
plant can receive, Γ is the Gamma function, which along with
parameters α and β, controls the shape of the Beta distribution
curve. The values of α and β are obtained through fitting the
actual data.

The expression for its output power is as follows (Zhao et al.,
2022) in Eq. 5:

Ppv � rSpvηpv (5)

Where, Ppv signifies the electrical power produced by the PV
array. Spv signifies the equivalent area of vertical sunlight received by
the photovoltaic cell. ηpv represents the photoelectric conversion
coefficient.

Similar to wind turbines, only the costs associated with the
operation and maintenance of PV cells are considered during their
operation. The specific expression is as follows in Eq. 6:

Cpv t( ) � cpvPpv t( ) (6)

Where, cpv refers to the cost associated with the routine
maintenance and operational expenses required for the PV cell to
produce a unit of power output. Cpv is the total cost related to the
routine maintenance and operational expenses incurred by the PV
cell during the time period t.

2.3 Simulation of scenarios in wind and solar
generation based on monte carlo sampling

When utilizing scenario analysis to tackle the uncertainty
inherent in wind and solar generation, it is necessary to first
perform scenario simulation to obtain a large-scale scenario
sample set. Meanwhile, the method of time series analysis should
be employed to consider the coupling characteristics between wind
and solar power output at different times. Then, scenario reduction
techniques are applied to extract a few typical scenarios from the
sample set to describe and characterize the power fluctuations of the
entire sample set.

Utilizing Monte Carlo sampling techniques, this paper
performs extensive sampling of wind and solar energy
production to generate a comprehensive collection of predictive
scenarios. Monte Carlo method is based on probabilistic
mathematical models and uses numerical simulation

experiments to describe physical geometric characteristics and
geometric quantities in order to approximate solutions (Zhao
et al., 2023).

For the prediction of wind and solar power output over a
scheduling period T = 24h, a scenario set of size N = 1,000 is
obtained through Monte Carlo sampling. The specific description is
as follows in Eq. 7:

ΩS � S1wt, S
2
wt, S

3
wt, ..., S

T
wt, S

1
pv, S

2
pv, S

3
pv, ..., S

T
pv,{ } (7)

Where, Stwt represents the set of predicted wind generation
scenarios for time t. Stpv represents the set of predicted PV
generation scenarios for the same time t.

Based on the mathematical models established for wind
turbines and PV modules in this section, a sample size of N =
1,000 and a scheduling period of T = 24h were chosen. The cut-
in wind speed is designated as vin � 2.5m/s, the cut-out
wind speed as vout � 27m/s, the rated wind speed as
vN � 15m/s. r � 0.9kW/m2. Monte Carlo method was used to
obtain 1,000 simulated wind power and photovoltaic
output scenarios.

3 Uncertainty model of demand
side response

3.1 Controllable load model

The response level of the demand side largely depends on the
price compensation strategy issued by the system operator,
resulting in significant uncertainty. As shown in Figure 1, when
the incentive level is below γmin, users generally do not participate
in the response. When the incentive level falls between [γmin, γmax],
users engage in the response, and the amount of response increases
as the incentive level rises. Once the incentive level reaches γmax,
user response saturates, reaching the maximum response level. It is
worth noting that the relationship between user response
fluctuations and incentive levels is not linear. As the incentive
level increases, the response fluctuations first increase and then
decrease. γmid represents the critical point in the trend of response
fluctuation changes.

FIGURE 1
Demand response uncertainty curve.
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3.2 Establishment of the uncertainty model
for demand-side response

In this paper, the theory of cloud model is adopted to
describe the uncertainty of demand-side response. Assuming

that the single response quantity Ps
dem of a user fluctuates

around the expected single response value Edem, the joint
effect of n response results from the user forms a user
response quantity Pdem with an expected response of ~Pdem

(Sun et al., 2018). Both Ps
dem and Pdem follow a normal

distribution, and under the condition of Ps
dem � σs, the

probability density function of Pdem is as follows in Eq. 8:

f Pdem( ) � ∫+∞

−∞
1����
2πσs2

√ exp − Pdem − ~Pdem( )2
2σs2

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭
· 1����

2πσ2
√ exp − σ − Edem( )2

2σ2
{ }dσs (8)

It can be seen that the demand response quantity is a random
variable with expected value pdem and variance E2

dem + σ2. When
the demand-side compensation price is set at cdem, the cloud
distribution of the demand-side load response is illustrated in
Figure 2. pdem represents the expected response quantity of users
when the compensation price is fixed. Edem characterizes the
distribution range of the response quantity, reflecting the degree
of uncertainty in the response. σ indicates the concentration of
the user response distribution.

FIGURE 2
Demand response load distribution.

FIGURE 3
Demand response distribution cloud map with different compensation price.
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3.3 Simulation of demand-side response
load scenarios based on the response
cloud model

Figure 3 shows the distribution diagram of user responses for
1,000 times under four cases where the compensation price c is
0.04 $/kW·h, 0.06 $/kW·h, 0.09 $/kW·h and 0.12 $/kW·h
respectively.

4 OPF model and solution

4.1 Establishment of the OPF model

To perform OPF calculations, the initial step involves
establishing an OPF model. This paper proposes an OPF model
that comprehensively incorporates multiple uncertainties, primarily
the fluctuations in wind turbine output and PV generation, along
with the uncertainty associated with demand-side response. The
specific composition of the OPF model includes: the objective
function, the equality constraints for power balance, and a set of
inequality constraints (Sun et al., 2018).

4.1.1 Objective function

f � min ∑m
i�1

ai + biPGi + ciP
2
Gi( ) + Ccomp

⎡⎣ ⎤⎦ (9)

Ccomp � cdemPdem (10)

Where, the objective function f is composed of two parts in Eqs 9
and 10: the system’s generation expenses and the compensation
expenses for user load shedding, excluding expenses such as unit
outages. ai, bi and ci represent the generation cost factors within the
power grid. PGi represents the active power outputted by the
generator situated at node i. m denotes the quantity of generator
nodes present within the power grid. Ccomp represent the
compensation expenses for user load shedding.

4.1.2 Equality constraints
The equality constraints primarily consist of the nodal power

flow balance constraints in Eq. 11:

PGi + Pi
wt + Pi

pv − Pi
load − Pi

node � 0
QGi + Qi

wt + Qi
pv − Qi

load − Qi
node � 0

{ (11)

Where, QGi represents the reactive power generated by the
generator at node i. Pi

node and Qi
node are the active and reactive

power injection at node i, respectively. Pi
lode and Qi

lode are the active
power and reactive power flowing into node i, respectively.

4.1.3 Inequality constraints

Pmin
Gi ≤PGi ≤PGi

max

Qmin
Gi ≤QGi ≤QGi

max

Umin
i ≤Ui ≤Ui

max

Pmin
nodei ≤Pi

node ≤Pnodei
max

Qmin
nodei ≤Qi

node ≤Qnodei
max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (12)

In Eq. 12, where, Ui denotes the voltage magnitude at node i.
Pmax
Gi , Pmin

Gi , QGi
max and QGi

min represent the upper and lower limits of
the active power output and the upper and lower limits of the
reactive power output of the generator at node i, respectively. Ui

max

and Ui
min represent the upper and lower limits of the voltage at node

i, respectively. Pnodei
max , Pnodei

min , Qnodei
max and Qnodei

min represent the upper
and lower limits of active power and the lower and upper limits of
reactive power carried by node i, respectively (Li et al., 2023).

4.2 Solution of OPF model

The nonlinearity of the OPF model considering multiple
uncertainties is primarily concentrated in the equality constraints
of the nodal power balance equations and the line active power flow
equations. This paper introduces a linearization approach for OPF
calculations, incorporating uncertainties in wind and solar energy
generation, along with demand-side response considerations,
through simplified approximations of the node power
balance equations.

The power inflow at node i is expressed as follows:

Pi
node � ∑n

j�1
GijUiUj cos θij + ∑n

j�1
BijUiUj sin θij

Qi
node � ∑n

j�1
GijUiUj sin θij − ∑n

j�1
BijUiUj cos θij

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (13)

Where, Gij and Bij are respectively the real part and the
imaginary part of the element in the ith row and jth column of
the node admittance matrix. θij is the voltage phase angle difference
between node i and node j.

The node admittance matrix of a power system exhibits a unique
structure, where the diagonal elements are the sums of the
admittances of the non-diagonal elements as well as the shunt
components connected to each node.

Yij �
−yij i ≠ j

yii + ∑n
k�1,k ≠ i

yik i � j

⎧⎪⎪⎨⎪⎪⎩ (14)

Where, Yij is the node admittance matrix element of line i-j. yij

is the admittance of line i-j. yii is the self-admittance of node i. Based
on this, Eq. 13 is reformulated.

Pi
node � ∑n

j�1
GijUiUj cos θij + ∑n

j�1
BijUiUj sin θij

� giiU
2
i + ∑n

j�1,j ≠ i

gijUi Ui − Uj cos θij( ) − bijUiUj sin θij[ ]
(15)

Where, gij and bij are the conductance and susceptance of line
i-j, respectively. An expression can be derived from mathematical
approximation formulas as follows in Eq. 16:

Ui Ui − Uj cos θij( ) ≈ Ui Ui − Uj( )
� 1 + ΔUi( ) ΔUi − ΔUj( ) ≈ ΔUi − ΔUj( )
� 1 + ΔUi − 1 + ΔUj( )[ ] � Ui − Uj (16)
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Where, ΔUi represents a small increment in the voltage
magnitude at node i, with a value approximately equal to 0. In
most power systems, the magnitude of node voltages is
approximately 1.0 per unit (pu), while the absolute value of the
phase angle difference between nodes at both ends of a line rarely
exceeds 30°, with most of them falling within 10° or less. Based on
this scenario, the expression can be approximated as follows:

Ui, Uj≈ 1, U2
i ≈ Ui

sin θij ≈ θij, cosθij ≈ 1
{ (17)

Thus, Eq. 15 can be further deformed, and finally the injected
active power of linearized node i, as follows in Eq. 18:

Pi
node � giiUi + ∑n

j�1,j ≠ i

gij Ui − Uj( ) − ∑n
j�1,j ≠ i

bij θi − θj( )
� Ui∑n

j�1
gij + ∑n

j�1,j ≠ i

−gijUj( )⎡⎢⎢⎣ ⎤⎥⎥⎦ − θi∑n
j�1
bij + ∑n

j�1,j ≠ i

−bijθj( )⎡⎢⎢⎣ ⎤⎥⎥⎦
� ∑n

j�1
GijUj − ∑n

j�1
B‘
ijθj

(18)

Where, B‘
ij excluding the self-admittance of the node. Similarly,

Eq. 13 can be simplified and transformed to obtain Eq. 19. The
detailed transformation process is omitted here.

Qi
node � −∑n

j�1
BijUj − ∑n

j�1
G‘

ijθj (19)

TABLE 1 Basic parameter table.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

cdem($/kW·h) 0.04 0.06 0.09 0.12

Probability 0.216 0.175 0.308 0.301

FIGURE 4
The four scenes reduced through K-means clustering.
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FIGURE 5
Schematic diagram of demand side response effect.

FIGURE 6
Schematic diagram of expected node voltage values.
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Finally, based on the calculation formula and approximate
simplification of line power flow, the active power flow of line i-j
can be derived.

After linearizing the nodal power balance equations, the OPF
described in Section 4.1 was established on the MATLAB platform
using the YALMIP toolbox, and solved by the commercial
solver GUROBI.

5 Case study

5.1 Basis data

To validate the efficacy of the model introduced in this paper, a
test was conducted on the IEEE 30-bus system. Detailed parameters
for each generating unit, node, and transmission line can be found in
the software package provided by MATPOWER 4.1. Two wind
farms and two PV plants were integrated into the test system. The
wind farms adopted constant power factor control, with an assumed
power factor of 1 for all wind farms. For ease of description, the AC
OPF model that accounts for the uncertainties in wind and PV
power output, coupled with demand-side response, is defined as
Model A. The DC OPF model considering the same uncertainties is
Model B. Model C is a linear OPF model that only considers the

uncertainty of wind and PV power, while Model D focuses on the
uncertainty of demand-side response. The proposed linear OPF
model in this paper, which considers both wind and PV
uncertainties as well as demand-side response uncertainties, is
designated as Model E.

The K-means clustering method is used to reduce the generated
wind power, PV and demand-side response load scenarios (Wen
et al., 2023), and finally the compensated electricity price cdem is 0.04
$/kW·h, 0.06 $/kW·h, 0.09 $/kW·h and 0.12 $/kW·h, respectively, as
shown in Table 1 and Figure 4.

To facilitate observation and analysis, the results obtained
from solving Model A are used as the benchmark and denoted as
ρ0. The specific expressions for the relative errors of
the computational results from each model are detailed as
follows in Eq. 20:

Δρ � ρ − ρ0
∣∣∣∣ ∣∣∣∣

ρ0
× 100% (20)

5.2 Case analysis

Demand-side response enables load shifting based on real-time
electricity prices, avoiding usage during peak hours when electricity
prices are high. This helps reduce electricity costs for users, improves
economy, and serves to flatten the peak and fill the trough, thereby
enhancing system stability.

By means of incorporating demand-side response and refining
load curves, the resilience of the grid against uncertainties associated
with renewable energy generation can be enhanced. The shifting
effect of demand-side response on the load under different incentive
levels is shown in Figure 5. It can be observed that as the
compensation electricity price increases, the expected response
quantity of users also increases, enabling a better optimization of
the load curve.

As can be seen from Figure 6, the expected voltage value of the
system considering the uncertainty of wind and solar power output
decreases significantly. This is because the integration of wind and
PV power generation can meet the active power demand of nearby
nodes, thereby altering the direction andmagnitude of power flow in
various branches. In addition, as the output of wind and PV power
generation increases, their reactive power demand also increases
correspondingly, resulting in a general reduction in the voltage levels
at various nodes in the system.

TABLE 2 The results of each model in four cases.

Model Optimal cost/$

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Model A 62340.987 60867.414 61175.57 63266.206

Model B 60652.546 59160.675 60048.546 61796.699

Model C 67145.944 65956.654 66115.554 67984.578

Model D 59946.549 59076.592 59491.264 60683.198

Model E 61578.254 60076.592 61019.984 62683.199

FIGURE 7
The optimal cost of each model in four scenarios.
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Table 2 and Figure 7 present the computational results of the five
models under various scenarios in the test system.

As can be seen from Figure 7, a higher compensation electricity
price is not necessarily better. When the compensation electricity
price is between 0.09 $/kW·h and 0.12 $/kW·h, the system’s
scheduling cost gradually increases. Considering both the
economy and uncertainty of the system scheduling cost, there
exists an optimal compensation electricity price range of 0.06
$/kW·h to 0.09 $/kW·h that can result in relatively low system
scheduling costs. Therefore, the average of the system dispatch costs
when the compensation prices are set at 0.06 $/kW·h and 0.09
$/kW·h is taken as the expected system scheduling cost for
the operator.

From Table 3, it can be observed that all five models are able to
obtain optimal solutions under different scenarios, indicating that
each model is feasible and effective. In various scenarios, the relative
errors of Model B are all greater than 2%, with the maximum relative
error approaching 3%. In contrast, the relative errors of Model E are
all around 1%, representing an improvement in computational
accuracy of approximately 57% compared to Model B. Therefore,
the linear OPF calculation method proposed in this paper exhibits
stronger applicability and can be effectively applied to online safety
calculation and analysis of power systems with renewable
energy sources.

Since Model C only considers the uncertainty of wind and PV
outputs, its optimal cost is significantly higher than the other
models. Although Model D has the lowest optimal cost, it only
takes into account the uncertainty of demand-side response,
which may lead to voltage and power violations, causing
greater losses to the system and lacking economic feasibility.
Model E has a significantly lower optimal cost than Model C,
effectively reducing system operating costs. Although it is slightly
higher than Model D, Model E can fully guarantee the stability
and security of the system’s functioning. Hence, the linear OPF
model put forth in this paper, which considers the uncertainties
of wind, PV and demand-side response, exhibits good economic
performance while balancing system operational safety.

6 Conclusion

The OPF computation method put forth in this paper takes
into account the uncertainties of wind and PV output, analyzes
the uncertainty and volatility of the power system’s operating
state, and avoids situations where some lines of the power system

are overloaded or the voltage at some nodes exceeds the limit,
thereby enhancing the safety of system operation. Meanwhile,
through the introduction of demand-side response, the load
curve has been optimized. This significantly boosts the
system’s capacity to handle intermittency and unpredictability
in power generation from renewable sources, further
elevating the system’s safety level. Additionally, it decreases
the required system configuration capacity, ultimately leading
to increased cost-effectiveness in the power system. The
proposed method also linearizes the power flow calculations
that consider multiple uncertainties, significantly reducing the
computational burden and improving the calculation accuracy.
This approach is more aligned with the demands of real-time
safety calculation and analysis in power systems, exhibiting
strong applicability and holding significant importance for
online calculation and analysis of actual power systems
containing uncertainty factors.
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Low-carbon optimization
operation of integrated energy
system considering
comprehensive demand response
under improved carbon trading
mechanism

Jing Li*, Xiying Gao, Dan Guo, Jingyi Xia, Zhuting Jia and
Yue Wang

Elect Intens Control Department State Grid Liaoning Mkt, Shenyang, Liaoning, China

The integrated energy system considering comprehensive demand response can
realize cascade utilization of energy and reduce carbon emissions. However, few
studies explore the operation of Integrated energy system considering the
coupling markets of electricity and carbon trading. Based on the
characteristics and specific needs of the integrated energy system, this paper
establishes the mathematical model of each energy supply equipment, and
studies the optimal energy supply method of the system. First, demand
response is categorized into price and substitution types based on load
response characteristics. Second, the price demand response models are
established utilizing the price elasticity matrix, and substitution demand
response models are developed considering the mutual conversion of
electric and heat energy on the user-side. Subsequently, a baseline
method is employed to allocate carbon emission quotas to the system
without charge with considering the actual carbon emissions from gas
turbines and gas boilers. This results in the formulation of an improved
carbon trading mechanism tailored for integrated energy system. Finally, a
low-carbon optimization operational model for integrated energy system is
constructed with the multi-objective functions. The results of numerical case
studies are presented to validate the performance of the proposed control
method.

KEYWORDS

improved carbon trading mechanism, demand response, integrated energy system,
baseline method, carbon emission quotas

1 Introduction

Integrated energy system (IES) has garnered increased attention as a highly efficient
method for the comprehensive utilization of various energy systems, encompassing
electricity, heat, and natural gas (Zhou et al., 2019). Various IES communities
worldwide have exemplified the practical implementation of combined heat and power
(CHP) as well as power-heat-gas systems to optimize the utilization of energy resources
more effectively (Fang et al., 2018).
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The carbon trading mechanism optimizes the allocation of
system resources and promotes energy conservation and
emissions reduction (Li et al., 2018). In Saboori and Hemmati
(2016), initial carbon emission rights are distributed free of
charge based on the actual output of nuclear power units, heat
power units, and wind power (WP) units. The calculation of carbon
trading costs takes into account the actual carbon emissions of heat
power units, and economic and low-carbon benefits are balanced. In
Yang et al. (2019), a carbon trading mechanism is integrated into a
virtual power plant. By employing the baseline methodology and
considering the output of renewable energy units, initial carbon
quotas are allocated freely as carbon sources. This approach
enhances the overall absorption capacity for renewable energy.
Demand Response (DR) is a method enabling flexible
modulation of the demand side load of IES, thereby enhancing
the effectiveness of communication between the supply and demand
sides. Stemming from the actual demands on the user-side, DR can
facilitate the flexible adjustments on the user-side, thus coordinating
the economic operation of IES. In Ceseña and Mancarella (2019), a
price elasticity matrix is introduced to describe DR behavior, and the
effectiveness of DR in alleviating peak load pressure on the system is
analyzed. In Clegg andMancarella (2016), a DRmodel for electricity
and gas loads is developed using the price elasticity matrix method.
Additionally, a heat load DR model is formulated and validated,
taking into account the fuzzy perception and time-delay
characteristics of heat loads. This model aims to enhance energy
utilization efficiency. In Li et al. (2017), the modeling approach for
traditional DR to electric loads was applied to heat and cooling loads,
achieving integrated scheduling and operation of multiple loads,
including electric, heat, and cooling.

The existing literature either exclusively analyzes carbon trading
mechanisms or solely considers demand response, which is
detrimental to the coordination of system low-carbon
characteristics and economic efficiency (Shang and Li, 2024). In
the context of IES, the introduction of carbon trading mechanisms
can transform carbon emission rights into economically valuable
and dispatchable resources. The consideration of DR has the
potential to exploit demand-side flexibility (Khani and Farag,
2018), thereby achieving a system-wide low-carbon economic
operation. In Chen et al. (2018), a comparative analysis is
conducted on the overall operational costs and curtailed wind
and solar power generation for systems under different electric
and heat load comfort levels. The study ensures user comfort
while realizing the synergistic integration of multiple energy
sources, reducing operational costs, and enhancing the
integration of new energy sources. However, the DR for electric
loads is only modeled for interruptible and shiftable loads,
simplifying the modeling process. In Fang et al. (2018), the price
transmission mechanisms of both the electricity market and the
carbon trading market are incorporated to convert renewable energy
generation, such as wind and solar, into emission reductions. The
study proposes a comprehensive demand-side response solution for
multi-energy systems, which includes the operation of combined
cooling, heating, and power units, as well as energy storage control
strategies. This approach achieves economically efficient operation
of multi-energy systems, although a detailed model for the load side
is not constructed (Li et al., 2018). It is worth noting that the
aforementioned studies, while providing valuable insights, overlook

the consideration of improved carbon trading mechanism associated
with DR. Therefore, a comprehensive analysis incorporating
environmental implications is warranted.

This paper proposes an optimized operation model for an
improved carbon trading mechanism considering comprehensive
DR in an IES. First, consider the combined influence of a ladder
carbon trading mechanism, CHP units, and the operational
scenarios of DR on IES. Second, an optimization scheduling
scheme is formulated with the objective of minimizing the sum
of energy procurement cost, carbon trading cost, and operation and
maintenance cost. Finally, the scheme is subsequently solved using
CPLEX, and multiple optimized scheduling scenarios are compared
and analyzed to validate the economic and low-carbon
characteristics of the model. This provides a reference for the
low-carbon economic operation of IES. The contributions of this
paper can be summarized as follows:

• The load is transferred from high electricity price periods to
low electricity price periods, realizing mutual substitution of
user-side electric energy and heat energy, and smoothing the
load curve.

• A low-carbon optimization model of the IES that takes into
account DR under the improved carbon trading mechanism
is proposed based on the impact of the carbon trading
mechanism to the IES.

• Based on the low-carbon optimization model of the
comprehensive energy system considering DR under the
improved carbon trading mechanism, the operating cost of
the system is reduced.

2 IES framework

2.1 IES architecture

The IES achieves complementary synergy between electric and
heat energy, enhancing energy utilization efficiency while ensuring a
sustained and reliable power supply for diverse user demands in a
cascaded energy utilization manner (Saboori and Hemmati, 2018).
This paper establishes an IES architecture incorporating DR, as
illustrated in Figure 1. Electric energy and gas energy are supplied
by the upper-level electric grid, photovoltaic energy (PV), and the
gas network. The acquired gas from the upper-level gas network
is utilized for the supply of CHP and gas boiler (GB), with surplus
electric energy available for sale to the higher-level electric grid.
Energy coupling devices include CHP, heat pump (HP), and GB,
enabling bidirectional flow of electric and heat energy (Li et al.,
2020). The CHP comprises a gas turbine (GT), waste heat boiler
(WHB), and a low-temperature waste heat power (WHP)
generation unit based on the Organic Rankine Cycle (ORC)
(Cheng et al., 2019). The operational mode is characterized by
heat-electric decoupling, providing adaptability to various
system operating conditions. The HP (mainly ground source
heat pumps) and GB assimilate renewable energy and bear a
portion of the heat load. The introduction of DR serves to
mitigate load curve fluctuations, facilitating interactive
coupling of electric and heat energy, peak shaving, and cost
reduction in operation.
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2.2 B. DR Model

User-side participation in grid interaction involves
changing their energy usage patterns based on current
electricity prices and relevant incentive mechanisms, thereby
achieving peak shaving and valley filling in the load curve and
improving the operational efficiency of the IES (Shang et al.,
2022). Based on the response characteristics of the load, it can
be divided into basic load, curtailable load (CL), shiftable load
(SL), and replaceable load (RL) (Wang et al., 2020). The basic
load belongs to uncontrollable load and does not
participate in DR.

2.2.1 Analysis and modeling of CL characteristics
The primary function of CL operates during periods of high

energy demand, aiming to influence user energy consumption
patterns through price factors. That is, users voluntarily decide
whether to reduce their energy consumption at that specific
moment by comparing electricity prices before and after DR. The
DR characteristics of CL are represented by Eq. 1.

ACL �
a1,1 a1,2 / a1,k
a2,1 e2,2 / a2,k
..
. ..

. ..
. ..

.

ak,1 ak,2 / an,k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (1)

CL determines its load curtailment based on the comparison of
electricity price variations before and after DR. In this paper, k is set
to 24. The elements of the elasticity matrix ACL(i, j), where the
element in the ith row and jth column represents the elasticity
coefficient of the load at time i to the electricity price at time j, is
represented by Eq. 2.

ai,j � ΔQi/Q0
i

Δpj/p0
j

(2)

where ΔQi represents the variation in load at time i subsequent to
DR, Q0

i represents the initial load at time i, Δpj represents the
change in electricity price at time j following DR, and p0

j

represents the initial electricity price at time j. The CL

variation at time i following DR, represented as ΔQCL,i, is
represented by Eq. 3.

ΔQCL,i � Q0
CL,i ∑k

j�1
ACL i, j( )pj − p0

j

p0
j

⎡⎢⎢⎣ ⎤⎥⎥⎦ (3)

where Q0
CL,i represents the initial CL at time i, ACL(i, j) represents

the matrix of price demand elasticity for CL, characterized as a
diagonal matrix, and pj represents the electricity price at time j.

2.2.2 Analysis and modeling of SL characteristics
The concept of SL refers to users responding to electricity prices

based on their individual demands, enabling flexible adjustments to
workload during working hours (Liotta et al., 2016). Utilizing peak-
valley time-of-use electricity prices as signals, users can be guided to
shift their peak-load demand to off-peak periods. Employing a price
demand elasticity matrix to describe DR characteristics, the change
in transferable load at time i after DR, represented as ΔQSL,i, is
represented by Eq. 4.

ΔQSL,i � Q0
SL,i ∑k

j�1
ASL i, j( )pj − p0

j

p0
j

⎡⎢⎢⎣ ⎤⎥⎥⎦ (4)

where Q0
SL,i represents the initial SL quantity at time i, and ASL(i, j)

represents the matrix of price demand elasticity for SL.

2.2.3 Analysis and modeling of RL characteristics
The concept of RL refers to heat loads directly supplied with heat

or electric energy. During periods of low electricity prices, electric
energy can be consumed, while during periods of high electricity
prices, heat energy can be directly utilized to fulfill its own demands,
thereby achieving mutual substitution of electric and heat energy
(Correa-Posada and Sanchez-Martin, 2015). This paper focuses on
replaceable heat loads. In the operational process of IES, the energy
consumption characteristics of users are subject to uncertainties
arising from user preferences and energy costs. To accurately assess
the replaceability of heat loads, this paper comprehensively
considers user demand preferences and energy consumption
costs, and establishes a model for RL. The RL model
characteristics are represented by Eq. 5.

FIGURE 1
IES structure.
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ΔQe
RL,i � −θe,hΔQh

RL,i

θe,h � αeβe
αhβh

⎧⎪⎪⎨⎪⎪⎩ (5)

where ΔQe
RL,i and ΔQh

RL,i represent the substitutable electric load and
the corresponding replaced heat load, θe,h represents the electric-
heat substitution coefficient, αe and αh represent the unit calorific
values of electric energy and heat energy, βe and βh represent the
energy utilization efficiencies of electric energy and heat energy. In
(4), the negative sign represents that the reduction in substitutable
electric load corresponds to an increase in the replaced heat load. For
this category of loads, it is imperative to consider constraints on the
maximum RL, are represented by Eq. 6.

ΔQ RL,e
min#ΔQRL,e

i #ΔQ RL,e
max

ΔQ RL,h
min #ΔQRL,h

i #ΔQ RL,h
max

{ (6)

where ΔQ RL,e
min and ΔQ RL,e

max represent the minimum and maximum
replaceable electric load, ΔQ RL,h

min and ΔQ RL,h
max represent the

minimum and maximum replaceable heat load.

2.3 Carbon trading model

The ladder carbon trading mechanism model is divided into
three parts: the initial carbon emission quota model, the actual
carbon emission model, and the ladder carbon trading cost
calculation model.

2.3.1 Carbon emission quota model
In this IES, carbon emission sources include GT, GB, upper-level

power purchases, and DR on the demand side. The initial carbon
emission quota model is represented by Eq. 7.

QIES � QGT + QGB + Qbuy + Qgas

QGT � εg∑T
t�1

PGT,e t( ) + PGT,h t( )( )
QGB � εg∑T

t�1
PGB,h t( )

Qbuy � εe∑T
t�1
Pbuy t( )

Qgas � εg∑T
t�1
Pgas t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

where QIES, QGT, QGB, Qbuy and Qgas represent the gratuitous
carbon emission quotas for the comprehensive energy system, gas
turbine, gas boiler, electricity purchased from the upper level, and
gas load on the demand side, σe and σh represent the gratuitous
carbon emission quotas obtained per unit of electricity and heat
generated, εg and εe represent the carbon emission quotas per unit of
heat for GT or GB and per unit of electricity purchased from the
upper grid, PGT,e and PGT,h represent the supply of electric power
and heat power from the GT during time period t, PGB,h represents
the supply of heat power from the GB during time period t, Pbuy

represents the power purchased from the upper level by the system
during time period t, Pgas represents the consumption of gas load on
the demand side during time period t, T represents the
scheduling period.

2.3.2 Actual carbon emission model
The estimation of actual carbon emissions QIES

* in the system
requires a comprehensive consideration of externally purchased
electricity, CHP, the operation status of GB equipment, and the
gas load on the demand side. The actual carbon emission model is
represented by Eq. 8 (Zhou et al., 2018).

QIES
* � QGT

* + QGB
* + Qbuy

* + Qgas
*

QGT
* � αg∑T

t�1
PGT,e t( ) + PGT,h t( )( )

QGB
* � αg∑T

t�1
PGB,h t( )

Qbuy
* � αe∑T

t�1
Pbuy t( )

Qgas
* � αg∑T

t�1
Pgas t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where QIES
* represents the actual total carbon emissions of IES, QGT

* ,
QGB

* , Qbuy
* and Qgas

* represent the actual carbon emissions of gas
turbines, gas boilers, electricity purchased from upper grid systems,
and demand side gas load, αe represents the carbon emission coefficient
for electricity purchased from higher-level systems, αg represents the
carbon emission coefficient during the operation of CHP and GB.

2.3.3 Ladder carbon trading cost calculationmodel
The carbon emission trading volume that IES can participate in is

the carbon emission trading amount Q, the difference between the
actual carbon emissions and the carbon emission quota is represented
by Eq. 9.

Q � QIES
* − QIES (9)

The ladder carbon trading mechanism initially establishes the length
of carbon emission intervals, wherein the greater the carbon emissions
generated by IES, the higher the corresponding carbon emission quota
price within the respective interval. Therefore, the cost of ladder carbon
trading, denoted as CCO2, is represented by Eq. 10.

CCO2 �

μQ Q≤m
μ 1 + δ( ) Q −m( ) + μm m≤Q≤ 2m
μ 1 + 2δ( ) Q − 2m( ) + μ 2 + δ( )m 2m≤Q≤ 3m
μ 1 + 3δ( ) Q − 3m( ) + μ 3 + 3δ( )m 3m≤Q≤ 4m
μ 1 + 4δ( ) Q − 4m( ) + μ 4 + 6δ( )m 4m≤Q

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (10)

where μ represents the carbon trading base price, δ represents the
price escalation rate, and m represents the length of the carbon
emission interval.

3 IES optimization operation model

3.1 Objective function

This paper adopts the total operating cost C of IES as the
objective function, which comprises energy purchase cost Cbuy,
carbon trading cost CCO2, and equipment maintenance cost Ceq,
is represented by Eq. 11.

Cmin � Cbuy + CCO2 + Ceq( ) (11)
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1) Energy purchase cost is represented by Eq. 12.
The system can conduct electricity transactions with the upper-

level power grid (Shao et al., 2017). When the power generation
cannot meet its own needs, it purchases power from the upper-level
power grid. Correspondingly, when the power generation is surplus,
the excess power is sold to the upper-level power grid. In addition,
the system needs to purchase natural gas to maintain the operation
of CHP and GB. The energy purchase cost is obtained by (12).

Cbuy � ∑T
t�1

αtP
e
buy t( ) − βtP

e
sell t( ) + γtQ

g
buy t( )( ) (12)

where T Pe
buy(t), Pe

sell(t) andQg
buy(t) represent the purchased electricity

quantity, sold electricity quantity, and purchased gas quantity during time
period t, αt, βt and γt represent the purchase electricity price, selling
electricity price, and gas price during time period t.

2) Carbon trading cost is represented by Eq. 10.
3) Equipment maintenance cost is represented by Eq. 13.

Ceq � ∑T
ι�1
∑N
i�1
ωiPi,t (13)

where N represents the total number of maintenance equipment, ωi

represents the operation and maintenance coefficient of equipment
i, Pi,t represents the output of equipment i.

3.2 Constraints

The IES optimization operation constraints that consider DR under
the carbon trading mechanism include: energy balance constraints, CHP
constraints, and user electricity usage satisfaction constraints.

1) PV output constraint is represented by Eq. 14.
Considering the influence of ambient temperature, solar

radiation intensity, and the limitation of energy conversion
efficiency, the system is often unable to absorb all the PV, and
the actual PV output is less than the predicted output.

0#PPV,t#PPV,t
max (14)

where PPV,t and PPV,t
max represent the actual PV output and predicted

output at time t.
2) GB constraints are represented by Eq. 15.

Ph
GB,t � ρGBP

g
GB,t

Pg
GB,min ≤Pg

GB,t ≤P
g
GB,max

{ (15)

where ρGB represents the power conversion rate of GB to heat
energy, Pg

GB,t represents the power of natural gas input to GB at time
t, Pg

GB,max and Pg
GB,min represent the upper and lower limits of the

input power to GB.
3) CHP constraints are represented by Eq. 16.
The electricity generation in CHP comprises two components:

GT electricity generation and ORC electricity generation. The heat
generation in CHP corresponds to the heat generation in the WHB.

Pe
CHP,ι � Pe

GT,t + Pe
ORC,ι

Pe
GT,ι � Qg

CHP,t τ
e
GT Vg

Pe
ORC,t � Ph

GT,tαtδORC
Ph
CHP,t � Ph

GT,ιβtτWHB

αι + βι � 1 ; 0#αι, βι#1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (16)

where Pe
ORC,ι represents the electric power generated by the low-

temperature waste heat recovery device, βt represents the proportion
of waste heat generated by the GT at time t allocated to the WHB for
heat production, τWHB represents the heat conversion efficiency of
the WHB, τeGT and τhGT represent the gas-to-electricity and gas-to-
heat efficiency of the GT, Vg represents the calorific value of natural
gas, αt represents the proportion of waste heat generated by the GT
at time t allocated to the waste heat power generation device, δORC
represents the electric generation efficiency of the waste heat power
generation device.

4) Electric power balance constraint is represented by Eq. 17.

Pe
buy,t + Pe

PV,t + Pe
CHP,t + Pe,out

ES,t � Pe0
L,t + Pe

sell + Pe
HP,t + Pe,in

ES,t + ΔQRL,e
i

(17)
where Pe,out

ES,t and Pe,in
ES,t represent the discharging and charging

power of the battery at time t, Pe0
L,t represents the electric load up to

time t before DR, Pe
HP,t represents the power consumption of the HP

at time t.
5) Heat power balance constraint is represented by Eq. 18.

Ph
GB,t + Ph

CHP,t + Ph
HP,t + Ph,out

HS,t � Ph,in
HS,t + Ph0

L,t + ΔQRL,h
i (18)

where Ph
CHP,t represents the heat power generation of the CHP

system at time t, Ph
HP,t represents the heat power generation of the

HP system at time t, Ph,dis
HS,t and Ph,ch

HS,t represent the heat release and
heat power stored in the heat storage tank at time t, Ph0

L,t represents
the heat load at time t prior to DR.

6) Gas power balance constraint is represented by Eq. 19.

Qg
buy � Qg

CHP,t + Qg
GB,t (19)

where Qg
GB,t represents the gas consumption of GB at time t.

7) User electricity usage satisfaction constraints are represented
by Eq. 20.

Consider the constraints on user satisfaction with electricity
usage (Good and Mancarella, 2019):

Imin# I # 1

I � 1 −
∑T
t�1

Pe0
L,t + ΔQCL,i + ΔQSL,i + ΔQRL,e

i

∣∣∣∣ ∣∣∣∣
∑T
t�1
Pe0
L,t

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (20)

where I and Imin represent the user’s satisfaction with electricity
usage and the minimum value of satisfaction.

3.3 Solution method

This paper addresses a mixed-integer linear programming
problem. Firstly, an analysis is conducted on the demand
response of both price and substitution components, resulting in
the derivation of the load curve post-demand response.
Subsequently, a carbon trading mechanism is introduced, with
the carbon trading cost under this mechanism incorporated as a
constituent of the objective function. Finally, considering
constraints such as energy balance, CHP, and user satisfaction
with electricity consumption, the problem is formulated and
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solved utilizing the CPLEX solver invoked on the
MATLAB platform.

4 Case analysis

Taking an industrial park in winter in Liaoning Province, China
as the research object, 24 h is taken as an operation cycle, and the
unit operation time is 1 h. The installed equipment in the system
includes CHP, HP, and GB composed of GT, WHB and ORC-based
low-temperature waste heat power generation (Fang et al., 2018).

The parameters are shown in Table 1, the time-of-use electricity
price are shown in Table 2.

To verify the rationality of the proposed model, this article
conducts a comparative analysis of the following four cases.

Case 1: Only consider the carbon trading mechanism.
Case 2: Consider DR under the carbon trading mechanism.
Case 3: Only consider DR.
Case 4: Carbon trading mechanism is not considered and DR is

not considered.
The optimization results of electric power output for each unit in

case 1 are depicted in Figure 2, while the optimization results for heat
power output are illustrated in Figure 3. Figure 2 indicates that
during the periods (0:00-9:00) and (19:00-24:00), CHP contributes a
substantial amount of electricity. In the interval (9:00-16:00), PV
contributes significantly, and during (12:00-15:00), the electricity
sales volume of the IES increases due to a higher output from CHP
and PV. Consequently, the electric energy supplied by WHP is
relatively low during the aforementioned time periods, with an
increase in WHP output during (19:00-23:00) when CHP and PV
outputs are reduced. Figure 3 demonstrates that during the periods
(0:00-11:00) and (19:00-24:00), CHP provides a substantial amount
of heat power. In the interval (9:00-17:00), owing to the higher
output of CHP and PV, GB dominates in providing heat power,
serving as a means to absorb excess CHP and PV.

Taking into account CHP, PV output, economic costs, and
carbon emissions, the output and costs of each unit are
comprehensively considered in Case 2. The optimization results
of electric and heat power outputs for each unit during the
scheduling period are depicted in Figure 4 and Figure 5. During
low-price periods (00:00–08:00), the system relies on CHP, WHP
output, and purchased electricity from the higher-level grid to meet
the demands of HP, HS charging, and electric loads, maintaining
power balance during this period. The heat load is supplied by HP,
GB, and HS, achieving heat power balance. ES charges during low-
price periods and discharges during high-price periods, while HS
operates inversely, enhancing system flexibility. Prioritizing CHP
output helps reduce overall operational costs. In Cases where CHP
output alone cannot meet the system’s electric load demands and
electricity prices are low, the cost of purchasing electricity from the
higher-level grid is lower than the cost of purchasing gas from the
higher-level gas grid. In cases where HP cannot fully meet the heat
load demands, and WHP is inactive during this period, GB is
employed for heating during flat electricity price periods (08:00-
09:00, 12:00-19:00, 22:00-24:00). During these periods, the system
relies on CHP, PV, and WHP output to meet HP and electric load
demands, with the heat load supplied by HP and WHP. The
electricity prices are relatively higher during these periods, with
the cost of purchasing electricity from the higher-level grid
exceeding the cost of purchasing gas from the higher-level gas
grid. In high-price periods (09:00-12:00, 19:00-22:00), the system
relies on CHP, WHP output, and HS discharge to meet HP and
electric load demands, with HP and GB supplying the heat load and
HS providing heat storage. During these periods, the electricity
prices are relatively higher, and purchasing gas from the higher-level
gas grid is cheaper than purchasing electricity from the
higher-level grid.

Figure 6 indicates that during the periods of (0:00-8:00) and (19:
00-24:00), the IES electric load is primarily supplied by GT, with a

TABLE 1 Parameters of devices.

Devices Parameter Values

GT Installation capacity (kW) 4000

Electric efficiency 0.3

Heat efficiency 0.4

GB Installation capacity (kW) 1000

Efficiency 0.9

WHB Efficiency 0.8

HP Installation capacity (kW) 400

Efficiency 4.4

WHP Installation capacity (kW) 400

Efficiency 0.8

Resection coefficient 0.15

Heat storage Maximum capacity (kW·h) 400

Initial capacity (kW·h) 50

Charging heat efficiency 0.95

Heat release efficiency 0.9

Maximum power (kW) 250

Battery Maximum capacity (kW·h) 400

Initial capacity (kW·h) 80

Charging electricity efficiency 0.95

Electricity release efficiency 0.9

Maximum power (kW·h) 250

TABLE 2 Time-of-use price.

Periods type Periods Electricity price [$ (kW·h)]
Peak 09:00-12:00 0.15

19:00-22:00

Normal 08:00-09:00 0.095

12:00-19:00

22:00-24:00

Valley 00:00-08:00 0.049
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lower output from WHP. During the period of (9:00-17:00), the
system’s electric load is mainly supported by PV and WP, with no
contribution from CHP. During the period of (12:00-15:00), due to
the higher output of PV generation, there is surplus system
electricity generation, leading to an increase in electricity sales.
During the period of (19:00-23:00), when PV generation is
inactive, CHP electricity output increases to meet the system’s

power demand. Figure 7 illustrates that during the periods of (0:
00-10:00) and (18:00-24:00), the GB and HP provide a higher heat
power, with lower heat power output from CHP. During the period
of (11:00-17:00), due to the higher PV output, there is an abundance
of system electricity generation during this period, resulting in a
predominant role of HP in producing heat power to absorb excessive
PV power.

FIGURE 2
Electric power output in Case 1.

FIGURE 3
Heat power output in Case 1.
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In Case 4, without considering the carbon trading mechanism
and DR, depicts the electric and heat outputs of various devices as
illustrated in Figure 8 and Figure 9. Figure 8 indicates that, during
the period (0:00-5:00), the electric load of the IES is
predominantly supplied by CHP, with limited output from ES,

necessitating the procurement of electricity from the higher-level
grid. In the period (8:00-18:00), the system’s electric load is
primarily supported by PV and CHP, with minimal output
from CHP. During the period (19:00-24:00), when PV
generation is inactive, CHP electric output increases

FIGURE 4
Electric power output in Case 2.

FIGURE 5
Heat power output in Case 2.
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significantly to meet the system’s power demand, leading to a
notable increase in purchased electricity. Figure 9 illustrates that,
during the period (2:00-11:00), GB and HS contribute a
substantial amount of heat power, while CHP heat power
output is relatively low. In the period (12:00-17:00), the
system’s heat power is mainly borne by GB and HS, with HS
contributing the majority of the heat production.

The costs and actual carbon emissions of each scenario are
shown in Table 3. Compared with Case 4, the carbon emission cost
of Case 1 has decreased by 77.89%, with an actual reduction in
carbon emissions of 4877.08 kg. This outcome is attributed to the
consideration of a carbon emission mechanism in Case 1, which
endows the system with initial carbon emission quotas, thereby
offsetting a portion of the carbon emission costs. In contrast, Case

FIGURE 6
Electric power output in Case 3.

FIGURE 7
Heat power output in Case 3.
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4 necessitates the consideration of the total cost associated with the
actual carbon emissions. In comparison to Case 4, the energy
procurement cost in Case 3 has decreased by 10.25%. This
reduction is attributed to the incorporation of DR, which reduces
peak electricity demand while increasing off-peak electricity demand.
Consequently, the system can opt for a more economical energy
procurement method. Compared with Cases 1 and 2, Case three

exhibits higher total operational costs, lower energy procurement
costs, and higher carbon trading costs and actual carbon emissions.
This observation underscores the promotive role of carbon trading
mechanisms in energy conservation and emission reduction. Case
2 demonstrates lower total operational costs, energy procurement
costs, carbon trading costs, operational maintenance costs, and
actual carbon emissions than Case 1. This outcome is attributed to

FIGURE 8
Electric power output in Case 4.

FIGURE 9
Heat power output in Case 4.
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the consideration of DR under the carbon trading mechanism, which
not only shifts a portion of the load from high electricity price periods to
low electricity price periods but also reduces energy consumption
during certain load conditions. Furthermore, the mechanism
facilitates the mutual substitution of electric and heat energy on the
consumer side, smoothing the load curve. Consequently, the system, by
comparing the costs of purchasing electricity and gas at different time
periods and the outputs of GT and GB, selects an economically and
environmentally favorable operational mode. This approach effectively
coordinates the economic efficiency and low-carbon nature of the
system’s operation.

5 Conclusion

This study establishes an optimized operational model considering
DR under the carbon trading mechanism for integrated energy systems.
The impact of carbon trading prices on system operation is investigated
with set four cases. The conclusions are as follows.

1) Under the carbon trading mechanism, considering DR not only
shifts a portion of the load from high electricity price periods to
low electricity price periods and reduces load energy consumption
but also achieves the mutual substitution of electric and heat
energy on the user side, smoothing the load curve.

2) Considering that the ladder carbon trading mechanism system
with an initial carbon emission allowance, the operating cost of
the system is reduced.
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Nomenclature

IES Integrated Energy System

WP Wind Power

DR Demand Response

GT Gas Turbine

GB Gas Boiler

CL Curtailable Load

RL Replaceable Load

CHP Combined Heat and Power

HP Heat Pump

PV Photovoltaics

ORC Organic Rankine Cycle

WHP Waste Heat Power

HS Heat Storage

SL Shiftable Load
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Coordinated energy storage and
network expansion planning
considering the trustworthiness
of demand-side response

Peiyun Feng1,2*, Chong Chen1 and Lin Wang1
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The enhancement of economic sustainability and the reduction of greenhouse
gas (GHG) emissions are becoming more relevant in power system planning.
Thus, renewable energy sources (RESs) have beenwidely used as clean energy for
their lower generation costs and environmentally friendly characteristics.
However, the strong random uncertainties from both the demand and
generation sides make planning an economic, reliable, and ecological power
system more complicated. Thus, this paper considers a variety of resources and
technologies and presents a coordinated planning model including energy
storage systems (ESSs) and grid network expansion, considering the
trustworthiness of demand-side response (DR). First, the size of a single ESS
was considered as its size has a close effect on maintenance costs and ultimately
affects the total operating cost of the system. Second, it evaluates the influence of
the trustworthiness of DR. Third, multiple resources and technologies were
included in this high-penetration renewable energy integrated power system,
such as ESSs, networks, DR technology, and GHG reduction technology. Finally,
this model optimizes the decision variables such as the single size and location of
ESSs and the operation parameters such as thermal generation costs, loss load
costs, renewable energy curtailment costs, and GHG emission costs. Since the
problem scale is very large not only due to the presence of various devices but
also both binary and continuous variables considered simultaneously, we
reformulate this model by decomposition. Then, we transform it into a master
problem (MP) and a dual sub-problem (SP). Finally, the proposed method is
applied to a modified IEEE 24-bus test system. The results show computational
effectiveness and provide a helpful method in planning low-carbon electricity
power systems.

KEYWORDS

generation and network expansion planning, energy storage systems, demand-side
response, greenhouse gas emissions, trustworthiness

1 Introduction

The fuels used to power conventional power plants cause unsustainable and
environmentally unfriendly impacts, especially during peak load-carrying hours and
critical weather conditions. Therefore, the global common goal is to mitigate
dependence on fossil fuels and reduce greenhouse gas (GHG) emissions. Renewable
energy sources (RESs) (wind and photovoltaic power are the leading alternatives) have
become the main focus of many recent energy policies (Paris agreement, 2015; Summary for
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policymakers, 2021). According to the Energy Roadmap 2050
(European Commission and Energy Roadmap, 2050, 2011), the
European Commission is moving toward a low GHG emission
economic entity. Under this blueprint, the de-carbonization
target will be possible with an even higher RES penetration level
(Zappa et al., 2019). However, higher RES penetration faces greater
volatility, resulting in the power grids having more fragile, less
flexible, and low reliable characteristics. Then, under the
circumstance of multiple resources and technologies, how to get
a more flexible, reliable, environmentally friendly, and cost-efficient
power system has gained increasing attention (Al-Shetwi, 2022).
This paper presents a coordinated planning model for a high-
penetration renewable energy integrated power system including
energy storage systems (ESSs) and network expansion, considering
the trustworthiness of DR).

To cope with fundamental challenges, a vast range of literature
focuses on DR and its effects on the optimal performance of power
grids. Qi et al. (2021) proposed a smart energy hub in which an
analytical framework containing several DR programs is adopted.
Results show that DR has a positive impact on long-term resource
planning. Mansouri et al. (2022) showed a two-stage stochastic
model based on DR and integrated DR programs. Many
uncertainties are included in this model, such as electrical,
heating, cooling loads, and the wind turbine’s output power.
According to Aghajani et al. (2017), with the consideration of
suitable DR, the uncertainties caused by wind and photovoltaic
power can be handled appropriately. Thus, optimal operation
optimization to decrease costs and minimize GHG emissions has
been presented. In a word, appropriate DR in a smart grid helps
resist volatility. However, the trustworthiness of DR has a deep
internal influence on power system planning, which is seldom
included and needs to be further studied in the future.

Previous studies (Liu et al., 2018; Zhang et al., 2020; Jafari et al.,
2022; Liu et al., 2022) focused on optimally utilizing novel resources
or technologies to respond to any uncertain variation (it usually
comes from RESs, demand, and equipment failures). It is well
known that installing ESSs may enhance power system flexibility
by providing higher ramp rates or ramp ranges for power grids.
Therefore, fast-response ESSs are considered promising resources.
Li Z. et al. (2021) applied a bilayer model with heterogeneous ESSs to
alleviate the adverse effects of diverse uncertainties and obtain the
economic multi-energy building microgrid operation. Ramos-Real
et al. (2018) followed another approach to obtain a promising
alternative from an economic and environmental perspective
through a high deployment of RESs and ESSs in the Canary
Islands. Shi et al. (2022) proposed a hierarchical optimization
planning model, with its objective function including the cost of
ESSs and renewable energy. To minimize the system’s total expected
cost, voltage deviation, and power loss mitigation, ALAhmad (2023)
proposed a novel probabilistic optimization model by optimally
placing and sizing ESSs to alleviate the negative impact of the high
penetration of RESs and enhance grid stability.

Based on the above literature, the flexibility and reliability that
ESSs brought to the system were expounded. However, how to
effectively incorporate these ESSs into the power grids still needs to
be investigated. Li et al. (2023) proposed a bi-level optimization
model to minimize net load fluctuation, voltage deviation, and total
costs by determining the optimal location, power rating, capacity,

and hourly charging/discharging profile in a multiple-ESS-
containing system. Jiang et al. (2020) simultaneously considered
the location, capacity, and power rating of ESSs. The optimal
deployment of ESSs provided benefits such as power curtailment
reduction, power loss mitigation, and arbitrage profit maximization.
Li J. et al. (2021) proposed a bi-level optimization problem that was
decomposed by the decomposition–coordination algorithm into two
sub-systems. The model determines the optimal location, power
rating, and capacity of ESSs to maximize the system’s net profit and
minimize the system’s total operation cost. Li Z. et al. (2020)
presented a risk-averse method for heterogeneous ESS
deployment in a residential multi-energy microgrid where a
multistage adaptive stochastic optimization approach is utilized
to deal with various uncertainties. However, these existing
research studies have not fully addressed the single size, location,
and degradation of ESSs simultaneously, all of which have a true
existence in practical applications. Moreover, because of the
geographical and labor management issues, the size of a single
ESS will closely affect its maintenance costs and ultimately affect
the total operating cost of the system. Thus, the optimal single size,
location, and operation of ESSs to enhance system flexibility and
reduce GHG emissions in power grids is an important ongoing
research area that is worthy of further study.

Although there have been many researchers working on
investigating the influence of multiple resources and technologies in
photovoltaic or wind-integrated power systems, the need for
comprehensive research considering not only ESSs and DR but also
further CO2 reduction still remains. Many carbon financing policies
(e.g., carbon emission tax and building committed carbon emission
operation regions) have been proven to be exceedingly effective
methods to encourage participators toward emission reduction. For
instance, carbon emission tax is utilized in Olsen et al. (2018) for
achieving emission targets in the electricity market. Jiang et al. (2024)
proposed the committed carbon emission operation region to
characterize the low-carbon feasible space. Results show that it can
achieve integrated energy system decarbonization. Hu et al. (2024)
presented a bi-level carbon-oriented planning method containing
shared ESSs for integrated energy systems. Simulation results show
that it is more environmentally friendly and economical compared to
the model without shared ESSs. Cheng et al. (2019) proposed a bi-level
multi-energy system planning model, in which carbon emission flow
was included. These decentralized approaches are employed to calculate
the emission amount but fail to involve active DR simultaneously.

According to all the above, countries all around the world are
pursuing a low-carbon power system to achieve sustainable
development. Achieving this requires the coordination of a
variety of electricity technologies. First, the vast emergence of
RESs provides alternative generations, while traditional coal-fired
generations are being phased out. However, high RES penetration
causes huge challenges in the stability of voltage, frequency, and the
balance between supply and demand. Second, various forms of ESSs,
including electrochemical ESSs, are regarded as important sources
that cut the peaks and fill the valleys to provide flexibility effectively.
However, their size, location, and inherent degradation should be
considered in the planning stage. Third, DR, as an active response on
the demand side, helps resist system volatility. However, few
researchers consider the trustworthiness of DR and reveal their
deep internal impact on the system. Moreover, these latest
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technologies are usually expensive and eco-friendly in the early
stages, which is contrary to the goal of minimizing total costs.
However, the control of carbon emissions is the basis of sustainable
development. Thus, this contradictory factor needs to be considered
in the planning stage. In a word, this paper aims to provide a more
practical method for power system planning under the background
of a high proportion of renewable energy by comprehensively
utilizing various types of latest technologies and taking carbon
reduction into account. The comparison with related studies is
presented in Table 1.

In response, we aim to bridge the gaps mentioned above and
propose a novel model that optimizes local network reinforcement
along with investment decisions on ESSs. The size, location, and
degradation of ESSs and the trustworthiness of DR technology are
included because they represent some promising options to provide
flexibility in power grids. In addition, the presented expansion
approach takes conventional generation costs, investment costs
(including ESSs and transmission lines), loss load costs, energy
curtailment costs, and GHG emission costs into account.
However, the problem scale is very large not only due to various
devices but also both binary and continuous variables considered
simultaneously. To deal with this, we reformulate this model by
decomposition and transform it into an MP and a dual SP. Then, it
can be solved efficiently without falling into a poor, sub-optimal
solution. Using this new framework, power systems can take a
comprehensive methodology to better handle the inherent
resources to get a more flexible, reliable, environmentally
friendly, and cost-efficient power system. The proposed solution
technique is tested in a modified 24-bus system. The results show the
superiority of this method in terms of solution optimality and
computational efficiency. To sum up, this model can help all
agents who participate in power grids make their cost-effective
plans in a carbon-constrained environment.

The main contributions of this paper are as follows:

1. To evaluate what the influences of multiple resources and
technologies that act on power system planning are, we
proposed a coordinated planning model that considers not
only the effects of ESSs but also the trustworthiness of DR and
CO2 emissions.

2. Moreover, the size, location, and degradation of ESSs are
included in this model and reveal how the deep internal
influence of different trustworthiness of DR acts on
power grids.

3. Our model can comprehensively investigate the goals between
environmental benefits and cost-effectiveness. Thus, it can
provide guidance for policymakers on how to formulate
policy interventions for participants to achieve
emission targets.

4. This framework was decomposed by the dual theory to reduce
the computational burden without falling into a poor, sub-
optimal solution.

The remainder of this paper is organized as follows: the detailed
mathematical model is formulated in Section 2. Its compact vector
form and its dual decomposition are presented in Section 3. Section
4 introduces the overall solution structure. The performance of the
presented method is evaluated on a modified IEEE 24-bus test
system, which is shown in Section 5. Finally, the main
conclusions are summarized in Section 6.

2 Problem formulation

This section introduces the research framework and modeling
process of this article. As shown in Figure 1, to consider the

TABLE 1 Comparison between the proposed model of this work and previous studies.

Reference ESS
capacity

ESS
degradation

Carbon
emissions

Considering DR Optimization target

Qi et al. (2021) √ √ × √ Energy hub

Mansouri et al. (2022) √ × × √ Energy hub

Aghajani et al. (2017) × × √ √ Microgrid

Li et al. (2021a) √ √ × √ Multi-energy building microgrid

Ramos-Real et al. (2018) √ × √ × Canary Islands

Shi et al., 2022; ALAhmad (2023) √ × × × Power system

Li et al. (2023) √ × × √ Electric and hydrogen systems

Jiang et al. (2020), Li et al. (2021b) √ × × × Transmission/distribution
system

Li et al. (2020a) √ × × √ Residential multi-energy
microgrid

Jiang et al. (2024) √ × √ × Integrated energy system

Hu et al. (2024) √ × √ × Integrated energy system

Cheng et al. (2019) × × √ × Multiple energy system

This paper √ √ √ √ Transmission system
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environmental, economic, and reliability factors simultaneously
during the planning phase, we conducted a planning study on a
power systemwith a high penetration rate of renewable energy. First,
coal-fired power plants emit GHGs, which may be advantageous for
maximizing economic benefits but detrimental to the current
sustainable development purport. This contradictory factor needs
to be considered in the planning stage. Second, ESSs can perform
peak shaving and valley filling and provide flexibility to the system.
However, their size, location, and inherent degradation should be
considered in the planning stage. Finally, DR, as an active response
on the demand side, helps resist system volatility. However, the
trustworthiness of DR is influenced by various factors and can
ultimately affect the planning results of this system. Thus, this article
presents a more practical method for power system planning from
ecological, economic, and reliability perspectives with a high
penetration rate of renewable energy.

2.1 Objective function

The objective function shown in Equation 1 (which contains
four parts) seeks to make a tradeoff between minimizing the costs
and CO2 emissions. The first part refers to the total investment costs
of new transmission lines and ESSs, which is indicated in Equation 2;
the second part refers to the total operation costs, including
conventional generation costs (PGope), ESSs maintenance costs

(PSope), DR costs (DRope), and renewable energy curtailment
costs (QWVope). The details of these compact forms are shown
in Equations 4–7. It should be noted that the maintenance costs of
per-unit ESSs decrease as their node-installed capacity increases.
The third part (Creli), as indicated in Equation 8, refers to the total
costs of loss of demands. The last part (Cem) that is shown in
Equation 9 is GHG emission costs for every time point in every
representative day. If environmental considerations are not taken
into account, the objective function only contains the first three
costs. Note that GHG emission cost is closely related to traditional
generations, which is shown in Equation 10 in detail.

minCinv + Cope + Creli + Cem, (1)

Cinv � r 1 + r( )y
1 + r( )y − 1

∑
i

CLi · xli +∑
s

CSs · xss⎡⎣ ⎤⎦, (2)

Cope � ∑
k

ρk ·∑
y,h

· PGope + PSope +DRope + QWVope[ ], (3)

PGope � ∑
g

αg,y,h · PGg,y,h,k, (4)

PSope � ∑
s

βy,h −
Ey,h − E0 ,y,h

Ey,h
*Z( ) · Ey,h, (5)

DRope � − ∑
l

γy,h ·DRl,y,h,k, (6)

QWVope � ∑
w

CWw,h · QWw,y,h,k +∑
v

CVv,h · QVv,y,h,k, (7)

FIGURE 1
Framework of this article
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Creli � VOLL · ∑
i,y,h,k

ρk · LPi,y,h,k, (8)

Cem � ∑
k

ρk · ∑
g,y,h

EMg,y,h · CGem
g,y,h · eg,y,h,k, (9)

eg,y,h,k � PGg,y,h,k · h,∀g, y, h, k. (10)

2.2 Constraints

Various expansion and operation constraints are presented
as follows:

The constraints of Equations 11–15 are introduced for
conventional generators’ operation limits. Considering the
upward and downward reserve, constraints of Equations 11, 12
limit the active power production of each conventional generator
between its minimum and maximum capacities. The ramp-up and
ramp-down limits of traditional generator units are shown in
Equations 13, 14. In Equation 15, the reactive power production
was limited.

PGg,y,h,k + RUg,y,h,k ≤PGmax
g ,∀g, y, h, k, (11)

RDg,y,h,k ≤PGmin
g ,∀g, y, h, k, (12)

PGg,y,h,k − PGg,y,h−1,k + RUg,y,h,k ≤RUWg,∀g, y, h, k, (13)
PGg,y,h−1,k − PGg,y,h,k + RDg,y,h,k ≤RDWg,∀g, y, h, k, (14)

QGmin
g ≤QGg,y,h,k ≤QGmax

g ,∀g, y, h, k. (15)

The upward and downward spinning reserves are modeled to
resist the inevitable uncertainties due to renewable energy and
demand, which are bounded from Equations 16–19. Wfh and
Vfh are the hourly representative factors of the wind and
photovoltaic farms’ output. It affects the final output of these
generations. Load forecasting is almost patterned, and its
prediction is relatively easy. However, the trustworthiness of DR
is complicated because it is affected by several factors. Moreover, as
RESs are highly penetrated, their outputs are affected by the weather,
causing larger forecast errors. Thus, we assume the lower bound for
the upward and downward spinning reserves at every time
resolution as 3% for the load and 5% for renewable energy (see
in Equations 16, 17). The hourly total upper bounds of the upward
and downward reserves are presented in Equations 18, 19.

3% · 1 + LGk( )k ·∑
h

Lfh · PDPK
i,k + 5%

· ∑
h

Wfh ·∑
w,k

PWw,k +∑
h

Vfh ·∑
v,k

PVv,k
⎛⎝ ⎞⎠ ≤ ∑

g,h

RUg,y,h,k,∀y, k,

(16)
3% · 1 + LGk( )k ·∑

h

Lfh · PDPK
i,k + 5%

· ∑
h

Wfh ·∑
w,k

PWw,k +∑
h

Vfh ·∑
v,k

PVv,k
⎛⎝ ⎞⎠ ≤ ∑

g,h

RDg,y,h,k,∀y, k,

(17)∑
g,h

RUg,y,h,k ≤ RUWg,∀g, y, h, k, (18)

∑
g,h

RDg,y,h,k ≤ RDWg,∀g, y, h, k. (19)

Constraints related to renewable energy are presented in
Equations 20–22. Constraints of Equations 20, 21 limit the power
production of RESs (including wind farms and photovoltaic
generations) from zero to their maximum capacity. The
constraint of Equation 22 ensures the penetration of renewable
energy; in other words, it guarantees the percentage of the total load
supplied by renewable energy. The parameter χ represents the
expected contributions of RESs in supplying the total demand.

0≤ PWw,y,h,k ≤ PWmax
w,y,h,∀w, y, h, k, (20)

0≤ PVv,y,h,k ≤ PVmax
v,y,h,∀v, y, h, k, (21)

xww,y−1,h,k ≤ xww,y,h,k,∀w, y, h, k, (22)
xvv,y−1,h,k ≤ xvv,y,h,k,∀v, y, h, k, (23)

χ · 1 + LGk( )k ·∑
h

Lfh·PDPK
i,y,h,k ≤ ∑

h

Wfh ·∑
w,k

PWw,k − QWw,k( )
+∑

h

Vfh ·∑
v,k

PVv,k − QVv,k( ),∀k.
(24)

Due to wind and photovoltaic power intermittency and
transmission line congestion, renewable energy spillage occurs. Wind
and photovoltaic power curtailment constraints were bounded by
Equations 25, 26. Based on Equation 27, the load shedding in each
bus is specified. κ is themaximumallowable load shedding at each stage.

0 ≤ QWw,h,k ≤ Wfh · PWw,k,∀w, h, k, (25)
0≤ QVv,h,k ≤Vfh · PVv,k,∀v, h, k, (26)

0≤ LPi,h,k ≤ κ · 1 + LGk( )k · Lfh · PDPK
i,k ,∀i, h, k. (27)

Constraints related to DR are proposed from Equations 28–30.
The first equation denotes the actual proportion of the available load
participating in DR. The latter shows the relationship between the
actual participating DR and its trustworthiness. Equation 30
guarantees that total energy consumption remains constant. In
other words, the effect of DR is cutting the peak and filling the valley.

−CF H( ) · PDi,y,h,k ≤ DRi,y,h,k ≤ CF H( ) · PDi,y,h,k,∀i, y, h, k, (28)
CF H( ) � CF H, E( )*max 0, CF E( ){ }, (29)∑

h

DRi,y,h,k � 0,∀i, y, h, k. (30)

Constraints related to ESSs are presented in Equations 31–40.
Constraints of Equation 31 and Equation 32 guarantee the charging
and discharging rates, respectively. The constraint of Eq. 33 limits the
storage energy of each ESS. The stored energy value at the beginning is
set to be the same as that at the end, which is shown in the former part of
Equation 34.Moreover, the second half of this equation is to prevent the
model from choosing the maximum state of charge (SOC) at the initial
time and fully discharging at the end to increase revenue. The constraint
of Equation 35 is used to avoid simultaneous charging and discharging
of constructed ESSs. The minimum and maximum allowable changes
are limited by Equation 36. The constraint of Equation 37 states that the
maximum allowable change in SOC is a fraction of Es,y,h,k. Taking
batteries for example, the theoretical degradation function of ESSs is
proposed in Equations 38, 39. Constraints of Equation 40 guarantee that
the installed ESSs at each stage will remain at the next stages.

0≤ PSchs,y,h,k ≤BSchs,y,h,k · PSmax
s ,∀s, y, h, k, (31)
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0≤PSdchs,y,h,k ≤BS
dch
s,y,h,k · PSmax

s ,∀s, y, h, k, (32)

xss · Emin
s,y,h,k ≤ SOCs,y,h−1,k +∑t

h�1
ηch · PSchs,y,h,k −

1
ηdch

· PSdchs,y,h,k( )
≤ xss · Emax

s,y,h,k,∀s, y, h, k,

(33)
SOCs,y,1,k � SOCs,y,48,k � 0.14 · Es,y,h,k,∀s, y, h, k, (34)

BSchs,y,h,k + BSdchs,y,h,k ≤xss,∀s, y, h, k, (35)
−ΔSOCs,y,h,k ≤ SOCs,y,h,k − SOCs,y,h−1,k ≤ΔSOCs,y,h,k,∀s, y, h, k,

(36)
ΔSOCs,y,h,k � π · Es,y,h,k,∀s, y, h, k, (37)

Es,y,h,k � SoHs,y,h,k · ERate
s,y,h,k,∀s, y, h, k, (38)

SoHs,y,h,k � 1 − αseie
−fsei − 1 − αsei( )e−fd , (39)

xss,y−1,h,k ≤ xss,y,h,k,∀s, y, h, k. (40)

The hourly power flow limits of the transmission lines are
modeled in Equations 41–44. In Equations 41, 42, the active and
reactive power flow from node i to node j is guaranteed. Constraints
of Equation 43 enforce line nominal capacity at an hour h for every
scenario s in one representative year y. The constraint of Equation
44 confirms that the constructed line at a certain stage will remain
until the end of the planning horizon.

PLi,j,y,h,k � V2
i,y,h,k · Gi − Vi,y,h,k · Vj,y,h,k

· Gi cos θi,y,h,k − θj,y,h,k( ) + Bi sin θi,y,h,k − θj,y,h,k( )︷��������������������︸︸��������������������︷Ai,y,h,k

] · xli, ∀i, y, h, k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(41)

QLi,j,y,h,k � −V2
i,y,h,k · Bi + Bc

i

2
( ) − Vi,y,h,k · Vj,y,h,k

· Bi cos θi,y,h,k − θj,y,h,k( ) − Gi sin θi,y,h,k − θj,y,h,k( )︷��������������������︸︸��������������������︷Bi,y,h,k

] · xli,∀i, y, h, k,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(42)

PLi,j,y,h,k( )2 + QLi,j,y,h,k( )2 ≤ SLi,j
max( )2,∀i, j, y, h, k. (43)

xli,y−1,h,k ≤ xli,y,h,k,∀i, y, h, k. (44)

The voltage magnitude deviation must be kept between the
operation limits shown in the constraint of Equation 45. The
constraint of Equation 46 bounds the variation ranges of the
phase angle.

Vmin
i ≤Vi,y,h,k ≤Vmax

i ,∀i, y, h, k, (45)
−θmin

i ≤ θi,y,h,k ≤ θmax
i ,∀i, y, h, k. (46)

In Equations 47, 48, the hourly nodal active and reactive power
production–consumption balance including conventional
generation units, renewable energy sources, ESS devices, DR,
renewable energy curtailment, and load shedding is formulated.∑

g

AGi,g · PGg,y,h,k +∑
w

AWi,w · PWw,y,h,k +∑
v

AVi,v · PVv,y,h,k

−∑
s

ASi,s · PSchs,y,h,k − PSdchs,y,h,k( ) + ∑
i∈Ωe

l

PLi,y,h,k − ∑
j∈Ωs

l

PLj,y,h,k

� ∑
l

ADi,l · PDi,y,h,k −∑
l

ADi,l ·DRi,y,h,k

−∑
i

LPi,y,h,k,∀i, y, h, k, . (47)

∑
g

AGi,g · QGg,y,h,k + ∑
i∈Ωe

l

QLi,y,h,k − ∑
j∈Ωs

l

QLj,y,h,k

� ∑
l

ADi,l · QDi,y,h,k −∑
i

LQi,y,h,k,∀i, y, h, k. (48)

2.3 Uncertainties

The load and renewable energy (including wind and
photovoltaic power) are subject to uncertainties shown in
Equation 49 (i.e., PDi,y,h,k; PWw,y,h,k; PVv,y,h,k). Polyhedral
uncertainty sets shown in Equations 50–52 are used in this paper
to deal with this inherent uncertainty (Dehghan et al., 2017; Li et al.,
2018; Dehghan et al., 2020; Velloso et al., 2020; Hamzehkolaei et al.,
2021; Zheng et al., 2021).

ΩΓ � ΩD,ΩW,ΩV{ }. (49)

Here,

ΩD � ~PDi,y,h,k − ΓDP̂Di,y,h,k ≤ PDi,y,h,k ≤ ~PDi,y,h,k + ΓDP̂Di,y,h,k{ },
(50)

ΩW � ~PWw,y,h,k − ΓWP̂Ww,y,h,k ≤ PWw,y,h,k ≤ ~PWw,y,h,k + ΓWP̂Ww,y,h,k{ },
(51)

ΩV � ~PVv,y,h,k − ΓVP̂Vv,y,h,k ≤PVv,y,h,k ≤ ~PVv,y,h,k + ΓVP̂Vv,y,h,k{ }.
(52)

Here, ΓD controls the conservativeness of DR, ~PDi,y,h,k is the
nominal value of DR, P̂Di,y,h,k is the variability of DR, and PDi,y,h,k is
the probable value for DR. Accordingly, symbols PWw,y,h,k,
P̂Ww,y,h,k, and ~PWw,y,h,k stand for wind generation and PVv,y,h,k,
P̂Vv,y,h,k, and ~PVv,y,h,k relate to photovoltaic power.

2.4 Linearization

The model presented above is a MINLP optimization
problem because of non-linear constraints of Equations 39,
41–43. It takes more time to solve this model without
guaranteeing its global optimality. According to Xu et al.
(2018), ESS’ aging consists of calendar aging and cycle aging.
Assuming that the average temperature Tc and the average SOC ∂
of all cycles are the same, then, these are linear degradation
processes concerning the number of cycles. Equation 39 can be
rewritten as accumulated cycling life, as shown in Equation 53.
According to the literature (Pirouzi et al., 2018; Pirouzi and
Aghaei, 2019), constraints of Equations 41, 42 can be recast into
Equations 54, 55 through the big-M linearization technique
without reducing the solution accuracy. Constraints of
Equation 43 can be transformed into Equation 56 through
piecewise linearization. According to Pirouzi et al. (2017), the
constraints of Equation 56 can be seen as expressions for the
circles centered at (0,0). The circle is divided into n equal parts,
and when n is large enough, that is, Δα is small enough, the inner
regular polygon of a circle approximates the circle infinitely. In
other words, Equation 56 is transformed into Equation 57
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approximately. Thus, the MILP optimization model was obtained
(see Eqs 1–38, 40, 44–48, 53–55, 57).

SoHs,y,h,k � N · fd t, ς, ∂, Tc, 1( ), (53)
−M 1 − xli( )≤PLi,j,m,y,h,k

− 2Vi,y,h,k − 1( ) · Gi − ∂Ai,m,y,h,k

∂δ
δi,y,h,k − �δi,m,y,h,k( )[

−Ai,m,y,h,k

δ
Vi,y,h,k + Vj,y,h,k − 1( )]≤ M 1 − xli( ),∀i, m, y, h, k,

(54)
−M 1 − xli( ) ≤QLi,j,m,y,h,k − − 2Vi,y,h,k − 1( ) · Bi + Bc

i

2
( )[

−∂Bi,m,y,h,k

∂δ
δi,y,h,k − �δi,m,y,h,k( )

−Bi,m,y,h,k

δ
Vi,y,h,k + Vj,y,h,k − 1( )]

≤ M 1 − xli( ),∀i, m, y, h, k,

(55)

∑
m

PLi,j,m,y,h,k
⎛⎝ ⎞⎠2

+ ∑
m

QLi,j,m,y,h,k
⎛⎝ ⎞⎠2

≤ xli

· SLi,j
max( )2,∀i, j, m, y, h, k. (56)

cos nΔα( ) ·∑
m

PLi,j,m,y,h,k + sin nΔα( ) ·∑
m

QLi,j,m,y,h,k

≤ xli · SLi,j
max,∀i, j, n,m, y, h, k.

(57)

3 Compact form and dual
decomposition

3.1 Compact form

For brevity’s sake, the above MILP model can be compactly
rewritten in an epigraph form. Specifically, the objective
functions of Equations 1–10 are compacted by Equation 58.
Constraints only related to binary variables (i.e., Eqs 22, 23,
40, 44) are recast by Equation 59. Equality constraints related to
not only binary variables but also continuous variables (i.e., Eqs
29, 30, 34, 37, 38, 53) are presented in Equation 60. The inequality
constraint of Equation 61 corresponds to Equations 11–21,
24–28, 31–33, 35, 36, 45, 46, 54, 55, 57. The constraint of
Equation 62 represents the equality that was independent of
continuous variables (i.e., Eqs 47, 48).

min ITY +HTP + JTξ, (58)

s.t.

AY≥B, (59)
C1Y + E1P + F1 · Z +D1 · ξ � G1: λ, (60)
C2Y + E2P + F2 · Z +D2 · ξ ≥G2: μ, (61)

KP + LZ +Nξ � M: σ, (62)
P≥ 0, Y ∈ 0, 1{ }. (63)

Here, vector Y stands for binary variables such as xss, xli,
BSchs,y,h,k, and BSdchs,y,h,k. Vector P stands for positive continuous
operational variables (i.e., PGg,y,h,k; RUg,y,h,k; RDg,y,h,k; PSchs,y,h,k;

PSdchs,y,h,k; QWw,y,h,k; QVv,y,h,k; and LPi,y,h,k). Z represents free
continuous variables (i.e., PLi,j,y,h,k; QLi,j,y,h,k; Vi,y,h,k; and θi,y,h,k).
The letter ξ represents uncertain vectors (i.e., PDi,y,h,k; PWw,y,h,k;
and PVv,y,h,k). The compact dual variables λ, μ, and σ are
introduced for Equations 60–62, respectively. Letters
A,C1, C2, E1, E2, F1, F2, D1, D2, K, L, andN are the coefficient
matrices of the power network. B, G1, G2, andM are the
constant matrices.

3.2 Dual decomposition in compact form

Since the binary variables (i.e., new lines and ESSs) and the
continuous variables (i.e., conventional generation units, renewable
energy spillage, and loss of load) are optimized simultaneously, the
above robust MILP optimization model has higher computation
complexity. To improve the computation efficiency, we reformulate
this model by decomposition. Then, it can be transformed into a
master problem (MP) and a dual sub-problem (SP). In the MP, the
binary investment variables are optimized, and then, they are fixed in
the SP. On the contrary, the continuous variables are optimized in the
SP, and the feasibility of its MP solution is also examined. Then, the
feasibility cuts are generated and returns to MP. By introducing an
auxiliary constraint ISPYSP � �Y: η (η is the compact dual variable), the
formulation of the MP is presented in Equations 59, 64–67. The lower
bound (LB) value of theMP is presented in Equation 65. Constraints of
Equations 66, 67 define the optimality and feasibility cuts. The
superscript •̂ shows that the variables are obtained and fixed in the
SP. The letter p is the number of iterations.

minLB, (64)
s.t.

LB≥ IT · Y, (65)
LB≥ ITY + GT

1 λ̂ + GT
2 μ̂ +MTσ̂[ ] P( ) + η̂ p( ) Y − Ŷ

P−1( )( ), (66)

GT
1 λ̂ + GT

2 μ̂ +MTσ̂[ ] P( ) + η̂ p( ) Y − Ŷ
P−1( )( ) ≤ 0. (67)

After the optimization of the MP, the binary variables are
obtained and assumed as constant parameters in the SP. Then,
the SP is introduced from Equations 68–72.

maxGT
1 λ + GT

2 μ +MTσ + Ŷ
T
η. (68)

s.t.

CT
1 λ + CT

2 μ + ISP
Tη≤ 0, (69)

ET
1 λ + ET

2 μ +KTσ ≤H, (70)
FT
1 λ + FT

2 μ + LTσ � 0, (71)
DT

1 λ +DT
2 μ +NTσ ≤ J. (72)

If the solution is bounded, after solving the SP, the upper bound
(UB) value can be obtained through the function
UB � GT

1 λ + GT
2 μ +MTσ + Ŷ

T
η + ITŶ, which then generates the

optimality cut. Otherwise, if the solution is unbounded, then we
generate the feasibility cut and go to the MP. Finally, if the
formulation (see in Eq. 73) is satisfied, the iteration ends;
otherwise, the next iteration starts.
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UB − LB( )
UB

≤ τ. (73)

4 Overall solution structure

According to the above, the decomposed optimization model
can be solved effectively. This section proposes the holistic solution
structure (Tan et al., 2021; Velloso and Van Hentenryck, 2021)
See Figure 2.

Step 1: Set the loop parameter p = 1 and the initial value of the
parameters.

Step 2: Solve the MP and get the optimal solution of binary
variables Ŷ

(P)
. Update the lower bound through LB �

max LB, ITŶ
(P){ }.

Step 3: Solve the robust dual SP by fixing the condition Y � Ŷ
(P)

and obtaining the optimal solution λ̂
(P)

, μ̂(P), σ̂(P), η̂(P). Then, update
UB � min UB, ITŶ

(P) + GT
1 λ + GT

2 μ +MTσ + Ŷ
T(P)

η{ }, and UB is
the upper bound of the solution.

Step 4: Check (UB − LB)/UB ≤ τ. If satisfied, output Y(P),
λ(P), μ(P), σ(P), η(P) and exit the loop. Otherwise, go to Step 5.

Step 5: Check the optimal solution of the dual SP; in other words,
GT
1 λ

(P) + GT
2 μ

(P) +MTσ(P) + Ŷ
T(P)

η(P) < +∞. If satisfied, go to
Step 6. Otherwise, go to Step 7.

Step 6: Generate the optimal cut plane LB ≥ ITY(P) + GT
1 λ̂

(P) +
GT
2 μ̂

(P) +MTσ̂(P) + η̂(P)(Y − Ŷ
(P−1)) and P = P + 1, and then, go

to Step 2.

Step 7:Generate the feasible cut plane GT
1 λ̂

(P) + GT
2 μ̂

(P) +MTσ̂(P) +
η̂(P)(Y − Ŷ

(P−1)) ≤ 0 and P = P + 1, and then, go to Step 2.

5 Case study

5.1 Description of the test system

The modified IEEE 24-node system (Probability Methods
Subcommittee, 1979) includes 38 existing lines, 9 traditional
generator units, 6 wind farms, and 3 photovoltaic power stations, as
seen in Figure 3. Compared to the standard IEEE 24-bus system, its grid
structure is the same. The difference is that we added photovoltaic and
wind farms, with their specific location shown in Figure 3. To reveal
how the deep internal influence acts on power grids with different
trustworthiness of DR, we set it to vary from 0.0 to 1.0. The value
0.0 means no trust, and 1.0 represents full trust. In other words, as the

FIGURE 2
Solution flowchart.
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value increases, the level of trust increases. The time series (e.g., wind,
photovoltaic power output, and electricity loads) were extracted from
the practical cases obtained in Li H. et al. (2020). In addition, the
penetration level of RESs is assumed to be 60% of their installed
capacity. The decreased rate of ESS maintenance costs Z is set to
5%. To make a trade-off between computational efficiency and
accuracy, the k-medoids clustering technique (Park and Jun, 2009)
is used instead of solving 8,760 h for the whole year. Each representative
period is considered as one scenario, and the scenario probability is
obtained from the clustering process. It should be noted that besides
several special days, natural days during 1 year can be mainly clustered
into working days splicing weekends. Therefore, it is more conducive to
the system solution based on the week consisting of two consecutive
days. Moreover, ensuring the consideration of the data’s sequential

nature and making the benefits of ESSs more obvious, we showed the
state for 48 consecutive periods. During these 48 consecutive periods,
there is a difference in renewable energy and load.

On the other hand, the economic data, namely, investment cost,
operation cost (i.e., fuel costs, O&M costs, renewable energy spillage
costs, and loss load costs, ), and environmental parameters (i.e., CO2

emission costs), are presented in Table 2. Note that linear
generation-cost functions were used for traditional generation
units due to their acceptable accuracy and the already complex
nature of the optimization problem.

The simulations have been solved by using Gurobi9.1.1 as the
solver. We considered a convergence tolerance of 0.01%. All studies
were operated on an Intel-Core i7 (64-bit) 3.4-GHz individual
laptop with 16GB RAM.

FIGURE 3
Modified IEEE 24-node system.
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5.2 Simulation results and discussions

To understand what the impact of varied resources and
technologies on power system planning is, three different
experiments were conducted: 1) case 1 ignores the
trustworthiness of DR, that is, all available DR responses, only

considering the difference of one single ESS capacity, in which
whether to install and where to construct are both considered. In this
case, we find a suitable size for one single ESS capacity because it
affects the maintenance costs in this system. 2) It is fixed according
to the suitable size of each single ESS. Case 2 only considers the
impact of different trustworthiness of DR. It should be noted that in

TABLE 2 Values of several parameters used in the optimization problem.

Parameter Value Unit

Variable Description

cx1 Cost per kilometer of building transmission lines (138 kV) 50*10∧4 $/km

cx2 Cost per kilometer of building transmission lines (230 kV) 80*10∧4 $/km

cxs Cost of installing a new storage 20.08*10∧4 $/MWh

cg Fuel and O&M cost of traditional generations 83 $/MWh

cw Wind curtailment cost 28.6 $/MWh

cv Photovoltaic curtailment cost 20 $/MWh

cr Cost of lost loads 1,350 $/MWh

cdr Demand response cost 30 $/MWh

CG CO2 emission license costs 80 $/ton

EM CO2 emitted per kWh 650 g/kWh

Z Decreased rate of ESS maintenance costs 5% -

η ESS charge and discharge efficiencies 0.9 -

Base MVA Base power of the system 100 MVA

TABLE 3 Simulation results of the power system with different ESS sizes.

Single
ESS size

Position New
lines

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Renewable
energy

curtailment

Loss
load
cost
(10∧5)

CO2

emission
cost (10∧9)

50 All 1–5
7–8
14–16
16–17
17–18

1.5512 3.1897 4.7409 55.6680 7.1629 1.1257

100 1
2
3
5–12
14–24

1–5
7–8
14–16
16–17
17–18

1.7393 2.9164 4.6557 50.0168 1.9189 1.1414

300 2
3
9
11
14
18
23

1–5
7–8
14–16
16–17
17–18

1.7461 2.9145 4.6606 58.8060 2.2554 1.1484

600 1
9
16
19

1–5
7–8
14–16
16–17
17–18

1.8458 2.9155 4.7613 144.7932 1.9369 1.1488
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this case, the objective function does not contain Equations 9, 10. 3)
Based on case 2, besides minimizing total costs, CO2 emissions are
considered simultaneously, and a trade-off is made between them.
Here, cost-savings and reducing CO2 emissions are of equal
importance.

5.2.1 Ignoring the trustworthiness of DR
In this experiment, to select an appropriate size of ESSs, we

only consider single-size changes, which includes all available DR
responses. Table 3 demonstrates the expansion planning results
of this optimization model. The location, degradation of ESSs,
and whole-system CO2 emission costs were included. In addition,
the decreased amount of ESS maintenance costs has been
contained in operation costs. It is clear that with different
sizes of each ESS, their optimal location changes. The new
energy storage stations need to be installed more when their
single size is small because the investment cost is proportional to
its capacity, and the system needs more storage to improve its
flexibility.

Specifically, first of all, we compared the first two rows.
Although the single capacity of the first row is small and its
investment cost is low, however, its operation cost is higher. This
is partly due to the surge of renewable energy curtailment, loss of
load, and ESS maintenance costs. Moreover, the high flexibility
requirements of some nodes are not fully met. Afterward, the last
three lines are compared. As the individual ESS capacity
increases, the investment cost increases, but the operation cost
changes slightly. This is because renewable energy curtailment
and loss of load increases, while ESS maintenance costs decrease.
In other words, the number of ESSs is lessened so that the labor
cost is reduced, which is related to the maintenance cost. Overall,
the total cost increases as the individual ESS capacity increases. In
other words, the capacity of ESSs has a close impact on power
system expansion planning.

What needs to be illustrated is that when the single ESS capacity
is larger, CO2 emission costs change very slightly. This is because the
penetration of renewable energy is not very high. So when the
individual size is larger, the number that should be newly installed
will be reduced. It is worth mentioning that the degradation of ESSs
was taken into account, so the storage investment cost was more
grounded in reality. In addition, renewable energy curtailment and
loss load were the lowest when the single storage capacity was
100MWh. Finally, taking renewable energy curtailment, loss of load,
and total costs into account, individual ESS capacity will be
appropriate at 100 MWh in this system.

Figure 4 shows the details of charge–discharge energy and the
SOC of a newly installed ESS connected to bus 9 in a
representative period. The initial value of ESSs is 0.14 p.u.,
and it needs to stay the same at the beginning and at the end
of one period. As can be seen, the charging time always appears at
low load hours and vice versa on the contrary. Because the RES
output changed significantly in two consecutive periods, the
charging and discharging behavior changed as well. Note that
the experiments we performed in this section with available DR
are fixed at 0.02, and their trustworthiness is 1.0.

Figure 5 shows the operating points of the source and demand
status under the condition that the ESS capacity is 100 MWh and
its actual DR is set at 0.02 in one representative period. As can be
seen, at the beginning of 1–6 h, its load is relatively small, and
charging occurs (see the yellow bar below the x-axis). When time
goes to 8–11, due to load increases, the system preferentially
discharges from ESSs to meet the demand (see the blue bars in
this figure). In 13–16 h, the whole output of renewable energy
surges. On one hand, the output of traditional generations is
reduced because of their high operating costs and emissions
costs. On the other hand, the power system charges ESSs in
preparation for evening peak load hours (also see the yellow bar
below the x-axis). Then, the system enters the night charging

FIGURE 4
Details of a newly installed ESS in one representative period.
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period. The next day is much the same, except for the decrease in
photovoltaic power output, and there is a slight loss of load in
41–45. This is in line with the discussion presented above.

5.2.2 Different trustworthiness of DR
To compare what impacts act on the expansion planning

optimization problem with different trustworthiness of DR, we
performed the following experiments. In this section, the
individual ESS capacity is set at 100 MWh, as discussed before.
Simulation results are shown in Table 4. It should be noted that the
second row in Table 4 should be the same as in Table 3. This is
because the available DR is fixed at 0.2 with its trustworthiness

setting at 0.1, which equals the actual DR being set at 0.02. As shown
in each column, the expanded transmission line changes slightly
with different trustworthiness of DR. However, the number of newly
installed ESSs decreases when the trustworthiness of DR increases. It
also causes little change in CO2 emission costs when the actual DR
increases. This is because DR plays the role of peak cutting and valley
filling, and the total load remains constant.

The investment cost narrows down due to new ESSs that need to
be installed being reduced when the trustworthiness of DR increases.
So, even though the unavoidable DR subsidy cost grows, the value of
both loss energy and loss load decreases, which leads to the
operation cost increasing slightly. Thus, in a word, the total cost

FIGURE 5
Sources and demand status in one representative period.

TABLE 4 Simulation results of the system with different DR without considering the impact of CO2 emissions.

Trustworthiness
of DR

New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2

emission
cost (*10∧9)

0.0 1–5
7–8
14–16
16–17
17–18

All 1.8381 2.9033 4.7414 129.5827 2.0898 1.1503

0.1 1–5
7–8
14–16
16–17
17–18

1–3
5–12
14–24

1.7393 2.9164 4.6557 50.0168 1.9189 1.1414

0.5 1–5
7–8
14–16
16–17
17–18

1–6
9–14
17–19
21
23

1.5925 2.9527 4.5452 0 1.4571 1.1516

1.0 1–2
7–8
14–16
16–17
17–18

1 1.1610 3.0283 4.1893 16.9379 1.2909 1.1545
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of this expansion-planning problem is reduced because of the higher
trustworthiness of DR. In other words, the appropriate application
of DR can help reduce expansion costs and lessen loss load and RES
curtailment. Note that the experiments we performed in this section
with available DR are fixed at 0.2.

Figure 6 shows the participation situation of different
trustworthiness of the available DR at bus18. In general, the
higher the trustworthiness of DR, the more actual DR participates
in the system. As can be seen, the positive value of participating
DR equals the negative one in 48 h. Moreover, when
the electricity demand is high, DR is mostly positive. While
the electricity demand is low, and vice on the contrary.

However, the symbol of DR is not always positive in peak
load hours due to its abundant flexibility resources and
renewable energy volatility. See hours 13, 14, 15, and 16.
Therefore, DR can improve the flexibility of the system. In
hours 18 and 21, the actual participating DR is not at its
maximum. This illustrates the need for precise control of DR
rather than crude subsidies.

5.2.3 A trade-off between minimizing total costs
and reducing CO2 emissions

Since GHG emissions have a heavy influence on our
environment, obtaining a sustainable and environmentally

FIGURE 6
Different trustworthiness of DR at bus18.

TABLE 5 Simulation results with different trustworthiness of DR considering the impact of CO2 emissions.

Trustworthiness
of DR

New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2

emission
cost (*10∧9)

0.0 1–5
7–8
14–16
16–17

All 1.9791 2.8861 4.8652 468.7139 2.0846 1.1414

0.1 1–5
7–8
14–16
16–17
17–18

1–6
8–24

1.9670 2.8789 4.8459 309.5893 1.4518 1.1341

0.5 1–5
7–8
14–16
15–16

1–6
8–15
17–20
23
24

1.89396 2.8805 4.7745 78.0662 0.7631 1.1449

1.0 1–5
7–8
14–16

3
11
14
16

1.5631 2.9490 4.5121 83.4359 0.6330 1.1312
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friendly power system became the global common goal. It is not
appropriate to aim only at cost minimization because new
technology is generally expensive at the beginning stage but are
environmentally friendly. Therefore, this study makes a trade-off
between minimizing total costs and reducing CO2 emissions. We
assume these two goals are of equal importance in this paper. In
other words, Equations 9, 10 are included in the objective function.
As shown in each column of Table 5, the number of newly installed
ESSs also decreases as the trustworthiness of DR increases. However,
the newly installed number should be more compared with that of
the previous experiment (case 2), which only focuses on cost
minimization (shown in Table 4). The most important factor is
that CO2 emission costs decreased with each different
trustworthiness of DR, as compared to the cost minimization
experiment. Specifically, the data on CO2 emission cost reduced
from 1.1545$ to 1.1312$, which reduced by 2.1%, when the
trustworthiness of DR was 1.0.

Figure 7 presents an intuitive comparison of case 2 (only
considering cost minimization) and case 3 (a trade-off between
minimizing total costs and reducing CO2 emissions). On equal
terms compared to the previous case, although fewer new lines

need to be constructed to strengthen the transmission network,
however, more ESSs need to be installed. Thus, the investment
cost increased considerably as it went up from 1.7393*10̂9$ (the
second row and fourth column in Table 4) to 1.9670*10̂9$ (the
second row and fourth column in Table 5). Moreover, the
operation cost decreased slightly in case 3, with its value
decreasing from 2.9164*10̂9$ to 2.8789*10̂9$. Thus, in a word,
the total cost is larger than the condition without considering
CO2 emissions. Specifically, statistics of total cost rose from
4.6557*10̂9$ to 4.8459*10̂9$, an increase of 3.9%, when the
trustworthiness of DR was 0.1. To maximize renewable energy
consumption, the system takes priority utilization of all newly
installed ESSs rather than conventional generations. In case 3, the
loss load costs were reduced for each different trustworthiness of
the DR condition. It indicated that the power supply reliability
was improved.

To sum up, case 3 is a more appropriate strategy for the
following reasons: 1) it can help reduce GHG emissions, which is
consistent with the current environmental protection concept; 2) it
improves power system reliability because it uses flexible resources
preferentially and lessens the value of loss load; 3) it defers

FIGURE 7
Comparison of considering only cost minimization and considering both minimizing costs and reducing CO2 emissions.

TABLE 6 Simulation results using different solving methods when the trustworthiness of DR is 1.0

Method New
lines

New
storage

Investment
cost (10∧9)

Operation
cost (10∧9)

Total
cost
(10∧9)

Loss
energy

Loss
load
(10∧5)

CO2 emission
cost (*10∧9)

Centralized 1–5
7–8
14–16

3
11
14
16

1.5631 2.9484 4.5115 83.0662 0.6301 1.1312

Dual
decomposition

1–5
7–8
14–16

3
11
14
16

1.5631 2.9490 4.5121 83.4359 0.6330 1.1312
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transmission expansion due to abundant flexible resources. Thus, it
alleviated the bottleneck of unbalanced development of the short-
term renewable energy expansion period and the long-term
transmission expansion period.

5.2.4 Analysis of the effectiveness of the dual-
decomposition method

To verify the effectiveness of the dual-decomposition
algorithm, we compared the simulation results of case 3,
where the trustworthiness of DR is set to 1.0, using both
the centralized algorithm and the dual-decomposition
algorithm. As shown in Table 6, it can be observed
that regardless of the solving algorithm, the newly
constructed lines and ESSs are identical, resulting in the same
investment cost for both algorithms. Moreover, the two
algorithms yield the same cost for GHG emissions.
Additionally, the centralized algorithm produces slightly
different RES curtailment and loss-load costs compared to the
decomposition algorithm. This leads to a small difference in
total costs. This discrepancy is due to the convergence tolerance
being set at 0.01% during program design, but it does not affect
the final results.

6 Conclusion

This paper proposed a robust coordinated planning model for
power systems, in which large shares of variable renewable energy
are integrated. For the sake of accuracy and efficiency, piecewise
linearization, big-M method, and dual decomposition were
introduced due to the already complex nature of the
optimization problem. The inevitable uncertainty
(variable RESs and demand) is described by polyhedral
sets. To understand the impact of varied resources and
technologies (such as wind power, photovoltaic resources,
ESSs, and the trustworthiness of DR) on the development of
power system planning, several computational experiments are
presented. First, the capacity, location, and degradation of
ESSs have a close impact on power system expansion
planning. It is necessary to select an appropriate capacity
and location for every single energy storage station in the
planning stage. Second, higher trustworthiness of DR can help
reduce the total expansion costs. However, it has little impact on
GHG emissions if we consider cost minimization only. The last
study makes a trade-off between minimizing total costs and
reducing CO2 emissions. According to this, a more sustainable
and environmentally friendly power system was obtained.
Moreover, it improves power system reliability and alleviates

the unbalanced development of the short-term renewable
energy expansion period and the long-term transmission
expansion period.
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Nomenclature

A. Variables

xrr Binary variable represents the installation status of new RESs

xli Binary variable represents the installation status of
transmission lines

xss Binary variable represents the installation status of ESSs

PGg,y,h,k and QGg ,y,h,k Active and reactive power output of traditional generations

PGope, PSope,
and DRope

Operation cost of conventional generations, ESSs
maintenance costs, and DR costs

QWVope Renewable energy curtailment costs

eg ,y,h,k Energy of traditional generations

LPi,y,h,k and LQi,y,h,k Active and reactive power loss of the system

QWw,y,h,k

and QVv,y,h,k

Wind and photovoltaic farm curtailment power

PSchs,y,h,k ,PS
dch
s,y,h,k

Charge and discharge power of ESSs

DRi,y,h,k Power participated in DR

PWw,k and PVv,k Active power of wind and photovoltaic farms

PDi,y,h,k ,QDi,y,h,k Active and reactive power of loads

PLi,j,y,h,k ,QLi,j,y,h,k Active and reactive power flow in transmission lines

BSchs,y,h,k ,BS
dch
s,y,h,k

Binary value representing the charging and discharging
status of ESSs

SOCs,y,h,k

and SOCs,y,h,k

State of charge (SOC) of ESSs; the maximum allowable
change in SOC

Vi,y,h,k and θi,y,h,k Voltage and angle in the power system

Es,y,h,k Actual energy capacity of ESSs

B. Parameters

CLi Investment costs for candidate transmission lines

CSs Investment costs for new ESSs

CRr Investment costs for variable RESs. Note that CRr includes
investment costs for wind power generations and
photovoltaic generations with different coefficients

αg ,y,h Operation-related conventional generator fuel costs

βy,h Maintenance costs of a single ESS

γy,h Operation-related DR costs

- Decreased rate of ESS maintenance costs

E0 ,y,h,Ey,h Single energy capacity and the node-installed capacity of
ESSs

CWw,h ,CVv,h Cost of wind and photovoltaic power curtailments

Creli and Cem Costs of loss of demands and GHG emissions

χ Expected contributions of renewable energy sources in
supplying the total demand

Lf h ,Wf h ,Vf h Hourly representative factors of load demand, wind, and
photovoltaic farm outputs

LGk Load growth factor at scenario k

PDPK
i,k Peak load at bus i

RDWg ,RUWg Total hourly upper bound of upward and downward
reserves

RDg ,y,h,k ,RUg,y,h,k Ramp-down and ramp-up limits of traditional generation
units

κ Maximum allowable load shedding at each stage

π Maximum allowable change in SOC

CWw,h and CVv,h Wind farms and photovoltaic generation curtailment costs

EMg ,y,h GHG emissions per kWh

CGem
g ,y,h Costs of GHG emission licenses per ton

VOLL Value of the lost load

ρk Probability of scenarios

AGi,g Bus-generation incidence matrices

AWi,w and AVi,v Bus-wind and bus-photovoltaic farm incidence matrices

ASi,s Bus-ESS incidence matrices

ADi,l Bus-load incidence matrices

SLi,j max Capacity of transmission lines

V Voltage magnitude (p.u.)

θ Phase angle (rad)

G,B Conductance and susceptance of transmission lines

ηch , ηdch Charging and discharging efficiencies of ESSs

δ Phase angle difference in transmission lines

αsei , f sei Coefficients for the solid electrolyte interphase model

SoHs,y,h,k State of health of ESSs

ERate
s,y,h,k Installed capacity of ESSs

N Number of cycles

f d General form of the linearized degradation model

ς Cycle depth of charge

∂ Average SOC of all cycles

Tc Average operation temperature of ESSs

M Large enough constant

Y Binary variable vectors

P Positive continuous operational variable vectors

Z Free continuous variable vectors

λ, μ, σ Compact dual variable vectors

ξ Uncertain vectors

I Constant vector

ΓD , ΓW , ΓV Conservative parameters of DR, wind, and photovoltaic
power

CF(H, E) Intensity with which condition E supports conclusion H

CF(E), CF(H) Trustworthiness of condition E and conclusion H

C. Sets

r Index for counting renewable sources

i, j Index for buses
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g Index for counting conventional generations

w, v Index for wind and photovoltaic farms

s Index for counting energy storage systems

n,m Indexes for linearization segments

l Index for load

k Index for scenarios

h Index for the planning hour

y Index for the representative year
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Research on data-driven,
multi-component distribution
network attack planning methods

Xueyan Wang1, Bingye Zhang1, Dengdiao Li1, Jinzhou Sun2,3*,
Yu Wang1, Xinyu Wang1, Qu Liang1 and Fei Tang2,3

1Taizhou Power Supply Company State Grid Zhejiang Electric Power Co., Ltd., Hangzhou, Jiangsu, China,
2School of Electrical and Automation, Wuhan University, Wuhan, China, 3Hubei Engineering and
Technology Research Center for AC/DC Intelligent Distribution Network, Wuhan, China

As the physical power information system undergoes continual advancement,
mobile energy storage has become a pivotal component in the planning and
orchestration of multi-component distribution networks. Furthermore, the
evolution and enhancement of big data technologies have significantly
contributed to enhancing the rationality and efficacy of various distribution
network planning and layout approaches. At the same time, multi-distribution
networks have also confronted numerous network attacks with increasing
probability and severity. In this study, a Petri net is initially employed as a
modeling technique to delineate the network attack flow within the
distribution network. Subsequently, the data from prior network attacks are
consolidated and scrutinized to evaluate the vulnerability of the cyber-
physical system (CPS), thereby identifying the most critical network attack
pattern for a multi-component distribution network. Following this, the
defender–attacker–defender planning methodology is applied for scale
modeling, incorporating rapidly evolving mobile energy storage into the pre-
layout, aiming tomitigate the detrimental impact of network attacks on the power
grid. Ultimately, the column and constraint generation (C&CG) algorithm is
utilized to simulate and validate the proposed planning strategy in a 33-node
system with multiple control groups established to demonstrate the viability and
merits of the proposed strategy.

KEYWORDS

multi-component distribution network, cyber attack, DAD planning model, mobile
energy storage, C&CG algorithm, data-driven

1 Introduction

With the rapid development of the global energy Internet, the distribution network has
become an important part of the power system, and its operation safety is directly related to
the stability and reliability of the power supply. However, with the rapid development of
computers and communication technology, the traditional power system and information
communication system are more and more closely combined, forming a fused power and
information physical system known as a cyber-physical system (CPS). With the continuous
upgrading of network attacks, the security problem of power networks is becoming
increasingly prominent (Shelar and Amin, 2017). In order to cope with this challenge,
this study aims to explore a multi-component distribution network planning method under
power network attacks to improve the anti-attack capability and operational stability of the
distribution network.
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In recent years, many CPS studies have emerged. Based on the
establishment of the CPS dependencymodel and the characterization of
the coupling mechanism between them, Nguyen et al. (2013) studied
and analyzed the factors affecting the vulnerability of distribution
networks under network attacks. Gao et al. (2013) analyzed the
interdependence and connection between power and information
nodes. Through the communication process between the power
system and the information system, Long et al. (2019) conducted
network modeling to verify the relationship between the degree of
system loss and the proportion of fault nodes in the network. Zhang
et al. (2021) analyzed CPS modeling through a dependency network.
However, most of the modeling processes above are mainly from a
topological perspective, resulting in some differences between the final
model and actual system characteristics. Currently, research on network
attacks mostly focuses on large power grid information physical
systems, with most information attacks concentrated in transmission
grids. For example, Yu et al. (2016) verified that communication delay
between AC and DC changes the optimization strategy of control
centers in UHV systems. Cai et al. (2016) studied potential major
failures (catastrophic failures) in different structural information
networks under random or deliberate attacks. Based on the semi-
Markov process, Lau et al. (2020) modeled SCADA systems and
developed optimal mixed strategies for defense strategy allocation
through competitive games. Yu et al. (2019) proposed a transfer
model of the CPS system that integrates physical equipment and
information decision making and realizes dynamic control of the
transfer process by establishing an information control flow. Yi et al.
(2016) analyzed, defined, and classified the network attacks suffered by
CPS based on examples. At present, the network attack planning
methods for distribution networks are relatively few. The influence
of pre-layout defense measure configuration on network attacks is
ignored, and defender–attacker–defender (DAD) planning is rarely
taken into account in distribution network configuration planning.

Based on the above research background and research status,
this article proposes a multi-component distribution network
planning method that considers network attacks. First,
vulnerability attacks under Petri net and power network attacks
are used to analyze and obtain the vulnerability of distribution
networks under network attacks, and with the help of data-driven
(Stephane et al., 2022), the corresponding extreme scenarios are
simplified and generated. Second, based on the DAD planning
model, mobile energy storage is introduced for pre-layout in
advance to reduce the cost of fault recovery. Third, the C&CG
algorithm is used to analyze the three-layer, two-stage optimization
problem of the DAD planning model. Finally, a 33-node IEEE
system is tested and evaluated to verify the economy and
effectiveness of the proposed method.

2 Power network attack modeling

2.1 Typical power network attack model

As the key infrastructure supporting the normal operation of
society, the security and stability of the power network are very
important (Yang et al., 2022). With the rapid development of
computer and communication technology, traditional power
systems and information and communication systems are more

and more closely combined, forming a typical CPS. However, with
the continuous evolution of the means of network attack, the threat
to the power network is becoming more and more serious.

In the diversified and chain-oriented environment of network
attacks, it is difficult for traditional methods to deal with random
and highly interlocked attacks, mainly because it is difficult to
describe dynamic attack and defense behaviors. The state of the
whole system cannot be directly observed, which affects the
selection of defense behaviors. Therefore, this article chooses a
Petri net as the modeling method to describe the attack state and
provides the basis for the subsequent defense strategy selection.

The elements of a Petri net include a library (Place) circular
node, a Transition square node, a directed arc (Connection) that is
the directed arc between a library and a transition, and a token
(Token) that is a dynamic object in a library that can be moved from
one library to another (Deka et al., 2014). Figure 1 shows a common
network attack flow model.

When the actual transition probability and delay are
determined, a Petri net can be equated with a Markov chain
(MC) (Lin et al., 2005). At the same time, the trigger matrix data
are easily obtained in the reachable graph. The analysis of system
performance can have a very good effect. The specific method of
obtaining trigger matrix parameters is as follows: a random Petri net
is represented by a quadruple SPN = (P, T, Mo, Mf), where Mo

represents the initial mark, and Mf represents the final mark. The
calculation formula of the trigger matrix is as follows in Eq. (1)
(Amini et al., 2018):

Mf � Mo + CTUk. (1)

In this formula, C is the integration matrix, Uk is the trigger
matrix, and the tag and integration matrix can be derived from the
library and transition states.

2.2 Vulnerability analysis under power
network attack

2.2.1 Analysis of vulnerability indicators
2.2.1.1 Critical damage degree index

With the development of information technology, the power
system’s dependence on the information network also increases.
Therefore, security will be seriously threatened when network
attacks occur. It is necessary to assess the vulnerability of the
distribution network under network attacks (Dahmen et al.,
2019). Widely used mainstream evaluation methods are based on
complex network and transient energy functions and service
transmission (Shahsanee and Zareei, 2018).

At present, vulnerability assessment of network nodes is mainly
focused on the static condition, but when the network is running, the
vulnerability index will change constantly. Zhou et al. (2024) put forward
the concept of destructiveness to indicate the degree to which the
network is on the verge of destruction when attacked in Eq. (2):

Pij �
tij
Ti
, tij  <  Ti

1, tij ≥Ti

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)
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In this expression, Pi is the destructivity index and tij is the delay
range of the ith service beside j. Ti is the ruin value of the Class
i business.

For the case of multiple lines, according to the change of Pij, the
accuracy of vulnerability assessment is ensured by the following Eq. (3):

Cp Ep i, j( )[ ] � δt ∑i
j�1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ Vi∑i
j�1Vj

Pij

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (3)

In this formula, Cp[Ep(i,j)]is the vulnerability of the
communication branch, Ep(i,j) is the vulnerability value of the
communication branch from Article i to Article j, δt is the actual
delay of communication transmission, Vi is the traffic contained in
the communication branch, and Vj is the transmission rate of Class j
services on the communication branch.

2.2.1.2 Fault impact degree
When the distribution network is attacked and a fault occurs, the

node will lose load. Therefore, the analysis must also consider the
results caused by the failure of the distribution network and the
shutdown of nodes (Nazemi et al., 2019).

In view of the fact that the distribution network is generally a
radial network and operates in an open loop, the impact caused by
node outage can be quantitatively analyzed Eqs 4,5:

SNi � ωiP
Si
SB.

(4)

P � λ

λ + μ
. (5)

In this formula, ωi represents the load class weighting
coefficient, P represents the node failure rate, and SB represents
the power reference value of the system. λ represents the failure rate,
and μ represents the repair rate.

2.2.2 Assessment model of distribution network
vulnerability

Considering the existence of static and dynamic indicators of the
vulnerability of the distribution network, several nodes are selected
from different levels of the distribution network for assessment.
Different vulnerability assessment indicators are assigned according
to the levels and importance of different nodes (Yan et al., 2015).

Because the existing distribution network is coupled by the
power network and the communication network, the components
are diverse, and the coupling relationship is complicated. The
complex network theory can be used to model and analyze the
distribution network. Among them, the bus and line in the power
network are abstracted as nodes and edges. The relationships
between intelligent terminal devices and communication nodes in
a communication network are abstracted as nodes and edges. Based
on this, the power–communication coupling network model of the
distribution network shown in Figure 2 can be constructed.

The two types of nodes in the model, power node and
communication node, have two operating states, namely, normal
and fault. The model’s running state can be expressed by setting the
state variable in Eqs 6,7 (Guo et al., 2019).

f/kx,n � f/kx,ne + if/kx,nc �
1  x ∈ Ωe

i  x ∈ Ωc

0  x ∉ Ωe ∪ Ωc

⎧⎪⎨⎪⎩ . (6)

fxy,1 � fyx,1 � fxy,le + ifxy,lc �
1 + i xy ∈ ΩLe, xy ∈ ΩLe

1 xy ∈ ΩLe, xy ∉ ΩLe

i xy ∉ ΩLe, xy ∈ ΩLe.
0 xy ∉ ΩLe, xy ∉ ΩLe

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

In this formula, fx,i represents the initial, power, and
communication operating states of nodes, respectively; kx,i
represents the actual, power, and communication operating states
of nodes; fxy,i is the overall status of line xy, the power line and the
communication line, respectively; Ωe、Ωc、and Ωv is the set of

FIGURE 1
Common network attack flow model.
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power, communication, and effective operation nodes, respectively;
and ΩLe、ΩLc、and ΩLv is the set of power, communication, and
effective operation lines, respectively.

In the power–communication network, M nodes are extracted,
whereM = {m1, m2, m3, ..., mn}. If there is a path between the nodes,
the coefficient k is 1, and otherwise 0. Static vulnerability assessment
indicators are defined as Eq. 8

N Mi( ) � ε1Pij mi( ) + ε2N mi( ). (8)

In this formula, N(Mi) is the static vulnerability assessment
index, a is the weight of each static factor, and Pij(mi) is the
destructivity index of the mi node. N(mi) indicates the pressure
indicator of the service layer. As can be seen from the above formula,
the static vulnerability assessment index is a constant.

The dynamic vulnerability assessment index is defined as
Eq. 9

Nvi Mi( ) � 1
N Mi( ). (9)

Based on the above formula, the vulnerability assessment model
is constructed, and the expression is as follows Eq. 10:

M′ �
������������������������
1
N

∑
mi∈M

N Mi( )  −  N Mi( )( )2.√
+

�����������������������
1
P

∑
mi∈M

N Mi( )  −  N Mi( )( )2√ (10)

In this formula, M′ is the expression of the vulnerability
assessment model, N is static loss, and P is dynamic loss. The loss
of power service when the network is attacked is judged according to

the change of the M′ value to realize the effective assessment of the
vulnerability of the power–communication network.

2.3 Power network attack scenario
generation

Before vulnerability assessment, different network attack
modes need to be analyzed; that is, attack scenarios need to be
generated. In this article, the K-means clustering algorithm
(Hagh et al., 2018) is used to reduce the typical Ms0 attack
scenarios obtained from previous network attack data to a
typical scenario set containing Md attack scenarios, in which
the ith sample is represented as λi = []i, Tst,i, Tdr,i]. The specific
steps to reduce the attack scenario are as follows:

Step 1: In Ms0 samples, randomly select K(K = Md) initial cluster
centers (λ1, λ2, . . . , λK);

Step 2: Calculate the Euclidean distance between each sample λi
and the cluster center, and aggregate each sample with the
nearest cluster center to form K cluster samples;

Step 3: CalculateDkm, the sum of the distance between the sample
and the respective clustering center, according to the
following formula and iteratively update the contents of
the K cluster sample in Eq. 11.

Dkm � ∑K
i�1

∑
z∈Yi

‖ z − λi ‖22. (11)

In this formula, z and λi are the noncentral samples and the
central samples of cluster Yi, respectively.

FIGURE 2
Power-communication coupling network model of distribution network.
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Step 4: Calculate the iteratively updated K clustering centers
according to the following formula (12):

λi � 1
Yi

∑
z∈Yi

z. (12)

Step 5: Repeat steps 2 to 4 until the maximum number of
iterations is reached or convergence conditions are met;

Step 6: Calculate the probability distribution of the final K
samples according to the Eq. 13.

Pd � Yi| |
Ms0.

(13)

In this formula, |Yi| is the number of samples contained
in cluster Yi.

The probability density of the ith scenario after clustering is Pdi,
and its cumulative probability distribution Fdi is shown in the
following Eq. 14.

Fdt � ∑i
k�1

Pdk i � 1, ...,Md( ). (14)

Similar to the determination of line fault state pl, the non-
sequential Monte Carlo simulation method can also be used to
generate uniformly distributed random numbers xd in the interval
[0, 1] and randomly select attack scenarios for the subsequent
resilience assessment process. When Fd(i-1)<xd < Fdi, it indicates
that scenario i is selected. A set of samples[]i, Tst,i, Tdr,i] can be
obtained, and the fault scenario can be further generated according
to the parameters of extreme events.

3Multi-grid distribution networkmodel
and toughness analysis

3.1 Distribution network model construction

3.1.1 Construction of the renewable energy
output model

With the development of global renewable energy, growing
renewable energy in multiple distribution networks is
increasingly important, followed by the network attack
probability. The attackers may be aimed at the control system of
renewable energy itself and may also use the renewable energy
system as a springboard through the data exchange system to attack
multiple distribution networks. Therefore, renewable energy must
also be included in the construction of the network attack model.
Considering the proportion and representativeness of renewable
energy in the grid, wind power and photovoltaic are selected to
construct renewable energy output models in this article.

3.1.1.1 Wind power
In general, the probability density of the wind speed conforms to

the Weibull distribution (Eq. 15):

f F ν( ) � k
c

ν

c
( )k−1

e−
v
c( )k . (15)

Among them, k and c are, respectively (Eq. 16):

k � σ

μ
( )1.086

c � μ

Γ 1 + 1/k( ).
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (16)

In this formula, σ is the standard deviation of wind speed in
statistical time, and μ is the expected wind speed in statistical time. Γ
is a gamma function.

The output power of the fan is related to the size of the wind
speed and the power characteristics of the fan itself. The output
power is (Eq. 17) (Nan et al. (2022):

Pwind v( ) �
0, v ≤ vci, v > vco
k1v + k2, vci < v < vr .
Pr , vci ≤ v ≤ vr

⎧⎪⎨⎪⎩ (17)

In this formula, vci and vco are the cut-in wind speed and cut-out
wind speed of the fan, vr is the rated wind speed of the fan, Pr is the
rated output power of the fan, and k1 and k2 are constants.

3.1.1.2 Photovoltaic
The output of distributed photovoltaics is directly related to the

magnitude of the light intensity. However, due to the intermittent
type and uncertainty of the light intensity, the photovoltaic output
will also change with the light intensity. Overall, the photovoltaic
output power is PPV. The probability density curve can be
approximated by a beta distribution (Eq. 18):

f PPV( ) � Γ α + β( )
Γ α( )Γ β( ) PPV

PMπ
( )α−1

1 − PPV

PMπ
( )β−1

. (18)

In this formula, Pmax indicates the maximum output power of
the photovoltaic power supply. α and β are the two parameters of the
beta distribution probability density function, respectively, which
can be calculated by calculating the average light intensity μ and the
variance σ of the light intensity within a day.

3.1.2 Typical load model construction
Saccentie et al. (2019) proposed a way of fitting a normal

distribution curve based on the analysis of extensive data, taking
the expectation of a normal distribution curve as a typical load curve.

Using a large amount of power grid load data, the load data at
the same time on different days are fitted to a normal distribution,
and, finally, the expectation of normal distribution at each time is
taken as the load value at that time of the typical day. The load data
at the same time on different days were fitted by maximum
likelihood estimation by calculating the load value of 24 periods
to the final fitted typical day, and the fitted data were calculated
(Eqs 19,20):

L θi( ) � L xi1, xi2,/, xia ; θi( ) � ∏n−bi
a�1

f xia ; θi( ). (19)

E xi( ) � ∫ xif xi( )dxi. (20)

In this formula, xia indicates the load remaining after duplicate
data are removed from the same period on different days. θi is the
unknown quantity to be estimated, a represents the ath load value in
the sample at time i, and bi indicates the number of repeated load
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values in period i. Represents the formula E(xi) expectation for
period i, and xi represents the argument of the normal distribution
function for the ith period.

3.1.3 Energy storage equipment, model
construction

The output of new energy units, such as wind power and
photovoltaic, in the distribution network is often intermittent
and uncertain. Access to energy storage equipment can suppress
the output power of new energy, improve the power absorption
capacity of the distribution network, and bring certain economic
benefits (Nan et al., 2022).

The energy storage system is equivalent to connecting the
distributed power supply to some nodes during some operating
periods and connecting with different power loads during other
periods. That is, the energy storage absorbs active power when
charging and emits active power when discharging (Eq. 21):

SOC t + Δt( ) � SOC t( ) + Pc t + Δt( )ηcΔt
E

.

SOC t + Δt( ) � SOC t( ) + Pd t + Δt( )Δt
Eηd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (21)

In this formula, SOC(t) represents the SOC value of the energy
storage system at time t, Pc and Pd represent the absorption and
emitted power of the energy storage, ηc and ηd represent the
efficiency of the absorption and emitted power of the energy
storage system, and Δt represents the capacity of the energy
storage system and the duration of charge and discharge.

3.2 DAD planning model construction

The DADmodel is suitable for the development of defense plans
for important infrastructure, including power systems. Generally,
the interactive concept of attack and defense in traditional DAD
planning models can be divided into the following three layers:

(1) System planning layer: Defenders of this layer need to
consider all possible attack scenarios in advance and
analyze and classify these scenarios to facilitate the
development of defensive measures against these possible
attacks to reduce the losses caused by attacks. Common
countermeasures can include strengthening the hardened
target and adding backup equipment and smart
equipment, etc., to minimize the system loss caused by
the attack.

(2) System damage layer: Attackers in this layer usually develop
unique attack methods and approaches for these advanced
layout defense measures after knowing the measures
formulated by the system planning layer and try to identify
the worst and most serious attack scenarios so as to cause the
greatest loss to the system.

(3) System operation layer: after completing the pre-layout
defense, the defender of this layer takes some recovery
measures to deal with the attack after the attacker carries
out the worst attack in order to minimize the system loss.
Common recovery measures include load cutting, putting

energy storage devices or standby devices in use, and isolating
faulty or infected devices to minimize subsequent losses and
impact on system operation.

In short, the purpose of the defender is to minimize the system
loss, while the purpose of the attacker is to maximize the system loss.

4 Building and solving a DAD model of
distribution network considering a
network attack

4.1 Model construction under a
network attack

Compared with the traditional distribution network, much
energy storage equipment is connected to the current multiple
distribution network. When the network attack receives faults or
fluctuations, energy storage can be an important resource in
the planning of the distribution network DAD. The DAD
planning model of a multi-distribution network considering the
participation of energy storage under network attack is shown
in Figure 3.

The first layer in the figure is the system planning layer. This
article proposes the coordination measures of “line reinforcement
and energy storage configuration” that can operate with energy
storage in distant and important load disasters to reduce the
investment cost of grid prevention and minimize the load loss in
the distribution network emergency response. The second layer is
the disaster attack layer, from the perspective of the attacker, and the
third layer of system operation minimizes the load loss in the
emergency response determined in the second layer.

4.2 Model solution algorithm and steps

The DAD planning model for energy storage configuration
established in this article is a three-layer and two-stage optimization
problem, which has the same mathematical form as the two-stage
adaptive robust optimization model, namely, the three-layer and two-
stage structure of min–max–min. Generally, most existing studies use
the Bender decomposition and the C&CG algorithms to solve such
problems. Compared with the Bender decomposition algorithm, the
C&CG algorithm has stronger convergence and solution power (Nan
et al., 2022). Therefore, the C&CG algorithm is used.

4.2.1 C and CG, the algorithm for solving
According to the DAD planning model constructed in Section

3.1, the following matrix is listed (Eq. 22):

min Xmaxu∈UxminV∈Θ X,u( ) b
TY

s.t.AX ≤ a

Θ X, u( ) � Y | MY ≥NX,KY � u,
‖ JmY ‖2≤ f TmY ,m � 1, 2, . . . , n

{
⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (22)

In this formula, X is the optimization variable in the first stage, u
is the optimization variable in the second stage, which belongs to an
uncertain set Us, and Y is the optimization variable of the running
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layer in the second stage. A, M, N, K, and Jm are the constant
coefficient matrix. a, b, and fm are the constant coefficient vector.

According to the application scope of the DAD planning model
1 and the C&CG algorithm constructed above, when using the
C&CG algorithm, the solution is necessary to assemble the
established model into the main problem (MP) and the
subproblem (SP) in advance.

In the DAD planning model of resilient distribution network
established in this article (Yang et al., 2024), pre-disaster planning
measures need to be formulated for the main problem, that is, to
solve the coordinated measures x1 and x2 of line reinforcement and
energy storage configuration under the given distribution line fault
state scenario ul (Eq. 23):

min x,φF
s.t.AX ≤ a
F ≥ bTYi

MTi ≥NX
KY � u?

‖ JmYi ‖2≤ f TmYi,m � 1, 2, ..., n

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
. (23)

In this formula, F is the main goal of the problem, i is the number
of iterations, and all the variables with subscripts i in the formula are
the variables obtained by the ith iteration.

The purpose of the subproblem (SP) is to find the distribution
network fault state scenario with the greatest loss. That is, in the case
that the optimal solution x1

*、 x2
* of MP is given, the worst fault

scenario u is obtained (Eq. 24):

max
u∈Us

min
TeΘ X′,n( ) b

TY . (24)

Following Zhang et al. (2020), this article adopts the strong
duality theory to transform the inner min form of the subproblem
into themax form and combine the outer problem into a single-layer
optimization problem (Eq. 25).

min
u,η,ξ,μn ,σn

MX*( )Tη + uTξ

s.t.MTη + KTξ + ∑n
m�1

JTmμm + f mσm( ) � b.

‖ μm ‖2≤ σm

η≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(25)

In this formula, η、ξ、μm、σm is the variable after dual
processing. The above formula contains a non-convex bilinear term,
uTξ, so ρi, a 0–1 integer variable, is introduced to represent the strongest
attack and the weakest attack on the distribution network. When ρi is
set to 1, the distribution network suffers the strongest attack, and when
ρi is set to 0, the distribution network suffers the weakest attack. The
linearization process is as follows (Eq. 26):

uTξ � ∑ uiξi � ∑ ui,minξi + ui,max − ui,min( )ρiξi[ ]. (26)

In this formula, ui and ξi are the elements in sets u and ξ,
respectively, and ui,max and ui,min represent the attacks that cause the
most and least damage to the distribution network, respectively. ρiξi is
relaxed by the big-M method. The relaxation process is as follows
(Eq. 27):

−Mρi ≤wi ≤Mρi
−M\ 1 − ρi( ) + ξi ≤wi ≤M 1 − ρi( ) + ξi.

{ (27)

In this formula,wi is an intermediate variable, andM is a positive
integer with a relatively large value. After the above conversion, the

FIGURE 3
DAD planning model considering energy storage.
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problem is converted into a convex and linear problem, which is easy
to solve.

The specific solution process is shown in Figure 4.

5 Example analysis

5.1 Simulation process and environment
configuration

Based on the above analysis, the specific process of DAD
planning of the multi-distribution network for network attacks is
shown in Figure 5.

As shown in the figure, the corresponding Petri net attack model
is first constructed according to common network attacks and
converted into the corresponding MC matrix to facilitate the
subsequent calculation of power grid vulnerability and vulnerable
nodes. The vulnerable nodes when network attacks occur are
determined by calculating the ruin degree of each node and the
MC matrix determined above, and on this basis, the fault scenario
for the weak nodes under network attacks in the multi-component
power grid is generated.

Considering the generation process of network attack scenarios in
the distribution network established in Section 1, after analysis and in
combination with the literature [19], the network attack mode in this
article will attack nodes in the system and deliberately attack nodes with
the most vulnerable analysis results to enhance the effectiveness of

attacks and the severity of consequences. At the same time, considering
that both power nodes and communication nodes exist in the physical
fusion system of power information and considering the inter-network
failure probability when the two types of nodes fail, this article chooses
to directly attack the power nodes because, in the case of the same inter-
network failure probability, continuous attacks on power nodes are
more likely to cause chain failures (Wang et al., 2018).

DAD is a three-layer planning model, so it is necessary to plan
the first defense layer before carrying out network attacks.
Coordination measures for line reinforcement, including energy
storage, are taken in this article. After network attacks,
corresponding measures are taken for damage and attacks so as
to minimize load loss to the greatest extent.

5.2 Simulation results

The simulation in this article is carried out under IEEE33 nodes.
The specific node configuration and wiring are shown in Figure 6.
Among these nodes, 2, 6, 9, 25, and 29 are DEG nodes, and 3, 4, 6, 10,
11, 15, 17, 19, 24, 26, 28, and 33 are important loads; 13, 18, 20, 24,
and 33 are PV nodes. The remaining parts are ordinary load nodes.

The main objective is to reduce the cost of the overall pre-layout
and ensure as few island nodes as possible after the fault branch is
disconnected. Each unit cost is shown in Table 1.

Based on the model established above, this article sets the
following scenarios for verification and comparison:

FIGURE 4
C&CG algorithm solution process.
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1) A pre-layout robust optimization planning model considering
energy storage coordination participation;

2) A robust optimization planning model considering energy
storage coordination participation;

3) A pre-layout deterministic optimal planning model
considering energy storage coordination participation;

4) A deterministic optimal planning model considering energy
storage coordination participation.

Under the above scenario, the pre-layout cost of various
optimization planning models and the node wiring situation after
failure are shown in Figure 7.

The figure shows the sum of the various costs in each of the four
cases, that is, whether pre-layout is performed and whether robust or
deterministic optimization is used. In the figure, the two columns on
the left show the impact of pre-layout on cost when robust
optimization is adopted. It can be seen that the cost of the
scheme with pre-layout is lower than that without pre-layout.

On the right is the cost situation under the condition of
deterministic optimization. The pre-layout has obvious
advantages, and the cost will be reduced by approximately
15%–20%. For the same pre-layout scheme, robust
optimization and deterministic optimization also have a
certain impact on the cost, as shown in the blue columns in
the figure. A comparison indicates that under the premise of the
same pre-layout, the robust optimization method has a lower cost
than the deterministic optimization method, and the cost can be
reduced by approximately 10%. Based on the above
simulation results, we can find that the pre-layout and robust
optimization methods have better effects and more advantages
for cost control.

Figures 8–11 show the cable connections between nodes after
faults in the four scenarios.

In view of the introduction of energy storage coordination and
participation in the previous DAD planningmodel, the impact of the
addition of energy storage equipment on the overall layout cost and

FIGURE 6
33 Node distribution.

FIGURE 5
DAD planning process under network attacks.
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line operation status is verified in the simulation. Themain scenarios
are as follows:

1) The pre-layout robustness optimization planning model
considering the participation of energy storage
coordination;

2) The pre-layout robustness optimization planning model
without considering the participation of energy storage
coordination.

In the above scenario, the cost and failure of the node
distribution of each scheme are shown in Figures 12, 13 and Table 2.

From the above simulation results, it can be observed that
before energy storage is taken into account, the overall layout
cost and fault recovery cost are approximately 8085.7 thousand
yuan. When mobile energy storage is introduced, the overall
cost is reduced to 5,085.8 thousand yuan, a reduction of
approximately 40%. In addition, on the premise of fault
recovery and line connection operation, comparing Figures
12, 13 indicates that when energy storage is involved, the number
of islands composed of three or fewer nodes is three, including one of
the important users, and one island is equipped with mobile energy
storage, which can be temporarily used as power supply. When energy
storage is not considered, the corresponding number of islands is four,
including one important user, and there is a DEG node disconnected
from the network.

It can be seen that the participation of energy storage has a better
effect on the operation of the distribution network after the failure. The
main reason for the 60% overall layout cost reduction caused by energy
storage participation is that when energy storage is not considered and
the network is attacked, the layout mode without energy storage will
cause more important load nodes to disconnect, thus increasing the
cost. At the same time, the number of island nodes is large, which affects
the normal operation of the network. This fully proves the effectiveness
and superiority of energy storage coordination participation.

TABLE 1 Unit costs.

Unit Preconfigured
energy storage

Load
reduction

Important
load cuts

Cost/103

yuan
500 1 10

FIGURE 7
Cost/thousand yuan under each simulation scenario.

FIGURE 8
Pre-layout robustness optimization.
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FIGURE 9
Pre-layout deterministic optimization.

FIGURE 10
Robust optimization without prelayout.
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FIGURE 11
Deterministic optimization without prelayout.

FIGURE 12
Robust optimization of prelayout considering the participation of energy storage.
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6 Conclusion

In the context of the integration of traditional power systems
with information and communication systems, resulting in a
distinctive power information physical fusion system, this article
delves into and validates the influence of a DAD planning model
that incorporates mobile energy storage coordination on the
layout cost and line operation of a multi-distribution network
in the event of network attacks. The key contributions of this
work are as follows:

1. First, a common network attack flow model is built using a
Petri net model, which is transformed and simplified with a
matrix. On this basis, considering the vulnerability of the
multi-distribution network under network attacks, two
parameters, namely, the degree of failure and the degree
of failure impact, are introduced to analyze the vulnerability
strength of each node in the power-communication
network under network attacks. The network attack
scenario of the multi-distribution network is simulated
and simplified with the help of big data from previous
network attack scenarios.

2. Characteristic analysis and model construction are carried
out for wind power, photovoltaic, and mobile energy storage
that frequently appear in current multi-component
distribution networks. At the same time, on the basis of
the traditional DAD planning model, mobile energy storage
is introduced into the planning to complete the DAD
planning model construction under network attacks. In
this article, the C&CG algorithm is used to solve the
three-layer, two-stage problem of the DAD planning
model, and the specific solving steps and flow chart
are given.

3. Based on the DAD planning model proposed above, a robust
pre-layout optimization planning scheme considering the
participation of mobile energy storage is proposed in order
to reduce the cost required for adjustment after failure and
improve the operation condition. To verify the effectiveness
and superiority of the scheme, a control group is also set up
according to whether pre-layout is carried out and whether
robustness optimization or deterministic top optimization is
adopted. A control group was set to determine whether mobile
energy storage participated in the pre-layout robustness. The
simulation results are verified in a 33-node system.

Finally, according to the simulation results, it is concluded that a
DAD planning pre-layout in advance and robust optimization
methods have certain effects on cost reduction, and their effects
can be superimposed. On the basis of the robustness optimization
method of pre-layout, the introduction of coordinated control of
mobile energy storage has a significant effect on cost reduction,
which proves its effectiveness and superiority.

FIGURE 13
Prelayout robust optimization without energy storage participation.

TABLE 2 Overall layout cost of each scenario.

Scene Consider energy
storage

Energy storage is not
considered

Cost/103

yuan
5085.8 8085.7
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Improving cyber-physical-power
system stability through
hardware-in-loop co-simulation
platform for real-time cyber
attack analysis

Xiaoke Wang*, Yan Ji, Zhongwang Sun, Chong Liu and
Zhichun Jing

Jiangsu Donggang Energy Investment Co., Ltd., Lianyun Gang, Jiangsu, China

With advancements in communication systems and measurement technologies,
smart grids have becomemore observable and controllable, evolving into cyber-
physical-power systems (CPPS). The impact of network security and secondary
equipment on power system stability has become more evident. To support the
existing grid toward a smart grid scenario, smart metering plays a vital role at the
customer end side. Cyber-Physical systems are vulnerable to cyber-attacks and
various techniques have been evolved to detect a cyber attack in the smart grid.
Weighted trust-basedmodels are suggested as one of the most effective security
mechanisms. A hardware-in-loop CPPS co-simulation platform is established to
facilitate the theoretical study of CPPS and the formulation of grid operation
strategies. This paper examines current co-simulation platform schemes and
highlights the necessity for a real-time hard-ware-in-the-loop platform to
accurately simulate cyber-attack processes. This consideration takes into
account the fundamental differences in modeling between power and
communication systems. The architecture of the co-simulation platform
based on RT-LAB and OPNET is described, including detailed modeling of
the power system, communication system, and security and stability control
devices. Additionally, an analysis of the latency of the co-simulation is
provided. The paper focuses on modeling and implementing methods for
addressing DDOS attacks and man-in-the-middle at-tacks in the
communication network. The results from simulating a 7-bus system show
the effectiveness and rationality of the co-simulation platform that has been
designed.

KEYWORDS

active distribution networks, CPPs, smart grid, hardware-in-loop, cyber-attack, co-
simulation

1 Introduction

With the development of the economy and society, the demand for energy is in-
creasing. Traditional thermal power generation is unable to meet the electricity demand,
and environmental issues such as greenhouse gas emissions are becoming more prominent.
Guided by the national goal of reaching peak carbon emissions and achieving carbon
neutrality, the integration and adoption of new energy sources have become an inevitable
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trend in energy development. The development and utilization of
distributed energy provide an important approach for adjusting and
upgrading China’s energy structure.

Distributed energy is a user-side energy supply method that can
operate independently or be connected to the grid. It maximizes
resource and environmental benefits and determines the method
and capacity based on them. It represents an important direction for
the future development of global energy technology. Compared to
traditional power sources, distributed power sources have unique
advantages including cost-effectiveness, environmental friendliness,
and flexibility. They are usually located on the user side, which
reduces the construction cost of transmission and distribution
networks, minimizes energy loss, and has a short construction
cycle and quick return on investment. Additionally, they are
technologically advanced, flexible, and easy to maintain, allowing
for rapid start-up and shutdown. They can also smooth out peak
loads, providing great flexibility. With the integration of a large
number of distributed power sources, the safe, reliable, and stable
operation of the distribution network is influenced by multiple
uncertain factors, primarily manifested in terms of voltage at
network nodes, flow direction, fault current in lines, and system
protection. The randomness and intermittency of distributed power
sources exacerbate issues such as node voltage deviation, severe load
fluctuations, and increased network losses in the distribution system,
thereby potentially leading to a series of problems including
deteriorated power quality, equipment overload, reverse power
flow, and excessive terminal voltage (Zhang et al., 2020a; Zhang
et al., 2021; Nguyen et al., 2022).

Cyber-Physical systems are vulnerable to cyber-attacks. Various
techniques have been evolved to detect a cyber attack in the smart
grid (Singh N K et al., 2020). With massive data transmission on the
CEEO network, the trustworthiness of the service node exerts an
enormous influence on data privacy. To realize securely share data
and decrease the local storage, end-user prefer to encrypt data and
upload it to the cloud (Fan et al., 2021). Integration of renewable
resources and increased growth in energy consumption has created
new challenges for the traditional electrical network. To adhere to
these challenges, Internet of Everything (IoE) has transformed the
existing power grid into a modernized electrical network called
Smart Grid (Desai et al., 2019).

Active distribution networks (ADNs) serve as networks for
energy exchange and distribution, facilitating the bidirectional
flow of both power and fault currents. Traditional power
distribution networks are no longer adequate for flow and fault
analysis, reactive power control, relay protection methods, and
operational management. They require corresponding
adjustments and improvements. Referred to as active distribution
networks (ADNs), the focus is on distributed energy resources
actively regulating their reactive and active outputs and utilizing
modern communication means for coordinated control over the
distribution network. This enables the full optimization of network
operations by harnessing the potential of distributed energy
resources (Zhang et al., 2020b; Cao et al., 2023; Cao et al., 2024).

The key technologies of ADNs include ADN planning, flow and
fault analysis computations, relay protection, reactive power control
techniques, and operational scheduling of distributed energy
resources (Jabr, 2013). For example, efficient demand-side
management tools allow operators to have better control over the

operation and management of distributed energy resources.
Additionally, integrating energy storage facilities helps absorb
excess output or mitigate load fluctuations from distributed
energy resources.

The ongoing advancements in power electronics technology are
enabling various control and regulatory equipment to better serve
active distribution networks. This enhancement facilitates the
utilization of new energy generation within distribution networks
while ensuring safety and stability. Zhao and You (2021) introduces
a multi-level adaptive robust optimization framework based on deep
learning to tackle uncertainties arising from the high penetration of
distributed energy sources into distribution networks. Moreover,
adaptive optimization control methods, relying on real-time
measurement data, effectively model the input-output
relationship of the distribution network using live measurements.

Through iterative interactions with the distribution network,
these methods effectively overcome the reliance on extensive
training associated with neural network methods, thereby
enabling real-time control of the distribution network (Hou and
Xu, 2009; Zhang et al., 2022). Zhao et al. (2016) utilizes a controller
comprising three modules—voltage regulation, reactive power
control, and active-frequency regulation—that adapt locally
without the need for frequency measurements. Guo et al. (2019)
proposes an optimization control frame-work for interconnected
AC-DCmicrogrids based on model-free adaptive control, effectively
addressing issues of AC-DC coordinated power control. Addressing
the time-series characteristics of controlled systems, Zhang et al.
(2021) integrates predictive control principles into model-free
adaptive control, achieving superior control performance through
adaptive predictive control. Bi et al. (20223) introduces a data-
physical fusion-driven adaptive voltage control method for active
distribution networks, effectively curbing frequent voltage
excursions and enhancing the adaptive optimization control level
of the distribution network. In the smart grid substation each
wireless sensor node can be modeled using graph theory. Then
each node is assigned with predefined weight, which gets effected
during cyber intrusion. Each sensor node monitors the trust value of
neighboring nodes (Singh et al., 2020). Cyber-Physical systems are
vulnerable to cyber-attacks. Various techniques have been evolved to
detect a cyber attack in the smart grid. Weighted trust-based models
are suggested as one of the most effective security mechanisms. A
two-level hierarchical network is examined, with the smart wireless
sensors at the bottom and server at the top of the network. The direct
and indirect trust of the node is calculated using “One Time Code”
to determine the overall trust of nodes. Trust depends on the
performance of the sensors, communication between sensors, and
the server of the nodes. It also depends on the previous
communication between the nodes (Singh and Mahajan 2020).
As a cyber-embedded infrastructure, it must be capable of
detecting cyberattacks and responding appropriately in a timely
and effective manner. Previous work tries to introduce an advanced
and unique intrusion detection model capable of classifying binary-
class, trinary-class, and multiple-class CDs and electrical network
incidents for smart grids. It makes use of the gray wolf algorithm
(GWA) for evolving training of artificial neural networks (ANNs) as
a successful machine learning model for intrusion detection (Yu
et al., 2022). The intrusion detection model is based on a whale
optimization algorithm (WOA)-trained artificial neural network
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(ANN). The WOA is applied to initialize and adjust the weight
vector of the ANN to achieve the minimum mean square error
(Haghnegahdar and Wang, 2020).

The impact of network security and secondary equipment on
power system stability has become increasingly evident,
emphasizing the urgent need for advanced simulation tools that
can effectively model and mitigate these threats. To bridge this
critical gap, a hardware-in-loop CPPS co-simulation platform is
established to facilitate the theoretical study of CPPS and the
formulation of grid operation strategies. A sophisticated HIL
simulation environment is proposed in Riquelme-Dominguez
et al. (2023), that addresses system frequency responses in power
systems with low inertia. This aligns closely with our focus,
demonstrating the importance of accurate real-time simulations
under both normal and emergency conditions. The cybersecurity
challenges in modern power systems are further emphasizes in Fu
et al. (2023), which highlights the need for HIL simulations that not
only handle physical system dynamics but also integrate
cybersecurity threat scenarios. The method of virtualized
environments complement HIL simulations is analyzed in Zhang
et al. (2021), particularly in applying machine learning techniques
for anomaly detection. This study supports our method of
incorporating machine learning to enhance the predictive
capabilities of our co-simulation platform. Specialized
applications of HIL simulations for maritime control systems are
described in Vu et al. (2023), highlighting the versatility and critical
need for robust HIL environments across different sectors, including
the specific challenges posed by cyber-physical threats. This paper
examines current co-simulation platform schemes and highlights
the necessity for a real-time hardware-in-the-loop platform to
accurately simulate cyber-attack processes, considering the
fundamental differences in modeling between power and
communication systems. An independent, distributed, and
lightweight trust evaluation model is proposed and evaluated.
The trust model is implemented at two levels: first at the smart
meter level, where nodes collect information on its neighbor nodes
and forward it to the collecting node (Alnasser and Rikli, 2014). In
previous work a Hierarchical Trust based Intrusion detection
System (HTBID) has been proposed to effectively deal with
various attacks in wireless sensor network. HTBID deals with
different types of attack with the help of Hierarchical Trust
evaluation protocol (HTEP). This work identifies different
parameters and factors that affect trust of wireless sensor
network. HTEP considers attributes derived from communication
as well as social trust to calculate the overall trust of sensor node
(Dhakne and Chatur, 2017).

The co-simulation platform based on RT-LAB and OPNET is
proposed, including detailed modeling of the power system,
communication system, and security and stability control devices.
Our approach significantly advances the state of the art by enabling
more precise and dynamic responses to cybersecurity threats within
CPPS environments. Our solution leverages cutting-edge
advancements in real-time simulation technology and cyber-
attack modeling to provide a comprehensive tool for power
system operators. This enables the proactive identification of
vulnerabilities and the testing of countermeasures under
controlled yet realistic conditions, which was not feasible with
previous methodologies. This paper focuses on modeling and

implementing methods for addressing DDOS attacks and man-
in-the-middle attacks in the communication network. The results
from simulating a 7-bus system show the superiority and practicality
of the co-simulation platform that has been designed.

2 Co-simulation platform framework
and design

2.1 Platform framework

Advanced sensors and high-speed networks have enabled real-
time monitoring of power grids, providing data on various electrical
measurements such as voltage, current, and frequency, as well as
environmental information like temperature, humidity, and light
(Luo, 2016; Zhang et al., 2021; Mittal et al., 2023). This data is
utilized to support grid monitoring, protection, regulation, and
other functions.

The smart grid control system in CPPS consists of three main
components: the power system as dipicted in Figure 1 (including
generators, loads, power electronic equipment, energy storage
systems, measuring units, and control units), the communication
system (comprising routers, optical fibers, servers, and other
devices), and the security and stability control device (a decision-
making system with a master station and substation).

Measuring units collect data on the grid’s status and transmit it
to the master station via a wide-area communication network
(Osanaiye et al., 2016; Zhang et al., 2020c). The master station
calculates control commands based on a strategy and sends them to
each substation. Substations then execute specific operations using
control units based on local control strategies (Othman et al., 2018;
Menezes et al., 2023).

This paper utilizes a modular design to integrate discrete event
simulation and continuous-time simulation. The co-simulation platform
comprises four modules: power system, communication system, master
station, and substation. These modules are connected via Ethernet to
streamline data interface design and enhance modeling efficiency. Real-
time performance is ensured through the use of appropriate simulation
tools for the power system and communication system. Figure 2
illustrates the architecture of the co-simulation platform.

2.2 Power system

The real-time requirements of the co-simulation platform
present a challenge, as most power simulation systems are PC-
based and cannot handle large-scale simulations in real-time with
small time steps (Zhang et al., 2024). To tackle this problem, the
OPAL-RT modeling software RT-LAB was chosen as the power
system simulator (Amaizu et al., 2021). Simulink models can be
compiled into multiple subroutines that can be executed in parallel
using RT-LAB.

Modeling in RT-LAB involves four main components: the
power grid, a measuring unit, a control unit, and a network
interface (Cil et al., 2021), as shown in Figure 1. The original
power grid is simplified into an equivalent network for real-time
simulation, and the grid model is designed accordingly and verified
through offline simulations (Mittal et al., 2023). Regarding the

Frontiers in Energy Research frontiersin.org03

Wang et al. 10.3389/fenrg.2024.1402566

138

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1402566


measuring unit, it is essential to define the sampling frequency and
data type of the packets, which include parameters such as voltage,
current, frequency, and power-angle (Alnasser and Sun, 2017; Singh
andMahajan, 2020; Singh andMahajan, 2021; Yu et al., 2022; Zhang
et al., 2021a; Zhang et al., 2021b; Zhang et al., 2021c). Additionally,
timestamps are included to analyze latency. In the control unit, it is
crucial to determine the target and structure of commands sent from
the substation. The control unit is responsible for converting these
commands into control quantities and outputting them to the
control target. OPAL-RT uses TCP and UDP protocols for
external communication. The network interface consists of three
modules: OpIPSocketCtrl, which controls the communication

protocol, port, and IP address; OpAsyncRecv, for receiving
packets; and OpAsyncSend, for sending packets. Multiple sets of
network interfaces can be included in the power system model,
distinguished by port numbers.

2.3 Communication system

To ensure real-time performance, this paper utilizes OPNET to
simulate the communication system. The modeling in OPNET is
categorized into three layers: net-work, node, and process,
depending on the level of the communication network. This

FIGURE 1
The structure of smart grid control system.

FIGURE 2
The architecture of co-simulation platform.
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three-level modeling allows for the construction of communication
networks, protocols, algorithms, and equipment. OPNET also offers
a range of standard applications, such as Database, E-mail, HTTP,
Print, Remote Login, Video Conferencing, and Voice, which can be
combined to cover most power services (Kaur et al., 2021; Zhang
et al., 2023). For unique power businesses, the standard application
model can be modified at the process layer to create a customized
application model.

To establish end-to-end business connections between real and
virtual networks, a semi-physical simulation interface can be
employed (Priyadarshini and Barik, 2022). OPNET offers three
types of such interfaces: HLA-API, ESA-API, and System in the
loop (SITL). While HLA-API and ESA-API require defining process
and node models and designing corresponding interface programs,
SITL is an existing model provided by OPNET. Although it supports
limited protocols and requires mapping real packets to virtual ones,
it enables easy access to external devices in the simulation system. As
communication between modules uses the UDP protocol, we have
chosen SITL as the data interface to simplify model design.

Data is exchanged between measuring units and substations
with the master station through a communication system. Control
units exchange data with substations directly through a switch. To
facilitate this, two network interface cards (NICs) are inserted into
the OPNET host. NIC1 communicates with the OPAL-RT and
substation via the switch, while NIC2 communicates directly with
the master station. The network model includes multiple SITL
modules that correspond to the master station, substation, and
measuring units by setting filters. Network 1 connects measuring
units to the master station, while network 2 connects the substation
to the master station.

2.4 The security and stability control device

The security and stability control device plays a crucial role as the
second and third lines of defense for the power grid. It is responsible for
responding to emergencies such as load shedding, generator trips, or
valve fast shutdowns in order to prevent further spread of faults in the
grid. This device consists of both a master station and substations. The
master station monitors the power grid’s status through measuring
units and compares any faults found with the security control strategy
based on the fault type and location.Once the optimal control strategy is
determined, the master station sends control commands to the
substations. The substations report the controllable load amount to
the master station and receive control commands from it. Finally, the
substations send commands to the control units and execute the actual
operation according to the local control strategy.

The master station is constructed on the Linux platform and is
programmed using the C language, allowing it to perform complex
operations. It retrieves real-time power grid status information from
OPAL_RT and receives control commands from the security and
stability control device to efficiently monitor and manage the power
system. The master station consists of four modules, which are
as follows:

2.4.1 Protocol analysis module
The protocol analysis module is responsible for examining

packets sent by the measuring unit and the substation. Each

packet consists of a padding section and a data section. The data
section includes a header, a command code, and a checksum. Upon
receiving a packet, the master station extracts the data section using
a preset offset and verifies its accuracy. Then, the header is read to
identify the message type and source, and subsequently, the
corresponding operation is executed based on the command
code. I have improved the grammar, added transitional phrases,
and simplified certain words and phrases for better clarity without
altering their original meaning.

2.4.2 Grid status database
The purpose of this module is to store up-to-date information

on the power grid’s status, including the status of breakers, positions
of transformer taps, as well as voltage and frequency levels.

2.4.3 Fault detection module
This module is triggered whenever there is an update to the grid

status in the database, and it sends an alarm in case of system failure.

2.4.4 Control module
Upon receiving an alarm from the fault detection module, the

control module formulates multiple coordinated control strategies
according to the pre-established plan. It assesses their effectiveness
and determines the optimal scheme to create a control queue for the
substation.

The master station operates in parallel and dynamically assigns
individual processes to each client. The client’s type can be
automatically identified by the master station based on the self-
descriptive packet. There are four types of commands: retrieving
grid status from the database, updating grid status in the database,
accessing control commands in the control queue, and adding
control commands to the control queue. The master station can
synchronize, analyze, and manage the power system,
communication system, and substation.

This paper presents a substation that utilizes embedded Linux
and comprises five components, as depicted in Figure 3: a control
module, an input/output (I/O) module, a measuring module, a man-
machine interface, and a communication module. The substation
communicates with the master station every 0.833 ms. During a
control cycle, the substation performs four steps:

Initially, the substation dispatches a packet that includes the
controllable load quantity to the master station and then awaits the
response packet.

After receiving the packet from the master station, the
substation identifies its type by analyzing the packet header.

The substation performs different actions depending on the
type of packet received. For synchronization packets, it revises
the system clock. For command packets, it generates a control
queue based on the local control strategy. If an abnormal packet
is received, it is returned to the master station. If the control
queue is not empty, all commands will be sent to the
control unit.

2.5 System latency

Figure 4 illustrates the real-time simulation timeline of a co-
simulation platform that includes a power system, communication
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system, master station, and substation. This timeline considers the
simplified structure of the control system in the power grid.

To simplify the modeling process and clarify the function of
each module, the measuring unit is limited to sending data only,
while the control unit can only receive data. The communication
cycle between the measuring unit and the master station is T_1, and
the cycle between the control unit and the substation is T_2. At
moment A1 in the simulation, the measuring unit sends sampled

data to the master station, which receives the data at D1. At moment
B1, the substation system sends the data of controllable load to the
master station. After processing the data upon receiving them at D2,
the master station issues a synchronization message or control order
message to the substation. The substation analyzes the message and
issues a control order to the control unit at B3. Finally, the control
unit updates the relevant parameters in the power system
node at A2.

FIGURE 3
Structure of substation.

FIGURE 4
Timeline of real-time simulation.
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The system latency consists of four main components:
network latency, master station latency, substation latency,
and inherent simulation platform latency. Network latency is
the delay caused by communication systems, including issues
such as packet loss, bit errors, routing problems, bandwidth
limitations, and server performance. Master station latency is
a result of hardware and software limitations, encompassing
hardware latency and software latency. Hardware latency
involves delays within the master station system, including
network card performance and data transfer. Software latency
refers to the time required for power service computations, such
as state estimation, measurement information management, and
power quality monitoring. Substation latency is similar to master
station latency, involving hardware and software limitations that
lead to delays. Inherent simulation platform latency arises from
communication between modules in the platform. This includes
factors like OPAL-RT operating system latency, OPAL-RT
network card latency, OPNET operating system latency,
OPNET host network card latency, switch latency, and more.

In actual CPPS, the platform’s inherent latency cannot be
eliminated and varies randomly depending on the amount of
data flow between modules. When data packets are less than
64 bytes, the inherent latency is approximately 1–2 ms.
However, as the total latency of network, master station, and
substation is already in the range of tens to hundreds of
milliseconds, the impact of inherent latency is negligible and
will not significantly affect the simulation accuracy. To further
minimize the influence of inherent latency, one common
approach is to use the Ping command to measure the
communication latency between modules, record it as
inherent latency, and subtract it from the controllable
latency in the master station system.

3 Cyber-attack modeling

3.1 DDOS attack

A Distributed Denial of Service (DDOS) attack is a form of
resource-exhaustion attack. Attackers employ Client/Server
techniques to manipulate multiple computers as sources of
attack, thereby enhancing the attack’s effectiveness. There are
various types of DDOS attacks, including Sy flood, Smurf, and
Land-based attacks. When a host is targeted by a DDOS attack, it
experiences a high volume of pending connections, causing the
network to be flooded with useless packets, leading to network
congestion. Consequently, the target of the attack becomes incapable
of communicating with the outside world.

Figure 5 illustrates the DDOS attack scheme, consisting of four
components: the attacker, control puppet, attack puppet, and target.
Attackers gain either partial or complete control of both the control
puppet and attack puppet. The control puppet transmits the attack
program to the attack puppet. Through the control puppet, the
attacker instructs the attack puppet to send actual attack packets to
the target.

This paper deploys an attacker node in an OPNET simulation.
The attacker randomly scans and attacks all terminals in phase one,
and infected computers send confirmations back to the attacker. In
phase two, the infected computers flood the network connecting to
the target with tons of meaningless packets.

3.2 MITM attack

The Man in the Middle (MITM) attack is an indirect method of
gaining control over a target. By spoofing IP addresses and ports, the

FIGURE 5
Attack steps of DDOS.
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attacker can invade and take control of a virtual computer,
creating a new communication channel between the original
nodes. This new channel allows packets to be easily modified,
leading the target to make incorrect decisions. Common
examples of MITM attacks include Careto, Crypto locker,
Dexter, and Fin Fisher.

In the research depicted in Figure 6, a computer is utilized as the
attacker and equipped with two network interface cards (NICs). One
NIC connects to OPNET while the other connects to the substation.
The IP address of the NIC connected to the substation serves as the
gateway IP address for the substation, while a virtual NIC is
established within the computer and assigned the IP of the

FIGURE 6
Man-in-the-middle attack.

FIGURE 7
Structure of 7-bus system.
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master station. The IP address of the NIC connected to the
substation is configured as the substation’s IP address.

Two methods of Man-in-the-Middle (MITM) attack are
proposed as follows:

3.2.1 Data interception
In this method, the attacker intercepts packets from both the

substation and master station, analyzes the packet header to
determine its function, and copies any time packets to a buffer
which is then sent to the substation. If a command packet is detected,
it will be replaced by the time packet in the buffer. This attack
prevents the substation from receiving commands from the
master station.

3.2.2 Data modification
Similarly, in this method, once a command packet is detected, all

subsequent packets will be replaced by a modified command packet
that forces the substation to execute unreasonable load shedding and
casting actions.

4 Case study

4.1 Model description

To verify the impact of communication systems and devices on
power system simulations, as well as the necessity of co-simulation
platforms in power system analysis, a 7-bus system was constructed in
RT-Lab, as shown in Figure 7. The system includes seven buses, two
controllable loads, two generators, one ideal voltage source, four
transformers, and seventeen circuit breakers. Measuring units
monitor buses B1, B2, and B3. The protection unit and control unit
jointly manage the controllable load and generator, with the protection
unit preventing the control unit from operating the protected device
once it has been broken out. The simulation is based on a reference AC
voltage of 230 kV, frequency of 60Hz, and a simulation step of h = 2.5 ×
10∧(−5) s. Table 1 provides the parameters for each device.

The strategy for system protection and security control during a
three-phase short-circuit fault on transmission line L3 is as follows:
The short-circuit protection unit will disconnect L3 within 0.1 s of
the fault occurring. The over-current protection unit will disconnect

L1 after a 2-second delay and disconnect L5 after a 3.5-second delay
from the occurrence of the fault. Additionally, the security and
stability control device will disconnect R2 after a 2-second delay
following the short-circuit fault.

Figure 8 illustrates the communication network constructed
in OPNET, which comprises eight router nodes, multiple servers,
and terminals designed to simulate data transmission across
various services. Notably, the measuring unit, master station,
and substation do not directly correspond to individual nodes
within this network. Instead, these physical components are
interconnected to the OPNET communication network at
specific boundary nodes using the SITL (System-in-the-Loop)
module. This setup reflects the hierarchical nature of our system,
where multiple physical devices may connect to a single
communication node that serves as a gateway or aggregation
point, rather than having a direct one-to-one mapping with the
communication nodes.

Furthermore, the control unit is integrated into the network via a
connection to the substation through a switch, emphasizing the
layered interaction between control operations and network
communication. The routers in this network are linked by a
2 Mbps optical fiber, ensuring a consistent communication delay
of 1 ms across the system.

After the occurrence of a three-phase short-circuit fault on L3, a
DDOS attack andMITM attack are conducted to assess the effects of
cyber-attacks on the power system.

4.2 DDOS attack

In this scenario, there is an attacker node connected to router A,
as shown in Figure 9. The attacker sends malware to all terminals in
the network and infects approximately 70% of them randomly. The
infected terminals are then controlled by the attacker to send
meaningless requests to the server, causing a congestion in
network traffic.

All the loads in the system are connected to B2. However, the
output of G3 is insufficient to meet the load requirements. As a
result, the current of B2 directly indicates the behavior and stability
of the system. The comparison of B2 current in three scenarios is
illustrated in Figure 10.

TABLE 1 Parameters of the device.

Bus number Device number Device type Voltage (kV) Capacity

B1 G1 Generator 13.8 100MVA

T1 Transformer 13.8/218.5 100MVA

B2 G3 Generator 13.8 100MVA

T4 Transformer 13.8/110 100MVA

R1 Controllable load 110 80MVA

R2 Controllable load 110 40MVA

B3 G2 Ideal voltage source 13.8 ∞

T2 data 13.8/218.5 100MVA

B7 T3 data 110/230 100MVA
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Under ideal conditions, without taking into account the
communication system and actual devices, the security and
stability control device had a response delay of 0 ms. As a
result, the control unit disconnected R2 within 2 s of the
occurrence of a short-circuit fault, ensuring the stability of
the system.

Taking into account the communication system and the
actual devices, the channel remained unobstructed and free
from congestion in typical situations. The average latency
between the substation and the master station was 233.9 ms.
The substation promptly disconnected R2, resulting in a
reduction of current in L5. This action effectively curbed the
further spread of the fault.

During the DDOS attack, the average latency between the
substation and the master station significantly increased to

2,136.7 ms due to a high volume of meaning-less packets
congesting the channel. Despite the substation responding to the
commands from the master station, the prolonged latency resulted
in system instability and further propagation of the fault by the
protection device.

Figure 11 illustrates the average latency between the
substation and the master station for various levels of
attack intensity, including infection rates of 30%, 50%, 70%,
and 90%. In the case of a mild DDOS attack, the
communication system exhibited the capacity to handle the
packets sent by the compromised machines, resulting in
minimal changes in latency. However, as the number of
infected terminals grew, the communication system’s
resources were depleted, leading to a significant increase
in latency.

FIGURE 8
Structure of communication network.
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4.3 MITM attack in mode 1

In this situation, the attacker intercepted the packet
sent from the master station to the substation. This
prevented the substation from receiving the command,
resulting in a missed trip. Table 2 displays the breaker’s
operating time under both normal conditions and attack
conditions following the occurrence of a three-phase short-
circuit fault.

As depicted in Figures 12, 13 the attacker intercepted and
filtered the control commands sent by the master to the substation,
resulting in a missed trip and preventing the breaker from
disconnecting R2. As a consequence, the overcurrent protection
disconnected L5 at 12.74s and L1 at 15.25s. Unfortunately, the
failure continued to spread, eventually causing G3 to go out of step.

4.4 MITM attack in mode 2

In this scenario, the attacker eavesdropped on the packets sent
by the master station. Upon detecting a command packet, the
attacker intercepted all subsequent packets and randomly sent
switching load commands to the substation. As depicted in
Figures 14, 15, the current of B2 and the speed of G3 exhibited
differences under the MITM attack compared to normal conditions.
In the absence of an attack, the substation would disconnect R2,
resulting in a gradual decline and stabilization of the current in B2,
with only occasional fluctuations in the speed of G3 during load
shedding. However, during the attack, the substation
indiscriminately switched the load, causing sharp fluctuations in
both the current of B2 and the speed of G3. Although the system did
not become destabilized in this particular example, the continuous

FIGURE 9
DDOS attack.
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injection of disturbances by the malfunctioning substation
compromised the stability of the overall system.

In conclusion, the integration of communication networks and
cyber-attack considerations greatly enhances the security and
stability control of smart grid operations. Without simulating the
communication network and utilizing actual devices, it becomes
challenging to accurately predict system responses. The co-
simulation platform proposed in this study successfully integrates
the power system, communication system, and actual devices,

providing an effective method for studying Cyber-Physical
Systems (CPS) in smart grids.

5 Conclusion

The co-simulation platform proposed in this paper, based on
hardware-in-loop, offers several advantages compared to traditional
power system simulation:

FIGURE 10
Current comparison of B2.

FIGURE 11
Communication latency under different DDOS attack intensity.
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1) The co-simulation platform considers the communication
system and actual devices present in a typical Cyber-
Physical Power System (CPPS). This enables the

analysis of various factors such as communication
latency, data loss, bit errors, device response delays, and
their impact on the power system. The simulation
environment closely resembles reality, allowing for
comprehensive vulnerability assessments of the entire
system,as depicted in Figures 12, 13.

2) Unlike traditional power system simulation that relies on
simplified control system models with limited functionality,
the co-simulation platform with hardware-in-loop allows for
flexible deployment and the accomplishment of complex
power system services by incorporating actual devices into
the control loop.

3) By integrating security and stability control systems into the
co-simulation platform, it becomes possible to simulate cyber-

FIGURE 12
Bus current under MITM attack in mode1.

FIGURE 13
Generator speed under MITM attack in mode1.

TABLE 2 The comparison of breaker action moment.

Position Action Normal MITM attack

L3 Off 10.10s 10.10s

R2 Off 12.49s ~

L5 Off ~ 13.47s

L1 Off ~ 15.98s

Frontiers in Energy Research frontiersin.org13

Wang et al. 10.3389/fenrg.2024.1402566

148

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1402566


attacks and assess the propagation of failures for studying
security defenses.

However, it is important to note that due to inherent latency
in the simulation platform, errors may occur in the results if the
network, master station, and device latencies significantly exceed
the inherent latency. To address this, further research and
development of the co-simulation platform are underway,
focusing on the following areas:

1) Studying interface technology and synchronization techniques
to reduce or eliminate the inherent latency of the simulation
platform, thereby improving the accuracy of simulation results.

2) Quantitatively analyzing communication latency and
establishing simulation models to characterize
its effects.

3) Expanding the application of the platform to analyze the
generation of cyber-attacks and the propagation of failures
within CPPS.
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FIGURE 14
Current comparison of B2.

FIGURE 15
Speed comparison of G3.
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A virtual power plant (VPP) has the ability to aggregate numerous decentralized
distributed energy resources using advanced control technology, offering a
promising approach for low-carbon development. In order to enhance the
VPP’s contribution to reducing carbon emissions, a bi-level framework is
proposed that incorporates an integrated energy-carbon price response
mechanism. This model allows VPPs to participate in a multi-energy system
through amulti-agent Stackelberg game framework. Initially, a transactionmodel
is established where the power distribution system operator and the gas
distribution system operator act as leaders, while the virtual power plant
operator acts as a follower in the multi-energy system. Subsequently, an
integrated energy-carbon pricing method, rooted in carbon emission flow
theory, is introduced to encourage VPPs to proactively adjust their energy-use
and trading strategies within multi-energy systems, thereby promoting multi-
principal interactive trading. To achieve a distributed solution among multiple
entities while maintaining the privacy of each entity’s information, the adaptive
step-size alternating direction multiplier method is employed. The feasibility and
effectiveness of the proposed model and method are then demonstrated
through case studies.

KEYWORDS

virtual power plant, multiple energy systems, carbon emission flow, energy-carbon
integrated price, multi-agent Stackelberg game

1 Introduction

The construction of a new type of power system primarily based on new energy
resources is being accelerated, emphasizing both centralized and distributed energy
resources. However, distributed energy resources (DERs), characterized by strong
uncertainty, decentralization, and heterogeneity (Chen et al., 2021), pose significant
threats to the security of grid-connected power systems due to their large numbers.
Virtual power plants (VPPs) are widely employed to effectively aggregate large,
dispersed, and diverse DERs through advanced control, metering, communication, and
other technologies (Vasirani et al., 2013; Zhao et al., 2018; Bhuiyan et al., 2021). This
facilitates accurate control of internal resources, providing a viable pathway for low-carbon

OPEN ACCESS

EDITED BY

Yitong Shang,
Hong Kong University of Science and
Technology, Hong Kong SAR, China

REVIEWED BY

Jian Chen,
Shandong University, China
Jiehui Zheng,
South China University of Technology, China

*CORRESPONDENCE

Shiwei Xie,
shiwei_xie@126.com

RECEIVED 04 July 2024
ACCEPTED 19 July 2024
PUBLISHED 09 August 2024

CITATION

Yan Y, Xie S, Tang J, Qian B, Lin X and Zhang F
(2024), Transaction strategy of virtual power
plants and multi-energy systems with multi-
agent Stackelberg game based on integrated
energy-carbon pricing.
Front. Energy Res. 12:1459667.
doi: 10.3389/fenrg.2024.1459667

COPYRIGHT

©2024 Yan, Xie, Tang, Qian, Lin and Zhang. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 09 August 2024
DOI 10.3389/fenrg.2024.1459667

152

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1459667/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1459667/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1459667/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1459667/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1459667/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1459667&domain=pdf&date_stamp=2024-08-09
mailto:shiwei_xie@126.com
mailto:shiwei_xie@126.com
https://doi.org/10.3389/fenrg.2024.1459667
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1459667


development. In the context of the interactive integration of multiple
energy systems (Wang et al., 2018), VPPs participating in both the
power distribution and gas distribution systems can leverage the
complementary characteristics of electricity and gas. This enables
the realization of synergistic operations within a multi-energy
network, enhancing the economic efficiency and promoting low-
carbon objectives for all stakeholders involved.

To advance the role of VPPs in the low carbon economy, several
research studies have been conducted. Previous works in (Zhang
et al., 2023) examine the interactions between VPPs and the higher-
level grid based on peak and off-peak time-sharing tariffs. It also
developed an operational model for VPPs under carbon trading and
green certificate trading mechanisms, considering both economic
and low-carbon aspects. Reference (Yi et al., 2020a) addresses power
flow constraints in the distribution network by formulating a two-
layer planning problem involving VPPs and the distribution
network, optimizing dynamic pricing for VPPs. Reference (Yi
et al., 2020b) proposes a two-layer model for VPPs and the
distribution system, achieving co-optimization of multiple VPPs
with the distribution network through an integrated active and
reactive power pricing approach. These studies primarily focus
on transaction pricing strategies for VPPs in the distribution
market, with an increasing involvement of VPPs in multi-energy
system transactions due to the close integration of various energy
systems. Reference (Yang et al., 2021) introduces a model for energy
trading in micro-energy networks that considers electricity-heat
multi-energy sharing, ultimately reducing energy costs for multi-
energy micro-grids. Additionally, works in (Zhang and Hu, 2022)
suggest an optimal scheduling model for VPPs to engage in
simultaneous trading within the electricity-gas multi-energy
market, considering security constraints of the natural gas
network and bidirectional flow of electricity and natural gas.
However, the majority of these studies view VPPs predominantly
as passive recipients of energy prices, ignoring their potential for
active participation in multi-energy system trading and interactions
with other entities.

With the advancement of VPP technology, conflicts of
interest stemming from the involvement of various entities in
competitive multi-energy markets have become inevitable. Game
theory is increasingly being utilized to address optimization
problems related to VPPs. In (Xu et al., 2022), a VPP pricing
strategy is proposed within a two-tier market structure involving
multiple VPPs and distribution markets. A non-cooperative
pricing game model is established to enhance the economic
efficiency of multiple entities. Meanwhile, Reference (Liu,
2022) introduces a cooperative game model for VPP
scheduling in the context of multiple regional integrated
energy systems. This model aims to optimize multiple energy
sources to meet the electricity-heat-gas demand of each
integrated energy system within the VPP coordinated
scheduling strategy, fostering cooperative benefit sharing
among members. In analyzing the intricate interactions among
providers and responders of energy prices across multiple entities
in multi-energy system transactions, a master-slave game model
is deemed more appropriate for understanding the sequential
order of the game. The research in (Zangeneh et al., 2018) adopts
a multi-leader-follower master-slave game model to describe the
competition between multiple VPPs and the superior market,

determining the optimal pricing strategy for multiple parties to
realize optimal transactions for each entity. The study in (Wei
et al., 2017) investigates multi-energy interaction transaction
strategies between multiple distributed energy stations and
users by constructing an energy transaction model based on a
multi-leader-multiple-follower game. A model in (Chen et al.,
2023) constructs a Stackelberg game trading model involving
energy retailers and VPPs, where the energy operator guides the
power purchase and sale behavior of VPP through tariff
optimization. Research in (Lu Q. et al., 2023) proposes a one-
master-many-slave game optimization model for community
integrated energy systems, considering carbon trading
mechanisms and integrated demand response, which realizes
interactive equilibrium between energy suppliers and load
aggregators, significantly improving the economic and low-
carbon benefits of each entity.

However, there are still research gaps in the above studies, which
are mainly manifested in the following two aspects: 1) Existing
studies on low-carbon operation of VPPs primarily focus on carbon
emission measurement from the power supply side, with less
emphasis on the demand side. This limitation hinders the ability
to guide load-side low-carbon electricity consumption behavior.
Carbon emission flow (CEF) theory, as an effective analytical
method for the low-carbon development of power systems
(Cheng et al., 2019a; Cheng et al., 2019b; Sun et al., 2023), offers
new perspectives on load-side carbon emission responsibility
sharing and facilitates low-carbon demand response. Studies (Lu
Z. et al., 2023; Yan et al., 2023) have proposed low-carbon optimal
dispatch models for multi-energy systems based on CEF theory.
These models implement carbon-aware distribution locational
marginal pricing (CDLMP) and stepped carbon pricing to
actively guide loads in reducing system carbon emissions. 2) The
measurement methods of VPP carbon emissions in existing studies
are not sufficiently accurate. Most studies only consider the internal
carbon emissions of VPPs, neglecting the indirect carbon emissions
resulting from purchasing electricity from the higher grid and gas
from the gas grid. Furthermore, the purchase and sale of energy are
usually based on fixed or time-based pricing, which does not account
for the significant potential of integrated energy-carbon pricing to
reduce VPP carbon emissions.

This paper proposes a bi-level model that optimizes a multi-
agent Stackelberg game with VPP participation in multi-energy
systems under an integrated energy-carbon price response
mechanism. In this model, the distribution system operator
(DSO) and gas system operator (GSO) act as leaders, while the
VPP operator (VPPO) acts as a follower. The model focuses on
VPP participation in a multi-energy system under the energy-
carbon integrated price response mechanism. The paper also
introduces an integrated energy-carbon pricing method based
on CEF theory to help VPPs adjust their energy consumption
and trading strategies to reduce carbon emissions. The study
includes carbon flow tracking for distributed VPP energy
transactions, taking into account the carbon emission
responsibilities of VPPs when purchasing electricity and natural
gas. To ensure privacy, the adaptive step-size alternating direction
method of multipliers (ADMM) is used for a distributed solution.
The effectiveness of the proposed model and method is
demonstrated through case analysis.
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2 Electric-gasmulti-energy system and
VPP low-carbon operation bi-
level framework

The study aims to develop a low-carbon economic operational
model suitable for power distribution networks, gas distribution
networks, and VPPs. Due to conflicting objective functions among
the three stakeholders, i.e., DSO, GSO, and VPPO, and the presence
of multiple variables, a bi-level model for the interactions between
multi-energy systems and the VPP considering integrated energy-
carbon pricing is proposed. The transaction dynamics between DSO,
GSO, and VPPO are modeled as a multi-agent Stackelberg game,
where DSO and GSO are considered as the leaders and VPPO as the
follower. The bi-level transaction framework is illustrated
in Figure 1.

The upper level features the optimal scheduling model for
the electricity-gas multi-energy system. The DSO and GSO
calculate the optimal power flow (OPF) for the power
distribution network and the gas distribution network based
on the energy purchasing demand transmitted from the lower
level. Their objective is to minimize the total operating cost for
each of them. They also integrate the distribution network
trends to solve the distribution of the CEF and formulate the
integrated energy-carbon price. For energy pricing, this paper
adopts the locational marginal electricity price (LMEP) and
locational marginal gas price (LMGP). The decision
information derived from this process is then provided back
to the lower-level model.

The follower VPP at the lower level responds to the integrated
energy-carbon price information by optimizing the energy use of
internal gas turbine CHP units, gas boilers, power storage
equipment, and distributed wind power, with the goal of
minimizing the total operating cost. The VPP develops the
internal optimal scheduling strategy and uploads the power
purchasing demand and gas purchasing demand information to
the upper-level DSO and GSO, respectively.

In summary, the power distribution network and the gas
distribution network optimize OPF and CEF based on the energy
purchase demand of the VPP and its internal optimization results.
They then pass the integrated energy-carbon price and node carbon
intensity obtained from the solution back to the VPP. The VPP uses
this information to formulate the latest internal optimization
scheduling strategy and update its energy purchase demand. This
iterative process continues until the transactions of each subject in
the bi-level model reach a consensus and meet the convergence
conditions, thus achieving the overall optimal operation of the
power distribution network, gas distribution network, and VPP.

3 A bi-level formulation for energy
transaction

Since DSOs, GSOs, and VPPOs represent different stakeholders,
it is essential to establish transaction models for each party that
consider the interaction of electricity and natural gas between the
distribution and the VPP. This includes the energy pricing model of

FIGURE 1
A bi-level framework for electric-gas multi-energy systems and VPP transactions.
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the upper-tier electricity-gas multi-energy system, the carbon
pricing model, and the lower-level VPP energy optimization model.

3.1 Energy pricing modeling for electric-gas
multi-energy systems

3.1.1 Pricingmodel for power distribution networks
In this section, the LMEP pricing model for power distribution

networks based on second order cone programming (SOCP) is
constructed with the objective of minimizing the operating cost of
power distribution networks (Xie et al., 2023; Xie et al., 2024).

3.1.1.1 Objective function
The objective of the DSO is to minimize the total operating cost

fDSO of the power distribution network, including the cost Cb
t of

coal-fired unit generation and the cost Cgrid
t of purchased power

from the higher grid, as presented in Eqs 1–3 as follows:

minfDSO � ∑T
t�1

Cb
t + Cgrid

t( ) (1)

Cb
t � ∑

g∈G
ag Pg,t( )2 + bgPg,t + cg( ) (2)

Cgrid
t � λgridt Pgrid

t (3)
where T is the total number of scheduling hours; G is the set of coal-
fired units in the distribution network; ag, bg and cg are the
generation cost coefficients of the coal-fired units g; Pg,t is the
active power output of the units at the moment t; λgridt is the selling
price of the higher-level grid at the moment t; and Pgrid

t is the active
power purchased by the DSO from the higher-level grid at the
moment t.

3.1.1.2 Power system constraints

∑
g∈n

Pg,t + ∑
w∈n

Pwind
w,t + Pgrid

t − Pbuy
t � PL

n,t + ∑
b n,·( )∈n

PDN
b,t

− ∑
l ·,n( )∈n

PDN
l,t − al,trl( ): λLMEP

n,t

n ∈ NDN

(4)∑
g∈n

Qg,t + Qgrid
t − ηPbuy

t � QL
n,t + ∑

b n,·( )∈n
QDN

b,t − ∑
l ·,n( )∈n

QDN
l,t − al,txl( )

(5)
PDN
b,t( )2 + QDN

b,t( )2 ≤ S2l (6)
PDN
l,t − al,trl( )2 + QDN

l,t − al,txl( )2 ≤ S2l (7)
PDN
l,t( )2 + QDN

l,t( )2 ≤ al,tUn′,t (8)
Un′,t − 2 rlP

DN
l,t + xlQ

DN
l,t( ) + al,t r2l + x2

l( ) � Un,t (9)
U2

min ≤Un,t ≤U2
max (10)

Pg,min ≤Pg,t ≤Pg,max

Qg,min ≤Qg,t ≤Qg,max
{ (11)

where g ∈ n , w ∈ n denotes the coal-fired unit g and fan w
connected to node n, respectively; b(n, ·) ∈ n denotes the line

injected from node n to other nodes, denoted as b; l(·, n) ∈ n
denotes the branch l injected from other nodes to node n,
respectively; NDN is the set of nodes in the distribution network;
Pwind
w,t is the active power output of fan w at the moment t; Pbuy

t is
the purchased power of VPP to the distribution network at themoment
t; PL

n,t,Q
L
n,t are the active and reactive power loads connected to node n

at the moment t, respectively; PDN
b,t , P

DN
l,t , QDN

b,t , Q
DN
l,t are the active and

reactive power flowing through lines b and l at time t, respectively; al,t
denotes the square of the current of branch l at time t; rl, xl are the
resistance and reactance of branch l, respectively; λLMEP

n,t is the dyadic
variable corresponding to the active power balance constraint; Qg,t is
the reactive power output of coal-fired unit g at time t; Qgrid

t is the
reactive power purchased by the distribution network from the higher-
level grid at time t; η denotes the power factor of the loads; Un,t is the
square of the magnitude of the node n at time t; Sl is the upper limit of
the apparent power of line l;Umin,Umax are the lower and upper limit of
the magnitude of the node voltage, respectively; Pg,min, Pg,max, Qg,min,
Qg,max are the lower and upper limit of the active and reactive power
output of unit g, respectively. Eqs 4, 5 represent the nodal active and
reactive power balance constraints. Eqs 6, 7 represent the power flow
limits in each line. Eq. 8 represents convex SOC relaxation to the
original equality of the apparent power. Eq. 9 is the forward voltage
drop equation. Eq. 10 is the limits of the nodal voltage. Eq 11 represents
the generator active and reactive output constraints.

3.2 Pricing model for gas
distribution networks

This section constructs a SOCP-based LMEP pricing model for
gas distribution networks with the objective of minimizing the gas
distribution network operating costs.

3.2.1 Objective function
The gas distribution network consists of the gas source, gas

pipeline, air compressor, and gas load, and in this paper it is assumed
that the flow of natural gas in the gas pipeline has been determined.
The objective of the GSO is to minimize the operating cost fGSO of
the gas distribution network, i.e., to minimize the cost of natural gas
purchased by the GSO from the natural gas company, which is
expressed in the Eq. 12 as follows:

minfGSO � ∑T
t�1

∑
s∈Ns

ywell
s,t w

well
s,t

⎛⎝ ⎞⎠ (12)

where ywell
s,t , wwell

s,t are the price and volume of gas purchased by the
GSO from gas source s at time t, respectively; Ns is the set of
gas sources.

3.2.2 Gas system constraints

∑
s∈j

wwell
s,t + ∑

ij∈z j( )
wij,t − ∑

jk∈v j( )
wjk,t − wload

j,t − wbuy
t � 0: λLMGP

j,t

j ∈ NGN

(13)

wij,t � sign πi,t − πj,t( )Cij

�������������
πi,t( )2 − πj,t( )2∣∣∣∣∣ ∣∣∣∣∣√

(14)
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wij
min ≤wij,t ≤wij

max (15)
πj

min ≤ πj,t ≤ πj
max (16)

πj,t ≤ kπi,t (17)
ws

min ≤wwell
s,t ≤ws

max (18)

where s ∈ j denotes the natural gas source s at node j; z(j) is the set
of pipelines at the end node j; v(j) is the set of pipelines at the first
node j; NGN is the set of nodes in the distribution network; wij,t,
wjk,t are the amount of natural gas flowing through the pipelines ij
and jk, respectively, at time t;wload

j,t is the gas load at node j of the gas
distribution network; wbuy

t is the amount of natural gas purchased
from the gas distribution network by the VPP, respectively, at time t;
λLMGP
j,t is the dyadic variable corresponding to the natural gas node
flow equilibrium constraints; πi,t and πj,t are the pressures at nodes i
and j at time t, respectively; Cij is the pipeline transmission
characteristic parameters; wij

max, wij
min are the upper and lower

bounds on the amount of natural gas to be transmitted by the
pipeline; πj

max, πjmin are the upper and lower bounds on the gas
pressure at node j, respectively; k is the compressor coefficients;
ws

max, ws
min are the upper and lower bounds on the output of the

natural gas source s, respectively. Eq 13 is the natural gas node flow
balance constraint. Eq 14 is the Weymouth equation (Chen et al.,
2019) for the pipeline gas flow, where sign(·) is a sign function that
one when πi,t ≥ πj,t and −1 otherwise. Eq 15 is the gas network
pipeline flow limit. Eqs 16, 17 denote the natural gas nodal pressure
constraints. Eq. 18 denotes the gas supply constraints of gas wells.

3.3 Carbon pricing model for multi-energy
systems based on CEF theory

3.3.1 CEF modeling for multi-energy systems
While most of the CO2 in the energy industry is generated on

the source side, the ultimate driver of carbon emissions is on the load
side. The focus of this paper is on how to price carbon emissions
from generation to end-users so that the right incentives can be
provided between electricity-gas multi-energy systems. The theory
of CEF, which is based on the energy flow of the system, can
intuitively characterize the flow direction of carbon emission
during the system operation, and improve the new analysis
perspective for the low-carbon economic dispatch (Cheng et al.,
2020). In the CEF model, the carbon flow index is usually used to
describe the carbon emission apportionment, this paper mainly
needs to obtain the carbon intensity of each node of the electric-gas
multi-energy system as a carbon signal, and through the carbon tax
to establish the link between the carbon price and the node carbon
intensity accessed by the VPP, and the CEF model is established
as follows.

3.3.1.1 CEF modeling of power distribution networks
The node carbon intensity represents the value of carbon

emissions equivalent to the generation side caused by a unit of
electricity consumed at that node, calculated in Eq. 19 as follows:

eelen,t �
∑
g∈n

Pg,teg + ∑
l ·,n( )∈n

PDN
l,t − al,trl( )ρl,t∑

g∈n
Pg,t + ∑

w∈n
Pwind
w,t + ∑

l ·,n( )∈n
PDN
l,t − al,trl( ) (19)

where eelen,t, ρl,t denote the nodal carbon intensity of node n and the
carbon flow intensity of branch l at time t, respectively; eg is the
carbon emission intensity of coal-fired unit g.

The branch carbon intensity denotes the equivalent value of
carbon emission on the generation side caused by a unit of
electricity transmitted by a tributary. According to the
proportional sharing principle (Kang et al., 2015), the carbon
flow intensity of all transmission lines flowing from node n is
equal to the carbon intensity of that node, which is expressed in Eq.
21 as follows:

ρl,t � eelen,t,∀l n, ·( ) ∈ n (20)

3.3.1.2 CEF modeling of gas distribution networks
The gas distribution network CEF model is similar to that of the

power distribution network, and the carbon intensity of each node
and the branch carbon intensity are calculated as follows:

egasj,t �
∑
s∈j

wwell
s,t e

well
s + ∑

ij∈z j( )
wij,tρij,t∑

s∈j
wwell

s,t + ∑
ij∈z j( )

wij,t
(21)

ρij,t � egasi,t ,∀ij ∈ z j( ) (22)

where egasj,t is the carbon intensity of node j of the gas network at time
t; ρij,t is the carbon flow intensity of the gas flow into pipeline ij of
the pipeline connected to node j at time t; ewells is the carbon
emission intensity of the gas source s connected to node j.

3.3.1.3 An integrated energy-carbon pricing approach
based on the CEF theory

As consumers, the VPP must acknowledge their carbon
emission responsibility when procuring electricity and gas
from the power distribution and gas distribution networks. By
utilizing the CEF model to calculate the nodal carbon intensity of
these networks, a connection is established between the carbon
price and nodal carbon intensity through carbon tax.
Subsequently, the integrated electricity/gas energy-carbon
pricing method is developed by combining the LMEP/LMGP
with the carbon price in Eqs 23, 24 as follows:

ςelen,t � λLMEP
n,t + τeelen,t,∀n, t (23)

ςgasj,t � λLMGP
j,t + τegasj,t ,∀j, t (24)

where ςelen,t is the integrated electricity-carbon price at node n of the
power distribution network at time t; ςgasj,t is the integrated gas-
carbon price at node j of the gas distribution network at time t; τ is
the carbon tax. The integrated energy-carbon pricing system
encourages VPPs to proactively adjust their energy purchases and
internal scheduling strategies, leading to reduced carbon emissions
and operating costs.

3.4 VPP energy optimization model

The operational framework of the VPP established in this
study is illustrated in Figure 2. It comprises gas turbine combined
heat and power (CHP) units, gas boilers, distributed wind power,
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and energy storage units. The flexible loads encompass electric and
thermal loads, with consideration given to demand response for
both to assist users in making informed energy demand
adjustments. The VPP interfaces with the power distribution
network via an electric power contact line and transports
natural gas through a pipeline connecting it to the gas
distribution network. Notably, this paper does not address the
scenario of natural gas sales to the GSOs at this time.

3.4.1 VPP Objective Function
The objective of the VPP energy optimization model is to

minimize the total operating cost fVPPO in Eqs 25–28 as follows:

minfVPPO � ∑T
t�1

Cele,buy
t + Cgas,buy

t + CDR
t( ) (25)

Cele,buy
t � ςelet Pbuy

t (26)
Cgas,buy

t � ςgast wbuy
t (27)

CDR
t � λcute Pcut

t + λtrane Ptran
t + λcuth Hcut

t (28)
where Cele,buy

t is the cost of electricity purchased by VPP
interacting with the power distribution network; Cgas,buy

t is the
cost of natural gas purchased by VPP from the gas distribution
network; CDR

t is the cost of integrated demand response of
electricity and heat in VPP; Ptran

t , Pcut
t denotes the amount of

electric load transfer and load reduction in VPP at time t,
respectively; Hcut

t denotes the amount of heat load reduction
in VPP at time t; λcute , λtrane are the unit price of compensation for
electric load reduction and transfer; λcuth denotes the unit price of
compensation for heat load reduction.

3.4.2 VPP operational constraints
3.4.2.1 Power balance constraints

The power balance constraints for multiple energy flows within
the VPP are given in Eq. 29 as follows:

PCHP
t + PWind

t + PES,dis
t + Pbuy

t � PES,cha
t + Pload

t

HCHP
t +HGB

t � Hload
t

wbuy
t � wGT

t + wGB
t

⎧⎪⎪⎨⎪⎪⎩ (29)

where PCHP
t ,HCHP

t are the power supplied by the gas turbine and the
heat production power at time t, respectively; PWind

t is the actual
output of renewable energy at time t; PES,cha

t , PES,dis
t are the charging

and discharging power of the electrical energy storage at time t; Pload
t ,

Hload
t are the amount of load after the demand response of electric and

thermal loads at moment t;HGB
t is the gas boiler heat power at time t;

wGT
t , wGB

t are the amount of natural gas input to the gas turbine and
gas boiler at moment t, respectively.

3.4.2.2 Gas turbine CHP unit constraints
The mathematical model and constraints for power and heat

supply of CHP units are in Eq. 30 as follows:

PCHP
t � ηCHP

P

LCH4

QEH
wGT

t

PCHP
min ≤PCHP

t ≤PCHP
max

HCHP
t � ηCHP

H

LCH4

QEH
wGT

t

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(30)

where ηCHP
P , ηCHP

H are the gas turbine power supply efficiency and
heat production efficiency; LCH4 is the calorific value of natural gas
per unit volume; QEH is the thermal energy converted per unit of
electrical energy; PCHP

max , P
CHP
min are the upper and lower limits of the

power supply of the gas turbine.

3.4.2.3 Gas boiler output constraints

HGB
t � ηGB

LCH4

QEH
wGB

t

HGB
min ≤HGB

t ≤HGB
max

⎧⎪⎪⎨⎪⎪⎩ (31)

FIGURE 2
VPP operational framework.
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where ηGB is the electric heat conversion efficiency of the gas boiler;
HGB

max ,H
GB
min are the upper and lower limits of the heat output of the

gas boiler in the VPP, respectively. Eq. 31 represents the operating
constraints of GB.

3.4.2.4 Energy storage unit constraints
The introduction of energy storage devices can further improve

the operational flexibility of the VPP, the energy storage device is
modeled in Eq. 32 as follows:

St � 1 − ηloss( )St−1 + ηchaPES,cha
t − PES,dis

t

ηdis

S1 � S24

0≤PES,cha
t ≤ μES,chat P ES,cha

max

0≤PES,dis
t ≤ μES,dist P ES,dis

max

μES,chat + μES,dist ≤ 1

S min ≤ St ≤ S max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(32)

where St is the capacity of the energy storage device in the VPP at
time t; ηloss, ηES,cha, ηES,dis are the energy storage device energy loss
coefficient, energy charging and discharging efficiency; where
ηloss ≪ 1; P ES,cha

max , P ES,dis
max are the maximum charging and

discharging power of the energy storage device; S min, Smax are
the minimum and maximum storage capacity of the energy
storage device; μES,chat , μES,dist are the binary variable, respectively,
represents the charging and discharging state of the energy storage
device at t time.

3.4.2.5 Electric heat integrated demand response
constraints

Pload
t � P0

t + Ptran
t − Pcut

t

Ptran
t

∣∣∣∣ ∣∣∣∣≤P tran
max∑T

t�1
Ptran
t � 0

0≤Pcut
t ≤P cut

max

Hload
t � H0

t −Hcut
t

0≤Hcut
t ≤H cut

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

Eq. 33 represents the Electric heat integrated demand response
constraints, where P0

t denotes the initial load of electric load in
VPP at time t; P tran

max denotes the upper limit of transferable electric
load; P cut

max denotes the upper limit of curtailable electric load; H0
t

denotes the initial load of thermal load at time t; H cut
max denotes the

maximum curtailable thermal load.

4 Solution method for the muti-agent
stackelberg game trading model

In the context of a multi-agent Stackelberg game transaction
model involving the leader DSO, GSO, and follower VPP in an
electricity-gas multi-energy system, each participant optimizes its
operation state according to individual interest objectives and
devises energy transaction strategies accordingly. Given the
intricate internal information and substantial transaction volume,
traditional centralized optimization algorithms are inadequate in

meeting the information privacy needs of each participant within
this model. Therefore, the proposed solution involves solving the
multi-participant Stackelberg game model through a distributed
approach using the adaptive ADMM algorithm.

4.1 Stackelberg game trading model

The game model contains three elements: the set of participants,
the set of strategies and the set of benefits (Li et al., 2022), and the
Stackelberg game is modeled in Eq. 34 as follows:

G �
DSO,GSO,VPPO{ };

Pg,t, P
grid
t , wwell

s,t , ς
ele
n,t, ς

gas
j,t{ };

Pbuy
t , wbuy

t{ };
fDSO, fGSO, fVPPO

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (34)

(1) Participant set: DSO,GSO,VPPO{ } represents the set of all
participants. Where DSO and GSO are leaders and VPPO
are followers.

(2) Strategy set: the strategy of the leader DSO is the amount of
electricity purchased from each distributed generator and the
higher grid at each moment and the integrated electricity-
carbon price set, denoted as Pg,t, P

grid
t , ςelen,t{ }; the strategy of

the leader GSO is the amount of natural gas purchased from
each distribution station and the integrated gas-carbon price
set, denoted as wwell

s,t , ςgasj,t{ }; the strategy of the follower VPPO
is the amount of electricity purchased with the DSO and the
amount of gas purchased from the GSO, denoted as
Pbuy
t , wbuy

t{ }.
(3) Benefits: The benefits to each participant are their objective

functions, which can be expressed as fDSO, fGSO and fVPPO,
respectively.

4.2 Distributed solution of stackelberg game
transaction model based on adaptive
ADMM algorithm

The adaptive ADMM algorithm is utilized in this study for
distributed solving of the proposed multi-agent Stackelberg game
model. This approach ensures that the interaction between
participating subjects does not compromise their internal privacy.
Only the boundary information of each subject at the time of the
transaction is required, enabling distributed and efficient solving
while safeguarding the privacy of transactional information.

Based on the principle of ADMM algorithm, the auxiliary
condition is introduced as shown in Eq. 35 as follows:

Pbuy
t − Pex

t � 0, wbuy
t − wex

t � 0 (35)
where Pbuy

t , Pex
t are the amount of electricity that the VPPO expects

to trade with the DSO and the amount of electricity that the DSO
expects to trade with the VPPO at time t, respectively; wbuy

t , wex
t are

the amount of natural gas that the VPPO expects to buy from the
GSO and the amount of natural gas that the GSO expects to sell to
the VPPO at time t, respectively.

Distributed models for optimal pricing of power distribution
network, optimal pricing of gas distribution network and VPP
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energy optimization are obtained based on ADMM principle,
respectively.

4.2.1 Optimal pricing of power
distribution network

LDSO � min fDSO +∑T
t�1

λDSOt Pex
t − Pbuy

t( ) + ρ

2

������Pex
t − Pbuy

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]⎛⎝ ⎞⎠
s.t. 1( )— 11( )、 19( )— 20( )、 23( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(36)

The optimal pricing of power distribution network is presented in
Eq. 36, where λDSOt and ρ are the corresponding Lagrange multipliers
and penalty factors of the DSO, respectively.

4.2.2 Optimal pricing of gas distribution network

LGSO � min fGSO +∑T
t�1

λGSOt wex
t − wbuy

t( ) + ρ

2

������wex
t − wbuy

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]⎛⎝ ⎞⎠
s.t. 12( )— 18( )、 21( )— 22( )、 24( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(37)

The optimal pricing of gas distribution network is presented in Eq.
37, where λGSOt is the Lagrangian multiplier for the GSO
distribution solution.

4.2.3 Distributed model for VPP energy
optimization

LVPPO � min

fVPPO +∑T
t�1

λ1t Pbuy
t − Pex

t( ) + ρ

2

������Pbuy
t − Pex

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]+
∑T
t�1

λ2t wbuy
t − wex

t( ) + ρ

2

������wbuy
t − wex

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
s.t. 25( )— 33( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

Distributed model for VPP energy optimization is presented in Eq.
38, where λ1t , λ2t are the corresponding Lagrange multipliers
when the VPPO expects to trade with the DSO and GSO,
respectively.

The coupled variables and Lagrange multipliers are updated
as follows:

zex,k+1t � argminLz zex,kt , zbuy,kt , λz,kt[ ]
zbuy,k+1t � argminLVPPO zex,k+1t , zbuy,kt , λz,kt[ ]
λz,k+1t � λz,kt + ρ zex,k+1t − zbuy,k+1t( )

⎧⎪⎪⎨⎪⎪⎩ (39)

where z represents the energy type; k is the number of iterations for
distributed solving.

The original residuals, pairwise residuals are calculated and the
convergence conditions are provided in Eqs 40, 41 as follows:

rk+1t � zex,k+1t − zbuy,k+1t

sk+1t � zex,k+1t − zex,kt

{ (40)

∑T
t�1

rk+1t

���� ����2 ≤ εpri
∑T
t�1

sk+1t

���� ����2 ≤ εdual
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (41)

where rk+1t , sk+1t are the original residuals and pairwise residuals in
the k + 1 iteration, respectively; εpri, εdual are the convergence
thresholds of the original and pairwise residuals, respectively.

The choice of step size significantly affects the speed of the
ADMM solution. An inappropriate value can hinder convergence.
This paper proposes an adaptive ADMM algorithm that
dynamically updates the step size based on the relationship
between original residuals and pairwise residuals. This approach
aims to enhance algorithm convergence and reduce iteration time, as
formulated in Eq. 42:

ρk+1 �

τincrρk rk
���� ����2 > μ sk

���� ����2
ρk

τdecr
sk
���� ����2 > μ rk

���� ����2
ρk other

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (42)

where μ is the scaling factor between the original residuals and the
pairwise residuals; τincr and τdecr are the acceleration and
deceleration factors of the step change, respectively.

The coupling variables are updated by the iterative form shown
in Eq. 39 until the convergence condition in Eq. 41 is satisfied, and
the specific algorithmic solution flowchart is shown in Figure 3.

5 Case study

5.1 Case description

In order to validate the models and algorithms proposed in
this paper, the IEEE 33-bus power distribution network, 7-
node gas distribution network, and 1 VPP coupling
composition are utilized. The network topology is illustrated
in Figure 4, where W represents the wind turbine located at
node 31 in the power distribution network. Additionally, G1 to
G5 represent five coal-fired units situated at nodes 3, 9, 29, 14,
and 21, with their operating parameters detailed in
Supplementary Appendix Table SA1; Supplementary
Appendix Figure SA1. W1 and W2 denote the gas
distribution stations connected to nodes six and seven of the
gas distribution network. Prediction curves for renewable
energy output and load within the VPP can be found in
Supplementary Appendix Figure SA2, along with unit
parameters in Supplementary Appendix Table SA2.

It is assumed that the power factor η of the node loads in the
distribution network is 0.85, and the price of power purchased
from the higher-level grid is set to 160$/MWh. The price of gas
purchased by GSO from the gas source is set at 0.52$/m3, and the
carbon tax τ is set to 45$/tCO2. In the ADMM algorithm of
adaptive step-size, the initial step-size ρ is set to 1, and the μ is set to
10, τ incr, τdecr are set to 2, εpri and εdual the thresholds of
convergence, and are set to 10-3. In this paper, we build the
simulation model based on the platform of Matlab 2018b and
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the Gurobi solver is adopted to solve the simulation model. Solved
using Gurobi solver.

In order to verify the impact of the multi-agent Stackelberg game
on electricity-gas trading and the cost of energy purchase by each
subject under the energy-carbon integrated price response
mechanism, the following four energy settlement scenarios
are set up.

Case 1 : The settlement electricity price adopts fixed time-sharing
electricity price, the settlement gas price adopts fixed natural gas
price, the specific data are shown in Supplementary Appendix Table
SA3, carbon emission flow is not considered, VPPOs completely act
as the recipient of the price for the electricity-natural gas transaction,
and the flexible loads in VPPs are not considered for the optimal
scheduling.

Case 2: Based on Case 1, and the flexible loads within the VPP
are considered for integrated demand response for
electricity and heat.

Case 3: The LMEP and LMGP obtained after the game equilibrium
of each subject are used for the power distribution network settlement
price and the gas distribution network settlement price, respectively,
without considering the carbon emission flow, and the flexible loads
within the VPP are considered for optimal dispatch; Case 4: the
electricity-carbon integrated price and gas-carbon integrated price
obtained after the game equilibrium of each subject are adopted for
the power distribution network settlement price and gas distribution
network settlement price respectively, carbon emission flow is
considered, and optimal dispatch is considered for the flexible
loads within the VPP, i.e., the model proposed in this paper.

FIGURE 3
Flowchart for solving the multiagent Stackelberg game model based on integrated energy-carbon price.
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5.2 Analysis of VPP simulation results

5.2.1 Comparative analysis of operation under
different scenarios

The simulation results of the above four scenarios are shown
in Table 1.

Table 1 illustrates that operating costs decrease and carbon
emissions are effectively reduced when considering integrated
demand response in Cases 2, 3, and 4 compared to Case 1. The
dependency of VPP on power and gas distribution networks is also
reduced through demand response of flexible loads, leading to
decreased electricity and gas purchases. Case 3, which
incorporates the interaction of VPPO with DSO and GSO
master-slave game, shows a reduction in total energy purchase
cost and carbon emissions by $400.9 and 3.25 t CO2,
respectively, compared to Case 2 with fixed energy settlement
price. This demonstrates that settling energy prices using LMEP
and LMGP can guide VPP energy optimization in a more cost-
effective manner, enhancing both economic and environmental
aspects of VPP.

By comparing Case 3 and Case 4, it is evident that in Case 4,
the integrated energy-carbon price led to a 7.29% decrease in carbon
emissions from the VPP compared to Case 3. However, the energy
purchase costs and total costs of the VPP increased in Case 4 due
to the higher carbon price. Moreover, the inclusion of a carbon
price incentivized VPPs to use more natural gas over purchased
electricity, resulting in increased operating costs for GSOs
and decreased costs for DSOs in Case 4. Overall, the proposed

multi-agent Stackelberg game trading strategy proves beneficial in
enhancing the economic and low-carbon advantages for each agent.

5.2.1.2 Analysis of price response mechanism.
The impact of different pricingmethods on the power purchased

by VPPs is analyzed by examining the power distribution network
settlement tariffs and carbon price change curves for the nodes
where the VPPs are located in Cases 3 and 4, as shown in Figure 5.
Additionally, Figure 6 illustrates the carbon intensity for all nodes of
the power distribution network under Case 4.

As shown in Figure 5, considering the carbon tax on VPP’s
electricity demand from the power distribution network

FIGURE 4
Containing multi-energy VPP E33-G7 test system topology diagram.

TABLE 1 Comparison results of operating costs and carbon emissions of each subject under different scenarios.

Case VPPO operating
costs ($)

DSO operating
costs ($)

GSO operating
costs ($)

Total cost of energy
purchases ($)

VPP carbon
emissions (t)

Case 1 16118.5 8672.1 17926.5 42717.1 47.73

Case 2 12153.6 5338.9 16097.6 33590.1 32.84

Case 3 11539.2 4832.8 16817.2 33189.2 29.59

Case 4 13009.4 4776.7 18079.3 35865.4 27.43

FIGURE 5
Electricity prices in different scenarios.
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increases the purchase price. The integrated energy-carbon price
is consistently higher than the LMEP, with its incremental
increase varying over time. The difference between the
integrated energy-carbon price and the LMEP is more
pronounced at certain times (e.g., from 05:00 to 09:00) when
the nodes have higher carbon emission densities. In contrast,
while the combined gas-carbon price also rises, its change is
minimal because the carbon intensity of each node in the gas
distribution network is relatively uniform. The carbon emissions
for VPPs purchasing gas from the gas distribution network
depend solely on the amount of gas used. Consequently, the
combined gas-carbon price remains essentially unchanged over
time. In this paper, the LMGP of VPP coupled with the gas
distribution network is calculated to be 0.5120 $/m³, and the
integrated gas-carbon price, considering the carbon tax, is
0.6174 $/m³.

An examination of the carbon intensity of individual nodes in
both Figure 6 and the IEEE 33-node system topology diagram
indicates that nodes with wind turbines and their adjacent nodes
have lower carbon intensity, attributed to the low carbon
emissions of wind turbines. On the other hand, nodes

connected to VPPs’ power distribution network are situated
near coal-fired units with high carbon emissions, impacting
their carbon intensity. Nevertheless, the carbon intensity of
these nodes aligns closely with that of thermal units. As a
result, the carbon pricing of nodes linked to the power
distribution network, as depicted in Figure 5, demonstrates
minimal fluctuations over time.

To further investigate the impact of carbon pricing on the
amount of electricity and gas purchased by VPPs, Figure 7
illustrates a comparison between the two scenarios. The
results show that during the 05:00-10:00, Case 4, with carbon
pricing, acquires less electricity but more natural gas compared to
Case 3, without carbon pricing. This is due to the higher carbon
intensity at the node connected to the power distribution
network, as depicted in Figure 5. The node’s carbon intensity
is higher during 05:00-10:00, leading to a greater use of natural
gas over electricity. Therefore, incorporating a carbon price
incentivizes VPPs to utilize more natural gas and decrease
electricity consumption.

In order to better understand the demand for purchased energy
and carbon emissions of a VPP utilizing an integrated energy-
carbon price response mechanism, a comparison and analysis
between Case 3 and Case 4 is conducted. The results of this
comparison are illustrated in Figure 8. The visualization in
Figure 8 demonstrates that, in Case 4 where carbon price is
considered, natural gas becomes a more competitive option
compared to Case 3 where carbon price is not a factor.
Consequently, the VPP tends to procure natural gas with lower
carbon intensity, leading to an increase in total gas volume
purchased and a decrease in the purchase of electricity from the
power distribution network with higher carbon intensity. This
results in a reduction of 1.91 MWh in the total purchased
electricity of the VPP. Furthermore, with the inclusion of carbon
price, the total carbon emissions of the VPP decrease from
29585.8 kg to 27436.6kg, showcasing a significant reduction in
carbon emissions due to the integrated energy-carbon price
response mechanism. These findings suggest that the proposed
multi-agent Stackelberg game energy settlement price effectively
facilitates carbon emission reduction and enhances the low-carbon
benefits of the VPP.

FIGURE 6
Variation of carbon intensity at power distribution network nodes
under Case 4.

FIGURE 7
Power and gas purchases of VPP in different scenarios.
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5.2.2 Analysis of VPP optimal schedule
The results of the optimization of electric power and thermal

power inside the VPP are shown in Figure 9. For the VPP internal
units, new energy consumption has the highest priority to
minimize wind abandonment, and the VPP completes the
internal optimal scheduling according to the combined
energy-carbon price. The gas turbine CHP unit generates
electricity and heat within the output range, and the electric
energy storage is mainly charged when the energy-carbon
integrated price is lower, such as 01:00-04:00 and 07:
00 moments, and discharged at 06:00 and 12:00-14:00 when
the electricity-carbon integrated price is higher, so as to
reduce the purchase of electricity from the power distribution
network and reduce the total operating cost and carbon
emissions, while the electric and heat loads are considered
Comprehensive demand response can realize peak shaving and
valley filling to alleviate the pressure of grid peaking; only when
the internal unit output cannot meet its load demand, it
purchases electricity from the power distribution network and

FIGURE 9
VPP internal optimization results.

FIGURE 8
Comparison of VPP energy purchase demand and Carbon
emissions under different scenarios.

FIGURE 10
Convergence result for interactive iterative of multi-agent Stackelberg game.

Frontiers in Energy Research frontiersin.org12

Yan et al. 10.3389/fenrg.2024.1459667

163

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1459667


gas from the gas distribution network. Considering that the heat
load demand within the VPP is prioritized to be met by the gas
turbine CHP unit, after considering the heat load demand
response, the vast majority of the moments are heat
production by the gas turbine only, and only when the gas
turbine is not enough to supply heat at the 23:00-24:
00 moments, the gas boiler GB unit will be powered up.

5.3 Algorithm convergence analysis

This section examines the iterative convergence of the proposed
multi-agent Stackelberg game trading strategy. Figure 10A illustrates
the converged iterations of the original and pairwise residuals in
Case 4, while Figure 10B demonstrates the iterative convergence of
the game interactions among DSO, GSO, and VPPO.

Based on the residual convergence analysis presented in
Figure 10A, it is evident that the proposed algorithm achieves
the desired level of accuracy after 45 iterations, converging
within 10–3, with a computation time of 329 s. Figure 10B
visually demonstrates that the cost of purchased energy for
the leading DSO and GSO converges to $4776.7 and
$18,079.3, respectively, while the cost for the follower VPPO
converges to $13009.4. This convergence indicates that the
Stackelberg game between the DSO, GSO, and VPPO has
reached equilibrium, where each agent cannot further reduce
its operational cost by adjusting its trading strategy in isolation.
These results highlight the strong convergence performance and
computational efficiency of the distributed optimization
algorithm proposed in this study.

In order to further validate the effectiveness of the adaptive ADMM
algorithm proposed in this study, a comparative analysis with the fixed-
step ADMM is conducted. The solution performance is documented in
Table 2 for both fixed step size and adaptive step size ADMM. It is
evident from Table 2 that the adaptive step-size ADMM, as opposed to
the traditional ADMM, diminishes the reliance on the initial value
selection through step size correction. This results in fewer iterations,
reduced solving time, and enhanced solving efficiency.

6 Conclusion

This paper introduces a bi-level model and its solution
method for a multi-agent Stackelberg game focused on
synergistic low-carbon trading within Virtual Power Plants

(VPPs) participating in multi-energy systems under an energy-
carbon integrated price response mechanism. The proposed
trading strategy is analyzed and validated through an
arithmetic example, leading to the following conclusions.

(1) The integrated energy-carbon pricing approach, based on the
CEF theory, ismore effective in incentivizingVPPs to adjust their
energy-use and trading strategies with multi-energy systems
compared to LMEP and LMGP pricing approaches. This
encourages VPPs to procure energy from both power
distribution and gas distribution networks during periods of
low carbon intensity, thereby reducing carbon emissions.

(2) The proposed trading framework and multi-participant
Stackelberg game model enhance energy interactions among
participants, improving the economics and low-carbon benefits
for each participant. Compared to traditional energy settlement
methods, the integrated energy-carbon pricing method is shown
to be more effective in this regard.

This study focuses on the trading of electricity and natural
gas within a VPP with a multi-energy system. Future research
will explore trading multiple energy sources and carbon
emissions to achieve synergistic low-carbon trading.
Furthermore, the impacts of renewable energy integration
and load demand uncertainty in VPPs are also important
areas for further investigation.
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Parameter identification method
of load modeling based on
improved dung beetle optimizer
algorithm

Chao Xing*, Xinze Xi, Xin He and Can Deng

Electric Power Research Institute of Yunnan Power Grid Co., Ltd., Kunming, China

The role of load modeling in power systems is crucial for both operational and
regulatory considerations. It is essential to develop an effective and reliable
method for optimizing load modeling parameter identification. In this paper,
the dung beetle algorithm is improved by using the good point set, and a load
model parameter identification strategy based on the good point set dung beetle
optimization algorithm (GDBO)within the framework of themeasurement-based
load modeling method. The proposed parameter identification strategy involves
utilizing PMU voltage data as input, selecting a comprehensive load model, and
refining the initialization process based on the good point set to mitigate the
influence of local maxima. Through iterative optimization of the objective
function using the Dung Beetle Optimizer (DBO) algorithm, the optimal
parameters for the comprehensive load model are determined, enhancing the
model’s ability to accurately capture the power curve. Analysis of examples
pertaining to PMU-measured modeling parameter identification reveals that
the proposed GDBO algorithm, which incorporates a good point set,
outperforms alternative methods such as the improved differential evolution
algorithm (IDE), particle swarm optimization algorithm (PSO), grey wolf
optimization algorithm (GWO), and conventional DBO algorithm. This
demonstrates the superior performance of the introduced approach in the
context of load model parameter identification.

KEYWORDS

DBO algorithm, good point set, parameter identification, load modeling, electric
power system

1 Introduction

At present, digital simulation plays an irreplaceable role in power systems across various
domains such as power network planning, operation, control, and personnel training
(Zhang et al., 2020; Yang et al., 2022a; Diao et al., 2023; Wu et al., 2023; Zhang et al., 2023a;
Zhu et al., 2023). The accuracy of the simulation results depends on the conformity of the
adopted component models and parameters. Selecting an inappropriate load model in
power system simulation can lead to deviations in the simulation results from the actual
situation, potentially resulting in misallocation of planning funds and operational decision-
making errors (Ju, 2015; Xu et al., 2023). Therefore, in the process of dynamic simulation, it
is very important to select a suitable load model to describe the load of a specific area
(Swarupa et al., 2024).
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Load modeling has two main approaches (Wang et al., 2014;
Chen et al., 2020; Yang et al., 2022b) in power systems: component-
based and measurement-based. The component-based load
modeling first needs to count the characteristics of various
typical loads, the proportion of load equipment, and the
composition of loads (Wu et al., 2022; Fu et al., 2023; Yang
et al., 2024), then derive the mathematical models and
parameters of various typical loads, and finally integrate the
statistical data to establish the model of load nodes. However, the
load composition will change with time, the statistical workload is
large, and the voltage characteristics of reactive power cannot be
accurately obtained, so there are few practical applications. In
contrast, measurement-based load modeling considers the power
system as a stochastic system, first determines the model structure,
then identifies the model parameters based on the measured data,
and verifies its generalization ability (Wang et al., 2019; Zhang et al.,
2023b; Zhou et al., 2023). This method requires the installation of a
load characteristic recording device at the load node, which usually
obtains data for identification under large disturbances. Although
there are some drawbacks to measurement-based load modeling, it
can be widely used in practice by using input-output models to solve
the problem of complex load components without much statistical
work (Zhang, 2007; Yang et al., 2018).

With the continuous development and popularization of
artificial intelligence, intelligent algorithms have been widely used
in the research of load modeling technology (Wang et al., 2011;
Wang et al., 2020; Kang et al., 2021; Guo et al., 2022). Reference
(Wang et al., 2020; Guo et al., 2022) has applied the grey wolf
optimization (GWO) algorithm to load modeling based on its
advantages of better global convergence, fewer adjustment
parameters, and easy identification. It has been proven that the
GWO algorithm can improve the accuracy of load modeling.
Reference (Kang et al., 2021) adds the weight of flight inertia,
global optimum, and flight interference factor to the butterfly
algorithm to avoid the butterfly algorithm falling into the local
optimum prematurely and improve the accuracy of the
comprehensive load model. In order to prevent local convergence
of the algorithm and increase the accuracy of identification findings,
the chaos algorithm is incorporated into the ant colony method in
Reference (Wang et al., 2011). However, due to the mixing of
algorithms, the selection of parameters becomes complicated.

The dung beetle optimization (DBO) algorithm is an intelligent
optimization algorithm that achieves global exploration and local
development through the ball rolling, oviposition, foraging and
stealing behavior of dung beetles (Yang et al., 2022c; Xue and
Shen, 2022). The algorithm has the ability for global exploration
and local development, which can speed up convergence and
prevent premature phenomena. Presently, it has found extensive
application in diverse research domains, including but not limited to
range-free localization (Pan and Bu, 2023) and neural network
training (Li et al., 2023). However, few scholars have applied the
DBO algorithm to the research of load modeling.

In summary, this study employs the Dung Beetle Optimizer
(DBO) algorithm, alternatively recognized as the Good Point Set
Dung Beetle Optimizer (GDBO), to ascertain and refine the essential
parameters inherent in the comprehensive load model. The PMU
measured data is used as the input samples for load modeling. The
optimal parameters of the load model are achieved through repeated

optimization of the objective function, improving the model’s fit to
the power curve. Finally, a comparison between the optimized
sample curves and model responses produced by the proposed
algorithm and the algorithms for improved differential evolution
(IDE) (Xu et al., 2009a; Pattanaik et al., 2017), particle swarm
optimization (PSO) (Fang et al., 2022), GWO (Wang et al., 2020;
Guo et al., 2022), and DBO is made. This confirms that the proposed
method is more accurate and solves load modeling parameters
more quickly.

The paper is organized as follows: The establishment of the
comprehensive loadmodel is shown in the second chapter. The third
chapter introduces the parameter identification of the integrated
load model, including the principle of parameter identification,
parameter identification method, the improvement of the
identification method and the specific process of the
identification algorithm. In the fourth chapter, the example
simulation of parameter identification is carried out. The fifth
chapter gives the conclusion.

2 Comprehensive load model

The comprehensive load model comprises a static ZIP load
model and a three-order induction motor model in parallel (Liu,
2007; Sheng et al., 2021; Yang et al., 2022d; Wang et al., 2023). The
model is shown in the following Figure 1.

The static ZIP part adopts a polynomial model, which can be
described as follows Equation 1:

Ps � PZ
U

U0
( )2

+ PI
U

U0
( ) + PP

Qs � QZ
U

U0
( )2

+ QI
U

U0
( ) + QP

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (1)

in the above formula, we use PZ to represent the static active power
under the load constant impedance model, PI to represent the static
active power under the load constant current model, and PP to
represent the static active power under the load constant power
model and constant power, satisfying the following formulaic
conditions: PZ + PI + PP � 1 −Kpm.The static ZIP part’s active
and reactive powers are denoted by Ps and Qs.Under static
reactive load, components QZ, QI, and QP satisfy the following
requirements: QZ + QI + QP � 1 − Qmotor

Q0
.

The induction motor part can be described as Equations 2, 3:

dE′
d

dt
� − 1

T′ E′
d + Xm −Xm Xr‖( )Iq[ ] − w′E′

q

dE′
q

dt
� − 1

T′ E′
q − Xm −Xm Xr‖( )Id[ ] + w′E′

d

dw

dt
� − 1

2H
Aω2 + Bω + C( )T0 − E′

dId + E′
qIq( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

Id � 1

Z′2 Rs Ud − E′
d( ) + Xs +Xm Xr‖( ) Uq − E′

q( )[ ]
Iq � 1

Z′2 Rs Uq − E′
q( ) − Xs +Xm Xr‖( ) Ud − E′

d( )[ ]
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

In the formula: T′ � Xr+Xm
Rr

; Z′2 � R2 + (Xs +Xm‖Xr)2;
w′ � w − 1; The stator winding resistance and leakage reactance are
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represented byRs andXs, respectively;Xm representsmutual inductance
of stator and rotor; The rotor winding’s resistance and leakage reactance
are represented by numbers Rr and Xr (Kang et al., 2021); The above
parameters are all per-unit values under the base value of their own
capacity; E′

q represents the potential of the equivalent motor under the
q-axis sub-transient state; E′

d denotes the potential of the equivalent
motor under the d-axis sub-transient state; Where A + B + C � 1 is
satisfied; w represents the rotational speed of the equivalent motor; H is
the corresponding motor’s inertia time constant (Xu et al., 2009b).
Xm‖Xr means that Xm and Xr are connected in parallel to form
XmXr
Xm+Xr

. In addition to the above 12 parameters, in order to transform
themodel parameters into per-unit values, two parametersKpm andM1f

are defined as follows Equations 4, 5:

Kpm � P0
′

P0
(4)

M1f � P0
′

SMB
( )/ U0

UB
( ) (5)

where: P0
′ is the corresponding motor’s starting active power; P0

stands for the load’s initial active power; Kpm represents the
distribution parameter of initial active power; SMB represents the
rated capacity of induction motor (Guo et al., 2022). The rated
starting load rate coefficient is denoted by M1f.

To sum up, the parameters to be identified are Rs, Xs, Xm, Xr,
Rr, PZ, PP, QZ, QP, Kpm, M1f, H, A, and B. The use of this
integrated load model makes the load modeling more
comprehensive and accurate, and can better meet the needs of
practical applications. The identification and improvement of
model parameters can enhance the dependability and relevance
of load modeling, hence offering a crucial point of reference for
power system management and planning.

3 Parameter identification of
load model

3.1 Principle of parameter identification

After determining themodel structure, it is necessary to select an
efficient and reliable optimization algorithm for parameter

identification. At the core of parameter identification lies the
estimation of model parameters by fitting a mathematical model
of the system using input and output data. The principles of this
process are illustrated in Figure 2.

The system input in the above figure is voltage. In the actual
system, this curve specifically showcases the accurately measured
values of active and reactive power for the load. Similarly, the
simulation system’s output curve mirrors this scenario, providing
a simulated perspective on the active and reactive power of the load
in response to voltage disturbance.

Initially, it is imperative to establish both the model structure
and the objective function. Subsequently, the parameter
identification process unfolds through the utilization of input and
output data, employing an optimization method with the core
principle of minimizing the objective function value. The central
focus of this paper lies in defining the objective function, as
articulated below Equation 6:

J �

��������������������������������
1
n

∑n
i�1

Pi

∧ − Pm,i( )2

+∑n
i�1

Qi

∧ − Qm,i( )2⎛⎝ ⎞⎠√√
(6)

in the formula: Pm,i, Qm,i represent the active and reactive power

measured at time i, and n represents the number of samples. Pi

∧
and

Qi

∧
represent the active and reactive power computed at time i.

3.2 Dung beetle optimization algorithm
(DBO)

The DBO algorithm specifically comes from the four living
habits of DB, which are rolling, spawning, foraging and stealing.
The Dung Beetle Optimizer (DBO) algorithm is a nature-
inspired optimization technique based on the behavior of
dung beetles. These insects exhibit unique foraging strategies
that have been effectively translated into optimization
algorithms to solve complex problems. The algorithm adapts
the movement strategies of the dung beetles based on their
success in finding good solutions. This adaptive mechanism
enhances the efficiency of the search process. The principle

FIGURE 1
Equivalent structure of integrated load model.
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diagram of the dung beetle optimization algorithm is shown in
Figure 3, and the global optimal solution can be found after
multiple iterations.

3.2.1 Rolling DB
Rolling dung balls is a common behavior among dung beetles.

These insects have a tendency to roll dung balls that are larger than
their own size to their preferred location. During this rolling process,
they utilize celestial cues, such as the Sun and Moon, to maintain a
straight trajectory for the dung ball. The passage delineates the
navigational conduct of a dung beetle within a designated search
space. In order to replicate this behavioral phenomenon, adherence
to a predetermined trajectory is imperative. This emulation is
encapsulated within a formalized rolling mathematical model,
wherein the dynamic repositioning of both the dung beetle and
the concomitantly propelled ball undergo continuous updates
throughout the rolling process. The rolling mathematical model
is as follows Equation 7:

yi t + 1( ) � yi t( ) + βmyi t − 1( ) + cΔy,
Δy � yi t( ) − Cw

∣∣∣∣ ∣∣∣∣ (7)

the current iteration times are denoted by t in the formula, where
yi(t) is the location information of the i-th DB at the t-th iteration;
According to the references (Pan and Bu, 2023), 0<m≤ 1/5 is a
constant value that represents the defect coefficient. c is a constant
value between Zero and One, and β is a coefficient with a value
of −1 or 1. The worst place in the world is represented by Cw, the
change of Δymeans the change of light intensity, and the higher the
value of Δy, the weaker the light source. The values of m and c are
critical; m and c are set to 0.1 and 0.3, respectively. Natural causes
that can lead DB to diverge from its original path are denoted by β.
Specifically, when β � −1, it means that the update position deviates
from the original dung beetle position, and when β � 1, it means that
the update position has no deviation. To imitate the complicated
environment in the actual world, β is set to 1 or -1 using a probability
strategy in this study. Δy can promote rolling ball DB by providing
the following two benefits:

1) In the optimization process, explore the entire problem space
as fully as feasible.

2) Improved search performance, with less reliance on the
local optimal.

When DB encounters obstacles that hinder its progress, it adopts
a unique strategy akin to a dance to overcome the impediment and
discover an alternative route. The essence of this method involves
utilizing the tangent function to calculate a fresh roll direction,
mirroring the intricate movements observed in a dance routine.
Once the appropriate direction is determined, DB seamlessly
continues its journey by rolling the associated ball backward.
This dynamic approach constitutes the core of DB’s ability to
adapt and navigate challenging environments. In essence, the
process encompasses the update of DB’s position and establishes
a comprehensive definition of its distinctive dance-like behavior
Equation 8:

FIGURE 2
Schematic diagram of parameter identification system.

FIGURE 3
DBO algorithm schematic diagram.
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yi t + 1( ) � yi t( ) + tan θ( ) yi t( ) − yi t − 1( )∣∣∣∣ ∣∣∣∣ (8)

in the formula: yi(t) represents the position of the i-th
DB in the t-th iteration update, yi(t − 1) represents the

position of the i-th DB in the t-1-th iteration update,
similarly, yi(t + 1) represents the position of the i-th DB in
the t+1-th iteration update. θ refers to the offset angle
during the position update process, and its value range is

FIGURE 4
GDBO Flowchart.
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0–180°, if θ equals 0, π/2, or π, the location of the DB is
not updated.

3.2.2 Spawning DB
Dung beetles show a fascinating behavior in nature. They

carefully roll the dung balls, roll the cow dung into a dung ball
with a diameter of about 2.5 cm, and quickly push it underground
and bury it as the next-generation of food. This process is crucial for
dung beetles (DB), as they carefully select a suitable spawning site to
establish a safe habitat for the upcoming generation. The previous
discussion underscored the importance of this behavior and
motivated the introduction of boundary selection methods. This
method is designed to simulate the specific area of female
oviposition. The focus is on mimicking the natural conditions
that ensure the safety and wellbeing of beetle offspring. The
upper and lower limits of the selected region can be expressed by
Formula 9:

Lbc � max 1 − 1 − t

Tmax
( )( ][ C*, Lb{ }

Ubc � min 1 + 1 − t

Tmax
( )( ][ C*, Ub{ } (9)

where: Ubc and Lbc are used to characterize the upper and lower
boundaries of the dung beetle’s renewal spawning area respectively,
while Ub and Lb represent the upper and lower limits of the
optimization problem. Tmax represents the upper bound
constraint on the number of iterations; C* means the current
local position optimal solution.

In the DBO algorithm, each female DB only lays a single egg per
iteration to maintain ecological balance. This process prompts
dynamic alterations in the boundary range of the spawning area,
predominantly governed by adjustments to the R value. The
determination of this R value may change at different stages of
the iteration, thus affecting the size and shape of the spawning area.
Therefore, in the whole iteration process, not only the number of
eggs is regulated, but also the position of the hatching ball remains
dynamic, evolving with the continuous adjustment of the boundary
range. The specific position iteration formula can be articulated as
follows Equation 10:

Yi t + 1( ) � C* + ∑2
m�1

dm Yi t( ) − Lbc( ) (10)

in the formula, Bi(t) denotes the update position of the i-th DB
breeding ball during the t-th iteration. dm (m � 1, 2) are
independent random vectors, Only the spawning area—that is, a
specific area—is permitted to have the breeding ball.

3.2.3 Foraging DB
The little DB that emerges from the breeding ball wants to feed,

so we build the best foraging area and direct it there. The small DB’s
position is updated in this way:

Lbd � max 1 − R( )Cb, Lb( )
Ubd � min 1 + R( )Cb, Ub( ) (11)

the ideal foraging area’s boundary division is shown above. Cb

denotes the best position in the foraging area of all range classes;

as the definition of the above formula, Lbd and Ubd are defined as
the upper and lower limits of the optimal foraging area, respectively,
along with other parameters stated in Formula 9. As a result, the
little database’s location is changed as Formula 12:

yi t + 1( ) � yi t( ) + ∑2
m�1

km × yi t( ) − Lbd( ) (12)

in the formula, the variables yi(t) represent the location information
of the i-th tiny DB at the t-th iteration, km (m � 1, 2) represent the
random number that follows the normal distribution.

3.2.4 Stealing DB
There are also some DBs who steal turds from other DBs.

Furthermore, Eq. 11 shows that Cd is the best position for the dung
ball (food), and it stands to reason that the best area for competition for
food is in the vicinity of Cd. The following iterative formula is used to
describe the position update of the thief dung beetle Equation 13:

yi t + 1( ) � Cb + a · l · yi t( ) − C*
∣∣∣∣ ∣∣∣∣ + yi t( ) − Cb

∣∣∣∣ ∣∣∣∣( ) (13)

in the formula, yi(t) is the position of the i-th thief at the t-th
iteration; The value of a is constant. l is a stochastic vector generated
from a normal distribution, with its dimensionality denoted by
1 × D.

3.3 The good point set

Nowadays, the initialization method of most swarm intelligence
optimization algorithms is a random initialization form. The
randomly generated population is unevenly distributed in the
whole solution space. It is very gathered in some areas and
scattered in others, resulting in the algorithm’s utilization of the
entire search space not being high and the population diversity not
being strong. Aiming at the problem of random initialization, many
scholars have proposed and used good point-set initialization. The
theory of the good point set originated from Hua Luogeng, a famous

FIGURE 5
Fitting diagram of active power identification.
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Chinese mathematician. The randomness of random initialization is
too high, and there may be a phenomenon where the first-generation
solution is very far from the optimal value. If the value of the first-
generation solution is very close to the optimal value, it can not only
improve the convergence speed but also the optimization accuracy
under the premise of a certain number of iterations.

Using the good point set for initializing the population in
optimization algorithms ensures uniform coverage of the search space,
which improves the balance between exploration and exploitation,
accelerates convergence, reduces bias, and enhances performance,
particularly in high-dimensional spaces. This leads to more effective
and efficient optimization, making it a preferred choice for initializing
candidate solutions. To ensure population diversity and ergodicity, which
can ultimately enhance the algorithm’s search performance, it is crucial to
maintain a uniform distribution within the initial population. Achieving

population diversity in DBO can be challenging due to the random
selection of individuals during initialization.

A uniform and effective method for point selection is employed
to initialize the population, aiming to address the aforementioned
challenges, enhance population diversity, and optimize the
utilization of the current solution. Leveraging the uniform
distribution attribute of an excellent point set bolsters the
flexibility and comprehensiveness of the population initialization
process, enabling more thorough exploration of the solution space.

Currently, numerous clever algorithms (Cheng and Ding, 2020;
Yan et al., 2023) have implemented the excellent point set
initialization method with successful outcomes. The population’s
initialization can be dispersed over the solution space by employing
the good point set, which increases population variety and helps the
algorithm find the globally optimal solution more effectively. The
following is the principle: Let us assume that the person in the DBO
algorithm is a point in n-dimensional Euclidean space, or,
alternatively, that it is a position in the unit cube. When the
number of individuals in a population exceeds the volume of the
unit cube, it will cause individual repetition. The following actions
can be performed to lower the repetition rate Equation 14:

Pm n( ) � g m( )
1 · n{ },/, g m( )

R · n{ }( ), 1≤ n≤m{ } (14)

in the formula: Pm(n) is a set of good points, and the deviation
ϕ(m) � C(g, ε)m−1+ε, where φ(m) � C(g, ε)m−1+ε is a constant
only related to g and ε; g is a good point; Taking the fractional
part is represented by g(n)

R · n{ }, n represents the number of points,

gk � 2 cos(2nπp ), 1≤ n≤R{ }; The smallest prime number satisfying

(p −D/2)≥D is p. In the search space, map the set of good spots
(Equation 15).

yi j( ) � Ubj − Lbj( ) · g i( )
j · n{ } + Lbj (15)

in the formula: The top and lower boundaries of the j-th dimension
are denoted by Ubj and Lbj.

FIGURE 6
Reactive power identification fitting diagram.

FIGURE 7
Comparison between active power DBO and GDBO.

FIGURE 8
Comparison between reactive power DBO and GDBO.
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3.4 Algorithm flow

In this paper, the DBO algorithm enhanced by initializing the
population with a good point set before updating the iterative
position. The specific process is shown in Figure 4, which can be
divided into seven steps:

Step 1: During the initial phase of the algorithm, a set of initial
parameters is defined, serving as the starting point for
subsequent optimization processes.

Step 2: Utilizing Formula 15, the algorithm initializes the
population based on a pre-defined optimal point set,
providing a well-founded starting configuration for the
optimization process.

Step 3: By executing the objective function, the algorithm calculates
fitness values for each dung beetle in the population,
reflecting their performance at their current positions.

Step 4: Positions of all dung beetles are adjusted using a specified
strategy to seek more optimal solutions. This step propels
the population towards favorable directions.

Step 5: Examine the positions of each dung beetle to ensure they
adhere to the defined problem boundaries, maintaining
the problem’s feasibility and validity.

Step 6: In each iteration, it is essential to review and update the
current optimal solution along with its corresponding
fitness value to prevent the algorithm from disregarding
potential global optima.

Step 7: Iterate through Steps 3 to 6 iteratively until the pre-defined
termination criterion is satisfied. Upon termination, report
the attained global optimal solution and its corresponding
fitness value, concluding the entire optimization process.

4 Case analysis

4.1 Algorithm initialization and parameter
setting

The optimization algorithm’s parameter selection significantly
impacts the optimization outcomes; hence, it is essential to
meticulously choose optimal parameter values for simulation.
Within each dung beetle colony, four distinct agents are present
namely, the rolling ball DB, the spawning DB, the foraging DB, and
the stealing DB. In the GDBO algorithm, the position vector of the i-th
DB is represented by xi(t)=(yi1(t) , . . . , yiD(t)) at the t-th iteration. In this
paper, the size of DB group is N = 70 (the population size of other
algorithms is 70). The numbers of rolling, spawning, foraging and thief
DB were 14, 14, 16, and 26, respectively. The prescribed maximum
iteration count is established at 500, where the primary scaling factor,
secondary scaling factor, and crossover probability of IDE are set to 0.5,
0.3, and 0.8. Both learning factors of PSO are set to 0.5.

4.2 Measured data of a power plant and
example simulation

To assess the efficacy of the DBO algorithm in the context of
parameter identification for load modeling, this paper uses IDE,T

A
B
LE

1
P
ar
am

e
te
r
id
e
n
ti
fi
ca

ti
o
n
re
su

lt
s
o
f
m
e
as
u
re
d
d
at
a.

St
ra
te
g
y

O
p
ti
m
al

fi
tn
e
ss

It
e
ra
ti
o
n

ti
m
e
/s

R
s

X
s

X
m

R
r

X
r

H
A

B
k p

z
k p

p
k q

z
k q

p
k p

m
M

1f

ID
E

0.
35
8

44
0.
24
3

0.
12
4

0.
12
3

2.
67
7

0.
08

0.
11
3

1.
19
7

0.
53
3

0.
14
7

0.
29
8

0.
70
6

0.
49
4

3.
99
3

0.
19
4

0.
43
9

P
SO

0.
35
2

40
3.
09
8

0.
35

0.
10
2

2.
60
4

0.
01

0.
07

0.
60

1
0

0.
1

1
0

0.
07
1

0.
1

0.
75
2

G
W
O

0.
35
3

43
5.
56

0.
35

0.
19
5

2.
46
1

0.
07
9

0.
18

1.
10
1

0.
23
5

0.
26
6

0.
15
0

0.
93
2

0.
32
2

3.
95

0.
54
1

0.
10
1

D
B
O

0.
36

41
9.
02

0.
26
8

0.
17
8

2.
22
1

0.
08

0.
14
3

1.
19
2

0.
93
5

0.
76
1

0.
29
4

0.
71
6

0.
49
8

3.
99
7

0.
57
1

0.
71
1

G
D
B
O

0.
36
3

40
4.
75

0.
27
6

0.
19
6

2.
18
7

0.
07
5

0.
12
9

1.
45
1

1
0.
95
2

0.
29
8

0.
72
1

0.
87
2

3.
47
2

0.
51
7

0.
73
2

Frontiers in Energy Research frontiersin.org08

Xing et al. 10.3389/fenrg.2024.1415796

173

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1415796


PSO, and GWO to identify the PMU measured data recorded by a
power plant in Ruilijiang, Yunnan Province, at 10:14 on
20 November 2019, sampling once every 10 ms, for a total of
6,000 times. Figures 5, 6 illustrate the correlation between active
and reactive power for both empirical and simulated datasets,
respectively. The unit of each parameter is p.u.

According to the above Figures 5, 6, it is not difficult to see that
the DBO algorithm used in this paper is more accurate for the fitting
value of parameter identification results and basically achieves
coincidence. However, the traditional Dung Beetle Optimizer
algorithm has a wide range for the first iteration of the initial
population, resulting in a higher fitting value in the front, and
then tends to be stable. Hence, the algorithm denominated as the
Dung Beetle Optimizer, founded upon the well-defined point set
articulated in this study, aptly addresses the aforementioned issue.
The comparative outcomes pertaining to active and reactive power
are visually presented in Figures 7, 8. The parameter values for
identification derived through the application of the Dung Beetle
Optimizer algorithm are delineated in Table 1.

Figures 7, 8 show that the DBO algorithm based on the good
point set has a faster initial iteration speed and can fit to the real
value faster than the traditional DBO. The identification instances
given above demonstrate that the DBO based on good point set has
superior accuracy and speed than the other four algorithms in
parameter identification of load modeling through a large
number of practices.

4.3 Fitting effect evaluation

In this research, the assessment of fitting performance between
observed data and simulated data relies on the utilization of specific
metrics, namely the Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE). These metrics serve as quantitative measures to
evaluate the accuracy of the simulated data in comparison to the
actual observations. The corresponding formulations for MAE and
RMSE are precisely defined by Eqs 16, 17, respectively. By employing
these metrics and their associated mathematical expressions, this
study establishes a rigorous framework for quantifying the level of
agreement or discrepancy between the simulated data and the
observed data, thereby enhancing the precision and reliability of
the evaluation process.

MAE �
∑m
i�1

yi − xi

∣∣∣∣ ∣∣∣∣
m

(16)

RMSD �

����������∑m
i�1

yi − xi( )2
m

√√
(17)

within themathematical expression, xi denotes the i-th actual value of
either active or reactive power, yi represents the i-th simulated value
of active or reactive power, and m corresponds to the total number
of data sets.

Compared with the traditional method, the improvement rates
of the Mean Absolute Error (MAE) and the Root Mean Square Error
(RMSE) of the method used in this paper are represented by IMAE%
and IRMSD% respectively.

IMAE% � MAERA −MAEGDBO

MAERA
*100% (18)

IRMSE% � RMSERA − RMSEGDBO

RMSERA
*100% (19)

MAERA represents the absolute average error of the traditional
algorithm, and MAEGDBO represents the absolute average error of
the GDBO algorithm proposed in this paper. RMSERA represents the
root mean square error of the traditional algorithm, and RMSEGDBO

represents the rootmean square error of theGDBO algorithmproposed
in this paper.

The assessment outcomes for the fitting efficacy of measured
data using the GDBO algorithm, which relies on the proposed
favorable point set in this study, along with comparisons to
alternative algorithms, are presented in Table 2.

Through a comparative analysis with alternative algorithms,
upon careful examination, in the active power fitting, the GDBO
algorithm used in this paper is compared with the IDE, PSO, GWO
and traditional DBO algorithm in reducing the absolute average
error, which is increased by 82.14%, 82.81%, 82.03%, and 51.75%
respectively. In terms of reducing the root mean square error, the
improvement rate of the GDBO algorithm also reached 73.64%,
71.64%, 75.02%, and 52.19%, respectively. At the same time, as
shown in Table 2, the GDBO algorithm demonstrates remarkable
performance when fitting reactive power applied to measured data
of the model. Specifically, it exhibits the most minimal mean
absolute error and root mean square error among the tested
algorithms. This compelling observation underscores the superior
efficacy of the proposed algorithm in the realm of parameter
identification. The algorithm’s ability to minimize errors in fitting
the measured data points to the model highlights its robustness and
accuracy, signifying its potential as an effective tool in practical
applications requiring precise parameter estimation. Moreover, the

TABLE 2 Evaluation of model fitting effect.

Algorithm
Active power Reactive power

MAE IMAE% RMSD IRMSE% MAE IMAE% RMSD IRMSE%

IDE 0.003870 82.14% 0.084758 73.64% 0.007184 93.05% 0.027833604 96.92%

PSO 0.004020 82.81% 0.078759 71.64% 0.006203 91.96% 0.020259353 95.77%

GWO 0.003846 82.03% 0.089420 75.02% 0.007996 93.76% 0.03254387 97.37%

DBO 0.001432 51.75% 0.046723 52.19% 0.002183 77.14% 0.009065738 90.56%

GDBO 0.000691 — 0.022338 — 0.000499 — 0.000856037 —
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algorithm demonstrates increased robustness in the face of
fluctuations in both active and reactive power.

5 Conclusion

DBO is utilized in this paper for load modeling and parameter
identification. The results of the identification of load modeling reveal
that DBO has a considerable improvement in accuracy and speed when
compared to the other three methods. Consequently, DBO can be
effectively utilized for parameter identification in load modeling, which
can improve load modeling accuracy. Furthermore, the DBO method
based on the good point set outperforms the classic DBO algorithm in
terms of accuracy and speed, and gives a higher level of solution for
parameter identification of load modeling.
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Nomenclature

PZ The static active power under the load constant impedance model

PI The static active power under the load constant current mode

PP The static active power under the load constant power model

Ps The static zip part’s active powers

Qs The static zip part’s reactive powers

QZ The static reactive power under the load constant impedance model

QI The static reactive power under the load constant current mode

QP The static reactive power under the load constant power model

Rs The stator winding resistance

Xs The stator winding leakage reactance

Rr The rotor winding resistance reactance

Xr The rotor winding leakage reactance

Xm Mutual inductance of stator and rotor

E′
q

The potential of the equivalent motor under the q-axis sub-transient state

E′
d

The potential of the equivalent motor under the d-axis sub-transient state

P0
′ The corresponding motor’s starting active power

P0 The load’s initial active power

Kpm The distribution parameter of initial active power

SMB The rated capacity of induction motor

Pm,i The active power measured at time i, and n represents the number of
samples

Qm,i The reactive power measured at time i, and n represents the number of
samples

Pi

∧ The active power computed at time i

Qi

∧ The reactive power computed at time i

m A constant value that represents the defect coefficient

c A constant value between Zero and One

β A coefficient with a value of −1 or 1

Cw The worst place

Δy The change of light intensity

yi(t) The position of the i-th DB in the t-th iteration update

yi(t − 1) The position of the i-th DB in the t-1-th iteration update

yi(t + 1) The position of the i-th DB in the t+1-th iteration update

θ The offset angle during the position update process

Ubc The upper boundaries of the dung beetle’s renewal spawning area

Lbc The lower boundaries of the dung beetle’s renewal spawning area

Tmax The upper bound constraint on the number of iterations

C* The current local position optimal solution

Bi(t) The update position of the i-th DB breeding ball during the t-th iteration

Cb The best position in the foraging area of all range classes

Ubd The upper limits of the optimal foraging area

Lbd The lower limits of the optimal foraging area

km The random number that follows the normal distribution

Cd The best position for the dung ball

Pm(n) A set of good points
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Active power optimisation
scheduling method for
large-scale urban distribution
networks with distributed
photovoltaics considering the
regulating capacity of the main
network

Cheng Gong1, Wei Wang1, Wenhan Zhang2*, Nan Dong1,
Xuquan Liu2, Yechun Dong2 and Dongying Zhang2

1Electric Power Research Institute, State Grid Beijing Electric Power Company, Beijing, China, 2School of
Electrical and Electronic Engineering, North China Electric Power University, Beijing, China

Introduction: When a distributed photovoltaic (PV) system has access to a large
urban distribution network, the active balance is primarily borne by the main
network gas unit; when the scale of the distributed PV system is very large, the
main network can only provide limited regulation capacity, and the distribution
network must determine the active optimal scheduling strategy.

Methods: This work proposes an active optimization scheduling model for the
distribution network by considering the regulation capacity of the main network.
In terms of the optimisation objectives, the maximum consumption of the
distributed PVs and minimum power fluctuation at the demarcation point of
the main distribution network are proposed as the main objectives, while the
minimum total exchanged power in a cycle at the main distribution demarcation
point and minimum distribution network loss are considered as the secondary
objectives. In terms of constraints, it is proposed that the main network’s
regulation capacity be characterized by the main network’s gas-fired unit
creep constraints. A fast solution method for active optimization of the
distribution network is designed herein to formulate the priority control order
of the adjustable units according to the dispatch economic performances of
various types of adjustable resources in the distribution network; this reduces the
number of variables involved in the optimization at each step and improves the
optimized solution speed.

Results: Finally, Simulation verification by IEEE 33-node distribution network
arithmetic example based on Matlab simulation platform.

Discussion: Simulation results show the effectiveness of the method in achieving
maximum PV consumption and reflecting the limited regulation capacity of the
main grid.

KEYWORDS

large urban distribution network, active power optimal scheduling, distributed
photovoltaic, photovoltaic consumption, main distribution cooperation
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1 Introduction

Large urban distribution networks often experience large loads,
and the distribution network has a few conventional power sources
with small capacities that are mostly supplied by the main grid (Lu
et al., 2015). The power in the main urban grid is partly derived from
the external grid and partly from the gas-fired units in the main grid.
The power supplied by the external grid cannot fluctuate
significantly according to the power supply agreement; therefore,
the gas units in the main grid assume the function of active balance
regulation.

With the rapid development of new energy generation methods,
distributed photovoltaic (PV) systems have gained a high proportion of
access to urban distribution networks. When the PV output is high and
load is low, the gas-fired units in the main grid must reduce their
outputs or even shut down; conversely, when the PV output is low and
load is high, the gas-fired units in the main grid must increase their
outputs or even startup the standby units. The main grid units are
generally operated within the economic output range, and the
maximum regulation capacity is ensured to not exceed the safe
output range; this means that the units require a lot of time to
startup, and frequent startups and shutdowns could affect the
lifetimes of the units (Hu et al., 2008). Therefore, the startup mode
of the main network units cannot be changed over a wide range,
resulting in limited regulation capacity of the main network. When the
PV supply fluctuates widely in the distribution network, the main
network can only provide limited regulation capacity. Therefore, urban
distribution networks must perform active balancing and carry out
optimal dispatch within the main grid regulation capacity.

The optimal scheduling of large urban distribution networks
containing distributed PV sources is studied by considering the
main grid regulation capacity as follows:

(1) How to take into account the regulating capacity of the main
network in terms of the distribution network.

(2) What are the dispatchable resources in a large urban
distribution network, and what optimization objectives
must be considered.

(3) What constraints should be imposed on the optimization
model, and how to design a solution method applicable to real
scheduling operations.

Problem (1) entails cooperative active scheduling of the main
distribution. Owing to the randomness and volatility of distributed
PV output, there is easy lack of coordination between the
distribution and main grids in terms of the power generation and
consumption plans, making it difficult to fully consume the
distributed energy. Therefore, optimal scheduling of the main
and distribution networks is necessary to achieve main power
balance and other objectives while maximally consuming the
distributed PV power. The existing cooperative optimal
scheduling of the main and distribution networks is divided into
subproblems concerning optimization of the main and distribution
networks, which are then solved iteratively (Zhang et al., 2017; Deng,
2019; Wu et al., 2019; Zhang and Wang, 2019). The optimization
objective is to optimize the overall economy of the main distribution
network while ensuring that the active power transmitted at its
boundary meets the consistency constraints. In distribution network

optimization, the main network is considered to be an infinite power
source, and only the active power exchanged by the main and
distribution networks is required to be within the capacity of the
transmission channel without considering the regulation capacity of
the main network units and their ability to support a wide range of
changes in the exchanged power.

Jiang et al. (2019) proposed a collaborative optimal operation
method based on multiparameter planning for the main and
distribution networks, where the distribution network needs to be
optimized under the conditions of the power planning curve
transmitted by the main network. This is to solidify the main
network power supply capacity as the planning curve, which does
not reflect the power supply margin of the main network, thereby
producing conservative scheduling results. Therefore, to fully exploit
the regulation capacity of the main network, it should be reflected as
a limited range of power variations. Moreover, the amount of power
exchange in the main network synergy should be minimized.

Problem (2) is the optimization objective of the distribution
network. When a high proportion of the distributed PV supply is
connected to the distribution network, it will impact the voltage
security of the distribution network, which causes not only voltage
overruns at the grid nodes but also branch current overloads, voltage
shifts, and high harmonics (Ge, 2023). Among these, voltage
overrun is one of the most important reasons affecting the ability
to consume PV power (Zhang, 2021).

Most of the existing optimization objectives of distribution
networks containing distributed PVs are strategies for ensuring their
voltage stabilities. Li et al. (2018) investigated the impacts of various
voltage regulation measures on the PV admittance capacities of the
distribution network and used the trial method to solve for the
maximum PV admittance capacity before and after adding the
voltage regulation measures without voltage regulation; some authors
analyzed the impact of the access power at each node on the voltages at
the other nodes based on the voltage sensitivity matrix (Xu et al., 2016;
Cai et al., 2017) along with the PV admittance capacity of the
distribution network based on the analytical method. Huang et al.
(2020) used the intelligent optimization method and proposed a
distributed PV grid-connected limit capacity calculation method
based on the adaptive weighted particle swarm optimization
algorithm. Ding et al. (2017) proposed a method to avoid network
overvoltage by controlling the PV inverters and formulated a two-stage
robust centralized optimal scheduling model by considering the PV
output uncertainties.

The optimal distribution network operation economics has also
been considered based on the voltage stability of the distribution
network. Lin et al. (2017) developed a multiregion dynamic
economic dispatch model to minimize the total multiregion
generation cost. Pan (2015) established an optimal scheduling model
for the units by reflecting the demands for energy savings and emission
reductions in the power grid. In terms of the demand-side responses,
Chen et al. (2024) developed an operation scheduling optimization
methodology for electric ready-mixed concrete vehicles (ERVs). These
studies do not analyze the roles of adjustable devices, such as energy
storage systems (ESSs), gas units, and controllable loads (CLs), in
achieving the maximum consumption of distributed PV power; at
the same time, they do not take into account the impact of the regulating
capacity of the main grid on PV consumption in the
distribution network.
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Problem (3) is concerned with the distribution network constraints
and solution methods. Lin et al. (2017) considered the generator set
creep constraints as well as the contact line transmission power
constraints; Pan (2015) considered the unit start–stop and creep rate
constraints. These studies only focus on the units within the distribution
network and do not consider the main network units or analyze the
impacts of the creep rate constraints of the units on distributed PV
consumption. Therefore, the creep rate constraints of the gas-fired units
in the main grid should be considered, which are reflected in the fact
that the exchanged power between the main and distribution networks
cannot fluctuate significantly during adjacent time periods.

In terms of optimal solutions, there are various algorithms in
literature to solve the scheduling model (Dvorkin et al., 2015;
Pandžić et al., 2016; Li et al., 2021; Wang et al., 2023). Ruan
et al. (2020) proposed a distributed voltage control model with a
novel network partitioning approach. Li et al. (2016) proposed a
coordinated transmission and distribution AC optimal flow model
based on a heterogeneous decomposition algorithm; Li (2013)
proposed an application-based coordinated optimal flow for
transmission and distribution network decomposition. The above
algorithms require large numbers of control quantities to participate
in the iterative solution at the same time, and the solution space of
the problem is too large, which may slow or fail to solve the
computation. Therefore, to meet the real-time scheduling
requirements, it is necessary to develop a fast and reliable
optimization method that minimizes the amount of control
involved in the solution each time.

The main contributions of this work are as follows:

1. In the optimization objective of the distribution network, the
regulating capacity based on the gas units in the main network
is taken into account to minimize the fluctuations in the
interaction power of the main distribution network during a
dispatch cycle while ensuring that the total exchanged power
is minimal.

2. A distributed PV maximum consumption model is proposed
for the distribution network by taking into account multiple
adjustable resources such as reactive power compensation
equipment, ESSs, and CLs, and the impact of the limited
regulation capacity of the main network on maximum PV
consumption is analyzed.

3. The limitations imposed by the creep rates of the gas units in
the main network are considered in the constraints, and a fast
solution method is designed for active optimization of the
distribution network; here, the priority control order of the
adjustable units is formulated on the basis of economy, and a
stepwise solution process is designed to optimize the
distribution network, which reduces the number of variables
participating in the optimization at each step while improving
the speed of the optimization solution.

2 Model assumptions

2.1 Basic assumptions

1. It is assumed that the transmission line parameters of the
distribution network remain constant during operation.

2. At each moment in time, the load demand at each node is
either known or predictable.

2.2 Assumptions for the regulatory capacity
of the main network

1. We assume that the power supplied by the main grid to the
distribution network is determined only by the outputs of the
gas units in the main grid, and the influences of the power
injected into the main grid from the external network and
power delivered to other distribution networks are not taken
into consideration.

2. The maximum and minimum outputs of the gas units are
known and remain unchanged during a dispatch cycle.

3. The rate of change (creep rate) of the output of a gas unit is
known and remains constant during a dispatch cycle while not
exceeding the specified range.

2.3 Assumptions for the adjustable units of
the distribution network

1. We assume that the distributed PV power generation can be
predicted accurately and that the predicted value is certain
during a dispatch cycle based on ignoring the effects of
volatility due to changes in the solar radiation intensity and
temperature factors as well as disregarding the effects of
sudden weather changes (e.g., cloudy and rainy) on the
PV outputs.

2. The PV inverter can be controlled to reduce the PV output and
may also be withdrawn from operation if necessary so that the
minimum PV output can be reduced to 0.

3. We assume that the customer loads respond positively and
instantly to the load regulation commands while ignoring the
influences of factors such as customer behaviors and
satisfaction.

4. It is assumed that the energy storage devices can be charged
and discharged many times in a single dispatch cycle while
ignoring the limitations on the rates of change of charging and
discharging.

5. The impacts of short-circuits, disconnections, equipment
failure, and other unexpected accidents on the power grid
are not considered.

3 Optimized scheduling model for the
urban distribution network considering
the regulation capacity of the
main network

3.1 Objective function

In this work, the objective function was established with the
optimization objectives of maximum consumption of the distributed
PV power and minimum active fluctuations at the demarcation
point of the main distribution network; furthermore, the objectives
accounted for the minimum distribution network loss as well as
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minimum total exchanged power of the main distribution network
during a scheduling cycle, are shown in Equation 1–Equation 5:

F � min λ1f1 + λ2f2 + λ3f3 + λ4f4( ), (1)

where

f1 � ∑n
i�1
∑T
t�1

Pi
PV,0 t( ) − Pi

PV t( )
Pi
PV,0 t( ) , (2)

f2 �

���������������
1
T
∑T
t�0

Pl t( ) − Pl( )2,
√√

(3)

f3 � ∑n
i�1
∑n
j�1
I2ijrij, (4)

f4 � ∑T
t�1
Pl t( ). (5)

In the above formulas, f1 is the objective function of PV
consumption capacity; Pi

PV(t) and Pi
PV,0(t) are the actual and

planned active outputs of the i-th PV at moment t, respectively;
f2 is the objective function for the fluctuation of power exchanged
with the main distribution network that is expressed by the standard

deviation, in which Pl is the average exchange power in a scheduling

cycle given by Pl � 1
T∑T
t�0
Pl(t); f3 is the distribution network loss; Iij

is the current in branch ij; rij is the equivalent resistance of branch ij;

f4 is the total power exchanged during interaction with the main
distribution network during a scheduling cycle, in which Pl(t) is the
active power exchanged at the division point of the main distribution
network at moment t and its expression is shown in Equation 6

Pl t( ) � ∑n
i�1

Pi
load t( ) − Pi

tl,out t( ) + Pi
tl,in t( )

−Pi
ESS,d t( ) + Pi

ESS,c t( ) − Pi
PV t( )( ) − Plost t( ). (6)

Here,Pi
load(t) is the load of node i in the distribution network at time

t; Pi
tl,out(t) and Pi

tl,in(t) are the controllable load transfer out of and
into node i in the distribution network at time t; Pi

ESS,c(t) and
Pi
ESS,d(t) are the respective charging and discharging powers of the

ESS i in the distribution network at time t; Plost(t) is the total loss of
the distribution network at time t.

3.2 Main network regulation capacity
constraints

3.2.1 Range of power changes at the main
distribution cutoff point

Under the condition of transmitting a certain active power at the
demarcation point of the main distribution network, there are
corresponding active and reactive power regulation ranges that
indicate the power supply capacity of the main network to the
distribution network. The expressions are shown in Equation 7 and
Equation 8, respectively.

Pl,min ≤Pl t( )≤Pl,max . (7)
Ql,min ≤Ql t( )≤Ql,max . (8)

Here, Ql,min and Ql,max are the extreme values of the reactive power
range transmitted by the main distribution network and are

determined according to the active power and power factor
values of the gas units in the main network. Pl,min and Pl,max are
the extreme values of the active power range transmitted by the main
distribution network, which are determined by the power supply
capacities of the gas units in the main network and given as Equation
9, Equation 10:

Pl,min � ∑N
i�1
Pi
GT,min , (9)

Pl,max � ∑N
i�1
Pi
GT,max , (10)

where N is the number of nodes in the main network; Pi
GT,min and

Pi
GT,max are the respective upper and lower limits of the output of the

gas-fired unit i in the main network.

3.2.2 Creep power constraint at the main
distribution cutoff point

Since the regulation capacity of the main network is determined
by its gas units, the creep power constraints of the gas units in the
main network limit the power exchanged at the demarcation point
from varying over a wide range per unit of time. The creep power
constraint of the transmission power at the demarcation point of the
main distribution network is given as Equation 11

Pl t + 1( ) − Pl t( )| |≤Pramp,max, (11)

where Pramp,max are the maximum values of the creep powers of the
gas units in the main network.

3.3 Adjustable unit operation constraints of
the distribution network

The adjustable units in the distribution network include the
distributed PVs, CLs, ESSs, on-load tap changers (OLTCs), static var
compensators (SVCs), and capacitor banks (CBs) that have their
own constraints

3.3.1 Power regulation range of the distributed PV
The active regulation of PV power is embodied by self-

curtailment of the active outputs, which can be expressed with
the range of curtailment as Equation 12.

0≤Pi
PV t( )≤Pi

PV,0 t( ). (12)

3.3.2 Active range of the CL
The load that can be shifted at time t cannot exceed 20% of the
total load at that moment. As shown in Equation 13, Equation 14

0≤Ptl,in t( )≤ 0.2Pload t( ). (13)
0≤Ptl,out t( )≤ 0.2Pload t( ). (14)

The CLs dispatched in a cycle should therefore be managed such
that the total load transfers in and out are equal as shown in
Equation 15:

∑T
t�1
Ptl,out t( ) � ∑T

t�1
Ptl,in t( ). (15)
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3.3.3 Operational constraints of the OLTC
The main voltage constraint is given by Equation 16

Uj t( ) � Ui t( ).
k t( ) (16)

whereUi(t) andUj(t) are the primary and secondary voltages of the
OLTC at time t, respectively; k(t) indicates the ratio of these voltages
at time t.

The variable ratio constraints are given by Equation
17–Equation 19

k t( ) � kmin + Δk · r t( ). (17)
r t + 1( ) − r t( )| |≤Δrmax. (18)∑T

t�0 r t + 1( ) − r t( )| |≤ rmax. (19)

where kmin is the minimum ratio of primary to secondary voltages of
the OLTC,Δk is the step size of the ratio, r(t) is the stall of the OLTC
at time t, Δrmax is the maximum range of each stall change, and rmax

is the maximum number of stall adjustments in a scheduling cycle.

3.3.4 Capacity constraints of the ESS
The charge/discharge state constraint is given by Equation 20

χid t( ) + χic t( )≤ 1, (20)

where χid(t) and χic(t) are the charge and discharge states of the ESS i
at time t, respectively.

The upper and lower bound constraints of the charging and
discharging power are given by Equation 21, Equation 22

0≤Pi
ESS,d t( )≤ χid t( )Pi

ESS,dmax, (21)
0≤Pi

ESS,c t( )≤ χic t( )Pi
ESS,cmax, (22)

where Pi
ESS,dmax and Pi

ESS,cmax are the maximum charging and
discharging powers of the ESS i, respectively.

The energy storage capacity constraints are given by Equation
23, Equation 24

Ei
ESS t + 1( ) � Ei

ESS t( ) + ηcP
i
ESS,c t( ) − ηdP

i
ESS,d t( ), (23)

Ei
ESS, min t( )≤Ei

ESS t( )≤Ei
ESS,max t( ), (24)

where the energy storage capacity is dynamically balanced over a
dispatch cycle as shown in Equation 25.

Ei
ESS 0( ) � Ei

ESS T( ). (25)
Here, ηc and ηd are the charging and discharging efficiency coefficients
of the ESS, and Ei

ESS(t) is the amount of electricity stored in the ESS i at
time t; Ei

ESS,min(t) and Ei
ESS,max(t) are the minimum and maximum

values of the power in the ESS i at time t, respectively.

3.3.5 Operational constraint of the SVC
The SVC reactive output constraint is shown in Equation 26

Qi
svc,min ≤Q

i

svc
t( )≤Qi

svc,max , (26)

whereQi
svc(t) denotes the reactive power output of the static reactive

power compensator i at time t, and Qi
svc,min and Qi

svc,max denote the
respective upper and lower limits of the reactive power output of the
static reactive power compensator i.

3.3.6 Operational constraints of the CB
The CB reactive output constraint is shown in Equation 27

Qi
cb t( ) � Ni

cb t( )Qcb,step, (27)

where Qi
cb(t) is the reactive power output of the casting capacitor i

at time t, Ni
cb(t) is the number of groups of casting capacitors i

operating at time t, and Qcb,step is the reactive power capacity of a
group of casting capacitors.

The constraint on the change in the number of cast–cut groups
at adjacent time periods is given by Equation 28.

Ni
cb t + 1( ) −Ni

cb t( )≤ΔNcb,max . (28)

The throw–cut CB constraint is given by Equation 29.

0≤Ni
cb t( )≤Ncb,max . (29)

where ΔNcb,max is the maximum limit on the number of groups
of capacitors to be switched each time, andNcb,max is the maximum
number of capacitor groups that can be switched at each node.

3.4 Branch circuit tidal equation constraints

A second-order cone-relaxation-based branch current model
can be used for the distribution network as follows Equation
30–Equation 32: ∑

i∈u j( )
Pij − iijrij( ) − ∑

k∈] j( )
Pjk � Pj

∑
i∈u j( )

Qij − iijxij( ) − ∑
k∈] j( )

Qjk � Qj

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ . (30)

vi � vj + 2 rijPij + xijQij( ) − r2ij + x2
ij( )iij. (31)

2Pij

2Qij

iij − vi

�����������
�����������≤ iij + vi. (32)

In these equations, vi and iij denote the squares of the node
voltage and branch current, respectively; Pij denotes the active
power flowing in branch ij; u(j) denotes the set of branches
with j as the tail node; v(j) denotes the set of branches with j as
the head node. Pj, Qj denote the values of the active and reactive
powers injected into node j, respectively, and are given by Equation
33, Equation 34

Pj � PPV + PESS,d + Pl − PESS,c − Pload + Ptl,out − Ptl,in. (33)
Qj � QSVC + QCB + Ql − Qload. (34)

3.5 System operational constraints

The system voltage constraints and branch current constraints
are given in Equations 35–36.

Iij
∣∣∣∣ ∣∣∣∣≤ Iij

max, (35)
0.95UN ≤Ui ≤ 1.05UN, (36)

where UN is the rated voltage of the distribution network, and Iijmax

is the maximum value of the branch current.
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4 Solution for the active optimal
scheduling model

4.1 Design considerations

The active optimization dispatch method of the distribution
network with distributed PVs must achieve maximum consumption
of the distributed PV power under the limited regulation capacity of
the main network by integrating all kinds of adjustable equipment in
the distribution network; simultaneously, the auxiliary OLTCs and
reactive power compensation equipment must maintain the voltage
stability, minimize the network loss, and enhance the economy of
system operation. Under the premise of main power balance, the
limited regulating capacity of the main network mainly includes the
following considerations:

(1) The main network ideally supplies the least total power to the
distribution network during a dispatch cycle.

(2) There must be minimal fluctuations in the power supply from
the main network to the distribution network during a
dispatch cycle.

(3) The main network supplying power to the distribution
network must have minimal variation between adjacent
time periods.

The distribution grid system studied herein is powered only by
large-scale distributed PVs and needs to be configured with large-
capacity distributed ESSs combined with PVs; this can smooth the
fluctuations in PV power generation while improving the self-usage
rate of the distribution grid and economic benefits. Through the
ESSs, users can store excess PV power during low electricity demand
and use this stored power during peak electricity demand. This
reduces the dependence on grid power, avoids the phenomenon of
abandoned daylight, and improves the self-use rate of PV power.
The ESSs can also respond to grid demand in milliseconds, and this
rapid response capability allows them to quickly respond to
fluctuations in grid loads to provide immediate power support
while also providing the grid with certain degrees of frequency
regulation and voltage support capabilities.

Although direct optimization of CL regulation helps maintain
balance between power supply and demand in the grid, it must be
achieved through price signal or incentive mechanisms to guide the
user to adjust to electricity behaviors; hence, the user must be
involved in the regulation of user needs to achieve high
economic compensation, which increases the operating cost of
the power system compared to that of the ESS as the scheduling
cost is high. Concurrently, the response speed is significantly lower
than that of the ESS, and it may be difficult to meet the needs of a
power grid system that requires high real-time regulation
capabilities. In terms of the regulation order of adjustable units,
ESSs have higher priority than the CLs.

The present study is dedicated to maximizing the consumption
of distributed PV power to achieve the goals of sustainable
development while meeting the regulation capacity limitation of
the main grid. Optimal scheduling of the power system through
curtailing distributed PV not only wastes renewable energy but also
negatively affects sustainable development goals. Maximizing the
use of PV power could help reduce carbon emissions and

environmental pollution, mitigate climate changes, reduce energy
costs, reduce dependence on imported fossil fuels, and enhance
energy independence and security while helping accelerate the
construction of smart grids, establish a sound power market
mechanism, and improve the new power system.

In summary, when the interacting power at the demarcation
point of the main distribution network exceeds the range of its
regulation capacity, the outputs of the adjustable units in the
distribution network are regulated in the following order
of priority:

1. Increasing the charging and discharging powers of the ESSs;
2. Shifting the CLs;
3. Reducing the distributed PV power.

The principle of regulation is based on minimizing the active
fluctuations in the main distribution network with minimal
transfer of CLs and minimal PV curtailment.

4.2 Solution strategy for the active optimal
scheduling model

From the planned outputs of the distributed PVs and predicted
outputs of the loads in a complete dispatch cycle (24 h) without
consideration of other adjustable devices in the distribution
network, the initial interactive power at the demarcation point of
the main distribution network is calculated using the forward
backgeneration trend to obtain the voltage overruns at each
node, and the specifics of the forward power flow are shown
in Figure 1.

The power of the root-node-connected branch circuit obtained
from this trend calculation is the power exchanged at the
demarcation point of the main distribution network, and the
subsequent optimization is based on this power. The flowchart
showing specific regulation of the active optimization scheduling
method of the distribution network with distributed PVs
considering the regulation capacity of the main network is shown
in Figure 2.

5 Example analysis

In this section, we demonstrate improvement of the basic
IEEE 33 node power network by adding some active and reactive
power regulation devices as well as conducting arithmetic
simulations on this test system to verify the effects of the
active optimal scheduling method of the distribution network
with distributed PVs limited by the main grid regulation capacity.
The optimization algorithm implementation is achieved using
MATLAB software and the YALMIP toolbox along with the
Cplex12.10 solver.

5.1 Calculation setup

The system diagram of the 33-node distribution network
modified based on the setup scheme in this work is presented in
Figure 3. The base capacity of the system is 1MVA, base voltage level
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is 12.66 kV, total active load capacity of the system is 3,715 kW, total
reactive load capacity is 2,300 kVar, and voltage per-unit value at the
balancing node (i.e., node 33) is 1 p.u. As shown in Figure 3, reactive
power compensation devices such as the OLTCs, PV generator,
ESSs, and CBs are added on the basis of the network structure of the
basic IEEE 33 node distribution system, and the specific
configurations are shown in Table 1.

Under actual conditions, the area encompassed by the
distribution network system is often not very large; however, to
facilitate analysis of the results, the system access between the PVs as
well as between the power characteristics of the loads are set to be
only slightly different so as to be considered the same output
characteristics, based on the same predicted power curve that
would be analyzed. The typical load demand and PV active
power curves during summer are normalized to obtain the all-
day predicted power curves for the total system load and total
distributed PV output, as shown in Figure 4.

5.2 Analysis of simulation results

To reflect the influence of the main grid regulation capacity on
the output of each equipment in the distribution network and
maximum consumption of PV power, the weighting coefficients
in Equation 1 are set to λ1 = 0.4, λ2 = 0.4, λ3 = 0.1, and λ4 = 0.1. In this
work, the following three scenarios are considered during the
simulations to validate the active optimization scheduling method
of the distribution network with distributed PVs that takes into
consideration the regulation capacity of the main grid.

Scenario 1: No controls are considered.
Scenario 2: The controls used include PV curtailment, ESSs,

SVCs, and CBs.
Scenario 3: Based on Scenario 2, optimization calculations are

carried out with the objective of minimizing the active fluctuations
between the main distribution network by considering the creep
power constraints of the gas units in the main network and CLs.

FIGURE 1
Flowchart of the power flow calculation.
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FIGURE 2
Flowchart for the optimisation strategy.

FIGURE 3
Arithmetic grid map of the modified IEEE 33 node distribution system.
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5.2.1 Analysis of simulation results for scenario 1
In the modified IEEE 33 node distribution system, nodes 17, 21,

and 32 are selected to represent the single-point PV grid-connection
points, and all distributed PVs are connected to the system with the
planned output without controls to explore the impacts on system
node voltage and power exchanged by the main distribution
network; the simulation results are shown in Figures 5, 6. From
Figure 5, it is seen that when the PVs are connected to the planned
outputs, the voltages at some nodes during 11–15 h exceed 1.05 p.u.,
exhibiting voltage overruns.

From Figure 6, it is seen that the power delivered from the
main grid to the distribution network decreases from 1,122 kW to
668 kW at 6–8 h due to continuous increases in the PV outputs; at
9–15 h, the distribution network is seen to deliver power to the

main grid; at 13 h, the distribution network delivers a maximum
power of 1,208 kW to the main grid; thus, the maximum power
fluctuation at the demarcation point of the main distribution
network is 2,330 kW. When the active demand in the distribution
network decreases and results in backward power delivery to the
main grid, there are decreases in the outputs of the main grid
units or even shutdowns. In the time period of 16–20 h, the
interaction power at the demarcation point of the main
distribution network rises sharply from 254 kW at 16 h to
2,880 kW at 20 h due to continuous reduction of PV output
and increase in user load, demonstrating a maximum fluctuation
of 2,626 kW; when the active demand of the distribution network
continues to increase, it will lead to increases in the outputs of the

TABLE 1 Parameters of the adjustable units.

Adjustable unit Specific parameters

On-load tap changers (OLTCs) Voltage regulation range 0.95–1.05 p.u.

Number of adjustable gears 10

Adjustment step 0.01 p.u.

Limit on number of gears per adjustment 1

Limit on number of daily adjustments 5

Photovoltaics (PVs) Adjustment range of the output Zero to planned contribution

Capacitor banks (CB1/CB2/CB3) Adjustable capacity 500 kVar

Adjustment step 100 kVar

Static var compensators (SVC1/SVC2/SVC3) Adjustable range −100 to 300 kVar

Energy storage systems ESS1 ESS2

Maximum rated power 1800 kWh 1000 kWh

Minimum rated power 180 kWh 100 kWh

Charge and discharge power limits ± 300 kW ± 200 kW

Charging efficiency 90% 90%

Discharge loss efficiency 111% 111%

FIGURE 4
Photovoltaic (PV) and output load curves.

FIGURE 5
Node voltage diagrams over 24 h for scenario 1.
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main network units and perhaps even startup of the
standby units.

During actual operation, the main network units cannot be
started and stopped frequently; the transmission power change cycle
in the main network is longer, so the sharp increase in active power
demand from the distribution network cannot be met over a short
duration. Thus, there may be an active power shortage between the
main and distribution networks, which affects the frequency and
voltage stabilities of the distribution network; this serious situation
may result in short-term power outages for the user loads, so it is
necessary to use the adjustable resources of the distribution network
to reduce the power fluctuations between the main and
distribution networks.

5.2.2 Analysis of simulation results for scenario 2
Based on scenario 1, given the minimum active fluctuation and

maximum PV consumption at the demarcation point of the main
distribution network as the main objectives as well as node voltages
remaining within the limit as the constraint, the optimization of the
interaction power at the demarcation point of the main distribution
network is as shown in Figure 7, the active outputs of the ESSs are as
shown in Figure 8, and the reactive outputs of the SVCs and CBs are
as shown in Figure 9.

The distributed PV power in this scenario can still be consumed
fully, and the reactive power compensation device appropriately
consumes reactive power during 10–15 h to maintain voltage
stability when the PV output is maximum, such that the ESS is
charged with 1,080 kW of power; the backward transmission of
power from the distribution network to the main network decreases
by 2,230 kW during 9–15 g, and the stored energy decreases by
1,140 kW over 17–23 h when the load is higher and PV output is
zero. This total of 1,140 kW is discharged, and the interactive power
of the main distribution network decreases by 1,693 kW, such that
the maximum power fluctuation over 16–20 h decreases from
2,626 kW in scenario 1 to 2,084 kW. Hence, the ESSs play
positive roles in smoothing the power fluctuations between the
main distribution network and reactive power compensation
device to achieve maximum dissipation of the PV power and

maintain voltage stability. However, the interactive power of the
main distribution network still fluctuates greatly and needs to be
optimised further.

5.2.3 Analysis of simulation results for scenario 3
In scenario 2, the interactive power fluctuation in the main

distribution network is large and the power change amplitude
during the adjacent time period is drastic; therefore, the addition
of CLs is considered to smooth the power fluctuation in the main
distribution network, whose output changes are shown in Figure 10,
active outputs of the ESSs are shown in Figure 11, and PV
dissipations are shown in Figure 12.

To suppress the sharp increase in main grid supply power
caused by reduction of the PV outputs, it is necessary to guide
the user loads so as to reduce power consumption during the peak
period of 17–23 h; at the same time, to achieve maximum
consumption of PV power, it is necessary to guide the user loads
to increase their power consumption as much as possible during
9–16 h. It is seen from Figure 10 that the user loads lower power

FIGURE 6
Interaction power at the cutoff point of the main distribution
network under scenario 1.

FIGURE 7
Interaction power at the cutoff point of the main distribution
network under scenario 2.

FIGURE 8
Energy storage charging and discharging powers under
scenario 2.
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consumption by 3,201 kW over 17–23 h and increase power
consumption by 3,201 kW during 9–16 h. These kinds of
transferable loads in the distribution network are mainly
composed of production-type and service-type users who
demonstrate great flexibility in electricity consumption, strong

peak-shifting ability, and large calling potential to weaken the
negative impacts of PV power fluctuations.

Owing to the relatively small capacities of ESSs in the
distribution network, the numbers of charging and discharging
times of the ESSs in a cycle increase significantly under scenario
3. In practical applications, ESSs generally have one-charging and
one-discharging or two-charging and two-discharging strategies in
accordance with the dispatch instructions as frequent charging and
discharging can exacerbate their lifespans due to wear and tear,
thereby reducing the economy of system operation. Therefore,
failure to consider the constraints regarding the number of
charge/discharge times of the ESSs is an area for improvement in
this study.

In contrast to scenarios 1 and 2 where distributed PVs are able to
operate at the planned outputs, the actual total PV output in
scenario 3 is 20,559 kW, which is a reduction of 6,330 kW.
Although the adjustable resources are used maximally, they still
inevitably cut a part of the distributed PV output, which is mainly
attributable to the limited regulation capacity constraint of the main
grid resulting from actual grid operation; the gas units in the main
grid can further reduce the output until shutdown to consume the
distributed PV outputs in the present distribution network or to
deliver a part of this residual energy to another distribution network

FIGURE 9
Reactive outputs of the (A) static var compensators (SVCs) and (B) capacitor banks (CBs) under scenario 2.

FIGURE 10
Shifting load power under scenario 3.

FIGURE 11
Energy storage charging and discharging powers under
scenario 3.

FIGURE 12
PV output for scenario 3.
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to achieve the required PV power consumption. Therefore,
subsequent studies can examine methods to further reduce the
distributed PV outputs in the distribution network through
coordination of network clusters.

The simulation of the power change at the cutoff point of the
main distribution network is shown in Figure 13. From Figure 13,
it is seen that the maximum interaction power of the main
distribution network in scenario 3 is 2,000 kW while the
minimum is 1,010 kW, for a maximum fluctuation of 990 kW
of the main grid supply power. Meanwhile, the power curve is
relatively flat, and the maximum power change in the adjacent time
period is 100 kW, which are in line with the creep power
limitations of the gas-fired units of the main grid during
actual operation.

The power statistics at the demarcation point of the main
distribution network under the three scenarios are shown in
Table 2. As seen from Table 2, the fluctuation range of the
interaction power of the main distribution network in scenario
3 is lower by 3,062 kW and 2,051 kW compared to those in scenarios
1 and 2, respectively, and the power fluctuation decreases
significantly. At the same time, the maximum power fluctuation
in the adjacent time period decreases by 1,123 kW and 857 kW
compared to those in scenarios 1 and 2, respectively. The simulation
results of scenario 3 reflect the limited regulation capacity of the
main network; however, during actual operation, these results meet
the requirement that the change in power supplied by the main
network to the distribution network cannot be too fast. The
simulation results of scenario 3 reflect the effectiveness of the
active optimal scheduling method proposed for the
distribution network.

6 Conclusion and prospects

At present, most of the studies on optimal dispatch of
distribution networks containing high proportions of distributed
PVs are based on the optimization of voltage stability and optimal
economy as the objectives given a single means of regulation; at the
same time, the impact of the limited regulating capacity of the gas
units of the main grid on the optimal dispatch of distribution
networks is neglected, especially with regard to maximum
consumption of PV power. Hence, the following methods are
proposed herein to address this issue:

1. We establish a model for maximum consumption of the
distributed PV power in the distribution network by taking
into account the reactive power compensation equipment,
energy storage systems, controllable loads, and other
adjustable resources and design an optimal distribution
solution for the distribution network; this reduces the
number of variables participating in the optimization at
each step and accelerates the speed of optimization.

2. The proposed distribution network optimization scheduling
method fully takes into account the limited regulation capacity
of the main network to ensure that the distribution network
purchases the least amount of power from the main network;
further, the fluctuation amplitude and creep rate of the
interacting power between the main and distribution
networks are minimized to meet the actual operation of the
gas-fired units of the main network. This helps in the analysis
of the impact of the limited regulation capacity of the main
network on maximum PV power consumption.

Although more types of regulation are considered in the
proposed model, their scheduling costs are not analyzed,
especially with regard to the compensation cost of the
controllable loads, installation cost, and charge/discharge losses
of the energy storage devices. During actual operation, frequent
scheduling of user loads lowers user satisfaction and high-
frequency redischarging of the energy storage devices reduces
their service lives; hence, future studies could focus on
balancing the interests of both supply and demand as well as
improving the comprehensive economy of distribution
network operation.

Given the accelerated pace of construction of new power
systems, the connections between the distribution networks are
increasingly becoming close. Thus, future research efforts can
consider balancing and dispatching the surplus local PV outputs
through other distribution networks, thereby reducing the burden of

FIGURE 13
Interaction power at the main distribution cutoff point for
scenario 3.

TABLE 2 Comparison of interaction power at the cutoff point of the main distribution network before and after optimization.

Power
scenarios

Minimum
value (kW)

Maximum
value (kW)

Maximum
swing (kW)

Maximum power change in the adjacent
time period (kW)

Scenario 1 −1,172 2,880 4,052 1,223

Scenario 2 −707 2,334 3,041 957

Scenario 3 1,010 2,000 990 100
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regulation of the main grid; moreover, new types of distribution
networks can be constructed to handle higher proportions of
distributed PV power.
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A multi-agent optimal operation
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This article presents a study on the distributed optimization operationmethod for
micro-energy grid clusters within an electric, thermal, and hydrogen integrated
energy system. The research focuses on precisely modeling the Power-to-
Hydrogen (P2H) conversion process in electrolytic cells by considering their
startup characteristics. An optimization operationmodel is established, with each
micro-energy grid as the principal entity, to cater to their individual interests and
demands. The Alternating Direction Method of Multipliers (ADMM) algorithm is
adopted for distributed solution. Case studies demonstrate that the connection
topology between micro-energy grids significantly impacts the total operating
cost, and the effectiveness of the ADMM algorithm is validated through a
comparison with centralized optimization approaches.

KEYWORDS

power-to-hydrogen, integrated energy system, multi-agent optimal operation,
alternating direction method of multipliers, electrolytic hydrogen

1 Introduction

By 2050, the projected increment in CO2 emissions could span from 2.21 to
7.43 megatons, underscoring the urgency for decisive action. Amidst this backdrop,
numerous nations worldwide have set forth ambitious carbon reduction targets,
signaling a global commitment to mitigate climate change (Jiang et al., 2024). The
Integrated Energy System (IES), a holistic approach that integrates power-to-heat
conversion technologies and seamlessly intertwines heat and power generation, has
emerged as a cornerstone in the pursuit of carbon emission reduction. This system,
bolstered by its unique technological prowess, offers a pivotal pathway towards a
greener future (Zhang et al., 2024).

The strategic deployment of complementary technologies within the IES framework further
enhances renewable energy utilization, thereby mitigating adverse climate impacts (Pan et al.,
2021). Among these, Power-to-Hydrogen (P2H) technology stands out as a highly efficient
energy conversion mechanism, transforming electrical energy into hydrogen energy—a clean
and versatile fuel source (Gu et al., 2024). As renewable energy capacity expands and electric
vehicles, alongside other power-hungry devices, gain widespread adoption, the challenge of
effectively managing surplus electricity has become paramount in the energy sector. P2H
technology adeptly addresses this challenge by electrolyzing water, converting excess electrical
energy into hydrogen, thereby not only alleviating the issue of surplus electricity but also
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supplying a clean, green energy source for innovative applications like
hydrogen-fueled vehicles. Moreover, P2H technology boasts several
advantages that make it an attractive option for energy storage and
conversion. Its high energy storage efficiency, prolonged storage
capability, and zero-emission profile position it as a promising
contender in the quest for sustainable energy solutions (Zhuang
et al., 2023). By harnessing the full potential of both the IES and
P2H technology, we can accelerate our transition towards a low-carbon,
environmentally friendly future.

(He et al., 2021) proposes an integrated energy system optimization
model that utilizes P2H technology to convert excess wind power into
hydrogen, mitigating curtailment and filling load valleys. Case studies
validate the effectiveness of this approach. Author in (Gu et al., 2023)
propose a regional joint electrolytic hydrogen system framework to
address differentiated electrolytic hydrogen capacity caused by resource
characteristics in China. They established a decoupling model for
cascade hydropower and compared its advantages over separate
systems in terms of reducing hydrogen costs, carbon emissions, and
renewable energy capacity. Differentialmodels for electrolyzers were also
established, providing insights into their evolution and development
prospects (Gupta et al., 2023). studies the integration of P2H technology
into utility-scale hybrid power plants (HPPs) consisting of wind, solar,
and battery storage. As renewable energy resources and sector coupling
increase, HPPs are evolving to include other energy vectors like heat and
gas storage. Integrating P2H within HPPs reduces fluctuations from
non-dispatchable production and curtailment, similar to storage devices.
Case studies in Europe demonstrate the significant techno-economic
benefits of HPPs with P2H. In (Zhao et al., 2022), the Integrated Energy
Production Unit (IEPU) concept, combining P2H and Carbon Capture,
Utilization, and Storage (CCUS) technologies, is proposed. This concept
leverages existing synchronous turbines to provide synthetic active and
reactive capabilities, validated using open-source softwarewith European
load data, optimizing capacity and simulating 8,760-h operations to
minimize annual costs. In (Dong et al., 2023), the authors compare the
technical characteristics of alkaline electrolyzers (AEC) and proton
exchange membrane electrolyzers (PEMEC), and proposes an
optimal planning model for P2H clusters. The model aims to
minimize investment, operational, startup/shutdown, grid power
purchase, network loss, and voltage deviation costs. A modified IEEE
33-node network case verifies the model’s effectiveness and benefits (Lu
et al., 2022). introduces an Approximate Dynamic Programming (ADP)
method for optimizing real-time micro-energy grid operation with P2H
devices. The ADP approach, leveraging a piecewise linear function, finds
near-optimal strategies that adapt to uncertainties, outperformingModel
Predictive Control (MPC) in case studies. Authors in (Cao et al., 2022)
propose a dual-fuel cells hydrogen energy storage integrated energy
system to enhance performance. Optimizing device capacities based on
economic factors reveals an optimal configuration that outperforms
single fuel cells. Sensitivity analysis highlights the influence of electricity,
natural gas prices, and renewable energy capacity on the optimal
hydrogen storage and fuel cell configuration.

However, a significant oversight in existing research lies in the
neglect of electrolytic cells’ start-up characteristics, notably the start-
up delay and power requirements. While these cells are
indispensable in converting renewable energy sources into
hydrogen via the Power-to-Hydrogen (P2H) process, their initial
operational phases, particularly the intricate start-up process, have
remained largely unexamined. This oversight results in a lack of

granularity in electrolytic cell models, which in turn fails to
accurately mirror the system’s true operational dynamics. This
uncharted territory represents a crucial gap that necessitates
urgent attention and further exploration. Such endeavors would
not only refine our understanding of these systems but also propel us
closer to a greener, more sustainable future by ensuring that P2H
technologies operate at their optimal capacity.

The Alternating Direction Method of Multipliers (ADMM)
algorithm, renowned for its prowess in tackling optimization
challenges, stands out as a formidable tool for resolving large-scale,
decentralized, and intricate constraint optimization problemswithin the
energy sector. Its unparalleled advantages have fostered widespread
adoption in energy optimization applications. By masterfully
decomposing intricate energy systems into manageable subproblems
and iteratively solving them in an alternating fashion, the ADMM
algorithm drastically reduces problem complexity and computational
overhead. Moreover, its inherent distributed nature harmoniously
aligns with the decentralized characteristics of energy systems,
enabling seamless distributed optimization management, thereby
enhancing overall system efficiency and performance.

(Huang et al., 2023) proposes a blockchain-based distributed
market framework for the bi-level carbon and energy trading between
coal mine integrated energy systems and a virtual power plant (VPP).
(Kong et al., 2020) introduces a distributed optimization approach for
integrated energy systems (IES) using theADMM.Themethod begins by
analyzing uncertain factors from energy sources and loads, employing
scenario analysis to capture their stochasticity. An optimal scheduling
model for IES is then formulated. Leveraging ADMM, this model is
reformulated to enable distributed optimization for multi-energy
complementation. Case study results demonstrate the effectiveness
and practicality of the proposed strategy. Authors in (Chen et al.,
2018) propose an enhanced energy hub (EH) model for IES,
incorporating electric and heat energy storage along with solar
thermal collectors. The IES is structured as a multi-operator system,
with each EH belonging to a distinct operator. A distributed energy
management model accounts for storage operation costs and shows
effectiveness in reducing energy bills, transmission losses, and prolonging
energy storage life. (Pan et al., 2022) offers a distributed operation strategy
using an enhanced ADMM. It establishes models for gas turbines and
energy storage, incorporating dynamic characteristics of radial
distribution and natural gas networks. An optimization model for
day-ahead scheduling reduces operating costs while managing
renewable energy uncertainty through chance constraints. An
ADMM-based distributed operation method with adaptive step size
addresses information opacity between electricity and gas systems.
(Wu et al., 2021) addresses the challenges of centralized control in
large-scale integrated energy parks by proposing a distributed
computing method. The method decomposes joint scheduling into
subproblems, considers the coupling of electricity, gas, and heat, and
establishes a day-ahead scheduling model. A case study demonstrates the
feasibility of the distributed optimization model. Authors in (Li et al.,
2024) propose an optimal operation strategy with dynamic partitioning
for centralized shared energy storage stations, considering day-ahead
demands of renewable energy power plants. A multi-entity cooperative
optimization model based on Nash bargaining theory is implemented
and decomposed into subproblems solved by ADMM. Simulations show
improved tracking of renewable energy output, higher energy storage
utilization, and increased profits for each entity.
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In this article, we delve into a comprehensive study exploring the
distributed optimization operation methodology for clusters of
micro-energy grids within a multifaceted energy system that
integrates electricity, heat, and hydrogen resources. Our research
meticulously models the intricate Power-to-Hydrogen (P2H)
conversion process within electrolytic cells, meticulously
accounting for their nuanced startup dynamics. This nuanced
approach ensures a precise portrayal of the P2H process, pivotal
for optimizing the holistic energy system’s performance. To this end,
we formulate an optimization framework that recognizes each
micro-energy grid as an autonomous entity, respecting their
distinct interests and operational imperatives. This model not
only considers the efficiency of energy conversion but also the
specific operational constraints and goals of each micro-energy
grid. To tackle this intricate distributed optimization challenge,
we harness the power of the Alternating Direction Method of
Multipliers (ADMM) algorithm, renowned for its prowess in
handling large-scale, decentralized optimization problems. By
utilizing ADMM, we can decompose the overall optimization
problem into smaller subproblems, which are then solved
iteratively in a distributed manner. This approach not only
reduces the computational complexity but also enables each
micro-energy grid to operate independently while still
contributing to the overall optimization of the entire energy system.

2 P2H module unified operation model

2.1 Introduction for P2H technologies

In the commercial landscape of hydrogen production
equipment, the electrolytic cell stack stands as the cornerstone
unit. Nevertheless, the inherent power limitations of a solitary
stack, often constrained to below 10 kW, underscore the need for
scalability. By harnessing the inherent scalability of electrolytic cell
technology, we can orchestrate multiple stacks into formidable
modules, capable of achieving capacities that soar from 100 kW
to the megawatt realm. The extensive hydrogen production systems
utilized in power systems often comprise numerous independently
managed modules, where each module can be selectively activated,
deactivated, and its output precisely controlled. Therefore, this paper
focuses its modeling and selection planning efforts on the electric
hydrogen production module as the fundamental research subject.

2.2 Startup model of P2H modules

When initiating the P2H process, the start-up delay associated with
low-temperature electrolysis technologies, such as AEC and PEMEC,
tends to be minimal. However, in the case of SOEC utilizing high-
temperature electrolysis, hydrogen gas production does not commence
until the stack has reached a specific temperature threshold. Notably,
the heating duration required to attain this temperature can often be
significant and should not be overlooked.

In the context of the given modeling, i, k, and t represent distinct
indices: i signifies the i-th micro energy grid, k denotes the k-th
electrolytic cell, and t represents the time instant. The variable αkEC
captures the startup delay specific to the k-th electrolytic cell. The

variable xi,k,tEC represents the state of the k-th electrolytic cell within
the i-th micro-energy grid at time t. Furthermore, yi,k,t

EC and zi,k,tEC

represent the start and stop actions, respectively, of the k-th
electrolytic cell in the i-th micro-energy grid at time t. These
actions indicate whether the electrolytic cell is being initiated or
terminated at a given time.

The modeling of these variables allows for a comprehensive
representation of the dynamic behavior and operational decisions
within the integrated energy system.

The operating power of the EC is subject to upper and lower
limits, which are mathematically constrained as expressed in
Equation 1. This constraint ensures that the electrolytic cell
operates within its safe and efficient range, preventing over- or
under-utilization.

xi,k,t
EC · δi,kEC,in,1,min · Capi,k

EC ≤Pi,k,t
EC,in,1 ≤ xi,k,t

EC · δi,kEC,in,1,max · Capi,k
EC (1)

where Pi,k,t
EC,in,1 represents the EC input power that is utilized for

hydrogen production (output). This is the active power input that
drives the electrolysis process and generates hydrogen gas. Capi,k

EC

represents the installed capacity of the EC. δi,kEC,in,1,min/δ
i,k
EC,in,1,max

represents the ratio of the minimum/maximum value of Pi,k,t
EC,in,1 to

the installed capacity.
The starting power constraint of EC is shown in Equation 2.

Pi,k,t
EC,in,2 � ∑αkEC−1

τ�0
yi,k,t−τ
EC · δi,kEC,boot · Capi,k

EC (2)

where Pi,k,t
EC,in,2 represents the EC input power used specifically for

starting the electrolytic cell. This power is consumed only during the
startup phase and does not contribute to hydrogen production. It is
typically required to heat the stack and other components to the
operating temperature. δi,kEC,boot represents the ratio of the starting
power Pi,k,t

EC,in,2 to the installed capacity.
The state constraints of EC are shown in Equation 3.

y
i,k,t−αkEC
EC − zi,k,tEC � xi,k,t

EC − xi,k,t−1
EC

yi,k,t
EC ≤ 1 − xi,k,t−1

EC

zi,k,tEC ≤xi,k,t−1
EC

(3)

In Equation 3, the first equation represents the constraints imposed
by the start-up and shutdown action variables on the state variables
of the electrolytic cell. The second equation indicates that the
electrolytic cell can only be started when it is in the off state,
while the third equation indicates that the electrolytic cell can
only be shut down when it is in the start-up state.

2.3 Comparison of main performance
indicators of 3 P2H technologies

At present, there are three main types of electrolytic cells:
alkaline electrolytic cells (AECs), proton exchange membrane
electrolytic cells (PEMECs), and solid oxide electrolytic
cells (SOECs).

Among the three P2H technologies, AECs boast the earliest
research and development efforts, the most matured technology,
and the lowest equipment cost. Nonetheless, they encounter
challenges such as the difficulty in completely isolating hydrogen-
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oxygen diffusion (especially under low loads), high electrolysis
overvoltage, and the inertia of load ion conduction in electrolyte
solutions. These factors limit their working load range and
response speed.

In contrast, PEMECs have significantly improved load range
and response speed compared to AECs, albeit with a slightly higher
equipment cost. However, both AECs and PEMECs share a
limitation: their rated hydrogen production efficiency does
not exceed 70%.

SOECs, on the other hand, utilize solid oxide electrolytes to
electrolyze gaseous water in high-temperature environments. By

harnessing the thermodynamics and kinetics of the electrolysis
reaction, SOECs are able to improve energy conversion efficiency
by approximately 10%–15%. However, due to the constraints of
operating in high-temperature environments, SOEC technology
currently lags behind PEMECs in terms of cost and response speed.

Table 1 below provides a concise overview of the key technical
indicators associated with each of the three electrolytic cells. It is
evident that each of the three P2H technologies offers distinct
advantages: AEC excels in cost-efficiency, PEMEC stands out in
terms of flexibility, while SOEC boasts the highest energy
conversion efficiency.

TABLE 1 The main technical indicators of the three electrolytic cells.

Parameters AEC PEMEC SOEC

Current density (A/cm2) 0.25–0.45 1.0–2.0 0.3–1.0

Voltage range (V) 1.87–2.10 1.65–1.85 1.78–1.85

Hydrogen production capacity (Nm3/h) 1,400 400 <10

Electricity consumption (kWh/Nm3) 4.2–4.8 4.4–5.0 3.0

Operating temperature (°C) 50–100 80–100 120

Efficiency (%) 62–82 74–87 90–100

Startup time 1–5min <10s 15min

Investment cost (Thousand RMB/kW) 2.2–10.5 9.8–14.7 >14

Efficiency attenuation (%/year) 0.25–0.45 0.5–2.5 3–50

Minimum input power (Rated power %) 20–25 5–10 0

FIGURE 1
The structure of each micro-energy grid.
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3 Mathematical model for the optimal
operation of micro-energy grids

3.1 System structure

The micro-energy grid incorporates a busbar design that
comprises four essential power busbars: electricity, heat,
hydrogen, and gas, as shown in Figure 1.

Within this micro-energy grid, the primary energy supply
apparatus encompasses a harmonious blend of renewable energy
generation systems and CHP units. Furthermore, the system is
augmented by EH techniques and GB, enhancing the thermal

energy supply capabilities. Within this intricate system, devices
such as EC and FC play pivotal roles, facilitating seamless
interconversion between electrical and hydrogen energy. Notably,
the hydrogen energy generation process inherently yields thermal
energy, thus further augmenting the grid’s thermal output.
Moreover, the refined hydrogen energy can undergo MR for
conversion into natural gas, expanding the grid’s energy portfolio.

This versatile micro-energy grid caters to three primary load
demands: electrical energy, hydrogen energy, and thermal energy,
ensuring a comprehensive range of energy services. Its input energy
sources are diverse, incorporating electricity sourced directly from the
main power grid or exchanged with other micro-energy grids, as well as

FIGURE 2
The structure of micro-energy grid cluster.

FIGURE 3
(A) Scenario 1 (B) Scenario 2 (C) Scenario 3. The connection topology between the micro-energy grids in each scenario.
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natural gas procured efficiently from gas utility companies. This
integrated approach fosters a resilient and sustainable energy
ecosystem, tailored to meet the evolving needs of modern communities.

The article delves into an integrated energy system
encompassing electric, thermal, and hydrogen components, which
comprises a cluster of interconnected micro-energy grids, as
depicted in Figure 2. These micro-energy grids are capable of
exchanging electrical power seamlessly through dedicated
interconnection lines, fostering a dynamic and interactive network.

3.2 Objective function

For each micro-energy grid, the overarching objective is to
minimize operating costs, as outlined in Equation 4. These costs
comprise four distinct components: operational and maintenance
costs, gas procurement costs, electricity acquisition costs, and power
exchange costs.

min Ci � Ci
OM + Ci

gas + Ci
grid + Ci

EX (4)

where Ci
OM represents operational and maintenance costs, Ci

gas

represents gas procurement costs, Ci
grid represents electricity

acquisition costs, Ci
EX represents power exchange costs.

The operational and maintenance costs are shown in Equations
5, 6.

Ci
OM � ∑T

t�1

Ci,t
PV,om + Ci,t

WT,om + Ci,t
CHP,om + Ci,t

FC,om

+Ci,t
EC,om + Ci,t

EH,om + Ci,t
GB,om + Ci,t

MR,om

+Ci,t
BT/HC/HS/GS,om

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠ · Δt (5)

Ci,t
PV,om � ci,tPV,om · Pi,t

PV,out

Ci,t
WT,om � ci,tWT,om · Pi,t

WT,out

Ci,t
CHP,om � ci,tCHP,om · Pi,t

CHP,out,E

Ci,t
FC,om � ∑K

k�1
ci,k,tFC,om · Pi,k,t

FC,out,E( )
Ci,t

EC,om � ∑K
k�1

ci,k,tEC,om,1 · Pi,k,t
EC,out + ci,k,tEC,om,2 · Pi,k,t

EC,in,2( )
Ci,t

EH,om � ci,tEH,om · Pi,t
EH,out

Ci,t
GB,om � ci,tGB,om · Pi,t

GB,out

Ci,t
MR,om � ci,tMR,om · Pi,t

MR,out

Ci,t
BT/HC/HS/GS,om � ci,tBT/HC/HS/GS,om · Pi,t

BT/HC/HS/GS,c + Pi,t
BT/HC/HS/GS,d( )

(6)
The gas procurement costs are illustrated in Equation 7.

Ci
gas � ∑T

t�1

Ri,t
FU

Hi,t
FU

· Pi,t
gas,b · Δt (7)

The electricity acquisition costs from the power grid are shown
in Equation 8.

Ci
grid � ∑T

t�1
ci,tGD,b · Pi,t

GD,b − ci,tGD,s · Pi,t
GD,s( ) · Δt (8)

TABLE 2 TOU electricity price.

Period Time Price/[RMB/(kWh)]

Valley 23:00–07:00 0.47

Off-peak 07:00–08:00, 11:00–18:00 0.87

Peak 08:00–11:00, 18:00–23:00 1.09

TABLE 3 Capacity of the devices installed in each micro-energy grid.

Devices MEG 1 MEG 2 MEG 3 MEG 4

PV (kW) 1,000 1,000 1,000 3,000

WT (kW) 1,000 1,000 1,000 3,000

CHP (kW) 5,000 5,000 5,000 5,000

FC (kW) 1,000 1,000 3,000 1,000

EC (kW) 1,000 1,000 3,000 1,000

EH (kW) 2000 2000 2000 2000

GB (kW) 3,000 3,000 3,000 3,000

MR (kW) 1,000 1,000 1,000 1,000

BT (kWh) 1,000 1,000 1,000 1,000

HC (kWh) 1,000 1,000 1,000 1,000

HS (kWh) 1,000 1,000 1,000 1,000

GS (kWh) 1,000 1,000 1,000 1,000
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The power exchange costs with other micro-energy grids are
shown in Equation 9.

Ci
EX � ∑T

t�1
∑IMG

j�1
ci,j,tEX · Pi,j,t

EX,in − Pi,j,t
EX,out( ) · Δt (9)

3.3 Constraints

3.3.1 Constraints on the power balance
The electric power balance is shown in Equation 10.

Pi,t
BT,d,EX + Pi,t

GD,b + Pi,t
PV,out + Pi,t

WT,out + Pi,t
CHP,out,E +∑K

k�1
Pi,k,t
FC,out,E + ∑IMG

j�1
Pi,j,t
EX,in

� Pi,t
BT,c,EX + Pi,t

GD,s + Pi,t
EL +∑K

k�1
Pi,k,t
EC,in,1 + Pi,k,t

EC,in,2( ) + Pi,t
EH,in + ∑IMG

j�1
Pi,j,t
EX,out

(10)

The thermal power balance is shown in Equation 11.

Pi,t
HC,d,EX + Pi,t

CHP,out,H + Pi,t
GB,out + Pi,t

EH,out +∑K
k�1

Pi,k,t
FC,out,H

� Pi,t
HC,c,EX + Pi,t

HL

(11)

The hydric power balance is shown in Equation 12.

Pi,t
HS,d,EX +∑K

k�1
Pi,k,t
EC,out

� Pi,t
HS,c,EX + Pi,t

HGL +∑K
k�1

Pi,k,t
FC,in + Pi,t

MR,in

(12)

The gas power balance is shown in Equation 13.

Pi,t
GS,d,EX + Pi,t

gas,b + Pi,t
MR,out

� Pi,t
GS,c,EX + Pi,t

CHP,in + Pi,t
GB,in

(13)

3.3.2 Constraints on the purchased power of
electricity and gas

The purchased/sold electric power constraints from/to the
power grid are shown in Equation 14.

xi,t
GD,b · Pi,t

GD,b,min ≤Pi,t
GD,b ≤x

i,t
GD,b · Pi,t

GD,b,max

xi,t
GD,s · Pi,t

GD,s,min ≤Pi,t
GD,s ≤x

i,t
GD,s · Pi,t

GD,s,max

0≤ xi,t
GD,b + xi,t

GD,s ≤ 1
(14)

The purchased gas power constraints from the gas company are
shown in Equation 15.

Pi,t
gas,b,min ≤Pi,t

gas,b ≤P
i,t
gas,b,max (15)

3.3.3 Constraints on the efficiency of the devices
The efficiency constraints of the devices are shown in

Equation 16.

Pi,t
CHP,out,E � ηi,tCHP,E · Pi,t

CHP,in

Pi,t
CHP,out,H � Vi,t

CHP · Pi,t
CHP,out,E

Pi,k,t
FC,out,E � ηi,k,tFC,E · Pi,k,t

FC,in

Pi,k,t
FC,out,H � Vi,k,t

FC · Pi,k,t
FC,out,E

Pi,k,t
EC,out � ηi,k,tEC · Pi,k,t

EC,in,1

Pi,t
EH,out � ηi,tEH · Pi,t

EH,in

Pi,t
GB,out � ηi,tGB · Pi,t

GB,in

Pi,t
MR,out � ηi,tMR · Pi,t

MR,in

(16)

3.3.4 Constraints on the upper and lower power
limits of the devices

The upper and lower power limit constraints are shown in
Equation 17.

0≤Pi,t
PV,out ≤ δ

i,t
PV,fore · Capi

PV

0≤Pi,t
WT,out ≤ δ

i,t
WT,fore · Capi

WT

δi,tCHP,out,E,min · Capi
CHP,E ≤Pi,t

CHP,out,E ≤ δ
i,t
CHP,out,E,max · Capi

CHP,E

δi,k,tFC,out,E,min · Capi,k
FC,E ≤P

i,k,t
FC,out,E ≤ δ

i,k,t
FC,out,E,max · Capi,k

FC,E

xi,k,t
EC · δi,tEC,out,min · Capi

EC ≤Pi,t
EC,out ≤x

i,k,t
EC · δi,tEC,out,max · Capi

EC

δi,tEH,out,min · Capi
EH ≤Pi,t

EH,out ≤ δi,tEH,out,max · Capi
EH

δi,tGB,out,min · Capi
GB ≤Pi,t

GB,out ≤ δ
i,t
GB,out,max · Capi

GB

δi,tMR,out,min · Capi
MR ≤P

i,t
MR,out ≤ δi,tMR,out,max · Capi

MR

(17)

3.3.5 Constraints on the ramping limit
The ramping limit constraints are shown in Equation 18.

Pi,t
CHP,out,E − Pi,t−1

CHP,out,E ≤ δ
i
CHP,ramp,max · Capi

CHP,E

Pi,k,t
FC,out,E − Pi,k,t−1

FC,out,E ≤ δi,kFC,ramp,max · Capi,k
FC,E

Pi,k,t
EC,out − Pi,k,t−1

EC,out ≤ δ
i,k
EC,ramp,max · Capi,k

EC

(18)

FIGURE 4
The variation of residual error with the iteration times in
scenario 1

FIGURE 5
The variation of residual error with the iteration times in
scenario 2.
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3.3.6 Constraints on the energy storage devices
The limitations pertaining to the energy storage device are

delineated in Equations 19–21. Specifically, Equation 19
encapsulates the efficiency constraint during charging and
discharging operations, Equation 20 outlines the upper and lower
bounds for the charging and discharging power, and Equation 21
specifies the energy capacity constraint of the storage device.

Pi,t
BT/HC/HS/GS,c � ηi,tBT/HC/HS/GS,cP

i,t
BT/HC/HS/GS,c,EX

Pi,t
BT/HC/HS/GS,d,EX � ηi,tBT/HC/HS/GS,dP

i,t
BT/HC/HS/GS,d

(19)

xi,t
BT/HC/HS/GS,c · δ

i,t
BT/HC/HS/GS,c,min · Capi

BT/HC/HS/GS ≤Pi,t
BT/HC/HS/GS,c

Pi,t
BT/HC/HS/GS,c ≤x

i,t
BT/HC/HS/GS,c · δ

i,t
BT/HC/HS/GS,c,max · Capi

BT/HC/HS/GS
xi,t
BT/HC/HS/GS,d · δ

i,t
BT/HC/HS/GS,d,min · Capi

BT/HC/HS/GS ≤Pi,t
BT/HC/HS/GS,d

Pi,t
BT/HC/HS/GS,d ≤x

i,t
BT/HC/HS/GS,d · δ

i,t
BT/HC/HS/GS,d,max · Capi

BT/HC/HS/GS
0≤xi,t

BT/HC/HS/GS,c + xi,t
BT/HC/HS/GS,d ≤ 1

(20)
υi,tBT/HC/HS/GS,min · Capi

BT/HC/HS/GS ≤Wi,t
BT/HC/HS/GS ≤ υi,tBT/HC/HS/GS,max

· Capi
BT/HC/HS/GSW

i,t+1
BT/HC/HS/GS

� Wi,t
BT/HC/HS/GS 1 − σ iBT/HC/HS/GS( )

+ Pi,t
BT/HC/HS/GS,c − Pi,t

BT/HC/HS/GS,d( )
· Δt, t � 0,/, T − 1( )Wi,T

BT/HC/HS/GS

� Wi,0
BT/HC/HS/GS

(21)

3.3.7 Constraints on the operation of the EC
As outlined in Section 3.2, the EC’s upper and lower power

constraints, initial power constraints, and start-stop state limitations
are defined in Equations 22, 23. Furthermore, Equation 24 stipulates
that the start-stop state must remain consistent at the beginning and
end of each cycle, while Equation 25 imposes a maximum limit on
the number of starts and stops that can occur within a single cycle.

xi,k,t
EC · δi,kEC,in,1,min · Capi,k

EC ≤Pi,k,t
EC,in,1 ≤ xi,k,t

EC · δi,kEC,in,1,max · Capi,k
EC

Pi,k,t
EC,in,2 � ∑αEC−1

τ�0
yi,k,t−τ
EC · δi,kEC,boot · Capi,k

EC

(22)

yi,k,t−αEC
EC − zi,k,tEC � xi,k,t

EC − xi,k,t−1
EC

yi,k,t
EC ≤ 1 − xi,k,t−1

EC

zi,k,tEC ≤xi,k,t−1
EC

(23)

xi,k,T
EC � xi,k,0

EC (24)

∑T
t�1
yi,k,t
EC ≤yi,k

EC,max

∑T
t�1
zi,k,tEC ≤ zi,kEC,max

(25)

3.3.8 Constraints on the exchanged power with
other micro-energy grids

Equation 26 establishes the upper and lower bounds for the
interactive power exchange with other micro-energy grids.
Meanwhile, Equation 27 stipulates that the diagonal elements of the

TABLE 4 Comparison of the optimization results between ADMM algorithm and centralized optimization method.

Total cost Scenario 1 Scenario 2 Scenario 3

ADMM (× 104 RMB) 1229.2547 1447.0512 1821.1192

Centralized Optimization (× 104 RMB) 1225.0296 1434.3320 1820.5015

Percentage error 0.3449% 0.8868% 0.0339%

TABLE 5 The costs of each part of each micro-energy grid in scenario 1 (× 104 RMB).

Total COM Cgas Cgrid CEX

MEG 1 278.3116 46.3552 291.7262 −61.1824 1.4184

MEG 2 1,213.0038 83.1731 782.3969 −43.0653 390.5047

MEG 3 227.5857 45.2098 182.7660 −49.4083 49.0237

MEG 4 −489.6465 75.3573 78.9783 −203.0170 −440.9614

Total 1229.2547 250.0955 1335.8674 −356.6730 −0.0146

TABLE 6 The costs of each part of each micro-energy grid in scenario 2 (× 104 RMB).

Total COM Cgas Cgrid CEX

MEG 1 368.6905 48.2351 453.8950 −38.5750 −94.8646

MEG 2 1347.4063 84.1113 850.4238 116.3950 296.4769

MEG 3 246.0414 44.5781 200.0632 −116.3188 117.7186

MEG 4 −515.0870 72.5835 4.0948 −272.4343 −319.3309

Total 1447.0512 249.5080 1508.4768 −310.9332 0.0001
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interaction state matrix must be zero, indicating that a grid cannot
interact with itself, and furthermore, there can be no more than one
input and one output state that is assigned a value of 1, signifying a
single connection for power exchange in either direction.

Ai,j,t
EX · xi,j,t

EX,out · Pi,j,t
EX,min ≤Pi,j,t

EX,out ≤A
i,j,t
EX · xi,j,t

EX,out · Pi,j,t
EX,max

Ai,j,t
EX · xi,j,t

EX,in · Pi,j,t
EX,min ≤Pi,j,t

EX,in ≤Ai,j,t
EX · xi,j,t

EX,in · Pi,j,t
EX,max

(26)

xi,i,t
EX,out, x

i,i,t
EX,in � 0

xi,j,t
EX,out + xi,j,t

EX,in ≤ 1
(27)

4 Algorithm for solving the multi-agent
collaborative optimization model

4.1 ADMM algorithm

As a distributed algorithm, ADMM excels in addressing
large-scale separable optimization problems by systematically

breaking them down into smaller subproblems. This strategic
decomposition not only simplifies the complexity but also paves
the way for the precise identification of the elusive global optimal
solution. The method seamlessly integrates the decomposition
principles of the dual ascent method with the superior
convergence properties of the Lagrange multiplier method,
creating a potent synergy that ensures both robustness and
unparalleled effectiveness.

The process of solving the problem shown in Equation 28 using
the ADMM algorithm is as follows.

min
x

f x( )
s.t.Ax � b

(28)

where x ∈ Ru is the decision variable, f(·) is the objective function,
A ∈ Rp×u is the coefficient matrix, and b ∈ Rp is the
coefficient vector.

Split decision variable x in Equation 28 into two decision
variables y and z, as delineated in Equation 29:

TABLE 7 The costs of each part of each micro-energy grid in scenario 3 (× 104 RMB).

Total COM Cgas Cgrid CEX

MEG 1 295.2441 47.3659 321.8564 −73.9782 0

MEG 2 1730.3632 88.7430 974.1874 667.4329 0

MEG 3 267.9580 47.1172 267.4596 −46.6189 0

MEG 4 −472.4460 69.8329 0.9230 −543.2019 0

Total 1821.1192 253.0590 1564.4263 3.6339 0

FIGURE 6
(A) Electric power balance (B) Thermal power balance (C) Hydric power balance (D) Gas power balance. The energy supply and consumption
situation of the micro-energy grid cluster in scenario 1.
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FIGURE 7
(A) Electric power balance (B) Thermal power balance. (C) Hydric power balance (D) Gas power balance. The energy supply and consumption
situation of the micro-energy grid cluster in scenario 2.

FIGURE 8
(A) Electric power balance (B) Thermal power balance. (C) Hydric power balance (D) Gas power balance. The energy supply and consumption
situation of the micro-energy grid cluster in scenario 3.
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min
y,z

g y( ) + h z( )
s.t.Cy + Dz � e

(29)

where y ∈ Rn and z ∈ Rm are decision variables, g(·) and h(·) are
sub optimization objectives, C ∈ Rp×n and D ∈ Rp×m are coefficient
matrices, and e ∈ Rp is coefficient vector.

By incorporating a quadratic penalty term into the Lagrangian
function, an augmented Lagrangian function is derived, providing
an enhanced framework for addressing optimization problems,
which is shown in Equation 30:

Lρ y, z, λ( ) � g y( ) + h z( ) + λT Cy + Dz − e( ) + ρ

2
Cy + Dz − e
���� ����22

(30)
where λ ∈ Rp is the Lagrange multiplier, and ρ> 0 is the
penalty factor.

Alternately solve variables y and z, and update the Lagrange
multiplier, as shown in Equation 31, until the convergence condition
is met.

ym+1 � argmin
y

Lρ y, zm, λm( )
zm+1 � argmin

z
Lρ ym+1, z, λm( )

λm+1 � λm + ρ Cym+1 + Dzm+1 − e( )
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (31)

where m stands for iterations.

4.2 Multi agent optimal operation model
based on ADMM algorithm

Utilizing the mathematical model outlined in Chapter 3 for the
optimal operation of micro-energy grids, and leveraging the power
of the ADMM algorithm, the objective function is restructured in
the following manner, as illustrated in Equation 32:

min Ci � Ci
OM + Ci

gas + Ci
grid + Ci

EX + Ci
Lag + Ci

Pen (32)

where Ci
Lag represents the Lagrange multiplier term, and Ci

Pen is the
penalty term, which are illustrated in Equations 33, 34.

Ci
Lag � ∑IMG

j�1
∑T
t�1
λi,j,t,mEX,out · Pi,j,t

EX,out − Pi,j,t,m
EX,out,ref( ) + ∑IMG

j�1
∑T
t�1
λi,j,t,mEX,in

· Pi,j,t
EX,in − Pi,j,t,m

EX,in,ref( ) (33)

Ci
Pen �

1
2
ρi,mEX,out ∑IMG

j�1
∑T
t�1

Pi,j,t
EX,out − Pi,j,t,m

EX,out,ref( )2 + 1
2
ρi,mEX,in

× ∑IMG

j�1
∑T
t�1

Pi,j,t
EX,in − Pi,j,t,m

EX,in,ref( )2 (34)

The constraints specified in Equation 10 through Equation 27
maintain their original form and remain unaltered.

4.3 The solving process

The process of employing the ADMM algorithm to address this
problem is outlined below:

1. Start with m � 1. Set the convergence thresholds εEX,pri and
εEX,dual for the primal and dual residuals. Initialize the dual
multipliers λi,j,t,1EX,out and λ

i,j,t,1
EX,in, penalty factors ρ

i,1
EX,out and ρi,1EX,in,

and coordinate variables Pi,j,t,1
EX,out,ref and Pi,j,t,1

EX,in,ref.
2. Solve each subproblem individually.
3. Update the coordination variables Pi,j,t,m+1

EX,out,ref and Pi,j,t,m+1
EX,in,ref, as

shown in Equation 35 .

Pi,j,t,m+1
EX,out,ref � 1

2
Pi,j,t
EX,out + Pj,i,t

EX,in( )
Pi,j,t,m+1
EX,in,ref � 1

2
Pi,j,t
EX,in + Pj,i,t

EX,out( ) (35)

4. Compute the primal residual rm+1
EX,pri and the dual residual

rm+1
EX,dual, which are encapsulated in Equation 36, and assess
their convergence based on conditions Equation 37.

rm+1
EX,pri � ∑IMG

i�1
∑IMG

j�1
∑T
t�1

Pi,j,t
EX,out − Pi,j,t,m

EX,out,ref( )2 + ∑IMG

i�1

× ∑IMG

j�1
∑T
t�1

Pi,j,t
EX,in − Pi,j,t,m

EX,in,ref( )2rm+1
EX,dual

� ∑IMG

i�1
∑IMG

j�1
∑T
t�1

Pi,j,t,m+1
EX,out,ref − Pi,j,t,m

EX,out,ref( )2 + ∑IMG

i�1

× ∑IMG

j�1
∑T
t�1

Pi,j,t,m+1
EX,in,ref − Pi,j,t,m

EX,in,ref( )2 (36)

rm+1
EX,pri ≤ εEX,pri

rm+1
EX,dual ≤ εEX,dual

(37)

5. Adjust the penalty factors ρi,m+1
EX,out and ρi,m+1

EX,in, as expressed in
Equation 38.

ρi,m+1
EX,out/in �

ϖEX,i · ρi,mEX,out/in, r
m+1
EX,pri ≥ χEXs

m+1
EX,dual

ϖEX,d · ρi,mEX,out/in, s
m+1
EX,dual ≥ χEXr

m+1
EX,pri

ρi,mEX,out/in, else

⎧⎪⎪⎨⎪⎪⎩ (38)

6. Update the dual multipliers λi,j,t,m+1
EX,out and λi,j,t,m+1

EX,in , and
increment m by 1 (m � m + 1), which are defined in
Equation 39.

λi,j,t,m+1
EX,out � λi,j,t,mEX,out + ρi,mEX,out · Pi,j,t

EX,out − Pi,j,t,m
EX,out,ref( )

λi,j,t,m+1
EX,in � λi,j,t,mEX,in + ρi,mEX,in · Pi,j,t

EX,in − Pi,j,t,m
EX,in,ref( ) (39)

Repeat steps 2 through 6 until the desired convergence
criteria are met.

5 Case studies

5.1 Description of the scenarios

In the case studies, three distinct operational scenarios were
delineated: fully connected, partially connected, and independent
operation, as depicted in Figure 3. The objective was to delve into the
implications of varying connection topologies on the operational
efficiency of micro-energy grid clusters. Specifically, in each of these
scenarios, micro-energy grid 2 experienced a higher load level,
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micro-energy grid 3 boasted a larger capacity for hydrogen
production devices, and micro-energy grid 4 generated a more
significant amount of renewable energy.

The cost of procuring electricity from the power grid is
determined by the time-of-use pricing model, as outlined in
Table 2. Meanwhile, Table 3 provides a comprehensive overview
of the installed devices capacity within each micro-energy grid.

5.2 Convergence analysis

The convergence curves for the ADMM under Scenario 1 and
Scenario 2 are presented in Figures 4, 5 respectively. As evident from
the graphs, after exceeding ten iterations, the algorithm successfully
converges to the designated threshold.

Furthermore, in Scenario 3, where the 4 micro-energy grids
operate independently, the exchanged power between them
inevitably amounts to 0. Consequently, the ADMM algorithm
achieves convergence after the initial iteration.

5.3 Economic analysis

Table 4 presents a comparative analysis of the total costs
incurred by the ADMM algorithm and the centralized
optimization method across three distinct scenarios. Notably, it is
evident that in each of these scenarios, the ADMM algorithm’s error
margin remains consistently below 1%, thus conclusively affirming
the robustness and effectiveness of the proposed algorithm.

Tables 5–7 illustrate the breakdown of costs for each component
of the micro-energy grids across three distinct scenarios. A
noteworthy trend emerges, indicating that as the connection
topology weakens, the total cost of micro-energy grid clusters
rises incrementally. This underscores the pivotal role of power
interchange between micro-energy grids in minimizing overall
costs. Notably, micro-energy grid 2, which bears a heavier load,
exhibits the most significant cost variation. The interaction of power
between micro-energy grids substantially mitigates their electricity
and gas procurement costs. Furthermore, despite micro-energy grid
1 and micro-energy grid 3 having comparable load levels, their costs
differ due to the presence of electric hydrogen production
equipment in the latter, which facilitates the storage of a portion
of electrical energy.

5.4 Operation analysis

Figures 6–8 illustrate the operational dynamics of micro-
energy grid clusters across three distinct scenarios. Notably,
apart from renewable energy generation, CHP emerges as the
primary source of electricity, while CHP and EH jointly
constitute the main supply methods for thermal energy. As
the interconnection topology between micro-energy grids
weakens, a noteworthy surge in the output of CHP and grid-
purchased power is observed. This increase arises from the
inability to transmit excess electricity to other micro-energy
grids via connecting lines, leading to its sale to the grid.
Consequentially, this trend also prompts an augmentation in

gas purchasing power. Additionally, energy storage devices play a
pivotal role in effectively managing peak and valley load
conditions, enabling effective load shaving and valley filling.

6 Conclusion

This article delves into the distributed optimization operation
method for micro-energy grid clusters, focusing on the integrated
energy system encompassing electricity, heat, and hydrogen. In
developing the mathematical model for the electrolytic cell, we
accounted for its startup characteristics to ensure an accurate
portrayal of the P2H conversion process. With regard to
optimizing the model algorithms, we established an
optimization operation model centered on each micro-energy
grid, taking into consideration their respective interests and
demands. For distributed solution, we employed the ADMM
algorithm. A case analysis revealed that the variance in total
operating costs, attributed to different connection topologies
between micro-energy grids, could be as significant as 48.15%.
Furthermore, a comparison with the results obtained from
centralized optimization algorithms underscores the efficacy of
the ADMM algorithm.
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Nomenclature

Abbreviations

PV Photovoltaic generator

WT Photovoltaic generator

CHP Combines heat and power

GB Gas boiler

EH Electric heater

EC Electrolytic cell

FC Fuel cell

MR Methanator

BT Battery

HC Heat storage tank

HS Hydrogen storage tank

GS Gas storage tank

EL Electric load

HL Heating load

HGL Hydrogen load

Parameters

IMG The number of micro-energy grids

T Length of scheduling period

K Types of EC and FC

Δt Scheduling time resolution

ci,tPV ,om/c
i,t
WT ,om

Cost coefficient of PV and WT

ci,tCHP,om/c
i,k,t
FC,om

Cost coefficient of CHP and FC

ci,k,tEC,om,1/c
i,k,t
EC,om,2

Cost coefficient 1/2 of EC

ci,tEH,om/c
i,t
GB,om/c

i,t
MR,om

Cost coefficient of EH, GB and MR

ci,tBT/HC/HS/GS,om
Cost coefficient of BT/HC/HS/GS

Ri,t
FU /H

i,t
FU

The natural gas price and natural gas
calorific value

ci,j,tEX
Electricity purchase price from other
micro-energy grids

ci,tGD,b/c
i,t
GD,s

Electricity purchase/sell price from/to the
power grid

Pi,t
GD,b,min/P

i,t
GD,b,max

The minimum/maximum power purchased
from the power grid

Pi,t
GD,s,min/P

i,t
GD,s,max

The minimum/maximum power sold to the
power grid

Pi,t
gas,b,min/P

i,t
gas,b,max

The minimum/maximum power purchased
from the gas company

ηi,tCHP,E/η
i,k,t
FC,E

The power generation efficiency of CHP/FC

Vi,t
CHP/V

i,k,t
FC

Thermoelectric ratio of CHP/FC

ηi,k,tEC /ηi,tEH The efficiency of EC/EH

ηi,tGB/η
i,t
MR

The efficiency of GB/MR

CapiPV /Cap
i
WT Installed capacity of PV/WT

CapiCHP,E/Cap
i,k
FC,E

Installed capacity of CHP/FC

CapiEC/Cap
i
EH Installed capacity of EC/EH

CapiGB/Cap
i
MR Installed capacity of GB/MR

δi,tPV ,f ore/δ
i,t
WT,f ore

The ratio of the predicted output power to
the installed capacity of PV and WT

δi,tCHP,out,E,min/δ
i,t
CHP,out,E,max

The ratio of the minimum/maximum
output power to the installed capacity
of CHP

δi,k,tFC,out,E,min/δ
i,k,t
FC,out,E,max

The ratio of the minimum/maximum
output power to the installed capacity of FC

δi,tEC,out,min/δ
i,t
EC,out,max

The ratio of the minimum/maximum
output power to the installed capacity of EC

δi,tEH,out,min/δ
i,t
EH,out,max

The ratio of the minimum/maximum
output power to the installed capacity of EH

δi,tGB,out,min/δ
i,t
GB,out,max

The ratio of the minimum/maximum
output power to the installed capacity of GB

δi,tMR,out,min/δ
i,t
MR,out,max

The ratio of the minimum/maximum
output power to the installed capacity
of MR

δiCHP,ramp,max/δ
i,k
FC,ramp,max/δ

i,k
EC,ramp,max

The ratio of the maximum ramping power
to the installed capacity of CHP/FC/EC

ηi,tBT/HC/HS/GS,c/η
i,t
BT/HC/HS/GS,d

The charging/discharging efficiency of BT/
HC/HS/GS

δi,tBT/HC/HS/GS,c,min/δ
i,t
BT/HC/HS/GS,c,max

The ratio of the minimum/maximum
charging power to the installed capacity of
BT/HC/HS/GS

δi,tBT/HC/HS/GS,d,min/δ
i,t
BT/HC/HS/GS,d,max

The ratio of the minimum/maximum
discharging power to the installed capacity
of BT/HC/HS/GS

υi,tBT/HC/HS/GS,min/υ
i,t
BT/HC/HS/GS,max

The ratio of the minimum/maximum
energy stored to the installed capacity of
BT/HC/HS/GS

σiBT/HC/HS/GS Self-discharge rate of BT/HC/HS/GS

δi,kEC,in,1,min/δ
i,k
EC,in,1,max

The ratio of the minimum/maximum input
power to the installed capacity of EC

δi,kEC,boot The ratio of the startup power to the
installed capacity of EC

yi,kEC,max/z
i,k
EC,max

The maximum startup/shut down times of
EC within a typical day

Pi,j,t
EX,min/P

i,j,t
EX,max

The minimum/maximum exchanged
power with other micro-energy grids

Ai,j,t
EX

The connection topology between
micro-energy grids

Variables

Pi,t
PV ,out /P

i,t
WT,out

The output power of PV and WT

Pi,t
CHP,in/P

i,t
CHP,out,E/P

i,t
CHP,out,H

The input/output electric/output thermal power
of CHP

Pi,k,t
FC,in/P

i,k,t
FC,out,E/P

i,k,t
FC,out,H

The input/output electric/output thermal power
of FC

Pi,k,t
EC,in,1/P

i,k,t
EC,in,2/P

i,k,t
EC,out

The input 1/input 2/output power of EC

Pi,t
EH,in/P

i,t
EH,out

The input/output power of EH
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Pi,t
GB,in/P

i,t
GB,out

The input/output power of GB

Pi,t
MR,in/P

i,t
MR,out

The input/output power of MR

Pi,t
GD,b/P

i,t
GD,s

The purchased/sold power from/to the power
grid

xi,tGD,b/x
i,t
GD,s

The purchased/sold status from/to the power
grid, 0-1 variable

Pi,t
gas,b

The purchased gas power from the gas company

Pi,t
BT/HC/HS/GS,c/P

i,t
BT/HC/HS/GS,d

The charge/discharge power of BT/HC/HS/GS

Pi,t
BT/HC/HS/GS,c,EX /P

i,t
BT/HC/HS/GS,d,EX

The charge/discharge power of BT/HC/HS/GS
exchanged with micro-energy grids

Wi,t
BT/HC/HS/GS

The stored energy of BT/HC/HS/GS

xi,tBT/HC/HS/GS,c/x
i,t
BT/HC/HS/GS,d

The charge/discharge status of BT/HC/HS/GS,
0-1 variable

xi,k,tEC
The input/output exchanged power with other
micro-energy grids

yi,kEC/z
i,k
EC

The start and stop actions of EC, 0-1 variable

Pi,j,t
EX,in/P

i,j,t
EX,out

The input/output exchanged power with other
micro-energy grids

xi,j,tEX,in/x
i,j,t
EX,out

The input/output exchanged power status with
other micro-energy grids, 0-1 variable
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Research on time-of-use
compensation pricing strategies
for load aggregators based on
user demand response

Hongzhao Yang1*, Zhan Zhang1, Rui Liang2 and Weifeng Zhao3

1School of Software, Changsha Social Work College, Changsha, China, 2School of Electrical and
Information Engineering, Changsha University of Science and Technology, Changsha, China, 3College of
Electrical and Information Engineering, Hunan University, Changsha, China

As the electric power market reform deepens, the strategic role of load
aggregators in demand-side response becomes increasingly important. The
inherent variability of distributed renewable energy generation and user
demand response often leads to a mismatch between the purchased
electricity and the market bid volume, resulting in punitive costs for
companies. To address this issue, this study treats demand-side controllable
loads as dispatchable resources and proposes a tiered pricing strategy to adjust
power distribution. By establishing a Stackelberg leader-follower game model,
the study promotes a mutually beneficial relationship between load aggregators
and controllable load users. Through case studies, this paper examines the
operational profits of load aggregators and the power adjustment behaviors of
controllable load users under tiered and fixed compensation pricing schemes.
The results indicate that tiered compensation pricing significantly reduces
punitive costs and enhances user participation in demand response.

KEYWORDS

load aggregators, controllable load management, tiered compensation strategies,
stackelberg game theory, demand-side response

1 Introduction

In recent years, the deepening of electricity market reforms has increasingly highlighted the
strategic role of load aggregators in demand-side response. Time-of-use pricing mechanisms, as
a crucial tool for electricity demand-side management, more closely align electricity prices with
supply costs through differentiated pricing. This effectively guides users to adjust their electricity
consumption at different times, ensuring the safety and stability of the power system (Zhang
et al., 2021; Liu et al., 2023). With the increasing complexity and interdependence of power
systems, especially concerning False Data Injection Attacks (FDIA) and Voltage Stability
Assessment (VSA), the vulnerability and resilience of power systems have become key
research focuses (Yang and Wang, 2024). To address these challenges, various innovative
methods have been proposed. For instance, Ding and Liu (2017) introduced an AC false data
injection attack method based on robust tensor principal component analysis, which generates
false data without requiring system parameters, overcoming the limitations of traditional bad
data detection methods. Additionally, Yang et al. (2023) proposed a domain-adaptive voltage
stability assessment method that quickly adapts to topological changes, reducing retraining
needs and improving assessment accuracy. These research findings provide significant
theoretical and practical support for further refining pricing mechanisms.
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As key intermediaries in the electricity market, load aggregators are
responsible for integrating and scheduling various demand-side
resources. By providing aggregated load curves and related
information, load aggregators can participate in competitive bidding
for demand response and sign various trading contracts (Lv et al., 2023).
Moreover, considering the potential threat of false data injection attacks
to the power system, load aggregators need the capability to counter such
attacks to ensure data authenticity and system stability (Yang et al., 2024).

Different countries exhibit significant differences in power
adjustment and balancing mechanisms. For example, the UK and
Nordic countries tend to adopt decentralized market models,
adjusting and settling deviation power through intraday balancing
markets (Khodadadi et al., 2020). In contrast, the US and Australia
prefer centralized market models, where bids and quantities are
submitted on trading platforms within a specified time and matched
based on price and time priority (Çelebi and Flynn, 2020). Currently,
China is transitioning from a long-term trading market to a combined
long-term and spot trading market. Provinces are experimenting with
decentralized or centralized market models in the spot market based on
local conditions (Liangyuan et al., 2022). For instance, regions like
Western Inner Mongolia and Fujian conduct decentralized spot
markets based on long-term physical contracts (Zhu et al., 2023). In
this model, generators and consumers independently determine power
consumption curves in the day-ahead stage and adjust imbalances
through day-ahead and balancing trades (Watanabe et al., 2018). The
essence of this model lies in the scheduling arrangements based on
bilateral contracts, with system dispatch departments ensuring contract
fulfillment and power balance dispatch (Reddy et al., 2015). However,
most regions in China still conduct spot market transactions through
monthly settlement of long-term trades, leading to significant
imbalance penalty costs for load aggregators (Jiang et al., 2019; Lu
et al., 2022). Therefore, considering the uncertainties in load demand
and distributed power output, it is crucial for load aggregators to
maximize their benefits by setting reasonable compensation prices to
incentivize controllable loads to participate in demand response
transactions.

Designing reasonable, flexible, and effective demand-side pricing
mechanisms is critical for motivating user participation in demand
response and improving resource utilization efficiency (Xu et al., 2021;
Jiang et al., 2023). In terms of organizing electricity market transactions,
demand-side users can be classified into single market type transactions
and multi-type market transactions. In single market type transaction
scenarios, drawing from research experiences in the stock trading field,
Chen et al. (2019) proposed a trading algorithm that combines auction
and continuous bidding. Additionally, a fixed-ratio total deviation
settlement method was designed for non-full transactions, and a
phased user-side deviation evaluation mechanism was introduced
(Wang L. et al., 2023). To address the economic rationality issues of
traditional deviation balancing mechanisms, a pre-bid-based monthly
deviation balancing mechanism was proposed to minimize deviation
adjustment costs, encouraging low-cost units to replace high-cost units
for power generation (Fu et al., 2022). In the context of coupled multi-
type market transactions, the design methods of electricity price
difference contracts were discussed, including setting contract prices,
effective directions, benchmark prices, and design parameters for
decomposing contract quantities (Nobis et al., 2020). Additionally,
considering the practical situation of China’s electricity trading and
dispatch management system, a day-ahead market clearing model

compatible with long-term physical contracts was proposed to
bridge the gap between long-term physical contract delivery and
grid operation constraints (Liu et al., 2020). The reinforcement
learning methods for studying electricity spot market pricing
mechanisms examined the impact of different pricing mechanisms
on the organization of long-term trades (Wang Y. et al., 2023). Finally,
Gong et al. (2021) proposed a government-authorized price difference
contract settlement mechanism, considering fairness and hedging
functions as a differentiated and predetermined approach.

Based on the above analysis, this paper aims to explore the
optimization of interests between load aggregators and proxy power
users. The innovations are in several aspects: First, considering the
deviation penalties of long-term trading contracts, positive and
negative balance penalty prices are introduced to evaluate the
penalty costs arising from the discrepancy between bid volumes
and actual electricity consumption. Second, utilizing demand-side
storage, distributed photovoltaics, and controllable loads as
dispatchable resources, a multi-option compensation contract for
power regulation of controllable load/storage devices based on the
cost functions of controllable load users or storage users is proposed.
Furthermore, a Stackelberg game model is established to explore the
application of tiered pricing strategies in demand response, aiming
to reduce power trading deviation costs while enhancing user
participation and economic benefits. Lastly, a reverse induction
method based on genetic algorithms is employed to solve the
proposed model, and the effectiveness of the model and method
is verified through case simulations.

Main Contributions of This Paper:

1. Proposing a multi-option controllable load power regulation
compensation contract based on hierarchical pricing, effectively
reducing deviation costs in electricity transactions and providing
flexible pricing options to meet different user needs.

2. Constructing a Stackelberg leader-follower game model to
optimize compensation pricing strategies, achieving an
economic benefit balance between load aggregators and users.

3. Using genetic algorithms to verify the effectiveness of the
proposed model and strategies, providing theoretical
support and empirical evidence for the formulation of
demand response strategies in the electricity market.

2 Problem description

The operational model of load aggregators in the electricity market
involves the integration of load resources, market bidding, and trading
processes. By aggregating distributed renewable energy generation and
user demand, load aggregators can more accurately predict and adjust
loads, thereby reducing penalty costs associated with deviations.
Additionally, by integrating different types of load resources, such as
residential users, commercial users, and storage systems, load
aggregators can enhance system flexibility and responsiveness,
ensuring grid stability and efficiency. However, penalty costs related
to power deviations increase operational pressure on load aggregators,
necessitating effective demand response strategies and compensation
mechanisms to mitigate these costs.

To address these issues, this paper proposes a bi-level game
approach based on a Stackelberg game model. In the game, the load
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aggregator, acting as the leader, first formulates a reasonable power
procurement strategy and tiered compensation pricing scheme to
maximize operational revenue and incentivize user participation in
demand response. The controllable load users, as followers, adjust their
electricity consumption behavior according to the compensation
strategy provided by the load aggregator, obtaining economic
compensation by reducing electricity consumption during peak
periods or increasing consumption during off-peak periods. Through
this bi-level game model, load aggregators can significantly reduce
deviation penalties and related costs while enhancing user participation
in demand response, achievingmutually beneficial economic outcomes.
The process flow of the problem description is illustrated in Figure 1.

2.1 Design of load aggregator
operating mechanism

As renewable energy and energy storage systems continue to
develop, traditional grid users are gradually transitioning from
passive recipients to active participants in power balancing. Load
aggregators play a crucial role by integrating the loads of numerous
residential, commercial, and energy storage users. This not only
enhances the overall flexibility and responsiveness of the system but
also significantly reduces costs associated with power deviations.

Load aggregators are essential in the electricity market, facilitating
the effective utilization of distributed generation and demand
response resources.

In medium-to long-term trading in the electricity market, load
aggregators develop purchasing and flexible pricing strategies based
on forecasts of end-user demand, expected production from
distributed generation, and market fluctuation costs. The trading
center assesses load aggregators to ensure the accuracy of their
load responses and power assessments. In turn, load aggregators
formulate their purchasing strategies and pricing schemes based on
this information (Yang et al., 2022). This process requires load
aggregators to possess precise forecasting capabilities and the
flexibility to adjust strategies in a continuously evolving market
environment.

Due to the volatility of distributed generation and the uncertainty of
load demand, load aggregators may face discrepancies when assessing
power deviations and actual consumption. The trading center imposes
deviation assessment fees based on the positive and negative imbalance
of deviation power, compelling load aggregators to make accurate
forecasts and manage loads effectively. By utilizing a segmented
compensation pricing mechanism, load aggregators incentivize users
to modify their consumption behaviors, reducing usage during peak
periods while increasing consumption during off-peak periods, thereby
achieving overall system balance.

FIGURE 1
Schematic diagram of load aggregator operational model.

Frontiers in Energy Research frontiersin.org03

Yang et al. 10.3389/fenrg.2024.1442194

208

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1442194


As illustrated in Figure 1, load aggregators serve a critical role in
connecting the demand side with the power supply side. The demand
side consists of a large number of dispersed and controllable load
devices, such as air conditioners, electric vehicles, and water heaters.
Load aggregators secure control over these controllable loads by signing
contracts with end users of these devices (Bruninx et al., 2020). While
ensuring that user comfort is not compromised, load aggregators
optimize the operation and control of these devices to adjust power
deviations during peak and off-peak periods, thereby minimizing the
punitive costs associated with deviations. Load aggregators not only
enhance system flexibility and responsiveness through the integration of
load resources but also encourage users to adjust their consumption
behaviors through effective pricing strategies. The specific power
assessment formula established by load aggregators is as follows:

The trading center establishes the baseline electricity purchase
quantityQd based on themonthly trading contracts signed with load
aggregators. When a user’s actual electricity consumption exceeds
this baseline, excess usage within the threshold x1% is exempt from
deviation assessment, while any consumption beyond x1% incurs a
deviation assessment fee based on the positive imbalance price set by
the trading center. Conversely, when a user’s actual electricity
consumption falls below the baseline, any shortfall within the
threshold x2% is also exempt from deviation assessment, whereas
any shortfall beyond x2% is subject to a deviation assessment fee
based on the negative imbalance price set by the trading center. The
monthly assessment fees for positive and negative imbalance
quantities are represented by Equations 1–3.

ppen+
t � ξ+ × λt (1)

ppen−
t � ξ− × λt (2)

Π2 �
ΔQpp

pen−
t ; ΔQp ≤ − x2%Qd

0 ; − x2%Qd ≤ΔQp ≤ x1%Qd

ΔQpp
pen+
t ; x1%Qd ≤ΔQp

⎧⎪⎨⎪⎩ (3)

In the formula ppen+
t and ppen−

t denote positive and negative
deviation penalty prices, respectively; ξ+ and ξ− represent positive
and negative penalty coefficients; λt stands for wholesale electricity
prices,Π2 indicates the end-of-month deviation penalty cost; ΔQp is
the deviation quantity during the monthly settlement.

2.2 Design of segmented compensation
mechanism for controllable load power
adjustment

To implement effective power adjustments for controllable
loads, load aggregators have designed a segmented compensation
mechanism that includes both power reduction compensation
contracts and power increase compensation contracts. These
contracts provide varying levels of financial incentives based on
the time sensitivity and cost differences of load adjustments,
encouraging users to reduce consumption during peak electricity
demand periods and increase usage during off-peak periods.

Through power reduction contracts, users are compensated for
decreasing their electricity consumption during high-demand
intervals, which helps alleviate the burden on the grid and reduce
reliance on expensive emergency power sources. In contrast, power
increase contracts incentivize users to take advantage of lower

electricity prices during off-peak periods, thereby optimizing the
energy distribution within the grid.

To ensure the effectiveness of this compensation mechanism, a
multi-option segmented compensation design has been introduced,
allowing different types of loads to select the most suitable
compensation plan based on their specific circumstances
(Bouakkaz et al., 2020). This flexible compensation strategy not
only considers the economic costs associated with load adjustment
for users but also reflects their contributions to grid stability, thus
motivating various users to actively participate in demand response
activities within the electricity market.

2.2.1 Compensation contract for controllable load
power reduction

Demand aggregators create tiered power reduction compensation
contracts for users participating in load shedding, offering m options.
Each option consists of a specific load reduction power ΔP−

i , and a
corresponding compensation ratepcom−

i denoted as (ΔP−
i , p

com−
i )where

i � 1, 2,/,m. When demand aggregators have a positive deviation in
power, the economic compensation U−

k,t that a controllable load user k
receives for reducing their power ΔP−

k,t is calculated as follows:

U-k,t �
ΔP-k,tpcom-

1 ; ΔP-0 ≤ΔP-k,t ≤ΔP-1
ΔP-k,tpcom-

2 ; ΔP-1 ≤ΔP-k,t ≤ΔP-2
..
.

ΔP-k,tpcom-
m ; ΔP-m-1 ≤ΔP-k,t ≤ΔP-m

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4)

Due to the varying costs of load power reduction for controllable
load users across different time periods, implementing a uniform
power reduction compensation price may hinder user engagement
in demand response initiatives. Following the methodology
proposed in the literature (Wang et al., 2021), the power
reduction compensation price pcom−

i for time period t is defined
as the retail electricity price for that period multiplied by a
compensation rate, as shown in Equation 5.

pcom−
i � ρtδi (5)

In the formula: ρt represents the retail electricity price during
period t; δi denotes the compensation rate associated with the i
option of the power reduction compensation contract.

2.2.2 Controllable load incremental power
compensation contract

When demand aggregators experience a negative deviation in
electricity volume, the economic compensation U+

k,t that
controllable load user k receives for increasing load power ΔP+

k,t

can be expressed by Equations 6, 7.

U+
k,t �

ΔP+
k,tp

com+
1 ; ΔP+

0 ≤ΔP+
k,t ≤ΔP+

1

ΔP+
k,tp

com+
2 ; ΔP+

1 ≤ΔP+
k,t ≤ΔP+

2

..

.

ΔP+
k,tp

com+
m ; ΔP+

m−1 ≤ΔP+
k,t ≤ΔP+

m

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (6)

pcom+
i � ρtπi (7)

In the formula: pcom+
i represents the compensation electricity

price associated with the i option of the tiered incremental power
compensation contract; πi denotes the electricity price discount rate
corresponding to the i option of the contract.
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3 Dynamic compensation pricing
model for controllable load power
adjustment based on leader-follower
game decision-making

Implementing controllable load management strategies within
power systems presents a complex optimization challenge involving
dynamic interactions between load aggregators and multiple
controllable load users. These interactions are governed by
supply interruption compensation contracts established between
the load aggregator and users, where the operating costs of the
load aggregator are directly influenced by the power adjustments of
controllable load users. Users are required to adjust their electricity
consumption behavior in accordance with the demand response
directives issued by the load aggregator to achieve cost efficiency
while ensuring the stability of the power supply system.

To address this issue, this paper constructs an interactive model
among the load aggregator and multiple controllable load users,
which can be framed as a 1 −K type Stackelberg game model. In this
model, the load aggregator acts as the leader, formulating
preliminary strategies, while K users respond as followers.

The upper-level optimization model is managed by the load
aggregator, aiming to minimize its monthly operating costs. These
costs encompass wholesale electricity procurement expenses,
penalties associated with monthly deviation in consumption,
demand response costs for controllable loads, and operational
maintenance costs for Battery Energy Storage Systems (BESS). To
achieve this, the load aggregator must establish capacity increase or
decrease compensation contracts and make charging and
discharging decisions for the BESS. During the upper-level
optimization process, constraints regarding power balance,
storage operational limits, and charging/discharging regulations
must be satisfied.

Conversely, the lower-level optimization model is handled by
the controllable load users, who seek to maximize their demand
response benefits. Users gain economic compensation by adjusting
their loads to either reduce or increase electricity consumption. The
lower-level optimization process must adhere to constraints related
to participation in demand response, adjustments in controllable
load power range, duration of power adjustments, frequency of
power adjustments, and energy storage charging/discharging
limitations.

To accurately simulate and predict system behavior under this
game structure, the load aggregator can employ a Monte Carlo
sampling method to generate typical daily scenarios based on
monthly trading data, thereby estimating monthly deviation in
consumption. This statistical simulation technique not only
effectively captures the volatility of the electricity market but also
provides decision support aimed at optimizing operational costs and
maximizing user benefits.

By designing a segmented compensation pricing model, the load
aggregator can incentivize users to participate in demand response
programs, leading to effective control of monthly consumption
deviations and significant reductions in penalty costs. This
strategic pricing mechanism optimizes the operational costs of
the load aggregator while fostering active user engagement
through economic incentives, collectively promoting the stability
and sustainable development of the electricity market.

Figure 2 illustrates the structure of the Stackelberg game model
proposed in this paper, which simulates the interactive decision-
making processes between load aggregators and controllable
load users.

3.1 Upper-level optimization model

The upper-level optimization problem of the model aims to
effectively reduce the monthly operating costs of the load aggregator
by incorporating capacity increase or decrease power compensation
contracts, along with the charging and discharging power of the
Battery Energy Storage System (BESS), as key decision variables.

3.1.1 Upper-level optimization objective function
The monthly operational costs of demand aggregators consist of

four components: the cost of purchasing electricity from the
wholesale market, denoted as Π1; the penalty cost for end-of-
month electricity volume deviations, denoted as Π2; the cost
associated with controllable load demand response, denoted as
Π3; and the operational and maintenance costs of the Battery
Energy Storage System (BESS), denoted as Π4. The above costs
include electricity procurement costs (see Equation 9), end-of
month deviation penalty costs (see Equation 10), etc.

minEM � Π1 + Π2 + Π3 + Π4 (8)

Qd � ∑W
w�1

χ w( )∑T
t�1

μ−w,tQ
−
w,t + μ+w,tQ

+
w,t( )Δt (9)

Π1 � Qdλt + ΔQpλt (10)

Π3 � ∑W
W�1

χ w( )∑T
t�1
∑K
k�1

U−
k,t + ΔP−

k,tρt + U+
k,t − ΔP+

k,tρt( )Δt (11)

Π4 � ∑W
W�1

χ w( )∑T
t�1

Pch
t + Pdh

t( )CBESSΔt + Cctd
BESSα

ctd
t + Cdtc

BESSα
dtc
t( ) (12)

In the model, χ(w) represents the frequency of occurrence of
typical days under monthly transactions (calculated daily); W is the
total number of typical days; Q+

w,t and Q−
w,t respectively denote the

positive and negative power deviations for the demand aggregator after
implementing smoothing measures; μ+w,t and μ−w,t are binary variables,
where μ+w,t � 1 when Q+

w,t > 0; Δt is the daily dispatch interval; T is the
total number of daily dispatches; and K represents the total number of
controllable load users. Qa indicates the actual electricity consumption
by the users. In calculating the penalty costs for end-of-month power
deviations, if actual consumption exceeds the baseline, deviation power
occurs and penalties are applied based on the wholesale electricity price.
Conversely, if actual consumption does not exceed the baseline, the
deviation is zero, and no penalty costs arise. To address the potential
frequent charging and discharging scenarios of the Battery Energy
Storage System (BESS) and regulate its charging and discharging
behavior as per reference. Equation 13 considers both the
operational and maintenance costs of BESS and the conversion costs
between charging and discharging. Here, Pch

t and Pdh
t represent the

charging and discharging powers of BESS for the period t;CBESS denotes
the operational and maintenance costs of BESS; αctdt and αdtct are binary
variables for the transitions from charging to discharging and
discharging to charging, respectively; Cctd

BESS and Cdtc
BESS correspond to

the costs associated with these transitions.
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3.1.2 Upper-level optimization constraints
(1) Power Balance Constraints

Q−
w,t � QD

w,tηw,t + Pch
t − Pdh

t +∑K
k�1

ΔP+
k,t − ΔP−

k,t( ) (13)

Q+
w,t � Pdh

t − Pch
t +∑K

k�1
ΔP−

k,t − ΔP+
k,t( ) − QD

w,tηw,t (14)

In the formula: QD
w,t represents the load power during period t

on a typical day w; ηw,t is the power purchase deviation coefficient
for the demand aggregator during period t on typical day w.

(2) Constraints on Energy Storage Operation

0≤Pch
t ≤ βcht PES (15)

0≤Pdh
t ≤ βdht PES (16)

Et � Et−1 + Pch
t ηchΔt − Pdh

t Δt/ηdh (17)
E0 � ET (18)

γminQES ≤Et ≤ γmaxQES (19)

In the equation: PES and QES respectively represent the rated
power and capacity of the Battery Energy Storage System (BESS); βcht
and βdht are binary variables indicating the charging and discharging

FIGURE 2
Structure of the stackelberg game model.
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states of BESS, with βcht � 1 denoting charging, and βdht � 1 denoting
discharging; Et is the nuclear capacity of BESS during period t; ηch
and ηdh respectively are the charging and discharging efficiencies of
BESS; γmax and γmin respectively represent the maximum and
minimum nuclear state coefficients of BESS.

(3) Energy Storage Charging and Discharging Constraints

αctdt − αdtct � βdht+1 − βdht (20)
αctd
t + αdtct ≤ 1 (21)
βcht + βdht ≤ 1 (22)
u+
w,t + u−

w,t ≤ 1 (23)

Equations 21, 22 represent the charging and discharging
conversion constraints of the energy storage system; Equation 23
specifies that at any given moment, the Battery Energy Storage
System (BESS) can only be in one of three states: charging,
discharging, or idle.

3.2 Lower-level optimization model

3.2.1 Lower-level optimization objective function
The lower-level optimization problem in the model aims to

maximize the demand response benefits for controllable load users
(see Equations 24–31). By adjusting the power increases and decreases
across different time periods, the model seeks to enhance system
flexibility and efficiency under varying demand and market
conditions, while also maintaining system stability and
economic viability.

maxESK � ∑T
t�1

U+
k,t − C+

k,t( ) + U−
k,t − C−

k,t( ){ } (24)

As delineated in reference (Ma et al., 2023), the costs associated
with increasing. C+

k,t. and decreasing C−
k,t the load power for user k

are represented as follows:

C+
k,t � a+k ΔP+

k,t( )2 + b+kΔP+
k,t − b+kΔP+

k,tθ
+
k (25)

C−
k,t � a−k ΔP−

k,t( )2 + b−kΔP−
k,t − b−kΔP−

k,tθ
−
k (26)

In the equation, b−k and a−k denote the linear and quadratic
coefficients, respectively, for user k cost function related to load
reduction. Similarly, b+k and a+k correspond to the linear and
quadratic coefficients for the cost function associated with load
increase. The type parameters, θ+k and θ−k , indicate user k propensity
to engage in load adjustment, with higher values suggesting a
stronger inclination to modify load levels.

3.2.2 Lower-level optimization constraints
(1) Controllable Load Participation Constraints

If participation in demand response increases the user’s own
benefits, users will voluntarily enter into power adjustment contracts
with the load aggregator. Conversely, if participation does not yield
additional benefits, users will choose not to participate. This means
that the compensation received for power adjustments must not be
less than the additional losses incurred by these adjustments. This
condition can be expressed as:

U+
k,t − C+

k,t ≥ 0 (27)
U−

k,t − C−
k,t ≥ 0 (28)

(2) Controllable Load Power Adjustment Range Constraints

]+k,tΔP+
k,t,min ≤ΔP+

k,t ≤ ]+k,tΔP+
k,t,max (29)

]−k,tΔP−
k,t,min ≤ΔP−

k,t ≤ ]−k,tΔP−
k,t,max (30)

−ΔP−
max,k ≤∑T

t�1
]+k,tΔP+

k,t − ]−k,tΔP−
k,t( )≤ΔP+

max,k (31)

In the equation: ]+k,t and ]−k,t denote the binary state variables
for user k, representing the power increase and decrease during
period t. ΔP+

k,t,min and ΔP+
k,t,max specify the minimum and

maximum permissible load increases for user. k. within period
t, respectively. Similarly, ΔP−

k,t,min and ΔP−
k,t,max define the

minimum and maximum permissible load reductions. ΔP+
max ,k

and ΔP−
max ,k indicate the overall maximum allowable load

reduction and increase for user k throughout the
scheduling period.

(3) Controllable Load Power Adjustment Duration Constraints

∑τ+T+
min,k−1

t�τ
]+k,t ≥T+

min,k ]+k,τ − ]+k,τ−1( ), τ � 1,/, T − T+
min,k + 1 (32)

∑τ+T+
max,k

t�τ
1 − ]+k,t( )≥ 1, τ � 1,/, T − T+

max,k (33)

∑τ+T−
min,k

−1

t�τ
]−k,t ≥T−

min,k ]−k,τ − ]−k,τ−1( ), τ � 1,/, T − T−
min,k + 1 (34)

∑τ+T−
max,k

t�τ
1 − ]−k,t( )≥ 1, τ � 1,/, T − T−

max,k (35)

In the equation, T−
max ,k and T−

min ,k denote the maximum and
minimum time durations required for user k to decrease load power,
respectively. Conversely, T+

max ,k and T+
min ,k specify the maximum

and minimum time durations required for increasing load power.
The maximum and minimum durations for controllable load power
adjustments are as follows (see Equations 32–35). Equation 32
through Equation 35 are conceptually similar to the minimum
start-stop time constraints applicable to power generation units.

(4) Constraints on the Frequency of Power Adjustments for
Controllable Loads

To prevent excessive and prolonged power adjustments for users
with controllable loads, constraints have been imposed on the
frequency of such adjustments during the scheduling period, as
delineated in Equations 36, 37.

∑T−1
t�1

]+k,t+1 − ]+k,t( )≤N+
max,k (36)

∑T−1
t�1

]−k,t+1 − ]−k,t( )≤N−
max,k (37)

In the equation, N+
max,k and N−

max,k denote the maximum
permissible frequencies for increasing and decreasing power,
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respectively, for controllable load user k over the entire
scheduling period.

(5) Energy Storage Charging and Discharging Constraints

]+k,t + ]−k,t ≤ 1 (38)

Equation 38 indicates that user k will select only one form of
load power response, either to reduce or to increase their load.

4 Model solution method

In this study, we employ the Stackelberg game theory to model
and address the interaction and decision-making processes between
load aggregators and controllable load users. The Stackelberg game
model is particularly suitable for such leader-follower scenarios,
allowing for detailed analysis and prediction of the strategic
interactions between the load aggregator (as the leader) and
controllable load users (as the followers) in the electricity market.
To account for the nonlinearity and complexity of the problem, we
integrate nonlinear programming techniques with genetic
algorithms for optimization.

The genetic algorithm generates new populations through
operations such as selection, crossover, and mutation, increasing
population diversity to prevent premature convergence while
continually optimizing strategies throughout the iterative process.

In the model, the load aggregator acts as the leader and is
represented by the variableM. Its primary task is to develop demand
response pricing strategies to influence market dynamics and user
behavior. The monthly operating costs of the load aggregator are
calculated using appropriate algorithms and loss functions, and are
determined according to Equation 8 for expected marginal EM

calculations. Conversely, controllable load users function as
followers, responding to price signals and adjusting their
strategies, represented by the variable S. Each controllable load
user possesses a set of load adjustment strategies
S � S1, S2,/, SR{ }. Through a series of selections, users can
choose the most suitable response strategy based on market
conditions.

During the strategy selection process, the load aggregator selects
the optimal strategym from the strategy spaceM and analyzes each
controllable load user’s optimal decision Si under the condition mi.
Based on the controllable load user’s maximization problem
En(m, S), the optimal response strategy Vi(m, Sin) for each user
is determined. The load aggregator forecasts and calculates the
optimal strategy as S*i and solves the decision problem
maxEM(maxVi(m), · · ·, VK(m)) to obtain
m* � argmaxEM(maxVi(m), · · ·, VK(m)). Ultimately, by
integrating the controllable load users’ response strategies
S*i � Vi(m, Sin), we obtain the Nash equilibrium solution S*i for
the system.

To provide a clearer representation of the model solution
process, we have designed a flowchart for the two-level
optimization model, as shown in Figure 3. This diagram
illustrates the steps from parameter initialization, initial
population generation, fitness calculations, to strategy updates
and optimization during the iterative process. Given the

nonlinearity of the problem, the model utilizes genetic algorithms
to solve the Stackelberg leader-follower game model.

The genetic algorithm generates new populations through
operations such as selection, crossover, and mutation. First, the
roulette wheel selection method is employed to choose high-fitness
individuals (with a crossover probability denoted as pc), followed by
single-point crossover to create new individuals, and random
mutations (with a mutation probability denoted as pm) to
enhance population diversity and prevent premature
convergence. Next, the fitness Si of the newly generated
individuals is evaluated, and it is determined whether the
iteration conditions are met.

In the initial population generation and adjustment phase, the
load aggregator selects strategies from the strategy space M and
analyzes the optimal decision combinations for each available load
user S � S1, S2,/, SR{ }. The initial population corresponds to
randomly generated initial strategy combinations from the
strategy space. Specifically, the initial strategy combinations
encompass all potential strategies, with each strategy Si
representing the load response strategy selected by the load
aggregator for a specific user.

If the new fitness results indicate an improvement in strategies,
the selection, crossover, and mutation operations continue,
calculating the fitness values Vi(m, Sin) for the new generation.
After evaluating the fitness of the new generation, it is determined
whether to meet the iteration conditions. If conditions are satisfied,
the optimal strategy combination S*i is outputted; otherwise, the
iteration continues until the termination criteria are met.

5 Analysis of case studies

5.1 Case study parameters

This study focuses on the participation of a load aggregator
representing a mixed-use residential and commercial community in
the electricity market. The community comprises six mixed-use
buildings equipped with photovoltaic panels and houses a total of
200 households. The data used in this study is sourced from the
actual load data of the Source-Load Aggregation Interaction
Response Platform of Hunan Power Company in August 2023.
This data is used to validate the model’s effectiveness and
practicality.

To comprehensively derive the power usage patterns of the
entire community, we conducted aMonte Carlo simulation based on
the electricity consumption data of these 200 households, generating
scenarios for power deviation coefficients. These coefficients follow a
Gaussian distribution with a mean of 0 and a standard deviation of
1.9651. The range for evaluating power deviations in all simulated
scenarios is set to ±2%.

In the case analysis, we assume a wholesale electricity price of
$60 per megawatt-hour, utilizing the actual load data from the
community in August. The parameters involved in the model are
listed in Table 1, “Price Range for Peak Shaving Services” and
Table 2, “Key Parameters for Load Aggregator Pricing Strategies”
These tables display the electricity demand of 100 households on a
typical day in August. Figure 4 illustrates the load curve for the entire
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community on a typical day in August, based on the simulation
predictions.

To clearly present the calculation results, we assume that the
aggregated controllable loads are divided into three types of users:
high-cost, medium-cost, and low-cost. The maximum frequency of
power adjustments for each type of controllable load is limited to
four times within the entire scheduling period. The parameters for
the battery energy storage system are set as follows: rated capacity of
200 kWh, rated power of 90 kW, maximum and minimum state of
charge coefficients of 0.9 and 0.2, respectively, initial capacity of
100 kWh, charge and discharge efficiency of 95%, and both
discharge-to-charge and charge-to-discharge conversion costs of
$0.15. The parameters for different types of controllable loads are
shown in Table 3.

5.2 Monthly market deviation assessment
results under different scenarios

This section compares and analyzes the effectiveness of demand
response programs by setting three different operational scenarios.
The specific scenarios are described as follows:

1. Scenario 1: Traditional Mode: In this scenario, all loads are
traditional, and no demand response programs are
implemented. Consequently, deviations in electricity
consumption are not effectively managed, leading to higher
deviation assessment costs and the highest total cost.

2. Scenario 2: Fixed Compensation Price Mode: In this scenario,
the load aggregator employs a fixed compensation price

FIGURE 3
Two-level optimization model solution process.
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strategy to incentivize controllable loads to mitigate deviations
in electricity consumption. This strategy induces a moderate
level of user response, partially covering the deviation, resulting
in lower overall costs compared to Scenario 1.

3. Scenario 3: Tiered Compensation Contract Mode: This
scenario uses a tiered compensation contract to more
actively incentivize controllable loads to balance electricity
consumption deviations. Due to the highest level of user
participation, deviation assessment costs are significantly
reduced. Although the duration and frequency of power
adjustments for controllable loads are constrained, this
scenario achieves the lowest total cost and the most effective
deviation mitigation among all scenarios.

Figure 5 illustrates the monthly electricity consumption
variations under different scenarios, visually depicting the impact
of each scenario on electricity management. Additionally, to gain
deeper insights into the effectiveness of different scenarios, we
analyzed the outlier data points and found that the tiered
compensation strategy excels in managing fluctuating loads,
significantly reducing overall deviation costs. This demonstrates

that flexible compensation strategies not only motivate active user
participation but also enhance system stability.

Table 4 compares the cost situations of load aggregators under
different scenarios (see Table 4). From the table, it is evident that
Scenario 3, employing a dynamic compensation strategy, performs
best in reducing deviation energy and lowering overall costs.

5.3 Revenue analysis under different
deviation penalty prices

To explore the impact of different deviation penalty prices on
the economic behavior of electricity market participants, this section
sets multiple deviation penalty coefficients to assess their effect on
the monthly operating costs of load aggregators and the demand
response benefits for controllable load users. Additionally, it
analyzes how the compensation prices for power adjustments can
be modified under these varying penalty prices to optimize market
behavior and enhance overall system efficiency.

Figure 6 shows the trend of increasing monthly operating costs
for load aggregators as the deviation penalty coefficients rise.

TABLE 1 Price range for peak shaving services.

Number Control duration Price standard Remarks

1 0 ≤ Control Duration ≤60 min $0 - $0.7 per kW per event Maximum $0.7 per kWh

2 60 min ≤ Control Duration ≤120 min $0 - $1.7 per kW per event Maximum $0.83 per kWh

3 120 min ≤ Control Duration ≤180 min $0 - $2.9 per kW per event Maximum $1 per kWh

TABLE 2 Key parameters for load aggregator pricing strategies.

Parameter Category Parameter Value

Deviation Assessment Range Range ±2%

Wholesale Electricity Price Price $60/MWh

Battery Energy Storage
System Parameters

Rated Capacity 200 kWh

Rated Power 90 kW

State of Charge Coefficient 0.9 (maximum), 0.2 (minimum)

Initial Capacity 100 kWh

Charge/Discharge Efficiency 95%

Conversion Cost $0.15

Positive Deviation Penalty Price Price $60/MWh

Negative Deviation Penalty Price Price $50/MWh

Positive Deviation Penalty Coefficient Coefficient 1.2

Negative Deviation Penalty Coefficient Coefficient 0.8

Distributed PV Feed-in Tariff Electricity Price $0.062/kWh

User Load Cost Parameters Increased Load Power Cost Linear Coefficient a+k = 0.5

Increased Load Power Cost Quadratic Coefficient b+k = 0.1

Decreased Load Power Cost Linear Coefficient a−k = 0.4

Decreased Load Power Cost Quadratic Coefficient b−k = 0.05
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Moreover, as illustrated in Figure 7, user compensation benefits also
increase with higher penalty coefficients, reflecting the market’s
sensitivity to deviations and its response to strategic adjustments.

Tables 5, 6 detail the compensation prices for power reduction
and power increase under different deviation penalty coefficients,
respectively. The data indicate that as the penalty coefficients
increase, both the compensation rate and the price discount rate
for electricity show an upward trend. This strategy aims to
incentivize users to adjust their electricity consumption behavior,
thereby reducing the overall operating costs of the market and
enhancing system stability.

As the deviation penalty coefficients increase, the monthly
operating costs for load aggregators rise, compelling them to

enhance the management of controllable loads and optimize their
strategies. This economic pressure motivates load aggregators to
actively seek efficient demand response solutions to minimize
electricity procurement costs and deviation penalties.

By increasing the compensation prices for controllable loads,
users are incentivized to flexibly adjust their electricity usage
patterns. This not only helps aggregators control costs but also
improves the load regulation capability and stability of the entire
power system. Additionally, as compensation prices are adjusted, the
participation and benefits of controllable load users increase
accordingly.

This dynamic further promotes the application and
development of demand-side response technologies, contributing

FIGURE 4
Projected load curve for the entire community on a typical day in August.

TABLE 3 Parameters of controllable loads.

Type High cost Medium cost Low cost

Total number of controllable loads 50 70 80

Response range (%) (0.95,1.0) (0.9,0.95) (0.95,0.9)

Adjustment power range (kW) (90,95) (80,85) (75,80)

Compensation rate (%) (0.4,0.45) (0.4,0.45) (0.35,0.38)

Load adjustment range (kW) (140,165) (140,165) (185,205)

TABLE 4 Comparison of load aggregator costs across different scenarios.

Cost type Scene 1 ($) Scene 2 ($) Scene 3 ($)

Market cost of electricity purchase 21,660 19,040 17,040

Tariff adjustment cost 0 2,520 3,020

Penalty for deviation 3,810 3,260 2,860

Total cost 29,040 25,020 21,760
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to the dual enhancement of economic and environmental benefits in
the electricity market.

6 Conclusion

This paper proposes a segmented multi-option controllable load
power adjustment compensation contract based on a game theory
framework, aiming to optimize demand response strategies in the
long-term market environment prior to the spot market. This
approach treats demand-side controllable loads as dispatchable
resources. By establishing segmented compensation contracts
between load aggregators and users, the method gains control
over the operation of controllable load equipment, optimizing
their operation to reduce the discrepancy between bid volumes
and actual power consumption.

1. Economic Win-Win Objective: To achieve an economic win-
win situation for both load aggregators and controllable load
users, this study constructs a 1-K type Stackelberg leader-
follower game model. This model thoroughly considers the
economic benefits of both load aggregators and controllable
load users, reducing the operating costs of the load aggregators
while enabling controllable load users to gain economic
benefits through power adjustments.

2. Design of Segmented Compensation Price Contracts: The
segmented compensation price contracts designed in this
study are valuable for motivating users to participate in
demand response. This not only helps load aggregators

formulate more effective demand response pricing strategies
but also enhances user participation in demand response by
inducing controllable load users to demonstrate demand
elasticity, thereby effectively reducing the penalty costs for
load aggregators.

3. Monte Carlo Simulation and Optimization: Using the Monte
Carlo method, the compensation prices for incentivizing
controllable load user power adjustments were optimized
based on deviation scenarios generated in typical daily
scenarios of monthly transactions. Extending this model to
shorter time scales, such as the intraday balancing market,
could further smooth out deviations arising from day-ahead
market transactions. However, due to the current maturity
level of China’s electricity market, along with market
mechanisms and technological and economic constraints,
this study has not delved deeper into the spot market analysis.

This research provides an innovative perspective to optimize
demand response strategies in the electricity market and offers
practical strategic recommendations for electricity market
designers to enhance overall market efficiency and reliability.
Future research can explore broader market conditions and
additional model application scenarios to further validate and
expand the findings of this study. Case studies indicate that
segmented compensation pricing strategies significantly reduce
the penalty costs for load aggregators by 25% and increase user
participation by 30%. These results demonstrate the effectiveness
and potential economic benefits of segmented compensation pricing
strategies in demand response.

FIGURE 5
Monthly electricity consumption variation curves under different scenarios.
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FIGURE 6
Operational costs of load aggregators under different bias penalty electricity prices.

FIGURE 7
User compensation benefits under different bias penalty electricity prices.
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4. Future Work: In our future work, we will consider
integrating artificial intelligence and machine learning
technologies to optimize demand response strategies.
Additionally, we will study the economic viability and
implementation effects of segmented compensation
strategies under different policy environments, providing
decision support for policymakers.
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Regulation techniques and
applications of distributed load
resources in urban power grids
based on internet of things
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The power consumption of urban power systems is increasing rapidly with two
typical trends: the first one is that the daily peak-valley difference of loads is more
significant, and the power supply is tight during peak hours, which threatens the
system’s safe and stable operation; the second one is that the load energy
efficiency in urban power systems is not high, which is the primary source of
carbon emission in the power industry. Therefore, reducing the peak power and
improving the system’s energy efficiency are urgent tasks for enhancing the
system’s security and achieving the carbon emission goals. The rapid
development of the Internet of Things (IoTs) ushers new opportunities for
regulating demand-side loads. By analyzing the technical characteristics of
load control based on IoTs, this paper investigates the modeling methods of
load resources. On this basis, different control and optimization methods of load
resources are analyzed and compared thoroughly. Besides, considering that load
control is not only related to technical methods but also impacted by incentive
strategies, the load control mechanisms under the mature and immature market
environments are analyzed. Finally, the research gap and prospect of load
regulation are proposed.

KEYWORDS

internet of things, urban power grids, load resources, demand response, regulation
techniques

1 Introduction

The rapid increase in electricity consumption in urban power grids has presented two
significant trends: firstly, the continuous widening gap between peak and off-peak periods,
leading to a tight supply-demand balance during peak hours, which threatens the safe and
stable operation of the power grid (Zhou Xiaoxin et al., 2018); secondly, the increasing
proportion of new energy sources, which poses higher challenges for the real-time supply-
demand balance due to their intermittent output (Sun et al., 2007). Therefore, reducing peak
loads in urban power grids and enhancing system flexibility are essential pathways to
achieve the power grid’s safe, stable, and economically efficient operation (Song et al., 2016).
The rapid development of the Internet of Things (IoTs) has enabled broader device
connectivity, faster and more reliable data transmission, and enhanced privacy
protection for the power system (Hui et al., 2020, Song Y. et al., 2017). It allows for
regulating large-scale load resources in the power system to achieve peak shaving, valley
filling, and new energy integration at lower costs and higher efficiency (Zhang et al., 2008).
The essence of load regulation is to reduce or shift demand-side power consumption,
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providing services such as standby, peak shaving, and frequency
regulation to the power system (Xue et al., 2007). To ensure a
satisfactory user experience and minimize impacts on production
and life, load regulation mainly targets load types with energy
storage characteristics or transferable characteristics, such as
energy storage batteries, electric vehicles, and temperature control
loads (Wang Ke et al., 2014). For example, implementing orderly
charging based on dynamic time-of-use electricity prices for electric
vehicles can assist in peak shaving and valley filling in the power
system (Zhiwei et al., 2014). Optimized control strategies for
temperature control load clusters can achieve smooth tracking of
load aggregation power to set targets, utilizing load resources to
achieve system supply-demand balance (Wang et al., 2012).

Based on extensive theoretical research, load regulation
technology is also transitioning from pilot verification to large-
scale application. For example, the ERCOT electricity market in
Texas, USA, has incorporated load regulation resources into the
ancillary services market, providing services such as spinning
reserves, fast response, and emergency regulation to the system
(Yi et al., 2017). Japan has established a megawatt market, allowing
demand-side users to participate in load regulation, reducing peak
demand for thermal power generation, and increasing the utilization
of new energy (Yang, 2015). The European Union has launched the
Smart Grid project, using real-time electricity prices to influence
end-users’ electricity consumption behaviors, assisting in
integrating new energy into the power system (Ding et al., 2013).
China has also conducted a series of demonstration projects in the
field of load regulation, such as constructing a friendly interaction
system between urban users and the power grid in Jiangsu Province,
tapping into the coordinated regulation capabilities of load resources
and generation resources (Hui et al., 2018a). Besides, the commercial
buildings are constructed as virtual power plants in Shanghai to
participate in peak shaving and valley filling in the power system
(Shengchun et al., 2020). Flexible grids in Zhejiang Province are
aggregated to promote the local integration of distributed
photovoltaics (Zou et al., 2019).

Based on the above literature review, previous research gaps can
be summarized as three points. i) Load modeling technology:
traditional models only focus on power consumption while
failing to comprehensively reflect real-time production processes,
dynamic equipment parameters, and product quality, among other
factors. ii) Load regulation technology: current load control mainly
focuses on electricity, making it challenging to control multi-
dimensional load resources such as heat, cold, and natural gas,
leading to challenges in coordinating loads in integrated energy
systems. iii) Load control for improving system resilience: current
research mainly focuses on resilience assessment, unit planning,
mobile energy storage resource scheduling, etc., with limited
attention to load resources with significant control potential.

This paper discusses the technical characteristics of load
resource regulation under the Internet of Things (View on 5G
architecture, 2019; G network architecture, 2016; Embrace 5G
new world, 2019; Telecom and GridHuawei, 2018; Yilmaz, 2016),
including diversification of types (Yi Wang. et al., 2019; Knud, 2014;
Hui et al., 2019; Siano, 2014; Shi et al., 2018), refinement of control
(Hui et al., 2020), and data privacy protection (Zhou Z. et al., 2018;
Leligou et al., 2018; Commercial feasibility analysis of smart, 2019).
Besides, this paper investigates the modeling methods of load

resources (JU and Ma, 2008; TANG et al., 2007; Yong, 2012; Ju
et al., 2020; Yi Ding. et al., 2019; Yayuan et al., 2019; Ahmad et al.,
2020; Das et al., 2020; Morello et al., 2018), especially including
temperature-controlled loads (Sonderegger, 1978; Lu, 2012; Sun
et al., 2016; Wang et al., 2016; Wang Dan et al., 2014; Mathieu
and Callaway, 2012; Kirschen et al., 2000; Zhenfang, 2004; Liu et al.,
2008; Technology information; Bachao, 2017; Song M. et al., 2017;
Shao et al., 2004; Park et al., 2001; Zhang Q. et al., 2016; Hui et al.,
2018b) and (Song et al., 2011; Xiang et al., 2015; Luo et al., 2011;
Zhang Hongcai et al., 2014; Wang et al., 2019; Zhiwei et al., 2012;
Junhua et al., 2010; Jinghong et al., 2012; Hongmei et al., 2015; Liu
et al., 2016; Nosair and Bouffard, 2015; Wang et al., 2005; Yaping
et al., 2017; Zhang Fang et al., 2014). On this basis, different control
and optimization methods of load resources are analyzed and
compared thoroughly (Hui et al., 2017; Dong et al., 2015;
Bhattacharyya and Crow, 1996; Chu et al., 1993; Laurent et al.,
1995; Meng, 2015; Qi et al., 2017; Zhang et al., 2015; Samarakoon
et al., 2012; Vrettos et al., 2018; Babahajiani et al., 2018; Singh et al.,
2017; Ledva et al., 2018; Li et al., 2020; Jia et al., 2013; Su et al., 2018;
Shi et al., 2019; Cai et al., 2019; Zhang et al., 2017; Measurement of
electrical and magnetic quantities. C37.118.1-2011, 2011; Douglass
et al., 2013; Kaiqiao et al., 2016; Wenting et al., 2016; Bao et al., 2015;
Weckx et al., 2014; Yao et al., 2018). Next, considering that load
control is not only related to technical methods but also impacted by
incentive strategies, the load control mechanisms under the mature
(Albadi and El-Saadany, 2008; Xie et al., 2018; Hongtu et al., 2010;
Ruan et al., 2013; Nyeng and Ostergaard, 2011; Siano and Sarno,
2016; Ding et al., 2013; Kai et al., 2020; Zhang Ning et al., 2016; Chen
et al., 2018; Jian et al., 2017; Wang et al., 2020; Bin et al., 2018; Tai
et al., 2016) and immature market environments are analyzed (Zeng
et al., 2016; Zeng et al., 2013; Zeng et al., 2015; Zhong et al., 2013;
Chen et al., 2017; Hui et al., 2022; Yi Ding et al., 2019). Finally, this
paper summarizes the shortcomings of load regulation technology
and provides prospects for future research (Rui, 2018; Antiy
Institute, 2019; Ju et al., 2019; Qiu et al., 2020; Zhaohong et al.,
2020; Bo et al., 2020; Zhang et al., 2019; Pierre, 1987; Chen et al.,
2020; Yin et al., 2019).

2 Methodological approach

2.1 Characteristics of load regulation
technologies based on IoTs

Information and communication technologies represented by
5G have facilitated the rapid development of the IoT (View on 5G
architecture, 2019). First, massive machine communication
technology enables large-scale access to load devices in the IoT,
with up to 1 million devices per square kilometer (G network
architecture, 2016). Secondly, enhanced mobile broadband
technology enables fast data exchange between control centers
and load devices in the IoT, with transmission speeds of up to
20 Gbps (Embrace 5G new world, 2019). Furthermore, ultra-
reliable, low-latency communication technology allows for high-
reliability data transmission and instantaneous load control in the
IoT, with a data transmission failure rate as low as 10−9 fully meeting
the 99.999% reliability requirements for load control in power grids
(Telecom and GridHuawei, 2018). The data transmission latency
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can be reduced to as low as 1 ms, meeting the millisecond-level
precise load control requirements (Yilmaz, 2016). Therefore, the IoT
supported by next-generation communication technologies has
promoted the rapid development of load control technology. This
section discusses the technical characteristics of load control in the
IoT from three aspects: diversification of control types, refinement of
control, and data privacy protection.

2.1.1 Diversification of load regulation types
Diversification of regulation types has two layers of meaning.

The first layer refers to diversifying user types participating in load
control. Traditional load control, limited by communication
methods and the number of control terminals, mainly targets
large-capacity users, such as using fiber optic communication for
load control in industrial enterprises and commercial buildings.
However, the development of the IoT has led to the widespread
deployment of smart meters and remote-control terminals for small
and medium-sized users, such as smart sockets, which are rapidly
increasing (Yi Wang. et al., 2019). Load control now covers many
small and medium-sized users, leading to a more diverse range of
user types, as shown in Figure 1 (Knud, 2014).

The second layer of meaning refers to the diversification of
services provided to the power system. Traditional load control
involves sending instructions from the dispatch department to end
users, resulting in inevitable communication delays (Hui et al.,
2019). Therefore, load control primarily provides auxiliary
services with extended time scales to the power system, such as
reserves and peak shaving (Siano, 2014). With the IoT based on
next-generation communication technologies, data transmission
speeds are fast, especially with 5G’s ultra-reliable low-latency
communication technology, which can reduce communication
latency to the millisecond level. This enables load control to
provide a more diverse range of services to the power system,

such as frequency regulation and emergency backup (Shi
et al., 2018).

2.1.2 Refinement of load regulation
The development of load control refinement can be divided into

three stages (Hui et al., 2020). In the first stage, power reduction or
transfer is achieved through the interconnection lines between
control area grids and the primary grid, and direct disconnection
occurs during power shortages. This regional control method cannot
consider individual power demands and reduction losses. In the
second stage, Home Energy Management Systems enables control
over individual electricity users, allowing users to autonomously
choose the method, capacity, and period for participating in load
control. In the third stage, load control based on the IoT gives users
more choices. Users can decide whether each load device
participates in control and how it participates. For example, air
conditioning loads can be set within a comfortable temperature
range, allowing for independent and refined management of loads.
This ensures a better electricity consumption experience for users
under control.

2.1.3 Data privacy protection
The characteristics of diversification of control types and

refinement of control can bring better economic benefits or
electricity comfort to a broader range of users. However, a
significant obstacle to the large-scale application of load control
is the issue of user data security and privacy. The Internet of Things
protects the transmission of load data, including software-defined
networking technology (Zhou Z. et al., 2018), network function
virtualization technology (Leligou et al., 2018), and network slicing
technology (Commercial feasibility analysis of smart, 2019). For
example, network slicing technology allows operators to construct
multiple virtual networks based on a single network physical layer

FIGURE 1
Internet of Things-based pluralistic load control.
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for different application scenarios, achieving communication
isolation between specific business data and enabling customized
services and domain slicing management for “dedicated networks.”
Specifically, through massive machine communication slicing, fine-
grained collection of energy usage information for many users can
be achieved; through ultra-reliable low-latency communication
slicing, real-time control of loads can be achieved (Telecom and
GridHuawei, 2018).

2.2 Modeling methods of distributed
load resources

The primary issue in load control is establishing accurate and
applicable load models and quantifying different loads’ adjustability.
Traditional load models mainly include static models such as
constant impedance-current-power, classical, and comprehensive
load models, with model parameters determined through
measurement, fault simulation, and statistics (Ju and Ma, 2008;
Tang et al., 2007; Yong, 2012). However, these traditional load
models primarily describe the electrical characteristics of loads,
established for power scheduling and electrical characteristics to
support simulation calculations and operational control of power
systems without considering the comfort and experience of
electricity users. Literature (Ju et al., 2020) defines loads whose
electricity consumption can vary within specified ranges or be
shifted in different periods as “demand response.” Demand
response requires considering the electrical characteristics of the
load itself and its interactivity, controllability, and comfort of
electricity use. Currently, the research objects of load control
include water heaters, air conditioners, heat pumps, refrigerators,
washing machines, energy storage batteries, electric vehicles, etc.
Due to space limitations, this paper mainly introduces two typical
load modeling methods: temperature-controlled loads represented
by air conditioners and energy storage loads represented by electric
vehicles. Air conditioners account for a high proportion of total
loads, with significant adjustment potential, and have minimal
impact on user electricity comfort during adjustments (Yi Ding.
et al., 2019). Electric vehicles are increasing, and their charging and
discharging can provide colossal energy storage resources to the
power system.

On the one hand, the fast-charging technologies bring more
fluctuations to the power systems (Yayuan et al., 2019). On the other
hand, battery swapping technologies bring more opportunities to
provide long-term charging battery storage for power systems
(Ahmad et al., 2020). Besides, electric vehicles have different
standards and charging voltage requirements (Das et al., 2020),
which bring more regulation potentials on power systems to provide
multi-type regulation services (Morello et al., 2018). Therefore, air
conditioners represent the load type with the most development
potential currently, while electric vehicles represent the load type
with the most adjustment capacity in the future.

2.2.1 The first typical load: Temperature-
controlled loads

Modeling temperature-controlled loads requires considering the
electrical model of the interaction between the load and the power
system and the thermodynamic model of the load and its spatial

location. Equivalent thermodynamic parameters are the most
representative modeling method (Sonderegger, 1978),
equivalently representing temperature-controlled loads as
equivalent circuits composed of capacitors and resistors, as
shown in Figure 2 (Wang et al., 2012).

Where Q is the equivalent thermodynamic power of air
conditioning load considers the cooling or heating states; the
switch status represents the operating state of the air conditioner;
TiTo and Tm represents indoor temperature, outdoor ambient
temperature, and temperature of indoor objects, respectively,
which are all equivalent to different node voltage values; R1 and
R2 represent the equivalent thermal resistances between the building
and outdoor environment, and between objects inside the building,
respectively; C1 and C2 represent the specific heat capacities of the
indoor air and objects, respectively, which are equivalent to
capacitance values (Lu, 2012). Based on Kirchhoff’s current law,
the relationship between current, voltage, resistance, and
capacitance in the equivalent thermodynamic parameter model
can be expressed as Equations 1, 2:

dTi

dt
� Q

C1
− Ti − To

C1R1
− Ti − Tm

C1R2
(1)

dTm

dt
� Ti − Tm

C2R2
(2)

where parameter Q is the cooling capacity from the air conditioning
system. It is generally calculated by the operating power P and the
Coefficient of Performance (COP), which can be expressed
as Q(t) � P(t) pCOP.

In addition to the equivalent thermodynamic parameter model
for temperature-controlled loads, literature (Sun et al., 2016)
proposes an exponential model describing the dynamic
characteristics of a typical water heater, achieving peak shaving
and valley filling in the power system through aggregated control of
water heater demand response. Literature (Wang et al., 2016)
presents an economically driven ice storage load model,
participating in demand response in the medium to long-term
electricity market environment. Literature (Wang Dan et al.,
2014) establishes a temperature-controlled load model that
considers user comfort constraints, aggregates temperature-
controlled loads into energy-efficient power plants to participate
in dynamic power system regulation and achieves the same
objectives as conventional power plants. Literature (Mathieu and
Callaway, 2012) uses a Markov chain model to describe the state
change process of aggregated temperature-controlled loads and uses
Kalman filtering technology for joint estimation of parameters and
states, accurately tracking the operating power of the temperature-
controlled load model. Literature (Kirschen et al., 2000; Zhenfang,
2004; Liu et al., 2008) establishes an elasticity matrix describing user
electricity behavior based on the price elasticity coefficient in
economics. The self-elasticity and cross-elasticity coefficients
describe the amount of electricity adjustment for the user in the
current and other periods, respectively, and the elasticity matrix can
represent the mutual influence of electricity loads at different times.

Furthermore, with the advancement of power electronics
technology, the market share of variable-frequency air
conditioners equipped with rectifier-inverter devices is rapidly
expanding, surpassing conventional fixed-frequency air
conditioners in sales in China (Technology information). The
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main difference between variable-frequency air conditioners and
fixed-frequency air conditioners lies in the compressor’s control
mode, as shown in Figure 3 (Bachao, 2017).

The compressor of a fixed-frequency air conditioner has only
two operating modes, on/off, with the operating power switching
approximately between rated power and zero power, maintaining
the indoor temperature within a specific range. In contrast, the
compressor speed of a variable frequency air conditioner can be
continuously adjusted through a frequency converter, making it
more suitable for participating in dynamic responses of the power
system. Literature (Song M. et al., 2017) and (Shao et al., 2004)
establish variable frequency air conditioner models based on
simulation methods and experimental data, proving their
continuous adjustment characteristics. Literature (Park et al.,
2001) analyzes the relationship between the operating
performance of variable-frequency air conditioners and the
compressor operating frequency, cooling capacity, and cooling
efficiency ratio. Literature (Zhang Q. et al., 2016) constructs a
dedicated, intelligent testing platform to compare the operating

characteristics of variable-frequency air conditioners and
conventional fixed-frequency air conditioners, analyzing their
long-term operation, dynamic operation, startup, and shutdown
processes. The results show that variable-frequency air conditioners
can reach the set temperature indoors more quickly and have higher
energy efficiency. Literature (Hui et al., 2018b) incorporates the
variable frequency air conditioner model into the dynamic response
process of the power system, considering the inertia element of
compressor adjustment, making the variable frequency air
conditioner cluster equivalent to traditional generator units
participating in power system frequency regulation. Therefore,
variable frequency air conditioners participating in load control
are more flexible, have faster response speeds, and have minimal
impact on user comfort.

2.2.2 The second typical load: Electric vehicles
The physical model parameters of electric vehicles mainly

include battery capacity Bi, state of charge Si, battery charging/
discharging power Pc,iPd,i, and battery charging/discharging

FIGURE 2
Model of thermostatically controlled loads.

FIGURE 3
The operating principle of variable frequency air conditioners.
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efficiency ηc,iηd,i (Song et al., 2011). Based on the above parameters,
the charging/discharging model of electric vehicles can be obtained
as the Equation 3:

Si t + 1( ) �
Si t( ) + Pc,i · ηc,i/Bi, Pc,i > 0
Si t( ), Pc,i � Pd,i � 0
Si t( ) − Pd,i · ηd,i/Bi, Pd,i > 0

⎧⎪⎪⎨⎪⎪⎩ (3)

Furthermore, the electric vehicle model also needs to consider
constraints on charging/discharging power and battery capacity
(Xiang et al., 2015), expressed as the Equation 4:

0≤Pc,i ≤Pc,i
max

0≤Pd,i ≤Pc,i
min

Simin ≤ Si ≤ Simax

⎧⎪⎨⎪⎩ (4)

Literature (Luo et al., 2011) proposes a charging load calculation
model for different types of electric vehicles based on their different
electricity usage behaviors. Literature (Zhang Hongcai et al., 2014)
presents a spatiotemporal distribution-based electric vehicle
charging load prediction model considering electric vehicles’
driving and parking characteristics. Based on a single electric
vehicle physical model, literature (Wang et al., 2019) constructs a
large-scale aggregation state space model for electric vehicles,
accurately describing the impact of heterogeneous charging
characteristics and random driving behaviors on the capacity of
electric vehicles to participate in power system frequency regulation.
Literature (Zhiwei et al., 2012) establishes an electric vehicle
charging station model and proposes an ordered charging model
considering user travel demand and grid load levels to improve the
economic benefits of charging stations. Literature (Junhua et al.,
2010) constructs a probability model for the random charging and
discharging of electric vehicles, jointly considering the random
output of wind turbines, achieving the minimum total generation
cost economic dispatch of the power system. Literature (Jinghong
et al., 2012) establishes a two-stage constant current-constant
voltage charging model for electric lithium batteries. It proposes
an aggregation model for electric vehicle charging stations in
residential areas based on the Poisson distribution. Literature
(Hongmei et al., 2015) constructs an electric vehicle charging and
discharging model. It proposes a microgrid energy storage capacity
optimization operation method based on mixed-integer second-
order cone programming, achieving ordered charging and
discharging scheduling of electric vehicles and balanced support
for microgrids. Literature (Liu et al., 2016; Nosair and Bouffard,
2015; Wang et al., 2005; Yaping et al., 2017; Zhang Fang et al., 2014)
establishes a dynamic capacity degradation model for electric vehicle
batteries and proposes an optimized scheduling model for electric
vehicles considering charging and discharging losses, achieving
multiple objectives optimization such as charging station profits,
user benefits, and travel demand optimization.

3 Typical load control methods

Compared with the regulation capacity provided by traditional
generating units, the regulation capacity provided by individual
loads is minimal, requiring the control of large-scale loads. Load
resources are geographically dispersed, with significant differences

in operating characteristics, and they need to ensure diverse
individual user electricity demands. Based on the existing control
architecture, load control methods can be divided into three types:
centralized, distributed, and hybrid.

3.1 Centralized control method

The centralized control method has a clear structure and can
achieve real-time solid consistency control of load clusters, making it
the current primary load control method. Literature (Hui et al.,
2017) proposed a centralized control method for adjusting the set
temperature of temperature-controlled loads, changing the
operating power within the range users allow to provide
operational reserves for the power system. Literature (Dong et al.,
2015) adopted a centralized control architecture. It proposed an
improved weighted coefficient queuing algorithm, considering the
individual preferences of users participating in the system’s dynamic
response, achieving direct control of temperature-controlled loads
such as air conditioners and heat pumps. Literature (Bhattacharyya
and Crow, 1996) proposed a centralized control method based on
fuzzy logic, which improves the dynamic response performance of
loads and user satisfaction and reduces user electricity costs.
Literature (Chu et al., 1993) used dynamic programming to
control loads directly, targeting the minimum load reduction to
solve the problem of insufficient generating capacity during peak
summer loads in power systems. Literature (Laurent et al., 1995)
integrated the advantages of linear programming and dynamic
programming, proposing an optimization method based on
column generation, which meets the requirements of electric
water heaters while participating in peak shaving of power
systems. Literature (Meng, 2015) proposed a centralized
frequency control strategy for temperature-controlled loads and
coordinated with electric vehicles to participate in power system
frequency regulation. Literature (Qi et al., 2017) constructed a
temperature-controlled load model for the cluster of electric
water heaters. It proposed a new serialization control strategy to
provide frequency control shedding auxiliary services to the
power system.

However, centralized control methods also have drawbacks. For
example, there are delays in sensing measurement, signal
transmission, operation calculation, and terminal execution,
leading to lag in load control (Zhang et al., 2015). Literature
(Samarakoon et al., 2012) established a hardware and software
platform to test communication delays during load direct control
processes. The results showed that the load could eventually be
disconnected, but the communication delay was between 3.3 and
4.6 s. Literature (Vrettos et al., 2018) conducted experiments on
commercial buildings participating in power system frequency
regulation, proving that communication delays cannot be ignored
and require about 20 s to eliminate their effects. Currently, the
primary methods to solve communication delays in centralized
control are load state estimation and design feedback controllers.
Literature (Babahajiani et al., 2018) proposed a fuzzy proportional-
integral controller connecting generating units with adjustable loads.
When delay-induced success rate fluctuations occur, the generating
units can receive fluctuation signals and change their operating
states, reducing the impact of delays. Literature (Singh et al., 2017)
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linearized communication delays using the Padé approximation
method and quantified the effects of communication delays on
power fluctuations. Literature (Ledva et al., 2018) proposed a
stochastic predictive controller and Kalman filtering state
estimation method to reduce the impact of communication delays.

3.2 Distributed control method

Compared with centralized control, distributed control has
better scalability, privacy, and reliability and is suitable for
controlling numerous and geographically dispersed loads.
However, distributed control has higher requirements for
communication networks, data transmission, and terminal
computing capabilities, and the development of IoT technology
has promoted the application of distributed control in load
control fields.

Literature (Li et al., 2020) proposed a distributed consistency
control algorithm considering time-coupled characteristics,
achieving robust control of large-scale load resources in scenarios
with partial information loss and theoretically proving the
convergence and optimality of this method in load control.
Literature (Jia et al., 2013) took refrigerators as typical
temperature-controlled loads. It proposed a distributed control
strategy based on system frequency fluctuation amplitude and
user participation level as decision metrics, dynamically adjusting
the refrigerator’s operating cycle to maintain the stable operation of
microgrids in islanded states. Literature (Su et al., 2018) proposed a
dispersed active power control strategy for large-scale temperature-
controlled load groups by solving the coupled Fokker-Planck
equation probability model, achieving load response in power
system emergencies. Literature (Shi et al., 2019) separately
proposed load-distributed control methods based on stable
recovery technology, achieving primary and secondary frequency
control for temperature-controlled loads. Literature (Cai et al., 2019)
and (zhang et al., 2017), respectively, based on deep learning load
prediction technology and load self-learning coordinated control
technology, ensuring load distributed control while maintaining
user comfort. Therefore, distributed control methods generally
install terminal controllers on the load side to monitor
parameters such as local system frequency deviation for load
control, avoiding the communication delay issues generated in
centralized control. However, compared with the measurement
devices (phasor measurement unit, PMU) in centralized control
(Measurement of electrical and magnetic quantities. C37.118.1-
2011, 2011), the measurement accuracy of control terminals is
lower, leading to control deviations (Douglass et al., 2013).

Note that the local control method is also a kind of method,
which is a general concept by using the local or edge control devices.
In this paper, the distributed control method is a kind of local
control method by using the edge control devices and exchanging
operating states with neighboring devices.

3.3 Hybrid control method

The hybrid control method combines the advantages of
centralized and distributed control, ensuring efficient control

and high consistency of load clusters while improving system
scalability and responsiveness. However, the cost of the control
system is relatively high. Literature (Kaiqiao et al., 2016)
proposed an ordered charging layered control strategy for
electric vehicles. The main control center obtains the charging
load guidance curve through a two-stage optimization model of
peak shaving and valley filling. Each secondary control center
selects a centralized or distributed control strategy to follow the
charging load. Literature (Hui et al., 2019) proposed a load hybrid
control architecture based on dual-end measurement and
retrospective correction. It uses PMUs to monitor power
system frequency deviations as accurate values. Then, through
terminal controllers monitoring local frequency deviations and
combining with precise historical data sent by PMUs, real-time
correction of local measurements is performed, improving load
control accuracy. The control center sets the load response
threshold in advance, avoiding real-time communication and
eliminating control delays.

Additionally, literature (Wenting et al., 2016) proposed a
hybrid control architecture for non-ideal communication states
such as packet loss and error codes, aggregating loads such as
electric heat pumps as a virtual power plant to participate in
dynamic regulation of power systems, as shown in Figure 4.
Literature (Bao et al., 2015) and (Weckx et al., 2014) designed a
hybrid control method to involve temperature-controlled loads
in system frequency regulation. By setting predetermined
frequency response thresholds and minimum shutdown times
for temperature-controlled loads, they achieved smooth
regulation of temperature-controlled load aggregation groups,
reducing power system frequency deviations and oscillations.
Literature (Yao et al., 2018) proposed a hybrid dual-layer control
architecture based on virtual automatic power generation control
and distributed control, increasing the adjustable capacity of
temperature-controlled loads to accommodate many renewable
energy sources.

4 Market mechanism of load regulation

4.1 Load regulation mechanisms in
mature markets

Load control involves technical issues such as modeling and
control and economic considerations. Like power generation
units having regulation costs, load control also involves market
economic issues. Currently, load control mechanisms can be
categorized into price-based and incentive-based, as shown in
Figure 5 (Albadi and El-Saadany, 2008). Price-based
mechanisms influence users’ electricity consumption by
varying electricity costs during different periods, mainly
aiming to increase system revenue or reduce generation costs.
Therefore, price-based mechanisms are market-oriented load
control models (Xie et al., 2018), including time-of-use pricing,
real-time pricing, and peak pricing. Incentive-based
mechanisms require users to sign contracts in advance with
fixed or time-varying subsidies, aiming to reduce electricity
consumption during peak loads and ensure system stability
(Hongtu et al., 2010). Thus, incentive-based mechanisms
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ensure system stability, including interruptible loads, demand-
side bidding, emergency demand response, and others (Ruan
et al., 2013).

The IoT has facilitated broader device connectivity in the power
system, enabling small and medium-sized users to participate in the
load control market. Literature (Nyeng and Ostergaard, 2011)
constructed terminal controllers, data interfaces, and
communication systems to enable small users to respond to
dynamic electricity prices, reducing user electricity costs by
approximately 7%. Literature (Siano and Sarno, 2016) studied
distribution network operators participating in real-time
electricity markets and used marginal electricity prices to
influence small users in adjusting temperature-controlled loads,
reducing system operation costs. Literature (Ding et al., 2013)
analyzed the Ecogrid EU project, a major innovative grid pilot
project in the EU, where smart meters and electricity data
monitoring devices were installed for small users. Real-time
electricity prices influenced user electricity consumption,
demonstrating that users can assist power systems in integrating
more renewable energy.

Furthermore, the widespread deployment of IoT-enabled
smart terminals has led to the application of blockchain
technology in load control market mechanisms, ensuring
faster and more reliable data transmission and enhanced
privacy protection (Kai et al., 2020, Zhang Ning et al., 2016).
Literature (Chen et al., 2018) designed a decentralized trading
system based on blockchain for distributed adjustable load
resources. Literature (Jian et al., 2017) proposed a
multilateral trading mechanism for distribution grid markets
based on smart contracts, enabling real-time local transactions
of distributed generation and load resources, eliminating
deviations between operating power and planned quantities.

FIGURE 4
Structure of virtual power plants.

FIGURE 5
Load regulation mechanisms in mature markets.
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Literature (Wang et al., 2020) proposed an electric vehicle
charging rights trading mechanism based on blockchain,
facilitating load distribution among different charging
stations and ensuring the safe operation of transmission and
distribution equipment. Literature (Bin et al., 2018) proposed a
multilevel bidding mechanism in a non-trust environment,
achieving effective trading of adjustable loads while
protecting user privacy. Literature (Tai et al., 2016) focused
on multi-energy systems and constructed a transaction system
based on heterogeneous blockchain technology, enhancing
market transaction security.

4.2 Load control mechanisms in non-
mature markets

Many power systems worldwide need more mature market
models, making it challenging to implement load control even
by installing intelligent meters and terminals. Taking China as
an example, the government determines the electricity prices for
both power generation units and users through catalog prices,
giving little decision-making power to the power generation
side regarding grid prices. Users must accept the prices set for
their category (Zeng et al., 2016). Therefore, users need more
motivation in non-mature markets to participate in
load control.

Currently, in these unified pricing markets, most load control
projects are based on administrative measures with limited
consideration for user demands, resulting in relatively unfair
treatment for users (Zeng et al., 2013). In recent years, power
companies have compensated users after load shedding, but these
compensations are usually fixed prices that do not reflect real-
time market costs (Zeng et al., 2015). Therefore, compared to
mature markets with open competition, power companies in
non-mature markets cannot directly implement price or
incentive mechanisms (Yi et al., 2017). Inspired by the
widespread use of coupons in the industrial sector, literature
(Zhong et al., 2013, Chen et al., 2017) proposed a load control
market strategy based on coupons. In this strategy, after
electricity users voluntarily participate in response projects,
they receive corresponding coupon rewards. The specific
execution involves a real-time iterative bidding framework
where an aggregator provides coupon face values to end users,
who then submit load adjustment quantities based on these
values. The aggregator optimizes the face values to maximize
revenue and publishes new coupon face values to users in a cyclic
process, eventually determining coupon face values and
response capacity.

However, small and medium-sized end users (e.g., residential
users) need more time or expertise to submit load adjustment
quantities accurately. Most residential users need to be aware of
their load power during different periods and are unlikely to
accurately give feedback on load adjustment quantities to
aggregators. To address this issue, the national critical R&D
program “Friendly Interaction System Between Urban Users
and Power Grid Supply and Demand” proposed a demand
response points incentive model, fully considering the
operability of users and power grid enterprises (Hui et al.,

2022). In this model, users receive points notifications every
15 min, with positive points indicating an increase in points for
electricity usage during that period and negative points marking a
decrease (Yi Ding et al., 2019). Positive points typically occur
during low load periods, encouraging users to increase electricity
usage, while negative points occur during peak load periods,
enabling users to decrease electricity usage. Points are settled
monthly, and users with a positive point total can exchange them
for corresponding reward money. In contrast, users with an
opposing point total have their points reset to zero, avoiding
increased electricity costs for users during the demonstration
phase and alleviating user concerns about participating in load
control. The positive and negative points market strategy reduces
the difficulty of user participation in load control, respects users’
autonomous choices in participating in adjustments, and is a
beneficial supplement to electricity price policies in non-
mature markets.

5 Limitations and prospects of load
regulation

5.1 Limitations of load regulation technology

5.1.1 Load modeling technology
As the scale of load control increases, the accuracy of control

capacity becomes increasingly crucial for the safe operation of
power systems, necessitating the establishment of accurate load
models. However, current load models based on classical models
or historical statistical data need help to describe diverse loads’
real-time states and operating conditions, resulting in delays or
even failures in load response. Taking industrial loads as an
example, traditional models only focus on power consumption.
At the same time, it fails to comprehensively reflect real-time
production processes, dynamic equipment parameters, and
product quality, among other factors. Dispatching authorities
may issue commands when equipment cannot respond, leading
to response failures. Therefore, load models that can interact with
load entities in real-time must be constructed, comprehensively
describing the operational states throughout the entire lifecycle
of loads to achieve an accurate assessment of load control
capabilities.

5.1.2 Load regulation technology
Existing load control primarily involves direct switching or

adjusting power output. However, under the Internet of Things
(IoTs), load resources include small and medium-sized users’ loads
with small capacities and high uncertainties, compounded by
operating time, space, and load types. Ensuring user comfort
during control processes is challenging, making it difficult to
apply traditional control methods uniformly.

Furthermore, with the deep coupling of electricity with heat,
cold, natural gas, distributed energy, and other forms of energy,
the connotation of load control is continuously expanding.
Leveraging the conversion and complementarity of different
energy forms can uncover more extensive and in-depth
control potentials at the comprehensive energy system level.
However, current load control mainly focuses on electricity,
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making controlling multi-dimensional load resources such as
heat, cold, and natural gas challenging. This leads to challenges in
coordinating loads in integrated energy systems.

5.1.3 System resilience by regulating loads
Power systems are susceptible to natural disasters and human

attacks, such as Typhoon Hato in 2017, causing widespread
blackouts in Macau and other cities, and the 2019 blackout in
Venezuela due to a cyberattack (Rui, 2018, Antiy Institute, 2019).
In this context, resilient power systems emerged, referring to the
ability to prevent, withstand, respond to, and quickly recover
from extreme events (Ju et al., 2019). Resilient power systems
primarily address small probability, high-loss extreme events
beyond the traditional “three lines of defense” framework (Qiu
et al., 2020).

Research on resilient power systems focuses on natural
disasters like typhoons and floods, as well as human-made
disasters like cyberattacks. The stages of accidents include
primary systems like transmission and distribution lines,
transformers, and secondary systems like communication
networks and sensing devices (Zhaohong et al., 2020).
However, current research mainly focuses on resilience
assessment, unit planning, mobile energy storage resource
scheduling, etc., with limited attention to load resources with
significant control potential. Addressing extreme events that are
low-probability in power systems through unit construction or
energy storage configuration is costly. Utilizing existing loads as
adjustment resources for extreme events is cost-effective with
large capacities. For example, some insignificant loads can be
shed at some extremely dangerous or urgent conditions.
Additionally, due to the low probability of extreme events, it
will not frequently impact user energy consumption. However,
specific research in this aspect still needs to be completed.

Given the limitations of load control technology, the following
prospects are outlined from three perspectives.

5.2 Prospects of load regulation technology

5.2.1 Digital twin-based load modeling technology
The development of the Internet of Things (IoTs) has expanded

the application of digital twin technology to load modeling (Bo et al.,
2020). Digital twins can leverage real-time monitored load data from
the IoT to establish mechanical and data-driven models of loads.
These models can then be used through simulation software to
precisely describe, diagnose, and predict load entities (Zhang
et al., 2019).

Digital twin technology inherently suits load modeling,
enabling a bidirectional mapping between physical load
objects and digital spaces. It accurately simulates multi-
dimensional characteristics of loads, such as structure, state,
and temporal aspects. Additionally, with the scalable nature of
digital twins, dynamic replacement and integration of loads at
multiple physical, hierarchical, and scale levels can be achieved.
However, large-scale application research based on IoT and
digital twin technology in load control still needs to be
improved, necessitating further research on precise mapping
of loads based on digital twins, virtual-real dynamic

interactions, software-defined states, intelligent intervention
operations, and other related technologies (Pierre, 1987).

5.2.2 Data-driven adaptive load regulation
technology

Adaptive control technology is not new to power systems and
has been applied in fields like generator excitation control and
frequency control since the last century (Chen et al., 2020). With
the development of IoT and the participation of various energy
resources such as electricity, heat, cold, and natural gas in system
control, further research is needed on applying adaptive control
technology in integrated energy systems. This includes
constructing control methods based on energy types and load
endowments to tap into the potential of different energy forms of
loads (Yin et al., 2019). Researching data-driven model-free
adaptive control technology can achieve adaptive control of
multi-input-output, nonlinear, and large time-delay energy
types of load resources. Furthermore, considering the large
scale of future load control resources, research on IoT-based
distributed adaptive control of loads, edge computing, and other
technologies is needed to reduce data communication
requirements for large-scale load control, thereby enhancing
network communication and load control reliability.

5.2.3 Enhancing system resilience with load
regulation technology

In an IoT environment, the potential of load control can be
explored in three stages: prevention, response, and recovery, to
improve the system’s adequacy to extreme events and the speed of
recovery after events.

In the prevention stage, research on abnormal system
monitoring, accident prediction, impact mechanisms, risk
assessment, and load control strategies is needed to enhance
the system’s disaster warning capabilities. In the response stage,
research on fine-grained identification of loads is necessary to
identify critical loads and prioritize their power supply [126].
Additionally, research on optimizing the scheduling of loads such
as electric vehicles can serve as temporary power sources to
improve system adequacy. In the recovery stage, research on
operating control strategies for black-start power sources on the
load side is essential, along with load supply level recovery
methods under limited monitoring data, to maximize system
recovery speed, business production value, and user electricity
experience.

6 Conclusion

Starting from the background of the high proportion of new
energy power systems and the rapid development of the Internet
of Things, this paper discusses the development opportunities
and enormous potential of load control. This paper outlines the
technical characteristics of load control under the IoT and studies
the modeling methods of loads and methods for quantifying
control capabilities. Based on this, this paper conducts an in-
depth comparative analysis of control strategies for different load
resources, exploring optimization methods for power system
adjustment resources after load control. Considering the close
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relationship between load control implementation and market
policies, this paper further studies the load control mechanisms
in mature electricity markets abroad and immature electricity
markets domestically. Finally, this paper analyzes the
shortcomings of current load control technologies. It provides
prospects for future research, including digital twin-based load
modeling, data-driven load adaptive control, and load control
technologies to enhance system resilience. This paper will
provide valuable literature on the development and application
of load regulation technologies.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

QZ: Writing–original draft, Writing–review and editing. JW:
Writing–original draft, Writing–review and editing. YY:
Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The project
with No. 5211JY220002 supports this work.

Conflict of interest

Authors QZ and YY were employed by Economy Research
Institute of State Grid Zhejiang Electric Power Company,
Hangzhou, China.

Author JW was employed by State Grid Zhejiang Yiwu Power
Supply Co., Ltd., Jinhua, China.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

5G network architecture-A high-level perspective, China: huawei Technologies CO.,
Shenzhen, China: LTD., 2016.

Ahmad, F., Saad Alam, M., Saad Alsaidan, I., and Shariff, S. M. (2020). Battery
swapping station for electric vehicles: opportunities and challenges. IET Smart Grid 3
(3), 280–286. doi:10.1049/iet-stg.2019.0059

Albadi, M. H., and EL-Saadany, E. F. (2008). A summary of demand response in electricity
markets. Electr. Power Syst. Res. 78 (11), 1989–1996. doi:10.1016/j.epsr.2008.04.002

Antiy Institute (2019). CSGITSEC. Preliminary analysis and reflections on
Venezuela’s power outage. Inf. Secur. And Commun. Priv. 5, 28–39.

Babahajiani, P., Shafiee, Q., and Bevrani, H. (2018). Intelligent demand response
contribution in frequency control of multi-area power systems. IEEE Trans. Smart Grid
9 (2), 1282–1291. doi:10.1109/tsg.2016.2582804

Bachao, B. (2017). What is inverter technology AC [EB/OL]. Available at: https://
www.bijlibachao.com.

Bao, Y. Q., Li, Y., Hong, Y. Y., and Wang, B. (2015). Design of a hybrid hierarchical
demand response control scheme for the frequency control. IET Generation, Transm.
and Distribution 9 (15), 2303–2310. doi:10.1049/iet-gtd.2015.0628

Bhattacharyya, K., and Crow,M. L. (1996). A fuzzy logic based approach to direct load
control. IEEE Trans. Power Syst. 11 (2), 708–714. doi:10.1109/59.496143

Bie, Z., Lin, C., Li, G., and Qiu, A. (2020). Development and prospect of resilient
power system in the context of energy transition. Proceeding CSEE 40 (9), 2735–2744.

Bin, L. I., Wangzhang, C. A. O., Chao, L. U., et al. (2018). Security management and
technique support for multi-level DR bidding under untrusted environment based on
blockchain. Proceeding CSEE 38 (8), 2272–2283.

Bo, Z., Cheng, D., He, D., et al. (2020). “White paper on digital twin applications,” in
China Institute of electronic technology standardization. Beijing.

Cai, M., Pipattanasomporn, M., and Rahman, S. (2019). Day-ahead building-level
load forecasts using deep learning vs. traditional time-series techniques. Appl. Energy
236, 1078–1088. doi:10.1016/j.apenergy.2018.12.042

Chen, B., Sun, H., Chen, Y., Guo, Q., Wu, W., and Qiao, Z. (2020). Energy circuit
theory of integrated energy system analysis(I): gaseous circuit. Proc. CSEE 40 (2),
436–443.

Chen, Q., Wang, K., Chen, S., and Xia, Q. (2018). Transactive energy for distributed
agents: architecture, mechanism and technology. Automation Electr. Power Syst. 42
(3), 1–7.

Chen, T., Pourbabak, H., Liang, Z., and Su, W. (2017). An integrated eVoucher
mechanism for flexible loads in real-time retail electricity market. IEEE Access 5,
2101–2110. doi:10.1109/access.2017.2659704

Chu, W. C., Chen, B. K., and Fu, C. K. (1993). Scheduling of direct load control to
minimize load reduction for a utility suffering from generation shortage. IEEE Trans.
Power Syst. 8 (4), 1525–1530. doi:10.1109/59.260955

Commercial feasibility analysis of smart grid enabled by 5G network slicing by China
Telecom, State Grid of China, Huawei, etc. Shanghai, China, 2019.

Das, H. S., Rahman, M. M., Li, S., and Tan, C. W. (2020). Electric vehicles standards,
charging infrastructure, and impact on grid integration: a technological review. Renew.
Sustain. Energy Rev. 120, 109618. doi:10.1016/j.rser.2019.109618

Ding, Y., Pineda, S., Nyeng, P., Ostergaard, J., Larsen, E. M., andWu, Q. (2013). Real-
time market concept architecture for EcoGrid EU—a prototype for European smart
grids. IEEE Trans. Smart Grid 4 (4), 2006–2016. doi:10.1109/tsg.2013.2258048

Ding, Y., Hui, H., Lin, Z., Zheng, M., Qu, X., and Cui, W. (2017). Design of business
model and market framework oriented to active demand response of power demand
side. Automation Electr. Power Syst. 41 (14), 2–9.

Dong, WANG, Zeng, Y., Mu, Y., and Wang, Y. (2015). An optimization method for
new energy utilization using thermostatically controlled appliances. Power Syst.
Technol. 39 (12), 3457–3462.

Douglass, P. J., Garcia-Valle, R., Nyeng, P., Ostergaard, J., and Togeby, M. (2013).
Smart demand for frequency regulation: experimental results. IEEE Trans. Smart Grid 4
(3), 1713–1720. doi:10.1109/tsg.2013.2259510

Embrace 5G new world. China: roland berger, 2019.

Hongmei, L. I., Hantao, C. U. I., and Qiulan, W. A. N. (2015). Distribution network
reconfiguration based on second-order conic programming considering EV charging
strategy. Proc. CSEE 35 (18), 4674–4681.

Hongtu, ZHAO, Zhu, Z., and Erkeng, Y. U. (2010). Study on demand response
markets and programs in electricity markets. Power Syst. Technol. (5), 146–153.

Hui, H., Ding, Y., Liu,W., Lin, Y., and Song, Y. (2017). Operating reserve evaluation of
aggregated air conditioners. Appl. Energy 196, 218–228. doi:10.1016/j.apenergy.2016.
12.004

Hui, H., Ding, Y., Luan, K., Chen, T., Song, Y., and Rahman, S. (2022). Coupon-based
demand response for consumers facing flat-rate retail pricing. CSEE J. Power Energy
Syst. Early Access.

Hui, H., Ding, Y., Luan, K., and Xu, D. (2018a). Analysis of 815 blackout in Taiwan
and the improvement method of contingency reserve capacity through direct load control.
Portland, USA: IEEE Power and Energy Society General Meeting.

Hui, H., Ding, Y., Shi, Q., Li, F., Song, Y., and Yan, J. (2020). 5G network-based
Internet of Things for demand response in smart grid: a survey on application potential.
Appl. Energy 257, 113972. doi:10.1016/j.apenergy.2019.113972

Frontiers in Energy Research frontiersin.org11

Zhou et al. 10.3389/fenrg.2024.1422216

231

https://doi.org/10.1049/iet-stg.2019.0059
https://doi.org/10.1016/j.epsr.2008.04.002
https://doi.org/10.1109/tsg.2016.2582804
https://www.bijlibachao.com
https://www.bijlibachao.com
https://doi.org/10.1049/iet-gtd.2015.0628
https://doi.org/10.1109/59.496143
https://doi.org/10.1016/j.apenergy.2018.12.042
https://doi.org/10.1109/access.2017.2659704
https://doi.org/10.1109/59.260955
https://doi.org/10.1016/j.rser.2019.109618
https://doi.org/10.1109/tsg.2013.2258048
https://doi.org/10.1109/tsg.2013.2259510
https://doi.org/10.1016/j.apenergy.2016.12.004
https://doi.org/10.1016/j.apenergy.2016.12.004
https://doi.org/10.1016/j.apenergy.2019.113972
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1422216


Hui, H., Ding, Y., Song, Y., and Rahman, S. (2019). Modeling and control of flexible
loads for frequency regulation services considering compensation of communication
latency and detection error. Appl. Energy 250, 161–174. doi:10.1016/j.apenergy.2019.
04.191

Hui, H., Ding, Y., and Zheng, M. (2018b). Equivalent modeling of inverter air
conditioners for providing frequency regulation service. IEEE Trans. Industrial Electron.
66 (2), 1413–1423. doi:10.1109/tie.2018.2831192

Jia, H., Qi, Y., andMu, Y. (2013). Frequency response of autonomous microgrid based
on family-friendly controllable loads. Sci. Sin. Technol. (3), 247–256.

Jinghong, ZHENG, Mengting, D. A. I., Man, ZHANG, et al. (2012). Load clusters
characteristic and modeling of EV charge station in residential district. Proc. CSEE 32
(22), 32–38.

Ju, P., Wang, C., Xin, H., Li, H., Jiang, D., and Shen, F. (2019). Flexibility, resilience
and toughness of power system. Electr. Power Autom. Equip. 39 (11), 1–7.

Ju, P., Guo, D., Lu, C., Jin, Y., Wang, Z., Chen, Q., et al. (2020). Review and prospect of
modeling on generalized synthesis electric load containing active loads. J. Hohai Univ.
Nat. Sci. 48 (4), 367–376.

Ju, P., and Ma, D. (2008). Power system load modeling. Beijing: China Electric Power
Press.

Kai, X. I. E., Zhang, X., and Zhang, S. (2020). Application and prospect of blockchain
technology in electricity trading. Automation Electr. Power Syst. 44 (19), 19–28.

Kirschen, D. S., Strbac, G., Cumperayot, P., and de PaivaMendes, D. (2000). Factoring
the elasticity of demand in electricity prices. IEEE Trans. Power Syst. 15 (2), 612–617.
doi:10.1109/59.867149

Knud, L. (2014). IoT market-forecasts at a glance. Germany, Hamburg: IoT Analytics.

Laurent, J. C., Desaulniers, G., Malhamé, R. P., and Soumis, F. (1995). A column
generation method for optimal load management via control of electric water heaters.
IEEE Trans. Power Syst. 10 (3), 1389–1400. doi:10.1109/59.466513

Ledva, G. S., Vrettos, E., Mastellone, S., Andersson, G., and Mathieu, J. L. (2018).
Managing communication delays and model error in demand response for
frequency regulation. IEEE Trans. Power Syst. 33 (2), 1299–1308. doi:10.1109/
tpwrs.2017.2725834

Leligou, H., Zahariadis, T., Sarakis, L., Tsampasis, E., Voulkidis, A., and Velivassaki, T.
(2018). “Smart Grid: a demanding use case for 5G technologies,” in 2018 IEEE
international conference on pervasive computing and communications workshops
(PerCom workshops). Athens, Greece.

Li, J., Ye, Y., Papadaskalopoulos, D., and Strbac, G. (2020). Distributed consensus-
based coordination of flexible demand and energy storage resources. IEEE Trans. power
Syst. 36 (4), 3053–3069. doi:10.1109/tpwrs.2020.3041193

Li, Y., Yao, J., Yong, T, Ju, P, Yang, S, and Shi, X (2017). Estimation approach to
aggregated power and response potential of residential thermostatically controlled
loads. Proc. CSEE 37 (19), 3–12.

Liu, L., Liu, T., Zhang, T., and Liu, J. (2016). Orderly charging and discharging
strategy optimization for electric vehicles considering dynamic battery-wear model.
Automation Electr. Power Syst. 40 (5), 83–90.

Liu, Y., Junyong, L. I. U., and Tang, J. (2008). An optimal decision-making model for
power supply company’s power purchase in weekly market considering price elasticity
matrix of demand side and risk. Power Syst. Technol. 32 (18), 18–24.

Lu, N. (2012). An evaluation of the HVAC load potential for providing load balancing
service. IEEE Trans. Smart Grid 3 (3), 1263–1270. doi:10.1109/tsg.2012.2183649

Luo, Z., Hu, Z., Song, Y., Yang, X., andWu, J. (2011). Study on plug-in electric vehicles
charging load calculating. Automation Electr. Power Syst. 35 (14), 36–42.

Mathieu, J. L., and Callaway, D. S. (2012). “State estimation and control of
heterogeneous thermostatically controlled loads for load following,” in 45th IEEE
Hawaii international conference on system sciences. Hawaii, USA.

Measurement of electrical and magnetic quantities. C37.118.1-2011 (2011). IEEE
standard for synchrophasor measurements for power systems[S]. USA: IEEE.

Meng, J. (2015). Research on power system frequency modulation control strategy
based on electric vehicles and temperature controlled load. Tianjin: Tianjin University.

Morello, R., Di Rienzo, R., Roncella, R., Saletti, R., and Baronti, F. (2018). Hardware-
in-the-loop platform for assessing battery state estimators in electric vehicles. IEEE
Access 6, 68210–68220. doi:10.1109/access.2018.2879785

Nosair, H., and Bouffard, F. (2015). Reconstructing operating reserve: flexibility for
sustainable power systems. IEEE Trans. Sustain. Energy 6 (4), 1624–1637. doi:10.1109/
tste.2015.2462318

Nyeng, P., and Ostergaard, J. (2011). Information and communications systems for
control-by-price of distributed energy resources and flexible demand. IEEE Trans.
Smart Grid 2 (2), 334–341. doi:10.1109/tsg.2011.2116811

Park, Y. C., Kim, Y. C., and Min, M. K. (2001). Performance analysis on a multi-type
inverter air conditioner. Energy Convers. Manag. 42 (13), 1607–1621. doi:10.1016/
s0196-8904(00)00147-3

Pierre, D. A. (1987). A perspective on adaptive control of power systems. IEEE Trans.
power Syst. 2 (2), 387–395. doi:10.1109/tpwrs.1987.4335139

Ping, J, Chen, S., Zhang, N, Yan, Z, and Yao, L (2017). Decentralized transactive
mechanism in distribution network based on smart contract. Proc. CSEE 37 (13), 3682–3690.

Qiu, A., Guo, J., and Bi, C. (2020). Research on the development strategy of elastic
power system under energy transformation. Xi’an: Xi’an Jiaotong University.

Qi, Y., Wang, D., Jia, H., Chen, N., Wei, W., and Fan, M. (2017). Research on under
frequency load shedding strategy using aggregated thermostatically controlled loads
based on demand response. Proc. CSEE 37 (3), 99–108.

Ruan, W., Sha, L. I. U., and Yang, L. I. (2013). Overview of demand response in the
U.S.A. Power Demand Side Manag. 15 (2), 61–64.

Rui, T. (2018). “Research on EmergencyManagement of Large Area Power Outages in
Zhongshan City Power Grid - Based on the Power Outage Case Caused by Typhoon,” in
Tiange in 2017 [D]. Guangzhou: Jinan University.

Samarakoon, K., Ekanayake, J., and Jenkins, N. (2012). Investigation of domestic load
control to provide primary frequency response using smart meters. IEEE Trans. Smart
Grid 3 (1), 282–292. doi:10.1109/tsg.2011.2173219

Shao, S., Shi, W., Li, X., and Chen, H. (2004). Performance representation of variable-
speed compressor for inverter air conditioners based on experimental data. Int. J. Refrig.
27 (8), 805–815. doi:10.1016/j.ijrefrig.2004.02.008

Shengchun, T. U., Liu, X., and Zhang, H. (2020). Typical implementation of
commercial building virtual power plant in Huangpu district of Shanghai. Power
Demand Side Manag. 22 (1), 52–57.

Shi, Q., Li, F., Hu, Q., and Wang, Z. (2018). Dynamic demand control for system
frequency regulation: Concept review, algorithm comparison, and future vision. Electr.
Power Syst. Res. 154, 75–87. doi:10.1016/j.epsr.2017.07.021

Shi, Q., Li, F., Liu, G., Shi, D., Yi, Z., and Wang, Z. (2019). Thermostatic load control
for system frequency regulation considering daily demand profile and progressive
recovery. IEEE Trans. Smart Grid 10 (6), 6259–6270. doi:10.1109/tsg.2019.2900724

Siano, P. (2014). Demand response and smart grids—A survey. Renew. Sustain.
Energy Rev. 30, 461–478. doi:10.1016/j.rser.2013.10.022

Siano, P., and Sarno, D. (2016). Assessing the benefits of residential demand response
in a real time distribution energy market. Appl. Energy 161, 533–551. doi:10.1016/j.
apenergy.2015.10.017

Singh, V. P., Samuel, P., and Kishor, N. (2017). Impact of demand response for
frequency regulation in two-area thermal power system. Int. Trans. Electr. Energy Syst.
27 (2), e2246. doi:10.1002/etep.2246

Sonderegger, R. C. (1978). Dynamic models of house heating based on equivalent
thermal parameters. USA, NJ, Princeton: Princeton University.

Song, M., Gao, C., Yan, H., and Yang, J. (2017b). Thermal battery modeling of inverter
air conditioning for demand response. IEEE Trans. Smart Grid 9 (6), 5522–5534. doi:10.
1109/tsg.2017.2689820

Song, Y., Lin, J., Hu, Z., and Dong, S. (2016). Energy distribution network:
infrastructure, operation mode and market mechanism. Proc. CSEE 36 (21),
5776–5787, 6020.

Song, Y., Lin, J., Tang, M., and Dong, S. (2017a). An internet of energy things based on
wireless LPWAN. Engineering 3 (4), 460–466. doi:10.1016/j.eng.2017.04.011

Song, Y., Yang, Y., and Zechun, H. U. (2011). Present Status and Development Trend
of Batteries for Electric Vehicles. Power Syst. Technol. 35 (4), 1–7.

Su, J., Guo, Y., Liu, M., Zhang, G., and Wang, D. (2018). Strategy and probability
model for thermostatically controlled loads in emergency load shedding system. Power
Syst. Technol. 42 (3), 911–917.

Sun, J., Tang, S., Liu, F., Wang, D., and Wang, R. (2016). Modeling method and
control strategy evaluation of electric water heater for demand response program. Proc.
CSU-EPSA 28 (4), 51–55.

Sun, Y., Jun, W. U., and Guojie, L. I. (2007). Influence research of wind power
generation on power systems. Power Syst. Technol. 31 (20), 55–62.

Tai, X., Sun, H., and Guo, Q. (2016). Electricity transactions and congestion management
based on blockchain in energy internet. Power Syst. Technol. 40 (12), 3630–3638.

Tang, Y., Zhang, H., and Hou, J. (2007). A synthesis load model with distribution
network. Power Syst. Technol. 31 (5), 34–38.

Technology information The market share of variable frequency air conditioning will
exceed 50% [EB/OL]. Available at: http://www.techweb.com.cn/news/2011-03-21/
1004599.shtml,2011-03-21.

Telecom, C., Grid, S., and Huawei. 5G Network Slicing Enabling Smart Grid. China,
Beijing, 2018.

View on 5G architecture-version 3.0. 5G PPP architecture working group, Europe,
2019.

Vrettos, E., Kara, E. C., Macdonald, J., Andersson, G., and Callaway, D. S. (2018).
Experimental demonstration of frequency regulation by commercial buildings—Part I:
Modeling and hierarchical control design. IEEE Trans. Smart Grid 9 (4), 3213–3223.
doi:10.1109/tsg.2016.2628897

Wang, C., Liu, M., and Lu, N. (2012). A tie-line power smoothing method for
microgrid using residential thermostatically-controlled loads. Proc. CSEE 32 (25),
63–70.

Frontiers in Energy Research frontiersin.org12

Zhou et al. 10.3389/fenrg.2024.1422216

232

https://doi.org/10.1016/j.apenergy.2019.04.191
https://doi.org/10.1016/j.apenergy.2019.04.191
https://doi.org/10.1109/tie.2018.2831192
https://doi.org/10.1109/59.867149
https://doi.org/10.1109/59.466513
https://doi.org/10.1109/tpwrs.2017.2725834
https://doi.org/10.1109/tpwrs.2017.2725834
https://doi.org/10.1109/tpwrs.2020.3041193
https://doi.org/10.1109/tsg.2012.2183649
https://doi.org/10.1109/access.2018.2879785
https://doi.org/10.1109/tste.2015.2462318
https://doi.org/10.1109/tste.2015.2462318
https://doi.org/10.1109/tsg.2011.2116811
https://doi.org/10.1016/s0196-8904(00)00147-3
https://doi.org/10.1016/s0196-8904(00)00147-3
https://doi.org/10.1109/tpwrs.1987.4335139
https://doi.org/10.1109/tsg.2011.2173219
https://doi.org/10.1016/j.ijrefrig.2004.02.008
https://doi.org/10.1016/j.epsr.2017.07.021
https://doi.org/10.1109/tsg.2019.2900724
https://doi.org/10.1016/j.rser.2013.10.022
https://doi.org/10.1016/j.apenergy.2015.10.017
https://doi.org/10.1016/j.apenergy.2015.10.017
https://doi.org/10.1002/etep.2246
https://doi.org/10.1109/tsg.2017.2689820
https://doi.org/10.1109/tsg.2017.2689820
https://doi.org/10.1016/j.eng.2017.04.011
http://www.techweb.com.cn/news/2011-03-21/1004599.shtml,2011-03-21
http://www.techweb.com.cn/news/2011-03-21/1004599.shtml,2011-03-21
https://doi.org/10.1109/tsg.2016.2628897
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1422216


Wang, D., Fan, M., and Jia, H. (2014b). User comfort constraint demand response for
residential thermostatically-controlled loads and efficient power plant modeling. Proc.
CSEE 34 (13), 2071–2077.

Wang, H., Chen, S., and Zheng, Y. A. N. (2020). Blockchain-enabled charging right
trading among EV charging stations: mechanism, model and method. Proceeding CSEE
40 (2), 425–435.

Wang, J., Wang, X., and Zhang, X. (2005). The flexible operation reserve model in the
power market. Proc. CSEE 25 (18), 20–27.

Wang, J., Zhong, H., Xia, Q., and Yang, S. (2016). Model and method of demand
response for thermostatically-controlled loads based on cost-benefit analysis.
Automation Electr. Power Syst. 40 (5), 45–53.

Wang, K., Yao, J., Yao, L., Yang, S., and Yong, T. (2014a). Survey of research on
flexible loads scheduling technologies. Automation Electr. Power Syst. 38 (20), 127–135.

Wang, M., Mu, Y., Li, F., Jia, H., Li, X., Shi, Q., et al. (2019). State space model of
aggregated electric vehicles for frequency regulation. IEEE Trans. Smart Grid 11 (2),
981–994. doi:10.1109/tsg.2019.2929052

Weckx, S., D’Hulst, R., andDriesen, J. (2014). Primary and secondary frequency support by
a multi-agent demand control system. IEEE Trans. Power Syst. 30 (3), 1394–1404.

Wenting, W. E. I., Wang, D., and Jia, H. (2016). A hierarchical and distributed control
strategy of thermostatically controlled appliances for city park based on load model
prediction. Proc. CSEE 36 (8), 2049–2056.

Xiang, D., Hu, Z., Song, Y., and Ding, H. (2015). Business Model and Day-ahead
Dispatch Strategy to Reduce Wind Power Curtailment Through Vehicle-to-Grid. Proc.
CSEE 35 (24), 6293–6303.

Xie, D., Hui, H., Ding, Y., and Lin, Z. (2018). Operating reserve capacity evaluation of
aggregated heterogeneous TCLs with price signals. Appl. Energy 216, 338–347. doi:10.
1016/j.apenergy.2018.02.010

Xu, Z., Hu, Z., Song, Y., Luo, Z., Zhan, L., and Shi, H. (2012). Coordinated Charging of
Plug-in Electric Vehicles in Charging Stations. Automation Electr. Power Syst. 36 (11), 38–43.

Xu, Z., Hu, Z., Song, Y., Zhang, H., and Chen, X. (2014). Coordinated charging
strategy for pev charging stations based on dynamic time-of-use tariffs. Proc. CSEE 34
(22), 3638–3646.

Xue, Y., Luo, Y., Li, B., Luo, J., Dong, Z., and Ledwich, G. (2007). A review of interruptible
load participating in system reserve. Automation Electr. Power Syst. 31 (10), 1–6.

Yang, J. (2015). Negative Watt: The Neglected Fifth Big Energy. Energy 8, 100–102.

Yao, Y. A. O., Zhang, P., and Wang, Y. (2018). A two-layer control method for
thermostatically controlled loads to provide fast frequency regulation. Proc. CSEE 38
(17), 4987–4998.

Yayuan, L. I. U., Zhu, Y., and Yi, C. U. I. (2019). Challenges and opportunities towards fast-
charging battery materials. Nat. Energy 4 (7), 540–550. doi:10.1038/s41560-019-0405-3

Yi, D., Luan, K., and Hongxun, H. (2019c). Energy conservation and emission
reduction, starting from “fireflies” - demonstration of electricity demand response
based on integral mechanism. Sci. Technol. Overv. 78, 76–78.

Yi, DING, Yonghua, SONG, Hongxun, H. U. I., and Shao, C. (2019b). Integration of
air conditioning and heating into modern power systems. Singapore: Springer.

Wang, Y., Chen, Q., Zhang, N., Feng, C., Feng, F., and Sun, M. (2019a). Fusion of the
5G communication and the ubiquitous electric Internet of Things: application analysis
and research prospects. Power Syst. Technol. 43 (5), 1575–1585.

Yilmaz, O. (2016). “Ultra-reliable and low-latency 5G communication,” in Proc. Of
the europe conference on networks and communication. Athens, Greece.

Yin, X., He, J., Wang, Y., Li, J., Li, C., et al. (2019). A review on distribution system
restoration for resilience enhancement. Trans. China Electrotech. Soc. 34 (16),
3416–3429.

Yong, T. (2012).Mathematical model and modeling technology of power load. Beijing:
Science Press.

Zeng, M., Li, S., and He, Y. (2015). Status, challenges and countermeasures of
demand-side management development in China. Renew. Sustain. Energy Rev. 47,
284–294. doi:10.1016/j.rser.2015.03.028

Zeng, M., Xue, S., Ma, M., Lingyun, L., Min, C., and Yuejin, W. (2013). Historical
review of demand side management in China: Management content, operation mode,
results assessment and relative incentives. Renew. Sustain. Energy Rev. 25, 470–482.
doi:10.1016/j.rser.2013.05.020

Zeng, M., Yang, Y., Wang, L., and Sun, J. (2016). The power industry reform in China
2015: Policies, evaluations and solutions. Renew. Sustain. Energy Rev. 57, 94–110.
doi:10.1016/j.rser.2015.12.203

Zhang, H., Yao, L., and Yuan, X. (2019). Digital Twin White Paper. Beijing: China
Institute of Electronic Information Industry Development.

Zhang, F., Lin, CHENG, Xiong, L. I., et al. (2014b). Prediction based on hierarchical
compensation for delays of wide-area closed-loop control systems. Proc. CSEE 34 (19),
3194–3201.

Zhang, F., Sun, Y., Cheng, L., Li, X., Chow, J. H., and Zhao, W. (2015). Measurement
and modeling of delays in wide-area closed-loop control systems. IEEE Trans. Power
Syst. 30 (5), 2426–2433. doi:10.1109/tpwrs.2014.2359773

Zhang, H., Hu, Z., Song, Y., Xu, Z., and Jia, L. (2014a). A prediction method for
electric vehicle charging load considering spatial and temporal distribution.Automation
Electr. Power Syst. 38 (1), 13–20.

Zhang, N., Yi, WANG, Kang, C., Cheng, J., and He, D. (2016b). Blockchain technique
in the energy internet: preliminary research framework and typical applications. Proc.
CSEE 36 (15), 4011–4022.

Zhang, Q., Guo, Q., and Yu, Y. (2016a). “Research on the load characteristics of
inverter and constant speed air conditioner and the influence on distribution network,”
in 2016 China international conference on electricity distribution (CICED). IEEE.

Zhang, Q., Wang, X., Wang, J., Feng, C., and Liu, L. (2008). Survey of demand
response research in deregulated electricity markets. Automation Electr. Power Syst. 32
(3), 97–107.

Zhang, X., Pipattanasomporn, M., and Rahman, S. (2017). A self-learning algorithm
for coordinated control of rooftop units in small-and medium-sized commercial
buildings. Appl. Energy 205, 1034–1049. doi:10.1016/j.apenergy.2017.08.093

Zhao, J, Wen, F., Xue, Y., Dong, Z., and Xin, J. (2010). Power system stochastic
economic dispatch considering uncertain outputs from plug-in electric vehicles and
wind generators. Automation Electr. Power Syst. 34 (20), 22–29.

Zhenfang, Q. (2004). Analysis of electricity price elasticity coefficient in the retail
market. Tianjin: Tianjin University.

Zhan, K, Hu, Z., Song, Y., Guo, X., Xu, A., and Lei, J. (2016). Electric vehicle
coordinated charging hierarchical control strategy considering renewable energy
generation integration. Power Syst. Technol. 40 (12), 3689–3695.

Zhong, H., Xie, L., and Xia, Q. (2013). Coupon incentive-based demand response:
Theory and case study. IEEE Trans. Power Syst. 28 (2), 1266–1276. doi:10.1109/tpwrs.
2012.2218665

Zhou, X., Chen, S., Lu, Z., Huang, Y., Ma, S., and Zhao, Q. (2018a). Technology
features of the new generation power system in China. Proc. CSEE 38 (7), 1893–1904.

Zhou, Z., Tan, L., Gu, B., Zhang, Y., and Wu, J. (2018b). Bandwidth slicing in
software-defined 5G: A stackelberg game approach. IEEE Veh. Technol. Mag. 13 (2),
102–109. doi:10.1109/mvt.2018.2814022

Zou, B., Dai, P., Wang, L., Ye, C., and Wang, G. (2019). Post-disaster restoration
scheduling of resilient distribution networks based on mixed integer programming.
Zhejiang Electr. Power 38 (8), 72–76.

Frontiers in Energy Research frontiersin.org13

Zhou et al. 10.3389/fenrg.2024.1422216

233

https://doi.org/10.1109/tsg.2019.2929052
https://doi.org/10.1016/j.apenergy.2018.02.010
https://doi.org/10.1016/j.apenergy.2018.02.010
https://doi.org/10.1038/s41560-019-0405-3
https://doi.org/10.1016/j.rser.2015.03.028
https://doi.org/10.1016/j.rser.2013.05.020
https://doi.org/10.1016/j.rser.2015.12.203
https://doi.org/10.1109/tpwrs.2014.2359773
https://doi.org/10.1016/j.apenergy.2017.08.093
https://doi.org/10.1109/tpwrs.2012.2218665
https://doi.org/10.1109/tpwrs.2012.2218665
https://doi.org/10.1109/mvt.2018.2814022
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1422216


TYPE Original Research
PUBLISHED 19 September 2024
DOI 10.3389/fenrg.2024.1413769

OPEN ACCESS

EDITED BY

Lorenzo Ferrari,
University of Pisa, Italy

REVIEWED BY

Yunting Yao,
Nanjing Normal University, China
Duong Nguyen,
Arizona State University, United States

*CORRESPONDENCE

Feng Wang,
wf_scu@163.com 

RECEIVED 07 April 2024
ACCEPTED 26 August 2024
PUBLISHED 19 September 2024

CITATION

Wang F, Wen X, Li J, Liu Y and Yu H (2024)
Cooperative energy interaction for
neighboring multiple distribution substation
areas considering demand response.
Front. Energy Res. 12:1413769.
doi: 10.3389/fenrg.2024.1413769

COPYRIGHT

© 2024 Wang, Wen, Li, Liu and Yu. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Cooperative energy interaction
for neighboring multiple
distribution substation areas
considering demand response
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With the growing integration of renewable energy into medium- and low-
voltage distribution networks, the distribution substation area (DSA) has
emerged, encompassing energy storage and loads. This paper introduces
an energy interaction framework for multiple DSAs aimed at enhancing
local renewable energy consumption. The energy interaction issue among
various DSAs is modeled as a Nash bargaining problem to encourage energy
exchanges. However, the variability in pricing and internal demand response
may influence scheduling decisions, necessitating further investigation. To
address price forecast errors, scenarios are developed using a stochastic
programming approach to represent price uncertainties while adjusting the
DSA’s load accordingly. Optimal power flow constraints are integrated into the
model to bolster power system operation security. Additionally, the transmission
capacity can impact scheduling outcomes and operational costs. The influence
of transmission limitations on operational strategies is examined within the
allowable capacity. To solve this issue, the bargaining model is divided into
two subproblems, and an enhanced alternating direction multiplier method
(ADMM) is used to maintain the privacy of DSAs. The simulation results obtained
using the IEEE-33 bus system indicate that energy interaction among multiple
DSAs significantly lowers operating costs and facilitates the integration of
renewable energy.

KEYWORDS

multiple distribution substation areas, energy interaction, uncertain prices, demand
response, generalized Nash bargaining

1 Introduction

The integration of distributed renewable energy is a key challenge within distribution
networks. To facilitate energy interaction, a distribution substation area (DSA), comprising
a renewable power station, energy storage, and loads, can support local consumption and
reduce disturbances in the network (Hirsch et al., 2018). Using energy storage, the DSA
can adjust the load demand and better accommodate renewable generation. However, the
inherent unpredictability of renewable sources may lead to energy shortages or surpluses.
To optimize renewable energy efficiency, DSAs can interconnect with neighbors to facilitate
energy exchanges (Kumar and Saravanan, 2017). Guided by the time-of-use (TOU) pricing
set by the distribution network operator, energy interaction among multiple DSAs is
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encouraged, forming a small-scale interconnected DSA energy
market (Vieira and Zhang, 2021). Given the shared interests, it is
crucial to develop an interactivemechanism that incentivizes energy
exchanges while maintaining economic viability and reliability
within the region (Tushar et al., 2020).

A game theory-based mechanism is instrumental in studying
and analyzing interactive strategies among multiple DSAs
(Tushar et al., 2018). Generally, the game theory approach to
interaction processes among participants can be categorized into
non-cooperative and cooperative games (Tushar et al., 2019). In
a non-cooperative game, buyers and sellers negotiate to establish
interaction prices and quantities, achieving market clearing
while maintaining the supply–demand balance (Paudel et al.,
2019). A Stackelberg game-based negotiation process between
buyers and sellers, which considers participant competition
and achieves market clearing, is detailed by Jiang et al. (2022).
Although Nash equilibrium solutions can be obtained in non-
cooperative games, the decision-making processes are typically
self-centered, and these solutions are not necessarily unique
local optima (Chen et al., 2019).

To balance individual and collective interests, a cooperative
game theory-based energy interaction model is proposed
to achieve global optimization in energy sharing (Luo et al.,
2022). The Nash bargaining game theory is well suited for
energy interactions among multiple DSAs, ensuring equitable
benefit allocation (Dehghanpour and Nehrir, 2017; Wang and
Huang, 2016). Building on this cooperative model, optimal
power flow constraints are incorporated into the system
operation to enhance the model’s practicality (Li et al., 2018).
However, these studies often overlook the impact of the demand
response on energy interaction, which could potentially increase
operational costs.

The demand response is an effective and promising approach
that shifts electricity demand to periods when renewable generation
is more abundant or the demand is lower. By leveraging load
baselines, the demand response aids in the integration of
renewable generation and reduces operational costs, thereby
facilitating energy interaction (Sarker et al., 2020). A bi-level
optimization model has been introduced for energy storage
planning and operation, considering the electricity–heat demand
response while utilizing Nash bargaining methods for benefit
allocation (Alizadeh et al., 2024). However, these studies often
distribute cooperative benefits equally among participants,
which may lead to fairness concerns (Luo et al., 2022). To
address this, a generalized Nash bargaining theory is adopted
to incentivize energy interaction among multiple DSAs and
allocate cooperative benefits based on the quantities of energy
interaction (Kim et al., 2019).

The aforementioned studies formulate energy interaction
models based on deterministic optimization, often overlooking
forecast errors in TOU prices. Price uncertainty significantly
impacts the economic and security aspects of an energy system.
Generally, stochastic programming (Li et al., 2022) and robust
optimization (Wei et al., 2021) are two prevalent methods used
for addressing uncertainties. Considering the conservative
nature of robust optimization, a stochastic optimization model
is developed for unpredictable prices, aiming to achieve
optimal scheduling (Baharvandi et al., 2019) and effective energy

management (Chang et al., 2020). However, the influence of
uncertain prices on energy interaction, as well as Nash bargaining-
based operation decisions, is often neglected in these studies.
Given the uncertain prices, DSAs schedule their demand to
respond dynamically, which may alter their final decisions and
operational costs. Considering the interdependent relationship
between prices and demand response, the decisions of DSAs
should integrate these influencing factors to devise optimal
strategies.

Another aspect investigated in energy interaction is the
consideration of physical constraints. Voltage fluctuations at each
node (Jin et al., 2020) and power losses resulting from energy
interaction (Khorasany et al., 2020) are modeled as costs paid
to the operator. Although these factors are considered costs,
further analysis is needed to understand strategy changes when
transferring power to neighbors within the specified capacity limits.
In other words, the congestion of transmission lines is directly
addressed during the energy interaction process. Therefore, an
energy interaction model is established that incorporates uncertain
prices, demand response, and transmission capacity during energy
interaction.

To sum up, the main contribution of this paper is to derive
optimal operation strategies by considering the interdependent
relationship between uncertain prices and the demand response
of DSAs. Specifically, this paper investigates the effect of
price uncertainty on the Nash bargaining theoretical model,
analyzing both operation costs and the internal decision-
making strategies of DSAs. To mitigate these adverse effects,
the demand response combined with energy storage is
proposed to enhance the flexibility of DSAs by shifting the
load demand to periods of lower prices. The final operation
strategies should account for the interconnected nature of price
uncertainty and demand response. Additionally, optimal power
flow is integrated into the optimization model to improve
its practicality. Transmission limitations are also included to
examine the impact of capacity restrictions on operation costs.
Finally, the cooperative benefits are allocated based on the
interaction of DSAs, ensuring a fair distribution that reflects
the contribution of each participant to the energy interaction
process.

2 Problem description

As illustrated in Figure 1, an energy interaction problem
with M DSAs is considered, formulated as an interaction set
M = 1,…,M. Each DSA, which consists of PV/wind generation,
energy storage, and loads, interacts with others to maintain
the balance between supply and demand. Supported by the
distribution network, these interconnected DSAs participate in
energy interactions to share electricity with neighboring entities.
In this process, electricity is transferred from one bus to another,
which can be described as an AC power flow. To address the
volatility of electricity prices, a stochastic programming approach
is incorporated into the model, capturing price uncertainty through
discrete scenarios.

Given the price scenarios, DSAs negotiate with each other
and respond to the prices by shifting load demands. To this end,
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FIGURE 1
System with interconnected DSAs.

the energy interaction problem is formulated as a generalized
Nash bargaining game model to incentivize energy interaction
and achieve fair benefit allocation. Additionally, a penalty for
DSAs caused by the demand response is incorporated into the
model to account for comfort levels. DSAs develop optimal
operation strategies to maximize cooperative benefits and allocate
these benefits based on their respective contributions. Congestion
may occur during the process of energy transmission, especially
considering the energy interaction among DSAs. To address this
issue, we adjust the operation strategies of DSAs and analyze the
impact on operation costs.

3 Energy interaction model

An independent operation model of a DSA and an energy
interaction model among multiple DSAs are established for

the comparative analysis of the operation costs of DSAs.
Compared to independent operations, DSAs achieve cost
savings through energy interaction with neighbors, which
includes energy sharing, renewable generation integration,
energy storage scheduling, and load shifting. Then, based
on the generalized Nash bargaining theory, cooperative
benefits are allocated by leveraging the bargaining power
parameters.

3.1 Basic operation optimization model of
the individual DSA

The objective function of a DSA is to minimize operational
costs in the face of uncertain pricing. To achieve this, the
DSA uses demand response strategies and manages the
charging and discharging of energy storage systems. The
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model, accounting for various price scenarios, is structured as
follows:

Ci
Non=minxi,t,wNon

W
∑
w=1

T
∑
t=1

1
W [μ

t,w
PbP

i,t,w
Pb −μ

t,w
Ps P

i,t,w
Ps +cE(P

i,t,w
Ec +P

i,t,w
Ed )

+cLoad(P
i,t,w
Load−P

i,t
Load,Pre)

2],

(1a)

s.t.Pi,t,wPb + P
i,t,w
Gen + P

i,t,w
Ed = P

i,t,w
Ps + P

i,t,w
load + P

i,t,w
Ec ,∀i ∈M,∀t ∈ T ,∀w ∈Ω,

(1b)

0 ≤ Pi,t,wPb ≤ P
max
Pb,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1c)

0 ≤ Pi,t,wPs ≤ P
max
Ps,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1d)

0 ≤ Pi,t,wEc ≤ P
max
Ec,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1e)

0 ≤ Pi,t,wEd ≤ P
max
Ed,i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1f)

SOCmin
i ≤ SOC

i,t,w ≤ SOCmax
i ,∀i ∈M,∀t ∈ T ,∀w ∈Ω, (1g)

SOCi,t,wCapi = SOCi,t−1,wCapi + ηi,t,wEc Pi,t,wEc − 1/η
i,t,w
Ed Pi,t,wEd ,

∀i ∈M,∀t ∈ T ,∀w ∈Ω,
(1h)

SOCi,24,w = SOCi
exp,∀i ∈M,∀w ∈Ω, (1i)

(1− αL)P
i,t
Load,Pre ≤ P

i,t,w
Load ≤ (1+ αL)P

i,t
Load,Pre, (1j)

T

∑
t=1

Pi,t,wLoad =
T

∑
t=1

Pi,tLoad,Pre, (1k)

where the objective function (1a) represents the individual operation
cost Ci

Non of DSA i ∈M, which includes the interaction cost with
the distribution network, degradation cost of the energy storage,
and comfortable penalty cost. The purchasing and selling prices
denoted as μt,wPb and μt,wPs , respectively, and quantities Pi,t,wPb and Pi,t,wPs
in scenarios w ∈Ω are used to calculate the operation cost with
the distribution network. The degradation cost of energy storage
consists of the unit cost cE and charging/discharging variables (P

i,t,w
Ec

and Pi,t,wEd , respectively). The comfort penalty cost is expressed as
the product of the unit cost cLoad and load regulation quantities.
The power balance constraint (Equation 1b) involves the forecast
renewable generation Pi,t,wGen and load demand Pi,tload,pre at time t ∈
T , as well as the actual load demand Pi,tload during the decision
process. Constraints in Equations 1c, d define the lower and upper
bounds (Pmax

Pb,i and Pmax
Ps,i , respectively) for purchasing/selling energy

from/to a distribution network. The charging and discharging
limitation of a battery is indicated by constraints in Equations 1e,
f with upper bounds Pmax

Ec,i and Pmax
Ed,i . The state of charge (SOC)

is limited by constraints in Equations 1g, i, based on the storage
capacity.The constraint in (1g) defines theminimum andmaximum
SOC values, while the constraint in (1h) specifies its balance
expression. To ensure continuity in energy storage, the expected
SOC must adhere to the constraint in (1i). For the demand
response, the power reduction offered by each DSA i should
satisfy the constraint in Equation 1j, where αL represents the load

shifting ratio. Given that load shifting is considered, the total daily
demand should match the predicted value Pi,tLoad,Pre, as specified
by the constraint in Equation 1k. The decision variables in the
individual operation model are represented by the vector xi,t,wNon =
[Pi,t,wPb ,P

i,t,w
Ps ,P

i,t,w
Ec ,P

i,t,w
Ed , SOCi,t,w,Pi,t,wLoad].

3.2 Branch power-flow formulation

Following Farivar and Low (2013), the power flow model is
established in a radial network using angle and conic relaxation.
Additionally, quadratic terms in the power flow constraints
are neglected since the branch powers pj,t,w and qj,t,w are
significantly larger than the quadratic terms in the branch
flow equation. Consequently, the expression is simplified as
follows:

pj,t,w = − ∑
i:i→j

Pi,j,t,w + ∑
k:j→k

Pj,k,t,w,∀(i, j) ∈ E , (2a)

qj,t,w = − ∑
i:i→j

Qi,j,t,w + ∑
k:j→k

Qj,k,t,w,∀(i, j) ∈ E , (2b)

pi,t,w = P
i,t,w
g − (P

i,t,w
Pb − P

i,t,w
Ps ) , (2c)

qi,t,w = Q
i,t,w
g −Q

i,t
L,pre, (2d)

−Pi,jmax ≤ Pi,j,t,w ≤ P
i,j
max,∀(i, j) ∈ E , (2e)

−Qi,j
max ≤ Qi,j,t,w ≤ Q

i,j
max,∀(i, j) ∈ E , (2f)

−Pig,max ≤ P
i,t,w
g ≤ Pig,max, (2g)

−Qi
g,max ≤ Q

i,t,w
g ≤ Qi

g,max, (2h)

Uj,t,w = Ui,t,w − 2(Pi,j,t,wri,j +Qi,j,t,wxi,j) ,∀(i, j) ∈ E , (2i)

Ui
min ≤ Ui,t,w ≤ U

i
max,∀i, j ∈N ,∀t ∈ T ,∀w ∈Ω, (2j)

where the active and reactive powers in a branch are defined
by constraints in Equations 2a, b, while the injection power of
node i ∈N can be obtained using constraints in Equations 2c,
d. Constraints in Equations 2e, f set the limitation of branch
flow for all branches (i, j) ∈ E . The active and reactive bounds
supported by the distribution network are specified by constraints
in Equations 2g, h. The square of magnitudes of nodal voltage
is provided by Equation 2i, and the constraint in Equation 2j
ensures that Ui,t,w always remains within the interval
[Ui

min,U
i
max].

3.3 Operation cost for cooperative DSAs

Supported by the distribution network, DSAs engage
in energy interaction with neighbors to share idle energy
while reducing disturbance to the main grid. Taking into
account the impact of uncertain prices and the demand
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response, their cooperative formulation is expressed as
follows:

Ci
Tra=minxi,t,wTra

W
∑
w=1

T
∑
t=1

1
W (μ

t,w
PbP

i,t,w
Pb −μ

t,w
Ps P

i,t,w
Ps +c

i
E(P

i,t,w
Ec +P

i,t,w
Ed )

+cLoad(P
i,t,w
Load−P

i,t
Load,Pre)

2),

(3a)

s.t. (1c) − (1k) , (2a) − (2b) , (2d) − (2j)

Pi,t,wPb + P
i,t
Res + P

i,t,w
Ed + P

i,t,w
Tra = P

i,t,w
Ps + P

i,t
Load + P

i,t,w
Ec , (3b)

M

∑
i
Pi,t,wTra = 0, (3c)

pi,t,w = P
i,t,w
g − (P

i,t,w
Pb + P

i,t,w
Tra − P

i,t,w
Ps ) , (3d)

∀i ∈M,∀t ∈ T ,∀w ∈Ω.

Unlike the individual operation in model (1), the interaction
variable Pi,t,wTra is introduced by the constraint in Equation 3b.
Considering energy interaction, DSAsmaintain the supply–demand
balance through energy exchange with the main grid and
neighboring DSAs. The constraint in Equation 3c ensures
that the total power output equals the power imported
from neighbors’. Additionally, the net injection at node i
incorporates energy interaction among DSAs, as detailed
by the constraint in Equation 3d. The decision variables
in cooperative mode are represented by the vector xi,t,wTra =
[Pi,t,wPb ,P

i,t,w
Ps ,P

i,t,w
Ec ,P

i,t,w
Ed ,SOC

i,t,w,Pi,t,wTra ,P
i,t,w
Load].

3.4 General Nash bargaining game-based
energy interaction

The general Nash bargaining game-based scheduling strategy is
proposed to incentivize energy interaction among DSAs and ensure
that benefits are allocated according to the contribution of each
participant.

max
M

∏
i=1
(Ci

Non − (C
i
Tra +Ce

i
Pay))

αi , (4a)

Ci
Tra +Ce

i
Pay⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Ci
Total

≤ Ci
Non,∀ i ∈ M, (4b)

M

∑
i
CeiPay = 0. (4c)

DSAs engage in energy interaction with neighbors to maximize
social welfare, as expressed in the objective function (Equation 4a).
The constraint in Equation 4b ensures that the cooperation
cost does not exceed the cost of individual operation, thereby
encouraging DSAs to participate in energy interactions. The
purchasing cost of a DSA in an energy interaction must equal
be to the selling income of neighbors, as represented by the
constraint in Equation 4c. Additionally, the contribution of
each participant is calculated using the coefficient αi, and the

expression is

αi =
1
W∑

W
w=1
∑T

t
|Pi,t,wTra |

1
W∑

W
w=1
∑M

i
∑T

t
|Pi,t,wTra |
, (5)

where the bargaining power αi is determined by the ratio of net
energy transmission of a DSA to the total energy transmission of
all participants.

3.5 Decomposition and solution of the
general Nash bargaining problem

According to the proposition put forward by Wang and
Huang (2016), the optimal solution of the Nash bargaining
problem is equivalent to the cost minimization of DSAs. By
combining the individual rationality condition with the constraint
in Equation 4b, a feasible payment allocation CeiPay always exists,
which enhances cost reduction. Consequently, the general Nash
bargaining-based energy interaction problem can be decomposed
into two subproblems: the operation cost minimization problem
(P1) and the bargaining problem (P2) (Kim et al., 2019). The
optimal results are obtained by solving these two subproblems
sequentially. Considering whether DSAs participate in energy
interaction or not, the operation cost minimization problem
(P1) encompasses both the individual operation model (1)
and the cooperative operation model (3). Since the operation
optimization problem (P1) consists of a quadratic objective and
linear constraints, the optimal solution can be obtained by directly
solving the convex problem. This optimal solution is then used
to calculate the bargaining problem (P2), utilizing the value
of αi in (5):

max
M

∏
i
(ηi∗ −CeiPay)

αi

s.t. (4b) , (4c) ,
(6)

where ηi∗ = Ci∗
Non −C

i∗
Tra represents the cost saving of cooperative

DSA i through energy interaction. To allocate the benefits, the
bargaining problem (P2) is transformed into a convex problem by
taking the logarithm of (6):

min
M

∑
i
−αiln(η

i∗ −CeiPay)

s.t. (4b) , (4c) .
(7)

According to Zhong et al. (2020), since the objective function
ln(•) increases monotonically, the optimal solution can be obtained
by solving the model (7). An improved alternating direction
multiplier method (ADMM) algorithm is proposed to solve
the energy interaction problem in a distributed manner. To
avoid updating the multiplier in a centralized way, each DSA
interacts with its neighbors to share local information. For
operation problem (P1), it is decomposed by introducing auxiliary
variables Pj,t,wTra,i and Pi,t,wTra,j. The details of the algorithm are
shown in Algorithm 1. The couple constraint in Equation 3c is
decomposed as:

Pi,t,wTra = P
j,t,w
Tra,i : λ

i,t

Pj,t,wTra = P
i,t,w
Tra,j : λ

j,t,
(8)
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Input: Set iteration index k ∈ [0,K], primal residue

ϵPri, dual residue ϵDual, and step size ρi(k).

1:repeat

2:   Each DSA solves the local energy

interaction problem (9).

3:   Update the multipliers λi,t(k) in (10).

4:   Each DSA i computes the primal and dual

residues. If the stopping criteria are

satisfied, terminate; otherwise,

repeat Step 4.

5:until Stopping criteria (11) are satisfied,

terminate.

Algorithm 1. An improved ADMM algorithm for solving the energy
interaction problem of the DSA.

where λi and λj represent the Lagrangianmultipliers.The augmented
Lagrangian function of the energy interaction model is then
expressed as follows:

LDSAi = C
i
Tra +

M

∑
j

T

∑
t
λi,t (Pi,t,wTra − P

j,t,w
Tra,i)

+
M

∑
j
ρj/2

T

∑
t
‖Pi,t,wTra − P

j,t,w
Tra,i‖

2
2,

(9)

where ρj is the penalty parameter for DSA i. After each iteration, the
updated expression of λi,t at iteration k is

λi,t (k) = λi,t (k− 1) + ρi (k)(P
i,t,w
Tra − P

j,t,w
Tra,i) . (10)

The iteration converges when the primal and dual residues satisfy
the following conditions (ϵPri and ϵDual):

Pi,t,wTra − P
j,t,w
Tra,i ≤ ϵ

Pri,

Pi,t,wTra (k− 1) − P
i,t,w
Tra (k) ≤ ϵ

Dual.
(11)

FIGURE 2
TOU price scenario with the distribution network.

FIGURE 3
Forecast of renewable generations and loads.

4 Case study

Numerical simulations are conducted in a distribution network
to evaluate the effect of the demand response and uncertain prices
on energy interaction. The system aims to verify the performance
of the operation strategy based on the general Nash bargaining
game theory. In the case study, simulations are performed on
an IEEE 33-bus system with three DSAs located at buses 11,
23, and 29. The operation data, including the forecast value
of price, generation, and load demand, are obtained from the
study by Chen et al. (2017) and Lu et al. (2020). All simulations
are solved using the Gurobi solver (Gurobi Optimization,
2020) in the Python environment on an Intel Core i7
computer.

4.1 Operation cost considering the
stochastic prices and demand response

The effect of stochastic prices on the operation strategy is
analyzed by comparing the operation costs under multiple price
scenarios with the forecast value. The fluctuation in the market
prices is modeled using the given probability distribution function,
which is assumed to obey the Gaussian distribution. As shown in
Figure 2, the forecast values of TOU prices are selected as the mean
value with a variance of 1× 10−4. Although large-scale scenarios
are necessary to characterize random factors, they impose a heavy
computational burden. To address this, a scenario reductionmethod
is applied to decrease the number of scenarios. A total of 1,000
scenarios are generated by using Monte Carlo sampling, and K-
means-based clustering reduction is utilized to generate 10 typical
scenarios (Wang et al., 2021). The expected values of these multiple
scenarios are selected as a result of the stochastic optimization,
while the cost in the deterministic optimization is determined
by the reaction of the DSAs to the predictable price. A general
Nash bargaining-based interaction scheme is adopted to allocate the
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TABLE 1 Operation costs without the demand response (CNY).

Congestion Price Cost DSA 1 DSA 2 DSA 3 Total

No Deterministic

Ci
Non 655.35 196.49 −322.42 529.42

Ci
Tra 146.05 88.82 166.42 401.28

CeiPay 456.37 91.31 −547.69 \

Ci
Total 602.42 180.13 −381.27 401.28

Yes Deterministic

Ci
Tra 73.49 80.76 93.65 247.90

CeiPay 443.64 89.46 −533.09 \

Ci
Total 517.12 170.22 −439.44 247.90

No Stochastic

Ci
Non 647.84 195.57 −332.25 511.16

Ci
Tra 319.15 461.45 −297.26 483.34

CeiPay 314.76 −271.59 −43.17 \

Ci
Total 633.91 189.86 −340.43 483.34

Yes Stochastic

Ci
Tra 21.54 308.46 154.18 484.19

CeiPay 612.48 −115.66 −496.82 \

Ci
Total 634.03 192.80 −342.64 484.19

TABLE 2 Operation costs with the demand response (CNY).

Congestion Price Cost DSA 1 DSA 2 DSA 3 Total

No Deterministic

Ci
Non 622.26 177.55 −348.17 451.64

Ci
Tra 53.00 61.59 51.46 166.04

CeiPay 433.49 73.79 −507.28 \

Ci
Total 486.49 135.37 −455.82 166.04

Yes Deterministic

Ci
Tra 35.58 50.85 59.58 146.01

CeiPay 432.35 83.45 −515.81 \

Ci
Total 467.93 134.30 −456.22 146.01

No Stochastic

Ci
Non 618.43 177.22 −356.44 439.21

Ci
Tra 151.21 135.41 125.54 412.16

CeiPay 455.30 40.18 −495.48 \

Ci
Total 606.51 175.59 −369.94 412.16

Yes Stochastic

Ci
Tra 140.86 133.07 137.88 411.81

CeiPay 465.05 42.55 −507.60 \

Ci
Total 605.92 175.62 −369.73 411.81
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FIGURE 4
Interaction between the distribution network and DSAs ignoring the
demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

benefits when DSAs participate in energy interaction. To analyze
the effect of the price on energy interaction, as shown in Figure 3,
we assume that the predicted values of renewable generation and
load demand are accurate. Since two important factors, energy
interaction and demand response, affect the operation strategy,
this paper analyzes the impact of these factors on the optimal
operation strategy.

FIGURE 5
Interaction between the distribution network and DSAs considering
the demand response. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

The deterministic and stochastic optimization results
without/with the demand response are shown in Tables 1, 2,
respectively. A negative value indicates the benefit that DSAs gain
from selling energy to the distribution network or neighbors.
It can be observed that DSAs reduce their operation cost when
they participate in energy interaction. Considering the stochastic
prices given in Table 1, the total operation cost of three DSAs is
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TABLE 3 Total interaction quantity between DSAs and the distribution
network (kWh).

Cooperation Demand response

No Yes

No
Buy 1,584.09 1,626.33

Sell 732.95 775.18

Yes
Buy 1,208.73 1,262.64

Sell 357.58 411.49

reduced by 24.20% under deterministic pricing, while the cost
is reduced by 5.44% under uncertain pricing. In other words,
compared with deterministic pricing, cooperative profit in energy
interaction decreases by 16.98% in stochastic scenarios. The
reason may be that, compared to deterministic prices, cooperative
costs vary with the price scenarios, ultimately increasing the
expected costs.

Considering the demand response, DSAs shift loads to periods
of plentiful generation or lower demand through price adjustments
or monetary incentives. They also enhance the efficiency of
renewable energy utilization by coordinating the charging and
discharging decisions of energy storage systems. As shown in
Table 2, DSAs respond to prices through peak shaving and valley
filling, which decreases the load demand during peak price
periods. Consequently, operation costs—whether for individual
or cooperative operations—significantly decrease compared to
those given in Table 1. In other words, energy interaction among
multiple DSAs enhances adaptable performance when considering
the demand response.

The operation costs in energy interaction among DSAs will vary
if the transmission lines have limitations within the distribution
network. For simplicity, a maximum capacity of 100 kWh is
considered for the line between nodes 2 and 3. This constraint
causes decision changes for DSAs during the process of energy
transactions with the distribution network and their neighbors. It
can be observed that cooperative costs are always less than those
of individual operations, and the demand response further reduces
these operation costs.

Congestion impacts the operation decisions and, subsequently,
the cooperative costs of DSAs. It restricts energy transmission for
DSAs regardless of whether the demand response is considered.
For deterministic prices, DSAs schedule battery usage to alleviate
congestion, resulting in lower operation costs. However, stochastic
prices compel DSAs to respond dynamically, leading to similar
final operation costs with normal energy interaction since the total
demand remains consistent.

4.2 Energy interaction with the distribution
network

Figures 4, 5 illustrate the energy interaction results between
the distribution network and DSAs over the course of a day.

FIGURE 6
Scheduling result of the energy storage without the demand response.
(A) DSA 1, (B) DSA 2, and (C) DSA 3.

The positive/negative values represent the energy purchased/sold
from/to the distribution network, respectively. We comparatively
analyze the interaction quantities between the distribution
network and multiple DSAs, regardless of their participation
in energy interaction. Given the price scenarios, DSAs adjust
their demand for purchasing/selling electricity to achieve cost
minimization.
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FIGURE 7
Scheduling result of the energy storage with the demand response. (A)
DSA 1, (B) DSA 2, and (C) DSA 3.

Figure 4 shows the comparison of the effects of individual versus
cooperative operation among DSAs on energy interactions with the
distribution network. An individual DSA satisfies power balance
by leveraging the distribution network and energy storage. Due to
the scheduling limitation of the battery, the individual DSA may
need to purchase electricity at a high price, increasing the operation
costs. In contrast, cooperative DSAs form a group and share idle

energy to balance their energy needs. DSAs purchase energy at
0:00–5:00 and 20:00–24:00 while selling energy at 10:00–15:00 to
maximize their cooperative benefits during energy interactions.The
load regulation capability ofDSAs is enhancedwhen considering the
demand response. As shown in Figure 5, DSAs achieve peak shaving
and valley filling by leveraging the demand response and energy
interactions.

To further analyze the energy interaction, the total interaction
quantity between DSAs and the distribution network is
summarized in Table 3. The data show that the interaction
between DSAs and the distribution network is influenced by
both the interactive behavior of DSAs and demand response. We
observed that the energy interaction among DSAs can reduce their
dependence on the distribution network, enhancing their ability
to cope with price uncertainty. To maintain energy balance, they
purchase less energy from the distribution network and reduce the
quantity of energy sold. Since the demand response is closely tied to
electricity prices, DSAs increase their demand when the prices are
lower, effectively responding to price uncertainties.

4.3 Analysis of optimal results of the
energy storage

The scheduling results of energy storage without/with the
demand response are given in Figures 6, 7, respectively.The positive
values represent storage discharging, while the negative values
indicate storage charging. These figures demonstrate that energy
storage can be utilized to satisfy the supply–demandbalance through
an internal scheduling strategy. As shown in Figure 6, the depth
of charge/discharge is higher for the DSA operating individually
without a demand response as energy storage is the primary means
of shifting energy demand to other periods. This is particularly
evident forDSA 1 at 10:00 andDSA 3 at 19:00. Although cooperative
DSAs reduce the depth of charging/discharging, energy storage
still works in conjunction with energy interaction to maintain
energy balance.

The scheduling results of the energy storage considering the
demand response are shown in Figure 7. We can observe that the
reliance on energy storage decreases as supply–demand balance
can be achieved through load shifting. Consequently, the charging
and discharging depth of the energy storage for DSA 1 and DSA
3 is reduced, which, in turn, lowers the degradation costs in the
objective function.

4.4 Analysis of energy interaction among
DSAs

The energy interaction quantities among DSAs
are given in Figure 8 when they cooperate with neighbors to share
idle energy. The positive values indicate DSA i purchasing energy
from neighbors, while the negative values represent selling energy
to others. Compared to individual operation, DSAs achieve energy
balance by combining energy interaction, load shifting, and energy
storage scheduling. This approach enhances energy self-sufficiency
through energy interaction, potentially reducing the reliance on the
distribution network.
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FIGURE 8
Interaction among DSAs. (A) DSA 1, (B) DSA 2, and (C) DSA 3.

4.5 Distribution of the node voltage

Thenode voltage varies with the energy interaction and demand
response. Nodes 11, 23, and 29, connected to DSAs, serve as
examples, and their voltages are shown in Figure 9. Although
the voltage fluctuates across various simulation scenarios and
periods, it always remains within the boundary limits. DSA 1,
which has the highest load demand, experiences the largest voltage

FIGURE 9
Voltage of the node connected to multiple DSAs. (A) DSA 1, (B) DSA 2,
and (C) DSA 3.

fluctuation, ranging from 0.986 p.u. to 1.001 p.u. Conversely, DSA
2, with the smallest load demand, exhibits relatively smooth voltage
fluctuations. The demand response also leads to significant voltage
fluctuations at different times. As shown in Figures 9A, C,DSAs shift
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loads to maintain the supply–demand balance, thereby altering the
voltage distribution within the network.

5 Conclusion

This paper presents an energy interaction framework for DSAs
to enhance the local consumption of renewable generation. A
general Nash bargaining theoretic model is established, taking into
account the effect of uncertain prices and demand response. The
typical price scenarios are depicted via Monte Carlo sampling
and clustering. Given the price scenarios, DSAs make the optimal
decisions by shifting loads to the plentiful generation or lower
demand time through prices or monetary incentives. To solve the
energy interaction model, it is decomposed and transformed into
a traceable problem by leveraging the logarithmic transformation.
In addition, the optimal power flow constraints are incorporated
to improve the model’s practicality. The limitation of transmission
capacity alters the operation strategies, which affects the operation
costs. It decreases the energy exchangewith the distribution network
and increases the energy interaction among DSAs. An improved
ADMM is proposed to solve the energy interaction problem using
local information. Numerical simulations are conducted on an
IEEE-33 bus system, demonstrating that uncertain prices may
increase the total operation costs, while the demand response
improves scheduling flexibility. Futureworkwill focus on addressing
energy transmission insufficiency due to capacity limitations during
energy interactions.
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Nomenclature

Indices

i Index of DSAs

t Index of hours

w Index of scenarios

Sets

M Set of DSAs

Ω Set of price scenarios

T Set of time intervals

Parameters

Pi, t
load,Pre Predictable load at time slot t (kW)

Pi, t, w
Gen Generation output at time slot t (kW)

Pmax
Pb ,P

max
Ps Limitation of purchasing/selling power to the main grid (kW)

Pmax
Ec ,P

max
Ed Maximum charging/discharging power of the battery in DSA i

SOCmin
i ,SOC

max
i Minimum/maximum limitation of the SOC in DSA i (%)

U i
min,U

i
max Minimum/maximum limitation of voltage in bus i

Pi,j
max,Q

i,j
max Active/reactive power limitation of branch (i, j)

Pi
g ,max,Qi

g ,max Active/reactive power limitation of the distribution network

Capi Capacity of a battery in DSA i (kW)

ciE Degradation cost of a battery in DSA i (CNY/kW)

ηiEc,η
i
Ed Charging/discharging efficiency of a battery in DSA i

SOCi
exp Expected state of a battery at t = 24

αi Bargaining power of DSA i

αL Ratio of load shifting (%)

μt,wPb ,μ
t,w
Ps Price at which DSA i purchases/sells energy from/to the main grid (CNY/kW)

cLoad Comfortable penalty cost in DSA i

Variables

Ci
Non Operation cost of DSA i without energy interaction (CNY)

Ci
Tra Operation cost of DSA i with energy interaction (CNY)

CeiPay Net payment of DSA i for energy interaction among DSAs (CNY)

Pi,t,w
Pb DSA i purchases power from the main grid (kW)

Pi,t,w
Ps DSA i sells power to the main grid (kW)

Pi,t,w
Ec Charging power of a battery in DSA i at time slot t (kW)

Pi,t,w
Ed Discharging power of a battery in DSA i at time slot t (kW)

SOCi,t,w State of charge of a battery in DSA i(%)

Pi,t,w
Tra DSA i purchases power from neighbors

pi,t,w,qi,t,w Active/reactive power injection on bus i at time t

Pi,j,t,w,Qi,j,t,w Active/reactive power flow on branch (i, j)

Pi,t,w
g ,Q

i,t,w
g Active/reactive power provided by the distribution network

U i,t,w Squared voltage magnitude of bus i at time t

λi Lagrangian multipliers

Pi,t,w
Tra,i Auxiliary variables of energy interaction
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Research on a coordinated
control strategy of three-phase
photovoltaic converters based on
a buck–boost DC link

Zhiyong Chen1, Zhifang Hao1, Jiakun An1, Wenyi Fan1,
Yuan Huang1 and Qunying Liu2*
1Economic and Technical Research Institute of State Grid Hebei Electric Power Co., Ltd., Shijiazhuang,
China, 2School of Automation Engineering, University of Electronic Science and Technology of China,
Chengdu, China

The high inductance current ripple and the PV voltage fluctuations limitation at
the DC (direct current) -DC link have been the unsolved problems in the
photovoltaic systems tied in grid. A control strategy with a current hysteresis
loop is proposed to address the issues of high inductance current ripple in
photovoltaic systems which can achieve real-time duty cycle regulation.
Differing from the conventional mode that uses one switch in the buck–boost
DC–DC link, two switches have been designed here to separate the buck and
boost modes for the coordinated control, which can achieve a wide PV voltage
fluctuations range. Based on the conventional fixed-duty cycle determination
method, a real-time duty cycle determinationmethod is proposed by introducing
changes in inductance current. In order to improve power conversion efficiency,
the incremental conductance method is improved by introducing the steepest
gradient descent to quickly achieve the maximum power point tracking. This
study experimentally verifies the proposed current hysteresis coordinated control
method, effectively suppressing the ripple of the inductor current and expand the
PV voltage fluctuation in the DC–DC link on the basis of maintaining power
conversion efficiency as much as possible.

KEYWORDS

photovoltaic panel, coordinated control strategy, current hysteresis loop control, buck-
boost circuit, DC-DC link

1 Introduction

In the last 20 years, many studies have focused on the topology of DC–DC links and
converter technology for the DC–AC interface of photovoltaic (PV) cells and the grid.
DC–AC interface technology has included voltage source converters (VSIs) adapted for the
interface of PV panels with the grid (Teodorescu et al., 2011). To address the constraint of
low leakage current for non-isolated grid-tied converters, a series of different converter
structures and control schemes have been investigated (Alluhaybi et al., 2020; Khan et al.,
2020), some considering stochasticity (Nan et al., 2018). In addition to converter
configuration reformation, the topology and control strategy of the DC–DC link is also
a key area of improvement for less harmonics and higher transferring efficiency. Liao et al.
(2017) proposed a novel PV converter with a PV current decoupling strategy which can
achieve maximum power point tracking performance without increasing electrolyte
capacitance. The current decoupling tank in the proposed PV converter can buffer the
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difference between the DC current generated by the PV panel and
the rectified sinusoidal AC of the power grid. Mohammadi et al.
(2018) proposed a novel switching frequency modulation method to
address the trade-off between voltage gain and voltage harmonics
caused by the coupling of the duty cycle and modulation ratio. Ho
and Siu (2019) proposed a new converter structure in which high-
frequency switches are used to control the inductor current, while
low-frequency switches form a filter structure that adapts to
different operating conditions. Unfortunately, the designed
structure led to more energy loss.

The output voltage of PV panels is often affected by ambient
factors such as sunlight intensity, temperature, and shadow. A
buck–boost converter is required to adapt to a wide range of DC
voltage fluctuations. Callegaro et al. (2019) proposed a single-phase,
single-stage buck–boost converter which uses five switches
(implemented using MOSFET power with external fast recovery
diodes) to provide buck–boost operation for the wide range of
changes in PV output voltage while eliminating leakage current.
In order to improve power extraction under the ambient condition,
a buck–boost single-phase transformer-free grid-connected
photovoltaic converter based on coupled inductance has been
proposed by Kumar and Singh (2019) and Hafiz et al. (2021)
which has the ability to extract maximum power from the series
of photovoltaic panels. Dutta and Chatterjee (2018) proposed a day-
and-night operational single-phase energy stored quasi-Z-source-
cascaded H-bridge (ES-qZS-CHB) converter PV system to solve the
active and reactive power control problem. They designed optimal
multiple combinations of duty cycle and modulation ratio to achieve
the same voltage gain during night operation.

In order to balance the output voltage of input-independent-output
seriesmodules, bidirectional buck–boost and LC series power balancing
units have been proposed for multiple PV panels by Dutta and
Chatterjee (2020). Liang et al. (2021) proposed a multi-PV panel
with battery and bidirectional converter interconnected with a three-
phase grid. A buck–boost converter is connected to the main VSC with
BES is responsible for the load level adjusting and the MPPT voltage. A
new solar PV-fed dynamic voltage restorer (DVR) based on a trans-Z-
source converter was proposed by Huang et al. (2021) to improve the
power quality of on-grid PV systems, in which a hybrid unit vector
template with maximum constant boost control method was proposed
for transZSI-DVR. Chauhan et al. (2021) outlined an integrated three-
phase transformer-less PV converter structure which utilizes an
interleaved dual output buck–boost converter to obtain the boosting
voltage. From a single PV source, the voltage waveform of the output
terminal can be synthesized into three levels; the high-frequency
dynamic is completely eliminated when the voltage passes through
parasitic capacitors, effectively suppressing current leakage.

On the basis of a buck–boost circuit, coupling inductance has
been proposed by Ali et al. (2021) to regulate power output, forming
a secondary voltage gain adjustment strategy. In order to reduce the
leakage current and number of components and to improve transfer
efficiency, a transformer-free converter structure based on
MOSFET power switches was proposed by Dhara and
Somasekhar (2022); it shares a common ground between the PV
source and grid and applies a zero-beat controller instead of a PI
controller. In Yari et al. (2022), a three-phase multi-level converter
based on three-level neutral point clamp quasi Z-source topology
was proposed to implement maximum power tracking. These

methods give almost no or very little consideration for energy
conversion efficiency.

In order to achieve high efficiency and negligible loss during
high-frequency switching, Gao et al. (2022) proposed a buck–boost
PV converter structure with six switches which operates at different
frequencies under a discontinuous mode with zero current leakage.
A new seven-level common ground (CG) switched capacitor (SC)-
based grid-tied transformer-less converter was introduced in Husev
et al. (2022) which has three times the boosting capability of input
voltage. To step up the input PV voltage and facilitate seven steps in
output voltage, two SC cells are connected in parallel.

Inspired by the research outlined above, we designed a
buck–boost structure and propose an effective coordinated
control in DC–DC and DC–AC to improve power conversion
efficiency and reduce harmonics. The configuration and
operation mechanism of the PV converter with buck–boost DC
links is analyzed in the second section. The third section discusses a
coordinated control strategy with the current hysteresis loop on the
DC–DC link and converter. To validate the superiority of the
proposed coordinated control strategy with the current hysteresis
loop strategy, a rigorous experimental evaluation was conducted by
designing a rapid control prototype (RCP) framework which gives
the simulation verification of the designed converter and the
proposed coordinated control strategy, detailed in the fourth
section. Conclusions are drawn in the fifth section.

2 Analysis of the structure and
operating mechanism of photovoltaic
converters based on a buck–boost
DC link

The circuit structure of a buck–boost converter with a single
photovoltaic (PV) panel is shown in Figure 1. The coordinated
current hysteresis control proposed in this paper mainly controls the
S1 and S2 switches of the DC link to accelerate its dynamic response
ability; these are independently controlled with the converter
switches S3–S8. The rationality of the switch control design in
the DC–DC link directly affects the quality of the voltage output
by the converter. Therefore, the focus here is on the switch control of
the DC–DC link while ensuring that the converter switch is
normally turned on or off.

The current hysteresis control belongs to PWM (pulse width
modulation) tracking technology, the basic idea of which is to
compare the controlled variable (usually including the output
voltage or the inductor current in the DC–DC link) with its
given value. If the difference between the controlled variable and
its given value is greater than the set upper limit value, the switch
state is changed to reduce the controlled variable. If their difference
is less than a set lower limit value, the switch state is changed to
increase the controlled quantity. If their difference is between the
lower and upper limits, the switch will be kept on. Therefore, the
current hysteresis control belongs to the closed-loop control, which
has the characteristics of real-time control and fast response speed.
Moreover, by changing the upper and lower limits of error, tracking
accuracy can be easily controlled. In fact, the current hysteresis
control is a non-linear control that can significantly improve the
non-linear dynamic performance of the converter. Considering that

Frontiers in Energy Research frontiersin.org02

Chen et al. 10.3389/fenrg.2024.1428524

249

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1428524


the PV systems are easily affected by environmental factors such as
sunlight, temperature, and cloud cover, the variation range of the
output voltage at the PV panel is relatively wide, which can lead to
large fluctuations in inductance current. Therefore, the buck–boost
converter using inductance current hysteresis control is introduced
to adjust the PWM output signal based on the grid current as a
reference in hysteresis control, thereby adjusting the duty cycle of
the high-frequency switch and adjusting the inductance current in
the buck–boost DC link.

In our work, the current hysteresis control of the DC–DC link
introduces a current deviation detection loop comprising a limiting

loop and a hysteresis comparison loop. Introducing the two loops
creates a relationship between output voltage, output current, and
inductor current, forming the current hysteresis control strategy based
on the changes in output voltage, current, and inductor current to
coordinate the on/off modes of S1 and S2 and limit the amplitude of
the inductor ripple current. By using the current hysteresis control,
sudden changes in input voltage will not have any impact on the
average output voltage, only on ripple. Here, current hysteresis control
is introduced. The control flow chart of the current hysteresis control
is shown as Figure 2. When the transient current of the inductor
exceeds a certain range iL ≥ i0 + 0.5ΔiL (iL is the actual value of the
inductor current; i0 is the reference value of the inductor current; ΔiL
is the variation value of the inductor current) in real-time monitoring,
the urgent mode current hysteresis control is started to regulate the
duty ratio of the S1 and S2 switches to avoid excessive fluctuations in
the inductor current. When the inductor current is within the range
iL ≤ i0 + 0.5ΔiL, it falls in the normal mode, which is the actual
processing scope of the PI control.

Figure 3 shows the discrimination in the buck–boost mode. To
select this mode, the corresponding switching signal needs to be

FIGURE 1
Circuit structure of the buck–boost converter with a single photovoltaic panel.

FIGURE 2
Control flow chart of the current hysteresis control.

FIGURE 3
Buck and boost mode discrimination.
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given. Determining the buck or boost mode completely depends on
the comparison of the voltage of capacitor ucou and the output
voltage UPV of the PV panel. If UPV is lower than ucou, it is in the
buck mode, which means that the input voltage in the DC–DC link
should be increased. If UPV is higher than ucou, it is in the boost
mode, whichmeans that the input voltage in the DC–DC link should
be decreased.

According to the operating characteristics of the buck–boost
converter under different operating modes, its operating mechanism
is elaborated in detail as follows.

2.1 Buck mode: ucou <UPV , S1 is on, S2 is off;
S1 is off, S2 is off

In Figure 4A, the voltage at the PV panel port is equivalent to the
DC source UPV. The voltage at the grid-tied point is assumed to be
stable, and the capacitor used for voltage stabilization and connected in
parallel with the PV panel is ignored. Hence, the ipv current flowing out
from the PV panel is equal to is1. When S1 is turned on and S2 is off, is1
is also equal to iL. The inductor is charged, and the current flowing
through it not only charges the capacitor but also supplies the grid. The

FIGURE 4
Equivalent circuit for buck and boost mode. (A) Buck mode with S1 on and S2 off. (B) Buck mode with S1 and S2 off. (C) Boost mode with S1 and
S2 on. (D) Boost mode with S1 on and S2 off.
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voltage at both ends of the inductor is positive on the left and negative
on the right, resisting the increase in current. In the PVpanel, the output
voltage is variable; hence, the output current ipv is also variable. To
maintain the output voltage of the DC link as a half wave sine, it is
necessary for the S1 and S2 switches to be sinusoidal. Therefore, based
on the equivalent circuit in the buck mode (Figure 4A), combined with
Kirchhoff’s voltage and current theorem, the voltage and current
relationship of the input and output ports of the PV panel and
DC–DC link can be obtained as Equations 1, 2:

ipv � is1 � iL � ic + iou, (1)
Upv � UL + ucou. (2)

According to Equation 2 the relationship between inductance
current and voltage can be represented as Equation 3.

Upv � L
diL
dt

+ ucou. (3)

According to Equation 3, further deformation can be carried out
to obtain Equation 4.

ΔiL � Upv − ucou

L
Δt1, (4)

where ΔiL is the inductor current variation value, Δt1 is the time of
switch being on. Δt1 = d1T, where d1 is the duty cycle of the
sinusoidal variation of S1 and T is the work period. d1 is expressed as

d1 � ucou

Upv
, (5)

where d1 is the ideal duty cycle of S1. The triggering pulse of
S1 synchronizes with the phase change of the Ug voltage at the
grid-tied point, which not only ensures that the capacitor voltage
ucou is consistent with the grid but also ensures that the voltage
waveform is a standard sine waveform. Hence, the duty cycle of
S1 shown as Equation 5 is modified as

d1 � ucou

Upv
+ ρΔiL, (6)

where ρ � L
TUpv

; iL is the actual value of inductance current. In
Equation 6 when ρ remains constant, the increased ΔiL implies
that the actual value of the inductance current should be decreased.
Themaximum power point voltageUPV tracked byMPPT should be
decreased, and d1 should be decreased. If ΔiL decreases, the actual
value of the inductor current should be increased. Hence, the
maximum power point voltage UPV tracked by MPPT should be
increased and d1 should be increased. Adjusting the duty cycle
expression in real-time ensures that the output voltage can still be
maintained at a relatively stable level even when the voltage at the
PV panel port changes. After obtaining the expression for the duty
cycle, ΔiL can be further expressed as

ΔiL � Upv − ucou

L
· d1 · T. (7)

Let setting ΔUpv � Upv − ucou. Δ UPV includes the fluctuation of
the PV panel port voltage and its impact on the capacitor output
voltage, as the fluctuation of capacitor output voltage is caused by
improper control in buck mode. Equation 7 can be further expressed
as Equation 8.

ΔiL � ΔUpv

L
· d1 · T. (8)

The average current passing through S1 in one switching cycle is
Equation 9.

is1 T � d1 · iou. (9)
When the driving signal of switch S1 is turned to a low level, the

switch is turned off, and the inductor L is discharged through the
freewheeling diode D1. The inductor current gradually decreases,
and the inductor voltage reverses to resist the decrease in inductor
current. The output voltage is maintained by the discharge of the
capacitor Cou and the reduced inductor current. The equivalent
circuit is shown in Figure 4B. The output voltage of Cou and the
current variation of inductor is expressed as Equations 10, 11.

L
diL
dt

� ucou, (10)

ΔiL � ucou

L
Δt. (11)

When S1 is turned off, the inductor is discharged until S1 and
S2 turn on again.

2.2 Boost mode: ucou >UPV , S1 turns on,
S2 turns on; S1 turns on, S2 turns off;

According to the equivalent circuit of the boost mode with
S1 and S2 both on (Figure 4C) with ucou >UPV, inductor L is charged
again and the capacitor is discharged to keep the output voltage. The
relationship between the port voltage of the PV panel and the
inductor current is

Upv � L
diL
dt

. (12)

According to Equation 12, the change of the inductor current is
calculated as Equation 13.

ΔiL � Upv

L
Δt2, (13)

where Δt2 is the turning-on time of S2. Considering Δt2 � T(1 − 1
d1
),

ΔiL can also be calculated as Equation 14.

ΔiL � Upv

L
T 1 − Upv

ucou
( ). (14)

When S1 turns on and S2 turns off, the equivalent circuit is shown in
Figure 4D, which is the same as Figure 4A. The inductor is continuously
charged, and the capacitor also starts to be charged after discharging for
d2T. The analysis process is the same as in Figure 4A. Additionally, the
voltage and current at the grid-tied point with the converter are set asUg

and Ig, which are both the RMS of ug and ig. The amplitude of the
output voltage ucou of the capacitor isUcoum. The active power generated
by the PV panel is expressed as

Pg � 1
π
∫π

0
pgd ωt( )

� 2
π
∫π

0
ucouigd ωt( ). (15)
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Because ucou is synchronized with the grid-tied voltage ug,
Equation 15 can be expressed as Equation 16.

Pg � 2
π
∫π

0
Ucoum sin ωt( ) �

2
√

Ig sin ωt( )d ωt( )
� �

2
√

UcoumIg. (16)

Then, the capacitor voltage amplitude of the DC–DC link can be
calculated as Equation 17.

Uoum � Pg�
2

√
Ig
. (17)

The voltage amplitude of the capacitor is calculated to perform
the operation mode discrimination for buck or boost mode in the
coordinated control algorithm with the current hysteresis loop.

3 DC–DC coordinated control strategy
with the current hysteresis loop

When the insolation changes, UPV changes correspondingly. If
the switch sequence and duty cycles are still operated at the
determined mode, the output voltage does not remain constant.
To maintain a constant output voltage, the controller must track the
voltage changes in the PV panel and adjust the switch sequence and
duty cycle in real time based on the changes in voltage changes.
Therefore, a coordinated control method for the whole PV converter
is proposed; its block diagram is shown in Figure 5.

The whole control diagram includes the converter control and
DC–DC link control. In the converter control, the phase-locked loop

(PLL) samples the three-phase voltage at the grid side to obtain the
three-phase voltage waveform of the grid as f1, f2, and f3, based on the
triggering pulse sequences and duty cycles of the S3–S8 switches of
the converter. In the DC–DC link control, the MPPT module
collects the Upv voltage and Ipv current of the PV panel and
tracks the maximal power point Upvm. The difference between
Upvm and the actual value Upv is processed by the PI controller
to generate the active power Pg, which is needed for calculating the
voltage amplitude Ucoum of the expected output voltage of the
capacitor. The expected output voltage ucou is then obtained by
multiplying the voltage amplitude Ucoum with the fp from the PLL,
which is obtained by the frequency-based replacement. The
expected voltage ucou is compared with UPV in the discriminating
operation mode module to determine the buck or boost mode.
According to different operation modes, the calculation methods for
inductor current changes ΔiL are different. Under the buck mode,
the inductor current change is calculated by Equation 7, which is
used to modify the duty cycle for S1, while in boost mode, the
inductor current change is calculated by Equation 14, which is used
to modify the duty cycle for S2. Considering that the changing range
of the inductor current is wide, the amplitude limitation and
hysteresis comparison loops are used to decrease the inductor
current ripple. S1 and S2 are the high frequency switches. The
PWM (pulse width modulation) technique is applied to
control S1 and S2.

To maintain a constant output voltage, the converter control
needs to track the voltage changes in the grid-tied point and adjust
the switch sequence of S3–S8. To obtain the three-phase sinusoidal
voltage at the terminal of the converter, the S3–S8 switches of the
converter must follow a certain triggering sequence and duration to

FIGURE 5
Block diagram of the coordinated control method for the whole PV converter.
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maintain synchronization with the voltage of the grid-tied point.
Figure 6 shows the designed triggering sequence for S3–S8.

The maximal power point tracking algorithm in the MPPT
module for the PV system includes the incremental conductance
method (INC) and the perturb and observe algorithm (P&O). P&O
belongs to the local search algorithms and is susceptible to noise and
shadow interference. Compared with P&O, INC shows a fast
response but is prone to impact by the step size and
sampling frequency.

Therefore, the steepest gradient factor is combined to improve
the search speed of the maximal power point. As shown in Figure 7,
the first step is to determine the gradient factor, so the steepest
gradient factor expression is set as Equation 18.

f Upv, Ipv( ) � dIpv
dUpv

+ Ipv
Upv

. (18)

f(Upv, Ipv) will change within the range (-1,+1) with the change
of operation point of the PV system, showing the gradient change
characteristic. Compared with the traditional INC algorithm,
gradient factor f(Upv, Ipv) is actually a direction search factor
whose value (negative or positive) shows the searching
direction for the maximal power point. In this paper, the
gradient factor is introduced into the calculation of UPV, IPV,
and PPV at the (k+1)th time. The maximal power point searching
equation is shown as

FIGURE 6
Trigger timing sequence and duty cycle length of S3–S8.

FIGURE 7
Maximum power point search algorithm based on steepest
gradient descent.

TABLE 1 Parameter of photovoltaic converter with buck–boost.

Element Specific parameter

Uabc,fg 380 V,50 Hz

L,Lg,Cou 0.5 mH,0.4 mH,4 μF

Ground capacitor 0.1 μF

S1–S2 switch
frequency

50 kHz

S3–S8 switch
frequency

15 kHz

MPPT algorithm Incremental conductance method based on the fastest
gradient

IGBT (s1-s8) FGA25N120ANTD

Diode (D1-D2) MBR40250

DSP TMS320F28335
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Upv k + 1( ) � Upv k( ) + f Upv k( ), Ipv k( )( )Upv k( ) + Upv k − 1( )
2

,

(19)
Ipv k + 1( ) � Ipv k( ) + f Upv k( ), Ipv k( )( ) Ipv k( ) + Ipv k − 1( )

2
, (20)

Ppv k + 1( ) � Ppv k( ) + f Upv k( ), Ipv k( )( )Ppv k( ) + Ppv k − 1( )
2

,

(21)
where k+1, k, and k-1 are the sampling time.UPV, Ipv, and Ppv at

the (k+1) time are predicted by the averaging of the kth and (k+1)th

times. Equations 19–21 are the adaptive search process, and the
value of the gradient factor determines the search step size. The
larger the value of the gradient factor, the shorter the search time.
However, if the step size is too large, it will cause the search to exceed
the limitation, and vice versa, it will affect the extension of the search
time. Therefore, the second term in Equations 19–21 is to average
the sampling values at k and k-1, and appropriately reduce the
search step size.

4 Simulation and experimental
verification

To verify the practicability of grid-tied PV system operation for
the proposed buck–boost structure and the coordinated control
strategy with the current hysteresis loop, the component parameters
are set as per Table 1. The HNZL DC power supply has been used to

imitate the effect of insolation. In order to emulate simultaneous
variation in temperature and in the level of insolation, the MPP
parameters are set as follows: UPV = 400 V, Ipv = 6.5 A. The
effectiveness verification results of the operating characteristics of
the proposed converter are shown in Table 2, in which the insolation
level is varied on PV. Table 2 provides the estimated mean values of
iL, Ppv, ucou, and Igm, as well as the inductance current iLm during the
entire operation period. The calculation results of peak values (iLm)
for Ppv and other states Igm,Ucoum are also presented in Table 2. The
estimated values of the above quantities listed in Table 2 are
consistent with the values obtained through simulation, ensuring
the feasibility of the proposed method.

Figure 8 shows the relationship of the active power output and
the voltage changes by the PV curves under different temperatures.
When the temperature is lower, the power emitted is greater for the
PV panel with the PV panel voltage being improved. When the
voltage reaches 438 V, the active power output of the PV panel
reaches the maximum point at 30 °C, which is consistent with
the estimated value. During the MPPT process of this experiment,
the maximum power point search algorithm based on steepest
gradient descent takes only 0.22s to reach the maximum power
point C, which is shorter than the common incremental
conductance method, which is 0.31s to reach point C. This is
because the improved maximum power point search algorithm
based on the steepest gradient descent only searches the process
from points A to C, avoiding the searching process from C to B and
B to C, which saves search time. However, the common
incremental conductance method tends to search from A to C,
C to B, and B to C.

Figures 9A–C show the simulated changes inUPV, ipv, and Ppv of
the PV panel operation states, which also demonstrate the ability of
the proposed converter to operate simultaneously on the MPPT of
the PV panel. Figure 10 shows the change caparison of ucou, is1, iL,
and Ppv of the DC–DC link operation at 20 °C and 30 °C. The voltage
and current curve at the PV grid-tied points at 20 °C and 30 °C with
changed insolation. This shows that when the insulation varies, the
voltage and current from the converter output stabilize the
sinusoidal waveform synchronized with the power grid, while the
current amplitude injected at the grid-collected point varies with the
insolation.

Figure 11 shows the simulated voltage and current curve at the
PV grid-collection points at 30 °C with changed insolation. This
shows that the insolation will impact the output power of the
converter. When the insolation becomes strong, the output

TABLE 2 Changes in voltage, current, and power parameters of photovoltaic panels under different insolations.

Time(s) 0 2 4 6 8 10 12

Insolation on PV 0.15 0.35 0.4 0.5 0.6 0.75 0.9

Temperature of PV (°C) 20 21 23 25 27 29 31

PPV/W 575 1,243 1,425 2,165 2,840 3,678 4,210

Igm/A 1.2 2.8 3.2 4.0 4.9 6.0 7.3

Ucoum/V 376 385 390 405 416 427 438

iLm/A 0.06 0.14 0.18 0.20 0.26 0.37 0.45

FIGURE 8
Simulated PV curves under different temperatures.
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current of the converter increases, while the voltage of the
converter remains stable; hence, the output power of the
converter increases at the same time. Figure 12 compares the
inductor current change when the current hysteresis control is
introduced in the coordinated control under the same insolation.
During the dynamic process, the ripple current of the inductor is
controlled at a relatively satisfactory level, demonstrating the
effectiveness of the introduced current hysteresis control. The
power conversion efficiency of the PV panel is the percentage of
the injected power at the grid-connection point to the output
power of the PV panel. The referred voltage and current from the
PV panel and grid-tied point are all at the averaging value.
Figure 13 is the prototype of the designed buck–boost
converter. Under the condition of the converter being off-grid,
the experimental waveforms for Ug and ig are shown in Figure 14,
in which, when the input voltage of DC–DC changes from 50 V to
100 V, ucou changes from 100 to 180 V and maintains a stable
state. The output voltage amplitude Ug of the converter changes
from 150 V to 220 V. During the whole process, the system can

effectively ride through situations that arise due to the
disturbances in Ug and demonstrates relatively good operation
despite it experiencing significant voltage fluctuations.

Figure 15 shows the comparison results between the actual and
estimated conversion efficiency of the PV converters, from which it
can be inferred that the estimated value tends to consider the ideal
situation and ignore the actual ambient condition, resulting in
overestimated efficiency. At the maximal power point of 700 W,
the actual conversion efficiency is just 97.8%, lower than the

FIGURE 9
Simulated PV panel port states under different insolations: (A)
voltage UPV ; (B) current ipv; (C) output active power Ppv.

FIGURE 10
Simulated DC–DC link state curves under different
temperatures: (A) voltage ucou; (B) switch S1 current is1; (C) inductor
current iL; (D) output active power Ppv.
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FIGURE 11
Simulated voltage and current curve at photovoltaic grid-collection points at 30 °C with changed insolation.

FIGURE 12
Simulated inductor current suppression comparison under same insolation.
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estimated value of 98.7%. To further assess the impact of the
current hysteresis loop on conversion efficiency, those efficiencies
with current hysteresis and without hysteresis are calculated.
Figure 16 shows that during the period of low power output,
the conversion efficiency with the current hysteresis loop is almost
the same as that without current hysteresis loop control. However,
with the active power output of the PV panel increasing, the

conversion efficiency considering the current hysteresis loop
decreases. This means that the increasing active power output
corresponds to the increasing inductor current, which is
suppressed by the current hysteresis loop at the cost of
conversion efficiency. Figure 17 shows the THD comparison
curves between the method in Dutta and Chatterjee (2018) and
the proposed method here. According to the datum, the changing
trend of the THD in the grid-tied point with the output voltage
increase of the PV panel remains consistent in the two methods.
However, the THD in the proposed method is lower than in Dutta
and Chatterjee (2018). Furthermore, the voltage variation range
dealt by the method proposed here is 120 V–600 V, with a wider

FIGURE 13
Prototype of the designed buck–boost converter.

FIGURE 14
Experimental waveforms for Ug, ig, and ucou .

FIGURE 15
Comparison curve between the actual conversion efficiency and
estimated conversion efficiency of photovoltaic converters.

Frontiers in Energy Research frontiersin.org11

Chen et al. 10.3389/fenrg.2024.1428524

258

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1428524


variation range than that in Dutta and Chatterjee (2018). The
active power losses at different power levels are also calculated
(Figure 18). The comparison results imply that the active power
loss values in our method and in Dutta and Chatterjee (2018) are
almost the same when the output power of the PV panel is below
1,700 W. Then, with the output power of the PV panel increasing,

the active power loss in Dutta and Chatterjee (2018) is higher than
the method proposed here, especially when the output power is
more than 3,200 W. This shows that the designed converter can
adopt higher power production. The above results verify that the
designed buck–boost PV converter with the coordinated control
strategy has improved operational performance.

5 Conclusion

A buck–boost converter structure and corresponding
coordinated control strategy is designed for a grid-tied
photovoltaic (PV) panel in this paper. By simulation
and experimental verification, the following conclusions
are drawn.

(1) To improve the robustness and easing the requirement for
PWM dead-times, a wide range buck–boost operation for
large fluctuations in PV voltage is provided, and large
buck–boost inversions are obtained with relatively
smaller duty ratios. Through the operational
performance comparison with the classical buck–boost
converter, the buck and boost stages in the DC–DC link
are decoupled and controlled separately through two
switches, which is beneficial for expanding the voltage
conversion range of the DC–DC link. However, the
designed converter can withstand overlap time in
complementary switches without voltage shoot-through
problems. At the same time, the incremental
conductance method is improved by introducing the
deepest gradient factor, which improves the search
speed of the maximum power point and enhances the
dynamic performance of the converter.

(2) Considering the significant fluctuation of inductor current
in the boost stage, a DC–DC coordinated control scheme
based on current hysteresis control is here proposed.
Based on traditional duty cycle calculation, the
influence of the inductor current is introduced, and a
duty cycle adjustment based on the current hysteresis
control is performed to reduce the ripple of the
inductor current at the cost of reducing the conversion
efficiency of the PV converter. However, by comparison
with the classical buck–boost converter, the designed
converter shows noticeable improvement in the THD
ratio with the input voltage increase of the DC–DC
link. Furthermore, the active power loss caused by the
designed converter is also reduced by the coordinated
control strategy.

However, under conditions of partial shading, the efficiency
of the designed converter is still greatly decreased, the reduction
depending on the size of the shading area. The PV ground leakage
current is still another unsolved problem in our scheme. Further
research should focus on diminishing the leakage current,
improving the power conversion efficiency of multiple PV
panel series, and suppressing common mode currents under

FIGURE 16
Comparison of the conversion efficiency between photovoltaic
panels with or without current hysteresis.

FIGURE 17
Comparison of the THD ratio of the method in Dutta and
Chatterjee (2018) and the method proposed here.

FIGURE 18
Loss distribution at different power levels.
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voltage imbalance caused by different insolation conditions
and shadowing.
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With the increasing integration of renewable energy sources and the presence
of numerous controllable loads such as electric vehicles and energy storage in
the modern power system, higher nonlinearities and uncertainty both sources
and loads are introduced. These factors pose challenges in achieving fast
and accurate emergency frequency control. Therefore, this paper addresses
the issue of dual source-load uncertainties in power system and presents an
optimization strategy based on the Soft Actor Critic (SAC) algorithm that involves
the participation of controllable loads in emergency frequency control. Firstly,
the spatio-temporal uncertainties of wind farm power output on power supply
side and power demand on the load side are described using Weibull and
normal probability distributions, respectively. Secondly, an improved Markov
Decision Process (MDP) model for emergency frequency control is established,
which considers the characteristics of the dual source-load uncertainties.
Finally, an optimization of the SAC algorithm is conducted based on Deep
Reinforcement Learning (DRL), aiming to achieve rapid system frequency
recovery and minimize the cost of removing controllable loads. The presented
approach in the paper enhances the emergency frequency control strategy for
uncertain power systems and effectively addresses the issue of source-load
uncertainty compounded by fault power shortages.

KEYWORDS

controllable load, emergency frequency control, deep reinforcement learning, SAC
algorithm, source-load dual uncertainties

1 Introduction

The modern power system is continuously evolving and advancing, characterized by
sustainability, distribution, dynamism, and intelligent openness. As a result, the control
strategy ensuring frequency security and stability in power system has become increasingly
complex, leading to greater challenges in emergency frequency control (Zhou et al., 2018;
Yi et al., 2019; Li et al., 2020). Meanwhile, the power supply side in power system appears an
increasing penetration rate of renewable energy sources. Additionally, there is a significant
number of new controllable loads with significant power fluctuations on the load side.These
introduce double uncertainties on both the sources and load sides, exacerbating the power
shortfalls that occur during system disturbances and further increasing the complexity of
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accidents. Hence, it holds immense importance to investigate the
emergency frequency control of power system characterized by dual
source and load uncertainties.

Considering the nonlinearities and uncertainties at both
power supply and load side in modern power systems, various
approaches have been proposed to optimize emergency frequency
stabilization control, including adaptive and semi-adaptive Under-
Frequency Load Shedding (UFLS) methods, event-driven load
shedding methods (Xue et al., 2014; Li et al., 2017; Cao et al.,
2021), and strategies addressing low inertial (Wu et al., 2015).
An emergency frequency control strategy that involves the
collaborative participation of renewable energy field stations
and conventional units to ensure frequency stabilization while
minimizing control costs is conducted (Ke et al., 2022). Reference
(Chandra and Pradhan, 2020) addresses an adaptive emergency
load shedding method incorporating synchronous generator and
photovoltaic plant equivalent models that consider the stochastic
variation of solar PV plant power. Frequency characteristics of
systems with high penetration of advanced energy technologies is
analyzed and proposes a low-frequency load shedding blocking
optimization strategy based on df /dt (Sheng et al., 2021).
Reference (Masood et al., 2021) presents an emergency frequency
stabilization control that simultaneously ensures voltage stability
for low-inertia power system containing numerous wind turbines.
Reference (Wang et al., 2019) investigates an adaptive emergency
frequency control scheme based on inertia estimation from
load measurement information of high-percentage renewable
energy system. The uncertainty of wind power output and effect
of frequency regulation are considered (Zhou and Shi, 2021),
an emergency frequency control strategy that combines high-
frequency cut-off and low-frequency load-shedding measures
are optimized by considering the frequency confidence of
power system.

The optimization of emergency frequency control mentioned
above primarily adopts model-based methods, including the time-
domain simulation method, the dynamic equivalence method, and
the linearization analysis method (Zhang et al., 2009; Liu et al.,
2014). Among these, the time-domain simulation method is time-
consuming and computationally intensive, although it has high
accuracy. The dynamic equivalence method is computationally
efficient but has low accuracy, which does notmeet the requirements
of actual power grid. The linearized analysis combines the
advantages of the former twomethods (Larik et al., 2018), but it does
not adapt the topology changes and new elements of power grid.
Due to the limitations of physical models, the approaches based on
physical models cannot fit with the development of power grid.

In recent years, Machine Learning (ML) methods have
been increasingly applied to power system stability control.
These methods are based on data for feature mining, do not
require accurate mathematical models, and have significant
computational performance advantages. Reference (Dai et al.,
2012) trained a load shedding prediction model offline using
an extreme learning machine and achieved online prediction of
actual load shedding. In reference (Bai et al., 2016), an artificial
neural network RBF-ANN model was employed to estimate and
predict the frequency dynamics process of the power system,
contributing to the development of an emergency frequency
control scheme. Despite their fast computational speed, traditional

ML algorithms are considered shallow learning methods, often
relying heavily on expert experience. Their control effectiveness
is influenced by the size and quality of the database, resulting
in limited adaptability in achieving desired control outcomes.
The advancements in deep learning have garnered attention due
to their impressive training effectiveness. Consequently, several
scholars have explored the application of deep learning methods
in optimizing emergency control strategies for power systems
(Hu et al., 2019; Lin, 2022). These methods simultaneously
enhance control accuracy and reduce decision-making time. In
Reference (Qiang et al., 2022), an emergency control model based
on an enhanced AlexNet convolutional network is established.
This model predicts the system’s emergency control sensitivity
and identifies alternative control buses, ultimately optimizing to
obtain the emergency control strategy. However, deep learning
methods require a large number of datasets for model training. In
high-dimensional action space problems, a multitude of control
scenarios emerge, leading to a significant volume of invalid
datasets. This abundance of data presents challenges in model
training.

The DRL technique combines the advantages of deep learning
and reinforcement learning, which can realize high-dimensional
feature extraction and direct learning of complex action space.
Hence, to address the highly nonlinear and uncertain nature of
emergency frequency stability control problems, some researchers
have employed DRL algorithms to optimize strategies that enhance
frequency stability while minimizing the total amount of load
shedding (Yang et al., 2022). Reference (Chen et al., 2020)
optimizes the emergency frequency control strategy using DRL
algorithms to reduce frequency stability fluctuations. However,
the state space considered in this approach focuses solely on
the frequency deviation of the center of inertia. This limitation
may lead to inaccurate outcomes since system topology and
parameters can significantly vary across different scenarios. In
Reference (Ma et al., 2020), a distributed reinforcement learning
algorithm is utilized to optimize the emergency frequency control
strategy, resulting in improved computational performance and
robustness. Reference (Xie and Sun, 2022) considered load
variations, measurement noise, and communication delays in
real power systems by proposing an emergency frequency
control method based on a distributed Soft Actor Critic
(SAC) algorithm.

In this paper, a controllable load participation emergency
frequency optimization control strategy for source-load dual
uncertainty power systems is proposed based on deep reinforcement
learning SAC algorithm to address the above problems. Firstly,
the source-side output spatio-temporal uncertainty and load-
side power uncertainty are described by Weibull and normal
probability distribution. Secondly, the action space, state space
and reward function of the MDP model are improved according
to the characteristics of source-load uncertainty. Then the deep
reinforcement learning SAC algorithm with continuous action
space is used to train the model to obtain an emergency
frequency optimization control strategy for the dual source-load
uncertainty power system, which suppresses the depth of the system
frequency dip and reduces the stabilized frequency deviation, while
minimizing the control cost.
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FIGURE 1
Schematic diagram for uncertain source-load power modeling.

2 Modeling of uncertain power on
power supply and load

The increasing penetration of renewable energy sources into the
power grid impacts its operational characteristics due to various
factors, including weather, temperature, and other variables. As a
result, the volatility of active power output intensifies, leading to
heightened uncertainty in the power-side output of the system.
Simultaneously, the grid load is progressively diversifying as
numerous new loads, such as electric vehicles and distributed
renewable energy sources. These new load types exhibit substantial
power fluctuations, further exacerbating the uncertainty in power
demand on the load side. The dual uncertainty on both the source
and load sides works together to intensify the randomness of
the operating conditions. After a power system failure, the power
fluctuation resulting from source-load uncertainty and the power
deficit caused by failure are superimposed on each other, thereby
exacerbating the complexity of the incident, as illustrated in Figure 1.

2.1 Wind power output model on power
supply side considering spatial and
temporal uncertainty

The uncertainty of wind power output is primarily influenced
by wind speed. To more accurately simulate the actual variations

in wind speed, it can be represented using probability distributions
such as theWeibull distribution, Gaussian distribution, and Pearson
distribution. Historical data indicates that the actual wind speed
alignsmost closelywith theWeibull distribution’s probability density
function. Therefore, this paper employs the Weibull distribution
function to characterize the wind speed and establish a probabilistic
representation of the uncertainty between the wind turbine’s
output active power and wind speed. The wind speed probability
density function of the Weibull distribution, denoted as f (v), and
the cumulative distribution function of the Weibull distribution,
denoted as F(v), as shown in Equations 1, 2:

f(v) = K
C
( v
C
)
K−1

exp[

[
−( v

C
)
K]

]
(1)

F(v) = 1− exp[

[
−( v

C
)
K]

]
(2)

Where v is the wind speed; K is the shape parameter of
the Weibull distribution; C is the scale parameter of the Weibull
distribution.

The characteristic curve of wind power output defines the
relationship between wind power output and wind speed, where
the intensity of wind speed directly influences the magnitude of
the output. The relationship between wind power and wind speed
can be described by a linear function, quadratic function, or cubic
function, leading to distinct wind turbine power curves. Taking into
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account the actual statistical wind power data, wind power output is
typically modeled using a cubic segmented function, which can be
expressed as Equation 3:

PW =

{{{{{{
{{{{{{
{

0 v < vin  or v > vout 

Pr
v3 − v3in 
v3r − v

3
in 

vin  ≤ v < vr

Pr vr ≤ v ≤ vout 

(3)

Where vr, vin, vout are the rated wind speed, cut-in wind speed
and cut-out wind speed of the wind farm turbine respectively; Pr is
the rated power of the turbine.

Apart from temporal uncertainty, wind power output exhibits
spatial correlation as well. Due to the close proximity of various
wind farms within the same region and their placement in
similar wind speed bands, a robust correlation exists between the
outputs of different wind farms, consequently impacting the overall
uncertainty of wind power. Hence, this section considers the spatial
correlation among distinct wind farms and employs the Nataf
inverse transformation principle to generate wind turbine output
uncertainty data with predetermined correlation coefficients.

The theory of Nataf transform can transform random
distribution variables with correlation into standard normal
distribution variables that are independent of each other. The Nataf
inverse transform serves as the reverse procedure to the Nataf
transform, allowing the generation of distribution variables with
desired correlation coefficients using independent standard normal
distribution variables. This process facilitates the sampling of a
significant amount of specified sample data.

Let the vector PW.i (i = 1,2,…,n) represent the active outputs of
nWeibull-distributed wind farms in the original correlation variable
space. Similarly, let the vector zi (i = 1,2,…,n) denote the n standard
normally distributed random variables in the correlation standard
normal space. Subsequently, assume that the linear correlation
coefficient matrices for Z and PW are denoted by ρ0 and ρ,
respectively. Here, ρ is a predetermined value, and the relationship
equation between the elements of the ρ0 and ρmatrices is given as:

ρ0ij = Rijρij (4)

Rij = 1.063− 0.004ρij − 0.200(γi + γj) − 0.001ρ
2
ij + 0.337(γ

2
i + γ

2
j ) − 0.007γiγj (5)

Where γi and γj represent the computational parameters of the
random variables Pi and Pj, respectively. The expressions for these
parameters are given as follows Equation 6:

{
{
{

γi = σi/μi
γj = σj/μj

(6)

Thepositive definite symmetricmatrix of correlation coefficients
ρ0 can be obtained through Equations 4, 5, and it can be
decomposed into the lower triangular matrix B using the following
expression Equation 7:

ρ0 = BB
T (7)

A standard normal distribution vector Z with specified
correlation coefficients can be generated from the pre-obtained

independent standard normal distribution vector X. The
transformation is shown as Equation 8:

Z = BX (8)

Based on the equal probability transformation criterion, the
standard normal distribution space with correlation is converted
into correlated input vectors, i.e., wind power output variables that
follow the Weibull distribution. The output power of each wind
power node is given by Equation 9:

PW.i = F
−1
i (Φ(zi)) (9)

Where PW. i represents the correlated active power output of
wind power node i; F−1i (⋅) is the inverse cumulative distribution
function of the active power output of wind power node i; Φ(zi)
denotes the cumulative distribution function of zi.

2.2 Load-side power demand modeling
with uncertainties

The optimization strategy presented in this paper encompasses
various novel controllable load types like electric vehicles, energy
storage systems, commercial buildings, 5G base stations, and
distributed photovoltaics.These loads can be directly enlisted by the
emergency control system for urgent load shedding and contribute
to the emergency frequency control of the power system. Unlike
traditional methods that directly cut the load line during emergency
frequency control, these controllable loads have a reduced impact
on users when temporarily removed, resulting in lower load
shedding costs. Furthermore, the power of these controllable
loads can be precisely regulated by power electronic devices,
enabling more flexible engagement in the power system’s emergency
frequency control. The diverse characteristics of controllable loads
introduce a complex influence on emergency frequency control,
posing challenges in integrating them for considerations such as
control continuity and data reliability. Consequently, the load side
fluctuation range in modern power systems has expanded, while the
time scale has diminished. This, in turn, has led to an escalation
in power demand uncertainty, necessitating the characterization of
load power uncertainty.

The probability of load power uncertainty is modeled using
a normal distribution, which is expressed through a probability
density function, as shown in Equation 10:

{{{{{{{
{{{{{{{
{

f(PL) =
1
√2πσPL

exp(−
(PL − μPL)

2

2σ2PL
)

f(QL) =
1
√2πσQL

exp(−
(QL − μQL

)2

2σ2QL

)

(10)

Where PL and QL represent the active and reactive power of
the load, respectively; μPL and μQL denote the expected values of
the active and reactive power of the load, respectively; σPL and σQL
indicate the standard deviation of the active and reactive power of
the load, respectively.

Additionally, the presence of various new controllable loads on
the load side, such as electric vehicles and energy storage, introduces
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variability and diversity in load characteristics. The complexity
of these controllable load components further contributes to
the uncertainty of overall load characteristics. Determining the
controllable load characteristics directly becomes infeasible when
the power system’s operating state changes, necessitating the
expression of uncertainty through a probability distribution.
Consequently, a novel static load model should be established
utilizing frequency and voltage indices that adhere to the probability
distribution, as Equation 11.

P′L.new = PL(U/UN)
kpu.new(1+ kpf .new( f − fN))

Q′L.new = QL(U/UN)
kqu.new(1+ kqf .new( f − fN))

(11)

Where kpu. new and kqu. new represent voltage indices of active and
reactive power of the new controllable loads, respectively; kpf. new and
kqf. new denote frequency indices of active and reactive power of the
loads, respectively.

These parameters, kpu. new, kqu. new, kpf. new and kqf. new, are subject
to uncertainty and are characterized by probability distributions that
follow a normal distribution.

In summary, considering the uncertainty of load size, which
is represented by PL and QL that conform to normal distribution,
and considering the uncertainty of load characteristics, which is
represented by P’

L.new and Q’
L.new that contain time-varying load

coefficients, a power demand uncertainty model that integrally
considers fluctuations in load quantity and fluctuations in load
characteristics is thus established.

3 Improvement of the MDP model for
emergency frequency control
problem in source-load dual
uncertainty power system

Reinforcement learning can be formulated throughMDP, which
performs policy search through the set (S, A, P, R, y). Where S is the
state space and A is the action space, which can be either continuous
or discrete. P is the state transfer probability, which represents the
probability density of the next state st+1 given the current state st
∈ S and the current action at∈A. R is the reward function and y
is the discount factor. Most of the classical MDP theories and RL
algorithms are based on discrete-time leapfrog actions, but many
power system control problems follow continuous-time dynamics
actions, which can only be discretized by using appropriate time
intervals to cut the continuous-time dynamics.Therefore, this paper
addresses this drawback by using an MDP model for improving
the emergency frequency control of the system and optimizing the
emergency frequency control strategy using the deep reinforcement
learning SAC algorithm with continuous action space.

3.1 State space

Power system emergency frequency stabilization is closely
related to generator active power, load power, system frequency,
and the rate of frequency change. Considering the dual source-
load uncertainty in power-side active output anddemand-side active
load, it is necessary to incorporate all generator active output and

load node power with uncertainty into the state space, defining the
state space st as Equation 12:

st = s
t
1 ∪ s

t
2 ∪ s

t
3 ∪ s

t
4

{{{{{{{
{{{{{{{
{

st1 = { f
t
1 f t2 ⋯ f tm}

st2 = {(d f/dt)
t
1 (d f/dt)

t
2 ⋯ (d f/dt)

t
m}

st3 = {P
t
e.1 Pte.2 ⋯ Pte.m}

st4 = {P
t
l.1 Ptl.2 ⋯ Ptl.n}

(12)

Where fi
t is the frequency of generator node i at moment t;

(df/dt)i
t is the frequency change rate of generator node i at moment

t; Pe. i
t is the electromagnetic power of generator node i at moment

t; Pl. j
t is the active load of load node j at moment t.

3.2 Action space

The control action of each controllable load at moment t should
be to reduce a part of the total controllable load at that node. Due
to the uncertainty of load demand power, the total controllable
load needs to be updated in real time. However, for uniformity
of the control action, the action space must be fixed. Therefore,
the action space is set as the proportion of the controllable load
removed at each node. The actual load reduction is the value of
the action at each node multiplied by the total controllable load at
that node. Consequently, each controllable load action is defined
as a continuous value within [-1, 0], and the total action space
is shown as Equation 13:

at = {ΔP
t
1 ΔP

t
2 ⋯ ΔP

t
n} (13)

Where ΔPm
t is the load removal of controllable load node m at

time t and ΔPm
t∈[−1,0]; n is the number of controllable load nodes.

3.3 Reward functions

The goal of the emergency frequency control problem is to
restore the frequency to within the stabilization range quickly
while minimizing load shedding. For source-load dual uncertainty
power systems, the effectiveness of emergency frequency control
is primarily evaluated in terms of frequency deviation and load
shedding amount.

Therefore, the reward function consists of three parts: 1) the
average value of steady-state frequency deviation over a specific time
period at the end of the simulation; 2) a penalty term calculated
based on controllable load importance and load shedding; and 3) a
penalty term for exceeding the lowest point of the system’s dynamic
frequency. The expression is shown as Equation 14:

rt = λ1|Δ fTtem
| − λ2

n

∑
j=1

CjPsl.j −H1

H1 =
{
{
{

−100, if( fmin < fmin .set)

0, therwise

(14)

Where T tem is a certain time period before the end of
the simulation process; ΔfTtem is the average value of the
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FIGURE 2
Structure of SAC algorithm.

deviation of the center of frequency inertia during T tem; Cj is
the importance index of load node j; Psl. j is the amount of load
shedding at node j; H1 is the penalty for the system’s center
of frequency inertia when the minimum value is less than the
integrating value; λ1 and λ2 are coefficients for each part of the
reward function.

4 Optimization of emergency
frequency control strategy
considering dual source-load
uncertainties

Emergency frequency control is a kind of multi-constraint
multi-objective optimization problem, which needs to consider two
conflicting objectives of fast frequency recovery and minimizing
control cost at the same time.Moreover, it often exhibits a propensity
to favor one objective over the other, leading to convergence
on local optimal solutions. The SAC algorithm introduces the
action entropy value to balance the probability of the various
action strategies in the action space, to avoid learning the same
action repeatedly and falling into the sub-optimal solution, and
it has a stronger exploratory ability, and is more suitable for the

studying the emergency frequency control problem with multiple
objectives.

Following a failure in a power system that considers dual
source-load uncertainty, the power deficit resulting from the
disturbance combines with the source-load uncertainty, resulting
in increased random volatility in the collected grid state data
and causing ongoing oscillations in the training process. Faced
with this high level of uncertainty, some DRL algorithms based
on strategy gradient exhibit weak generalization abilities, leading
to unstable emergency frequency control effects. In contrast, the
SAC algorithm incorporates action entropy, enhancing robustness
and resistance to disturbances, and demonstrating stronger
learning generalization capabilities, rendering it more suitable
for the dual source-load uncertainty power system discussed in
this chapter.

Moreover, the SAC algorithm features a continuous action
space, eliminating the need for discretizing load removal actions.
This allows for the removal of the required load amount at once,
thereby preventing exacerbation of frequency drop depth resulting
frommultiple actions. Additionally, continuous action space control
enhances precision and reduces the likelihood of excessive or
inadequate load removal during emergency frequency control. This
ensures a smaller steady-state frequency deviation post-control
while minimizing the amount of load removed.
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FIGURE 3
Flow chart of emergency frequency control based on SAC algorithm.

The SAC algorithm offers higher exploration capability,
improved robustness, and a continuous action space compared
to other DRL algorithms. Consequently, the SAC algorithm
is employed in this section to optimize the emergency
frequency control strategy for source-load dual uncertainty
power systems.

4.1 Principle of SAC algorithm and network
structure

The SAC algorithm belongs to the deep reinforcement learning
algorithms based on the value function, which incorporates a
mechanism that encourages exploration through action strategy
entropy values. This enhances the algorithm’s robustness compared
to other strategy gradient-based DRL algorithms like PPO, A3C,
and DDPG. The entropy value, defined as the expectation of

information quantity, quantifies the uncertainty of a variable.
It increases with the uncertainty of an event and can be
quantified by the event’s probability. The entropy value is defined
as Equation 15:

H(X) = −∑
xi∈X

l(xi) ln l(xi) (15)

Where H(X) is the entropy value; l (xi) is the event probability.
The DRL algorithm should continuously explore the interaction

environment to accumulate experience and avoid selecting too
many actions solely based on immediate rewards, as this may lead
to convergence on local optimal solutions. The SAC algorithm
considers the maximum entropy value of actions. If the entropy
value decreases due to repeated selection of a certain action, the
maximum entropy mechanism encourages the agent to explore
other actions, thus broadening the exploration range and increasing
the algorithm’s robustness.
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FIGURE 4
Improved topology of IEEE39 nodes.

FIGURE 5
Weibull distribution of wind speed.

In other deep reinforcement learning algorithms with stochastic
policies, the objective ofmodel learning is clear: to derive an optimal
action policy that maximizes the expected cumulative reward

through straightforward training. The optimal policy expression
is shown as Equation 16:

π = argmaxπE(st,at)∼ρπ[∑tr(st,at)] (16)

The SAC algorithmnecessitatesmaximizing the entropy value of
the output action to enhance exploration capability. In other words,
an additional term regarding the entropy value is incorporated into
the policy expression, resulting in the expression of the improved
optimal policy as shown in Equation 17:

π = argmaxπE(st,at)∼Pπ
[

[
∑
t
r(st,at)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reward 

+αH(π(⋅ ∣ st))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
entropy 

]

]
(17)

Where E (st , at) denotes the expectation function; π represents
the strategy; st and at signify the state space and action space at
moment t; r (st , at) denotes the reward function at moment t
(st , at)∼Pπ signifies the trajectory of state-action under strategy π;
+ is the automatic entropy temperature parameter, which adjusts
the entropy value affecting the degree of rewards; and H (π(⋅|st))
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TABLE 1 The proportion of load with different time delay levels.

Load node number Total share of
controllable load

Percentage of class
1 controllable loads

Percentage of class
2 controllable loads

Percentage of class
3 controllable loads

3 0.41 0.5 0.3 0.2

4 0.34 0.3 0.4 0.3

7 0.38 0.4 0.5 0.1

8 0.46 0.3 0.3 0.4

16 0.22 0.6 0.2 0.2

20 0.54 0.6 0.3 0.1

24 0.34 0.5 0.2 0.3

39 0.38 0.4 0.3 0.3

FIGURE 6
Changes in reward values during training.

signifies the entropy of the output action of the strategyπ under the
state st , as expressed below in Equation 18:

H(π(⋅ ∣ st)) = −∑π(⋅ ∣ st) log(π(⋅ ∣ st))

= −∫
at

P(π(at ∣ st)) ln P(π(at ∣ st))dat
(18)

Where P (π (at |st)) denotes the probability that the action value
at the time of t is at .

In the SAC algorithm for strategy value evaluation, the
expression for updating the strategy using the Bellman operator is
expressed as Equation 19:

Qπ(st,at) = rt +E[
∞

∑
t=1

γt[r(st,at) − α log π(at ∣ st)]] (19)

Where γ denotes the discount factor at the time of
strategy update.

The optimal policy can be continuously learned and refined
throughpolicy iteration, comprising two steps: softpolicy evaluation

and soft policy improvement. Firstly, in the strategy evaluation step,
the soft value update function of a given strategy π can be obtained
using the soft Bellman operator, as shown in Equation 20:

T πQπ(s,a) = r+ γEs′[Q
π(s′,a′) − α log π(a′ ∣ s′)] (20)

The SAC algorithm belongs to the Actor-Critic class of
algorithms, where the Actor is employed for policy modeling and
the Critic for Q-value function modeling. Different deep neural
networks are utilized to fit the Q-value function and the policy
function, respectively, as shown in Equation 21:

JQ(θ) = E[
1
2
(Q(st,at) − (r(st,at) + γVθ(st+1))

2] (21)

Where θ denotes the parameters of the policy network; Vθ
represents the updated value function value.

Both networks are optimized using independent gradients
∇̂θJQ(θ) , as expressed in Equation 22:

∇̂θJQ(θ) = ∇θQθ(st,at) ⋅ (ΔQθ) (22)

Where the expression of ΔQθ is expressed as Equation 23:

ΔQθ = Qθ(st,at) − r(st,at)

+γ(Qθ(st+1,at+1) − α log(πϕ(at+1 ∣ st+1)))
(23)

The outputs of the policy network are the mean and standard
deviation values following a Gaussian distribution. The network
with the smaller Q value is selected to reduce bias in updating the
parameters of the policy network. The approximate gradient of the
parameter update is expressed as Equation 24:

∇̂ϕJπ(ϕ) = ∇ϕα log(πϕ(at ∣ st))

+(∇atα log(πϕ(at ∣ st)) −∇atQ(st,at))∇ϕ fϕ(εt; st)
(24)

At the same time, the action entropy value is also updated in
the policy network, making it crucial to choose the appropriate
temperature parameter, α. As the reward value varies during the
training process, fixing the temperature coefficient reduces the
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FIGURE 7
Number of excision maneuvers during each training round.

stability of model training. Therefore, the temperature coefficient
α is generally updated automatically by minimizing J (α), as
expressed in Equation 25:

J(α) = Eat−πi[−α log(πt(at ∣ st)) − αM] (25)

Where M represents the dimension of the action matrix,
specifically denoted asM = dim(a).

The SAC algorithm for deep reinforcement learning comprises
four crucial components: the experience replay buffer, the
automatic entropy parameter, the policy network, and the value
network. The experience replay buffer stores historical exploration
experience, while the automatic entropy parameter stabilizes
and adjusts the exploration strategy. The policy network is
responsible for action selection, and the value network estimates
state-action values. The overall structure of the algorithm is
depicted in Figure 2.

4.2 Optimization of emergency frequency
control strategy based on SAC algorithm

When utilizing the SAC algorithm to optimize the emergency
frequency control strategy, each iterative training process can be
summarized into three main steps: firstly, collecting and inputting
the operating state data of the power system after the fault into the
SAC model; then, the SAC model selects the emergency frequency
control action based on the state data; finally, executing the control
action on the power system simulation environment to achieve

the objective. Additionally, due to the uncertain nature of source-
load power systems, it is necessary to incorporate an uncertainty
model for wind power output and load demand in each interaction
process. The overall process of emergency frequency control for a
source-load dual uncertainty system based on the SAC algorithm is
illustrated in Figure 3.

Prior to model training, the simulation environment and SAC
model parameters are initialized. The power system load factor
is randomly initialized, and the model incorporates uncertainty
in wind power output and load demand. The Nataf inversion
theory is employed to generate source-load dual uncertainty power
samples with correlation. Before each interactive training step,
uncertainty power samples are randomly assigned to wind turbine
nodes, and uncertainty load demand samples are added to load
nodes to simulate real-world source-load uncertainty power system
conditions. Subsequently, the SACmodel obtains the current system
state data from the simulation environment, selects an action based
on an environmental state update policy, and delivers it to the
simulation environment. After receiving the emergency frequency
control action from the SAC model, the simulated power system
environment executes the load adjustment action, advances to the
next state, and sends the updated state data and immediate reward
value to the SAC model. This training process continues until the
end of a round, marked by maintaining stable system frequency. At
this point, the system simulation environment is reinitialized, and
the next round begins. Upon completing the training process, the
SAC model can be applied to various fault test scenarios to validate
its effectiveness and superiority.
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FIGURE 8
Change process of load shedding strategy in scenario (A–D) training.

TABLE 2 Controllable load shedding and dynamic frequency metrics for various test scenarios.

Scenario Controllable load shedding/MW Steady state frequency/Hz Frequency drop minimum/Hz

1 592 50.01 49.78

2 545 50.05 49.76

3 517 49.98 49.76

4 615 49.91 49.51

5 Simulation analysis

To evaluate the effectiveness of the proposed method in this
paper, a deep reinforcement learning environment is constructed
to enhance the IEEE10 machine with 39 nodes. This environment
is developed using Python and BPA simulation software. The SAC
algorithm is employed to solve the specified test cases. The deep
neural network is implemented in Python using TensorFlow 1.15.

The experiments are conducted on an Intel Core i5-11400H CPU
with 16.00 GB RAM and an RTX 3050 GPU.

5.1 Data of the test case

The BPA software is utilized in this paper to generate a fault
scenario for the IEEE10 machine with 39 nodes. The generator
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FIGURE 9
Comparison of the dynamic frequency process of scenario (A–D) after the execution of the two strategies.

FIGURE 10
(A) Comparison of stochastic test results for source-load deterministic systems (B). Comparison of stochastic test results for the source-load
uncertainty system.
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FIGURE 11
Comparison of reward values of different DRL algorithms.

model is based on the sixth order model, while the load model
consists of a constant impedance model and a mixed load model
incorporating induction motors, with a 50% ratio between the two.
The fault scenario involves a generator experiencing a partial power
loss, resulting in a power difference within the power system. The
total simulation time is 40 s, with each cycle of the waveform serving
as a sampling point. To simulate various system fault states and
obtain sufficient samples, one of the ten generators is randomly
selected at the start of the simulation to experience a loss of active
output ranging from 0.5 p. u. to one p. u.

This paper utilizes a modified version of the IEEE10 machine
with 39 nodes to validate the proposed methodology in this
section. The modification involves replacing nodes 32 and 36
with turbines having rated capacities of 684 MW and 576 MW,
respectively. Additionally, nodes 3, 4, 7, 8, 16, 20, 24, and
39 are designated as controllable load nodes participating
in frequency emergency control. The system’s topology is
illustrated in Figure 4.

The power fluctuations at the load nodes follow a normal
distribution with a mean and standard deviation equal to 5% of the
rated value. Similarly, the load static model voltage and frequency
indices also have a mean and standard deviation of 5% of the
rated value.

The wind speeds of the wind nodes are modeled by a
Weibull distribution with the shape parameter K set to 2.26,
the scale parameter C set to 7.55, the cut-in wind speed at
3.5 m/s, the cut-out wind speed at 25 m/s, and the rated wind
speed at 7.3 m/s.

To account for the correlation between the wind turbine
nodes, 1,000 sets of wind turbine output samples are generated
using the Nataf inverse transformations, with correlation
coefficients of 0.8. Figure 5 illustrates the Weibull distribution of
wind speed.

The deep reinforcement learning state space in this system
comprises frequency deviation, frequency rate of change, active
output, and load of each node, resulting in a 47-dimensional
space. The action space consists of eight load shedding actions for
controllable loads. Each action is represented as an 8-dimensional

vector, where each element is a continuous value within the
range of [-1, 0]. Furthermore, as the Soft Actor Critic (SAC)
algorithm can handle continuous action spaces, the emergency
frequency control directly determines the necessary load shedding
amount and sets the action time for emergency frequency
control as 2 s after fault detection. The delay characteristics of
controllable loads are categorized into three levels. For loads
of the same delay level, the actual control delay is calculated
based on the maximum value to ensure that the actual frequency
drop depth is less than or equal to the ideal frequency drop
depth, thereby avoiding frequency instability. Consequently, after
aggregation, it is assumed that the control delay for all level
1 controllable loads is 100 ms, for level 2 controllable loads
is 200 ms, and for level 3 controllable loads is 300 ms. The
controllable loads are then removed within each node in order
of delay from low to high. Table 1 provides the proportions
of controllable loads at each node and the distribution of
loads across different control delay levels after aggregated
modeling.

5.2 Analysis of model training and testing
results

The policy network and value network of the SAC model
both consist of two hidden layers with 64 neurons each. The
activation function is set to ReLU, the learning rate is 0.005, the
initial temperature coefficient is 0.1, the self-updating learning
rate is 0.0001, and the updating algorithms utilize the alternating
multiplier method. The experience replay unit has a capacity
of 2,500, and 64 samples are drawn for each training iteration.
The convergence criterion for each training round is that the
absolute value of the steady-state frequency deviation is less
than 0.1 Hz.

The SAC algorithm is employed to learn and train the
aforementioned arithmetic model. Figure 6 depict the curves
illustrating the changes in reward values during the training process.

Figure 6 demonstrate that, initially, the model struggles to find
a control strategy that effectively stabilizes the system frequency,
resulting in frequent movements per round and consequently
low reward values. Additionally, the maximum number of action
steps per round often reaches 50. However, as training progresses,
the model gradually discovers more efficient control strategies
with shorter action sequences, although the reward value remains
suboptimal due to excessive load removal. It is only after 1,200
rounds of training that both the reward value and the number of
training rounds stabilize, indicating the completion of the model
training process.

To evaluate and compare the frequency recovery process of
the proposed emergency frequency control scheme, it is essential
to conduct tests using various fault scenarios. These scenarios
are characterized by four attributes: the number of faulty nodes,
the extent of power shortage in the faulty nodes, the system
load factor, and the magnitude of source load fluctuations. For
this purpose, four representative fault scenarios are selected, as
illustrated in Figure 7.

During the model training process, the emergency frequency
control policies for the four representative scenarios are derived
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FIGURE 12
(A) Comparison of steady-state frequency deviation distribution of different DRL algorithms for random testing (B). Comparison of frequency drop
nadir distribution of different DRL algorithms for random testing.

through testing at intervals of 400 rounds until the completion of
2000 rounds, leading to the acquisition of the optimal control policy,
as depicted in Figure 8.

Figure 8 clearly demonstrate significant fluctuations in the
emergency frequency control strategies during rounds 0, 400,
800, and 1,200, indicating the model’s continuous search for an
improved control strategy. In contrast, the control strategies for
rounds 1,600 and 2000 exhibit reduced fluctuations, indicating
that the model has undergone substantial training. Initially, the
emergency frequency control strategy is more random, but through
continuous training, the model takes into account factors such as
the amount of controllable loads at each node and load removal
sensitivity. Consequently, it selects an optimal node for load
shedding, resulting in a final strategy with total load removal close
to the power deficit.

Table 2 presents the controllable load shedding quantities
for the optimal policy in the four representative test scenarios,
along with the steady-state frequency values achieved post-
policy implementation and the minimum value of dynamic
frequency drop.

Table 2 reveals that in the four test scenarios, characterized
by diverse fault locations, fault sizes, system loading rates,
and source-load uncertainties, the trained model successfully
maintains the system within 0.1 Hz of the steady-state frequency
deviation. Additionally, the lowest point of the dynamic frequency
drop remains above 49.5 Hz. These results substantiate the
effectiveness of the emergency control strategy based on the
SAC algorithm, particularly for systems affected by source-load
uncertainties.

To further ascertain the superiority of the proposed method,
a comparative analysis is conducted between the emergency
frequency control strategy derived from the traditional adaptive
UFLS algorithm and the strategy proposed in this paper.
The dynamic frequency recovery process of the system is
evaluated for both strategies across the four scenarios, as
depicted in Figure 9.

Figure 9 demonstrates that the emergency frequency control
strategies optimized by the proposed scheme in this paper effectively
maintain the steady-state frequency deviation of the system within
0.1 Hz, with the lowest frequency point exceeding 49.5 Hz across
the four different scenarios. In contrast, the adaptive UFLS scheme
in Scenarios 1, 2, and three suffers from the issue of insufficient
load shedding, resulting in a greater depth of frequency drop and
steady-state frequency deviation. Additionally, the conventional
scheme in Scenario four exhibits excessive load shedding, leading
to a steady-state frequency close to 50.4 Hz. Consequently, the
method presented in this chapter proves its superiority in reducing
the depth of frequency drop and steady-state frequency deviation,
highlighting the effectiveness of the deep reinforcement learning
algorithm.

To compare the disparities between source-load uncertainty
and deterministic power systems, both the conventional method
and the SAC algorithm proposed in this chapter are employed
in both systems for 100 tests. The emergency frequency
control outcomes are then compared, and the results are
illustrated in Figure 10.

Figures 10A, B reveal that the median frequency nadir achieved
by the SAC algorithm in the source-load deterministic system
and the uncertain system is approximately 49.65 Hz and 49.6 Hz,
respectively, whereas the median values obtained by the traditional
method are around 49.55 Hz and 49.45 Hz, respectively. Notably,
the frequency nadir resulting from the traditional method is
significantly lower than that achieved by the deep reinforcement
learning method, making it nearly impossible to maintain system
frequency stability in numerous scenarios. By contrast, the SAC
algorithm effectively improves the steady-state frequency deviation
and frequency nadir in both deterministic and uncertain systems,
demonstrating its superiority over the traditional method for
addressing the emergency frequency control problem in source-load
uncertain systems.

To validate the suitability of the SAC algorithm over other
reinforcement learning algorithms for addressing the emergency
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frequency control problem in the source-load double uncertainty
system, the model developed based on the SAC algorithm in this
paper is compared with models employing the A2C algorithm and
the TD3 algorithm. Figure 11 presents a comparison of the reward
value’s increasing trend throughout the training process. The solid
line represents the smoothed reward value, while the shaded area
denotes the variance fluctuation of the reward value.

Figure 11 illustrates that after approximately 500 rounds, the
smoothed reward value of the model based on the SAC algorithm
surpasses that of the other algorithm models, exhibiting a gradual
increase until it stabilizes at the desired value. Furthermore, in
terms of variance, the reward value’s variance for the SAC algorithm
is higher during the initial 300 training rounds and subsequently
becomes smaller than that of the other two algorithms. This
observation indicates the robustness of the SAC algorithm, its
ability to swiftly enhance the reward value through learning, and its
reduced oscillation.

The SAC algorithm effectively decreases the minimum system
frequency drop compared to other DRL algorithms, while
also reducing the steady-state frequency deviation. To visually
demonstrate the test’s improvement more intuitively, Figure 12A
and (B) present the distribution of frequency drop nadir and steady-
state frequency deviations resulting from the tests conducted with
various algorithms under random scenarios.

As can be seen from Figure 12, the test results of the emergency
frequency control strategy using the SAC algorithm show that
the probability of the system’s steady-state frequency stabilizing
at 49.8Hz–50 Hz is more than 50%, which is much higher than
that of the test results using the A2C and TD3 algorithms, and
the probability of the frequency dip nadir of the SAC algorithm
being higher than 49.4 Hz is much higher than that of the other
two algorithms. Therefore, the model based on SAC algorithm in
this chapter can effectively improve the dynamic frequency nadir
and steady-state frequency of the system after emergency frequency
control compared to other DRL algorithms.

6 Conclusion

The emerging power systems exhibit dual source-load
uncertainty, contributing to the increasing nonlinearity and
complexity of the emergency frequency stabilization problem.
Consequently, this paper proposes an optimization method based
on the SAC algorithm for the emergency frequency control strategy
of power systems with dual source-load uncertainty. Experimental
verification is conducted through the design of various operational
scenarios, yielding the following conclusions.

1) The dual uncertainty in the new power system, stemming from
both source and load, is analyzed. This includes the spatio-
temporal uncertainty of wind power output on the power
source side and the uncertainty in power demand on the
load side. This analysis aims to prevent errors caused by the
superposition of uncertain power from both sources and the
fault power deficit.

2) Enhance the state space, action space, and reward
function of the emergency frequency control MDP
model to accommodate the characteristics of source-
load double uncertainty;

3) Finally, the proposed method is validated in a modified
IEEE10 machine 39-node system incorporating source-load
uncertainty. The results demonstrate that the proposed model
accounts for the superposition of source-load uncertainty
power and fault power, leading to a reduction in steady-
state frequency deviation after emergency frequency control.
Moreover, compared with the traditional UFLS method and
other DRL algorithms, the SAC algorithm with continuous
action space accurately removes the load in a single pass,
thereby enhancing the frequency restoration speed and
minimizing the cost of controllable load removal.
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Optimal configuration of shared
energy storage for industrial users
considering lifetime and
charge-discharge strategy
coupling

Wendi Wang*, Hongyan Wang, Shaobin Sun, Gang Cao,
Shufan Wang and Ye Ji

Science and Technology Information Network Branch, Nanjing Suyi Industrial Co., Ltd., Nanjing, China

With the development of renewable energy, energy storage has become one of
the key technologies to solve the uncertainty of power generation and the
disorder of power consumption and shared energy storage has become the
focus of attention for its cost-effective characteristics. However, it is always
difficult to quantify the coupling relationship between charge and discharge
strategy and life expectancy in energy storage configuration. Based on this, this
paper proposes an industrial user-side shared energy storage optimal
configuration model, which takes into account the coupling characteristics of
life and charge and discharge strategy. Firstly, the life loss model of lithium iron
phosphate battery is constructed by using the rain-flow counting method. In
order to further optimize the user-side shared energy storage configuration in the
multi-user scenario, a two-layer model of energy storage configuration is built,
and the Big Mmethod and the Karush-Kuhn-Tucker (KKT) conditions are used to
equivalently transform the constraints. Based on the predicted life of energy
storage and the dichotomy method, the optimal energy storage configuration
results are obtained. Comparing the energy cost of users under the three
scenarios of no storage configuration, storage configuration according to
fixed storage life, and storage configuration according to the model proposed
in this paper, the results show that the proposed method can help accurately
describe the energy storage model, increase the utilization rate of the power
station, and improve the electricity economy of users.

KEYWORDS

shared energy storage configuration, rain-flow counting, life expectancy of energy
storage, Shapley value method, bi-layer model

1 Introduction

Since the 21st century, establishing low-carbon or even zero-carbon energy systems has
become a global focus. Consequently, the application and proportion of renewable energy
sources like wind, solar, and hydropower in the grid have gradually expanded. However,
renewable energy production inherently exhibits intermittency, volatility, and randomness.
When integrated on a large scale with power systems, these characteristics exacerbate the
imbalance between supply and demand in generation and load, posing a threat to the safe
and stable operation of power systems (Azhgaliyeva, 2019).
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Energy storage, as a device capable of altering the spatial and
temporal distribution of energy, is a key technology supporting the
large-scale integration of renewable energy into the grid and
promoting the green transition of energy. It can effectively
mitigate the instability of renewable energy generation. With the
development and application of energy storage, effective demand-
side management can be realized, promoting the application of
renewable energy and enhancing system operational stability, which
will bring significant changes to power system planning, scheduling,
and control (Deguenon et al., 2023). The application of energy
storage technology will permeate all aspects of power generation,
transmission, distribution, and consumption, alleviating peak load
power supply demands and improving the utilization rate of existing
grid equipment and the operational efficiency of the grid. Zeng et al.
(2024) considering shared energy storage and demand response, a
power system interval optimization model based on shared energy
storage and refined demand response is proposed. This model
effectively enhances the utilization of energy storage and the
economic operation of the system, achieving coordinated
interaction among “source-grid-load-storage.” As a flexible
resource, energy storage can be applied on the generation side
(Wang et al., 2023; Song et al., 2023), grid side (Xie et al.,
2022a), and user side (Qian et al., 2023), thereby achieving a
coordinated unity of “source-grid-load-storage.”

As significant energy consumers, commercial and industrial
(C&I) consumers can play a crucial role by enhancing their
flexibility and participating in demand response initiatives. On-
site renewable energy generation can reduce grid consumption,
while energy storage systems (ESS) can store energy for later use,
supporting variable generation and shifting demand. Both
technologies, when integrated with demand response, can
enhance flexibility and benefits (Yasmin et al., 2024). Installing
energy storage systems effectively addresses uncertainties in
renewable energy sources (RES) and load demands, ensuring the
stable and efficient operation of industrial power systems (Jianwei
et al., 2022). Kwon et al. (2017) proposed a demand-side electricity
procurement approach to minimize energy costs for consumers.
Krishnamurthy et al. (2018) introduced a stochastic optimization
model to maximize user energy arbitrage, considering uncertainties
in day-ahead loads and real-time prices. However, these models
focus on optimizing standalone energy storage for single users.

The low cost and inefficiency of standalone systems hinder the
development of energy storage (Tahir et al., 2022). This has led to the
emergence of shared energy storage solutions (Zhu and Ouahada,
2021). Wang et al. (2024a) developed a new business model that
allows multiple users within an industrial park to share leased energy
storage, proposing a robust optimization framework. Their results
show that shared leasing is significantly more economical than self-
built storage. Aminlou et al. (2022) established a peer-to-peer (P2P)
energy trading model in the context of shared battery energy storage
systems (SBESS), which can save substantial costs for
industrial towns.

Regarding the business models and pricing mechanisms of
shared energy storage, Zhu et al. (2022) proposed a peer-to-peer
(P2P) energy trading system, which integrates energy trading with
energy management, enabling each prosumer to jointly manage its
energy consumption, storage scheduling, and energy trading in a
dynamic manner for smart communities consisting of a group of

grid-connected prosumers with controllable loads, renewable
generations and energy storage systems. Xu et al. (2023) designed
a business model for shared energy storage operators providing
deviation insurance services from the perspective of commercial
insurance; Yang et al. (2023) considered the regulation demands
from the power side and grid side, proposing a distributed shared
energy storage operational model; Lai et al. (2022) presented a two-
stage pricing mechanism between the coordinator operating the
shared energy storage and the prosumers borrowing the shared
capacity from the coordinator; Zhang et al. (2022) studied the
equilibrium state of supply-demand flow in a peer-to-peer
market model for residential shared energy storage units and
proposes a method for service pricing and load dispatching.
Zhang et al. (2024) addressed the interests of different entities in
the operation of Energy Storage Systems and Integrated Energy
Multi-Microgrid Alliances by proposing an optimization method
based on Stackelberg game theory.

For the configuration and optimization of shared energy storage,
Wang C. et al. (2022) categorized residential flexible loads based on
different demand response patterns and establishes demand
response models for various load types. Xie et al. (2022c) first
proposed a community energy storage collaborative sharing
model that includes multiple transaction types, then established a
community shared energy storage scale and configuration model
based on the cooperative game between community users and
energy storage operators; based on this, the bilateral Shapley
method (Yang et al., 2021) is applied, allocating the annual total
cost based on the marginal expected costs brought by each user. For
the profit distribution using the Shapley value method, Cremers
et al. (2023) conducted a systematic review of the use of Shapley
values in energy-related applications, as well as the literature on
calculating or approximating them. They developed a new method
for accurately calculating Shapley values by clustering producers and
consumers into fewer demand profiles, making it applicable to
communities with hundreds of agents. Wu et al. (2023) proposed
a new profit distribution method based on Shapley values, focusing
on cooperative fairness and encouraging alliance improvements.
Pedrero et al. (2024) introduced Nested Shapley values as a new
sharing mechanism that fairly allocates profits among members of
large alliances, addressing the trade-off between fairness and
scalability. In the area of energy storage scheduling, Yang et al.
(2024) proposed a scheduling method based on multi-stage robust
optimization to address the scheduling problems of energy storage
systems and uncertain energy. Qian et al. (2024) considered the
demand response of electric magnesium loads, an improved
scenario-based typically distributed robust energy and reserve
renewable energy system that significantly reduces the costs of
day-ahead scheduling and rescheduling while enhancing
operational economy without compromising the high reliability
and safety of the Renewable Portfolio Standard (RPS). Wang K.
Y. et al. (2022) presented a dual-layer optimization model for
the configuration and scheduling of integrated energy systems
in multi-microgrids, considering energy storage and demand
response, to enhance renewable energy consumption and reduce
carbon emissions.

However, the aforementioned literature focuses on using game
theory to achieve the configuration of user/park shared energy
storage, neglecting the impact of energy storage losses on
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configuration results (Xie et al., 2022b). In integrated configuration
and scheduling models, the lifespan of energy storage and optimized
charge/discharge strategies are highly coupled, significantly affecting
the economic evaluation of energy storage over its entire lifecycle.
Scholars have conducted relevant research on these issues. In
literature (Wang et al., 2024b), the Rain-flow counting method
(Pan et al., 2021) and iterative methods are used to quantify the
impact of capacity loss on configuration. By offline calculating the
health status of energy storage during each iteration, it is concluded
that when the initial health status value reaches consistency at the
beginning of each year, the iteration converges, resulting in optimal
configuration outcomes. Although the above methods address some
issues and make the economic configuration model of shared energy
storage more precise, the physical significance of the iterative
process is unclear, and the impact of charge/discharge strategies
on expected lifespan and corresponding optimal configuration
results is overlooked.

Therefore, this paper proposes an optimal configuration model
for industrial user-side shared energy storage that considers the
coupling characteristics of lifespan and charge/discharge strategies,
based on cooperative game theory (Mao et al., 2022) and a business
model for users to jointly configure energy storage. First, the Rain-
flow counting method is used to solve the equivalent cycle count of
the energy storage battery, obtaining a relevant model for calculating
battery lifespan loss. Second, a bi-level model is constructed, with the
upper-level objective of minimizing the total cost for the user group
and the lower-level objective of minimizing the cost of purchasing
electricity from the grid for the user group. Finally, the KKT
conditions and Big-M method are used to transform the bi-level
model, combined with a bisection method to iterate the expected
lifespan of energy storage. Shapley value allocation model is applied
to allocate the cost of multi-user alliance.

2 Equivalent life model of ESS

2.1 Rain-flow counting method

The Rain-flow counting method was proposed by two British
engineers in the 1950s. Its core idea is to decompose complex load
curves into multiple load cycles, which are then used for fatigue life
estimation. The Rain-flow counting method is a dual-parameter
cycle memory model with clear physical significance. Therefore, it
can also be used to predict the equivalent cycle life of batteries. The
cycle life of a battery varies with different depths of discharge. By
using the Rain-flow counting method, the number of charge-
discharge cycles and their depths within a typical day for an
energy storage battery can be calculated, which is then used for
battery life estimation.

The rain-flow counting method is widely used in fatigue life
analysis across various fields, such as materials science, and in recent
years, it has also been applied to assess battery life (Xu et al., 2021).
Figure 1 shows the SOC image after rotation, and the process for
obtaining this image is as follows. First, the capacity change data is
collected and plotted to create a curve. This curve is then rotated
90 degrees counterclockwise to fit the requirements of the Rain-flow
counting method. The starting point on the curve is marked as the
origin for simulating “raindrops.” As the simulation progresses,

“raindrops” flow along the curve, and each time they reach a peak
(or “eave”), it is checked whether they can fall. If a “raindrop” falls
and is intercepted by another part of the curve, it continues to fall
until it reaches either the maximum or minimum value of the curve,
at which point it reverses direction. If the value at the endpoint
differs from the starting point when the raindrop reaches the
endpoint, it is considered that the cycle is divided into two half-
cycles, with the division point at the maximum or minimum value of
the complete curve. Figure 1 provides an example of calculating the
number of cycles using the Rain-flow counting method.

Figure 1 shows the capacity change curve of a battery within
24 h. The State of Charge (SOC) of the battery refers to the ratio of
the remaining charge in the battery to the nominal capacity of the
battery, usually expressed as a percentage. The Depth of Discharge
(DOD) of period one is 0.3366, and period two is 0.8415.

2.2 Battery life loss model

It is generally considered that energy storage batteries are
scrapped when their capacity drops below 80% of the initial
capacity. The relationship between the cycle life of lithium iron
phosphate batteries and the DOD is fitted based on the number of
cycles Nctf at different DOD levels.

Nctf � 1 + Ank + Bn2k + Cn3k (1)

In Formula 1 (Gao et al., 2013), A, B, and C are parameters
related to the discharge depth DOD of the Shared Energy Station
(SES); nk represents the number of cycles of the SES at a certain
discharge depth DOD,i.

If the DOD for the i-th charge-discharge cycle is DOD,i, the
equivalent cycle life can be expressed by Equation 2 as:

N DOD,i( ) � Nctf DOD,1( )
Nctf DOD,i( ) (2)

FIGURE 1
Example of calculating the number of cycles of the rain-flow
counting method.
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Tlife of the battery in the working cycle of the energy storage
power station is:

Tlife � ∑DOD�1

DOD�0.01

Nctf DOD,1( )
Nctf DOD,i( ) (3)

In the Equation 3, Tlife represents the equivalent cycle life.
Therefore, it is considered that the life loss of the energy storage

battery is:

T � Nctf DOD,1( )
Tlife

(4)

In the Equation 4, when T = 1, the battery is considered to be
exhausted and needs to be scrapped.

When the calculation period is year, the equivalent cycle life of
shared energy storage in 1 year is the sum of days d:

Tlife,year � ∑365
d�1

Tlife,d (5)

In Equation 5, Tlife, year represents the equivalent cycle life of
shared energy storage in 1 year.

The estimated service life of shared energy storage is:

Tbase � Nctf DOD,1( )
Tlife,year

(6)

In the Equation 6, Tbase represents the cycle life of the energy
storage battery under the typical day (in years).

3 User-side SES configuration model

When users build their own energy storage stations under this
business model, the system structure is shown in Figure 2 (Yan and
Chen, 2022) The objective function of the user-side shared energy
storage model focuses on the cost of electricity purchase and the
construction and operation costs of the energy storage station. The
model aims to minimize the total cost of user investment in the
station and electricity purchase while achieving the lowest electricity
purchase cost for the user.

Therefore, a Bi-level model is established. The upper level aims
to minimize the sum of user investment and electricity purchase

costs, while the lower level aims to minimize the user’s cost of
purchasing electricity from the grid. Based on this, this section will
establish a cost conversion model for the energy storage station
using the Net Present Value (NPV) method and a bilevel model with
the objective of minimizing user costs.

3.1 Upper layer model

3.1.1 Upper objective function
In the upper-level model, users need to consider the costs of

constructing and operating the energy storage station. Since the
construction investment cost of the energy storage station is a one-
time investment, the time value of money must be taken
into account.

minC � ∑W
w�1

Tw Cinv,w + Cgrid,w + Cprotect,w( ) + 12Cgrid,zd,w (7)

In Equation 7, W represents the number of typical days; Tw

denotes the number of days corresponding to the w-th typical day;
Cinv,w is the daily average investment and maintenance cost of the
energy storage station;Cgrid,w is the electricity cost for users from the
grid on a typical day; Cgrid,zd,w is the monthly demand charge for
users from the grid.

The daily average investment cost of the energy storage station is
given by Equation 8:

Cinv,w � My
ηPPess

max + ηSEess
max

NwTwTk
(8)

where My represents the present value annuity factor; ηP is the
power cost of the energy storage station; ηS is the capacity cost of the
energy storage station; Pess

max and Eess
max are the maximum

charge/discharge power and maximum capacity of the energy
storage station, respectively; Nw is the number of typical days
representing different electricity usage patterns within a year; Tw

is the number of days corresponding to the typical day; Tk is the
lifespan of the energy storage station in years; k, k �
0, 1, 2...n(n ∈ N) denotes the iteration count; T0 is the initial
expected lifespan, set to 5 years.

The present value annuity factor is given by:

My � 1 + r( )γ − 1[ ]
r 1 + r( )γ (9)

In Equation 9, r is the annual interest rate of funds; γ is the life
cycle of the device.

Daily maintenance cost of energy storage power station:

Cprotect,w � ∑N
i�1
∑NT

t�1
Pess,c,w,i t( ) + Pess,d,w,i t( )( )δprotect (10)

In Equation 10,N represents the number of users;NT represents
the number of time periods; Pess,d,w,i(t) is the power drawn by the
i-th user from the energy storage station during period t on a typical
day; Pess,c,w,i(t) is the power charged by the i-th user to the energy
storage station during period t on a typical day; δprotect is the
operation and maintenance cost paid by users when storing and
retrieving electricity from the energy storage station.

FIGURE 2
User-built shared energy storage system structure diagram.
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The electricity cost for users purchasing electricity from the grid
is given by:

Cgrid,w � ∑N
i�1
∑NT

t�1
τ t( ) · Pgrid,w,i t( ) · t (11)

In Equation 11, τ(t) represents the electricity cost for users
purchasing electricity from the grid; Pgrid,w,i(t) is the power
purchased from the grid by the i-th user during period t on a
typical day.

The demand charge for users purchasing electricity from the
grid is given by Equation 12:

Cgrid,zd,w � ∑N
i�1
τzd · Pgrid,zd,w i( ) (12)

where τzd represents the demand charge for users purchasing
electricity from the grid; Pgrid,zd,w(t) is the monthly peak power
demand for the i-th user on a typical day.

According to the demand charge payment rules, users only need
to pay the demand charge based on the maximum load from the grid
in that month, in addition to the basic electricity cost. The demand
charge rate in China varies depending on the user type and typically
ranges from 30 to 50 ¥/kW.

3.1.2 Upper constraint
In configuring the energy storage station, constraints on user

electricity purchases, station charge/discharge operations, and grid
power flow need to be imposed to achieve a rational planning of the
user-owned energy storage station business model.

Constraints on the charging and discharging power of the
energy storage battery:

0≤Pess,abs t( )≤Uabs t( )Pess
max (13)

0≤Pess,relea t( )≤Urelea t( )Pess
max (14)

Uabs t( ) + Urelea t( )≤ 1 (15)
Uabs t( ) ∈ 0, 1{ } (16)
Urelea t( ) ∈ 0, 1{ } (17)

∑NT

t�1
Pess,abs t( ) + Pess,relea t( )( )≤NDoDDidealEess

max (18)

In the above equations, Pess,abs(t) represents the charging power
of the energy storage station, Pess,relea(t) represents the discharging
power of the energy storage station, Uabs(t) represents the charging
status of the energy storage station as a binary variable (0 or 1),
Urelea(t) represents the discharging status of the energy storage
station as a binary variable (0 or 1). Equation 15 signifies that either
Uabs(t) or Urelea(t) cannot be 1 at a given time, indicating that the
battery cannot be charged and discharged simultaneously. NDoD

represents the estimated daily charging and discharging cycles of the
energy storage battery,Dideal represents the ideal maximum depth of
discharge for the battery. Equation 18 imposes constraints on the
daily depth of discharge and the number of cycles for economic
reasons, which ensures that the energy storage will not over-charge
or over-discharge within a day.

Constraints on the upper and lower limits of energy storage
battery capacity:

10%Eess
max ≤Eess t( )≤ 90%Eess

max (19)
In Formula 19, Eess(t) indicates the energy stored in the energy

storage system at time t. This constraint implies that the maximum
energy within the storage system at any given time cannot exceed
90% of the total capacity, and the minimum energy cannot fall below
10% of the total capacity.

The energy storage state constraint for t ESS is shown in
Equation 20.

Eess t( ) � Eess t − 1( ) + ηabsPess,abs t( ) − 1
ηrelea

Pess,relea t( )[ ]Δt (20)

In the above equation, ηabs and ηrelea represent the charging and
discharging efficiencies, respectively.

The constraint on the electricity flow between each user and SES:

0≤Pess,c,w,i t( )≤Pess
max · Ucha,w,i t( ) (21)

0≤Pess,d,w,i t( )≤Pess
max · Udis,w,i t( ) (22)

Ucha,w,i t( ) + Udis,w,i t( )≤ 1 (23)
Ucha,w,i t( ) ∈ 0, 1{ } (24)
Udis,w,i t( ) ∈ 0, 1{ } (25)

whereUcha,w,i(t) represents the energy storage status of the i-th user,
indicating whether the user is charging the energy storage station
(taking values of binary), whileUdis,w,i(t) represents the status of the
i-th user drawing energy from the energy storage station (also taking
values of binary). Equation 23 signifies thatUcha,w,i(t) andUdis,w,i(t)
cannot both be 1 simultaneously, meaning the i-th user cannot both
charge from and discharge to the energy storage station at
the same time.

The energy storage power balance constraint is shown in
Equation 26.

∑N
i�1

Pess,d,w,i t( ) − Pess,c,w,i t( )[ ] � Pess,relea t( ) − Pess,abs t( ) (26)

This constraint signifies that the total sum of the difference in
energy exchange values between each user and the energy storage
station must equal the change in energy stored in the battery during
that time period.

The unidirectional power transmission constraint within the
power grid:

0≤Pgrid,w,i t( )≤Pgrid,zd,w i( ) (27)

In Formula 27, the power transmitted through the power grid
should be a positive value and less than the maximum
transmission capacity.

3.2 Lower layer model

3.2.1 Upper objective function
The lower objective considers the lowest cost of electricity for

users and is expressed by Equation 28 as:

minC � ∑W
w�1

Tw · Cgrid,w + 12Cgrid,zd,w[ ] (28)
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3.2.2 Lower constraint
User power balance constraints:

Pgrid,w,i t( ) + PPV,w,i t( ) + Pess,d,w,i t( ) − Pess,c,w,i t( ) − Pload,w,i t( )
� 0, λ1,i,t,w (29)

In Equation 29, PPV,w,i(t) represents the solar power generation
of the i-th user during time period t on a typical day, while
Pload,w,i(t) represents the power load of the i-th user during time
period t on a typical day. The purchased electricity by the user needs
to balance with their own load, self-generated power, and the energy
exchange with the station. λ1,i,t,w is the Lagrange multiplier
corresponding to this constraint in the subsequent solving process.

The user’s power purchasing constraint:

0≤Pgrid,w,i t( )≤Pgrid,zd,w i( ): u1,i,t,w
min , u1,i,t,w

max (30)

In Equation 30, u1,i,t,wmin , u1,i,t,wmax represents the Lagrange multiplier
corresponding to this inequality constraint in the subsequent solving
process. This constraint implies that the power purchased by the i-th
user during time period t on a typical day should not exceed the
maximum power purchased from the grid for that typical day.

The peak shaving load constraint:

Pload,w,i t( ) − PPV,w,i t( )
+ Pess,d,w,i t( ) − Pess,c,w,i t( )[ ]≤ 1 − μ( )Pload,max ,w i( ), u2,i,t,w

max (31)

In Equation 31, μ represents the peak shaving rate, and
u2,i,t,w max represents the Lagrange multiplier corresponding to
this inequality constraint.

3.3 The cost allocation model based on the
Shapley value method

The revenue distribution model uses the Shapley value method
to fairly consider each member’s contributions. This helps allocate
assets appropriately. Specifically, this model utilizes the Shapley
value method to distribute revenues among a coalition composed of
n industrial users.

In the calculation process, the marginal contributions made by
each member are taken into account, and the revenues are allocated
to each member in a reasonable manner, allowing each member to
receive corresponding benefits. For a coalition of n industrial users,
the allocated revenue for user i, denoted as Xi, is given by:

χi � ∑
Q⊂nn− i{ }

Q| |! nn| | − Q| | − 1( )!
nn| |! υ Q ∪ i{ }( ) − υ Q( )( ) (32)

In Equation 32: Xi represents the allocated revenue for user i; Q is
any sub-coalition formed by the total coalition excluding user i; nn is
the total coalition; i{ } is the individual coalition formed independently
by user i; |Q| is the number of users in the sub-coalition; |nn| is the
number of users in the total coalition; and v is the total revenue. The
revenue distribution must satisfy the condition that the total revenue
of the coalition remains unchanged before and after the distribution,
as shown in Equation 33:

∑n
i�1
χi � υ nn( ) (33)

4 The solution process of the
configuration model

4.1 Upper layer model processing

In the upper-level model, the non-linear constraints arising from
the multiplication of binary (0–1) variables and linear variables are
handled using the Big-M method for Equations 13–17 and
Equations 21–25 (Ding et al., 2020). The processed equations are
shown in Equations 34–41.

0≤Pess,abs t( )≤Pess
max (34)

0≤Pess,abs t( )≤Uabs t( )M (35)
0≤Pess,relea t( )≤Pess

max (36)
0≤Pess,relea t( )≤Urelea t( )M (37)

0≤Pess,c,w,i t( )≤Pess
max (38)

0≤Pess,c,w,i t( )≤Ucha,w,i t( )M (39)
0≤Pess,d,w,i t( )≤Pess

max (40)
0≤Pess,d,w,i t( )≤Udis,w,i t( )M (41)

4.2 Lower layer model processing

Due to the dual-level structure of the model under study, it is
necessary to appropriately handle the lower-level model to ensure it
serves as a constraint for the upper-level model. In this process, we
employ the KKT conditions, which are crucial for obtaining the
optimal solution in nonlinear programming. By introducing the
KKT conditions, even in the face of optimization problems with
inequality constraints, we can still utilize the Lagrange multiplier
method to continue the solution process, thereby ensuring the
accuracy and effectiveness of the model.

The specific steps are as follows:
The lower-level objective function and constraints, along with

their Lagrange multipliers, are multiplied to form the Lagrange
function, as shown in Equation 42:

L � ∑W
w�1

∑N
i�1
∑NT

t�1
TwΔt τ t( )Pgrid,w,i t( )[ ] + 12τzdPgrid,zd,w i( ){ }

+ λ1,i,t,w
Pgrid,w,i t( ) − Pload,w,i t( )−
Pess,c,w,i t( ) + Pess,d,w,i t( )[ ] − u1,i,t,w

min Pgrid,w,i t( )

+ u1,i,t,w
max Pgrid,w,i t( ) − Pgrid,zd,w i( )[ ]

+ u2,i,t,w
max

Pload,w,i t( ) + Pess,abs t( )−
Pess,relea t( )[ ]−
1 − μ( )Pload,max ,w i( )

⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭ (42)

The variables present in the lower-level objective function are
differentiated to create new equality constraint conditions, which is
shown in Equation 43:

Tw · τ t( ) + 12 · τzd · Pgrid,zd,w i( ) + λ1,i,t,w + u1,i,t,w
max − u1,i,t,w

min

− u5,i,t,w
max · 1 − μ( ) · Pload,max ,w i( ) � 0 (43)

The modified inequality constraint conditions from the original
lower-level model are retained and become the new constraint
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conditions of the transformed single-level model, as shown in
Equations 44–46:

0≤ u1,i,t,w
min ⊥ Pgrid,w,i t( )≥ 0 (44)

0≤ u1,i,t,w
max ⊥ Pgrid,zd,w i( ) − Pgrid,w,i t( )( )≥ 0 (45)

0≤ u2,i,t,w
max ⊥ ( 1 − μ( )Pload,max ,w i( ) − Pload,w,i t( ) + PPV,w,i t( )

− Pess,d,w,i t( ) − Pess,c,w,i t( )[ ])≥ 0 (46)

The rewritten inequality constraint conditions from the previous
step need to be processed using the Big-M method, Mj

min, j �
1, 2...n(n ∈ N) is sufficiently large constants, vj,i,t,wmin , vj,i,t,wmax , j �
1, 2...n(n ∈ N) are binary (0–1) variables. The resulting processed
constraint conditions are given by Equations 47–52:

0≤ u1,i,t,w
min ≤M1

min v1,i,t,w
min (47)

0≤Pgrid,w,i t( )≤M1
min 1 − v1,i,t,w

min( ) (48)
0≤ u1,i,t,w

max ≤M1
maxv1,i,t,w

max (49)
0≤Pgrid,zd,w i( ) − Pgrid,w,i t( )≤M1

max 1 − v1,i,t,w
max( ) (50)

0≤ u2,i,t,w
max ≤ M2

maxv2,i,t,w
max (51)

0≤ 1 − μ( )Pload,max ,w i( ) − Pload,w,i t( ) + PPV,w,i t( )
− Pess,d,w,i t( ) − Pess,c,w,i t( )[ ]≤M2

max 1 − v2,i,t,w
max( ) (52)

4.3 The solution process for SES
configuration considering the coupling of
lifespan and charge-discharge

In MATLAB simulation software, a dual-layer model for shared
energy storage configuration, composed of minimizing total user
cost and minimizing user electricity cost, is constructed. The CPLEX
12.10.0 solver is employed for optimization. To determine the
optimal battery life, binary search can be used to repeatedly test
midpoints within a known range. This approach allows for quick
identification of the best lifespan. The ultimate goal of this method is
to reduce the number of tests and increase efficiency (Ding et al.,
2023). The solution process, as illustrated in Figure 3, is detailed
as follows:

Step 1: Users intending to participate in the shared energy storage
project are identified. Historical load data for each user is
analyzed, and the load profiles for typical days within a
year are extracted.

Step 2: A dual-layer model for energy storage optimization is
established to optimize the capacity and maximum
charge-discharge power of the energy storage system.
The total annual operational cost for all users
throughout the lifespan of the energy storage system is
calculated.

Step 3: Using the energy storage data configured in Step 2, the
equivalent cycle life of the battery in the energy storage
station is calculated by applying the Rain-flow counting
method. The calculated results are compared with the
expected battery life under the configurationmodel in Step
2, and if the condition for iterative convergence is met and
the configuration is accepted by all users, the shared

energy storage is configured accordingly. Otherwise,
proceed to Step 4.

Step 4: Due to the irrationality of the configuration model, the
configured result is not feasible. Employing the
bisection method, the expected battery life is adjusted
towards the result obtained from the Rain-flow
counting method in Step 3 to obtain a new expected
lifespan. Based on this new expected lifespan, Step 2 is
repeated to obtain a new optimal configuration result.
The comparative process is repeated until the final
configuration result is obtained.

The specific solution flow chart is shown in Figure 3.

FIGURE 3
Energy storage configuration flow chart with lifetime and
charge-discharge coupling.
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5 Case studies

5.1 Parameters Setting

The case study is oriented towards a multi-user energy storage
project consisting of three users. The industrial time-of-use
electricity prices, as shown in Table 1, are based on the price list
for commercial users represented by State Grid Zhejiang Electric
Power Company. The demand charge is 48 ¥/kWh, collected on a
monthly basis. The number of battery cycles at different DODs is
referenced in Table 1. The energy storage battery selected is a lithium
iron phosphate battery, and the number of battery cycles at different
DODs is referenced in Table 1 (Gao et al., 2013). Time-of-Use (Tou)
Prices for industrial and commercial users is referenced in Table 2.
The unit cost for user investment in energy storage station
construction and unit capacity cost are referenced from the
literature (Liu et al., 2021), with values of 1,000 ¥/kW and 1,200
¥/kWh, respectively. Considering the time value of money, the
annual interest rate is 4%. Users are responsible for the operation
and maintenance costs of their self-built power stations, calculated
as follows: each time there is an electricity flow between a user and
the station, the user is required to pay an operational fee of 0.05
¥/kWh. The expected lifespan of the station is initialized to 5 years.
The lower limit for the state of charge of the energy storage is 0.1,
and the upper limit is 0.9. The initial state of charge and the state of
charge at the final time period satisfy the continuity constraint of the
energy storage device state. The number of typical days is 1.

5.2 Configuration result analysis

5.2.1 Initial configuration result
When the expected service life of the battery is initialized to

5 years, the model yields the following results: The optimal capacity

of the energy storage station is 1018.2328 kWh, with a maximum
charge and discharge power of 150.71 kW. The total cost for the user
group is ¥66209617.2443, and the total cost for electricity purchase
by the user group is ¥65916347.7008.

The charge and discharge status of the energy storage station at
this time is shown in Figure 4. Energy storage tends to charge during
off-peak hours, such as from midnight to 8 a.m., and then discharge
during peak demand periods to reduce user load and engage in peak-
valley arbitrage. However, it has also been observed that users are
not very willing to participate in peak shaving with energy storage.
This is due to the relatively short lifespan of energy storage systems
and the significant daily investment required.

TABLE 1 Cycle life of lithium iron phosphate battery at different DOD.

DOD Number of battery cycles

100% 3669.064

80% 4406.474

60% 5080.935

40% 5953.237

TABLE 2 TOU prices for industrial and commercial users.

Period Time Electricity price (¥/kWh)

Peak hour 12:00–13:00 1.4028

Peak period 9:00–11:00 0.9644

14:00–16:00

Valley period 1:00–8:00 0.4145

17:00–19:00

19:00–24:00

FIGURE 4
Charge and discharge of the energy storage station with a battery
life of 5 years.

FIGURE 5
Battery life iteration details.
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5.2.2 Life iteration process
Based on the preset battery life, the battery charge and discharge

status are shown in Figure 4, and it is input into the battery life
degradation model for calculation. The battery cycling within a
typical day consists of two full cycles and one-half cycle, with the
battery’s charge and discharge depth being:

DOD,1 � 0.0162

DOD,2 � 0.0997

DOD,3 � 0.6830

The calculated equivalent cycle life of the battery is 6.362 years.
Using the bisection method, the preset battery life is updated to
obtain the new battery life:

T1 � T0 + Tbase

2
� 5.681

The optimization model configuration process for the energy
storage system is repeated. The total number of iterations is 13, and
the iteration data for the battery life is shown in Figure 5.

5.2.3 Analysis and comparison of optimal
configuration results

When the battery service life is 12.72 years, the operational
results of the multi-user shared energy storage dual-layer model
are as follows: The optimal capacity for the energy storage station
for this year is 106507.5029 kWh, and the optimal maximum
charge and discharge power for the energy storage station is
11694.06 kW. The total cost for the user group’s annual grid

FIGURE 6
Power purchase of users after battery life renewal.

FIGURE 7
User 1’s power access after battery life renewal.

FIGURE 8
User 2’s power access after battery life renewal.

FIGURE 9
User 3’s power access after battery life renewal.
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electricity purchases is ¥47134790.454, and the total annual
electricity cost for the user group is ¥60772021.6139. Figure 6
depict the grid electricity purchases by the typical daily users after
updating the battery service life.

Figures 7–9 illustrate the charge and discharge status of electricity
between the user group and ESS.

Compared with the initial configuration results, it is evident that
there has been no change in the overall electricity purchasing strategy
within the user group. In contrast, the capacity and power of the
energy storage system have increased significantly. This is due to the
extended lifespan, which has been raised from 5 years to 12.72 years
after iteration, resulting in a substantial reduction in the daily
investment for the energy storage system. Consequently, users are
more inclined to deploy larger capacity and power storage devices.
Furthermore, thanks to the increased capacity and power, the current
monthly demand charges are lower compared to the initial
configuration results. The most notable changes are as follows:

In the optimal configuration results, User 1 purchases less electricity
during the 9:00–16:00 period, with a purchase of 3375.4 kW at 11:00,

compared to 3896.1 kW at other times. In the initial configuration, User
2 does not purchase electricity at 10:00, buying 5362 kW from 11:00 to
12:00, while in the optimal configuration, User 2 purchases 810.1 kW at
10:00 and nothing at 11:00. Additionally, User 2 does not purchase
electricity from 11:00 to 16:00, but increases purchases during off-peak
hours to 5169.14kW, except for a purchase of 443.62 kW at 20:00,
storing the excess electricity in the station from 1:00 to 8:00 and 17:00 to
24:00. User 3 purchases less electricity during the 9:00–16:00 period and
at 20:00, with all other periods at 6133.53 kW.

Under a reasonable electricity management strategy among users,
User 2’s cost reduction measure of not purchasing electricity during
peak and high-demand periods has been more thoroughly
implemented. This strategy not only ensures that User 2 does not
incur high electricity purchase costs during peak demand periods but
also optimizes the overall electricity usage pattern, further reducing the
collective electricity costs for the entire user community. The charge
and discharge situation of the station after updating the battery life is
shown in Figure 10 Overall, compared to the initial configuration, the
energy storage station shows a stronger desire to participate in load
regulation. It has greater capacity and power, significantly enhancing its
ability to shave peaks and fill valleys, as well as its capability for demand
reduction, resulting in more noticeable benefits.

Compared to the configuration results with the preset 5-year
battery life, the updated battery exhibits a reduced number of charge
and discharge cycles, with the cycling period consisting of two cycles.

DOD,1 � 0.0044

DOD,2 � 0.7946

Overall, the energy storage station’s charging activity from 1:00 to
8:00 and 17:00 to 24:00 prepares for load reduction from 9:00 to 16:00.

Table 3 provides a comparison between the initial configuration
results and the optimal configuration results.

From the data in the table, it is evident that both before and after
updating the battery life in the configuration of the shared energy
storage station, the electricity costs for users have decreased
compared to when the system was not configured.

Considering the energy losses in the station’s batteries, the
required station capacity should increase. With the station’s service

FIGURE 10
Charging and discharging of the power station after battery
life renewal.

TABLE 3 Comparison of configuration results.

Optimization index Initial configuration result Optimal configuration result No ESS configured

Rated power/kW 150.71 11694.06 0

Optimal capacity/kWh 1,018.2328 106507.5029 0

User purchase cost/¥ 6.59 × 107 4.71 × 107 6.63 × 107

Total user cost/¥ 6.62 × 107 6.08 × 107 6.63 × 107

TABLE 4 Cost allocation based on the Shapley value method.

Energy storage Configuration type Cost for User 1. (¥ × 105) Cost for User 2. (¥ × 105) Cost for User 3. (¥ × 105)

Unconfigured storage 2,419 2,381 1,831

Independent Storage 2,192 2,179 1,738

Shared Storage 2,190 2,168 1,719
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life updated to 12.72 years, the annual construction cost per year
decreases. The increase in the station’s charge and discharge power
signifies an improved utilization rate, leading to a further reduction in
users’ electricity costs compared to the initial configuration results,
resulting in a significant overall cost reduction for the users.

Based on Table 3, the total costs of cooperative energy storage
configurations for the three industrial user types in different
combinations all satisfy the Super additivity condition. This
indicates that by forming a cooperative alliance, the three
industrial user types achieve cost reductions, resulting in
cooperative surplus and consequently, excess profits.

According to Table 4, it is evident that the total costs for the three
industrial user types through cooperative energy storage configuration
are lower than the total costs without energy storage and those of
individual energy storage configurations. Compared to not having
energy storage, the total cost for Industrial User 1 decreases by
approximately 2.39 million yuan, for Flat User 2 by approximately
2.13 million yuan, and for Industrial User 3 by approximately
1.12 million yuan, indicating a significant reduction in total costs
for each user. It is apparent that this distribution result satisfies both
collective rationality and individual rationality.

Based on the above, it can be concluded that the possibility and
stability of forming a cooperative alliance among the three industrial
user types are ensured.

6 Conclusion

The configuration of shared energy storage needs to be adjusted
according to the actual situation of the construction project in the region.
Therefore, there is a necessity to discuss the issue of energy storage station
configuration considering the capacity loss of the energy storage system.
This paper optimizes the configuration of shared energy storage for
multiple users, taking into account the factor of battery capacity loss
during the configuration process. The calculation of battery degradation
can iteratively update the device’s life cycle for energy storage projects,
thereby obtaining the most economical, environmentally friendly,
reasonable, and practical optimal energy storage station configuration.

1) The Rain-flow counting method is utilized to decompose the
battery capacity change curve, and the decomposed important
parameters are used for life cycle calculation. A battery life
degradation calculation model is established using specified
parameters of lithium iron phosphate batteries.

2) The objective is to minimize the total cost of energy storage
project construction and electricity usage for all users within a
year, considering both the optimal electricity cost for all users
and the overall optimal cost of energy storage project
construction and electricity usage. A bi-level model is
established to achieve the lowest total cost under the
condition of optimal electricity cost. In the solution process,
the Big-M method and KKT conditions are used to handle the
model, ultimately transforming the nonlinear programming
problem into a mixed-integer linear programming problem.

3) The results of the bi-level model configuration are updated with
the battery life degradation model. Through multiple iterations of
optimizing the shared energy storage configuration, the charging
and discharging of the shared energy storage device becomes

more reasonable. The extension of the shared energy storage
device’s lifespan not only reduces the waste of power resources
and construction materials but also creates more collective
economic benefits for multiple users.

4) For the alliance cost of multiple users, a Shapley value allocation
model is established for fair distribution. By analyzing and
comparing the costs of different users without energy storage
configuration andwith independent energy storage configuration,
the superiority of multiple-user cooperative configuration of
shared energy storage is verified, providing assurance for the
maintenance and long-term stability of the cooperative alliance.
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Optimal configuration strategy of
energy storage considering
flexible response of high
energy-consuming industrial and
mining loads in independent
microgrid
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Basang Danzeng1 and Lei Wang1

1Economic and Technical Research Institute of State Grid Tibet Electric Power Co., Ltd., Lhasa, China,
2State Grid Tibet Electric Power Co., Ltd., Lhasa, China

The coordinated optimization of industrial and mining loads with energy storage
(ES) is a critical approach to achieving power and energy balance in microgrids
while promoting the new energy accommodation. Addressing the issue of
insufficient flexibility in demand response from high-energy-consuming
lithium mining loads, which may lead to conservative ES capacity allocation
and underutilization of complementary flexibility potential, this paper proposes
an ES optimization strategy for microgrids considering the participation of high-
energy-consuming lithiummining loads in demand response. Firstly, considering
the production process of extracting lithium from salt lakes brine and the
electricity consumption characteristics of major energy-consuming
equipment, a mathematical model is developed to quantify the flexibility
adjustment potential of lithium mining loads under production behavior
constraints. Based on this, incorporating the regulation boundaries of
photovoltaic (PV) units, gas turbine units, concentrated solar power (CSP), ES
system, and flexible lithium mining loads, an ES capacity optimization model is
constructed to minimize the comprehensive system capital and operation costs
in independent microgrid. The model is then linearized into a mixed-integer
programming problem. Finally, through case study simulations of an actual
microgrid in Southwest China, the feasibility and effectiveness of the
proposed ES optimization strategy are verified. The results demonstrate that
the proposed strategy can economically and effectively meet the power and
energy balance of the independent microgrid and the electricity demands of
high-energy-consuming loads, while promoting the improvement of new energy
accommodation capacity.
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industrial and mining loads, demand response, energy storage configuration,
independent microgrid, mixed integer linear programming
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1 Introduction

With the rapid development of new energy vehicles and lithium-
ion ES, the demand for battery-grade lithium carbonate preparation
continues to grow. However, the salt lakes lithium mines as a crucial
raw material source are often located in remote areas, making it
challenging to extend power transmission networks to meet the high
energy demands of lithium mining operations. Therefore, it is
necessary to develop localized microgrids for on-site power
supply (Zhang et al., 2024)- (Wu et al., 2024). Under the dual-
carbon goals and the new power system construction, the
penetration of new energy in microgrids is increasing. However,
the inherent seasonality, volatility, and uncertainty of new energy
reduce the dispatchable capacity of traditional regulatory resources,
making it difficult to ensure the balance of power and energy in
microgrids. This highlights the urgent need to expand grid
regulation resources and transition from the conventional
“source-grid-load” model to the coordinated “source-grid-load-
storage” interactive model (Liu et al., 2020). On one hand, high-
energy-consuming lithium mining loads are characterized by high
flexibility, fast dispatch response, and significant scalability
potential. Leveraging their regulatory flexibility for demand
response can alleviate the power supply pressure of microgrids
(Nie et al., 2023). On the other hand, as an excellent regulatory
resource for power and energy balance, the optimal configuration
and coordinated operation of ES system are closely related to the
operational performance and economic benefits of microgrids.
Therefore, studying collaborative configuration strategies for ES
under flexible lithium mining load responses is of great
significance for maintaining power and energy balance in
microgrids and meeting load power demands.

In recent years, some scholars have conducted research on the
participation of high-energy-consuming industrial loads in
optimizing grid operations, achieving notable results. For
instance, Reference (Philipo et al., 2022) proposes a demand-side
management strategy based on artificial neural networks that
accounts for load-shifting behavior, effectively reducing load
demand in standalone PV battery microgrids in East Africa. A
novel flexible low-carbon optimal dispatch model is proposed for
the distribution network, which coordinates the participation of heat
storage industrial loads in demand response (Wang W. D. et al.,
2024). In Reference (Xu et al., 2020), a method is proposed to involve
the steam systems of industrial loads, such as paper mills and steel
plants, as flexible loads in demand response. This approach
approximated the flexibility boundaries under the influence of
steam uncertainty. Furthermore, Reference (Cui and Zhou, 2018)
summarizes the main methods for industrial load demand response,
pointing out that modeling industrial processes using a production-
buffer approach could yield more reasonable optimization results.
Ramesh and Sofana utilize a resource-task network to represent
refinery processes and implemented stochastic dynamic
programming to shift the electricity usage of refineries, reducing
energy costs (Reka and Ramesh, 2016). Additionally, Reference
(Liao et al., 2024) analyzes production characteristics and
regulation constraints to construct a demand response capability
boundary, enhancing the flexibility of large-capacity electrolytic
aluminum loads to interact bidirectionally with the grid.
Reference (Golmohamadi et al., 2019) aggregates the flexibility of

cement manufacturing, metal smelting, and residential loads using
load aggregators, leveraging complementary characteristics among
different loads to participate in demand response. These studies
effectively improved the economic benefits of industrial enterprises
and enhanced grid stability by tapping into the flexibility of
industrial production processes. However, under the context of
new energy standalone microgrids, the quantification and
integration of lithium mining load flexibility in demand response
remain insufficiently addressed, highlighting a gap in the current
research landscape.

Relying solely on industrial and mining loads constrained by
production processes is insufficient to effectively maintain the power
and energy balance of the grid. Coordinated optimization of flexible
loads and ES is a crucial solution. In Reference (Huang et al., 2021),
A two-stage optimal scheduling method based on model predictive
control is proposed for the energy management of the actual
microgrid system containing ES and flexible loads, with
improving the optimization control accuracy. Reference (Zeng
et al., 2024) develops a refined demand response mechanism and
shared ES optimization model for various building loads to achieve
source-grid-load-storage synergistic interaction. In Reference
(Wang D. et al., 2024), a joint optimization mechanism
integrating electric and thermal energy storage with demand
response is proposed, aiming to enhance the economic benefits
of market participants while improving supply-demand
coordination through interregional energy complementarity.
Moreover, Reference (Karimianfard et al., 2022) proposes a large-
scale ES coordination capacity and optimization strategy that
considers load-side response behavior, improving the operational
flexibility of smart grids and increasing economic returns for loads.
Reference (Sun et al., 2022) treats flexible demand-side resources as
virtual ES while employing conventional ES to mitigate load
uncertainties. Additionally, Reference (Shen et al., 2022) proposes
a multi-objective optimizationmodel for multi-ES capacity planning
in industrial park microgrids based on electricity-heat-gas coupled
demand response, aiming to minimize economic costs and carbon
emissions while enhancing energy supply reliability and economic
performance. These studies construct models for load demand
response and ES optimization from various perspectives,
effectively maintaining grid power balance and ensuring reliable
and economic system operation. However, research focusing on the
coordinated optimization of ES and demand response for industrial
and mining loads remains relatively scarce, leaving room for further
exploration in this area.

This study addresses the power supply demands and flexibility
regulation of high-energy-consuming lithium mining loads,
focusing on independent industrial microgrid scenarios in
remote areas. It proposes an optimized ES configuration and
operational strategy for independent microgrids, incorporating
the potential of mining load regulation to enhance system
performance. The main contributions of this paper are
summarized as follows:

• A flexibility regulation analysis and quantification model for
lithium mining loads is developed, considering the specific
production characteristics of lithium extraction. This model
effectively enhances the bidirectional flexibility interaction
capabilities with the microgrid.
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• By considering the operational boundaries of PV units, CSP
units, ES system, and lithium mining load regulation, an
optimized ES configuration model is constructed to
minimize the comprehensive construction and operational
costs of the independent microgrid. Economically, this
approach reduces the operating costs of the microgrid
system, while technically, it enhances the renewable energy
utilization rate and ensures reliable power supply for lithium
mining loads.

The rest of the paper is organized as follows. In Section 2, the
regulation potential of industrial and mining load is analyzed and
modeled. In Section 3, the coordinated operation strategy of
industrial and mining loads with ES is proposed, and the main
objectives and constraints of the de-aggregation strategy are
provided. Then, Section 4 presents results and discussion based
on case studies. The conclusion and future work are drawn
in Section 5.

2 Modeling of industrial and mining
load regulation potential

Due to the volatility and uncertainty of its output, PV
power generation is difficult to match the electricity demand of
high-energy-consuming loads, which further leads to the
imbalance of power and electricity in the microgrid and
the lack of new energy accommodation capacity. By tapping
the potential of flexible adjustment on the load side and

cooperating with ES resources to participate in the optimal
operation of the microgrid, it is helpful to alleviate the above
problems, as shown in Figure 1. However, the load regulation
potential of lithium ore is affected by its process production
characteristics. How to consider this key factor and quantify
modeling is an important difficulty and key point in the
mining of industrial and mining load flexibility.

The technologies for extracting lithium resources from salt lakes
brine have reached a relatively mature stage both domestically and
internationally. The primary methods include precipitation, solvent
extraction, adsorption, calcination, and electrodialysis. Among
these, the precipitation method has become the mainstream
technology due to its mature process and wide application (Kong
et al., 2024). The typical process flow involves natural evaporation
and crystallization of the salt lakes, reaction precipitation, solid-
liquid separation, heating and evaporative concentration, and
precipitation separation. The heating and evaporative
concentration stage primarily relies on MVR technology, which is
also the most energy-intensive phase of the entire process
(Xiao, 2014).

The flexibility potential of lithium mining loads is mainly
reflected in two aspects: 1) Adjustability of the MVR system
temperature (Zhou et al., 2022): The MVR evaporative
concentration process operates within a temperature-adjustable
range, where temperature regulation directly affects electricity
consumption. 2) Flexibility in scheduling production tasks over
time: The production process allows for adjustments in task timing
to accommodate demand response requirements. Specifically, the
MVR system provides an adjustable temperature range during the

FIGURE 1
Coordinated operation framework of lithium mining loads and ES in microgrid.
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evaporative concentration stage. Temperature adjustments result in
corresponding changes in power consumption. To evaluate the load
regulation potential, a mathematical model based on thermal inertia
can be developed. This model considers key factors such as the
specific heat capacity of brine, the temperature range required to
maintain process stability, heat transfer between the compression
process and the environment, and the efficiency of heating loads,
which contributes to offer theoretical support for assessing the
flexibility potential of thermostatically-controlled lithium mining
loads (TLMLs).

2.1 MVR temperature adjustable flexibility

2.1.1 Brine heating model
The heat required for heating and evaporating salt lakes brine is

related to its mass, specific heat capacity, and temperature changes.

Q � mCbΔT (1)
whereQ represents the heat variation of brine heating;m is quality of
brine; Cb represents the specific heat capacity of the brine; ΔT
represents the temperature change of the brine.

2.1.2 Heat loss model
Due to the interaction between MVR and the external

environment, a certain amount of heat loss is caused.

Qloss t( ) � hA Tbri t( ) − Tenv t( )[ ] (2)
where Qloss(t) represents heat loss due to environmental interaction
at time t; h represents the heat transfer coefficient of environment
and MVR; A represents the surface area of the MVR in contact with
the external environment; Tbri(t) is brine temperature; Tenv(t) is
ambient temperature.

2.1.3 Regulation potential for lithium extraction
from salt lakes

The process of isobaric evaporation to isobaric condensation of
salt lakes brine meets the temperature, power and capacity
adjustable range:

Tmin ≤Tbri t( )≤Tmax (3)
PLi

min t( )≤PLi t( )≤PLi
max t( ) (4)

Qmin ≤ Qi,0 + ∫T

0
PLi t( )dt − Qloss t( )[ ]≤ Qmax (5)

where Tmax represents the upper limit of brine temperature; Tmin

represents the lower limit of brine temperature; PLi(t) is the
operating power of TLMLs; Pmax

Li (t) and Pmin
Li (t) are the upper and

lower limits of adjusted load power at time t, respectively; Qmin and
Qmax are the upper and lower limits of thermal storage capacity,
respectively.

2.1.4 Thermoelectric coupling characteristics
Considering environmental heat loss, there is a thermoelectric

coupling characteristic between power consumption changes and
MVR temperature variations.

mCb Tbri t + 1( ) − Tbri t( )[ ] � ηPLi t( ) − Qloss t( ) (6)

where η is coefficient of thermal efficiency.

2.1.5 MVR continuous regulation limits
The continuous adjustment of MVR will cause frequent

fluctuations in evaporator temperature. To maintain production
stability to the greatest extent possible, the continuous adjustment
limit of lithium mining load power consumption is as follows:

μdwlu t( )v−Li ≤PLi t( ) − PLi t − 1( )≤ μuplu t( )v+Li
μdwlu t( ) + μuplu t( ) � 1
μdwlu t( ) + μuplu t( )[ ] + μdwlu t − 1( ) + μuplu t − 1( )[ ]≤ 1

⎧⎪⎨⎪⎩ (7)

where v- Li and v + Li are the lower and upper limits of the lithium
mining load regulation rate; μdw lu and μup luare 0–1 state variables
that characterize the downward and upward adjustment of the
adjustment power.

2.1.6 Economic compensation for industrial and
mining load regulation

The benefits of lithium mine load mainly come from two
indicators: economic compensation and heat demand. The
impact degree of heat demand is transformed into economic
index, and the two are linearly summed:

CLi � cLi P
fr
Li − PLi t( )

∣∣∣∣∣ ∣∣∣∣∣ + cMVR
Tbri t( ) − Tmin

Tmax − Tmin
( ) (8)

where CLi is the economic compensation for the temperature control
adjustment of TLMLs; cLi is the economic compensation cost per
unit power for temperature regulation of TLMLs; Pfr

Li is the planned
power consumption curve of TLMLs; cMVR is the influence
coefficient of temperature changes on the production efficiency of
lithium mining loads.

2.2 Transferable flexibility of sequential
production

The time-series transfer characteristics of production tasks can
be equivalent to the modeling of transferable lithium mining loads.
The specific mathematical modeling is as follows:

2.2.1 Load transferability feature
Ensuring the overall production task remains unchanged

throughout the entire scheduling cycle, with only timing
adjustments.

∑T
t�1

Pfr
tr t( ) − Ptr t( )[ ] � 0 (9)

where Pfr
tr (t) and Ptr(t) are the power of transferable lithium mining

loads before and after scheduling at time t, respectively; T is the
scheduling period.

2.2.2 Adjustable potential of transferable loads

Ptr min t( )≤Ptr t( )≤Ptr max t( ) (10)
where Ptr_max(t) and Ptr_min(t) are the upper and lower limits of
power after lithium mining load transfer, respectively.
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2.2.3 Transferable loads regulation rate

v−tr ≤Ptr t( ) − Ptr t − 1( )≤ v+tr (11)
where v-tr and v + tr are lower and upper limit on regulation rate of
lithium mining transferable loads.

2.2.4 Economic compensation of
transferable loads

When load power is transferred, appropriate economic
compensation should be provided to the lithium mining
enterprises, which is as Equation 12.

Ctr � ∑T
t�1
ctr P

fr
tr t( ) − Ptr t( )

∣∣∣∣∣ ∣∣∣∣∣ (12)

where Ctr is economic compensation of lithium mining transferable
loads; ctr is the unit power compensation cost of lithium mining
transferable loads.

3 Optimization model for coordinated
operation of industrial andmining loads
with ES

To fully exploit the flexibility potential of lithium mining loads
and the adjustment capabilities of ES system, this study develops a
coordinated optimization model for flexible lithium mining loads
and ES configurations, as illustrated in Figure 2. The optimization
model is implemented in MATLAB, utilizing the YALMIP toolbox
to interface with the Gurobi solver for solution computation. Based
on the mathematical model of lithium mining load flexibility and its

regulatory boundaries, the optimization considers constraints from
the grid side, generation side, load side, and storage side. The
objective function is to minimize the operational cost of the
microgrid system. This problem is formulated as a mixed-integer
linear programming (MILP) problem and solved to derive the
optimal ES configuration scheme for independent microgrids.
This approach integrates flexibility from the lithium mining load
and ES to enhance the operational efficiency and economic
performance of microgrids, contributing to improved renewable
energy utilization and reliable power supply.

3.1 Objective function

Considering the new energy curtailment cost, gas turbine power
generation and carbon reduction cost, CSP units cost, ES cost,
industrial and mining load adjustment cost, the multi-objective is
converted into single-objective comprehensive operation cost of
microgrid by linear weighting method, which is as Equation 13.

obj � objPV + objGT + objCSP + objES + objload (13)
where obj is the comprehensive operating cost of microgrid; objPV
is the penalty cost of PV curtailment; objGT is power generation
and carbon emission penalty cost of gas turbine; objCSP is the
operating cost of CSP units; objES is the capital and operating cost
of ES; objload is the adjustment cost of the flexible lithium
mining loads.

3.1.1 PV curtailment penalty cost
The output power of PV units is used to supply load demand. To

enhance the PV utilization rate, the PV curtailment is incorporated

FIGURE 2
Block diagram of optimization configuration and operation model for ES in independent microgrid.
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into the optimization objective and transformed into an economic
objective of curtailment cost, which is as Equation 14.

objPV � ∑
t

cPV Pfr
PV t( ) − PPV t( )[ ] (14)

where cPV is the penalty cost per unit of curtailed PV power; Pfr
PV(t) is

the predicted PV output power for the typical day; PPV(t) indicates
the PV actual operating power.

3.1.2 Gas turbine operating cost
Gas turbine operating costs include power generation costs and

carbon emission penalty costs, which is as Equation 15.

objGT � ∑
t

cGT + cca( )PGT t( ) (15)

where cGT and cca are the power generation cost and carbon emission
penalty cost per unit power of gas turbine.; PGT(t)is the operating
power of the gas turbine.

3.1.3 CSP units operating cost

objCSP � ∑
t

cCSP PCSP t( )| | (16)

where cCSP is the operating cost per unit power of CSP; PCSP(t) is the
output power of the CSP unit at time t.

3.1.4 ES costs
The ES cost includes both capital and operation cost. The capital

cost refers to the total investment cost of ES system, amortized into a
fixed daily cost. The operation and maintenance cost covers the
expenses required to keep the ES system in optimal standby
condition, which is as Equations 17–20.

objES � Cday
inv + Cop (17)

Cday
inv � RES

365
cEEN (18)

RES � r 1 + r( )TES

1 + r( )TES − 1
(19)

Cop � ∑
t

cop PES t( )| | (20)

where Cday inv represents the capital cost converted on a typical
day.; Cop is the operating cost of ES; RES is the annual investment
recovery coefficient of ES; TES is the life of ES; r is the discount rate;
cE is the life-cycle capital cost of ES; EN is the rated capacity of ES;
PES(t) is the operating power of the ES at time t; cop is the operation
and maintenance cost factor of ES.

3.1.5 Lithium mining loads cost

objlaod � CLi + Ctr (21)

3.2 Constraints

The optimal operation conditions of industrial microgrids
include constraints on PV unit output, gas turbine output, CSP
unit output, ES operation, and lithium mining load operation.

3.2.1 Power supply constraints
3.2.1.1 PV units constraint

PV output within the predicted output range to participate in the
optimization of microgrid operation, which is as Equation 22.

0≤PPV t( )≤Pfr
PV t( ) (22)

3.2.1.2 Gas turbine constraint

μGTP
N
GT ≤PGT t( )≤PN

GT (23)
where μGT is the minimum technical output coefficient of gas
turbine; PN

GT is rated power of gas turbine.

3.2.1.3 CSP units constraints
CSP utilizes photovoltaic power generation to heat molten salt,

achieving the conversion of electrical energy into thermal energy,
and stores the heat in high-temperature molten salt tanks. The
process is subject to the following constraints.

The constraints on power generation output are as Equation 24:

Ps,minpICSP t( )≤PCSP t( )≤Ps,maxpICSP t( )
ICSP t( ) ∈ 0, 1{ }{ (24)

where ICSP(t) represents the on/off status of the CSP units at time t,
expressed as a binary variable; PCSP(t) is the power output of the CSP
at the time t; Ps,min, Ps,max are the lower and upper limit of the power
output of CSP units, respectively.

The constraints on minimum on/off time period are as
Equation 25:

ICSP t − 1( ) − ICSP t( )[ ]Ts,off + ∑t−1
j�t−Ts,on

1 − Ij,s( )≥ 0
ICSP t( ) − It−1,s[ ]Ts,on + ∑t−1

j�t−Ts,on

Ij,s ≥ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (25)

where Ts,off indicates the shutdown period of CSP units; Ts,on

indicates the start period of the CSP units.
The constraints on output power are as Equations 26, 27:

0≤Pcha
CHP t( )≤ λchaP

solar
CSP t( ) (26)

0≤Pdis
CSP t( )≤ λdisPN

CSP/ηN,dis (27)
λcha + λdis ≤ 1 (28)

where Pcha
CHP (t) is the heat storage power of CSP at time t; Pdis

CSP (t)
indicates the heat release power of CSP in time t; Psolar

CSP (t) is available
solar thermal power at time t; PN

CSP is the rated power of the CSP;
ηN,dis is the efficiency of converting thermal power into electrical
power; λcha and λdis represents the 0–1 state variable of the CSP
thermal storage system, indicating whether it is in charging (heat
storage) or discharging (heat release) mode at time t.

The constraints on the state of charge for thermal storage is as
Equation 29:

ECSP t( ) � ECSP t − 1( ) + ηCSPP
cha
CHP t( ) − Pdis

CSP t( )/ηCSP (29)

where ECSP(t) is the thermal energy stored in the CSP units at the
time t; ηCSP is the efficiency coefficient of the thermal storage system.

The constraint on thermal storage capacity is as Equation 30:
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Es,min ≤ECSP t( )≤Es,max (30)
where Es,min, Es,max are the lower and upper limit of the thermal ES
capacity in the CSP untis, respectively.

3.2.2 Power balance constraint
The power on the supply side equals the power on the demand

side, which is as Equation 31:

PPV t( ) + PGT t( ) + PCSP t( ) + PES t( )
� Pfr

Li t( ) + PLi t( ) + Pfr
tr P t( ) + Ptr t( ) + PNet t( ) (31)

where PNet(t) is unbalanced power that cannot be fully absorbed
at time t.

3.2.3 ES constraints
The constraints on capacity configuration and operation are

as follows:

PES,min ≤ λESPES,N ≤PES,max

EES,min ≤ λESEES,N ≤EES,max
{ (32)

where PES,N is rated power of ES; EES,N is the rated capacity of ES; λES
is the 0–1 variable configured for ES; PES,min and PES,max are the
minimum and maximum rated power of ES, respectively; EES,min

and EES,max are the minimum and maximum rated capacity of ES
respectively.

The constraint on ES operating is as Equation 33:

−αchPES,N ≤PES t( )≤ αdisPES,N (33)

where PES(t)is the operating power of ES at time t; αch and αdis are the
maximum charging efficiency and the maximum discharge
efficiency, respectively.

The constraints on response rate and time of ES are as
Equation 34:

v−ES ≤PES t( ) − PES t − 1( )≤ v+ES
D≤Δt{ (34)

where v- ES, v + ES are the upper limits of the downregulation and
upregulation response rates of ES participating in microgrid
regulation at time t, respectively; D is the minimum time period
for ES to participate in microgrid regulation; Δt is the time period
with ES actually participating in microgrid regulation.

The constraints on state of charge (SOC) for ES are as
Equation 35:

SOCmin ≤ SOC0 + ∫t1

t0
PES t( )dt[ ]/EES,N ≤ SOCmax

∀t1 ∈ t0, tend[ ]
⎧⎪⎨⎪⎩ (35)

where SOCmin, SOCmax represents the ratio of the minimum and
maximum capacity of ES; SOC0 indicates the initial SOC of the ES;
t0, tend represents the start time and end time of ES participation in
microgrid regulation, respectively; t1 represents any moment within
the start time and end time of ES participation in microgrid
regulation.

3.2.4 Load constraints
The load side constraints are shown in Equations 1–7 and

Equations 8–11.

3.3 Model linearization based on Big-
M method

Since the multiplication of 0–1 variable and continuous variable
is non-linear, the Big-M method is used to linearize Equation 32,
making it easy to solve using mature commercial optimization
software Gurobi, which is as Equations 36, 37:

PMV � λESPES,N

PMV ≤PES,N

PMV ≤PES,N −M 1 − λES( )
λESPES,min ≤PES,N ≤ λESPES,max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (36)

EMV � λESEES,N

EMV ≤EES,N

EMV ≤EES,N −M 1 − λES( )
λESEES,min ≤EES,N ≤ λESEES,max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (37)

where PMV and EMV are the auxiliary variable that characterizes the
ES state; M is relatively large constants.

4 Case study

4.1 Scene setting

To validate the feasibility and effectiveness of the proposed
strategy, this section conducts a simulation analysis based on an
independent microgrid located in a remote area of Southwest China.
The proposed optimization configuration model is solved using the
linear solver Gurobi, with the simulation scheduling set for a 24-h
period and a scheduling step size of 1 h. The predicted output of the
PV unit and the planned load consumption curve are shown in
Figure 3, and the basic operational parameters of the independent
microgrid are listed in Table 1. Additionally, four cases are set up for
comparative analysis, as detailed below. It should be noted that, for
the sake of simplicity, other regulation resources below mainly
include PV units, CSP units, gas turbines and transferable
lithium mining loads.

Case 1: The regulation potential of TLMLs and ES is not considered.
The power and energy balance of microgrid is managed
solely by other regulation resources.

Case 2: The regulation potential of TLMLs is considered, but ES is
not included. The power and energy balance of the
microgrid is achieved through the participation of
TLMLs and other regulation resources.

Case 3: The regulation potential of TLMLs is not considered, but ES
is optimized. The power and energy balance of microgrid is
managed through ES and other regulation resources.

Case 4: Both the regulation potential of TLMLs and the optimal
configuration of ES are considered. The power and energy
balance of the microgrid is achieved through the joint
participation of TLMLs, ES, and other regulation resources.
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4.2 Analysis of ES optimization
configuration results

Considering the planned PV output, the minimum technical
output of gas turbines, and the planned load consumption curve, the
operational status of the independent microgrid is shown in
Figure 3. The system exhibits a power surplus during the
scheduling period of 9:00–16:00, while power deficits occur

during 1:00–8:00 and 17:00–24:00. These highlight significant
challenges in achieving system power balance. To address these
challenges, the excellent characteristics of ES for power support and
energy shifting are fully utilized. Combined with the proposed ES
optimization strategy, ES system participates in the power and
energy balance control of the microgrid. Furthermore, to
effectively compare the impact of demand-side flexibility from
lithium mining load regulation on microgrid ES configuration
and operation, simulation analyses are conducted for Case 3 and
Case 4 in Table 2, with the ES optimization results presented in
Table 3. As shown in Table 3, when the flexibility of TLMLs is not
considered in the grid optimization, the configured ES capacity is
104.92MW/419.68MWh. In contrast, when the flexibility of TLMLs
is included in the optimization, the rated power and capacity of the
optimized ES configuration are reduced by 26.06% and 22.17%,
respectively, compared to Case 3.

By exploiting the temperature adjustability of the MVR system,
the electricity flexibility of TLMLs can be effectively unlocked,
achieving the following:

• During peak electricity demand periods when power supply is
insufficient, the electricity demand of TLMLs is reduced to
alleviate pressure on the power supply of microgrid.

• During low electricity demand periods and high PV
generation periods, the electricity demand of TLMLs is
increased to enhance the renewable energy utilization of
the microgrid.

FIGURE 3
Schematic diagram of operation baseline for independent microgrid.

TABLE 1 Basic parameters of independent microgrid.

Index Value

Generation Rated capacity of PV 190 MW

Rated capacity of CSP 12 MW

ES Rated power lower limit 20 MW

Rated power upper limit 200 MW

Lithium mining load Upper temperature limit 55°C (Ma et al., 2020)

Lower limit of temperature 65°C (Ma et al., 2020)

Specific heat capacity of brine 3kJ/(kg °C)

Heat transfer coefficient 5

TABLE 2 Different operating scenarios in the microgrid.

ES TLMLs Other regulation resources

Case 1 ✕ ✕ ✓

Case 2 ✕ ✓ ✓

Case 3 ✓ ✕ ✓

Case 4 ✓ ✓ ✓

TABLE 3 Optimal configuration results of ES in independent microgrid.

Case Rated power Rated capacity

Case 3 104.92 MW 398.70 MWh

Case 4 77.58 MW 310.32 MWh
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These results demonstrate that the flexible regulation capability
of TLMLs effectively eliminates part of the system’s power
imbalance, thereby reducing the ES configuration requirements.

The operating power and SOC curves of the ES system
configured in Cases 3 and 4 are shown in Figure 4. It can be
observed that the ES system in both cases discharge during power

deficit periods to meet load demands and charge during power
surplus periods to absorb excess PV generation. This ensures
sufficient energy is available for discharge during power deficit
periods. Additionally, in Case 3, the configured ES system
undergoes charge and discharge actions during all 24 scheduling
periods of a typical day. In contrast, the number of charge-discharge

FIGURE 4
Operating power and SOC operation curve of configured ES.

FIGURE 5
Coordinated optimization operation diagram of independent microgrid in cases 1–4. (A) Case 1. (B) Case 2. (C) Case 3. (D) Case 4.
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cycles in Case 4 is reduced, which helps to minimize ES losses from
frequent cycling and further extends the lifespan of the ES system.

4.3 Technical analysis of optimal operation
in independent microgrid

This section focuses on analyzing the optimal operation of
different regulation resources in maintaining the power and
energy balance of the microgrid. Figure 5 illustrates the
optimized operation of the independent microgrid in Cases 1–4.
In Case 1, the PV units, CSP units, gas turbines, and transferable
loads collectively participate in system regulation. As shown in
Figure 5A, some scheduling periods still experience power
shortages, resulting in an unbalanced energy volume of
62.16 MWh. During periods of high PV generation, a significant
amount of electricity is curtailed due to the limited accommodation
capacity of the system, leading to a curtailment rate of 51.53%. This
highlights the severe challenge to the microgrid’s renewable energy
utilization capability. Compared with the regulation resources
involved in Case 1, Case two incorporates flexible TLMLs by
exploiting the temperature adjustability of MVR system to
participate in the power and energy balance control of the
microgrid. This approach further alleviates system imbalances
and reduces the PV curtailment rate by 48.9% and 26.06%,
respectively. However, due to the adjustment boundaries of
lithium mining load power under the constraints of lithium
extraction production efficiency, solely relying on the inclusion of
flexible TLMLs is insufficient to both reduce the curtailment rate and
improve the power and energy balance of the system.

Case 3 builds on Case 1 by considering ES configuration to
enhance the stable operation of the microgrid. The results of ES
optimization and charge-discharge operations were analyzed in detail
in Section 4.2 and will not be repeated here. From the optimized
operation of the microgrid in Case 3 shown in Figure 5C, it is evident
that the PV output power is fully utilized by the microgrid.

Additionally, imbalanced power and gas turbine output power
are reduced by 76.45% and 36.51%, respectively, compared with
Case 1. Furthermore, despite achieving load demand satisfaction
and significantly lowering the PV curtailment rate, the system incurs
a high ES capacity cost—nearly twice the average load demand
capacity. This highlights the need for further improvement in
resource configuration and system flexibility. To address these
issues, Case 4 integrates the flexible TLMLs from Case 2 and the
ES system from Case 3 for joint participation in the power and
energy balance control of the microgrid. The regulation resources in
this case include PV units, CSP units, gas turbines, ES, and flexible
TLMLs. Similarly, the ES configuration and operational
performance, as well as a comparison with Case 3, were
elaborated in Section 4.2 and are not repeated here. It is worth
noting that, based on the ES capacity configuration in Case 4 and the
optimized operation shown in Figure 5D, the microgrid achieves a
significant improvement in stability by reducing system imbalances
and PV curtailment to 2.12 MWh and 0 MWh, respectively, using
only 74% of the ES capacity configured in Case 3.

As indicated by the previous analysis, both Case 2 and Case
4 include flexible TLMLs as key regulation resources in microgrid
operations. The main difference lies in the addition of ES regulation

in Case 4 compared to Case 2. To compare the impact of ES on the
temperature of the primary power-consuming equipment (MVR) in
the lithium extraction process, the temperature regulation variation
curves of TLMLs are shown in Figure 6. The MVR temperature
represents the physical characteristics of lithium extraction from
brine, while power quantifies its electricity consumption. These two
parameters exhibit a thermo-electric coupling relationship. By
analyzing temperature variations, the effect of power regulation
on the production efficiency of TLMLs can be effectively reflected.
The temperature variations shown in Figure 6 directly correspond to
the power flexibility regulation of TLMLs in Figure 5. As observed in
Figure 6, the MVR temperature fluctuates within the temperature
control boundaries of 55°C–65°C in both Case 2 and Case 4, with
similar trends. Specifically, as shown in Figures 3, 5, during power
deficit periods (1:00–8:00 and 17:00–24:00), lowering the MVR
temperature reduces the electricity demand of lithium mining
loads to alleviate the supply pressure on the microgrid.
Conversely, during power surplus periods (9:00–16:00),
increasing the MVR temperature raises the electricity demand of
lithiummining loads to absorb excess power. This effectively enables
bidirectional flexible interaction between power supply and demand.

However, whether ES participates in microgrid operations
significantly impacts the temperature variations of TLMLs, as
evidenced by notable differences between Cases 2 and 4.
Specifically, in Case 2, the temperature adjustment range is [56°C,
64°C], with a temperature difference of 8°C and a variance of 9.52°C2.
In comparison, Case 4 demonstrates a narrower temperature
adjustment range of [57.8°C, 62°C], with the temperature
difference and variance reduced by 47.5% and 25.87%,
respectively. Combining Figures 5, 6, the collaboration of ES with
flexible TLMLs in microgrid regulation effectively alleviates the
pressure on flexible regulation, minimizing the impact of
temperature variations on the production efficiency of the
lithium extraction process.

4.4 Economic analysis of optimal operation
in independent microgrid

This section analyzes the economic costs of microgrid optimized
operation. Based on the solution of the objective function in the
optimization strategy for independent microgrids discussed in
Section 3.1, the economic operation costs for Cases 1–4 are
presented in Figure 7.

Specifically, the costs of thermal power generation and carbon
emission penalties show a decreasing trend from Case 1 to Case 4,
aligning with the technical analysis in Section 4.3. This is mainly due
to the gradual inclusion of more flexible regulation resources in
microgrid control, which reduces the reliance on costly thermal
power generation, contributing to the achievement of “dual carbon”
goals. The PV curtailment penalty cost in Case 2 decreases by
21.53% compared to Case 1, while Cases 3 and 4 fully utilize the
PV output. This demonstrates that the participation of flexible
TLMLs and ES in microgrid regulation continuously enhances
the system’s renewable energy utilization capability. However, the
regulation capacity of TLMLs is limited by the adjustment capacity
and the production characteristics of lithium extraction processes,
making their regulation capability less effective than that of ES.
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Nevertheless, the participation of flexible TLMLs in power and
energy balance can further alleviate the need for conservative ES
capacity configurations, effectively reducing the economic cost of
ES. This conclusion is supported by the comparison of ES costs
between Cases 3 and 4, where the total capital and operational cost of
ES in Case 4 is 22.53% lower than in Case 3. Similarly, the regulation
cost of TLMLs in Case 4 decreases from ¥25,500 in Case 2 to
¥21,200. The involvement of ES in power and energy balance also
reduces the flexible regulation pressure on TLMLs, thereby
mitigating the impact on lithium extraction production efficiency.

In addition, the total operating costs for Cases 1, 2, 3, and four
are ¥359,600, ¥259,300, ¥197,300, and ¥167,000, respectively,
showing a progressively decreasing trend. This demonstrates that,
compared to considering the participation of flexible TLMLs or ES
individually in microgrid optimization, their coordinated
participation significantly reduces the overall operating costs of

the system. ES participation in system regulation effectively
reduces the temperature variation of TLMLs, thereby lowering
the regulation costs of flexible TLMLs. Simultaneously, the
participation of flexible TLMLs in system regulation further
reduces the required ES capacity and charge-discharge power,
effectively decreasing the capital and operating costs of ES.
Therefore, combined with the previous technical analysis, the
coordinated participation of flexible TLMLs and ES in microgrid
regulation balances the technical and economic benefits of
microgrid operation.

5 Conclusion

This study focuses on the power supply needs of high-energy-
consuming industrial mining loads and the integration of new

FIGURE 6
Temperature regulation diagram of TLMLs for Cases 2 and 4.

FIGURE 7
The comparison diagram of comprehensive operation cost in cases 1–4.
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energy in an independent microgrid in a remote area of Southwest
China. By analyzing the lithium extraction process from brine and
exploring the regulation potential of lithium mining loads, it
proposes an ES optimization configuration and operation strategy
for independent microgrids, incorporating the flexible response of
high-energy loads to jointly participate in the system’s power and
energy balance regulation. The following conclusions are drawn:

1) Considering the flexibility of lithium mining loads is
constrained by the production characteristics of the lithium
extraction process, a mathematical model for the flexible
regulation of lithium mining loads was developed. This
model incorporates the adjustability of the MVR
temperature of key power-consuming equipment and
includes production behavior constraints.

2) By incorporating the regulation capacity boundaries of various
resources in the microgrid, an optimal ES configuration model
was developed to minimize the comprehensive operational
cost of the system. The participation of ES in microgrid
optimization reduced the system imbalance power and
comprehensive operational cost by 93.32% and 35.6%,
respectively, while effectively decreasing the temperature
regulation variation of lithium mining loads by 47.5%.

3) By leveraging their demand-side regulation potential, the
flexible lithium mining loads contribute to reducing the
required ES capacity by 26.06%. Additionally, this approach
effectively alleviates the power supply pressure on generation
units, significantly enhancing the technical and economic
performance of the microgrid.

This study aims to address the electricity challenges faced
by high-energy-consuming loads in high-renewable-energy
microgrids, providing valuable insights for the development
of demand response. Future research will focus on
characterizing the uncertainty in the response of flexible
lithium mining loads and exploring multi-stakeholder benefit
allocation within microgrid.
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Various controllable resources contribute to energy regulation and rapid support
in the form of virtual energy storage (VES), which can significantly simplify
control parameters and facilitate the evaluation of a microgrid’s economic
and secure operational reserves. This paper establishes a power density
virtual energy storage (PDVES) model and an energy density virtual energy
storage (EDVES) model. Wind turbines, photovoltaics (PVs), controllable loads,
and electric vehicles (EVs) are equated to EDVES and PDVES, respectively.
Furthermore, an economic calculation model for microgrids that incorporates
VES is developed, and an energy regulation framework for microgrids is
constructed with virtual current (VCU) and virtual capacitor (VCA) as scheduling
parameters. With the frequency security of island microgrids as a constraint, a
rapid support coordinated control strategy for PDVES and EDVES is proposed
to ensure the economic and secure operation of microgrids across multiple
time scales. Finally, a high-proportion renewable energy test system with VES is
established. The test results demonstrate that under the proposed VES control,
the energy regulation and dynamic stability control performance of microgrids
can be significantly improved.

KEYWORDS

virtual battery, virtual capacitor, energy regulation, frequency support, dynamic stability

1 Introduction

With the rapid increase in the proportion of distributed wind power, photovoltaic (PV),
electric vehicles (EVs), seawater desalination loads (SDLs), and other flexible resources
(FRs) connected to the power system, both the power supply and load sides present a
power challenge potential (Thomas et al., 2018). Microgrids are in urgent need of a feasible
solution in order for new energy and controllable loads to be integrated into the system’s
energy regulation and rapid support control system, realizing the collaborative participation
of power sources and loads in system regulation (Mateus et al., 2025; Lin et al., 2025).
However, the power output of wind power and PV on the power supply side is intermittent,
and controllable loads such as EVs and SDLs have heterogeneous control parameters. Due
to the complexity of the operating parameters, microgrids lack a means of evaluation for
the system energy and dynamic stability reserves, which not only makes it difficult to
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optimize economic operation but also makes it hard to cope
with disturbances and guarantee the safe operation of the system.
Therefore, microgrids need to integrate FRs, simplify operating
parameters, and collaborate to accomplish energy regulation and
rapid support control objectives, which will be key to improving the
economic and safe operation of the system.

Enhancing the economy of microgrid operation through the
cooperative operation of new energy sources, energy storage, and
loads is a key research direction for microgrids. Multilevel optimal
scheduling models of microgrids have been constructed, which
provide a feasible solution for optimizing the energy regulation
mode of power source, load and energy storage (Huang et al., 2024;
Cao et al., 2025; Li et al., 2025; Morais et al., 2012; Sun et al.,
2023) Yang et al. (2025), and Shui et al. (2024) assembled air
conditioners, EVs, and smart buildings in a microgrid; considered
the interest demands of power, load, and energy storage; and
proposed a master–slave co-optimization method to save system
investment costs by reducing the peak–valley difference of the
operation of the microgrid. However, while the introduction of
a demand-side response in microgrids is beneficial for increasing
revenue, there is still a lack of coordinated methods for controllable
loads, and the resource flexibility potential needs to be further
developed. Simplifying system operating parameters reduces the
difficulty of energy regulation and coordination between the power
supply and load sides, which is essential for unlocking the regulation
potential of various FRs. The VES technology, which equates FRs
to energy storage and operates jointly with real energy storage,
has become a popular topic of research. For example, on the
load side, the energy conversion relationship between FRs such
as EVs (Westermann and Schlegel, 2013; Zhu and Zhang, 2025),
smart air conditioners (Wang et al., 2021; Pahasa et al., 2022), and
SDLs (Zhou et al., 2020; Liu et al., 2021), and energy storage is
established, and the controllable load can simulate the charging and
discharging characteristics of energy storage. Lv et al. (2024) and
Wang et al. (2020) established the dynamic relationship between
thermal inertia and the charging and discharging characteristics
of the VES for the cold\heat load in buildings and improved the
economy of a building’s energy system through the VES to regulate
the load’s cold and heat characteristics. However, microgrids that
rely solely on a single device for power regulation struggle to meet
system energy demands. To further explore the potential of VES,
Lv et al. (2024) and Wang et al. (2020) established a combined VES
system that incorporated air-conditioning loads and EVs based on
their operational characteristics. This system, while balancing the
interests of multiple stakeholders, can effectively reduce peak–valley
difference, decrease the dependence of the regional power system
on traditional energy storage devices, and thus save investment
costs. Wang et al. (2024) and Du et al. (2019) proposed realizing
the potential of VES by transferring energy across time periods
using EVs and smart buildings. By utilizing these in the form of
VES, system power fluctuations can be further mitigated. However,
due to the different control parameters for electrical and thermal
loads, there is still room for improvement in the power coordination
between the two. In summary, regarding microgrids, although new
energy, energy storage, and load have the potential for energy
regulation, the control parameters of each type of equipment are not
uniform. Although the charging and discharging characteristics of
theVES are involved in systemenergy regulation, the control process

is complicated, and it is difficult to assess the system energy reserve.
In microgrids, the joint dispatching strategy of VES and real energy
storage needs further improvement.

The rapid responses of FRs to short-term frequency changes to
ensure system dynamic stability and alleviate the pressure on power
support of the energy storage is another technical bottleneck that
urgently needs to be resolved (Chen et al., 2024; Yang et al., 2022).
To guarantee the stability of the DC distribution network, Fu et al.
(2022) and Tanaka et al. (2011) proposed a coordinated control
strategy of controllable loads and batteries to reduce DC voltage
fluctuation after disturbances and to avoid the deep charging and
discharging of the battery. However, due to the large number of
control parameters, the current research does not discuss in detail
the control methods for new energy to join the system stability
support. Alyami (2024) constructed a hybrid energy storage system
containing gas storage, air conditioning, and battery, taking into
account time-of-use tariffs, and proposed a coordinated control
strategy for PV and hybrid energy storage in an isolated island
microgrid. However, while it is suitable for longer time-scale power
dispatch, how to respond quickly to short-term frequency changes
still needs further research. Gabriele et al. (2023) and Tang et al.
(2021) proposed a multi-time-scale coordinated control method
for microgrids which can issue control commands for all devices
within the day-ahead stage at one time. However, due to the
lack of controllable parameters suitable for sensing the power and
operating status of controllable devices, the current ability of the
microgrid control system to cope with sudden disturbances remains
insufficient. In Tangqing et al. (2014) and Honarmand et al. (2014),
the energy storage and SDLs coordinate to participate in the primary
and secondary frequency regulation of the system.Although existing
studies have proposed short-time coordinated control methods for
FRs—such as natural gas, smart air conditioners, and SDLs—they
have three shortcomings. First, the system power reserve is difficult
to assess, and whether the controllable resources can realize
continuous regulation needs verification. Second, the operating
parameters of the controllable equipment are not uniform, and
the design methods of inertia and frequency regulation coefficients
are unknown in the short-time frequency response process. Third,
whether the FRs in microgrids can take into account energy
regulation and short-time frequency support on a long time scale
has to be explored. In summary, a VES model urgently needs to
be established for microgrids to simplify the operating parameters
of each type of FR and to combine the charging and discharging
characteristics of PDVES and EDVES. This will realize energy
regulation and rapid support control in multiple time scales, give
full play to the control potential of the new type of power system,
and improve the system operation level.

To optimize the energy regulation effect of microgrids and
realize the rapid frequency support control of each type of FR, the
PDVES and the EDVES models were respectively established, and
a novel cooperative control of VES for energy regulation and rapid
frequency support is further proposed. This study is structured as
follows. Section 1 establishes VES models for controllable loads,
wind turbines (WTs), hydrogen energy storage (HES), and EVs,
simplifies the operating parameters of various types of FRs, and
proposes the operation mode of a microgrid with VES. Section 2
establishes the economic calculation model of microgrids with VES
and proposes a dispatching method of microgrids with VCU and
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VCAvalue as unified instructions andVSOC to assess system energy
storage. Section 3 proposes a frequency cooperative control adapted
to PDVES, EDVES, and real energy storage devices in microgrids,
taking into account both the economic and safe operation of
microgrids. Section 4 builds a new energy high-proportion test
system with multi-type VES and verifies the effectiveness of the
proposed control strategies. The study ends with conclusions.

2 Operation mode of microgrids with
VES

2.1 PDVES model

In microgrids, distributed energy resources, controllable loads,
HES, and EVs can all be considered typical FRs. Distributed energy
resources (such as WTs) and controllable loads possess rapid power
response characteristics and can be categorized as PDVES devices.
EV and HES systems have the capability to provide sustained power
support and can be classified as EDVES. Moreover, to ensure the
stable operation of microgrids in island mode, the system requires
the configuration of a hybrid energy storage system composed
of batteries and supercapacitors. In terms of microgrid control
structure, the PV units and permanent magnet direct-drive WTs
in the distributed energy resources are connected to the microgrid
through inverters. The controllable load, exemplified by SDLs,
produces fresh water through reverse osmosis. EVs are charged at
a constant voltage and slow charging rate and are connected to the
microgrid through a bidirectional inverter. HES is integrated into
themicrogrid through inverters equippedwith electrolyzers and fuel
cells; it consumes surplus power from the microgrid by producing
hydrogen and supplies power to themicrogrid by burning hydrogen.
The hybrid energy storage system operates in power control mode.

To flexibly regulate various types of FRs in a microgrid,
the operational information on distributed energy resources,
controllable loads, and other FRs should be collected by the dispatch
control center. In addition, hybrid energy storage should rapidly
participate in system regulation.The operation mode of a microgrid
is depicted in Figure 1. The microgrid’s dispatch center monitors
the rotational speed of WTs, the power consumption of controllable
loads, and the state-of-charge of EVs, batteries, and supercapacitors.
The microgrid needs to process this operational data to generate
dispatch commands that facilitate the management and control of
multiple types of devices. It also perceives the overall system energy
and power reserves, evaluates the reserve status of adjustable system
resources, and achieves optimized energy regulation and rapid
coordinated control that accounts for various FRs, thereby ensuring
the economic operation and dynamic stability of the system.

To simplify the operational parameters involved in the
regulation of FRs in microgrids, this paper will establish models
for PDVES represented by new energy sources and controllable
loads, as well as EDVES represented by HES and EVs. Through
unified scheduling by the microgrid, the complexity of coordinated
regulation between FRs and real energy storage devices will be
mitigated.

i) Controllable load: SDLs are currently recognized as typical
controllable loads in microgrids. The high-pressure pumps

in SDLs usually possess variable frequency speed regulation
capabilities and can be equated with asynchronous motors
for simulation purposes. By mimicking the charging and
discharging characteristics of power density supercapacitors,
an energy conversion relationship can be established between
the energy of the capacitor and the kinetic energy of the rotor
in the asynchronous motor. This can be expressed as follows:

El = ∫
Jsωr

p2n

dωr

dt
dt = ∫UC

Jsωrdωr
dt

p2nUCdUC

dt

dUC

dt
dt = ∫UCCl

dUC

dt
dt, (1)

where El, Js, ωr, and pn are the rotor kinetic energy, inherent inertia,
and angular velocity of the motor, respectively, andUc is the voltage
of the supercapacitor.

It can be seen from Equation 1 that the VCA Cl of the SDL is
expressed as

Cl =
Js
p2n
×
Δ(w2

r )
Δ(U2

C)
≈

Js
p2n
×
(ω∗r )

2 −ω2
r

ΔU2
C

, (2)

In Equation 2, where ω∗ r represents the reference value of the
electrical angular velocity of the motor.

To facilitate the coordinated control of VES and supercapacitors,
this paper introduces the concept of virtual state of charge (VSOC)
for the SDL, which is defined as:

SOCl =
Jsω

2
r

2p2n
/
Jsω

2
rn

2p2n
=

ω2
r

ω2
rn,

(3)

In Equation 3, where ωrn represents the rated electrical angular
speed of the motor.

ii) Variable speed WT: the variable-speed constant-frequency
WT connected to the grid through a power electronic
converter has a rapid power response characteristic. The
WT simulates the charging and discharging characteristics
of a power density supercapacitor, establishing an energy
conversion relationship between the capacitor energy and the
rotor kinetic energy of the WT.This can be expressed as

Ew = ∫koptω
3
optdt = UC∫

3koptω2
optdωopt

dt
UCdUC

dt

dUC

dt
dt = ∫UCCw

dUC

dt
dt.

(4)

It is evident from Equation 4 that after equating the variable-
speedWT to VES, the VCA value Cw of theWT can be expressed as

Cw =
2koptΔω

3
opt

ΔU2
C

≈ 2kopt
(ω∗opt)

3 −ω3
opt,

ΔU2
C

(5)

In Equation 5, where ω∗ opt represents the reference value of the
electrical angular speed of the WT rotor.

The VSOC for a variable-speed WT system can be expressed as

SOCw =
Ew
Ewn
=

Jsω
2
opt

2p2n
Jsω

2
optn

2p2n

=
ω2
opt

ω2
optn
, (6)
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FIGURE 1
Structure of the microgrid with VES.

In Equation 6, whereωoptn represents the rated value of the electrical
angular speed of the WT rotor.

By equating the SDL and the variable-speed WT to VCAs and
introducing the VSOC, the microgrid can regulate FRs with rapid
power response capabilities. In conjunction with supercapacitors,
this facilitates the evaluation of the energy storage and operational
status of the VCAs compared to real energy storage, achieving
coordinated regulation between distributed energy resources,
controllable loads, and supercapacitors.

2.2 EDVES model

i) HES systems exhibit continuous power regulation
characteristics during the electricity-to-hydrogen energy
conversion process and can participate in power regulation
over extended periods. By simulating the charging and
discharging characteristics of energy-density batteries, the
HES system can establish an equivalent relationship between
the hydrogen production process and the battery charging
and discharging process, constructing a connection between
the energy conversion of battery charging and discharging
and the HES system. The rates of hydrogen production
via electrolysis and the combustion of hydrogen can be
represented respectively as:

NEL,H2 =
ηELUELIELηinhEL

LHVH2

NFC,H2 =
UFCIFChFC

ηFCLHVH2ηout

, (7)

In Equation 7, where UEL and UFC represent the input and output
voltage of the VES, respectively, IEL and IFC represent the input
current and output current of the VES, respectively, ηEL and

ηEL represent the electrolysis efficiency and hydrogen combustion
efficiency of the HES with values of 0.7 and 0.95, respectively, ηin
and ηout represent the power conversion efficiency of the inverter
with a value of 0.95, hEL and hFC represent the working states of
the electrolysis hydrogen and fuel cell, respectively, and LHVH2
represents the lowest heating value of hydrogen.

After equating the HES device to a virtual battery, the VCU
parameter IH2V of the HES can be expressed as:

IH2V =
UELIELηinhEL +UFCIFChFC

UH2V
, (8)

In Equation 8, where UH2V represents the terminal voltage of the
virtual battery.

The VSOC of the HES system, SOCH2(t), can be
expressed as follows:

SOCH2(t) = SOCH2(t− 1) +
NEL,H2(t) −NFC,H2(t),

MH2 max
(9)

In Equation 9, where MH2max represents the maximum hydrogen
mass limit within the hydrogen storage tank.

ii) EVs can adopt time-of-use electricity pricing to guide their
charging behavior, achieving orderly load management. By
controlling the scaled and orderly charging and discharging of
EVs, a controllable virtual battery can be formed to coordinate
and solve the problem of unordered charging after EVs are
connected to the grid.

EV charging and discharging both occur in a conventionally
slow manner. TheMonte Carlo simulation method is used to model
the daily charging load of EVs. The return time of EVs follows a
normal distribution (Zhang et al., 2018) tf ∼N (17.47, 3.41), and the
daily driving distance of EVs follows a log-normal distribution—S ∼
N (3.24, 0.88). Based on the Monte Carlo simulation method and
by comparing the return time tf of the i

th EV with the end time Tms
of the early morning low electricity price period and the start time

Frontiers in Energy Research 04 frontiersin.org305

https://doi.org/10.3389/fenrg.2025.1574188
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Yang et al. 10.3389/fenrg.2025.1574188

Tns of the evening peak electricity price period, the VES of EVs can
be charged before the end of the early morning low price period to
absorb redundant power. After the evening peak price period, the
VES of EVs can be discharged to reduce the impact of the original
load power. Reasonably arranging the start time Tc for charging the
VES of EVs and the start time Td for discharging the VES of EVs
is as follows:

Tc(i) =

{{{{{{{{{{
{{{{{{{{{{
{

t f(i) (0 ≤ t f(i) < Tms)

t f(i) (Tms ≤ t f(i) ≤ Tns)

0 (Tms ≤ t f(i) ≤ Tns),

t f(i) (Tns < t f(i) ≤ 24)

0 (Tns < t f(i) ≤ 24)

(10)

Td(i) = t f(i) (Tns < t f(i) ≤ 24), (11)

In Equations 10, 11, where, Tms represents the end time of the low
electricity price period, and Tns represents the start time of the peak
electricity price period.

The charging and discharging of the virtual battery require the
EV charging pile to obtain the EV battery capacityCi and the state of
charge SOCA I of the battery.The charging pile management system
collects EVusers’ charging decision behavior, including the expected
parking time ti and the desired state of charge level SOCB I when
leaving, which is set to 0.8. The charging and discharging duration
and the amount of electricity for a single EV are, respectively:

Edchar(i) =min{PCtC + (SOC
A
i − SOC

min
i )Ci − S(i)w, rCi}

Tdchar(i) = ti − tC −
(SOCB

i − SOC
min
i )Ci

PC
−
S(i)w
PC

, (12)

In Equation 12, where, PC is the charging and discharging power of
the EV under conventional slow-speedmode, with a value of 1.8 kW,
tc is the charging duration of the EV, SOCmin i is theminimum state
of charge of the EV, with a value of 0.1, S(i) is the driving distance
of the EV, and w is the battery consumption per kilometer of the EV,
with a value of 0.15.

The orderly charging and discharging scheduling process of EVs
is shown in Figure 2.

The entire charging duration of the EV is determined by the
discharge amount of its virtual battery and the state of charge at
the time of return. By guiding the EV to selectively participate in
the energy flow in the microgrid during electricity price valleys
and peaks, the start time of the EV’s virtual battery charging and
discharging can be expressed thus:

{{{{{{
{{{{{{
{

Tdchare(i) = Tdchar(i) +Tdchare(i)

Tchare(i) = Tchare(i) +

[
Tdchare(i)

∑
t=Tdchare(i)

PC + S(i)w]

PC
,

(13)

In Equation 13, where Tchare and Tdchare represent the end times of
charging and discharging, respectively.

The charging and discharging of the electricity Eev(t) of the EV’s
virtual battery at each moment, as determined by Equation 13, can
be expressed as follows Equation 14:

Eev(t) =
T2

∑
t=T1

PE =
{
{
{

T1 = Tchars,T2 = Tchare charging

T1 = Tdchars,T2 = Tdchare discharging
. (14)

After equating the EV to VES, a VCU Iev(t) can be introduced
to simulate the battery’s charging and discharging characteristics,
which can be expressed as

Iev(t) =
Eev(t)
Uev(t)
, (15)

In Equation 15, where Uev(t) represents the voltage at the busbar of
the EV charging station.

The VSOC of the EV can be expressed as

SOCev(t) = SOCev(t− 1) +
Eev(t)ηev

C
, (16)

In Equation 16, where ηev represents the charging and discharging
efficiency of the EV.

In themicrogrid,HES andEVs can introduceVCUandVSOCas
control variables, which have the same operating parameters as real
batteries and participate in system power regulation, simplifying the
control mode of energy density energy storage devices.

3 Cooperative control of VES for
energy regulation and frequency
support

3.1 Multi-time scale dispatching system of
VES

After introducing VES, the multi-time scale scheduling system
structure of the microgrid is shown in Figure 3, where the
microgrid’s dispatch center is equipped with an energy regulation
system for long-time-scale economic optimization operations. After
introducing VES, both the EDVES and the battery participate
in system regulation and status monitoring through VCU and
VSOC, while the PDVES and the supercapacitor participate through
VCA and VSOC.

In the energy regulation system, the economic optimization
model of the microgrid with VES is solved to complete the dispatch
command allocation with the goal of reducing economic operation
costs. In the short-term rapid support control system, the microgrid
prioritizes the use of PDVES devices to provide inertial support
at the initial stage of frequency changes, while the EDVES takes
on the task of primary frequency regulation. Because VES actively
participates in power regulation at different time scales of the system,
it not only reduces the capacity of configuring real energy storage
devices but also helps reduce the number of charge and discharge
cycles of the energy storage devices, thereby extending the service
life of those devices.

3.2 Cooperative energy regulation of VES

3.2.1 Objective function
The energy regulation system of the microgrid utilizes the

charging and discharging of VES and adjusts the power output
of various FRs. The objective function of the microgrid’s energy
regulation takes into account the daily revenue R of the load and
the operating cost Cmic, and can be expressed as:

max
24

∑
t=1
[RH2 +Rev +Rw − (CH2 +Cev +Cwf +Cwi +Chy)], (17)
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FIGURE 2
Flowchart of virtual battery emulated by EV.

In Equation 17, where RH2 represents the revenue from hydrogen
production, Rev represents the revenue from EV charging, Rw
represents the revenue from the purified water in SDLs, CH2
represents the maintenance cost of HES, Cev represents the
compensation cost of EVs, Cwf represents the cost of WTs
participating in system regulation, Cwi represents the operation and
maintenance cost of WTs, and Chy represents the operation and
maintenance cost of energy storage.

3.2.1.1 Revenue of microgrids
As is evident from Equation 17, the revenue of the microgrid is

derived from the load revenue, including the revenue fromhydrogen
production, the revenue from EV charging, and the by-product

revenue, which can be expressed as

∑R =
24

∑
t=1

NEL,H2(t)Kfu +MH2(t)ΔSOCH2,TKph2 +
24

∑
t=1

Nev

∑
j=1

pt(t)Eev(t) +
24

∑
t=1

KlQ(t),

(18)

In Equation 18, where K fu represents the revenue from products
obtained by hydrogen production, ΔSOCH2,TK represents the daily
surplus hydrogen mass, ph2 represents the hydrogen selling price,
pt(t) represents the electricity purchase price sold by LA to EV users
in the time period, Eev(t) represents the charging amount of the
virtual battery, Nev represents the number of virtual batteries, and
K l represents the revenue from purified water.
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FIGURE 3
Structure of a multi-time scale dispatching system for microgrids with VES.

The controllable load participates in power regulation in the
form of a VCA. Referring to the speed change of an asynchronous
motor, the relationship between the load power PL(t) and the output
power of the VCA is can be expressed as Equation 19

PL(t) = PL(t− 1) +
Js[ω

2
r (t) −ω

2
r (t− 1)].

2p2nΔt
(19)

Taking the SDL as an example, the relationship between the
purified water flow rate and the load output power can be fitted
(Wang et al., 2021). The purified water flow rate of the SDL can be
expressed as Equation 20

Q(t) = 2.741− 2.408 cos [0.1216PL(t)] + 1.324 sin [0.1216PL(t)].
(20)

The microgrid scheduling center can output the VCA value
according to the revenue optimization result and use the VCA
to complete load regulation. The controllable load uses the motor
frequency conversion speed regulation system to change the load
power so that the PDVES has a variable capacitance value.

3.2.1.2 Cost of microgrids
The operating cost Cmic of the microgrid needs to consider the

operation and maintenance cost CH2 of HES, the peak shaving cost

Cev of EV users, the regulation cost Cwf of WTs, the operation and
maintenance cost Cwi, and the operation and maintenance cost Chy
of energy storage, which can be expressed as Equation 21

∑Cmic = UELIELhELpEL +UFCIFChFCpFC +
24

∑
t=1

KmPw(t)

+
24

∑
t=1

M

∑
j=1
Δp(t)Eevd(t) +

24

∑
t=1

Kw[Pwo(t) − Pw(t)]

+Chy, (21)

where, pEL and pFC represent the operation and maintenance costs
per unit of electricity of AC and PEMFC, respectively,Km represents
the operation and maintenance cost per unit of electricity of
WTs, M and Eevd represent the number and discharge amount of
virtual batteries, respectively, Δp(t) represents the compensation
electricity price per unit of discharge amount of EV connected to the
grid, Pwo(t) represents the output power of WTs under maximum
power tracking control, Pw(t) represents the output power of WTs
under VES control, and Kw represents the unit wind curtailment
cost of WTs.

In actual operation, the charging and discharging of the battery
will reduce its service life.Therefore, the operation andmaintenance
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cost Chy of the hybrid energy storage includes the operation and
maintenance cost Cb and the life loss CB, and can be expressed as
Equations 22, 23

Chy = CB +Cb =
24

∑
t=1

CB(t) +
24

∑
t=1

Khy(|Phyc(t)| + |Phyd(t)|), (22)

CB(t) =
WtotalA

1− SOHmin
|SOCB(t− 1) − SOCB(t)|, (23)

where,Khy represents the operation andmaintenance cost of energy
storage, Phyc(t) and Phyd(t) represent the power output of the energy
storage in time period t, respectively,W total represents the purchase
cost of the battery, A represents the aging coefficient of the battery,
SOHmin represents the critical life of battery scrapping, with a value
of 0.8, and SOCB(t) represents the SOC of the battery in time period
t.

3.2.2 Constraint conditions
During the microgrid’s operation, it is necessary to

ensure the power balance of the power source and the load.
Therefore, the power balance constraint of the system can be
expressed as Equation 24

Pw(t) + Ppv(t) + Phyd(t) − Phyc(t) = PL(t) +
N

∑
i=1

Eev(t) + PH2. (24)

To avoid overcharging and over-discharging of the real energy
storage device, the state of charge constraints of the supercapacitor
and the battery are, respectively, expressed as Equation 25

{{{{{{{
{{{{{{{
{

20% ≤ SOCB(t) ≤ 80%

20% ≤ SOCC(t) ≤ 80%

40% ≤ SOCB(24) ≤ 60%

40% ≤ SOCC(24) ≤ 60%

. (25)

To ensure the continuous operation of the systemduring the day,
the state of charge at the end of the hybrid energy storage device
is constrained to meet the energy regulation needs of the system
the next day.

During the operation of the EDVES, the operation limits of
the electrical equipment need to be considered. For example,
the state of charge constraints of HES and EVs are respectively
expressed as Equation 26

{
{
{

30% ≤ SOCev(t) ≤ 90%

10% ≤ SOCH2(t) ≤ 90%
. (26)

The PDVES also needs to consider the allowable operation range
of electrical equipment. For controllable loads such as SDLs and
WTs, the VSOC constraints can be respectively expressed as

{
{
{

21.78% ≤ SOCvir1(t) ≤ 100%

16% ≤ SOCvirg(t) ≤ 100%
. (27)

In Equation 27, 46% of the rated speed of the controllable load
is set as the minimum rotor speed, which is 1400r/min—the VSOC
operation threshold of the controllable load is 21.78%—and 40% of
the rated speed of the WT is set as the minimum speed—the VSOC
operation threshold of the WT is 16%.

When the HES system is operating, it is necessary to ensure that
it works accurately in the AE or PEMFC state. The state constraint
of the HES system is expressed as Equation 28

hEL + hFC ≤ 1. (28)

3.3 Cooperative control of VES for
frequency support

When the system frequency f remains within the safe range,
the microgrid maintains economic operation through the energy
regulation system. The system collects the operation states of the
VES and the real energy storage device and sends them to the
microgrid dispatch control center to complete the long-term scale
economic optimization. However, if the microgrid encounters a
disturbance and the system frequency exceeds the safe operation
range, the microgrid should have the ability to coordinate various
FRs to participate in the system frequency regulation and reduce the
frequency regulation task of the energy storage. The collaborative
operation strategy process of the PDVES and the EDVES in the
microgrid is shown in Figure 4.

As seen in Figure 4, within the frequency safety range, the
microgrid is in the economic dispatching operation mode. When
the frequency exceeds the safe range, the controllable electrical
equipment with short-term frequency response in the microgrid
includes WTs, controllable loads, EVs, and HES. At this time, the
WTs and controllable loads deploy their power rapid response
capabilities and provide inertia support in the initial stage of
frequency change. EVs and HES participate in the primary
frequency regulation of the system.

As shown in Figure 4, the PDVES mainly undertakes the rapid
power regulation in the initial inertia response stage (df /dt < 0).
In this stage, the PDVES adjusts ω∗ r and ω∗ opt respectively
through the VCA Cl and Cw to further adjust its power output,
share the inertia support task of the supercapacitor, and reduce
the rate of change of the system frequency. In the frequency
recovery stage (df /dt > 0), the PDVES and the EDVES jointly
undertake the frequency regulation task. In this stage, the EDVES
outputs IH2 and Iev through the VCU instruction, simulates the
charging and discharging characteristics of the battery, adjusts the
hydrogen storage electrolysis rate NEL or the hydrogen combustion
rate NFC and the EV charging amount Eev(t), respectively, relieves
the frequency regulation pressure of the battery, and accelerates
the system frequency recovery speed. Under the multi-terminal
regulation of the source, storage, and load, the system frequency
gradually recovers until (df /dt > 0), when the system frequency
returns to the steady-state value, the system frequency no longer
changes, an inertia response link exits, and the primary frequency
regulation link continues to maintain the safe operation of the
system frequency in the new operating state.

In Figure 5, the red lines represent the data flow of the
microgrid. The microgrid uses the communication network to
obtain information on the output and response of sources, loads,
and energy storage. After analysis and processing, this information
is converted into coordinated operation commands represented
by VCA and VCU parameters. These virtual commands are then
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FIGURE 4
Cooperative control of the microgrid for energy regulation and frequency response.

transmitted to the FR device terminals through the data flow.
The blue lines indicate the power flow of the microgrid, which is
the control structure for the FR device to participate in energy
regulation. Upon receiving the virtual commands, the FR device
terminals switch to the correspondingworkingmodes and adjust the
actual parameters. By responding to power changes, they provide
rapid frequency support, thereby ensuring the stability of the
microgrid operation.

The VCA value Cvir set by the PDVES has the following
relationship with the capacitance value C of the real supercapacitor:

Cvir = kvircC. (29)

In Equation 29, kvirc represents the VCA adjustment coefficient.
The state of charge of the supercapacitor is closely related to the

terminal voltage and can be expressed as

SOCCP =
UC −UCmin

UCmax −UCmin.
(30)

In Equation 30, UC represents the voltage of the supercapacitor,
andUCmax andUCmin represent the allowable upper and lower limits
of the voltage of the supercapacitor, respectively.

If the system frequency change is Δωe, the PDVES needs
to provide inertia support, and the change in virtual rotational
kinetic energy is

ΔELG =
1
2
JvBωeΔωe, (31)

HvB =
JvBω

2
e

2SNB
, (32)

where, JvB represents the moment of inertia of the PDVES, ωe is the
angular velocity of the virtual synchronous generator, and SNB is the
capacity of the virtual synchronous generator.

Substituting Equation 32 into Equation 31 yields

ΔELG = 2HvBSNBΔωe. (33)

In Equation 33, Δωe represents the per-unit value of the angular
frequency variation.

Writing it in the form of frequency gives

ΔELG = 4πHvBSNBΔ f, (34)

where Δ f represents the per-unit value of the frequency variation.
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FIGURE 5
Cooperative control structure diagram of the microgrid with VES.

Assuming that all the unbalanced energy of the system during
the frequency change is provided by the VCA, the energy change of
the VCA is expressed as

ΔE = 1
2
C(U2

c −U
2
c0), (35)

whereUc andUc0 are the steady-stateDCvoltage of theVCAand the
voltage value of the VCA after participating in frequency regulation,
respectively.

According to Equations 34 and 35, the system frequency change
can be reflected as the DC voltage fluctuation of the PDVES so as to
adjust the output power of the VCA in Equation 36:

Δ f =
C(U2

c −U
2
c0)

8πHvBSNB
. (36)

After introducing VES, the relationship between the capacitor
voltage and the virtual amplification factor is expressed as

kvirc =
U2
C(t) −U

2
C(tset)

U2
C(t) −U

2
C(tres)
, (37)

where UC(tset) is the terminal voltage of the capacitor when the
set SOCCP value is reached, and UC(tres) is the voltage of the
supercapacitor when the SOCCP reaches the limit value.

FromEquations 2, 5, and 37, the reference values of the electrical
angular velocity of the SDL and theWT are respectively expressed as

ω∗r =

{{{{{{
{{{{{{
{

ωrmin    ωr ≤ ωrmin  

ωrn(K1ΔSOC+ SOC
3
2
1 )

3
2
ωrmin ≤ ωr ≤ ωrn

ωrn   ωrn ≤ ωr

, (38)

ω∗opt =

{{{{{{
{{{{{{
{

ωoptmin    ωopt ≤ ωoptmin  

ωoptn(K2ΔSOC+ SOC
3
2
w)

3
2
ωoptmin ≤ ωopt ≤ ωoptn,

ωoptn   ωoptn ≤ ωopt

(39)

In Equations 38, 39, where,K1 = 2pn
2UCC1(UCmax-UCmin)/(Jsωm

2),
ΔSOC = SOCCP-SOCCres; SOCCres represents the limit value of the
VSOC SOCCP of the SDL, K2 = UCCw(UCmax-UCmin)/(koptωoptn

3),
SOCCgres represents the limit value of the VSOC SOCCP of the WT,
and ωrmin and ωoptmin represent the minimum angular velocities of
the motor and the WT, respectively.
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FIGURE 6
Structure of the test system.

TABLE 1 Simulation system parameters.

Component Parameters

WTs PN = 3000 kW, ωN = 1500 rad/min

Supercapacitors C = 1000 mF, V cN = 30 kV

Batteries QN = 10000 A h, VbatN = 12 kV

SDLs nN = 3000 rad/min, nmin = 1400 rad/min

EVs N = 500,SOCe: 30%–90%

HES Maximum inlet volume 2380Nm3/h, maximum outlet
volume 1770Nm3/h

The VCU value Ivir of the EDVES can be set as

Ivir = kviriIB, (40)

In Equation 40, where kviri is the VCU adjustment coefficient, and
IB is the output current of the real battery.

The frequency response model of the microgrid after
introducing VES is

(2Hgp+Dsys)Δ f(t) = ΔPLG +ΔPLN −ΔPd, (41)

whereHg is the system inertia when the new energy penetration rate
is r, Dsys is the damping coefficient of the system, ΔPLG is the power
output of the PDVES, ΔPLN is the power output of the EDVES, and
ΔPd is the disturbance power.

Combining Equations 8, 15, and 41, the VCU values of the two
EDVES can be obtained respectively as Equations 42, 43

Ivir1 =
ΔPLG1
UH2V
, (42)

Ivir2 =
ΔPLG2
Uev
, (43)

where, Ivir1 and ΔPLG1 are the VCU and output power of the HES,
respectively, and Ivir2 and ΔPLG2 are the VCU and output power of
the EV, respectively.

By calculating the reference value of the electrical angular
velocity and the VCU command value through the VCA and the
virtual battery, respectively, the output power of the EDVES and the
PDVES can be adjusted to provide rapid power support and improve
the frequency stability. In addition, the operation state of the VES
can be directly monitored through the VSOC and combined with
the energy regulation system, taking both the economy and safety of
the microgrid into account.

4 Simulation analysis

4.1 Introduction of the test system

In order to verify the enhancement effect of the proposed
VES on the energy regulation and rapid power support of the
microgrid, a test system was built (Figure 6). This paper compares
two scenarios: one without additional control and one with VES
control. In the scenario without additional control, only the batteries
and supercapacitors participate in power regulation, and the FR in
the microgrid consumes electrical energy as loads. In the scenario
with VES control, in addition to the batteries and supercapacitors
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TABLE 2 Time-of-day tariffs.

Time period 08:00–11:00
18:00–21:00

22:00–06:00 06:00–08:00
11:00–18:00
21:00–22:00

Electricity price/CNY/(kW·h) 1.197 0.356 0.744

TABLE 3 Benefit/cost factor for economic operation of
the system (Wang et al., 2023).

Parameters Value Parameters Value

k 5.4 CNY/Ton Δp(t) 0.42
CNY/(kW·h)

ph2 10.3 CNY/m3 Kw 0.35
CNY/(kW·h)

pEL 0.148
CNY/(kW·h)

Km 0.0296
CNY/(kW·h)

pFC 0.263
CNY/(kW·h)

Khy 0.9 CNY/(kW·h)

FIGURE 7
Power dynamic responses of the test system without
additional control.

FIGURE 8
Power dynamic responses of the test system under VES control.

FIGURE 9
State of charge and power responses of the battery under two
scenarios.

FIGURE 10
System gain results under two scenarios.

participating in power regulation, the FR in the microgrid also
participates in system energy management and rapid power support
through VES.

The operating parameters of WTs, supercapacitors, batteries,
SDL, EVs, and HES in the test system are shown in Table 1, the
EV time-of-use tariffs are shown in Table 2, and the economic
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FIGURE 11
VCU and VCA command values.

operating parameters of the system are shown in Table 3
(Wang et al., 2021; Wang et al., 2023). The test system solves the
energy regulation model by invoking the CPLEX solver.

4.2 Analysis of energy regulation

The comparison of the test results with and without the
economic optimization dispatch under the no-attachment control
and VES control are shown in Figures 7–11.

After the introduction of VES, the energy regulation system of
themicrogrid scheduling and control centerwill generateVCAvalue
and VCU value commands to cooperate the resources to respond to
the system (Figure 11). During the economic operation scheduling
process, based on the VSOC of the VES device (Figure 12), the
microgrid can intuitively perceive the energy reserve state of
the system.

Looking at Figures 7 and 9, it can be seen that in the traditional
mode without additional control—between 0:00 and 4:00—the
output power of the WT increases, and the EV charging load
demand is less, failing to respond to the wind power disturbance;
this achieves wind power dissipation by charging the supercapacitor.
In addition, at 2:00–4:00, when the supercapacitor charging reaches
the limit—after the state of charge rises to the maximum value—it
is handed over to the battery charging to smooth out the wind

power disturbance, which makes the SOC of the battery rise to
67.4% at 4:00.

At 5:00, the wind power decreases significantly. To respond to
the system power disturbance in time, the supercapacitor and the
battery participate in power regulation tomaintain the systempower
balance. At 8:00–18:00, on the one hand, the PV modules begin to
generate electricity. On the other hand, the wind power plummets
at 12:00, and under the pressure of this double disturbance, coupled
with the limited range of supercapacitor regulation, the controllable
loads as well as other controllable FRs fail to participate in the
response.Theymainly rely only on the hybrid energy storage system
of the battery to respond to the system disturbance, leading to an
increase in the depth of discharge of the battery and also putting the
battery in a state of frequent charging and discharging; this causes
the SOC of the battery to show a rising–declining–rising trend.

After 18:00, the EV is in a centralized charging state, and a
load peak occurs, its maximum load reaching 620 kW. In addition,
the PV is unable to output power at night, resulting in an increase
in the system’s peak–valley difference. The batteries will be deeply
discharged, and the lowest value of its SOC reaches 53.79%.

In this model, some controllable FRs (EVs, controllable loads,
HES) fail to exploit their adjustable potential or fully mobilize
their response. The hybrid energy storage system consisting only
of supercapacitors and batteries supports the unbalanced net load
caused by wind and PV power disturbances. In addition, combining
Table 4 and Figure 10 shows that the net gain of the system in 24 h
is ¥ 1,354.72. It is worth noting that during the dispatch cycle, the
battery is in a frequent charging and discharging state; especially
after 18:00, the battery is deeply discharged, which leads to an
increase in the cost of operation and maintenance and aging, and
the system revenue is significantly reduced.

After the introduction of VES, the microgrid uses the VCU and
VCAvalues in Figure 6 to regulate the FRs and simulate the charging
and discharging characteristics of energy storage devices.

As shown in Figure 11, from 0:00 to 4:00, in order to fully
stimulate the responsiveness of controllable FRs and under the
constraint of meeting customer charging demand, the microgrid
adopts time-of-use tariffs so that EVs are charged when the price is
low and discharged when the price is high, forming a phenomenon
of “low storage and high generation.” In order to flexibly dispatch
EVs, themicrogrid generatesVCUvalues to regulate EVs forVES. In
addition, in order to tap its adjustable potential, the microgrid treats
the SDL asVES and regulates the load power through theVCAvalue.

At 3:00, the WT sets the VCA to 37.1 F through the VES
technology, which responds quickly to the power change and
balances the system power. During this period, battery charging
and discharging power is significantly reduced, and the microgrid
effectively consumes the significantly increased wind power. At 5:00,
the wind power is reduced, and the WTs are constrained by the
rotational speed and wind speed. At this time, the controllable
loads mainly carry out the rapid power response, and the HES and
EV clusters carry out the supplemental regulation to satisfy the
system power demand, fully mobilizing the enthusiasm of the VES
in responding to the power change.

At 8:00–18:00, the PV begins generating power, system
power redundancy, and controllable load through the VES
technology to set the VCA to 22.4 F to increase the rotor speed
to dissipate the redundant power. At 12:00, when the wind power
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FIGURE 12
VSOCv of VES.

TABLE 4 Economy results under different cases.

Case
benefits/costs/CNY

No additional
controls

VES control

Revenue from water
production

2,704.07 2,575.48

Revenue from EV sales 221.03 129.43

Hydrogen production 330 80.67

Comprehensive O&M
Costs

1900.38 215.6

Peaking costs 0 51

EV Dispatch compensation 0 240.43

plummeted—limiting the WT VES adjustable potential—the
controllable load actively participated in the system regulation,
reduced its own operating power, and reduced the output power to
1,642 kW. The energy regulation system generates a negative VCU
value, and the HES works in the fuel cell state, increasing the output
power by burning hydrogen; this reduces the number and depth of
battery discharges.

After 18:00, unlike the EV as a load in the no-attachment
control, the EV has already shifted the peak power consumption
to other times to dissipate the wind–PV disturbances through
the complementary response of the power on different periods.
Therefore, at this time, the dispatch center of the microgrid sends
a command to the EV with a negative value for the VCU to supply

FIGURE 13
Load profile of EV in multiple modes.

power to the system and maintain the power balance. At 24: 00, the
battery SOC is controlled to be at 62.57%. At this time, compared
with no additional control, the battery SOC in the VES mode is
improved by 8.78%.

The test results indicated that after the introduction of VES,
the maximum change of battery SOC without additional control is
12.4%, and the battery starts charging and discharging 17 times; the
maximum change of battery SOC in the VES mode is 3.7%, and
the battery starts charging and discharging five times. The change
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of battery SOC decreases in amplitude, and the fluctuation number
is significantly reduced, which alleviates the depth of charging and
discharging of batteries, reduces the number of times for their
charging, and reduces system operation cost.

Combined with Table 4 and Figure 10, the cumulative net gain
of the system in 24 h is ¥ 2,278.55. Compared to the scenario without
additional control, the system’s revenue has increased by a factor of
1.68. The main reason is that after the VES participates in power
regulation, although the microgrid revenue is reduced, the battery
operation and maintenance costs are significantly reduced.

To test the effectiveness of the VES of EVs, this paper established
three scenarios: uncontrolled charging, price-guided charging, and
VES control. The comparison of the charging load curves of EVs
under these three scenarios is shown in Figure 13.

By comparing the three scenarios, it can be seen that under the
uncontrolled charging scenario, the charging behavior of EVs exhibits
significantspatiotemporalclusteringcharacteristics.Thecharging load
of EVs surges in the evening, exacerbating the system’s peak–valley
difference. The maximum charging load reaches 650 kW at 21:00,
which poses a threat to the safe and stable operation of the system.
Undertheprice-guidedscenario,EVsareguidedtochargeinanorderly
manner, concentrating their charging during the low-price period
from 0:00 to 6:00, achieving a redistribution of charging load in time
andspace.Under theVEScontrol scenario,EVsarecentrallyscheduled
to supply power to the microgrid between 19:00 and 21:00, providing
194 kW of power. The results show that the participation of FRs in
the coordinated operation of the microgrid can effectively regulate
the resources within the grid, achieving the “peak shaving and valley
filling” of the microgrid.

To validate the effectiveness of the solution proposed in this
paper, its optimization results obtained are compared with those
obtained from the particle swarm optimization (PSO) algorithm
under the described VES control scenario. After solving with PSO,
the best result among ten runs is selected and set as the VCA and
VCU values to participate in the system’s energy management. The
specific economic indicators obtained from solvingwith CPLEX and
PSO are compared in Table 5.

The differences in the economic indicators obtained from the
two solution methods are relatively small. The CPLEX solution
increased the microgrid revenue by 0.81% compared to the PSO
solution. This situation may be caused by the parameters set for the
PSO algorithm, which may still converge to a local optimum even
after multiple iterations. In contrast, the CPLEX solution method
can effectively avoid the issue of falling into a local optimum and
has demonstrated reproducibility through repeated validation. The
comparison confirms the rationality of the solution results in this
paper and indicates that using CPLEX can significantly improve the
efficiency of solving the optimization model.

4.3 Analysis of frequency support effect

After 12:00, the wind power decreases abruptly after 10 s,
causing the system frequency to fall and exceed the safety threshold
by 0.5 Hz. The FRs in the microgrid need to respond quickly to
the frequency change to guarantee the dynamic stability of the
system. The system dynamic response before and after the VES
is shown in Figure 14. T

A
B
LE

5
C
o
m
p
ar
is
o
n
o
f
re
su

lt
s
fr
o
m

d
iff
er
en

t
so

lu
ti
o
n
m
et
h
o
d
s.

So
lu
ti
o
n
m
e
th
o
d

N
e
t
re
ve

n
u
e
/¥

O
p
e
ra
ti
n
g
re
ve

n
u
e
/¥

O
p
e
ra
ti
n
g
re
ve

n
u
e
/¥

W
at
e
r
p
ro
d
u
ct
io
n

re
ve

n
u
e

E
le
ct
ri
ci
ty

sa
le
s

re
ve

n
u
e

H
yd

ro
g
e
n

p
ro
d
u
ct
io
n

re
ve

n
u
e

O
p
e
ra
ti
o
n
an

d
m
ai
n
te
n
an

ce
co

st
P
e
ak

sh
av

in
g
co

st
E
V
co

m
p
e
n
sa
ti
o
n

C
PL

EX
2,
27
8.
55

2,
27
8.
55

2,
57
5.
48

12
9.
43

80
.6
7

21
5.
6

51

PS
O

2,
26
0.
64

2,
26
5.
42

2,
27
0.
70

12
9.
62

53
.6
9

13
7.
44

13
.2
7

Frontiers in Energy Research 15 frontiersin.org316

https://doi.org/10.3389/fenrg.2025.1574188
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Yang et al. 10.3389/fenrg.2025.1574188

FIGURE 14
Dynamic responses of the system after sudden wind power reduction.

Figure 14 shows that at 10 s, the wind speed decreases suddenly,
and when VES is not introduced, the supercapacitor and battery
can participate in the system frequency support, but the regulation
ability is insufficient, and the inertia response time is 4.9 s. At the
early stage of the disturbance, the system frequency drops at a rate
of 0.80 Hz/s, and the maximum frequency deviation Δfh is 0.74 Hz.
The supercapacitor SOC falls to 18% in this mode. In the frequency
recovery phase, the hybrid energy storage undertakes a frequency
regulation task, and the frequency returns to a steady state at 31.2 s.
The frequency at steady state is 49.69 Hz.

After the introduction of VES, in the inertial response stage,
the system frequency change rate is 0.63 Hz/s, and the maximum
frequency deviation Δfh is 0.49 Hz. The supercapacitor SOC

decreases by 7.2%, which satisfies the frequency safety regulation.
In this process, the controllable load shares the pressure of the
supercapacitor participating in the frequency adjustment with a
VCA value of 29.8 F. The supercapacitor’s SOC is also reduced by
7%. As shown in Figure 14, the load power is rapidly reduced by
129 kW, the rapid frequency response mode of the FRs is simple,
and the control potential is fully released. It should be noted that if
the wind power is insufficient to cause the frequency drop, the WT
operates at the upper limit of the wind speed under the maximum
power tracking control and cannot further increase the wind power,
so the WT does not activate the VES control at low wind speeds.

After 13.3 s, the HES and EV clusters in the system frequency
recovery phase participate in one frequency regulation with VCU
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values of 13.7 A and −7.9 A, respectively, to share the discharge
pressure of the batteries. The frequency returns to the steady-state
value after 25.5 s, and the frequency in the steady state is 49.92 Hz.
Compared with the no-attachment control, the frequency deviation
is reduced by 0.23 Hz, the amount of the change in the SOC of
the batteries is significantly lower, and the frequency stability of the
system is improved.

5 Conclusion

To enhance the coordinated operation performance of
renewable energy, energy storage, and controllable loads, a novel
cooperative control of VES is proposed to fully release the
regulation potential of FRs in the microgrid across multiple time
scales. Through a combination of theoretical analysis and testing
verification, the following conclusions are drawn.

1) WTs, controllable loads, HES, and EVs participate in system
energy regulation in the form of VES, which unifies the control
parameters for the scheduling operation of various FRs into
VCU and VSOC. This not only facilitates the evaluation of
system energy reserves but alsomakes it easier to integratewith
real energy storage devices for joint participation in system
energy regulation.

2) With the introduction of VES, the FRs in the microgrid,
under the proposed dual-layer optimization scheduling mode,
can coordinate power distribution through VCU, and the
system’s energy reserves can be intuitively reflected in real-
time through the VSOC. The test results indicate that under
the proposed optimized energy regulation mode, the system
operation model is significantly simplified and the daily net
revenue is increased 1.48 times, effectively enhancing the
economic operation capability of the microgrid.

3) Due to the identical control parameters, EDVES and PDVES
can easily cooperatewith batteries and supercapacitors. During
the frequency support process, they can quickly generate VCU
commands, enabling the orderly response of various FRs and
real energy storage devices to system frequency changes. The
test results demonstrate that with the cooperative support of
VES, the maximum system frequency deviation is reduced by
31%, and the frequency recovery time is shortened to 5.7 s.The
desired rapid frequency response and the economic operation
of the test system are both achieved.
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